THE

ENCYCLOPÆDIA BRITANNICA

ELEVENTH EDITION

miRsT	-dition,	published In	thrwe	volumer,	1768-1771.
5ECOND	"	"	ten	"	1717-1784.
THIRD	"	n	eighteen	\cdots	1788-179\%.
FOURTH	${ }^{\prime}$	"	twenty	\#	1801-1810.
FIFTH	*	\cdots	twenty	"	1815-1817.
SIXTH	"	"	twenty	"	1823-1824.
SEVENTH	"	"	twenty-ose	"	1830-4842.
EIGHTH	\cdots	"	twenty-two	"	1853-1860.
NINTH	"	'"	twenty-five	"	1875-1889.
TENTH	"	ninth edition	on and cleven		
		oupplen	mentary volum		1903-1903.
ELEVENTH	"	published in	twenty-nime	olumen,	1910-1911.

THE

ENCYCLOPÆDIA BRITANNICA

A

DICTIONARY
OF

ARTS, SCIENCES, LITERATURE AND GENERAL INFORMATION

ELEVENTH EDITION

VOLUME XXVII

TONALITE to VESUVIUS

NEW YORK
THE ENCYCLOPÆDIA BRITANNICA COMPANY

Copyright, in the United States of America, 1911.

by
The Eseyclopedia Brtransica Company.

INITIALS USED IN VOLUME XXVII. TO IDENTIFY INDIVIDUAL CONTRIBUTORS, ${ }^{1}$ WITH THE HEADINGS OF THE ARTICLES IN THIS VOLUME SO SIGNED.

AE6.	Sormetime Cabbend Scholar of Si: John's College, Odford. Engitah Lector at the $\{$ Trier. Alfred Beadley Godge, M.A. Pe.D. University of Kiel, 1896 -1905.
A.c.s.	Alcernon Charies Swingurare. See the biographical article: Swanbune, Algernon Cainles.
AEHL	Aucustus Edwand Hougr Love, M.A., D.Sc. F.R.S. to the London Mathematical Society. Hon. Fell formerly Fellow of Sx John's College, Cambridge.
A.F.L	Aethor Francts Leach, M.A. College, Oxford, 1874-1881. Acthor of English Schools at ihe Reformatios: the.
A. F.P.	Albert Frederict Pollamd, M.A. F.R.Hist.S. 1gofi. Lothian. Prisetrana, Oudord, 1892; Arnold Priteman, 18gh. Author of Eaglend suder the Proveter Somerset; Hariry VIII.; befe of Themes Cranmer ; Ac.
A. ${ }^{\text {cos }}$	
A.c.*	Rzv. Alexander Gordon, M.A. Lecturer on Church History in the University of Manchester. $\quad\left\{\begin{array}{l}\text { Doltariandsm; } \\ \text { Vabdes, Juan do. }\end{array}\right.$
AH.E	Aocustus Hzizy Reane, LL.D., F.R.G.S, F.R.Antinot.Inst. Emeritus Professor of Kindutani at Univeraity College, London. Author of $\left\{\begin{array}{l}\text { Tripoli: North Africa (in parf); } \\ \text { Orat-Altie. }\end{array}\right.$ Eehology; Man Past and Present; The World's Pcoples; dic.
AEA	Sm A. Hovituy-Schandler, C.LE. General in the Persian Army. Author of Easterm Persian Irak. $\{$ Ormin, Lako of.
1.	
A. J. ${ }^{\text {a }}$.	Rev. Alexander Janes Greve, M.A., B.D.
A.J.L	Andezw Jacrson Lamountory.
1.5	Andeew Lang. See the biographical article: Laxg, Axpyiw. - T Tetronian.
L. Le.	Aggutie Longnon. Professor at the College de France, Paria. Director of the Ecole dea Hautes Ersdea, Chevalier of the Legion of Honour. Anthor of lifre des sassomx da Comite de Champague et de Brie; Grographie de la Gavie on VI sícle; Allas mirtorique de la France Lepuis Cinar fusqu'd mos jowrs; de.
A 18*	Rev. Allan Menzies, M.A.D.D.
A. $\mathrm{Ham}_{\text {a }}$	Ayraźd Mosel-Fatio.

1 A complete line, abowing all individial contributors, appears in the final voleme.

A.. .	Alpred Newton, F.R.S. See the biographical article: Newton, Alperd.	Tomean; Touracou; Tree-creepar; Trogons Troplo-bird; Trampeter; Turkey; Turnstone.
A. P. H.		Transmal: History (in part).
A. R. B.	The Rev. Adeustos Robert Bucrland, M.A. Secretary of the Religious Tract Society, London. Morning Preacher, Foundling Hospital, London. Author of The Heroic in Missnams; \&c.	Traot: Trect Societies.
A. sp.	chibald Searp. Consulting Engineer sad Chactered Patent Aspnt.	
A. 5y.	Arthor Symons. See the biographical arficle: Symons, Ariaot	Verialide, Paul.
A. W. H.*	Artiur Williak Holland. Formerly Scholar of Se John's College. Oxford. Bacon Scholar of Gray's Inn,	ocht, Treaty of.
A. W. R.	Alexander Wood Renton, M.A., Ll.b. Puispe Jodge of the Supreme Court of Cayton. Editor of Encychopacdie of the Lews of Englend.	trade werks (in part).
B. 1 -	Brander Matthews, A.M., LL.D., Litt.D., D.C.L. 1:. . 7 Profewor of Dramatic Literature, Columbia University. New York President of the Modern Language Astociation of America (1910). Author of French Dramalisth of the Ioth Century; ac.	Tivis, inarl.
B. R.	Sit Boverton R'zowood, D.SC., F.R.S. (Edin.), F.L.C., Assoc.Ingt.C.E., M.Inst.M.E. Adviser on-Petroleum to the Admiralty. Home Office, India Office, Corporation of London, and Port of London Authority. President of sbe Society of Cbemicat Industry. Member of the Council of the Chemical. Society. Member of Council of and is Products: Chemical Tecknology; ©c.	Vquation
B. W. ©.	Benedtct Whllam Ginsbumo, M.A., LL.D. St Cathatine's Colkse. Canbridget Barrister at-Law of the 'Inmer Temple. Formerly Editor of The Nov. and Sercreary of the Royal Statistical Society. Author of Hints on the Letal Duies of Shipmasters; acc.	Tomaty.
c. A. C.	Cmarlis Apfrur Conant. Member of Commission on International Exchange of U.E., 1903. Treasurer; Morion Tryst Co., New York, 1902-1906. Author of History of Modern Bayp; of Isme; The Principles of Moncy and Banking; \&c.	Trest Compary.
c. A. 8.	Rev. Crarles Anderson Scott Ma. Bum Profeseor of the New Teatament, Theologlcal College of the Presbyterian Church of England, Cambridge. Author ol Ulfilas, A parlie of the Colks; Ec.	Una
C. B. P.	Catherine Beatrice Phillips (Mrs W. Alison Pbillips). Associate of Bediord College, Londna.	Onieorn:
c. c. W.	Charles Crantrord Whinery, A.M. Cornell University. Assistant Editor inth Edition of the Encyclopacdic Briaannica	Onltod States: Eistory (im mari).
C. D. W.	Hon. Carroll Davidson Wricht. See the biographical article: Wright, Carroll Daídison.	Trado Onlona Uniled Slates.
C. Bl_{1}		Torts.
C. F. A.	Cehrles fanicis Atrinson. Formerly Scholar of Queen's College. Oxford. Captain, 1 st City of London (Royal Fuaideri). Author of The Widderness and Cold Harbor.	Trammal: History (in part); Turenne, vicomito do; Uallorms
C. E. Ha.	Carlton Hontley Hayes, A.M., PbeD. Assistant Profeseor of History in Columbia University. New York. Member of the American Historical Ascociation.	Truce of God: Urban IL-VL.
C. J. L	Sis Cenzles JAnes I vail, R.C.S.I. C.I.E., LL.D. (EXin.). Lendon. Fellow of 	Tuks Dis.
c.in.	Carl Theodor Mirat, diti. Professor of Church History in the University of Marburg. Author of Publisistit im Zeidaller Gregor VII.; Quellen sur Geschichie des Papsulhums; \&c.	Trent cotad of: Ultramontanism; Vattean Conirill, The
C.R. R	Chirles Riymond Beniley, M.A., D.Litt., F.R.G.S., F.R.Hist.S. Professor of Modern History in the University of Birmingham. Formerty Fellow 	Varthemm, Ludovioo dit Yospucal, Amerigo.

INITIALS AND HEADINGS OF ARTICLES

t.	Ste Cmazles Willan Wilson, K.C.B., K.C.M.G. F.R.S. (1836-1907). Major-General, Royal Engineers. Secretary to the North American Boundary Commisaion. Disector-General of the Ordnance Survey. 1886-1894 Director-: Van: Turhey (in pert). General of Military Education, 1895-1898. Author of From Zorti to Ehartown; Life of Lerd Cliere; de.
D. H. E.	Duncan Blace Macdonald, M.A. D.D. Autbor of Depelopment of Muslimn Theology, mrisprudence and Constitusionol
D. C.B.	Demetrius Charles Boulcre. ac.
1.c.6.	Danize Cort Giman. See the biographical article: Grimax, Dantel Cort.
D.C.T.	David Croal Thomson. Tid Croal Thonson. Formerly Editor of the Apt Journal. Author of The Brodhers Maris; The Barbison $\left\{\begin{array}{l}\text { Troyon, Comant. } \\ \text { Sehool of Painters; Life of " Phis "; Life of Bewich; \&ic. }\end{array}\right.$
D. P.T.	donald Feancas Tovey. Aut hor of Essays in Musical A nalysis: comprising The Classical Concerto. The $\{$ Varimetipas Goldbers Variations, and analyme of many other classical workn.
D. C. E.	David Geroge Hogarta M.A. Keeper of the Ashmotean Museum, Oxford, and Fellow of Maedalen Colkge. \{Trillep; Fellow of the British Academy. Excavated at Paphos, 1888; Nancratis, 1899 wad 1903: Ephemus, 1904-1905: Assiut, $1906-1907$. Director. British School at A93: Ephemar, 1904-1905: Assut, 1906-1907. Furectior,
D. \boldsymbol{H}	David Hannay.
L8*	Eenest Charles Francois Babelon. Profesear at the Colleze de France. Keeper of the Department of Medals and Antiquities at the Bibliotheque. Nationale. Member of the Academie des In- scriptions et Belles Lettres, Paris. Chevalier of the Legion of Honour. Author of Descriptions Historiques des Monnaies de la Republigue Romaine; Traits des Mommales Grocques at Romaines; Catalogue des Camies de la Bibliollieque Notionale.
E.E.	Rt. Rey. Edward Cuthbert Butler, O.S.B. M.A. D.Litt.
E. 4	Ennest E. Austen.
E.7.8.	Eyward Farmbother Strange. Assistant Keeper, Yictoria and Albert Mumem. South Kemiogton. Member of Council, Japan Society. Author of numerous works on art selbjects. Joint-editor of Bell': "Cathedral" Series.

Een Emole Garcti, M.Inst.E.E.

E.E. 1 .

E J. F . .
EEA.
Eleis Hovell Minns, M.A. us Hovell MnNs, M.A.
University Lecturer in Palaeography, Cambridge, Lecturer and Anentant Librarian $\{$ Tyras
at Pombroke College, Cambridge. Formerly Fellow of Pembroke Colloge.
Elus Joms Winkinson Gibe. Tranalator of meveral Turkish books.
$\{$ Turkey: Literohere.
Eancund Kerchever Chambers.
Amistant Secretary Board of Education. Sometime Scholar of Corpus Christi College, Oxdord. Chancellor's English Essayist. 1891. Author of The Medieval Slage. Editor of the "Red Letter" Shakespeare: Donne's Poems; Vaughan's Pocime

Vaughan, Therase

Eotand Meyze, Ph.D., D.Litt., LL. D.

B. O.

Emind OwEn, F.R.C.S., LL.D., D.Sc. Consulting Surgeon to St Mary's Hospital, London, and to the Children's Hoapital. Great Ormond Strett. London. Chevatier of the Legion of Hocour. Author of A Masmal of Axalomy for Senior Stadents.

Tongue: Smagr:
Tondmis; Down
Variouse Veins;
Vegereal Diseases.
Et
REy ETBitised LuEE TAONTON, (d. tgof).

C. A. G.* Ruv. Gmomaz Alezar Coozz, M.A., D.D. \quad Oriel Professor of the Interpretation of Holy Scripture. Onfond, and Fellow of Oried Oriel Professor of the Interpretation of Holy Scripture. Onford, and Fellow of Oriei Autbor of Toxi-Bent of North Semulic Inscriptious; Ac.
C. E.
 Aruy Medical Department. 1868 -1888 Formerly Curator of the Royal Victoria Musemm, Netky Author of Momograph of the A siatic Clyop Mere: A I omographe of
\qquad
Rev. Grozce Ebicundson, M.A. F.R.Hist.S.
Formerly Fellow and Tutor of Brasenowe College, Oxford. Ford's Lectuser. 1909. Hom Member Dutch Historical Sociecy, and Foreign Member, Netherlands Associa. Drwatt: Province (is Pert). Mo Insectivere, Syatimatic and A malomicel; dx.
a Lin Ry. Grozer Hinazit Box, M.A

e. 2.

Gmoner Juncs Tomerar
Borrimerachaw. Liacola's lane. Edivor of Siled Piear of in Foreats for the Seldea Society.
an
Sis Grozer Rim, LLD. Sue tile biopraptical artick: Rana, Sum Guoners:

4．7．6＊	Rev．Geodee Willis Cooke． Lecturer at Rand School of Social Science，New York．Author of Critical Study of $\{$ Unitarianism：United States． Emerson；History of Unitarianism in America；Woman in the Progresz of Civilia－ tion；\＆ ．
H．A．C．	Howard Adams Carson，A．M． Civil Engineer．Past President of the Boston Society of Civil Engineers．Formerly $\{$ Tunot． Chief Engineer of the Boston Transit Commission．In charge of designing and con－ structing the Boston Subway，the East Boston Tunnel；\＆c．
日 8.	Hugh Chisholy，M． Formerly Scholar of Corpus Cbristi College．Oxiord．Editor of the sith edition of $\{$ Transvaal：History（in gurt）． the Emcyclopaedia Britannica；Ca－ditor of the roth edition．
且D．	Rev．Hippolyte Delehaye，S．J． Bollandist．Joint－editor of the Acta Sanctorum and the Analecta Bollandiana．
日．A	Henry Edward Armstrong，Ph．D．，Ll．D．，F．R．S． Professor of Chemistry at the City and Guilds of London Central Institute，South $\{$ Valency． Kensington．Author of Intraduction to the Study of Organic Chemistry．
4．7．E	Horatio Robert Forbes Brown，LL．D． Editor of the Colendar of Venctian State Papers，for the Public Record Office． Author of Life on the Lagoons；Venctun Studies；John Addington Symonds，a Venice． Biography；\＆c．
4．P．${ }^{\text {a }}$	Hans Friedrich Gadow，F．R．S．，Ph．D． Strickland＂Curator and Lecturer on Zoology in the University of Cambridge．$\{$ Tortolso． Author of＂Amphibia and Reptiles＂in the Cambridge Nafural History．
E．F．T．	Rev．Henzy fanshafe Tozer，M．A．，F．R．G．S． Hon．Fellow，formerly Fellow and Tutor of Exeter College，Oxford．Fellow of the Britigh Academy．Corresponding Member of the Historical Society of Greece．：Trebizond． Author of History of Ancient Geography：Classical Geography；Lectures on the Geography of Greece ；\＆c．
E．	Henir Stmon Hyahns，Ph．D． Kecper of the Bibliothèque Royale de Belgique，Brussels．Author of Rubens：sa\｛ Van Dyck（int part）． pie et son ceybrc．
［ 8	Hebfr Leomidas Hart，Ll．D． Barrister－at－Law．
EH．F．	H．Hamalton Fvfe． Hamalton Fvpe． Special Correspondent of the Daily Mail；Dramatic Critic of The World．Author $\{$ Tricoupis，Charilaos． of M Mdern Aspasia；The New Spiril in Egypt；\＆cc．
日．B．J．	Sir Harry Hamlion Johnston，G．C．M．G．，K．C．B．，D．Sc．，LL．D． See the biographical article：Johnston，Sir H．H． $\left\{\begin{array}{l}\text { Tunisia；} \\ \text { Uganda；Unjoro．}\end{array}\right.$
日	Horace Layb，M．A．，LL．D．，D．Sc．，F．R．S． Profcsor of Mathematics，University of Manchester．Forsnerly Fellowand Assistant $\{$ Tutor of Trinity College，Cambridge．Member of Council of the Royal Society $1894-1896$ ．Royal Medallist． 1902 ．President of the London Matbematical Vector Analysis． Society，1902－1904．Author of Hydrodynamics；\＆c．
E．It 0_{0}	Hech Longbourne Caliendar，F．R．S．，LL．D． Professor of Physica，Royal College of Science，London．Formerly Professor of $\{$ Vaporization． Physics in McGill College，Montreal，and in University College，London．
E．	
EL． 0.	Heqbert Levi Osgood，A．M．，Ph．D． PEer Levi Osgood，A．M．，Ph．D． Professor of History at Cofumbia University，New York．Author of The American $\{$ United States：History（in part）． Colonies in the Seventeenth Century；\＆c．
ETE	Hector Munro Chadwick，M．A． Saxo Instilutions．
121	Hugr Munro Ross．
E	Harold Mellor Woodcock，D．Sc． Treasise on Zoology，and of various scientific papers．
L	Henry Stert，M．A． Author of Idola Theatri；The Idea of a Free Church；Personal Idealism．
E． 8.	Henry Sheet，M．A．，Ph．D．，LL．D． the Earizest Period：A Handbook of Phonetics；\＆ic．
1.	Rev．Isaac Morgan atwdod，M．A．，D．D．，LL．d． Secretary of the Universalist General Convention．Associate－editor of the Uni－$\{$ versalist Leader．Boston．General Superintendent of the Universalist Church， Universalist Church． 1898－1906．Author of Latest Word of Unitersalism：\＆ac．
A	Jouspr Andersom，LL．D． the Royal Scottimh Acedemy．Author of Scotlead im garly Cirictiam end Pagen Tinges．

J. A. F.	Jomi Ambrose Flimang, M.A., F.R.S., D.Sc. Pender Profemar of Electrical Engineering in the University of London. Fellow of Univeraity College, London. Formerly Feliow of St John's College, Cambridje, and Lecturer oa Applled Mechanics in the Univenity. Author of Magnets amd Elioctric
J. A. B.	Curator and Librarian of the Museum of Practical Geology, London. Aurthor of $\left\{\begin{array}{l}\text { Torridonian; } \\ \text { Trianic Systom. }\end{array}\right.$ Jomn Aleien Hows. Jie Geology of Bridding Slowes.
J. Br.	
J. Bt $^{\text {L }}$	Lecturer on Construction, Architecture, Sanitation, Quantities, ac., at King' Jance Bantritt. Calkege, London. Member of the Society of Architects. Member of the lastiturte of Junice Engineert.
J. B. M	James Bass Muringer, M.A. Lecturer in History, St John's Colvege, Cambridge. Formerly University Lecturer in Hintory and Predident of the Cambridge Antiquarian Sociery Birkbeck Lecturer
	Rigut Rev. Jomn Cutheert Hedley, O.S.B., D.D. RC. Biabop of Newport. Author of The EO,' E.D.harist ; ic. $\{$ Trameninetintiation.
J. E.-E.	Jangs Fitzmadict-Keliy, Litt.D., F.R.Hist.S. Gimour Profewor of Spanish Language and Literature, Uverpool University. $\left\{\begin{array}{l}\text { Trasiation; } \\ \text { Norman MeColl Lecturer, Cambridge Univerity. Fellow of the Britich Academy }\end{array}\right.$
J. \%. W.	Jobn Fomass Writs, M.A., LL.D (d. 190.4). Folunauthor of the Lifa ad Art of G. P. Chimers, R.S.A.; Ac. $\{\text { Volmatuen (in part). }$
J. G. B.	Josepp G. Horncz, A.M.I.Mech.E. Anthor of Plating and Beiler-Making: Practical Metah-Tyraing; \&c. $\{\text { Toen }$
J. 6. 16	 Jorn Gray M'Kempitct, M.D. LL.D., F.R.S., F.R.S. (Edin.).
J. H. H	Johrt Menty Ressels, M.A. Amthor of Gabenbers: an Historical Imerstigation. $\{$ Trpercatiny: Hisfory.
J. $\mathrm{HE}_{\text {H }}^{\text {L }}$	
1. $\mathrm{H}^{\text {a }}$ R	Jom Horace Roung M.A., LL.D.
J. J. T .	
5.5*	SIE Josern Lammon, M.A., D.SC. LLLD., F.R.S. Fellow of Si Johats Cobicfe, Cambridze, and Lucksian Professor of Mathematics $\{$ (n-its, Duvandans of. mophy, Quertis College. Galray. $1880-1885$, Aurhor of Eher and Mater, and varions memoirs on Natbernatic and Phyich.
1.5	Jomer Locis Emil Deiter.
L.	Jessice Lampar Wiestox. $\{\text { Inden. }$
10	Feare Ornaib. M.A.D.C.L. MRC.S,LR.C.P.
	Fomor Ouryi Bogury, MA. Comvite and Crims Collect. Caumbride. $\{$ Tratiner Sainter and Motuls.
	Fisticar of the Geinimeth Liadole. $\{\text { manion Hartin }$
	nor- Jomer Puxcrit Pituss Pi D. D.D. If Sorfura Bltre and Orution: Nifper. Emptrits:

Lfor	Jomar Southward. Author of A Dictionery of Typoprephy and its Alcosseory Arts; Practical Prinding; tac.	Typography: Modern Pracitical Typagraphy (is parl).
LS. 7.	Jomy Siath Flett, D.Sc., F.G.S. Petrographer to the Geological Survey. Formerly Lecturer on Petrology in Medallint of the Clog Sociey or London.	Tomalita; Trachyto; TuIf; Vardolites; Volns (Geolegy).
1.s.E.	Josipa Serild Nicholson, M.A., Sc.D. Profesce of Political Economy at Edinburgh Univenity. Fellow of the British Acmemy. Author of Primciples of Poditical Ecomomy; Money and Monetary Problems; Ac.	Usury: Value.
18.R.	Jaires Syits Reid, M.A., LL.D. Lrtt.D. Prolemor of Anciene Hiscory and Fellowizn Tutor of Conville and Caius College. Cambridge. Hon. Fellor, formorly Fellow and Laxturer of Chriat's Colleys. Browne's and Chancellor's Medales Editor of editions of Cicero's Acodimia; be Amicitia ; ac.	Tralan; Tribune; Varro, Farem Tarantion.
L. T. $\mathrm{mb}^{\text {a }}$	Jome Thomas Bealby. Joint-author of Stanford's Europe. Formeriy Editor of the Scortish Geographical Magaine. Translator of Sven Hedin's Through Asia, Central Asia and Tibet; ac.	
LT.	Jayes Wrilians, M.A., D.C.L., LL.D. All Souls Reader in Roman Law in the University of Oxford, and Fellow of Lincola College. Author of Wills and Successien; de.	Tocture.
J. W. $_{\text {En. }}$	James Wyclifye Headlam, M.A. Staff Inspector of Secondary Schools ander the Board of Education, London. Formerly Fellow of King's College, Cambridge. Protessor of Greek and Ancient Hissory at Queen's College, London. Author of Bismarck and the Foundation of the German Empire: ic.	$\{$ Treitsehke, Beinrich von.
J. ${ }^{\text {W. J. }}$	Jereagha Whipple Jenis. See the biographical article: Jenrs, Jerrmian Whipple.	\{Truste
E\&	Eithlezy Scblesinger. Editor of The Portfolio of Muscal Archoealogy. Author of The Instruments of the Orchestra.	$\left\{\begin{array}{l} \text { Triconon; Tromba Marina; } \\ \text { Trombone (in part); } \\ \text { Trumpet (in part); } \\ \text { Tuba; Valves. } \end{array}\right.$
L. c^{*}	Louns Courtatid, M.A., M.R.C.S., L.R.C.P. Formerly Research Scholar. Middlesex Hospital Cancer Laboratories. Author of Life-History of Pwrumococcus; \&c.	$\{\text { Tunour. }$
L Das	Louts Duncan, Pe.D., M.Am.Inst.E.E. Late Associate Professor of Applied Electricity at the Johns Hoplins University. Baltimore, Md. Head of the Department of Electrical Engineering, Masanchusetio Institure of Technology.	$\{\text { Traction. }$
LI.E.	Leonard Exsmine Hill, F.R.S., M.R.C.S., L.R.C.P. Lecturer on Physiolofy at the London Hospital. Formerly Demonstrator of University College, Loadon. Author of Menmal of Physiology: \&rc.	Vascular Syatem: Physiodogyi
L. J.*	Lionel James, F.R.G.S. The Times Special Correspondent in South Arrica. 1899-1901. Reuter's Special Correspondeat in the Chitral Campaign. 1894-1895. Author of Wuht the Chilral Relicf Force; On the Heds of DE Wh; atc. Ac.	$\{\text { Transvat: History (in part). }$
LJ. 8	Leonard Jaies Spencer, M.A. Acsistant in the Depertment of Mineralogy. British Museum. Formerly Scholar of Sidney Sussex College. Cambridge, and Harkness Seholar. Editor of the Mimeralotical Magazine.	$\left\{\begin{array}{l} \text { Torbernile; Tromonte; } \\ \text { Tríhomite; Vanadinite; } \\ \text { Vesuriante. } \end{array}\right.$
L***	Lugi Villati. Italian Foreign Office (Emigration Department). Formerly Newspaper Correapondeat in the east of Europe. Italian Vice.Consul in New Orleans. 1906: Phila. delphia. 1907; and Borton, 1907-1910. Author of Stolian Life in Towe and Cotiney: oc.	$\left\{\begin{array}{l} \text { Tuspany: History; } \\ \text { Vespers, Sicilian. } \end{array}\right.$
E	Marcaret bryart.	$\left\{\begin{array}{c} \text { Toarneur, Cyril: Introduction } \\ \text { and Bibliography. } \end{array}\right.$
L. 6	Moses Gaster, Pr.D. Chief Rabbi of the Sephardic Communitien of Eagland. Vicc-President, Zionist Congress, 1898, 1899. 1900. Llehexser Lecturer at Oxiord on Slavonic and Byzantine Literature. 1886 and 1891 . Author of A Newt Hebrew Fragment of Ben-Sira; The Hetres Version of the Secretum Secretoram of A ristotce.	Vachasecen.
Et	Maxcus Nieburr Too. M.a. Fellow and Tutor of Oriel Callege, Oxdord. University Lecturer in Epigrapny. Joint-author of Catalogme of the Sparle Museum.	$\{$ Vaptia
IO. C	Maxmilian Otto Bismarack Caspard, M.A. Reader in Ancient History at London University. Lecturer in Greek at Birnimgham University. 1905-1906.	$\left\{\begin{array}{l} \text { Trechls; } \\ \text { Ombria } \\ \text { Ancicut }) . \end{array}\right.$
LDE	Netrton Denzison mereness. A.M., Pr.D. Author of Mardand as a Proprielary Prowince	$\left\{\begin{array}{l} \text { Onited states: Faunc and } \\ \text { Flera. } \end{array}\right.$

INITIALS AND HEADINGS OF ARTICLES

O. Ba.	Ostald Barmon, f.S.A. Editor of the Ancutor, 1902-1905. Hea. Caseniogine to Stasding Comncil of the Honourable Society of the Baronetage.	Tournament; Tudar (Family).
P. A. E.	Pumer Peter Alexeivitch Kropotinn. See the biographical article: Krorotrin, Pances P. A.	Transhaftalia (in part); Trassenplan Redion (in perf); Trigal (in part); Turkeatan (in port); Dis (Government) (is part); Dral Monotalss (in part).
P.C. 1.	Peter Crulmers Mitchetl, M.A., F.R.S., F.Z.S., D.Sc., Li.D. Secretary of the Zoological Society of London. Univernity Demonetrator in Comparative Anatomy and Ascistant to Linscre Professor at Offord. 1888-1891. Author of Onilines of Biology; ac.	Variation and Salowilon; Vertebrata.

P. C. Y. Philp Cbisney Yone M.A. Magdalen College. Oxford. Editor of Letters of Princess Elieabeth of England.

Fane, 8it E .
P. ©L.
P. G. E.
P. Le
R. A.
R. A. 8.
R. c. J.
R. D. 8.
R.1. P.
R. J. 1.
R. I. D.
R. $1 .{ }^{*}$
R. I. B.
R. P. 8.
R. Phent Spiers, f.S.A., F.R.I.B.A.

Formerly Master of the Architectural School, Royal Academy, London. Past President of Architectural Association. Associate and Fellow of King's College. London. Corresponding Member of the Institute of France. Editor ol Fergusson's History of Arckileciure. Author of Architecfure: East and Wcst; Acc.

Trees
Tracery
Triumphal Ares:
Vault.
R. 8. C. Rozert Seymour Conway, M.A., D.Litr. (Cantab.) Professor of Latin and Indo-European Philology in the University of Manchester. Formerly Professor of Latin in University College. Cardiff; and Fellow of Gonville and Caius College, Cambridge. Author of The Ilalic Dialects.

Veneti:
Vestinl.

R. Tr.

s.A. 0

Roland Troslove. M.A. Fellow, Dean and Lecturer in Classics at Worcester College, Oxford.
Gtanley Aethur Coox, M.A. Editor for the Palestine Exploration Fund. Lecturer in Hebrew and Syriac, and formerly Fellow, Gonville and Caius College. Cambridge. Examiner in Hebrew and Aramaic, London University, 1904-1g08. Author of Glossary of Aramaic Puscriptions; The Laws of Moses and the Cade of Hammurabi; Critical Noles om Oid Tastoment History; Religion of Ancient Palestine : \&ce

1迆	Sydey Moncxion Copzman, M.A., M.D., F.R.C.P., M.R.C.S., F.R.S. Medical lnapector to H.M. Local Government Board, London. Medical Lecturer on Public Healch at Westminater Hoapital. Li.Col. and Divisional Sanirary Officer, , Ltt London Division, Territorial Force. Milroy Lecturer, Royal College of Physiciana, London, 1898. Author of Vocination, its Natural History and Pafhologit Ac.	Vaceination
1县 E-W	Siz Sydney Marow Eardley-Wilmot. Rear-Admiral (retired). Commended H.M.S. "Dolphin " in Red Sea, 1885-1886, and asaized in the defence of Suakin. Superintendens of Ordaance Stores. 1902-1909. Author of Lafe of Vice-Admiral Lond Lyoms; Owr Navy for a Thousand Yoers; de.	Torpede.
1.15	Smon Newcomb, LL.D., D.Sc. See the biographical article: Newcome, Snon.	$\left\{\begin{array}{l} \text { Uranus (Astronomy); } \\ \text { Vones (Asشonomy). } \end{array}\right.$
T. As	Thomas Ashey, M.A., D.Litry. Director of the British School of Archneolony at Rome. Formerfy Scholar of Christ Church, Oxiord. Craven Fellow, 1897. Conington Prizeman, 1906. Member of the Imperial German Archaeological Institute. Author of The Classical Topograpliy of in Boman Campagna.	$\left\{\begin{array}{l}\text { Tortona; Trapani; } \\ \text { Trasimene, Lake; Trebula; } \\ \text { Turln; Turris Liblsonis; } \\ \text { Tuscany: Giography; } \\ \text { Tusculum; Tyndaris; } \\ \text { Udine; Umbria (Modin); } \\ \text { Valeria, Via; Varia; Vasto; } \\ \text { Voil; Volena; Vella; } \\ \text { Volntri; Vonalrum; Venusia; } \\ \text { Vorellif; Verona (in part); } \\ \text { Vesuvim (in pert). }\end{array}\right.$
T. A. A	Teomes Anderw Archer, M.A. Author of The Crusade of Richerd I.; Ac.	$\{$ Ursula, st (in part).
T. A. 2	Tromas Allan Ingram. M.A., LLD. Trinity College, Dublin.	$\{$ Unemploymont; Vegraney
P.C.c.	Trome Carowder Chumerldy, A.M., PeD., Ll.D., Sc.D., F.G.S., F.A.A.S., \& c . Proieseor and Head of Department of Geology and Director of the Walker Museum. Univeruity of Chicago. Investigator of Fundamental Problems of Geology at the Carmegie Institute. Consulting Geologist, United Stater and Wiscontin Ceological Survey. Author of Geology of Wisconsin; General Treatise on Geology (with R. D. Saliebury); 8tc	$\left\{\begin{array}{l} \text { Dolted staties: Ceology } \\ \text { (in part). } \end{array}\right.$
P. 1 E.	Tmomes Eisiane Holland, M.A, D.C.L., LL.D., X.C. Fellow of the British Academy. Fellow of All Souls College. Oxford. Professor of Interantional Law and Diploney in the Uaiversity of Oxford, 1874-191a. Bencher of Lincoln's Inn. Author of Studies in Indertadional Law; The Elements of Jurisprudence: Alberici Crutilis de jure belli; The Laws of War on Land; Noufral. Duties in a Maritime War; \&c.	Treaties; Vacarima.
T. \%. G	Theodore Fretlinchuysen Collier, Pab. Ascistant Prolemor of History, Williams College, Williamstown, Mass.	Orban VII. and VIIL
T. E .	Thomas Hoderin, D.C.L. Litr.D. See the biographical article: Hodgin, Tmomas.	Vapdals (in part).
I. 2.	ter Riget Honourcble Lord Shaw of Dumperuline. Lord of Appeal. M.P. for Hawick Diserict, 1892-1909. Lord Advocate for Scotland. 1905-1909.	Vergmiand, Plerre.
7.8.8.	Thomas Secoome, M.A. Balliol College, Oxford. Leeturer in History. East London and Birkbeck Colleges. University of London. Seanhope Prizeman, Oxford, 1887. Assistant Editor of Dictiomary of National Biography, 1e9i-1901. Author of The Age of Jotainan; Ac.	Vanbruch, Sir John
-. \mathbf{c}^{*}	Siz Vincent Henry Penalver Calllapo. Director of Vickers, Sons \& Maxim, Ltd. ; and the London, Chachana \& Dover Reilway. Formerly Preidene of the Octoman Public Debe Council, and Financial Representative of England, Holland and Belgium in Constantioople. Author of Imperial Fiscal Reform.	$\left\{\begin{array}{l} \text { Turkey: Geography and } \\ \text { Sietitics. } \end{array}\right.$
V. 5	Victor Charles Mahilon. Principal of the Conservatoire Royal de Musiqoe at Brusels. Chevalier of the Legion of Hoocour.	Trombone (in part); Trumpat (in part).
W.A.E.	Rev. Williar Adeustus Barvoort Cooldore, M.A. F.R.G.S. Fellow of Magdalen College, Oxford. Profescor of English History. St David's College, Lampeter, 1880-1881. Author of Gwide to Switserland: The Aips in Natuse and in History; acc. Editor of the Alpine Jommal, 1880-1889.	Topher, Rodolpho; Troat; Tschudl; Unterwabien; Uri; Valais; Var; Vaud.
E.AE.	Williay Absot Herdian, D.Sc., F.R.S. Profewor of Natural History in the Univernity of Liverpool. Prewident of the Linnean Society, 1ga4. Author of Report mpon the Twaicala collected during the Voyage of the "Challenger"; ac.	Tualoata.
\%. 1.	Waltre Altson Prillips, M.A. Formerly Exhibitioner of Merton College and Senior Scholar of St John's College, Oxiord. Author of Modern Europe; atc.	
	Whinem Bousset, D.Te. Profeser of New Testament Exegexis in the University of Gottingea. Aurhor of Das Wasen der Redigion: The Antichrist Legend; dec.	Valontinus and the Valontiniana.

xip	INITIALS AND HEADINGS OF A	F
W.E. O. $^{\text {d }}$	Sir Williay Eduund Garstin, G.C.M.g. Governing Director. Suez Canal Co. Formerly Inspector-General of Irrigatio Egypt, and Adviser to the Ministry of Public Works in Egypt.	Irans (is prat).
W. F. C.	Williay Feilden Craies, M.A. Barrister-at-Law, Inner Temple. Lecturer on Criminal Law, King's College London. Editor of Archbold's Criminal Pleading (23rd edition).	Trade Marks (in part); Traston; Trial; Vegee.
W. G.*	Walcot Gibson, D Sc., F.G.S. Geologist on H.M. Geological Survey. Author of The Gold-bearine Rochs of the S. Transoal; Mineral Wealle of Africa; The Geology of Coal and Coal Mining: dic.	Transpal: Gcology.
W. I. F.	Walter Lynwood Flemino, A.M., Pe.D. Professor of History in Louisiana State University. Editor of Docmmenlary History of Recorstruction; ac.	Union Langua of Acoertem, The.
W. Mad.	Williak McDougall, M.A. Wikde Reader in Mental Philosophy in the University of Oxford. Formerly Pellow of St John's College, Cambridge.	Traned.
W. Mmob.*	Wieliay MacDonald, LL.D. Profescor of American History in Brown University, Providence, R.I. Professor of History and Political Science at Bowdoin. 1893-190t. Author of Histery and Government of Maine; \&ce. Editor of Seleci Documents illustostion of the Hislory of the United Slates: \&c.	Tylor, Johns; Van Buron, Fartin.
W. M. D.	William Morris Davts, D.Sc., Pb.D. Professor of Geology in Harvard University. Formerly Proieseor of Physical Geography. Author of Physical Geography; \&c.	Unlted States: Physical Geography and Climate.
W. P.C.	William Prideaux Courtney. See the biographical article: Couriney, L. H. Bazom.	Tooke, John Harne.
W. R. M.	William Richazo Morpill, M.A. (d. 19io). Formerly Professor of Russian and the other Slavonic Languages in the University of Oxford. Curator of the Taylorian Institution, Oxiord. Author of Russia: Slasomic Literature; \&c.	Turgualov, Ivan.
W. R. S.	William Robertson Smith, LL.D. See the biographical article: Smith, Willlam Romarsom.	Tyro (in part).

PRINCIPAL UNSIGNED ARTICLES

Toughe

Tongling,
Toronto.
Toul.
Toulouse.
Touralng.
Tours.
Townshend, Charles.
Townshend, Viscount.
Trade, Board of.
Trade Organlzetion.
Trade Unions (in pari).
Transylvanta.
Transylvanian Mountalns.
Trap.
Trenck, Frane.
Trandelenburg, Friedrich.
Trenton (N.J.).
Tresham, Francla
Trespass.
Triazines.
Triesto.
Trinidad.
Tristan da Cunha.

Trollope, Anthony.
Tromp.
Tropine.
Troy (N.Y.).
Trunie.
Trust and Trustoes,
Trehalkovsky, Pelor.
Tuares.
Tuke (Family).
Tulip.
Tungstan.
Tunis.
Turgot, Anne Robert Jacques.
Turkey: History.
Turpeationo.
Tweeddalo, Marquesses of. Tyadale, Wilitam.
Tyadall, John. Tynemoulh. Typewriter.
Typhold Fover. Typhus Fover. Tyrone.

Uliojdt, Korfts.
Ulm.
Uirioh.
Umbelliforao.
United Kingdom of Greal Britain and Ireland.
Unitod Preshytorian Church.
United Provinces of Agra and Oudh.
United states Nival Acadomy.

Upanian.

Uranium.
Urbino.
Urea.
Ucinary Systom.
Uratus, Prinows des.
Urticacese.
Uruguay.
Usher, James,
Uskoks.
Utah.
ULica (K.Y.).
Urmal.

Vabnota (Province). Valencta (City). Valens. Valenturian I.-II. Valerian. Valla, Lorenzo. Valladolld.
Valtolilas.
Vansdium.
Vanderbilt, Cornelias.
Vane, Sir Henry.
Vanilla.
Vauban.
Vaughan, Eenry.
Vauvenargues, Marquis da
Venezuela: History.
Venus's Fly-trap.
Verdun.
Vermont.
Vornet (Family).
Verney (Family).
Vernon, Edward.
Versallues.
Vespasian.

ENCYCLOPÆDIA BRITANNICA

ELEVENTH EDITION

VOLUME XXVII

TOWALITE, in petrology, a rock of the diorite class, first described from Monte Adamcllo near Tonale in the Eastern Alps. It may be described as a quartz-diorite containing biotite and hornblende in nearly equal proportions. The prinopal felspar is plagioclase, but orthoclase occurs also, usually in small amount. Those varictits which are rich in orthoclase. is addition to plagioclase, have been called quartz-monzonites or adamellites, but a better term is grano-diorite, which bas been very gederally adopted in America for rocks which are in:ermediate in character between the granites and the diorites. The borabiende of the diorites is green, sometimes with a ting c of brown; the biotite is always brown and strongly pleochroic. Often these two minerals are clustered together irregularly or in pazallel growths. They have generally a fairly strong tendency to idiomorphism, but may sometimes enclose plagioclase felspar in ophitic manner. Both of them decompose to chlorite, episote and carbonates. The plagioclase felspar, which may form more than one-half of the rock, is andesine or oligoclase; simple crystals are rare, the majority being complex growths ri:b centres of felspar rich in lime, while in the external zones the proportion of soda lelspar increases greatly. The inner portions bave oiten well-defined, but very irregular, boundaries, and are sometimes sponge-like, with the cavities filled up with a later, more acid deposit. This seems to indicate that growth has uken place in stages, alternating with pertods when the - Jstallized felspar was eroded or partly dissolved. The orthodese sometimes forms irregular plates enclosing individuals - plagioclase Quartz occurs both in irregular simple grains in 1 is micropegmatite. Occasionally pale green pyroxene is rabik to the centre of crystals of dark green hornblende. The aiessory minerals apatite, magnetite and zircon are always yreseat, and very common also are orthite in coffee-coloured waid prisms practically always encircled by yellow epidote, ais reddish-brown crystals of sphene, simple or twinned.
in exernal appearance the tonalites are very like the graniten tan umally darker in colour Tonalite-porphyrites often accomFary them, having the same composition bui with phenocrysts o 'eippar. quartz, hornblende and biotite in a fine-grained ground. mean Veins and threads of fine grey rock, mannly composed of *varti and telspar. of ten intersect tonalite-masecs and have been tafind tonalite-aplites, secing that chey bear the same relations to api -es as the aplites do to the granites. They contain more soda-- setspar than the normal aplites. Towards their margins - - lerner alpine maswes of tomalite often ascume banded or gneimic tacun, due apperently to movement during intrusion.

In eastern Tirol another tonalite occurs at Ricserferner; there is also a well-known mass of this rock near Traversella. In the south of Scotland (Galloway district) tonalites accompany bornblendeand biosite-granites, hornblende- and augitediorites. The newer granites of the Highlands of Scotland in many places pass into tonalites. especially near their margins, and similar recks occur in Ireland in a lew places. Grano-diorites have been described from California, and rocks of very similar character occur in the Andes, Patagonia and the lesser Antilles. Tonalites are aloo mid to be frequent among the igncous rocks of Alaski.
(U.S.F.)

TONAWANDA, a city of Erie county, New York, U.S.A. about is m . by reil N. of Buffalo on the Niagara River at the mouth of Tonswanda Creek (opposite North Tonawanda), and on the Erie Canal. Pop. (8900), 7421, of whom 1834 were foreigr-bora; (1910 census), 8290 Tonswanda is served by the New Yort Central \& Hudson River and the Erie rallways, and is connected with Buffalo, Niggara Falls and Lockport by electric lines. The industries depend chiefly on electric power generated by the Niagara Falls, it m. distant. There are rollingmilis, planing-milis, ship-yards, and blast-furnaces, and among the manufactures are wooden ware, flour and paper. The surrounding region was the scene of hostilities during the Seven Years' War, and the War of 1812 . The first permanent white settlement was made about 1809, and Tonawanda was in. corporated as a village in 1854 and was chartered as a city in 1903. The name of the city is an Indian word said to mean "swift water"

TONBRIDER [Tunbridge], a market town in the Tonbridge or soutb-western parliamentary division of Kent, Engiand, 291 m . S.S.E. of London by the South Eastern \& Chatham railway. Pop. of urban district (1got), 12.736 . It is situated on rising ground above the river Medway, which is croosed by a stone bridge crected in 1775 . The church of St Peter and St Paul, chiefly Decorated and Perpendicular, with some portions of earlier date, was completely restored in 1879 . There are remains of an ancient castle, consisting chiefly of a finely preserved gateway, of the Early Decorated period, flanked by two round towers. The castle was formerly defended by three mosts, one of them formed by the Medway. Tonbridge School was founded by Sir Andrew Judd, lord mayor of London in the time of Edward VI, and was rebuilt in 1865 , remodelled in 1880, and extended subsequently. Ormamental articles of inlaid wood, called Tonbridge ware. chiefly sold at Tunbridge Weils, are largely manufactured. There are gunpowder mills on the banks of the Medway, and wool-stapling, brewing and
tanning are carried on. There is some traffic on the Medway, which is navigable for barges.

Tonbridge owed its eariy importance to the castle built by Richard, earl of Clare, in the reign of Henry 1 . The casile was besieged by William Rufus, was taken by John in the wars with the barons, and again by Prince Edward, son of Henry III. After being in the possession of the earls of Clare and Hertford, and of the earls of Gloucester, it became the property of the Staffords, and on the attainder of the duke of Buckingham in the reign of Henry VIII. was taken by the Crown. It was dismantled during the Civil War. The lords of the castle had the right of attending the archbishope of Canterbury on state occasions as chief butlers.

TONDERN, a town of Germany, in the Pruseian province of Schleswig-Holstein, on the Widane, 8 m . from the North Sea at Hoyer, opposite the island of Sylt, and 42 m . hy rail N.W. from Flensburg. Pop. (1900), 4244. Tondern was in early days 2 seaport, but since tbe reclamation of the marshes and the dredging of tbe Widane navigation has ceased, and vessels load and unload at Hoyer, witb which the place has direct railway communication. The trade consists chiefly in agricultural produce and cattle, and there is an important borse market.

In the village of Galhus, lying about 4 m . N., were discovered, in 1639 and 1734 respectively, two golden borns of the Scandinavian period; these were stolen in 1802 from the Museum of Northern Antiquities in Copenhagen, where they had been treasured, and have never been recovered.
See Karstens. Die Stads Tondern (Tondern, 1861).
TONB, THEOBALD WOLFE ($1763-1798$), Irish rebel, the son of Peter Tone, a Dublin coacbmaker, was born in Dublin on the roth of June 1763 . His grandfather was a small farmer in county Kildare, and his mother was the daughter of a captain in the merchant service. Though entered as a student at Trinity College, Dublin, Tone gave little attention to study, his inclination being for a military career; but after eloping with Matilda Witherington, a girl of sixteen, he took his degree in 1786 , and read law in London at the Middle Temple and afterwards in Dublin, being called to the Irisb bar in 1789. Though idle, Tone had considerable ability. Chagrined at finding no notice taken of a wild scheme for founding a military colony in the South Seas whicb he had submitted to Pitt, he turned to Irisb politics. An able pamphlet attacking the administration of the marquess of Buckingham in 1790 brought him to the notice of the Whig club; and in September 1791 be wrote a remarkable essay over the signature " A Northern Whig," of which 10,000 copies are said to have been sold. The principles of the French Revolution were at this time being eagerly embraced in Ireland, especially among the Presbyterians of Ulster, and two months before the appearance of Tone's essay a great meeting had been held in Bellast, where republican toasts had been drunk with enthusiasm, and a resolution in lavour of the abolition of religious disqualifications had given the first sign of political sympathy between the Roman Catholics and the Protestant dissenters of the north. The essay of " A Nortbern Whig"emphasized the growing breach between the Whig patriots like Flood and Grattan, who aimed at Catholic emancipation and pariamentary reform without disloyalty to the connexion with England, and the men who desired to establish a separate Irish republic. Tone expressed in his pemphlet unqualified contempt for the constitution which Gratian had so triumphantly extorted from the English government in 1782; and, himself a Protestant, he urged co-operation between the different religious sects in Ireland as the only means of obtaining complete redress of Irisb grievances.
In October 1791 Tone converted these ideas into practical policy by founding, in conjunction with Thomas Russell (1767^{-} 1803). Napper Tandy (q.g.) and others, the societ y of the "United lrishmen." The original purpose of this society was no more than the formation of a political union between Roman Catholics and Protestants, with y yiaw to obtaining a liberal measure of parlizuentary reforp when that object appeared to be unattainable

1 methods that the majority
of the members adopted the more uncompromising opinions which Wolfe Tone beld from the first, and conspired to establish an Irish republic by armed rebellion. Tone bimself admitted that with him hatred of England bad always been " rather an instinct than a priaciple," though until his views should become more generally accepted in Ireland he was prepared to work for reform as distinguished from revolution. But be desired to root out the popular respect for the names of Chariemont and Grattan, and to transfer to more violent leaders the conduct of the national movement. Grattan was a reformer and a patriot without a tincture of democratic ideas; Wolfe Tone was a revolutionary whose principles were drawn from the French Convention. Grettan's political philosophy was allied to that of Edmund Burke; Tone was a disciple of Danton and Thomas Paine.

Democratic priaciples were gaining ground among the Roman Catholics as well as the Preshyterians. A quarrel between the moderate and the more advanced sections of tbe Roman Catholic Committee led, in December 1791, to the secession of sixty-ight of the former, led by Lord Kenmare; and the direction of the committee then passed to more violent leaders, of whom the most prominent was John Keogh, a Dublin tradesman. The active participation of the Roman Catbolics in the movement of the United Irishmen was strengthened by tbe appointment of Tone as paid secretary of the Roman Catholic Committee in the spring of 1792 . When the legality of the Roman Catholic Convention in 1792 was called in question by the government, Tone drew up for the committee a statement of the case on which a favourable opinion of counsel was ohtained; and a sum of f 1500 with a gold medal was voted to Tone by tbe Convention when it dissolved itself in April 1793. Burke and Grattan were anxious that provision should be made for the education of Irish Roman Catholic priests at home, to preserve them from the contagion of Jacohinism in France; Wolle Tone, "with an incomparably juster forecast," as Lecky observes, "advocated the same measure for exactly opposite reasons." He rejoiced that the breaking up of the French schools by the revolution had rendered necessary the foundation of Maynooth College. which he foresaw would draw the sympathies of the clergy into more democratic channels. In 1794 the United Irishmen, persuaded that tbeir scbeme of universal suffrage and equal electoral districts was not likely to be accepted by any party in the Irish parliament, began to found their hopes on a French invasion. An Englisb clergyman named William Jackson, a man of infamous notoricty who had long lived in France, where he had imbibed revolutionary opinions, came to Ireland to nogotiate between the French committee of public safety and the United Irishmen. For this emissary Tone drew up a memorandum on the state of Ireland, which he described as ripe for revolution, the paper was betrayed to the government by an attorney named Cockayne to whom Jackson had imprudently disclosed his mission; and in April :794 Jackson was arrested on a charge of treason. Several of the leading United Irishmen; including Reynolds and Hamilton Rowan, immediat ely fled the country, the papers of the United Irishmen were seiced; and for a time the organization was broken up. Tone. who had not attended meetings of the society since May 1793, remained in Ireland till after the trial and suicide of Jackson in April 1795. Having friends among the government party, including members of the Beresford family, he was enabled to make terms with the government, and in return for information as to what had passed between Jackson, Rowan and himself he was permitted to emigrate to America, where he arrived in May 1705 . Taking up his residence at Philadelphia, he wrote a few months Later to Thomas Russell expressing unqualified dislike of the American people, whom he was disappointed to find mo mon truly democratic in sentiment and no less attached to order ant authority than the English; he described George Washingzton as a "high-flying aristocrat," and he found the aristocracy a money in America still less to his liking than the Europea: aristocracy of birth.

Tone did not feel himself bound in honour by his Compac
with the government at bome to abstalo from further conspiracy; und finding himself at Philadelphia in the congenial company af Reynolds, Rowan and Napper Tandy, he undertook a mission to Paris to persuade the French government to send an expedition to invede Ireland. In Fehruary 1796 he arrived in Paris and had interviews with De La Croix and L. N. M. Carnot, who vere greatly impressed by his energy, aincerity and ability. A commission was given him as adjutant-general in the French army, which be hoped might protect him from the penalty of treason in the event of capture by the English; though he himself cinmed the authorship of a proclamation said to have been issued by the United Irishmen, enjoining that all Irishmen taken with armse in their hands in tbe British service should be instantly shot; and he supported a project for landing a thousand criminals in England, who were to be commissioned to burn Bristol and commit any other atrocity in their power. He drew up two memorials representing that the landing of a considerahle Freach force in Ireland woald be followed hy a general rising of the people, and giving a detailed account of the condition of the country. The French directory, which possessod information from Lord Edward Fitzgerald (q.o.) and Arthur O'Connor conkruing Tone, prepared to despatch an expedition under Hocke. On the 1 gth of December 1796 the expedition, consisting of forty-three sail and carrying about 15,000 men with a trepe supply of war material for distribution in Ireland, sailed trom Brest. Tone, who accompanied it as "Adjutant-general Snith," had the greatest contempt for the seamanship of the French sailors, which was amply justified by the disastrous result of the invasion. Returning to France without having effected anything, Tone served for some months in the French army under Hoche; and in June 1797 be took part in preparations for a Dutch expedition to Ireland, which was to be supported hy the French. But the Dutch feet was detained in the Texed for many weeks by unfavourahle weather, and before it evenatually put to sea in October, only to be crushed by Duncan in the batte of Camperdown, Tone had returned to Paris; and Hoche, the chief hope of the United Irishmen, was dead. Bonaperte, with whom Tone had several interviews about this time, was much less disposed than Hocbe had been to undertake in carnest an Irish expedition; and when the rebellion hroke out an Ireland in 1798 he had started for Egypt. When, therefore, Tone urged the directory to send effective assistance to the Irish rebeck, all that could be promised was a number of small raids to descend simultaneously on different points of the Irish coast. One of these under Humbert succeeded in landing a force in Tilinala Bay, and gained some success in Connaught before it was sabduced by Lake and Cornwallis, Wolfe Tone's brother Matthew being captured, tried hy court-martial, and hanged; a second, accompanied by Napper Tandy (q.r.), came to disaster on the coast of Donegal; while Wolfe Tone took part in a third, under Admiral Bompard, with General Hardy in command of a force of abour 3000 men, which encountered an English squadron pear Lough Swilly on the 12th of October 1798. Tone, who was an boand the "Hoche," refused Bompard's offer of escape in a rigate before the action, and was taken prisoner when the
Hocke " was forced to surrender. When the prisoners were usded a fortnight later Sir George Hill recognized Tone in the Freoch adjutant-gencral's uniform. At his trial by court-martial a Dreblin. Tone made a manly straightforward specch, avowing bn determined hostility to England and his design" by fair and peca war to procure the separation of the two countries," and ;iending in virtue of his status as a French officer to die by the cusket instead of the rope. He was, however, sentenced to be urged on the 1 th of November; but on the 1ith he cut his thoos with a penknife, and on the 19th of November 1798 be sed of the wound.
Ahbough Wolfe Tone had none of the attributes of greatness, - be rises." says Lecky, "tar above the dreary level of commonsace which Irish conspitacy in general presents. The tawdry ixd exagerated rhetoric; the petty vanity and jealousies; the rak sentimentalism; the utter incapadty for proportioning acars to ends, and for grasping the stern realities of things,
which so commonly disfigure the lives and conduct even of the more honest members of his class, were wholly alien to his nature. His judgment of men and things was keen, lucid and masculine, and he was alike prompt in decision and brave in action." In his later years be overcame the drunkenness that was habitual to him in youth; he developed seriousness of character and unselfish devotion to what he believed was the cause of patriotism; and be won the respect of men of high character and capacity in France and Holland. His journals, which were written for his family and intimate friends, give a singularly interesting and vivid picture of life in Paris in the time of the directory. They were puhlished after his death by his con, William Theobald Wolfe Tone (1791-1828), who was educated hy the French goyernment and served with some distinction in the armies of Napoleon, emigrating after Waterloo to America, where he died; in New Yort City, on the 10th of October 1828.
See Life of Thabold Walfe Tone by himeds continued by his son, wilth kis political writings, edited by W. T. Wolfe Tone (a vola., Washingtoa, 1826), another edition of which is entitled Autobiegraphy of Theobald Wolfe Tome, edited with introduction by R. Barry O'Brien (2 volk. London, 1893); R. R. Madden. Lives of the Unind Irishmen (7 vols., London, 1842); Alfrod Webb, Campendinem of lrisk Biograpky (Dublin. 1878): W. E. H. Lecky. History of Irdand in the Eighterwht Century, vole iii., iv., v. (cabinet ed. 5 vola. London, 1892).
(R. J. M.)
tONGA, or Friendly Islands (so called by Captain Cook), an archipelago in the South Pacific Ocean, about 350 m . S.S.W. of Samoa and 250 m . E.S.E. of Fiji. The long chain of islands, numbering about 150 , though with a collective land area of only 385 sq. m ., extends from $18^{\circ} 5^{\prime}$ to $22^{\circ} 29^{\prime}$ S. and 174° to $176^{\circ} 10^{\circ} \mathrm{W}$., and is broken into three groups, viz. the Tonga to the south, Hapai (which again is divided into three clusters) in the centre and Vavau to the north. The largest island is Tongatabu (the Sacred Tonga, Tasman's Amsterdam) in the southern group, measuring about 25 hy xo m ., and $165 \mathrm{sq} . \mathrm{m}$. in area, which contains the capital, Nukualofa. The vegetation is rich and beautiful, but the scenery tame, the land seldom rising above 60 ft .; Eua (Tasman's Middelburg), 9 m . south east and $67 \mathrm{sq} . \mathrm{m}$. in area, is 1078 ft . in extreme height, and much more picturesque, being diversified hy rocks and woods. Vavau, in the northern group, is 55 sq . m. in extent and 300 ft . high. Next to these come the coral islands Nomuka and Lifuka in the Hapai group; Tofua, 2846 ft ., Late or Lette, 1800 ft . and Kao, 3020 ft . high, which are volcanic and smaller. The numerous istets of the central group are very fertile. It is along the western side of the northern hali of the chain that the line of volcanic action is apparent; the islands bere (of which some are active volcanoes) are lofty. To the east the whole chain is bounded hy a profound trough in the ocean bed, which extends southwestward, east of the Kermadec Islands, towards New Zealand. The majority of the Tonga Islands, however, are level, averaging 40 ft . high, with hills rising to 600 ft .; their sides are generally steep. The surface is covered with a rich mould unusual in coral islands, mixed towards the sea with sand, and having a substratum of red or blue clay. The soil is thus very productive, although water is scarce and bad. Barrier reefs are rare; fringing reefs are numerous, excepp on the east side, which is nearly free, and there are many small isolated reefs and volcanic banks among the islands. If the reefs impede navigation they form some good harbours. The best is on the south-western side of Vavau; another is on the north of Tongatahu. Earthquakes are not infrequent. From 1845 to 1857 Volcanic eruptions were very violent, and islands once fertile were devastated and nearly destroyed. A new island rose from the sea, and was at once named "Wesley," hut disappeared again. In 1886 there was a serious volcanic eruption in the outlying island of Niuafoou, and at the same time Falcon Reef, normally awash at high water, discharged sufficient scorise and pumice to form a new island 50 ft . high. In 8898 the island had been wasbed away, hut in 1900 H.M.S. "Porpoise" found that a solid core of black rock had been extruded 6 ft . above high water. All the volcanoes in the group were then quiescent.

Geolopy. - The line of volcanic action extends along the western side of the northern half of the chain. Some of the islands are built of
voleanic rocks alone; wuch are Hongu-tonga and Hongu-hapai, which appear to be fragments of a single ancient crater, Tolua. Rao, Late, Meris, Amargua and Falcon Island. The lava is a basic augiteandesite. Another group of islands consists of elevated masses of submarine volcanic deposiss, upon some of which coral-reef limestone forms a more or less complete covering; such are Tonumeia and the Nomuka group (Mango. Tonua, Nomuka-iki). All the volca nic rocks of these islands are submarine stratified tuffs which are penetrated here and there by andesite or diabase dikes. The Vavau group consists entirely of coral limestone, which is occasionally crystalline, and contains stalactitic caves of groat beauty.

Climale, Flora, Fauna.- The climate is healthy for Europeans, being dry and cool as compared with that of Samoa and Fiji. There are frequent alternations of temperature, which averages 75° to 77° F., though considerably bigher in the wet season. Cool south. east trade winds blow, somecimes with great violence, from April to December. During the rest of the year the winds blow from west-north-west and north, with rain and occasional destructive hurricanes. A cyclone which devastated Vavau in April tgoo was the most destructive ever recorded in the group, but hurricanes are rare. The average rainfall for the year is about 80 ins. The vegetation is similar to that of $\mathrm{Fiji}_{\text {, but more definitely Indo-Malayan in }}$ character; it embraces all the plants of the groups to the east with many that are absent there. Ferns abound, some of them peculiar, and tree ferns on the higher islands, and all the usual fruit trees and cultivated plants of the Pacific are found. There are several kinds of valuable timber trees. The only indigenous land mammalia are a small rat and a few curious apecies of bats. The dog and the pig were no doubt introduced by man. Of birds some 30 kinds are known, an owl being the only bird of prey; parrots, pigeons, kingfishers, honey-suckers, rails, ducks, and other water birds are numerous. There are snakes and small lizards, but no frogs or toads. Of insects there are relatively few kinds; but ants, beetles and mosquitoes abound. The fishes, of an Indo-Malay type, are varied and numerous. Turtle and ses-snakes abound, as do mollusca, of which a few are peculiar, and zoophytes.

Inhabitants.-The population of the archipelago is about 19,000 , of whom about 370 are whites or half-castes. The natives, a branch of the Polynesian race, are the most progressive and most intellectual in the Pacific Islands, except the Hawaiians. They have exercised an influence over distant neighbours, especially in Fiji, quite out of proportion to their numbers. Their conquests have extended as far as Niué, or Savage Island, 200 m . east, and to various other islands to the porth. In Captain Cook's time Poulaho, the principal chief, considered Samoa to be within his dominions. This preeminence may perhaps be due to an early infusion of Fijian blood: it has been observed that such crosses are always more vigorous than the pure races in these islands; and this influence seems also traceable in the Tongan dialect, and appears to have been partially transmitted thence to the Samoan. Various customs, traditions and names of places also point to a former relation with Fiji. Their prior conversion to Christianity gave the Tongans material as well as moral advantages over their neighbours. Crime is infrequent, and morality, always above the Polynesian average, has improved. The people have strict notions of etiquette and gradations of rank. In disposition they are amiahle and courteous, hut arrogant, lively, inquisitive and inclined to steal-1 heir altacks in carlier days on Europeans, when not caused by misunderstandings, being due probably to their coveting property which to them was of immense value. They are hrave and not unenergetic, though the coft climate and the abundance of food discourage industry. They value children, and seldom practised infanticide, and cannibalism was mere. Their women are kindly treated, and only do the lighter work. Agriculture, which is well understood, is the chief industry. They are bold and skilful sailors and fishermen; other trades, as boat and house huilding, carving, cooking, net and mat making, are usually hereditary. Their houses are slightly huilt, but the surrounding ground and roads are laid

[^0]unlimited power, they ormen to misum this and discontent resuited whercupon, to protect themselves, they appointed an executior deputy. Below these came the Eiki or chiefs. and next to them the class called Marabule. These were the hereditary counsellors anc companions of the chiefs, and conveyed to the people the decision: formed at their agamblies. They aloo directed the national cere monies, and preserved the popular traditions. While, under tho control of Europeans, the Tongans have shown some aptitude lol administration, they fail when left to themselves. They pick uf superficial acquirements with astonishing ease, but seem to b incapable of mastering any subject. They write shorthand, bui speak no English; they have a smattering of higher mathematics yet are ignorant of book-keeping. Their government, effective cnough when dealing with natives, breaks down in alf department! concerned with Europeans, and becomes the prey of designing traders. Their ambition is to rank as a civiliped state, and the liattery lavished on them by their teachers has spoiled them.

There are some ancient stone remains in Tongatabu. burial place (feitoka) built with great blocks, and a remarkable monument consisting of two large upright blocks morticed to carry a transvery one, on which was formerly a circular basin of stone.

Administration and Trade.-In May 1900 the group became a British protectorate under the native flag, the appointment of the consul and agent being transferred to the government of Nev Zealand. In rgo4 the financial and legal administration was put into the hands of the British High Comminsioner for the Western Pacific. The native king is assisted by a legistative assembly consisting, in equal numbers, of hereditary nobles and popular (elected) representatives. The wisdom of King Gecrge Tubou in refusing to alienate an acre of land, except upon lease has resulted in Tonga having been the last native state in the Pacific to lose its independence. There is a revenue of about f21,000 annually derived chiefly from a poll-tax, leases and customs. The principal exports are copra, bananas, oranges and fungus, and the annual values of exports and imports are $\{80,00 c$ and $\{70,000$ respectively on an average, though both fiuctuate considerably. British coin is legal tender (since 1905). There are fye churches in Tonga-the Free Wealeyans, emhracing the great majority of the inhabitants, Wesleyans, Roman Catholics. and Seventh Day Adventists. These last are few; a still smaller numher of natives are nominally Angicans.

Hisfory.-In 1616 the vessels of Jacob Lemaire and Wirlem Comelis Schouten reached the island of Ninatohutahu, and had a hostile encounter with the natives. In 1643 Abed Tasmar arrived at Tongatabu and was more fortunate. The next visit was that of Samuel Wallis in 1767 , followed in 1773 by that of Captain Cook. In 1777 Cook retumed, and stayed seven wecks among the islands. In 1799 a revolution, having its origin in jealousy between two natives of high rank, broke out. Civi war dragged on for many years-long after the deaths of the first leaders-hut Taufaahau, who became king in 1845 unden the name of George Tubou I., proved a strong ruler. In 1821 a Methodist missionary had arrived in the island, and others followed. The attempt to introduce a new faith led to renewed strife, this time between converts and pagans, hut King Georg (who fully appreciated the value of intercourse with foreigners, supported the missionaries, and by $18 \mathrm{~s}^{2}$ the rehels were subdued The missionaries, finding their position secure, presently begar to take action in political affairs, and persuaded the king to grant a constitution to the Tongans, who welcomed it with a kind of childish enthusiasm, but were far from fitted to receiv, it. A triennial parliament, a cabinet, a privy council, and as elaborate judicial system were established, and the cumbrou: machinery was placed in the hands of a "prime minister," : retired Wesleyan missionary, Mr Shirley Baker. Trealies o friendship were concluded with Germany, Great Britain, anc the United States of America. Baker induced the king to breal off his connexion with the Wesleyan body in Sydney, and to se up a state church. Persecution of members of the old churd followed, and in 1890 the missionary-premicr had to be remover from the group by the high commissioner. He afterward retumed to initiate a new sect called the "Free Church o England," which for time created further divisions among thw people.

King George Tubou died in 1893 at the age of ninety-six, ane was succeeded by his great-grandson under the same title

Mr Beail Thomsoo (who after Baker's deportation had carried out reforme which the natives, when left alone, were incapable of maintaining) wes rent in 1900 to conclude the treaty by which the king placed his kingdom under British protection.
See Capthin Cook's Voyoses and other early narratives; Martin, Mariar's accous of the Jonga Iulands (Ediaburgh, I8a7); Vason, Fot Yoars in Tongatabw (London, 1815); A. Monfort, Les Tonga, on Aralipel des Amis (Lyons, 1893): B. H. Thomson. The Diversions ff A Pime Minister (London, t894).

TOMgSIMC,' a province of French Indo-China, and protec. torate of France, situated between 20° and $231^{\circ} \mathrm{N}$. and 102° and 2084° E., and bounded N. by the Chinese provinces of KwangTung, Kwang-Si and Yun-nan, W. by Laos, S. by Annam, and E. by the Gulf of Tongking. Area, about $46,000 \mathrm{sq}$. m . The popalation is extimated at $6,000,000$, including 33,000 Chinese and about 4000 Europeans. Geographically, Tongking comprises three regions: (I) the delta of the Song-Koi (Red river), which, beginning at Son-Tay and coalescing with the delta of the Thai-Binh, widens out into the low-lying and fertile plain vithin which are situated the principal cities. (2) Two mountuinous tracts, to the north and west of the delta, running appsosimately from north-west to south-east, one separating the basins of the Song-Koi and the Canton river, the other those of the Song-Koi and the Mekong. (3) A region of plateaus and bow hills forming a transition between the delta and the mountains. The main geographical feature in the country is the Song-Koi, which, taking its rise near Tali Fu, in Yun-nam, enters Tongking at Lao-Kay (the Lao boundary), and fows thence in a south-casterly direction to the Gulf of Tongking. It was this river which mainly, in the first instance, attracted the Freach to Tongking, as it was believed by the explorers that, focming the shortest route by water to the rich proviace of Yun-nan, it would prove also to be the most convenient and expeditious means of transporting the tin, copper, silver and gold which are known to abound there. This belief, however, has proved fallacious. The upper course of the stream is constantly impeded by rapids, the lowest being about thirty mizes above Huag-Hoa. Beyond Lao-Kay navigation is imapracticable during the dry season, and at all other times of the year goods have to be there translerred into light junks. Below Lao-Kay larger junks, and in the summer months steam bumeches of shallow draught use tbe river. Within the limits of Yub-dan the navigation is still more difficult. Near Son-Tay the Song. Koi receives the waters of the Song-Bo (Black siverl and the Song-Ka (Clear river), parallel affluents rising in Yun-nan, and from that point divides into a network of Witerways which empty themselves by countless outlets into the sea. The Song-Cau rises in north-eastern Tongking and below the towa of Sept Pagodes, where it is joined by the Song. Thoong to form the Thai-Binh, divides into numerous branches, coomrmunicating with the Song-Koi by the Canal des Rapides med the Canal des Bambous.
The const line of Tongking from Mon-Kay on the Chinese bsometier to Thanb-Hoa, near that of Annam, has a length of 375 me . From Mon-Kay as far as the estuary df the Song-Koi it in tooken, rugged and fringed with islands and rocky islets. The bey of Tien-Hien, to the south of which lics the island of Ke-Bao, and the picturesque bay of Along, are the chief indentations. Bepoed the island of Cac. Ba, south of the Bay of Along, the coast in low, fat and marshy, and tends to advance as the alluvial capoits of the delta accumulate.

The efinate of Tongking is less trying to Europeans than that of tevet of French Indo-China. During June, July and August, the emperarure ranges between 82° and $100^{\circ} \mathrm{F}, 9$ but from October to lisy the weather is cool. The country is subject to typhoons in shar sod September.
If theoded regions of the mountains the tiger, elephant and gether are found, and wild buffalo, deer and monkeys are copat ase birds. Tea, cardamorn, and mulbery grow wild, and Ey it the fiora approximate to that of southern China.

ITe Ammarmese (we Assan), who form the bulk of the population cf Toesting, are of a sormewhat better physique than those of the
reat of Indo-Ching. Sayage tribes inhabit the northers diatrictethe Muongs the mountains bordering the Black river, the Thos the regions bordering the Clear river and the Thai-Binh. The Muongs are bigger and stronger than the Annamese. They have square foneheads, large faces end prominent cheels-bonen, and their eyes are oftea almost straught.

Rice, which in some places furnishes two crope annually, is incomparably the most importani product of the delta. Elsewhere there are plantations of coffee, 10 bacco, ramie, paper-tree (Daphne odora). cotton, jute, sugar-cane, pepper and mulberry. The cultivation of gilkworms is of growing importance.
Gold. copper, tin, load and other metals are found in the higher regions of Tongking, but only gold and tin are exploited, and these only to a very limited extent. There is a large output of coal of inferior quality from Hon-Gay on the bay of Along and chere are coal-workinge on the island of ke-Bao.

Hanoi, Hai-phong and Nam-Dinh carry on cotton-apinning, and Hanoi and Nam-Dinh are well known for the manufacture of carved and inlaid furniture. The natives are skilful at enamelling and the chasing and ornamentation of gold and other metals. The manufacture of paper from the fibrous bark of the paper-tree is a widespread industry and there are numerous distilleries of rice-spirit.

The imports of Tongking, which in 1905 reached a value of E3.501,422, comprise railway material, cercals, flour, liquors, woven goods, petroleum, glassware, paper, prepared skins, clocks and watches, arms and emmunition, 8ce. Exports (valued at $£ 1,393,674$ in 1905) comprise rice, rubber, manila hemp, ramie, lacquer and badian oils, raw skins, silk-waste, coal, Chinese druge, rattan, mazs, gamboge.

The transit trade via Tongking between Hong-Kong and the province of Yun-nan in southera China is of considerable importance, reaching in 1905 a value of $\{1,146,000$. This trade is entirely in the bands of Chinese bouses, the tin of the Yun-nan mines and cotton yarns from Hong. Kong constituting its most important elements. Goods is transit enjoy a rebate of 80% of the custome dutics. Goods are carried on the Song. Koi to Lao-Kay or Man-Hao, thence on mules. The waterways of the delta are lined with embankments, the causeways along which form the chief means of land communication of the region. (For railways, sec indo-Cuina, FRENC12.)

The protectornte of Tongking approaches nearer to direct administration than that of Annam, where the conditions of the protectorate are more closely observel. Till 1897 the emperor of Annam was represented in Tongking by a viceroy (kinh-luoc), but now the native officials are appointed by and are direcily under the control of the resident-superior, who resides at Hanoi, presides over the protectorate council. and is the cbief territorial representative of France. Tongking is divided into mineteen provinces, in each of which there is a resident or a vice-resident, and four milltary territories, the latier administered by commandants. In each province there is a council of native " notables," elected by netives and occupied with the discuscion of the provincial budget and public works. There is also a Jeliberative council of natives (institured 1907) fot the whole of Tongking. The provincial administration, local government and educational system are analogous to those of Annam (g.s.). Two chambers of the court of appeal of Indo-China and a criminal court sit at Hanoi; there are tribunals of first instance and tribunals of commerce at Hanoi and Hai.Phong. When both partics to a suit are Annamese, it comes within the jurisdiction of the Ats-Sat or native judge of the province.

The following is a summary of che budgecs of 1899 and $1904:-$

	Receipts.	Expendit ure.
	$£$	\mathbb{L}
1899	461,235	437,993
1904	756,648	494,034

The chiel source of revenue is the direct taxes (including especially the poll-tax and land-tax), which amounted in 1904 to (417,723, while the chief items of expenditure are the cost of the residencies and gencral staff, public works and the civil guard.

For the early history of Tongking, see Annay and Irmo-Cimsa, Frencr. Tongking was loosely united to Annam until r8or, when Gis-long, king of Annam, brought it definitely under his sway. Having, hy the treaty of $\mathbf{8 6 2}$ and the annexation of Cochin Chins, firmly established themselves in Annamese teritory, the French began to tum their attention to Tongking, attracted hy the reportod richness of its mineral wealth. Thcy found a pretext for interfering in its affairs in the disturbances arising from the invasion of Its northern provinces by the disbanded followers of the Taiping rebels. The Franco-German War of $1870-71$ put an end to the project for atme, but the return of peace in Europe was the signal for the renewal of hostilities in the East. The appearance of Garnier's work on his expedition up the Mekong again arouscd an interest in rongining,
and the reported wealth of the country added the powerful motive of self-interest to the yearnings of patriotism. Already Jean Dupuis, a trader who in the pursuit of his calling had penecrated into Yun-nan, was attempting to negutiate for the passage up the Song-Koi of himself and a cargo of military stores for the Chinese authorities in Yun-nan. Meanwhile Captain Senez appeared from Saigon, having received instructions to open the route to French commerce. But to neither the trader nor the naval officer would the Tongkingese lend a favourable ear, and in default of official permission Dupuis determined to force his way up the river. This he succeeded in doing, hut arrived too late, for he found the Taiping rebellion crushed and the stores no longer wanted.

On the return of Dupuis to Hanoi, the Tongkingese general at that place wrote to the king of Annam, begging him to induce the governor of Cochin-China to remove the intruder. An order was thereupon issued calling upon Dupuis to leave the country. This he declined to do, and, after some negotiations, Francis Garnier with a detachment was sent to Hanoi to do the best he could in the difficult circumstances. Garnier threw himself heart and soul into Dupuis's projects, and, when the Tongkingese authorities refused to treat with him except on the suhject of Dupuis's expulsion, he attacked the citadel in November, 1873, and carried it by assault. Having thus secured his position, he sent to Saigon for reinforcements, and meanwhile sent small detachments against the five other important fortresses in the delta (Hung-yen, Phu-Ly, Hai-Duong, Ninh-Binh and NamDinh), and captured them all. The Tongkingese now called in the help of Lu-Vinh-Phuoc, the leader of the "Black Flags," " who at once marched with a large force to the scene of action. Within a few days he recaptured several villages near Hanoi, and so threatening did his attitude appear that Garnier, who had hurried hack after capturing Nam-Dinh, made a sortic from the citadel. The movement proved a disastrous one, and resulted in the death of Gamier and of his second in command, Balny d'Avricourt.

Meanwhile the news of Garnier's hostilities had alarmed the governor of Saigon, who, having no desire to be plunged into a war, sent Philastre, an inspector of native affairs, to offer apologies to the king of Annam. When, however, on arriving in Tongking Philastre heard of Garnier's death, he took command of the French forces, and at once ordered the evacuation of Nam-Dinh ${ }_{4}$ Ninh-Binh and Hai-Duong-a measure which, however advantageous it may have been to the French at the moment, was most disastrous to the native Christian population, the withdrawal of the French being the signal for a general massacre of the converts. In pursuance of the same policy Philastre made a convention with the authoritics (March, 1874) hy which he bound his countrymen to withdraw from the occupation of the country, retaining only the right to trade on the Song-Koi and at Hanoi and Hai-Phong, and agreed to put an end to Dupuis's aggressive action.

For a time affairs remained in stadu quo, hut in 188, Le Myre de Villers, the governor of Cochin-China, sent Henri Rivière with a small force to open up the route to Yun-nan by the Song-Koi. With a curious similarity the events of Garnier s campaign were r-peated. Finding the authorities intractahle, Rivière stormed and carried the citadel of Hanoi, and then, with very slight loss, he captured Nam-Dinh, Hai-Duong, and other towns in the delta. And once again these victories hrought the Black Flags into the neighbourhood of Hanoi. As Garnier had done, so Rivière hurried back from Nam-Dinh on news of the threatened danger. Like Garnier also he headed a sortio against his enemies, and like Garnier he fell a victim to his own impeluosity (May, 1883).

In the meantime the Annamese court had been sceking to enlist the help of the Chinese in their contest with the French. The tie which bound the tributary nation to the sovereigu state had been for many generations slackened or drawn closer as circumstances determined, hut. it had never been entirely dissevered, and from the Annamese point of view this was one
${ }^{1}$ Bands of Chinese rebels who infested the mountainous region of Tongking.
of the occacions when it was of parmmount importance that it should be acknowledged and acted upon. With much more than usual regularity, therefore, the ling dempatched presents and letters to the court of Peking, and in 1880 he sent a special embassy, loaded with unusually costly offerings, and bearing a letter in which his position of a tributary was emphatically asserted. Far from ignoring the responsibility thrust upon him, the emperor of China ordered the puhlication of the letter in the Peking Gasette.
The death of Riviere and the defeat of his troops had placed the French in a position of extreme difficulty. M. Jules Ferry, who had become premier of France in Fehruary 1883, determined on a vigorous forward policy. But for the moment the outlying garrisons, except those of Nam-Dinh and Hai-Phong, had to be withdrawn and Hanoi itself was besicged hy the Black Flags. Reinforcements brought hy Admiral Courbet and General Bouet were insufficient to do more than keep them at bay. So continued was the pressure on the garrison that Bouet determined to toake an adyance upon Son-Tay to relleve the hlockade. He attacked Vong, a fortified village, hut he met with such resistance that, after suffering considerahle loss, he was ohliged to retreat to Hanai. In the lower delta fortune sided with the French, and almost without a casualty Hai-Duong and Phu-Binh fell into their hands. Meanwhile, in order to put more effective pressure upon the court of Hue, Dr Harmand, commissarygeneral, supported hy Courbet, proceeded with a naval force to the Hué river. They found that, though King Tu Duc was dead, his policy of resistance was maintained, and therefore gtormed the city. After a feehle clefence it was taken, and Harmand concluded a treaty with the king (August 1883) in which the French protectorate was fully recognized, the king further binding himself to recall the Annamese troops serving in Tongking, and to construct a road from Saigon to Hanoi.

Though this treaty was exacted from Annam under pressure, the French lost no time in carrying out that part of it which gave them the authority to protect Tongking, and Bouet again advanced in the direction of Son-Tay. But again the resistance he met with compelled him to ret reat, after capturing the fortified post of Palan. Meanwhile, on the determination to attack Son-Tay becoming known in Paris, the Chinese ambassador warned the ministry that, since Chinese troops formed part of the garrison, he should consider it as tantamount to a declaration of war. But his protest met with no considaration. On the arrival of reinforcements an advance was again made; and on the 16th of December 1883, after some desperate fighting, Son-Tay fell.
During 1884 the French made themselves masters of the lower delta. Throughout the campaign Chinese regulars fought against the French, who thus found themselves involved in war with China. While hostilities were in progress M. Fournier, the French consul at Tientsin, had been negotiating for peace, so far as China was concerned, with Li Hung-chang, and in May 1884 had signed and sealed a memorandum hy which the Chinese plenipotentiary agreed that the Chinese troops should evacuate the northern provinces of Tongking " immediatement." In the following month another treaty, signed at Huf, confirmed the French protectorate over Annam and Tongking. It was not, however, followed hy a cessation of military operations. A misunderstanding arose betwcen the French and the Chinese as to the exact date for the evacuation of their posts hy the Chinese, and in June General Millot, then commander-in-chief of the French forces, dispatched Colonel Dugenne at the head of a strong force to occupy Lang-Son. The expedition was badly arranged; the haggage train was far too unwicldy; and the pace at which the men were made to march was too quick for that scorching time of the year. They advanced, however, to Bac-Le, within 25 m . of Lang-Son, when they suddenly came upon a Chinese camp. An irregular engagement began, and, in the pitched hattle which ensued. the Chinese broke the French lines, and drove them away in beadlong flight. This hrought the military operations for the season to a close.

During the rainy season fevers of all kinds became alarmingly
prevalent, and the number of deacha and of men invalided was very large. In the meantime, however, an expedition, led by Colonel Donnier, against the Chinese garrison at Chu, about rom. south-east from Lang-kep, was completely successful; and in a battle fought near Chu the Chinese were defonted, with a low of 3000 killed, the French loss being only 20 killed and 90 wounded. In the skirmishes which followed the French were senerally victorious, but not to such a degree as to warrant any emargernent of the campaign.
In January 1885 harge reinforcements arrived and Brìre de FIste, wbo had succeeded Millot as commander-in-chief, ordered an advance towards Lang-Son. The difficulties of trisport greatly impeded his movements, still the expedition was successful. On the 6th of February three forts at DongSoag, wit h large supplies of stores and ammunition, fell into the hands of the French. Three days' heavy figbting made them masters of a defile on the road, and on the 13th Lang-Son was tiken, the garrison having evacuated the town just before the entrance of the conquerors. With his usual energy General Ntgrier, who commanded a division under Briere de l'isle, pressed on in pursuit to Ki -Hea, and even captured tbe frontier town of Cua-Ai. But Brière de l'Isle had now to hurry back to the relief of Tuyen-K wan, which was doggedly resisting the attecks of an overwhelming Chinese force, and Négrier was left in command at Lang-Son. The withdrawal of Brière de l'Isle's division gave the Cbinese greater confidence, and, tbough for a time Négrier was able to hold his own, on the 22nd and 23rd of March be sustained a severe check between Lang-Son and That-Ke, which was finally converted into a complete rout, his troops being obliged to retreat precipitately through LangSon to Than-Moi and Dong-Song. Brière de l'isle reached Toyen-Ewan, the garrison of which was commanded by Colonel Domint, on the 3rd of Marcb, and effected its relief. The disaster at Lang-Son caused the downfall of tbe Ferry ministry (March 30). Shortly afterwards Sir Robert Hart succeeded in megotiating peace with Cbina. By the terms agreed on at Tiensin (June, 1885), it was stipulated that France pas to take Tongting and Annam under its protection and to evacuate Formosa and the Pescadores. (For further history, see IndoCeisin.)
Soe J. Dopaia, Le Tomykin af rintervention frangaise (Paris, rega): C. B. Normen, Tonkim or France in the Far East (London, nsay): Prince Henri d'Oricans, Anour dw Tonkin (Paris, 1806); IF Fory, Le Tonkin et La merc-palie (Pario, 1890): J. Chailfey, Paue Buert aem Tonkin (Paris, 1887): E. Lunet de Lajonquière, Etumagraphie du Tomkin Seppenrional (Paris, 1906); A. Gaisman, L'Eeare de ba France au Tonkin (Paris, 1906); also the bibliography minder lido-China, Fernch.
TOIGS (O. Eng. Lange, M. Eng. Longe, cf. Du. Lang, Ger. Zange, from base iang, to bite, cf. Gr. dakewy), a gripping and lifting instrument, of which there are many forms adapted to tbeir specific use. Some are merely large pincers or nippers, but the greatest number fall into three classes: the first, as in the common firotongs, used for picking up pieces of coal and placing them on a fre, whicb have long arms terminating in small fat circular grippers and are pivoted close to the handle; tbe second, as in the sugar-longs, asparagus tongs, and the like, consisting of a single band of metal bent round or of two bands joined at the bead by a spring, and third, such as tbe blacksmith's tongs or the crucible-tongs, in which the pivot or joint is placed close to the gripping ends. A special form of tongs is that known as the "layy-tongs," consisting of a pair of grippers at the end of a eries of levers pivoted together like scissors, the whole being clowed or extended by tbe movement of the bandles communicated to the first set of levers and thence to the grippers, the thole forming an extensible pair of toogs for gripping and lifting Uingat a distance.
TOMaUE (O. Eng tunge), in anatomy, a movable organ tarted in the floor of the mouth, and serving for the sensation of taste besides helping in the mastication of food, in articulate sperch, and in feeling the exact position of any structure vir bin the mouth.
The tongue is divided anto a main part or body, a base which
looks backwand toward the pharynx, a dorsum or upper surfice,; a root by which it is attached to the hyoid bone and floor of the mouth, a tip which is free and an inferior free surface in contast with the front part of the floor of the mouth and with the lower incisor teeth. Owing to the large amount of muscle in its composition the shape of the tongue varies considerahly from time to time. The dorsum of the tongue is covered by stratified squamous epithelium, and, when at rest, is convex botb anteroposteriorly and transversely; it is thickly atudded with papillae, of which four kinds are recognized.

Filiform papillae are minute conical projections covering the whole of the dorsum, by which term the true upper surlace is meant, as well as the tip and borders of the tongue. They are very numerous and contain a short core of subepithelial mucous membrane covered by a thick coating of epithelial oelle, which coating may divide at its tip into a number of thread-like procesees.

Fungiform papilloe are lese numerous than the last, and somewhat resemble "button mushrooms"; they generally contain special taste buda.

Circumpallate papillar are usually from seven to ten in number and are arranged in the form of a V, the apex of which points down the throat. They lie quite at the back of the upper surface of the tongue and each consists of a little flat central mound surrounded by a deep moat, the outer wall of which is slightly raised above the suriace, and it is to this that the papillae owe their name. Both sides of the moat have taste buds embedded in thern, while into the bottom amanil serous glands open.
Foliate papillac are only vestigial in man and consist of a serics of vertical ridges occupying a small oval area on each side of the tongue near its base and just in front of the attachment of the anterior pillars of the fauces. (See Pharynx.)

The pooterior surface or base of the conguc forms part of the anterior wall of the pharynx and has a quite different appearance to that of the dormum. On it are found numerous circular or oval clevations of the mucous membrane caused by lymphoid tissue (lymphoid follicles), on the summit of the most of which is a mucous crypt or depression. The division between the superior or oral surface of the tongue and the posterior or pharyngeal is sharply marked by a V-ahaped shatlow groove called the sulcus terminalis which lices just behind and parailel to the V-shaped row of circumvallate papillac. At the apex of this V is a small blind pit, the forames caecwim.
At the lower part of the pharyngeal surface three folds of mucous membrane, called glosso-epislotic folds, run backward; the middle one pasees to the centre of the front of the epinfottis, while the two lateral ones, in modern anatomy often called pharyngo-epiglottic folds, pass backward and outward to the fossa of the tonsil.

On the inferior free surface of the tongue, that is to stiy, the surface whick is seen when the mouth is looked into and the tongue turned up. there is a median foid of mucous membrane called the fraenum linguce. which is attached below to the floor of the mouth. On each side of this the blue outlines of the ranine veins are seen, while close to these a little fold on each side, known as a plica fimbriala, is often found. It must not, however, be confused with the plica sublingualis described in the article Mouth and Salivary Glands.
The substance of the tongue is compoeed almost entirely of striped muscle fibres which run in different directions. Some of these bundies, such as the superficial, deep, transeerse and oblique lingucles are confined to the tongue and are spoken of as intrinsic muscles. Other muscies, such as the hyo-glossus, etylo-glossus, \&c. come from elsewhere and are extrinsic; these are noticed under the head of Muscular Sistzm. The arteries of the tongue are derived from the lingual, a branch of the external carotid (eee Anteries), while the veins from the tongue return the blood, by one or more veins on each side, into the internal jugular vein (see VEins).
The nerves to the tongue are the (1) lingwal or gustatory, a branch of the fifth (ree Nenves: Cranial) which supplies the anterior twothirde with ordinary sensation and aino, by means of the chorda tymphanl which is bound up with it, with taste gensation; (2) the glowopharyugeal which supplies the circurnvallate papillac and posterior third of the tongue with taste and ordinary sensation; (3) a few twigs of the superior laryngeal branch of the vagus to the pharyngeal surface of the tongue ; and (4) the hypoglossal which is the motor nerve to the muscies.

Embryology:

The mucoula membrane covering the second and third visceral arches fures to form the furgula (soe Respirarory Sysiem). Juux in front of this a rounded eminence appears at an early date in the ventra! wall of the pharynx to form the tuberculum impory which is separated from the furcula by the depression known as the sinks arcuatus. This ruberculum impar gradually grows to form the central part of the tongue in front of the foramen cecum, while the anterior part of the organ is derived from two hateral swellings which appear in the floor of the mouth and surround the tuberculum impar antero-laterally. The posterior third. or pharyngeal part, is developed from the anterior part of the furcula
in the middle ine, that is to say from the thind visceral irch. The sinus arcuatus becomes gradually shallower as these two parts of the tongue grow together and eventually is indicated by the sulcus terminalis; in the mid line, however. the isthmus of the thyroid grows down from it, forming the thyro-glossal duct the remains of which are secn in the foramen caecum (see Ductless Glands). It will be seen that the tongue is developed in connexion with the first, second and third visceral arches, and it is therefore to be expected that the fifth, seventh and ninth nerves which supply those arches would help to supply it, but the vagus from the fourth arch reaches it in addition, while the fact that most of the muscular substance of the tongue is supplied by the hypoglossal nerve is explained on the theory that some of the cervical skeletal musculature has grown cephalad into the tongue and has carried its nerve with it.

Comparative Analomy.

The tongue is present in Gishes but it is an immovable swelling in the floor of the mouth and is practically devoid of muscles. In the hag (Myxine) among the Cyclostomata, and pike (Esox) among the

 Horizontal Section through Moutb and Pharynx at the Level of the Tonsila
well developed the ctreumvaliate papiliee are few, often only ons onl each side.
In the iemurs an under tongue or sub lingwa is found, which i: probably represented by the plicae fimbrialae under the humas tongue, and by some morphologists is regarded as the homologuc of the whole tongue of the lower vertebratcs, the greater part of the mammalian tongue being thea looked upon as a new formation.
For further details and literature see R . Wiedersheim's Compara tive A notomy of Vertebrales, translated by W. N. Parker (London 1907): C. Gegenbaur. Vergleich. Anat. der Wirbelthicre (Lcipzig 1901): A. Oppel, Lekrb, pergleich. mikroskop. Anah. der Wirbellhicre Teil 3 (Jena, 1900); Parker and Haswell. Text Book of Zooloe) (London, 1897).
(F. G. P.)

Surgery of the Tongue.

During infancy it is sometimes noticed that the little band of membrane (fracnums) which binds the under part of the tongue to the middle line of the floor of the mouth is unusually short. The condition will probably right itself as the front part of the tongue takea on its matural growtb. In some children the songue is x. large that it hangs out of the mouth ecratching itself upon the teeth. Thi: condition is likely to be associatec with weak inteliect.

Acule inflammation of the congrue suay be caused by the ouing of a wast or by the entrance of septic germ: through a wound, and the trouble may end in an abscess.
Ckronic inflammation of the tomgru may be caused by syphilis, by the irritation of decayed teeth or of a badly-fitting plate of arificial teeth or the excessive smoking. The con dition is one of danger in that it ma) lead eventually to the tongue becorn ing the scat of cancer. The treatment demands the removal of every source of irritation. The tecth must be made sound and smooth and must be kepi so. Smoking must be abrolutely and entirely given up, and gelt, mustard pickies, spirits, acrated waters, and everything else which is likely to be cause of irritation must be a voided.
Cancer of the tangue is the result of chronic irritation which produces an excessive growth of the scaly covering of the tongue and causes an invasion of the deeper parts of the tongue bs the scales. It is more often found ir men than womer and is wually aseociated with a hard swelling at one side of the tonguc-perhaps near a jaggec tooth or at the spot where the end of the pipe-stem approaches the tongue The nerves of the tongue being caugh1 and compresed in the growth. pair is constant and severe, and the move. ments during mastication cause great distress. The swelling gradualty in creases in size and, spreading to the lloor of the mouth, hinders the frer movements of the tongue. In dus course it breaks down in the middk and a hard-walled ulcer appears. AI this sime the small scales of the cance

Teleostei, teeth are developed on the tongue. In the Amphibia the tailed forms (Urodela) usually have roogues like fishes, though in the genus Spelerpes the organ is very free and can be protruded for a great distance. In the majority of the Anura the tongue is usually attached ciope to the front of the floor of the mouth to that it can be flapped forward with great rapidity. There are. however, two closely allied families of lrogs (Xenopodidae and Pipidae) which form the order of Aglosea. because in them the tongue is suppressed.
In the reptiles the tongue is generally very movsble, though this is not the case in the Crocodilia and many of the Chelonia. The forked tongues of snakes and many lizards and the highly specialized telescopic tongut of the chameleon are familiar objects.
In birds the tongue is usually covered with horny epithelium and is poorly supplied with muscles. When it is very protrusible. as in the woodpecker, the movement is due to the hyoid, with the base of the tongue attached, moving forward.
In the Mammalia the tonque is always movable by means of welldeveloped extrinsic and intrinsic muscles, while papillae and glands are numethus. The filiform papiliae reach theis maximum in the feline family of the Carnivora where they convert the tongue into a rasp by which bones can be licked clean of all tiesh attached to them.

Foliate papillac are best meen in the rodents, and when they are
are finding their way along the lymph-channels and causing sccondary enlargement in the glands just below the jaw and alon; the side of the neck. Enlargement of the cervical glands is a ver serious complication of cancer of the tonguc.

The oaly treatment for cancer of the iongue which is at presen known in surgery is the early removal by operation. It not seldon happens that because there is a certainfamount of doubt as to th exact nature of the growth in the early weeks delay in operatin is reasonably permitted, but during this time there is the risk o the cells of the disease finding their way so the lymphatic syocem Still, inasmuch as there may be grtat diffoulty in determining th diapnosis irom tertiary syphilitic disease, a course of treatment btodide of potassium may well be recommended. Syphilis is of ter the procurfor of lingual cancer, and it is impossible to say exactl. when the syphilitic lesion becomes malignant. In the case od. cancerous tumour of the tongue being so deeply or so widely attachic that its removai cannot be recommended, relief may be alforded t the extraction of most. or all of the teeth. by limiting the food to th most simple and unirritating kinds, and possibly by dividing ith great wensory nerves of the tongue.
Cancer of the tongue is now operated on in advanced cases such $h_{\text {, }}$ i former years would not have been dealt with by a radical nopratii. An incision is made benoath the jaw and through the floor of the
nouth, by which the congue ia dram the and rendered easily acoentible, the arteries being leisurely secured as the ciseuse are cot croas. The upper part of the gullet is plugged by a sponge so that to blood can enter the lungs, and unimpeded respiration is provided for by the preliminary introduction of a tube into the windpipe. Through the incition which is made below the jaw the infected Hpophacic glands are removed. To Dr Kocher of Beres che profesHon and the public are indebted for chis important advance in the treatment of this disense.
(E. O*.)
 haver, speak), a faculty of abnormal and inarticulate vocal reterance, under stress of religious excitement, which was widely developed in the carly Christlan cincles, and has its parallets in other retigions. In the New Testament such experiences are recorded in Caesaree (Acts x. 46), at Corinth (Acts xix. 6; I Cor. xii., xiv.), Thessalonica (1 Thess. v. 19), Ephesus (Eph. v. 18), and universally (Mark xvi. 17). From the epistiles of Paul, who thanked God that he spake with tongues mere than all or any of his Corinthian converts, we can gather a jest idea of how he regarded this gift and of what it really was.

Ficuly, then, it was a grace (charisma) of the spirit, yet not - the holy or pure spirit only, hut of evil spirits also who on cocrasions had been known to take possession of the larynx of a saint and exclaim, "Jesus is. Anathema." As no one could curse Jesus except under the influence of a devilish affiatus, so sooe could say "Jesus is Lond " except he was Inspired by the Holy Spirit. But, secendly, the pneumatic viterances technically known as speaking with tongues failed to reach this level α intelligibility; for Paul compares "a tonguc " to a material object which should merely make a noise, to a pipe or harp tranged or hlown at random without tune or time, to a trumpet blarine idly and not according to a code of signal notes. Unless, therefore, be that has the gift of tongues also possess the gift of interpreting his exclamations, or unless some one present can do so for him, he had not better exercise it in church. He is a barbarian to others and they to him. since they cannot understand what is spoken by him. Paul discriminates between the Spirit which during these paroxysms both talks and preys to Cod and the nous or understanding which informs a believer's psalm, teaching, revelation or prophesy, and renders them intelligible, edifying and profitable to the assembly. Accordingly Paul lays down rules which be regarded as embodying the Lord's concmandment. A man "that speaketh in a tongue speaketh not anto men. but uato God; for no man understandet h;" and therefore ft is expedient that he keep this gift for his private chamber and there pour out the mysteries. In church it is best that he shoukd confine himself to prophesying, for that brings to others "edification and comfort and consolation." II, bowever. tongues must be heard in the public assembly, then let mot more than three of the saints exhibit the gift, and they only in-succession. Nor let them exhibit it at all, unless there is sone one present who can interpiet the tongues and tell the meeting what it all means. If the whole congregation be baking with tongues all at once, and an unbeliever or one with wo experience of pneumatic gifts come in, what will he think, ask Paerl. Surely that "you are mad " So at Pentecoat on the occasion of the first outpouring of the Spirit the saints were by the bystanders accused of being drank (Acts li. 15) In the cburch meeting. says Paun, "I had rather speak five mords meth my understanding. that 1 might instruct others also, than tex thoussand words in a tongue."

The writer of Acts ii.. anxious to prove that Providence from the first included the Gentiles in the Messlanic Kingdom, assumes that the gift of tongues was a miraculous faculty of talling serange languages without having previously learned then Augustine accordingly betd that each of the disciples teried an languages miraculously; Chrysostom that each talked owe ofber than his own. The Pentecostal inspiration has been cocserned as a providential antithesis to the confusion of tongues $-\infty$ sdea which Grotius expressed In the words: "Poena Lgguarum dispersit homines; donum linguarum dispersos in tram popalum coflegit." Competent critics to-day recognize that soct a view is impossible; and it has been suggested with
much probability that in the second chapter of Acts the words in t . s : "Now there were dwelling . . . under heaven " as well as w. 6-11: " because that every man ... mighty works of God " were interpolated by Luke in the document be transcribed. ${ }^{1}$ The faithful talking with tongues were taken by bystanders for drunken men, hut intoxicated men do not talk in languages of whicb they are normally ignorant."

Paul on the whole discouraged glossolaly. "Desire earnestly the greater gifts," he wrote to the Corinthians. The gift of tongues was suitable rather to children in the faith than to the mature. Tongues were, he felt, to cease whenever the perfect should come, and the believer who spoke with the tongues of men and of angels, if he had not love, was no better than the sounding brass and clanging cymbal of the noisy heathen mysteries. It was clearly a gift productive of much disturbance in the Church (Cor. xiv. 23). He would not, however, entirely forbid and quench it (I Thess. v. 19), so long as decency and order were preserved.

It is not then surprising that we bear little of it after the apostolic age. It faded away in the great Church, and probably Celsus was descrihing Montanist circles (though Origen assumed that they were ordinary believers) when he wrote' of the many Christians of no repute who at the least provocation, whether Within or without their temples, threw themselves about like inspired persons; while others did the same in cilues or among armies in order to collect alms, roaming about citjes or camps. They were wont to cry out, each of himself, "I am God; I am the Son of God; or 1 am the divine Spirit." They would indulge in prophecies of the last judgment, and back thelr threats with a string of strange, hatf-frantic and utterly unmeaning sounds, the sense of which no one with any intelligence could discover; for they were obscure gibberish, and merely furnished any fool or impostor with an occasion to twist the utterances as he chose to his own purposes.

In the above we get a glimpse both of the glossalist and of his interprcter as they appeared to the outside world; and the impression made on them is not unlike that which Paul apprehended would be left on outsiders by an indiscriminate use of the gift. Tertullian early in the 3 rd century testifies that glossolaly still went on in the Montanist Church which he had joined; Eor we must so interpret the following passage in his De anima, cap. ix.: "There is among us at the present time a sister who is endowed with the charismatic gift of revelations, which she suffers through ecstasy in the spirit during the Sunday. service in church. She cooverses with angels, somelimes even with the Lord, and both hears and see mysteries." The magical papyri teem with strings of senseless and barbaric words which probably answer to what certain of the Fathers called the language of demons. It has been suggested that we here have recorded the utterances of glossolalists.

The attitude of Paul toward glossolaly among his converts sarikingly rescmbles Plato's opinion as expressed in the Timoens, p 72. of the enthusiastic ecstasies of the ancient μ évors (soothsayer) "Cor," he writes," has given the art of divination not to the wisdom, but to the foolishness of man; for no man, when in his wits, attains prophetic truth and inspiration, hut when he receives the inspired word either his intelligence is enthralled by sleep, कr he is demented by some distemper or 1 2ssession. An in who would understand what he remembers to have been said, whet her in a dream or when he was awake, by the prophetic and enthusiastic nature, or what he has seen, must first recover Lis wits, and then he will he able to explain rationally what all

1 This misunderstanding of Acts ii. has influenced the official Euman doctrine of demoniacal pussession. The Sacerdotate indlcates as one of the symptoms of possession the ability of ehd poaternal \therefore : talls other tongues than his owri. Cf. the Frestif ap. xi. Venelus (1606): "Aliqus sermonem alranMe - iumnlur elsi nunquam e laribus paternis recesservint.
${ }^{3}$ It is noteworthy that in Eph. v. is Paul contragts
with the Spirit with the fonlishness of intoxicationt
psalms and hymns and spiritual songa and pive
psalms and
-Origen, Contra Celswm, vil. 9
such words and apparitions mean, and what indications they afford to this man or that, of past, present or future good and evil. But, while he continues demented, he cannot judge of the visions which he sees or the words which he utters. . . . And for this reason it is customary to appoint diviners or interpreters to be judges of the true inspiration." ${ }^{1}$ From such passages as the above we infer that the gift of tongues and of their interpretation was not peculiar to the Christian Church, but was a repetition in it of a phase common in ancient religions. The vely phrase jhivocaus $\lambda_{\text {a }}$ eiv, " to speak with tongues," was not invented by the New Testament writers, but borrowed from ordinary speech.
Virgil (Aen. vi. 46, 98) draws a life-like picture of the ancient prophetess "speaking with tongues." He depicts her quick changes of colour, her dishevelled hair, her panting breast, her apparent increase of stature as the god draws nigb and fills her with his divine afliatus. Then her voice loses its mortal's ring: " nec mortale sonans." The same morbid and abnormal trance utterances recur in Christian revivals in every age, e.g. among the mendicant friars of the 13 th century, among the Jansenists, the early Quakers, the converts of Wesley and Whitefield, the persecuted protestants of the Cevennes, the Irvingites.
Oracular possession of the kind above described is also common among savages and people of lower culture; and Dr Tylor, in his Primitive Culture, ii. 14, gives examples of ecstatic utterance interpreted by the sane. Thus in the Sandwich Islands the god Oro gave his oracles through a priest who "ceased to act or speak as a voluntary agent, but with his limbs convulsed, his features distorted and terrific, his eyes wild and strained, be would roll on the ground foaming at the mouth, and reveal the will of the god in shrill cries and sounds violent and indistinct, which the attending priests duly interpreted to the people."
See E. B. Tylor, Primidive Cullure; H. Weinel, Die Wirkungen des Gensles and der Geister (Freiburg, I899) ; Shaftesbury's Letter on Enthusiasm; Mrs Oliphant, Life of lrving, vol. ii. (F. C. C.)
TONR, a native state of India, in the Rajputana agency. It consists of six isolated tracts, some of which are under the Central India agency. Total area, $2553 \mathrm{sq} . \mathrm{m}$.; total population (1001), 273.201; estimated revenue $\mathbf{f 7 7 , 0 0 0}$. No tribute is payable. The chief, whose title is nawab, is a Mahommedan of Afghan descent. The founder of the family was Amir Khan, the notorious Pindari leader at the beginning of the 19th century, who received the present territory on submitting to the Bratish in 1817. The nawab Mahommed Ibrahim Ali Khan, G.C.I.E., succeeded in 1867, and was one of the few chiefs who attended both Lord Lytton's Durbar in I977 and the Delhi Durbar of 1903 as rulers of their states. The late minister, Sir Sahihzada Obeidullah Khan, was deputed on political duty to Peshawar during the Tirah campaign of 1897 . Grain, cotton, opium and hides are the chief exports. Two of the outlying tracts of the state are served hy two railways. Distress was caused by drought in $8809-1900$. The town of Tonk is situated 1462 ft . above sea-level, 60 m . by road south from Jaipur, near the right bank of the river Banas. Pop. (1901), $3^{8.759 . ~ I t ~ i s ~ s u r r o u n d e d ~}$ hy a wall, with a mud fort. It has a high school, the Walter lemale hospital under a lady superinténdent, and a hospital for males.

There is another town in Indis called Tonk, or Tank, in Dera Ismail Khan distritt, North-West Fronticr Province; pop. (1001). 4402. It is the resilence of a nawab, who formerly exercised semi-Independent powers. Here Sir Henty Durand, lieutenantgovernor of the Punjab, was killed in 1870 when passing on an elephant under a gateway.
TONNAGE. The mode of ascertaining the tonnage of merchant shipe is settled by the Merchant Shipping Acts. But before explaining the method by which this is computed, it is well to remark that there are several tonnages employed in different oonnexions. Displacement tonnage is that which is invariably used in respect of warships, and is the actual weight of water displaced by the vessel whose tonnage is being dealt

[^1]with Men-ot-War are designed to carry all their weights including coal, guns, ammunition, stores and water in tanks and in boilers, at a certain draught, and the tonnage attributed to them is the weight of water which at that designed draught they actually displace. This displacement tonnage is therefore a total made up of the actual weight of the ship's fabric and that of everything that is on board of her. It can be lound by ascertaining the exact cubic space occupied by the part of her body which is immersed (including her rudder, propellens and external shafting) at the draught under consideration in cubic feet, and dividing this by 35, since 35 cubic feet of sea-water weigh one ton. Of course there is nothing to prevent displacement connage from being used in describing the size of merchant ships, and indeed in regard to the performances of fast steamships on trial it is usual to give their draught on the occasion when they are tested, and to state what was their actual displacement under these trial conditions. But it is obvious, from what has been said as to the components which go to make up the displacement at load draught, that this tonnage must, in respect of any individual ship, be the greatest figure which can be quoted in regard to ber size. It is usual for dues to be assessed against merchant veseels in respect of their registered lonnege. This must therefore be fixed by authority, and at present vessels are measured by the officer of customs according to the rules laid down in the second schedule to the Merchant Shipping Act 1894. As will be seen from the explanation of the method adopted, this is a somewhat arhitrary process, and even the grose registered tonnage affords litue indication of the actual size of the ship, whilst the under-deck and net tonnages are still less in accord with the extreme dimensions.

As to length for tonnage, the measuremeate start with the tonnage deck, which in vescels with less than three decks is the upper, and in vessels of three or more decks is the second from below. The length for tonnage is measured in a straight line along this deck from the inside of the inner plank at the bow to the inside of the inner plank at the stern, making allowance for the rake, if any, which the midship bow and stern timbers may have in the actual deck. When this is measured it is apparent into which of five classes the ship's tonnage-length places her. If she be under 50 ft . in length she falls into the first class, while if she be over 225 ft . in length she falls into the fifth class, the remaining three classes being intermediate to these. Vessels of the first class are measured as in four equal sections, and vessels of the larger class as in twelve equal sections, according to their length. Then at each of the points of division so marked of transwersa creas are taken. This is done by measuring the depih in feet from a point at a distance of onethird of the round of the beam below the tonnage deck to the upper side of the foor timbers. Where the vessel has a ceiling and no water-hallast tanks at the point of measurement, 21 in . is allowed for ceiling. But where there are such tanks the measurement is taken from the top of the tank and no allowance is made for ceiling, whether there in fact be any or not. If the midship depth so found excreeds 6 ft., each depth is divided into six equal parts, and the horizontal breadths are measured at each point of division and also at the upper and lower points of the depth, extending each measurement to the average thickness of that part of the ceiling which is between the points of measurement. They are then numbered from above, and the second. fourth and sixth multiplied by four, whilst the third and fifth are multiplied by two. The products are then added together. To the sum are added the first and the seventh breadths. This total having been multuplied by one-third the common interval between the breadths, the resultant is the transverse area. The transverse areas so obtained at each point of the vessel's length are numbered from the bow aft. Omitting the first and last, the second and every even area so oblained are multiphed by four, whilst the third and every odd area are multiplied by two. These products are added toget her, as are also those of the first and last areas if they yield anything, and the figure thus reached is multiphed by one-thirl of the common interval between the areas. This product is reckoned as the cubical capacily of the

Hip in foet. When divided by 100 the result is the registered mer-deck connage of the ship-subject to the additions and deductions ordered by the act. Directions of a kind similar s those already set out are given wherehy the tonnage in the pece enclosed between the tornage and upper decks may be scertained, and also for the measuring of any hreak, poop or oher permanent closed-in space on the upper deck available ler stores, and the sum of the capacity of these most be added to the under-deck tonnage to arrive at the gross registered lonnage. hat an express proviso is enacted that no addition shall be made in respect of any building erected for the shelter of dect pasengers and approved by the board of trade. In the process of uriving at the net fonmage the main deduction allowed from the min tonnage is that of machinery space in steamships. The method of measurement here is similar to that by which the ander-deck tonnage is reached. Where the engines and boilers se futed in separate compartments, each compartment is memsured separately, as is tbe screw shaft tunnel in the case of steamships propelled hy screws. The tonnage of these spaces is reckoned, not from the tonnage deck, hut from the crown of the space; whilst, if it has previously been reckoned in the gross tomage, there may be an allowance for the space above the crown, if enclosed for the machinery or for the admission of fagt and air. Allowances are only made in respect of any machinery spece if it be devoted solely to machinery or to right and air. It must nof be used for cargo purposes or for cebins. Further, by the act itself in the case of paddle steamships, where the machinery space is above 20% and under 30% of the gross tonnage, it is allowed to be reckoned 2337% of such gross tonnage; whilst similarly, in the case of screw stearoships, where such machunery space is over 13% and under 20% of the gross tonnage, it is allowed to be reckioned 3532% Further deductions are also made in respect of space osed solely for the accommodation of the master and the crew and for the chart-room and signal-room, as well as for the wheelhoase and chain cable locker and for the donkey-engine and boiler, if connected with the main pumps of the ship, and in siling veasels for the sail locker. The space in the double bottom asd in the water-ballast tanks, if these be not available for the carriage of fuel stores or cargo, is also deducted if it has been reckoned in the gross tonnage in the first instance.
From the rales above laid down it follows that it is poasible for vencts, if buill with a full midship section, to have a gross recistered tonnage considerably below what the actual cubical capecity of the ship woold give, whilst in the case of steam turs of high power it is not unprecedented, owing to the large anowascel for machinery and crew spaces, for a vessel to leve a registered net tonnage of nil.
Sues Canal dues being charged on what is practically the mpireered toonage (though all deductions permitted by the British boand of trade are not accepted), it is usual, at all eveats in the British mavy, for warships to be measured for what would te their registered tonnage if they were merchant shipa, 50 that in cone they may wish to pass through the canal a scale of peyment may be easily reached. But such tonnage is never speken of in considering their size relative to other vessels.
Two otber tonnages are also made use of in connerion with merchant ships, expecially when specifications for vessels are being made. The first of these is measmrement capacily. This ss found by measuring out the true cubic capacity of the holds. whereby it is found what amount of light measurement goods as be carried. The second is deadweight capacily. This is enerally given as excluding what is carried in the coal bunkers, and it is therefore the amount of deadweight which can be carried in the bolds at load draught when the vessel is fully charged anth conls and stores.
(B. W. G.)

Tinilace AID POUNDAGB, in England, customs duties seriently imposed upon exports and imports, the former being a disxy upon all wines imported in addition to prisage and butlerage, the latter a duty imposed ad ralorem at the rate of twelveenore in the porend on all merchandise imported or exported. The duties were levied at first by agreement with merchants
(poundage in 1303, tonnage in 1347), then grantod hy parliament in 1373 , at first for a limited period only. They were considered to be imposed for the defence of the realm. From the reign of Henry VI. until that of James I. they were usually granted for life. They were not granted to Charles I., and in 1628 that king took the unconstitutional course of levying them on his own authority, a course denounced a few years later hy 16 Car. I. c. 18 (1640), when the Long Parliament granted them for two months. After the Restozation they were granted to Charles II. and his two successors for life. By acts of Anne and George I. the duties were made perpetual, and mortgaged for the public debt. In 1787 they were finally abolished, and other modes of ohtaining revenue substituted, hy 27 Geo. III. c. 13 (1787).
Poundage also signifies a fee paid to an officer of a court for his services, e.f. to a sheriff's officer, who is entitled by 29 Eliz. c. 4 ($1586-1587$) to a poundage of a shilling in the pound on an execution up to $£ 100$, and axpence in the pound above that sum.
TONNERRB, 2 town of north-central France, capital of an arrondissement in the department of Yonne, 52 m . S.E. of Sens on the Paris-Lyom railway. Pop. (1906), 3974. It is situated on a slope of tbe vineclad hills on the left bank of the Armangon. At the foot of the hill rises the spring of Fosse-Dionne, enclosed in a circular basin 49 ft . in diameter. The town has two interesting churches. That of St Pierre, which crowns the hill, possesses a fine lateral portal of the Renaissance period to which the church. with the exception of the choir (135r), belongs. The church of Notre-Dame is mainly Gothic, but the fagade is a fine specimen of Renaissance architecture. The Salle des Malades, a large timber-roofed apartment in the hospital, dates from the end of the $13^{\text {th }}$ century and is used as a chapel. It is 330 ft . long and contains the tombs of Margaret of Burgundy, wife of Charlea of Anjou, king of Sicily, and foundress of the hospital, and of Frangois-Michel Le Tellier, marquis of Louvois, war minister of Louis XIV. The hospital itself was rehuilt in the 19th century. The Renaissance Hotel d'Uzès was huilt in the toth century. Tonnerre is the seat of a sub-prefect and has a trihunal of first instance. The vincyards of the vicinity produce well known wincs. The trade of the town is chiefly in wine, in the good building-stone found in the ncighbourhood and in Portland cement. Cooperage is carried on.

Its ancient name of Tornodorum points to a Gallic or GalloRoman origin for Tonncrre. In the oth century it became the capital of the region of Tonncrrois and in the toth century of a countship. After passing into the possession of several noble familics, it was bought from a count of Clermont-Tomnerre by Louvois, by whose descendants it was held up to the time of the Revolution.

TOMQUA BEAS. The Tonqua, Tonka or Tonquin bean also called the coumara nut, is the seed of Diptcrix odorola, a leguminous tree growing to a height of 80 ft ., pacive of tropical South America. The drupe-like pod contains a single seed possessed of 2 fine sweet "new-mown hay " odour, due to the presence of coumarin (g.v.). Tonqua beans are used principally for scenting snufl and as an ingredient in perfume sachets and in perfumers' " bouquets."

TONSBERG, a fortified seaport of Norway, in JarisbergLaurvik amt (county), situated on a bay on the south coast, near the entrance to Christiania Fjord, 72 m . S. hy W. of Christianis on the Skien railway. Pop. (1000), 8620. It is one of the most ancient towns in Norway. It is the headquarters of a scaling and whaling fleet. The principal industries are refiperies for preparing whaic and seal oil and saw-mills. An interesting collection of antiquities and whaling implements is preserved in the Slotstaarn on Castle Hill.

TONSILLITIS, acute inflammation of the tonsils, or quinsy, due to the invasion of the tonsil, or tonsils, by septic microorganisms which may have gained access through the mouth or by the blood-stream. Sometimes the attack comes on as, the result of direct exposure to sewer gas, and it is not at all ith uncommon affection of house surgeons, nurses and aflys who have to spend most of their time in a boepitala ${ }^{2}$ f: association of quinsy with rhcumatism may be thp fand.!
infection of the tonsils by the micro-organisms or the toxins of that disease. Acute tonsillitis is very apt to run on to the formation of abscess. Quinsy may begin with a feeling of chilliness or with an attack of shivering. Then comes on a swelling in the throat with pain, tenderness and difficulty in swallowing. Indeed, if both consils are acutely inflaroed it may be impossibie to swallow even fluid and the breathing may be seriously embarrassed. The temperature may be rarsed several degrees. There is pain about the ear and about the jaw, and there is a swelling of the glands in the neck. The breath is offensive and the tongue is thickly coated. There may be some yellowish markings on the surface of the tonsll, but these differ from the patches of "false membrane" of diphtheria in that they can be easily brushed off by a swab, but often a true diagnosis can only be made by bacternological examination. The treatment consists in giving a purgative, and in encouraging the patient to use an inhaler contaming hot carbolized watcr. Hot compresses also may be applied to the neck. As regards medicince, the most trustworthy are salicylic acid, iron and quinine. As soon as abscees threatens, a slender-bladed knife should be thrust from before back waril deeply into the swollen mass. And if, as most likely happens, matter then escapes, the patient's distress speedily ends. Convalescence having set in, a change of air and course of tonic treatment will be advisable.

Chronic tonsilhtis is often associated with adenoid vegetations at the back of the throat of tuberculous or delirate children. such children being spoken of as being "liable to sore throat" Chronic enlargement of the tonsils may seriously interiere with a child's general health and vigour and. should the condition not subside under general measures such as a stay at a bracing seaside place and the taking of cod-liver oil and iron, it will be well to treal the tonsils by operation.
(E. O.")

TORSON, the name of a family of London booksellers and pubilshers. Richard and Jacob Tonson (c. 1656-1736), sons of a London barber-surgeon. started in 1076 and 1077 independentiy as booksellers and publishers in London. In 1670 Jacob. the better known of the two, bought and published Dryden's Troilus and Cressida, and from that time was closcly associated with Dryden, and pubished most of his works. He published the Miscellany Poems ($1684-1708$) under Dryden's editorship, the collection being known indiferently as Dryden's or Tonson's Miscellany, and also Dryden's translation of Virgl (1697). Serious disagreements over the price paid, however, arose between poet and publisher, and in his Faction Displayed (1705) Dryden described Tonson as having ' 'wo left legs, and Judas-coloured hair." Subsequently the relations bet ween the two men improved. The brothers jointly published Dryden's Spanish Friar (CO_{3}). Jacob Tonson also published Congreve's Double Dealer, Sir John Vanbrugh's The Faithful Priend and The Confederacy, and the pastorals of Pope, thus justifying Wycherly's description of him as "gentieman usher to the Muses." He bought also the valuable rights of Paradise Lost, half in 1683 and half in 1690 . This was his first profitable venture in poetry. In 1712 be became joint publisher with Samuel Buckley of the Spectator, and in the following year published Addison's Calo. He was the original secretary and a prominent member of the Kit-Cat Club. About 1730 he gave up business and retired to Herefordshire, where he died on the 2nd of April 1736. His business was earried on by his nephew, Jacob Tonson, jun. (d. 1735), and subsequently by his grand-nephew, also Jacob (d. 1767).
TONSURE (Lat. consurc, from fondere, to shave), a religious observance in the Roman Catholic and Orthodox Eastern Churches, consisting of the shaving or cutling part of the hair of the head as a sign of dedication to special service. The reception of the tonsure in these churches is the initial ceremony which marks admission to orders and to the rights and privileges of clerical standing. It is administered by the bishop with an appropriate ritual. Candidates for the rite must have been confirmed, be adequateiy instructed in the clements of the Ctristian faith, and be etle to read and write. Those who have received it are bound funiess in exceptional circumstances) to renew the mark, consisturg of a bare circle on the crown of
the head, at least once a month, otherwise they forfet the privikges it carries. The practice is not a primitive one, Tertulhan smply advises Chnsitans to avord vamity in dressing their hair, and Jerome deprecates both long and closely cropped hair According to Prudentius (Hepor xiii 30) it was customary for the haur to be cut short at ordination. Paulinus of Nola (c. 400) alludes to the tonsure as in use among the (Western) monks. from them the practice quickly spread to the clergy. For Gaul about the year 500 we have the testimony of Sidonus Apollinaris (iv. ij), who says that Germancus the hishop had his hair cul " in rotae speciem."

The earliest instance of an ecelesiastical precept on the subject occurs in can 41 of the Council of Tuledo (A D. 633) "omnes cherici. detonso superius capice toto. inferius solam circuli coronase retinquant" Can 33 ol the Quinisext council ($(922$) requires even sangers and readers to be tonsured. Since the 8th century three tonsures have been mote or less in use. known respectively as the Roman. the Greek and the Celici. The first wo are sometimes distang utshed ds the tonsure of Peter and ihe tonsure of Paul. The Roman or St Peter's tonsuse prevailed in France, Spain and ltaly. It consisted in shaving the whole huad. leaving only a fringe of hair supposed to symbolize the crown of thorns Late in the middle ages this tunsure was lessened for the clergy, but retained for monks and Irass In the Edstern or St Paul's tonsure the whole head was shaven, but when now prartused in the Eastern Church this tansure is held to be adrquality shown when the hair is shorn close. In the Celtic tonsure (tonsure of St John, or, in contempt, tonsure of Simon Magus) all the hair in front of a line drawn over the top of the head from ear 10 ear was shaven (a lashion common among the Hindus). The question of the Roman or Celtic tonsure was one of the points in dispute in the early British Church. settled in favour of the Roman fashion at ine Council of Whitby (60.4). The tonsure at first was never given separately, and even children when so dedicated were appointed readers, as no one could belong to the clerical state without at least a minor order. From the 7 th century. however. children were tonsured without ordination, and later on adults anxious to escape secular jurisdietion write often tonsured without ordination. Till the toth century the tonsure could be given by priests or even by laymen, but its bestowal was gradually restricted to bishops and abbots.

TONTINE, a system of life insurance owing its name to Lorenzo Tonti, an lialian banker, born at Naples early in the 17 th century, who set lled in France aboul 1650 . In 1653 he proposed to Cardinal Mazarin a new scheme for promoting a public loan. A tolal of $1,025.000$ livres was to be subscribed in ten portions of $\mathbf{1 0 2 . 5 0 0}$ livres each by ten classes of subscribers, the first clas! consisting of persons under 7 , the second of persons above 7 anc under 14. and so on to the tenth, which consisted of persom bet ween 63 and 70. The annual fund of each class was 10 br divided among the survivors of that class, and on the death of thy last individual the capttal was to fall to the state. This plano operations was authorized under the name of "tontine royale' by a royal edict, but this the partement refused to register, and thy idea remained in abeyance till $\mathbf{1 6 8 9}$, when it was revived b: Louis XIV., who established a tontine of $1,400,000$ livres divide into fourteen classes of 100,000 each, the subscription being 30 lives. This tontine was carried on till 1716, when the last bene ficiary died-a widow who at the time of her decease was drawin an annual income of $\mathbf{7 3 , 5 0 0}$ livres. Several other governmen tontines were afterwards set on foot; but in 1763 restriction were introduced, and in 1770 all tontines at the time in existenc were wound up. Private contines continued to flourish i France for some years, the " ontine Lefarge," the most cela brated of the kind, being opened in 1791 and closed in 1889.
The tontine principle has often been applied in Great Britai, at one time in connexion with government tife annuities. Man such tonalnes were set on foor between the years 1773 and 178 , thowe of 1773.2775 and 1777 being commonly called the Iris tontines, as the money was borrowed under acts of the lrish parli: ment. The most important English tontine was that of 1789 . whic was created by 29 Geo . III. c. 4 t . Under this act over a milion wi raised in 10,000 shares of f100, 5s. It was also often applied to at purchase of estates or the erection of buildings. The invemt staked his money on the chance of his own life or the life of b nomince enduring for a longer period than the other lives involvi in the speculation. in which case he expected to win a large prize. was occasionally introduced into life assurance. more particular by American life offices. but newer and more ingenious lorms contract have now made the tontine principle practically a thil of the past. (See Nafional Debt; linsurance.)

TOOEE SORTM BORNE (1736-1812), English politician and philologist, third son of John Horne, a poulterer in Newport Market, whose business the boy when at Eton happily veiled under the title of a "Turkey merchant," was born in Newport Suret, Long Acre, Westminster, on the 2 sth of June 1736. Ater passing some time at school in Soho Square, and at a Kentish village, he went from 1744 to 1746 to Westminster Scoool and for the mext five or six years was at Eton. On the isth of January 1754 he was admitted as sizar at St John's CoBege, Cambridge, and took his degree of B.A. in 1758, as last bat one of the sexior oplimes, Richard Beadon, his lifctong friend; sterwards bishop of Bath and Wells, being a wrangler in the mone year. Horne had been admitted on the gth of November 1756, as student at the Inner Temple, making the Iriendship of John Dunning and Lloyd Kenyon, bat his father wished him to uke orders in the English Church, and he was ordained deacon oa the 23 rd of September 1759 and priest on the 23 rd of November r76o. For a few months he was usher at a boarding school at Blackheath, but on the 26th of September 1760 he becarse perpetual curate of New Brentiord, the incumbency of thich bis father bad purchased for him, and he retained its scanty profits until 1773 . During a part of this time (1763-1764) the was absent on a tour in France, acting as the bear-leader of a sor of the miser Elwes. Under the excitement created by the actions of Wilkes, Horne plunged into politics, and in 1765 brought out a seathing pamphlet on Lords Bute and Mansfield, extitled "The Petition of an Englishman." In the autumn of 1765 be cscorted to Italy the son of a Mr Taylor. In Paris he teade the acquaintance of Wilkes, and from Montpellier, in January 1766, addressed a letter to him which sowed the sceds of their personal antipathy. In the summer of 1767 Horne landed again on English soil, and in 1768 sccured the return of Kilkes to parliament for Middlesce. With inexhaustible energy be promoted the legal proceedings over the riot in S_{t} Ceorge's Fidds, when a youth named Allen was killed, and exposed the irregulanity in the judge's order for the execution of two Spitalfrelds weavers. His dispute with George Onslow, member for Sarrey, who at first supported and then threw over Wilkes for phace, culminated in a civil action، ultimately decided, after the reversal of a verdict which had been ohtained through the charge of Lord Mansfield, in Horne's favour, and in the loss by bis opponent of his seat in parliament. An influential association, called "The Society for Supporting the Bill of Rights," was foonded, mainly through the exertions of Horne, in 1769, but the members were soon divided into two opposite camps, and in 1771 Horne and Wilkes, their respective leaders, broke out into open warfare, to the damage of their cause. On the ist of July 177 t Horne ohtained at Camhridge, though not without some opposition from members of both the political partics, bis degree of M.A. Earlier in that year be claimed for the puhlic the right of printing an account of the debates in parliament, and ater a protracted struggle between the ministerial majority and the civic authorities, the right was definitely established. The energies of the indelatigable parson knew no bounds. In the same year (1771) he crossed swords with Junius, and ended in damaing his masked antagonist. Up to this time Horne's fixed mane consisted of those scanty emoluments attached to a paition which galled him daily. He resigned his benefice in r:73 and betook himsell to the study of the law and philology. As accideatal circumstance, however, occurred at this moment ohich lareiy affected his future. His friend Mr William Tooke had porrhased a cossiderable estate, including Purley Lodge, wonth of the town of Crbydon in Surrey. The possession of this property brought about frequent disputes with an adpinies Landowner, Thomas de Crey, and, after many actions o the courts, his friends eadeavoured to obtain, by a bill ineed throagh the houses of parliament, the privileges which the law had pot assigned to him (February 1774). Horne, thereupon, by a bold libel on the Speaker, drew public attention to the case, and though he himself was placed for a tisse in the custody of the serjeant-at-arms, the clauses which eere in; inisus to the interest of Mr Tooke were climinated from
the bill. Mr Tooke declared his intention of making Horne the heir of his fortune, and, if the design was never carried into effect, during his lifetıme he bestowed upon him large gifts of money. No sooner had this matter been happily setuled than Horne found himself involved in serious trouble. For his conduct in signing the advertisement soliciting subscriptions for the relief of the relatives of the Americans " murdered by the king's troops at Lexington and Concord," he was tried at the Guildhall on the 4 th of July 1777 , before Lord Mansfeld, found guilty, and commit ted to the King's Bench prison in St Ceorge's Fields, from which he only emerged after a year's durance, and aiter a loss in fines and costs amounting to C 1200 . Soon after his deliverance he applied to be called to the bar, but his application was negatived on the ground that his orders in the Church were indelible. Horre thereupon tried his fortune, but without success, on farming some land in Huntingdonshirc. Two tracts about this time excrcised great influence in the country. One of them, Facts Addressed to Landholders, ace (1780), written by Horne in conjunction with others, criticizing the measures of Lond North's ministry, passed through numerous editions; the other, A Letter on Parliamentary Reform (1782), addressed by him to Dunning, set out a scheme of reform, which be afterwards withdrew in lavour of that advocated by Pitt. On his return from Huntingdonshire he became once more a frequent guest at Mr Tooke's house at Purley, and in 1782 assumed the name of Horne Tooke. In 1786 Horne Tooke conferred perpetual fame upon bis benefactor's country house by adopting, as a second title of his claborate philological treatise of Exta trepóevia, the more popular though misleading title of The Diversions of Purley. The treatise at once attracted attention in England and the Continent. The first part was published in 1786, the second in 1805. The best edition is that which was published in 1829, under the editorship of Richard Taylor, with the additions written in the author's interleaved copy.

Between 1782 and 1790 Tooke gave his support to Pitt, and in the election for Westminster, in 1784, threw all his energies into opposition to Fox. With Fox he was never on terms of friendship, and Samuel Rogers, in his Tablc Talk, asserts that their antipathy was so pronounced that at a dioner party given by a prominent Whig not the slightest notice was taken by Fox of the presence of Home Tooke. It was after the election of Westminster in 1788 that Tooke depicted the rival statesmen (Lord Chatham and Lord Holland, William Pitt and C. J. Fox) in his celehrated pamphlet of Two Patr of Portraits. At the general election of 1790 he came forward as a candidate for that distinguished constituency, in opposition to Fox and Lord Hood, but was defcated; and, at a second trial in 1796, he was again at the bottom of the poll. Meantime the excesses of the French republicans had provoked reaction in England, and the Tory ministry adopted a policy of repression. Horne Tooke was arrested early on the morning of the 10th of May 1794, and conveyed to the Tower. His trial for high treason lasted for six days (17th to 22ad of November) and ended in his acquittal, the jury only taking eight minutes to settle their verdict. His public life after this event was only distinguished by one act of importance. Through the influence of the second Lord Camelford, the fighting peer, he was returned to parliament in 1801 for the pocket borough of Old Sarum. Lord Temple endeavoured to secure his exclusion on the ground that be had taken orders in the Church, and one of Cilray's caricatures delfineates the two politicians, Temple and Camelford, playing at battledore and shuttlecock, with Horne Tooke as the shuttlecock. The ministry of Addington would not support this suggestion, but a bill was at once introduced by them and carried into law, which rendered all persons in holy orders ineligible to sit in the House of Commons, and Horne Tooke sat for that parliament only.

The last years of Tooke's life were spent in retirement in a house on the west side of Wimbledon Common. The traditions of his Sunday parties have lasted unimpaired to this day, and the noost pleasant pages penned by his biographer describe the politicians and the men of letters who gathered round his
bospitable board. His conversational powers rivalled those of Dr Johnson; and, if more of his sevings have not been chronicled for the benefit of posterity, the defect is due to the absence of a Boswell. Through the liberality of his (riends, his last days were freed from the pressure of poverty, and he was enabled to place his illegitimate son in a position which soon brought him wealth, and to leave a competency to his two illegitimate daughters. Illness seized him early in 1850 , and for the next two years his sufferings were acute. He died in his house at Wimbledon on the 18th of March 8812 , and his body was buried with that of his mother at Ealing, the tomb which he had prepared in the garden attached 10 his house at Wimbledon being found unsuitable for the interment. An altar-tomb still stands to his memory in Ealing cburchyard. A cataloguc of his library was printed in 1813 .
The Lije of Horne Tooke, by Alexander Stephens, is written in an unaturactive style and was the work of an admircr only admitted to his acquaintance at the close of his days. The notice in the Quarlurly Review. June 1812, of W. Hamilton Rcid's compilation, is by J. W. Ward, Lord Dudley. The main lacts of his tite are pet out by Mr J. E. Thorold Rogers, in his Historical Gleanings, 2 nd series. Many of Horne Tooke's withiest sayings are prescrved in the Table Talk of Samuel Rogers and S. T. Coleridge.
(W. P. C.)

T00Kk, THOMAS (1774 -1858), English economist, was born at St Petersburg on the 29th of February 1774. Entering a large Russian house in London at an early age, he acquired sound practical experience of commercial matters and became a recognized authority on finance and banking. He was one of the earliest advocates of free trade and drew up the Merchants' Petition presented to the House of Commons by Alexander Baring, afterwards Lord Ashburton. He gave evidence before several pariamentary committecs, notably the committee of 1821, on forcign trade, and those of 1832 , 1840 and 1848 on the Bank Acts. He was elected a fellow of the Royal Society in 1822. He died in London on the 26th of February 1858 .

Tooke was the author of Thoughts and Details on the High and Lowo Prices of the last Thirly Years (i823). Considerations on the State of the Currency (1826), in both of which he showed his hostility to the policy afterwards carried out in the Bank Act of 1844 . But he is best known for his Hislory of Prices and of the State of the Circulation during ihe Years 1703-18s6 (6 yols., 1838-1857). In the first four volumies he treats (a) of the priccs of corn, and the circumstances afiecting prices: (b) the prices of procuce ot her than corn ; and (c) the state of the circulation. The two final volumes, written in conjunction with W. Newmarch ($q .0$.), deal with railways, free trade, banking ia Europe and the effects of pew discoveries of gold.
TOOL (0 . Eng. 66 , generally referred to a root scen in the Goth. taujan, to make, or in the English word "taw," to work or dress leather), an implement or appliance used by a worker in the treatment of the substances used in his handicraft, whether in the preliminary operations of setting out and measuring the materials, in reducing his work to the required form by cutting or otherwise, in gauging it and testing its sccuracy, or in duly securing it while thus being treated.
For the tools of prehistoric man see such articles as Arcuaeology; Flint laplements; and Egypt, is Ant and Archacolagy.
In beginning a survey of tools it is necessary to draw the distiaction between hand and machine tools. The former class includes any tool which is held and operated hy the unaided hands, as a chisel, plane or saw. Attach one of these to some piece of operating mechanism, and it, with the environment of which it is the central essential object, becomes a machine tool. A very simple example is the common power-driven hack saw for metal, or the small high-speed drill, or the wood-boring auger held in a frame and turned by a winch handle and bevel-gears. The difference between these and a big frame-saw cutting down a dozen boards simultancously, or the immense machine boring the cylinders of an ocean liner, or the great gun lathe, or the bydraulic press, is so vast that the relationship is bardly apparent. Often the tool itself is absolutely dwarfed by the machine, of which nevertheless it is the central object and around which the machinc is designed and built. A milling machine weighing several tons will often be seen rotating a tool of but two or three dozen pounds' welght. Yet the machine is fitted with claborate slides and sell-acting movements, and provision for taking up wear.
and is worth some handreds of pounds sterting, while the tool may not be worth two pounds. Such apparent anomalies are in constant evidence. We propose, therefore, first to take a survey of the principles that underlie the forms of tools, and then pursue the subject of their embodiment in machine tools.

Hand Tools

The most casual observation reveals the fact that tools admit of certain hroad classifications. It is apparent that by far the larger number owe their value to their capacity for cutting or removing portions of material by an incisive or wedge-like action, leaving a smooth surface behind. An analysis of the easential methods of operation gives a broad grouping as follows:-
I. The chisel group . . Typified by the chisel of the wood worker.
II. The shearing group
111. The scrapers
IV. The percussive and detrusive group
V. Tbe moulding group :

The first three are generally all regarded as cutting tools, notwithstanding that those in II. and III. do not operate as wedges, and therefore are not true chisels. But many occupy a border-line where the results obtained are practically those due to cutting, as in some of the shears, saws, miling cutters, files and grinding wheels, where, if the action is not directly wedge-like, it is certainly more or less incisive in cbaracter.
Culling Tools.-The cutting edge of a tool is the practical outcome of scveral conditions. Keenness of edge. equivalent to a small degree of angle between the tool faces, would appear at first sight to be the prime element in cutting, as indeed it is in the case of a razor, or in that of a chisel for yoft wood. But that is not the prime condition in a tool for cutting iron or stecl. Sirength is of far greater importance, and to it some keenness of edge must be sacrificed. All cuting tools are wedges; but a razor or a chisel edge, included between angles of 15° or 20°, would be turned over at once if presented to irron or steel, for which angles of from 60° to 73° are required. Furticr, much greater rigidity in the latter, to resist spring and fracture, is necessary than in the former, because the resistance to cutting is much greater. A workman can operate a turning tool by hand, evenon heavy pieces of metal-work. Formerly all turning, no raatter how large, was done by hand-operated tools, and after great muscular exertion a few pounds of metal might be removed in an hour. But coerce a similarly lormed tool in a rigid guide or rest, and drive it by the power of ten or twenty men, and it becomes possible to remove suy a hundredweisht of chipe in an hour. Or, increase the size of the tool and its capacity for endurance,? and drive by the power of 40 or 60 horses, and hall a ton of chips may be removed in an hour.
All machine tools of which the ehisel is the type operate by cutting; that is, they act on the same principle and by the same essential method as the knife, razor or chiscl, and not by that of the grindstone. A single tool, however, may act as a curting instrument at one time and as a scrape at another. The hutcher's knife will afford a familiar illustration. It is used as a curting tool when eevering a steak, but it becomes a scrape when used to clean the block. The difference is not therefore due to the form of the knife, but to the method of its application, a distinction which holds good in reference to the tools used by engineers. There is a very old hand 1001 once much used in the engineer's turnery, termed a "graver." This wae employed for cutting and for mcraping indiscriminately, simply by varying the angle of its presentation. At that time the question of the best cutting angles was seldom raised or discussed, because the manipulative instinct of the turner setiled it as the work proceeded, and as the material operated on varied in texture and degree of hardness. But since the use of the slide rest holding tools rigidly fixed has become general the question of the most suitable tool formation has been the subject of much experiment and discussion. The almost unconscious experimenting which goes on every day in every workshop in the world proves that there may be a diflerence of several degrees of angle in tools doing similar work, without having any appreciable effeot upon results. So long as certain broad principles and reasonabie limits arc observed, that is sufficient for practical purposes.

Clearly, in order that a tool shall cut, it must posecss an incisive: form. In fig. I, A might be thrust over the surface of the plate of metal, bur no cutting action could rake place. It would simply grind and polish the surface. If it were formed like B, the grinding action would give place to scraping, by which some material would be removed. Many tools are formed thus, but there is atill mo incisive or knife-like action, and the tool is simply a scrape and gooe a cutting tool. But C is a cutting tool, possessing penctrative capacity. If now B were tilted backwards as at D, it would at

Fre become a cutting tool. But its bevelled face would rub and rind on the surface of the work, producing friction and heat, and -nerfering with the penetrative action of the cutting edge. On se ocher hand, if C ware tilted forwards as at E its action would -rproximate to that of a scrape for the time being. But the high 2. ic of the hinder beveller face would not afford adequate support the cueting edge, and the latter would thetefore become worn almost instantly. precisely as that of a razor or wood-working finel would crumble away if operated on hard metal. It is obvious

Fig.
 only.
2. Corape.

Cutzing thol.
2 and E. Scraping and cutting
rocls improperly presented.
that low in carbon, and cast iron from wrought iron. It indicates too that extra work is put on the tool in breaking up the chips. following immediately on their severance, and when the comminutions are very small they indicate insufficient top rake. This is a result that turners try to avoid when possible, or at least to minimize. Now the greater the slope of the top rake the more easily will the cuttings come away, with the minimum of break in the crystalline materials and absolutely unbroken over lengths of many feet in the fibrous ones. The breaking up, or the continuity of the cuttings, therufore affords an indication of the suitability of the amount of top rake to its work. But compromise often has to be made between the ideal and the actual. The amount of top rake has to be limited in the harder metals and alloys in order to secure a streng tool angle, without which tools would lack the endurance required to sustain them through several hours without regrinding.
The sool angle, c_{0} is the angle included between top and bottom faces, and its amount, or thickness expresserl in degrees, is a measure of the strengtly and endurance of any tool. At extremes it varies from about 15° to 85°. It is traceable in all kinds of tools, having very diverse forms. It is difficult to place some groups in the cutting category; they are on the border-line between cutting and scraping instruments.
Typiral Tools.- A bare enumeration of the diverse forms in which tnols of the chisel type occur is not even possible here. The grouped illustrations (figs. 2 to 6) show some of the types, but it will be understond that each is varied in dimensions, angles and outlines to suit all the varied kinds of metals and alloys and conditions of operation. For, as every tool has to be gripped in a holder of some kind, as a slide-rest, toob-hox, turret, tool-holder, box, croseslide, dec., this often determines the choice of some one form in preference to another. A broad division is that into roughing and fintishing
iterefore that the correct form for a cutting tool must depend upon a fue balance being maintained between the angle of the front sad of the bottom laces-" front " or "top rake," and "bottom tike" or "clearance"-considered in regard to their mothod of fermbatim to the work. Since too, all tools used in machines are hais rigidly in one position, differing in this respect from handperested tools it follows that a constant angle should be given to instramests which are used for operating on a given kind of metal or لlloy. It dues not matter whether a tool is driver in a lathe, ar a planing machine, or a sharper or a sloter: whether it is cutting es enternal or internal surfaces, it is always maintained in a direction erfendicularly to the point of application as in fig. 1, F. G. H. tring. burning and boring respectively. it is consistent with zoar and with fact that the softer and more fibrous the metal, - keener must be the formation of the tool, and that, conversely,
harder and more crystalline the metal the more obtuse must be

- curting angles. as in the extremes of the razor and the tools ir egtring iron and steel already instanced. The three figures K, L show tools suitably formed for wrought iron and mild steel, i. cast iron and casz steel, and for brass respectively. Cast iron -1 cass secel could not be cut properly with the first, nor wrought on and fibrous steel with the second, nor ether with the third. se angles given are those which accord best with general pracsice. A: Lhey are not constant, being varied by conditions, especially lubrication and rigidity of fastenings. The profiles of the first - seoond cools are given mainly with the view of having material - griading away, without the need for frequent reforging. But Je zre many tools which are formed quite differently when used rool-hoiders and in turrets, though the same essential principles or amgle are observed.
The angie of chrarance, or relief, $a_{\text {}}$ in fig. t , is an important detail a ars amores is not of much moment. Ncieher need it be unif to a gives curring olge It may vary from say 3° to 10°, or even . and under good conditions little or no practical differences will ile Actwally it need never vary much from 5° to 7°. The object gaving a clearance angle is simply to prevent friction between eom-carting face immediately adjacent to the edge and the iace of the work. The limit to this clearance is that at which aresiens support is afforded to the cutting cdpe. These are the 2 laces. Wheh if fulfilled permit of a considerable range in clear-

The softer the metal being cut the greater can be the the harder the material the less clearance is permissible aranoe: the harder the edge requires greater support.
the frous. of top rake. b in fig. J , is the angle or slope of the front, ap face. of the tool; it is varied mainly according as materials onseavisme or fbrous. In the turnings and cuttings taken of more crystalline metals and alloys, the broken appcaraoce of the is is diviroguished from the shavings removed from the fibrous
is a feature which always distinguishes cast imn and from suid sued, high cirlon sicel from

Fic. 2.-Metalterning Tools.
A. Shape of tool used for scraping brass.
B. Straightorward tool for turning all metals.
C. Right-and left-hand tools for all metals.
D. A better form of same.

 M, Radius tool.
F_{1} Plan of finishing ton!. 11. Side or knife too!. K, L. Round-nuse tools.

E, Diamond or ancular-edge tool for curting all metals.
G. Spring tool for finishing.

1. Parting or cutting-of tool.
A, Planes type of tool, cranked E, Parting or cutting off of to avoid digging into the metal.
B. Face view of roughing tool.
C. Face vjew of finishing tool.
D. Right-and left-hand knife or side tools.
grooving towl.
F. V thol for gmoves.
G, Risht-and left-hand tools for V-slots.
II. Ditto lor T-slots
J. Radius tool held in holder.
tools. Generally though not invariably the edge of the first is narrow, of the second broad, corresponding with the deep cutting and fine traverse of the first and the shallow cutting and broad

Fic. 4-Group of Siotter Tools.
A. Common roughing tooi, B, Parting-off or grooving tool C, Roughing or finishing tool in a holder. D, Double-edged tool for cutting opposite sides of a slot.

Fic. 5.-Group of Tood-holders.
A, Smith \& Coventry swivelling holder. B, Holder for equare steel. C, D, right- and left-hand forms of same. E, Holder fur round steel. P, Holder for narrow parting-off tooi.
traverse of the second. The following are some of the principal forms. The round-nosed roughing tool (fig. 2) B is of straightforward type, used for turming,

Fig. 6.-Group of Chisels. A, Paring chisel.
B. Socket chisel for neavy duty.
${ }^{\prime}$, Common chipping chisel.
D. Narrow cross-cut or cape chisel. E, Cow-mouth chisel. or gouge.
${ }_{F}$. Straight chisel or sett.
G, Hollow chisel or sett. planing and shaping. As the correct tool angle can only occur on the middle plane of the tool. it is usuai to employ cranked tools, C. D, E, right-and left-handed, for heavy and moderatcly heavy duty, the direction of the cranking corresponding with that in which the tool is required to traverse. Tools for boring are cranked and many for planing (fig. 3). The slotting tools (fig. 4) embody the same principle, but their shanks are in line with the direction of cutting. Many roughing and finishing tools are of knite type H. Finishing tools have broad edges, F, G, H. They occur in straightforward and right. and keft-hand types. There as a rule remove less than λ_{1} in. in depth, while the roughing tools may cut an inch or more into the metal. But the traverse of the first of ten exceeds an inch, while in that of the scoond i in is a very coarse amount of feed. Spring tools, G. used less now than formerly, are only of value for imparting a smooth finish to a surface. They are finishing tools only. Some spring tools are formed with considerable top rake, but generally they act by scraping only.
Solid Tools v. Tool-holders. - It will be observed that the fore going are solid tools; that is, the cutting portion is forged from a solid
bar of atecl. This is costly when the best tool steel is used, hence large numbers of tools comprise points only, which are gripped in permanent holders in which they interchange. Tool steel usually ranges from about $\frac{1}{}$ in. to 4 in . square; most engineers' work is done with bars of from in. to it in. square. It is in the smaller and medium sizes of tools that holders prove of most value. Solid tools, varying from $2 \frac{1}{2}$ in. to 4 in . square, are used for the heaviest cutting done in the planing machine. Tool-holders are not employed for very heavy work, because the heat generated would not get away fart enqugh from small tool points. There are scores of holders; perhaps a dozen good approved types are in common use. They are divisible into three great groups: those in which the top rake of the tool point is embodied in the holder, and is constant; those in which the clearance is similarly embodied; and those in which neither is provided for, but in which the tool point is ground to any angle. Charles Babbage designed the first tool-holder, and the essential type survives in several modern forms. The best-known holders now are the Tangye, the Smith \& Coventry, the Armstrong. some by Mr C. Taylor, and the Bent. The Smith \& Coventry (fig. $\mathbf{5}$), used more perhaps than any other single design, includes two forms. In one E the tool is a bit of round stecl sct at an angle which gives front rake, and having the top end ground to an angle of top rake. In the other A the tool has the section of a truncated wedge, set for constant top rake, or culting angle, and having bottom rake or clcarance angle ground. The Smith \& Coventry round tool is not applicable for all classes of work. It will turn plain work, and plane level faces, but will not turn or plane into corners or angles. Hence the invention of the tool of V.section, and the swivel toolholder. The round tool-holders are made right-and left-handed, the swivel tool-holder has a universai movement. The amount of projection of the round tool points is very limited, which impairs their utility when some overhanging of the tool is necessary. The V-tools can be slid out in their holders to operate on laces and edges situated to some considerable distance inwards from the end of the tool-holder.
Box Tools.-In one feature the box tools of the turret lathes resemble tool-holders. The small pieces of steel used for tool points are gripped in the boxes, as in tool-holders, and all the advantages which are derived from this arrangement of separating the point from its bolder are thus secured (fig. 7). But in all other

Fig. 7.-Box Tool for Turret Lathe. (Alfred Herbert, Ltd., Coventry.) A, Cutting tool. B, Screw for adjusting radius of cur. C. V-steadies supporting the work in opposition to A. D. Diameter of work. E, Body ol hoider. F. Stem which fits in the turret.
respects the two are dissimilar. Two or three tool-holders of different sizes take all the tool points used in a lathe, but a new box has to be devised in the case of almost every new job, with the exception of those the principal formation of which is the turning down of plain bars. The explanation is that, instead of a single point. sevcral are commonly carried in a box. As complexity increases with the number of tools, new designs and dimensions of boxes become necessary, even though there may be lamily resemblanees in groups. A result is that there is not. nor can there be, anything like finality in these designs. Turret work has become one of the most highly specialized departments of machine-shop practice, and the design of these boxes is already the work of specialists More and more of the work of the common lathe is being constantly appropriated by the semi- and full-automatic machines, a result to which the magazine feeds for castings and forgings that cannot pass through a hollow spindle have contributed greatly. New work is constantly being attacked in the automatic machincs that was deemed impracticable a short time before; scme of the commoner jobs are produced with greatet economy, while heavier castings and forgings. longer and larger bars, are tooled in the turret lat hes A great deal of the efficiency of the box tools is due to the suppore which is afforded to the cutting edges in opposition to the stress of cutting. V-blocks are introduced in most cases as in fig. 7 . and these not only resist the stress of the cutting, but gauge the diamet ex exactly.
Shearing Action.-In many tools a shearing operntion takes place. by which the stress of cutting is iessened. Though not very apparent, it is present in the round-nosed roughing tools, in the knife tools, in most milling cutters, as well as in all the shearirate tools proper- the scissors, shears, \&c.
Planes.- Ve pass by the famillar great chiser group, used by woon workers, with a brief notice. Generally the tool angles of these ITe between 15° and 25°. They include the chisels proper, and the gouges in numerous shapes and proportions. used by carpenteres.
athinet-makers, tumers, stone-masons and allied tradesmen. These we most ly thrust by hand to their work, without any mechanical coatrol. Other chisels are used percussively, as the stout mortise durels. some of the gouges, the axes, adzes and stone-mason's tools. ne large family of planes embody chisels coerced by the mechanical coutrol of the wooden (6g. 8) or metal stock. These also differ

Fic. 8. - Section through Plane.
A. Cutting iron. B. Top or back iron. C. Clamping screw. D, Wedge. E, Broken shaving. F, Mouth.
from the chisels proper in the fact that the face of the cutting iron dres $r x$ coincide with the face of the materia! being cut, but lies at angle therewith, the stock of the plane exercising the necessary cercion. We also meet with the function of the top or noa-cutting

Fig. 9.-Group of Wead-haring Bits.
4. Spoon bit B, Centre-bit. C, Expanding centre-bit.

Fr. 10--Croup of Drills for Metal.
A. Comron flat drill. B, Twist drill. C Straight fluted drill. D. Fin drill for that countersinking. E, Arboring or faeing tool. Ri Toil for boring sheet-metal.
iron in breaking the shaving and conferring rigidity upon the cutting iron. This rigidity is of similar value in cutting wood as in cutting metal though in a less marked degree.
Drilling and Boring Tools.-Melal and timber are bored with equal facility: the tools (figs. 9 and 10) embody similar differences to the cutting tools already instanced for wood and metal. All the wood-working bits are true cutting tools, and their angles, if a nalysed, will be found not to differ much from those of the razor and common chisel. The drills for metal furnish examples both of scrapers and cutting tools. The common drill is only a scraper, but all the twist drills cut with good incisive action. An advantage possessed by all drills is that the cutting forces are balanced on each side of the centre of rotation. The same action is embodied in the best woodboring bits and augers, as the Jennings, the Gilpin and the 1rwinmuch improved forms of the old centre-bit. But the balance is impaired if the lips are not absolutely symmetrical about the centre. This expl-ins the necessity for the substitution of machine grinding for hand grinding of the lips, and great developments of twist drill grinding machines. Allied to the drills are the D-bits, and the reamers (fig. 11). The first-named both initiate and finish a hole:

Fig. 11.
A, D-bit. B, Solid reamer. C, Adjustable reamer, having six flat blades forced outward by the tapered plug. Two lock-nuts at the end fix the blades firmly after adjustment.
the second are used only for smoothing and enlarging drilled holes, and for correcting botes which pass through adjacent castings or plates. The reamers remove only a mere film, and their action is that of scraping. The foregoing are examples of tools operated from one end and unsupported at the other, except in so far as they receive support within the work. One of the objectionable features of tools operated in this way is that they tend to "follow the hole," and if this is cored, or rougb-drilled out of truth, there is risk of the boring tools following it to some extent at least. With the one exeeption of the D-bit there is no tool which can be relied on to take out a long bore with more than an approximation to concentriclty througbout. Boring tools (fig. 18) held in the slide-rest will spring and bend and chatter, and unless the lathe is true, or carelul compensation is made for its want of truth, they will bore bigger at one end than the other. Boring tools thrust by the back centre are liable to wabblo, and though they are variously coerced to prevent them from turning round, that does not check the to-and-fro wabbly

Fig. 12,-Group of Boring Tools.
A. Round boring tool held in V-blocks on slide-rest. B, C, Square and V-pointed boring tools. D. Boring bar with removable cutters. held straight, or angularly.
motion from following the core, or rough borc. In a purely reaming tool this is permitted, but it is not good in tools that have to initiate the bole.

This brings us to the large class of boring tools which are supported at each end by being held is bars carried between centret. There are two main varieties: in one the cutters are fixed directly if the bar (Gg. 13. A to D). in the other in a head fitted on the bas
（Gg．I3．E），hence termed a＂boring head．＂As lathe heads are fixed，the traverse cannot be imparted to the bars as in boring machines．The boring heads can be traversed，or the work can be

Fic．13．－Group of Supported Boring Toals．
A，Single－ended cutter in boring bar．

D，Flat double－ended finishing cutter．
B，Double－ended ditto．
C．Flat single－ended firishing cutter．
traversed by the mechanism of the lathe saddle．The latter must be done when cutters are fixed in bars．A great deal of difference exists in the details of the fittings both of bars and heads，but they are not so arbitrary as they might seem at first sight．The principal differences are those due to the number of cutters used，their shapes， and their method of fastening．Bars receiving their cutters direct include onc，two or four，cutting on opposite sides，and therefore balanced．Four give better balance than two，the cutters besng set at right angles．If a rough hole runs out of truth，a single cutter is better than a double－ended one，provided a tool of the roughing shape is used．The shape of the tools varies from roughing to finishing，and their method of attachment is by screws，wedges or nuts，but we cannot illustrate the numerous differences that are met with．
Sutrts．－The saws are a natural connecting link between the chisels and the milling cutters．Saws are used for wood，metal and stone． Slabs of steel several inches in thickness are sawn through as readily as， though more slowly than， timber planks．Circular and land saws are common in the smithy and the boiler and machine shops for cutting off bars，forgings
ripping timber．Gulleting follows similar rules．The softer the timber，the greater the gulleting，to permit the dust to escape freely．
Milling Cutiers．－Between a circular saw for cutting metal and a thin milling cutter there is no essential difference．Increase the thickness as if to produce a very wide saw，and the essential plain edge milling cutter for metal results．In its simplest form the milling cutter is a cylinder with teeth lying across its periphery，or parallel with its axis－the edge mill（fig． 15 ），or clse a disk with teeth radiating on its face，or at right angles with its axis－the end mill （fig．16）．Each is used indiferently for producing flat faces and elges，and forcutting grooves which are rectangular in cross－section． These milling cutters invade the province of the single－edged cools of the planer，shaper and slocter．Of these two typical forms the

Fig．15．－Group of Milling Cutters．
and rolled sections．But the tooth shapes are not those used for timber，nor is the cutting speed the same． In the inditidual saw－tceth both cutting and seraping actions are illustrated（fig． 14）．Saws which cut tim－ ber continuously with the grain，as rip，hand．band． circular，have incisive teeth． For though many are desti－ tute of front rake，the method of sharpening at an angle imparts a true shearing cut．But all cross－ cutting teeth scrape only， the teeth being either of triangular or of M －form， variously modified．Teeth for metal cutting also act strictly by scraping．The pitching of the teeth is related to the nature of the material and the

Fig．14．－Typical Saw Teeth．
A．Teeth of band and ripping siws．
B，Teeth of circular saw for hard wood； shows set．
C，Ditto for solt wocd．
D．Teeth of eross－cut saw．
E ，M－tecth for ditto．

A，Narrow edge mill，with straight eeeth．
B ．Wide edge mill with spiral teeth．
C．Teeth on face and edges．
D ，Cutter having teeth like C ．
E，Flat teeth held in with screwt and wedges．
F，Large insertedtooth mill ；with taper pins secure cutters．

Fic．16．－Group of End Mills．
A，End mill with straight teeth．B，Ditto with spiral teeth． C，Shawing method of holding shell cutter on arbor，with acrew and key．D．T－slot cutter．
 coarser for pping or she sellemg or test corser for solt than for hard woods．The sethrig of teeth． or the bending over to right and left，by which the clearance is provided for the blade of the saw，is subject $t 0$ similar vanations． It is greatest for soft woods and least for metals，where in fact the clearance is often secured without set，by merely thinning the blade backwards．But it is greater for cross cutting than for
dapes are rung in great variety, ranging from the narrow aliting min thict en of Gers, to the broed cutters of 24 in. or more in ndth, used on plamo-millers.
When more than about an inch in width, surfacing cylindrical ames are formed with epiral teeth (ing. 15, B), a device which is

Fic. 17.
A. Straddle Mill, cutting faces and edges: B, Set of three mills cutting grooves.

Fic. 18-Group of Angular Mille

A. Cutter with single slope.

B. Ditto, producing teeth in another cutter.

C, Double Slope Mill, with unequal andes.
Erential so sweetness of operation, the action being that of shearing. Mose bave their teet h cut on univeral machines, using the dividing and spiral bead and suitable change wheela and after handening they are sharpened on universal grindera. When cutters exceed itout 6 in in length the dificulties of hardening and grinding render :be "gane" arrangement more suitable. Thus, two, thrce or more siniar edge mills are set end to end on an arbor, with the spiral arth ruaning in reverse directions, giving a broad face with balanced eationg cutting forces. From theme are built up the numerous pace mills, comprising plane faces at right angles with each other, u which the straddle mille are the best known (kig. 17, A). A comsone element in these combinations is the key weat type B having weth on the periphery and on both faccs as in firg. 15, C, D. By tese combinations hall a doren faces or more can be tooled simul. uneoudy. and all alike, as long as the mille retain their edge. The adsantages over the work of the planer in this class of work are seen at tooling the faces and edges of machime tables, bedsrand alides, in thapieg the faces and edges of cape to fit their bearing blocks. In - sodec cutter of the face type, but having teeth on back and edge hoo. T-alots are readity milied (fig. 16, D); this if done on the planer rould require re-settings of awkwardly cranked tools, and more zeasurement and testing with templets than is required on a ailling machine.
When anglea curves and profile sections are introduced, the apacity of the milling cutter is infinitely increased. The making ithe cutters is also more dificult. Angular cutters (6g. 18) are and for producing the teeth of the mills themselves, for shaping - reeeh of ratchet wheels, and, in combination with straight cutters anags, for angular sections. With curves, or angles and curves a combination, taps, reamers and drills can be fluted or grooved,

Fic. 19
A. Convex Cutter
B. Concave Cutten
C. Profile Cuiter.
 the teeth of wheels shaped. and in faet any outlines imparted (fig. 19). Here the work of the fitter, as well as that of the planing and allied machines, is invaded, lor much of this work if prepared on these machines would have to be finished laboriously by the file.

There are two ways in which milling cutters are uped, by which their value is extended: one is to transfer some of their work proper to the lathe and boring machine. the other is by duplication. A good many light circular sections, as Ehed rims hitherto done in la thes, are regularly, prepared in the milling machine, gang mills being used for tooling the peri:hery and edges at once. and the wheel blank being, rotated. toulart, holes are bored by a rotating mill of the cylindrical type. aternal screw threads are done similarly. Duplication occurs -hen mailtite sprocket wheels in line, or side by side, in milling nuts a an artor, in milling a number of narrow fares arranged side by - be, in cutzing the teeth of several spur-whects on one arbor and roulling the teeth of racks several at a time.
One of the greatest advances in the practice of milling was that Δ making bacted-of cutters. The sectional shape behind the tooth
face is continued identical in form with the profile of the edge, the outline being carried back as a curve equal in radius to that of the cutting edge (fig. 20). The result is that the cutter may be charpened on the front faces of the teeth without interfering with the shape which will be milled, because the periphery is always constant in outline. Ater repeated sharpenings the teeth would assume the form indicated by the ahaded portion on two of the teeth. The limit of grinding is reached

Fig. 20.-Relieved Teeth of Milling Cutter. when the tooth becomes too thin and wreak to stand up to its work. But such cutters will endure weela or months of constant service before becoming uselcses The

FtG. 21.-Group of Scrapes
A, Metal-worker's scrape, pushed D, Diamond point used by straightforward.
B. Ditzo, operated laterally.
E, F, Cabinet-makers' scrapes.
C. Round-nosed cool used by wood-turners.
chicf advantage of backing-off or relieving is in its application to cutters of intricate curves, which would be difficult or impossible to aharpen along their edges Such cutters, moreover, if made with

Fic. 23.-Cross-sectional Shapes of Files.
A. Warding.
B. Mill.
J Topping.
P. Round.
C. Flat.
K. Reaper.
M. Three-square.
N. Cant.
Q. Pit saw or
R. Half-round.
E. Square.
O, Slitting or
S. T. Cabinet.
F. G. Swaged reapers.
H. Mill.
fcather-edge.
v. Tumbler.
ordinary teeth would soon be worn down, and be much weaker than the strong form of teeth represented in fig. 20. The relieving is usually done in special lathes, employing a profile tool which euts the surface

Fig. 23-Longitudinal Shapes of Files.

A. Parallet or blunt.

B, Taper bellied.
C, Knife reaper.
D. Tapered equare.

E, Parallel triangular.
F. Tapered iriangular. G Parallet round.
H. Taper or rat-tail.
J. Parallel halt. sound.
K. Tapered half-
L. Riffier.
of the teeth back at the required radius. Relieved cutters can of course be strung together on a singie arbor to form gang mills, by which very complicated profiles may be tooled, beyond the capacity of a single solid mill.

Scropes. - The tools whiclt operate by scraping (fig. 21) include many of the broad finishing tools of the turner in wood and metal (ct. figg. 2), and the scrape of the wood worker and the fitter. The practice of scpaping surfaces true, applied to surface plates, machine slides and sintilar ohjects, was due to Sir Juseph Whitworth. It superseded the older and less accurate practice of grinding to a mutual fit. Now, with machines of precision, the practace of grinding has to a large extent displaced the more costly scraping. Scraping is, however, the only method available when the most perfect contact is desired. Its advantage lies in the fact that the efforts of the workpnan can be localizud over the smallest areas, and nearly infinitesimal amounts removed, a mere fine dust in the last stages.

Files.-These must in strictness be classed with scrapes, for although the proints are keen, there is never any front rake. Collectively there is a shearing action because the rows of teeth are cut diagonally. The sectional forms (fig. 22) and the longitudinal formas (fig. 23) of the files are numerous, 10 aclapt them to all classes of work. In addition, the method of cutting,

Fig. 24.-File Teeth.
A, Float cut.
B, Daubie cut.
C. Rasp cut. and the degrees of coarseness of the teeth, vary being single, or float cut, or doabice cut (fig. 24). The rasps are another group. Degrees of coarseness are designated as rough, middle cut, bastard cut, second cut, smooth, double dead snooth, the first named is the coarsest, the last the fincst. The terms are relative, since the larger a file is the coarser are its teeth, though of the same name as the tecth in a shorter file, which are finer:
Screating Tools.- The forms of these will be found liscussed under SCREW. They can scarcely be ranked among cutting tools, yet the best kinds tenove metal with ease. This is due in greal measure to the good clearance allowed, and to the narrowness of the culting portions. Front rake is generally absent, though in some of the best screwing dies there is a slight amount.

Shears and Punches. - These may be of cutting of non-cutting types. Shears (fig. 25) have no front rake, but only a slight clearance. They generally give a slight shearing cut, because the Hlades alo not fie parallel, but the cutting begins at one end and continues in detail to the other. But strictly the shears, like the punches, act by i

Fig. 25.-Shear Blades a, a. Blades,
b, Plate being sheared.

Fig. 26.-Punching. a, Punch. b, Bolster. c. Plate being punched.
severe detrusive effort: for the punch, with its bolster (fig, 26). forms a parr of cylindrical shears. Hence a shorn or punched edge is always rough, ragged, and covered with minure, shallow cracks. Both processes are therefore dangerous to iron and steel. The metal theing unequally stressed, Iracture starts in the annulus of metal. Hence the advantage of the practice of reasuering out this annulus, which is completely removed by enlargement by about an 1 in. diameter, so that honogencous metal is fefe throughout the entire unpunched section. The same results follow reamering both in iron and steel. Annealing, according to many experaments, has the same effect as reanering. due to the rearrangement of the inolecules of metal. The perlect practice with punched plates is to punch, reamer, and finaliy to anneal. The effect of shearing is practically identical with that of punching, and planing and annealing shorn edges has the same influence as reamering and annealing punched holes.
Hamners. - Trese form an immense group, termed percussive. from the mantuer of their use (6is. 27). Every trade has its own peculiar shapes, the total of which number many scores, each with ats own appropriate name, and ranging in size from the minute forms of the jeweler to the slenkes of the smith and boiler maker and the planishing hammers of the coppersmith. Wooden hammers are termed mallets, their purpose being to avoid bruising tools or the surfaces of work. Most tralles use anallets of some form or another. Hammer handles are rigid in all casen except certain percussive tools of the smithy, which are handled with willy rods, or iron rods flexibly attaclied to the toots, so that when struck by the sledge they shall not jar the hands. The fullering tools, and thatters, and setts, though not hammers strictly. are actuated by
percussion. The dics of the die forgers are actuated percussively, being closed by powerful hammers. The action of caulking touls is percussive, and so is that of moulders' rammers.

Fig. 27.-Hammers.
A. Exeter type.
B, Joiner's hammer.
C. Catterbury claw (these are wond-workers. hammers).
D. Engineer's hammer, ball panc.

E, Ditto, cross panc.
Moulding Tools.-This is a group of tools wifich, actuated either by simple pressure or percussively, mould, shape and model forms in the sand of the moulder, in the metal of the smith, and in gress work. All the tools of the moukler (fig. 28) with the exception of the rannmers and vent wires act by moulding the sand into stapes

A. Square trowel.
B. Heart trowel.
B. Heart trowe
C. D. Cleaners.

E, Flange bead.
by pressure. Their contours correspond with the plane and curved surfaces of thoulds, and with the requirements of shallow and deep work. They are made in iron and Urass. The fullers. swages and flatters of the smuth, and the dies used with hammer and presses, all mould by percussion or by pressure, the work taking the counterpart of the dies, or of some portion of them. The practice of die forging consists almost wholly of moulding processes

Fool Strels.-These now include three kinds. The common steel, the contsalling clement in which is carbon, requires to te hardencl and tompered, and must not be overheated, about $500^{\circ} \mathrm{F}$. being the highest temperature permissibie- the critical temperature. Actually this is scldom allowed to be reached. The disadvantage of this steel is that itscapabilities are limited, because the heat generated by heavy cutling soon spoils the tools. The second is the Mushet steel, invented by R. F. Mushet in 1868 , a carbon steel, in which the controlling element is tungsten, of which it contains from about 5 10 8% It is termed self-hardening, because it is cooled in air instead of being quenclied in water. Its value consists in its endurance at high temperatures, cren at a low red heat Uncil the advent of the high-speed stecis, Nushet steel was reserved for all heavy culling, and for tooling hard tough steets. It is made in six dillerent empers suitable for various kinds of duty. Tools of Mushet steel mast not be forged Lelow a red heat. It is hardence by reheating the end to a white heat. and blowing cold in an air blast. The third kind of steel is terned highospeed. because much higher cutting sperds are practicable with rhese than with other steels. Tonls made of them atchardened in a blast of cold air. The cont rolling elements are numerous and vary in the practice of different manufacturers, to render the
tools adaptable to cutting various clasmes of metale and alloys, Tungeten is the principal controlling element, but chromium is enertial and molybdenum and vanadium are olten found of value. The ateels are forged at a yellow tint, equal to about $1850^{\circ} \mathrm{F}$. They are rised to a white heat-lor hardenng, and cooled in an air blect to a bright red. They are then often quenched in a bath of oil.
The first public demonstration of the capacities of high apeed tteets mat made at the Paris Exhibition of 1900 . Since that time great advances have been made. It has been found that the extion of the shaving limits the practicable speeds, so that, although cutting eqpeds of 300 and 400 ft . a minute are practicable with light cists, it is more e00nonical to limit speeds to less thea 100 ft . per minute with much heavier cuts. The use of water is not aboclettely enential as in using tools of carbon rteel. The new trele phow to much greater adventage on mild steel than on catt iroe. They are more useful for roughing down than for finishing. The removal of 20 m of cuttinge per minute with a mingle tool is oommon, and that amount is often exceeded, $t 0$ that a lathe toon becomes half buried in turnings unless they ane carted away. The borse-power abeorbed is proportionately large. Ordinary teavy lathee will take from 40 to $60 \mathrm{~h} . \mathrm{p}$. to drive them, or from lour to mix times more than is required by tathee of the same centres ting carbon steel tools Many remarkable records have been gives of the capacities of the new steels. Not only turning and phaning tools but drills and milling cutters are now regularly mado of thern. It it a revelation to see these drills in their rapid dcscent throsgh metal. A drill of i in, in diameter will easily go through $s i n$. thicknem of steel in one minute.

Maceine Tools

The machine tools employed in modern engineering factories amber many hundreds of well-defined and separate types. Besides these, there are hundreds more designed for special functions, and adapted only to the work of firms who handle specinlities. Most of the first named and many of the latter admit of grouping in classes. The following is a natural classification:
L Tyruing Lathes.-These, by common consent, stand as a dow alone. The cardinal feature by which they are distingriched is that the work being operated on rotates against a tool which is held in a rigid firture-the rest. The axis of rotation may be horizontal or vertical.
II. Reciprocating Machines. -The feature hy which these are characterized is that the relative movements of tool and work take place in straight lines, to and fro. The reciproations may occur in horizontal or vertical planes.
III. Machines rohick Drill and Bore Hoks.-These have some features in common with the lathes, inasmuch as drilling and bering are often done in the lathes, and some facing and turping it the drilling and horing machines, hut they bave become lighly differentiated. In the foregoing groups tools baving either single or double cutting edges are used.
IV. Milling Wachincs.-This group uses cutters baving teeth arranged equidistantly round a cybindrical body, and may therefore be likened to saws of considerable thickness. The cutters rotate over or against work, between which and the cattera a relative movement of travel takes place, and they may therefore be likened to reciprocating machines, in which a revolving cutter takes the place of a single-edged one.
V. Machines for Cudting the Teeth of Gear-mheels.—These comprise two sub-groaps, the older type in which rotary milling cutters are used, and the later type in which reciprocating engele-edged tools are employed. Sub-classes are'designed for ane kind of gear only, as spur-wheels, bevels, worms, racks, f
VI. Grinding Mackinery.-This is a large and constantly ertending group, largely the development of recent years. Though emery grinding has been practised in crude fashion for a ceatury, the difference in the old and the new methods lies in the embodiment of the grinding wheel in machines of high procision, and in the rivalry of the wheels of corundum, carborendum and alundum, prepared in the clectric furnace with thowe of emery.
VII. Sawing Mochines.-In modern practice these take an inportant pert in cutting iron, steel and brass. Few shops are mithout them, and they are numbered by dozens in some establishments. They include circular saws for hot and cold metal, baod saws and hack saws.
VIII. Shearing and Punching Machines.-These occupy a border line between the cutting and non-cutting tools. Some must be classed with the first, others with the second. The detrusive action also is an important element, more especially in the punches.
IX. Hammers and Presses.-Here there is a percussive action in the bammers, and a purely squeering one in the presses. Both are made capahle of exerting immense pressures, but the latter are far more poweriul than the former.
X. Porlable Tools.-This large group can best be classified by the common feature of being readily removable for operation on large pieces of erection that cannot be taken to the regular machines. Hence they are all comparatively arnall and light. Broadly they include diverse tools, capable of performing nearly the whole of the opcrations summarized in the preceding paragraphs.
XI. Appliances.-There is a very large anmber of articles which are neither tools nor machine tools, but which are indispensable to the work of these; that is, they do not cut, or shape, or mould, but they hold, or grip, or control, or aid in some way or other the carrying through of the work. Thus a screw wrench, an angle plate, a wedge, a piece of packing, a bolt, are appliances. In modern practice the appliance in the form of a templet or jig is one of the principal elements in the interchangeahle system.
XII. Wood-working Machines.-This group does for the conversion of timber what the foregoing accomplish for metal. There is therefore much underlying similarity in many machines for wood and metal, but still greater differences, due to the conditions imposed on the one hand by the very soft, and on the other by the intensely hard, materials operated on in the two great groupe.
XIII. Mcaswramenf.-To the scientific engineer, equally with the astronomer, the Deed for accurate measurement is of paramount importance. Neither good fitting nor interchangeability of parts is possible without a system of measurement, at once accurate and of ready and rapid application. Great advances have been made in this direction lately.
1.-Latues

The popular conception of a lathe, derived from the familiar machine of the wood turner, would not give a correct idea of the lathe which has been developed as the engineer's machine tool. This has bocome dificreniated into nearly fifty well-marked types, until in some cases even the term lathe has been dropped for more precise definitions, as vertical boring machine, automatic machine, while in others prefixes are necessary, as axle lathe, chucking lathe cutting-of lathe, wheel lathe, and 10 on. With regard to sire and mase the height of centres may range from 3 in. in the bench lathes to 9 or 10 ft . in gun lathes, and weights will range from say 50 lb to 200 tons, or more in exceptional cases While in mome the mechanism is the simplest possible, in others it is $s 0$ complicated that only the specialist is able to grasp its details.
Early Lathes.-Space will not permit 48 to trace the evolution of the lathe from the ancient bow and card lathe and the pole lathe. in each of which the rotary movement was alternately iorward for cutting, and backward. The curious thing is that the wheel-driven lathe was a novelly so late as the 14 th and 15 th centurics, and had not wholly displaced the ancient forms even in the West in the 19th century, and the cord lathe still eurvives in the East. Another thing is that all the old lathes were of doed cenkre, instead of running mandral type; and not until 1794 did the use of metal begin to take the place of wood in lathe conatruction. Henry Maudslay (1771-1831) did more than any other man to develop. the engineer's sell-acting lathe in regard to ite emential mechanism, but it was, like its immediate successors lor fifty yeari after, a skeleton-like, inefficient weakling by comparioon with the lathes of the present time.
Brood Types.-A ready appreciation of the broad differences in lathe typer may be obtained by considering the difierences in the great groupe of work on which lathes are designed to operate. Castinge and lorgings that are turned in lathes vary not only in sixe, but also in relative dimensions. Thus a long prece of driving shafting, or a railway axle, ie very differently proportioned in length and diameter from a railway wheel or a wheel tire. Further, while the shaft has to be turned only, the wheel or the tire has to be turned and bored. Here then we have the first cardinal distinction between lathes, viz thove admitting work behween centres (5g. 29) and face and boring lathes In the first the piece of work in pivoted and driven between the centres of head-stock and tail-stock or loose Doppet; in the eecond, it is held and gripped only by the doge or
jaws of a face-plate on the head-atock spindie, the loom poppet being omitted.
These, however, are broad types only. since proportions of length to diameter differ, and with them lathe designa are modified whenever there is a sufficient amount of work of one class to justify the laying down of a special machine or machines to deal with it. Then further, we have duplicate designs, in which, for example, provision is made in one lathe for turning two or three long shafts simultaneously, or for turning and boring two wheels or tires at once. Further, the position of the axis of a face lathe need not be horizontal, as is necessary when the turning of long pieces has to be done between centres. There are obvious advantages in arranging it vertically, the principal being that castings and forgings can be more easily set and socured to a horizontal chuck than to one the face of which lies vertically. The chuck is also better suppolted, and higher rates of turming are practicable. In recent years these perfical lathes or vertical turning and boring mills (fig. 30) have been greatly increasing in numbers) they also occur in several deaigna to suit either general or apecial duties, some of them being used for boring only, as chucking lathes. Some are of immense size, capable of boring the field magnets of electric generators 40 ft . in diameter.
Standard Lathes.-But for doing what is termed the general work of the engineer's turnery, the standard lathes (fig. 29) predominate, i.e. gelf-acting, sliding and surfacing lathes with headstock, loose poppet and alide-reat, centres, face plates and chucks, and an equipment by which long pieces are turned, either between centres or on the face chucks, and bored. One of the greatest objections to the employment of these standard types of lathes for indiscriminate duty is due to the limited height of the centres or axis of the headatock, above the face of the bed. This is met generally by providing a gap or deep recess in the bed next the fast headstock, deep enough to take face work of large diameter. The device is very old and very common, but when the volume of work warrants the employment of separate lathes for face-work and for that done between centres it is better to have them.

Scretw-culting.-A most important section of the work of the engineer's turnery is that of cutting screws (see SCREW). This has resulted in diferentiation fully as great as that existing between centres and face-work. The slide-rest was designed with this object, though it is aloo used for plain turning. The standard" self. acting sliding, surfacing and screw-cutting lathe " is easentially the standard turning lathe, with the addition of the ocrew-cutting mechanism. This includes a master acrew-the lead or guide screw, which is gripped with a clasp mut, fastened to the travelling carriage of the slide-rest. The lead-screw is connected to the headstock opindle by change wheels, which are the variables through which the relative rates of movement of the apindle and the lead-screw, and therefore of the screw-cutting tool, held and traversed in the slide-rest, are effected. By this beautiful piece of mechanism a guide screw, the pitch of which is permanent, is made to cut screw-threads of an almost infinite number of possible pitches, both in whole and fractional numbers, by virtue of rearrangements of the variables, the change wheels. The objection to this method is that the trains of change wheels have to be recalculated and rearranged as often as a sacew of a different pitch has to be cut, an operation which cakes some little time. To avoid this, the nest or cluster system of gears has been largely adopted, its most auccessful embodiment being in the HendeyNorton lathe. Here all the change wheels are arranged in a ecries permanently on one shaft underneath the headatock, and any one of them is put into engagement by a aliding pinion operated by the simple movement of a lover. Thus the lead-screw is driven at different rates without removing any wheel from its spindle. This has been extensively applied to both small and large lathes. But a moment's thought will show that even this device is too cumbrous when large numbers of small screws are required. There is, for example, little In common between the screw, say of 5 or 6 ft. in length, for a massive penstock or valve, and $\frac{3}{\text { fin. }}$. bolts, or the emall acrews required in thousands for electrical fittinge. Clearly while the self-acting acrew-cutting lathe is the best possible machine to use for the first, It is unsuitable for the last. So here at once, from the point of view of ecrew cutting only, an important diver: gence takes place, and one which has ultimatety lod to very high specialization.

Small Sercus.-When small serewe and bolts are cut in

A, Bed.
B, B, Cupboard legs or cabinets.
C, Gap.
D, Bride piece.
E, Hesdetock.
P, Looee poppet.
C, Slidorest.
hre quantities, the gudo--3rew end change wheels glve phace to ot her devices, one of which involves the une of a separate master-screw lor every different picth, the other that of encircling cutting inaruments of dies: The fint sre represented by the chasing lathe, the sacoad by the scraving hathes and antomatics Though the prixciples of operation are thus stated in brief, the detrib in design are mont extensive and varied.
In a chasing lat be the master-crew or hob, which may be either at the rear of the beadstock or in front of the alide-reat, reccives 1 hollow clasp-nut or a ball-nut, or a star-nut containing several pirches. which, partaking of the traverue movement of the screw. thread. imparts the mame horizontal movement to the cuttiog tool. The hatter is sometimes carried in a hinged bolder. sonctimes in a commoa ariderest. The attendent throws it into engagement at the beginning of a traverse, and out when completed, and alo
this is an economical sytutem, but in othere not. It cannot be considered so when bolts, screws and allied forms are of small dimensions.

Hollow Mandret Lathes.-It has been the growing practice since the last decade of the 19th century to proauce short articles, required in large quantitics, from a long bar. This involves making the lathe with a hollow mandrel; that is, the mandrel of the headstock has a bole drilled right through it, large enough to permit of the passage through it of the largeat bar which the clasa of work requires. Thus, if the largest section of the finished pieces should require a bar of 1 if in. diameter, the hole in the mandrel would be made it in. Then the bar, inserted from the rear-end, is gripped by a chuck or collel at the front, the operations of turning, screwing and cutting off done, and the bar then thrust farther through to the exact length for the next set of identical operations to be

Fig. 30.- Roring and Turning Mill, vertical lathe. (Wehater Bennett, Led., Coventry.)
A. Table, running with stem in vertical bearing.
8. Frame of machine.
C. Driving coner.

D, Handle giving the choice of two rates, through concealed aliding gears, abown datted.
E Bevel-gears driving up to pinion gearing with ring of teeth on the table.
F, Seddle moved on croee-rail C.
changes the bobe for threads of different sections. The screwed cays of locomotive fire-boxes are almost invariably cut on chasing bithes of this clase.

In the screwing machines the thread is cut with dies, which eacircie the rotating bar; or alternatively the dies rotate round a fixed pipe, and generally the angular lead or advance of the thread draes the dies along. These dies differ in no essentials from similar conls operated by a hand lever at the bench. There are many modifications of these lathes, because the work is so bighly specialined that they are seldom used for anything except the work of cotting screws varying but little in dimensions. Such being the ctue they can hardly be classed as lathes, and are often termed crewing machines, because no provision exista for preliminary carnieg work, which in then done elsewhere, the tank of turning and erreading being divided between two lathes. In some catea
$\underset{F}{F}$. Vertical slide, carrying turret J.
K, Screw leeding F across
\boldsymbol{L}, Splined shaft connecting to \boldsymbol{B} for feeding the latter up or down.
$\boldsymbol{M}, \mathbf{M}$, Worm-gears throwing out clutches N, N at predetermined points.
O. Cone pulliey beited up to P, for driving the feeds of aaddle and down-slide.
performed, and to on. This mechatrism is termed a wire feed, because the first lathes which were built of this type only operated on large wires: the heavy bar lathes have been subsequently developed from it. In the more advanced types of lathes this feeding through the hollow spindle does not require the intervention of the attendant, but is performed automatically.

The amount of preliminary work which has to be done upon a portion of a bar before it is ready for screwing varies. The simplest object is a stud, which is a parallel piece screwed up from each end. A bolt is a screw with a head of hexagonal, square or circular form, and the production of this involves turning the chank and shoulder and imparting convexity to the end, as well as mecrewing. But ecrew-threeds have often to be cut on objects which are not primarily boles, but which are spindles of various kinds uned on mechanikms and machine tools, and in which retuctions in the form
of steps have to be made, and receses, or flanges, or other features produced. Out of the demands for this more complicated work, as well as for plain bolts and studs, has arisen the great group of turret or capstan hothes (Gg. 31) and the automatics or axtomatic screvo mochines which are a high development of the turret lathes.

Turres Lathes.-The turref or capetan (6y.39) is a devies for grtpping as many separate tools as there are distinct operationa to be pertormed on a piece of work; the number ragen fromifour to es many as twenty in some bigbly elaborited machines, but five or six is the cual number of boles. Tbese tocin mre brougite round

Fic. 31.-Turrey Lathe, "(Webster \& Denaett, Lid., Coveatry.)
A. Bed.

B, Waste oil tray.
C, Headstock.
D, Hollow mandrel.
E, Cones keyed to D.
${ }^{\prime}$ ' Split tapered close-in chuck, actuated by tube a.
H, Toggle dogs which push G.
J, Coned collar acting on H.
K. Handle to slide J through sleeve on bar L.
M. Rack slid on release of chuck, moving bearing N forward.

Fig. 32.--Plan of Set of Turret Tools. (A. Herbert, Ltd.)
A. Turret.

B, Tool for first operation or chucking.
C_{1} Cutting tools for second operation, atarting or pointing.
D. Box tool carrying two cutters for third operation, rough turning.
E, Similar tool lor fourth operation, finish turning.
F, Screwing tools in head for final operation of ecrewing.
N. Bearing to feed the work through mandrel (constituting the woire or bar feed). A collar is clamped on the work, and is pushed by the beaning N at each time of feeding.
O. Croes-slide.
P. Hand-wheel operating screw to travel O.

Q, Turret-slide.
R, Cross-handle moving Q to and fro.
S. Turret or capstan.
T. U_{1} Sets of fast and loose pulleys, for open and crowed belta V, Cone belted down to E on lathe.
in due succession, each one doing ite little share of work, until the cycle of operations required to produce the object is complete. the cycle including such operations as turning and screwing, roughing and finishing cuts, drilling and boring. Severance of the finisted piece is generally done by a tool or tools held by a cross-slide between the headstock and turret, wo termed because ite movements talse place at right angles with the axis of the machine. This aloo olten performs the duty of "forming," by which is meant the shaping of the exterior portioa of an object of irregular outline, by a tool the edge of which is an exact counterpart of the profile required. The exterior of a cycle hub is shaped thus, as also are numerous handles and other objects involving various curves and shoulders, \&e. The tool is fed perpendicularly to the axis of the rofating work and completes outlines at once: if this were done in ordinary lathes much tedious manipulation of ceparate toole mould be involved.
Automatics.-But the marvel of the modern automatics (6g. 33) lies in the mechanism by which the cycle of operations is rendered absolutely independent of attendance, beyond the first adjustments and the insertion of a fresh bar as often as the previous one becomes used up. The movements of the ratating turret and of the croseslide, and the feeding of the bar through the hollow spindle. talse place within a eccond, at the conclusion of the operation preceding. These movements are effected by a set of mechanism independent of that by which the headstock spindle is rotated, viz. by cams or cam drums on a horizontal cam shaft, or other equivalent device, differing much in arrangement, but not principle. Moveiments are hastened or retarded, or pauses of come moments may ensue, according to the cam arrangements devised, which of courve have to be varied for pieces of different proportions and dimensions. But when the machines with their tools are once set up, they will run for dayz or weeks, repeating precisely the same cycle of operations: they are self-lubricating. and only require to be fed with fresh lengths of bar and to have their tools resharpened occasionally. Of these automatics alone there are something like a dozen distinct types, some with their turrets vertical, others horizontal. Not only so but the use of a single spindle is not always deemed sufficiently economical, and some of these designs now have two, these and four reparate work spindles grouped in one head.

Spacialised Lathes.-Outside of these main types of lathes there me a large number which do not admit of group clansification. They are designed for special duties, and only a representative list on be given. Lathes for turning tapered work form a limited

Fia 3s-Auwmatic Lathe or Scrow Brictine. is He:wast, 1.al)
4. Main body.
8. Wate oil tray.
C. Headrotock.
D. Wire-feed tube.
E. Slide for clowing chuck.
F. Shaft for ditto.
G. Feed-uide.
B. Pricoe of work.
J. Turret wich box tools.
2. Turret alde.
L. Sedake for ditto, adjustable along bed.
M, Screw for locating adjustable slide
N, Cut-off and lorming crossslide.
O, O, Bactandiront tool-holders on slide.
P. Cam shait.

Q Can drum for operating chack.
R. Cam drum for operating turrot.
S. Cam disk for actuating crose-slide.
a, a, a, Carns for actuating chuck movements through pins b, b. The cam which returns D is adjustable but is not in view.
c. Feeding cam for turret.
d.d.Return cams for turret.
e, e, Cams on cam disk for operating the lever f, which actaates the cut-of and forming slide.
T, Worm-wheed which driven cam shaft by a worm on the ame shaft as the reed-pulley \boldsymbol{U}.
V. Handwheel nn worm shalt lor making first adjastments. W. Change feed disk.
s. g,Change feed dogs adjustable round disk.
\boldsymbol{X}. Chanse foed kever.
Y, Oil zube end epreader for lubricating tools and work. 2. Tray for tools, \&c.
oumber, and they include the usual provisions for ordinary turning. In mone designs change wheels are made use of for imparting a defanite movement of cross traverse to the tool, which being compounded with the parallel sliding movements produces the taper In ochers an upper bed carrying the heads and work swivels on a lower bed, which carries the glide rest. More often tapers are tarmed by a cross adjustment of the loose poppet, or by a taper attachment at the rear of the lathe, which coerces the movement of the wop or tool-carrying slide of the rest. Or, as in short tapers, the slide-rest is to the required angie on its carriage. Balls are monsetimes turned by a spherical attachment to the slide-rest d an ordimary lathe. Copying lathes are those in which an object is reproduced from a pattern precisely like the objects required. The commonest example is that in which gun-stocks and the spokes of theels are turned, but these are used for timber, and the engineer's copying latbe uses a form or cam and a milling cutter. The form miling machine is the copying machine lor metal-work. The manufacture of boilers has given birth to two kinds of lathes, one for tarning the boiler ends, the other the boiler flue flanges, the edfes of which bave to be caulked. Shaft pulleys have nppropriated a upecial lathe containing provision for turning the convexity of che faces. Lathes are duplicated in two or three ways. Two. Coor, six or eight tools mometimes operate simultaneously on a piece A mork. T wo lathes are mounted on one bed. A tool will be boring a hole while another is turning the edges of the same wheel. One aril be boring, another turning a wheel tire, and to on. The roils for iron and steel mills have special lathes for trueing them up. The thin sheet metal-work produced by spinning has given rise to apecial kind of epinning lathe where pressure, and not cutting, - the met hod adopted.

Methods of Holding and Rotating Work. Chuchs. -The term chuck - prifies an appliance used in the lathe to hold and rotate work. An the diroersions and shaper of the latter vary extensively. so is to do those of the chucks. Broadly, however. the latter corregrowd rithe the two principal classes of work done in the lathe. chat betacel cenires, and that held at one end only or foce work.

This of course is as extremely comprehensive clasification, becaune chucks of the same name difter vastly when uned in small and large lathea. The chucks, again, unod in turret work, though they grip the work by one end only, difer entirely in design from the faoe chucks proper.

Chuching between Centres.- The implest and by lar the commoneat method adopted is to drill countersunk centres at the ends of the work to be turned, in the centre or longitudinal axis (fig. 34. A), and support these on the point centres of headatock and poppet. The angle included by the centres is usually 60°, and the points may enter the work to depths ranging from as little as if in. in very light pieces to $\$$ in., t in. or I in. in the heaviest. Obviously a prece centred thus cannot be rotated by the mere revolition of the lathe, but it has to be driven by some other agent making con-

A. Centringend driving; a, point centre; b, carrier; c, driver fixed in slot in body of poiat centre; d, back centre; work.

B, Fece-plate driver or catchplate; a, centre; b, driver. C. Common heart-shaped carrier. D. Clement doubledriver: a,face plate; b, b, drivers; c, loose plate carrying drivers.
nexion between it and the mandrel. The wood turner uses a forked or prong centre to obtain the neceseary leverage at the headstock end, but that would be useless in metal. A driver is therefore used; of which there are several forms (fig. 34), the essential element being a short stiff prong of metal set away from the centre, and rotating the work directly, or against a carricr which ercircles and pinches the work. As this method of driving sets up an unbalanced force, the "Clement" or double driver (fig. 34, D), was invented, and is frequently made use of, though not nearly $s o$ much as the common single driver. In large and heavy work it is frequently the practice to drive in another way, by the dogs of the face-plate. Steadics.- Pieces of work which are rigid enough to withstand the stress af cutting do not require any support except the centres

Fic. 35.
A, Travelling steady with adjustable studs $a, a ; b$, work; c, tool; d, slide-rest.
B, Steady with horizontal and vertical adjustment through
slot ted bolt holes $a, a ; b, b$ brass or steel lacinga.
C, Fixed steady with hinged top and three setting pieces.

But long and comparatively slender pieces have to be steadied at intermediate points (fig. 35). of devices for this purpose there are many designs; some are fited or botted to the bed and are shifted when necessary to new positions, and others are bo!ted to the carriage of the dide-rest and move along with it-lyenclling.
sleadies. In some the work is steadied in a vee, or a right angle, in others adjustable pins or arms are brought into contact with it. As the pressure of the cut would cause an upward as wel! as backward yielding of the work, these two movements are invariably provided against, no matter in what ways the details of the steadies are worked out. Before a steady can be used, a light cut has to be taken in the locality where the steady has to take its bearing, to render the work true in that place. The travelling steady follows immediately behind the tool, coming in contact therefore with finished work continually.
Mandrels.-Some kinds of work are carried between centres indirectly, upon mandrels or arbors (fig. 36). This is the method

Fig. 36.-Mandrels.
A, Plain mandrel. B, Stepped mandrel. C, Expanding mandrel. adopted wher wheels, pulleys, bushes and similar articles are bored first and turned afterwards, being chucked by the bore hole, which fits on a mandrel. The latter is then driven between point centres and the bore fits the mandrel sufficiently tightly to resise the stress of turning. The large number of bores possible involves stocking a considerable number of mandrels of different diameters. As it is not usual to turn a mandrel as often as a piece of work requires chucking. economy is studied by the use of stepped mandrels, which comprise severa! diameters, say from three to a dozen. A better device is the expanding mandrel, of which there are several forms. The essential principle in all is the capacity for elight adjustments in diameter, amounting to from $\frac{1}{} \mathrm{in}$. to in., by the utilization of a long taper. A split, springy cylinder may be moved endwise over a tapered body, or separate single keys or blades may be similarly moved.

Focc-Work.-That kind of work in which support is given at the headstock end only, the centre of the movable poppet not being required, is known as face-work. It includes pieces the length of which ranges from something less than the diameter to about three or four times the diameter, the essential condition being that the unsupported end shall be sufficiently steady to resist the stress of cutting. Work which has to be bored, even though long, cannot be steadied on the back centre, and if long is often supported on a cone plate. The typical appliance used for lace-work is the common foce-plate (fig. 37). It is a plain disk, screwed on the mandrel

Fig. 37-Face-plate.
A, Screwed hole to fit mandrel nose. B, Slots for common bolts. C_{1} Tee-slots for tee-head bolts.
nose, and having slot holes in which bolts are inserted for the purpose of cramping pieces of work to its face. There are numerous forms of these clamps, and common bolts also are used. The faceplate may, also serve to receive an intermediary, the angle-plate, against which work may be bolted when its shape is such as to render bolting directly to the plate inconvenient.

Jawo Chucks.-When a face-plate has fitted to it permanent dogs or jaws it is termed a dog or jaw chuck (fig. 38). In the commonest form the jaws are moved radially and independently. each by its own screw, to grip work either externally or internally. If some cases the dogs are loosely fitted to the holes in a plain laceolate. In all these types the radial setting is tentative, that is,
the jaws being independent, there is no self-centring capacity, and thus much time is lost. A large group, therefore, are rendered self-centring by the turning of a ring which actuates a face scroll

Fig. 38.-Independent Jaw Chuck.

A, Body

a. Recess to receive face-plate.
B. Jaws or dogs.
C. Screws for operating jaws.
c. Tee-grooves for bolts.

Fig. 39--Scroll Chuck, ungeared.
A. Face-plate screwed to mandrel nose.
B, Back of chuck screwed to A.

C, Knurled chuck body with scroll a on face.
D, Chuck face.

Frg. 40-Combination Geared Scroll Chuck.
A, Back plate; a, recess for faceplate.
B, Pinions.
C, Circular rack with scroll b on face.
D. Chuck body.
E. Jaws fixting on intermediate pieces c that engage with the scroll b.
d, Screws for operating jaws independently.

E, Jaws in chuck face, having sectional scroll teeth engaging with scroll a, and moved inwards or outwards by the scroll when C is turned.
b, Tommy or lever hoie in C.
F. Piece of work outlined.

Fig 41.-Spiral Geared Chuck, concentric movement. (C.T aylors: Birmingham.)
A, Back.
B, Body.
C, Spiral plate with teeth engag ing in jaws D.
E_{1} Bevel pinions gearing vith teeth on buck of C.

Ofe 39) or a circular rack with pinions (fig. 40), surned with iemy nimultaneously inwards or outward. Bur as some chaves of jobs have to be adjuted eccentrically; many clucker are of the combination type (fig. 40), capable of being end isdependently or con. centrically, hence termed uniarat chucks. The change frow one to the other simply neate chrowing the ring of teeth out of or into engagement with the pinions by mane of cams or equivalent devices. Each type of chuck ecours in a large range of dimemaione to suit lathes of all centres, besides which every lache includes several chucks, lange and small, in its equipment. The range of diameters which can be taken by any one chuck is limited, diongh the jaws are made with ateps, in addition to the range aforded by the operaling screws. The "Taylor"
 qiara chucks (hig. 41) differ ancotially from the scroll types in having the actuating threads set spirally on the sloping interior of a conc. The result is that the outward pressure of ench jaw is received behind the body. because the spiral rises up at the beck In the ordinary scroll chucks the pressure is taken only at the bottom of eade jaw. and the tendency to tilt and pull the teeth out of shape is very motionable. The spiral. moreover, enables a stronger form of tooth to be usced. Efgether with a finer pitch of threads, so that the wearing area can be acysurd.
The foregoing may be termed the standard chucks. But in addition there ate laree numbers for dealing with special classes of work. Brass finichers bre erveral. Most of the hollow spindle lathes and automatics have drow-in or pesh-ous chucks, in whith the jasis are operated simultaneously by the cenical bore of the encircling nose, so that their action is instantaneous and elecentring. They are cither operated by laand, as in fig. 31. or ausomatically, 23 ia fig. 33. There is alse a large group used for drills and reamers-the drill chacks employed in lathes as well as in drilling machines.

11.-Reciprocating Machine Tools

This is the only ronvenient head under which to group three great classes of marhane tools which possess the feature of reciprocation in common. It indudes the planing. shaping and slotting machines. The feature of reciprocathen is that the culting tool is operative only in one direction: that is, it cuts daring one stroke or movement and is idle during the return stroke. It is. theredore, in precisely the same condition as a hand tool such as a chisel, a carpenter's plane or 2 hand uw. We shall return again is chis reature of an idle prote and discuss the devicen t=2t exist 10 avoid it.
Plening Mochines.-In the seandand planer for general stcp purposes (fig. 42) the slere of work to be opcrated ic is attached to a horizontalu zitle moving to and fro on a rigid bed. and passing underreasb the fixed cutting tool. The tool is gripped in a box paving certain necessary adisumpents and movements, so that the tool an be carried ee fod transversely acmoss the erok or at right angles with the diefection of its travel, to cake successive cuts, and also compwards or in a vertical cmertion. The rool-box is arried on a cross-slide which tas caparity for several Icet of verical adjustment on upchite members to suit work Avaryine depths. Thesc upachts of howsmgs are bolted to che sides of the bed, and the whole framing is so rigirilly dexyed that no perceptible temor or yielding takes place - Dader the heaviest duty impaed by the st row of cutting.
W. Toothed rack reciprocated vertically
by disk and lever, and operating x. Rasched fear. wheels on shafts S and T. a, a, Dogs adjustable in slot at the edge Y, Y, Levers actuated by dogs, and opeo

Moreover, after the required adjustmenta have been made and the machine started, the travel and the return of the work-table and the feeding of the tool across the surface are performed by self-acting mechanism actuated by the reciprocations of the table itself, the table being driven from the belt pulleys.

To such a design there are objections, which, though their importance has often been exaggerated, are yet real. First, the croutrail and housinge make a rigid enclosure over the table, which sometimes prevents the admission of a piecse that is 800 large to pess under the crow-rail or between the bousings. Out of this

Fic. 43.-20-in. Side Planing Machine.

A, Bed.
B. B, Feet.
$C_{1} C$, Work tables adjustable vertically on the faces D, D, by means of screws E, E, Irom handics F, F, through bevel gears.
(C. Richards \& Co. Ittd., Manchester.)
\boldsymbol{G}, Tool-box on travelling arm \boldsymbol{A}, travelied by fast and loowe pulleys J lor cutting, and by pulleys K for quick recurn.
L. Feed-rod with adjustabje dogs a, a, for effecting reversals throust the belt forks b, b.
M, Brickwork pit to receive deep objects.

Fig. 44--8in. Shaping Machine. (Cunliffe \& Crnom l.d. Manulustor)
A. Base

B, Work-table, having vertical movement on carriage C. which has horizontal movement along the face of A.
D, Screw for effecting vertical movement, by handle E, and bevel geara.
F, Screw for operating longitudinal movement with feed by hand or power.
G. Tool ram.
H. Tool-box.
a. Worm-gear for setting tool-holder at an angle.
b. Crank handle spindle for operating ditto.
c. Handie for actuating down feed of toot.
J. Driving cone pulley actuating pinion d, diak wheel e, with sioeted disk, and adjustable nut moving in the slot of the cranke f, which actuates the lever, connected to the tool ram G, the motion constiruting the Whitworth quick return; gis pivoled to a block which is adjustable along a slot in G. and the clamping of this block in the slot regulates the position of the ram G, 0 suit the position of the work on the table.
k. Feed disk driven by mall gears from cone pulley.
j. Pawl driven Irom disk through levers at various rates, and controlling the amount of rotation of the feed screw F.
K. Conical mandrel lor circular shaping, driven by worm and wheel 4
objection has arisen a new demign, the side planer (fig. 43). in which the zoot-box is carried by an arm moyable along a fixed bed or base, and overhanging the work, which is fastened to the side of the base. or on angle brackets, or in a deep pit alongside. Here the inaportant difference is that the work is not traversed under the rool as in the ordinary planer, but the tool moves over the work. But an evil resulta, due to the overtang of the tool arm, which being a cantikever supported at one end only is not so rigid when cutting as tbe crown rail of the ordinary mechine, supported at both ends oo bousinge. The same idea is embodied in machines buile in other respects on the reciprocating table model. Sometimes one housing is omitted, and the tool arm is carried on the other, belng therefore unsupported at one end. Sometimes a housing is made to be removable at pleasure, to be temporanily taken away only when a piecce of work of unusual dimensions has to be fixed on the tahle.

Anotwer objection to the common planer is this. It 30 cm untrechanical in this machine to reciprocate a heavy table and piece of work which often weighs eeveral toms, and let the tool and its holder of a lew hundredweights only remain stationsry. The mere revernal of the table abworbs much greater horse-power
there \quad oolimitation whatever to the length of the work, since it may extend to any distance beyond the base-plate.
Shaping Machines.-The shaping machine (fig. 41) does for comparatively mmall pieces that which the pianer does for fong ones. It came later in time than the planer, being one of James Nasmyth': inventions, and beyond the fact that it has a reciprocating noncutring return stroke it bears no rescmblance to the older machine. Its design is bricfly as follows: The piece of work to be shaped is attached to the top, or one of the vertical side faces, of a rightanged bracket or brackets. These are carried upon the face of a main standard and are adjustable thereon in horizontal and vertical directions. In small machines the ram or reciprocating arm (see 6g. 44, G) slides in fixed guides on the top of the pillar, and the necessary side traverse la imparted to the work table B. To the top of the main standard, in one design, a carriage is fited with horicontal traverse to cover the whole breadth, within the capacity of the machine. of any work to be operated on. In the largest machines two standards support a long bed, on which the carriage, with its ram. traverses past the work. These machines are frequently made doukle-beaded, that is carriaget, rams and work tables are dupli-

FiG. 45-12-in. Stroke Slotting Machine
4. Main framing
E. Drivias come.
C. D. Gears driven by concs
E, Shaft of L.
F, Fool ram driven fram shalt E through disk G and rod H, with quick retura mechanism D.
J. Connter-balance lever to ram.
than the actual work of cutting. Hence a stroug caso is often sated for the abandonment of the common practice. But, on the adier hand, the centre of gravity of the moving table and work Fes low down, while when the crow-rail and housings with the cutting hood are travellod and reversed, their centre of gravity is high, and great precautions have to be taken to ensure steadinces of coverient Several plancri are made thus, but they are nearly so of extremely massive type-the pif plansts. The devica is -dom applied to those of small and medium dimensions.

Ber there is a great group of phaners in which the work is always fived, the tools traveling. These are the sall planers, sertical pianers or soll crecpers, used chielly by marine engine builders ibey are necescary, because many of the castings and forgings are too masaive to be put on the tables of the largest standard enachised. They are therefore laid on the base-plate of the wall phacr, and the tool-box travels up and down a tall pillar bolted to the mall or standing independently, and so makes vertical custing trobest Io some designa borizonial strokes are provided for. or ciiber vertical or horizontal at required. Here, as in the cide planer,
(Cienonwisut \& Batley. Ltd., Leeds.)
K, Flywhect.
L. Driving-disk.
$\boldsymbol{M}, \boldsymbol{N}$, Feed tevers and ahaft operated from disk, actuating linear movements of slides O, P, and circular movement of table Q, through gears R.
5. Pand-Fied motions to tahle.

T, Countershaft.
cated. and the operator can at one piece of work while the other is being shaped. In all caves the movement of the reciprocating arm, to the outer end of which the tool is attached, takes place in a direction transversely to the direction of movement of the carriage. and the tool receives mapport beyond that which it receives from the arm which overhanga the work. Hence the shaper labours under the same disadvantages as the cide planer-it cannot operate over a great breadth. A shaper with a $24-\mathrm{in}$. stroke is one of large capecity, 16 in . being an average limit. Although the non-cuting stroke exists, as in the planer, the objection due to the mass of a reciprocating table does not exist, so that the problem does not asume the anme magnitude an in the planer. The weak point in the shaper is the overhang of the arm, which renders it liable to spriag. and renders beavy cutting difficult. Recently a novel derign has been introduced to avoid this. the draw-ikt shaper, in which the cutting is done on the inward or return stroke, instead of on the out ward one.
Slollixe Nochines.-In the alotting machine (fig. 45) the cutcing takes place vertically and there is a lost return aroke. All the
necessary movements save the simple reciprocating strolce are imparted to the compound table on which the work is carried. These include two linear movements at right angles with each other and a circular motion capable of making a complete circle. Frequently a tilting adjustment is included to permit of sloting at an angle The slotting machine has the disadvantage of an arm unsupported beyond the guides in which it moves. But the compound movements of the table permit of the production of shapes which cannot be done on planers and shapers, as circular parts and circular arcs, in combination with straight portions. Narrow key grooves in the bores of wheels are also readily cut, the wheels lying on the horizontal table, which would only be possible on planer and shaper by the use of a wiward angle brackets, and of epecially projecting tools.

Quick return in planers is accomplished by having two distinct sets of gearing -a slow set for cutting and a quick train for return, each operated from the same group of driving pulleys. The return travel is thus accomplished usually three, often four, times mare quickly than the forward rate; sometimes even higher rates are arranged for. In the shaper and slotter such acceleration is not practicable, a rate of two to one being about the limit, and this is obtained not by gears, but by the slotted crank, the Whimoorth returk, on shapers and slotters, or by elliptical toothed wheels on slotters. The small machinem are generally umprovided with this acceleration.

The double-cutting device seems at first sight the best solution, and it is adopted on a number of machines, though still in a great minority. The pioneer device of this kind, the rotating tool-box of Whit worth, simply turns the tool round through an angle of 180° at the termination of each stroke, the movement being self-acting. In some later designs, instead of the box being rotated to reverse the tool two tools are used set back to back, and the one that is not cutting is relieved for the time being. that is tilted to clear the work. Neither of these tools will plane up to a shoulder as wil the ordinary ones.
Allied Machises.-The reciprocation of the tool or the work, generally the former, is adopted in several machines besides the standard types named. The plate-edge planer is used by platers and boiler makers. It is a side planer, the plates being bolted to a bed, and the tool traversing and cutting on one or both strokes. Provision is often included for planing edges at right angles. The key-seaters are a special type, designed mainly to remove the work of cutting key grooves in the borea of wheels and pulleys from the elotting machine. The work is fixed on a table and the keyway cutting tool is drawn downwards through the bore, with several resulting practical advantages. Many planing machines are portable that they may be fixed upon very massive work. Several gear-wheel cutting machines embody the reciprocsting tool.

111.-Drulling and Boring Machines

The strict distinction between the operations of drilling ans boring is that the first initiates a hole, while the second enlarges one already existing. But the terms are used with some latitude. A combined drilling and boring machine is one which has provision for both functions. But when holes are of large dimensions the drilling machine is uscless because the proportions and gears are unsuitable. A 6 -in. drill is unusually large, but holes are bored up 10 zo ft . or more in diameter.

Types of Machines.- The distinction between machines with vertical and forixontal spindles is not vital, but of converience only The principal controlling element in design is the mass of the work, which often determines whether it or the machine shall be adjusted relatively to exchgpheq. Aiso the dimensions of a hole determine
A. Base-plate
B. Pillar.
C. Radial arm.
D. Spindle carriage
E. Drill spindle.
F, Main driving cones driving vertical shaft G through mitre-gears H.
J. Spur-wheels, driving from C to vertical chaft K.
L, Mitrewheels. driving from K to horizontal shaft M, having its bearings in the radial arm.
N. Nest of mitre-wheels driving the wheed apindle E from M.
O. Feed-gears to drill spindle, actuated by handwheel P or worm-gears Q.
the speed of the poole, and thit coatrola the deaign of the drivise and leedint mechanism. Another important dfference is thet between driling or boring one or more holes simultaneously. Wizh few exceptions the tool rotates and the work is stationery. The notable exceptions are the vertical boring lathes already mentioned. Obviously the demands made upon driling machines are mearly as varied as those on latbes. There is little in common between the machines which are serviceable for the odd jobe done in the geperal shop and thoee which are required for the repetitive work of the shope which handle specialitics. Provision often has to be made for drilling simultaneously eeveral holes at certais centree or holes at various angles or to definite depthe, while the mase of the spindles of the heavier machines render counter-bolancing esoential.

Bench Machimes are the simplest and arallest of the group. They are operated either by hand or by power. In the power mechine generally, except in the amallest, the drill is also fed downwards by power, by means of toothed gears. The upper part of the drilting

Fic. 46.-Pillar Radial Drilling Machine, 5 ft. radius.
$R . R$ Feed cones driving from shaft M to wornshaft S, for self-acting feed of drill.
Ti Change-tpeed gearm.
U, Hand-wheel for racking carringe D along redial arm C.
V. Clutch and lever for reveraing direction of rotation of spindle.
W. Worm-gear for turning piller B.
d. Handle for turning worm
\dot{X}, Screw for adjusting the height of the redian arm.
Y. Gears for actuating ditto from ahaft C.

2, Rod with handle for operating elevating eener.
apindle being threaded is turned by an encircling spur-wheel. operated very slowly by a pinion and hand-wheel hy the right hand of the attendant, the movement being made independent of the rotation of the spindle. A rack sleeve encircling the spindle is also common. In the power machines gears are also used, but a beit on small cone pulleys drives from the main cone shaft at variable speeds. From three to four drilling and feeding speeds are provided for by the respective cone pulleys. Work is held on or bolted to a circular table, which may have provision for vertical adjustment to suit pieces of wrork of different depths, and which can usually be swung aside out of the way to permit of deep pieces of work being introduced. resting on the floor or on blocking.

Wall Machites.-One group of these machincs resembles the bench machines in general desjgn, hut they are made to bolt to a wall instead of on a bench. Their value lies in the facilities which they afford for drilling large pieces of work lying on the fioor or on blocking. which could not go on the tables of the bench machines. Sornetimes a compound work-table is fastened to the floor berneath: and several machirtes also are rariged in line, by means of which hors plates, angles. boilers or castings may be brought under the simultancous action of the group of machines. Another type is the radial arm machine, with or without a table beneath. In each case
as adtantage gained is that a supporting pillar or standard is not required, its place being taken by the wall.
Solf-conkained Pillar. Machines include a large number having the above-named feature in common. In the older and less valuable types the framework is rigid, and the driving and feeding are by bett cones. But the machines being mostly of larger capacities than those inst noted. back-gears similar to those of lathes are generally introduced. The spindles also are usually counterbalanced. The machine framing is bolied to a bed-plate. A circular work-table ray or may rot be included. When it is, provision is made for cievating the table by gears, and also for swinging it aside when deep * urk has to be put on the base-plate.

Redial Arm Machines.-In these (fig. 46) the drilling mechanism is carried on a radial arm which is pivoted to the pillar with the sjejet of moving the drill over the work, when the latter is too massive w permit of convenient adjustment under the drill. The driving takee place through shafts at right angles, from a horizontal shaft arrying the cones and back-geared to a vertical one, thence to a barimontal one along the radial arm, whence the vertical drilling
makers and platers. In others the spindles are adjustable in circles of varying radii, as in' shose employed for drilling the bolt holes in pipe flanges. In many of these the spindles are horizontal. Some very spectal multiple-spindle machines have the spindles at different angles, horizontal and vertical, or at angles
Universal Machines are a particular form of the pillar type in which the spincle is horizontal, moving with its carriage on a pillar capable of traversing horizontally along a bed; the carriage has vertical adjustment on its pillar and so commands the whole of the face of a lange piece of work bolted to a low bed-plate adjacent to the machine. The term "universal" signifies that the machine combines provision for drilling, boring, tapping screws and inserting screw studs, facing and in some cases milling. The power required for boring is obtained by double and treble gears. These machines are used largely in marine engine works, where very massive castinge and forgings must be operated on with their faces set vertically.
Boring Machines.- Many machines are classificd as suitable for drilliag and boring. That simply means that provision is made on

Fig. 47.-Lincoln Milling Machine.
\therefore D. -1
B. B. Lep

Upright.
D. Spindie or arbor
E Feadstock carrying bearing for spindle D.
F. Tailatock carrying point oentre for tail end of epiadle.
. Hand-wheel for effecting adjustment in height of headnock. through bevel geare H and acrew J.
C. Croenthr connecting head- and tail stocks, and enaring equal vertical adjustment of the epindle bearing frons the eqew J.
pinctic is driven. The latter has its bearings in a carriage which cas be traverned along the arm for adjuxtment of redius. The ciete cownterbalanced. Hand as well oo power adjustments are acinded. In the work-tables of radial and rigid machines Ther is a preat diversity. so that work can be set on tog. or at the nester at angle. or on compound tablea, 20 covering all the Fegraents of practice.
 naty of the older, blower devinh The occasion for their use lizes - the drifines of small holes, ranging up to about an inch in diameter. They aee bele-driven, miahout back-geark, and upually without tevel-pars to change the direction of motion. The leed is by lever bovint a rack deeve. A wender pillar with a foot aupport the entice anechaniem, and the work-table, with a range of vertical crint pont.

Mrisiche Spiadte Mechines.-Many of the sensitive machines are fieped with two. three or more episdles operated in unigan with - belt comemon to all. In other machines the multiple spipdles are copeble of sdjustrent for centres, as in the machines used by boiler
(John Holroyd \& Co., Ltd., Milnrow.)
L. Specd cones for driving spindle, through pinion M and wheel \boldsymbol{N}.
O. Frame, carrying the bearings for the cone pulley L, and pivoted to the bed at 4 . and to the headstock E. This device keeps the gears M and N in engagement in all variations in the beight of the spindle D.
P, Q. Cones for driving the table R through worm-gears S, T, and spurs U, V, to the table screw.
W. Stop for automatic knock-of to feed.
X. Hand-wheel for turning the same screw through worm-gears $\boldsymbol{Y}, \boldsymbol{Z}$.
a driling machine for boring holes of moderate size. say up to 8 or Io in., by double and treble back-gears. But the real boring machine is of a different type. In the horizontal machines a splined bar actusted by suitable gears carries a boring head which holds the cutters, which head is both rotated with, and traversed or fed aloag the bar. The work to be bored is fixed on a table which has provision for vertical adjustment to suit work of different dimenslonsThe boring-bar is supported at both ends. in the case of the langent work the boring-bar is preferably set with its axis vertically, and tbe framing of the mechine is arch-like. The bar is carricd in a bearing at the crown of the arch and driven and fed there by suitable geters, while the other end of the bar rotates in the table which forms the base of the machine. Some boring anachines for small engine cylinders and pamp barrels have no bar proper, but a long boring sqindle carrying cutters at the further end is mpported along its entire length in a long exif bose projecting from the headstock of tbe machint-the suoul machine. The work is botted on a carriage which alides along a bed similar to a lathe bed. Many of these machipes have two bars for boring two cylinders simultancously.

IV.-Milling Machines

In milling machines rotary saw-like cutters are employed. To a certain extent these and some gear-cutting machines overlap because they have points in common. Many gear-wheel teeth are produced by rotary cutters on milling machines. In many machines designed for gear cutting only, rotary cutters alone are used. For this reason the two classes of machines are conveniently and naturally grouped together, notwithstanding that a large and increasing group of gearcutting machines operate with reciprocating tools.
The French engineer, Jacqucs de Vaucanson (1709-1782). is credited with having made the first milling cutter. The first very crude milling machine was made in 1818 at a gun factory in Connectcut. To-day the practice of milling ranks as of equal economic value with that of any other department of the machine shop, and the varietics of milling machines made are as highly differentiated as are those of any other group. An apparent incongruity which is rather striking is the relative disproportion between the mass of these machines and the small dimensions of the cutters. The failures of many of the early machines were largely due to a lack of appreciation of the intensity of the stresses involved in milling. A single-edged cutting tool has generally a very narrow edge in operation. Milling cutters are as a rule very wide by comparison, and several teeth in deep cuts are often in simultaneous operation. The result is that the machine spindle and the arbor or tool mandrel are subjected to severe stress, the cutter tends to spring away from the surface being cut, and if the framings are of light proportions they vibrate, and inaccuracy and chatter result. Even with the very stiff machines now made it is not possible to produce such accurate results on wide surfaces as with the planer using a narrow-edged tool. Because of this great resistance and stress, cutters of over about an inch in width are always made with the teeth arranged spirally, and wide cutters which are intended for roughing down to compete with the planer always have either inserted cutters or staggered teeth. Hence the rotary cutter type of machine has not been able to displace the planing machine in wide work when great accuracy is essential. Its place lies in other spheres, in some of which its posision is unassailable Nearly all pieces of small and medium dimensions are machined as well by milling as by single-edged tools. All picces which have more than one face to be operated on are done better in the milling machine than elsewhere. All picces which have profiled outlines involving combinations of curves and plane faces can sencrally only be produced economically by milling. Nearly all work that involves equal divisions, or pitchings, as in the manufacture of the cutters themelves, or spiral cutting, or the teeth of gear-wheels when produced by rotary cutters, must be done in milling machines. Beyond these a large quantity of work lies on the border-line, where the choice between milling and planing, shaping, slotting, \&c., is a matter for individual judgment and experience. It is a matter for some surt prise that round the little milling cutter so many designs of machines have been built, varying from each other in the position of the tool spindles, in their number, and in the means adopted for actuating them and the tables which carry the work.
A very early type of milling machine, which remains extremely popular, was the Lincoln. It was designed, as were all the early machines, for the small arms factorics in the United States. The necessity for all the similar perts of pistols and rifles being interchangeable. has had the paramount influence in the development of the milling machine. In the Lincoln machine as now made (fg. 47) the work is attached to a table, or to a vice on the table, which has horizontal and cross traverse movements on a bed, but no capacity for vertical adjustment. The cutter is held and rotated on an arbor driven from a headstock pulley, and supported on a tailstock centre at the other end, with capacity for a good range of vertical adjustment. This is necessary both to admit pieces of work of different depths or thicknesses between the table and the cutter. and to regulate the depth of cutting (verical feed). Around this general design numerous machincs small and large, with many variations in detail, are built. But the essential leature is the vertical movement of the spindle and cucter, the support of the arbor (cutter spindle) at both ends, and the rigidity afforded by the bed which supports head-and tail-stock and table.
The pillar and knee machines form another group which divides favour about equally with the Lincoln, the design bcing nearly of an opposite character. The vertical movements for setting and leed are imparted to the work, which in this case is carried on a bracket or knee that slides on the face of the pillar which supports the headstock. Travelling and transverse movements are imparted to the table slides. The cutter arbor may or may not be supported away from the headsrock by an archod overhanging arm. None of these machines is of large dimensions. They are made in two leading designs-the plain and the universal. The frstembodies rectangular retations only, the second is a marvellous instrument both in its range of movements and fine degree of precision. The first machine of this kind was exhibited at Paris in 1867. The design permits the cutting of spiral grooves, the angle of which is embodied in the adjustment of a swivelling table and of a headstock therean (universal or spiral head). The tatter embodies clange-gears like
a screw-einting lathe and worm-gear for turning the head, in combination with an index or dividing plate having several circles of holes, which by the insertion of an index pers permit of the work spindle being locked during a cut. The combinations possible writh the division plate and worm-gear number hundreds. The head also has angular adjustments in the verical direction, so that tapered work can be done as well as paralle!. The result is that there is nothing in the range of spiral or parallel milling, or tapered work or spur or bevel-gear cutting. or cutter making. that cannot be done on this type of machine, and the accuracy of the results of equal divisions of pitch and angle of spiral do not depend on the human element, but are embodied in the mechanism.

Fic. 48.-Vertical Spindle Milling Machine. (James Archdale \& Co., Lid.)

1. Main framing.
B. Knee.

C, Spindle, having its vertical position capable of adjustment by the sliding of D on A.
E. Driving cone, belt driving over guide pulleys to spindle pulley G.
H, Ersclosed geara for driving spindle by back gear.
J. Hand-whee for adjusting spindle vertically.
K, K. Pulleys over which spindle is counterbalanced.
L. Feed pulley, driven from counter shaft.
M. Vertical feed shaft, driven from L through mitre-gears.
N, Change gear box.
O, Horizontal feed shaft, operating longitudinal and trensverve feed of table through spiral and spur-gears.
P, P, Handles for operating changes in feed speeds, nine in number.
Q. Handle for reversing direction of motion of table \boldsymbol{R}.
S. Hand-wheel for longitudinal movement of table.
T. Hand-wheel for effecting cross adjustments.
V, Spiral gears ind rcated for effecting self-acting roeation of circular table W.
X, Hand-wheel for rotation of table.
$\boldsymbol{\gamma}$, Hand-wheel for vertical movements of knee B on screw Z.
Machines with vertical spindles (fig. 48) form another great group. the general construction of which resembles that either of the common drilling machine or of the slotting machine. In many caves the borizontal pocition is preferable for tooling, in othere the vertical, but often the matter is indifferent. For general purpoees, the heavier class of work excepted, the vertical is more convenient. But apart from the firting of a special brace to the lower and of the spindle which carries the cutter, the spindle is unsupported there and is thus liable to spring. But a brace can only be used with a milling cutter that operates by its edges, while one advantage of the Fertical opindle machine is that it permits of the use of end or face cutter One of the greatest advantages incidental to the vertical poptrion of the spindie is that it permits of profile milling being done One of the most tedious operations in the machine shop is the production of outlines which are not those of the regular geomectic figures as rectaggles and circles, or combinations of the same. There is
doly one w.sy in which irrogier formen be prodtrod cheaply and interchangeably, and that is by controning the movemente of the tool with an bject of similar shape termed z " Corm" or "hormer." as in the well-known copying lathes, in the cam grinding machine, and in the orming adjuncte fitted to vertical spindle milling machines, so conveting ehove into profiling machinet. The prinople and is applistion are alike simple. An object (the form) is oade in hardened sisel, having the bame outlines as the object to be malled, and the shis which carries the cutter epindle has a hardesed fermer pin or noise: which is pulled hard against the edges of the form by a sustrided weight, wo cauing the cool to move and cut in cte name path ard in the same plane around the edges of the work. Here the milling olachine holds a paramount place. No matter bow many curves and seraight portions may be combined in a plece, the machine reprisuces them all faultlealy, and a huadred or a thousand ot hers all recisely alime without any tentative corrections.
Phaomillers, alm termed slabbing machtres, form a stoup that क्रणWrs in value and in mase and capacity. They are a comparatively bte development, tisooming the chief rivals to the planing machines, for all the early miling was of a very light character. In general outlines the plano-siliern closely resemble the planing machines, baving bed, zable, housings and croes tail. The latter in the planomiller carries the taringe for the cl:ier spindle or spindles under which the work travels and reciprocates. These spindles are vertial, but is some machimes horizontal ones are fitted also, as in p'aners, so that thre faces at right or other angles can be operated on simuleaneously: The slabbing operations of the plano-mitlers do oot indicate the fu'l or even the principal utilities of these machines. To understand thest it must be remembered that the crossesections of very many part , wich have to be tooled do not lie in single planes serely, but in combinations of plane surfaces, horizontal, vertical or angular. Ia wo:king these on the planing machine separate wetimg of tcols are required, and oflen successive settings. But "riling cutters are buile up in "gangs" to deal with such cases, and in this way the entire width of profile is milled at once. Horizontal fors, and verical and angular edges and grooves, are tooled simulteneussdy. Eilh mach economy in tirne, and the cutter profile will le arrurately reprotuced on pumbers of separate pieces. Allied to the plano-millera are the rotary plases. They derive their name from ebe design of 're cutters. An iros disk is pieroed with holes for the inserion of a large number of separate cutters, which by the mation of the diak produce plane wataces. These are milling cetters, though ite tools are single-eiged ones, hence termed "inserted tocth ritllo" These are usel on other machines besides the rotary planers out the Latter are massive machines built on the plareer model, ith hut one housing or upright to carry the atrage of the cutt epondle. These machines, varied considerably is dergn, do good mice on a class of work in which a very high trie of accura in not essential, as column flanges, ends of giden, fect of castinge, and such like.

-Gear-curting Macrines

The practice o! cutting the teeth of gear-whecls has grown but whly. In the geli, used hy engineers, those of large dimensions are eumerous, an! be cost of cutting thesc is often prohibitive,
toush is is unnotsary in numbers of mechanisms for which Esp beels are as mitable as the more accuratcly cut ones. The E-liest sears for nuchines of precision have long been produced *y =epirg. but of ate years the piacike has been extending to oured by the guwh of electric driving, the make great denalis on reduction and transral new types oi star-cutting machines bave specialization is still growing, until the older and, after a fashion, cut all forms of gears, 1 modern establishments.
wheels are produced either by rotary milling edged cools (fig 49). The advantage of the r used has the same sectional form as the interthe act of tooth cutting imparts the shapes om extemal mechanism. But this holds good r-wheel teeth, that is, those in which the teeth axis of the wheel. The tecth of bevel-wheels. aed by rotary culters, can never be formed simply because a cutter of unaltcrable section a the chapes which are constandly changing the length of the teeth (the bevel-wheel being). Hence, though fair working teeth are obthey result from the practice of varying the cutters and wheel and removing the material operations or traverses. often followed by a the file. Althougl in is practice is st ill commonly sels of anall dirtensuns, and was at one time Mbles the practic. has been changing in favour by a proces of planing with a single-edged cs, bowever, such a tool embodies no formacive alling cutters, either it or the wheel blank, of Dese to be conding cutters, end contralies. tiy mechanism outside the incif. Around this method it likinver of very ingerious
machines have been denisned, which may be brondty chamed under two great groupe-the form and the generating types.

In the form machines a pattern tooth or form-tooth is prepared in hardened steel, ustully three cimes as laree as the actual teeth to be cust, and the movement of the mechanism which carrien the Theel blank is ooerced by this forn, to that the tool, reciprocated by its bar. produces the same shape on the reduced dimentions of the whell tecth. The generating machines use no gettern tooth, but the prisciples of the tooth formation are embodied in the mechaninn itrelf. Thewe wre very intereating deaigns, because they not only shape the teech without a pattern tooth, but their movementa ars automatically controlled. A large number of these have beez brought out in recent year, their growth being due to the dernand Ior accurate gears for motor carn, for electric driving, and for general high-clase engineers' work. Those are so speciallzed that they can only cart the one chase of gear for which they are designedthe bevel-mbeels, and theme fa only a moderate range of dimentione on single machine of a given sizo. The principal bevel-gear cutting machines using forms or formers, are the Greenwood o Batley, Le Progrea Industriet, the Boubey (cuts helicat teeth). the Oerlikon, which includes two types, the single and double cuttir? sants, the Gleason and the kice. Generating machines incluty the Bilgram (the oldest), the Robey.Smith, the Monneret, the Warren, the Beale and the Dubosc.

A, Rotary milling cutter pro- D, Action of "Fellows" cutter, ducing tooth space.
B, Planer tool operating on tooth flank.
C, Planer form-tool finishing tooth space. planing teeth.
\mathcal{F}, Hobbing cutter.
G, Tapered hob beginning wormwheel.
H, Ditto finishing.
As the difficulties of cutting bevel-wheels with rotary cutters, consequent on change of section of the teeth, do not occur in spusgears. there ape no examples of form machines for spur-whect cutting, and oaly one generating planing type of machine, the Fellows, which produces involute teeth by a liardened stcel-cutting pinion, which shapes wheels having any number of teeth of the same pitch, the cutter and blank being partly rotated between each cut as they roll when in engagement
The worm-gears appropriate a different group of machines, the demands on which have become more exacting since the growth of electric driving has brought these gears into a position of greater importance thas they ever occupied before. With this growth the demand for nothing less than perfect gears has developed. A perfect gear is one in which the tecth of the worm-wheel are envelopes of the worm or bcrew, and this form can only be produced in practice in one way-by using a cutter that is practically a serrated worm (a hob), which cuts its way into the wheel just as an actual worm might be supposed to mould the teeth of a wheel made of a plastic substance. To accomplish this the relative movements of the hob and the wheel blank are arranged to be preciecly those of the working worm and whecl. Very few such machines are made. A practical compromise is effected by causing the hob
bode to dive and cot the blanik in an orfinary machiace When borms are not produced by tivere mexhoris the envelope cannot be oberimed, bue each cooch space is cut by an involuse mitions critter ant ax the angle of thrend in a maiveral machine, or elae in one of the semeral grar-curting machines used for spur, bevel and morm cears, and onty capabie of yielding realify accurribe teatis in tie case of epor-mbeek

The previous remarks refate only to the eectional forms of the secth. Bat their pitch or distance from centre to centre requires dividing mechanism. This includes a min dividing or rormwhed, a pora is conjusction with change gears, and a divinion plate for section and locking the mechaniom. The phate may have Sour divirions only to receive the locking lever or it sasy be drilled with a larne number of holes in circien for an index pes. The first i adopted in the regular genr-cartters, the meonnd on the enivercal mulling machines which are used also for gear-cutting. In the largent nomber of machines this pitchips has to be doore by en atteodant as often as one tooth is completed. But in a cood sumber of recent machine the pitching is effected by the movesoeater of the machise itself without human iptervention. With opur-whoels the cuttias proceeds until the wheel is complete, when the machine is often made to rins a bell to call attention to the fact. But in bevel-wherls oniy ove side of the teeth all the way round can be done; the attendent must then effect the necessary ettinga for the other side, alter which the pitchings are automatic

As a general rule only one tooth is being operated on at one time. But eonnomy is studied in spur-gears by setting several similar wheels in hine on a mandred and cutting through a single tooth of the series at one traverse of the tool. In toothed racls the same device is adopted. Again, there are cames in which cutters are made to operate simultaneously on two, three or more adjacent teeth.

Recently a generating machine of novel design has been manufactured, the spur-wheel hobbing machine. In appearance the hob resembles that employed for cutting morm-gears, but it also generates the teeth of spur and spiral gears. The hob is a momm cut to form teeth, backed off and hardened. The section of the worm thread is that of a rack. Though it will cut worm-wheels, spiral-wheels or spur-wheels equally correctly, the method of presentation varies When cutting worm-wheels it is fed inwards perpendicularly to the blank; when cutting spirals it is set at a tuitable angle and fed across the face of the blank. The angle of the worm thread in the hob being about $2 \frac{3}{3}^{\circ}$, it has to be set by that amount out of parallel with the plane of the gear to be cut. It is then led down the face of the wheel blank, which is rotated so as to synchronize with the rotacion of the worth. This is effected through change gears, which are altered for wheels having different numbers of teeth. The advantage is that of the hob over single cutters: one hob serves for all wheels of the same pirch, and each wheel is cut absolutely correct. While using a set of singte cutters many Fheels must have their teeth only approximately correct.

Vi.-Gerndng Machims

The practice of finishing metallic surfaces by grinding, though very old, is nevertheless with regand to its rivalry with the work of the ordinary machine tools a development of the last part of the 19th century, From being a non-precision method, grinding has become the most perfect device for producing aocurate results measured precisely within thousandths of an inch. It would be rather difficulz to mention any clase of machise-shop work which is not now done by the grinding wheel. The most recent develop. meata are grinding out engine cylinders and grinding the lips of twist drills by autamatic movements, the drills rotating constantly.

There are five very broad divisions under which griading machinea may be classified, but the individual, well-defined groupo or types might number a hundred. The main divisions are: (1) Machines for dealing with plane surfaces; (2) machines for plain cylindrical work, extermal and internal; (3) the univermals, which embody movemente rendering them capable of angular ectting; (4) the tool grinders: and (5) the specialised machines. Mast of these might be again clawed under two heada, the non-precislon and the precision types. The difference between thees two classes is that the first does not embody provicion for measuring the amount of material removed, whilo the eecond does. This dintinction is a most important one.

The underlying revemblances and the differences In the main degigns of the groupa of machines jurt now noted will be better underntood if tho asential conclitionim of griniling at a corrective proces are grasped. The carillnal polnt la that accurnte results are proluced by whecin that ape themmelves lolne abraded constantly. That is not the came in aterl cutting tools, or at least in but an infinitraimal degreo. A oted tonl will retain lta edge for several hours (often for dinye) willonit the need fir marindiag; but the perticlest of nlirasive In an rinery or olier grinding whed are belng incesantly forn oitt and romoved. A wherl in traveraing
 termination than at tho lewinning of the traveras, and therefore the shalt mut te theoretirally lnrger at nne enil than the other. Statia, ofverthelote, merorind parallel. The explanation is, and
it lies at tive buen of enery grinem, thet the feed or amoupt remoned at a singe travere in extremety minute, my a chousandth or bal a thousedth of an inch. The minuteness of the leed receives compeasation in the repetition and rapidity of the traversc. The rear of the whel is reduced to a minimum and true work is produced.

From this fact of the wear of grinding wheels two important semolts follow. One is that a traverse or lateral movement must sways thle giace betrees the whed and the piece of work being gromind. Thes is meoenary in order to prevent a mutual grooving action betwee the wheel and work. The other is that it is emential to provide a lure rane in quality of wheels, graded acconding to cosprepest and hmeness, of hardpeas and woftness of emery to wuit all the diferent metals and alloys. Actually about sixty grades are manofactured, but sbout a dosen will senerally cover average sbop proction. With ach a choice of wheele the roftest bram as well an the hardert cempered stwel or case-hardened glast-like surfaces that could not posibly be cat in lathe or planer, cas be groned with extreme accurncy.

Pra. ga-Univernal Gripding Machine, 7 in. centres: 3 ft. 6 in betwee centres. (H. W. Ward \& Co., Ltd., Birmingham.)
A. Base or body, with raste J. Hesdstock for carrying ane wrater tray round top edge, and interior fitted as cupboarde, with shelve and doors
B. Sliding table.
C. Swivel table.
D. Grinding wheel
E. Wheel guard.
F. Wheel headstock swivelling in a horizontal plame, and having the base graduated into degrees for angular setting.
G. Slide carrying heedstock.
H. Hand whel for traversing table.
Plane urfacing machines in mapry cases resernble in gener outline the well-known plarias machine and the vertical troit mili. The wheels traverte acroes the work, and they are if vertically to precise fractional dimeneions. They fill a fare pha In finishing plane surfaces, brond and'narrow alibee, and have b come rivals to the planing and milling machines doipg a chas of work. For hardened surface they have no rival.

Culindrical prinders inclode many subdivitions to embra oxtermal and internal wurfaces, either parallel or tepered. emall
are. In divir highest development they fuik what are termed "averal " iunctions (6g. 50), that is, they are capable of grinding beth external and internal cylinders, plane faces, tapers, both of is and high angle, and the teeth of various kinds of tools and curter. These machines occur in two broad types. In one the uis of the revolving wheel is traversed past the work, which tevolves but is not traversed. In the other the reverse occurs, iv vork traversing and the axis of the wheel with its bearings poming stationary. Equally satisfactory resules are obtained by each.
La all external cylindrical grinding, when the work can be rotated Le piece being ground rotates in an opposite direction to the Detion of the whecl (fig. 51, A). In all small pieces ground asernally the same procedure is adopted (fig. 51, B). Incidentally,

Fig. 51.
External cylindrical grinding. B, Internal ditto, C, External grinding when the work is fixed. D, Internal ditto.
meation should be made of the fineness of the fitting required and athined in the construction of the spindles which carry the wheels is interaal grinding. The perfection of fitting and of the means a adjustment for eliminating the effects of wear in the ordinary spodes for external and internal grinding is remarkable. The wionlea for internal work have to revolve at rates ranging from about 6000 to 30,000 times in a minute, yet ran so truly that the holes Froas do not depart from accuracy by more than say noso to robon an inch. Yet so long as the work can be revolved no special vapiration of mechanism is required to ensure pood results. The revolution of the wheel and the work is mutually helpful. The Ted difficulties arise when the work, on account of its mass or awkvambese of shape, cannot be revolved. The principle embodied an machines designed to deal satisfactorily with such cases, though mecta diversificd in detail, is the application of the planet device to the grinding wheels. That is, the wheel spindle rotating at a high 6000 or 7000 revolutions per minute, is simultaneousty amed round in a circular path, so that its axis makes about 25 * 33 revolutions per minute (fig. 5t, C and D). The diameter of us path is capable of adjustment with minute precision within wis limits to suit bores of different diameters. The periphery of * grinding wheel which lies farthest from its axis of revolution Feep round in a path the diameter of which equals that of the bore to be ground. These machines are now used largely for pisding out the cylinders of gas and petrol engines, valve seatings, in bushed holes of coupling rods, and similar classes of work. Many of them have their spindles set horizontally, others vertically. Nined to these are a relatively small but important group of machines used for grinding the slat links of the slide-valve gear of licomotive and other engines. The slot is mounted on a pivoted ber adjasted to the earne radius as the slot to be ground, and the ife is moved relatively to the wheel, so producing the required

In another direction much development has taken place in the practice of grinding. The increasing use of the milling cutter has

1 Grinding front edges of milling cutrer. B. Grinding side diget of milling cutter; a, a, Tooth rests. C, Griading face of lonsed mill
mea ats occasion for the growth and high specialization of the cutter proding machines. It is essential to the efficiency of such cutters tot roghanding thall be done without drawing the temper, and this anly be effected by the use of an abrasive. In the early days their ese the temper had to be drawn to permit of Gling and ardening effected with its inevitable distortion.
Carter grinding machines must possess universality of movements Pded with the numerous shapes in which milling cuiters are made; O-te they often rewmble in general outlines the universal grinding Earbines. But as a rule they are built on lighter models, and with - eailer rarge of movements, because the dimensions of cutters are
generally much smailer than those of the ordinary run of engineen work which has to be ground. Frequently a single pillar or mandard suffices to carry the mechanism. In an ordinary universal tool grinder all the teeth of any form of cutter can be ground precisely alike (fig. 52) excepling those having irregular profled outlines, for which a special machine, or an extra attachment to an ordinary machine, is necessary. But little of this is done, because in such cases, 2 nd in many others, the faces of the teeth are ground instead of the edge. This idea, due to the firm of Brown \& Sharpe, may seem a trifle, but nevertheless to it the credit is largely due for the economies of cutter grinding. The principle is that in the "formed cutter," as it is termed, the profiles of the teeth are not struck from the axis of revolution, but from another centre (fig. 20) ; grinding the tooth faces, thercfore, has no cffect on the shapes of the profiles, but only lessens the tooth thicknesses. Designed originally for the cutters for the teeth of gear-wheels, it has long been applied to profiles which involve combinatious of curves. The pitching of the teeth is cffected by a strip of metal, or tooth rest a (fig. 52), on which each successive tooth rests and is coerced during the grinding. If teeth are of special form the traverse movement of a spiral tooth along the rest ensures the required movement.

Besides the cutter grinders used for milling cutters, reamers and screwing taps, there are two other groups of tool grinders, ane for twist drills only and the other for the single-edged tools used in lathe, planer, shaper and other machines. Both these in their best forms are of recent development. The machines used for grinding twist drills embody numerous designs. Hand grinding is practically abandoned, the reason being that a very minute departure from symmetry on the two cutting lips of the drill results inevitably in the production of inaccurate holes. It is essential that the two lips be alike in regard to length, angle and clearance, and these are embodied in the mechanism of the grinding machines. But formerly in all these the drill bolder had to be moved by hand around its pivot, and one lip ground at a time. There are now some very beautiful machines of German manufacture in which the necessary movements are all automatic, derived from the continuous rotation of a belt pulley The drill rotates constantly, and small amounta are ground oft each lip in turn until the grinding is finished. The other group for grinding single-edged tools is a very small one. The correct angles for grinding are embodied in the setting of the machine, with the great advantage that any number of similar tools can be ground all alike without skilled attendance.

Lying outside these broad typer of machines there as a large and growing number designed for special service. The knife-grinding group for sharpering the planer knives used in wood-working machinery is a large one. Another is that for gulleting or deepening the teeth of circular saws as they wear. Another is designed for grinding the cups and cones for the ball races of cycle wheels, and another for grinding the hardened steel balls employed in ball bearings.

Fig. 53.-Typical Grinding Wheels.
A. Common disk held on spindle with washers and nuts.
B. Thir disk.
C. Flanged disk for grinding to shoulders.

D, Beveljed disk for cutter grinding.
E, F, Cupped and dished whecls for cutter grinding.
G, Cup wheel for grinding on face a; diameter remains constant.
Emery grinding is dependent for much of its success on a plentiful supply of water. Dry grinding, which was the original practice, is hardly employed now. The carly difficulties of wet grinding were due to the want of a cementing material which would not soften under the action of water. Now wheels will run constantly without damage by water, and they are so porous that water will filter through them. Improvements in the manufacture of whecls, and the increased use of water, have concurred to render possible heavier and more rapid grinding without risk of distortion due to heating effects. In the best modern machines the provisions for water supply are a study in themselves, including a centrifugal pump. a tanc, jointed piping, spraying tube, guards to protect the bearings and slides from damage, and trays to receive the waste water and conduct it back to the tank.

There are two points of vew from which the modern practice of grinding is now regarded-one as a corrective, the other as a
frumartue provech The trat is the oifter and if still by far the moot inemtank. The secued is a later ideal towands which design and

Fest-Siton Derim A. Erincin Etx Eith
 nerkit muxs un ciace

 vik. min in.hestus
 proitive tave been extending. As yet prindines cannot compete with the wort of the singherded tools and matiting catcers when hrye quantities of material bave to be remoned. Jask as some pesting firna blve bete designity uliter mantines laving fuller fotro caring with a yier to increase the duty of prioniog whecta tbe athent of the Est speed treets has given a tew keve Whe to ithe singtrexfed curtion touks The rivalry more bies mor with the troks of cartve temper sped, bor winh hiphaned rarictix gire $\Rightarrow 2$ corrective proves griminge ever acopied so in priam a masime as ix does to-day, 2-i uts atrit: andinmes to erith
The cmantaror KMows in wtith grind inc wherts are fande are shaveria fef ss Turse are raried la gety is dimemors from tixe cintrial rivers atroction oif an unt in din miocr for tole grind inc. n tie whent of $3 f$. er ene in turmetr. Sifety manimpe two
 emhat monm of netaize die trotre

Nowhiach-ne mot-borme engive oinve of sum the driven agize mbrand sumes tr the ried in triged
 wixworin of B C inftrixa Tbe
 or ar soni tevs detivend thewets a

 o o the encrewn minet of Erion

 ac owe is mone imsames the rewter is aso do it cerhes is is manel whth berv. houme thes at the sundizine al tori mod The

air reservoir and the blast nocrle through which the air pasees and propets the and in the form of a jer. The presures range from \$ $\$ \mathrm{t}$ up to about 60 per sq. in., depending on the class of work which is doae.
The perculiar advantage of the sapdblar ties in ite adaptability to the worting of irregular surfaces, which could not be touched by any other dases of grinding. The blast penetrates hollows and recesees and acts oret an entire surface. There are many classes of aperation dobe with the mend-blest, including clenning, froesing ornamentaioa, exprivisg and sharpeniag. In engineers works - harge amourr of doaning in effected upor cosxings, forgings, shect and ofiner producrs, either preparatory to machining or to painting ensmelting. timenes. pahamiany or plating. Cycle frames are cheamed Iith the seofblase after braming. The teeth of files are sharpened br directing a stroaly of sond and witer against thei bucts fint ue reask thare the barr throme mo by the chisel wher cotting is obliternted, and a siroag form of took is produced. Worn ikes may ato be harpened 9 to equal acw ones by sand-blasting the Froxipe daes is amorimer eseful application of the sand-blart. and to attactive suitabie perterss or desigw to the wuriace the sard may be oused to tork onamerexal fexrigis. It is a peculiar circum. spane that the sand hus Erite cifecr upoa soft and yielding aubutance is comparison ridh the ibracien iz produces on bard surfiaces, so

 b. pericatives ity be mose thas, dr, by the coatinued action of be mad ritho axy nost of fracture ocxurring. Much sand. biesting is proferwed imse dosed chaters, taring panes througb with the vortwal maxbes the progress of the operation. But
 is sixuod to the cheramit? a specal helmet. Which leeeps ourt the Ang tase sad cive a ryat of pure ain inrough a tribe in a

171-Santic Macrixiss

 Writs for $=-i f y$ of tan thans rith ginders and rimers on aned

 formud with orming a right of other angles, thy wewert for at: light evte and alwo lee carrus which can ann be sreared with circulx merke and the thind for enal Pinces Thec-colariansem boty a sol ary hulle, auryim the sob cill and driven b puriog This apind k mai
 tharing 3 cairy it port th vort lond on a frim uabl or the spinde may be sua simery ald the witk b youd alose oxise the wiv Duecertida i eeding stou! In veritives so shat it \boldsymbol{i} got wand -vevent inmad

 M not -

b the teeth, should undue stress come upon the saw. This is usually diected by the use of weights or springs, which allow a certain frecdom or laritude to the driving gears. The work is held by serew climps, V-blocks being required in the case of circular objects. A number ol pieces, such as shafts, rails or girders, can be fastened down dove together in a pile and cut through in onc operation.
There is a very uscful class of circular saw, the flush-side (fig. 55), that in valuable for cutting close up to a surface. The disk is bolted to a dange on the end of the spindle with countersunk bolts. so that the lace is quite dat. Another class of saw used for dealing with girsers and bars is carrled in bearings upon a pivoted arm, which 3 pulled downwards by a weight to give the feed. The work is boted to a table below the saw. Ample lubrication, by oil or soapy vater, is essential in catting wrought iron and steel; it is pumped wo the blade, keeping it cool and washing away the cuttings.
Band-aw mactines resemble in outline the lamiliar types employed for awing wood, but they are necessarily stronger and stiffer, and the sars rul at a much lower speed. The tables, moreover, differ 4 possessing compound slides for moving the work and in the provicion of a series of slots on the top table, whereby the object to be sawn is secured with bolts and clamps. The tables are moved automaticatly or by hand. The rate of cutting must be varied according to the thickness of metal. Lubrication is effected by running the lower er pulley in 2 bath of oil or soapy, water, which is carried up, 2 keeping the blade cool and "casing" the cut.
The reciprocating class of saw has until recently been confined to mall types for workshop use, termed hack kaws, which have a small blade ranging from 12 to 18 in . long. This is strained bet ween a couple of bearings in a frame which is reciprocated above the work camped in a vice. An arrangement of weights leeds the saw downzards. The larger hack saws cut of bars and girders up 2012 in . across, and in some there is a provision introduced for giving internaitent rotation to the bar, thus presenting fresh faces to the sum. The hack saw is of great utility for comparatively light merk, and, as the amallest blades are cheap enough to be thrown away shen worn out, there is no trouble and expense connected with their sharpening. as in the circular and band saws. An adaptation of the recoprocating saw is that of the jig type, which has a small blade an vertically and passing up through a table on which the work is hid. It is handy lor cutting out dies and various curved outlines, in the same manoer that frel-sawing in wood is done.

Vill.-Shearing and Punching Machines

These have much in common as regards their mode of operation. They are actuated either by belt and spur gearing, by steam engine, by dectric motor, or hydraulically. The first named is only suitable here arrangements can be made for driving from a line shalt. Ia view of the great convenience of the other methods of driving. they are coming into greater use, esperially for ship-yarde and other works where shafting is undesirable or inconvenient.
For boiler makers' and platers' use the function of punching, and shearing are usually combined in one machine, the rams being placed $2 t$ opposite ends and actuated from the same sourec of power. The lax haft in the train of gearing is set to bring its ends within the boxes contauning the rams, and eccentrics on the shaft are moved -rthin die blocks fieted to the rams, so that as the shalt revolves it comes the rams to move up and down and operate the shear blade and

Fic. 57.-Steam Hammer, small Overhanging Type (B. \& S. Massey, Manchester).
A. Standard.

B, Base-plate.
C. Anvil block (independent of standards).
D. Tup or hammer head.
E. E. Pallets, or forging blocks, attached to anvil and tup.
F. Steam cylinder.
\boldsymbol{G}, Piston, wolid with piston rod \boldsymbol{H}.
J, Piston valve, regulating period of admission of steam, operated by hand by lever K or lever N.
L. Stop or throttle valve for controlling admission of atcam to valve chest, operated by hand lever M.
N, Lever in contact with roller on tup D, which moven the valve I automatically as the tup rises and falls.
O, Lever for pre-adjusting the range of movement of N and J, according to its setting in the notches of the quadrant from a to b.
P. Steam supply pipe from boiler. Q, Exhaust steam pipe.

2-wheryydraulic Punching and Shearing Machine.
J, K, Main and return rams for
L. M. N, Atendant's controlling handles.
the punch attached to the bottom end. Another class of machines is worked hy means of massive levers pivoted in the Iraming, and actuated by cams on the driving shaft which cause the levers to rock and move the punches or shears up and down by the opposite ends. The punch slides are constructed to "dwell" for a short period at the top of the stroke at each revolution, thus giving the attendant time to place and adjust the plate accurately beneath the punch. The same effect is obtained in the eccentric types of machines mentioned above, by a disengaging motion, which is thrown in by touching a lever, thus stopping the punch until the operator is ready for its descent. The more complete machines have an angle shear situated centrally, with -blades for severing angle iron. The largest forms of shears, fir mastive plates, usually have the blade reciprocated by crank or eccentrics on the driving shaft. coupled by connectingrods to the slide.
Hydraulic punching and shearing machines are used largely on account of their convenience, since they dispense with all belis, engines or motors in the vicinity, and givea very powerful
stroke The bydraulic cylinder is generally direct-connected in the slides, and the operetor turns on the pressure water by a lever. The machuoe bown in fig. 56 is a very complete example of the bydraulic type, combining punching and shearing with angle-cut ting;

Circular sheary are used for the thinner plates and for shect-meral mork: they embody two circular blades placed with their ases parallel, and the sharp bevelled edges nearly in contace. The blades being motated sever the plate as it is led between them. Euther seraught or circular cuts may be made; true circles or dicks are produced hy mounting the phase on a fixed stud and rotating it through a complete revolution past the cutters.

IX.-Hammees and Presses

The growth in the use of haramers actuated by steam and compressed air, and of presses worked by water poser, has been remarkable. The precursors of the power hammers were the helve and the Oliver: the first named was operated by gravity, being lifted by a circle of cams, while the second was lifted by a spring pole overhead and pulled down by the foot of the workman, acting on a lever-the hammer shait. The first was used by the ironworkers and the second by the smiths, until displaced by the Jasmyth hammer and its extensive progeny: Even now the old helve aod Oliver survive in some unprogressive shops.

Steam Hammers. - The original hammer as invented by James Nasmyth was single acting, operating simply by gravity, the function of the steam being to lift the hammer for each succeeding fall. The Girst inprovement was made by Rigby, who took the waste steam exhausted from the lower side of the piston to the upper side and so imparted some slight pressure in the descent. It was a stage between the early and the present harnmers. In these, high-pressure steam is admitted abose the piston to impart a more powerful blow, compounded of velocity \times mass. than is obtainable by gravity: hence they are termed double-acting hammers (fig. 57). The principal difficulties which have to be surmounted in their construction are those due to the severe concussion of the blows, which very sensibly shake the ground over an area of many yards. Framings are made very rigid, and in the larger hammers double, enclosing the hammer head between them. The loundations are by far the heaviest used in any machine tools. Deep piling is often resorted to, supporting crossing timber balks; or concrete is haid in mass on which the iron anvil block is bedded. Thus block seighs anywhere between 100 and 1000 tons. The piston and its rod and the hammer head are generally a solid steel forging, for the piston rod is a weak element and cottered or screwed fittings are not trust.

Fig. 58-Pncumatic Forging Hammer.
(W. \& J. Player, Birmingham.) A
B
B
B
B
B

Basc-aros.
Anvil hlock.
, Tug.
\therefore E. Pallets.
G. Hammer cylinder, the piston rod of which is attached to D.
14, Air emm tent eylinder
N_{B}. Dele zan end eylinder. worthy. Piston valves are generally used in prelerence to ordinary D-valves, combining simplicity of fitting with good balance. The periods of steam admission are under the control of the attendant, so that the length of stroke and the force of the blow are instantly responsive to his manipulation of the operating lever. Blany hammers can be set to run ausomatically for any siven length of siroke.

Preumatic Hammers.-A successful type ol hammer for the ordinary operations of the smithy is that which is actuated by compressed air. Though designs vary the principle is the same, namely; air compressed in a controlling eylinder (fig. 58), and brought into an operating or hammer cylinderatrove the piston. Cushioning,or releasc of the arr below the piston, is under control, as is the pressure of the arr above it.

Drop flammers. - The requirements of forged work have, besides the powet hammers operated by a positive down stroke, been the cause of the development of an equally large group which are gravity hammers only -the drop hanmers. They are put into operation by a belt or belis, but the finction of the belt is uimply to lift the hammer to the height desired, at which point it is releused and falls. The place of the drop hammer is in the lighear claves of smith's work. as shat of she stcam haminer lies in the heavier. but
theve is muth overlapping, since susgl if eafn hammert are rivals ent the orliere th ilghe forging.

Bur, speaking generally, the largest volume of reperitive die forging or stamping of light articles is done under drop hammers. The small arms factornes and the regular stamping shops scarcely use any other type. They may be roughly divided into threce great groups: the belt. the board and the lasest form-lie Brect lifier. In each the hammer head or tup is lifted to any beight within the range of lift, the height being controlled by the attendant at each blow. In most machines scting can be done at any constant height and the blows delivered automatically. Control is effected by hand or foot or both. Drop hammers generally have the adsantage of sorking with greater rapidity shan steam hammers.
The original drop hammers, which are believed to hase originated with the locksmiths of Birmingham and district, cunsisted of a hammer head attached to a rope, one end of which ran up over a loose pulley suspended in the roof, and the other was pulled by a man or two men, so lifting the hammer, which was then allowed to drop. The principle is embodied in many belt hammers io-day; but the pulley is driven constantly by shafting, and when the attendant pulls at the frecend of the bele the friction of the pulley draws the bele over and lifts the hammer until the atcendant lers it go. The weight lifted is greater than in the old type, but the Labour is nevertheless very severe, and the blows are not rapid enoukh for quick forging. A far better machine is the board hammer. In this (fig. 59) the place of the belt is taken by an ordinary strif of board which passes betweer two rollers at the top of the hammer which rullers are belt driven. The rollers are fitted on eccentric

Fig. 59.-Drop Ilammer-board type
(B. \& S. Massey, Manchester.)
A. A. Standards

B, Anvil, or bascblock.
C. Tup.
D. Buard, fitting in slot in tup.
E. F. Rollers gripping and lifring board.
G, H_{*} Pulleys actuating rollers through eccentrics $J . K$.
L. Rod by which the amount of lift is regulated.
a, Dog and lever adjustable on L, which strikes the edge b of 1 tup, releasing eccentries and roller and allowing tup to fall, Catch on which tup rests previous to releasc. fitted into e one of the row of holes beneath, to suit various heights of
M. Nechanism struck by the edge d of the tup. which either k the roller F clear of the board D. alleswing the tup to fit brings the rollers E and F into contact. and lifts the m and tup.
N. Hand-lever for operating hammer.
O. Fuot lever for ditto. connected by chain e.
f. Spring for lifting levers.
P. Rod with nuts g. to compensate for wear on the rollers by adjustment of roller E.
puts \rightarrow that the movernetit of levers caumb hen to gity the loart Wer the lift, or release it for the fall, these levers being under the control of the atzendant. They can also be sez to operate automically fre any height of lift.

These types are all subject to much concussion and vibration, trause the machines are self-contained: anvil, standards and heads being rigidly bolted together, the concussion of every blow is transaitted through the entire mechanism. The Brett hammers (fig. 60) ane designed to lessen this, in some cases by making the anvil distinct from the superstructure, and in all by connecting the lifting ropes to the ends of long levers which act something like elastic springs, absorbing vibration. The driving mechanism is also original, cmaprising a cylinder with a wing piston, which is rotated by steam prosure through an arc of a circle only, sufficiently to operate the Listing levers. Another advantage is that the lifter cylinder need yt be immediatcly over the hammer, but may be sinuated elsewhere. The hammer can be operated by hand directly for each stroke, or be set to work automatically.

Fig. 60.-5 cmt. Belz Drop Hammer with Brett's Lifter. (Brett's Patent Lifter Co., Lid., Coventry.)

- L'prighes.

Asmil.
Tup
Liicr cylinder
Vaive casing
Red cperating value by
liver H.
ale.
b. Buffer blorks which arrest motion of lever c.
d. Lever for automatic regula. tion of value.
J, Lever for regulating amount of upening of valve by hand.
K. Fout lever for holding tup in cither of the stops L
e. Spring for foot lever.
: Hammers are a rather smaller group than the others. e belis-driven pulley actuates the eup throush the medium assic leaf springs. The length of stroke is adjustable across ate of a slotted disk on the driving shaft.
ncizg Mochares. - The Ryder forging machine is fitred with - Eve pairs of swage tools, the lower halvers being fixed and per ones driven by a motating eccentric shaft. The operations 5. those on the anvil by hand forging, but from 800 to 1200
?- -e delivered in a minute. The swages are arranged in succes-
so that an opctation is begun at one end and finished at the - che aetendant moving the bar rapidly through the successive 5 ur dies.
birg Presses. - Thesc are rivals to the hammers, erpecially forgings, from which hammers are teing rapidly dis6i). It is now well underatood that a hammer will not
effect the consolidation of a massive forging right to the ceutre as a press will. The force of the hantmer bluw is not transminted to the centre as is that of a press, nor is the hammer so uceful in work of large dimensions but of no great weight. In railway and wagon shops the presses are used far more frequently than the hammers. A great advan. tage of the press is that two and three rams can be brought into operalion so that a forging may be pressed from above, from below and to one side, which is of great value in complicared forms and in welding, but is not practicable in the hammers. Hence the forging presses have become developed for work of a verage dimencions as well as for the most massive. Many are of horizoutzal type, termed bull-dozers.

Power presses for working shectmetal articies include those for cutling out the blanks, terned cutting. out or blanking presses, and those for cupping or drawing the flat blank into shape il desired (fig. 62). The lower dies arc held upon a bed, and the upper in a sliding ram, moved up and down by a cam or crankshaft. A clutch mechanism is fitted, by means of which this shaft is connected with or disconnected from the heavy driving-wheel at will to give a single stroke or a scries of sirokes to the ram. In the normal state the fam remains stationary at the top position. The lightest presses

Fig. 61.-Hydraulic Fon ing Press. (Fielding \& Platit. Ltd., Glouccster.)

A, Table.

B, Vertical ram.
C. Drawback ram for return ing B.
Horizontal ram.
E, Contrulling valves. are driven direct by belt on the crank shaft pulley, but in the heaviet classes spur-gearing mast be interposed between the pulley shaft and the final shaft. The operation of drawing requires an encireling die which presses on the blank as it lies on its die, the cupping of the blank being effected by the downward motion of the plunger.

Fig. 62.-Power Press.
A. Main frame
B, Bed for attaching dies.
C. Central slide.
D. Outer slide.
E. Belt pulleys on shaft, geared to wheel F thrown in by clutch to drive its shaft, which has two crank pins to reciprocate D and a cam disk actuating C.
G Extractor rocked downwards as slide rises to raise lever H and work an ejector rod, forcing finished article out of die.

This is why the machine shown in fig. 62 has an outer slide D, which is made to "dwell" with an even pressure, while the middte ram is hoving down and drawing out the articie. Blanking and cupping may be done as one continuous operation if the work is shallow.
fnclingble presses arc employed for certain classes of work, the object being to let the stamped articles slide down the slope of the bed as rapidly as they are produced, instead of having to be removed by the operator. Mucli work can be placed on the dics by hand. but for producing large quantities of mall articles autumatic feeds
nTV emphivel whrmevve powsithes A gimal thal of work is prodiced

 the mik woure ment the dira

Ni-TMatalk Tres

The foverth of portalle machine twats is wor of the remarkathe moliveneme of ch preate thy Tis avue catwat thes have alwas Hw wout what in the dring and cappieng opersithas of how

 on the chiwitien the tw tranopingen of pouet by mpers or shafrs
 Shath whin Mur shataces cas be covired has given sew he

 the whe .

 Path

争

 Ine 保
 the ture

pneumatic hose, is armoured with wire to protect it from damage The smallest drills are simply gripped in the operator's hand and

Fra 63-Tierney Paeumatic Chipping Hammer (The Globe A. Cylinder.
8. Tool sorkrt. arning cluisel C.
D. Pisene. withich stribes the bock of C

E Havile. screand and ciazped to A.
F. Trumer or thee theprd byoperatar's hand and opering value G, amirting compresed air chorgt connevioo H up passage J, plowet valuecr K. peot vaive L and so agairss end of $D_{\dot{\prime}}$ moving it tostunts C. As sooe as the sisove in the piston \dot{D} moveters with the lole M. air is adosited from a small hole pore thand perios rand the groove chrougt hole if and
 the whe thower it froand that thetzon of the supply to the reter of the piote an promitainea seali quaxcicy of air to flow
 dinction on the at at presere is reliesed on the
 sexe ty the fintim D. the mote is metroed to the original prine eving to the air cumacth pexive on the small area of the wile.

 esinve at incrull

 i. hende

 in exice act mentertecti

Ti -4 manicte

of the operations done and of the desire to eliminate human labour, with its greater cost and chances of inaccuracy in the finished prodect. On all machincs there are numerous aids by which the fixiag of the work is facilitated. Many of these consist of ample packing blocks, by which heights are adjusted. These reach their higher develcpments in wedge-shaped packings, some of which a re operated by a ecrew, while others act directly by acrewis. In some cace the esact height can be ascertained by observing graduations on the packings. Circular work is held in V-blocks. which occur in numerous modifed forms. Various kinds of straps. clamps and bolts are used for gripping work with sufficient security to enable it to rithseand the stress of the heavicst cutting. The highest development of all is attained in the templets and jigs, which are now indispensable in all modern shops, and which increase in number and complexity as the product of the shop becomez more specialized. A templet is a piece of metal cut to a definite shape, which being hid opon the work becomes a guide for striking the tame shape on the surface of the work with a pointed acriber, and by which the tooling of any number of similar pieces is done without the labour of hining out each ecparate piece. Obviously, in such a case the degree of accuracy of the tooling still depends on the inachine hand. who may work exactly, or only approximately, to these lines. Hence 3 great advance is made in the jis, which may be defined generally as a templet that is clamped rigidly to the work, or a box in which the rort to be tooled is held. No marking off is done, but the jig becomes the actual guide for the operation of the cutting tools. The operation most frequently performed in jigs is drilling. Then the holes in the jig receive and coence the drills. so that the holes made cannot vary in the leant degree from those already in the jig. As it will often happen that hundreds or thousands of similar pieces rill have to be tooled in this manner, holes in jigs are generally bushed with hardened steel. which is capable of enduring very kngthy service, and which can be renewed when worn. This is a smple illustration, but many jigs are of an extremely elaborate charscter, for it is obvious that the cost of a jig. though it may run into many pounds, becomes a mere trifie when spread over wome thoutands of pieces of work.

XII.-Wood-woteing Machtne zy

There is a large range of various classes of zools for performing the operations on timber. from the rough log to the finished product. Division is effected by saws, planing and finishing to outlines by knives or cutters, boring by augers and smoothing by andpaper.
The frot operation is that of tree.felling. which is often effected by machine. consisting of a reciprocating blade, working horizontally is a frame and moved by a steam eylinder. The boiler is separate. o that the machinc may be transported sbout and set to work over a considerable arca, steam being conveyed to it by a fiexible pipe. When the trees are brought into the saw-mills in the form of logs. Le. Fith the branches lopped off, they are often cross-cut to reduce them to suitable lengths. This operation is effected etthet by a neiprocating saw. operated by a pulley and crank, or by an electric motor, or efse with a circular saw, travelling on a carriage which moves the saw through the log hid in front of it. The next operation, that of division or breaking-down into smaller portions, is sone by saws of various types. according to the class of work. The oldest form of machine is the frame-saw, which is still used very largety. It comprises a framing within which a sew-gate or saw. trame is reciprocated up and down by a crank: the frame hoids a sumber of saws or webs of flat form. strained up tightly with wedges or cocters between the top and bottom of the frame, the distance otween the saws being capable of variation to suit boards of all thricaerees. The log is fed longit udinally to the gang of saws upon arriages. which are of two types. In the roller leed, which is mitable for comparatively even and straight logs, ribbed rollers on froat and behind the sawe obtain a bite on the top and bottom A the eimber and feed it forward by their rotation. In the rack.feed te los is mounted bodily upon a long carriage that runs by rcllers rpon a set of rails, and the carriage is travelled along by pinions and acts. Which give a positive feed regardless of the shape of the log. The carriage in the roller-feed machines is only represented by a oaple of plain trolleys supporting the timber at back and front. The feed is obtained through a friction wheel of V.shape, with a moorb pawl. called the sient feed: the wheel is given a partial xarions at each doen stroke of the saw qate to turn the rolleri or se piaions for carrying forward the log. The division of the timber ur be either into deals or fitches. or planks or boards. In the :z-named cate as many as fifty uw-bladen are cometimes held in irame.
Fer the more valuable hardwoods a single blade reciprocating . operated horizontally, is used very largely, the machine being Tred a board-cutter. The log is clamped to a travelling table. wacg underneath the taw. which is strained in a frame sliding a crovarcall that can be adjusted up or down on a couple of upctis like a planing machine. The saw is worked from a crank and e-ecting-rod As only one board is sawn at a time the attendant aje en see the figuring of the timber and to avoid waste when bad ins are encountered.
it mackime much more rapid in operition is the borisontal band.
eav, modelled on the lines of the above machine, but with a bandsaw blade running over two pulkeys, at a high speed, of about 7000 ft . per minute. The saws are very thin. so that minimum of wood is wasced in the cut or "kerf," a very important consideration in dealing with costly woods. Vertical band-saws, having one pulley above the other so that the blade runs vertically, are very populas in America; they occupy less floor space than the horizontal types. It is necessary to present the log from the side. and it is therelore clamped by dogs upon a carriage running on rails, with provision for feeding the log laterally to the saw by siding ways on the carriage.

The use of circular saws for breaking-down is confined chiefly to squaring up heavy balks, which need only a cut on each side, or for cutting thick slabe. The thickness of the saw entails considerable waste of wood, and a large amount of power is required for driving. The machines are termed rack-benches, and comprise a long divided table built up of thin plates and travelling past the fixed saw upon rollers, the movement being effected by a rack and pinion.

Re-sawing machines are those designed for further cutting-up deals, flitches, planks, \&c., already broken out from the log, into boards and other scantlings. The deal and flitch frames are built on the model of the frame-saws first described, but with the differences that roller feed is always used, because the stuff is smooth and easily fed, and that the back of the timber is run againgt fences to keep it moving in a etraight line. In the double equilibrium frames, which are much lavoured, there are two sets of saws in separate frames connected by rods to opposite crank-shafts, w that as one frame is rising the other is going down; the forces are thus balanced and vibration is diminished, so that the machines can be speeded rather higher. Re-sawing is also done on circular and band awa of various types, fitied with fences for guiding the timber and controlling the thicknesses.

The cross-cut saws constitute another large group. They are employed for cutting-off various clasecs of stuff, after breaking-down or re-sawing, and are of circular saw type. The pendulum saw is a suspended form, comprising a circular saw at the bottom of a hanging arm. which can be pulled over by the attendant to draw the saw through a piece of wood laid on a bench beneath. Circular saws are also mounted in tables or benches and made to part off stuff moved laterally upon a sliding table. When there is sufficient repetition work machines with two or more saws are used to cut one or more pieces to accurate length without the necesaity for measurement

The lighter classes of circular and band-saws, employed for aawing up comparatively small pieces of timber, embody numerous provisions for quickening output. The plain saw benches, with circular saws. are the simplest class, consisting merely of a framed table or bench carrying bearings for the saw spindie and a fence on the top to guide the wood. A mechanical feed is incurporated in the hea vier machines to push the timber along. The rope-feed mechanism includes a drum driven at varying rates and giving motion to a rope, which is connected with a hook to the timber, to drag it along past the saw, roller supports on rails taking the weight at each end of the bench. Roller-feed saws propel the stuff by the contact of vertical fluted rollers placed opposite the fence. Other classes of saws for joinery work, \&ce., are constructed with rising and Ialling spindles, so that the saw may be made to project more or less from the table, this provision being necescary in grooving and tonguing with special types of saws. The same effect is obtained by making the table instead of the spindle rise and fall.

As it is necessary to use different saws for ripping (with the grain) and crosc-cutting. some machines embody two saws so that work can be cut to shape on the same machine. These "dimension saws" have two apindles at the opposite ends of a pivoted arm that can he turned on a central pin to bring one or the other saw above as required. In cases where much angular and intricate sawing is done universal benche are employed, having in addition to the double sawi a silting motion to the table, which in conjunction with varnous special fittings enables the sawyer to produce a lage ratge of pieces for any class of construction.

Band-saws, which have thin narrow blade, are adapted especially for curved sa wing and cutting-out work which the circular saw cannot manage. The usual design of machine (fig. 65) comprises a otifi standard supporring a lower pulley in fixed bearinge. and an upper one in a sliding bearing, which by means of a weight or spring is caused co rise and maintain an even tension on the saw blade as it is driven by the lower pulley, and runs the upper one. India-rubber tires are placed around the pulley cims to prevent damage to the saw teeth. The table. placed between the pulleys. may be angled for cutting bevel work. It is necessary, in order to do true work, to guide the saw blade above and below the cut. and it is therciore run in guides consisting of llat strips. in combination with antifriction rollers which take the backward thrust of the saw. Fret or jig aws are a small class with a vertical reciprocating blade, employed chicfly for cutting out interior portions which oecessitate threading the saw first through a hole.

Planing machines, uscd for truing up the surfaces of wood after sawing, depend for their action upon rapidly revolving knives fastened to flat-sided cutter blocks. The simplest machines. the hand-planers, have a cutter cylimer revolving between two flat
 polat elog over che fives by che hund．A fence fides it is a scinith rinc．Engt thicknessing is dome on onocher Type of maction the pacel whacr or tha－henses，im wich the cutter cifoder

 ITheoms llive \＆Sona PribeN
2．Corentra curcillame

2．Dek supper cperand bi han Ie E
 C．Scew ior towing or lowering from anes．

 I has waden suripe entucing ble suw zild a bellhouring Fiber apount which the back rume whice J is entuesed ne er

 letinieds

ose a curter at the ead of a spindic projecting downwards from an arm overtapiging a cuble．an arrowement which enables recessing and caning so be perioraned
Bongz machates coeprase roeating spindles and feeding mechanism co acturte argers．The seste mpadle machines are satisfactory enowgh for ordisery work，best ben a number of difiterently sized boles have to be borted ina single piecte of mork，or in rapid succession． it is the practuce to enpliny a mactine with a mumber of spindles，so then a scrcrestion of angter of eraduated diameters may be ready to exe at on

Morusisy of cxict slots is dope in vertical machines rith a reciprocain pione．operated eiber by hand or by crank disk and pabley The rool that rets the mortise resembles a wood－ Wrorbers ciach bet is of siveter fone and has a suitable ahank to frim the poide．The bitter cas be reversed to turn round and let the cheal bare in the cppocre dirtction for cutting at each end of a

贾，Frame
E．Mage Mowe trat is Sev C

 ise muline orriase shat

 がいいま
Y six \because ：

 －
？．T－：N vict

cutters and feedint dimuleanoouly, Cornor-focking, or cutting parallei tongues and grooves in the edges of boxes, ac., is a rather espe rapid operation than dovetailing, and is done with suitable catcer blocks or disks of appropriate thickness and pitching apart.

The general joiner, as its mame implies, will do a large variety of operations, and is used in shops and on estates whore a complete plat of machines would be out of the question. it usually has a circular aw and mometimes a band-sow also, together with planing and moulding apparatus, a moulding spindle, boring spindle and unoning apparasus.
The lathes used in woodworking comprise the plain hand types with a simple T-rest on which the turner rests the tools to deal with the work revolving between centres. and the copying or Blanchard lathes. in which a master form or copy is rotated and caused by the conatact and coercion of a roller to move the cutter rest in a corremondint fashion, so that the work is cut away until it exactly nitches the shape of the conpy.
Send-pepering machines, which finish the surface of wood to a bigh detree, deal with both flat and curved facen. Flat boards, patels, ac., can be done by contact againat revolving drums of disks covered with glast-paper, being fed along over them by hand or by rocating rollers. In one class of machine a revolving disk is placed at the end of a series of jointed arms. by which the disk can be moved about over the work resting on a table underneath.

XIII.-Measurement

As savance of the greatest importance made in mechanical ensiacering is that of measurement. Since the beginning of the tgth century rteady movement has been going on in this direction until it erms imposible that much greater refinement can now be looked for. Probably the chref advances to be expected will lie in the general extension in workshop practice of the knowledge already acquired, rather than in the acquisition of higher degrees of refinement.
Metbods of measurement adopted in woodworking have but little application in high-class engineers' work. They are adopted, however, to a considerable extent in the metal trades which are allied to engineering, as sheet metal working. girder work, \&c. When a caspenter or joiner eets about constructing a door, window assh, rool or box he takes a two-foot rule, a flat lead pencil, and marks off the dimensions and lines by which he intends to work. If he has to vort very carefully. shen instead of using a pencil he cuts a line with the edje of a keen scriber or chisel-like tool, by which to atw, plare or chisel. If outlines are curved, the compamee are brought mo requisition, and these cut a fine line or limes on the surface of the rood. But in any cave the eye alone judges of the coincidence of the entting with the lines marked. Whether the toot used be eaw, chime, souge or piane, the woodworker estimates by sight alone -hether or not the lines marked are worked by.

The broad difference between his method and that of the engineer's reachinist lies in this, that while the first tests his work by the eye. the secood judges of its accuracy or otherwise by the sence of touch. It may seem that there cannot be very much difference in thete iwn metbods, but there is To the firse, the sixty-fourth part of an inch is a fae dimension, to the second one-thousand th of an inch is rather cource. Now the thicknesp of tissue paper is about one-thousandeh of an inch. and no nne could possibly work so closely as that by the ve alone. Engineers steel rules usually have one inch which is Erided into one hundred parts. Tolerably keen sight is required 10 distinguish those divisions, and few could work by them by ocular seasurement alone, that is, by placing them in direct juxtaposition ith the vork A thouetadth part of an inch seems hy comfarmon a Gine dimension. But it is very coarse when considered on retation co modern methods of meaturement. In what are called "limit pauges" the plugs and rings are made of slightly different
Ampensione If a plug is made a thousandth of an inch less than Ameasione If a plug is made a thousandth of an inch less than The conmon rule is therfore tarcely seen in modern machine shop. While the common calipers fill but a recondary place, their Inction having been invaded by the gauges. A minute dimension iannot be tested by lines of division on a rule, neither can a dimen. wa thich should be fixed be teted with high precision with a morable caliper of ordinary type. Yet it must not be supponed - has the adoption of the system of gauging insteed of the ofder methods of ruie meagurement relieves men of responsibility. The wouramente of precision require delicate handling. Rough forcing x rasges will not yield correct results. A clumsy workman is as unch ont of place in a modera machine ebop as be would be in a azti factory. Without correctness of measurement mechanical roneructions would he impossible, and the older device of mutual itargabe sytem. of international standards, and of automatic -achreve tools which are run with no intervention save that if feeding urcic.

The two broad divisions of measurement by sight and by contact re represented in a vast number of instruments. To the first. z-agd belons she numerous rules in wood and metal and with =glish and metric divisions, and the scales which are used for Trigg our dimensions on drewinge mimaller than those of the real byects, bue etricty proportional thereta. The eecond inelude all
the gauges. Theac are fther fined or movable, an Important subdivition. The first embrace two groupe-one for daily workshop service. the other for testing and correcting the wear of theme, hence termed " reference gauges." They are either made to exact standard siaes, or they embody " limits of tnlerance," that is, allowances for certain clases of fits, and for the minute degrees of inaccuracy which are permissible in an interchangeable system of manufacture. The movable group includes a movable portion, either corresponding with one leg of a caliper or having an adjustable rod, with provision for precise measurement in the form of a vernier or of a serew thread divided micrometrically. These may be of general character for testing internal or external diameters, or for special functions as crew threads. Subtitles indicate some particular aspect or desizn of the geuges, as "plug and ring," "caliper," "horseshoe," "depth," "rod," " end measure," ace. So eevere are the requirements demanded of instruments of measurement that the manulacture of the finer kinds remains a speciality in the hands of a very few firms. The cost and experience neceasary are so great that prices rule high for the best instruments. As these, however, are not required for ordinary workshop use, two or three grades are manufactured, the limits of inaccuracy being uatully stated and a guarantee given that theec are not exceoded.

Leasmrement by Sight. Rules and Scales.-The rules are uged for marking off distances and dimensions in conjunction with other instruments, as scribers, compaswes, dividers, equares; and for testing and checking dimensions when marked, and work in cource of reduction or erection, directl) or from calipers. They are made in boxwood and in steel, the latter being either rigid or flexible, as when required to go round curves. Rules are fitted in combination with other instruments, as sliding calipers, squares, depth gauges, \&c. The scales are of boxwood, of ivory, the value of which is discounted by its shrinkage. and of paper. They are of flat eection with bevelled edges. and of oval and of triangular sections. each giving n thin edge to facilitate readings. They are fully divided, or ópen divided; in the first case each division it alike subdivided. in the second only the end ones are thus treated.

The Gauges. Fixed Gauges. - These now embrace several kinds, the typical forms being represented by the cylindrical or plug and ring gauges and by the caliper form or snap gauges. The principle in each is that a definite dimension being embodied in the gauge, the workman has not to refer to the rule, cither directly or through the medium of a caliper. This distinction, though slight, is of immense importance in modern manufacturing. Broadly it corresponds with the difference between the older heterogencous and the present interchangeable systems.

Plug and Ring Ganges.-The principal ones and the originals of all the reat, termed Whitworth gauges after the inventor, are the Blug and ring gauges (fig. 67, A and depend is that if the two gauget are made to fit with perfect accuracy without tightnese on the onc hand or slop on the other, then any work which is measured or turned and bored or ground by them will aiso fit with equal accuracy. Bored holes are tested by the plug gauge, and spindles are tested by the ring gauge, and such spindles and holes make a close fit if the work is done carefully. Of course, in prac. tice, there is very much variation in the character of the work done. and the finest gauges are too fine for a lagge propor ion of engineers work. It is possibie to make these Bauges within spas of an inch. But they are seldom required so
Gine as that for shop use: generally fine enough. For general

Fic. 67.
A, B, Plug and ring eauges.
C, \quad Difierence gauge.
D, \quad Stepped reference gauge. shop work the gauges are rade to within about robs of an inch. Standard gauges in which the plug and ring are of the same diameter will only fit by the application of a thin film of oil and by keeping the plug in slight movement within the ring. Without these precautions the two would " seize" so hard that they could not be separated without force and injury.

Plug and Rine v. Horseshoe Gewges.- The horseshoe, snap or caliper gauges (fig. 68) are often used In prefcrence to the plug and ring types They are preferred because the surfaces in contact are narrow. These occur in various designs, with and without handles, epparately and in cnmbination and in a much larger range of dimensions than the plug and ring. Ring gauges are not quite such delicate instruments at the fixed caliper gauges. But since they measure diameter only. and turned work is not always quite circular, the caliper gauges are not monvenient for measurement as the round gauges, which fit in the same manner as the parts have to fit to one another.

Fixed Camges. Limaif Gawges.-Some fits have to be what is termed in the shops " driving fite," that is, to tight that they
have ta ke effected by driving with a hammer of a prest. white erhers bave to ke "working fig." sustable, say, for the revolution of a buse palley on its shait or of an axie in its bearings. The " lisait or "dituerence faures" (iygs. 67 and 68) are desgned for producing thene workime has: that is, the plug and ring gauges difter in dimensions so that the mork bored will drive tighaly. or shde freely over

Fic. 6
iourche and the vernier into treaty-five parts, or the beam is divided into fifiechs of an inch (fig. 7°) and the vernier has 20 divisions to 19 on the rute. The caliper jaws are adapted to take both external and internal dimensiona These "bearm calipers" are also made for metric divisions Minor variations in design by different manulacturers are oumerons.

Fig 69-Calipers.
A. Ordi-a, exteral npe, adjusted by tapping the legs
B. Type ac.--ied sy screv in zuxiliary ley.
${ }_{c}$. Srrex injpers opeacd ty contraction α cuned spring and closed by
n. Sivating zalper. with pointer moving over quadrant.

E Co-siniondype
C. Cce: are aring ion measuring chambered holes H. C=-10

Fic ;a-Viersier Cariper.

C Monswind it Le howstack
Mracie tede se zilext
Spiaxived 5 in inve arontions in lensh of piece bei menentel ble songes is sepperater. tenmed the ind cene af chomacalos.
Newing \$We
Nat br ropel ex rekaret of arm
Kmid of spend sxet tor slow mereweet of dixto.
Cwires and mexaring thed
Vunir er fetime ine

Micrometer Calipers are the direct offspring of the Whitworth measuring machine. In the original form of this machine a screw of 20 threads to the inch, turned by 2 worm-wheed of 200 teeth and aingle-threaded worm, had a wheel on the axis of the worm with 250 divisions on its circumference, so that an adjustment of redoes of an inch was possible. The costly measuring machines made today lave 2 dividing wheel on the screw. but they combine modifications to ensure freedom from error, the fruits of prolonged experience. Good machines are made by the Whit worth. the Pratt \& Whitney, the Newall (ing. 71), and the Brown \& Sharpe forms These are oed for testing purposes. But there are immense numbers of small instruments, the micrometer calipers (fig. 72), made for general shop use, measuring directly to iss of an inch, and ia the

one pol cayges.-It is often necessary to measure the depth of one portion of a piece of work below another part, or the height of one portion relatively to a lower one. To hold a rule perpendicularly and take a sight is not an accurate method. because the wame objections apply to this as to rule measurement in general. There are many depth gauges made with rule divisions simply. and then these have the advantage of a shouldered face which rests upon the upper portion of the work and from which the rule measurement is

Fig. 74-Depth Gauges
A. Plain round rod a, sliding in head b. and pinched with screw c.
B. Rule a. graduated into inches or metric divisions, sliding on head b_{0} in grooved head of clamping screw c.
C, Slocomb depth gauge, fitted with micrometer: a, Rod marked in half inches, sliding in head $b ; c$. hub; d, thimble corresponding with similar divided parts in the micrometer calipers; e, clamping screw.
taken (fig. 74). These generally have a clamping arrangement. But for very accurate work either the vernier or the micrometer fitting is applied, so that depths can be measured in thousandths of an inch, or sometimes in sixty-fourthe, or in metric subdivisions.

Fig. 75. -Rod Gauges.
A, Pratt \& Whitney gauge. a, Tube split at ends: $b_{0} b_{\text {, chucks }}$ clamping tube on plain rod $c_{\text {. and }}$ screwed end d. Rough adjustment is made on rod c, of which several are provided: fine adjustment is by screwed end d.
B, Sawyer gauge. a. Body; b. extension rods for rough adjustmeat. several being supplied and pinched with screw c: d. screwed end with graduated head; e. reading arm extending from body over graduations; f, clamping screw.
Rad Gauges. When internal diameters have to be taken, 100 large for plug gauges or calipers to span, the usual custom is to set a rod of iron or steel access, file it till it fits the bore, and then measure its length with a rule. More accurate as well as adjustable are the rod gauges (fig. 75) to which the vernier or the micrometer are fitted. These occur in a few varied designs.

Screws Thread Gauges. -The taking of linear dimensions, though provided for so admirably by the systems of gauging just discussed, does not cover the important section of screw measurement. This is a department of the highest importance. In mist English shops the only test today of the size of a screw or nut is the use of a standard screw or nut. That there is variation in these is evidenced by the necessity for fitting nuts to bolts when large
pitch is 40 to the inch, and the circular divisions number 25, so that a movement of one division indicates that the screw has been advanced A of A or ruby of an inch. Provision for correcting or taking up the effects of wear is included in these designs (e.f. at a in lug. 72), and varies with different manufacturers. X vernier is sometimes fitted in addition, in very high class instruments, to the circular divisions, so that readings of ten thousandths of an inch can be taken. Beam micrometer calipers (fig. 73) rake several inches in length, the micrometer being reserved for fractional parts of the in length, the micrometer being reserved for fractional parts of the ch only.
upper portion or the work and from which the rule measurement is

Fig. 72.-Micrometer Calipers.
(Brown \& Sharpe Mfg. Co.)
A. Frames.
B. Anvil or abutment.
a. Adjusting nuts for taking up

Clamping nut.
c, Ratchet stop. which slips under undue pressure to ensure undue pressure to ens
uniform measurement.
hands of careful men easily to half and quarter thousandths; these coat from it to (r, ios only. In these the subdivision of the turns of the screw is effected by circular graduations. Usually the screw

Fig. 73-Beam Micrometer Calipers.
C, Abutment block with screw c for fine adjust meat. d. Clamping screws.
D. Micrometer.
©, Avi.

[^2]XXVII 2

numbers of these are being aesernbled, afttr they have been used in temporary erections or when nuts are brought from the stores to fit studs or bolts cut in the shop. This method may suffice in many chasses of work, but it is utterly unsuited to an interchangeable system; and when there is a lair amount of the latter firms sometimes make thread gauges of their own, in general form like the plug and ring gauges, using a hand quality of steel for small sizes or a tough quality of cast iron for the larger. These, though not hardened, will endure for a long time if treated carefully. But

Fic. 76.-Screw Thread Gauges (Pratt a Whitney Co.)
A. Plos gauge; a, sixe of tapping hole; b, thread.

E, Ring gauge: a, pins to prevent lateral movement; b, adjusting screw for opening gauge; c, screw for closing ditta.
though very useful and far better than none at all they lack two rssentials. They are simply accommodation gauges, made to an existing tap or die, and do not thetefore embody any precise absolute measurement, nor do they include any means for measuring variations from standard, nor are they hardened. To produce gauges to fultil these requirtments demands an original standard to wort by, micrometric measurerments, and the means of grinding after the hardening process. These requirements arr fulfiled in the screw thread gauges and calipers of the Prati \& Whitney and the Brown \& Sharpe companies. The essential foature of a screw gauge is that it uncesures the sides of the threads without risk of a possible fake reading dwe (1) contact on the hottom or top of the V. This is fulfilled sy thating the top and maling the hrom of the gause Leer The Pratt \& Whitney gauges are made as a plug and ring (fis, 7o), the plug teisg solid and the ring capabte of prexise adjustment round it. There is a plain round end. pround and lapperd evactly to the standand sire of the hottom of the thread, a dimension which is athiterated in the threaded end berause of the bottoms of the anthes beiny made keen for clearance. There are three kinds of this chass of guyye trade: the farst and mont expensive is thardened and ground ia the arigle. Wile the second is hardened but nos srowind. The firss is interded for use when a wory perfert gauge is resuined. the serond for cordinary shop usage. The thind is made unhandered for porposes of reference simply, and it is not trought into contace with the wort to be pested at all. bot meturesent ant gaten by calipers: in every decail it sepresents the standerd thoods The frowa \& Sharee appliance is of swie a diltent charcter. It is a nilorowewe collper lavige

of an inch (6g. 77). They are used in some kinds of lathe chuck work, but their principal value is in fitting and erecting the finer mechanisms.

Fig. 77.-Indicator
A. Base: B. stem: C, arm: D, pointer or feeler, pivoted at a. and magnilying movement of the work E upon the scale b; F. spring to return D to zero.

Surface Plates and Cognale Forms.- Allied to the garges ary the instruments for teating the truth of plane surfaces: the wurface platen atright-edges and winding strips. The origination of plane surfaces by scraping, until the mutual coincidence of three plates is secured, was due to Whitworth. These surface plates (figg 78, 1) fill an important place in workshop practice, since in the best work plane surfaces are tested on them and corrected by acraping. To a large extent the precision grinding machines have lewenned the value of scraping. but it is still retained for machine slides and other work of a similar clase In the shops there are two claspes of surface plates: thove employed daily about the shops, the aocuracy of which becomes impaired in time, and the seandard

Fig. -8
A. Suplace rhate: a, protecting cover for ditto C. Common square when mot in use.
plate or plates employed for test and cortection. Straightedses are derived from the surface plates, or may be originated like ibem. The largest are made of cast-ifon, ribbed and curved on one edic. to prevent flexure. and provided with ieet (hg. -8. B). But the smaller spraight-edges are generally paraliel and a similar pair constitutes " winding strips," by -hich any swist of dicparture from a pline surface is derected. Squares, of which there are numerans designs (hig. $78, C$ and D), are fininhtedges set at right angles. Betels or beve-squares (fig. 79). ate ntribtht-ndon comprising i

> Which are ad- nevtractors ofien adiustatic of for adjuscatile for vel aith gradus. lesp the hari-

Fre. 79

1. Common tevel
B. liniversal bevel for testin bow acgles
pherab-bob is combined with a parallel straight-edge the term plumbrute is applied. It tests the truth of vertical surface more accurately than a sperit-level.
(J. G. H.)

TOOLE, SOHIM LAERENCE ($1832-\mathrm{sgo6}$), English actor, son of an old employe of the East India Company who for many years acted as toast-mester in the City of London, was born in London an the 12 th of March 8832 . He was educated at the City of London School, and started life in a wine merchant's office; but his mat ural propensity for comic acting was not to be denied, and after some practice as an amateur with the City Histrionic Club, be definitely took to the stage in 1852, appearing in Dublin as Simmons in The Spitalfieds Weover. He gained experience in the provinces, and in 1854 made his first professional appearance in London at the St James's theatre, acting Samuel Pepys in The King's Rinal and Wearel in My Friend the Major. In 1857, having just had a great success as Paul Pry, he met Henry Irving in Edinburgh, and recommended him to go to London; and their friendship remained thenceiorth of the closest kind. In 18 gs Took joined Webster at the Adelphi, and established his popularity as a comedian, among other parts creating Joe Spriggins in Ici on parte franfais. In 1868 he was engaged at the Caiety; appearing among other pieces in Thespis, the first Giibert and Sullivan collaboration. His fame was at its height in 1874, when he weut on tour to the United States, but he failed to reproduce there the success he had in England. In 1879 he took the "Folly " theatre in London, which be renamed "Toole's" in 1882. He was constantly away in the provinces, but he produced here a number of plays: H. J. Byron's Upper Crust and Ausdic; Pinero's Hester's Mystery and Girls and Boys; hurlesques such as Par Clandian, and, later, J. M. Barrie's Walker, London. Bot his appearances gradually became fewer, and after 1893 he urs seen no more on the London stage, while his theatre was pulled down shortly afterwards for.an extension of Charing Cross Hoepital. He published his reminiscences in 8888 . Toole married in 1854; and the death of his only son in 1879, and later of his wife and daughter, had distressing effects on his health; attacks of gout, froun 1886 onwards, crippled him, and ultimately be retired to Brighton, where after a long iliness he died on the 3oth of July 1906. In his prime be was immensely popular, and also immensely funny in a way which depended a good deal on his tricks and delivery of words. He excelled in what may be called Dickens parts-combining humour and pathos. He was a good man of husiness, and left a considerable fortune, out of which he made a number of bequests to charity and to his friends. His genial and sympathetic nature was no less conspicwous off the stage than on it.

TOOME, ROBERT ($1810-1885$), American political leader, whe bord near Washington, Wilkes county, Georgia, on the and of July 8810 . He was educated at Franklin College (universizy of Georgia), at Union College, Schenectady, New York, from which he graduated in 1828, and at the law school of the university of Virginia. He was admitted to the bar in 1830, and served in the Georgin Housc of Representatives (1838, 1890-1841 and 1843-1844), in the Federal House of Representalives (1845^{-1853}), and in the United States Senate (1853 1861). He opposed the annexation of Texas, the Mexican.War, President Polk's Oregon policy, and the Walker Tariff of 1846 . In common with Alexander H. Stephens and Howell Cobb, he supported the Compromise Measures of 1850 , denounced the Nushville Convention, opposed the secessionists in Georgia, and belped to frame the famous Georgia platiform (1850). His position and that of Southern Unionists during the decade $1850-$ s\$6o has often been misunderstood. They disapproved of uecestion. not because they considered it wrong in principle, bue bocause they considered it inexpedient. On the dissolution of the Whig party Toombs went over to the Democrats. He faroured the Kansas-Nebraska Bill, the admission of Kansas under the Lecompton Constitution, and the English Bill (1858), and on the $24^{\text {th }}$ of June 1856 introduced in the Senate the Toombs Bill, which proposed a constitutional convention in Aansas undet conditions which were acknowledged by various antistavery leaders as fair, and which mark the greatest con-
cessions made by the pro-slavery senators during the Kanass struggle. The bill did nol provide for the submission of the constitution to popular vote, and the silence on this point of the territorial law under which the Lecompton Constitution of Kansas was framed in 1857 was the crux of the Lecompton struggle (see Kansas). In tbe presidential campaign of 1860 be supported John C. Hreckinridge, and on the and of December, soon after the election of Lincoln, sent a tclegram to Georgia which asserted that " secession by the 4th of March next should be thundered forth from the ballot-box by the united voice of Georgia." He delivered a farewell address in the Senate (Jan. 7, 1861), returned to Georgia, and with Governor Joseph E. Brown led the fight for secession against Stephens and Herschel V, Johnson (1812-1880). His influence was a most powerful factor in inducing the "old-line Whigs" to support immediate secession. After a short term as secretary of state in President Davis's cabinet, he entcred the army (July 21, 1861), and served first as a brigadier-general in the Army of Northern Virginia and after 1863 as adjutant and inspector-general of General G. W. Smith's division of Georgia militia. He then spent two years in exile in Cuba, France and England, but returned to Georgia in 1857, and resumed the practice of law. Owing to his refusal to take the oath of allegiance, be was never restored to the full rights of citizenship. He died at his home in Washington, Georgia, on the 15 th of December 1885.
Sce Pleasant A. Stovall. Robert Toombs, Slatesman, Speaker, Soldier, Sage (New York, 1892).

TOOTHWORT, the popular name for a small British plant of curious form and growth, known botanically as Lathraea squamaria. It grows parasitically on roots, chiefly of hazel, in shady places such as hedge sides. It consists of a branched whitish underground stem closely covered with thick fleshy colourless leaves, which are hent over so as to hide the under surface; irregular cavities communicating with the exterior are formed in the thickness of the leaf. On the inner wall of these chambers are stalked hairs, which when stimulated by the touch of an insect send out delicate filaments by means of which the insect is killed and digested. The only portions that appear above ground are the short flower-bearing shooks, which bear a spike of two-lipped dull purple flowers. The scales which represent the leaves also secrete water, which escapes and softens the ground around the plant. Lathroea is closcly allied to another British parasitic plant, broomrape (Orobanche).

TOOWOOMBA, a town of Aubigny county, Queensland, Australia, 76 m . by rail W. by N. of Ipswich, and 101 m . from Brisbane. It is situated on the summit of the Great Dividing Range, and is the centre of the rich pastoral and agricultural district of Darling Downs. The chief huildings are the town-hall, a large theatre, a school of arts and a library; the Christian Brothers College and several handsome churches. The industries are brewing, tanning, soap-boiling, flour-milling, malting, ironfounding, saw-milling and jam-making. Vincyards are cultivated by a German colony and large quantities of wine are mada The town received 4 municipal charter in 1860 , and during the governorship of Lord Lamington ($1896-1897$) became the summer residence of the governor and his staff. Pop. (I901), 91,37; within the five-mile radius, 14,087 .

TOP (cf. Dan. lop, Ger. Topf, also meaning pot), a toy consisting of a body of conical, circular or oval shape with a point or peg on which it turns or is made to whirl. The twisting or whirling molion is applied by whipping or lashing when it is a " whipping top" or "peg-top," or by the rapid unwinding of a string tightly wound round a head or handle. When the body is hollow this results in a whirring noise, whence the name " humming top." Other kinds of tops are made as supports for coloured disks which on revolving show a kaleidoscopic variation of patterns. The top is also used in certain games of chance, when it is generally known as a "teetotum." There are many references to it in ancient classical literature. The Greek terms for the toy are $\beta \dot{c} \mu \beta r k$. which was evidently the whipping or peg top (Arist. Birds, 1461), and $\sigma r \rho \delta \beta_{1}$ ios, a hummlng top, spun by a string (Plato, Keg. iv. 436 E.). In Homer (II. xiv. 413) the word
orporpos seems to point to the humming top. The Latin name for the top was turbe. This word and the Greek pophor are sometimes translated by "top" when they refer to the instrument used in the Dionysiac mysteries, which, when whirled in the air by a string, produced a booming noise. This was no doubt the equivalent of the "bull roarer" (q.s.). Strutt (Games and Pastimes, 491) says that the top was known in England as early as the 14th century. For the scientific properties of the top see Gyroscope and Gyrostat.

This word must be distinguished from that signifying the highest or uppernost part of anything. It appears to have meant originally a tuft or crest of hair; cf. Ger. Zopf، Du. Lop, Icel. topps, \&c.: it is allied to Eng. "tap." a spike for a cask, and "tip. point. Some etymologists have identified the two words, the toy being so called from spinning on its top or tip, but the two German forms seem to prove concluaively that the words are different.

TOPAZ, a mineral usually found in connexion with granitic rocks and used, when fine, as a gem-stone. It is believed that the topaz of modern mineralogists was unknown to the ancients, and that the slone described under the name of romajos, in sllusion to its occurrence on an island in the Red Sea known as roxdjus vĵoos, was the mineral which is now termed chrysolite or peridot (q.v.). The Hebrew pildah, translated "topaz" in the Old Testament, may also have been the chrysolite.

Topaz crystallizes in the orthorhombic system, usually with a prismatic habit (figs. I and 2). Many of the cr'stals, like those from Saxony and Siberia, are rich in faces, and prescnt with the prisms a complicated combination of pyramids and domes. The faces of the prism-zone are usually striated vertically. Doublyterminated crystals are rare, and sometimes apparently hemimorphic. The mineral presents a perfect cleavage transverse

Fic. 1.

Fic. 2.
to the long axis of the prism, and the cleavage-plane often has a pearly lustre. The chemical composition of the topaz bas given rise to much discussion, but it is now generally regarded as an aluminium fluo-silicate baving the formula $\mathrm{Al}_{2} \mathrm{~F}_{3} \mathrm{SiO}_{4}$. It was shown hy Professor S. L. Penfield and Mr J. C. Minor that the fluorine may be partially replaced by hydroxyl. When strongly heated topaz suffers considerable loss of weight. Sir D. Brewster found in topaz numerous microscopic cavities containing fluids, some of which have received the names of brewsterlinite and cryptolinite. Possibly some of the liquid inclusions may be hydrocarbons.

The topaz, when pure, may be colourless, and if cut as a brillinnt has been mistaken for diamond. It has, to0, the inferior in hardness, the hardness of topaz being only 8 ; and it
has lower refractivity and dispersive powers: morcover, being an
orthorhombic mineral, it possesses double refraction. Fiom phenacite and from rock-crystal, for which it may be mistaken, it is distinguished by being hiaxial and by having a much higher specific gravity. The topaz becomes electric by heating, by friction or by pressure. Colourless limpid topazes are known in Brazil as pingos d"aguo, or "drops of water," they pass in rade as in minas n

Coloured topazes usually preient wats,

 or brown. The pleochrnigodichroscope into a brownish-yellow and a roee-pink. The colour in many cases is unstable, and the bhown topaxes of Siberia are specially liable to suffer bleaching by exposure to sunlight. In 1750 a Parisian jeweller named Dumelle discovered that the yellow Brazilian topaz becomes pink on exposure to a moderate heat, and this treatment has since been extensively applied, so that nearly all the pink topaz occurring in jewelry has been artificially heated. Such "burnt topas" is often known as "Brazilian ruby," a name applied also to the natural red topas, which, however, is excessively rare. "Brazilian sapphire" is the term sometimes given to blue topaz, but the colour is usually pale. The delicate green topaz has been incorrectiy called aquamarine, which is a name applicable only to the sea-green beryl (q.v.). According to A. K. Coomkraswamy, yellow sapphire is often sold as topaz in Ceylon, where yellow topaz is unknown, whilst pink corundum is frequently calied there "king topas."

The topaz is cut on a leaden wheel, and polished with tripoli. It is generally step-cut, or table-cut, but its beauty is best developed when in the form of a brilliant. Cut topases of large size are known, and it is said that the great "Braganiz diamond " of Portugal is probably a topaz.
Topas usually occurs in granitic and gneimone rocks, often ia greisen, and is commonly amociated with cassiterite, tourmaline and beryl. It seems to have been formed, in many cases, by pneumatolytic action. In the west of England it is lound in Cornwall. notably at St Michaed's Mount and at Cligga Head near St Agnes. It occurs also in Lundy Island. The finest British topaz is found in the Caimgorm group of mountains in the central Highlands especially at Ben a Buird. Rolled pebbles occur in the bed of the Avon in Banflshire. Beautilul, though small, crystals occur in the drusy cavitics of the granite of the Mourne Mountains in Ireland. The famous topaz-rock of the Schneckenstein, near Auerbach, in Saxony, yields pale yellow crystals, formerly cut for jewelry, and it is said that these do not become pink on heating. Fine topazes occur in Russia, at several localitics in the Urals and in the Adun-chalon Mountains, near Nerchinsk, in Siberia. A very fine series from the Koksharov collection is in the British Musewn. Beautiful crystals of topaz are found in Japan, especially at Talayama in the province of Mino, and at Tanokamiyama in Omi province. Ceylon and Burma occasionally yield topares. Brapil is a famous locality, the well-known sherry-yellow crystah coming from Ouro Preto, lormerly called Villa Rica, the capital of Minas Geraes, where they occur in a kaolinitic rnatrix. resulting from the alteration of a mica-schist, which is regarded by Profescor O. A. Derby as a metamorphosed igneous rock. Topaz occurs in the tin-drifts of New South Wales, especially in the New England district; it has been discovered in the Coolgardie goldfield. Wiest Australia; and it is found also in the tinfields of Tasmania and ao Flinders Island in Bass's Strait. Fine topaz has been worled near Pike's Peak in Colorado, and in San Dieyo county, Californiz. The mineral occurs in rhyolite ar Nathrop in Chafiec county and Chalk Mountain in Summit county, Colorado, and in trachyte near Scvier Lake, Utah. The occurrence of sopaz in thene vokranic rocks is very notable, and contrasts with its common ocrurrence in granites. It is lound in like manner in rhyolite at San Luis Potosi in Mexico: a nd beautiful little limpid crystals accompany stream-tin at Durango. Common topaz occurs in conree crystals at many localities. A columnar variety from the tin-districts of Saxony and Bohemia, and from Mt Bischoff in Tasmania. is known as pycnite (muchs: dense); whilst a coarse opaque topaz from granite near Falun, in Sweden, has been termed pyrophys:lite (rip, fire; \$won, to blow), in allusion to its behaviour whea heated.
"Oriental topaz " is the name sometimes given to yellow coruadum, a mincral readily distinguished from true topaz by superior hardness and density. Yellow and smoke-tinted quarta. or cairogorm is often known as "Senteh tonaz "or "Spanish topaz." "turditis to its leathicy: best these on the cantrary, are onferive in hardness and density. The chief differences between the three mincrals may be seen in the following table, in which they are arranged in order of hardness, density and refractivity :-

	Scotch Topaz.	True Tupaz.	Oricntal Topaz
Hardness Sperific gravity Pefrartive indices \qquad Hisation - _ci' in mpocibion	7 26 1.54. 1-55 Hexagonal SiO_{3}	$\begin{gathered} 8 \\ 3.5 \\ 1.61 .1 .62 \\ \text { thothombic } \\ \mathrm{Al}_{8} \mathrm{~F}_{3} \mathrm{SiO} \end{gathered}$	$\begin{gathered} 9 \\ 1 \cdot 6^{4} 8 \cdot 57 \\ \mathrm{Hexigonal}^{2} \mathrm{Al}_{2} \end{gathered}$

He Kansas itver, in the east part of the state, aboot 60 m . W. of Tensas Chy. Pop. (1900), 33,608, of whom 3201 were foreignborn (inchuding 702 Germans, 575 Swedes, 512 Englich, 407 Ruasins, 320 lrish, \&sc.) and 4807 were negroes; (1910, census), 43684 It is served by the Atchison, Topeka \& Santa Ft, the Chicago, Rock Lskand \& Pacific, the Union Pacific and the Misoouri Pacific railways. The city is regularly laid out on a firirly level prairie bench, considerably elevated above the river and about 890 ft . above sea-level. Among its prominent buildtap are the United States government building, the Capitol (erected 1866-1903 at a cost of $\$ 3,200,589$ and one of the best sate buildings in the country), the county court house; the pablic library (1882), an auditorium (with a seating capacity α about 5000), the Y.M.C.A. huilding, a memorial building, bousing historical relics of the state, and Grace Church Cathedral (Protestant Episcopal). The city is the see of a Protestant Episcopal bishop. In the Capitol are the library (about 6000 volumes) and natural history collections of the Kansas Academy of Science, and the library (30,000 books, 94,000 pamphlets and 28,500 mannuccripts) and collections of the Kansas State Historical Society, which publishes Kansas Historical Collections (1875 sq9.) and Biannial Reports (1879 sqq.). The city is the seat of Wadhbum (formerly Lincoln) College (1865), which took its present name in 1868 in honour of Ichabod Washburn of Worcoster, Massachusetts, who gave it $\$ 25,000$; in 1909 it had 783 tudents (424 being women). Other educational establishments are the College of the Sisters of Bethany (Protestant Episcopal, rems), for wowen, and the Topeka Industrial and Educational hexitute (1805), for negroes In Topeka are the state insane zaytum, Christ's Hospital ($\mathbf{1 8 9 4}$), the Jane C. Stormont Hospital and Trining School for nurses (1895), the Santa Ft Railway Hospital, the Bethesda Hospital (1go6) and the St Francis Hopital (1909). Topek is an important manufacturing city. Its factory product was valued in 1905 at $\$ 14,448,869$. Natural pos is piped from sourthern Kaneas for manufacturing and dometic use.
The first white settlement on the site of Topeka was made in 18s2. but the city really originated in 1854, when its site was chocen by a party from Lawrence. It was from the first a freestate strongbold. More than one convention was held here in Terrizorial days, including that which framed the Topeka Constitution of 1855; and rome of the meetings of the free-state kegititure chosen under that document (see Kansas) were also held here. Topeka was made the temporary state capital under the Wyandotie Constitution, and became the permanent capital in 186 r . It was first chartered by the pro-slavery Territorial kgixheture in 1857, but did not organize its government until 1858 (see La wrince). In 188 I it was chartered as a city of the frat dnss. The first railway outlet, the Union Pacific, reached Eagene, now North Topeka, in 1865 . The construction of the Axcrison, Topeka \& Santa Ft was begun here in 1868, and its conssruction shops, of extreme importance to the city, were built here in $\mathbf{1 8 7 8}$. In $\mathbf{1 8 8 0}$, just after the great negro immigration to Karems, the coloured population was 31% of the total. See F. W. Giles, Thisty Years in Topeka (Topeka, 1886).
TOMALESG, zarris [ZACHARLS] ($1818-1898$), Finnish autbor, was born at Xuddnis, near Nykarleby, on the uthe of January 18 I 8 . He was the son of a doctor of the same name, who was distinguished as the earliest collector - Finnish foik-rongs. Topelius became 2 student at Helsingors in 1833, was made professor in 1803 and received in accesaion an the academic distinctions open to him. Quite early in tis career he began to distinguish himself an a hyric poet, with the three successive volumes of his Henther Blossoms (1845-1854). The earliest of his historical rocmences whe The Duchers of Finland, published in 1850. Be whe atoo editor-in-chief of the Helsingfors Govelle from ${ }^{28}{ }^{2}$, 20 1860. In 1878 Topelius was allowed to withdraw from y- poofessional duties, bat this did not sever his connexion thle rhe university; it gave him, however, more leisure for his shamdane and various literary enterprises. Of all the multigriowe writinge of Topelias, in prose and verse, that which has
enjoyed the groatest popularity is his Tales of a Barber-Swargeon, episodes of historical fiction from the days of Gustavus 11 . Adolphus to those of Gustavus LII., treated in the manner of Sir Walter Scott; the five volumes of this work appeared at intervals between 1853 and 1867 . Topelius attempted the drams also, with most success in his tragedy of Regina san Emmerits (1854). Topelius aimed, with eminent hut perhaps pathetic success, at the cultivation of a strong passion of patriotism in Finland. He died on the 13 th of March 1898 at Helsingfors. Topelius was an exceptionally happy writer for children, his best-known book being LAsning för barn. His abundant poetry is graceful and patriotic, but docs not offer any features of great originality.
(E. G.)

TOPETE JOAN BAOPTISTA (1821-1885), Spadish naval commander and politician, was born in Mexico on the 24 th of May 182I. His father and grandfather were also Spanish admirals. He entered the navy at the age of seventeen, cut out a Carlist vessel in 1839 , became 2 midshipman at twenty-two, obtained the croes of naval merit for saving the life of a saior in 1841 and became a lieutemant in 1845 . He served on the West Indian station for three years, and was engaged in repressing the Blave trade before he was promoted frigate captain in 1857 . He was chief of staff to the fleet during the Morocco War, 1859, after which he got the crosses of San Fernando and San Hermenegildo. Having been appointed chief of the Carrara arsenal at Cadiz, he was elected deputy and joined the Union Liberal of O'Donnell and Serrano. He was sent out to the Pacific in command of the frigate "Blanca," and was present at the bombardment of Valparaiso and Callao, where he was badly wounded, and in other engagements of the war between Chile and Peru. On his return to Spain, Topete was made port captain at Cadiz, which enabled him to take the lead of the conspiracy in the feet agniost the Bourbon monarchy. He sent the stcamer "Buenaventura" to the Canary Isle for Serrano and the other exiks; and when Prim and Sagasta arrived from Gibrultar, the whole fleet under the influence of Topete took such an attitude that the people, garrison and authorities of Cadiz followed suit. Topete took part in all the acts of the revolutionary government, accepted the post of marine minister, was elected a member of the Cortes of 1869, supported the pretensions of Montpenster, opposed the election of Amadeus, sat in several cabinets of that king's reign, was prosecuted by the federal republic of 1873 and again took charge of the marine under Serrano in 1874 . Atter the Restoration Topete for some years held alool, but finally sceepted the presidency of a naval board in 1877, and sat in the Senate as a life peer until his death on the 2oth of Octeber 1885 at Madrid.
TOPFTER, RODOLPHE ($1799-1846$), the inventor of pedestrian journeys in Switzerland by schoolboys, was born at Geneve on the 3 rst of January 1799 . His grandfather, 2 tailor, came about 1760 from Schweinfurt (Bavaria) to settle in Geneva, while his father, Adam, was an artist. Rodolphe's literary education was rather desultory, as he intended to he an artist, ilike his fat ber. But in 18 ig his weak eyesight put an end to that intention, so he studied in Paris, intending to devote himself to the profecaion of schoolmaster. After passing some time in a private school in Geneva ($\mathbf{1 8 2 2 - 1 8 2 4 \text {), he founded (1824) one of his own, after his }}$ marriage. It was in $\mathbf{8 8 2 3}$ that he made his first fool journey in the Alps with his pupils, though this became his regular practice only from 1832 onwards. These Voygese en sireag were described annually ($\mathbf{1 8 3} 3-1843$) in a series of lithographed volumes, with sketches by the author-the first printed edition appeared at Paris in 1844, and a second series (Noweamx poyages en zig20g) also at Paris in 1854 . Both series have since passed through many editions. In 1832 he was named professor of belles-letres at the university of Geneva, and held that chair till his death, on the 8th of June 1846. As early as 1830 he published an article in the Bibliochrque universelle of Geneva. It was followed by a number of tales, commencing with the Bibliotheque de mon oncle (1832), many of which were later collected (1841) into tbe wellknown volume which bears the title of Nowoclles genevoises. He took some part (on the Conservative side) in local politics, and was (1841-1843) editor of the Courrier de Gentec. Among
his other works are an edition of Demosthenes (1824), and a volume of artistic studies. the Riffexions et menus propos d'ur peinire generois (1848).
Lives by A. Blondel and the abbe Relave (both published at Paris, 1886), and shorter notices in E. Rambert's Ecrivains nationaux (Gieneva, 1874); and E. Javelle's Sousenirs d'un alpinisle (Lausanne, 1886: Eng. trans., 1809 , under the tille of Alpine Memeries), and several chapters in Ste Beuve's Cnuseries du lundi, Derniers portpaits lilltraires and Portraits contentporains. (W. A. B.C.)

TOPHET, or TOPheth (npns), the name given in 2 Kings xxiii .10 ; Jer. vii. 31, to a spot in the valley of Ben Hinnom near Jerusalem where the Hebrews in the time of Ahab and Manasseh oftered children to Molech and other heathen gods. Josiah " defiled" it as part of his reforming activity, and it became a place for the bestowal and destruction of reluse, and a synonym for Gehenna (lsa. xxx. 33; Jer. vii. 32),

The uncertain etymology of the word is discussed in the Ency. Bib., s.v. "Molech." ${ }^{5} 3$, " Topheth.'
TOPIARY, a term in gardening or horticulture for the cutting and trimming of shrubs, such as cypress, box or yew, into regular and ornamental shapes. It is usually applied to the cutting of trees into urns, vases, birds and other fantastic shapes, which were common at the end of the 17 th century and through the 88 th, but it also embraces the more restrained art necessary for the laying out of a formal garden. Yew and holly trees cut into fantastic objects may still be seen in old-fashioned cottage or farmhouse gardens in England. The Lat. topiarius meant an ornamental or landscape gardener, and was formed from lopia (Gr. ronor, place), a term specially employed for a formal kind of landscape painting used as a mural decoration in Roman bouses.
TOPLADY, AUOUSTUS MONTAGUB (1740-1778), Anglican divine, was born at Farnham, Surrey, and educated at Westminster and Trinity College, Dublin. Although originally a follower of Wealey, he in 1758 adopted extreme Calvinist opinions. He was ordijued in 1762 and became vicar of Harpford with Fenn-Ottery, Devonshire, in 1766 . In 1768 he exchanged to the living of Broadhembury, Devonshire. He is chiefly known as a writer of hymns and poems, including " Rock of Ages," and the collections entitled Poems on Sacred Subjects (Dublin, 1759) and Psalms and Hymms for Public and Privale IVorship (London, 1776). His best prose work is the Historic Proof of the Doctrined Calvinism of the Chupch of England (London, 1774). Some comments by Wesley upon Toplady's presentation of Calvinism led to a controversy which was carried on with much bitter: ness on both sides. Toplady wrote a venomous Letter to Mfr Il'rsiey (1770), and Wesley repeated his comments in The Consequatice Proned (1771), whereupon Toplady replied with increased acridity in Mere Work for Mr Wesley (1772). From 1775 to 1778, having oblained leave of non-residence al Braadhembury; he lived in London, and ministered at a Culvinist church in Orange Street.
TOPOORAPHY (Gr. romos, place, ypddew, to write), a description of a town, district or locality, giving details of its geographical and architectural features. The term is also applied in anatomy to the mapping out of the surface of the human body, either according to a division based on the organs or parts lying below certain regions, or on a superficial photting out of the body ly amatomatab bumbaries and bamatis.
TORAN, the mame in Hindustani (Skr. foranw, from for, pass) of a sacred or honorific gateway in Buddhist architecture. Its typical form is a projecting crose.piece resting on two uprights or posts. It is made of wood or stone, and the cross-piece is generally of three burs phaced one on the top of the otbert hath cross-piere and posls are usually sculptured.

TORDERNITE (or cupro-uranits), minetad
"uranium micas"; a liydrous uranium and $\mathrm{Cu}\left(\mathrm{UO}_{3}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}+12 \mathrm{H}_{2} \mathrm{O}$. Crystals are tetragon form of square plates, which are oifen very perfect micaceuus cleavage parallet to this face the lusite is pearly is a charwiteristic fenture and the specitic gray
is greater than that of some specimens of pitchblende. It was first observed in 1772 at Johanngeorgenstadt in Saxony, but the best examples are from Gunnislake near Calstock and Redruth in Cornwall. The name torbenite is after Torbern Bergman: chalcolite is a synonym.
(L. J. S.)

TORCELLO, an island of Venetia, Italy, in the lagoons about 6 m . to the $\mathrm{N} . \mathrm{W}$. of Venice, belonging to the commune of Burano. It was a flourishing city in the early middle ages, but now has only a few houses and two interesting churches. The former cathedral of \mathbf{S}. Maria was founded in the 7th century. The present building. a basilica with columns, dates from 864; the nave was restored in 1008, in which year the now ruined octagonal baptistery was built. It contains large mosaics of the $\mathbf{1 2 t h}$ century, strongly under Byzantine influence; those on the west wall represent the Resurrection and Last Judgment. The seats for the priests are arranged round the semicircular apse, rising in steps with the bishop's throne in the centre-an arrangement unique in Italy. Close by is S. Fosca, a church of the 12 th century, octagonal outside, with colonnades on five sides and a rectangular interior intended for a dome which was never executed, beyond which is a three-apsed choir. In the local museum are four Mycenaean vases, one found in the island and another on the adjacent island of Mazzorbo, proving direct intercourse with the Aegean Sea in prehistoric times.

See R. M. Dawikins, in Journcl of Hellenic Studies (1904), xxiv. $\mathbf{2 2 5}$.
TORCH (O. Fr, lorche, from Med. Lat. tortia, derived from torfms, twisted, forquere, to twist), a light or illuminant that can be carried in the hand, made of twisted tow, hemp or other inflammable substance. Torches or " links " were, till the general introduction of street lighting, necessary adjuncts for passengers on foot or in carriages in towns at night, and many of the older houses in London and elsewhere still retain the iron stands outside their doors, in which the torches might be placed.

TORCHERE, a candelabrum mounted upon a tall stand of wood or metal, usually with two or three lights. When it was first introduced in France towards the end of the 17th century the torchère mounted one candle only, and when the number was doubled or tripled the improvement was regarded almost as a revolution in the lighting of large rooms.

TORDENSKJOLD, PEDER (169i-1720), eminent Dadish naval hero, the tenth child of alderman Jan Wessel of Bergen, in Norway, was born at Trondbjem on the 28th of October 1691 . Wessel was a wild unruly lad who gave his pious parenis much trouble. Finally he ran away from them by hiding in a ship bound for Copenhagen, where the king's chaplain Dr Peder Jespersen took pity on the friendless lad, gratified his love for the sea by sending him on a voyage to the West Indies, and finally procured him a vacant cadetship. After further voyages, this time to the East Indies, Wessel was, on the $7^{t h}$ of July 1711, appointed and lieutenant in the royal marine and shortly afterwards became the captain of a litle 4 -gun sloop "Ormen" (The Serpent), in which he cruised about the Swedish cast and picked up much useful information about the enemy. In June t712 he was promoted to a rogun frigate, agains: the advice of the Danish admiralty, which pronounced him 10 be too flighty and unstable for such a command. His discriminathg phitun wis the Nurstegin admial Lourendal. who was the first to recognize the young man's ability as a naval officer. At this period liessel was already renowped for two things: the avdacity with which he attacked any \$Eedish atip, which alway malied him to escepe capture. T I NorihornWarhad norventeted upon its laterstage, when 5 Great Smeden, flect princifally to German piovinctes ry poirs. He was a the jo the was joghe wher muipgor Sherbur
utacked her but in the English captain he met his match. The combat lasted all day, was interrupted by nightfali, and renerred again indecisively the following morning. Wessel's free and easy ways procured him many enemies in the Damish navy. He was accused of unnecessarily endangering his majesty's war-ships in the affairs with the frigate and he was brought before a court-martial. But the spirit with which be defended himself and the contempt he poured on his less couragcous comrades took the fancy of King Frederick IV., tho cancelled the proceedings and raised Wessel to the rank of captain. When in the course of 1715 the retum of Charles XII. Irom Turkey to Strakund put a new life into the jaded and dispinted Swedish forces, Wessel distinguished himself in mancrous engagements off the Pomeranian coast and did the enemy infinite damage by cutting out their frigates and destroying their transports. On returning to Denmark in the beginning of 1716 he was emnobled under the title of "Tordenskjold" (Thundershield). When in the course of 1716 Charles XII. inisded Norway and sat down before the fortress of Fredrikshald, Tordenskjold compelled him to raise the siege and retire to Sweden by pouncing upon the Swedish transport Geet laden with ammunition and other milhtary stores which rode at anchor in the narrow and dangerous strait of Dynekil, utterly destrosing the Swedish fleet vith little damage to himself. For this, his greatest exploit, he was promoted to the rank of commander, but at the same time incurred the cnmity of bis superior officer Admiral Gabel, whom he had omitted to take into his confidence on the occasion. Tordenskjold's first important command was the squadron with which he was entrusted in the beginning of 17 r 7 for the purpose of destroying the Swedish Gothenburg squadron which interropted the commrenications between Denmark and Norway. Owing to the disloyalty of certain of his officers. who resented serving under the young adventurer, Tordenskjold failed to do all that was expected of him. His enemies were not slow to take advantage of this partial failure. The old cbarge of criminal recklessness was revived against him at a sccond court-martial before which be was summoned in 1718; hut his old patron Admiral U. C. Gyidenlore again intervened energetically in his behalf and the eharge was quashed. In December 1718 Tordenskfold broaght to Frederick IV. the welcome news of the death of Charles XII. and was made a rear-admiral for his pains. Tordenskjold's last feat of arms was his capture of the Swedish fortress of Marstrand, when he partially destroyed and partialiy capeured the Gotbenburg squadron which had so long eluded him. He was rewarded with the rank of vice-admiral. Tordenskjold did not long survive the termination of the war. On the 2oth of November 1720 he was killed in a ducl with a Livonian colonel, Jakob Axel Stael von Holstcin. Although, Dynekil escepted, Tordenskjold's victories were of far less importance than Sebested's at Stralsund and Gyidenlove's at Ragen, he is certainly, after Charles XII., the most beroic figure of the Great Siorthern War. His courage was fully equal to the courage of "The Lion of the North," but he lacked that absolute selfcommand which gives to the bravery of Cbarles XII. its peculiar, almone superhuman, character.

See Carstensen and Latken, Tordenskjold (Copenhagen, 1887).
(R. N. B.)

$$
\begin{aligned}
& \text { IOPEA OOR, a Sparith wor! Jerival frim :aror, to engage } \\
& { }^{5} \text { ht, toro, a bull, Latin toarws, for one of the principal } \\
& \text { in the national sport of butl-fighti } \\
& \text { TORELE, OTTO MARTM (} 8828-1900 \text {), S. chich cologist, } \\
& \text { interested } \\
& \text { idependent } \\
& \text { uttention } \\
& \text { physical } \\
& \text { udied the } \\
& \text { Green- } \\
& \text { th A. E. } \\
& \text { logy and } \\
& \text { ppointed }
\end{aligned}
$$

chief of the Swedish Geological Survey. In the latter capacity be laboured until 1897. His published contributions, though of much interest and importance, were not large, but his influence in promoting a knowledge of geology in Sweden was of great service. His Arctic experiences enabled. him to interpret the method of origin of the drift depokits in northern Europe, and to show that they were largely of glacial or fluvio-glacial origin. In the English drifts be recogaized many boulders of Scandinavian origin. He died on the isth of September 1900.
His publications include: Bidrag till Spitabergens mollushfanma (1859); and memoirs to accompany several shoets of the Geological Survey map of Sweden.

Obituary with portrait, in Geol. Mas (May rgoz), reproduced in abridged form Irom memoir by L. Holmstrom, in Geologiska foreningem i Slockholm's forkandlingar, xxili.
 saravia, Count or ($1786-1843$), Spanish politician and historian, was born at Oviedo on the 25 th of November 1786 . His family was wealthy and belonged to the most ancient nobility of Asturias. His mother, Dominga Ruiz, de Saravia, bad property in the province of Cuence. The son recelved a better education in clasics, mathematics and modern languages than was usual at that time. The young viscount of Matarrosa, the title he bore in his father's lifetime, was introduced to the writings of Voltaire and Rousseau by the abbot of the Benedictine house of Monserrat in Madrid. He was present at Madrid when the city rose against Murat on the 2nd of May 1808, and took part in the struggle which was the beginning of the Peninsular War. From Mfadrid he escaped to Asturias, and on the 3oth of May he embarked in a Jersey privateer at Gijon, with other delegates, in order to ask for the help of England against the French. The deputation was enthusiastically received in London. By the zoth of December he was back in Asturias, his father having died in the interval. During the Peninsular War he saw some service in the first occupation of Asturias by the French, but be was mainly occupled hy his duties as a member of the Cortes. In 1800 he was at Seville, where one of his uncles was a memher of the central Junta. In the following year he was a leader of the party which compelled the Regency to summon the Cortes-to which he was elected by Asturias early in 18 ir though he wanted some months of the legal age of twenty-five. His election was opposed by some of bis own relatives who did not share his advanced opinions, hut it was ratified by the Cortes. Toreno was conspicuous among the weil-meaning men who framed the constitution of 1812, which was made as if it was meant for some imaginary republie and not for Catholic and monarchical Spain. When Ferdinand VII. returned from prison in France in 1814 Toreno foresaw a reaction, and put himself out of reach of the king. He was the more an object of suspicion because his hrother-In-law, Porlier, perished in a wild attempt to support the constitution by force. Toreno remained in exile till the outbreak of the revolution of 1820. Between that year and 1823 he was in Spain serving in the restored Cortes, and experience had ahated his radical ardour. When the French intervened in 1823 Toreno had again to go into exile, and remained abroad till the king published the amnesty of the 15 th of October 1832. He returned home in July 1833 , but remained on his estates till the king's death on the 29th of September. As hereditary standard bearer of Asturias (Alferez Mayor) it fell to him to proclaim the young queen, Isabella II. In 1834 his now moderate opinions pointed him out to the queen regent, Maria Christina, as a uscful man for office. In June 1834 be was minister of finance, and became prime minister on tbe 7th of June. His tenure of the premiership lasted only till the i4th of September of the same year, when the regent's attempt to retaim a practically despotic government under a thin constitutionai veil broke down. The greater part of the remainder of his life was spent in voluntary erile, and he died in Paris on the 16th of September 1843. As a politician he felt the need for a revision of the worn out despotism which ruled till 1808 , but he was destitute of any real political capacity. Toreno is chiefly remembered as the author of the History of the Risine. War
and Repolution of Spain, which he began between 1823 and 1832 and published in 1836-1838 in Paris. As a work of military criticism it is not of high value, and Toreno was prejudiced in favour of his colleagues of the Cortes, whose errors and excesses he shared in and excused. The book is, however, written in excellent Castilian, and was compiled with industry. It is worth consulting as an illustration of the time in which the author lived, as a patriotic Spanish vlew of the war, and for the prominence it gives to the political side of the Peninsular War, which he justly treated as a revolution.
A biography by Don Antonio de Cueto is prefixed to the reprint of the Letantamiento zuerra y revolución de España, in vol. Ixiv. of the Biblioteca de autores españoles of Rivadeneyra (Madrid 2846-1880).
TORENO, QUEIPO DE LHANO Y GAYOSO DE, COUNT (1840-1890), Spanish politician, son of the preceding, was born in Madrid in 1840. He was educated at the Madrid Institute and University, entered parliament in 1864 as a Moderado, and sat in all the Cortes of Queen Isabella's reign as a deputy for bis ancestral province, Asturias. Loyal to the Bourbons all through the revolution, he nevertheless became a deputy in the Cortes of 1871-1873, and founded an Alphonsist paper, El Tiempo, in 1873 . When the Restoration took place, its first cabinet made Count de Toreno mayor of the capital, and in 1875 minister of public works, in which capacity he itrproved the public libraries, museums, academies and archives, and caused many important works to be published, including the Cartas de Indios. In $\mathbf{3} 879$ he became minister for foreign affairs, in 1880 president of the House of Deputies, in 1884 again governor of Madrid, and in 1885 again president of the House of Deputies. During the reign of Alphonso XII. and the first years of the regency of Queen Christina Count de Toreno was one of the most prominent Conservative leaders, and was often consulted by the Crown. He died on the 3 ist of January 1890 . He was a patron of the turf, and estahlished a race-course in Madrid, where the first races took place in the reign of Alphonso XII.
torcau, a town of Germany, in the Prussian province of Saxony, situated on the left bank of the Elbe, 30 m. N.E. of Leipaig and 26 m. S.E. of Wittenberg by rail. Pop. (1905), 12,299. Its most conspicuous building is the Schloss Hartenfels, on an island in the Elbe, which was built, or at least vas finished, hy the elector of Saxony, John Frederick the Magnanimous. This castle, which is now used as a barracks, is one of the largest Renaissance buildings in Germany. It was for some time the residence of the electors of Saxony and contains a cbapel consecrated hy Martin Luther. The town hall, a soth-century building, houses a collection of Saxon antiquities. Torgau has two Evangelical churches and a Roman Catholic church. One of the former, the Stadt Kirche, contains paintings by Lucas Cranach and the tomb of Catherine von Bora, the wife of Luther. The chief industries of the town are the manufacture of gloves, carriages, agricultural machinery, beer and bricks; there is a trade in grain both on the Elhe and by rail. The fortifications, begun in 1807 by order of Napoleon, were dismantled in 1889-189x. In the vicinity is the royal stud farm of Graditz.

Torgau is said to have existed as the capital of a distinct principality in the time of the German king Henry I., but early in the 14th century it was in the possession of the margraves of Meissen and later of the clectors of Saxony, who frequently resided here. The town came into prominence at the time of the Reformation. In 1526 John, elector of Saxony, Philip, landgrave of Hesse, and other Protestant princes formed a league against the Roman Catbolics, and the Torgau articles, drawn up here by Lutber and his friends in 1530 , were the basis of the confession of Augsburg. Torgau is particularly celebrated as the scene of a battle fought on the 3 rd of November 1760 , when Frederick the Great defeated the Austrians (see Seven Years' War). In January 1814 Torgau was taken by the Germans after a siege of three months and it was formally feded to Prussia in 1815.

See Grulich and Burger, Dethewlrdigkeiten der altsdehsischen Residenz Torgau aus der Zeil der Reformation (Torgau, 1855); Knabe, Geschichte der Sladt Torgau bis zur Reformation (Torgau, 1880); and the publications of the Allertumperein za Torgax (Torgau, 1884 *qq.).

TORNADO (Span., Lornada, a turning about, cf. " turn "); a local whirlwind of extrome violence, usually formed within a thunderstorm. In appearance it consists of a funncl-shaped cloud, depending from the mass of storm-cloud above, and when fully developed tapering domawards to the earth. Bcsides its whirling motion, a tornado has an advancing movement of from 20 to 40 m . an hour-and along its own narrow path it carties destruction. Its duration is usually from half an hour to an hour. Tornadoes are most common in America, expecially in the Mississippi Valiey and the Southem states, in Europe and elsewhere they are comparatively rare. Owing to their association with thunderstorms they generally occur in warm weather. A tornado is the result of a condition of local instability in the atmosphere, originating high above the earth. A current of air is induced to ascend with a rapid spiral motion round a central core of low pressure. The moisture in the ascending air is condensed by cooling both as it ascends and as it expands into the low-pressure core. The cloud-funncl a ppears to grow downwards because the moisture in the air is condensed more rapidly than the air itself, following a spiral course, ascends. 1

TORO, a town of Spain, in the province of Zamora, on the right bank of the river Duero (Douro), and on the ZamoraMedina del Campo railway. Pop. (agoo), 8379. Toro is an ancient fortified town, with picturesque narrow strects, among which are many medieval churches, convents and palaces, besides modern schools and public buildings. A fine bridge of twenty-two arches spans the river. The cathedral church is Romanesque; it dates from the 12 th century but has been partially restored. The palace of the marquesses of Santa Cruz was the meeting place of the Cortes of 1371, 1442 and 1505 , which made Toro and its code of laws celehrated. Toro is first mentioned in documents of the roth century. It played an important part in the development of the kingdoms of Leon and Castile and in the reconquest of Spain from the Moors.
TORONTO, the capital of the province of Ontario, and the second largest city in the Dominion of Canada, situated on the northern shore of Lake Ontario, almost due north from the mouth of the Niagara river. It lies on a platcau gradually ascending from the lake shore to an altitude of 220 ft ., and covers an area of nearly 20 sq. m . The river Don flows through the eastern part of the city, and the river Humber forms its western limit. The fine hay in front of the city, affording a safe and commodious harbour, is formed by an island stretching along the south of it. The city is well laid out for the most part, the streets crossing each other at right angles; Yonge Strect, the chicf artery, running north from the bay, was constructed as a military road in 1796, and extends under the same name for upwards of 30 m . to Lake Simcoe. It constitutes the dividiag line of the city, the cross strects being called east or west according to the side of it they are on.

Toronto is the seat of government for the province, and contains the partiament buildings, the licutenant-governor's residence, the courts of law and the educational departmental buildings. The parliament buildings are situated in Queen's Park, almost in the centre of the city, and are an imposing structure of red sandstone in the neo-Greck style built at great cost. They are shortly to be enlarged, as the needs of the province have outgrown them. A litule distance to the west stand the university buildings, the central one being a splendid piece of architecture in the Norman style. Stretching in a semicircle round the broad campus are the library, the medical building, the biology building and museum, the school of practical science, the geology and chemistry buildings and the convocation hall, their architecture varying very greatly, beauty baving been sacrificed to more practical considerations; the magnetic observatory is also in the grounds, but is overshadowed by some of the more recent erections. It is one of the meteorological
stations establishod by the British government an the recommendation of the Royll Society in 1840 and is now maintained by the Dominion goverament. The uriversity of Toronto, for the support of which the province is responsible, includes faculties of arts, science and medicine, in the teaching of which it is strictly secular. But near at hand and in full affilation with the university are Victoria Colvege (Methodist), Wycifife College (Anglican), Knox College (Presbyterian) and Si Michacl's College (Roman Catholic), wherein courses in divinity are given and degrees conferred. Victoria College, likewise, provides a course in arts, but none in science. Trinity Colvege (Anglican), though mome distance away, is also affiliated with the university, and her students enjoy its full advantages. Besides the oniversity, Toronto is remarkably rich in edurational institucioos. Upper Canade College, founded in $\mathbf{1 8 2 9}$, in many reapects resembles one of the English public achools. It has over 300 students. St Andrew's College, also for boyn, is a more recent establishment, and has about the same number of pupila. There are three large colleginte institutes, having some 300 to 600 pupils each, and in addition a number of schools for girls, soch as Havergal College and Westminster College. Ongoode Hall, a stately structure in' the heart of the city, houres the higher courta of haw and appeal, and also a flourishing lew school. The city hall and court-house is one of the finest civic buildinge in North America. It is in the Romanesque style, and accommodates all the civic offices, the board of education, the police and county courts, \&c.. Many of the churches are worthy examples of good architecture.

Toronto is essentially a residentinl city. The houses of the better class stand separate, not in loug rows, and heve about them ample inwas and abundant trees. It is consequently a widespread city, the length from cast to west approximating ten miles. An electric railway system provides means of communication. There are many paris, ranging in size from Cartion Park of oise acre to High Park (375 acres) and Island Parl (389), the latter being across the harbour and constituting the favourite resort of the people during the summer. In Exhibition Park there is held annually an industrial and agricultural exhibition that has grown to great magnitude. It lasts a fortnight in late summer. It is a municipal enterprise and the profits belong to the city.

The population in 1907, as shown by the police census, exceeded 300,000 . The government of the city is vested in 2 council conssisting of the mayor and four controllers elected annually and eighteen aldermen (Lhree from each of the six wards meo which the city is divided). The council as 2 whote is the segisataive body, white the board of control is the executive body, and as such is responsible for the supervision of all matters of finance, the appointment of officials, the carrying on of public works, and the general administration of the affairs of che city, except the departments of education and of police, the firrt being under the controt of the board of education, elected annually by the citisens, and the latter under the board of police commissioners, consisting of the mayor, the county judge and the police magistrate.

Torosto is one of the chicf manufacturing ceatres of the dominion; agricaltural machinery, suromobiles, bicycles, cotton soods, engines, furniture, foundry products, flour, smoked meats, cobacco, jewelry, \&c., are flourishing industries, and the list is constandy extending. The situation of the city is favourable to commence, and the largest vessels on the lakes can use its harbour. It is the outlet of a rich and extensive agricutural district, and throughout the season of navigation lines of steamers ply betireen Toronto aud the other lake ports on both the Canadian and American sides, the route of some of them extending from Montreal to Port Arthur on Lake Superior. Reilway communication is complete, three great trunk lines making the city a terminal point, viz. the Grand Trunk, the Canadian Pruific and the Canadian Northern.

As a financial centre Toronto has made remarkable advance. The transections on the stock exchange rival those of Montreal. The Bank of Commerce has its headquarters here, as have also
the Bank of Nova Scotia, the Beok of Toronto, the Stendard Traders, Imperial, Sovereign, Dominion, Crown, United Empire, Sterling and other banks.

The name of the city is of Indian origin, meaning "a place of meeting," the site in the days before the coming of the white man being an established rendezvous among the neighbouring Indian tribes. It first appears in history in 1749 as a centre of trade when the French built a small fort and started 2 trading establishment called Fort Rouille. Before long, however, British traders came up from the south and entered into active rivalry with the French, and in 1793 the fort was burned by the latter to prevent its occupation by their foes. A year later Governor Simcoe translerred the seat of government of the new province of Upper Canade from the town of Newark at the mouth of the Ningara River to Toronto, giving the new capital the name of York, in honour of the second son of George III. Under its new name it mado slow progreas as the suurounding country was cleared and settied. The entrance to the harbour was guarded by two blockhouses; provision was made for barracks and garrison stores; buildings were erected for the legislature; and there the members of parliament, summoned by royal prochamation to "meet us in our provincial parliament in our town of York," assembled on the rst of June 1797. Sixteen years later the population numbered only 456 . The town was twice sscked in the war of 1812. General Denrborn captured it at the head of a force of upwards of 2000 . On their advance to the outworks of the garrison the magasine of the fort exploded, whether by accident or design, killing many of the invaders. The halls of legislature and other buildings were burnt and the town pillaged. On the restoration of peace the work of creatiog 2 capital for Upper Canada had wellnigh to begin anew. The organization of Upper Canada College in 1830, with a stafl of teachers nearly all graduates of Cambridge, gave 2 great impetus to the city and province. In 1834 the population of York numbered fully 10,000; and an act of the provincial legislature conferred on it 2 charter of incorporation, with a mayor, aldermen and councilmen. Under this charter it was constituted a city with the mame of Toronto. Since that time the progreas of the city has been rapid and substantial, the population doubling every twenty years. In 1885 the total assessament was $\$ 69,000,000$; in $1895 \$ \$ 46,000,000$ and in 1006 \$167,411,000, the rate of taxation being 189 mills.
TORP150. In 4 sos Robert Fulton demonstrated a new method of destroying ships by exploding a large charge of gunpowder against the hull under water. No doubt then remained as to the effectiveness of this form of attack when successfully applied; it was the dificulty of getting the torpedo, as it was called, to the required position which for many yeari retarded its progress as a practical. Weapon of naval warfare. Attempts were first made to bring the exploaive in contact with the vessel by allowing it to drift down to her by the action of tide or current, and afterwards to fix it against her from some form of diving boat, but successive failures led to its restriction for a considerable period to the submarine mine (q.a.) in which the explosive is stationary and takes effoct only when the ship itself moves over or erikes the charge. Used in this way, it is an excellent deterrent to hostike warships forcing a barbour.
Spar or Ourrigger Torpedo.-The limitations attached to the employment of submarine mines, except for coast dafence, revived the idea of taking the torpedo to the ship instead of waiting for the latter to gain some exact point which she might very possibly avoid. This first took practical shape in the spat or outrigger torpedo. This conssisted of a charge of explosive at the end of a long pole projecting from the bow of a boat, the pole being run out and immersed on arriving near the object. Directly the charge came in contact with the buli of the ship it was exploded by an electric battery in the boat. If the boat was not discovered and dissbled while approaching, the chances were favourable to success and escape afterwards. Against a vigisant enemy it was doubtless a forlorm hope, but to brave men the venture offered considerable attractions.

Frequent use of this spar or outrigger torpedo was made during
the American Civil War. A motable instance was the deatruction of the Confederate ironclad "Albemarle" at the end of October 1864. On this mission Lieut. Cushing took a steam launch equipped with an outrigger torpedo up the Roanoke River, in which lay the "Albemarle." On arriving near the ship Cushing found her surrounded by logs, but pushing his boat over them, he immorsed the spar and expioded bis charge in contact with the "Albemarle" under a beavy fire. Ship and launch sank together, but the gallant officer jumped overboard, swam a way and escaped. Submerged boats were also used for similar service, but usually went to the bottom with their crews. During the war between France and China in 1884 the "Yang Woo" was attacked and destroyed hy an outrigger torpedo.

Locomotive Torpedocs.- Though the spar torpedo had scored some successes, it was mainly because the means of defence againat it at that time were incfficient. The ship trusted solely to her heavy gun and rifle fire to repel the attack. The noisc, smoke, and difficulty of hitting a small object at night witb a piece that could probably be discharged but once before the boat arrived, while riffe bullets would not stop its advance, favoured the attack. When a number of small guns and electric lights were added to a ship's equipment, success with an outrigger torpedo became nearly, if not entirely, impossible. Attention was then turned in the direction of giving motion to the torpedo and stecring it to the recquired point by electric wires worked from the shore or from another vessel; or, dispensing with any such connection, of devising a torpedo which would travel under water in a given direction by means of self-contained motive power and machinery. Of the former type are the Lay, SimsEdison and Brennan torpedoes. The first two-electrically ateered by a wire which trails behind the torpedo-have insufficient speed to be of practical value, and are no longer used. The Brennan torpedo, carrying a charge of explosive, travels under water and is propelled by unwiading two drums or reels of fine steel wire within the torpedo. The rotation of these roels is communicated to the propeliers, causing the torpedo to advance. The ends of the wires are connected to an engine on ahore to give rapid unwinding and incrased speed to the torpedo. It is steered by varying the speed of unwinding the two wires. This torpedo was adopted by the British war office for harbour defence and the protection of narrow channels.

Uncontrolled Torfedoes.-The objection of naval officers to have any form of torpedo connected by wire to thelr ship during an action, impeding her free movement, liable to get entangled in her propellers and perhapa exploding where not desired-disadvantages which led them to discard the Harvey towing torpedo many years ago-has hitherto prevented any navy from adopting a controlled torpedo for its sea-going fleet. The last quarter of the igth century saw, however, great advances in the equipment of ships with locomotive torpedoes of the uncontrolled type. The Howell may be briefly described, at it has a apecial feature of some interest. Motive power is provided by causing a heavy steel fly-wheel inside the torpedo to revolve with great velocity. This is effected by a small special engine vutsite uperating on the axle. When suftetendy spun up, the axie of the liywhet is comeeted with the propeller shafts and serews which drive the turpelo, so that on entering the water it is driven ahead and continues its course until the prower stoned up in the llywheel is exhausted. Now when a torpedo is dischargel into the sca from a sbip in motion, it has a tendency to defect owing to the action of the pasaing water. The angle of deflexion will vary according to the speed of the ship, and is also affected by other causes, such as the ponition in the ship from which the torpedo is discharsoc, and its own angle with the line of leel. Hence arisc inaccuracias of ibooking; but these do mot accur with this torperlo, for the siation of the
 te the Whitebead torperdu is described later-keeps :ills torpedo ea setralght course. This advant ago, combined wish simplicity

Lime to contemplate equipping their fleet with this torpedo, for they had not, up to within a few years ago, adopted any locomotive torpedo. A great improvement in the torpedo devised by Mr Whitehead led them, however, definitely to prefer the latter and to discontinue the further deveiopment of the Howell system.

The Whitehead torpedo is a steel fish-shisped body which travels under water at a high rate of speed, being propelled by two screws driven by compressed air. It carries a large chargo of explosive which is ignited on the torpedo striking any hard substance, such as the hull of a ship. The body is divided into three parts. The foremost portion or head contains the explo-sive-usually wet gun-cotton-with dry primer and mechanical igniting arrangement; the centre portion is the air chamber or reservoir, while the remaining part or tail carries the engines, rudders, and propellers besides the apparatus for controlling depth and direction. This portion also gives bnoyancy to the torpedo.

When the torpedo is projected from a ship or boat into the water a lever is thrown back, admitting air into the engines causing the propellers to revolve and drive the torpedo ahead. It is desirable that a certain depth under water should be maintained. An explosion on the surface would be deprived of the greater part of its effect, for most of the gas generated would escape into the air. Immersed, the water above confines the liberated gas and compels it to exert all its energy against the bottom of the ship. It is also necessary to correct the tendency to rise that is due to the torpedo getting lighter as the air is used up, for compressed air has an appreciable weight. This is effected by an ingenious apparatus long maintained secret. The general principle is to utilize the pressures due to different depths of water to actuate horizontal rudders, so that the torpedo is automatically directed upwards or downwards as its tendency is to sink or rise.
The efficiency of such a torpedo compared with all previous types was clearly manifest when it was brought before the maritime states by the inventor, Whitehead, and it was almost universally adopted. The principal defect was want of speed-which at firter

did not exceed 10 knots an hour-but by the application of Brotherhood's 3 -cylinder engine the speed was increased to 18 knotea great advance. From that time continuous improvements have resulted in speeds of 30 knots and upwards for a short range being obtained. For some years a torpedo 14 ft . long and 14 in . in diameter was considered lage enough, though it had a very limited effective range. For a bonger range a larger weapon muat be employed capable of carring a greater supply of air. To nbtain this, torpedoes of 18 in . diameter, involving increased kength and weight, have for some time been constructed, and have taken the place of the amaller torpedo in the equipmeat of warnhipe This advance in dimensions has not only given a faster and ateadier torpedo, but enabled such a heavy charge of gun-cotton to be carried that its explosion against any portion of a ship would inevitably either sink or disable her. The dimensions, shape. dec., of tbe 14and $18-\mathrm{in}$. corpedoes are sbown in fig. I. A timited rame was still imposed by tbe uncerticinty of its course umoder water: The speed of the ship from which it was discharged, the angle with her keet at which it entered the water, and the varying velocity of iropulse, tended to error of fight, such error being magnified the farther the path of the torpedo was prolonged Henoe 800 yode was formerly considered the limit of pistance withis which the torpedo should be discharged at tea agaiast an object from a ship in moxi in.

In these circumstances, though improvements in the manufacture of aced and encines allowed of torpedoes of lar looker rape being
made (the fastest torpedo up to 1898 having a epeed of 29 knots for 800 yds.), it was of no advantage to make them, as they could not be depended upon to run in estraight line from a stationary point for more than 800 yds. while from a ship in motion good practice could only be ensured at a reduced range. It wrat obvious, therefore, that to increase the effective range of the torpedo, these errors of direction muat be overcome by sorme automatic steering arrangernent. Several inventors curned their attention to the mbject, nearly all of whom propoeed to utilise the principle of the Eyroscope for the purpose. The firt which gave any satisfactory reules was an apparatus devieed by Ludwig Obry-an engineer in Aurtria-and tried by the Italian government about 1896. These trials demonstrated the feasibility of accurately and automatically steering a torpedo in a direct line by this means. Mesors Whitetsead \& Co., of Fiume, then acquired the invention, and after exhaustive experiments produced the apparatus which is now fitted to every torpedo minde. It is based on the principle that a body revolving on a free axis tends to preserve its plane of rotation. A gyroscope with plane of rotation parallel to the vertical axis of the torpedo will have an angular motion if the thit from its original course. Thisangularmotion is enployed to actuate the steering mechanisen by operating an air motor connected with the rudders, and beeping the torpedo in the line of discharge. The apparatus consists of a dywhel caused to rotate by a spring. the barrel on which the latter is wound having a segmental wheel which gears into a toothed pinion apindle of the fywheel. Owing to the diameter of the segment being much greater than the pinion, a rapid rotatory motion is imparted. The spring is wound up by a ley from outside the torpedo, and leept in tension until the projectile is discharged, when the spring is released by the air lever being thrown back, which admits air to the engine: the gyroscope is then freed and set in motion with its plane in the plane of the vertical axis of the torpedo as it was in the launching tube.

Assuming now that the course of the torpedo is diverted by any caume, ite axis will move of perform a certain angular motion with regard to the plane of the fywhee, which will have the sarae Fenult os if we consider the conditions reversed, i.e. as if the plape of rotation of the flywheel were altered and that $n f$ the axis of the corpedo remained the ame. The axis of the Gywheel performs * relative angular motion which it imparts to a crank actuating a servo-motor worked by compressed air, and connected with the redders of the toipedo, moving them in the oppodte direction to that in which the rorpedo was diverted from its oniginal coarge. Thas all inaccuracies of fight due to errors of adjustment, misealculation of defiexion, or even damage to some part, are eliminased. As long as the cyrowcope is in pood order the torpedo is bound to run in the line it was pointing when the flywhed was atarted. It it placed ia the after-body of the torpedo, as indicated - 42
limited by the streagth of the enginas and other parts. Improvements in stoel manulacture have permitted the use of much higher pressures of air and the construction of air-chambers able to with stand the pressure of 2000 tb to the eq. in. with the ame weight of air-chamber. This has enabled increased range without reduction in speed to be attained, of conversely, increased speed at shorter rangea. By improvement in the engines which are now of the Brotherhood 4 -cylinder central crank type further gains have been effected
Having reached the limit of pressure and endurance of airchambers with present materiald without undue increase of weight, the designer had to seek additional energy in another direction. Now the energy obtainable from a given weight of compressed air is dependent upon the volume of air available at the working pressure of the enginet. At a constant presure this volume of air is proportionate to its absolute temperature. If then the air be stored cold and highly heated before delivery to tbe engine the available energy from a given weight will be greatly increased. 'By this means we obtain the equivalent of a larger and heavier ati-chamber whont the increased weight such would involve.
As originally used a quantity of hydrocarbon fuel was placed in the air-vessel. Upon discharging the torpedo this fuel was automatically ignited and the contents of the air-chamber were heated. Unless, however, the combustion could be regulated there were serious risks of abnormal priswuras, of overheating and weakening the air-ressi. Devices have been applied to overcome this liability. and other methods devised to obrain the same result.

By the use of heating and thereby increasing the volume of air in proportioa to the rise of temperature the extra volume will allow of an increaged speed for a given range or a greater range without increase of speed. The limit to the development of this system eeems to be the temperature the materials will stand, but even at this early stage it has added several knots to the speed of this wonderful weapon.

Torpedo Carriages and Dircharge-As no gun which is inefhciently mounted can give good results, mo the best torpedo is valuelese without a good carriage or aystem of discharge. la the early days of the Whitchead, dimeredit came upon it because the importantee of this was not sufficiently realized; and an erratic course under water was in nine cases out of ten due to a crude method of discharge. A delicate piece of mechanimm was dropped into the water from a height of several feet, and naturally euffered internal derangement. Gus-ports wefe then used for the purpose, but now a special orifice is made, to which the torpedo carringe is fitted with a ball-and-socket joint-forming a water-tight aperture $-\infty$ thist this carringe or tube may be oniy 2 of 3 ft . above the water-line. The ball-and-accket joint enablea it aloo to have a conaiderable angle of training. Originally the torpedo was pushed out by a rod acted upon by compreseed air, in which case the carriage was a

Fig. 2.-Arrangenent of Gyroscope in Torpedo.

The eflicievicy of the Whitebead torpedo has thus been enormounily increased, and more accurate praction can now be made at 2000 yds. than was formerly possible at 800 yds. This adds conCiderably to the chances of torpedo-boats attacking ships, even lo detime, at wea or at anchor, and will render further protection meremary against this weapon. Apainet a ship in motion there is *ill, howrever, the calculation as to her epeed and the dintance she Gill travel before the torpedo reaches her. Should this be miselleulated, an increased range for torpedoes will magnify the error. Por instance, a 30 -knot torpedo will travel 1000 yds. in a minute. M aimed at a ship on the beam assumed to be oteaming 15 lroots * bour, to reach her when 1000 yda distant the torpedo mast be discharged at a point 500 yds. ahead of her. But if the ship Thetually steaming 12 knots, she will have travelled only 400 yds. * Che minute. and the torpedo will be 100 yds. in advance of Inc. If dicharged at a range of 500 yds., such a miscatculatioń enuses an error of only 50 yds. or 150 ft. But if the object is 300 ft . lorg, and her centre was taken as the target, her bow would be jurst at the spot the orpedo would reach in thirty seconds. It would seem, therefore, that increased velocity of torpedo is necessary befoce the full advancages of the gyroscope can be realized. Now the range of the torpedo in entirely dependeat upon the store of energy which can be carried; upon, therefore, tbe capacity of the air reservoir, the maximum pressure it can stand, and on the efficiency of the propelting engines. The speed over a given range is two dependent upon theve factors; the maximum opeed being
simple frame The rod, pressing against the tail with some force, ras apt to darnage or dimarragge the rudders, so the air-gun took the place of rod mppulse. Here the torpedo fits clomely in a tube or cylinder with an opening at the rear made air-tight wben closed. At the devired moment compresed air is ardmitted to the rear part of the cylinder and blows the torpedo out. Gunpowder then cuperseded air for this operation; and now this has given place so a small charge of condite, which does not leave any deposit on the inside of the cylinder. There is a double risk in tbe use of locomotive torpedoes from above water. (i) The charge may be exploded by hostile fire. Though mainly consisting of damp gun-cotton, which is not readily ignited, the dry primer and detometor may be struck, which would lead to a distastrous explosion. (2) The airchamber is also moarce of danger. As it contains air compresed to a bigh degree of tention, experimenta have shown that if struck by amall sell it may burst with great violence; and as it offers a considerable mark, this is not an improbable event in an action. An instance of the danger of above-water torpedo tubes occurred in the Spanish-American War at the battle of Santiago. A sheH eatered the "Almirante Oquendo" and struck a 14 -in. sorpedo in the tube. The charge detonated, causing a fearful explonion and practically wrecking that part of the veseol. The development of moderate-sized quick-fring guns has increased this fish. Hence we find the use of above-water torpedo tubes now mainly confined to corpedo and other craft too mall for submerged discharge.

Submerged Discharge.-The risk attached to having loaded torpedoes above the water-line-independently of the fact that to get the best result they should atart in the element to which they belong-has given great impetus to the syitem of submerged

and tube into is one motion.
Fig. 3 will further explain this appartus. A is the outer tube: B the inner tube; C the shield; D torpedo; E explosion chamber for cordite charge placed at K; F. pipe for gas to pase into outer tube; G and Y doors of inner and outer tube: J the valve which opens automatically when inner tube arrives at position shown in fig. 2; T and P appliance for running the tube in and out by hand when deaired; O arrangement for bringing whole apparatus back for repair \&c.; \boldsymbol{K} and N aluice-valve and handle: $\mathrm{R}, \boldsymbol{r}^{1}, \mathrm{p}^{4}, \boldsymbol{r}^{\mu}$, for draining tubes before torpedo is put in: X indicator showing positioa of inner tube.
Torpedoes have been discharged from this apparatus with successful result from a ship steaming at i7! knots.
The advantage of cordite over compressed air for impulse is that it requires no attention: when a charge

Fig. 3.-Broadside Submerged 18 in. Torpedo Tube.

discharge. From the earliest days of the weapon this has been employed to some extent. But it was principally in the direction of right-ahead fire, by having an orifice in the stem of the ship under water, to which a torpedo tube was connected. The tactical idea was thus to supplement attack with the ram, so that if the vessel endeavouring to ram saw that the object would evade this attack, she could project a torpedo alicad, which, travelling faster than the vessel, might as effectually accomplish the required service. The stem orifice had a water-tight cover, which was removed on the torpedo being placed in the tube and the inner door closed; then, sufficient impulse being imparted to eject the torpedo, and its machinery being set in motion at the same time, it darted forward towards the enemy. There is, however, some risk of the ship using a torpedo in this manner striking it before the missile has gathered the necessary impetus from its propellers to take it clear of the vessel. The system, moreover, has the disadvantage of weakening the ram, the construction of which should be of immense strength. There is the further liability of ramming with a torpedo in the bow tube, which would be as disastrous to friend as foe. This method of submerged discharge has therefore given place to ejecting the torpedo from the broadside. Considerable difficulty attached to getting the torpedo clear of the ship from this position without injury, especially when the vessel was proceeding at speed. The natural tendency of the passing water acting on the bead of the torpedo as it emenged was to give a violent wrench and crush the rear end before that portion could clear the aperture. To prevent this the torpedo must be held rigid in the line of projection until the tail is clear of the ship. This is thus effected. Besides the tube with the aperture in side of the ship under water, fitted with sluice-valve, all broadside submerged discharge apparatus possess the following features: A shicld is pushed out from the ship's side. In this shield there are grooves of some form. Guides on the torpedoes fit and run in these grooves. When discharged the torpedo is thus supported against the streams of passing water and guided so that its axis continues in the line of projection until the tail is clear of the side, the shield being of such length that this occurs at the same time that the guides on the torpedo leave the grooves in the shield. An apparatus on this principle has been fitted to a number of ships of the British navy, and gives good results at high rates of speed. It has the defect that the shield must be run out previous to the torpedo being discharged, and brought back afterwards, thus involving three scparate operations, each performed by compressed air.
In the broadside submerged discharge, designed, constructed and supplied to many forcign navies by Messrs Armstrong of the Elswick works, the three operations are combined in one. Thene is an outer tube as before, but it contains an inner tube carming the torpedo. Fized to this tube, and prolonging it, is the stapl but with grooves. Both tubes have a deor at the ithe mate it with grooves. Both tubes have a deor at
tight when closed-by which the torpedo jo cordite is used for cjection instcad of which entering the outcr cyliuder find fries and then by means of a valve in th in and hlows out water and ter the latter until the tail is clear gas has expanded and cooled this causes the pressure of t
is placed in the explosion chamber, and a torpedo is in the tube, all is in readiness for firing when desired, without further attention in the torpedo-room. The cordite is fired by electricity lrom the conning-tower; the officer, therefore, having ascertained that all is ready below, has only to press a button when the object is in the required position. Automatic indications are given in the conningtower when the sluice-valve is opened and when all is in readiness for fring.
This method of discharging torpedoes from the broadside under water eliminates the principal danger of the syatem, which required the shield to be put into position beforchand. It was then liable to be struck and distorted by passing wreckage without the fact being apparent to those in the ship. On the discharge of a torpedo its course snight thus be arrested, or possibly the charge be prematurely exploded in dangerous proximity to its own ship. There was a risk of getting the shield out too soon, and thereby exposing it unduly to injury, or leaving the operation until too late. The tendency of naval equipment being towards complication, any readjustment which makes for simplicity cannot be otherwise than beneficial, and this feature is especially desirable io all matters connected with the use of torpedocs.
The compartment containing the broadside submerged apparatus usually extends across the ship, so as to contain a tube for each side.

Use in Wor.-This has been mainly confined to attacks upon squadrons and single ships by torpedo craft of various types. At the battle of Yalu, between the Chinese and Japanese fleets, torpedoes were discharged by the former, but none took effect. The Japanese trusted solely to gun-fire. After the defeat of the Chinese at sea, their remaining ships took refuge in the harbour of Wei-hai-Wei. Here they were blockaded by the Japanesc fleet, which, having a number of torpedo-boats, made several determined attacks upon the ships inside. After one or two attempts, foiled by the obstructions placed by the Chinese to bar the passage, the Japanese boats succeeded in torpedoing several ships, and thus expedited the reduction of tbe place. In the war between Spain and the United States the inferiority of Admiral Cervera's squadron to that under Admiral Sampson might at the battle of Santiago have been to some extent counterbalanced by a skilful and vigorous use of torpedoes. If, instcad of striving only to escape, a bold dash had been made If.lleAne ${ }^{\text {che aligs, the Spanish cruisers rapidly a pproaching }}$
torpedo range without
ipeed of 10 knots only yds. in 9 minutes-a heo hy gun-fire under such

several instances of large warships being sank by focomotive torpedoes discharged from small craft. During the Chilean revolutionsry war of s89x, a batteship, the "Blanco Encalada," of 3500 tons, was attucked in Caldera Bay by two torpedo vessels the " Lynch "and "Condell" -of 750 tons. They entered the bay at dawn, the "Condell" leading. This vessel fired three corpedoes which missed the ironclad; then the "Lynch," after ooe ineffective shot, discharged a second torpedo, which struck the "Blanco" on the side nearly amidships. The latter had opened fire with little result, and sank soon afterwards. A stanlar incident occurred in 1894, when the Brazilian ironclad "Aquidaban " was sunk in Catherina Bay hy the "Sampaio "2 torpodo vesed of 500 tons. She entered the bay at nigbt, and first discharged her bow torpedo at the ironclad, which missed; she then fired a broadside torpedo, which struck and exploded against the bow of the "Aquidaban." It caused a great shock on board, throwing an officer on the hridge into the water. The vessel sank soon afterwards, and the "Sampaio ". escaped uninjured.
In the war ($1904-5$) between Russia and Japan the Whitehead torpedo did not exercise an important influence upon the naval operations. It scored a success at the beginning of the struggle when a Japanese torpedo-flotilla made an attack upon the Russian fleet lying at anchor outside Port Arthur. For some unaccountable reason, though war was imminent, little or no precautions seemed to have been taken for effectually guarding the vessels. They had no nets in position nor boats patrolling outside them. Thus taken by surprise when the Japanese corperso-boats suddenly appeared about midnight on the 8 th of February 1904, several Russian ships were struck by torpedoes before they could offer any resistance. The most damaged were the "Retvisan" and "Tsarevitch" (bat lleships) and "Pallada" (cruiser), hut all managed to get into Port Arthor and were eventually repaired. With three ships hors de combiot the Russian fleet was considerably weakened at an early stage. The loss of the "Petropavlovak" in April from a mine explosion was a further discouragement, especially as with this ship went down the gallant and energetic Admiral Makarov. In these circumstances the Russian fleet could not kusume the offensive nor prevent the Japanese troope being sent by sea to invest Port Arthur. In June when the injured vesels were fit for service again the fleet put to sea but returned the same evening. The incident is noteworthy only because it bed to an atteck by the Japanese torpedo craft on the retiring equartion after sunset. As itlustrating the uncertainty of hitting a moving object at sea with the Whitebead torpedo, already mentioned, no vessets were struck on this occasion and they reached the anchorage uninjured. In the battle of Tsushima the 3 apanese torpedo-boats attacked the Ruscian flect after its diamblement by gan-fire and gave the coup de grace to tome of the ships, which had little power of resistance owing to the destruction of their light armament. This war, therefore, did not increase to any extent our knowledge of the actual capability of the weapon.
Effect ypon Nowal Tactics: Blockade.-It has often been curused that ream and the torpedo will in future render blodkede impossible as it was carried out in the old wart; that, o loger dependent upon the wind to allow egress from the Whated port, 2 vessel using steam can emerge when she Whise the lear of torpedo attack will deter a hlockading Arom keeping such watch as to foil the attempt. As the power conferred hy steam, it will be no less advanbiockading squadron, enabling it to maintain its fineceas sailing ghips were often driven hy gales to leave the and seck a port. This gave opportunities for the Hets to escape. As regards torpedo-boats, they W, be a danger to a hlockading squadron unpro--nof defence against these craft. Such delence materuate number of small vessels interposing an Whan between the port and the main body outslde. Antr the twofold setvice of watching the enemy's
instance of blockade under modern conditions, we have that of Admiral Sampson upon Santiago-a guard more rigidly maintained than any in the old wars. So little was he deterred hy the knowledge that Admiral Cervera bad two torpedo vessels in his force, tbat he drew his squadron closer in at night when an attack might be expected, actually illuminating the entrance of the harbour with his electric searchlights, so that no craft could come out unperceived. No attempt was made to dislodge him from that position, and we may assume that blockade, if required in any scbeme of naval strategy, will be carried out, whatever the weapons of warfare.

As regards the effect of torpedoes upon tactics at sea, and in general, as well as single ship, actions, they must operate against close range and employment of the ram. If it is recognized hat a vessel within 1000 yds . is liable to a fatal blow, she will endeavour in ordinary circumstances to keep outside that distance and rely upon gun-fire. The exception would be where she is overmatched in ihat respect, and hence might endeavour to restore the balance hy the use of torpedoes. In a fleet action the danger of missing a foe and hitting a friend would restrict the discharge of torpedoes; and this risk increases as formations disappear. But the torpedo must be conceded a tactical superiority over the ram for the following reasons: A vessel to usc the latter must come within torpedo range, while her adversary may successfully apply torpedoes without placing herself in any danger of being rammed. The ram can only be used in one direction, and a small miscalculation may cause disaster. If a vessel has more than one position from which torpedoes can be discharged, she is not confined as regards attack to a single bearing or direction.

In action we may consider the speed of the torpedo as double that of the ship, and since against n moving object allowance must be made for the space traversed while ram or torpedo is travelling towards it, the faster weapon is less affected in its chance of successful impact by change of direction and speed of the object at the last moment. Lastly, with machinery disabled a ship is powerless to use the ram, hut can avert a ram attack with her torpedoes. The movements of squadrons or single ships on entering an action are not likely to he infuenced by any contemplated immediate use of torpedoes, for the gun must remain the primary weapon, at any rate at the first onset. Commanders would hardly risk being erushed hy gun-fire before getting within torpedo range. Having faith in the efficiency of their ordnance and the gunnery skill of their crew, they would first manouvre to hring these into play. Tactics for torpedo attack in such circumstances have not therefore been laid down, and it is only necessary to consider the positions which are advantageous for the use of this weapon, and, conversely, what should be avoided when a vessel, finding herself overmatched in gunnery, seeks to redress the balance with torpedoes.

Sire of Target.-This, with a ship, varies in length as the torpedo approaches end on to the vessel, or at angle to the line of keel; the greatest becing when the path of both forms a right angle. Hence the object is to place your ship where it presents ihe former condition to the enemy, while he affords the larger target. It must be remembered that, owing to ihe comparatively alow velocity of the torpedo, it must be aimed not directly at a ship in motionlike a shot from a gun-but at a point ahead which the ship will reach after the torpedo has traversed the intervening distance. Thus speed of objeet has to be estimated, and hence the importance of adding to the velocity of the torpedo and getting a broadside shot so as to reduce as much as possibte errors of cakculation. The great increase of the dimensions of warships, especially in iength, which now has reached 500 It., adds to the chances of a successful hit with torpedoes, and will doubteas tend to diminish a desire in future naval tactics to close inside torpedo range for the purpose of ramming.
Range.-Though the effective range of a torpedo discharged from a ship or torpedo vessei against a single object moving at high speed may be considered as approximately within 1000 yds. this himit of distance is considerably augmented where the target consists of several vessels at za in close order, or is that afforded by a fleet at anchor. In the first case it may be worth while to discharge torpedoes from a distance of tuo or three thousand yards at the centre of the tine for the chance of hitting one of the veseds composing it. As regards a mam of ships at anchor.
uniess protected by an impenetrable guard such as a breakwater or some invulnerable defence carried by the ships themselves, the increased range and accuracy of the torpedo imparted by recent developments would give it a chance of success if discharged against such a target at even greater distance.

Finally, by improvements in construction and methods of dis charge the torpedo has recovered the place it was rapidly losing a few years ago. As armour receives increased resisting power to above-water projectiles, and gets on a level again with the gun, more attention will he given to under-water attack, against which no adequate protection has yet been devised. Thus we shall probably find the torpedo taking a very prominent place in any future war between the great maritime powers.
(S. M E.W.)

TORQUAY, a municipal borough, seaport and watering place, in the Torquay parliamentary division of Devonshire, England, on Tor Bay of the English Channel, 26 m . S. of Exeter, by the Great Western railway. Pop. (roor), 33,625. Owing to the beauty of its site and the equability of its climate, and to its being screened by lofty hills on the north, east and west, and open to the sea-breezes of the south, it has a high reputation as a winter residence. The temperature seldom riscs as high as $70^{\circ} \mathrm{F}$. in summer or falls below freezing-point in winter. To the north lies the populous suburb of St Mary Church. There are some remains of Tor or Torre Abbey, founded for Praemonstratensians by William, Lord Brewer, in 1196. They stand north of the modern mansion, but, with the exception of a beautiful pointed arch portal, are of small importance. On the south of the gateway is a 13 th-century building, known as the Spanish barn. On Chapel Hill are the remains of a chapel of the 12 th century, dedicated to St Michacl, and supposed to have formerly belonged to the abbey. St Saviour's parish church of Tor-Mohun, or Tormoham, an ancient stone structure, was restored in 1874 . The old church at St Mary Church, north of Torquay, was rebuilt in Early Decorated style; and in 1871 a tower was erected as a memorial to Dr Phillpotts, bishop of Exeter, who with his wife is buried in the churchyard. St John's Church, by G. E. Street, is a fine example of modern Gothic. Among the principal buildings and institutions are the fown-hall, museum of the natural history society, theatre and opera-bouse (1880), market, schools of art and science, the Torbay infirmary and dispensary, the Western hospital for consumption, Crypt House institution for invalid ladies and the Mildmay bome for incurable consumptives. The control of the harbour, piers, pleasure grounds, $\& x$ c., was acquired from the lord of the manor by the local board in 1886. The harbour has a depth of over 20 ft . at low water. The principal imports are coal, timber and slates, and the principal export stone of the Transition limestone or Devonshire marble. In the town are a number of marble-polishing works. Terra-cotta ware of fine quality is also manufactured from a deposit of clay at Watcombe and at Hele. The town is governed by a mayor, 9 aldermen and 27 councillors. Area, 3588 acres.

There was a village at Torre even before the foundation of the abbey, and in the neighbourhood of Torre evidence has been found of Roman occupation. The manor was granted by William the Conqueror to Richard de Bruvere or de Brewere, and was subsequently known as Tor Brewer. After the defeat of the Spanish Armada, Don Pedro's galley was brought into Torbay; and William, prince of Orange, landed at Torbay on the 5 th of November 1688. Until the middle of the 19 th century it was an insignificant fishing village. It was incorporated in 1892.

TORQUE, or Tonc (Lat. forquis, torques, a twisted collar, (orquere, to twist), the term given by archacologists to the twisted collars or armlets of gold or other metal worn particularly by the ancient Gauls and other allied Celtic races. The typical torque is a circlet with wisted rope-like strands, the ends not joined together; the torque was usually worn with the opening in the front as seen in a figure of a Gaul in a sculptured sarcophagus in the Capitoline Museum at Rome. In mechanics, the term "torque." is used of the turning-moment of a systemforce, as in a series dynamo.

TORQUEMADA, JUAN DE (1388 -1468), or rather JOHANNES de Turrecremata, Spanish ecclesiastic, was born at Valladolid.
in 1388, and was educated in that city. At an early age the joined the Dominican order, and soon distinguished himself for learning and devotion. In 1415 he accompanied the general of his order to the Council of Constance, whence he proceeded to Paris for study, and took his doctor's degree in 2423. After teaching for some time in Paris he became prior of the Dominican bouse first in Valladolid and then in Toledo. In 1431 Pope Eugenius IV. called him to Rome and made him "magister sancti palatii." At the Council of Basel he was one of the ablest supporters of the view of the Romar curia, and be was rewarded with a cardinal's hat in 1439. He died at Rome on the 26 th of September 1468.

His priscipal works are In Gratiani Decrehwm commentoris (4 vols., Venice, 1578); Exposilio brevis at witis super tato fsalterio (Mainz, 1474): Qucestiones spiriluales super evangelia totius anmi (Brixen, 1498): Summa ecclesiostica (Salamanca, 1550). The last named work has the following topics: (1) De universa ecclesia: (2) De Ecclesia romana et pontificis primatu; (3) De universalibus conciliis; (4) De schismaticis et haereticis. His De conceptione deiparac Mariae, libri viin. (Rome, 1547), was edited with preface and notes by E. B. Pusey (London, 1869 seq.).

TOROUEMADA, THOMAS ($1420-1498$), inquisitor-general of Spain, son of Don Pedro Ferdinando, lord of Torquemada, a small town in Old Castile, was born in 1420 at Valladolid during the reign of John II. Being nephew to the well-known cardinal of the same name, he early displayed an attraction for the Dominican order; and, as soon as allowed, he joined the Friars Preachers in their convent at Valladolid. His biographers state that be showed himself from the beginning very carnest in austere life and humility; and be became a recognized example of the virtues of a Dominican. Valladolid was then the capital, and in due course eminent dignities were offered to him, but be gave signs of a determination to lead the simple life of a Friar Preacher, In the convent, his modesty was so great that he refused to accept the doctor's degree in theology, which is the highest prized honour in the order. His superiors, however, obliged him to take the priorship of the convent of Santa Cruz in Segovia, where he ruled for twenty-two years. The royal family, especially the queen and the infanta Isabella, often stayed at Segovia, and Torquemada became confessor to the infanta, who was then very young. He trained her to look on her future sovereignty as an engagement to make religion respected. Esprit Elechier, bishop of Nimes, in this Hisloire du cardinal Jimenes (Paris, 1693), says that Torquemada made ber promise that wben sbe became queen she would make it her principal business to chastise and destroy heretics. He then began to teach her the political advantages of religion and to prepare the way for that tremendous engine in the hands of the state, the Inquisition.

Isabella succeeded to the throne (1474) on the death of Henry IV. Torquemada had always been strong in his advice that she should marry Ferdinand of Aragon and thus consolidate the kingdoms of Spain. Hitherto he had rarely appeared at court; but now the queen entrusted him not only with the care of her conscience, but also with the benefices in the royal patronage. He also helped her in quieting Ferdinand, who was chafing utider the privileges of the Castilian grandees, and succeeded so well that the king also took him as confessor. Refusing the rich see of Seville and many otber preferments he accepted that of councillor of state. For a long time he had pondered over the confusion in which Spain was, which he attributed to the intimate relations allowed between Christians and infidels for the sake of commerce. He saw Jews, Saracens, heretics and apostates roaming through Spain unmolested; and in this Las toleration of religious differenees he thought he saw ibe main obstacle to the political union of the Spains, whicl necessity of the hour. Isabella that it was essential to their gafor. Inquisition, which har established in Spai in their 0 orn the evi
supe
bardly an active inquisitor keft in the kingdom. In 1473 Torquemada and Gonzalez de Mendoza, archbishop of Toledo, pproached the sovereigns. Isahella had been for many years repared, and she and Ferdinand, now that the proposal for : bis new tribunal came before them, saw in it a means of overoming the independence of the nobility and clergy by which the royai power had been obstructed. With the royal sanction pertition was addressed to Sixtus IV. for the establishment of this new form of Inquisition; and as the resule of a long intrigue, Is 1479 a papal bull authorized the appointment by the Spanish avereigns of two inquisitors at Seville, under whom the Dominican inquisitions already est ablished elsewhere might serve. In the perseculing aclivity that ensued the Dominicans, "the Dogs of the Lord " (Domini cancs), took the lead. Commissaries of the Holy Office were sent into different provinces, and ministers if the faith were established in the various cities to take cogniance of the crimes of heresy, apostasy, sorcery, sodomy and iwiygamy, these three last being considered to be implicit heresy. The royal Inquisition thus started was subversive of 'be regular tribunals of the bishops, who much resented the is novation, which, however, had the power of the state at its then.
in 1487, three years after the Sixtine commission, a tribunat was inaugurated at Seville, where freedom of speech and licence of manner were rife. The inquisitors at once began to detect arors. In order not to confound the innocent with the guilty, Torquemada published a declaration offering grace and pardon 10 all who presented themselves before the tribunal and avowed their fault. Some fled the country, but many (Mariana says 17.000) offered themselves for reconciliation. The first seat of the Holy Offce was in the convent of San Pablo, where the friars, however, resented the orders, on the pretext that they were not Celcgates of the inquisitor-general. Soon the gloomy fortress of Trina, on the opposite bank of the Guadalquivir, was prepared as the palace of the Holy Office; and the terror-stricken Sevil-l-nos read with dismay over the portals the motto of the 1.gquisition: "Ersurge, Domine, Judica causam tuam, Capite nobis vulpes." Other tribunals, like that of Seville and under Li: Superema, were speedily established in Cordova, Jaen and Tudo. The sovercigns saw that wealth was beginning to flow in to the new trihunals by means of fines and confiscations; a0. they obliged Torquemada to take as assessors five persons sho would represent them in all matters affecting the royal percrogatives. These assessors were allowed a definite vote in iemporal matters but not in spiritual, and the final decision -as teserved to Torquernada himself, who in 1483 was appointed the sole inquisitor-general over all the Spanish possessions. In the next year he cedelt to Dicgo Deza, a Dominican, his office of ronlcwor to the sovereigns, and gave himself up to the congenial work of reducing herctics. A general assembly of his inquisitors Was coavoked at Seville for the 29 th of November 1484 ; and there be promulgated a code of twenty-ight articles for the guidance of the minisisters of the faith. Among these rules are the following, whi, h will give some idea of the procedure. Hecelics were allo:xed thirty days to declare themselves. Those tho aviled therns ives of this grace were only fined, and their pots eccaped conofication. Absolution in foro externo was atides to be given secretly to those who made voluntary they had to sulbrait to the ignominy of the pablic The result of this harsh len was that numerous , and thus
condemned and handed over to the civil power for execution. Should the accused, after the testimony against him had been made public, continue to deny the charge, he was to be condemned as impenitent. When scrious proof existed against onc who denied his crime, he could be submitted to the question by torture; and if under torture he avowed his fault and confirmed his guilt by subsequent confession he was punished as one con victed, but should he retract he was again to be submitted to the tortures or condemned to extraordinary punishment. This second questioning was afterwards forbidden; but the prohibition was got over by merely suspending and then renewing the sessions for questioning. It was forbidden to communicate to the accused the entire copy of the declaration of the witnesses. The dead even were not free from the Holy Office; but processes could be instituted against them and their remains subjected to punishment. But along with these cruel and unjust measures there must be put down to Torquemada's credit some advanced ideas as to prison life. The celts of the Inquisition were, as a rule, large, airy, clean and with good windows admitting the sunThey were, in those respects, far superior to the civil prisons of that day. The use of irons was in Torquemada's time not allowed in the Holy Office; the use of torture was in accordance with the practice of the other royal tribunals; and when these gave it up the Holy Office did so also.

Such were some of the methods that Torquemada Introduced into the Spanish Inquisition, which was to have so baneful an effect upon the whole country. During the cightecn years that he was inquisitor-general it is said that he burnt 10,220 persons, condemned 6860 others to be burnt in effigy, and reconciled 97,321, thus making an average of some 6000 convictions a year. These figures are given by Liorente, who was secretary of the Holy Office from 1790 to 1792 and had access to the archives; but modern research reduces the list of those burnt by Torque. mada to 2000 , in itself an awful holocaust to the principie of intolerance. The constant stream of petitions to Rome opened the eyes of the pope to the effects of Torquemada's severity. On three separate occasions he had to send Fray Alfonso Badaja to defend his acts before the Holy See. The sovereigns, too, saw the stream of money, which they had hoped for, diverted to the coffers of the Holy Office, and in 1493 they made complaint to the pope; but Torquemada was powerful enough to secure most of the money for the expenses of the Inquisition. But in 1496, when the sovereigns again complained that the inquisitors were, without royal knowledge or consent, disposing of the property of the condemned and thus depriving the public revenues of considerable sums, Alcxander VI. appointed Jimenes to examine into the case and make the Holy Office disgorge the plunder.

For many years Torguemada had leen persuading the sovereigns to make an attempt once for all to ridl the country of the hated Moors. Mariana holds that the founding of the Inquisi tion, by giving a new impetus to the idea of a united kingdom, made the country more capable of carrying to a satinfactory ending the traditional wars against the Moors. The taking of Zahaia in 848 y by the enemy gave occasion to reprisals. Troops were summoned to Seville and the war began by the siege of Alhama, a town eight leagues from Granada, the Moorish capital. Torquemada went with the sovereigns to Cordova, to Madrid or wherever the states-general were held, 10 urge on the war; and be obtained from the Holy See the same spiritual favours that had been enjoyed by the Crusaders. But he did not forget his favourite work of ferreting out heretics; and his ministers of the faith made great progress over all the kingdom, especially at Toledo, where merciless severity was shown to the Jews who had lapsed from Christianity. The Inquisition, although as a body the clergy did not mislike it, sometimes thet with furious opposition from the nobles and common people.

Valentia and Lerida there were scrious conflicts. At Peter Arbué, a canon and an ardent inquisitor. in 1485 whist preying in a church; and the threats the hated Torquemada made him go in lear of his life. sever went abroad without an escort of foriy familiers
of the Holy Office on bonseback and two hundred more on foot. In 1487 he went with Ferdinand to Malagz and thence to Valladolid, where in the October of 1488 he held another gencral congregation of the Inquisition and promulgated new laws based on the experience already gained. He then hurried back to Andalusia where he joined the sovereigns, who were now besieging Granada, which be entered with the conquering army in January 1492 and built there a convent of his order.

The Moors being vanquished, now came the turn of the Jews. In 1490 had happened the case of El Santo nino de la Guardia-a child supposed to have been killed by the Jews. His existence had never been proved; and in the district of Guardia no child was reported as missing. The whole story was most prohably the creation of imaginations stimulated by torture and despair, unless it was a deliberate fiction set forth for the purpose of provoking hostility against the Jews. For a long time Torquemads had tried to get the royal consent to a general expulsion; but the sovereigns hesitated, and, as the victims were the backbone of the commerce of the country, proposed a ransom of 300,000 ducats instead. The indiganat friar would hear of no compromise: "Judas," he cried, "sold Christ for 3° pence; and your highnesses wish to sell Him again for 300,000 ducats." Unable to bear up against the Dominican's fiery denunciations, the sovercigns, three months after the fall of Grannda, issued a decree ordering every Jew either to embrace Christianity or to leave the country, four months being given to make up their minds; and those who refused to become Christians to order had leave to sell their property and carry of their effects. But this was not enough for the in-quisitor-general, who in tbe following month (April) issued orders to forbid Christians, under severe penalties, having any communication with the Jews or, after the period of grace, to supply them even with the necessaries of life. The former prohibition made it impossible for the unfortunate people to sell their goods which hence fell to the Inquisition. The numbers of Jewish families driven out of the country by Torquemada is variously stated from Mariana's $1,700,000$ to the more probable 800,000 of later historians. The loss to Spain was enormous, and from this act of the Dominican the commercial decay of Spain dates.
Age was now creeping on Torquemada, who, however, never would allow his misdirected zeal to rest. At another general assembly, his fourt h, he gave new and more stringent rules, which are found in the Compilacion de las instrucciones del officio de la Santa Inquisicion. He took up his residence in Avila, where he had built a convent; and here he resumed the common life of a friar, leaving his cell in October 1497 to visit, at Salamanca, the dying infante, Don Juan, and to comlort the sovereigns in their parental distress. They often used to visit him at Avila, where in 1498, still in office as inquisitor-general, he held his last general assembly to complete his life's work. Soon afterwards he died, on the 16th of September 1498, "full of years and merit" says his biographer. He was buried in the chapel of the convent of St Thomas in Avila.

The name of Torquemada stands for all that is intolerant and narrow, despotic and cruel. He was no real statesman or minister of the Gospel, but a blind fanatic, who failed to see that faith, which is the gift of God, cannot be imposed on aay conscience by force.
(E. TN.)

TORRB ANNUNZIATA, 2 seaport of Campania, Italy, in the province of Naples, on the cast of the Bay of Naples, and at the south foot of Mt Vesuvius, 14 m . S.E. of Naples by rail. Pop. (1901), 25,070 (town); 28,084 (commune). It is on the main line to Battipaglia, at the point of junction of a branch line from Cancello round the east of Vesuvius, and of the branch to Castellammare di Stabia and Gragnano. It has a royal arms factory established by Charles IV., and other ironworks, considerable manufacture of macaroni, paper, breeding of silkworms, and some fishing and shipping. The barbour is protected by moles. Remains attributed to the Roman poststation of Oplontis were discovered in making the railway
between Torre del Greco and Torre Annunsiata, a little west of the latter, in 1842.

TORRE DEL GRBCO, I scaport of Campania, Italy, in the province of Naples, 71 m. S.E. of that city by rail. Pop. (1901), 35,328. It lies at the south-west foot of Vesuvius, on the shore of the Bay of Naples. It is built chiefly of lava, and stands on the lava stream of 1631, which destroyed two-thirds of the older town. Great damage was done by the eruptions of 1737 and 1794; the carthquake of 1857 and the eruption of the 81 h of December 1861 were even more destructive. After each disaster the people returned, the advantage of the rich volcanic land overcoming apprehensions of danger. In tbe outskirts are many beautiful villas and gardens. The town has shipbuilding yards and lava quarries. The inhabitants take pert in the coral and sponge fishing off the African and Sicilian coasts, and coral is worked in the town. There is also fishing for tunny, sardines and oysters; hemp is woven, and the neighbourhood is famed for its fruit and wine. In June the great popular festival "Dei Quattro Altari" is annually celebrated here in commemoration of the abolition of the feudal dominion in 1700. Remains of ancient villas and baths beve been found here.

TORRENS, ROBERT ($1780-1804$), English saldier and economist, was born in Ireland in 1780 . He entered the Marinea in 1797, became a captain in 1806, and major in 1811 for bravery in Anhalt during the Walcheren expedition. He fought in the Peninsula, becoming lieutenant-colonel in 1835 and retiring as colonel in 1837. After abortive attempts to enter parliament in 1818 and 1826, he was returned in 1831 as member for Ashburton. He was a prolific writer, principally on' financial and commercial policy. Almost the whole of the programme which was carried out in legislation by Sir Robert Peel had been laid down in bis economic writings. He was an early and earnest advocate of the repeal of the corn laws, but was not in favour of a general system of absolute free trade. maintaining that it is expedient to impose retaliatory duties to countervail similar duties imposed hy foreigu countries, and a lowering of import duties on the productions of countries retaining their hostile tariffs would occasion a decline in prices, profits and wages.

His principal writings of a general character were: The Economist [i.e. Physiocrat] refuled (1808); Essay on the Production of Wealeh (1821); Essay on the External Corn-trade (culogized by Ricardo) (1827); The Budget, a Series of Letlers on Financial, Commercial and Colontal Policy (1841-1843); The Principles and Practical Operations of Sir Robert Ped's Act of 1844 Explained and Defomded (1847).

TORRENS, SIR RORERT RICHARD (1814-1884), British colonial statesman, was born at Cork, Ireland, in 1814, and educated at Trinity Coliege, Dublin. He went to South Australia in 1840, and was appointed collector of customs. He was an official member of the first legislative council and in 1852 was treasurer and registrar-general. When responsible government was established be was elected as a representative for Adelaide and became a member of the first ministry. In 1857 be introduced his famous Real Property Act, the principle of which consists of conveyance by registration and certificate instead of deeds. The system was rapidly adopted in the otber colonies and elsewbere, and was cxpounded by the wuthor during a visit to the United Kingdom in 1862-1864. After leaving South Australia, Sir R. R. Torrens represented Cambridge in the House of Commons from 1868 to 1874; in 1872 he was knighted. He was the author of works on the effect of the gold discoveries on the currency, and other subjects. He died on the 31 st of August 1884.

TORRENS, WILLIAM TORREMS M'CULLAGE (1813-1894), English politician and social reformer, soc of James M Cullagh (whose wife's maiden name, Torrens, he assumed in 1863). was born near Dublin on the 13th of October 1813. He was called to the bar, and in 1835 became assistant commissioner on the special commission on Irish poor-relief, which resulted in the extension of the workhouse system in Ireland in 1838. In the 'forties be joined the Anti-Corn Law League.
and in 1846 publiahed bis Indestrial History of Pres Nations. In 1847 he was elected to partiament for Dundalk, and set till 1852 . In 1857 he was elected as a Liberal for Yarmouth and from 1865 to 1885 he represented Finsbury. Torrens was a well known man in political life, and devoted himself mainly to social questions in pardiament. It was an amendment of his to the Education Bill of 1870 wbich established the London Schoot Board, and his Artisans' Dwellings Bill in 1868 facitutated the clearing away of slums by local authorities. He published several books, and his Twanty Years in Parliament (1893) and Hislary of Cabinets (1894) contain useful material. He died in London on the 26th of April $\mathbf{1 8 9 4}$

TERAF MAHARRO, BARTOLOTE DE ($1480-1530$), Spanish dramalist, was born towards the end of the r sth century at Torres, near Badajoz. After some years of soldiering and of captivity in Algiers, Torres Naharro took orders, setuled in Rome about 1511, and there devoted himself chiefly to writing plags. Though he alludes to the future pope, Clement VIL. as bis protector, he left Rome to enter the housebold of Fabrizio Colonna at Naples where his works were printed under the title of Propaladic (1517). He is conjectured to have returned to his mative place, and to have died there shortly after 1529 . His Dialogo ded nacimiento is written in unavowed, thougb obvious, imitation of Encina, but in his subsequent plays be shows a moch larger conception of dramatic possibilities. He classifies his pieces as comedias 4 noticia and comediar 6 favelarta; the former, of which the Soldatesea and Tinellaria are examples, present in dramatic form incidents within his personal experience; the latter, which include such plays as Serafina, Himenea, Calamila and Aqxilanc, present imaginary episodes with adroitness and persuasiveness. Torres Naharro is much less dexterous in stagecraft than many inferior successors, his bumour is rude and boisterous and his diction is unequal; but to a varied knowledge of human nature be adds knowledge of dramatic effect, and his rapid dialogue, his fearless realism and vivacions fancy prepared the way for the romantic drama in Spain.
TORIDE NONAS, a town of Portugal, in the district of Santarem, 19 m. N.N.E. of Santarem on the Lisbon-Entroncamento raifray. Pop. (1900), 10,746. It manufactures cottons, linens, fute, paper, leather and spirits. It was probably founded by Greeks, and was beld by the Romans, Goths and Moors, from whom it was conquered in 1148 by Alphonso I. of Portugal.

ToRREs VEDRAS, a town of Portugal, in the disirict of Lisbon, 43 m . N. by W. of Lisbon, on the Lisbon-Figueira da Foz railway. Pop. (1900), 6900 . Torres Vedras is huilt on the left bank of the river Sizandro; it has a Moorish citadel and hot sulphur baths. Roman inscriptions and other remains bave been found bere, but the Latin name of the town, Twrres Vocres, is probably medieval. Here were the noted fortifications known as the "lines of Torres Vedras," constructed by Wellington in 18io (see Peninsular War). Here also in 1846 the troops of General Saldanha defeated those of the count de Bomfin and seized the castle and town (see Portugal: History).
Torris v VILlaRosl, DIEco DE ($1696-1759$?), Spanish miscellaneous writer, was born in 1696 at Salamanca, where his father was bookseller to tbe university. In bis teens Torres ecaped to Portugal where be enlisted under a false name; he ecext moved to Madrid, living from hand to mouth as a hawker; in 8717 he was ordained subdeacon, resumed his studies at Sulamanca, and in 1726 became professor of mathematics at the university. A friend of his having stabbed a priest, Torres -as suspected of complicity, and once more fled to Portugal, -bere he remained till his innocence was proved. He then returned to his chair, which he resigned in 175: to act as steward to two noblemen; he was certainly alive in 1758 , but the date α his death is nol known. Torres had so slight a smattering of mathematics that his appointment as professor was thought sandalous even in his own scandalous age; yet he quicikly soquired a store of knowledge which he displayed with serene espurance. Ilis almanacs, his verses, his farces, his devotional and previo-scientific writings show that he possessed the alert
adaptiveness of the born adventurer; but all that remains of his fourteen volumes (1745-1752) is his autobiography, an amusing record of cynical effrontery and successlul imposture.

TORREVIRJA, a scaport of south-castern Spain, in the proviace of Alicante, $3 \mathrm{~m} . S . W$. of Cape Cervera, and at the terminus of a railway to Albatera on the Alicante-Murcia line. Pop. (1900), 7706. The district is famous for its salt beds, which are owned and worked by the state, the Laguna Grande alone yielding more than 100,000 tons a year. The other industrics are chiefly fishing, shipbuilding and the manufacture of ropes and sails. The roadstead afords safe anchorage. There is an active trade in fruit and agricultural products.

TORREY, JOHN ($1796-1873$), American botanist, was bora at New York on the 15 th of August 1796. When be was 15 or 16 years of age bis father received 2 .prison appointment at Grcenwich, and there be made the acquaintince of Amos Eaton ($1776-1842$), a pionecr of natural history studies in America. He thus learned the elements of botany, as well as sometbing of mineralogy and chemistry. In 1815 he began the study of medicine, qualifying in 1818. In the following year he issued bis Colalogwe of Plands growing spontaneously wilhin Thirty Miles of the City of New York, and in 1824 he issued the first and only volume of his Flora of the Northern and Middle Slates. In the same year he obtained the chair of chemistry and geology at West Point military academy, and three years later the professorship of chemistry and botany in the College of Physicians and Surgeons, New York. In 1836 he was appointed botanist to the state of Ncw York and produced his Flora of that state in 1843: while from 1838 to 1843 he carried on the publication of the carlier portions of Flora of North America, with the assistance of his pupil, Asa Gray. From 1853 he was chief assayer to the United States assay office, but he continued to take an interest in botanical teaching until his death at New York on the 1oth of March 1873. He made over his valuable herbarium and botanical library to Columbia College in 1860, and he was the first president of the Torrey Botanical Club in 1873 . His name is commemorated in tbe small coniferous genus Torreya, found in North America and in China and Japan. T. kaxifolia, a native of Florida, is known as the Torrey tree or savin, and also as the stinking cedar.

TORREY, REUBEN ARCHER (1856-), American evangolist, was born in Hoboken, New Jersey, on the 28th of January 1856. He gradusted at Yale University in 1875 and at the Yale Divinity School in 1878. He became a Congregational ninister in 1878, studied theology at Leipzig and Erianger in 1882-1833, joined D. L. Moody in hls evangelistic work in Chicago in 1889, and became pastor of the Chicago Avenue Churcb in 1894 and afterwards superintendent of the Moody Bible Institute of Chicago. In 1902-1003 be preached in nearly every part of the English-speaking world, and.with Charles MicCallon Alexander (b. 1867) conducted revival services in Great Britain in 1905 1905: Torrey conducted a similar campaign in American and Canadian cities in 1906-1907.

TORRICELLI, EVANGELISTA (1608-1647), Italian physicist and mathematician, was born at Faenza on the isth of October 1608. Left fatherless at an early age, he was educated under the care of his uncle, a Camaldolese monk, wbo in 1627 sent him to Rome to study science under the Benedictine Benedetto Castelli (1577-1644), professor of mathematics at the Collegio di Sapienza. The perusal of Galileo's Dialoghi delle naove sciense (2638) inspired him with many developments of the mechanical principles there set forth, which he embodied in a treatise De motu (printed a mongst his Opera gcomefrica, 1644), Its communication by Castelli to Galileo in 1641 , with a proposal that Torricelli should reside with him, led to Torricelli repairing to Florence, where he met Galileo, and acted as his amanuensis during the three remaining months of his life. After Galileo's death Torricelli was nominated grand-ducal mathematician and professor of mathematics in the Florentine academy. The discovery of the principle of the harometer (q.v.) which has perpetuated his fame ("Torricullian tube" "Torticellian vacuum ') was made in 1643.

The publication amongst Torricelli's Opcra gcometrica (Florence, 1644) of a tract on the properties of the cycloid involved him in a controversy with G. P. de Roberval, who accused him of plagiarizing his earlier solution of the problem of its quadrature. There seems, howevel, no room for doubt that Torricelli's was arrived at independently. The matter was atill in debate when he was seized with pleurisy, and died at Florence on the 25th of October 1647. He was buried in San Lorenzo, and a commemorative statue of him erected at Faenza in 1864.

Among the new truths detected hy him was the valuable mechanical principle that if any number of bodies be so connected that, by their motion, their centre of gravity can neither ascend nor descend, then those bodies are in equilibrium. He also discovered the remarkable fact that the parabolas described (in a vacuum) by indefinitely numerous projectiles discharged from the same point with equal velocities, but in all directions have a paraboloid of revolution for their envelope. His theorem that a fluid issues from a small orifice with the same velocity (friction and atmospheric resistance being neglected) which it would have acquired in falling through the depth from its surface is of fundamental importance in hydraulica. He greatly improved both the telescope and microsrope. Several large object lenses, engraven with his name, are preserved at Florence. He used and developed B. Cavalieri's method of indivisibles.
A selection from Torricelli's manuscripts was published by Tommaso Bonaventura in 1715 . with the tirle Lexioni accademiche (Florence). They include an address of acknowledgment on his admission to the Accademia della Crusea. His essay on the inundations of the Val di Chiana was printed in Raccolea d"aufori che trattano del moto dell' acquc. iv. 115 (Florence. 1768), and ammongst Opusculi idraulici, uii. 347 (Bologna, 1822). For his life sec Fabroni, $V i l a c$ Italorum, i. 345; Ghinassi, Lettere fin qui inedite di Erangelista Torricelli (Faenza, r864); Tiraboschi, Storia della lett. it. viii. 302 (ed. 1824): Montucla, Hist. des math., vol. ii.; Marie, Hist. des sciences, iv. 133

TORRIDONIAN, in geology, a series of pre-Cambrian arenaceous sediments extensively developed in the north-west highlands of Scotland and particularly in the neigbbourhood of upper Loch Torridon, a circumstance which suggested the name Torridon Sandstone, first applied to these rocks by J. Nicol. The rocks are mainly red and chocolate sandstones, arkoses, flagstones and shales with coarse conglomentes locally at the base. Some of the materials of these rocks were derived from the underlying Lewisian gneiss, upon the uneven surface of which they rest; but the bulk of the material was obtained from rocks that are nowhere now exposed. Upon this ancient denuded land surface the Torridonian strata rest horizontally or with gentle inclination. Their outcrop extends in a belt of variable breadth from Cape Wratb to the Point of Sleet in Skye, running in a N.N.E.-S.S.W. direction through Ross-shire and Sutherlandshire. They form the isolated mountain peaks of Canisp, Quinag and Suilven in the neigbbourbood of Locb Assynt, of Shoch near Loch Maree and other hills. They attain their maximum development in the Applecross, Gairloch and Torridon districts, form the greater part of Scalpay, and occur also in Rum, Raasay, Soay and the Crowlin Islands. The Torridonian rocks have been subdivided into three groups: an upper Aultbea group, 3000-5000 ft.; a middle or Applecross group, $6000-8000$ ft.; and a lower or Diabeg group, 500 ft. in Gairloch but reaching a thickness of 7200 ft . in Skye.

See "The Geological Structure of the North-West Highlands \& Scotand, ${ }^{1}$ Mem. Geol. Surryy (Clasgow, 1907). (J. A. H.)
TORRIOIANO, PIETRO ($1472-1522$), Florentine sculptor, was, according to Vasari, one of the group of talented youths who studied art under the patronage of Lorenzo the Magnificent in Florence. Benvenuto Cellini, reporting 2 conversation with
 were copying the frescoes in the Carmine chapel, when sorat slighting remark made by Michelangelo so enraged Tornigisao that he struck him on the nose, and thus caused that disfiguicment which is so conspicuous in all the portraits of Nichelangein. Soon after this Torrigino visited Rome, and helped Pint:ricchio in modelling the elaborate stucco decorations in the

Apartamenti Borgia for Alexander VI. After some time spent as a hired soldier in the service of different states, Torrigiano was invited to England to execute the magnificent tombl for Henry VII. and his queen, which still exists in the lady chapel of Westminster Abbey. This appears to have been begun before the death of Hency VIL. in 1509, but was not finished till 1517. The two effigies are well modelled, and bave lifelike but not too realistic portraits. After this Torrigiano received the commission for the altar, retable and baldacchino which stood at the west, outside tbe screen of Henry VII.'s tomb. The altar had marble pilasters at the angles, two of whlch still exist, and below the mensa was a life-sized figure of the dead Christ in painted terra-cotta. The retable consisted of a large relie! of the Resurrection. The baldacchino was of marble, with enrichments of gilt hronze; part of its frieze still exists, as do also a large number of fragments of the terra-cotta angele which sufmounted the baldacchino and parts of the large figure of Christ. The whole of this work was destroyed by the Puritans in the 17th century. ${ }^{1}$ Henry VIII. also commissioned Torrigiano to make him a magnificent tomb, somewhat similar to that of Henry VII., but one-fourth larger, to be placed in a chapel at Windsor; it was, however, never completed, and its rich bronze was melted by the Commonwealth, togetber with that of Wolsey's tomb. The indentures for these various works still exist, and are printed by Neale, Westminster Abbcy, i. 54-59 (London, 1818). These interesting documents are written in English, and in them the Florentine is called "Peter Torrysany." For Henry VII.'s tomb he contracted to receive $f_{1} 500$, for the altar and its fit. tings $£ 1000$, and $\{2000$ for Henry VIII.'s tomb. Other works attributed from internal evidence to Torrigiano are the tomh of Margaret of Richmond, mother of Henry VII., in the south aisle of his chapel, and a terra-cotta effigy in the chapel of the Rolls.

While these royal works-were gaing on Torrigiano visited Florence in order to get skilled assistants. He tried to induce Benvenuto Cellini to come to England to help him, but Cellini refused partly from his distite to the brutal and swaggering manners of Torrigiano, and also because he did not wish to live among "such beasts as the English." The latter part of Torrigiano's life was spent in Spain, especially at Seville, where, besides the painted figure of St Hieronymus in the museum, some terra-cotta sculpture by him still exists. His violent temper got him into difficulties with the authoritics, and he ended his life in 1522 in the prisons of the Inquisition.

See Wilhelm Bode, Die italienische Plastik (Berlin, 1902).
TORRINGTON, ARTHUR HERBERT, EARL OF (16471716), British admiral, was the son of a judge, Sir Edward Herbert (c. 1591-1657). He entered the navy in 1663, and served in the Dutch wars of the reign of Charies IL., as well as against the Barbary pirates. From 1680 to 1683 he commanded in the Mediterranean. His career had been honourable, and he had been mounded in action. The known Royalist sentiments of his family combined with his reputation as a naval officer to point him out to the favour of the king, and James II. appointed him rear-aduriral of England and master of the robes. The king no doubt counted on bis support of the repeal of the Test Acts, as the admiral was member for Dover. Herbert refused. and was dismissed from his places. He now entered into communication with the agents of the prince of Orange, and promised to use his influence with the ficet to forvard a revolution. After the acquittal of the seven bishops in 1688 he carried the invitation to William of Orange. The Revolution brought him ample amends for his losses. He was named first lord, and took the command of the fieet at home. In 1689 he was at sca attempting to prevent the French admiral Chateau-Renault (y.v.) from landing the troops sent hy the ling of France to the aid of King James in Ireland. Though be fought an action with
${ }^{1}$ An old drawing still exists showing this claborate work; it is engraved in the Hicrurgia anflicana, p. 267 (London, 1848). Many hundreds of frapments of this serra-cotta sculpeure were found a few years ago hidden under the foor of the triforium in the abbey; they are unlortunately too much broken and imperioct to be fitted together.
the French in Bantry Bay on the soth of May he failed to baffe Chateau-Renault, who had a stronger force. Being discontented with the amount of force provided at sca, he resigned his place at the admiralty, but retained bis command at sea. In May 7689 be was created earl of Tortington. In 1690 he was in the Channel with a fleet of English and Dutch vessels, which did not rise above 56 in all, and found himself in front of the much soone powerful French feet. In his report to the council of regency be indicated his intention of retiring to the Thames, and boung sight of the enemy, saying that they would not do any harm to the coest while they knew his feet to be "in being." The council, which knew that the-Jacobites were preparing for a sisings and oaly waited for the support of a body of French troops, ordered him not to lose sight of the enemy, but rather then do that to give bettie "upon any advantage of the wind." On the 1oth of July Torrington, after consulting with his Dutch colleagues, made a half-hearted attack on the French off Beachy Head in which his own ship was kept out of fire, and severe kees iell on his allies. Then he retired to the Thames. The Freach parsuit was fortunately feeble (see Toumville, Comita DC) and the loss of the allies was comparatively alight. The indignation of the country was at first great, and Torington mas brought to a court martial in December. He was acquitted, but never again employed. Although twice married, he was ctididess when he died on the 14th of April 1716, his earldom becoming extinct. The unfavourable account of his moral character given by Dartmouth to Pepys is confirmed by Bishop Burset, who had seen much of him during his exile in Holland. Am attempt has boen made in recent years to rehabilitate the character of Torrington, and his phrase "a fleet in being "has been widely used (see Naval Watfarce, by Vice-Admiral P. H. Colomb).
See Charnock's Biog. Natr., i. 258. The best account of the battle of Beachey Head is to be found in " The Account given by Sir John Amby Vice:Admiral and Rear-Adeniral Rooke, to the Lorde Commiocmers" (1691).
tominietom, GBOREB BYNG, VIscount ($1663-8733$). Eadish admiral, was born at Wrotham, Kent. His father, Jota Byag, was compelled by pecuniary losses to sell his property ned his son entered the navy as:a king's lecter boy (see Navy) in 2678. He served in a ship stationed at Tangier, and for a time left the navy to enter one of the regiments of the garrison, but in 1683 he returned to the navy as lieutennnt, and went to the Eact Indies in the following year. During the year 1688, be bad an active share in bringing the ficet over to the prince of Oragge, and by the succeas of the revolution his fort une was mede. In 1702 he was appointed to the command of the "Namenu," and was at the taking and burning of the French loet at Vigo, and the next year he was made rear-admiral of the red. In 8704 be served in the Mediterranean under Sir Cloodesley Shovel, and reduced Gibraliar. He was in the battle of Malag2, and for his gallantry received the honour of knightmod in 1708 as admiral of the blue be commanded the aceatroa which baffied the attempt of the Old Pretender to land in Sooliand. In 1718 he commanded the fleet which defeated the Spmiards of Cape Passaro and compelled them to withdraw from their invation of Sicily. This commission he executed so well that the king made him a handsome present and sent hitn full pewers to negotiate with the princes and states of laty. Byng worured for the emperor's troops free access into the fortresses abich still held out in Sicity, sailed afterwards to Malta, and trought oat the Sticibian galleys and a ship belonging to the Terkey Company. By his advice and assistance the Germans meook the ciny of Messina in 1719, and destroyed the ships which by in the basin-an achievement which completed the ruin the maval power of Spain. To his conduct it was entirely owing that Sicity was subdued and the king of Spain forced to accepe the terms prescribed him by the quadruple alliance. On his reewra to England in 1721 he was made rear-admiral of Great Dritain, a member of the privy council, Baron Byng α Southill. in the county of Bedford and Viscount Torrington - Devombire. He was also made one of the Knights Com-
panions of the Bath rupon the revival of that order in 1725. In 1727 George II. on his accession made him first lord of the admiralty, and his administration was distinguished by the establishment of the Royal Naval College at Portsmouth. He dicd on the 17th of January 1733, and was huried at Southill, in Bedfordshire. Two of his eleven sons, Pattee (1699-1 147) and George (1701-1750), became respectively the and and 3rd viscounts. The title is still held by the descendants of the latter.

See Memoirs redating to Lond Torrimgton, Canden Soc., new weries 46, and A True Account of the Expeditions of the British Floel to Sicilly 1718-1720, published anonymotsly, but known to be by Thomas Corbett of the admiralty in 1739 . Forbin's Memoirs contain the French side of the expedition to Scotland in 1708.

TORRINGIOR, a borough of Litchfield county, Connecticut, U.S.A., in the township of Torrington, on the Naugatuck river, about 25 m . W. of Hartford. Pop. (1900), 8360 , of whom 256 ; were foreign-born; (1910) 15.483 iof the township, including the borough (1900) 12,453 ; (1910) 16,840 . It is served by the New York, New Haven \& Hartford railway and by an electric line connecting with Winsted. It has a public library (1865) with 15.000 volumes in rgog. There is a state armoury in the borough. Torrington is a prosperous manufacturing centre. In 1905 the value of the factory product was $\$ 9,674,124$. The township of Torrington, originally a part of the township of Windsor, was first settled in 1734, and was scparately incorporated in 1740. The site was covered by pine trees, which were much used for ship-building, and for this reason it was known as Mast Swamp. In 1751 a mill was erected, but there were few, if any, residences until $\mathbf{8 0 0}$. In 1806 the settlement was known as New Orleans village. In 1813 members of the Wolcott family of Litchfield, impressed with the water-power, bought land and built a woollen mill, and the village that soon developed was called Wolcottville. Its growth was slow until 1864. In 188: its name was changed to Torrington, and in 1887 the borough was incorporated.
See $S_{\text {; }}$ Orcutt's History of Torrington (Albany, 2878), and an article, ' The Growth of Torrington," in the Conmecticul Mogerime. vol. ix., No. 1.
TORRIMOMOM (Great Tomangion), a market town and municipal borough in the South Molton parliamentary division of Devonshire, England, on the Torridge, 225 m . W. by S. of London by the London \& South-Western railway. Pop. (1901), 3241. It stands on a hill overlooking the riehly wooded valley of the Torridge, here crossed by three bridges. Glove manufactures on a large scale, with flour and butter making and leather dressing, are the staple industries. The town is governed by a mayor, 4 aldermen and 12 councillors. Area, 3502 acres.
Torrington (Toritone) was the site of very early settlement, and possessed a market in Saxon times. The manor was held by Brictric in the reign of Edward the Confessor, and in 1086 formed part of the Domesday fief of Odo Fitz Gamelin, which later constituted an honour with Torrington as its caput. In 1221 it appears as a mesne borough under William de Toritone, a descendant of Odo and the supposed founder of the castle, which in 1228 was ordered to be razed to the ground, but is said to have been rehuilt in 1340 by Richard de Merton. The borough had a fair in 1221, and returned two members to parliament from 1295 until exempled from representation at its own request in 1368. The government was vested in bailifis and a commonalty, and no charter of incorporation was granted till that of Qoeen Mary in r554, which instituted a gaverning body of a mayor, 7 aldermen and 18 chief burgesses, with authority to hold a court of record every three weeks on Monday; law-days and view of frankpledge at Michaelmas and Easter; a weekly market on Saturday, and fairs at the feasts of St Michael and St George. This charter was confinmed by Elizabeth in 1568 and by James 1 . in 1617. A charter from James II. ia 1686 changed the style of the corporation to a mayor, 8 aldermen and 12 chief burgesses. In the 16 th century Torrington was an important centre of the clothing trade, and In 1605 the town is described as very prosperous, with three
fairs, and a great market "furnished from far on every quarter, being the most convenient place for occasions of king or county in those parts." The Saturday market is still maintained, but the fairs have been altered to the third Saturday in Marcb and the first Thursday in May. In 1643 Colonel Digby took up his position at Torrington and put to flight a contingent of parliamentary troops; but in 1646 the town was besieged hy Sir Thomas Fairfax and finally forced to surrender. The borough records were destroyed by fire in 1724 .

See Victoria Counly History: Devonshire; F. T. Colby, History of Greal Torringtom (1878)

TORSTENSSON, LENNART, Count (1603-1651), Swedish soldier, son of Torsten Leppartsson, commandant of Elfsborg, was born at Forstena in Vestergotland. At the age of fifteen he became one of the pages of the young Gustavus Adolphus and served during the Prussian campaigns of 1628-29. In 1629 he was set over the Swedish artillery, which under his guidance materially contributed to the victories of Breitenfeld (1631) and Lech (1632). The same year he was taken prisoner at Alte Veste and shut up for nearly a year at Ingolstadt. Under Banér he rendered distinguished service at the battle of Wittstock (1636) and during the encrgetic defence of Pomerania in 1637-38, as well as at the battle of Chemnitz (1638) and in the raid into Bohemia in 1639. Illness compelled him to return to Sweden in 1641, when he was made a senator. The sudden death of Baner in May 1641 recalled Torstensson to Germany as generalissimo of the Swedish forces and governor-general of Pomerania. He was at the same time promoted to the rank of field marshal. The period of his command (1641-1645) forms one of the most brilliant chapters in the military history of Sweden. In $164_{2} 2$ he marched through Brandenburg and Silesia into Moravia, taking all the principal fortresses on his way. On returning through Saxony be well nigh annihilated the Imperialist army at the second battle of Breitenfeld (Oct. 23, 1642). In 1643 he invaded Moravia for the second time, but was suddenly recalled to invade Denmark, when his rapid and unexpected intervention paralysed the Danish defence on the land side, though Torstensson's own position in Jutland was for a time precarious owing to the skiliul handling of the Danish fleet by Christian IV. In 1644 he led his army for the third time into the heart of Germany and routed the imperialists at Juterbog (Nov. 23). At the beginning of November 1645 he broke into Bohemia, and the brilliant victory of Jankow (Feb. 24, 1645) laid open before him the road to Vienna. Yet, though one end of the Danube bridge actually fell into his hands, his exhausted army was unable to penetrate any farther and, in December the same year, Torstensson, crippled by gout, was forced to resign his command and return to Sweden. In 1647 he was created a count. From 1648 to 1651 he ruled all the western provinces of Sweden, as governor-general. On his death at Stockholm (April 7, 1651) he was huried solemnly in the Riddarholmskyrka, the Pantheon of Sweden. Torstensson was remarkable for the extraordinary and incalculable rapidity of his movements, though very frequently he had to lead the army in a litter, as his bodily infirmities would not permit him to mount his horse. He was also the most scientific artillery officer and the best and most successful engineer in the Swedish army.

His son, Senator Count Anders Torstensson (1641-1686), was from 1674 to 1681 governor-general of Esthonia. The family became extinct on the sword-side in 1727.

See J. W. de Peyster, History of the Life of t. Tenstensson (Pough. keepsie, 1855): J. Feil, Torstensson before Vienna (Irans by de Peyster, New York, 1885): Gustavus III.. Enlogy of Torstensson (trans. by de Reyster, New York, 1872).

TORT (Fr. for wrong, from Lat. lorlus, twisted, participle
one haod, be an act which violates a general duty. The rule which it breaks must be one made by the law, not, as in the case of a mere breach of contract, a rule which the law protects because the parties have made it for themselves. On the other hand, a tort is essentially the source of a private right of action. An offence which is punishable, but for which no one can bring 2 civil action, is not a tort. It is quite possible for one and the same act to be a tort and a breach of contract, or a tort and a crime; it is even possible in one class of cases for the plaintiff to have the option-lor purposes of procedural advantage-of treating a real tort as a fictitious contract; but there is no necessary or general connexion. Again, it is not the case that pecuniary damages are always or necessarily the only remedy for a tort; hut the right to bring an action in common law jurisdiction, as distinct from equity, matrimonial or admiralty jurisdiction, with the consequent right to damages, is invariably present where a tort has been committed.

This technical use of the French word tort (which at one time was near becoming a synonym of ewong in literary English) is not very ancient, and anything like systematic treatment of the subject as a whole is very modern. Since about the middle of the 1gth century there has been 2 current assumption that all civil causes of action must be founded on either contract or tort; but there is no historical foundation for this doctrine, though modifed forms of the action of trespassactions in consimili casu, or "on the case" in the accustomed English phrase-did in practice largely supplant other more archaic forms of action by reason of their greater convenience. The old forms were designed as penal remedies for manifest breach of the peace or corruption of justice; and traces of the penal element remained in them long after the substance of the procedure had become private and merely civil. The transition belongs to the general history of English law.

In England the general scope of the law of torts has never been formulated by authorit y, the law having in fact been developed by a series of disconnected experiments with the various forms of action which seemed from time to time to promise the widest and most useful remedies. But there is no doubt that the duties enforced by the English law of torts are broadly those which the Roman institutional writers summed up in the precept Allerum non ladere. Every member of a civilized commonwealth is entitled to require of others a certain amount of respect for his person, reputation and property, and a certain amount of care and caution when they go about undertakings attended with risk to their neighbours. Under the modern law, it is submitted, the question arising when one man wilfully or recklessly harms another is not whet her some technical form of action can be found in which he is liable, bue whether he can justify or excuse himself. This view, at any rate, is countenanced by a judgment of the Supreme Court of the United States delivered in 1904. If it be right, the controverted question whether conspiracy is or is not a substantive cause of action seems to lose most of its importance. Instead of the doubtful proposition of law that some injuries become unlawful only when inflicted by concerted action, we shall have tbe plain proposition of fact that some kinds of injury cannot, as a rule. be inflicted by one person with such effect as to produce any damage worth suing for.

The precise amount of responsibility can be determined oaly by full consideration in each class nf cases. It is important to observe, however, that a law of responsibility confined to a mar's own personal acts and defaults would be of next to no practical use ander the conditions of modern society. What makes the law of torts really effective, especially with regard to redress for harm suffered by negligence, is the universal rule of law that every one is answerable for the acts and defaults of his servants of torquere), the technical term, in the law of England, of the (thet is, all perymanying under his direction and taking their dominions and possessions of the British Empire -7 \quad arn representing him) in the course of common law has been received or practically affars, and of the United States, for a givt breach of a duty imposed by haw, by, whinn becomes entitled to
to innocent persons, except 20 far as it might happen to constitute 2 breach of some express undertaking. We have spokea of the rule as universal, but, in the case of one servant of the same employer being injured by the default of another, an unfortunate abarration of the courts, which started about two generations soo from small beginnings, was pushed to extreme results, and led to great hardship. A partial remedy was applied in s880 by the Employers' Lisbility Act; and in 1897 a much bolder step was taken by the Workmen's Compensation Act (superveded by 2 more comprehensive act in 1906). But, as the common lew and the two acts (which proceed on entirely diferent principles) cover different Gields, with a good deal of overapping, and the acts are full of complicated provisos and exceptions, and contain very special provisions as to procedure, the improvement in substantial justice has been bought, 20 far, at the price of great confusion in the form of the law, and considerable difficulty in ascertaining what it is in any but the most obvious cases. The Workmen's Compentation Act iocludes cases of pure accident, where there is no fault at all, or none that can be proved, and therefore goes beyond the reasons of liability with which the law of torts has to do. In fact, it establishes a kind of compulsory insurance, which can be justifed only on wider grounds of policy. A novel and eatriordinary exception to the rule of responsihility for agents was made in the case of trade combinations by the Trade Disputes Act 1906. .. This has no interest for law as 1 science.

There are kinds of eases, on the other hand, in which the law, without aid from legislation, has imposed on occupiers and other persons in analogous positions a duty stricter than that of being answerable for themselves and their servants. Duties of this kind have been called "dutics of insuring safety." Generilly they extend to having the building, structure, or works in such order, having regard to the nature of the case, as not to create any danger to persons lawfully frequenting, using, or pecsing by them, which the exercise of reasonsble care and skill could have avoided; but in some cases of "extra-hazardous" risk, even proof of all possible diligence-according to English athority, which is not unanimously accepted in America-will not suffice. There has lately been a notable tendency to extend these principles to the duties incurred towards the public by local authorities who undertake public works. Positive duties crested by statute are on a similar footing, so far as the hreach α them is capable of giving rise to any private right of acioa.
The classification of actionable. wrongs is "perplexing," not becruse it is difficult to find a scheme of division, hut because it is erier to find many than to adhere to any one of them. We may watt either from the character of the defendant's act or omission, vith regard to his knowledge, intention and otherwise; or from the character of the harm suffered by the plaintif. Whichever of these we take as the primary line of distinction, the results can seddom be worked out witbout calling in the other. Taking fex the defendant's position, the widest governing principle is una, apart from various recognized grounds of immunity, a man is answerahle for the " natural and probable " consequences of his acts; is. such consequences as a reasonable man in his phece sbould have foresecn as probable. Still more is he answerwhe for what he did actually foresee and intend. Knowledge - perticular facts may be necessary to make particular kinds Crandact wrongful. Such is the rule in the case of fraud and ancoas, including what is rather unhappily called ofle," and what is now known as "unfair comthi the matter of trade names and descriptions, short Lidency of trade-marks. But where an absolute right Tepe man's person, reputation or goods is interfered - momedge nor specific intention need be proved. owe trespass altogether at our peril. It is in of the lew to judge acts by their apparent th by the actor's feelings or desires. I cannot r good motives for infringing another man's Wotber grounds of excuse may be available;
and it is now settled conversely, though after much doubt; that an act not otherwisc unlawful is not, as a rule, made unlawiul hy being done from an evil motive. This rule was known some time ago to apply to the exercise of rights of property, and such speculative doubt as remained was removed by the decision of the House of Lords in the leading case of Allen v. Flood (1898, A.C. 1). We now know that it applies to the exercise of all common rights. The exceptions are very few, and must be explained by exceptional reasons. Indeed, only two are known to the present writer-malicious prosecution, and the misuse of a "privileged occasion " which would justify the communication of defamatory matter if made in good faith. In each case the wrong lies in the deliberate perversion of a right or privilege allowed for the puhlic good, though the precise extent of the analogy is not certain at present. ${ }^{1}$ It must be remembered, however, that the presence or absence of personal ill will, and the behaviour of the parties generaily, may have an important effect, when liability is proved or admitted, in mitigating or aggravating the amount of damages awarded by juries and allowed by the court to be reasonable. It may likewise be noted, hy way of caution, that sone problems of criminal law, with which we are not bere concerned, require more subtle consideration. However, it is hardly ever safe to assume that the bounds of civil and criminal liability will be found coextensive. Perhaps we may go so fiar as to say that a man is neither civilly nor criminally liable for a mere omission (not being disobedience to a lawful command which he was bound to whey), unless he has in some way assumed 2 special duty of doing the act omitted.

We have already had to mention the existence of grounds of Immunity for acts that would otberwise be wrongful. Such grounds there must be if the law is to be enforced and justice administered at all, and if the business of life is to be carried on with any freedom. Roughly speaking, we find in these cases one of the following conditions: Either the defendant was executing a lawful authority; or he was justified by extraordinary necessity; or be was doing something permitted by legislation for reasons of superior atility, though it may produce damage to others, and either with or without special provisions for compensating damage; or he was exercising a common right in matters open to froe use and competition; or the plaintiff had, by consent or otherwise, disshled himself from having any grievance. Pure accident will hardly seem to any one who is not a lawyer to be a special ground of exemption, the question being rather how it could ever be supposed to be a ground of liability. But it was supposed so by many lawyens down to recent times; the reason lying in a history of archaic ideas too long to be traced here. Exercise of common rights is the category where most difficulty arises. Here, in fact, the point at which a man's freedom is limited by his neighbour's has to be fixed hy a sense of policy not capable of formal demonstration.

As Justice Holmes of the Supreme Court of the United States has said, we allow unlimited trade competition (so long as it is without (raud) though we know that many traders must suffer, and some may be ruined by it, because we hold that free competition is worth more to society than its costs. A state with different economic foundations might have a different law on this, as on many other points. This freedom extends not only to the exercise of one's calling, but to choosing with whom and under what conditions one will cxercise it. Also the law will not inquire with what motives a common right is exercised; and this applies to the ordinary rights of an owner in the use of his property

I It was lormerly mppowed that an action by a party to a contract against a third person for procuring the other party to break bis contract was within the same class. i.e. that malice must be proved. But since Allew v. Flood, and the later decision of the House of Lords in Owinn v. Leakhem (1901. AC. 495), this view eeens untenable. The ground of action is the intentioanal violation of an existing legal right: Which, however, since 1go6, may be practised with impunity in the United Kingdom "in contemplation or furtherance of a trade dispute ": Trade Disputes Act, 53 .

 ami gue my lums lis any way whemth can and is simumity ut imy nafylibourim.

 flimi ih. pinith in jem in thy phambil. ae reqardes the kind ot

 4. whath of Whing the moneman wiywrty, is not

 thert te tur thay ty the hew whererv. Ne can claim or finm yes thimhty and why he cormbasing of a wrong

 the wowlinmen with the ivitoel lisoussions of the test and

"TV relw Hal whans motives for exercising his common
 (0) MuA woup multure, Who lo a free agent, to do an act of this kind WW. Whinut wis to an actionable wrong at the suit of a third Nromis whe lichunitied by the act, and that whatever the adviser's Autive wal tw. Thh appears to be included in the decision of the Howe of Dinels in Alfen v. Flood. That decision, though not tanthey la wny trucrican court, is approved and followed in most Amwiom hurimictions. It is otherwise where a system of coercion awroniug on a man's workmen or customers in order to injure him in his busincss. The extension of immunity to such conduct woul! destroy the value of the consmon right which the law proievts: Quinn v. Leathem. The coercion need not be physical, and the wrong as a whole may be made up of acts none of which taken alone would be a cause of action. In this point there is nothing novel. for it is so in almost every case of nuisance. Conspiracy is naturally a frequent element in such cases, but it does not appear to be neceseary; if it were millionaires and corporations mighe excoed the bounds of lawful competition with impunity whenever they were strong enough. The reasons given in Quirn v. Lecthem are many and various, but the decision is quite consistent with Allen v. Flood. Howevar, the Trade Disputes Act will probably have its intended effect of reducing the law on this head to relative insignificance in England.
thumuh the tern is of respectable antiquity. Most recent of all In the ruluric of "unfair competition," which is fast acquiring nown infortance.

It will be observed that the English law of torts answers approximately in its purpose and contents to the Roman law of obligations ix delicto and quasi ex delicto. When we have allowed for the peculiar Ircatment of rights of property in the common law, and remembered that, according to one plausible theory, the Roman law of possession itself is closely connected in its origin with the law of delicts, we shall fond the correspondenic at lease as close as might be expected a priors. Nor is the curremandeace to be explained by borrowing, for this hranch af the covemon law seems to owe less to the classical Noman we excixazl canon law than any other. Some few niownenstud Kivan maxims have done considerable harm in drtas twi the primiples have been worked out in all but somplout iedrpendence.
Allot modern books and monographs will be found at the - Dat chartite on "Torts" by the present writer in the Encyclo* f tht Liss of Emgland (2nd ed.). Among recent editions - evert se the law of torts and new publications the following may t moxivod here: Addison, by W. E. Gordon and W. H. Griffth (k) Nos): Clerk and Lindsel!, by Wyatt Paine (4th ed., man): Wuthet (8th ed., 1008) ; Salmond. The Law of Torts (znd ed., Fwo In America: Burdick, The Low of Topts (1go5); Street, The Heviones of Legal Liability (1906), 3 vols. of which vol. is is min livt.
(F. Po.)
ronroise. Of the three names generally used for this order - repteles, viz. tortoise, turtle and terrapin, the first is derived from the Old French word toriis, i.e. twisted, and was probably applied first to the common European species on account of its curiously bent forelegs. Turtle is believed to be a corruption of the same word, but the origin of the name terrapin is unknown: since the time of the navigators of the zoth century it has been in general use for fresh-water species of the tropics, and especially for those of the New World. The name tortoise is now generally applicd to the terrestrial members of this group of animals, and that of turtle to those which live in the sea or pass a great part of their existence in fresh water. They constitute one of the orders of reptiles, the Chelonia: toothless reptiles, with well developed limbs, with a dorsal and a ventral shell composed o[numerous bony plates, darge firmly fixed quadrates, a longitudinal anal opening and an unpaired copulatory organ.
The whole shell consists of the dorsal. more or less convex carapace and the ventral plastron, both portions being joined laterally by the so-called bridge. The carapace is (with the exceplion of Sphargis) formed by dermal ossifications which are arranged in regular series, viz. a median row (i nuchal, mostly 8 neurats and 1-3 supracaudal or pygal plates), a right and teít row of costal plates which surround ard partly' replace the rits, and a consider. able number (about 11 pairs) of marginal plates. The plastron consitts of usually 9, rarely II, dermal bones, viz. paired spi-, hyo-, hypo- and xiphi-plastral plates and the unpaired endo-plastral; the latter is homologous with the interclavicte, the epi-plastra with the clavicles, the rest with so-calicd abdodunal ribs of other reptiles.
In most Chelonians the bony shell is covered with a hard epidermal coat, which is divided into large shields, commonly called "tortoiseshell." These horny shiclds or scutes do not correspond in aumbers and extent with the underlying bones, although there is a general, vague resemblance in their arrangement; for instance. there is a neural, a paired costal and a paired marginal series. The terminology may be learned from the accompanying illustrations (figs. I and 2).
The integuments of the head, neck, tail and limbs are cither soft and smooth or scaly or tubercular, frequently with small osscous nuclei.
All the bones of the skull are suturally united. The dentary portion of the mandible consists of one piece only, both halves being completely fused together. The pectoral arch remains separate in the median line; it consists of the coracoids, which slope backwards, and the scapulae, which stand upright and ofren abut against the inside of the first pair of costal plates. Near the glenoid cavity for 1 he humerus arises from the scapula a long procens which is directed transversely towards its fellow'; it represents the acromial process of other vertebrates, although so much enlarged. and is neither the precoracoid, nor the clavicle, as stated by the thoughtless. The tail is still best developed in the Chelydridae, shortest in the Trionychoidea. Since it contains the large copulatory organ. it is less reduced in the males. No Chelonians possess the slightest
traces of teeth, bust their jaws are provited with horny sheaths, with hard and sharp edges, forming a beak.

The number of Chelonians known at present may be estimated at about 200 , the fresh-water species being far the most numerous, and are abundant in well-watered districts of the tropical and sub-tropical zones. Their number and variety decrease beyond the tropics, and in the north they disappear entirely about the soth parallel in the restern and about the 56th in the castern hemisphere, whilst in the southern hemisphere the terrestrial forms seem to advance to $36^{\circ} \mathrm{S}$. only. The marine turtles, which are spread over the whole of the equatorial and sub-tropical seas, sometimes stray beyond those limits. As in other orders

Figs. 1, 2.-Shell of Testudo pardalis, to show the divisions of -he integument, which are marked by entire lines, and of the cusous carapace, these being marked by dotted lines. Fig. 1, lipper or dorsal aspect. Fig. 2, Lower or ventral aspect.
Epidermal shields:-
Bones of the Carapace:-
sc, Costals.
=, Vertebrals.
f. Marginals.
\&. Culars.
of. Poslgulars or humerals.
f. Peciorals.
cb, Abuminals.
ph, Preanals or femorals.
in, Anals.

of reptiles. the most specialized and the largest forms are iestricted to the tropics (with the exception of Macroclemmys); but, unlike lizards or snakes, Chelonians are unable to exist in sterile districts or at great alitudes.
They show a great divergence in their mode of life-tsome living constantly on land, others having partly terrestria! proly nquatic halits, of he: arin raty berving the wnoct Unillivar fue short chub-shaped feet with blunt claws, and a very convex, beary. completely ossified shell. In the fresh-water forms the foints of the limb bones are much more mobile, the digits distinct, armed with sharp claws, and united by a membrane
or web; their shell is less convex, and is flatened, and more or less extensive areas may remain unossified, or transparent windows are formed with age, for instance in Batagur. As a rule, the degree of development of the interdigital web and of convexity of the shell indicates the prevalence of aquatic or terrestrial habits of a species of terrapin. Finally, the marine turtles have paddle-shaped limbs resembling those of Cetaceans.
Land tortoises are sufficiently protected by their carapace, and therefore have no need of any special modification of structure by means of which their appearance would be assimilated to the surroundings and thus give them additional security from their enemies. These, however, are few in number. On the other hand, among the carnivorous terrapins and freshwater turtles instances of protective resemblance are not scarce, and may even attain to a bigh degree of specialization, as in Chelys, the matamata. The colours of land tortoises are generally plain, or in yellow and brown patterns, whilst those of many terrapins are singularly varied, bright and beautiful, especially in the very young, but all this beauty is lost in the adult of many species.

Chetonians are diurna! animals; only a few are active during the night, habitually or on special occasions, as, for instance, cluring oviposition. Land tortoises are slow in alt their movements, but all kinds living in water can execute rapid motions, either to seize their prey or to escape from danger. NIL Chelonians are stationary, residing throughout the year in the same locality, with the exception of the matine turtles, which periodically migrate to their breeding-stations. Species inhabiting temperate regions hibernate.

Land tortoises, a fer terrapins, and some of the marine turtes are herbivorous, the others carnivorous, their prey consisting chicfly of fish, frogs, molluses, and other small aquatic animals; sonse, e.g. Clemmys insculpta and Cistudo curolina, have a mixed vegetable and animal diet.

All Chelonians are oviparous, and the eggs are generatly covered with a hard shell, mostly elliptical, rarely quite round, as in the case of the marine turtes. The various moditications, and also the not uncommon individual variations, in the composition of the carapace plates and the number and disposition of the shicids, are very significant. They show an unmistakable tendency towards reduction in numbers, a concentration and simplification of the, shell and its covcring shields. We can to a certain extent reconstruct a generalized ancestral tortoise and thereby narrow the wide gap which segarates the Chelonia from every other reptilian order. The early Chelonians possessed most likely more than five longitudinal dorsal rows of plates. The presence of several small supramarginal shields in Mocroclemmy's may be an indication that the total number of longitudinal rows was originally at least seven. The number of transverse rows, borh of plates and shields, was also greater. We can account for at least twelve median p̣lates and as many pairs of marginals, but for only eight median and cighe pairs of costal shields (individual variations observed in Thalossochelys); It stands to reason that originally each trunk metamere had its full complement of plates and shields: consequently that about iwelve trunk metameres partook in the formation of the shelt, which, with subsequent shortening and broadening af the trunk, has under: gone considerable concentration and reduction, a process which has reduced the costal plates to seven pairs in the American species of Trionyx, has completely abolished the neural plates of some Chelydidac, and has brought down the costal shiclds to four pairs in the majority of recent Chelonians. In several species of Testwio the tittle nuchal shield is suppressed, thereby reducing the unpaired median shields to five. The cumplete absence of shields in the Triony. chider and in Careflorkelys is also due to a secondary process, which, bowever, has proceeded in a different way.

Classification of Chalonia.

H. Stannius in 1854 clcarly separated the Trionychoidea from the rest. E. D. Cope, in $18 ; 0$, distinguished between Pleurodira and Cryptodira according to whether the neek, \$iph or seeph, is bent sidewards, or hidden by being withdrawn in an S-shaped curve in a vertical plane; he also separated

 are most unfortunate. misleading. Athecae (from oñn, shell) has reference to the absence of a homy shell-covering in the leathery turtle; but since the same character applies to Trionychoidea and to Carctiochelys. nobodv. can guess thi:t
the term Athecac in Dollo's sense refers to the fact that the shell of the leathery turtle is not homologous with the typical shell or Ojkn of the other Chelonians. The grouping of the latter into families recognizable by chiefly internal, skeletal characters has been effected by G. A. Boulenger. For practical purposes the following " key" is preferable to those taxonomic characters which are mentioned in the descriptions of the different familics. The relationships between them may be indicated as follows:-

Key to the Families of Cheloria.
Shelt covered with horny shields
Digits distinct, with five or four claws.
Pectoral shields separated from the marginals by inframarginals.
Tail long and crested. Plastron small and cruciform
Tail long, covered with rings of shields. Plastron large

Chelydridae
Platysternidae
Dermatemydidae
Tail short
Pectoral shields in contact with the mar- ginals.
Plastral shie!ds 11 or 12, without an intergular.
Neck retractile in an S-shaped vertical curve
hields is, an intergular being Plastral shields 13 , an intergular being 1 present.
Neck bending sideways under the shell
Limbs paddle-shaped, with one or two claws
Shell without horny shields, covered with soft leathery skin.
Digits distinct, broadly webbed, but with only three claws

Testudinidae

Chelydidae
\{Pelomedusidae

Chelonidae

Trionychoidea

Limbs paddle-shaped.
Shell composed of regular series of bony plates. Two claws
Shell composed of very many small plates . arranged like mosaic. No claws

Carettochelydidae
Sphargidae.
Sub-order I. Athecae.-The shell consists of a mosaic of numerous smalt polygonal osseous plates and is covered with leathery skin without any horny shields. The limbs are transformed into paddles, without claws. Marine. Sole representative Sphargis or Dermatochelys coriocea, the leathery turtle or luth; it is the largest of living Chelonians, surpassing 6 ft . in length, has a wide distribution over all the intertropical seas, but is very rare everywhere; a few stragglers have appeared as far north as the coasts of Long Island, and those of Greas Britain, Holland and France. It is a curious fact that only adults and young, but none of intermediate size, happen to be known. This creature shows many important features. The vertebrae and ribs are not fused with, but remain free from, the carapace, and this is fundamentally different from and not homologous with that of other Chelon. ians. O. P. Hay has suggested that the mosaic polygonal components of the shell of Sphargis are, so to speak, an earlier generation of osteodermal plates than the fewer and larger plates of the Thecophora, which in them fuse with the neural arches and the ribs. Sphargis has, however, the later category in the plastron and in its first neural or nuchal plate. If this suggestion is correct, this eurte has either lost or perthaps never had developed the horny shields. The many mosaic plates comprise larger plates which form an unpaired median, two pairs of other dorsal, a lateral and three pairs of ventral series or ridges; thisteen, or when the inner ventral pair fuses, twelve pairs in all.

The skull, excellently studied by J. F. van Bemmelen, much resembles that of Chdons, but so-called epipterygoids are absent:
 and maxillariey, of metherfeptraine iwims these bones by the
palatines, and these do not at all ventrally roof over the choanae The position of Sphargis in the system is still a moot question. G. A. Boulenger looks upon it as the sole remnant of a primitive group in opposition to all the other recent Chelonia: G. Baur considered it the most specialized descendant of the Chelonidae, a

Fig. 3.-A portion of the Osseous Plates of the Carapace of Sphargis coriacec, showing three large kecled plates of one of the longitudinal ridges of the carapace, with a number of the small irregular plates on either side of them.
view which has been supported by W. Dames, E. C. Case, and to a certain extent by J. F. van Bemmelen. For literature, \&e., see L. Dollo, Bull. S. R. Bruxplles (Février 4, 1gor).
Sub-order II. Thecophora.- The bony shell is composed of several longitudinal series of plates (on the dorsal side a median or neural, a paired lateral or costal series, and marginal plates). With few exceptions this shell is covered with large horny scutes or shields.
Super-family 1. Cryptodira.- The neck, if retractile, bends in an S-shaped curve in a vertical plane. The pelvis is not fused with the shell, and this is covered with large hornv shields, except in Carettochelys.

Family I. Chelydridae-The plastron is rather narrow, and crossshaped; the bridge is very narrow and is covered by a pair of shields, the displaced abdominals, which are separated from the marginals by a few inframarginals. The limbs, neck and head are so stout that they cannot completely be withdrawn into the shell. The tail is very long. Only two genera with three species, confined to America. Chelydra serpentinc, the "snapping turte," ranging from the Canadian lakes through the United States east of the Rockies; closely allied is C. rossignoni of Central America and Ecuador. Macroclemmys Lemmincki, the "alligator turtle," is the largest known fresh-water Chelonian, its shell growing to a length

Fig. 4.-The Snapping Turtle (Chelydra serpentina).
of 3 ft . It is characterized by the three series of strong prominent keels along the back; it inhabits the whole basin of the Misissippi and Missouri rivers.

Family 2. Dermatemydidae-The pectoral shields are widely separated from the marginals by inframarginals, the gulars are small or absent, and the tail is extremely short. Only a few species, in Central America. The plastron is composed of nine plates. The nuchal plate has a palr of rib-like processes like those of the Chelydridae. One or more of the posterior costal plates meet in the middle tine. The shell of these aquatic, broadly web-fingered tortoises, is very flat and the covering shields are thin. They feed

Eeon thaveh grass and empocially fruit Slomathpacs es. sabini
Family 3. Cinosternidac. Closely allied to the two previous familiz from which Cinosternum, the only genus, differs chiefly by the absence of the endo-plastral plate. Inframaginals are present. The nuchal plate has a pair of rib-like processes. The neural plates are interrupted by the meeting of aeveral pairs of the costal plates. Twenty-three marginal shields. In some species the skin of the logs and meck is so bagsy that these parta slip in, the cin rolling of, when such a turtle withdraws into its ahell. In wome the plastron is hinged and thecreature can ahut itself up tightly, e.8. C. Lewcostome of Mexico; in others the plastron leaves gaps, or it is narrow and without hinges, e.g. C. odoratwm, the mud turtio or etinkpot terrapin of the eastern half of North America. About a dosen specics, mostly Central American.

Family 4- Platyaternidac-Plalystrnam megaceplalwin, the only epecies, Irom Burma to southern China. The total length of theos thick-headed, very long-tailed curtles is sbout 1 ft., only 5 in. belonging to the well. The plastron is lage, oblong not cruciform, componed of nine platee. The nuchal is devoid of rib-like procentes. A unique armogement that the jugals are completely phut af from the orbits owing to the meeting of the post-frontals with the maxill

Family 5. Tetradinidae-The shell is alwaye covered with welldeveioped chields; thoee which cover the plastral bridge are in direct confact with the marginals. The plastron is composed of nine bones. The digits have four or five clawa. The neck is completely retractile.

This family contains the majority of tortoises, divided into as many'as 20 genem. These, starting with Emys as the least specialived, can be arranged in two main diverging lines, one culminating in the thoroughly aquatic Batagur, the other in the excluaively terrestrial forms. Emys, with the plastron movably united to the carapace; with well-webbed limbs, amphibious. E. orbicularis or curopocs was, towaris the end of the Pleistocene period, distributed over a great part of middle Europe, remains occurring in the peat of England. Beltium, Denmark and Sweden; it is now withdrawing eastwards, being restricted in Germany to isolated localities east of Berlin, but if reoccurs in Poland and Russia, whence it extends into western Asia; it is common in south Europe. The other apecies, E Mandingi, lives in Canada and the north-eastern states of the Union. Clemmys with the plastron immovably united to the cerrpace: temperate bolarctic region, e.s. C. caspica, C. leprosa in Spain and Morocco; C. insculpte in north-east America. Malacoclestwy with a few species in North America, e.g. M. Lerrapin, the much prized "diamond-back" Chrysewys with many American species, e.f. Ch. picke, the "paluted terrapin" and C. concinna, most of them very handsomely coloured and marked when atill young. Balagur and Kachuga in the Indinn sub-region.

Carendo caroling, the box tortoise of North Americs, with the platron divided into an anterior and a posterior movable lohe, so that the creature can shut itself up completely. Although emencially by its internal structure a water tortoise, it has bocome abmolutely terreatrial in habits, and herewith agree the highbectred instead of depressed shell, the short weblesifingers and its general coloration. It has a mixed diet. The eyes of the males ere red, those of the females are brown. From Long laland to Menico. Cinirys, e.g. belliang of tropical Africa, has the posterior partion of the carapace movably hinged. Pyris arochemides of Madagagear hal the front-lohe of the plastron hinged.

Testudo, the main genus, with about 40 species, is commopolitan in tropical and sub-tropical countries, with the exception of the whole of the Australian and Malay countries; most of the species are Arrican. T. eroeco, in Mediterranean countries and islands T. - erginata in Greece with the posterior margin of the carapace mach flanged or serrated, and T. ibero or mawrianica from Morocco to Persia; both differ from T. graeca by an unpaired supracaudal. anerinal whield, and by the posscasion of a strong, conical, borny tabercle on the hinder curface of the thigh. With age the posterior portion of the plastron develops a transverve ligamentous hinge. T. polyphemax, the "gopher" of southern United States, lives in pairs in elf-dug burrows. T. tabulala is one of the few South Arerican terrestrial tortoises.

Of great interest are the so-called gigantic land tortoisen In former epochs truly gigantic species of the genua Testudo had a wide and probably more continuous distribution. There was T. aflas, of the Pliocene of the Sivalik hills with a slaull nearly 8 in. long, tere the abell probably, measured not more than 6 ft in length, the restored epecimen in the Natural History Museum at South Kenaington being exaggereted. T. perpiguiana of Pliocent France wer alvo large. Large land tortoises, with a length of thell of gnore than 2 ft., became reatricted to two widely meparated regions d the world, viz, the Galapagoa Islands (called thus alter the Spanish gelagoge. i.e. tortoise), and islands in the western Indian Ocean viz. the Mancarerves (Bourbon, Mauritine and Rodriguez) and AldabraWhen they becanne extinct in Madagacar is not known, but T. Eramdidieri was a very large kind, of apparently very recent date. At the time of their dincovery those smaller islands were unfahabited by man or any predaceous mammal. It was on these peceful islands that land tortoises lived in great numbers; with
plenty of food there was nothing for them to do but to feed, to propargate, to grow and to vary. Most of the islands were or are mhabited by one or more typical, local forms. As they provided, like the equally ill-fated dodo and oolitaire, a welcome provision of excellent meat, ships carried them about, to be slaughtered as occasion required, and mon almost exterminated them; some were occasionally liberated on other islanda, for instance, on the Seychelles and on the Chagos, or they were left as presents, in Ceylon, Java or on Rotuma near the Fijis. Thus it has come to pass that the few eurvivors have been very much scattered. The small genuine etock at Aldabra is now under government protection in a way. A large male of T. eiganiea or Lepheantiele or holalissa or ponderase, was I -itught to I, milon and weighed 870 \%; another apecimen had in Iccis been living at St Helena for more than one hundred years. A specimen of 7 . dasudini, native of the South Island of Aldabra, was known for many years on Egmont Island, one of the Che gois group, then it was taken to Mauritius and then to England, were of course it soon died; its shell measures 55 in. in a straight tine, and it weighed 560 Jb . The type apecimen of T. sumeirei, supposed to have come originally from the Seychelles, was in 1908 still kept in the barrack grounds at Port Louis, Mauri tius, and had been known as a large tortoise for about 150 years. T. mosmaeri was a very thin-shelled species in Rodriguez. Of the Calapagos specjes T. ephippinm still survives on Duncan Island: $T_{\text {r }}$ abingdoni lived on Abingdon Island; of $T_{\text {. }}$ elephemlopus or vicima, C. Baut still collected 21 specimens in 1893 on Albemarle Island. One monster of this kind is said to have measured 56 in. over the curve of the carapace, with a skull a little mone than 7 in. in length. All the Galapagos species are remarkable for their comparatively small head and the very long neck, which is much larger and mone slender than that of the eastern species.

Family 6. Chelonidae. Marine turtles, with only two recent genera, with three widely distributed species. The limbs are paddleshaped, with only one or two claws, and the shell is covered with horny shields. The neck is short and incompletely retractile. The parietals, post-frontals, squamosals, quadrato-jugals, and jugals are much expanded and form an additional or false roof over the temporal region of the skull.

The Chelonidae are a highly specialized off shoot of the Cryptodira, adapted to marine life. Fundamentally they agree most with the Testudinidae, and there is nothing primitive about them except that they still possess complete series of inframarginal shiclds.

Chelone, with only 4 pairs of costal chields, with 5 neurals and a broad nuchal. C. mydas an viridis, the "green or edible turtle,"

Fic. 5.-Green Turtle (Chelone mydos).
has, when adult, a nearly smooth shell. It attaing a length of nearly 4 ft ., and may then weigh more than three hundredweight. Their food consists of algae, and of Zostera morima. Their capture forms a regular pursuit wherever they occur in any numbers. Comparatively few are caught in the open sea, others in staked nets, but the majority are intercepted at well-known periods and localities where they go ashore to deposit their eggs. These are round, with a parchment-like shell and buried in the sand, above the high-tide mark, as many as 100 to 250 heing laid by one fenale. They are eagerly searched for and eaten. The famous turtlesoup is made not only of the meat and the fat, but also from the thick and gelatinous layer of subcutancous tissue which lines the inside of the shell. Only the females are caten; the malcs, recognizable by the longer tail, are rejected at the London market. This species inhabits the Atlantic, Indian and Pacific Ocen ns.
C. imbricata. the "hawksbill turtle." The shicids are thick strongly overlapping each other from before backwands, but in oid specimena the shieids lose their keel, flatten and become juxtaposed. The borny cover of the upper jaw forms a hooked beak. This species lives upon fish and molluses and is not eaten; but is much persecuted for the horny shields which yield the

TORTOISE

"tortoise-shell, " so lar as this is not a [raudulent imitation. When heated in oil, or boiled, the shields (which singly are not thick enough to be manulactured into larker articles) can be weljed together

Fig. 6.-Hawksbill Turtie (Chefone imbricata).
ranges over all the tropical and sub-tropical scas and ecarcely reaches 3 (t. in length, but such a shell yields up,to 8 to of tortoiseshell.

Thalessockelys coretto, the "loggerbead," has normally five pairs of costal shields, but whilst the number of shields in the genus Chelone is very constant, that of the logeserhead varies individually to an astonishing extent. The greatest number of neurals observed, and counting the nuchal as the first, is 8 , and 8 pairs of costal; in all 24 : the lowest numbers are 6 neurals with 5 pairs of costals; odd costals are frequent. The most interesting facts are that some of the supernumerary shields are much smaller than the others, sometimes mere vestiges in all stages of gradual suppression, and that the abnormalities are much more common in babies and small specimens than in adults. The importance of these orthogenetic variations has been discussed by H. Gadow in A. Willey's Zoolog. Resalls, pt. iti. p. 207-222, pls. 24, 25 (Cambridge 1899).

Fig. 7.-Loggerhead (Thalassochelys caretto).
The " loggerinead" is carnivorous, feeding on fish, molluses and crustaceans, and is not esteemed as lood. A sreat part of the turtle-oil which finds its way into the market is obtained from it; its tortoiseshell is of an inferior quality. Besides all the intertropical seas it inhabits the Mediterrancan, and is an accidental visitor of the werterts caate of Europe. The old epecimen captured on the Dutch coast in 1894 containcd the cnormous number of 1150 egss .
Super-family 2. Pleurodira.-The long neck bends laterally and is tuctied away between the anterior portion of the carapace and the
plastron. The dorsal and ventrl ends of the pelvis are anchyloed to the shell. Fresh-water tortoises of South America. Australia, Africa and Madsgascar.

Fig. 8.-The Matamata (Chelys fimbriata) with side view of head, and separate view of plastron.
Family I. Pelomedusidae.-Neckcompletely retractile. Carapace covered with horny shields, of which the nuchal is wanting. Plastron composed of is plates. With 24 marginal and 13 plastral shields,

Fig. 9.-Lower view of Trionycx exphratica.
inclusive of a conspicuaus intergular. Sternothaeress in Africz and Madagascar. Pelomedusa عaleata in Madagascar and from the Cape to the Sinaitic peninsula. Podocnemis is common in tropical South America, e.g. P. exponsa of Brazilian rivers, noteworthy for
the millions of eqs which are, or were, annually collected for the Gake of their oil. Bates (The Nahuralisf on the Riser Amazon) gives a most interesting account of these turtes, which are entirely rresivorous.
Family 2. Chetydidae-Tbe neck, when bent, remains partly expowed. Shell covered with shields Plastron composed of 9 plates but covered with 13 shiclds. This family, still represented by mearly 30 specics, with 8 genera, is found in South America and in Australia. Chelys fimbriofa, the "matamata "in the rivers of Cuiang and North Brazij; total length about 3 ft ; with animal diet. Hydromedusa, e.g. feciferea, with very long nect in Brazil, much resembling Chelodima. e.g. Longicollis of the Australian region.
Family 3 Carettochelydidac.- Curellochelys insculpla, the only species, in the Fly river of New Guinea; still imperfectly known. This poculiar turtle seems to stand in the same relation to the Chely. didae and to the Trionychidae as do the Chelonidas to the Testedinidac by the ransformation of the limbs into paddles with only two claws, and the complere reduction of the horny shiclds upon the whell, which is covered with soft skin. The plastron is composed of 9 plates; the 6 neural plates are all eeparated from one another by the costale. The premaxilla is single, as elsewhere only in

Fic. 10.-Upper view of the Turtle of the Euphrates (Triowys exphraixa).
Chelys and in the Trionychidac. The neck is short and non-retractile. Length of shell about 18 in.
Super-family 3. Trionychoidea. The shell is very fat and moch rraaller than the body. and covered with soft leathery skin, but traces of horny structures are still represented, especially in the roung of some species, by numerous scaticred little spikes on the back of the shell and cyen on the soft parts of the back. The limbs are ehort, broadly welbed and only the three inner digites ane prorided with claws. Head and neck are retractike, bending in a sig. moid curve in a vertical plane. The jaws are concealed by solt lip-like flaps and the nose forms a short soft prabrecis. The tem. poral region is not covered in by any arches; the quadrate is trumpetshaped as in the Chelydidae, but the jugular arch is complete. The peivis is not anchylosed to the shell. The carapace is nuch reduced in size, the ribs extending beyond the costal plates, and tbere are no inarginals; except in the African Cyrlanortss the exural plates form a contiauous series. All the nine clements of the plastron are deficient and but very loosely connected with each other. Most of these redurtions in the skeletal and tegumentary armature are the result of life in muddy waters, in the bottom of which these creatures bury themselves with only the head exposed. They feed upon aquatic animals: those which are partial to hardebelled moilascs soon wear down the sharp horny edges of 1 he ${ }^{2}$ ws, and thick horny crushing pads are developed io their stead. They
only crawl upon land in order to lay their round brittie epgs, Trionyxes inhabit the rivers of Asia. Africa and North Ameria. Trionyx ferox, the "soft-shelled curtte," in the whole of the Mississippi basin and in the chain of the great northern lakes. T. triunguis in Africa, the largest apecies, with a length of shell of 3 ft . T. hurum and T. zanzeficys are the commonest Indian species. The young are ornamented with two or thrse pairs of lange, round, ocellated spots on the back
(1.F.G.)

TORTOISESHELL. The tortoiscshell of commerce consists of the epidermic plates covering the bony carapace of the hawksbill turtle, Chelonic imbricata, the smallest of the sea turtles. The plates of the back or carapace, technically called the head, are 13 in number, 5 occupying the centre, flanked by 4 on each side. These overiap each other to the extent of one-third of their whole size, and hence they attain a large size, reaching in the largest to 8 in . by 13 in ., and waighing as much as 9 oz . The carapace bas aiso 24 marginal pieces, called hoofs or claws, forming a serrated edge round it; but these, with the plates of the plastron, or belly, are of inferior value. The plates of tortoiseshell consist of horny matter, but they are harder, more brittle, and less fibrous than ordinary horn. Their value depends on the rich mottled colours they display-a warm translucent yellow, dashed and spotted with rich brown tints-and on the high polish they take and retain. The finest tortoiseshell is obtained from the Eastern Archipelago, particularly from the east coast of Cricbes to New Guinea; but the creature is found and tortoiscshell obtained from all tropical coasts, large supplies coming from the West Indian Islands and Brazil.

Tortoiseghell is worked procisely as hom; but, owing to the hiph value of the material, care is taken to prevent any waste in it working. The plates, as separated by heat from the bony skeleton. are keefed, curved, and irregular in form. They are first flattened by bent and pressure, and superficial iacqualities are rasped away. Being harder and more brittie than born, tortoiseshell requires careful treatment in moulding it into any form, and as high heat tends to darken and obscure the material it is treated at as low a heat as practicable. For many purposes it is neressary to increase the thickncss or to add to the superficial size of zortoiseshell, and this is readily done by careful cleaning and rasping of the surfaces to be united, softening the plates in boiling water or sometimes by dry heat, and then pressing them tightly together by means of heated pincers or a vice. The heat softens and liquefics a superficial film of the horny material, and that with the pressure effects a perfect union of the surfaces brought together. Heat and pressure are also employed to mould the substance into boxes and the numerous artificial forms lnto which it is made up.
Tortoiseshell has been a prised omamental material from very carly cimes. It was one of the highly estecmed treasures of the Far East brought to ancient Rome by way of Egypt and it was cagerly sought by wealthy Romans as a vencer for their rich furniture. In modem times it is most characteristically used in the elaborate inlaying of cabinet-work known as buhl furmiture, and in combination with silver for toilet articles. It is also employed as a veneer for small boxes and frames It is cut into combs, moulded into snuff-boxes and other small boxes, formed into knife-handies, and worked up into many other similar minor articles. The plates from certain other tortoises, known commercially as turte-shell. posess a certain industrial value, but they are either opaque or soft and leathery, and cannot be mistaken for tortoiseshell. A close imitation of tortuiseshell can be made by staining translucent horn or by varieties of celluloid.
TORTOLI, a town and episcopal see of Sardinia, on the east coast, 140 m. N.N.E. of Cagliari by rail (55 m . direct). Pop. (1901), 2105. It lies 60 ft . above sea-level to the sout h-west of a large lagoon, which renders it unbeality. The harbour is $2 \frac{1}{10}$. to the east, and serves for the export of the wine and agricultural produce of the Ogliastra. A little to the south of Tortoli was the station af Sulci on the Roman coast road, known to us only from the itineraries.
TORTOMA (anc. Derlona), a town and episcopal see of Picdmont, Italy, in the .province of Alessindria, from which it is 14 m. E. by sail, on the right bank of the Scrivia, at the northern foot of the Apcunines, 394 ft . above sea-level. Pop. (1001), 11,308 (town); 17,419 (communc). Tcrtona is on the main line from Milan to Genon; from it a main line runs to Alessandiria, a branch to Castelnuovo Scrivia, and a stenm tramway to Salc. Its fortifications were destroyed by the French after Marengo (1;99); the ramparts are now turned into shady
promenades. The cathedral, erected by Philip II., contains a remarkably fine Roman sarcophagus of the Christian period. Silk-weaving, tanning and hat-making are the chief industries; and there is some trade in wine and grain.
F Dertona, which may have become a Roman colony as early as the and century b.c. and certainly did so under Augustus, is spoken of by Strabo as one of the most important towns of Liguria. It stood at the point of divergence of the Via Postumia (see Licura) and the Via Aemilia, while a branch road ran hence to Pollentia. A number of ancient inscriptions and other objects have been found here. In the middle ages Tortona was zealously attached to the Guelphs, on which account it was twice laid waste by Frederick Barbarossa, in 1155 and 1163.
(T. As.)

TORTOSA, a fortified city of north-east Spain, in the province of Tarragena; 40 m . by rail W.S.W. of the city of Tarragona, on the river Ebro 22 m . above its mouth. Pop. (1900), 24,452. Tortosa is for the most part an old walled town on the left bank of the river, with narrow, crooked and ill-paved streets, in which the houses are lofty and massively built of granite. But some parts of the old town have been rebuilt, and there is a modern suburb on the opposite side of the Ebro. The slope on which old Tortosa stands is crowned with an ancient castle, which has been restored and converted into barracks and a hospital. All the fortifications are obsolete. The cathedral occupies the site of a Moorish mosque built in 914. The present structure, which dates from 1347, has its Gothic character disguised by a classical façade with Ionic pillars and much tasteless modernization. The stalls in the choir, carved by Cristobal de Salamanca in 1588-:593, and the sculpture of the pulpits, as well as the iron-work of the choir-railing and some of the precious marbles with which the chapels are adorned, descrve notice. The other public buildings include an episcopal palace, a townhall and numerous churches. There are manufactures of paper, hats, leather, ropes, porcelain, majolica, soap, spirits, and ornaments made of palm leaves and grasses. There is an important fishery in the river, and the harbour is accessible to vessels of 100 tons burden. Corn, winc, oil, wool, silk, fruits and liquorice (a speciality of the district) are exported. The city is connected with Barcelona and Valencia by the coast railway, and with Saragossa by the Ebro valley line; it is also the terminus of a railway to San Carlos de la Rápita on the Mediterranean. Near Tortosa are rich quarries of marble and alabaster.

Tortosa, the Deriosa of Strabo and the Colonia Julia Augusta Dertosa of numerous coins, was a city of the Ilercaones in Hispania Tarraconensis. Under the Moors it was of great importance as the key of the Ebro valley. It was taken by Louis the Pious in 81I (after an unsuccessful siege two years before), but was soon tecaptured. Having become a haunt of pirates, and exceedingly injurious to Italian commerce, it was made the object of a crusade proclaimed by Pope Eugenius III. in 1148 , and was captured by Ramon Berenguer IV., count of Barcelona, assisted by Templars, Pisans and Genoese. An attempt to recapture the city in 1149 was defeated by the beroism of the women, who were thenceforth empowered by the count to wear the red sash of the Order' of La Hacha (The Axe), to import their clothes free of duty, and to precede their bridegrooms at weddings. Tortosa fell into the hands of the duke of Orleans in 1708: during the Peninsular War it surrendered in 1811 to
me French under Stuchet, who held it till 1314 .
TORTURE (from Lat. torquere, to twist), the general name for innumerable modes of inflicting pain which have been from time to time devised by the perverted ingenuity of man, and especially fur those employed in a legal aspect by the civilized nations of antiquity and of modern Europe. From this point of view torture was always inflicted for one of two purposes: (s) As a means of eliciting evidence from a wiancss or from an accused person either before or after punishment. incans of evidence arising wh

Torture as a part of the punishment may be regarded as including every kind of bodily or mental pain beyond what is necessary for the safe custody of the offender (with or without enforced labour) or the destruction of his life-in the language of Bentham, an "afflictive" as opposed to a "simple " punishment. Thus the unnecessary sufferings endured in English prisons before the reforms of John Howard, the peine forte al dure, and the drawing and quartering in executions for treason, fall without any straining of terms under the category of torture.

The whole subject is now one of only historical interest as far as Europe is concerned. It was, however, up to a comparatively recent date an integral part of the law of most countries (to which England, Aragon and Sweden ${ }^{1}$ formed honourable exceptions)-as much a commonplace of law as trial by jury in England.' The prevailing view, no doubt, was that truth was best obtained by coniession, the regine probationum. Where confession was not voluntary, it must be extorted. Speaking generally, torture may be said to have succeeded the ordeal and trial by battle. Where these are found in full vigour, as in the capitularies of Charlemagne, there is no provision for torture. It was no doubt accepted reluctantly as being a quasi judicium Dei, but tolerated in the absence of any better means of eliciting truth, especially in cases of great gravity, on the illogical assumption that extraordinary offences must be met by extraordinary remedies. Popular feeling too, says Verri, preferred, as causes of evil, human beings who could be forced to confess, rather than natural causes which must be accepted with resignation. Copfession, as probatio probatissima and pox vera, was the best of all evidence, and all the machinery of law was moved to obtain it. The trials for witchcraft remain on record as a refutation of the theory.

The opinions of the best lay authorities have been almost unanimously against the use of torture, even in a system where it was as completely established as it was in Roman law. "Tormenta," says Cicero," in words which it is almost impossible to translate satislactorily, "gubernat dolor, regit quaesitor, flectit libido, corrumpit spes, infirmat metus, ut in tot rerum angustiis nihil veritati loci relinquatur." Seneca says bitterly, "it forces even the innocent to lie." St Augustine ${ }^{4}$ recognizes the fallacy of torture. "If," says he, "the accused be innocent, he will undergo for an uncertain crime a certain punishment, and that not for having committed a crime, but because it is unknown whether he committed it." At the same time he regards it as excused by its recessity. The words of Ulpian, in the Digest of Justinian, ${ }^{\text {a }}$ are no less impressive: "The torture (quacstio) is not to be regarded as wholly deserving or wholly undeserving of confidence; indeed, it is untrustworthy, perilous and deceptive. For most men, by patience or the severity of the torture. come so to despise the torture that the truth cannot be elicited from them; others are so impatient that they will lie in any direction rather than suffer the torture; so it happens that they depose to contradictions and accuse not only themselves but others." Montaigne's' view of torture as a part of the punishment is a most just one: "All that cxceeds a simple death appears to me absolute cruelty; neither can our justice expect that be whom the fear of being executed by being beheaded or hanged will not restrain should be any more awed by the imagina. tion of a languishing fire, burning pincers, or the wheel." He continues with the curious phrase: "He whom the judge has turtured (eghormo that be may not die innocent, dies innocent and tortured." fontesquicu' speaks of torture in a most guarded manner. con emning it, hut without giving reasons, and culogizing England for doing without it. The system was condemned by Bayle and Voltaire. with less reserve. Among

${ }^{2}$ But cven in these countries, whatever the law was, torture certainly existed in fact.

${ }^{3}$ Primitive systems varied. There is no trace of it in Babylonian of Mosaic law. but Eg'ptian and Assyrian provided for it: and the story of Regulus seems io ahow that it was in use at Carthage.

- Pro Sulic. c. 28.

De civ, Dei, bk. xit. c. 6.

- Esay Ixv. (Cotton's trass.)
the Germans, Sonnenfels (1766), and, among the Italians, Beccaria, ${ }^{1}$ Verri ${ }^{2}$ and Manzoni ${ }^{2}$ will be found to contain most that can be said on the subject. The influence of Beccaria in rendering the use of torture obsolete was undoubtedly greater than that of any other legal reformer. The great point that he makes is the unfair incidence of torture, as minds and bodies differ in strength. Moreover, it is, says he, to confound all relations to expect that a man should be both accuser and accused, and that pain should be the test of truth, as though truth resided in the muscles and fibres of a wretch under torture. The result of the torture is simply a matter of calculation. Given the force of the couscles and the sensibility of the nerves of an innocent person, it is required to find the degree of pain necessary to make hism confess himsell guilty of a given crime. Bentham's ${ }^{4}$ objection to torture is that the effect is exactly the reverse of the inteation. " Upon the face of it, and probably enough in the intention of the framers, the object of this institution was the protection of innocence; the protection of guilt and the aggravation of the pressure upon innocence was the real fruit of it." The apologists of torture are chiefly among jurists. But theoretical objections to it are often urged by the authors of books of practice, as by Damhouder, von Rosbach, von Boden, Voet, and others named below under the head of The Necherlands. It is worthy of note as illustrative of the feeling of the time that even Bacon ${ }^{\text {* }}$ compares experiment in nature to torture in civil matters as the best means of eliciting truth. Muyart de Vouglans ${ }^{\text {a }}$ derives the origin of torture from the law of God. Other apologists are Sirmancas, bishop of Badajoz, ${ }^{7}$ Engel,' Pedro de Castro,' and in England Sir R. Wiseman. ${ }^{10}$

Grecee-The opinion of Aristotle was in lavour of torture as a mode of proof. "It is," he says," a kind of evidence, and appears to carry with it absolute credibility because a kind of constraint is appited." It is classed as one of the "artless persuasions" (Gexpon rifreas). ${ }^{4}$ " it was the surest means of obtaining evidence, says Demosthenes. ${ }^{1}$ At Athens slaves, and probably at times resident aliens, were tortured, ${ }^{11}$ in the former case generally with the master's consent, but torture was seldom applied to free citizens, ${ }^{11}$ such application being forbidden by a psephism passed in the archorshhip of Scamandrius. Arter the mutilation of the Hermae in 415 B.C. a proposition was made. but not carried, that it should be applied to two senators named by an informer. In this particular case Andocides gave up all his slaves to be tortured. ${ }^{1 \prime}$ Torture was sometimes inflicted in open court. The rack was used as a punishment even for free citizens. Aatiphon was put to death by this means. ${ }^{\text {m }}$ The torture of Nicias by the Syracusans is alluded to hy Thucydides ${ }^{7}$ as an event likely to happen, and it was only in order to avoid the possibility of inconvenient disclosures that he was put to death without torture. Isocrates and Lysias refer to torture under the generic name of orpiphavis, but it was generally called birwore in the plural, like Lormenta. As might be expected, corture was Irequencly inflicted by the Greek despots, and both Zeno and Anaxarchus are said to have been put to it by such irresponsible authoritics. At Sparta the despot Nabis was accustomed, as we lcarn from Polybius, ${ }^{\text {, }}$ to put persons to death by an instrument of torture in the form of his wife Apega. a mode of corture no doubt remembing the Junffernkuss once used in Germany. At Argos, as Diodorus informa us (xv. 57). certain conspirators were put to the torture in 371 B.c."

- Nor. Org., bk. i. aph. 98 . In the Adocicement of Lsarning, bk iv. ch. 4, Bacon collects many instances of constancy under torture
- Jwarisuts de drois criminel (Paris, 1757).
- De calthoticis institutionibxs liber, ad proecarendas el extirpandas moenseser admodrm necessarims (Rome, 1575).

5 De fortura ex foris christianis non proscribenda (Leipzig, 1733).

- Defexsa de la cortura (Madrid, 177^{8}).
- Low of Laws. p. 122 (London, 1686).
- Rhet. i. 1s, 26.1 is In Onelum, i. 874
- Usually by the diaetetae in the Hephacstaeum, Isocrates, Traper 361 .
ut The opinion of Cicero (De partilionibus oratoriis, 834), that it ras eo applied at Athens and Rhodes, scems, as lar as regards Athens, moe to be justified by existing evidence.
is The dermand for, of the giving up of, a slave lor torture was called

In the Ramae of Aristophanes, v. 6:7. there is a list of kinds of soreture, and the wheel is alluded to in Lysistrata, v. 846 .

- vi. 86.
${ }^{\bullet}$ xiii. 7.
© Poc the whole subject, see Dici. Anf., s.t. Tormente.

Rome.-The Roman system was the basis of all subrequent European systems which recognized torture as a part of their procedure, and the rules attained a refinement beyond anything approached at Athens. The law of torture was said by Cicero to rest originally on custom (mores majormm), but there is no allusion to it in the Twelve Tables. There are frequent allusions to it in the classical writers," both of the republic and the empire. The law. as it existed under the later empire, is contained mainly in the titles De quaestwonibus ${ }^{\text {¹ }}$ of the Digest and the Code ${ }^{2 l}$-the former consisting largely of opinions from the Sententiae receptoce of Paulus, ${ }^{38}$ the latter being for the most part merely a repetition of constltutions contained in the Theodosian Code. ${ }^{4}$ Both substantive law and procedure were dealt with by these texts of Roman law, the latter, however, not as fully as in medieval codes, a large discretion being left to the judges. Torture was used both in civil and criminal trials, bat in the lormer only upon slaves and freedmen or infamous persons (after Noo. xc. 1, 1, upon ignoti and obscuri if they showed signs of corrup-tion)-such as glediators-and in the absence of alia manifesta indicue, ${ }^{2 \mathrm{~h}}$ as in cases affecting the inheritance (res hereditarice). It place in the case of free citizens was taken by the reference to the oach of the party. During the republic torture appears to have been confined to slaves in all cases, but with the empire a free man became liable to it if accused of a crime, though in most cases not as a witness. On an accusation of treason every one, whatever his rank, was liahle to torture, for in treason the condition of all was equal. m The same was the case of those accused of soncery (magi). who were regarded as hxmawi generis inimici." A wife might be tortured (but only after her slaves had been put to the torture) il accused of poisoning her husband. In accusations of crimes other than treason or sorcery. certain persons were protected by the dignity of their position or their tender age. The main exemptions were contained in a constitution of Dioctetian and Maximian, and included soldiers, nobles of a particular rank, i.e. eminentissimi and perfoctissimi, and their descendants to the third generation, and decmpionts and their children to a limited extent (formenta moderala)-tbat is to say, they were subject to the torture of the plambalae in certain cases, such as fraud on the revenue and extortion. In addition to these, priests (but not clergy of a lower rank), children under fourteen and pregnant women were exempt. A free man could be tortured only where he had been inconsistent in his depositions, or where there was a suspicion that he was lying. The rules as to the torture of slaves were numerous and precise. It was a maxim of Roman law that torture of slaves was the most efficacious means of obtaining truth. They could be tortured either as accused or as witnesse for their masters in all cases, but against their masters only in accusations of treason, adultery, frauds on the revenue, coining. and similar offences (which were regarded as a species of treason), attempts by a husband or wife on the life of the other. and in caset where a master had bought 2 slave for the special reason that he should not give evidence against him. The privilege from accusations by the slave extended to the master's father, mother, wife, or tutor, and also to a former master. On the same principle a Ireedman could not be tortured against his patron. The privilege did not apply where the slave was joint property, and one of his masters had been murdered by the other, or where he was the property of a corporation. for in such a case he could be tortured in a charge against a member of the corporation. Slaves belonging to the iaheritance could be tortured in actions concerning the inheritance. The adult slaves of a deccased perion could be tortured where the deceased had been murdered. In a charge of adultery against a wife, ber husband's, her own and her father's slaves could be put to the torture. A slave manumitted for the express purpose of escaping torture was regarded as still liable to it. Belore putting a slave to torture without the consent of his master, security must be given to the master for his value and the oath of calumny must be taken." The master of a slave tortured on a false accusation could recover double his value !rom the aceuser. The undergoing of torture had at one time 2 serious effect upon the alter-life of the slave, for in the time of Gaius a slave who had been tortured could on manumission obtain no higher civil rights than those of a dediticius. ${ }^{n}$ The ruies of procedure were concrived in a spirit of as much faimess as such rules could be Some of the most important were these: The amount of torture was at the discretion of the judge, but it was to be mo
${ }^{50}$ An Instance is Pliny's letter to Trajan (Epist x. 97), where he mentions having put to the torture two Christian deaconesses (mixistrac). The worda are confilentes ivernm ac dentio inderrapasi. This supports Tertullian's objection to the torture of Chriatians, torguemur confilentes (A pol. с. 2).
A Quaestio included the whole process of which torture was a part. In the words of Cujacius, Quasstio est interrogatio quoe fil per cormanto, pel de reis, vel de testabus qwi facto indervenisse dicwntup.
? Dig. xiviii. 18; Cod ix. 41.
${ }^{24}$ v. $14,15.16$.
${ }^{25}$ Cod. ix. 8. 3 .
7 .1bid. ix. 18. 7.
${ }^{24}$ ix. 35
mibid is 8

- Ibid. ii. 59. 1, 1. The demand of anot her man's slave for tortufe was postellare.
${ }^{4}$ Caius i. 13.
applied as not to injure tife or limb. If so applied the judge was infamis. The examination was not to begin by torture; other prools must be exhausted first. The evidence ${ }^{\prime}$ must haveadvanced so far that nothing but the confession of the slave was wanting to complete it. Those of weakest frame and tenderest age were to be tortured first. Except in treason, the unsupported testimony of a single witness was not a sufficient ground for torture. The voice and manner of the accused were to be carefully observed. A spontaneous confession. or the evidence of a personal enemy, was to be received with caution. Repetition of the torture could only be ordered in case of inconsistent depositions or denial in the lace of strong evidence. There was no rule limiting the number of repeti. tions. Leading questions were not to be asked. A judge was not liable to an action for anything done during the course of the examination. An appeal Irom an order to torture was competent to the accused, except in the case of slaves, when an appeal could be made only by the master. ${ }^{2}$ The appellant was not to be tortured pending the appeal, but was to remain in prison.2 The quaesitor asked the questions, the tortores applied the instruments. The principal forms of torture in use were the equaleus, or rack (mentioned as far back as Cicero)" the plumbatac, or leaden balls, the ungulac, nr harbed hooks, the lanima, or hot plate, the mala monsio," and the Jdiculae, or cord compressing the arm. Orher allusions in the Digest and Code, in addition to those already cited, may be shortly noticed. The testimony of a gladiator or infamous person (such as an accomplice) was not valid without torture." This was no doubt the origin of the medieval maxims (which were, however, by no means universally recogaized)-Vilitas personae est jusla causa torquendi testem, and Tortura purgatur infamia. Torture could not be inflicted during the forty days of Lent.' Robbers and pirates might be tortured even on Easter day, the divinc pardon being hoped for where the safety of society was thus assured. Capital punshment was not to be suffered until after conviction or confession under torture." Withdrawal (rom prosecution (abolutio) was not to be allowed as a rule after the accused had undergone the torture. In charges of treason the acciser was liable to torture if he did not prove his case. ${ }^{11}$ The infliction of torture, not judicial, but at the same time countenanoed by law, was at one time allowed to creditors. They were allowed to keep their debtors in private prisons, and most cruelly ill-use them, in order to extort payment." Under the empire private prisons were forbidden. ${ }^{18}$ In the time of Juvenal the Roman ladies actualily hired the public torturers to torture their domestic slaves. ${ }^{14}$ As a part of the punishment torture was in frequent use. Crucifixion, mutilation, exposure to wild beasts in the arena and other cruel modes of destroying life were cammon, especially in the time of the persecution of the Christians under Nero." Crucifixion as a punishment was abolished by Constantine in 315, in vencration of the memory of Him who was crucified lor mankind. On the other hand, where the interests of the Church were concerned the tendency was in Iavour of greater severity. Thus, by the Theodosian Code, a heretic was to be dogged with lead (contusus pumbo) before banishment, "and Justinian made liable to torture and exile any one insulting a bishop or priest in a church, or saying litany, if a layman. ${ }^{17}$
${ }^{1}$ The evidence on which the accused might be tortured was expressed in Roman law by the terms argamenium and inducium (used technically as carly as Cicero, Verres, i. 10 and 17). The latter term, as will be seen, afterwards became one of the most important in the law of torture, but the analysis of indicium is later than Roman law. Indicium was not quite the same thing as semipleno probatio, though the terms appear to be occasionally used as bynonyms. Indicium was rather the foundation or cause of probatio, whether plewa or semiplewa. An indicimer a concurrence of indicia might, accoroing to circumstances, constituse a plens or semiplena probatio. The phrase legitima indicia was sometimes used. In Sir T. Smith's work, c- 24 (see below), inder means a prisoner acting as an approver under torture. Tormenhm, tortura and quastio appear to be equivalent terms. The medieval jurists derived the first of these from torquere mentem, an etymology as false as lestamentum from testatio mentis (Inst. ii. 10 pr .).

Dif. xlix. i. 15.
 ${ }^{5}$ Cod. vii. 62, 12.

(Milo, lvii.
Of doubtful meaning, but perhaps like the "Litte Ease ") of the Tower of London.
Dig xoxii. 5, 21, 2.
Ibid. tii. 12, 10.
Ibid ix. 42, 3 .
7 Cod. iu. 12, 6
II Ibid ix 47, 16.
4 lbid. ix. 8, 3 .
3 See, for instance, Livy vi. 36 ,
${ }^{14}$ Cad. i. 4, 23. ix. 5.
Ibid. vi. 480.
is As example of such puaishments, cf. the well-known lines of Juvenal (Sai. I. 155) :-

```
Taeda lucebis in illa,
```

Qua stantes ardent qui fixo gutture fumant:
For other poetical allusions, see vi. 480 , xiv. 21 ; Lucr. iii. 1030 ; Propert. iv. 7.35.
${ }^{14}$ xvi. 53.
19 Now, cxxiii. 3 !. On 11 On the subject of torture per tormenta apud Rome:

The Leges barbarorum are interesting as forming the link of connexion between the Roman and the medicval systems. Through them the Roman doctrines were transmitted into the Roman law countrics. The barbarian codes were based chicfly on the Theodosian Code. As compared with Roman law there seems to be a leaning towards humanity, e.o. the provision for redemption of a slave after confession by s. 40 of the Lex salua. After the edict of Gundobald in sot the combat rather than the torture became the expression of the judic:um Des.

The Church-As far as it could the Church aduped the Roman law. The Church generally secured the almost entire immunity of its clergy, at any rate of the higher ranks, from torture by civil tribunals; ${ }^{4}$ but in general, where laymen were concerned all persons were equal. In many instances councils of the Church pronounced against torture, e.g. in a synod at Rome in 384." Torture even of heretics seems to have been originally left to the ordinary tribunals. Thus a bull of Innocent IV., in 1282, directed the tort ure of hererics by the civil power, as being robbers and murderers of souls, and thieves of the sacraments of God. The Church also enjoined roriure for usury. ${ }^{2}$ A characteristic division of torture, accepted by the Church. but not generally acknowledged by lay authoritics, was into spirit ual and corporal, the latter being simply the imposition of the oath of purgation, the only form originally in use in the ecclesiastical courts. The canon law contains little on the subject of torture, and that little of a comparatively humane nature. It laid down that it was no sin in the faithful to inflict torture, ${ }^{z}$ but a priest might not do so with his own hands, ${ }^{\text {² }}$ and charity was to be used in all punishments. ${ }^{24}$ No confession was to be extracted by torture ${ }^{2}$ and it was not to be ordered inductis mom pracedentibus.3 The principal ecclesiastical tribunal by which torture was inflicted in more recent times was the Inquisition. The code of instructions issued by Torquemada in Spain in 1484 provided that an accused person might be put to the torture if semiplena probatio existed against the accused-that is, so much evidence as to raise a grave and not merely a light presumption of guilt, often used for the evidence of one eye or ear witness of a fact. If the accused confessed during torture, and afterwands confirmed the confession, he was punished as convicted; il he retracted, he was tortured again, or subjected to extraordinary punishment. One or two inquisitors, or a commissioner of the Holy Office, were bound to be present at every examination. Owing to the occurrence of certain cases of abuse of torture, a decree of Philip II. was issued, in 1558, forbidding the administration of torture without an order from the council. But this decree does not appear to have been fully observed. By the edict of the inquisitor-general Valdés in 1561, torture was to be left to the prudence and equity of the judges. They must consider motives and circumstances beiore decreeing torture, and must declare whether it is to be employed in caput proprium, i.e, to extort a confession, or in caput alienum, i.e. to incriminate an accomplice. Torture was not to be decreed until the termination of the process and after defence heard, and the decree was subject to appeal, but only in doubtful cases, to the Council of the Supreme. It was also only in doubtul cases that the inquisitors were bound to consult the council; where the law was clear (and of this they were the judges) there need be no consultation, and no appeal was allowed. On ratification twenty-four hours afterwards of a confession made under torture, the accused might be reconciled. if the inquisitors believed him to be siacerely repentant. If convicted of bad faith he might be relaxed, ie. delivered to the secular power to be burned. The inquisitors had a discretion to allow the accused to make the canonical purgation by oath instead of undergoing corporal torture, but the rule which allows this to be done at the same time discountenances it as fallacious, It is remarkable that the rules do not allow much greater efficacy to torture. They speak of it almost in the terms of Roman Law as dangerous and uncertain, and depending for its effects on physical strength. ${ }^{7}$. Torture had ceased to be inflicted bafore the suppression of the inquisition, and in 1816 a papal bull decrecd that torture should cease, that proceedings should be public, and that the accuser should be confronted with the accused. The sules in themselves were not so cruel as the construction put upon them by the inquisitors. For instance, by Torquemada's instructions torture could not be repeated unless in case of retractation. This led to the subtlety of calling a renewed torture a continuation,
Strafrecht, iii. 5 (Leipzig, 1899); Crecnidge, Legal Procedure of Cicero's Time, P. 479 (Oxford, Igoi).
${ }^{3}$ See Escobar, Theol. Mor, tract. vi. c. 2. They were to be tortured only by the clergy, where possible, and only on indicia of special gravity.
${ }^{\text {to }}$ Lea, Superstition and Force, p. 4t9 (3nd ed.a Philadelphia, (878).
${ }^{20}$ Leges et constifulions" contra haereticos, 86.
n Lecky, Rationalism in Europe, ii, 3
t Drerefum. pt. ii. 23. 4, 45. 22 . bid. pt. i. 86, 25.
tit Jbid. ut, is, 82,2, In. ${ }^{2}$ bid. pt, it. 15, 6. 1.
mecprials, visi, 6 .
v. The rulse will be found in H. C. Lea, Hist. of the Inguefrition of tion (0ang). See also 11 ist. of the Imquisition of the Diddle Ages Wray. 1888) by the same writer: R. Schmidt. Die Herhusf
and not a repetition. The tules of Torquemada and of Valdée are thowe of the groatent historical importance, the latter forming the code of the Holy Offce untid its suppreasion, not only in Spain, but in other countrien where the Inquisition was established. But several other manuals of procedure existed before the final perfection of the aytem by Valdes. The carliest is perhaps the instructons for inquisitors (Directorism inquisitormin) compiled a century eorlier than Torquernada by Nicholas Eymerico. stand inquisitor of Aragon about 1368.1 Rulee of practice were also framed two conterics tater by Smancas, whoee position as an apologist has boea ahuady setated. The texthook of procedure of the Italian Inquigitita was the Sacre arsencle: In 1545 and 1550 instructions for the suidance of inquisitors were imned by Charles V. The liability of a jodee for exceeding the law was not always recognized hy the Inquinition to the same extent as by tho lay tribumals. Norente pives an inscance of a warrant by an imquisitor to a licentiate ordering the torture of an sccuned person, and protesting that, in case of deeth or fracture of limbs, the fact is not to be imputed to the licencinte:
Thuse far of the law. In practice all the ingenuity of cruelty was enarised to find new modes of torment. 4 These cruelties led at times to remonstrance from the civil power. One emmple is the odict of Ptivip II. Just mentioned. Another and an earlier one ia an erlownance of Philip the Fair, in 1303, biddins the Inquisition confre itudf tithin the limits of the law.' At Venice the senate deerced that three semators ahould be present as inquisitors
As the practice of torture bocame more byatematized, it grew to be the sabject of ensuinaical inquiry by churchmen to an extent far enceeding the scanty discumion of the question in the text of the anom law. It will be sufficient here to cite as an example the trentneot of it by Liguori, who incorporates the opinlans of many of the Sparich casuists. On the whole, his views appear to be more humane fan the prevailing practice. The object of torture he definea very neatly as being to turn semiplena into plens probalio. For thi proper indicia are necemary. He then proceod to decide certain quemtions which had arisen. the mont interesting of which deal with the nature of the sin of which the accued and the judge are grilty ia particular instances. A judge sins gravely if be does mextempt all milder means of discovering truth before resorting to porture. He sins in a criminal cause, or in one of notable infamy. il he biads the accused by oath to tell the truth before there is proof apiner him. It is the same if without oath be uses thrests, terror or exhibition of torsents to confound the witnems. If any one, to avoid grave tormente, charges himself with a capital crime, he does wor sin mortally. It was a doubtiul question whether he sinaed cravely in buch a case. Escobar at an earlier date cupported the moratily dangerous view that an inquisitor may follow a probable opinion in ordering torture, relinquishing a more probable.:
Englemd.-It is the boast of the common law of Eagland that it mever recognized torture as legal. One, perhaps the chicf, reason for this position taken by the law is the difference of the nature of the proced ure in criminal cases from that in general use in European countries. To use words more familiar in foreign jurisprudence, the English system is eccusatorial as distinguished from inquisitornel. In the former the accuser has to prove guilt, in the latter the accused han to prove innocence. The common law of England has always shown itself averse from the inquisitorial system, and so (at least in theory) to the torture which may he regarded as an outcome of the system whose one end was to obtain a confession from the accused. The tendency of the small amount of statute law bearing on the abject is in the same direction. It was provided by Magna Carta, f 29 . ${ }^{-0}$ that no free man... ahould be destroyed in any way unless by keral judgment of his equals or by the law of the land." On this Sir E Coke comments," No man destroyed, \&cc., that is, forejudsed of hife or limb disinberited, or put to torture or death."The act of 27 Hen . Vill. c. 4 enacted that, owing to the frequent ereape of pirates in trials by the civil law, "the nature whereof in that before any judgment of death can be given against the alienders they must plainly contess their offence (which they will mever do withourt torture or pains)"" such persons should he tried by jury before commissioners under the Great Seal. Finally, the bar of Rights provided that crucl and unusual punishments ought tox to be inflicted. The opinions of the judges have been invariably qpaiast torture in theory, however much some of them may have

[^3]becn led to countenance it in practice. The trongeat authority is the rewolution of the judges in Felton's case (1628)." that he ought not by the law to be tortured by the rack, for no guch punishment is known or allowed by our law." "10 In accordance with this are the opinions of Sir John Fortescue," Sir Thomas Smith "and Sir E. Coke. The latter eays, "As there is no law to warrant tortures in this land, nor can they be justified by any prescription, being so lately brought in." Is In spite of all this, torture in criminal proceedinga was inflicted in England with more or leas frequency for some centuries, both as a means of obtaining evidence and as a part of the punishment. But it should he remarked that torture of the former kind was invariably ordered by the Crown or council, or by some tribunal of extraordinary authority, such as the Star Chamber, not professing to be bound by the rules of the common bw. In only two instances was a warrant to torture isoued to a common law judge. ${ }^{14}$
A licence to tort ure is found as early as the Pipe Roll of 34 Hen. II.." The Templars were tortured in 1310 by royal warrant addreseed to the mayor end shcrifis of London." In this case it is recorted that torture was unknown in Englamd, and that no torturer was to be found is. the realm." A commission was isoued concerning the tortures at Newgate in 1334.2 The rack in the Tower is said to have been introduced by the duke of Exeter in the reign of Henry Vi.: and to have been thence called "t the duke of Expter'e daughter." In this reign torture secms to have taken its place as a part of what may be called extraordinary criminal procedure, claimed. and it may be said tacitly recognized, as excrcisable by virtue of the prerogative, and continued in use down to 1640 ." The infliction of torture gradually became morecommon under the Tudor monarthis Under Henry VIII. it appears to have been in Irequent une. Only two cases are recorded under Edward V1., and eight under Mary. The reign of Elizabeth was its culminating point. In the worde of Hallam," the rack seldom stood idle in the Tower for all the latter part of Elizabeth's reign." ${ }^{n}$ The varieties of tort ure used at this period are fully described by Dr Lingard, ${ }^{3}$ and consisted of the rack, the ecavenger's daughter, ${ }^{14}$ the iron gauntiets or bilboes and the cell called "Little Ease". The registers of the council during the Tudor and early Stuart reigns are full of entries an to the use of torture, both for state and for ordinary offences ${ }^{29}$ Among notable prisoners put to the torture were Anne Askew, the Jesuit Campion, Guy Fawkes" and Peacham (who was examined by Bacon "before torture, in torture and after torture")." The prevalence of torture in Elizabeth's reign led to the well.known defence attributed to Lord Burghley," A declaration of the favourable dealing of Her Majesty's commissioners appointed for the examination of certain traitors, and of tortures unjustly reported to be done upon them for matter of religion," 1583 ." The use of torture in England being always of an extraordinary and extra-judicial nature, it is
${ }^{10}$ 3 State Trials, 371.
in De hadibus Lagum Angliae, e. 22.
4 Commonmeallk of England, bk. ii. c. 27 (1583 ; ed. by L. Alston, 1906). It is curious that Sir T. Smith, with all his hatred of torture, was directed by a warrant under the gueen's seal alone (not through the council) to corture the duke of Noriofk's mervants in 1571 . In 2 letter to Lord Burghey he pleaded for exemption from co hateful a task.
${ }^{1} 3$ Insh 35. Nevertheless, in the triais of Lond Essex and Southampton, Coke is found extolling the queen's mercy for pot racking or torturing the accused (I State Trials. 1338). (See further authorities in Pollock and Maitland, Hish of English Law, ii. 656.)
" Jardine, Reading on the Use of Torture in the Criminal Law of Enfland (18,37), P. 52.
1f O. Pike, HisL of Crime in England, i. 427.
uRymer, Foudera, ifi. 228, 232.
"Water of Heminglord, p. 256.
4 Pike i. 481 . 3 Inst. 34
${ }^{0}$ This is the date of the latest warrant in Jardine's work, but it was used on three Portuguese at Plymouth during the Commonwealth (Thurloe iii. 298).
${ }^{n}$ it is to be noticed, as Jardine observes, that all these are cates of an ordinary nature, and afford no ground for the assertions made by Strutt and Bishop Burnet that torture was used to heretics as herctics.
${ }^{2}$ Consh His. i. zoI.
${ }^{11}$ Hisl. of England, vol. viii. app. note y .
${ }^{14}$ These two were exactly opposite in principle. The rack stretebed the limbs of the sufferer; the scavenger's daughter comprewed him into a ball.
${ }^{13}$ Fift γ-five of these will be found in the appendix to Mr Jardine's work. An ordinary robber of plate was threatened with torture in 1567,-Froude, Hisl. of Enfland, viii. 386.

E ft is not certain whether be was racked, but probally he was, in accordance with the king's letter: "If he will not otherwise confess the gentlest tortures are to be first used to him, and so on, step by step, to the most severe, and co God apeed the pood work.

D' Dalrymple, Memoirs and Letters of James F. p. 85: Macaulay's eway on the works of Bacon.
mord Somers's Jrocks, i. 189.
comparatively certain that it could hardly have been applied with that observation of forms which existed in countries where it was regulated by law. There were no rules and no responsibility beyond the will of the Crown or council. This irresponsibility is urged by Selden ${ }^{2}$ as a strong objection to the use of torture. The main differences between the infliction of torture in England and on the continent of Europe seem to be that English lawyers made no distinction of those liable to it, never allowed torture of witnesses, and claborated no subtle rules as to plena and semiplena probasio.
So far of what may be called torture proper, to which the common law professed itself a stranger. There were, however, cases fully recognized by the common law which differed from torture only in name. The peine forte et dure was a notable exan!ple of this. If a prisoner stood mute of malice instcad of pleading, he was condemned to the peine, that is, to be stretched upon his back and to have iron laid upon him as much as he could bear, and more, and so to continue, fed upon bad bread and stagnant water through alternate days until he pleaded or died. It was abolished by 12 Geo. III. c. 20. 7 and 8 Geo. IV. c. 28 enacted that a plea of "not guilty" should be entered for a prisoner so standing mute. A case of peine occurred as lately as 1726 . At times tying the thumbs with whip-cord was used instead of the prine. This was said to be a common practice at the Old Bailey up to the 18th century. ${ }^{3}$ In trials for witcheraft the legal proccedings often partook of the nature of torture, as in the throwing of the reputed witch into a pond to see whether she would sink or swim, in drawing her blood, ${ }^{4}$ and in thrusting pins into the body to try to find the insensible spor. Coniessions, too, appear to have been often extored by actual torture, and torture of an unusual nature, as the devil was supposed to protect his votaries from the effects of ordinary torture.

Torture as a part of the punishment existed in fact, if not in name. down to a very recent period. Mutihation as a punishment appears in some of the pre-Conquest codes, such as those ni Alired. fithelstan and Canute, in the laws attributed to William the Conqueror and in the assize of Northampton (1176). Bracton, who does not notice torture as a means of obtaining evidence, divides corporal punishment into that inflicted with and without torture.b Later instances are the punishment of burning to death inficted on beretics under the Six Articles (31 Hen. VIII, c. 14) and other acts, and on women for petit treason (abolished by 30 Geo. III. c. 48), the mutilation inflicted for violence in a royal palace by 33 Hen. VIII. c. 12, the punishment for high treason, which existed nominally until 1870, the pillory (abolished by 7 Will. IV. and 1 Vict. c. 23), the stocks, branks and cucking stool, and the buming in the hand for felony (abolished by 19 Geo. III. c. 74). Corporal punishment now exists only in the case of juvenile offenders and of robbery with violence. It was abolished in the army by the Army Act 1881. ${ }^{5}$ Cruelty in punishment did not entirely cease in prisons even alter the Bill of Rights. Sce such cases as R. v. Huggins, 17 Slate Trials, 298; Castell v. Bambridge, 2 Strange's Rep. 856.

Scolland.- Torture was long a recognized part of Seottish criminal procedure, and was acknowled ged as such by many acts and warrants of the Scotelsh parliament and warrants of the Crown and the privy council. Numerous instances occur in the Register of the Prioy Cosmeti., Two acts in 1649 dealt with torture: one took the form of a warrant to examine witnesses against William Barton by any form of probation, ${ }^{3}$ the other of a warrant to a committee to inquire as to the use of torture against persons suspected of witchcraft. ${ }^{\circ}$ The judges in 1680 were empowered by the estates to torture Chiesly of Dalrye, charged with the murder of the lord president Lockhart. in order to discover accomplices. In the same year the use of torture without evidence or in ordinary cases was declared illegal in the Claim of Right. The careful wording of this will be noticed: it does not object to torture altogether, but reserves it for cases where a basis of evidence had already been laid, and for crimes of great gravity, thus admitting the dangerous principle, founded on Roman law, that the importance of the crime is a reason for departing from the ordinary rules of justice. However great the crime, it is no more certain than in the case of a crime of less gravity that the person accused was the person who committed it. A warrant issued in the same year to put to the torture certain persons accused of conspiring against the government, and also certain dragoons suspected of corresponding with Lord Dundee. In 1690 an act passed reciting the torture of William Carstares, a minister, in 1683 , and re-establishing his competency as a witness. ${ }^{10}$. The last warrant sppears to be one in 1690 for torturing a man accused of rape and murder. In 1708 torture In Scotland was finally abolished by 7
"Table Talk. "Trial."
${ }^{1}$ Stephen, Hist of the Criminal Law, i. 207
${ }^{1}$ Stephen i. 300; Kelyng, Reports. p. 27

- The superstition was that any one drawing a witch's blood was free from her power. This is alluded to in Henry Y/, pt. i. act i sc. 5 ; "Blood will 1 draw on thee; thou art a witch."

E.g.i. 525, iv. 680, vi. 156 ,

C. 370.
${ }^{13}$ The thumbscrew with which Carstares had becn tontured was afterwards presented to him as a remembrance by the prive countu il.

Anne c. 21, 5. Many details of the tortures inflicted will be found in Pitcainn's Crimimal Trials, the introduction to J. Maciaurins'
R. Criminal Cases and J. H. Burton's Narratioes Jrom Crimina! Treals. Among other varicties-the nature of some of them can only be guessed-were the rack, the pilniewinkis, the boot, ${ }^{4}$ the caschie-laws, the lang irnis, the narrow-bore, the pynchankis, and worst of all, the waking, or artificial prevention of sleep. ${ }^{12}$ The ingenuity of torture was exercised in a special degree on charges of witchcraft, notably in the reign of James VI., an expert both in witchcraft and in torture. The act of 1649 already cited shows that the principle survived him. Under the government of the dukes of Lauderdale and York torture as a practice in charges of religious and political offences reached its beight.
"The privy council was accustomed to extort conicssions by torture; that grim divan of bishops. lawyers and peers sucking in the groans of each undaunted enthusiast, in hope that some imperfect avowal might liead to the sacrifice of other victims, or at least warrant the execution of the present." ${ }^{13}$ With such examples before them in the law. it is scarcely to be wondered at that persons in positions of authority, especially the nobility, sometimes exceeded the law and inflicted torture at their own will and for their own purposes. There are several instances in the Register of the Prioy Council of suits against such persons. e.f. against the earl of Orkney, in 1605, for putting a son of Sir Patrick Bellenden in the boots.

Ireland seems to have enjoy ed comparative immunity from torture. It was not recognized by the common or statute law, and the case: of its infliction do not appear to be numerous. In 1566 the president and council of Munster, or any three of them, were empowered to inflict torture, "" in eases neccessary, upon vchement presumption of any great offence in any party committed against the Queen': Majesty." ${ }^{14}$ In 1583 Hurtcy, an Trish priest, was tortured in Dublin by " toasting his fect against the fire with hot boots." 4 In 1627 the bord deputy doubted whether be had authority to put a priest named O'Cullenan to the rack. An answer was returned by Lord Killultagh to the effect that "' you ought to rack him if you saw cause and hang him if you found reason," it The latest case of peine forle ef dure seems to have been in 174°

British Colonies and Dependencies.-The infliction of torture in any British colony or dependency has usually been regarded as contrary to law, and ordered only by arbitrary authority: It is true that in the trial of Sir Thomas Picton in 1806, for subjecting, while governor of Trinidad, a woman named Luisa Calderon to thic torture of the picquet. ${ }^{17}$ one of the grounds of defence was that such torture was authorized by the Spanish law of the island, but the accused was convicted in spite of this defence, and the final decision of the court of king's bench. in 1812, decrecing a respite of the delendant's recognizances till further order, was perhaps not so much an alfirmation of the legality in the particular instance as the practical expression of a wish to spare an eminent public servant. ${ }^{14}$ As to India, the second charge against Warren Hastings was extortion from the begums of Oude by means of the torture of iheir servants. ${ }^{19}$ In the present Indian Penal Code and Evidence Acts there are provisions intended, as Sir James Stephen says, ${ }^{*}$ to prevent the practice of torture by the police for the purpose of extracting con lessions from persons in their custody. ${ }^{21}$ in Ceylon torture, which had been allowed under the Dutch government, was expressly abolished by royal proclamation in 1799.

In the Channel Islands confessions of persons accused of witch craft in the 17 th century were frequently obtained by torture. ${ }^{m}$

United Slates.-One instance of the peime forte ed dure is known 1t was inflicted in 1692 on Giles Cory of Salem, who relused to plead when arraigned lor wischcraft.t2 The constitution of the United States provides, in the words of the Bill of Rights, that cruel and unusual punishments are not to be inficted. ${ }^{24}$ This is repeated in the constitutions of most states. The infiction of cruel and unusual punishment by the master or officer of an American yessel on the high seas, or within the maritime jurisdiction of the United States, is punishable with fine or imprisonment, or both. ${ }^{14}$ There have been a good many decisions on the question of cruel and unusual punishments; e.g. Widkerson v. Utah, 99 U.S. Rep. 130
u Persons subjected to more than usual torture from the boot were said to be "extremely booted."
${ }^{12}$ This seems to have been used in one case in England. Lecky, Rationalism in Europe, i. 122.
${ }^{4}$ Hallam, Const. Hist iii. 436. See Burnet, Hist of Own Time. 583 , and Scotland.
i4 Froude, Hist. of Englond, viii. 380
$2 \mathrm{Ibid} x i .263$.
${ }^{17}$ In the picquet the sufferer was supported only on the great toe which rested on a sharp salae), and lry a rope aryehed to une arm Lo 30 Stote Trials, 449 , besides many pampliets of tho period. us tee the Report of She Pracerdinger,
so

Territory of Now kiexico v. Retchum, 65 Pacific Kep. 109 (death penalty for train robbery held not unconstitutional).

Contimentol Ewropean Shates.-These fall into four main groups, the Latin. Tcutonic, Scandinavian and Slav states respectively. the prisciples of Roman law were generally adopted in the first and second groups,
Latis Slates.-In France torture does not seem to have existed as a recognized practice before the 13 th century. From that period until the i7th century it was regulated by a series of royal ordonnances It first of local obligation, afterwards applying to the whole kingdom. fort ure was used only hy the royal courts, its place in the seigneurial court s being supplied by the judicial combat. The earliest ordonnance on the subject was that of Louis IX, in 1254 for the reformation of the law in Languedoc. It enacted that persons of good fame, though poor. were not to be put to the question on the evidence of one -itness. ${ }^{1}$ Nomerous other provisions were made betweea 1254 and 1670, when an ordonnarce was passed under Louis XIV., which regulated the infliction of torture for more than a century. Two binds were recornized, the question préparatoree and the question próalable. The first was used where strong evidence of a capital rime-strong, but of itsell insufficient for conviction-was produced apainst the accused. The second was used to ohtain a confession of acomplices after conviction. There was also a mitigated form called the presentment, in which the accused was simply bound upon the rack in terrorem and there interrogated. No person was axmpt on the ground of dignity, but exenıption was allowed to youthes oll men, sick persons and others. Counsel for the accused were uswally dot allowed. The question preperaloire was abolished by royal decree in 1780 , but in 1788 the parliaments refused to register a decree abolishing the prealable. But torture of all kinds 4 abolished by an ordonnance in 1789 . The Declaration of Right 121791 (art. viii.) affirmed that the law ought not to estahlish any punishments other than such as are strictly and evidently necessary. is modern law the code penal ensits that all criminals shall be waished as guilty of assassination who for the execution of their nimes enploy torture. ${ }^{\text {a }}$ The code also makes it punishahle to sbject a person under arrest to torture." The theory of semiplena wobatio was worked out with more refinement than in other systems. in sonne parts of France not only were half-proofs admitted, but quarters and eighths of proofs. ${ }^{4}$ Among the numerous cases of uitorical interest were those of the Templars in 1307 , Villon about 1457. Dolet in 1546, the marquise de Brinviliers in 1676 and Jean Calas in $1762 .^{\text {s }}$
The law as it existed in I taly is contained in a long line of authorities thiefly supplied by the achool of Bologna, beginning with the ghasshores and coming down through the post-glossatores, until the eyserm attained its perfection in the vast work of Farinaccius, vitten early in the 17 th century, where every possible question that could arise is treated with a revolting completeness. One un the earliest jurints to treat it was Cino dia Pistoia, the friend of Jante. He treats it at no great length. With him the theory of : adicias exists only in embryo, as they cannot be determined by law pat must be at the discretion of the judge. Differing from Bartolus, he affrrms that torture cannot be repeated without fresh indicia. The writings of jurists were supplemented by a large body of legislative enactments in most of the Italian states, extending from the constitations of the emperor Frederick 11 . down to the 18 th century. It is not until Bartolus (1314-1357) that the law begins to assume a definite and complete form. In his commentary on book xiviii. of the Digest he follows Roman law closely, but introduces some forther refirements: eq. though leading questions may not be alled in the main inquiry they are admissible as subsidiary. There a beginning of clasaification of indicia. A very [ull discussion of the law is contained in the work on practice of Hippolytus de Maryilus,' a jurist of Bologna, notorious, on his own admission, as the inventor of the torture of keeping without sleep. He defines the question as inquisitio peritatis per tormento ef cordis dolorem. rimers recognizing the mental as well as the physical elements in prture. It was to be used only in capital cases and atrocious crimes. the works of Farinaccius and of Julius Clarus nearty a centary later were of great authority from the high official positions filled by the -riters. Farinaccius was procurator-general to Pope Paul V, $2 r 1$ his diacussion of torture is one of the most complete of any, It hecupices 251 closely prinied folio pages with double columns.

Soe Pollack and Mailland, i. 658 , note N. Weiss, Le Chambre ardente,
 Essai sw l'usare, I'abics, 1768), is one of the
tit. v. quaest. $36-51$
of the acience to which it had been reduced. The chief [eature of the work is the minute and skilful analysim of indicia, fama, pracsumptio, and other technical terms. Many definitioas of indicium are suggested, the best perhaps being conjectura ex probabilibus et non necessaris orla, a guibus polest abesse veridas sed nom beristmiliudo For every infliction of torture distinct indicium is required A single witness or an accomplice constitutes an indicimw But this rule does not apply where it is inflicted for discovering accomplices or for discovering a crime other than that for which it was originally inflicted. Torture may be ordered in all criminal cases, except small offences, and in certain civil cases, such as denial of a depossifm, bankruptcy, usury, treasure trove, and fiscal cases. It may be inflicted on all persons, unless specially exempted (clergy, minors, \&c.), and even those exempted may be tortured by commasd of the sovereign. There are three kinds of torture, Levis, gravis and graviss:ma, the first and second corresponding to the ordinary torture of French writers, the Last to the extratirlinary. 'The extraordinary or gravissima was as much as could juwibly be borne without destroying life. The judge could not begin with torture it was nnly a subsidimm. If inflicted without due course of law it was void as a proof. The judge was tiable to penalties if he tortured without proper indicia, if a privileged person, or if to the extent that death or permanent illness was the result. An immense variety of tortures is meationed, and the list tended to grow, for, as Farinaccius says, judges continually invented new modes of torture to please themselves. Numerous casuistical questions are treated at length, such as, what kinds of reports or how much hearsay evidence constituted lame? Were there three or five grades in torture? Julius Clarus of Alessandria was a member of the council of Philip. II. To a great extent he lollows Farinaccius. He put the questions for the consideration of the judge with great clearness. They are-whether (t) a crime has been committed. (2) the charge is one in which torture is admissible, (3) the fact can be proved ot herwise. (4) the crime was secret or open, (5) the object of the torture is to elicit confession of crime or discovery of accomplices. The clengy, can be tortured only in charges of treason, poisoning and violation of tombs. On the great question whether there are three or five grades, he decides in favour of five, viz. threats, taking to the place of torment, stripping and binding, lifting on the rack, racking." Other Italian writers of less eminence have been referred to for the purposes of this article. The hurden of their writings is practically the sante, but they have not attained the systematic perfection of Farinaccius. Citations from many of them are made liy Manzoni (see below). Among others are Guido de Suzara, Paris de Puteo, Aegidius. Bossius of Milan, Casonus of Venice, Decianus, Folterius and Tranquillus Ambrosianus, whose worls cover the period from the 13th to the end of the $17^{t h}$ century. The law depended mainly on the writings of the jurists as interpreters of custom. At the same time in all or nearly all the Italian states and colonies the customary law was limited, supplemented, or amended by legislation That a check by legislative authority was necessary appears from the glimpses afforded hy the writings of the juriste that the let ter of the law was by no means always followed. The earliest legislation after the Roman law seems to be the constitutions of the emperor Frederick II. for Sicily promulgated in $\mathbf{1 2 3 1}$. Torture was abolished in Tuscany in 1786, largely owing to the influence of Beccaria, whose work first appeared in 1764 , and other states followed, but the puntale or piquet seems to have existed in practice at Naples up to 1859

Several instances of the torture of eminent persons occur in Italian history, such as Savonarola, Machiavelli, Giordanp Bruno, Cam panella. Galileo appears to have only been threatened wich the esame figoposo. The historical case of the greatest literary interest is that of the persons accused of bringing the plague into Milan in 1630 by smearing the walls of houses with poison. An analysis of the case was undertaken by Verri ${ }^{11}$ and Manzoni, ${ }^{18}$ and puts in a clear light some of the ahuses to which the system led in times of popular panic. Convincing arguments are urged by Manzoni, alter an exhaustive review of the authoritics, to prove the groundlessness of the charge on which two innocent persons underwent the torture of the canape, or hempen cord (the effeet of which was partial or complete dislocation of the wrist), and afterwards suffered death by breaking on the wheel. The main arguments, shorty stated, are these, all based upon the evidence as recorded, and the law as laid down by jurists. (1) The unsupported evidence of an accomplice was treated as an indicium in a case not one of those exceptional ones in which such an indicium was mufficicnt. The evidence of two witnesses or a confession by the sccused was necessary to establish a remote indicium, such as lying. (2). Hearsay evidence was received when primary evidence was obtainable. (3) The confeasion made under torture was not ratified afterwards (4) It was made in consequence of a promise of impunity. (5) It was of an impossible crime.

- Practica criminalis finalis (Lyons, 1637).

It is ohvious from the allusion at the end of Othello that Shakespeare regarded torture as possible in Cyprus when it was a Venetian colony.
${ }^{11}$ Osserpasioni sulla lortura
1 Storia della Colonna infame. Neither writer alludes to Beccaria

In Spain, as in Italy, the law depended partly on the writings of jurists, partly on legislation. Roman law was carried through the Visigothic Code and the Fuero juzgo ${ }^{2}$ (which repeats it almost word for word) down to the Siele partidas.: This treatise, compiled by Alphonso the Wise about 1243, but not promulgated till 1256, amended the previously existing law in the direction of greater precision. Torment is defined as a manner of punishment which lovers of justice use, to scrutinize by if the truth of crimes committed secretly and not provable in any other manner. Repetition was allowed in case of grave crimes. There were the usual provisions for the infliction of torture only by a judge having jurisdiction, and for the liability of the judge for exceeding legal limits. Subsequent codes did little more than amend the Partidas in matters of procedure. Torture is not named in the Ordenameas reales of Ferdinand and Isabetia (1485). The Nuena recopilacion of Philip II. enacted that torture was to be applied by the alcaldes on due sentence of the court-even on hideloos in grave crimes-without regard to alleged privilege or custom. In the Notising recopilacion of 1775 the only provisions on the subject are that the alcaldes are not to condemn to torment without preceding sentence according to law, and that hidalgos are not to be tormented or suffer infamous punishment. In Aragon, while it was an independent state, torture was not in use to the same extent as in other parts of Spain. It was abolished in the inth century by the General Privilege of 1283 except in the case of vagabonds charged with coining. A statute of 1335 made it unlawful to put any freeman to the torture. ${ }^{2}$ On the other hand, the Aragonese nobility had a power, similar to the peine forte ef dure, of putting a criminal to death by cold, hunger and thirst." The jurists dealing with the subject are not as numerous as in Italy, no doubt because ltalian opinions were received as law in all countries whose systems were based on Roman law. ${ }^{\text {a }}$ Some of the Italian jurists too, like Charus, were at that same time Spanish officials. The earliest Spanish secular jurist appears to be Suarez de Paz. According to him the most usual cortures in Spain were the water and cond, the pulley or strappado, the hot brick, and the lablillas, or thumbscrew and boot combined. Three was the greatest number of times that any torture could be applied. It might be decreed either on demand of the accuscr or at will of the judge. The Roman rule of beginning with the weakest was amplified into a serics of regulations that a son was to be put to the question before a father, a woman before a man, 8 cc . The fullest statement of Spanish law is to be found in the work of Antonio Gomez, a professor at Satamanca." With him no exceptions apply in charges of laesa majestas divina or hwmana. A judge is liable to different punishment according as he orders torture dolose or culpabilfter. Differing from Hippolytus de Marsiliis, Gomez holds that the dying accusation of a murdered man is not an indicium. A confcssion on insufficient indicia is void. His division of torture into torlurs aclualss and terror propinctus is the same as that of the French jurists into torture and presentment. The conclusions of the ecclesiastical writers of Spain, such as Eymerico and Simancas, were accepted wholly or partially by the secular writers. such as Alvarez de Velasco, ${ }^{\text { }}$ and the Peruvian, Juan de Hevia Bolaños, ${ }^{*}$ who points out differences in the ecclesiastical and secular systems, e.g. the former brought up the accused for ratification in three days, the latter in twenty-four hours. A good deal of the Spanish law will be found in the proceedings against Sir Thomas Picton (sec above). Torture in Spain seems to have been inflicted on Jews to an extraordinary extent, as it was also in Portugal, where the latest legislation as to torture seems to be of the year 1678 . In 1790 it had become obsolete. ${ }^{50}$ and in a work on criminal procedure four years later lt is only referned to for the purpose of stating that when it did exist it was realis or merbalis. ${ }^{11}$

Testonic Slotes.-Germany (including Austria) is distinguished Ly the possession of tbe most extensive literature and legislation
${ }^{3}$ vi. 4 . 5 , vis 10 . It was one of the earlicst books printed in Spain, the earliest edition appearing in 1491.
${ }^{1}$ Cited Hallam, Middle Ages, iti. 76.

- Du Cange, s.t. Fame Hecare.
- In all the Latin countries the idea of torture had become a commonplace. The dramatists contain frequent allusions to it. In Lope de Vega's El Perro del horklano ("The Dog in the Manger "), one of the characters sayb, "Here's a pretty inquisition!" to which the answer is, "The torture will be next applised." Moliere and Racine both make use of it. In L'Avere, act iv. sc. 7. Harpagon threatens to put his whole bouschold to the question. In Les Plaideurs Dandin invites Isabelle to bee la question as a mode of passing an hour or two. In England Bacon (Essay Ivi.) says, There is no worse torture than the torture of laws." The same idta occurs again in the Advancement of Learning, vini. 3.13." It is a cruel thing to torture the laws that they may torture men."
- Praris ecciesiastice et saecularis, vol. i. pt. v. . 3 (Salamanca, $1583)$.

Parioc resolutiones, p. 412 (Antwerp, 1593).
: Iudex perfeciuc (Lausanne, 1740).

- Curia flipica (Madrid, 1825).
${ }^{10}$ Repertorio geral das leis exiramagantes, P. 381 (Coimuisa, 1815).
u Pashal Freirus, Iust. jur. crime. dusidani, p. 203 (Lisbun, 1794).
on the subject. The principal writers are Langer, von Rusiach and von Bodem. In addition may be cired the curious Layenspiegel of Ulrich Tengler (1544). and the works of Remus, Casonus and Carpzow. \mathbf{L} Legialation was partly for the empire, partly for itr component states. Imperial legislation dealt with the matter in the Golden Bull (1356), the Ordinance of Bamberg (1507), the Carolina (1532$)^{13}$ and the Constitutio eriminalis theresiano (1768).'1 The Carolina followed the usual lines, the main difference being that the infliction must be in the presence of two scabini and a notary, who was to make a detailed record of the proceedings. The code of Maria Theresa defines torture as "a subsidiary means of eliciting truth." It could be applied only in cases where condemna. tion would have involved capital or severe corporal punishment The illustrated edition was suppressed by Prince Kaunitz a few days after its appearance. Torture was formally abolished in the empire in 1776. In Prussia it was practically abolished by Frederick the Great in 1740, formally in 1805. Even before its abolition it was in use only to discover accomplices after conviction, In some other states it existed longer, in Baden as late as $\mathbf{3 8} 31$. It was carried toexcess in Germany, as in the Netherlands and Scotland in charges of witcheraft.
The Nelherlands.- The principal legislative enactment was the code of criminal procedure promulgated by Philip 11 . in 1570 and generally known as the Ordonnonce sur le style. 4 One of its main objects was to assimilate the varieties of local custom, as the Nueva recoprlacion had done in Spain three years carlier. The French ordonnance of 1670 is probably largely based on it. In spite of the attempt of the ordinance to introduce uniformity, certain cities of Brabant, it is said, still claimed the privilege of torturing in certain cases not permitted by the ordinance, e-g. where there was only one witness. ${ }^{17}$

The law of 1670 continued to be the basis of criminal procedure in the Austrian Netherlands until 1787 . In the United Provinces it was not repealed until 1798 . The principal text-writers ar. Damhouder, ${ }^{\text {³ }}$ van Leeuwen ${ }^{13}$ and Voct. Van Leeuwen lays down as a fundamental principie that no one was to be condemned to death without confession, and such confession, if attainable in no other way, ought to be elicited by torture. Witnesses could be tortured only if they varied on confrontation. One of the indicia not always recognized by jurists was previous conviction for a similar crime. Voet's commentary ad Pandectas ${ }^{\text {to }}$ is interesting for its taking the same vlew as St Augustine as to the uselessness of torture, and compares its effect with that of the trial by battle. At the same time he allows it to be of some value in the case of very grave crimes. The valuc of torture was doubted by others as well as Voet, e.g. by A. Nicholas ${ }^{21}$ and by van Essen. ${ }^{21}$ At the same time a writer was found to compose a work on the unpromising subject of the rack. ${ }^{2 n}$

Scondinavion Countres.-There is a notice of torture in the lcclandic Code known as the Grágás (about 1119). Judicial tortutc is said to have been introduced into Denmark by Valdemar I. in $1157 .^{24}$ In the code of Christian V. (1683) it was limited to cascs of treason. ${ }^{28}$ It was abolished by the infuence of Struensec in 177 B , but notwithstanding this he was threatened with it, though it was not actually inflicted, before his exccution in 1772 . In Sweden torture never existed as a system, and in the code of 1734 it was expressly forbidden. ${ }^{3}$. It was however occasionally inflicted, as in England, by extrajudicial authorities, called secret committees.
${ }^{12}$ Extracts from these and other writers will be found in Lea, Superslition end Force, and in R. Quanter. Die Folfer in der deutschen Rechispflege sonsl und jelat (Berlin, igoo).

4 Chs. 33-44.
${ }_{11}$ Art, 38 (Vienna. 1769)
${ }^{16}$ This statement is made on the authority of a work attributed to Frederick himself, Dissertatiom sur les raisoms d'elablir ous d'abroger les lois (1748).
${ }^{15}$ A list of the numerous commentaries on this code will be found in Nybels, Les Ordosmances criminelles de Philippe II. de 1570, p. 23 (Brussels, 1856).

Nybels, pp. 31,33
u Cratique judicioive en causes criminelies (Antwerp, 1564)
${ }^{1}$ Censura forensis, pt ii. bk. ii. chs. B, 9 (Leiden, 1677)
${ }^{7}$ On Dig. xlviii. 18. There are numerous cditions of Voct the ixth (generally found in libraries) is the Hague (1734)
${ }^{51}$ Sí la torlure est un moyen sitr d vérifier les crimes divioles. 168i). Also hy an anonymous writer thirly years mative. De Pijnbank wedersproken an bemalig' (Rotterdam, lasi).

In Jus ecolesiasticum universum (Louvain, 1780)
${ }^{2 s}$ Hicronymi Magii Anglarenis de equubes lioer pantymas (Amstem

The "cave of roses," where reptiles were kept for the purpose of torture, was closed by Gustavus III. in 1772.

Slou Cowneries.-The earliest mention of torture seems to be that of the mutiation provided for certain offences by the code of Scephen Duman in 1342 In Russia torture does not ocur in the rocenions of the carlier taw. It was posaibly of Tatar origin, and the earliest mention of it in an official document is prohably' in the Sudebnik of Ivan the Terrible (1497). In the ordinance of 1556 there are claborate regulations, which one learns from bistory were not always observed in periode of political disturbance, and torture seema to have been used even as a means of enforcing payment of debts. The reaction begins with Peter the Great and culminates with Catharine II., who was largely infuenced ty the opinions of Beccaria and Voltaire. In the instructions to the commission for framing a criminel code (1766), it is deciared that all punishmenta by which the body is maimed ought to be abolished, ${ }^{2}$ and that the torture of the rack violates the rules of equity and does not profuce the end propoeed by the laws. ${ }^{\text {. }}$ It was formally abolished by Alexander I. in isor, and in 1832 the Sbod Zakowes subjected to penalties any jodge who preaumed to order it. But even as hate as 1847 it seems to have been inflicted in one or two exceptional cases.'
Authorities.-For England Jardine's ia still the standard work. Much general information and numerous authorities will be found in Lipenius, Bibliohthece realis Juridica, s.s. "Tortura "(Frankfort, ${ }^{1679}$), and in the more modern work of J. Helbing, Die Tortur (Berlin, 1900). For those who can obtain access to it the catalogue mand at the sale of M. G. Libri (186 I) is valuable. He had collected most of the books on the subject. There are several pubiications daling with cases of individuais in addition to the numerous ones on wichecralt triala, e.f. those of Wiliam Lithgow, the Amboyna ase, Dellon and Van Halen. Lithgow's etory has been republiched (Chagow, 1907).
(J.W.)

TORTS, a Latin word, meaning a round swelling or protaberance, applied to a convex moulding in architecture, which in mection is generally a semicircle. The earliest examples are found in Egypt, where it was carried up the angles of the pylon and temple walls and horizontally across the same. Its most frequent employment is in the bases of columns; in the Roman Doric order being the lowest moulding; in the Ionic orden there are generally two torus mouldings separated by a scotiis with fillets. Both in Greek and Roman bases sametimes the torus is elaborately carved. (See Mouldino.)

TORGHOK, a town of Russia, in the government of Tver, on the river Tvertsa, 21 m . hy rail S.W. of the Likhoslavl, station of the St Petersburg \& Moscow railway. Pop. (1g00), 15,119 It dates from the rith century, and the name (marketPlace) ahows that this dependency of Novgorod was a commercial centre. It was fortified with a stone wall, which only partially protected it from the attacks of Mongols, Lithuanians and Poles. Torzhok is celebrated in Russia for its embroidered valvet and cmbroidered leather-work, for the manufacture of travelling bass, and for its trade in corn and flour.
T0eciagilu (anc. Tuscana, q.2.), a town of the province of Rome, Italy, 15 m . N.E. of Corneto by road, 545 ft . above sea. level. Pop (1901), 4839. The medieval walis with their towers are still preserved. On the ancient citadel hill is the Romanesque church of S. Pietro, belonging to four different periods-739, 1093 (the date of the reconstruction of the crypt), the middle of the 12 th and the ead of the 12 th century. It has the shape of a Romen basilics, with a nave and two aisles and one apse. The chborale fagade with its rose window also belongs to the 12tb centary. S. Maria in the valley below dates from roso to 1206, and has a similar facade and a massive square campanile. In the town are two ether Romanesque churches.

introduced a certain amount of order into the wild northem district under his rule; this severity made him exceedingly unpopular, and in 1065 Northumbria hroke into open revol. Declaring Tostig an outlaw and choosing Morkere in his stead, the rebels marched southwards and were met at Oxford by Earl Harold, who, rather against the will of the king, granted their demands. Tostis sailed to Flanders and thence to Normandy, where he offered his services to Duke William, who was related to his wife and who was preparing for his invasion of England. He then harried the Isle of Wight and the Kentish and Lincolnahire coasts, and, after a stay in Scotland and poasibly a visit to Norway, joined another invader, Harald LII. Hardrada, king of Norway, in the Tyne. Together they asiled up the Humber and at Gate Fulford, near York, deteated Earis Mortere and Edwine and entered York. But Harold, now king, was burrying to the north. Taking the Norwegians hy surpriae at Stamford Bridge he destroyed their army on the 25 th of September 1066, and in this battle both Tostig and the king of Norway were slain. Tostig's two sons appear to have taken refuge in Norway, and his widow Judith married Welf, duke of Bavaria.
See E. A. Freeman, The Nonsan Conquest, vols, iti. and ini. (1870-8876).

TOTANA, a town of eastern Spain, in the province of Murcia, on the Lorca-Murcia railway. Pop. (1900), 13,703. The town, which consists of two parts, the Barrio de Sevilla and Barrio de Triana, contains several handsome public huildings, among them the church of Sentiago, with its three naves. Water is conveyed to Totana from the Sierra de Espuña by an aqueduct 7 m . long. Saltpetre is obtained among the hills, and there is a thriving trade in wheat, oranges, olives, slmonds, and wine from the Sengonera valley. Other industries are the mamufacture of linen, leather and the earthenware jass called tisomas, which are used for the storage of oil and wine.

TOTBMLSM. The word "totem" is used in too many varying senses hy students of early socieky and religion. The term rame into the English language in the form of "totam," through a work of 1791, by J. Long, an interpreter between the whites and the Red Indians of North America.' Long himself seems to have nsed the word to denote the protective familiar, usually an animal, which each Indian selected for himself, generally through the monition of a dream during the long fast of lads at their initiation. Such selecled (or, when bestowed hy medicinemen or friends, "given") totems ase styled "personal totems" and have no effect in savage law, por are they bereditary, with any legal consequences.

In stricter terminalogy "totem" denotes the object, generally of a natural species, animal or vegetable, but occasionally rain, cloud, star, wind, which gives its name to a kiadred actual or supposed, among many snvages and barbaric races in America, Africa, Australia and Asia and the iskes. Esch child, male or female, inherits this name, cither from its mother ("female descent") or from its father (" mile descent "). Hetween each person and hit or her mame-giving ohject, a certain mystic ropport is supposed to exist. Where descent wavers, persons occasionally have, in varying degrees, the totems of both parents.

Religions Aspect of the Totemx-As a rule, hy no means invariahle, the individual may not kill or eat the name-giving ohject of his kin, except under dire necestity; while less ustally it is supposed to protect him and to sead bin monitory dreams. This is the "religious" or semi-religlous aspect of the totem. or this aspect is, hy some students, called " religious."

We also hear of custorns of burying and lamenting dead animals which are regarded with reverence by this or that "Yamily," or "clan." This custom is reported among the Samoans, and one "clan" was said to offer first-fruits to its sacred animal, the eed; while the "clan" that revered the pigeon kept and fed a tame specimen. ${ }^{6}$ But in Samoa, though the sacred animsls of "clans" or "families "are, in all probability, sarvivats of totemism, they are now regarded hy the peaple as the veficios

[^4]© Turner, Semos, p. 71.
of "clan" or "family" gods, and therefore reccive honours not paid to the hereditary totems of Australia and North America, which have nothing godlike. It is to be presumed that "totem dances" in which some Australian tribes exhibit, in ballecs d'action, the incidents of a myth concerning the totem, are, in a certain sense, "religious "; when they are not magical, and intended to foster and fertilize the species, animal or vegetable or other to which the totem belongs.

The magical performances for the behoof of the totem creatures may be studied in the chapters on " Intichiuma " in Messrs Spencer and Gillen's Native Tribes of Central Australia, and Native Tribes of Northern Australia. Among the many guesses at the original purpose of totemism, one has been that the primal intention of totem sets of human beings was to act as magical co-operative stores for supplying increased quantities of food to the tribe. But this opinioa has gone the way of other conjectures. The "religious" status of the totem is lowest among peoples where its infuence on social regulations is greatest, and vice versa, a topic to which we reeur.

There are also various rites, in various tribes, connecting the dead man with his totem at his funcral; perhaps at his initiation, when a boy, into the esoteric knowledge and rules of his tribe. Men may identify themselves with their totems, or, mark themselves as of this or that totem by wearing the hide or the plumage of the bird or beast, or by putting on a mask resembling its face. The degree of "religious" regard for the revered object increases in proportion as it is taken to contain the spirit of an ancestor or to be the embodiment of a god: ideas not found among the most backward savages.

The supreme or superior being of low savage religion or mythology is never a totem. He may be able, like Zeus in Greek mythology, to assume any shape he pleases; and in the myths of some Australian tribes he ordained the institution of totemism. Byamee, among the Euahlayi tribe of north-west New South Wales, had all the totems in him, and when he went to his paradise, Bullimah, he distributed them, with the marriage rules, among his people. In other legends, especially those of central and northern Australia, the original totem creatures, animal in form, with bestial aspect, were developed in a marine or lacustrine environment, and from them were evolved the human beings of each totem kin. The rule of non-intermarriage within the totem was, in some myths, of divine institution; in others, was invented by the primitive wandering totemic beings; or was laid down by the wisdom of mere men who saw some unknown evil in consanguine unions. The strict regard paid to the rule may be called "religious"; in so far as totemlsts are aware of no secular and social raison d' atre of the rule it has a mysterious character. But whereas to eal the totem is sometimes thought to be automatically punished by sickness or death, this danger does not attach to marriage within the totem save in a single known case. The secular penalty alone is dreaded; so there seems to be no religious fear of offending a superior being, or the totem himself: no tabu of a mystic sort.

Social Aspect of the Totem. The totem has almost always a strong influence on or is associated with marriage law, and cxcept in the centre of Australia, and perhaps in the little-known Weat, men and women of the same totem may not intermarry, " however far apart their hunting grounds," and though there is no objection on the score of consanguinity.

This is the result, in Australis, of the custom, there almost universal, which causes each individual to belong, by birth, to one or other of the two main exogamous and intermarrying divisions of the tribe (usually called "phratries "). The phrathies ioften known by names of animals, as Eagle Hawk and Gims; Crow and White Cockatoo) contain each a rumber of totem kins, as Dog, Wild Cherry, Wombat, Frog, Owh, Emu, Kangaroo, and so on, and (except among the Arunta "nation" of Give tribes in Central Australia) the same totem kin never occurs in both phratries. Thus as all persons except in the Arunta nation, marry out of their own phratry, none can marry into his or her totem kin

- Mrs Langloh Parker. The Eurhlayi Tribe.

In some parts of North America the same rule prevails, with this peculiarity that the phratries, or main exogamous divisions, are not alwaya two, as in Australia, but, for example, among' the Mohegans three-Woff, Turtle, and Turkey. ${ }^{\text {E }}$ In Wolf all the totems are quadrupeds; under Turtie they are various species of turtles and the yellow eel; and under Turkey all the totems are birds.

Clearly this ranking of the totems in the phratries is the result of purposeful design, not of accident. Design may also be ohserved in such phratries of Australian tribes as are named after animals of contrasted colours, such as White Cockatoo and Crow, Light Eagle Hawk and Crow. It has been supposed by Mr J. Mathew, Père Schmidt and others that these Australian phratries arose in an alliance with connubium between a darker and a lighter race.' But another hypothesis is not less probable; and as we can translate only about a third of Australian phratry names, conjecture on this subject is premature.

Both in Australia and America the animals, as Eagle Hawk and Crow, which give their names to the phratries, are almost always totem kins within their own phratries.*
The Moquis of Arizona are said to have ten phratrics, by Captain Ulick Bourke in his Snake Dance of the Moquis, but possibly he did not use the term "phratry" in the sense which we attach to it.
Among the Urabunna of Southern Central Australia, and among the tribes towards the Darling River, a very peculiar ruic is said to prevail. There are two phratries, and in each are many totem kins, but each totem kin may intermarry with only one totem kin which must he in the opposite phratry." Thus there are as many exogamous divisions as there are totems in the tribes, which reckon descent in the female tine; chitdren inheriting the mother's totem only. Corroboration of these statements is desirable, as the tribes implicated are peculiarly "primitive," and theirs may be the oldest extant set of marriage rules.

The existence of two or more main exogamous divislons, named or unnamed, is found among peoples where there are either no totem kins, or where they have fallen into the background, as in parts of Melanesia, among the Todas and Meitchis of India and the Wanika in East Africa."

An extraordinary case is reported from South Australis where people must marry in their own phratry, while their childrea belong to the opposite phratry.! This awaits corroboration.

We now see some of the numerous varieties which prevail in the marriage rules connected with the totems. Even among a tribe whose members, it is reported, may marry into their own phratries, it appears that they must not marry within their own totem kins. This is, indeed, the rule wherever totemic socicties are found in anything approaching to what we deem their most archaic constitution as in south-east Australia and some tribes of North America.

Exogamy: The Arunta Abmormality.-Meanwhile, in Central Australis, in the Arunta " nation," the rule forbidding marriage within the totem kin does not exist. Totems here are not, as everywhere else, inherited from either parent, hut a child is of what we may call "the local totem" of the place where its mother first became conscions of its life within her. The ides is that the spirits of a primal race, in groups each of one totem only ("Alcheringa folk"), haunt various localities; or spirits (ralapa) emanating from these primal beings do so; they enter into passing married women, and are incarnated and born again."

[^5]Thus if a woman, whatever her own totem, and whatever her trusbed's may be, becomes conscious of her child's life in a known centre of Wild Cat spirits, her child's totem is Wild Cat, and so with all the rest.

As a consequence, a totem sometimes here appears in what the people call the "wrong" (i.e. not the original) exogsmous division; and persons may marry within their own totem name, if that totem be in the "right "exogamous division, which is not theirs. Each totem spirit is among the Arunta associated with en amulet or churinga of stone; these are of various shapes, and are decorated with concentric circles, spirals, cupules, and other archaic patterns. These amolets are only used in this sense by the Arunta nation and their neighbours the Kaitish, " and it is this idea of spirit individuals associated with churinga and reident in certain definite spots that lies at the root of the present
totemim. About the central Arunta tribe with its neighbours, the Urabunna, we have the evidence very carefully collected by Mr Gillen, a protector of the aborigines, and Professor Baldwin Spencer (Native Iribes of Ceniral A wstralia). Concerning the peoples north from the ceatre to the Gulf of Carpentaria, the same scholars furnish a copious account in their Northern Tribes. These two explorers had the confidence of the blacks; witnessed their most secret ceremonies, magical and initiatory; and collected their legends. Their books, towever. contain no philological information as to the structure and interrelation of the dialocts, information which is rarely to be foond in the works of English observers in Australia. As far as appears, the observers conversed with the triber only in "pidgin English." If this be the case that lingua franca is current among some eighteen central-northern tribes speaking various native dialecth. We are told nothing about the languages ueed in each case: perhape the Arunta men who accompanied the expedition arranged a system of interpreters.
For the Dieri tribe, neighbours of the Urabunna, we have copious evidence in Natise Tribes of Souch-East Austratia by the late Mr A. W. Howitt, who studied the peoples for forty years: was made free of their initiatory ceremonies; and obtained iatelligence from setters in regions which he did not visit. We have also legends with Dieri texts and translations írom the Rev. Mr Siebert, a missionary among the Dieri. That tribe appears now to exist in a very drindled condition under missionary supervition. The aocqunts of tribes from the centre to the south-cast by Mr R. E. Mathew, are scattered in many English, Australian and American learned periodicals. Mr Mathew has given a good deal of information about some of the dialects. His statements as to the line of descent and on other points among dertain tribes are at variance with those of Mescry Spencer and Gillen (iee an article by Mr A. R. Brown in Man. March 1910). Mr Mathew. however, does not enable us. to test the accuracy of his informants among the northern tribes, which ia unfortonate. For the Aranda (or Arunta) of a region apparently not explored by Messers Spencer and Gillen, and for the neighbouring Loritio tribe. we have Due Aranda und Lorilja Stámme, two volumes by the Rev. C. Strehlow (Baer, Frankfurt am Main, 1907, 1908). Mr Strehlow is a German missionary who, after working among the Dieri and acquiring their language, served for many years among a branch of the Arunta (the Aranda), differing considerably in dislect, myths and usages from the Arunta of Messrs Spencer and Gillen. In some points, for example as to the primal ancestors and the epirits diffused by them for incarnation in human bodies, the Aranda and Loritja are more akin to the northern tribes than to Mr Spencer's Arunta. In other myths they resemble sorme wouth-eastern tribes reported on by Mr Howitt. Unlike the Arunta of Mesmrs Spencer and Gillen, but like the Arunta described by Mr Giliep earlier in The Horn Expedition, they believe in "a magnified noo-natural man," Altija, with a goose-foot, dwelling in the heavens. Unlike the sell-created Atnatu of the Kaitish of Meners Spencer and Gillen, be is not said to have created thinga, or to take any concern about human beings, as Atnatu does in matters of ceremonial. Mr Strehlow gives Aranda and Lortlja texts in the original, with translations and philological remarky-

Mr Fraser, in his Tolumism, makes no use of Mr Strehlow's ieformation (save in a single instance). To us it seems worthy of uredy. His reason for this abstention is that, in a letter to him (Melbourne, March 10. 1008). Mr Spencer says that lor at least twenty yean the Lutheran Missions have taught the natives " that altijra means 'god' : have taught that their sacred ceremonies and secular dances are' wicked 's have problbited them, and have never seen bem. Flour and tobacco. \&c., are only given to natives who attend church and school. Natives have been married who, according to mative customary law, belong to groups to which marriage is forbidden. For these reasons Mr Frazer cannot attempt i" to Giter the native liquor clear of irs alien sediment," (Totemism, i. 186, note 2).

Against this we may urge that. as regards the goose-footed sky. dweller. Mr Strehlow reports less of his active interest in human affairs than Mr Gillen does concerning his "Great Jithaama of the
totemic system of the Arunta," says Messra Spencer and Gillen. ${ }^{1}$ Every Arunta born incarnates a pre-existent primal spirit attached to one of the stone churinga dropped by primal totemic berngs, all of one totem in each case, at a place called an oknanikilla. Each child belongs to the totem of the primal beings of the place, where the mother became aware of the child's life.

Thus the peculiar causes which have produced the unique Arunta licence of marrying within the totern are conspicuoudy obvious

Contradiclory Theories about the Arunta Abnormal Tolemism.At this point theories concerning the origin of totemism begin to differ irreconcilably. Mr Frazer, Mr Spencer, and, apparently Dr Rivers, hold that, in Australia at least, totemism was orignally "conceptional." It began in the belief by the women that pregnancy was caused by the entrance into them of some spirit associated with a visible object, usually animal or vegetable; while the child born. in each case, was that object. Hence that class of objects was tabued to the child; was its totem, hut such totems were not hereditary

Next, for some unknown reason, the tribes were divided inte two bodies or segments. The members of segment A may not intermarry; they must marry persons of segment B, and vice versa. Thus were evolved the primal forms of totemism and exogamy now represented in the law of the Arunta nation alone. Here, and hert alone, marriage within the totem is permitted. The theory is, apparently; that, in all of her exoga mous and totemic peoples, totems had been, for various reasons, made hereditary, before exogamy was enforced by the legislator in his wisdom. Thus, all over the totemic world, except in the Arunta nation, the method of the kegislator was simply to place one set of totem kins in tribal segment A, and the other in segment B, and make the segments exogamous and intermarrying. Thus it was impossibile for any person to marry another of the same totem. This is the theory of Mr Frazer.

Upholders of the contradictory system maintain that the Arunta nation has passed through and out of the universal and normal system of hereditary and exogamous totemism into its present condition, by reason of the belief that children are Incarnations of pre-existing animal or vegetable spirits, olus the onique Arunta idea of the connexion of such spirits with their stone churinga. Where this combination of the two beliels does not occur, there the Arunta non-bereditary and non-exogamous totemism does not occur. It would necessarily arise in any normal tribe which adopted the two Arunta beliefs, which are not " primitive."
Arguments agains! Mr Fraser's Theory.-There was obviously a time, it is urged, when all totems were, as everywhere dise,
heavens" among the Arunta. Mr Strehlow's being, Altjira, has a name apparently meaning " mystic" or sacred. which is applied to other things, for example to the inherited maternal totem of each mative. His names for Altjira (god) and for the totemic ancestors (toten gods), are inappropriate, but may be discounted. Many other tribes who are discussed by Mr Frazer have been long under missionary Inftience as well as the Aranda. According to Mr Frazer the Dieri tribe had enjoyed a German Lutheran mimsion zation (since 1866) lor forty-four years up to 1910. Abouk 150 Dieri were alive in 1909 (Totemism, iii. 344). Neverthelem the Dieri myths published by Mr Siebert in the decadence of the tribe, and when the remnant was under missionarles, show no "alien sectiment." Nor do the traditions of Mr Serehlow's Aranda. Their traditions are clomely akin, now to those of the Aranta, now to those of the northern tribes, now to those of the Euahlayi of Mrs Langloh Parker (The Euahlayi Tribe) in New South Wales, and once more to those of Mr Howitt's south-eastern tribes. There is no trace of Christian influence in the Aranda and Loritia matter, to vestige of "alien" (that is, of European) "sediment." but the sccoumt of Atna tu among the Kaitish reported on by Mesors Spencer and Gillen readslike a savage version of Mitton's" Fall of the Angels"in Paradise Lost. For these reasons we do not reject the information of Mr Strehlow, who is master of several tribal languages, and. of course. does not encourage wicked native rites by providing supplies of flour, tobacco, \&c., during the performances, ${ }^{26} \mathrm{Mr}$ Howilt and others say that they found it necessary to do. Sceptical colonists have been heard to aver that natives will go on performing rites at long as white men will provide supplies.
' Native Tribes of Central Australia, p. 123.
in what the Arunta call "the right" divisions; Arunta, that is, were so arrayed that no totem existed in more than one division. Obliged, as now, to marry out of their own exogamous division (one of four sub-classes among the Arunta) into one of the four sub-classes of the opposite side, no man could then find in it a woman of his own totem to marry. But when Arunta ceased to be hereditary, and came to be acquired, as now, by the local accident of the totem spirits-all, in each case, of one totem name, which haunt the supposed place of a child's conceptionsome totems inevitably would often get out of their original sub-class into another, and thus the same totems are in several divisions. But granting that a man of division A may legally marry a woman of division B, he is not now prevented from doing so because his totem (say Wild Cat) is also hers. His or hers has strayed, by accident of supposed place of conception, out of its "right", into its "wrong " division. The words "right " and "wrong" as hecre used by the Arunta make it certain that they still perceive the distinction, and that, before the Arunta evolved the spiritual view of conception, they had, like other people, their totems in each case confined to a single main exogamous division of their tribe, and therefore no persons could then marry into their own totems.

But when the theory of spiritual conception arose, and was combined, in the Arunta set of tribes alone (it is common enough elsewhere in northern and western Australia), with the churinga doctrine, which gave totems by accident, these two factors, as Messrs Spencer and Gillen say, became the causes--" lie at the root "-of the present Arunta system by which persons may marry others of "the right" division, but of "the wrong " totem. That system is strictly confined to the group of tribes (Ilpirra, Loritja, Unmaterja, Kaitish, Arunta) which constitute "the Arunta nation." Elsewhere the belief in spiritual conception widely prevails, but not the belief in the connexion of spirits of individuals with the stone churinga of individuals. Consequently the Aruata system of marriage within the totem exists nowhere, and the non-exogamous non-hereditary totem exists nowhere, except in the Arunta region. Everywhere else hereditary totems are exogamous. ${ }^{1}$

Thus the practice of acquiring the totem by local accident is absolutely coofined to five tribes where the churinga doctrine coexists with it. That the churinga belief, coexistent with the spiritual theory of conception, is of relatively recent origin is a demonstrable fact. Had it always been present among the Arunta the inevitable result, in the course of ages, would be the scattering of the totems almost equally, as chance would scatier tbem among the eight exogamous divisions.

This can be tested by experiment. Take eight men, to represent the eight exogamous divisions, and set them apart in two groups of four. Take four packs of cards, 208 cards, to represent the Arunta totems, which ate over 200 in number. Deal the cards round in the usual way to each of the eight men; each will receive 26 cards. It will not be found that group A has "the great majority" of spades and clubs, while group B has "the great majority" of diamonds and hearts, and neither group will have " the great majority" of court cards. Accident does not work in that way. But while accident alone now determines the totem to which an Arunta shall belong, nevertheless "in the Arunta, as a general rule, the great majority of the mernbers of any onc totemic group belong to one moicty of the tribe; but this is by no means universal. . "-that is, of the totems the great majority in each case, as a rule, belongs to one or the other set of four exogamous sub-classes. ${ }^{2}$

The inference is obvious. While chance has now placed only the small minority of each totem in all or several of the eight exogamous divisions, the great majority of totems is in one or another of the divisions. This great majority cannot come by chance, as Arunta totems now come; consequently it is but lately that chance has determined the totem of each individual. Had chance from the first been the deternining cause, each totem
would not be fairly equally present in each of the two sets of four exogamous divisions. But determination by accident has only existed long enough to affect " as a general rule " a small minority of cases. "The great majority" of totems remain in what is recognized as "the tight," the original divisions, as elsewhere universally. Arunta myth sometimes supports, sometimes contradicts, the belief that the toterns were originally limited, in each case, to one or other division only, and, being selfcontradictory, has no historic value.

A further proof of our point is that the northern neighbours of the Arunta, the Kaitish, have only partially accepted Arunta ideas, religious and social. Unlike the Arunta they have a creative being, Atnatu, from whom half of the population descend; the other half were evolved out of totemic forms. ${ }^{3}$ In the same way the Kaitish totems "are more strictly divided bet ween the two moieties " (main exogamous divisions) "of the tribe." Consequently a man may marry a woman of his own totem if she be in the right exogamous division. "She is not actually forbiden to him, as a wife becomes of this ideutity and totem, as she would be in the Warramunga neighbouring tribe . . ." "It is a very rare thing for a man to marry a woman of the same totern as himself,"s naturally, for the old ruie holds, in sentiment, and a totem is still very rarely in the wrong division. The Arunta system of accidental determination of the totem has as yet scarcely produced among the Kaitish any of its natural and important effects.
This view of the case seems logical: Arunta non-cxogamous non-hereditary totemism is the result, as Messrs Spencer and Gillen show, of the theory of spiritual conception and the theory of the relation of the spirit part of each individual to his churiuga. These two beliefs have already caused a minority of Arunta totems to get out of the original and into the wrong exogamous Arunta divisions. The process is not of old standing; if it were, all totems would now be fairly dist ributed among the divisions hy the laws of chance. In the Kaitish tribe, on the other hand, the processes must be of very recent operation, for they have only begun to produce their necessary effects. The totemism of the Arunta is thus the reverse of "primitive," and has but slightly affected the Kailish.

Precisely the opposite view of the facts is taken by Mr Frazer in his erudite and exhaustive work Totemism. In the Kaitish, be writes, " we may detect the first stage in the transition from promiscuous marriage and fortuitous descent of the totem to strict exogamy of the totem clans and strict heredity of the totems in the paternal line." By "promiscuous marriage," marriage within or without the totem, at pleasure, is obviously intended, for the Arunta do not marry "promiscuously"-do not marry their nearest kin.
How, on Mr Frazer's theory, was the transition from the condition of the Arunta to that of the Kaitish made? If the Kaitish were once in the actual Arunta stage of totemism, how did their totems come now to be much more strictly divided between the two moieties, though "the division is not so absolute as amongst the Urabunna in the south and the tribes farther north . . .'? How did this occur? The Kaitish have not made totems hereditary by law; they are acquired by local accident. They have not made a rule that all totems should, as among the more northern neighbours of the Arunta, be regimented so that no totem occurs in more than one division: to this rule there are exceptions. A man "is not actually forbidden " 10 marry a woman of his own totern provided she be of "the right division," but it is clear that he "does not usually do so." This we can explain as the result of a survival in manners of the of absolute universal prohitition.
Meanwhile our vitw of the facts makes all the phenomena secm natural and in elligible in accordance with the statement of the observers, Missrs Spencer and Gillen, that the cause of the unique nom-herelitary non-exogamous totems of the Arunta is the combination of the churinga spiritual belief with the belief in spiritual conception. 'Chis cause, though now present among

[^6]the Kaitish, has, so far, operated but faintly. We have been explicit on these points because on tbern the whole problem of the original form of totemism hinges. In our view, for the reasons stated, the Arunta system of non-exogamous non-hereditary totemism is a peculiarity of comparatively recent institution. But Mr Frazer, and the chicf observer of the phenomena, Mr Spencer, consider the Arunta system, non-exogamous and nonbereditary; to be the most archaic form of totemism extant.

As to non-hereditary, we find another report of the facts in Dic Aranda mad Loritja Stamene, by the Rev. Mr Strehlow, who has a colloquial and philological knowledge of the language of these tribes. As be reports, among other things, that the Aranda (Arunta) in his district inheril their mother's totems, in addition to their "local totems," they appear to retain an archnic feature from which their local totem syatem and marriage rules are a departure. ${ }^{1}$
The hereditary maternal totem is, in Mr Strchlow's region, the protective being (alfjira) of each Arants individual.
Are the Arwnia "Primitise" or rot P-In the whole totemic controversy the question as to whether the non-exogamous noo-bereditary totemism of the Arunta or the hereditary and exogemous totemism of the rest of Australia and of totemic mankind, be the earlier, is crucial.
That Arunta totemism is a freak or "sport," it is argued, $i s$ made probable first by the fact that the Arunta inherit all things bereditable in the male line, whereas inheritance in the temale descent is earlier. (To this question we return; see below, Male and Female Lines of Descenf.) M. Van Gennep argues that tribes in contact, one set having femate, the other male, descent, "like the Arunta have combined the systems." But several northern tribes with male descent of the totem which are mor in contact with tribes of female descent show much stronger traces of the "combination " than the Arunta, who intermarry freely with a tribe of female descent, the Urabunna; while the Urabunna, though intermarrying with the Arunta who inherit property and tribal office in the male line, show no traces of "combination." Thus tbe effects occur where the alleged cames are not present; and the alleged causes, in the case of the Urabunna and Arunta, do not produce the effects.

Next the Arunte have no names for their main exogamous divitions, these names being a very archaic feature which in many tribes with sub-classes tend to dissppear. In absence of phratry names the Arunta are remote from the primitive. M. Van Ceanep replies that perhaps the Arunta have not yet made the memes, or have not yet borrowed them. This is also the view of Mr Frazer. As he asys, the Southern Arunta lived under the rule of eight classes, but of these four were anonymous, till the nanes for them were borrowed from the north. The people can thre have anonymous exogamous divisions; the two main divisions, or phratries, of the Arunta may, therefore, from the first, bave been anonymous.

To this the reply is that people borrow, if they can, what they need. The Arunta found names for their four hitherto anonymoves classes to be convenient, so they borrowed them. But when once chast-names did, as they do, all that is necessary, the Arunta had no longer any use for the names of the two primary main divisions: these were forgotten; there is nothing to be got by borrowing that; while four Arunta " sub-classes " are gaining their manes, the "classes" (phratries or main divisions) have lost them. It is perfectly logical to hold that while things useful, but hitberto anonymous, are gaining names, other things, now totally useless, are losing their names. One process is as mataral as the other. In all Australia tribes with two main divisions and no sub-clusses, the names of the two main divisions are found, because the names are useful. In several tribes with named sub-clases, which now do the work previously thrown on the main divisions, the names of the main divisions are unknown: the main dividons being now useless, and superseded by the sabchanes. The absence of names of the two main divisions in the Arunta is mercly a result, often found, of the rise of the sub-
${ }^{2}$ Strehlow, fi. 57 (1908).

- Mrates \& k enendes ${ }^{2}$ Australic. p. xouii.
classes, which, as Mr Frazer declares, are not primitive, but the result of successive later legislative acts of division."

Manifestly on this point the Arunta are at the farthest point from the earliest organization: their loss of phratry names is the consequence of this great advance from the "primitive."

All Arunte society rests on a theory of reincarnated splrits, a theory minutely claboratet. M Van Gennep asks "why should this belief not be primitive?" Surely netther the belief in spirits, nor the elaborate working out of the belief connecting spirits with manufactured stone amulets, can have boen primitive. Nobody will say that peculiar stone amulets and the Arunta belief about spirits associated with them are primitive. To this M Van Gennep makes no reply. ${ }^{4}$

The Arunte belief that children are spirit-children (ralapa) incarnated is very common in the other central and northern tribes, and, according to Mrs Bates, in Western Australia; Dr Roth reports the same for parts of Queensland. It is alleged by Messrs Spencer and Gillen that the tribes holding this belief deny any connexion between sexual unions and procreation. Mr Strehlow, on the other hand, says that in his region the older Arunte men understand the part of the male in procreation; and that even the children of the Loritja and Arunta understand. in the case of animals.' (Here corroboration is desirahle and European infuence may be asserted.) Dr Roth says that the Tully River blacks of Queensland admit procreation for all other animals, which have no Koi or soul, hut not for men, who have souls. (Their theory of human birth, therefore, merely aims primarily at accounting for the spiritual part of man.) ${ }^{6}$
According to Mrs Bates, some tribes in the north of South Australia, tribes with tbe same "class" names as the Arunta, hold that to have children a man must possess two spirlts (rance). If he has but one, he remains childless. If he has two, he can dream of an animal, or other object, which then passes into his wife, and is horn as a child, the animal thus becoming the child's totem. This belief does not appear to apply to reproduction in the lower animals. It is a spiritual theory of the begetting of a soul incarnated. If a man has but one spirit, he cennot give one to a child, therefore he is childlens.
It is clear that this, and all other systems in which reproduction is explained in spiritual terms, can only arise among peoples whose whole mode of thinking is intensely "animistic." It is also plain that all such myths answer two questions-(r) How does a being of flesh and spirit acquire its spiritual part?-(2) How is it that every human being is in mystical rapporl with an animal, plant, or otber object, the totem? Manifestly the second question could not arise and need answer before mankind were actually tatemists. It may be added that in the south of Western Australia the name for the mythlcal "Father of All" (a being not there worshipped, though images of him are made and reccive some cult at certain licentious festivals) and the name for "father-stock" is meman, which Mrs Bates finds to be the native term for membrwm virite. All this appears to be proof of understanding of the male part in reproduction, though that understanding is now obscured by speeulation about spirits.

The question arises then, is the ignorance of procreation, where that ignorance exists, " primitive," and is tbe Arunta totemism also "primitive," being conditioned, as we are told it is, by the unique belief in some ckuringa? Or is the ignorance due to attempts of native thinkers to account for the spirit in man as a pre-existing entity that has been from the beginning? The former view is that of Messers Spencer and Gillen, and Mr Frazer. For tbe latter see Lang, Anthropological Essays presented to E. B. Tylor, pp. 210-218. We can hardly call people primitive because they have struggled with tbe problem "how has material man an indwelling spirit?"
Theories of the Origin of Telemic Exogamy.-Since the word "exogamy" as a name for the marriage systems connected (as a rule) with totemism was used by J. F. Mclennan in his

[^7]Primifive Marriage (1866), theories of the origin of exogamy have been rife and multifarious. All, without exception, are purely coajectural. One set of disputants hold that man (whatever his original condition may have been) was, when he first passed an Act of Exogamy, a member of a tribe. Howitt's term for this tribe was "the undivided commune." It had, according to him, its inspired medicine-man, believed to be in communication with some superior being. It had its probouleutic council of elders or "headmen" and its general assembly. Such was man's political condition. ${ }^{1}$ It is not distinguishable from that of many modern Australian tribes. Other tribes, said by some to be the most primitive, the Arunta and their neighbours, pay no attention to the dictates of a superior being, and the Arunta of Spencer and Gillen seem to know no such entity, though as Atnatu, Tukura, Aitjira, and " the Great Uithaana of the heavens," he exists in a dwindled form among the Kaitish, Loritja and outlying portions of the Arunta tribe. In religion Howitt's early men were already in advance of Mr Spencer's Arunta. Socially, man, at this date, according to Howitt, at first left the relations of the sexes wholly unregulated; the nearest kinsiolk by blood coupled at will, though perfectly aware that they were, at least on the maternal side, actual brothers and sisters, parents and children.
Upholders of the first theory, that man lived promiscuously in a tribal state with legislative assemblies and then suddenly reformed promiscuity away, must necessarily differ in their opinion as to the origins of totems and exogamy from the friends of the second theory, who believe that man never was "promiscuous," and given to sexual union with near kin. Why man, on the first theory-familiar as he was with unions of the nearest kin-suddenly abolished them is explained in four or five different ways. Perhaps the most notahle view is Mr Frazer's; he easily confutes, in thirty-five pages, the other hypotheses. ${ }^{2}$ Man saw, or thought he saw, injurious consequences to the wedded nearrelated couples, and therefore he prohibited, first, unions between mothers and sons, and hrothers and sisters. But, in his fourth volume, Mr Frazer sees conclusive objections to this view and prefers another. Some peoples, far above the estate of savagery, believe that human incest blights and sterilizes the crops, women and animala. "If any such belief were entertained by the founders of exogamy, they would clearly have been perfectly sufficieat motives for instituting the system, for they would perfectly explain the horror with which incest has been regarded and the extreme severity with which it has been punished." ${ }^{6}$ That is to say, people had a horror and hatred of incest because they supposed that it blighted the crops and other things. Mr Frazer had previoualy written (iv. 109) "It is important to bear steadily in mind that the dislike of certain marriages must always have existed in the minds of the people, or at least of their leaders, before that dislike, so to say, received legal sanction by being embodied in an exogamous rule."
Again (iv. 112) "There had, for some reason unknown to us, been long growing up a strong aversion to consanguineous unions "-before any iegislative bar was raised against them. This is insisted on. The prohibition "must have answered to certain general sentiments of what was right and proper" (iv. 121). But here the theorist has to explain the origin of the strong aversion, the general sentiment that unions of near kin are wrong and improper. But Mr Frazer does not seem to explain the point that most needs explanation. That "strong aversion," that "gencral sentiment," cannot have arisen from a growing belief that unions of close kin spoiled the crops or the natural resources of the country. That superstition could only arise as a consequence of the horror and aversion with which "incest" was regarded. Now no idca corresponding to "incest" could arise before unions of near kin were deemed abominable. When once such unions were thought hateful to gods and men, and an upsetting of the cosmic balance, then, but not till then, they might be regarded as injurious to the crops. All such belicís are sanctions of ideas already in strong
N.T.S.E.A pp. 89,70 Jbid. i. 165.

Tolemism, iv. 75-120. 4 lbid. iv. $155,156$.
force. The idea that such or such a thing is wrong begets the prohibition, followed by the sanction-the belief that the practice of the thing is injurious in a supernormal way: where that belief exists. We do not know it in Australie, for example.
A belief that close sexual unions were maleficent cosmic influences could not possibly arise previous to, and could not then cause, " the dislike of certain marriages "; "the strong aversion to consanguincous unions"-which existed already. This latest guess of Mr Frazer at the origin of the idea of "incest"-of the abomination of certain unions-is untenable. What he has to explain is the origin of the dislike, the aversion, the horror. Once that has arisen, as he himself observes, the prohibition follows, and then comes the supernormal sanction. Thus no theory of exogamous rules as the result of legislation to prevent the unions of persons closely akin, can produce, or has produced, any reason for the aversion to such unions arising among people to whom, on the theory, they were familiar. Mr Frazer has confuted the guesses of MacLennan, Morgan, Durkheim and others; hut his own idea is untenable.

The Supposed Method of Reform.-On Mr Frazer's theory the reformers first placed half of the mothers of the tribe, with their children, in division A; and the rest of the mothers, with their children, in division B. The members of each division (phratry) must marry out of it into the other, and thus no man could marry his sister or mother. (The father could marry his daughter, hut in tribes with no exogamous explicit rule against the union, he never does.) Later the two divisions were bisected each into a couple of pairs (classes) preventing marriage between father and daughter; and another resegmentatioa prohibited the unions of more distant relations. These systems, from the simplest division into two phratries, to the more complex with two "sub-classes" in each phratry, and the most elaborate of all with four sub-classes in each phratry, exist in various trihes. Environment and climate have nothing to do with the matter. The Urabunna and the Arunta live in the same climate and environment, and intermarry. The Urahunna have the most primitive, the Arunta have the most advanced of these organizations. While the rules are intended to prevent consanguineous marriages, the names of the "sub-classes" (when translatahle, the names of animals) cannot perhaps be explained. They have a totemic appearance.

Totems in Relation to Exogamy.-So far, in this theory nothing has been said of totems, though it is an all but universal rule that people of the same totem may not intermarry, even if the lovers belong to tribes separated by the breadth of the continent. In fact, according to the hypothesis which has been set forth, totems, though now exogamous, played no original part in the evolution of exogamy. They came in by accident, not by design, and dropped into their place in syatem carefully devised.

Originally, on this theory, a totem came to a child, not as is usual now, by inheritance, but by pure accident; the mother supposing that any object which caught her attention at the moment when she first felt the life of her child, or any article of food which she bad recently eaten, became incarnate in her, so that the emu (say) which she saw, or had eaten of, was her child. He or she was an Emu man or woman، by totem was an Emu.

Certain localities, later, were somehow associated each with one given object-cat, kangaroo, grub, or anything else, and now " local totems" (if the phrase may be used) took the place of "conceptional totems," as among the Arunta. The child inevitably was of the local totem and its supposed place of conception.

Finally all tribes except the Arunta "nation." made the totem hereditary, either from mother or father; and as the mother or father, an Emu, was in division A_{4} so wsa the child, and he or she must marry out of that division into the other, B. ${ }^{\text {a }}$

The objections taken to this theory are now to be stated:

- Fraser, Talemism, 1. 135-16\%.
(i.) The theory can by no possibility apply to tribes with three or more main exogamous divisions or phratries, such as we find in North America. In a three-phratry tribe we are reduced to muppose that there were three sexes, or resort to some other solation not perhape compatible with the theory. (ii.) We have 00 evidence that any totemic people, except the Navajoes, think the closest sexual unions injurious to the parties or their offspring. The theory is thus merely extracted from the factscertain unioss are forbidden, therefore they must have been deemed injurious. Now, even if they were generally thought injurious, the belief would be a mere inference from the fact that they were forbidden. (iii.) The supposed original legislative exogemovs division produced a very different effect than that said to be aimed at, namely, the protibition of marriage between brotbers and sisters. It forbade to every man marriage with half the women of his tribe, most of whom were not, even in the wide native use of the term, his "tribal" sisters, that is, women in 2 man's phratry of the same status as his own sisters. Such relationships, of course, could not exist before they were created hy the supposed Act of Division. It would have been easy to prohibit marriages of brothers with sisters directly, just as, though no exogamous rule forbids, the father, in tribes of female descent, is directly forbidden to marry his daughters. The natives can take a simple instead of a bewildering path. To this natural objection Mr Frazer replies: " If we assume, as we have every right to do, that the founders of exogamy in Australia recognized the classificatory system of relacionship, and the classificatory system of relationship only, we shall at once perceive that what they intended to prevent was not merely the marriage of a man with his sister, his mother, or his daughter in the physical sense in which we use these terms; their aim was to prevent his marriage with his sister, his mother and his daughter in the classificatory sense of these terms; that is, they intended to place bars to marriage not between individuals merely but between the whole groups of persons who designated their group, not their individual relationships, their social, not their consanguineous ties, by the aames of father and mother, brother and sister, son and daughter. And in this intention the founders of exogamy succeeded perfectly." Mr Frazer's theory of the origin of exogamy appears now to waver. It was that the primal bisection of the tribe was "deliberately devised and adopted as a means of preventing the marriage, at first, of brother with sisters. . . ." Here was the place to say, if it was then Intended to say, that the Australians "recognized the classificatory system of relationships only." As a matter of fact they recognize both the consanguine and the classificatory systems. It is not the case that " the savage Australian, it may be said with truth, has no idea of relationships as we understand them, and does not discriminate between his actual father and mother and the men and women who belong to the group, each member of which might have lawfully been either his father or his mother, as the case may be."

This statement is made inadvertently and unfortunatelyby Mesers Spencer and Gillen,' but it is contradicted by their own observations. An Arunta can tell you, if asked, which of all the men whom he calls "father" is his very own father." The Dieri have terms for "great " (actual) and " little" (tribal) father, and 50 for otber relationships. In Arunta orgics a woman's " tribal" "fathers" and "brothers " and "sons" are admitted to her embraces; her actual father and hrothers and sons are excluded.' Thus, if the prohibition be based on aversion to unions of persons closely akin by blood, as the actual father is excluded, the actual father, among the Arunta, is, or has been, amongst that people, regarded as near of blood to his daughters. The Arunta are ignorant, we are told, of the part of the male in procreation. Be it so, but there has been a time when they were not ignorant, and when the father was recognized as of the nearest kin by blood to his daughters. If

[^8]not, and if the prohibition is based on hatred of unions of close tin, why is the father exchuded? Nothing, in short, can be more certain than that Australian tribes distinguish between "social" or "tribal " relations on the one hand, and close consanguine relations on the other. Among the Arunta office is iaberited by a man from his mother's husband, his father quem nspliae demonstranl; not from any "tribal" father."

Mr Frazer ${ }^{7}$ apparently meant in his earlier statement that brothers and sisters consanguine, and these only, were to be excluded from intermarriage, because he went on to say that science cannot decide as to whether the closest interbreeding is injurious to the offspring of healthy parents, however near in blood; and that very low savages could not discover what is hidden from modern science. He had therefore marriages of consanguine brothers and sisters present to his mind: "the closest interbreeding." Brothers and sisters were finally forbidden, on this theory, to intermarry, not because of any dread of injury to the affspring. "The only alternative open to us seems to be to infer that these unions were forbidden because they were believed to be injurious to the persons engaged in them, even when they were both in perfect health." These "incestuous unions" are between brothers and sisters, mothers and sons. Here brothers and sisters consanguine, children of the same mother in each case, certainly appear to be intended. Who else, indeed, can be intended? But presently' we are to assume that the Australians, before they made the first exogamous division of the tribe "recognized the classificatory system of relationship, and the classificatory system only." They meant, now, to bar marriage between "whole groups of persons," related by "social, not consanguineous ties." But this seems to be physically impossible. These "whole groups "never existed, and never could exist, as far as we can see, till they were called into being by the legislative division of the tribe into two exogamous phratries-which had not yet been made. How could a man call a whole group of women " nupa,' as at present (the word being applied to his wife and to all women of the opposite phratry to his whom he might legally marry) before the new law had constituted such a group? In what sense, again, were all women of a certain status called my "sisters" (like my actual sisters) before the new law made a new group of them-in regard to marriage as sacred as my own sisters now were to me? It cannot be said that all women of my status were called, collectively, my " sisters" before the new division of the tribe and new rule arose, because previoualy, all women of my status in the tribe have been my "sisters." Who else could be collectively my "sisters "? If to marry a "sister" were reckoned dangerous to her and to me, I must have been forbidden to marry all the women of my status in the tribe. How could a law which merely halved the number of my " sisters" remove the unknown danger from half of them? If any women except my actual sisters were, before the new rule, reckoned as socially my sisters, all women in the tribe of a certain status must have been so reckoned. If all dangerous, I must marry none of them. But hy the new rule, I may marry half of them! Why have they ceased to be dangerous?

If the theory be that originally only brothers and sisters consanguine were thought dangerous to each other in sexual relations, and the superstition was later extended so as to include all "classificatory" hrothers and sisters, who were in these days (before the exogamous division) classificatory brothers and sisters? How and for what reason were some marriageable girls in the tribe classificatory sisters of a young man while others, equally young and marriageable, were not? The classificatory brothers and sisters must have been all the marriageable youth of both sexes in a generation, in the tribe.

But then if all the youth of a generation, of botb sexes, were classificatory brothers and sisters, and if therefore their unions were dangerous to themselves, or to the crops, the danger could not be prevented hy dividing them into two sets, and

[^9]allowing each set of brothers to marry each set of sisters. The only way to parry the danger was to force all these brothers and sisters to marry out of the local tribe into another local tribe with the same superstition. Wben that was done, the two local tribes, exogamous and intermarrying, were constituted into the two phratries of one local tribe. But that is not the theory of observers on the spot: their bypotbesis is that a promiscuous and communistic local tribe, for no known or conceivable reason, bisected itself into two exogamous and intermarrying " moieties."

On the face of $i t$, it is a fatal objection to the theory that when men dwelt in an undivided commune they recognized no system of relationships but the classificatory, yet were well aware of consanguincous relationships; were determined to prohibit the marriages of people in such relationships; and included in the new prohibition people in no way consanguineous, but merely of classificatory kin. The reformers, by the theory, were perfectly able to distinguish consanguineous kinsfolk, so that they might easily have forbidden them to intermarry; while if all the members of the tribe were not in the classificatory degrees of relationship, who were? How were persons in classifcatory relationships with each other discriminated from other members of the tribe who were not? They were easily discriminated as soon as the phratries were instituted, but, we think, not before.

Term of Clussificutory Relationships.-Here it is necessary to say a few words about "classificatory" terms of relationship. Among many peoples the terms or names which with us denote relationships of consanguinity or affinity, such as Father, Mother, Brother, Sister, Son, Daughter, Husband, Wife, are applied both to the individuals actually consanguineous in these degrees, and also to all the other persons in the speaker's own main exogatnous division or phratry who are of the same "age-grade" and social status as the Father, Mother, Brother, Sister, Son, Daughter, Husband, Wife, and so forth. As a man thus calls all the women whom he might legally have married hy the same term as he calls his wife, and calls all children of persons of his own "age-grade," class and status by the same name as he calls his own children, many theorists bold this to be a proof of the origin of the nomenclature "in a system of group marriage in which groups of men exercised marital rights over groups of women, and the limitation of one wife to one husband was unknown. Such a system would explain very simply why every man gives the name of wife to a whole group of women, and every woman gives the name of husband to a whole group of men," and so on with all sucts collective terms of relationship. ${ }^{1}$

Certainly this is a very simple explanation. But if we wished to explain why every Frenchman applies the name which he gives to his "wife " (femme) to every" woman" in the world, it would be rather simpler than satisfactory to say that this nomenclature arose when the French people lived in absolute sexual promiscuity. The same reasoning applics to English " wife," German-Weib, meaning " woman," and so on in many languages. Moreover the explanation, though certainly very simple, is not " the only reasonable and probable explanation." Suppose that early man, as in a hypothesis of Darwin's, lived, not in large local tribes with the present polity of such tribes in Australia, but in "cyclopean families," where the sire controlled his female matcs and offspring; and suppose that he, from motives of scxual jealousy, and love of a quiet life, forbade amours between his sons and daughters. Suppose such a society to reach the dimensions of a tribe. The rules that applied to hrothers and sisters, mothers and sons, would persist, and the original names for persons in such relationships in the family would be extended, in the tribe, to all persons of the same status: new terms being adopted, or old terms extended. to cover new social relationships created by sucial law's in a wider suciety.

Anolher Theary of the Origin of Tolemism and Exogumy.-Ifow this would lappen may be seen in stu fyiut the other hypothesis
of exogamy and totemism.2 Man was at first, as Darwin supposed, a jealous brute who expelled his sons from the neighbourhood of his women; he thus secured the internal peace of his fire circle; there were no domestic love-feuds. The sons therelore of necessity married out-were exogamous. As man became more human, a son was permitted to abide among his kin, but he had to capture a mate from another berd (exogamy).
The groups received sobriquets from each other, as Emu, Frog, and so forth, a fact illustrated copiously in the practice of modern and English and ancient Hebrew villages. ${ }^{3}$
The rule was now that marriage must be outside of the local group-name. Frog may not marry Frog, or Emu, Emu. The usual savage superstition which places all folk in mystic ropport whth the object from which their names are derived gradually gave a degree of sanctity to Emu, Frog and the rest. They became totems.
Perhaps the captured women in group Emu retained and bequeathed to their children their own group-names; the children were Grubs, Ants, Snakes, \&c. in Emu group. Let two sucb groups, Emu and Kangaroo, tired of fighting for women, moke peace with connubium, then we bave two phratries, exogamous and intermarrying, Emu and Kangaroo, with totem kins within them. (Another bypothesis is necessary if the original rule of all was, as among the Urabunna and other tribes, that each totem kin must marryout of itself into only one other totem kin. But we are not sure of the fact of one totem to one totem marriage.) In short, the existence of the two main exogamous divisions in a tribe is the result of an alliance of iwo groups, already exogamous and intermaryying, not of a deliberate dissection of a promiscuous horde."
The first objection to this system is that it is not held by observers on the spot, such as Mr Howett and Mr Spencer. But while all the observed facts of these observers are accepted (when they do not contradict their own statements, or are not corrected by fresh observations), theorists are not bound to accept the hypotheses of the observers. Every possible respect is. paid to facts of ohservation. Hypotbeses as to a stage of society which no man living has observed may be accepted as freely from Darwin as from Howitt, Spencer and L. Morgan.
It is next objected that " the only ground for denying that the elaborate marriage-system" (systems?) "of the Australian aborigines has been devised by them for the purpose which it actually scrves, appears to be a preconceived idea that these savages are incapable of thinking out and putting in practice a series of checks on marriage so intricate that many civilized persons lack either the patience or the ability to understand them . . . The truth is that all attempts to trace the origin and growt h of human institutions without the intervention of human intelligence and will are radically vicious and foredoomed to failure." But nobody is denying that the whole set of Australian systems of marriage is the result of human emotions. inteligence and will. Nobody is denying that, in course of time, the aborigines have thought out and by successive steps have elaborated their systems. The only questions are, what were the human motives and needs which, in the first instance. set human intelligence and will to work in these directions; and how, in the first instance, did they work? The answers given to these questions are purely and inevitably hypothetical. whether given by observers or by cloistered students.
It is objected, as to the origin of totemism, that too much influence is given to accident, too little to design. The answer is that "accident " plays a great part in all evolution, and that,
${ }^{2}$ Lang and Atkinson, Sorsal Origins and Primal Lavo: Lans. Secret of the Tolem.
${ }^{1}$ Lang. Saciol Oripins and Secret of the Tokem.

- Amhropological Essoys, pp. 206~209.
- This theory, already suggested by the Rev. I. Mathew, and Mr Daniel McLennam, occurred independently to M. Van Gennep, who, in Mythes at beendes d'Anstralie, suppressed his chapter on it, after reading The Secred of the Totem. The conclusions were almost icleutical with thase of that work (OP. cil. pp. vi. xxxiv.). The details of the evolution, which are many, may be found in Social Origins and Primal Law, and revised in The Secret of the Tolem.
- Totemism, i. 280، 281.

In the opposed theory, the existence and actual exogamous function of totems is also accidental, artsing from ignorance and a peculiar superstition. It is urged that no men would accept a nickname given from without by hostile groups. This is answered by many examples of cases in which tribes, clans, political parties, and, of course, individuals, have accepted sobriquets from without, and even when these were hostile and derisive. It is asked, Why, on this theory, are there but two exogamous divisions in the tribe? The reply is that in America there may be three or more: that in the Urabunna there are as many exogamous divisions (dual) as there are totems, and that these, like the main exogamous divisions, go in pairs, berause marriage is between two contracting parties. ${ }^{2}$

It is maintained in this theory that Australian blacks, who are refective and by no means illogical men, have long ago observed that certain marriages are rigorously harred by their social system, for no obvious reason. Thus a man learns that he must not marry in his own main exogamous division, say Eagle Hawk. He must choose a wife from the opposite division, Crow. She must belong to a certain set of women in Crow, mhose tribal status is precisely that, in Crow, of his own sisters, and his "hittle sisters" (the women of his sister's status) in Eagle Hawk. The reflective tribesman does not know why these rules exist. But he perceives that the marriageable women in his own main division bear the same title as his wisters by blood. He therefore comes to the conclusion that they are all what his own sisters manifestly are, "too near fiesh," as the natives say in Engtish; and that the purpose of the mule is to bar marriage to him with all the women who bear the namo "sisters" that denotes close consanguinity. Presently he thinks that other kinsfolk, actual, or bearing the same collective title as actual kinsfolk of his, are also "to0 near fiesh," and he goes on to bar them till be reaches the cight class model; or ife some south-castern tribes, drops the whole cumbrous scherne in favour of one much like our own.

The reflective savage, in short, acts exactly as the Church did when she extended to cousins the pre-existing Greek and Roman prohibitions against the marriages of very near kin; and, again, extended them stall further, to exclude persons not consanguineous at all but called by the same title as real consanguines," father," " mother " and "child " in "gossipred" -godfather, golmother, godchild.

The savage and ecelesiastical processes are parallel and HHustrate each other. Probably when a tribe with two main exogamous and intermarrying divisions came into existence in the way which we have indicated, the names used in fomilies for father, mother, daughter, son, husband, wife, brother, sister, were simply extended so as to include, in each case, all persons in the tribe who were now of the same status, socially, with the smene rights, restrictions and duties, as had been theirs in the fire-circle before the tribe was made a tribe by the union of two exogamous and previously hostile intermarrying local groups; or two sets of such groups. The process is natural; the wide extension now given to old names of relationships saved the trouble of making new names. Thus we have found a reasonable and probable way of accounting for classificatory terminology withoet adopting the hypothesis that it arose out of "groupmarriage" and asking "But how did group-marriage arise?"
There is no accident bere, all is deliberate and reflective design, beginning with the purely selfish and peace-loving design of the jealous sirc. Meanwhile the totemic prohibition, -t no marriage in the same totem name." has been retained and expanded even beyond the tribe, and "however remote the hunting grounds " of two persons, they may not intermarry if their totem name be the same.
Such are the two chief opposed theories of the origins of exogamy, and of the connexions of exogamy with totemism. The second does not enjoy the benefit of notice and criticism in Mr Frazer's Tolemism.

The Secrat of the Tatene, pp. 128, 134.
1 For other arguments explaining the duality of the divisions me Van Cenpep, uf swpre, p. xxxiv. and note 1.

Relotions of the Social and Religions Aspects of Totemism.-It is a curious fact (if it be accepted as a fact) that the social aspect of totemism-the prohibition to marry a person of the same hereditary totem name-is sometimes strongest where the "religious" probibition against killing or eating the totem is weakest; while the highest regard is paid to the totem, or to the god which is supposed to inhahit the totem species, where there is no prohibition on marrying within the totem name. Thus in Australia, where (except in the centre, among the Arunta) almost all tribes prohibit marriages within the totem name, it is scarcely possible to find an instance in which irrcligious tratment of the totem, killing or eating it, is (as among many other totemic peoples) thought to be automatically or "religiously " punished by illness, death or miscarnage. Religion, in these cases, does not hold that the injured majesty of the totem avenges itself on the malefactor. On the other hand the Samoans, who pay no regard to the sacred animal of each community in the metter of not marrying within his name, believe that he will infict death if one of his species be eatenand if no expiatory rite be performed. In Samoa, we sew, the so-called totem is the vehicle of a God; in Australia no such idea is found.

Meanwhile the offence of marrying within the totem name is nowhere automatically punished in any way except among the American Navajos, where, to make certain, the totem kin also inflicts secular penalties; ${ }^{4}$ and it is part of the magic of the Intichiuma rites for the behool of the totem that his kin should eat of him sparingly, as on all oceasions they may do. In all other quarters, where marriage within the totem kin is forbidden, the penalty of a breach of law has heen death or tribal excommunication. The offence is secular. The Euablayi, who never marry within the totem name, " may and do cat their hereditary totems with no in effects to themselves." " This is very common in South Australia. As a rule, however, in Australia some respect is paid to the actual plant or animal, and some Northern tribes who inherit the paternal totem respect it almost as much as the maternal totem. As they also inherit property in the maternal line, it seems clear that they have passed from female to male descent, as regards the totem, but not as regards inheritance:

Male and Female Descent of the Totem.-It was the almost universal opinion of anthropologists that, in the earliest totemic societies, the totem was inherited from the mother, and that inheritance from the father was a later development. But when the peculiar totemism of the Arunta was discovered, and it was desired to prove that this non-exogamous totemism was the most primitive extant, it was felt to be a difficulty that the Arunta reckon descent of everything hereditable in the male, not the female line. If then, the Arunta were not primitive bat advanced, in this matter as well as in their eight sub-classes and ceremonles, how could their totemism be primitive? It would have been easy to reply that a peopie might be "primitive" in some details though advanced in ot thers-the fact is notorious. But to escape from the dilemma the idea was proposed that neither male nor female descent was more primitive than the other. One tribe might hegin with male, one with temale descent. Nobody can prove that it was not so, but "whereas evidence of the passage from female to maic reckoning may be observed, there is virtually none of a change in the opposine direction." 7
Thus the Worgaia and Northern neighbours of the Arunta, with male descent, have certainly passed through a system of female descent of the totem, and actually inherit property in the female bine, while Strehlow's Aranda or Arunta inherit their mothers' totems. Moreoper Howitt shows us at least one tribe

[^10]with female descent, the Dieri, actually in the process of diverging from female to male descent of the totem. "A step further is when a man gives his totern name to his son, who then has those of both father and mother. This has been done even in the Dieri tribe," which appears to mean that it is also done in other tribes. ${ }^{2}$
A difficult case in marriage law is explained by saying that " possibly some man, as is sometimes the case, gave his M urdu (totem) to his son, who was then of two Murdus, and so could not marry a girl of one of his two totems." ${ }^{2}$ We thus see how the change from female to male descent of the totem is "directly led to," as Mr Howitt says,' by a man's mere fatherly desire to have his son made a member of his own totem kin. On the other hand, we never read that with male descent of the totem a mother gives hers to son or daughter. All these lacts make it hard to doubt (though absolute proof is necessarily impossible) that female everywhere preceded male descent of the totem.

Proof of transition from female to male descent of the totem appears to be positive in some tribes of the south of South Australia. Among them each person inherits his mother's totem, and may not marry a woman of the same. But he also inherits his father's totem, which "takes precedence," and gives its name to the local group. No person, as apparently a mong the Dieri when a falher has "given his totem" to a son, may marry into either his father's or his mother's totem kin (Mrs Bates).

Thus we have a consecutive series of evolutions: (a) All inherit the maternal totem only, and must not marry within it. This is the rule in tribes of south-east Australia with female descent. (b) Some fathers in this society give their totems to sons, who already inherit their maternal totems. Such sons can marry into neither the paternal nor maternal totems. This was a nascent rule among the Dieri. (c) All inherit both the paternal and the maternal totem, and may marry into neither (southern South Australia). (d) All inherit the religious regard for the maternal totem, but may marry within it, while they may not marry within the paternal totem (Worgaia and Warramunga of north central Australia). (c) The paternal totem alone is religiously regarded, and alone is exogamous (tribes of southeast Australia with male descent). ($)$ The totem is neither hereditary on either side nor exogamous (Spencer's Arunta). (b) The maternal totem is hereditary and sacred, but not exogamous (Strehlow's Arunta).

In this scherne we give the degrees by which inheritance of the totem from the mother shades into inheritance of the totem from both parents (Dieri), thence to inheritance of both the maternal and paternal totem while the paternal alone regulates marriage (Worgaia and Warramunga), thence to exclusive inheritance of the paternal, without any regard paid to the maternal totem (some tribes of South Australia), and so on..

Meanwhile we hear of no tribe with paternal descent of the totem in wbich mothers are giving their own totems also to their children. We cannot expect to find more powerful presumptions in favour of the opinion that tribes having originally only maternal have advanced hy degrees to only paternal descent of the totem. Afr Frazer says, "So far as I am aware, there is no evidence that any Australian tribe has exchanged maternal for paterial descent, and until such evidence is forthcoming we are justified in assuming that those tribes which now trsce descent from the father formerly traced it from the mother."'

We have now provided, however, the evidence for various transitional stages from maternal to paternal descent, but have found no traces of the contrary process, nor more than one way of interpreting the facts. It is admitted by Mr Frazer that in several Nortb American tribes the change from female to male descent has to all appcarance been made. ${ }^{5}$ Among the Delawares the initial process was much akin to that of the Dieri, who, in a tribe of female descent, "gives" his own totem to his sons. "The Delawares had a practice of sometimes naming a child inso its iather's clan," and a son thus became a member of his father's
clan. This " may very well have served to initiate a change of descent from the female to the male line." Howitt says precisely the same thing about the paternal practice of the Dieri. Thus there is no reason for denying that the change from female to male descent can be made hy Australian as readily as by American tribes. We have given evidence for every step in the transition. The opposite opinion arose merely in an attempt to save the primitiveness of the Arunta, some of whom actually still make the maternal totem hereditary.

The change to male descent is socially very important. The totem kin of a man, for example, takes up his blood feud. Where the descent is female a ". man may probably have some (totemic) kinsmen in the same group, but equally a considerable number of members of other totem kins." But it is clear that the rule of male descent gives far greater security to the members of a local group; for they are surrounded by kinsmen, local totem groups only occurring where male descent of the totern prevails, or is predominant.? The change from female to male descent of the totem, or the adoption oi male descent from the first (if it ever occurred) is thus a great social advantage.

The Ways out of Totemism.-While Howitt believed (though later be wavered in his opinion) that female had always preceded male descent of the totem, he also observed that with male descent came in abnormal developments. One of these is that the people of a district with male descent are often known by the name of the region, or of some noted object thercin (say wild cherries). They may even regard (or white observers suppose that they regard) some object as their " local totem," yet they marry within that so-called totem. But they take to marrying, not out of the hereditary totem kin, which hecomes obsolescent, but out of their own region into some other given locality. Thus in the Kurnai tribe there were no inevitable hereditary totems, but thwndung were given by the fathers to lads" when about ten years old or at initiation." "The animal likund ung (edder brot her) was to protect the boy, or girl (the girl's thundung was called bonung). The names of the creatures, in each case, appear to have been given to their human brothers and sisters; the thundung name descended to a man's sons. "The names are perpetuated" (under male deacent)" "from generation to generation in the same locality." 10

Thus it appears that when a Kurnai wishes to marry he goes to a locality where be finds girls of banung names into which he may lawfully wed. So far he seems, in fact, to practise totemic exogamy; that he has to travel to a particular locality is merely an accident. Though the thandmng and banung names are not inherited at blith by the children, they are given by the father when the child is old enough to need them.11
Oa the whole, we seem to sce, in tribes where male descent is of old standing, that the exogamous function of the totem becomes obsolete, but a shadow of him, as thundung, retains a sort of "religious" aspect and even an unappreciated influence in marriage law.

In Fiji and Samoa, in Melanesia ${ }^{13}$ and British New Guinea, many types of contaminated and variegated survivals of totemism may be studied. In the Torres Islands ${ }^{18}$ hero-worship blends with totemic survivals. As in parts of South Africa, where a tribe, not a kin, has a sacred animal, as in Fiji, he seems to be the one survivor of many totems, the totem of some dominant local

[^11]totem group, before which the other totems bave fled, or but dimly appenr, or are vehicles of gods, or, in Africa, of ancestral upirits. (These African tribal sacred animals are called Sibokol.) Some tribes explain that the Siboko originated in an animal sobrique, as ape, crocodile, given from without: Sibokoism, the presence of a sacred animal in a local tribe, can hardly be cailed cotemiam, though it is probable that the totem of the leading tolem kin, among several such totem kins in a tribe, has become dominant, while the others have become obsolete. On the Gold Coast of Africa as long ago as 1819, Bowdich ${ }^{2}$ found twelve " families," as he called them, of which most were called by the name of an animal, plant or other object, more or less sacred to them. They might not marry a person of the same kindred mame, and there can be little doubt that totemism, with exogamy, had been the rule. But now the rules are brokea down, especially in the peoples of the coast. The survivals and other information may be found in the Jowrnal of the Andiropological Institule (1906) Mrivi. 178, 188.

There are fainter traces of totemism in the Awrmba between Lake Tanganyika and Lake Bangweolo. ${ }^{4}$ A somewhat vague account of Bantu totems in British East Africa, by Mr C. W. Hobley, indicates that among exogamous "clans" a certain animal is forbidden as food to each "clan." The largest collection of facts about African totemism, from fresh and original sources, is to be found in Mr Frazer's book. For totemism in British Columbia the writings of Mr Hill Tout may be consulted. The Thlinkit tribes have the institution in that appears to be its earliest known form, with two exogamous phratries and female descent. Ampng the Salish tribes "persooal " totems are much more prominent. Mr Hill Tout, with Professor F. Boas, considers the hereditary exogamous totem to have its origin in the non-exogamous personal totem, which is acquired in a variety of ways. The Salish are not exogamous, and have considerable property and marked distinctions of rank. It does not, therefore, appear probable that their system of bedges or crests and personal totems is more primitive than the totemic rukes of the less civilized Thlinkits, who follow the form of the south-east Australian tribes.?
Other very curious examples of what we take to be aberrant and decadant toternism in New Guinea are given by Mr Seligmann (Man, 1908, No. 89), and by Dr Rivers for Fiji (Man, 1908, No. 75). Mr Seligmann (10 an, 1908, No. 100) added to the information and elucidated his previous statements. The "clams" in British south-east New Guinea usually bear yeoraphical names, but some are named after one of the totems - the "clan." "Every iodividual in the clan has the same tinked toterms," of which a bird, in each case, and a fish seem to be predominant and may not be eaten. "The clans are erogamous . . . and descent is in the female line." It appears, then, that a man, having several totems, all the totems in his "clan," must marry a woman of anotber "clan" who has all the totems of her "clan."
Similar multiplicity of totems, each individual baving a number of totems, is described in Western Australia (Mrs Dates). In this case the word "totem " seems to be used rather vaguely and the facts require elucidation and verification. In this part of Australia, as in Fiji" "pour la maissance . . . l'apparition du totem-animal avait toujours lieu." In Fiji the mother sees the animal, which does not affect conception. and "is merely an omen for the child already conceived." But in Western Australia, as we have seen, the husband dreams of an animal, which is tupposed to follow him bome, and to be the next child borne by his wife If it is correctly stated that when the huabend has dreamed of no animal, while nevertheless his wife has a baby, the husband spears the man whom be suspects of having dreamed of an animal, the marital jealousy

"Frazer, "Totemism, South Alrica," Man (1901), No. iii.

; See Secrel of the Totem, pp. 25, 26. ${ }^{2}$, Mistion io A shandi;
4 Journ. Anikrop. Inst. (1906), xoovi. 154

- lbid. (3903), rxxiini 346-348. ${ }^{\text {I }}$.
${ }^{7}$ See discussion in Secret of the Totem for details and references.
- Pere Schmidt. Man (1908), No. 84, quoting Pére de Martant Anelirapos, ii. 400-405-
takes an unusual form and human life becomes precarious. But probably the husband has some reason for the direction of his suspicions. He never suspects a woman.
"The Banks' Islanders," says Mr Frazer, " have retained the primitive system of conceptional totemism." " On the other hand Dr Rivers, who is hereour authority, writes " totemism is absent " from " the northern New Hebrides, the Banks' and the Terres groups." ${ }^{10}$ In a place where totemism is absent it does not prima facic seem likely that we shall discover "the primitive system of conceptional totemism." The Banks' Islanders have no totemism at all. But they have a certain superstition applying to certain cases, and that superstition resembles Arunta and Loritja beliefs, In which Mr Frazer finds the germs of totemism. The superstition, however, has not produced any hind of totemisin in the Banks' group of isles, at least, no totemism is found. "There are," writes Dr Rivers," beliefs which would seem to furnish the most natural starting-point for totemism, beliefs which Dr Frazer has been led by the Australian evidence" (by part of the Australian evidence, we must say) "to regard as the origin of the institution." Thus, in Banks' Islands we have the starting-point of the institution, without the institution itself, and in many Australian tribes we have the institutionwithout the facts which are " the most natural starting-point." As far as they go these circumstances look as if "the most natural " were not the actual starting-point. The facts are these: in the Isle of Mota, Banks' group, " many individuals" are under a tabu not to eat, in each case, a certain animal or fruit, or to touch certain trees, because, in cach case," the person is believed to be the animal or fruit in question."

This tabu does not, as in totemism, apply to every individual; but only to those whose mothers, before the birth of the individuals, "find an anlmal or fruit in their loin-cloths." This, at least, "is usually" the case. No other cases are given. The women, in each case, are informed that their child "will have the qualities of the animal " (or fruit) " or even, it appeared would be himself or herself the animal " (or fruit). A coco-nut or a crocodile, a flying fox or a brush turkcy, could not get inside a loin-cloth; the animal and fruits must be of exiguous dimensions. When the animal (or fruit) disappears "it is believed that it is because the animal has at the time of its disappearance entered into the woman. It seemed quite clear that there was no belief in physical impregnation on the part of the animal nor of the entry of a material object in the form of the animal . . , but, so far as I could gather, an animal found in this way was regarded as more or less supernatural, a spirit animal and not one material, from the begianing."
"There was no ignorance of the physical role of the human father, and the father played the same part in conception as in cases unaccompanied by an animal appearance." The part played by the animal or fruit is limited to producing a tabu against the child eating it, in each case, and some community of nature with the animal or fruit. Nothing here is hereditary. The superstition resembles some of those of the Arunta, Loritja and Euahlayi. Among the Euahlayi the superstition has no influence; normal totemism prevails; among the Arunta nation it is considered to be, and Dr Rivers seems to think that it is, fikely to have been the origin of totemism. In Mota, however, it either did not produce totemism, or it did; and, where the germ has survived in certain cases, the institution has disappeared -while the germinal facts have vanished in the great majority of totemic societics. Dr Rivers does not explain how a brush turkey, a sea snake or a flying fox can get into a woman's foin-cloth, yet these animals, also crabs, are among those tabued in this way. Perhaps they have struck the woman's fancy without getting into her loin-cloth.

It is scarcely correct to say that "the Banks" Islanders have retained the primitive system of conceptional totemism." They only present, in certain instances, features like those which are supposed to be the germs of a system of conceptional

- Mam. iv. ${ }^{128 .}$

10 ". Totemism in Polynesia and Melanesia," Journ. Anthrop. Insh xocix 173. s94.
totemism. In the case of the Arunta we have demonstrated that hereditary and exogamous totemism of the normal type preceded the actual conceptional method of acquiring, by local accident, "personal totems." If the Banks' Islanders were ever totemists they have ceased to be so, and merely retain, in cases, a superstition analogous to that which, among the Arunta, with the aid of the stone churinga, has produced the present unique and abnormal state of affairs totemic.
For toternism in India, see Datton, Descriptive Ethnology of Bengal; for the north of Asia, Strahlenberg's Description, \&c. (1738); and in all instances Mr Frazer's book.

Myths of Totem Origins.-The myths of savages about the origin of totemism are of no historical value. Not worshipping ancestral spirits, an Australian will not, like an ancestorworshipping African, explain his totem as an ancestral spirit. But where, as in the north and centre, he has an elaborate philosophy of spirits, there the primal totems exude spirits which are incarnated in women.

In their myths as to the origin of totemism, savages vary as much as the civilized makers of modern hypotheses. Some claim descent from the totem object; others believe that an original race of animals pcopled the world; animals buman in character, but bestial, vegetable, astral or what not, in form. These became men, while retaining the rapport with their original species; or their spirits are continually reincarnated in women and are born again (Arunta of Messrs Spencer and Gillen); or spirits emanating from the primal forms, or from objects in nature, as trees or rocks, connected with them, enter women and are reincarnated (Arunta of Mr Strehlow and some Australian north-western tribes, studied by Mrs Bates). Other Austrulians belicve that the All-Father, Baiame, gave totems and totemic laws to men. ${ }^{1}$ There are many other explanatory myths wherever totemism, or vestiges thereof, is found in Australia, Africa, America and Asia.

All the myths of savages, except mere romanlic Märchen, and most of the myths of peoples who, like the Grecks, later became civilized, are "actiological", that is, are fanciful hypotheses made to account for everything, from the universe, the skies, the sun, the moon, the stars, fire, rites and ceremonies, to the, habits and markings of animals. It is granted that almost alt of these fables are historically valueless, but an exception has been made, by scholars who believe that society was deliberately reformed hy an act hisecting a tribe into two exogamous divisions, for savage myths which hit on the same explanation. We might as well accept the savage myths which hit on other explanations, for example the theory that Sibokoism arose from animal sobriquets. Exceptions are also made for Arunta myths in which the primal ancestors are said to feed habitually if not exclusively on their own totems. But as many totems, fruit, flowers, grubs, and so on are only procurable for no longer than the season of the May-fly or the March-brown, these myths are manifestly fabulous.

Again the Arunta primal ancestors are said to have cohabited habitually with women of their own totem, though without prejudice against women of other totems whom they encountered in their wanderings. These myths are determined by the belief in oknonikilla, or spots haunted by spirits all of one totem, which, again, determine the totem of every Arunta. The idea being that the fabled primal ancestors malc and female in each wandering group of miracle-workers were always all of one totem, it follows that, if not celibate, which these savages never are, they must have cohabited with women of their own totem, and, by the existing Arunta system, there is no reason why they should not have done so. In no other field of rescarch is bistorical value attributed to savage legends about the inscrutable past that lics behind exisling institutions.

We are thus confronted by an institution of great importance socially where it regulates marriages and the blood-feud, or where it is a bond of social union between kinsmen in the twien or members of a society which does magic lor the behoof
' Mrs Langloh Parker, The Eughlayi Tribe.
of its totem (central and north-western Australia), and is of some "religious " and mythical importance when, as in Samoa, the sacred animal is regarded as the vehicle of a god. Of the origin of these beliefs, which have practical effects in the evolution of socicty and religion, much, we saw, is conjectured, but as we know no race in the act of becoming totemic-as in all peoples which we can study totemism is an old institution, and in most is manifestly decaying or being transmuted-we can only form the guesses of which examples have been given. Others may be found in the works of Herbert Spencer and Lord Avebury, and criticisms of all of them may be read in A. Lang's Social Origins.

Whether or not survivals of totems are to be found in the animal worship of ancient Egypt, in the animal attendants of Greek gods, in Greek post-Homeric legends of descent from gods in various bestial disguises, and in certain ancient Irish legends, it is impossible to be certain, especially as so many gods are now explained as spirits of vegetation, to which folk-lore assigns carnal forms of birds and beasts.

Otker Things called Totems - As has been said, the name "totem" is applied by scholars to many things in nature which are not hereditary and exogamous totems. The "local totem" (so called) has been mentioned, also " linked totems."

Personal Totems.-This is the phrase for any animal or other object which has been "given" to a person as a protective familiar, whether by a sorcerer ${ }^{2}$ or by a father, or by a congress of spaewives at birth; or whether the person selects it for himself, by the monition of a dream or by caprice. The Euahlayi call the personal totem Yunbcai, the true totem they style Dhe They may eat their real but not their personal totems, which answer to the hares and black eats of our witches.

Three or four other examples of tribes in which "personal totems" are "given" to lads at initiation are recorded by Howitt. ${ }^{\text {. }}$ The custom appears to be less common in Australia than in America and Africa (except in South Australia, where people may have a number of "personal cotems"'). In one case the "personal totem" came to a man in a drcam, as in North America.4 Here it may be noted that the simplest and apparently the easiest theory of the origin of totemism is merely to suppose that a man, or with female descent a woman, made his or her personal totem hereditary for ever in his or her descendants. But nobody has explained how it happened that while all had evanescent personal totems those of a few individuals only become stereotyped and hereditary for ever.

Sex-Tolems.-The so-called "sex totem" is only reported in Australia. Each sex is supposed by some tribes to have its patron animal, usually a bird, and to injure the creature is to injure the sex. When lovers are backward the women occasionally kill the animal patron of the men, which produces horseplay, and "a sort of jolly fight," like sk'y-larking and firtation." The old English " jolly kind of fight," between girls as partisans of ivy, and men as of the holly " sex-totem," is a near analogue. It need not be addod that "scx-totems" are exogamous, in the nature of things.
Sub-Totems.-This is the name of what are also styled " multiplex totoms," that is, numerous objects claimed for their own by totem kins in various Australian regions. The Emu totem k in, among the Euahlayi tribe, claims as its own twenty-three animals and the north-west wind.' The whole universe, including mankind, was apparently divided between the totem kins. Therefore the list of sub-totems might be extended indefinitely." These "sub-totems" are a savage effort at universal classification.

Conclusion.-We have now covered the whole field of controversy as to the causes and origins of totemic institutions. Australia, with North America, provides the examples of those institutions which seem to be "nearest to the beginning." and in Australia the phenomena have been most carefully and

[^12]${ }^{2}$ N.T.S.E.A. pp. 144-148.
${ }^{-}$Ibid. pp. 148 -151.
daborately observed among peoples the least sophisticated. In North America most that we know of many great tribes, Iroquois, Hurons, Delawares and otbers, was collected long ago, and when precision was less esteemed, while the tribes have been much contaminated by our civilization. It has been unavoidably necessary to criticize, at almost every stage, the conclusions and hypotheses of the one monumental collection $\boldsymbol{\alpha}$ facts and theorics, Mr Frazer's Totamisms (igio). Persons who would pursue the subject furthes may consult the books mentioned in the text, and they will find a copious, perhaps an exhaustive bibliography in the references of Mr Frazer's most crudite volumes, with their minute descriptive account not oaly of the totemism, hut of the environment and general culture of hundreds of human races, in Savagery and in the Lower and Higher Barbarism.
(A. La)

TOT1L (d. 553), king of the Ostrogoths, was chosen king after the death of his uncle Ildibad in 54t, his real name being, as is seen from the coinage issued by him, Baduila. The work of his life was the restoration of the Gothic kingdom in Italy and be entered upon the task at the very beginning of his reign, collecting logether and inspiring the Goths and winning a victory over the troops of the emperor Justinian, near Faenza. Having gained another victory in 542, this time in the valley of Mugello, he left Tuscany for Naples, captured that city and then received the submission of the provinces of Lucania, Apulia and Calabria. Tot ila's conquest of Italy was marked not only by celerity but also by mercy, and Gibbon says "none were deceived, either friends or enemies, who depended on his faith or his clemency." Towards the end of 545 the Gothic king took up his station at Tivoli and prepared to starve Rome into surrender, making at the same time claborate preparations for checking the progress of Belisarius who was advancing to its relief. The Imperial flet, moving up the Tiber and led by the great general, only just failed to saccour the city, which must then, perforce, open its gates to the Goths It was plundered, although Totila did not carry out his threat to make it a pasture for catide, and when the Gothic army withdrew into Apulia it was from a scene of desola. tion. But its walls and other fortifications were soon restored, and Totila again marching against it was defeated by Belisarius, who, however, did not follow up his advantage. Several cities were taken by the Golbs, while Belisarius remained inactive and then left Italy, and in 549 Totila advanced a third time against Rome, which he captured through the treachery of some of its delenders. His next exploit was the conquest and plunder of Sicily, after which he sublued Corsica and Sardinie and sent 2 Gothic fieet against the coasts of Greece. By this time the emperor Justinian was taking energetic measures to check the Goths. The conduct of a new campaign was entrusted to the eunuch Narses; Totila marched against him and was defeated and killed at the battle of Tagina in July 552.

See E. Gibbon. Decline and Fall, edited by J. B. Bury (1898). vol. iv: T. Hodgkin. Italy and her Invaders (1896), vol. iv. and Kamplier, Totila, Kı̈nig der Ostgoten (1889).
totnes, george carew, or Carey, Elal of ($1555-1629$), English politician and writer, son of Dr George Carew, dean of Windsor, a memberof a well-known Devonshire family, and Anne, daughter of Sir Nicholas Harvey, was born on the 2gth of May 1555.' and was educated at Broadgates Hall, Oxford, where he took the degree of M.A. in 1588. He distinguished himself on the field on several occasions and filled important military commands in Ireland. In 1584 he was appointed gentlemanpensioner to Queen Elizabeth, whose favour he gained. In 1586 he was knighted in Ireland. Refusing the enlbassy to France, Sir George Carew was made master of the ordnance in Ircland in 5588 , in 1590 Irish privy councillor; and in 592 lieutenantgeneral of the ordnance in England, in which capacity he accompanied Essex in the expedition to Cadiz in 1596 and to

[^13]the Azores in 1507. In 1.598 he attended Sir Robert Cecil, the ambassador, to France. He was appointed treasurer at war to Essex in Ireland in March 1599, and on the latter's sudden departure in September of the same year, leaving the island in disorder, Carew was appointed a lord justice, and in 1600 president of Munster, where bis vigorous measures enabled the new lord deputy, Lord Mountjoy, to suppress the rebellion. He returned to England in 1603 and was well received by James I., who appointed him vice-chamberlain to the queen the same year, master of the ordnance in 1608, and privy councillor in 1616; and on the accession of Charles I. be became treasurer to Queen Henrietta Maria in 1626. He sat for Hastings in the parliament of 1604, and on the 4 th of June 1605 was created Baron Carow of Clopton, being advanced to the earldom of Tounss on the $\mathbf{s t h}^{\text {th }}$ of February $\mathbf{1 6 2 6}$. In 1610 he revisited Ireland to report on the state of the country; and in r618 pleaded in vain for his friend Sir Walter Raleigh. He died on the 27th of March 1629 , leaving no issue. He married Joyce, daughter of William Clopton, of Clopton in Warwickshite.

Besides his fame as president of Munster, where his administration forms an important chapter in lrish history, Carew had a considerable reputation as an antiquary. He was the friend of Camden, of Cotton and of Bodley. He made large collections of materials relating to lrish history and pedigreas, which he keft to his secretary, Sir Thomas Stafford, reputed on scanty evidence to be his natural son; while some portion has disappeared, 39 volumes after coming into Laud's possession are now at Lambeth, and 4 volumes in the Bodeleian Library. A calendar of the former is included in the State Papers series edited by J. S. Brewer and W. Bullen. His correspondence from Munster with Sir Robert Cecin was edited in 1864 by Sir John Maclean, for the Camden Society, and his leuers to Sir Thomas Roc (1615-1617) in 1860. Other leters or papers are in the Record Office; among the MSS. at the British Museum and calendared in the Hish MSS. Com. Series, Marquess of Salisbury's MISS. Stafford published after Carew's death Pacata Hibernia, or the History of the Late Wars in Ircland (1633), the authorship of which he ascribes in his preface to Carew, but which has been attributed to Stafford himself. This was reprinted in 1810 and reedited in 1896. A Fragment of the History of Irdand, a trenslation from a French version of an Irish original, and King Richard II.... in Ireland from the French, both by Carew, are printed in Walter Harris's Hibernica (1757). According to Wood, Carew contributed to the history of the reign of Henry V. in Speed's Chronicle. His opinion on the alarm of the Spanish invasion in 1596 has also been printed.
See also the Lije of Sir P. Corew, ed. by Sir J. Maclean (1857).
TOTNES, a market town and municipal borough in the Totnes parliamentary division of Devonshire, England, on the Dart, 29 m. S.S.W. of Exeter, by the Great Western railway. Dop. (rgor), 4035. It stands on the west bank of the river, and is joined by a bridge to the suburb of Bridgetown. It was formerly a walled town, and two of the four gates remain. Many old housces ate also preserved, and in ligh Street their overhanging upper stories, supported on pillars, form a covered way for foot-passengers. The castle, founded by the Breton Juhel, lord of the manor after the Conquest, was already dismantled under Henry VILI.; but its ivy-clad kecep and upper walls remain. The grounds form a public garden. Close by are the remains of St Mary's Priory, which comprise a large Perpendicular gatchouse, refectory, precinct wall, abbot's gate and still-house. A grammar school, founded 1554, occupied part of the Priory, but was removed in 1874 to new buildings. The Perpendicular church of St Mary contains a number of intercsting tombs and effigies dating from the isth ecntury onwards, and much excellent carved work. The guildhall is formed from part of the Priory. Vessels of 200 tons can lie at the wharves near the bridge. The industries include brewing, flour milling, and the export of agricultural produce, chiefly corn and cider. Trout and salmon are plentiful in the river. The town is governed by a mayor, 4 aldernen and 12 councillors. Area 1423 acres.

Totnes (Tokescis, Tofton) was a place of considcrable importance in Saxon times; it possessed a mint in the reign of Ait helred, and was governed by a portreeve. In the Domesday Survey it appears as a mesne borough under Juhel of Totnes, founder of the castle and priory; it had 95 burgesses within and 15 without the borough, and rendered military service accordis-
to the custom of Exeter. In 1215 a charter from John instituted e gild merchant with freedom from toll throughout the land. A mayor is mentioned in the court roll of $1386-1387$, and a charter from Henry VII. in 1505 ordeted that the mayor should be elected on St Matthew's day, and should be clerk of the market. The present governing charter was granted by Elizabeth in 1596, and instituted a governing body of a mayor, fourteen masters or councillors, and an indefinite number of burgesses, including a select body called "the Twenty-men." A fresh charter of incorporation from James II. in $\mathbf{1 6 8 9}$ made no alterntions of importance. The borough was represented in parliament by one member in 3295 , and by two members from 1298 until disfranchised by the act of $\mathbf{1 8 6 7}$. A market on Saturday existed at least as early as 1255 , and in 1608 is described as well stocked with provisions. The charter of Elizabeth granted a three days' fair at the feast of SS Simon and Jude (Oct. 28), and in 1608 fairs were also held on May day and af the feast of St James (July 25). The market day has been transferred to Friday, but the May and October fairs are continued. The town was formerly noted for serges, and in 1641 the inhabitants represented their distress owing to the decline of the woollen trade. The industry is now extinct. During the Civil War General Goring quartered his troops at Totnes, and Fairfax also made it his temporary station.

See Vicloria County History; Dezonshire; The History of Totnes, its neighbourhood and Berry Pomeroy Castle (Totnes, 1825); William Cotton, A Graphic and Hislorical Sketch of the Aniquities of Totnes (London, 1858).

TOTONICAPAY, or Totonicapan, the capital of the department of Totonicapam, Guatemala, on the same high plateau as Quezaltenango, the nearest railway station, from which it is 12 m . E.N.E. Pop. (1905) about 28,000. Totonicapam is inhabited mainly by Quiche Indians, employed in the making of cloth, furniture, pottery and wooden musical instruments. There are hot mineral springs in the neighbourhood. In 1838 Totonicapam was declared an independent republic, in which the adjoining departments of Solola and Quezaltenango were included. This state existed for two years, and was then again merged in the republic of Guatemala. Totonicapam suffered greatly in the earthquake of the 18th of April 1902.

TOTTENHAM, an urban district in the Toltenham parliamentary division of Middlesex, England, forming a north suburb of London, 6$\} \mathrm{m}$. north of London Bridge, adjoining Edmonton on the south. Pop. (1901), 102,541. Its full name, not now in use, was Totenham High Cross, from the cross near the centre of the township. The origin and significance of this cross are doubtful. The present structure was erected c. 1600 , and omamented with stucco in 1809 . In the time of Isaak Walton there stood by it a shady arbour to which the angler was wont to resort. Formerly Tottenham was noted for its "greens," in tbe centre of one of which stood the famous old elm trecs called the "Seven Sisters "; these were removed in 1840 , but the name is preserved in the Seven Sisters Road. Bruce castle, on the site of the old mansion of the Bruces, but built probably by Sir Wiliam Compton in the beginning of the I6th century, was occupied by a boarding-school founded by Mr (afterwards Sir) Rowland 1ill in 1827 on the system instituted by him at Hazlewood, Birmingham. It became public property in 1892. The church of All Hallows, Tottenham, was given by David, king of Scotland (c.1126), to the canons of the church of Holy Trinity, London. It retains Perpendicular portions, a south porch of brick of the 16th century and numerous ancient monuments and brasses. The grammar school wiss enlarged and endowed in 1686 by Sarah, dowager duchess of Somerset. The urban district formerly included Wood Green to the west, but this became a separate urban district in 1888 (pop. 34,233).

In the reign of Edward the Confessor the manor of Tottenham was possessed by Earl Waltheof. It was inherited by his daughter Maud, who was marriel first to Simon de St Liz and afterwards to David, son of 1e coll, III., king of Scotland, who was created by Henry
of all the lands formerly held by Earl Waltheof. The manor thus descended to William the Lion, king of Scotland, and was granted by him in 1184 to his brother David, earl of Angus and Galloway, the grant being confirmed in 1199 by King John of England, who created him carl of Huntingdon. He married Maud, heiress of Hugh, earl of Chester, and his aon John inherited both earldoms. The son married Helen, daughter of Llewelyn, prince of Wales, by whom he was poisoned in 1237, dying without issue. She retained possession till 1254, when the manor was divided between his coheirs Robert de Brus, John de Baliol and Henry de Hastings, each division forming a distinct manor bearing the name of its owner. It 1429 they were reunited in the possession of John Gedeney, alderman of London.
William Bedwell, the Arabic scholar, was vicar of Tottenham, and published in 1632 a Briefe Description of the Tonone of Tollemham, in which he printed lor the first time the burlesque poem, the Turnomens of Tollenham.
TOTTENVILLE, a former village of Richmond county, New York, U.S.A., and since 1898 a part of New York City. It is on the southern shore of Staten Island in New York Bay and on Staten Island Sound, about $20 \mathrm{~m} . \mathrm{S} . \mathrm{W}$. of the south extremity of Manhattan Island, and is the terminus of the Staten Island Rapid Transit railway. Marine engines, terra-cotta and boats are manufactured here, and there are oyster fisheries. The "Billopp House" here (still standing) was the scene of the conference, on the IIth of September 1776, between Lord Howe, representing Lord North, and Benjamin Franklin, John Adams and Edward Rutledge, representing the Continental Congress, with regard to Lord North's offer of conciliation. This bouse, originally called the "Manor of Bentley," was built by Captain Christopber Bitlopp (1638-1726), who sailed from England in an armed vessel, the "Bentley," in 1667, and, by circumnavigating Staten Island in 24 hours, made it, under the ruling of the duke of York, a part of New York. From the duke of York he received 1263 acres of land, including the present site of Tottenvile. The village was long known as Bentley but in 1869 was incorporated (under a faulty charter, revised in 1894) as Tottenville, apparently in honour of Gilbert Totten, a soldier in the War of Independence.

TOUCAN, the Brazilian name of a bird, long since adopted into nearly all European languages, and apparently first given currency in England (though not then used as an English word) in 1668^{2} by W. Charleton (Onomasticon, p. 215); but the bird, with its enormous beak and feather-like tongue, was described by Oviedo in his Sumario de la historia natural de las Indias, frst published at Toledo in 1527 (ch. 42).' and, to quote the translation of part of the passage in F. Willughhy's Ornilhology (p. 129)," there is no birdsecures her young ones better from the Monkeys, which are very noisom to tbe young of most Birds. For when she perceives the approach of those Enemies, she so settles her self in her Nest as to put her Bill out at the hole, and gives the Monkeys Such a welcome therewith, that they presently pack away, and glad they scape so." Indeed, so remarkable a bird must have attracted the notice of the earliest European invaders of America, the more so since its gaudy plumage was used by the natives in the decoration of their persons and weapons. In 1555 P. Belon (Hisl, nal. oyscaux, p. 184) gave a characteristic figure of its beak, and in 255^{8} Thevet (Singularilez de la Fronce entarctique, pp. 88-90) a long description, together with a woodcut (in some respects inaccurate, but quite unmistakable) of the whole bird, under the name of "Toucan" which he was the first to publish. In 1560 C. Gesner (Icones avium, p. 130) gave a far better figure (though
${ }^{1}$ Commonly believed to be so called Irom its cry; but Skeat (Proc. Phi;olog. Sociely, May 15, 1885) adduces evidence to prove ihat the Guarani Tuce is Irom II, nose, and cóng, bone, i.e. nose of bone.
"In 1656 the beak of an "Aracari of Brazil," which was a toucan of some sort, was contained in the Musactum frodescantionnm (p. 2). but the word toucan does not appear there.
${ }^{3}$ The writer has only been able to consuli the reprint of this rare work contained in the Biblioleca de autores españoles (xacii. 473-515), published at Madrid in 1852.
still fncorrect) from a drawing received from Ferrerius, and suggested that from the size of its beak the bird should be called Burhynchus or Ramphasks. This Ggure, with a copy of Thevet's and a detailed description, was repeated in the postbumous edition (1585) of his larger work (pp. 800, 801). By 1579 Ambroise Paré (Exires, ed: Malgaigne, iii. 783) had dissected a toucan that belonged to Charkes IX. of France, and about the same tirne Léry (Voyage fail en la berre du Bresil, ch. xi.), whose chief object seems to have been to confute Thevet, confirmed that writer's account of this bird in most respects. In 1509 Aldrovandus (Ornithologia, i. 801-803), always ready to profit by Gesner's information, and generally without acknowledgment, again described and repeated the former figures of the bird; but be corrupted his predecessor's Ramphostes into Ramphaslos, and in this incorrect form the name, which should certainly be Rhamphestes or Rhamphastas, was subsequently adopted by Linnaeus and has siace been recognized by systematisis. Into the rest of the early history of the toucan's discovery it is needless to go. ${ }^{1}$ Additional particulars were supplied by many succeeding writers, until in 1834 J . Gould completed bis Monograph of the family ${ }^{1}$ (with an anatomical appendix by R. Owen), to which, in 1835 , he added some supplementary plates; and in 1854 he finished a second and much improved edition. The most complete compendium on toucans is J . Cassin's "Study of the Ramphastidac," in the Proccedings of the Philadelphia Academy for 1867 (pp. 100-1 24).

By recent systematists 5 genera and from 50 to 60 ipecies of the family are recognized; but the characters of the former have never been satisfactorily defined, much lese thoee of numerous eubdivisions Fhich it has pleased some writers to invent. There can be little doubt that the bird first figured and described by the earliest authors above named is the R. toco of nearly all ornithologiste, and as such is properly regarded as the type of the genus and therefore of the family. It is one of the largest, measuring 2 ft. in length, and has a wide range throughout Guiana and a great part of Brazil. The huge beak, looking like the great claw of a lobuter, more than 8 in. long and 3 high at the base, is of a deep orange colour, with a large black oval spot near the tip. The eye, with its double iris of green and yellow, has a broad blue orbit, and is surrounded by a bare space of deep orange skin. The plumage generally is black but the throat is white, tinged with yellow and commonly edged beneath with red; the upper tail-coverts are white, and the lower carlet. In other spocies of the genus, 14 to 17 in number, the bill is mosily particoloured-green, yeltow, red, chest nut, blue and black variously combining to as often to form a ready diagnosis; but some of these tints are very fleeting and often leave litele or no trace after death. Alternations of the brighter colours are also diaplayed in the feathers of the throat. breast and tail-coverts, so as to be in tike manner characteristic of the species, and in several the bare space reund the eye is yellow, green, blue or lilac. The sexes are alike in coloration, the males being largest. The tail is nearly square or moderately rounded. In the genus Pteroplossys, the "Aracaris" (pronounced Arassari), the sexes more or less difler in appearance. and the tail is graduated. The species are smatler in size, and nearly all are banded on the belly, which is generally yellow, with black and scarlet, while except in two the throat of the males at leate is black. One of the most remarkable and beautiful is P. beduharnaisi, by some authors placed in a distinct genus and calted Beauharnaisins wocomus. In this the feathers of the top of the head are very aingular, looking tike glossy curled shavings of black horn or whalebone, the effect being due to the dilatation of the shaft and its coalescence with the consolidated barbs. Some of the feathers of the straw-coloured throat and cheeks partake of the same structure, but in a less degree, while the subterminal part of the laving is of a lustrous pearly-white. The beak is richly coloured,
${ }^{1}$ One point of some intcrest may, however, be noticed. In 1705 Plot (N.H. Oxfordshire, p. 182) recorded a toucan found within two miles of Oxlond in 16e4, the body of which was given to the repository in the medical achool of that university, where, he aid, 'it is still to be men." Already in 1700 Leigh in his Lancoshire (i. 195. Birds, tab. 1. fig. 2) had figured another which had been found dead on the coast of that county about two years before. The bird is easily kept in captivity, and no douht from early times many were brourght alive to Europe. Besides the one disaected by Pare, as above mentioned, foh. Faber in his additions to Hernandez's work on the Natural History of Mexico (1651), figures (p.697) one seen and described by Puteus (Dal Pozzo) at Fontainebleau.

2 Of this the brother Sturm in 1841 published at Nuremberg a Cemmen veraion.
'This curious peculiarity naturally attracted the notice of the first dicoverer of the species, Poeppig, who briefly described it in a tetter published in Froriep's Narizes (xuxii. 1.46) for December 1831.
boing green and crimson above and lennon below. The upper plumage generally is dark green, but the mantle and rump are crimson, as are a broad abdominal belt, the flanks and many crescentic markings on the otherwise yellow lower parts. "The group or genus Selenadera, proposed by J. Gould in 1837 (Icones avium, pt. 1), contains some 6 or 7 epecies, having the beak, which is mosily transversely striped, and tail shorter than in Pieroglossus. Here the sexes also differ in coloration, the males having the head and breast black, and the females the same parts chestnut: but all have a yellow nuchal crescent (whence the name of the group). The so-calted hill-foucans have been separated as another genura, Andifena, and consist of some 5 or 6 species chielly frequenting the slopes of the Andes and reaching an elevation of $10,000 \mathrm{ft}$., though one often placed among them. but perhaps belonging rather to Pieroglossus, the A. bailloni, remarkable for its yellow-orange bead, neck and lower parts, inhabits the lowlands of southern Brazil. Another very singular form is A. laminirostris, which has affixed on either side of the maxilla, near the base, a quadrangular ivory-like plate, forming a feature unique in this or almost in any family of birds. The group Aulacorhamphus, or "groove-bills," with a considerable but rather uncertain number of specibs, contains tho rest of the toucans.

The monstrous serrated bill that to many toucans pospess was by G. L. L. Buffon accounted a grave defect of nature, and it must be confessed that no one has given what seems to be a satisfactory explanation of its precise use, though on evolutionary principles none will now doubt its fitness to the bird es requirements. Solid as it looks, its weight is inconsiderabie, and the perfect hinge by which the maxilla is articulated adds to its efficiency as an instrument of prehension. W. Swainson (Classif. Birds, it. I38) imagined it merely " to contain an infinity of nerves, disposed like net-work, all of which lead immediately to the nostrils." and add to the olfactory faculty. This notion seems to be borrowed from J. W. H. Trau (Trani. Linn. Sociely, xi. 289), who admittedly had it from Waterton, and stated that it was " an admirable contrivance of mature to Increase the delicacy of the organ of smell;" but R. Owen's deacription showed this view to be groundless, and he attributed the extraordinary development of the toucan's beak to the need of compensating, by the additional power of mastication thus given, for the absence of any of the grinding structures that are so characteristic of the intestinal tract of vegetable-eating birds-its digestive organs possessing a general simplicity of formation. The nostrits are placed so as to be in most forms invisible until sought, being obscured by the frontal feathers or the backward prolongation of the horny sheath of the beak. The wings are somewhat feeblc, and the legs have the toes placed in pairs, two before and two behind. The tail is capabla of free vertical motion, and controlled by strong muscles, so that, at least in the truc toucans, when the bird is preparing to sleep it is reverted and lies almost flat on the back, on which also the huge bill reposes, pointing in the opposite direction

The toucans are limited to the new world, and by far the greater number inhabit the north of South America, especially Guiana and the valtey of the Amazons. Some three species occur in Mexico, and several in Central America. One, R. vitellinus, which has its headquarters on the mainland, is said to becommon in Trinidad, but none are found in the Antilles proper. They compose the family Rhamphastidae of Coracjilorm birds, and are associated with the wood peckers (Picidae) and puff-birds and jacamars (Gatbulidae): their nearest altics perhaps exist among the Capitonidac, but none of these is believed to thave the fong leather-like tongue which is so charac teristic of the toucans, and is, so far as known, possested besides only by the Aomotidae (sce Motmot). But of these last there is no reason to deem the toucans cloge relatives, and according to W. Swainson. who had opportunitics of observing loth, the alleged resemblance in their habits has no existence. Toucans in confinement feed mainly on Iruit, but little seems a miss to them, and they swallow grubs, reptiles and small birds with avidity. They nest in hollow trees, and lay white eggs.
(A.N.)

TOUCH (derived through Fr. toucher from a common Teutonic and Indo-Germanic root, cf. "tug," "tuck," O. H. Ger. succhen, to twitch or draw), in physiology, a sense of pressure, referred usually to the surface of the body. It is often understood as a sensation of contact as distinguished from pressure, bot it is evident that, however gentle be the contact, a certain amount of pressure always exists between the sensitive surlace and the body touched. Mere contact in such circumstances is gentle pressure; a greater amount of force causes a feeling of resistance or of pressure referred to the skin; a still greater amount causes a fecling of muscular resistance, as when a weight is supported on the palm of the hand; whilst, finally, the pressure may be so great as to cause a feeling of pain. The force may not be exerted

- Readers of F. Bates's Naturalist on the Rexer Amavons will recollect the account (ii. 344) and illustration there given of his encounter with a flock of this species of toucan. His remarks on the other species with which ho met are also exceltent.
vertically on the sensory surface, but in the opposite direction, as when a hair on a sensory surface is pulled or twisted. Touch is therefore the sense by which mechanical force is appreciated, and it presents a strong resemblance to hearing, in which the sensation is excited by intermittent pressures on the auditory organ. In addition to feclings of contact or pressure referred to the sensory surface, contact may give risc to a sensation of temperature, according as the thing touched feels hot or cold. These sensations of contact, pressure or temperature are usually referred to the skin or integument covering the body, but they are experienced to a greater or less extent when any serous or mucous surface is touched. The skin being the chief sensory surface of touch, it is there that the sense is most highly developed both as to delicacy in detecting minute pressures and as to the character of the surface touched. Tactile impressions, properly so called, are absent from internal mucous surfaces, as has been proved in men having gastric, intestinal and urinary fistulae. In these cases, touching the mucous surface caused pain, and not a true sensation of touch.

In the article Nerve (Spinal) the cutareous distribution of the organs of touch is dealt with.
The Amphibia and Reptifia do not show any special organs of touch. The lips of tadpoles have tactile papillac. Some snakes have a pair of tentacles on the snout, but the tongue is probably the chief organ of touch in most serpents and lizards. All reptiles possessing climbing powers have the sense of touch highly developed in the feet.
Birds have epithelial papillae on the soles of the toes that are no doubt tactile. These are of great length in the capercailzie (Tetrax

Fic. 1.- Tactile Corpuscles from duck's tongue. n, Nerve. urogallus), " enabling it to grasp with more security the Yrosted branches of the Norwegian pine trees " (Owen). Around the root of the bill in many birds there are special tactile organs, assisting the bird to use it as a kind of sensitive probe for the derection in soft ground of the worms, grubs and slugs that constitute its food. Special bodies of this kind have been detected in the beak and tongue of the duck and goose, called the tactile corpuscles of F.S. Merkel, or the corpuscles of Grandry (Gig. 1). Similar bodies have been found in the epidermis of man and mammals, in the outer root-shcath of tactile hairs or feelers. They consist of small bodies composed of a capsule enelosing two or more flattened nucleated cells, piled in a row. Each corpuscle is separated from the others by a transparent protoplasmic disk. Nerve fibres terminate either in the cells (Merkel) or in the protoplasmic intercellular matter (Ranvier, Hesse, Izquicrdo). Another form of end-organ has been described by Herbst as existing in the mucous membrane of the duck's tongue. These corpuscles of Herbst are like small Pacinian corpuscles

Fig. 2.-Tactile Corpuscie Irom the hand. with thin and very close lamellae. Developments of integurment devoid of feathers, such as the "wattics " of the cock the "caruncles" of the vuluure and turkey. are not tactite in their function.

In the great majority of Mammatia the general surface of the skin shows sensitiveness, and this is developed to a high degree on certain parts, such as the lips, the end of a tcat and the senerative organ. Where touch is highly developed, the skin, more especially the cpidermis, is thin and devoid of hair, In the monkeys tactile papillac are found in the skin of the fingers and palms, and in the skin of the prehensile tails of various species (Ateles). Such papillac also abound in the naked skin of the nose or snout, as in the shrew, mole. pig, tapir and elephant. In the Ornithorkynchus the skin covering the mandibles is tactile (Owren). In many animals certain hairs acquire great sixe, length and stiff ness. These constitute the vibrissae or whiskers. Each large hair grows from a firm capsule sunk deep in the true skin, and the hair bulb is supplied with sensory nerve filaments. In the walrus the capsule is cartilaginous in texture. The marine Carnivora have strong vibrissae which "act as a staff, in a way analogous to that held and applied by the hand of a blind man (Owen). Each species has lairs of this kind developed on the cyebrows. tips or cheeks, to suit a particular mode of existence, as, for example, the long fine whiskers of the night-prowling felines, and in the syo-3ye, a monkey having nocturnal habite

In the Ungulata the hoofs need no delicacy of touch as segands the discrimation of minute points. Such animals, however, have broad, massive sensations of touch, enabling them to appreciate the firmness of the soil on which they tread, and under the hoof we find highly vascular and sensitive lamellac or papillac, coniributing no doubt, not only to the growth of the hool, but also $t 0$ its sensitiveness. The Cetacea have numerous sensory papillac in the skin. Bats have the ecnse of touch strongly developed in the wings and external cars, and in some species in the fiaps of skin found ncar the nose. There is little doubt that many special forms of tactile organs will be found in animals using the nose or feet for burrowing. A peculiar end-organ has been found in the nose of the mole, while there are "end-capsules " in the songue of the clophant and "nerve rings" in the ears of the mouse.

End-Organs of Touch in Man.-In man three special forms of tactile end-organs have been described, and can be readily demonstrated.

1. The End-Bulbs of Krausc.-These are oval or rounded bodies, from $\frac{1}{8}$ 而 $10, \frac{1}{1} 0$ of an inch long. Each consists of a delicate capsule, composed of nucleated connective tissue

Fic. 5:-End-Bulb from conjunctiva of call. n, Nerve.
enclosing numerous minute cells. On tracing the nerve fibre, it is lound that the nerve sheath is continuous with the capsulc, whilst the axis cylinder of the nerve divides into branches whicb lose themselves among the cells. W. Waldeyer and Longworth state that the nerve fibrils terminate io the cells, thus making these bodies similar to the cells deacribed by F. S. Merkel (ut supra). (See fig. 4.) These bodies are found in the deeper layers of the conjunctiva, margins of the lips, nasal mucous membrane, epiglottis, fungiform and circumvallate papillae of the longue, glans penis and clitoris, mucous membrane of the rectum of man, and they have also been found on the under surface of the "toes of the guinea-pig, car and body of the mouse, and in the wing of the bat " (Landois and Stirling). In the genital organs aggregations of end-bulbs occur, koown as tbe "genital corpuscles of Krause" (fig. 3). In the synovial membrane of the joints of the fingers there are larger end-bulbs, each connected with three four nerve-filaments.
(2) The Touch Corpuscles of Wagner and Meissncr.-These are oval bodies, about sho of an inch long by $\delta \frac{1}{6} \delta$ of an inch in breadth. Each consists of a series of layers of connective tissue arranged transversely, and containing in the centre granular matter with nuclei (figs. 2,3 and 6). Onc, two or three oerve fibres pass to the lower end of the corpuscle, wind transversely around it, lose the white substance of Schwann, penetrate into the corpuscle, where the axis cylinders, dividing, end in some way unknown. The corpuscles do not contain any soft core, but are apparently built up of irregular septae of connective tissue, in the meshes of which the nerve fibrils end in expansions similar to Merkel's cells. Thin describes simple and compound corpuscles according to the numher of nerve fibres entering them. These bodies are found abundantly
in the palm of the hand and sole of the foot, where there maly be as many as al to every square millimetre (m mm . It inch). Tbey are not so numerous on the back of the bend or foot, mamma, lips and lip of the tongue, and sliay afe rare in the gental organs.

The Corpuscles of Voter or Pocini. - These, first described by Vater so long ago as 174 r , are small oval borlies, quite visible to the naked eye, from its to $\frac{1}{16}$ of an inch long and

Ohre Lendois and Stirling. alter Bicsiadecki.,
Fig. 6.-Vertical Section of the Skin of the l'alm of the Hand.
6. Blood-vessct.
6. Papilla of the cutis vera.
c. Capillary. corpuscle.
4. Wagner's touch corpuscle.
f. Nerve-fibre. divided transversely.
4. Cells of the Matpighian layer of the kin.
If to $\frac{1}{8}$ of an inch in breadth, attached to the nerves of the hands and feet. They can be readily demonstrated in the mesentery of the cat (fig. 7). Each corpuscle consists of 40 to so lamellae or coats, like the folds of an onion, thinner and doser together on approaching the eentre. Each lamella is formed of an elastic material mixed with delicate connectivetisuse fibres, and the inner surface of each is lined by a single continuous layer of endothelial rells. A double-contoured nerve Gibre passes to each. The white substance of Schwann becomes continuous with the lamellae, whilst tbe axis cylinder passes into the body, and ends in a small knob or in a plexus. Sometimes a blood-vesst also penetrates the Pacinian body, entering along with the nerve. Such bodies ate found in the subcataneous tissue on the nerves of the fingers and toes, near joints, attached to the nerves of the abdominal plexuses of the sympathetic, on the coccygeal gland, on tbe dorsum of the penis and clitoris, in the meso-colon, in the course of the intercostal and periosteal nerves, and in the capsules of lymphatic glands.

Physialogy of Touch in Man.-Such are the special end-organs of touch. It has also been ascertained that many sensory nerves end in a plexus or network, the ultimate fibrils being comenerted with the celts of the particular tissue in which they are found. Thus they exist in the cornea of the eye, and at the junctions of tendons with muscles. In the latter situation "flatlened end-flakes or plates" and "elongated oval endbulbs" have also been found. A consideration of these barious types of structure show that they facilitate intermittent pressure being made on the netve endings. They are all, as it were, elastic cushions into wiich the nerve endings penetrate, so that the slight variation of pressure will be transmitted to the nerve. Probably also they serve to break the force of a sudden sboct on the nerve endings.

Sensitianmess and Sense of Locality.-The degree of sensitivenems of the akin is determined by finding the amallest distance at which
a, Staik.
b. Nerve-fibre entering it.
c. d, Connective-tissue envelope.
the two points of a pair of compasses can be felt. This method first lollowed by Weber, is employed by physicians in the diagnoais

Fig. 8.-Aesthesiometer of Sieveking.
of nervous affections involving the sensitiveness of the skin. The following table shows the sensitiveness in millimet rea for an adutt.

Tip of tongue

Red part of the lip
Second phalanx of finger, volar surface
Firgt phalanx ol Ginger, volar curfare.
Third phalarx of finger, dorsal surface
4-4.5
Tip of nose
Head of metacarpal bone, volar
Ball of thumb
Ball of little finger
Centre of palm
Dorsum and side of tongue; white of the lips; metacarpal part of the thumb
Third phalanx of the great toe, plantar surface. . 9
Second phalenx of the fingers, dongal surface \$1.3
Back
$11 \cdot 3$
815
$115 \cdot 3$
Eyelid
11.3

Ccatre of hard palate
$13 \cdot 5$
Lower third of the formerm, volas surface
In front of the zygoma
Plamtar murface of the great toe 15.8
Inner murface of the lip toc. 15.8
Behind the zygoma
Forehead
Occiput
Back of the hand
Under the chin
Vertex
Knee
Sacrum (gluteal region)
Forearm and leg
Neck of the fifth dorsal vertebra; liower dorsal and lumbar region.
22.6
$27 \cdot 1$
35-6
33.8 33.8 36-1
44.6
$45 \cdot 1$

Middle of the neek
Upper arm; thigh: centre of the back:
These invertigations show not only that the skin is sensitive, but that one is able with great precision to distinguish the part touched. This latter power is usually called the sense of locality, and it is influenced by various conditions. The greater the number of sensory nerves in a given area of skin the greater is the degrec of accuracy in distinguishing different points. Contrast in this way the tip of the finger and the back of the hand. Sensitivencss increases from the joints towards the extremitics, and sensitivencss is great in parts of the body that are actively moved. The sensibility of the limbs is finer in the transverse axis than in the long axis of the limb, to the extent of 1 on the flexor surface of the upper limb and t on the extensor surface. It is doubtful if exercise improves sensitiveness, as Francis Galton found that the performances of blind boys were not superior to thooe of other boys, and he says that "the guidance of the blind depends mainly on the multitude of collateral indications, to which they give much beed, and not their superiority to any one of them." When the skin is moistened with indifferent fluids sensibility is increased. Suslowa made the curious discovery that, if the area between two points distinctly felt be tickied or be stimulated by a weak clectric current. the impressions are fused. Stretching the skin, and baths in water containing carbonic acid or common salt. increase the power of localizing tactike impressions. In experimenting with the conpases, it will be lound that a smaller distance can be distinguished if one proceeds, from greater to smaller distances than in the reverse direction. A smaller distance can also be detected when the points of the compasses are placed one after the other on the skin than when they are placed simultaneously. If the points of the cumpasper are unequally heated, the sensation of two contacts becomes confused. An anamic condition, or a erate of venous congestimn, or the application of cold, or violent ot retching of the skin. or the use of such substances as atropine, daturin, morphia. strychnine alcohol. bromide of potassium. cannatin and hydrate of chloral blunt sensibility. The only active substance said to increase it is caffein.

Absodute sensitivencss, as indicated by a sense of pressure, has been determined by various methods. Two different weights are placed on the part, and the smallest difference in weight that can be perceived is noted. Weber placed small weights directly on the skin: Aubert and Kammler loaded small plates: Dohrn made use of a balance, having a blunt point at one end of the beam, resting on the skin. whilst wejghts were placed on the other end of the beam to equalize the pressure: H. Eulenberg invented an instrument like a spiral spring paper-clip or balance (the baraesthesionieter), having an index showing the pressure in grammes; F. Goltz cmployed an India-rubber tube filled with water, and this, to ensure a constant surface of contact, bent at one spot over a picce of cork, is touched at that spot by the cutancous part to be examined, and, by shythmically exerted pressure, waves analogous to those of the arterin! pulse are produced in the tube: and L. Landois invented a mercurial balance, enabling him to make rapid variations in the weight without giving rise to any shock. These methods have given the following gencral results. (I) The greatest acuteness is on the forehead, temples and back of the hand and forearm, which detect a pressure of 0.002 gramme; fingers detect 0.005 to 0.015 gramme; the chin, abdomen and nose 0.04 to 0.05 gramme. (2) Coltz's met hod gives the same general results as Weber's experiment with the compasses, with the exception that the eip of the tongue has its sensation of pressure much lower in the scale than its sensation of touch. (3) Eulenberg found the following gradations in the fineness of the pressure sense: the forehead, lips, back of the cheeks, and tomples appreciate differences of to to $\frac{1}{86}$ (200: 205 to 300: 310 grammes). The back of the last phalanx of the fingers, the forcarm, hand, first and second phalanges, the palmar surface of the band, forearm and upper arm distinguish differences of to to. $\frac{1}{2}$ (200: 220 10 200: 210 grammes). The front of the leg and thigh is similar to the forearm. Then follow the back of the foot and toes, the sole of the foot, and the back of the leg and thigh. Dohrn placed a weight of 1 gramme on the skin, and then determined the least additional weight that could be detected, with this result: third phalanx of finger 0.499 gramme ; back of the foot, 0.5 gramme; second phalanx, 0.771 gramme; first phalanx, 0.82 gramme; leg, I gramme; back of hand, I-156 grammes; palm, 1.108 grammes; patella, $\mathbf{1 . 5}$ grammes; forearm; 1.99 grammes; umbilicus, 3.5 grammes; and back, 3.8 grammes. (4) In passing from lighe to heavier weights, the acuteness increases at once, a maximum is reached, and then with heavy weights the power of distinguishing the differences diminishes. (5) A sensation of pressure after the weights have been removed may be noticed (after-pressure sensadion), especially if the weight be considerable. (6) Valentine noticed that, if the finger were held against a blunttoothed whed, and the wheel were rotated with a certain rapidity, he felt a smooth margin. This was experienced when the intervals of time between the contacts of successive teeth were less than from to to sto of asecond. The same experiment can be readily made by holding the finger over the holes in one ol the outermost circles of a large syren rotating quickly: the sensations of individual holes become fused, so as to give rise to a fceling of touching a slit. (7) Vibrations of strings are detected even when the number is about 1500 per second; above this the sensation of vibration ceases. By attaching bristles to the prongs of tuning-forks and bringing these into contact with the lip or congue, sensations of a very acute character are experienced, which are most intense when the forks vibrate from 600 to 1500 per second.

Information from Tactile Impressions. - These enable us to cone to the following conclusions. (1) We note the existence of something touching the sensory surface. (2) From the intensity of the scasation we determine the weight, tension or intensity of the pressure. This sensation is in the first instance referred to the skin, but after the pressure has reached a certain amount muscular sensations are also experienced-the so-called muscular sense. (3) The locality of the part touched is at once determined, and from this the probable position of the touching body. Like the visual field, to which all retinal impressions are referred, point for point, there is a tactile ficld, to which all points on the skin surface may be referred. (4) By touching a body at various points, from the difference of pressure and from a comparison of the positions of various points in the tactile field we judge of the configuration of the body. A number of "tactile pictures" are obtained by passing the skin over the touched body, and the shape of the body is further determined by a knowledge of the muscular movements necessary $t o$ bring the cutaneous surface into contact with different portions of it. If there is abnormal displacement of position, a false conception may arise as to the shape of the body. Thus, if a small marhle or a pea be placed between the index and middle finger so as to tourh (with the palm downwards) the outer side of the index finger and the inner side of the middle finger, a sensation of rouching one round body is experienced; but if the fingers be crossed, so that the masble toutbes the inner side of the index finger and the outer side of the middle finger, there will be a feeting of two round bodies. because in these circumstances there is added to the feelings of contact a feeling of distortion (or of muscular action) such as would take place if the fingers, for purposes of touch, were placed in that abnormal position. Agsin, as showing that our knowledge of , he lactile field is procise, there is the well-known fact that when a piece
of skin is transplanted from the forehead te the nose, in the operation for removing a delormity of the nose arising from lupus or other ulcerative disease, the patient feels the new nasal part as if it were his forehcad, and he may have the curious sensition of a nasal instead of a Irontal headache. (5) From the number of points touched we judge as to the smoothness or roughness of a body. A body having a uniformly level surface, like a biliard ball, is smooth. a body having points frregular in size and number in a given area is rough; and if the points are very close together it gives rise to a sensation, like that of the pile of velvet almost intolerable to some individuals. Again, if the pressure is so uniform as not to be felt, as when the body is immersed in water (paradoxical as this may seem, it is the case that the sensation of contact is felt only at the limit of the fluid), we experience the sensation of being in contact with a fluid. (6) Lastly, it would appear that touch is always the result of variation of pressurc. No portion of the body when touching anything can be regarded as absolutcly motionless, and the slight oscillations of the sensory surface, and in many cases of the body touched, produce those variations of pressure on which touch depends.

To explain the phenomenon of the tactile field, and more specially the remarkable variations of tactile sensibility above described, various theorics have been advanced, but none are satisfactor; (See article "Cutaneous Sensations" by C. S. Sherrington in Schafer's Physiology, ii. 920). Research shows that the sensation of touch may be relerred to parts of the skin which do not contain the special end organs associated with this sense, and that filaments in the Malpighian layer (the layer immediately above the papillae of the true skin) may form the anatomical basis of the sense. The skin may be regarded, also, as an extensive surface containing nervous arrangements by which we are brought into rclation with the outer world. Accordingly, touch is not the only sengation referred to the skin, but we also refer sensations of temperature (heat and cold), and often those peculiar sensations which we call pain.

Sensaltons of Temperature.-These depend on thermic irritation of the terminal organs, as proved by the following experiment of E. H. Weber: " If the elbow be dipped into a very cold fluid, the cold is only felt at the immersed part of the body (where the fibres terminate); pain, however, is felt in the terminal organs of the ulnar nerve, namely, in the finger points; this pain, at the same time, deadens the local sensation of cold." If the sensation of cold were due to the irritation of a specific-nerve fibre, the sensation of cold would be referred to the tips of the fingers. When any part of the skin is above its normal mean temperature, warmeh is felt; in the opposite case, cold. The normal mean temperature of a given area varies according to the distribution of hot blood in it and to the activity of nutritive changes occurring in it. When the skin is brought into contact with a-good conductor of heat there is a sensation of cold. A sensation of heat is experienced when heat is carried to the skin in any way. The following are the chief facts that have been ascertained regarding the temperature sense: (I) E. H. Weber lound that, with a skio temperature of from $15.5^{\circ} \mathrm{C}$. to $35^{\circ} \mathrm{C}$. the tips of the fingers can distinguish a difterence of $0.25^{\circ} \mathrm{C}$. to $0^{-2} 2^{\circ} \mathrm{C}$. Temperatures just below that of the blood $\left(33^{\circ}-27^{\circ} \mathrm{C}\right.$. are distinguished by the most sensitive parts, even to $0.05^{\circ} \mathrm{C}$. (a) The thermal sense varies in different regions as follows: tip of tongue, eyelids, cheeks, lips, neck, belly. The "perceptible minimum "was found to be, in degrees C. : breast 0.4°; back, $0-9^{\circ}$; back of hand, $0-3^{\circ}$; palm, 0.4° :arm, 0.2°; back of foot, 0.4°; thigh, 0.5°; leg, 0.6° ta 0.2° cheek, $0 \cdot 4^{\circ}$; temple, 0.3°. (3) If two difierent tem perat ures are a pplied side by side and simultaneously, the impressions often fuse, especially If the areas are close together. (4) Practice is said to improve the thermal sense. (5) Sensations of heat and cold may curiously alternate; thus when the skin is dipped first into water at $10^{\circ} \mathrm{C}$. we feel cold, and if it be then dipped into water at $16^{\circ} \mathrm{C}$. we have at first feeling of warmth, but soon again of cold. (6) The same temperature applied to a large area is not appreciated in the same way as when applied to a small one: thus "the whole hand when placed in water at 29.5° C. fecls warmer than when a finger is dipped into water at $32^{\circ} \mathrm{C}$.

There is every reason to hold that there are different nerve fibrea and different central organs for the tactile and thermal sensations, but nothing definite is known. The one sensarion undoubtedly affects the other. Thus the minimum distance at which two com pass points are felt is diminished when one point is warmer that the other- Again, a colder weight is felt as heavier, "so that the apparent difference of pressure becomes greater when the heavier weight is at the same time colder, and less when the lighter weight is colder, and difference of pressure is felt with equal weights of unequal temperature" (E. H. Weber). Great sensibjlity to differences of temperature is noticed after removal, alteration by vesicants or destruction of the epidermis, and in the skin affection called herpes zoster. The same occurs in some cases of locomotor ataxy. Removal of the epidermis, as a rule, increases tactile sensibility and the sensc of locality. Increased tactile sensibility is termed hyperpselophesta, and is a rare phenomennn in nervous discases. Paralysis of the tactile sense is called hypopselaphesia, whilst its entire loss is apsclaphesia. Brown-Sequard mentions a case in

Which contact of two pointe gave rise to a sence of a third point of contact. Certain conditions of the nerve centres affect the senses both of touch and temperature. Under the influence of morphia the person may feel abnormally enlarged or diminished in size. As a rule the senses are affected simultaneously, but cases occur where one may be affected more than the other.

Sensations of heat and cold are chiefly referred to the skin, and only partially to some mucous membranes, such as those of the alimentary canal. Direct irritation of a nerve does not give rise to these sensations. The exposed pulp of a diseased tooth, when sritated by bot or cold fluids, gived rise to pain, not to sensations of temperature. It has now been ascertained that there are minute areas on the skin in which sensations of heat and cold may be more acotely felt than in adjoining areas; and. further, that there are points ctimulated by addition of heat, hot spots, while others are stimulated by withdrawal of heat, cold spots.
A simple method of demonstrating this phenomenon is to nee a solid cylinder of copper, 8 in . in length by 1 in. in thickeess, and sharpened at one end to a fine pencil-like point. Dip the pointed end into very hot water, close the eyes, and touch parts of the skin. When a hot spot is touched, there is an acute mensation of burning. Such a spot is often near a hair. Again. in another set of experiments, dip the copper pencil into ice-cold water and search for cold spots. When one of these is touched, a sensation of cold, as if concentrated on a point, is experienced. Thus it may be demonstrated that ia a given area of skin there may be hot epoes, cold spotes and touch spots

Cold epots are more abundant than hot spots. The spote are arranged in curved lines, but the curve uniting a number of cold cpots does not coincide with the curve forming a chain of hot spots. By Weber's method it will be found that we can discriminate cold epots at a shorter distance from each ocher than hot spots. Thus on the forehead cold spots have a minimum distance of 8 mm ., and hot spots 4 mm. on the skin of the breast. cold apots 3 mm . and bot spots 5 mm . i on the back. cold spots 1.5 mm . and hot spots 4 to 6 marn. on the back of the hand, cold spots 3 mm ., and hot spots 4 mmo ; on the palm, cold spots 8 mm ., and hot opot 5.2 mm ; and on the thigh and leg, cold spots 3 mm ., and hot spote 3.5 mm . Electrical and mechanical stimulation af the hot or cold spots call forth the corresponding sensation. No terminal organ for discrimination of temperature has yet been found. It will be observed that the sensation of heat or cold is excited by change of temperature, and that it is more acute and definite the more sudden the change. Thus discrimination of temperature is similar to discrimination of touch. Which depends on more or less sudden change of pressure. The eerm cold means, physiologically, the sensation we experience when heat is abstracted, and the term heat, the sensation felt when theat is added to the part. Thus we are led to consider that the skin contains at least two kinds of specific terminal organs for sensations of touch and temperature, and two scts of nerve fibres which carry the nervoos imppalses to the brain. In all probability, also, these Gloms have different central endings, and in their course to the brain run in different tracts in the spinal cord. This will explain cases of disesse of the central nervous system in which, over certain areas of skin. sensations of touch have been lost while sensations of tempeature and pain remain, or vice versa. Tactile and thermal mpressions may influence each other. Thut a leg sent to "sleep" by presure on the sciatic narve will be found to be less sensitive to heat, but distinctly eensitive to cold. In some cases of disease iz leas been noticed that the skin is sensitive to a temperature above that of the timb, but insensitive to cold. It is highly probable that jot as we found in the case of touch (pressure), the terminal organs connerted with the aense of temperat ure are the fine nerve filamenti that have beea detected in the deeper strata of the Malpighian region of the epidermis. immediately above the true skin, and it is also probable that certain epidermic (epitheial) cells in that region play their part in the mechanisen. Eereations of a paimul character coy also, in certain circumstances, be referred to the viscera, and to mucous and serous surfaces. Pain is not a sensation excited by irritating the end organs either of touch or of temperature, nor even by irritating directly the flaments of a sensory nerve. Even if sensory nerves are cut or bruised, as in surgical operations, there may be no sensations of pain; and it has been foulid that muscles, vemels and even the viscera. such as the heart, tomach, liver or kidneys, may be freely handled without giving rise to any feeling of pain. or indeed to any kind of eensation. These parts, in ordinary circumstancea appear to be insensitive, and yet they contain afferent serves. If the sensibility of these nerves is heightened, of possibly if the ueniviveness of the central terminations of the nerves is raised. then we may have mensations to which we give the name of pain. In like manner the skin is endowed with afferent nerves, distinct from those ministering to touch and to temperature, along which nervous impulses are constantly lowing. When these nervous impules reach the central nervous system in ordinary circumstance: they do not give nise to changes that reach the level of consciousness, but they form. as it were, the warp and woof of our mental life, and they also afiect metabolisms. that is to syy, nutritive changes in many parte of the body. They may also, as is well known, affect unconsciousty such mechanisms as those of the action of the heart,

If. bowever, this plane of ectivity is raised, as by intermittent pressure, or by infiammatory action, or by sudden changes of temperature, as in burning, scalding, sic., such nervous imputses give rise to pain. Sometimes pain is distinctly located, and in other cases it may be irradiated in the nerve centres, and referred to areas of skin of to recions of the body which are not really the seat of the Irritation. Thus irritation of the liver may cause pain in the shoulder; disease of the hip-joint often gives rise to pain in the knee; and renal colic, due to the passage of a calculus dowa the ureter, to severe pain even in the abdominal walls. These are often termed refiex pains and their interpretation is of great importance to physicians in the diagnosis of disease. Their frequent occurrence has also directed artention to the distribution in the slin and termination in the brain of the sensory nerves. It is also noticeable that a mensation of pain gives us no information as to its cause: we simply have an agonizing sensation in a part to which, hitherto, we probably referred no sensations. The acutenesm or intensity of pain depends partly on the intensity of the irritation. and partly on the degree of excitability of the sensory nerves at the time.

Pain.-In addition to sensations of touch and of temperature referred to the skin, there is still a third kind of sensation, untike either, namely, pain. This sensation cannot be supposed to be excited by irritations of the end organs of touch, or of specific thermal end organs (if there be such), hut rather to irritation of ordinary sensory nerves, and there is every reason to believe that paiaful impressions make their way to the brain along special tracks in the spinal cord. If we consider our mental condition as regards sensation at any moment, we notice numerous sensations more or less definite, not referred directly to the surface, nor to external objects, such as a feeling of general comifor, free or impeded breathing, hunger, thirst, malaise, horror, fatigue and pain. These are all caused by the irritation of ordinary sensory nerves in different localities, and if the irritation of such nerves, by chemical, thermal. mechanical or nutritional stimuli, passes beyond a certain maximum point ol intensity the result is pain. Irritation of a nerve, in accordance with the law of "peripheral reference of senation," will cause pain. Sometimes the irritation applied to the trunk of a sensory nerve may be so intense as to destroy its normal function, and losa of sensation or anacsthesia results. If then the stimulus be increased further. pain is excited which is referred to the end of the nerve, with the result of producing what has been called ancesthesio doloroso. Pains frequently cannot be distinctly located, probably owing to the fact of irradiation in the nerve centres and subscouent reference to areas of the body which are not really the seat of irritations. The intensity of pain depends on the degree of excitability of the sensory nerves, whilst its massiveness depends on the number of nerve fibres affected. The quality of the pain is probably produced by the kind of irritation of the nerve, as affected by the structure of the part and the greater or less continuance of severe pressure. Thus there are piercing, eutting, boring. burning, throbhing, pressing. gnawing, duli and acute varieties of pain Sometimes the escitability of the cutaneous nerves is so great that a breath of air or a delicate touch may give rise to suffering. This hyperalgia is fouad in inflammatory affections of the skin. In meuradgia the pain is characterized by its character of shooting along the course of the nerve and by bevere exacerbations. In many nervous diseases there are disordered sensations referred to the ekin, such as alternations of heat and coid, hurning, crecping, itching and a feeling as if insects were crawling on the surface (formication). This condition is termed paralgia. The term hypalgia is applied to a diminution and analgia to paralysis of pain, as is produced by anaesthetics.

Muscylar Semse.-The sensory impressions considered ia this article are closely related to the so-called muscular sense, or that ecnse or feeling by which we are aware of the state of the muscles of a limb as regards contraction or relaxation. Some have held that the muscular sense is really due to greater or leas stretching. of the slin and therefore to irritation of the nerves of that organ. That this is not the case is evident from the fact that disordered movements indicating perversion or loss of this sense are not affected by removal of the Ekin (Claude Bernard). Furtber, cases in the human being have been noticed where there was an entire loos of cutaneous sensibility whilst the muscular sense was unimpaired. It is also known that muscles possess sensory nerves, giving rise, in certain circumstances, to fatigue, and, when strongly irritated, to the pain of cramp. Muscular sensations are really exdited by irritation of entory nerves passing from the muscles themseives. There are specialized epindle-like bodies in many muscles, and there are argans connected with tendons which are regarded as sensory organs by which pressures are communicated to sensory nerve-filaments. We are thus made conscious of whether or not the muscles are contracted, and of the momont of contraction necesary to overconve resistance, and this knnwledge enables us to judge of the amount of voluntary impulse. Loss or diminution of the muscular scnse is seen in chorea and especially in locomotor ataxy. Increase of it is rare, but it is eeen in the curious affection called amelatas tibiarmm, a painful condition of unrest, which leads to a continual change in the position of the limbs (see Equilierium).
(J. C. M.)

TOUL, a garrison town of north-eastern France, capital of an arrondissement in the department of Meurthe-et-Moselle, in m. W. of Nancy on the Eastern railway Pop. (1go6), town 9523; commune, 13,663 . Toul is situated in a plain on the left bank of the Moselle, which skirts the town on the S. and S. E., while on the \mathbf{N}. it is bordered by the Marne-Rhine canal. It is principally important as being the centre of a great entrencbed camp close to the German fronticr. Immodiately after the FrancoGerman War the whole system of fronticr defence was revised, and of all the new fortresses of the Meuse and Moselle Toul is perhaps the most formidable. The works were begun in 1874 by the construction of four outlying forts north, north-east and south of the town, but these soon became merely an inner line of defence. The principal defences now lie much farther out on all sides. The west front of the new line of forts accupies a long line of high ground (the watershed of the Meuse and the Moselle), the north front, about 4 m . from Toul, is in undulating country, while facing towards Nancy and forming the chord of the arc which the Moselle describes from Eontenay below to Villey-le-Sec above, is the strong east front, the outlying works of which extend far to the east (Fort Frouard and other works about Nancy) and to the south-east (Pont St Vincent). The south front extends from the Moselle at Villey-leSec south-westwards till it meets the southem end of the west front on the high ground overlooking the Meuse valley. The fort at Pagny on the Meuse to the south-west may be considered an outwork of this line of defence. The perimeter of the Toul defences proper is searly 30 m , and their mean distance from the town about 6 m . Northward, along the Meuse, Toul is connected with the fortress of Verdun by the " Meuse line " of barrier forts, the best known of which are Gironvilie, Liouville and Troyon. South of Toul the country was purposely left unfortified as far as Epinal (q.v.) and this region is known as the Trouee d'Epinal.

The town itself forms an oval within a bastioned enceinte picreed by three gateways. It has two important churches. That of St Etienne (formerly a cathedral) bas a choir and transept of the 13 th centuty; the nave and aisles are of the $x 4 t h$, and the façade, the finest part of the building, of the last half of the 1 sth. The two western towers, which have no spires, reacb a beight of 246 ft . The twp large lateral chapels of the nave are in the Renalssance stylc. The chief features of the interior are its staincd glass and organ loft. Soutb of tbe church there is a fine cloister of the end of the 3 th century which was much damaged at the Revolution. The cburch of St Gengoult, which dates chiefly from the late 13 th or early 14 th rentury, has a facade of the $55^{\text {th }}$ century and a cloister in the Flamboyant Gothic style of the $16 t b$ century. The hotel-de-ville occupies a building of the st th century, once the episcopal palace, and contains the librany and museum. Toul is the seat of a suh-prefect and has a tribunal of commerce and a communal college among its public institutions. The industries include the manufacture of porcelain; trade is in wine and brandy.

Toul (Tullum) is one of the oldest towns of France; originally capital of the Leuci, in the Belgic Confederation, it acquired great importance under the Romans. It was evangelized by St Mansuy in the latter half of the 4 th century, and became one of the leading sces of north-east Gaul. After being sacked successively by Goths, Buagundians, Vandals and Huns, Toul was conquered by the Franks in 450 . Under the Merovingians it was governed by counts, assisted by elective officers. The biwhops became sovereign counts in the roth century, holding only of the emperor, and for a period of 300 years (3 th to 16 th renturies) the citizens maintained a long struggle against them. Together with Verdun and Metz the town and its domaln formed the territory, of the Trois-Evechés. Toul was lorced to yield for a time to the count of Vaudemont in the 12 th century, and twice to the duke of Lormaine in the 15 th, and was thrice devestated by the plague in the r6th century. Charles V. made a folems entry into the town in 1544 , but in the following
year, at the instance of the cardinal of Lortainc, it placed itself under the perpetual protection of the kings of Erance. Henry II. took possession of the Trois-Evechés in $\mathbf{5} 52$, hut the territory was not officially incorporated with France till 1648. Henry IV. was reccived in state in 1603 , and in 1637 the parlement of Metz was transferred to Toul. In 1700 Vaubzn reconstructed the fortifications of the town. In 1790 the bishoptic was supprossed and the diocese united to that of Nancy. Toul, which had then no modern defences, capitulated in 2870 after a bombardment of twelve days.

TOULON, a seaport and first-class fortress and naval station of France, department of Var, capital of the arrondissement of Toulon, on the Mediterranean, 42 m . E.S.E. of Marseilles. Pop. (1886), 53,941; (1901), 101,602. The bay; which opens to the east. has two divisions, the Grande Rade and the Petite Rade; it is sheltered on the north and west by high hills, closed on the south hy the peninsula of capes Sicie and Cépet, and protected on the east hy a huge breakwater, the entrance, 1300 . wide, being defcasible by torpedoes. A ship coming from the open sea must first pass tbe forts of St Marguerite, of Cap Brun, of Lamalgue and of St Louis to the north, and the battery of the signal station to the south; before reaching the Petite Rade it must further pass under the guns of the battery of Le Salut to the cast, and of the forts of Balaguier and L'Aiguillette to the west. The Bay of La Seyne lies west of the Petite Rade, and is defended by the forts of Six-Fours, Napoléon (formerly Fort Cairc), and Malbousquet, and the batteries of Les Arenes and Les Gaus. To the north of Toulon rise the defensive works of Mont Faron and Fort Rouge, to the east the forts of Artigues and St Catherine, to the north-east the formidable fort of Coudon, and to the south-east that of Colle Noire, respectively dominating the bighway into Italy and the valley of Hyères with the Bay of Carqueiranne. The town, enlarged to the north under the Second Empire, has on that side a fine modern quarter; but in the old town the strects are for the most part narrow, crooked and dirty, and to their insanitary state the chokera cpidemic of 1884 was attributed. The chief buildings are the former cathedral of St Maric Majeure (from the 5 th century Toulon was a bishop's see till r8or, when it was annexed to that of Frejus), the church of St Louis, the naval and military hospital, with a natural history collection and an anatomical museum altached, a naval school of medicine, a school of hydrography, and large barracks. In $1883-1887$ a handsome Renaissance building was erected to accommodate the picture gallery and the town library. The monument in commemoration of the centenary of the French Revolution was erected in 1890 in the Place de la Liberté, the finest in the new town. The imports are wine, corn, wood, coal, hemp, iron, sugar, coffee and fresh fish; the exports are salt, copper ore barks for tanning and oils. The principal industrics, apart from the arsenal, are shipbuilding, fishing, lace-making and wine-growing. Toulon possesses an observatory and a botanical garden. The interesting buildings and gardens of the bospital of St Mandrier stand on the peninsula of Cape Cépet, and near them is the lawarcilo.

Taulon is the most important of the French dockyards, and is the headquarters of the Meditcrranean flect. The arsenal, which was created by Louis XIV.-Vauban being the engineer of the works-lies on the north side of the Petirc Rade. This is approached from the Grande Rade by passages at the north and south ends of a long breakwater which extends from the direction of Le Mourillon towards the Cépet Peninsula. The water space within the moles amounis to about $\$ 50$ acres. while the quays approach 4 m . in length. Outside in the Petite Rade is a splendid protected anchorage for a great fleef, the whole being commanded by many lorts and batteries. There are four great basins approached from the Petite Rade-the Vielle Darse, to the cast. on the side of Le Mourillon; the Darse Vauban, next to it: and the Darse de Cassigneau and the Darse Missiessy. farther to the west. In the Darse Vauban are three dry docks, two of them 246 ft long, with a depth of water on the sill of about 20 It.; while the third is 283 ft . long, with a depth of over 24 ft . Three other dry docks are in the Darse de Castigneau, of which one is in two sections. The largest of the docks is 385 ft . long, and the depth of water on the sill in all these docks averages 30 ft . In the Darse Missiessy are
two dry docles, 426 ft . lones, with a depth on the sill of over 32 ft . There are everal building slips, and the yard is supplied with - gun foundry and wharf, fitting.shops, boiler works, victualling and other establishments, rolling mills and magazines. Le Mouritlon is a subsidiary yard et Toulon, devoted chiefly to ship-buiting, and possescing large facilities, including five covered slips.

The Roman Telo Martius is supposed to have stood near the lasaretto. The town was successively sacked by Coths, Burgundians, Franks and Saracens. During the early middle ages, and till conquered by Charles of Anjou is 1259 , it was under lords of its own, and entered into alliance with the republics of Marseilles and Arles. St Louis, and especially Louis XII. and Francis I. strengthensd its fortifications. It was scized by the emperor Charles V. in 1524 and 1536. Henry IV. founded a naval arsenal at Toulon, which was further strengtitened by Richelieu, and Vauban made tbe new dock, a new enceinte, and several forts and batteries. In 1707 the town was unsuccessifully besieged by the duke of Savoy, Prince Eugene and an English leet. In 1720 there was an outbreak of the piague. In 1792 after great and sanguinary disorder, the royalists of the town sought the support of the English and Spanish fleets cruising in the neighbourhood. The Convention having replied by putting the town "hors la loi," the inhabitants opened their harbour to the English. The army of the republic nnw (i793) hidd siege to the town, and on this occasion Napolcon Bonaparte firse made his name as a soldier. The forts commanding the town having been taken, the English ships retired after setting Ge to the arsenal. The conflagration was extinguished by the prisoners, but not before 38 out of a total of 56 vessels had been destroyed. Under the Directory Toulon became the most important French military fort on the Mediterranean; bere Napotoon organized the Egyptian campaign, and the expedition against Algiers set out from Toulon in 1830. The fortifications have been strengthened by Napoleon I., Louis Philippe. Napoleon III., and since 1870 .
Batlle of Tomon,-This naval battle took place on the 1 th of February 1744, near the port of Toulon. A British fleet of 1 hirty sain of the line under command of Thomas Mathews who combined the offices of naval commander-in-chief in the Mediterranean and envoy to the courts of Jardinia and the Italian princes, engaged a combined force of Spaniards under Don Jost Navarro and French under M. de Court. They were in all twenty-seven sail. The allies left Toulon on the gth of February. Mar hews was at anchor in Hydres Bay to watch them. for though France and Great Britain were already engaged as allics on opposite sides in the War of the Auscrian Succession, there had been no declaration of war between Auserian. It was known that the allies meant to iransfer Spanish lroope to Italy to serve against the Austrians, and Mathews had no hesitation in attacking them. Great Britain being nt war with Spain. He left Hyerea in vary light wind with a heavy westerly swell, and with his ficet in confusion. The British ships were stragzling over a distance of ten miles, but he put himsell between the ememy and Toulon. Mathews was on bad terms with his second in command, Lestock, who commanded the rear division and showed little disposition to support his superior. By the morning of the Ith the interval between the van and centre of the British fiect and its rear had increased in the light breezes, and also through the voluntary or involuntary misapprehension of Mathews's orders by Lestock. The allies were in a fairly well-formed line, heading 10 the south, and southward of the British. Mathews pursued, aod at 1.30 p.m. When his leading ship was abreast of the centre thip of the allies, he attacked. Some hot fighting took place betweten Mathews and the Spaniards who formed the allied rear. The action was notable as the last occasion on which an attempt nas made to use a fireship on the open oca. One was sent against the "Real" (114), the Spanish flagship, but she was reduced to a sinking state by the fire of the Spaniands, and blew up prematurely, with the loss of all on board. At about five oclock. the French in the van furned back to support the Spaniards, and Mathews drew of. One Spanish ship, the "Poder" (60), which had surrendered was recapeured, and then set on fire by the allies. Mathews made only a feeble attempt to renew the battle on the following days. and on the I3th returned towards the coast of Italy, which he said be had to defend. The British rear division had not come into action at all.

The battle, though a miserable affair in itself, is of great importance in naval history because of the pronouncement of doctrine to whict it led. Mathews, who was dimatisfied with his subordinate. Leseoch serpended him from command and sent him home for trial. Several of the captaina had behaved ill, and the failure of
a superior British flact to gaia a mucceas over the allies caused extreme discontent at home. A parliamentary inquiry was opened on the 12th of March 1745, which on the 18th of April, apter a confused investigation, ended in a perition to the king to order trials by court-martial of all the officers accused of misconduct. A long series of courts-martial began on the inth of September 1745, and did not end till the 22 nd of October 1746. Several captains were sentenced to be dismissed the service. Lentock was acquitted, hut Mathews was condermed and sentenced to dismisual. The finding of the court, which blamed the officer who actually fought, and acquitted the other who did not. puzzled and angered public opinion. The technical points were not appreciated by laymen. The real evil done by the condermation of Mathews was not understood even in the navy. Mathews was blamed on the ground that he had not waited to engage till his van ship was abreatt of the van ship of the enemy. By this declaration of principle the court confirmed the formal system of naval tactics which rendered all sea-fighting between equal or nearly equal forces so ineffective for two gencrations.
See Beatson, Naval and Military Memoirs, i. 197 seq. (London, 1804), a full and fair narrative.

TOULOUSE, LOUIS ALEXANDRE DE BOURBON, COUNT of (1678-1737), third son of Lovis XIV. and Mme de Montespan was born on the 6th of June 1678. At the age of Give he was created admiral of France. He distinguished himself during the War of the Spanish Succession, and inflicted a severe defeat on Admiral Rooke near Malaga in 1704. He kept aloof from the intrigues of his sister-in-law, the duchess of Maine, and died on the ist of December 1737. His son, Louis Jean Marie de Bourbon, duc de Penthièvre (1725-1793), succeeded his father in his posts, among others in that of grand admiral. He served under Marshal de Noailles, and fought brilliantly at Dettingen (1743) and Fontenoy (1745). He then lived in retreat at Rambouillet and Sceaux, protecting men of lefters, and particularly the poet Florian, and dispensing charity. He lost his son, the prince of Lamballe, in 1768, and survived his daughter-in-law, Louise Marie Thérèse of Savoy-Carignan, the friend of Marie Antoinette, who was killed by the populace on the 3 rd of September 1792 . He died on the 4 th of March 1793; his daughter and heiress, Louise Marie Adélaide, married Philippe (Egalite), duke of Orleans.
TOULOUSE, a city of south-western France, capital of the department of Haute-Garonne, 443 m . S. by W. of Paris by the Orleans railway, and 159 m . S.E. of Bordeaux by the Southern railway. Pop. (roo6), town, 125,856; commune, 149,438 . Toulouse is situated on the right bank of the Garonne, which here changes a north-easterly for a north-westerly direction, describing a curve round which the city extends in the form of a creseent. On the left bank is the suburb of St Cyprien, which is exposed to the inundations of the river owing to its low situation. The river is spanaed by three bridges-that of St Pierre to the north, that of St Michel to the south, and the Pont Neuf in the centre; the last, a fine structure of seven arches was begun in 1543 by Nicolas Bachelicr, the sculptor, whose work is to be seen in many of the churches and mansions of the city. East and north of the city runs the Canal du Midi, which here joins the lateral canal of the Garonne. Between the Canal du Midi and the city proper extends a long line of boulevards leading southwards by the Allée St Elienne to the Grand Rond, a promenade whence a scrics of allées branch out in all directions. South-west the Alléc St Michel leads towards the Garonne, and south the Grande Allec towards the Faubourg St Michel. These boulevards take the place of the old city walls. Between them and the canai lic the more modern faubourgs of St Pierre, Arnaud-Bernard, Matahiau, \&c. The Place du Capitols, to which strects converge from every side, occupics the centre of the cily. Two broad straight thoroughfarcs of modern construction, the Rue de Metz and the Kue d'Alsate-Lorraine, intersect one anothet to the south of this point, the first running east from the Pont Neuf, the other running north and south. The other streets are for the most part narrow and irregular.
The most interestink building in Toulouse is the church of St Sernin or Saturnin. whom legend represenis as the first preacher of the yospel in Toulousc. Where he was per hape martyred about the middle of the 3rd ceniury. The choir. the oldest part of the
present building, was consecrated by Urban II. in 10g6. The church is the largest Romanesque basilica in existence, being 375 fr. from cast to west and 210 ft. in extreme breadth. The nave (r2th and 13 th centuries) has double aisles. Four pillars, supporting the central tower, are surrounded by heavy masonry, which somewhat spoils the general harmony of the interior. In the southern transept is the "portail des comtes," so named because sear it lie the tombs of William Taillefer, Pons, and other early counts of Toulouse. The litele chapel in which these tombs (ascribed to the 11 th century) are found was restored by the capitols of Toulouse in 1648. Another chapel contains a Byzantine Christ of late IIth-century workmanship. The choir (ith and $12 t h$ centuries) ends in an apse, or rather chevet, surrounded by a range of columns, marking off an aisle, which in its tum opens into five chapels. The stalls are of $16 t h$-century work and grotesquely carved. Against the northern wall is an ancient lable d"aubl, which an ith-century inscription declares to have belonged to St Sernin. In the crypts are many relics, which, however, were robbed of their gold and silver shrincs during the Revolution. On the south there is a fine outer porch in the Renaissance style; it is Eurmounted by a representation of the Ascension in Byzantine style. The central tower (I3th century) consists of five storeys, of which the two highest are of later date, but harmonize with the three lower ones. A restoration of St Sernin was carried out ia the 19th century by Viollet-le-Duc.

The cathedral, dedicated to St Stephen, dates from three different epochs. The walls of the nave belong to a Romanesque cathedral of the ilth century, but its roof dates from the first half of the I3th century. The choir was begun by Bishop Bertrand de l'Ile (c. 1272), who wished to build another church in place of the old one. This wish was unfulfilled and the original nave, the axis of which is to the south of that of the choir, remains. The choir was burned in 1690 but restored soon after. It is surrounded by seventeen chapels, finished by the cardinal d'Ortéans, nephew of Louis XI. about the beginning of the 16 th century, and adorned with glass dating from the 15 th to the 17 th century. The western gate, llanked by a huge square tower, was constructed by Peter du Moulin, arebbishop of Toulouse, from 1439 to 1451 . It has been greatly battered, and presents but a poor approximation to its ancient beauty. Over this gate, which was once ornamented with the statues of St Sernia, St Exuperius and the twelve apostles, as weli as those of the two brother archbishops of Toulouse, Denis (1423-1439) and Peter du Moulin, there is a beautiful 13th-century rose-window, whose centre, however, is not in a perpendicular line with the point of the Crothic arch below.

Among other remarkable churches may be noticed Notre-Dame de la Daurade, near the Pont Neuf, built on the site of a 9th-century Benedictine abbey and reconstructed towards the end of the $\mathbf{8 t h}$ century; and Notre-Dame de la Daibade; perhaps existing in the Ith, but in its present form dating from the 16 th century, with a fine Renaissance portal. The church of the Jacobins, held by Vioiet-le-Duc to be "one of the most beautiful brick churches constructed in the middle ages," was huilt towards the end of the $13^{t h}$ century, and consists of a nave divided into two aisles by a range of eolumns. The chief exterior feature is a beautiful octagonal belfry. The church beionged to a Dominican monastery, of which part of the cloister, the refectory, the chapter-hall and the chapel also remain and are utilized by the lycee. Of the other secular buildings the most noteworthy are the capitole and the museum. The capitole has a long lonic façade buitt from 1750 to 1760 . The theatre is situated in the left wing. Running along almost the whole length of the first floor is the salle des allusires adorned with modern paintings and sculptures relating to the history of the town. The museum (opened in 1795) occupies, besides a large modern building, the church, eloisters and other buildings of an old Augustinian convent. It contains pictures and a splendid collection of antiquities, notably a series of statues and busts of Roman emperors and others and much Romanesque sculpture. There is an auxiliary muscum in the old college of St Raymond. The natural history museum is in the Jandin des Plantes. The law courts stand on the site of the oid Chateau Narbonais, once the residence of the counts of Toulouse and later the seat of the parlement of Toulouse. Near by is a statue of the jurist Jacques Cuias, borr at Toulouse.

Toulouse is singulariy rich in mansions of the $16 t h$ and 17 th centuries. Among these may be mentioned the Hotel Bernuy, a fine Renaissance buitding now used by the lycée and the Hotel d'Asoerzat of the same penod, now the property of the Academse des Jeux Floratex (see below), and of the learned societies of the city. In the court of the latter there is a statue of Clémence Isaure, a lady of Toulouse, traditionally supposed to have enriched the Académie by a bequest in tbe isth century. The Maison de Pierre has an elaborate stone facade of 161.2.

Toulouge is the meat of an archbishopric, of a court of appeal, a court of assizes and of a prefect. It is also the headquarters of the XVII. army corps and centre of an educational circumocription (ocodímic). Thure are tribunals of first instance and of commerce, a board of trarle-brbitration, a chamber of commerce and a branch of the Bank of France. The educational instioutions include faculeies of law. uredicine and pharmacy, sience and
letters, a Catholic institute with facuities of theology and ietters, higher and lower ecelesiastical scminaries, lycies and training colleges for both sexes, and schools of veterinary science, fine arts and industrial sciences and music.

Toulouse, the principal commercial and industrial centre of Languedoc, has important maricets for horses. wine, grain, flowere, leather, oil and farm produce. Its pastry and other delicacies are highty esteemed. Its industrial establishments include the national tobacco factory, flour-mills, saw-mills, engineering workshops and lactories for farming implements, bicycles, vehiclen, artificial manures, paper, boots and shoes, and flour pastes.

Tolosa, chief town of the Volcae Tectosages, does not seem to have been a place of great importance during the early centuries of the Roman rule in Gaul, though in 106 b.c. the pillage of its temple by Q. S. Cepio, afterwards routed by the Cimbri, gave rise to the famous Latin proverb habet aursm Tolosomum, in allusion to ill-gotten gains. It possessed a circus and an amphitheatre, but its most remarkable remains are to be found on the heights of Oid Toulouse (pelus Tolosa) some 6 or 7 m . to the east, where huge accumulations of broken pottery and fragments of an old earthen wall mark the site of an ancient scttlement. The numerous coins that have been discovered on the same spot do not date back farther than the and century b.c., and seem to indicate the position of a Roman manufacturing centre then beginning to occupy the Gallic hill-fortress that, in earlier days, had in times of peril been the stronghold of the native tribes dwelling on the river bank. Tolosa does not seem to have been a Roman colony; but its importance must have increased greatly towards the middle of the $4^{\text {th }}$ century. It is to be found entered in more than one itinerary dating from about this time; and Ausonius, in his Ordo nobilium urbium, alludes to it in terms implying that it then had a large population. In 419 it was made the capital of his kingdom by Wallia, king of the Visigoths, under whom or whose successors it became the seat of the great Teutonic kingdom of the West-Goths-a kingdom that within fifty years had extended itself from the Loire to Gibraltar and from the Rhone to the Atlantic. On the defeat of Alaric II. (507) Toulouse fell into the hands of Clovis, who carried away the royal treasures to Angoulême. Under the Merovingian kings it scems to have remained the greatest city of southern Gaul, and is said to have been governed by dukes or counts dependent oa one or other of the rival lings descended from the great founder of the Frankish monarchy. It figures prominently in the pages of Gregory of Tours and Sidonius Apollinaris. About 628 Dagobert erected South Aquitaine into a kingdom for his brother Charibert, who chose Toulouse as his capital. For the next eighty years its history is obscure. till we reach the days of Charles Martel, when it was besicged by Sema, the leader of the Saracens from Spain (c. 7:5-720), but delivered by Eudes, "princeps Aquitaniae," in whom later writers discovered the ancestor of all the later counts of Toulouse. Modern criticism, however, has discredited this genealogy; and the real history of Toulouse recommences in 780 or 781 , when Charlemagne appointed his little son Louis king of Aquitaine, with Toulouse for his chief city.

During the minority of the young king his tutor Chorson ruled at Toulouse with the title of duke or count. Being deposed at the Couacil of Worms (790), he was succeeded by William Courtnez, the traditional hero of southem France, who in 806 retired to his newly founded monastery at Gellone, where he died in 812. In the unhappy days of the emperor Louis the Pious and his children Toulouse suffered in common with the rest of western Europe. It was besieged by Charles the Bald in 844 , and taken lour years later by the Normans, who in 843 had sailed up the Garonne as far as its walls. About 852 Raymond I., count of Quercy, succeeded his brother Fridolo as count of Roucrgue and Toulouse; it is from this noble that alt the later counts of Toulouse trace their descent. Raymond I.'s grandchildren divided their parents' estates; of these Raymond 11. (d. 924) became count of Toulouse, and Ermengaud. count of Rouergue, while the hereditary titles of Gothia, Quercy and Albi were shared between thern. Raymond 11.'s grandson. William Taillefor (4. c. 1037), married Emma of Provence, and
theaded down part of that lordshlp to his younger son Bertrand.' William's eider son Pons left two children, of whom William IV. succeeded his father in Toulouse, Albi, Quercy, \&c.; while the younger, Raymond IV. of St Gilles (c. 1066), made himself matier of the vast possessions of the counts of Rouergue, married his cousin the heiress of Provence, and about 1085 began to rule the immense estates of his elder brother, who was still Living.

From this time the counts of Toulouse were the greatest lords in southera France. Raymond IV., the heto of the first crusade, assumed the formal titles of marquis of Provence, duke of Narbonoe and count of Toulouse. While Raymond was away in the Holy Land, Toulouse was seized by William IX., duke of Aquitaine, who claimed the city in right of his wife Philippa, the daugbter of William IV., but was unable 10 bold it long ($1098-1100$). Raymond's son and successor Bertrand followed his father's example and set out for the Holy Land in 1 rog, leaving his great estates at his death to his brother Alphonse Jourdain. The rule of this prince was disaurbed by the ambition of William IX. and his grand-daughter Eleanor, who arged her husband Louis VII. to support her claims to Toulouse by war. On her divorce from Louis and ber marriage with Henry II., Eleanor's claims passed on to this monerch, who at last forced Raymond V. to do him homage for Toulouse in 1173. Raymond V., the patron of the troubadours, fied in 1194, and was succeeded by his son Raymond VI., under whose rule Languedoc was desolated by the crusaders of Simon de Montiort, who occupied Toulouse in 1215, but lost his ife in besieging it in 1218 . Raymond VII., the won of Raymond VI. and Princess Joan of England, succeeded his telber in 1222, and died in 1249, leaving an only daughter Joan, married to Allonso the hrother of Louis IX. On the death of Alfosso and Joan in 1271 the vast inheritance of the coants of Toulouse lapsed to the Crown.' From the middle years of the 12th century the people of Toulouse seem to have begue to free themselves from the most oppressive feudal dues. An act of Alphonse Jourdain (1141) exempts them from the tax on salt and wine; and in in52 we have traces of a "ommmune consilium Tolosae" making police ordinances in its own name "with the advice of Lord Raymond, count of Torlouse, duke of Narbonne, and marquis of Provence." This act is sitnessed hy six "capitularii," four duly appointed judges ijudices constituti), and two advocates. Twenty-three yea: later there are twelve capitularii or consuls, six for the city and six for its suhurbs, all oi them elected and sworn to do jusice in whatever municipal matters were brought before them. In 3222 their number was increased to twenty-four; bel tiecy were forbidden to touch the city property, which wais to semain in the charge of certain "communaris" chosen by themselves. Early in the 14th century the consuls took the name of "doinini de capitulo," or, a little later, that of "capitulum nobilium." From the $13^{t h}$ century the consuls met in their own bouse, the "palatium communitatis Tolosae" or istel-de-ville. In the 16 th century a false derivation chagged the ancieat consuls (domini de capitulo) into the modern "capitouls" (domini capiolii tolosant), a barbarous et ymology which in its tum has, in the present century, transformed the old aseembly bouse of Toulouse into the capltole. The ${ }^{1}$ About 975 there was a partition of the estates which Wiliam Ts alver and his cousith Raymond II. of Auvergnc held in common, poins Muerry Ae, inlling to William, and Gothia, \&c., to Rey

Raymonett.
parlement of Toulouce was established as a permencoat court in 1443. Louis XI. transferred it to Montpellier in 1467, but restored it to Toulouse before the ciose of the next year. This parlement was for Languedoc and southern France what the parlement of Paris was for the north. During the religious wars of the 16th century the Protestants of the town made two unsuccessful attempts to hand it over to the prince de Conde. After St Bartholomew's Day (1572) 300 of the party were massacred. Towards the end of the 16 th century, during the wars of the Learue. the parlement was split up into thre difierent sections, sitting respectively at Carcassonne or Bé:icrs, at Castle Sarrasin, and at Toulouse. The three were reu nited in 1596. Under Francis I. it began to persecute heretics, and in 1619 fendered itself notorious by burning the philosopher Vainin. In 1762 Jean Calas, an old man falscly accused of murdering his eldest son to prevent him becoming a Roman Ca: holic, was broken on the wheel. By the crertions of Voltaire his character was afterwards rchabilitated. The university of Toulouse owes its origin to the action of Gregory IX., who in 1229 bound Raymond VII. to maintain four masters to teach theology and cight others for canon the grammar, and the liberal arts. Civil law and medicine were taught only a few years later. The famous "Floral Games" of Toulouse, in which the poets of Languedoc contended (May 1-3) for the prize of the golden amaranth and other gold or silver flowers, given at the expense of the city, were instituted in 1323-1324. The Acadtmie des Jeux Floraux still a wards these prizes for compositions in poetry and prose. In 1814 the duke of Wellington defeated Marshal Soult to the north-east of the town.
See L. Ariste and L. Brand, Fistoire populaire de Toulouse depuis les origines jusequ'd ac jour (Toulouse, 1898). This work contains an exhaustive bibliography.
TOUNGOD, or Taung-ngo, a town and district in the Tenasserim division of Lower Burma. The town is situated on the right bank of the river Sittang, 166 m . by rail N . from Rangoon. Pop. (1901), $\mathbf{2} 5,837$. From the 14th to the 16 th century it was the capital of an independent kingdom. After the second Burmese War it was an important fronticr station, but the troops were withdrawn in 8893 . The district of Toungoo has an area of 6772 sq. m.; pop. (1901), $279,3 \times 5$, showing an increase of 32% in the preceding decade. Three mountain ranges traverse the district-the Pegu Yomas, the Karen, and the Nat-Laung or "Great Watershed "-all of which have a north and south direction, and are covered for the most part with dense forest. The Pegu Yomas have a general elevation of from 800 to 1200 ft ., while the central range averages from 2000 to 3000 ft . The rest of Toungoo forms the upper portion of the valley of the Sittang, the only large river in the district, the chief tributaries of which are the Shwa, Hka baung, Hpyu Thank-ye-Kat and Yank-thua-wa, all navigable for a great portion of their course. Limestone appears in various places, and in the north-east a light grey marhle is quarried for lime. The rivers form the chlef means of communication during the rainy season. The rainfall in 1905 was $80 \cdot 30 \mathrm{in}$. There are 14 railway stations in the district. Rice is the staple crop; there are promising piantations of coffee and rubber. Forests cover more than 5000 sq. m., of which 1337 sq. m. have been rescrved, yielding a large revenue.

TOUP, JONATHAN [JOANNES TOUPIUS] (1713-1785), Engish classical scholar and critic, was born at St Ives in Comwali, and was educated at a private school and Exeter College, Oxford. Having taken orders, be became rector of St Martin's Exeter, where he died on the 19th of January 1785. Toup established his reputation by his Emendationes in Suidam ($1760-1766$, followed in 1775 by a supplement) and his edition of Longinus ($577^{8)}$), inciuding notes and emendations by Ruhnken. The excellence of Toup's scholarship was "known to the learned throughout Europe" (so epitaph on the tablet in the church of East Looe set up by the delegates of the Clarendon Press), but his overbearing manner and extreme self-confidence made him many enemics.

tire middle ages. In the gth century Tours also became the ecclesisstical metropolis of Brittany, Maine and Anjou, and when the empire was divided by Louis the Pious into various disericts or missatica, Tours was the centre of one of these, the boundaries of which corresponded roughly with those of the ecclesiastical jurisdiction of the city. Touralne suffered from the invasions of the Northmen, who massacred the monks of Marmoutier in 853 , but never pillaged Tours. The administration of Touraine was entrusted, from Merovingian times onward, to counts appointed by the crown. The office became hereditary in 940 or 941 with Thibault the Old or the "Tricheur." His son Odo I. was attacked by Fulk the Black, count of Anjou, and despoiled of part of his territory. His grandson Thibault III., who refused homage to Henry I., king of France, in 1044, was entirely dispossessed by Geoffrey of Anjou, called the Hammer (d. 1060). The 7 th count, Fulk (d. 1109), ruled both Anjou and Touraine, and the county of Touraipe remained under the domination of the counts of Anjou (g.s.) until Henry II. of England deprived his brother Geoffrey of Touraine by force of arms. Henry II. carried out meny improvements, but peace was destroyed by the revolt of his sons. Richard Cocur de Lion, in league with Philip Augustus, had seized Touraine, and after his death Arthur of Brittany was recognized as count. In 1204 it was united to the French crown, and its cession was formally acknowledged by King John at Chinon in 1214 . Philip appointed Guillaume des Roches hereditary seneschal in 1204 , but the dignity was ceded to the crown in 1312. Touraine was granted from time to time to princes of the blood as an appanage of the crown of France. In 1328 it was held by Jeanne of Burgundy, queen of France; by Philip, duke of Orleans, in 1344; and in 1360 . it was made a peerage duchy on behalf of Philip the Bold, afterwards duke of Burgundy. It was the scene of dispute between Charles, afterwards Charles VII., and his mother, Isabel of Bavaria, who was helped by the Burgundians. After bis expulsion from Paris by the English Charles spent much of his time in the chateaux of Touraine, although his seat of government was at Bourges. He bestowed the duchy successively on his wife Mary of Anjou, on Archibald Douglas and on Louis III. of Anjou. It was the dower of Mary Stuart as the widow of Francis II. The last duke of Touraine was Francis, duke of Alencon, who died in 1584. Plessis-les-Tours had been the favourite residence of Louis XI., wbo granted many privileges to the town of Tours, and increased its prosperity by tbe establishment of the silk-weaving industry. The reformed religion numbered many adherents in Touraine, who suffered in the masaacres following on the conspiracy of Amboise; and, though in 1502 the army of Conde pillaged the city of Tours, the marshal of St Andre reconquered Touraine for the Catholic party. Many Huguenots emigrated after the massacre of St Bartholomew, and after the revocation of the Edict of Nantes the silk industry, which had been mainly in the hands of the Huguenots, was almost destroyed. This migration was one of the prime causes of the extreme poverty of the province in the next century. At the Revolution the nobles of Touraine made a declaration expressing their sympathy with the ideas of liberty and fraternity. Among tbe many famous men who were born within its boundarics are Jean le Meingre Boucicaut, marshal of France, Béroalde de Verville, author of the LOyen de parpenir, Rabelais, Cardinal Richelieu, C. J. Avisseau, the potter ($1796-1861$), the novelist Ealzac and the poet Alfred de Vigny.

See the quarterty publication of the Mtmoires of the Socith archologigue de Touraixe ($1842,8 \mathrm{oc}$.) which include a Dictionnaire ciogaphigue, Aistorique et biographique (6 vols., 1878-1884), by \}. X. Carre de Buseerolle. There are histories of Touraine and its monuments by Chalmel (4 vols. Paris, 1828), by S. Bellanger (Parie, 1845). hy Bourraco (1858). See abo Dupin de Saint Andrt, flift. dim protestandisme en Touraine (Paris, 1885); T. A. Cook, OU Tomraime (2 vola, London, 1892).
TOURCOIMG, a manulacturing town of northern France is the department of Nord, kess than 2 raile from the Belgian troatier, and 8 m . N.N.E. of Lille on the raidway to

Ghent. Pop. (1906), 62,694 (commune, 81,671), of whom about one-third are natives of Belgium. Tourcoing is practically one with Roubaix to the south, being united thereto by a tramway and a branch of the Canal de Roubaix. The public institutions comprise a tribunal of commerce, a board of trade arbitrators, a chamber of commerce, an exchange and a conditioning house for textiles. Together with Roubaix, Tourcoing ranks as one of the chief textile centres of France. Its chief industry is the combing, spinning and twisting of wool carried on in some eighty factories employing between 10,000 and 12,000 workpeople. The spinning and twisting of cotton is also important. The weaving establishments produce woollen and mixed woollen and cotton fabrics together with silk and satin drapery, swanskins, jerseys and other fancy goods. The making of velvet pile carpels and upholstering materials is a speciality of the town. To these industries must be added those of dyeing, the manufacture of hosiery, of the machinery and other apparatus used in the textile factorics and of soap.

Famed since the 12th century for its woollen manufactures, Tourcoing was fortified by the Flemings in 1477, when Louis XI. of France disputed the inheritance of Charles the Bold with Mary of Burgundy, hut in the same ycar was taken and pillaged by the French. In 1794 the Republican army, under Generals Moreau and Souham, gained a decisive victory over the Austrians, the event being commemorated by a monument in the puhlic garden. The inhabitants, 18,000 in 1789, were reduced by the French Revolution to 10,000.

TOURMALINE, a mineral of much interest to the physicist on account of its optical and electrical properties; it is also of some geological importance as 2 rock-constituent (see Schorl), whilst certain transperent varieties have economic value as gem-stones. The name is probably a corruption of twrmali, or toramalli, the native name applied to tourmaline and zircon in Ceylon, whence specimens of the former mineral were brought to Europe by the Dutch in 1703. The green tournaline of Brazil had, however, been known here much earlier; and coarse varieties of the mineral had passed for centuries under the German name of Schorl, an old mining word of uncertain origin, possibly connected with the old German Schor (refuse), in allusion to the occurrence of the mineral with the waste of the tin-mines. The German village of Schorlau may have taken its name from the mineral. It has been suggested that the Swedish form shorl has possible connexion witb the word skor, brittle.
Tourmaline crystallizes in the rhombohedral division of the hexagonal system. The crystals have generally a prismatic hahit, ihe prisms being longitudinally striated or even channelled. Trigonal prisms are characteristic. so that a transverse section becomen triangular or of ten nine-aided. By combination of several primms the cryutals may become sub-cylindrical. The crystals when doubly terminated are often hemimorphic or present disaimilar forms at
the opposite ends; thus the hexagonal prisms in fig. I are terminated at one end by rhomboliedral faces, a, P, and at the other by the basal plane k^{\prime}. Doublyterminated crystals, however, are comparatively rare; the crystals being usually attached at one end to the matrix. It is notable that prismatic crystals of tourmaline have in some cases been curved and íractured transversely; the displaced Iragments having been cemented together

Fic. 1. by deposition of fresh mineral matter. Tourmaline is not inírequently columnar, acicular or fibrous; and the fibres may radiate from a centre so as to form the eo-called "tourmatine sums." Crystals of tourmaline present no distinct cleavage, but break with a sub-conchoidal fracture; and whilst the yeneral fustre of the mineral is vitreous, that of the fractured surface is rather pitchy. The hardness is slightly above that of quartz (7). The specific gravity varies according to chemical composition, that of the colourleso varictics being about 3. whilst in echorl it may rise to 3.2.
Tourmaline has a great range of colour, and in many cases the erystals are curiously parti-coloured. Occasionally. though rarely. the mineral is colourlest, and is then known as actroite. a mane proposed by R. Hermann in 1845. and derived from the Greek ixpoor (uncoloured). Red tourmaline, which when of fine colour is the most valued of all varieties, is known at mbeilite (q.s.). Green tourmatione is by no means uncommon, but the blue is rether rase
and is diatinguished by the name indigolite, generally written ind;colite. Brown is a common colour, and black still more common, this being the usual colour of schorl, or common coarse tourmaline. Thin splinters of schorl may, however, be blue or brown by transmitted light.

The double refraction of tourmaline is strong. The mineral is optically negative, the ordinary index being about 1.64 , and the extraordinary 1-62. Coloured tourmalines are intensely pleochroic, the ordinary ray, which vibrates perpendicular to the principal axis, being much more strongly absorbed than the extraordinary; bence a slice cut in the direction of the principal or optic axis transmits sensibly only the extraordinary ray, and may conseguently be used as a polarizing medium. The brown tourmaline of Ceylon and Brazil is best adapted for this purpose, but the green is also uscd. Two platea properly mounted form the instrument used by opticians for testing spectacle-lenses, and are knownas the " tou rmaline tongs." In order to secure the best colour-effect when used as a gem-stone, the tourmaline should be cut with the table parallel to the optic axis.

It was in tourmaline that the phenomenon of pyroelectricity was furst observed. On being heated in peat ashes its attractive power was observed by the Dutch, in the early part of the 18 th century; and this curious character obtained for it the name of aschtrekker, or ash-drawer. J. R. Hauy first pointed out the relation of pyroclectricity with hemimorphism. Tourmaline is also piezoelectric, that is, it beoomes electric by pressure. If a crystal be subjected to presure along the optic axis, it behaves as though it were contracting by reduction of temperature. The mineral may also be rendered electric by friction, and retains the charge for a fong time.

Tourmaline is a boro-silicate of singularly complex composition. Iadeed the word tourmaline is cometimes regarded as the name of a group of isomorphous minerals rather than that of a definite species. Numerous analyses have been made, and the results discussed by a large number of authoritics. In the view of S. L. Penfield and H. W. Foote all tourmaline may be derived from a boro-silicic acid of the formula $\mathrm{H}_{20} \mathrm{~B}_{3} \mathrm{Gi}_{1} \mathrm{O}_{21}$. It is believed that the hydrogen is present as bydroxyl, and that this may be partially replaced by fuorine. The tourmaline acid has probably the constitution $\mathrm{H}_{1}(\mathrm{~B} \cdot \mathrm{OH})_{2} \mathrm{Si}_{4} \mathrm{O}_{18}$. Nine atoms of hydrogen are replaced by three of aluminium, and the remaining nine in part by other metals. Lithium is present in red tourmaline; magnesium dominates in brown; iron, manganese and sometimes chromium are found in green; and much iron occurs in the black varieties. Four groups are sometimes recognized, characterized by the presence of (1) lithium, (2) ferrous iron, (3) ferric iron and (4) magnesium.

Tourmatine occurs commony in granite, greisen, gneiss and crystalline schists. In many cases it appears to have been formed by pneumatolysis, or the action on the rocks of beated vapours containing boron and fluorine, as In many tin-bearing districts, where tourmaline is characteristic mineral. Near the margin of a mase of granite the rock of ten becomes schorlaceous or tourmaliniferous, and may paen into " toumaline-rock," which is usually an aggregate of tourmaline and quartz. Tourmaline is an easential constituent of the west of England rocks called luxullianite (Juxulyanite) and trowlesworthite. It occurs embedded in certain metamorphic limestonew, where it is possibly due to fumarolic action. Microscopic crystals are common in clay-slate. By resistance to decomposition, tourmaline often ourvives the disintegration of the matrix, and thus pasees into sands, clays, marls and other aedimentary deposits.

Many of the finest crystals of tourmaline occur in druses in granitic rocks, such as those of San Picro in Ejba, where some of the pale pink and green prisms are tipped with black, and have consequently been called "nigger-heads." Lepidolite is a common assoclate of tourmaline, as at Rovena in Moravia. Tourmaline oocurs, with corundum, in the dolomite of Campolongo, in canton Ticino, Switzerland. Fine black crystals, associated with apatite and quartz, were formerly found in granite at Chudleigh, near Bovey Tracey in Devonshire. The Russian localities for tourmaline are mentioned under Rubellite. Most of the tourmaline cut for jewelry comes from the gem-gravels of Ceylon. The green tourmaline has generally a yellowish or olive-green colour, and is known as "Ceylon chrysolite." Fine green crystals are found in Brazil, notably in the topaz-locality of Minas Novas; and when of vivid colour they have been called "Brazilian emeralds." Green tourmaline is a favourite ecclesiastical stone in South Anserica Blue tourmaline occurs with the green; this variety is found also at Uto in Swoden (its original locality) and notably near Hazaribagh in Bengal. Certain kinds of mica occasionally contain flat erystals of tourmaline between the cleavage-planes.

Many localities in the United States are famous for tourmaline. Magnificent specimens have been obtained from Mt Mica, near Paris, Maine, where the mineral was accidentally discovered in $\mathbf{8 2 0}$ by two students, E. L. Hamlin and E. Holmes. It occurs in gramite, with lepidolite, smoky quartz, spodumene, \&c.; and some of the primmatic crystals are notable for being red at one end and green at the other. Mt Rubellite at Hebron, and Mt Apatite at Auburn, are other localities in Maine which have yielded fine tourmaline. At Chesterficld. Masachusetts, remarkable crystals occur, some of which show on tramserse section a triangular nucleus of
red tourmaline surrounded by a shell of green. Red and green tourmalinea, with lepidolite and kunzite, are found in San Diego county, California. Fine coloured tourmalines occur at Haddam Neck, Connecticut ; and excelient crystals of black tourmaline are well known from Pierrepont, New York, whilst remarknble brown crystals occur in limestone at Gouverneur in the same state. Canada is rich in tourmaline, notably at Burgess in Lanark county, Ontario, and at Grand Calumet Island in the Ottawa river. Heemskirk Mountain, Tasmania, and Kangaroo Island, South Australia, have yielded sine coloured tourmaline fit for jewelry. Madagaecar is a well-known locality for black tourmaline in large crytale

Many varieties of tourmaline have received dintinctive, namea, some of which are noticed above. Dravite is G. Techermak's name for a brown tourmaline, rich in magnesia but with little iron, occurring near Unter Drauburg in the Drave district in Carinthia, Taltalite was a name given by 1. Domeyko to a mixture of tourmaline and copper ore from Taltal in Chile. The colourless Elba tourmaline was called apyrite by J. F. L. Hausmann, in allusion to ite refractory behaviour before the blow-pipe; whilst a black iron-tourmaline from Norway was termed aphrazite by J. B. d'Andrada, in consequence of its intumescence when heated.
(F.W. R. ${ }^{*}$)

TOURNAI (Flemish Doorrik), a city of Belgium, in the province of Hainaut, situated on the Scheldt. Pop. (1904), 36,744. Although in the course of its long history it has undergone many sieges and was sacked at various epochs by the Vandals, Normans, French and Spaniards, it preserves many monuments of its ancient days. Among these is the cathedral of Notre-Dame, one of the finest and best preserved Romanesque and Gothic examples in Belgium (for plan, \&c., see Architecture: Romanesque and Cothic in Belgium). Its foundation dates from the year 1030, while the nave is Romanesque of the middle of the 12 th century, with much pointed work. The transept was added in the $13^{\text {th }}$ century. The first choir was hurned down in 1213, hut was rebuilt in 1242 at the same time as the transept, and is a superb specimen of pointed Gothic. There are five towers with spires, which give the outside an impressive appearance, and much has heen done towards removing the squalid buildings that formerly concealed the cathedral. There are several old pictures of merit, and the shrine of St Eleuthère, the first hishop of Tournai in the 6th century, is a remarkahle product of the silversmith's art. The bellry on the Grand Place was built in 1187, partly reconstructed in 1391 and finally restored and endowed with a steeple in 1852 . The best view of the cathedral can be obtained from its gallery. The church of St Quentin in the same square as the belfry is almost as ancient as NotreDame, and the people of Tournai call it the " little cathedral." In the church of St Brice is the tomb of Childeric discovered in 1655 . Among the relies were three hundred small golden models of bees. These were removed to Paris, and when Napoleon was crowned emperor a century and a half later he chose Childeric's becs for the decoration of bis coronation mantle. In this manner the bee became associated with the Napoleonic legend just as the lilies were with the Bourbons. The Pont des Trous over the Scheldt, with towers at each end, was built in 1290 , and among many other intercsting buildings there are some old houses still in occupation which date back to the 13th century. On the Grand Place is the fine statue of Christine de Lalaing, princess d'Epinoy, who defended Tournai against Parma in 158 I . Tournai carries on a large trade in carpets (called Brussels), bonnet shapes, corsets and fancy goods generally. With regard to the carpet manulactory, it is said locally to date from the time of the Crusades, and it is presumed that the Crusaders learnt the art from the Saracens.

The history of Tournai dates from the time of Julius Caesar, when it was called civilas Nerviorum or castrum Turnacwm. In the reign of Augustus, Agrippa fixed the newly mixed colony of Suevi and Menapii at Tournai, which continued throughout the period of Roman occupation to be of importance. In the 5 th century the Franks seized Tournai, and Merovacus made it the capital of his dynasty. This it remained until the subdivision of the Frank monarchy among the sons of Clovis. When feudal possessions, instead of being purely personal, were vested in the families of the holder after the death of Charlemagne, Tournai was specially essigned to Baldwin of the Iron Arm by Charles

Plate II.

TOURNAMENT

Knights Jousting with Cronells on their Lances. French MS. early XIV Century. (Royal MS. 14 E. iii.)

English Knights Kiding into the Lists. From the Great Tournament Roll of 1511 ;
by permission of the College of Arms.
the Bald, whose daughter Judith be had abducted, on recelving the bereditary tille of count of Flanders. During the Burgundinn period it was the residence of Margaret of York, widow of Charies the Bold; and the pretendes Perkin Warbeck, whom she championed, if not born there, was the reputed son of a Jew of Tournai. In the early 86 th century Tournai was an English possession for a few years and Heary VIIL. sold it to Francis I. It did not long remain French, for in 1521 the coount of Nassau, Charles V.'s general, took it and added it to the Spanish provinces. During the whole of the middle ages Tournai was styted the "scigneurie de Tournaisis," and possessed a charter and special privileges of its own. Near Tournei whe fought, on the 11th of May 1745, the famous battle of Fontenoy.
(D. C. B.)
tournaiment, or Touraey (Fr. hournement, towinoi, Med. Lat. cornecmentism, from lowrner, to turn), the name popularly given in the middie ages to a species of mock fight, so called owing to the rapid turning of the horses (Skent). Of the several medieval definitions of the tournament given by Du Cange (Glossarium, s.8. "Tourneamentum "), the best is that of Roger of Hoveden, who described tournaments as " military exercises carried out, not in the spirit of hostility (nullo intervenienve dio), but solely for practice and the display of prowess (pro solo exercitio, atque ostentatione sirium)." Men who carry weapons theve in all ages played at the game of war in time of peace. But the tournament, properly so called, does not appear in Europe before the nith century, in spite of those elaborate Gctions of Ruexner's Thurvierbuch which detail the tournament laws of Heary the Fowler. More than one chronicler records the violent death, in 1066, of a French baron named Geoffroi de Prenili, who, according to the teatimony of his contemporaries, "invented tournaments." In England, at least, the tournament was counted a French fashion, Matthew Paris calling it confictus gallicus.
By the rath cenkury the tournmment had grown so popular in England that Henry II. found it necessary to forbid the sport which gathered in one place so many barons and knights in arman In that age we have the famous deacription by William FrizStepben of the martial games of the Londoners in Smithfald. He tells bow on Sundays in Lent a nohle train of young men would take the field well mounted, mushing out of the city with spear and shield to ape the fests of war. Divided into parties, 00 body would retreat, while another pursued atriving to unbocse them. The younger lads, he says, bore javelins disarmod of their steel, by which we may know that the weapon of the edders was the headed lance. William of Newbury tells us how the young krights, balked of their favourite sport by the royal mendate; would pese over sea to win glory in foreign lists. Richard I. relazed his father's order, granting licences for taurnempents, and Jocelin of Brakelond bas a long story of the preat company of cavaliers who held a tournament between Thetiord and Bury St Edmunds in defiance of the ahbot. From that time onward unlicensed tourneying was treated as an cfeace against the Crown, which exacted heavy fees from all rating part in them even when a licence had been obtained. Oten the licence was withheld, is in 1255 , when the king's son's trave peril in Gascony is alleged as a reaton tor forbidding a meeting. In 1209 life and limb were dechared to be forfeit in the cuse of those who should arrange a tourney without the royal licence, and offenders were to be seized with horse and harness. As the tournament became an occasion for pageantry and tersting, new reasop was given for restraint: 2 simple knight might beggar himseli over a sport which risked costly hores and carried him far afield. Jousters travelled from land to land, ilice modern cricketers on their tours, offering and accepting challenges. Thus Edward I., before coming to the throne, led cighty knights to a tournament on the Continent. Before the jousts at Windsor on St George's Day in i344 heralds published in Fravec, Scotland, Burgundy, Hainault, Flanders, Brabant and the domains of the emperor the king's offer of safe conduct for competitors. At the weddings of princes and magnates and \propto the crowning of kings the knights gathered to the joustings,
which had become as much a part of such high ceremonies as the benquet and the minstrelsy. The fabled glories of the Round Table were revived by princely hosts, wbo would assemble a gallant company to kecp open house and hold the field againgt all comers, as did Mortimer, the queen's lover, when, on the eve of his fall, he brought all the chivalry of the land to the place where he held his Round Table. About 1292 the "Statute of Arms for Tournaments" laid down, "at the request of the eark and barons and of the knighthood of England," new laws for the game. Swords with points were not to be used, nor pointed daggers, nor club nor mace. None was to raise up a fallen knight but his own appointed squires, clad in his device. The squire who offended was to lose horse and anms and lie three years in gaol. A northern football crowd would underatand the rule that forbade those coming to see the tournament to wear harness or arm themselves with weapons. Disputes were to be settled by a court of honour of princes and earis. That such rules were needful had been shown at Rochester in 125 r, where the foreign knights were beaten by the Englinh and so roughly handied that they fed to the city for refuge. On their way the strangers were faced by another company of knights who bandied them roughly and spoiled them, thrashing them with staves in revenge for the doings at a Brackley tournament. Even as early as the 13th century some of these tournaments were mere pageants of horsemen. For the Jouets of Peace held at Windsor Park in 1278 the sword-blades are of whatebone and parchment, silvered; the helms are of boiled leather and the shields of light timber. But the game could make rough sport. Many a tournament had its tale of killed and wounded in the chronicle books. We read how Roger of Lemhorn struck Arnold de Montigny dead with a lance thrust under the helm. The first of the Montagu earls of Salisbury died of hurts taken at a Windsor jousting, and in those same lists at Windsor the earl's grandson Sir William Montagu was kined by his own father. William Langteppee in 1256 was so hraised that he never recovered his strength, and he is among many of whom the like is written. Blunted or "rebated" lance-points came early into use, and by the i4th century the coronall or croncll head was often fitted in place of the point. After 1400 the armourers began to devise hamess with defences apecially wrought for service in the lists. But the joust lost its chief perils with the invention of the till, which, as its name imports, was at first a cloth stretched alang the length of the lists. The cloth became a stout barrier of timber, and in the eariy i6th century the knight ran his course at little risk. Locked up in ateel hamess, reiniorced with the grand-guard and the other jousting pieces, he charged along one side of this barrier, seeing little more through the pierced sight-holes of the belm than the head and shouldert of his adversary. His bridle arn was on the tilt-aide, and thus the blunted lance struck at an angle upon the polished plates. Mishaps might befall. Henry II. of France died from the stroke of Gabriel de Montgomeri, who failed to cast up in time the truncheon of his splintered hance. But the 16th-century tournament was, in the main, a hloodless meeting.
The isth century had scen the mingling of the toumament and the pageant. Adventurous knights would travel far afield in time of peace to gain worship in conficts that perilled life and limb, as when the Bastard of Burgundy met the Lard Scales in 1460 in West Smithficld under the fair and costly galleries crowded with English dames. On the first day the two ran courses with sharp spears; on the second day they tourneyed on horseback, sword in hand; on the third day they met on foot with beavy pole-axes. But the great tournament beld in the market-place of Bruges, when the jousting of the Knights of the Fleece was part of the pageant of the Golden Tree, the Giant and the Dwarf, may stand as a magnificent example of mizny such gay gatherings. When Henry VIII. was scattering his father's treasure the pageant had become an elaborate masque. For two days after the crowning of the king at Westminster, Henry and his queen viewed from the gateries of a fantastic palace set up beside the tilt-yard a play in which deer were pulled down by greybounds in a paled park, in which the Lady Dinam
and the Lady Pallas came forward, embowered in moving castles, to present the champions. Such costly shows fell out of fashion after the death of Henry VIII.; and in England the tournament remained, until the end, a martial sport. Sir Henry Lee rode as Queen Elizabeth's champion in the tilt-yard of Whitehall until his years forced him to surrender the gallant office to that carl of Cumberland who wore the Queen's glove pinned to the flap of his hat. But in France the tournament lingered on until it degenerated to the carrousel, which, originally a horseman's game in which cavaliers pelted each other with balls, became an unmartial display when the French king and his courtiers pranced in such array as the wardrobe-master of the court ballets would devise for the lords of Ind and Africk.

The tournament was, from the first, held to be a sport for men of noble birth, and on the Continent, where nobility was more exactly defined than in England, the lists were jealously closed to all comhatants but those of the priviicged class. In the German lands, questions as to the purity of the strain of a candidate for admission to a noble chapter are often settled by appeal to the fact that this or that ancestor had taken part in a tournament. Konrad Grlinenberg's famous heraldic manuscript shows us the Helmschou that came before the German tournament of the 1 sth century-tbe squires carrying each his master's crested helm, and a littie scutcheon of arms hanging from it, to the hall where the king of arms stands among the ladies and, wand in hand, judges each blaton. In England several of those few rolls of arms which have come down to us from the midde ages record the shields displayed at certain tournaments. Among the illustrations of the article Heralony will be seen a leaf of 2 roll of arrus of French and English jousters at the Field of the Cloth of Gold, and this leaf is remarkable es illustrating also the system of "checques" for noting the points scored hy the champions.
(0.BA.)

TOURNEPORT, JOSEPH PITION DE (1650-1708), Freach botanist, was born at Aix, in Provence, on the 5th of June 1656. He studied in the convent of the Jesuits $2 t$ Aix, and was destined for the Church, but the death of his fallier left him free to follow his botanical inclinations. After two years' collecting, he studied medicine at Montpelher, but was appointed professor of botany at the Jardin des Plantes in 1683 . By the king's order he travelled through western Europe, where he made extensive collections, and subsequently spent three years in Grece and Asia Minor (1700-1702). Of this journey a description in a series of letters was posthumously published in 3 vols. (Relation d'un voyage du Levant, Lyons, 1717). His principal work is entitled Instilutiones rei herbarias (3 vols. Paris, 1700), and upon this rests chicfly his claims to remembrance as one of the most eminent of the systematic botanists who prepsred the way for Linnaeus. He died on the 28th of December 1 yo8.

TOURMEUR, CFRIL (c. 1575-1626), English dramatist, was perhaps the son of Captain Richard Turner, water-bailiff and subsequently lieutenant-governor of Brill in the Netherlands. Cyril Tourneur also served in the Low Countries, for in 1613 there is a record made of payment to him for carrying letters to Brussels. He enjoyed a pension from the government of the United Provinces, possibly by way of compensation for a post held before Brill was handed over to tbe Dutch in 1616. In 1625 be was appointed by Sir Edward Cecil, whose father had been a former governor of Brill, to be secretary to the council of war. This appointment was cancelled by Buckingharn, hut Tourneur sailed in Cecil's company to Cadis. On the return voyage, from the disastrous expedition he was put ashore at Kinsale with other sick men, and dicd in Ireland on the 28 th of Fehruary 1626 .
(M.BR.)

An allegorical poem, worthless as art and incomprehensible as allegory, is his earliest extant work; an elegy on the death of Prince Heary, son of James I., is the latest. 'The twa plays on which his fame resis, and on which it will rest for ever,-were published respectively in 1607 and 1611 , but all students have agreed to accept the intermal evidence which
earlier in date of composition. His only other known work is an epicede on Sir Francis Vere, of no great merit as poetry, but of some value as conveying in a straightforward and masculine style the poet's ideal conception of a perfect knight or " happy warrior," comparable by those who may tbink fit to compare it with the more nobly realized ideals of Chaucer and of Wordsworth. But if Tourneur had left on record no more memorable cvidence of his powers than might be supplied by the survival of his elegics, he could cortainly have claimed no higher place among English writers than is now occupied by the Rev. Charles Fitzgeofircy, whose voluminous and fervent elcgy on Sir Francis Drake is indecd of more actual value, bistoric or poetic, than cither or than both of Tourneur's elcgiac rhapsodies. The singular power, the singular originality and the singular limitation of his genius are all equally ohvious in The Atheist's Trogedy, a dramatic poem no less crude and puerile and violent in action and evolution than simple and noble and natural in expression and in style. The executive feculty of the author is in the metrical parts of his first play so imperfect as to suggest cither incompetence or perversity in the workman; in The Revenger's Tragedy it is so magnificent, 50 simple, impeccable and sublime that the finest passages of this play can be compared only with the noblest examples of tragic dialogue or monologue now extant in English or in Greek. There is no trace of imitation or derivation from an alien source in the genius of this poet. The first editor of Webster has observed how often he imitates Shakespeare; and, in fact, essentially and radically independent as is Webstcr's genius also, the sovereign intluence of his master may be traced not only in the general tone of his style, the general scheme of his composition, but now and then in 2 direct and never an unworthy or imperfect echo of Shakespeare's very phrase and accent. But the resemblance between the tragic verse of Tourneur and the tragic verse of Shakespeare is simply such as proves the natural affinity between two great dramatic poets, whose inspiration partakes now and then of the quality more proper to epic or ta lyric poetry. The fiery impulse, the rolling music, the vivid illustration of thought by jets of insuppressible pession, the perpetual sustenance of passion by the implacahle persistency of thought, which we recognise as the dominant and distinctive qualities of such poetry as finds vent in the utterances of Hamlet or of Timon, we recognise also in the scarcely less magnificent poetry, the scarcely less fiery sarcasm, with which Tourneur has informed the part of Vindice-a harderheaded Hamlet, a saner and more practically savage and serious Timon. He was a satirist as passionate as Juvenal or Swift, but with a finer faith in goodness, a purer bope in its ullimate security of triumph. This fervent constancy of spirit relieves the lurid gloom and widens the limited range of a tragic imagination which otherwise might be fclt as oppressive rather then inspiriting. His grim and trenchant humour is as peculiar in its sardonic passion as his cloquence is original in the strenuous music of its cadences, in the roll of its thythmic thunder. As a playwright, his method was almost crude and rude in the headlong straightforwardness of its energetic simplicity; as an artist in character, his interest was intense but narrow, Lis power magnificent but confined; as a dramatic poet, the force of his genius is great enough to ensure him an enduring place among the foremost of the followers of Shakespeare.
(A. C. S.)

Bibliography,-The complete list of his extant works runs: The Atheists Trapedie; or, The Honest AGan's Revenge (1611): A Funcrall Poeme Upon the Death of the Most Worthie and True Sold ier. Sir Francis Vere, Kuight... (1609);"A. Griefe on the Death of Prince Henric, Expressed in a Broken Elegie . ."," printed with two other poems by John Wehster and Thomas Haywood as Three Elegies on the mast tmented Death of Prince Henry (1613); The Revengers Tragaedic 1607 and 1603); and an obscure aatire. The Transformed Mifat morphosis (1600). The only other play of
Tourneur's of which re have any record is The Nobleman, the MS, of Tourneur's of which we have any record is The Noblewan, the MS of on the Stationers' Re, ister (Feb. 15, 1612) as a "Tragecomedye called The Nobleman written by Cyrill Tourneur." In I613 a leter from Robert Daborne to Henalowe states that he bes commiasioned Cyrif Tourneur to write one act of the promieed Arvaigment of

Lonion. "The Character of Robert, eart of Saliaburye, Lord High Treasurer of England . . Written by Mr Sevill Turneur' in a MS in possession of Lord Mostyn (Hist. MSS. Commission, 4th Report, appendix, p. 361) may reasonably be assigned to Tourneur. Although no external evidence in lortheoming. Mr R. Boyte mames Tourneur as the collaborator of Massinger in The Second (ajd's Tragedy (licented 1611).

The Revenger's Traeedy was printed in Dodsley's Old Plays (vol. iv., 1744. 1780 and 1825 , and in Anciens Brifish Drama (1810. vol. ï.). The beat edition of Tourneur's works is The Plays and Poems of Cyil Towneur, adited with Critical Introduction and Notes, by J. Churton Colling (i878). See also the two plays printed with the masterpioces of Webster, with an introduction by \int A. Symonds, in the" Mermaid Serics " (is88 and r903). Noparticulars ol Tourneur's Hfe were available until the facts given above were abstracted bv Mr Corrdon Cood win from the Calerday of Slate Papers (" Domestic Series" 1628-1629, 1629-1631, 1631-1633) and printed in the Acedemy (May 9, 1891). A critical study of the relation of The Acheist's Tragedy to Hambet and other revenge-plays is given in Profeser A. H. Thorndike's " Hamlet and Contemporary Revenge Plays" (Pabl. of the Mod. Lang. Assec., Baltimore, 1902). For the infuence of Marston on Tourneur see E. E. Stoll, Jolin Webster . (1905, Boston, Massachusetts); pp. 105-116.
(M. Br.)

TOURNEUX, JEAN EAURICS ($1849-$), French man of letters and bibliographer, son of the artist and author J. F.E. Tourneur, was born in Paris on the 12th of July 1849. He began his career as a bibliographer by collaborating in new editions of the Supercherics litteraires of Joseph Querard and the Dictionnaire des anonymes of Antoine Barhicr. His most important hibliographical work was the Biblographie de Thistoise de Paris pendant la retolution francaise (3 vols. $1890-$ 1901), wbich was crowned by the Academy of Inscriptions. This valuable work serves as a guide for the history of the city beyond the limits of the Revolution.

His other works include bibliographies of Prosper Mérimé (I876), of ThSophile Gautier (1876), of the brothers de Goncourt (1897) and others; aleo editions of F. M. Grimm's Correspondance hitleraire, of Diderot' persanes (1886), Ac.

TOURMOM, a town of south-western France, capital of an arrondiseement in the department of Ardèche, on the right hank of the Rhooe, $58 \mathrm{~m} . \mathrm{S}$. of Lyons by rail. Pop. (1906), town, 5042; commune, 5003. Toumon preserves a gateway of the igth century and other remains of fortifications and an old caste used as town hall, court-house and prison and contuining a Gothic chapel. The church of St Jubian dates chiefly troms the itth century. The lycte occupies an old college louaded in the 16 th ceptury by Cardinal François de Toumon. Of the two suspension bridges which unite the town with Tain on the left bank of the river, one was built in 1825 and is the oldest in France. A statue to Gencral Rampon (d. 1843) stands in the Place Carnot. Wood-sawing, silk-spinning, and the manufacture of chemical manures, silk goods and hosiery ase carried on in the town, which has trade in the wine of the Rhone hills. Tournon had its own counts as earty as the reign of Louis I. In the middle of the ayth century the title peaned frem them to the duties of Ventadour.

TOOMHES, a town of cast-central France, in the department of Saconeet-Loire, on the right bank of the SaOno, 30 m . N. by E. of MAcon on the Paris-Lyons railway. Pop. (1906), 3787. The church of St Philibert (early irth century) once belonging to the Benedictine abbey of Tournus, suppressed in $17^{8} s_{n}$ is in the Burgundian Romanesque style. The facade lacks one of the two flanting towers originally designed for it. The anve is roofed with barrel vaulting, supported on tall cylindical columns. The choir beneath which is a crypt of the inth costury has a deambulatory and square chapels. In the Place de l'Hociel de Ville tands a statue of J. B. Greuze, bom in the town in 1725. There are vincyards in.the surrounding district and the town and its port have considerabie commerce in wine and in stone from the neighbouring quarries. Chairmaking is an important incustry.
TOUIT, a town of central France, capital of the department of Indre-et-Loire, $145 \mathrm{~m} . \mathrm{S} . \mathrm{W}$. of Paris by rail. Pop. (1906), town 61, s07; commune, 67,601 . Tours lies on the left bank of the Loire on a filt tongue of had between that river and the Cler a tittle above their junction. The right bomk of the

Loire is bordered by hills at the foot of which lie the suburbs of St Cyr and St Symphorien. The river is crossed by two suspension bridges, partly built on islands in the river, and by 3 stone bridge of the second half of the 18 th century, the Pont de Tours. Many foreigners, espccially English, live at or visit Tours, attracted by the town itself, its mild climate and situation in "the garden of France," and the historic chateaux in the vicinity. The Boulevard Beranger, with its continuation, the Boulevard Heurteloup, traverses Tours from west to east dividing it into two parts; the old town to the north, with its narrow streets and ancient houses, contains the principal buildings, the shops and the buslness houses, while the new town to the south, centring round a fine public garden, is almost entirely residential. The Rue Nationale, the widest and handsomest street in Tours, is a prolongation of the Pont de Tours and runs at right angles to the boulevards, continuing under the name of the Avenue de Grammont until it reaches the Cher.

St Gatien, the cathedral of Tours, though hardly among the greatest churches of France, is nevertheless of considerable interest. A cathedral of the first half of the 12 th century was humt in 1166 during the quarrel bet ween Lonis VII. of France and Henry II. of England. A new cathedral was hegun about 1170 but not finished till 1547 . The lower portions of the west towers belong to the 12th century, the choir to the i3th century; the transept and east bays of the nave to the 14th; the remaining hays, a cloister on the north, and the fagade, profusely decorated in the Flamboyant style, to the 1 gth and roth centuries, the upper part of the towers being in the Renaissance style of the 16th century. In the interior there is fine stained glass, that of the choir (r3th century) being especially remarkable. The tomb of the children of Charles VIII., constructed in the first years of the 16th century and attributed to the brothers Juste is also of artistic interest.

An example of Romanesque architecture survives in the great equare tower of the church of St Julien, the rest of which is in the early Gothic ayle of the 13 th century, with the exception of two apses added in the 16 th century. Two towers and a Renaiseance cloister are the chief remains of the celebrated basilica of St Martin built mainly during the 12th and isth centuries and demolished in 1802. It atood on the site of an earlier and very famous chureh built from 466 to 472 by bishop St Perpetuus and dewroyed together with many other churchea in a fire in 908 . Two other churches wothy of mention are Notre-Dame la Riche, originally built in the 13th century, rebuilt in the 16th, and magnificently restored in the reth century: and St Saturnin of the 15th century. The new basilica of St Martin and the church of St Etienne are modern. Of the old houses of Tours the horel Gouin and that wroagly known as the house of Tristan I'Hermite (both of the isth ceatury) are the best known. Tours has several learned societies and a valuable library, including among its MSS. a goopel of the 8 th century on which the kinge of France took oath as honorary canoas of the church of St Martin. The museum contains a collection of picturca, and the museum of the Archacological Society of Touraine has valuable antiquities; there is also a natural history museum.

The chief public monumente are the fountain of the Remaisennce built by Jacques do Beaune (d. 1537), financial minister, the statuet of Descartes, Rabelais and Balrac, the latter born at Tours and a monument to the threc doctors Bretonneau, Trousseau and Velpeau. Tours is the seat of an archbishop, a prefect, and a court of assizes, and headquarters of the IX. Army Corps and has tribunals of first instance and of commerce, a board of trade arbitration, a chamber of commerce and a branch of the Bank of France. Among its educational institutions are a preparatory achool of medicine and pharmacy, lyctes for both sexes, a training college for girls and se bools of fine art and music. The industrial establishments of the fown include silk factories and numerous important printing-works, stecl works, iron foundries and factories for automobilem, machinery, oil, lime and cement, biscuits, portable huildings, stained glass, hoots and shoes and porcelain. A considerable trade is carried on in the wine of the district and in brandy and in dried fruits, kausages and confectionery, for which the town is well known. Three-quarters of a mile to the soth-west of Toura lie unimportant remains of Plessis-kes-Tours, the chateas built by Louis X1., whither he retired before his death in 1483 . On the right bank of the Loire 2 m . above the town are the ruins of the ancient and powerful abhey of Marmontier. Five miles to the north-west is the large agricultural reformatory of Mettray lounded in 1839.

Tours (see Tomaniz), under the Gauls the capital of the Turones or Turons, originally stood on the right bant of the Loire, a ltite above the present villege of St Sympitorien. At
first called Altionos, the town was afterwards known as Cacsarodunum. The Romans removed the town from the hill where it originally stood to the plain on the left bank of the river. Behind the present cathedral, remains of the amphitheatre (443 ft . in length by 394 in breadth) built towards the end of the and century might formerly be seen. Tours became Christian about 250 through the preaching of Gatien, who founded the hishopric. The first cathedral was built a hundred years later by St Litorius. The bishopric becamean archbishopric when Gratian made Tours the capital of Lugdunensis Tertia though the bishops did not adopt the title of archbishop till the gth century. Ahout the beginning of the 5th century the official name of Caesarodunum was changed for that of Civilas Turonorum. St Martin, the great apostle of the Gauls, was bishop of Tours in the 4 th century, and he was buried in a suburb which soon became as important as the town itself from the number of pilgrims who flocked to his tomb. Towards the end of the 4 th century, apprchensive of barbarian invasion, the inhabitants pulled down some of their carlier huildings in order to raise a fortified wall, the course of which can still he traced in places. Their advanced fort of Larcay still overlooks the valley of the Cher. Affliated to the Armorican confederation in 435, the town did not fall to the Visigoths till 473, and the new masters were always hated. It became part of the Frankish dominions under Clovis, who, in consideration of the belp afforded by St Martin, presented the church with rich gifts out of the spoils taken from Alaric, confirmed and extended its right of sanctuary, and accepted for himself and his successors the title of canon of St Martin. At the end of the 6th century the bishopric was held hy St Gregory of Tours. Tours grew rapidly in prosperity under the Merovingians, but abuse of the right of sanctuary led to great disorder, and the church itself hecame 3 hotbed of crime. Charlemagne re-estahlished discipline in the disorganized monastery and sel over it the learned Alcuin, who established at Tours one of the oldest puhlic schools of Christian philosophy and theology. The arts flourished at Tours in the middle ages and the town was the centre of the Poitevin Romanesque school of architecture. The abhey was made into a collegiate church in the yath century, and was for a time affiliated to Cluny, but soon came under the direct rule of Rome, and for long had hishops of its own. The suhurb in which the monastery was situated became as important as Tours itself under the name of Martinopolis. The Normans, attracted by its riches, pillaged it in 853 and 903 . Strong walls were erected from 906 to gio, and the name was changed to that of Chateauneuf. Philip Augustus sanctioned the communal privileges which the inhahitants forced from the canons of St Martin and the innumerable offerings of princes, lords and pilgrims maintained the prosperity of the town all through the middle ages. A $3^{\text {thecentury }}$ writer speaks with enthusiasm of the wealth and luxury of the inhahitants of Chateauncuf, of the beauty and chastity of the women and of the rich shrine of the saint. In the $14^{\text {th }}$ century Tours was united to Chateauneuf within a common wall, of which a round tower, the Tour de Guise, remains, and both towns were put under the same administration. The numerous and long-continued visits of Charles VII., Louis XI., who established the silk-industry, and Charles VIII. during the 15 th eentury favoured the commerce and industry of the town, then pcopled by 75,000 inhabitants. In the 15 th and 16 th centuries the presence of Jean Fouquet the painter of Michel Colomh and the brothers Juste the sculptors, enhanced the fame of the town in the sphere of art. In 1562 Tours suffered from the violence of both Protestants and Catholics, and enjoyed no real security till after the pact entered into al Messistles. Tours between Henry III, and Henry of Navarre in 1589 . In the $17^{\text {th }}$ and 18 th centuries Tours was the capital of the government of Touraine. Its maupfactures, of which silk weaviag was the chis, sulared frye the roxinaliva
 issued the "Divres" of Fours (bibrue Turosicuica) was supprewed. During the Re the Kepablicans apainst the Vendeass.
time the seat of the delegation of the government of national defence. In 1871 it was occupied by the Germans from the roth of January to the 8th of March.

See P. Vitry, Tours et les chdlearx de Touraine (Paris, 1905); E. Giraudet, Histoire de la ville de Tours (Tours, 1873); Las Artistes lourangeaur (Tours, ${ }^{1885}$).

TOURVILLE, ANNE-HILARION DE COTENTIN (or Costantin), Comte de (1642-1701), French admiral and marshal of France, was the son of César de Cotentin, or Costantin, who held offices in the houschold of the king and of the prince of Conde. He is said to have been born at Tourville in Normandy, but was baptized in Paris on the 24th of November 1642, was commonly known as M. de Tourville, and was destined hy his family to enter the Order of Malta. From the age of fourteen to the age of twenty-five, he served with the galleys of the Order. At that time the knights were still fighting the Barbary pirates of Algiers and Tunis. The young Amme-Hilarion is said to have heen distinguished for courage. His life during these years, however, is little known. The supposed Memeirs bearing his name were published hy the Ahbe dc Magron in the 18 th century and belong to the large class of historical romances which professed to be biographies or autohiographies. In 1667 he was back in France, and was incorporated in the corps of officers of the French Royal navy which Louis XIV. was then raising from the prostration into which it had fallen during his minority. The positions of French naval officer and knight of Malta were not incompatible. Many men held both. The usual practice was that they did not take the full vows till they were in middle life, and had reached the age when they were entitled to hold one of the great offices. Until then they were free to marry, on condition of renouncing all claim to the chicf places. As Anne-Hilarion de Cotentin married a wealthy widow, the marquise de Popelinière, in 1689 at which time he was made count of Tourville, he sevcred his connexion with the Order. Nor does he appear to have served with it at all after his return to France in 1667. He was at first employed in cruising against the Barbary pirates and the Turks. In the expedition sent against Crete in 1668-69 under command of the Duc de Beaufort he had command of the "Croissant " (44). The Duc de Beaufort was killed, and the expedition was a failure. When the war with Holland in which France and England acted as allies began in $\mathbf{1 5 7 0}$, Tourville commanded the "Page" (50), in the squadron of the comte d'Estrees (1624-1707) sent to co-operate with the duke of York. He was present at the hatile of Solehay (June 7, 1672), and in the action on the coast of Holland in the following year, when Prince Rupert commanded the English fleet. When England withdrew from the alliance, the scene of the naval war was transferred to the Mediterranean, where Holland was co-operating with the Spaniards. Tourville served under Abraham Duquesne in his battles with De Ruyter. He particularly distinguished himself at the battle of Palermo on the 2nd of June 1676. By this time he was known as one of the hest officers in the service of King Louis XIV. Unlike many employed by the king to command his ships in the carlier part of his reign, Tourville was a seaman. He had the reputation of being able to do all the work required in a ship, and he had made a study of naval warfare. The great treatise on naval tactics afterwards published under the name of his socretary, the Jesuit Hoste or l'Hoste, was understood to have been inspired by him. In 1683 he was chef d'escadre-rear admiralwith Duquesne in operations against the Barhary pirates, and he continued on that service with D'Estrées. By 1689 he had been promoted licutenant-général des armées navalea, and was named vice-admiral du Levant or of the East. In June of that year be took up the commandership-in-chief of the French naval forces in the war against England and her continental allies which had hegun in the previous year. From this time till the failure of his resources compelled King Lovis XIV. to withdern his fleets from the sea, Tourville continued to command the naval war in the Channel and the Atlantic. His
ather than phain fighting. The personal character of Tourvilie mast be held to account largely for the timidity of the principles be established. Tourville's personal valour was of the finest quality, but like many other brave men, he was nervous under the weight of responsibility. It is no less clear that anxiety to avoid risking a diasster to his reputation was of more weight with him than the wish $t 0$ win a signal auccess. Ho beionged to the type of men in whose minds the evil which may happen is always moce vaible than the good. In 1690 he had an opportunity which might well have tempted the most cautious, and be missed it out of sheer care to keep his fleet safe against all concrivable chances, aided perhape by a pedantic taste for formal, orderly movement. He was opposed in the channel by the allies, who had only fifty-six ships, while his own force, though it included some vessels of no serious value, was from seventy to eighty sail strong. He was feebly attacked by Admiral Arthur Herbert, the newly created earl of Torrington, ofi Beachy Head on the roth of July. The Dutch ships in the van were surrounded. The allies had to retreat in disorder, and Tourville followed in "line of battle" which limited his speed to that of his alowest ship. So his enemy escaped with comparatively litule loss. In the following year he performed his famous " off shore cruise," in the Bay of Biscay. He moved to and fro in fine order avoiding being brought to battle, but atso failing to inflict any harm on his opponent. In the meantime the cause of King James IL. was ruined in Ireland. In 1692 the Mediterraneng fleet having failed to join him, he was faced by a vastly superior force of the allies. The French ting had prepared a mititary force to invade Engiand, and Tourvile was expected to prepare the way. Having at least a clear indication that be was expected to act with vigour, if not precise orders to fight against any odds, he made a resolute attack on the centre of the aliies on the agth of May off Cape Barteur, and drew off before he was surrounded. This action which with the pursuit of the following days made up what is called the batule of La Hogue, from the Bay where some of the fugitive French shipa were destroyed, or Barfleur, proved bis readiness to face danger. But his inability to take and act on a painful decision was no less proved in the retreat. He beritated to sacrifice his crippled flagship, and thereby detained his whole fleet. The result was that the "Soleil Royale" herself and fifteen ather ships were cut off and destroyed at La Hogue. In 2693 he was again at sea with a great fleet, and had a chance to inflict extreme injury on the allies hy the capture of the Smyrna convoy which included their whole Mediterranean trade for the year. He did it a great deal of harm outslde the Straits of Gibraltar, but again he kept his fleet in battle order, and a large part of the convoy escaped. King Louis XIV. who had 2 strong personal regard for him, continued to treat thim with favour. Tourville was made Marshal of France in 1693. but the growing exhaustion of the French treasury no boager allowed the maintenance of great fleets at sea. Tourvilie remained generally at Toulon, and had no more fighting. He died in Paris in ryor. His only son, a colonel in the array, was killed at Denain in 1712.

The English account of the batties of Beachy Head and La Hogue vin be found in Ledyard's Naval History. Troude's Balailles napales <2 La Framce gives the French version of these and the other action: in which Tourville was concerned. Tourville is frequently mentioned in the life of Dmquasme by M. Jal.
(D. H.)

TOUESAIMT LOUVERTURE (or LOUVERTURE), PIERREDenImTEUE (c. 1746-1803). one of the liberators of Haiti, chimed to be descended from an African chief, his father, a slave in Haiki, being the chlef's second son. He was at first surnamed Breda, but this was afterwards changed to L'Ouverture in token of the results of his vallour in causing a gap in the ranks of the ameny. From childhood he manifested unusual abilitics en succeeded, by making the utmost use of every oppertonity, in obtaining a remarkably good education. He diparaned the special confidence of his master, and was made elesintendent of the other negroes on the plantation. After tif fmurrection of 179 : be joined the insurgents, and, having atiofred mome knowledge of surgery and medicine, acted as.
physician to the forces. His rapld rise in influence aroused, however, the jealousy of Jean Francois, who caused his arrest on the ground of his partiality to the whites. He was liberated by the rival insurgent chief Baisson, and a partian war ensued, but alter the death of Baision he placed bimself under the orders of Jean Francois. Subsequently be joined the Spaniards, but, when the French government ratified the act declaring the freedom of the slaves, he came to the aid of the French. In 1796 he was named commander-in-chief of the armies of St Domingo, but, having raised and disriplined a powerful army of blacks, be made himself master of the whole country, renounced the authority of France, and announced himself "the Buonaparte of St Domingo." He was taken prisoner by treachery on the part of France, and died in the prison of Joux, near Besancon, on the 27th of Apxil 1803.

See Toussaint l'Ouverture's own Hemoires, with a life by Saint Remy; (Paris, 1850); Gragnon-Laconte, Toussaint Lovicerlmate (Paris. ${ }^{188}$); Scholicher, Vie de Toussaine Louperture (Paris, 1889); and J.' R. Bcard, Life of Toussaint Lowterlure (1853).

TOW. the term given in textile manufacture to the short fibres formed during the processes of scutching and hackling, and also to the yarns which are made from these fibres. A special machine termed a carding engine or a tow card is used to form these fibres into a sliver, this sliver then passes to the drawing frames, and thereafter follows the same process as line yarns in flax spinning.

TOWANDA, a borough and the county seat of Bradford county. Pennsylvania, U.S.A., on the west bank of the Susque. hanna river, about 50 m . N.W. of Wilkes-Barre. Pop. (1890). 4169: (rg00), 466_{3} (322 forcign-born); (1910) 4281. Towanda is served by the Lehigh Valley and the Susquehanna \& New York railways. It is situated about 730 ft . above the sea, and is surrounded by high hills. Towanda contains the museum of the Bradford County Historical Socicty. The borough is in a farming, dairying and stock-raising region, and has various manufactures. The first settlement was made by William Means in 1786, the village was laid out in 1812, became the countyseat in the same year, was variously known for some years as Meansville, Overton, Williamson, Monmouth and Towanda, and in 1828 was incorporated as the borough of Towanda. Its name is an Indian word said to mean "where we bury the dead."

TOWCESTER, a market town in the southern parliamentary division of Northamptonshire, England, 8 m. S.S.W. of Northampton, on the East \& West Junction and the Northampton \& Banbury Junction railways. Pop. (1901), 2371. It is pieasantly situated on the smail river Tove, a left-bank affluent of the Ouse. The church of St Lawrence is a good Early English. Decorated and Perpendicular building, with a fine westera Perpendicular tower. There are a considerable agricultural trade and a manufacture of boots and shoes.

Here was a Roman town or village situated on Watiing Street. The site has yielded a considerable number of relics. In the roth century a fort ress was maintained here against the invading Danes. The site of both this and the Roman station is marked by an artificial mound known as Burg Hill, not far from the church, above the river. Towcester, with the wboie of this district, witnessed a large part of the operations during the Civil War of the 17 th century.

TOWEL a cloth used for the purpose of drying the hands, face or body after bathing or washing. These cloths are made of difierent materials, known as "towellings," the two principal kinds are "huckaback," a slightly roughened material for chamber towels for face and hands, and Turkish towelling; with a much rougher surface, for bath towels; finer towellings ase made of linen or damask. The term has a particular ecclesiastical usage as applied to a linen aliar cloth or to a rich cloth of embroidered silk, velvet. \&c., covering the altar at all " such. periods when Mass is not being celebrated."
The Mid. Eng. cowailte comes through the O. Fr. cowaithe from the Low Lat. coaculd, represented in other Romanic languages by Sp. Loolla, Ital. conoflia: ihis is to be referred to the Teutonic vert meening "to wazh" O. H. G. mohon. M. H. G. dwaken, O. Eng. troma, and cf. Ger. Zwehh, provincial Eng. dwile, a dish-cloth. $2 a$

TOWER (Lat. turris; Fr. tour, docher; Ital. torre; Ger. Thurm), the term given to a lofty building originally designed for defence, and, as such, attached to and forming part of the fortifications of a city or castle. Towers do not seem to have existed in Egypt, but in Mesopotamia from the earlest times they form the most important feature in the city walls, and are shown in the bas-reliefs of the Assyrian palaces at Nimroud and elsewhere. The earliest representation is perhaps that engraved on the tablet in the lap of Gudca the priest king of Lagash (2700 B.c.), whose statue, found at Tello, is now in the Louvre; the drawing is that of a large fortified enclosure, with gates, hastions and towers, corresponding with remains of similar structures of the same and later periods. In the discoveries made here, at Susa and at Dom Sargoukin, the towers were about 40 ft . square, projecting from 16 to 20 ft . in front of the curtain walls which connected them, and standing about So ft . apart. In Roman and Byzantine times this distance was increased, owing probably to the greater speed of projectiles, and in the wall built by Theodosius at Constantinople the towers were $£ j 0 \mathrm{ft}$. apart (see also Castle and Fortification).

From the architectural point of view, the towers which are of chief interest are those of ecclesiastical and secular buildings, those in Italy being nearly always isolated and known as campanili (see Campanile). In England the carliest known are the Anglo-Saxon towers, the best examples of which are those at Earl's Barton, Monkwearmouth, Barnack, Barton-on-Humber and Sompting; they were nearly always square on plan and situated at the west end, in an axial line with the nave, their chief characteristics being the long-and-short work of the masonry at the quoins, the decoration of the wall with thin pilasterstrips, and the slight setting back of the storeys as they rose. There are a few examples of central Anglo-Saxon towers, as at St Mary's, Dover; Breamore, Hants; and Dunham Major, Norfolk; and, combined with western towers, at Ramsay and Ely; twin western towers existed at Exeter. Contemporary with these Saxon towers are many examples in France, but they are invariably central towers, as at Germigny-des-Près and at Querqueville in Normandy; in Germany the twin towers of Aix-la-Chapelle are the best known. As a rule the single western tower is almost confined to England, prior to the and of the 11th century, when there are many examples throughout Germany. In Norman times in England, central towers are more common, and the same obtains in France, where, however, they are sometimes carried to a great height, as at Périgueux, where the wall decoration consists of pllasters in the lower storeys, and semi-detached columns above, probably based on that of the Roman amphitheatre there: otherwise the design of the Romanesque church towers is extremely simple, depending for its effect on the good masonry and the entichment of the belfry windows. In later periods flat buttresses are introduced, and these gradually assume more importance and present many varieties nf design; greater apparent height is given to the tower by the string courses dividing the second storeys, and by rich blank arcading on them, the upper storey with the beliry windows forming always the most important feature of the tower. In those towers which are surmounted by spires (q.v.) the design of the latter possesses sometimes a greater interest both in England and France. A very large number of the towers of English cathedrals and churches have flat roofs enclosed with lofty batticmented parapets and numerous pinnacles and finials; in France such terminations are not found, and in Germany the high pitched roof is prevalent every Where, so that the aumerous examples in England have a special interest; sometimes the angle buttresses are grouped to carry octagonal pinnacles, and sometimes, as at Lincoln and Salisbury, octagonal turrets rise from the base of the tower.
Among the finest examples are those of Canterbury. Ely, York, Gloucester, Lincoln and Worester cathedrals: aniong ehurchoth those of the minster at Beverley; St Mary's Si Neotg (Huntingdoz shire): St Stephen's, Bristol, St Giles, Wrexham (Denbighshin many respects the most beautiful in England): S_{t} Taunton; Magdalen Coilege, Oxford, St Botolph.
with an octagonal tower. St Mary's, IIminster' (Somersetshire) and Malvern (Worestershire); and the isolated towers at Chichester. Evesham and Bury St Edmund's.

So far reference has been made only to central and western towers, the latter not always placed, like the Anglo-Saxon towers, in the axial line of the nave, but sometimes on the north or south side of the west end, and as a rule these are only found in Eng. land. In France and Germany, however, they are greatly increased in number; thus in Reims seven lowers with spires were contemplated, according to Viollct-le-Duc, but never completed; at Chartres eight towers, and at Laion seven, of which six are completed, in Germany the cathedrals of Mayence and Spires and two of the churches in Cologne have from four to seven towers; and at Tournai cathedral, in Belgium, are seven towers. In many of the churches in Norfolk and Suffolk the western tower is circular, owing probably to the fact that, being built with stone of small dimensions, the angles of the quoins would have been difficult to construct. In some of the French towns, isolated towers were buile to contain bells, and were looked upon as municipal constructions; of these there are a few left, as at Béthunc, Evreux, Amiens and Bordeaux, the latter being a double tower, with the bells placed in a roof between them.

The towers of secular buildings are chiefly of the town halls, of which there are numerous examples throughout France and Belgium, such as those of the hotel de ville at St Antonin (13th century) and Compiègne, both in France; at Lübeck, Danzig and Munster in Germany; and Brussels, Bruges and Oudenarde in Belgium.

TOWER OF LONDON, THE, an ancient fortress on the cast side of the City of London, England, on the north bank of the river Thames. On a slight elevation now called the Tower Hill, well protected by the river and its marshes; and by woods to the north, there was a British stronghold. Tradition, however, pointed to Julius Caesar as the founder of the Tower (Shakespeare, Richard III., JIr., i; and elsewhere). and remains of Roman fortificatinns have been found beneath the present site. The Tower contains barracks, and is the repository of the regalia. It covers an irregular hexagonal area, and is surrounded by a ditch, formerly fed by the Thames, hut now dry. Gardens surround it on the north and west, and an embankment borders the river on the south. Two lines of fortifications cnclose the inner bail, in which is the magnificent White Tower or Keep, flanked by four turrets. This was built by Gundulf, bishop of Rochester, c. roy8. Its exterior was restored by Sir Christopher Wren, but within the Norman work is little altered. Here may be seen a collection of old armour and instruments of torture, the rooms said to have been Sir Walter Raleigh's prison, and the magnificent Norman chapel of St John. Among the surrounding huildings are the harracks, and the chapel of St Peter ad Vincula, dating from the early part of the 54 th century, but much altered in Tudor times The Ballium Wall, the inner of the two lines of fortification is coeval with the keep. Twelve towers rise from it at intervals, in one of which, the Wakefield Tower, the Regalia or crown jewels are kept. The chief entry to the fortress is through the Middle Tower on the west, across the bridge over the moat and through the Byward Tower. The Lion Gatc under the Middle Tower took name from a menageric kept here from Norman times until 1834. On the south, giving entry from the tiver through St Thomas Tower and the Bloody Tower, is the famous Traitor's Gate, by which prisoners of high rank were admilted. The chief historical interest of the Tower lies in its association with such prisoners. The Beauchamp Tower was for long the place of confinement, but dungeons and other chambers in various parts of the buildi 6 ate al andut with prisoners of fame. Execulings
on Tower Hill. Misy
ietervals from the reign of Stephen, if not before. The royal pelace wha dernolished by order of Cromwell. The tower is under the governorship of a constable. The attendant staff, called Yeomen of the Cuard or familiarly "Beefeaters," still wear their picturesque Tudar costume.
Acthosities.-W. Hepworth Dixon, Her Majesty's Tower (London, 1869); Lond Ronald Sutherland Gower, The Tower of Londoa (London, 1901).
TOTII, in its most general sense, a collection or aggregation of imbabited houses larger than a village. The O. Eng. fun (M. Eng. tons) meant originally a fence or enclosure, cf. Ger. zaus, hedge, bence an enclosed place. The Scottish and Northern English wee of the word for a farmhouse and its bulldings, a farmstead, preserves this original meaning, and is paralleled by the Irel. tun, bomestead, dwelling house. A cognate Celtic form meaning a fastnese, a strong place, appcars in Gael. and Irish dun, Welsh, din, fortress, hill-fort (cf. Welsh dinas, town). This is familiar from the many Latinired names of places, e.g. Lugdunume Augustodunume, \&c. In English law "town" is not a word defined by stanute. For purposes of local government there are boroughs, urban districts and rural districts, but many urban districts are rural in character and the distinction is purely an administrative one (see Borouch; City; Conoung (Meareval); Munictpiuy; Excland: Lacal Government, and the sections on local administration under various country headings). The meaning attached to the term "township" in the local administration of the Uaited States is treated under Unitid Stites: Local Geocrnment.
towneuby (or Townley), Charles (1731 -8805), English archacologist and collector of marbles, was born at Towncey, the family seat, near Burnley in Lancashire, on the ast of October 1737. He was educated at the college of Douai, and subsequently under Jobn Turberville Needham, the physiologist and divine. In 3758 he took up his realdence a! Towncley, where he tived the ordinary life of a country gentleman until about 1765 , when he keft England to study ancient art, chiefly at Rome. He also made several excursions to the south of Italy and Sicily. In conjunction with Gavin Hamilton, the artist, and Thomas Jeakias, a banker in Rome, he got together a splendid collection of antiquities, which was deposited in two houses bought by him for the purpose in Park Street, Westminster, where he died on the 3rd of January i805. His solitary publication was an account of an ancient helmet found at Ribchester. His marbles, bronzes, coins, and gems were purchased by the British Museum for about $£_{28,000 \text {, and form part of the Graeco-Roman }}$ colbection.
For an account of the antigulties see Sir Henry Elis's The Toventey CaHery (1836), and A. T. F. Michaelis: Ancienc Marbles in Great Bricain (1882).
TOWILETY, JAMES (1714-2778), English dramatist, second son of Charles Townley, merchant, was born in London on the Gib of May 1714. Educated at Merchant Taylors' School and at Se John's College, Oxford, he took holy orders, being ordained prieat on the 28 LLh of May 1 738. He was lecturer at St Dunstan's chaplain to the lord mayor, then under-master at Merchant Taylen' School until 1753 , when he bec ne grammar master at Christ's Hospital. In 1760 he became head master of Menchant Taylors' School, where in 1762 and 1743 he revived the custom of dramatic pefformances. He retained his headmassersh:p until his death on the sth of July rifiz. He took a toen inrcrest in the theatre, and it has been asser! that many of David Garrick's best productions and revivals owed moch is his assistance. He was the author, although the fact was fous concealed, of High Life below Slairs, a two-n to farce preConculd (Covens Garden, March of October 175 , also of Palse

March 20, 1764) and The Tulor (Drury
larus ($1725-1767$). Enrlisi politician, Charles, 3 td Viscount To nshend, who daughter and heiress of Edward Hertord, a lady who rivalied her frankness of expression. Charles wras ust 1725 , and was sent for tis education
to Leiden and Oxiord. At the Dutch university, where he matriculated on the 27th of October 1745, he associated with a amall knot of English youths, afterwards well known in various circles of life, among whom were Dowdeswell, his subsequent rival in politics, Wilkes, the witty and unprincipled reformer, and Alexander Carlyie, the genial Scotchman, who devotes some of the pages of his Autobiograpky to chronicling their sayings and their doings. He represented Great Yarmouth in parliament from 1747 to 1761 , when he found a seat for the treasury borough of Harwich. Public attention was first drawn to his abilitiea in 1753, when be delivered 2 lively attack, as 2 younger son who might bope to promote his advancement by allying himself in marriage to a wealthy heiress, against Lord Hardwicke's marriage bill. Although this measure passed into lan, he attained this object in August 1755 by marrying Caroline (d. 1794), the eldest daughter of the and duke of Argyll and the widow of Francis, Lord Dalkeith, the eldest son of the and duke of Buccleuch. In April 1754 Townshend was transformed from the position of a member of the board of trade, which he had held from 1749 , to that of 2 lord of the admiralty, but at the close of 2755 his passionate attack agzinst the policy of the ministry, an attack which shared in popular estimation with the scathing denunciations of Pitt, the supreme success of Single-Speech Hamilton, and the hopeless failure of Lord Chesterfield's iliegitmate son, caused his resignation. In the administration which was formed in November 1756, and which was ruled by Pitt, the lucrative office of treasurer of the chamber was given to Townshend, and in the following spring he was summoned to the privy council.
With the accession of the new monarcb in 1760 this volatile politician transferred his attentions from Pitt to the young king's favourite, Bute, and when in 1761, at the latter's instance, several changes were made in the ministry, Townshend was promoted to the post of secretary-at-war. In this place be remaimed after the great commoner had withdrawn from the cabinet, but in December 1762 he threw it up. Bute, alarmed at the growth in numbers and in influence of bis enemies, tried to buy back Townshend's co-operation by sundry tempting promises, and at last secured bis object in March 1763 with the presidency of the board of trade. When Bute retired and George Grenvile accepted the cares of official life, the higher post of first lord of the admiralty fell to Townshend's lot, but with his usual impetuosity he presumed to designate one of his satellites. Sir William Burrell ($1732-1796$), to a place under him at the board, and the refusal to accept the nomination led to his exclusion from the new administration. While ip opposition his mind was swayed to and fro with conficting emotions of dislike to the head of the ministry and of desire to share in the spoils of office. The latter leeling ultimately triumphed; he condescended to accept in the dying days of Grenvile's cabinet, and to retain through the "lutestring" administration of Lord Rockingham - " pretty summer wear," as Townshend styled it,"but it will never stand the winter"-the highly paid positioa of paymaster-general, refusing to identify himself more closely with its fortunes as chancellor of the exchequer. The position which he refused from the hands of Lord Rockingham he accepted from Pitt in August 1766 , and a few weeks later his urgent appeals to the great minister for incressed power were lavourably answered, and he was admitted to the inner circle of the cabinet. The new chancellor proposed the continuance of the land tax at four shillings in the pound. while he hedd out hopes that it might be reduced next year to three shillings, whereupon his predecessor, William Dowdeswell, by the aid of the landed gentlemen, carried a motion that the reduction should take effect at once. This defeat proved a great mortification to Lord Chatham, and in his irritation against Townshend for this blow, as well as for some acts of insubordination, he meditated the removal of his showy colleague. Before this could be accomplished Chatham's mind became impaired, and Townshend, who was the most determined and infuemfial of his colleagues, swayed the ministry as he liked, pledging himself to find a revenue in Americs with which to meet

112 TOWNSHEND, 2ND VISCOUNT-TOWNSHEND, 1st MARQUESS

the deficiency caused by the reduction in the land tax. His wife was created (August 1767) baroness of Greenwich, and his elder hrother George, the $4^{\text {th }}$ viscount, was made lord-ieutenant of Ireland. He himself delivered in the House of Commons many speeches unrivalled in parliamentary history for wit and recklessness; and one of them still lives in history as the "champagne speech." His last official act was to carry out his intention hy passing through parliament resolutions, which even his colleagues deprecated in the cahinet, for taxing several articles, such as glass. paper and tea, on their importation into America, which he estimated would produce the insignificant sum of $£ 40,000$ for the English treasury, and which shrewder ohservers prophesied would lead to the loss of the American colonies. Soon after this event he died somewhat suddenly on the 4 th of September 1767.

The universal tribute of Townshend's collcagues allows him the possession of boundless wit and ready eloquence, set off by perfect melody of intonation, hut marred by an unexampled lack of judgment and discretion. He shifted his ground in politics with every new moon, and the world fastened on him the nickname, which he himself adopted in his "champagne " speech, of the weathercock. His official knowledge was considerable; and it would be unjust to his memory to ignore the praises of his contemporaries or his knowledge of his country's commercial interests. Tbe House of Commons recognized in him its spoilt child, and Burke happily said that " he never thought, did or said anything " without judging its effect on his fellow members.

A Memoir by Percy Fitzgerald was published in 1866. See also W. E. H. Lecky, History of Enlond (i892): and Horace Walpole, Memoirs of the Reign of George III., edited by G. F. R. Barker (1894).

TOWNSHEND. CHARLES TOWASHEND, 2ND VISCOUNT (1674-1738), English statesman, was the eldest son of Sir Horatio Townshend, Bart. (c. 1630-1687), a zealous supporter of Charles II., who was created Baron Townshend in 1661 and Viscount Townshend of Raynham in 1682. The old Norfolk family of Townshend, to which he belonged, is descended from Sir Roger Townshend (d. 1493) of Raynham, who acted as legal adviser to the Paston family, and was made a justice of the common pleas in 1484. His descendant, another Sir Roger Townshend (c. 1543-1590), hiad a son Sir John Townshend ($1564-1603$), a soldier, whose son, Sir Roger Townshend (1588 1637), was created a haronet in 1617. He was the father of Sir Horatio Townshend.

Charles Townshend succeeded to the peerage in December 1687, and was educated at Elon and King's College, Cambridge. He had Tory aympathies when he took his seat in the House of Lords, but his views changed, and he began to take an active part in politics as a Whig. For a few years after the accession of Queen Anne he remained without office, but in November 1708 he was appointed captain of the yeomen of the guard, having in the previous year been summoned to the privy council. He was ambassador extraordinary and plenipotentiary to the states-general from $\mathbf{2} 700$ to 1711 , taking part during these years in the negotiations which preceded the conclusion of the treaty of Utrecht. After his recall to England he was busily occupied in attacking the proceedings of the new Tory ministry. Townshend quickly won the favour of George I., and in September 1714, the new king.selected him as secretary of state for the northern department. The policy of Townshend and his colleagues, after they had crushed the Jacubite rising of 1715 . both at home and abroad, was one of peace. The secretary disliked the interference of England in the war between Sweden and Denmark, and he promoted the conclusion of defensive alliances teween England and the cmperor and England and France. In pite of these successes the influence of the Whigs was gradually undermined by the intrigues of Charles Spencer, earl of Sundefland, and by the discontent of the Hanoverian favourites. In October 1716. Townsliend's colleague, Jamen Stanhope, afterwards ist Earl Stanhope, accompanied the kien
on his visit to Hlanover, and while there be was sed and fonn ballegiance to his fellow ministers by Sundelandi, Cext-u-ur led to believe that Townshend and hie bat Robert Walpole, were caballing with the I
intention being that the prince should supplant his father on the throne. Consequently in December 1716 the secretary was dismissed and was made lord-lieutenant of Ireland, but he only retained this post until the following April.

Early in 1720 a partial reconciliation took place between the parties of Stanhope and Townshend, and in June of this year the latter became president of the council, a post which he held until February 1721, when, after the death of Stanhope and the foreed retirement of Sunderland, a result of the South Sea bubble, he was again appointed secretary of state for the northern department, with Walpole as first lord of the treasury and chancellor of the exchequer. The two remained in power during the remainder of the reign of George I., the chiel domestic events of the time being the impeachment of Bishop Atterbury, the pardon and partial restoration of Lord Bolinghroke, and the troubles in Ireland caused by the patent permit:ing Wood to coin halipence. Townshend secured the dismissal of his rival, John Carteret, afterwards Earl Granville, but soon differences arose between himself and Walpole, and he had some diffoulty in steering a course through the troubled sea of European politics. Although disliking him, George II. retained him in office, but the predominance in the ministry passed gradually hut surely from him to Walpole. Townshend could not brook this. So long, to use Walpole's witty remark, as the firm was Townshend and Walpole all went well with it, but when the posltions were reversed jealousies arose between the partners. Serious differences of opinion concerning the policy to be adopted towards Prussia and in foreign politics generally led to a final rupture in 1730 . Failing, owing to Walpole's interference, in his efforts to procure the dismissal of a colleague and his replacement by a personal friend, Townshend retired on the 15 th of May 1730. His remaining years were passed at Raynham, where he interested himself in agriculture and was responsible for introducing into England the cultivation of turnips on a large scale and for other improvements of the kind. He died at Raynham on the $215 t$ of June 1738.
Townshend was twice married-first to Elizabeth (d. 171s), daughter of Thomas Pelham, ist Baron Pelham of Laughton, and secondly to Dorothy (d. 1726), sister of Sir Robert Walpole. He had eight sons. The eldest son, Charles, the 3rd viscount (1700-1764), was called to the House of Lords in 1723. The second son, Thomas Townshend (1701-1780), was member of parliament for the university of Cambridge from 1727 to 1774; his only son, Thomas Townshend (1733-1800), who was created Baron Sydney in 1783 and Viscount Sydney in 1789, was a secretary of state and leader of the House of Commons from July 1782 to April 1783, and from December 1783 to June 1789 again a secretary of state, Sydney in New South Wales being named after him; his grandson, John Robert Townshend (r8052800), the 3rd viscount, was created Earl Sydney in 1874, the tities becoming extinct at his death. Charles Townshend's eldest son by his second wife was George Townshend (1715-1769), who after serving for many years in the navy, became an admiral in 1765 . The third viscount had two sons, George, ist Marquess Townshend, and Charies Townshend, who are separately noticed.
For the and viscount see W. Coxe, Memoirs of Sir Robert Watpole (1816); W. E. H. Lecky, History of England in the 181 h Cemtury (1892): and Fiti Starhope ir:s?

TOWNSHEND, GEORGE TOWNSHEND, ist MARQUESS (17241807), eldest son of Cliarles, 3rd Viscount Townshend (1700) 1764), and brother of the politician Charles Townshend ($q \mathrm{r}$). was born on the 28th of Fehruary 1724, his godfather being George I. Joining Cope's dragoons as a captain, he saw some service in the Netherlands in 1745 , and as a member of the duke Afterwards he
was present at
colonel in the of Cumberland oon became manent armies, Nanent armies,
Nilitia Bill. In
thes matter his views and his methods of expressing them raised up a host of enemies. The retirement of the duke after the disastrous campaign in North Germany in 1757 hrought Townshend back to active service as a colonel, and in 1758 he sailed for North America es one of Wolfe's three brigadiers. In the long and painful operations against Quebec he showed himself e capable officer, but his almost open dissat isfaction with Wolle's methods sensibly added to the difficulty of the enterprise At the battle of the Heights of Abraham the command, on the death of Wolfe and the wounding of Monckton, devolved upon Townsheod, whose over-caution for a time umperilled the success of the British arms The loss of Montcalm, however, had similarly paralyzed the French, and the crisis passed Townshend sent bome despatch, announcing the fall of Quebec, which at once became the butt of the wits and the object of criticism of a more serious kind; and when, Monckton having taken over the command in Canada, Townshend returned to England to enjoy, as be hoped, the hero-worship of the public, he was soon involved in bitter controversies. He succeeded to the title in 1764 on his father's death, and in 1767 , through his brother's influence, was made lord-lieutenant of Ireland. The story of his viceroyalty may be read in the article on him in the Dict. Nat. Biog., and in Lecky's History of England in the I81h Century (vol. iv.). Wiab the best will in the world, and in spitc of excelleat capacity, he came into continual conflict with the Irish House of Commons in his attempt to form an English party in Lreland, and he excited unmeasured abuse. In 1772 he was recalled. In 1787 he was created Marquess Townshend of Rainham. He died on the 14th of September 1807.
Townshend was twice married-first to Charlotte, Baroness de Ferrars (d. 17;0) and secondly to Anne Montgomery (d. 1819). His eldest son Ceorge (1755-18it), who became the second marquess, had succeeded to the barony of de Ferrars in 177° and had been created carl of Leicester in 1784 . Although he was in turn master of the mint, joint postmaster-general and lord steward of the royal houschold, he did not take much part in politics, but showed a great taste for antiquarian studics. His elder son, George Ferrars Townshend, the 3rd marquess ($1778-1855$), was disinherited by his father for conduct which aho compelled him to reside outside England. When he died at Genoa in December 1855 the earldom of Leicester became errinct. The marquessate, however, passed to a cousin. John Townshend (1798 -1863), who became the 4th marquess. John Jemes Dudley Stuart Townshend (b. 1866), who became the 6th marquess in 1899 , came prominently before the public in 1906 in cossequence of a judicial inquiry into his sanity, the decision being that he was not capable of managing his own affairs.

TOWNSVILER, a town of Elphinstone county, Qucensland, Australia, 870 m . direct N.W. of Brisbane. Pop. (1901), 12,717. It is the seat of the Anglican hishop of North Queensland and has ecathedral and several handsome buildings, including the supre me pourt and the custom-house. It is picturesquely siluated partly -a the slopes of Castle Hill and Melton Hill, and partiy on the Galks of Roas Creck, which is spanned by the Victoria Bridge. a miog hridge 550 ft . in length, worked by hydraulic power. The tidal harbour is enclosed by stone breakwaters, and large vesseis and load frozen meat direct from tbe refrigerator cars. port is an outlet for a wide area of pastoral country and for ral goldifields, and has regular communication with all ports The apdnouth hy lines of steamers. The immigration barracks
The Inand have accommodation for five hundred persons. Heation is the terminus of the Northern line, which and named after his partner Captain witer was granted in 1866 .
Yerkahire, England, 21 m . S. of Tadfought on Palm Sunday, the 2gth of Prpnies of York and Lancaster. The FIT won the battle of St Albans, but,
-hto London, and threatened by the
THouse duke of Yort from the west of
been proclaimed as Edward IV on the and, 3rd and 4th of March $1460 / 1461$, followed them up into Yorkshure, and on the 27th his leading troops surprised the passage of the Aire at Ferrybridge. The Lancastrians were encumped at Towton, some miles away, covering Tadcaster and York. but a force under Lord Clifford wa lromptiy sen anis riapiund Iecrybridge by surpnise, and cut to pieces the Yorkist garrison. About the same time, however, Edward's van, under Lord I aconberg, an experienced solduer, croased tie dure inginer up, and Clifford was compelled to retire. He was closely pressed, and at Dintingdale, withun a few furlongs of his own camps, was cut off and killed with nearly all his men. Edward's main body was now close at hand, and the Lancastrians drew up on their chosen battlefield early on the 2gth. This field was an elevated plateau, with steep alopes, between the present Great North Road and the river Cock, cut in two by a depression called Towton Dale. On opposite sides of this depression stood the two armics, that of York facing north, their opponents southward. Both lines of battle were very dense. On a front of little more than a thousand yards the Lancastrian party had nearly 60,000 men. Edward's force (less than 50,000) was not all present, the rear "battle" under Norfolk being still distant. Snow and sleet blew in the faces of the Lancastrians and covered the field of battle. The skilful Fauconberg used this advantage to the utmost. Aided by the wind, his archers discharged flights of arrows against the enemy, who replied hlindly and feebly, hampered by snow and wind. The Yorkists withdrew until the enemy had exhnusted their quivers, and then advanced afresh. Their arrows soon stung the Lancastrians into a wild and disorderly charge. Suffering severe losses the latter closed with Edward's line of battle. No quarter was given by either party, and on the narrow front the numerical superiority of the Lancastrians counted for little. The long, doubtiful and sanguinary struggle was only decided by the arrival of Norfolk's corps, whicb charged the enemy in flank. Driven back wards and inwards, the Lancastrians were in a desperate position, for their only way of escape to Tadcaster crossed the swollen waters of the Cock by a singlo narrow and dificult ford, and when, after a stubborn struggle, they finally broke and fled, they were slaughtered in thousands as they tried to cross. At the close of the day the defeated army had ceased to exist. Twentyfive thousand Lancastrian and cight thousand Yorkist dead were buried in and about Towton. The neighbourhood of the battlefield contains many relics and memorials of this, the greatest battle hitherto fought on English soil. Particularly well preserved is the tomb of Lord Dacte, a prominent Lancastrian, in Saxton churchyard.
See R. Brooke, Visits to English Balleficlds (I.ondon, 1857); C. R. B. Barcett, Bailles and Batllefields of England (London, 1896): H. B. Gearge, Batllez of English History (London, 1895).

TOXICOLOGY, the name of that branch of science which deals with poisons, their effects and antidotes, \&ic. For the general treatment of the subject and for the law relating to the sale thereof see Polsons, and for the criminal law see Medical Jurisprudence. The term "toxic," meaning poisonous, is derived from Gr. rbfoy, bow, owing to the custom of smearing arrows with poison.

TOXODONTIA, a sub-order of extinct South American Tertiary ungulate mammals typified by the genus Toxodon, so named from the bow-like curvature of the molar tecth. They all show signs of distant kinship to the Perissodactyla, as regards both limb-structure and dentition; while some exhibit resemblance to the Rodents and Hyraxes-resemblances which, however, are probably to be attributed to parallelism in development.

Under the sub-order Toxodonia may be included not only the typical Texodon, but the more aberrant Typotherimet (fig. 1) of the Pleistocene of Buenos Aires and the smaller Pach yrucws and Hagetotherium of the Patagonian Sunta Cruz beds. All the members of the sub-order have tall-crowned and curved choek-leeth, some or all of which generally have persistent pulps, while at leant one psir of incisors in each jaw is rootless. The bodies of the cervical vertebrae have fat articular aurfaces, the bones of the two rown of the carpus altermate, and in the tarsus the navicular articulates with the calcaneum, which, an in the Artiodactyla, is articulated to the fibula, while the astragalus, which is alightly grooved aboves
is formed on the Perissodactyle plan. The number of toes varies between three and five, of which the middlle one is the largest, and the femur may or inay not have a thirel erochanter. The Typotheridac and Sachyrucidae are remarkable among the Ungulates for

(After Gervak.)
Fig. 1.-Skull of Typotheriam cristatum, from the Pampas Formation of Buenos dires.
the retention of clavicles, and for their curiorts approximation in dentition and certain characters of the skelcton to the Rodentia. The dental formula of Typotherium is $i, \frac{1}{8}, c . \frac{8, p .1}{8}$. mb. z ; that of the smaller Patagonian forms differs by the larger number (s) of premolars. The toes were unguiculate rather than ungulate in characler, except the hind ones (four in number) of Typotherium. Certain allied Patagonian forms, such as Argyrohyrax, have been supposed to be related to the Hyraxes.

The Toxodontidae differ from the preceding families by the loss of the clavicles and the reduction of the digits to thee in each foot. The typical genus Toxadon is regresented by aninals the size of a

(Fram Britsh Muscum [Nat. His.] Guide 10° the Forsil Msmmali.2.)
Fig. 2.-Skeleton of the Toxolon (Toxodon platensis). From the Pampean Formation of Amentina. (About r's nat. size.)
rhinoceros, of which the entire skelcton is now known (fig 2). The teesh, of which the formula is $i .3 . c \cdot p$ p. 享本. w. \}, all grow from persistent pulps; those of the cheek-series are very tall, highly curved, and with a simplified crown-structure. In the older Nasodon, on the other hand. the cheek-teeth are shorter-crowned, and depart less widely from a generalized Perissodactyle type, the total namber of teeth being forty-four, and there being scarcely any gap in the series. Very remarkable changes occur in the dentition as age advances, most of the teeth eventunlly develuping rones, althaugh the sccond pair of ineisors in eacl jaw was rooiless. The complete
skeleton is not yet known, but it is ascertained that the (exater differs from that of Toxodon in the retention of a third trochanter.

Toxodon is typified by T. platensis from the Pampean formation of Buenos Aires. Toxedontothertimm and Xotodon are allied but rather older types. Nesodon is from the Santa Cruz bods of Pata gonia, the typical N. imbricatus having a skull about a foot in leageb, but N. ovinus was a smaller animal, about the size of a sheep.
(R. L..)

TOY, CRAWPORD HOWELL (1836-
), American Hebrew scholar, was born in Norfolk, Virginis, on the 23rd of March 1836. He graduated at the university of Virginia in 1856 , and studied at the university of Berlin in 1866-1868. In $1869-1879$ he was professor of Hebrew in the Southern Baptist Theological Seminary (first in Greenville, Soutb Carolina, and after 1877 in Louisville, Kentucky), and in 1880 he became professor of Hebrew and Oriental languages in Harvard University, where until 1903 he was also Dexter lecturer on biblical literature.
Hc wrote The Religion of Israel (1882): Quatations from the Old Testament th the New Testament (1884): Judaism and Chnsthanity (1890): and the Book of Proverbs (1899) In the "International Critical Commentsry": and editiod a cransiation of Endmana": commentary on Samucl (1877) in Lange's commentarics; Murray': Origin of the Psalms (1880); and, in Haupt's Sacred Books of the old Testament, the Book of Ezekel (Hebrew text and English version, 1899).

TOY (an adaptation of Du. luig, tools, implements, stuff. speltris, playthings, i.e. stuff to play with, spelen, to play), a child's plaything, also a trifle, a worthless, petty ornament. a gew-gaw, a bauble. Children's toys and playthings survive from the most remote periods of man's life on the earth, though many so-called diminutive objects made and used by primitive man, sometimes classified as playthings, may have been workmen's models, votive offerings or sepulchral objects. A large number of wooden, earthenware, stone or metal dolls remain with which the chilliren of ancient Egypt once played; thus in the British Muscum collection there is a flat painted wooden doll with strings of mud-beads representing the hair, a bronze woman doll bearing a pot on her head, an carthenware doll carrying and nursing a child; some have movabic jointed arrs. There are also many toy animals, such as a painted wooden cali, a porcelain elephant with a rider; this once had movablelegs, which have disappeared. Balls are found made of leather stuffed with hair, chopped straw and other material, and also of blue porcelain or papyrus. Jointed dolls, moved by strings, were evidently favourite play. things of the Greek and Roman children, and small models of furniture, chairs, tables, sets of jugs printed with scenes of children's life survive from both Greek and Roman times. Balls, tops, ratiles and the implements of numerous games, still favourites in alf countrics and every age, remain to show how little the amusements of childrea tave changed. Sec also Dotet Topi Payian
varying yet
foucts, and
a distingulahed surgeon, was born in London on the 23rd of August 1832. He had originally intended to enter the army, but ili health and a growing love of books changed his plans, and he settled down to read for the bar. Here again the same causes produced a change of purpose, and he entered as a student at Pembroke College, Oxiord. Finding himsell by no means at ease in that college he migrated after two years to Balliol College. Continued ill health prevented his reading for honours, but he made so deep an impression on the authorities of his college that on taking his degree he was appointed lecturcr and tutor to students preparing for the Indian civil service. He devoted himself to the study of economics and economic history. He was active also as a practical social reformer, taking part in much public work and delivering lectures in the large industrial centres on economic problems. He overtaxed his strength, and after lecturing in London in January 1883 he had a complete break-down, and died of inflammation of the brain at Wimbledon on the gth of March.

Toynbee had a striking influence on his contemporarics, not merely through his intellectual powers, but by his ritength of character. He left behind him a beautiful memory, filled as he was with the sove of truth and an andent and active zeal for the public good. He was the author of some fragmentary pieces. published after his deaih by his widow, under the title of The Industrial Revolution. This volume destrves attention both for its intrinsic merit and as indicating the first drift of a changing method in the treatment of economic problems. He, however, ductuated considerably in his opinion of the Ricardian political economy, in one place declaring it to be a detected "intellectual imposture," whilst elsewhere, apparently under the influence of Bagehot, he speaks of it as having been in recent times "only corrected, restated, and put into the proper relation to the science of life"' meaning apparently, by this bope general sociology. He saw that the great help in the future lor the ecience of economies must come from the historical method, to which in his own rescarches he gave preponderant wright. Toynbee's ioterest in the poor and his anxiety to be personally acguainted with them led to bis close association with the district of Whitechapel in London, where the Rev. Canon S. A. Barnett (q.v.) was In that time vicar-an association which was commemorated after Mis death by the social settlement of Toynbee Hall, the first of many cisuilar institutions erocted in the East End of London for the purpose of uplifting and brightening the lives of the poorer classes.
See F. C. Montague's Arnold Toynbee (Johns Hopkins University Studies, 1889): Lord Milner's Aprold Toynbee: a Remintscence (190t): and L. L. Price: Short Hislory of Political Economy in Eaderd for a criticibra of Toynbee as an economist.

IRABEATED, the architcetural term given to those styles in which the architrave or beam (Lat trabs) is employed instead of the arch, in the latter case the term "arcuated" 1 eing used. The principal trabeated styles are the Egyptian, Persian, Greek, Lycian, nearly all the indian styles, the Chinese, Japanese and South American styles, in all cases owing their origin to the timber construction, for which reason the term post-and-lintel architecture is sometimes applied to it

TRACERY. a late coined word from "trace," ack, Lat. trokere, to draw; the term given in architectur (French equivalents are réscau, remplissage) to the interscting ribwork in the upper part of a Gothic window; applid also to the interlaced work of a vault, or on walls, in pants and in eabernacle work or screens. The tracery in window: is usually divided into two sections, plate tracery and rib or lor tracery, the latter rising out of the former, and entirely superseding is in the gcometrical, flowing and rectilineal decins. The Wiodows of the Early English period were con paratively aamove slits, and were sometimes grouped ingethey under a of this ular light produced what is know as plate found in windows of the late 1ztit century, York, but became more common in the first In England the opening piereed in small, is diameter never exceeding windows below, but in France it enclosing arch and was fitied in Chartres, with cusping in r to enrich the millions and moulded, as in Stuve church

Kent; the other portions were plerced; and finally, to give more importance to the principal lights, additional depth was given to their mouldings, so that they gradually developed into bar or rib tracery, of which the earliest examples in Eingland are those in West minster Abbey (c. 1250) and Netley Abbey near Southampton. Henceforth that which is described in architecture as the "element " ruled the design of the window, and led to the development of geometrical tracery, in which the bars or ribs are all about equidistant from one another. In windows of three lights the heads of the windows consisted of three circular openings, hut with four lights they were grouped in two pairs, with a single circle over each and a larger one at the top in the centre. This led to incteased dimensions being given to the moulding of the enclosing arches and the upper circle, forming virtually two planes in the tracery. In the great east window at Lincoln, with eight lights, there was a double subdivision and three planes, and here the upper circle was filled with semicircles, so that the openings were all about the same width. In France the upper circle always maintained its predominance, its subdivisions only retaining the scale. The next development, which would scem to have taken place in Gloucester Cathedral, was the omission of portions of the enclosing circle, so as to allow the ribs to run one into the other, forming therefore lines of double curvature, and giving rise to what is known as flowing or flamhoyant tracery, of whith the great window in Carlisle Cathedral is the most important example. In this window there are nine lights, the four outer oncs in each rib being grouped together; these were not subdivided again, and consequently there are only two planes of tracery. The Perpendicular style which followed might perhaps be considered as a reaction against the abuse of the flowing lines in masonry, were it not that in the earlier examples it appears timidly. At Edington church in Wiltshire (1361), in a five-light window, the centre light is wider than the others and its mullions run straight up into the arch mould. In New College chapel, Oxford (1386), the head of the window is subdivided into narrow vertical lights, each half the width of those helow, and this is followed in some counties, but not in all, in the east of England the flamboyant tracery being retained a century later. In St Mary's church, Oxford, with seven lights, all the mullions run straight up into the arch mould, and another feature is introduced, already found in New College chapel, and at a much carier date in domestic work and in spire-lights, viz. the transom. In the later Perpendicular work another change takes place; the pointed arch struck from two centres is replaced by one struck from four centres, and this eventually in domestic work is superseded hy the firt erch.
So far reference has been made only to that which may be callied the "element " of the window. The enrichment of the lights with cusping gave additional beauty to them, look away the hard wiredrawn effect of the mouldings, and formed openings of great variety: in some of the windows of the Decorated period the ball fower and other foliage is introduced into the mouldings. In French work the geomel rical style lasted till the 14 th century, and then there was a lapse in building. so that the flamboyant style which followed, and from which at one time it was assumed that the English masor had deriwed the style, was apparently taken up by the French after iss abandonment in England in favour of Perpendicular work. Germany and Spain have always followed in the wake of the Fresch: and in Italy, where architects preferred to decorate their walls with frescoes, the light from stained plass inteffered with their eflect. so that there was no demand for huge windows or their subdivision with mullions. At the eame time there are many beautiful examples of tracery in Italy, generally in marble, such as those of Ciotto's Campanile and the carhedral at Florence, in the Dueal and other palaces at Venice, and in the triforium arcades of Pisa and Siena cathedrals: but they destroyed its effeet by the inserion of small capitals to the mullions, which gave horizontal lines where they were nor wanted, virtually dividing the window into two parte instead of emphasizing. as was done in the Perpendicular period. the verticality of the mullions.

Among the most glorious features in the Gothic architecture of France, England and Spain are the immense rose windows which were introdiced, generally speaking, in the transepts of the cathedrals; the 1 racery of these followa on the lines of thofe of the windows, changing from geometrical to Decorated and afterwards to flamboyant. In some respects perhaps the finest examples of plate tracery were produced in the rose windows of the i3th century.

Thus in Fragce in the rose window of Chartres in the west front (1225), and in England in those of Barfreston in Kent (1:80) and Beverlcy Minster in Yorkshire (1220), plate-tracery of such great beauty is found that it is unfortunate it should have been entirely superseded by rib-tracery. The rose window of Lincoln Cathedral in the north transept is a compromise between the two, as all the lights are cut out independently and in one plane, but there are mouldings round each connected with flowers; in its design and effect this window is far superior to the famboyant circular window in the south transept. Sometimes a rose window is arranged in the upper portion of an ordinary window, as in the west front of Lichfield Cathedral, and this is constantly found in those of the transepts of the French cathedrals. In the south of ILaly, at Ban, Bitonto and Troja, and at Orvictoand Assisi, farther north, ihereare examples of rose windows, but inferior in design to French and English work, though elaborated with carving. The revival of the 161 h century was fatal so far as tracery was concerned; in the place of the flamboyant work of the last phase of Gothic in France semicircular and elliptical curves with poor mouldings were introduced, and the claborate cusping which gave such interest ts the light was onitted altogether, as in St Eustache, Paris. There is, however, one remarkable example in the church of Le Grand Andely, in Normandy, dating from the Henri II. period, in which a return was made to the tracery of the 13 th century ; but the introduction of Renaissance details in the place of the cusping is not altogether satisfactory, though the general degign is fine.
The tracery decorating the vault of Gothic work began on the introduction of the fan vault at Gloucester (see VaULT) it was only a surface decoration, bolh rib and web being cut out of the same block of stone, and it received further development in the various phases which followed. In the later Perpendicular work the walls and buttresses were all panelled with blank tracery, the most complete example of which is found in Henry VII.'s chapel, West minster Abbey.
In tabernacle work the tracery is purely of a decorative character, copied in minlature from the mullions, arch-moulds and crockets of Gothic work.
Some of the most beautiful examples of tracery are those on the rood sereens of ehurches, either in stone as in the Jube of the Madeleine at Troyes, or in wood as in the rood screens of the churches in East Anglla and in Somersetshire; a and with this must be included that which was introduced into the panelling of church doors, choir stalls and other church fittings; this was continued, first in the carly Renaissance of the 16 th century, the finest examples being those of the stalls of King's Colloge, Cambridge, and alterwards in the Jacobean style, in the chureh at Croxcombe near Shepton Mallet, and the church of St John at Leeds, the two latter ranking as the best work of that late period.
(R.P.S.)

TRACHELIUM (Gr. $\tau \rho \not A^{\prime} \times \eta \lambda o s$, neck), the term in architecture given to the neck of the capital of the Doric and Ionic orders. In the Greek Doric capital it is the space between the annulets of the echinus and the grooves which marked the junction of the shaft and capital; in some carly examples, as in the basitica and temple of Ceres at Paestum and the temple at Metapontum, it forms a sunk concave moulding, which by the French is called the gorge. In the Roman Doric and the Ionic orders the term is given by modern writers to the interval between the lowest moulding of the capital and the top of the astragal and fillet, which were termed the " hypotrachelium " (q.v.).

TRACHEOTOMY, the operation of opening the trachea or windpipe (see Respiratory System) and inserting a tube (саниia) to provide a means of breathing when the natural air-passage is obstructed. The operation is hy no means easy when performed on a smatl child, for the wind-pipe is decply placed amongst important structures. The chief anxiety is in connexion with hamorrhage, for the vessels are large and generally overfull on account of the impairment of the respiration. The higher the opening is made in the trachea the casier and safer is the operation.
TRACHIS, a city of ancient Greece, situated at the head of the Malian Gulf in a small plain between the rivers Asopus and Melas, and enclosed by the mountain wall of Octa which here extended close to the sea and by means of the Trachinian Clifis completely commanded the main road from Thessaly. The position was well adapted as an advanced post against invaders from the north, and furthermore guarded the road up the Asopus gorge into the Cephissus valley. Strangely enough, it is not recorded what part Trachis played in the defence of Thermopylac against Xerxes, Its military importance was recognized in 427 B.C. by the Spartans, who sent a garrison to guard the Trachinian plain against the marauding
highland tribes of Oeta and built a citadel close by the Asopus gorge with the new name of Heraclea. The Spartans failed to safeguard Heraciea against the Octacans and Thessalians, and for a short time were displaced by the Thebans (420). After a bloody defeat at the hands of the neighbouring mountaincers (409) the Spartan governor quarrelled with the native settlers, whom be expelled in 399. Four years later Thebes used her new predominance in central Greece to restore the Trachinians, who retained Heraclee until 371, when Jason of Pherae seized and dismantled it. The fortress was rebuilt, and after 280 served the Aetolians as a bulwark against Celes and Macedonians. It was captured in 191 by the Romans, but restored to the Aetolian League until 546 . Henceforth the place lost its importance; in Strabo's time the original site was apparently deserted, and the citadel alone remained inhabited.

Strabo P. 428; Herodotus vii. 198-203; Thucydides iii. 92, v. 51-52: Diodorus xiv. 38, 82; Livy xxxvi. 22-24. W. Leake, Trasels in Northern Greece. iti. 24-31 (London, 1835); G. B. Grundy. Great Perszan War, pp. 261-264 (London, 1901). (M. O. B. C.)

TRACHOMA, the name given to a chronic destructive form of inflammation of the conjunctiva of the eye (sce Eye: Diseases), or "granular conjunctivitis" (Egyptian ophthalmia). It is a contagious disease, associated with dirty conditions, and common in Egypt, Arabia and parts of Europe, cspecially among the lower class of Jews. Hence it has become important, in connexion with the alien immigration into the United Kingdom and America, and the rejection of those who are afflicted with it. It is important that all cases should be isolated, and that the spread of the infection should be prevented.

TRACHYTE (Gr. tpaxús, rough), in petrology, a group of volcanic rocks which consist mainly of sanidine (or glassy orthoclase) felspar. Very often they have minute irregular steam cavities which make the broken surfaces of specimens of these rocks rough and irregular, and from this character they have derived their name. It was first given by Haüy to certain rocks of th's class from Auvergne, and was long used in a much wider sense than that defined above, in lact it included quartz-trachytes (now known as liparites and thyolites) and oligoclase-trachytes, which are now more properly assigned to andesites. The trachytes are often described ala being the volcanic equivalents of the plutonic syenites. Their dominant mineral, sanidine felspar, very commonly occurs in two generations, i.e. both as large well-shaped porphyritic crystals and in smaller imperfect rods or laths forming a finely crystalline groundmass. With this there is practically always a smaller amount of plagioclase, usually oligoclase; but the potash felspar (sanidine) often contains a considerable proportion of the soda felspar, and has rather the characteristics of anorthoclase or cryploperthite than of pure sanidine.
Quartz is typically absent from the trachytes, but tridymite (which likewise consists of silica) is by no means uncommon in them. It is rarely in crystals large enough to be visible without the aid of the microscope, but in thin slides it may appear as small hexagonal plates, which overlap and form dense aggregates, like a mosaic or like the tiles on a roof. They often cover the surfaces of the larget felspars or line the steam cavilies of the rock, where they may be mingled with amorphous opal or fibrous chalcedony. In the older trachytes secondary quartz is not rare, and probably sometimes resulis from the recrystallization of tridymite.

Of the ferromagnesian minerals present augite is the most common. It is usually of pale green colour, and its small crystals are often very perfect in form. Brown hornbiende and biotite occur also, and are usually corrosion borders composed of magnetite and py times the replacement is complete and n is keft, though the outlines of augite may clearly was derived
chytes, lik
plagioclase,
in some Italian trachytes. Dark brown varieties of augite and rhombic pyrazene (hypersthene or bronzite) bave been observed but are not common. Apatite, sircon and magnetite are practicaily alwaya present as unimportant accoseory minerak.

The trachytes being very rich in potash felispar, necesarilly contain considerable amounts of alkalis; in this character they appronch the phonolites. Occasionally minerals of the felepatboid group, such as nepheline, sodalite and leucite; occur, and rocks of this kind are known as phonollic trachytes. The soda-bearing amphiboles and pyroxencs so characteristic of the phonolites may also be found in some trachytes; thus segirine or segironic augite forms outgrowths on diopside crystate, and siebectite may be present in spongy growths among the felspars of the groundmass (as in the trachyte of Berkum on the Rbine). Trachytic socks are typically porphyritic, and some of the bestknown eximples, such as the trachyte of Drachentels on the Rhise, show this character excellently, having large sanidine crystals of tabular form an inch or two in length scattered through their fine-grained groundmass. In many trachytes, bowever, the phenocrysts are few and small, and the groundmass comparatively coarse. The ferromagnesian minerals rarely occur in large crystals, and are usually not conspicuous in hand apecimens of these rocks. Two types of groundmass are generally recognized: the trachytic, composed mainly of long, narrow, sub-parallel rods of sanidine, and the orthophyric, consisting of small, squarish or rectangular prisms of the same mineral. Sometimes granular augite or spongy riebeckite occurs in the groundmass, but as a rule this part of the rock is highly felspathic. Glassy sorms of trachyte (obsidians) occur, as in Iceland, and pomicoous varieties are known (in Teneriffe and elsewhere), tout these rocks as contrasted with the rhyolites have a remarkably strong tendency to crybtallize, and are rarely to any coosiderable extent vitreous.
Trachytes are well represented among the Tertiary and Recent volanic roclo of Europe. In Britain they oocur in Skye as Lava move and as dites or intrusiong, but they are much more common ont the coatinent of Europe, as in the Rhine district and the Eifei, also in Auvergne. Bohemia and the Euganean Hills. In the neighbourbood of Roruse Naples and the island of Ischia trachytic lavas and tufis are of common occurrence. In America trachytes are ken Irequent, being known in S. Dakota (Black Hills). In Iceland. ebe Azores, Teneriffe and Ascension there are Recent trachytic trase and rocks of this kind occur alro in New South Wales (Cambewarm range), East Africa, Madagescar, Aden and in many other
Among the older volcanic rocks trachytes also are not scance. though they have often been described under the narues orthophyre and orthoclase-porphyry, while "trachyte" vas reserved for Teriary and Recent rocks of similar composition. In England there are Permian arachstes in the Exeter datrict, and Carboniferous trachytes are found in many. parts of ebe central valley of Scoutland. The laterer differ in no ewertial respect from their molern representatives in Italy and the Rhine valley, but thir augite and biotite arc often reatuced by chlorite and other sccondary products. Permian trachytes occur also in Thuringia and the Saar district in Getnany. Clomely allicd to the trachytes are the Keratophyres, which oocur mainly in Palaeozoic strata in the Harz (Germany), in the Southern Uplayds of Scoeland, in Cornwall, \&c. They are usually poro atyritic and Auidal: and consist mainly of alkali felspar (anorthon dure principally, but also albite and orthoclase), with a small cuenrity of chlorite and iron oxides. Many of them are lavas, but
for a lengthy monograph on a subject, dealng wilh it techinically and autboritatively, whereas 2 tract is understood to be brief and rather argumentative than educational. There is, again, the rarer word tractate, which is not a tract, in the precise sense, 30 much as a abort treatise.
The word "tract" has come to be used for hrief discourses of a moral and religious character only, and in modern practice it neems to be mainly confined to serious and hortatory themes. An essay on poetry, or the description of a passage of scenery, would not be styled a tract. In the Protestant world, the tract which Lutber composed in 1520, on the Babylonish captivity, has been taken more or less as the type of this species of literature, which, however, existed long belore his day, both in Latin and in the vernacular tongues of western Europe. It is diffcult, if not impossible, in early history, to distinguish the tract from other cognate forms of moralizing literature, hut it may perhaps be said that the homilies of fluric (9ss1025?) are the carlicst specimens of this clasa in English literature. Four centuries later Wyclif iasued a series of tracts, which wete remarkable for their vigour, and exercised a strong infuence on medieval theology. Bishop Reginald Pecock published many controversial tracts between 1440 and 1460 . Sir Thomas More, John Fisher (d. 1535) and William Tyndale were prominent writers of controversial treatises. It was the Martin Marprelate agitation, in the reign of Elizabeth, which Jed from 1588 to 1591 to the mose copious production of tracts in English literature; of these neariy thirty survive. On the Puritan side the principal writers were John Udall ($1560-1592$), Heary Barrowe (d. I 593), Jobn Penry ($1559-1593$) and Job Throckmorton ($1545-1601$), the tracts being printed in the house of the last-mentioned; on the side of the Established Church the principal authors were Bishop Thomas Coopel (1 S17-1594) and the poets Lyly and Nash. An enormous collection of tracts was published between 1717 and 1720 in elucidation of what is known as the Bangorian Controversy, set in motion by a sermon of Benjamin Hoadiy, bishop of Bangor, on "The Nature of the Kingdom of Christ" (1787). Convocation considered this a treatise likely to impugn and impeach the royal supremacy in religious questions. A vast number of writers took part in the dispute, and Thomas Sberiock (1678 -1761) fell into disgrace through the violence of his contributions to it. Convocation was finally obliged to give way.
Thie micst fanaus culletion of tracts pullished in the course of the 19th century was that produced from 1833 onwards by Newman, Keble and E. B. Pusey, under the title of "Tracts for the Times." Among these Pusey's "Tract on Baptism" (1835) and his "On the Holy Eucharist" (1836) had a profound effect in Leading directly to the foundation of the High Church party, so much so that the epithet "Tractarian" was barbarously coined to designate those who wished to oppose the spread of rationalism by a quickening of the Church of England. In 1841 Newman's "Tract No. XC." vias condemned by the heads of houses in Oxford, and led to the definite organization of the High Church forces.

Tract Socictics are agencies for the production and distribution, or the distribution only, of Christian literature, more especially in

	SuCby	$\mathrm{Al}_{1} \mathrm{O}$,	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	FeO		CaO	$\mathrm{Nax}^{\mathrm{O}}$	K, O	11.0
Richeckite trachyte, llohenberg, Berkum, Rhenish Prussia	66-06	16.46	2.25	1-10	0.19	0.79	6.81	5.52	0.62
Eratophyre. Hamiton Hill. Pcebles. Scotland.	64.38	16.98	4.04	-	-28	1-08	$7 \cdot 57$	$4 \cdot 30$	1.64
Is deyte (Drehophyre) Garleton Hill. Haddington. Scutland	$61 \cdot 35$	16.88	0.41	5 OL	4-45	$2 \cdot 39$	$5 \cdot 26$	$6 \cdot 12$	1.70
Trangte, Mome Nuovo, Phlegraean Fields, near Noyla, Italy	$60 \cdot 33$	18.74	2.84	$1 \cdot 29$		1.15	7.15	7×30	0.56
Tmatryse. Algersdox, Bohemis * , \% y H	64.69	18.39	2	$3 \cdot 44$	Pr	$1 \cdot 72$	4.61	6.46	0.24

1 tract form. They vary in importance from the Society for omoting Christian Knowledge (London), the Rcligious Trat fiety (London) and the American Tract Society (New York)of which are puhlishing houses of recognized standing-to Mit and purely local organizations for distributing evangelistic
use, the enterprise grew into the provision of Christian literature, not only for home use, but also for the mission fields of the world. With this growth there proceeded another development, the production of books and magazines being added to that of tracts. The title "Tract Society" bas, in fact, become misleading, as suggestive of limitations which bad but a bricf existence and are no longer recognized by the more important agencies. On the other hand it must not be supposed that because the work has gone beyond the provision of tracts, these are no longer widely employed. Probably their use in various forms at home was never wider than it is to-day; whilst in India, China and elsewhere the attack of the Christian tracts is being met hy the circulation of vernacular tracts in defence of the non-Christian faiths.

The Society for Promoling Christion Krowledge, founded in 1698 , though most widcly known as a publishing agency, assists in a wide variety of ways the work of the Church of England. On its publica. tion side, it is for its own Church both a Bible society and a tract society. Moreover, its publications include not only versions of the Holy Scriptures and of the Liturgy, but also theological and general literature in many forms. it bas given much attention to providing good reading for children; whilst its tract catalogue is especially rich in works bearing on Christian evidences, Church seasons and the doctrines of the Anglican Church. To the foreign missions of the Church the S.P.C.K. has been a helper of the utmost value, more especially in regard to their medical missions and their use of Christian literature. in the latter case the help is given by grants of works produced either at home or by mission presses in the field. As early as 1720 it was using Arabic; but it has from time to- time been of especial value in helping to found a Christian literature in languages or dialects just reduced to writing. Thus whilst recent publications for the mission field include works in Arabic, Chinese and Urdu, they also include publications in Addo, Lunyoro and Sgau Karen.

The Religious Tract Society, founded in 1799, and thus contemporary with the great missionary agencies and the Bible Society, is, like the last-named, an interdenominational organization. Its earliest publications were in English and were 1racts. But it speedify undertook book publications and extended its field of operations. It began to provide tracts for China in 1813, and as early as 1817 an auxiliary tract society was founded at Bellary in India by some men of the $84^{\text {th }}$ Regiment. In undertaking book publication, the socicty became one of the pioneers in the provision of sound and cheap literature: whilst by the issue of the Sunday at Home, the Leisure How, the Boy's Own Paper, the Givl's Own Paper, the Coltager and Artisan and other periodicals, it helped to lead the work in the provision of popular magazines. Like the S.P.C.K., the R.T.S. now produces general theological literature as well as tracts in a variety of forms, whilst it also gives especial attention to the provision of healthy reading matter for young people. Its grants of books and tracts are open to members of all Protestant denominations. The society aids Protestant communities on the Continent by maintaining depôts at Madrid, Barcelona, Lisbon, Vienna, Budapest and Warsaw; whilst it also assists. by grants, publication work in France, Italy. Russia, Turkey and Scandinavia. In the mission field it works mainty through subsidiary tract societies locally organized. The chief of these tract and book socicties are in India carried on at Calcutta, Madras, Bombay, Bangalore, Allahabad and Lahore; in China at Peking, Shanghai, Hong Kong, Canton, Hankow, Chung-king and Mukden; and in Japan at Tokio. The literature produced by these oxganizations ranges from commentaries on the Holy Scriptures to the simplest tracts and leaflets. In 1908 the society opened a special fund in aid of its Chinese work, and by this means the provision of Christian literature in book and tract form for Chinese readers has been greatly extended. Much literature for various foreign fields is also produced in Great Britain and distributed from the society's headquarters. As with the S.P.C.K., the R.T.S. has been of great service in providing (next to the Holy Scriptures) the earliest literature for some languages. Thus it has helped to provide tracts for the Miaos of west China and for the Baganda, together with the Pilgrim's Progress in Bernba and in Ewe, two little-known Aírican tongues. The languages in which works produced or aided by the society have appeared number about 300 . In the distribution of ita grants of tracts for home work nearly all the great evangelical organizations have a share. In the anlministration of a-zubidiary tract society all the evangelical agencies at work in its field are as a rule represented.

In addition to the work of these societies, the production and distribution of tracts at home is carried on by The Stirling Tract Enterprise. which also sends grants of its publications to India, Ceyton and Alnca; by The Children's Special Service Mission, which also issues publications in Chinese, Japanese and languages; and by The Scripture Gift Missiono which wo cations into China and the East generally, If 8 The Christion Liknature Saciety for India of wis

Vernacular Educational Saciety), established in 1858, has its headquarters in London with auxiliary committees in Irdia and Ceylon. It will always be associated with the name of Dr John Murdoch (d. Aug. ro, 1904), its secretary for nearly hall a century. It works on similar lines to the tract societies, but includes a wider range of educational literature, in the provision of which it has been especially helpful to the mission schools of India.
The Christian Lutcrature Sociely for China (formerly the Soctety for the Diffusion of Literature and General Knowledge among the Chinese) is incorporated (1909) in Shanghai, but has an advisory committee and an executive committee in London. It has been of great service in approaching the official and upper classes of China by its magazines and books, as well as by the diffusion of more popular literature.

The American Tract Sociely (New York) works, both in regard to domestic and forcign enterprises, upon similar lines to those of the Religious Tract Society. Upper Canada has its tract society also and similar organitations exist on the continent of Europe.
(A. R.B.)

TRACTION (Lat. trahere, to draw), the act of drawing or hauling. As used in this article the term refers to the methods of cmploying animal and mechanical power for transporting persons or things from place to place in wheeled vehicles.

Animal Traction.-The oldest form of motive power is that of animals, those most commonly employed for draught purposes on ordinary roads being horses, mules, donkeys and oxen. On the continent of Europe dogs are often harnessed to light carts or barrows, but in England their use in :his way was prohibited by the Cruelty to Animals Act of 8854 . Camels and elephants are only rarcly used as draught animals in special circumstances.

When men and animals carry burdens, or draw or propel loads in certain vehicles, it is difficult, and sometimes impossible, to determine the duty performed in foot-pounds of work, because of the uncertainty of the amount in pounds of the resistance overcome. In this case, for the purpose of comparing performances of the same kind with each other, a unit is employed called a foot-pound of horizontal transport, meaning the conveying of a load of i tb $£ \mathrm{ft}$. horizontally. The following table, given by W. J. Macquorn Rankine, gives some examples of the daily duty of men and horses in units of horizontal transport, L denoting the load in lb, V the velocity in feet per second, and T the number of seconds per day of working:-

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& L. \& \(\boldsymbol{V}\) \& \(\frac{T}{3600}\) \& L.V \& LVT. \\
\hline \& to. \& Feet
perf
seond. \& Hours per day \& 1b conveycd 1 ft \& it. convey ed If \\
\hline Man- \& \& \& \& \& \\
\hline Walking unloaded, transport of ope ? weight \& 240 \& 50 \& 20 \& 700 \& 15,300,000 \\
\hline \& 140 \& 60 \& 10 \& 540 \& \(30,340,000\) \\
\hline Wheeling loed Lin iwo wheeled barrow.
returning empty: \(V\) w t velocity. \& 124 \& 16 \& 10 \& 375 \& 13478, \\
\hline Do. one-wheeled burrow, da. . \& 135 \& 16 \& 10 \& at5 \& 8,100,000 \\
\hline \multirow[t]{2}{*}{Conveying burden, felurnins unlonded} \& \begin{tabular}{|c}
90 \\
880 \\
\hline 85
\end{tabular} \& 16

18 \& 8 \& 275 \& 5,670,000

\hline \& 185
258 \& 16 \& 6 \& 238 \& 5032,000

\hline \multirow[t]{2}{*}{Carrying burden for jo secoods only $\{$} \& I 36 \& 11.7 \& - \& $7474{ }^{\circ}$ \&

\hline \& \& 85% \& \& \&

\hline \multicolumn{6}{|l|}{Powse-}

\hline Wallinis with cant always loaded \& \% 300 \& 3.6 \& 80 \& 5400 \&

\hline \& 750 \& 7 \& $4 t$ \& 3400 \& $81,480,000$

\hline Walking with ext, going leaded, trtuming empty; $v=+$ mean vilofity \& 590 \& 4 \& 8 \& 8040 \& 108,000,000

\hline Curying burdea, walking . \& \& 3.6 \& 10 \& \&

\hline Do trotting \& 110 \& $8 \cdot 8$ \& 1 \& ysed \& $$
32.656,100
$$

\hline
\end{tabular}

For tramway service, horse, or occasionally mule, traction whs formerly employed almost universally, but on account of limited speed and high cost it has been generally abandoned, except in a few localities, where the smaliness of the line, low value of livestock, labour and feed, and long headway intervals, make it still profitable.

The tractive force required on a straight and level Iramway is found to vary from sto to 3^{6} of the load, according to the condition of the rails. On a tsamwny having grooved tails

clearance between the flange and the groove is necessarily small, as the former must have sufficient strength, and the latter must be narrow. The least inaccuracy of gauge, therefore, causes extra friction, which is greatly increased on curves. By removing the flanges from two of the four wheels of the tramway car H. E. Tresca (1814-1885) found that the resistance was reduced from ito to its of the load. The resistance due :o gravity is of course not lessened on a tramway; and if rofo of the load be the tractive force requited on the level, twice as :cuch, or 8^{2} of the load, will be required on a gradient of 1 in 100 and three times as much on a gradient of 1 in 50 . To start a tramcar, four or five times as great a pull is required as will keep it in motion afterwards, and the constant starting after stoppages, especially on inclines, is destructive to horses. Horses employed on tramways are worked only a few hours a day, a day's work being a journey of 10 or 12 m ., and much less on steep gradients. In London a tramcar horse bought at the age of five years had to be sold at a low price after about four years' work. On the Edinburgh tramways, in consequence of stecp gradients, the horses lasted a less time, and had to be constantly shifted from steep to easier gradients. The cost of traction by horses is generally 6 d . or 7 d . per mile for wo horses, and more when the gradients are stecp (sec also Trantiay).

SLeam Traction.-The most universally used form of motive power is the steam engine, which has been constructed to work un ordinary roads, on tramways and on rallways. The road or traction engine comprises a boiler mounted on wheels, and a steam engine usually placed on top of the boiler. The front sxic is pivoted so that it may be moved by means of a steering Wheel geared to it, and the rear wheels are geared to the engine. The wheel rims are made wide to prevent them from sinking it loose earth or muddy roads. The whole arrangement is simitar to the ordinary wheeled portable boiler and engine with the addition of the stcering wheel and a gear connexion from the engine to the rear wheels. The tractive power of these engines is bigh, but their speed low-usually 4 to 6 m . per hour.

A peculiar form of road motor is made by equipping the axies of atraction engine with the so-called "Pedrail" invented by B. J, Diplock. This is an arrangement whereby circular pads or "leet," lantesed around the periphery of a wheel, come successively in contact with the ground, the motion approximating to a smooth, twen stepping or walking along. Fourteen of these feet are placed
on the ground as the movement of the engine proceeds, and the engine itself rolls along on the rail portion of the cam which rests on the rollers bencath it. Ball and socket joints are used to connect the feet to the spokes so that they may rest on any conformation they may encounter. This machine has shown a remarkable ability to pase over obstacles and rough roads, and even to elimb roadless hills. It gives a maximum of adhesion of the drivers, and it is claimed that it will pass over rough roads with the expenditure of less energy than will an ordinary wheeled traction engine. Its speed is necessarily low-about 4 mo. per hour.

Fic. 2.-Chain Track Tractor.
The Hnrnsby " Chain Track Tractor " (6g. 2), patented by Mr David Roberts, is provided with two endless chains, one on each side, which consitute the track on which the machine travels. Each chain is carried on two sprocket wheels, placed at the extremse

F1G. 3.-Links of Cbain Track.
ends of the frame, and is formed of a number of links (fig. 3) so connected that it is free to bend in one direction, as required to pass-round the sprocket wheels, but is locked into a rigid har by pressure acting in the opposite direction. On their outer surfaces these links bear pads or feet, while their inner wurfaces compose a track upon which roll the middle or weight-tearing wheels. Power applied to one of the sprocket wheels exerts a pull on the chain, but this being held fast by the weight of the engine pressing the feet to the ground, the effect is to roll the cagine along the trach and as this happens the feet at the rear end are one by one lifted off the ground, carried round the sprocket wheels, and relaid at the front of the machine. This construction not only renders the whole weight available for adhesion, but also provides a long supporting base and thus enables the machine to pasmover soft ground, loose sand morasses, \&c. in which an ordinary traction engine would certainly sink. Steering is effected by retarding of stopping the motion of the sprocket wheels on the side towards which it is desired to turn.

For tramway work steam is scarcely used at all now, though small locomotives-usually having their engines geared to the drivingwhecls, instead of the connecting-rods being coupled direct to them-have been used in the FiG. I.-Principle of the Pedrail's operation. (tyenterthent, and each is attached at the end of a spoke, free Whentinnthowart and from the hub of the wheel. Each spoke Wind to it helical spring which tends to draw it inwards. Op may apter there is also a roller, which bears against a cam-shaped purc ithoed insile the periphery of the wheel. The engine is suscam and is supported by it. The lower ily straight and horizontal, the length of t erough to subtend an angle equal or about 70°. By this means three bhe roadway and support the engine, the r liers that are at any instant underine r 3 m . The feet take successive positions

Position of the parts on a level

 road.past for this work. is work. They were compactly designed and equipped with mufflers to deaden the sound of the exhaust, with other devices to decrease noisc and smoke. In some instances, the engine and boiler were placed in the forward end of a car, a partition separating them from the main body of the cat in which the passengers were carried.

For description of steam railway engines see Ratlways: Locomotive Power, and Steam Engine.
Fircless Engines.-Fireless engines were first tried in New Orleans, and were in successful use on tramways in France and

Balavis, Java, for some years. The motive poiver was obtained from water heated under pressure to a very high temperature in stationary boilers and carried in a reservoir on the engine, where it gave off steam as the pressure and temperature were reduced. Two tons of water heated to give a steam-pressure of 250 th to the square inch served for a run of 8 or 10 m ., more than in of the water and a pressure of 20 to 25 tb above the atmosphere being left on returning to the boiler station. Large boiler-power was required to reheat the engine reservoirs quickly, and this could be afforded for only a few engines, but, when worlsed on a sufficient scale, the fireless engines were claimed to be economical, the economy resulting from the generation of the steam in large stationary boilers.

Compressed Air.-Compressed arr as a motive power offers the advantage of having neither steam nor the products of combustion to be got rid of. In W. D. Scott Moncrieff's engine, which was tried on the Vale of Clyde tramways in 1876, air was compressed to 310 tb per sq. in., and expanded in the cylinders from a uniform working pressure to that of the atmosphere. There is a considerable loss of heat during the expansion of the air which is attended with a scrious loss of pressure, and in L. Mekarski's system, which was in use for the propulsion of tramears at Nantes for a number of years, the loss of pressure was considerably lessened by heating the air during expansion. The air, at a pressure of 426 Bb per sq. in., was stored in cylindrical reservoirs bencath the car, and before use was passed through a vesscl three-quarters full of water heated to $300^{\circ} \mathrm{F}$., by which it was heated and mixed with steam. The heat of the latter was absorbed by the air during its expansion, first to a working pressure which could be regulated by the driver, and then to atmospheric pressure in the cylinders. At Nantes the average cost for threc years of propelling a car holding thirtyfour persons was about 6 d . per mile. Owing to the heat losses in compressing the air, and other considerable losses incident to its use, the compressed-air systems of traction have been found inefficient and have nearly all been replaced by the more flexible and efficient electric motor.

Cable Traction.-Moving steel cables, propelled by steam engines, have been used for traction. The strcet railway cars running from New York to Brooklyn, over the Brooklyn Bridge, were for many years propelled by a cable to or from which the cars could be attached or detached at will, and, though electric motors are now used on this line, the cables are still kept in place as a reserve in case of breakdown of the electrical system, and are used whenever an accident to the electrical plant occurs. Before the advent of electric traction, the tramways using cable propulsion were numerous and of great size, as at San Francisco, Chicago, Washington, Baltimore, Philadelphia and New York in America, at Highate Hill (London) and Edinburgh in the United Kingdom, and at Melbourne in Australia. The Glasgow Subway is so cquipped.

In the usual form, the motive power is transmited from a stationary engine by a rope of stecl wire running always in one direction,

Fig. 4.-Cross-section of Cable Road. up one track and down the other, in a tube midway between the rails, on pulleys (fig. 4) which are arranged so as to sult curves and changes of gradient as well as straight and level lines. Over the rope is a slot $\frac{1}{}$ in. wide, in which travels a nat arm of steel connecting the dummy car with the gripper (fig. 5) which grasps the cable. The Hat arm is in three pieces, the two outer ones constituting a frame which carries the lower jaw of the gripper, with grooved rollers at each end of it, over which the cable runs when the gripper is not in action. The upper jaw is carnied by the middle piece which slides within the nuter frame, and can be depressed by a lever or serew, pressing the cable firse on the rolicrs and then on the lower jaw until it is firmly held. The speed of the cable, which is generally 8 to 10 m . an hw, in pl imparted to the car gradually and without if the snankem
 uniformly taut, and for cronsingor atdanctions wit of considerable ingenuity. When thilat
they must be atopped by band fata esperially, must be of great Vehicles). esperially, must be of great pey

Gasolcne Engine Truction.-Explosive engines using gasolene (petrol) have been used for motive power, and this is the principal form employed in the road motor car. Certain railways in England and America have experimented with cars having a gasolene enginc placed in one end 10 propel the car, the greater part of which is left clear for the accom modation of passengers. These cars are intended for short runs and may in effect be classed as belonging to extended tramway service. They have yielded encouraging results.
Elictric Traction.Electrictraction, as treated here, will refer to the operation of vehicles for the transportation of passengers and goods upon tracks, as distiuguished from what are known as telpherage systems on the one hand (see Conveyors), and automobiles intended to run on common roads on the other (sec Moros

Possibly the first electric motor was that made
 by the Abbe Salvatore dal Negro in Italy in 1830 . As early as 1835 , Thomas Davenport, a blacksmith of Brandon, Vermont, U.S.A., constructed and exlibited an automobile electric car, operated by batterics carried upon it. Robert Davidson, of Aberdeen, Scotland, began experimenting about 1838 with the electric motor as a means of traction, and constructed a very powerful engine, weighing five tons and carrying a hattery of forty cells. This locomotive made several successful trips on Scottish railways, but was finally wrecked by jealous employés of the railway while it was lying in the car sheds at Perth. In 8840 a provisional patent was granted in England to Henry Pinkus, which described a method of supplying electric encrgy to a moving train from fixed conductors. A little later, in 1845. French and Austrian patents granted to Major Alexander Bessolo described practically what is to-day the third-rail system. In 1847 Professor Moses G. Farmer, of Maine, U.S.A., buith a model locomotive operated by electricity, which he exhibited at Dover, New Hampshire, and later at other places in New England. Shortly afterwards Professor C. G. Page, of the Smithsonian Institution in Washington, constructed an electric railway motor, which made a trip on the 20 th of April r851, from Washington, D.C., to Bladensburg, Maryland, over the Baltimore \& Ohio railway. This machine carried 100 Grove's cells, and attained speeds as high as 19 m . an hour. Perhaps the beginning of modern electric traction may be said to date from 1870, when the firm of Slemens \& Fialike put in operation the first clectric railmay of the Industrial Exposition in Berlin. In America it whyot intel hyulyyr that real work began and T. A. Edison
 to by accumulators iching establishment I a similar car was
On the sath of May for regular service
frat really noteworthy road whs that constructed in 1883 at the Ginnt's Causeway at Portrush, in the north of Ireland. This line was 6 m . long, and the power was ohtained from turbine wheels actuated by a cascade on the river Rush. The method of urpply was, curiously enough, the third rail.
In 1883 invention in electric railways seems to have taken a decided advance in America. It was in this year that the confictiag interests of Edison and S. D. Field were consolidated; and at the same time C. J. van Depoele and Leo Daft began their experimentad work, which later resulted in numerous commercial railways. Next year E. H. Bentley and Walter Knight opened to the public in Cleveland, Ohio, U.S.A., a railway operated by an open-slot conduit, and for the first time worked in competition with horse traction on regular street railway lines. For the next two years much experimental work was done, but it may be said with fairness that the first of the thoroughly modern sysuems, in which a large railway was equipped and operated under service conditions by electricity, was the line huilt in Richmond, Virginia, U.S.A., by Frank J. Sprague in 1887. This milway had 13 m . of track, and started with an equipment of forty cars. It has been in continuous and successful commercial operation ever since. The original Richmond system was in 20 its esseniai particulars the overhead trolley system now in use. Many lmprovements hape been made in the construction of the molury tive coutuliets, the trolleys and the various details of car equipment and ovechead construction, but the broad principles have not been departed from. The success of the Richmond line called the attention of tramway managers to the advantages of electricity as a motive power, and its substitution for other systems progressed with astonishing rapidity.

The pioneer application of electricity to heavy electric traction Tas that of the Baltimore \& Ohio railway tunnel at Baltimore, Md., U.S.A., and the system was put into operation in 1895 . This tunnel is about $x 1 \mathrm{~m}$. in length and passes under the city of Baltimore. Its route made the expense of ventilation prohibitive, and the smoke and gases from the locomotives made the use of the tunnel impossible without ventilation. The management therefore decided to attempt the use of chectric locomotives to haul the trains through, despite the fact that there existed no prior applications of heavy electric motors for even far lighter aervice than that demanded by the conditions, mancly, the proputsion of trains of over 2000 tons up a grade of 42 ft . to the mile. The engincering work and derigning of the locomotives were undertaken hy Dr Louis Dancan. The bocomotives weigh 96 tons and have worked neccearifully since they were first put into commission. The dectric service has been extended 6 m . from the mouth of the trancl, making a total haul of nearly 8 m . for thesc locomotives. In 1907 many heavy electric locomotives using continuous earrent were constructed for the New York Central it Hudson River Rallroad Company to operate a distance of about 5 m . from the New York termonus, and others for practically the same anvice, but using single-phase alternating currents, were put in © \mathbf{t} the New York, New Haven \& Hartford Railroad Company.
been fully demonstrated that electricity is superior att-herses and moving cables-for tramway aper and more fexible. The relative cost of Wht the local conditions, hut a fair average hat cable lines cost 25% more to operate e lines 100% more. The increased speed the comfort rendered possihle by larger the receipts when horse traction is mive the latter, as compared with the easier control of the car and a much fation. The installation of an overhead thas a cable system, though the expense 1) about the same. By the extension - Nems into the suburbs and the construc-- electricity has come into competition Thedtions are different. For ordinary cars, running through the city cannot, in speed, compete with
steam trains operated on private rights of way. The fact that they run more frequently and can take up passengers anywhere along the line gives them an advantage, and within limited distances they have taken a large proportion of suburban traffic from steam railways. For long-distance service, in onder to compete with steam a speed much greater than that used on ordinary tram-lines must be adopted, while owing to the time opent on the car more attention must be paid to the comiort of the passenger. Speed and comfort being equal, the great advantage of electricity is that, when it is used, the most economical way of transporting a given number of passengers between two points is in a larger number of small trains; with steam the converse is truc. A frequent service is a great attraction to passengers.

For freight service, especially on railways having heavy grades, electricity also possesses many advantages, due principally to the peculiarity of the electric locomotive, which admits of its malntaining its tractive effort or so-called "draw-bar pull" when running at relatively high speeds. This steam locomotives cannot do, Thus a steam locomotive weighing 100 tons may exert a draw-bar pull of eay $45,000 \mathrm{lb}$ at a speed of 6 m . per hour, while at 15 m . per hour the continuous draw-bar pull will rot exceed about $25,000 \mathrm{Ib}$. On the other hand, an electric locomotive weighing 75 tons and having a tractive effort of $34,000 \mathrm{Hb}$ at 6 m . per hour will erert a pull of ahout $27,000 \mathrm{lb}$ at 25 m . per hour. From this it is clear that an electric locomotive may pull a heavier train at a fair speed than can a larger steam locomotive. This admits of more rapid movement of freight trains, and thus decreases the hauling cost. Another advantage the electric system has for freight service is the ahility to couple several light locomotives in tandem, all under the control of one driver, and thus pull at a high speed larger trains than may now be drawn hy steam locomotives of weights commercially admissible. Also, these lighter motors distribute the weight over the track instead of having it concentrated on a few wheels, and the heavy pounding due to the latter condition is obviated and the maintenance of the track and hridges reduced. Other savings arise from diminished fuel consumption, elimination of water and coal stations with their attendants, and greatly reduced repairs on motive power. The chicf disadvantage is the stoppage of all trains on a section if the source of current supply should fail. With proper precautions in design and construction this should be a remote possibility, and since electric rail haulage, in any form attempted up to the present, has shown a reduced coet for a given service as compared with steam traction, it is not improbable that the future will witness great activity in the change from steam to electricity for long-distance railway work.

Systems of electric traction may be divided broadly into two classes, the one employing continuous, the other alternating currents to drive the motors. Both of these classes may be further divided with reference to the conducting system employed betweea the cource of current and the motor. The system may also be divided according to operative units into three classes-the single car, the train pulled hy one or more directly controlled locomotives or motor cars, and the train operated by two or more motor cars under a common secondary control. This last is called the "multiple unit system."

Continmons-Current Systems.-The applications of continuous current to electric traction comprise aix principal varieties, with numerous modifications and combinationa in all of them the motore are operated under a constant, or approximately constant. potential difference. The system in which cars were connected in series by automatic switches, in limited use in the United States in 3888 and 1889, has now disappeared, and the parallel system of connexion, in which the cars are bridged across between the two conductors of a parallel system, maintained at a substantially constant voltage, has become practically universal.
The overhead conductor and track-return construction in the standard for street railway work in mont of the cities where electric traction is employed, though there are some notable exceptions. In its present development the system may he said to have grown out of the wark of

Ovostered cantria the. Sprague in Richmond in 1887. Over the track is suspended a bare
wire, generally of hand-drawn copper, known as the trolley wire. The normal practice is to use a wire not leas than 0.325 of an inch in diameter to assure permanence, since smaller wires wear out rapidly from the friction of the trolley and the burning of the surfaces of contact. The wire is usually of circular cross-section. Sometimes wires of other sections have been used, notably one having a crosssuction similar to the figure 8 , but the advantage of these forms is problematical, while the difficulty attending their proper installation is considerable. In some cases the working-conductor, or trolley wire, is suspended at one side of the track, connexion with it being made by a side-bearing trolley, but its usual place is directly over the track, as this arrangement leads to simpler and more efficient construction of the trolleys and their accessory parts. For certain special cases, where very large currents arcemployed, the overhead conductor is made of bar metal or structural shapes. In the Boston (Massachusetts) subway. where the traffic is very heavy, a bar of rectangular section is used, supported at frequent intervals from the roof. In the Baltimore \& Ohio railway tunnel at Baltimore, Md., the steel working-conductor originally consisted of two Z bars forming a trough, the current being collected by an iron shoe, but this form has been replaced by a soctional third rail. But whatever the nature of the conductor, it is usually insufficient to carry the current necessary for the operation of the system without excessive loss. Recourse is therefore had to feeders or reinforcing conductors. These may be of any lorm, but are most frequently copper wires or cables of large section, connected at intervals of a few hundred feet to the working-conductor. They are sometimes carried on poles, but municipas ordinances frequently require their installation in underground conduits. In general, it is customary to divide the working-conductor into sections of from 1000 to 5000 ft. in length, insulated from one another and fed separately through manual or automatic cut-out switches, so that an accident causing a short-circuit or break in continuity on one section will not impair the operation of others.
In ondinary street railway construction two methods of suspending the trolley wire are in vogue. The most usual construction is to hang it from insulators attached to transverse wires running berween pairs of poles set on opposite sides of the track. Bracket arms attached to poles are often used, especially on suburban lines; they are frequertly double, or T-bhaped, and placed between the two tracks of a double-track line. In the standand construction for either variety of suspension, the insulators are bell-shaperl, and composed of some hard moulded or vitreous material. The trolley wire is supported by a clamp, about 9 in. long, which embraces about three-quarters of its circumference. This clamp is usually made of bronze, and is now generally fastened to the trolley wire by a screw, causing the two parts of the clamp to close upon the wire at would the jaws of a vice, or is automatic, clamping the wire the more tightly as the strain upon it increases. It was formerly considered expedient to solder the wire into the clamp, but this practice is now generally abandoned. The insulating bell is to designed that its material is subjected only to compression stresses by the weight of the wire. It is provided at its upper part with a single catch for attachment to the transverse wire or to the bracket arm. If a span wire is used it is fastened to the poles, there being turnbuckles to tighten it, while a strain insulator on either side gives a double insulation between the trolley wire and the poles. With a bracket construction it was formerly the custom to attach the insulator directly to the bracket arm, but the blow of the trolley wheel broke great numbers of insulators, and it has therefore become the practice to adopt some more fexible method of attachment, a number of different forms being in use. The poles between which the span wires are stretched, or to which the bracket arms are attached, are of wood or iron. They are frmly set in the ground, usually with concrete.

Another form of overhead construction for high speed service, brought out by the Westinghouse Company and known as the Caresary "Catenary" system (fy. 6), is designed to hold the Construc contact or trolley wire in a horizontal position above toa. the track without any dip or sag. Essentially it is

Fig. 6.--Single Catenary Line.
nade up of a supporting rable made of stranded matraelach nsel nade up of a supporting rable made of stranded eudvandach shet to the supporting poles and from which ohe frollog wite tibl
by means of rigid iron hangers spaced about 10 ft apart. A proper sag is given the supporting cable, and the lengths of the hangers vary so that the trolley wire is held horizontal without sag. The construction resembles a single supporting cable and suspended chord of a suspension bridge. The trolley wire, the hangers and the suspension cable are all mechanically connected together and in metallic contact, so that the whole system acts as a conductor. The support. ing cable is held by insulators at the points where it is supported on the brackets at the poles. For heavy work there the currents taken by the passing cars and locomotives are great, requiring a very lange trolley wire two supporting cables are strung from pole to pole and the trolley wire suspended below and between the two.

Fic. 7.-Douhle Catenary Line.

In this case the hangers are triangular in form and hung with the apex of the triangle downwand. The two upper angles are fastened to the pair of supporting cables, while to the lower angle is attached the trolley wire. This arrangement is called the "double catenary" construction (fig. 7).
In onder to provide a proper return path for the current, the track must be made electrically continuous. This is accomplished by bonding the individual lengths of rail together in some way, or by actually welding them together to lorm R a continuous length. There are many types of rail- Bomdieg. bonding. In most of them holes are drifled in the ends of adjacent rails, and a copper conductor inserted between them, its ends being in some way forced against the walls of the holes- In one type the bond is in the form of a hollow cylinder, theends of which are inserted in the holes in the raits, a tapered steel pin heing driven in so as to expand the cylinder out against the rail. In another form the end of the bond is a solid cylinder, which is upset by hydraulic pressure, forcing it against the rail. A semi-plastic amalgam of mereury has been used to give a contact between the adjacent rails and the fish-plate connecting them. The most usual practice is to use a short bond covered and protected hy the fish-plates. Tracks used for a return circuit are cross-bonded at intervals. If the track return has too great an electrical resistance it is reinforced by conductors connected to it at intervals and extending back to the power-house. Neglect to provide a proper return circuit has often caused a great loss of energy, and, in many places, excessive electrolytic action on iron pipes, cable sheaths and other metallic bodies buried in the earth. The lightning arresters provided on ovethead lines are placed on the poles at intervals determined by the location of the line.
In a few places the municipal authorities, in onder to avoid the disturbances on telephone lines due to the fluctuation of a trolley current, and the eloctrolysis of gas and water pipes which may arise from a grounded return, have required the

Double urection of a double overhead system. In this each

Tralley. track has two trolley wires forming a complete metallic circuit. The largest system of this kind is in Cincinnati, Ohio, U.S.A., where there are over 225 m . of tram-lines. The system has the advantages to which it owes its existence, but the multiplicity of wires at crossings. right-ingle turnouts and switches is so complicated that automatic switching cannot be attempted. The man in charge of the car removes the double trolley from the wires at such points, and replaces it when they are passed. The construction adopted, exsept in trepect to the points mentioned, is practically similar to
that aln dy dicribed for the track-seturn system. chayc 5
U.S.A. Whes a considertible to be mado wir in Weshington, D.C. from horse operation to this new method. The suocese of thin sywem, and of experiments made on Lenox Avenue, in New York Cicy, led to the construction of many miles of railwaye of the conduit type in the latter city. It is also used extensively in London. (For decails of the construction of the conduits, we Tranway.) This eystem is much more expensive to install than the overhead urolley aystem, but experience has shown that it can be as economically operatedt Mout of the troubles that have occurred have been due to lack of exporience, but on the whole they have not been more terious than thowe experienced with overhead syatema.
The great expense of the open conduit has led numerous inventora to bring out systerss of opernting electric railways by means of Coneof clowed conduits or sectional third rails, in which the working-conductor is hid on the surface of the ground between the rails, and is consected with the source of curreat only as the car passen over each section. In this way the immediate asetion or portion of the working-conductor under the car is eloctrically active, but other sections are not, and all danger to the peemago of street trafic is removed. Up to igoo, nearly one thoweand patente for this type of street railway construction, known also 28 the "surface contact" system, had been granted by the United Statem patent office alone. So far the system bas been incroduced in bat few places, but its performance bas been more than promising, and it is thought that it will be more extensively adopted in the future. Among the more important railways at present equipped with it may be mentioned one in Paris, using the Diatto system, and one at Monte Carlo, where the Westing: hoase syrtem is installod. In both these the current is aupplied by means of " buttons" or metallic disks laid flush with the surface d the street between the tracks, and connected through switches to a working-conductor. Under the car is installed a currenstaking device in the shape of a long runner or skate, which runa over the buttons and is appropriately connected with a storage battery on the car, so that when it touches one of the buttons corrent is sent from the battery through a system of electro-magnets operatine the awitches which connect that particular button so the feeding oyatem, and thus the runners are enabled to receive curreat for the operation of the motors on the car. The various yutems differ in the method of connecting the contact rail or button with the live conductors; in some a magnet on the car works a mechanism to make the desired contact, in otbers a current from batteries on the car actuates a switch located near the track. (Sie Thaywar.)
The third-rail system, which is a development of the overhead troliey and track-return system, has been applied to several large ruatal and important railway installations, especially in the United States, and in the prolongation of the Orieans railway in Paris from the Place Valhubert to the sew eration at the Quai d'Orsay. Its name almost sufficiently imdicates its methnd of operation. A rail similar to the track-rails ion hid upon insulators and forme the working-conductor. On the elevated railways in New York, Brooklyn, Boston and Chicago and the subway in New York, a pressure of about 600 volta is cod between this rail and the track-rails which form the return circuit. Contact is made with the third rail by means of a bronse ar cast-iron shoe, either resting upon the riil by its own weipht or preseed down upon it by springs. This is generatly attached - mome part of the truck of the car in preference to any part of the body of the car, so as to avoid any vibration or swaying due to the eovement of the body upon its aprings. The third-rail syatem me been adopted in many instances whero large and powerful are to be operated on private rights of way. but it is nowhere a eve for electric traction upon highways or in streets where there any pasing of foot passengers or vehicles. An excellent example ofach construction may be found in the Albany \& Hudson -rad. Which connects the city of Albany with the city of Hudson, Iew York state. Here the length of the road is about 32 m . track bcing of standard gauge and haid with a 60 -th T-rail. rail of the same sixe, raised about if ft. above the level of the shang. rails, is used for the electrical conductor, and is installed ${ }^{7}$ pulaviore situated 5 ft a apart on the ends of the crosatics az rails are well bonded with copper bonds at the joints \# ondited lor a distance nearly equal to the lengeth of a thin 0priate bridge the space. oo that the forward shoes are past the break before the rear shoes leave it. hathors of considerable size and power are used, 3ajd freight in their orizinal cars, as received philways, are transported. Other examples Toh occur in the extension of the Baltimore a , Beltimore, the Ncw York Central Railway iminal, the underground systems of the wey, the Waterloo \& City railway, and the In London, and the Versailles division of the A Aepe In some cases, as on the Metropolitan, ais of the "tube "reailways in London, the
completed by a foorth mil aimilar to the conductor rati, haid outaide the track.

One of the oldest forms of electric traction in by accumulators In bricf, its principle is that storage batteriet, or accumulatora, are carried on the car, which becomes a veritable automobile. It has been the usual practice to inctal about 80 cells, giving a prewsure of 160 to 175 volts at the motors; tors. these are recharged after the car has run about 25 m . In general the accumulators are not charged in place, but the car is supplied with a new set, fully charged, at the end of a rua of about the length mentioned. The system has been installed in \& very large number of places in Europe and Ammrica, but has never shown the gratifying commercind success which the direct-conduction syatem exhibit, on account of the high cost and depreciation of atorage batterics. In some places, notably in Hanover, Germany, where legislative ordinances have forbidden the overheed conducting symtem in city streets, a combination has been used whereby accumulator cars run in the city districte from the enargy tored in their batterics, and in the buburbs operate directly as overhead trolley cars, the batterice being charged at the came time from the overhead symem.

Altermating Curgant Systems.-Alternating current syotems are now being usod, both single-phase and three-phase. In the former case the newly-developed single-phase motors, later to painphase bystems induction motors are uad, The polyphase current is much used as a means of distributing energy from a central powerstation over extended lines of railways, but is generally converted into direct current through the agency of rotary converters, and fed to the lines as such. There are, however, a few railways working directly with induction motors upon a threephase system of supply. Prominent among these may be mentioned the Valtellina railway in Italy and the Jungrau railway in Switzerland. Upon these lines the rails are used as one of the three conductors, and two trolley wires are suspended above the track. The locomotive is provided with two trolleys, one running upan each wire, and consists simply of an induction motor coupled through appropriate gearing to the mochanism of the truck. For starting a large resistance is introduced into the rotor or secondary circuit of the motors by means of collecting rings placed on its shaft, upon which bear brushes. This resistance is cut out as the speed increases until it is all withdrawn and the rotor is short-circuited, when full opeed is attained. It has been found that potential differences of about 500 volts in cech phase can ba sofely handled, and it is claimed that the few railways which use polyphase currents have shown gretifying rowlts in practice.

In the carly years of the 20th century single-phase alternating current motors for electric traction were developed, and singlephase systems were extensively installed both in Europe and in America. The simplest type of singte-phase motor ls a serics motor provided with the usual commu-
plase tator and brushes, in which the current passes through both the geld coils and the armature coils. The armature and ficld windinga being traversed by the same current, the revertal of the field magnetization and that of the direction of current flow in the armature are coincident, so that the turning effort or torquc, on the armature cument produced by the ingeraction of armature and field magnetization is always in the same direction. Since the alternating current pases through both members of the motor, the armature and fueld cores are both laminized. In the later types of thete mosors the ficld coils are distributed and embedded in the field ring, 00 that the inner surface of the ficld ring presents a practically smooth eurface to the armature. Troubles wore at firot experienced with commu tation of the heavy alternating currents required for the operation of these motore, vicious sparking taking place at the brushes. This was overcome by the use of auxiliary or "compensating " coils, which are embedded in the feld magnet ring, being placed between successive magnet coils. These comprensating coils are usually connected in meries with the main armat ure and beld circuit. They may each, however, have their two ends joined together, (short-ircuited), the currents In them being induced by the Itermating magnetic flux of the fields.

Motors of the above types have the general charactetistics of direct current series motors, and posess the same general rehations between speod and torque that are such an important element in the succes of direct current series motort. The efficiency of alternating current motors is not quite so good as that of direct current motors, on account of the rapid reversal of the iron magnetization in the field saagnets, but their efficiency is high and their performance in practical work has been excellent (fig. 8).

There is another type of singlephase motor that has been osed In Europe, but not in America, which is commonly called the repulsion motor. In these motors the armature is not directly includod in the main circuit, but opposite points on the commutator are connected together through brushes. The working current is fed to the field magnete, and the rapid reverals of magnetivation induce currents in the armature coils, which currents, working with the field magnetization, cause rocation. Several types of repulaion motore have been developed, and in general their characteriatics are aimilar to thow of the plain aurias type. They save aot, however, copre
into extended commercial use. Single-phase motora for a given power are much larger, beavier and more expensive than the ordinary direct current motors, owing to the low magnetic densities at which the iron is worked. The power factor is between $0-75$ and 0.85 .

Fic. 8. Characteristics of Series Single-phase Motor.
The advantages of the single-phase alternating system lie in the fact that it combines the simplicity of the overhead direct current construction with the possibility of exceedingly high voltage. Where heavy traffic is to be handled, and especially where that traffic is scattered, a direct current system, which up to the present has been limited in its voltage, is not commercially possible, as the amount of copper used for distribution and the excessive amount of apparatus required to convert bigh tension aleernating current into low tension direct current, would make the cost prohibitive. In direct current

Fic. 9.
systems for lines of any length, it is the custom to use alternating current of high poeential and to redure it to direce current of low potential at different poines along the line converters, which by their nature require att
stations, while if the traffic is acatered 00 that
stations may at times be sero, and at other times may be very large, the capacity of the sub-stations must be equal to handling a maximum load, so that the total capacity of each sub-station would be based on the maximum instead of on an average condition. With the single-phase alternating current system, on the contrary, only. static transformers in sub-stations along the line are required, and with the high voltages available (voltages as high as in,000 volts are used at present) the distances between these sub-statinns can be greatly increased as compared with the direct current sub-stations, so that each sub-station feeding a much longer portion of the line would have a better average load than in the direct current case. The static transformers do not require attendance, and their efficiency is much higher than that of the rotary converters.

Electric motors for traction purpozes have leen highly elaborated and developed. At first they drove the car axles through belts or sprocket chains, the motor being sometimes attached to the car, sometimes to the truck. At Richmond,

Molora. however, in 1887 , the Sprague method of communicating the power from the mator axle to the car axde was put into practical operation. and this has with slight modifications been retained. It consists of sleeving one ead of the raotor on the axle, suspending the other

Fig. 10.-Standard Railway Motor.
fexibly from the car body or truck, and driving from the armature through spur gearing, At first the motors were too small for the work dermanded of them. Their high speed required a double reduction in gearing, their overheating caused continual burn-outs, and the sparking at the commutators necessitated constant repairs. These defocts were gradually climinated. The motors were made larger, the quatity of the fron and insulation was greatly improved and finally a four-pole motor requiring only a single-specd reduction by spur-gcaring was produced. Since that time further improvements in material and design have been introduced, and the present motor has heen evolved. Almost all the standard modern traction motors are of the same general design. They are series sound, i.e. the same current passes through both the armature and the fieks. This gives a strong starting tnrque or tractive effort, the torque diminishing as the specd increases. This characteristic is particu. larly suitable for traction. Fig. 9 shows the rclation between speed and traclive cffort of a mthadand railivay motor of large size and power. The asmatuse byit up of carefully tested iron disks, which are deoply slotted to make room for the coits. These are wound and insulatel separately, and placed in the slots in the armature core; sometines, they ane held in place by binding wire, sometimes by eedges. The commutator is put in place, the cond conmerions poldered to it, and the proper end-coverings put on. The mngest frume is made in zwo parts, of cast stect, enclosing the
ad turk proof, and whith phoper attention is a very durable pioce of machinery (Gg. 10). Although the standard design of motors in at proment based on a single-reduction gearing, there are in operation traction-motors which are not geared.
On the locomotives uned on the New York Central, the New York, New Haven \& Hartiond, and the Baltimore A Ohio railways in America, the Ciry \& South London railway in England, the armatures murround the driving axles. In all the cases mentioned, except the Baltimore o Ohio railway, the ammatures are sct directly on and wolid with the axles of the driving-wheels, while on the Baltimore ot Ohio locemotives the motors are sleeved on the arlos, there being a glight play between the sleeve and the axle, which allows a fiexible eupport. The wheels are driven by arms projecting from the armature shaft.
Tbere is no fixed method of rating the output of traction-motors. liost manufacturers, in giving a certain horse-power capacity, mean that at the given rating the motor will run an bour with a rise in temperakure of a certain number of dicgrees, not that it can be run continuously at the power given. Another syatem of rating depends on the draw-bar pull which the motor can develop undor normal conditions of voltage and apeed. Uniformity is greatly needed.
One of the roost important parts of the equipment of an electric oer or focomotive is the controlling device. In the early days of entrem eleetric traction a number of different methods of regulating the speeds of the cars were used, but they have been medsoed to practically one standard method. In the old Sprague syteen there were at first no resistances outside of the motors themectwes, but the fuetr coils of the motors were divided into sections, and by changing the relative conmexions of these nections the total reastance of the circuit could be changed; at the ame time the strength of the field for a given total current was either increased

FIc, It.-Controljer (open).
reacreased. In other bystems the fields and armatures of the andort were not changed im their relation to one another, but exter. al pastances were cut out and in by the controller. Uaually there gmo motors on each car, and it is evident that if the speed of a Fe changed within wide limits, all the other factors remaining Enit. there will be a very considerable loss by either of these sode of regulating, unless the relative connexiont of the motor tares can be changed. This can be done by putting the two is socrics where low speed is desired, and in parallel where the is to be increased. This method was tried in the early days iceric traction at Richmond, and discarded, but it has been again uing and is now the ptandard method of regulation in ordinary wher comic Roughly epeaking, when the ear is ctartod the pher cotinects the two motors in scries with an external resistfermencuts out the external resistance, then breaks the circuit, manmects the two motors in parallel. The external resistance yr preod increstes. By this method a considerable mange of Finetained at a fair efficiency. The controller (fige, 11) consists z rotatima ving on it a number of copper segments so arranged fines bogr on them eonnexions are made between stationary thereparienced from the burning of the eegments and fingers. prat ofring on breaking the circuit, but this has been to a CI maremetic by using magnetic blow-outs at the point of by Breall ing the circuit take phace in the magnetic a peversing lever on the controllers separate from andie, and interlocking with the controller 80 that
mitugi be moved except when the controller is in

When it is deaired to run trains of carm and to accelerate them rapidly, it is sometimes necessary to have more than one car equipped with motors. In this case all the motors must be controlled from one point, and a number of ingeniou device bave been evolved to accomplish such " multiple control." In seneral, each ear has its own controller, and all the controllers are operated by electric power from switches on each platiorm of any of the motor cars.

A motor and controlling syatem desfgned to save and utilize the power produced by a car running down an ineline has heen developed and is termed the "regenerative system." A car running over a line having heavy grades must have sufficient Regwormenergy given to it to overcome its frictional resistsnce to motion and also to Jift the weight of car and load from the bottom to top of each up-grade. On the return trip, the car "coasts" or runs down the grade without the consumption of current, but is restrained from attaining too high a speed by the brakes, thus wasting the energy existing by reason of the position of the car.
With the regenerative system the motors are catiacd to act as dynamos which are driven by the motion of the car axlea when descending a grade, and, as they are connected to the line by the trolley or contacting device, the current thus generated is fod to the line and may assist other cars climbing grades at some other peint on the system. The delivery of electrical energy also puts a resistance on the car axles and produces a braking effect which almost automatically fixes the car speed. If the speed be too high, the excessive current generated will tend to retard the car and reduce its velocity, while if too low the small current produced will set up but litzic opposition to motion and the car will accelcra te.

Obviously; series motors cannot be used for this service. The motors have shunt fielda, and their speed is varied by varying the field strength. Motors of this type are larger, more costiy and slightly lese efficient than series machines, so that a regenerative system has no place on roads that have a fairly level contour. When, however, the grades are frequent and excessive, the power saved more than counterbalances these factors, and the sybtem may prove a valuable one for such service.
For tramcars of ordinary sizes hand-brakes are used, these being generally spindie brakes. with leverage enough to handle the comparatively heavy cars. When the size and speed of the car increases, however, these hand-brakes do not give Brakes sufficient control, and power hrakes have to be adopted. Of these there are several forms that have proved buccessful in practice. The one most extensively used in electric milways is the air-brake. which is similar in its mechanical operation to the air-brake used on stcam railways. The compressed air required for the operation of the brake is obtained by means of an air-pump driven by an electric motor, the circuit of which is controlied by a switch actuated by the pressure of the air in the receiving tank. When this pressure rises to a predetermined value, the device acts and interrupts the supfly of current to the motor, which is thus stopped. When the prcssure falls below a determined minimum the device operatea in the opposite direction, and the motor and pump start. Of electric brakes there are several varjeties. One type consists of two iron disks, one keyed on the axle but capable of moving along it a short distarce axially, and the other held firmily on the frame of the truck. By means of a coil, set in a recess of annular form turned in the face of the fixed disk, the disks are magnetized transversely, and are drawn together with greater or less pressure, dependent on the amount of current that is allowed to pass through the coil. It is customary to arrange the current connexions in this form of electric brake so that when the handle of the controller is turned beyond the stopping position the current is cut off from the source of supply, and the motor running as a dynamo lumishes the current to work the brake.

The magnetic track-brake, which is sometimes used on tramway cars, consists of a pair of stecl shoes, suspended from the truck frame and hanging near and over the rail, a steel yoke connecting the two shoes together. On this yolee is mound a heavy magnetizing coil which. when energized, strongly magnctizes the two steel shoes and causes them to draw against and adhere to the track. Bracing links connect these track shoes with brake shoes on the wheel rims, and the drag of the track ahoes thus applics pressure also to the whed shoes. The downward pull of the track shoes gives a greater pressure of the wheels against the track than that due to the weight of the car, and the aliding or "skidding " of wheels, with the consequent production of flats, is avoided. A further braking effect comes from the use of the motors as dynamos, driven by the motion of the car, to eupply current to the brake magnetizing coils. This thereforc is one of the most cffective brabes that has been devised. It has, however, not been very extensively used owing to its high cost and difficultics that arise from the track shoes running so close to the rails that any uneven places-frogs, switches, crossings and the likemay rub against them and give a braking effect at times when the car is accelerating or running. A pair of shoes is applied on both sides of the car, one pair being hung over either rail.

Another method of braking is by arrangiog the connexions cf the two motors mot that one acts a dynamo driven by the motion
of the car and supplies current to the other, which works as a motor, tending to turn the wheels in the direction opposite to that in which the car is moving. The production of current by the one motor and the reverse cffort of the other give a powerful braking effect. The proper connexions are made by constructing the controllers with contacts additional to those required for motor control, which connect the machines in the desired manner when the controller handle is moved round past the " off "position.
Automatic brakes are always preferable to hand-brakes even though they cost much more, because the energy required to propel an ordinary tramcar is from 10 to 25% more with hand than with automatic brakes. The cause is the constant pressure of the brake shoes of a hand brake against the wheed rims, the shoes being 80 held by the operator to avoid having too long a hand movement in applying the brake. The maximum pressure possible for any brake should be about go \% of the weight of the car on the braked whecls. Less than this amount will give an inefficient brake; more will produce sliding or "skidding" of the wheels, producing "flats" on thern, and also causing loss of retarding effect.

Of the numerous accessories necessary in the operation of electric railways one of the most important is the trolley. For an overhead Acowseorkes $\begin{aligned} & \text { system this consists in general of a metallic rod or tube } \\ & \text { mounted upon the top of the car and pressed upward }\end{aligned}$ against the trolley wire by springs. At the upper end of this tralley pole is generally placed a bronze wheel which runs along the under surface of the wire. On the continent of Europe considerable use has been made of bow-trolieys, which consist of light metallic bow-shaped structures, sustained in place by springs and ruaning along on the under side of the wire against which they rub. The designs patented for trolieys are almost innumerable. Besides the trolleys, cars are ordinarily equippod with switches which are used to break the troliey circuit, with fuses or automatic circuit-breakers, with electric lamps, with lightning arresters, and with the necessary car wiring. The fuses or automatic circuitbreakers guard against an excess of current being passed through the motors, and when they are fitted the ordinary platform switch can be dispensed with. These automatic breakers can be set for any desired current.

The question of the generation and the distribution of the current belongs to this article only in so far as electric traction Oeveration has introduced peculiaritics in the type of apparatus of carreth. of the methods of its use. In a continuous current constant potential the current is generated at an approximately different systems. As the foad is apt to fluctuate, except in large stations, within wide Jimits, the macbinery must be designed to stand the most severe usage. The engines are more massive than wouid be necessary for constant loads, and the dynamos must be built to stand sudden overloads without destructive sparking; usually, indeed, they are considerably nver-compounded, not so much for the sake of raising the voltage as to strengthen the field and prevent sparking on overload. When a number of machines are to be run in parallel-as is usually the case-they are provided with "equalizing" switchcs, which scrve to throw the scries fields in parallel. As a result, if one of the machines tends to increase its armature current beyond the proper amount, the current in the series fields does not increase with it, but retains its normal proportion. The armature reaction and resistance fall of potential, in this machine, would both tend in increase, thereby decreasing its armature potential, and therefore its current would return to its proper value. From the dynamos the current from each machine goes through an ammeter and automatic circuit-breaker to the main "omaibus" bars, then through the station ammeter to the feeder "omnibus" bars, then through ammeters and circuit-breakers to the feed-cahles. As a rule, watt-meters are provided to measure the output of the station, and, if an overbead system is being supplied, lightning arresters are installed. Where continuous carrents are used to operate cars at considerable distances from the gencrating stations, "boosters " are used. These are series-wound dynamos driven at a constant speed, through which is passed the current that is to feed the distant section of the line. Usually the characteristic of the booster is so calculated that the amount by which it raises the voltage for a given current just equals the fall of potential in the feeding-line for the same current. The result is that the potential at the end of the line will be the same as that at the station. The question of economy, as between putting in additional copper and wasting energy in the booster, is casily calculated; the advantage is more and more on the side inf the latier as the distance increases and the car service becomes more infrequent. It is necessary to the satisfactory operation of a system that the variations of voltage should not be too great, so boosters sometimes become a practical necessity, irrespective of the question of economy.

Accumulators are frequently installed in power tations to prevent the heavy load fuctuations which arise from starting and stopping of cars and ascending or descending grades. The generators give demand is leas than that delivered by the generstors. the expess current goes iato the storage battery, and whea tho lood is greater
than the power from the generators the additional current required comes from the battery. The generators, engines and boilers may thus be proportioned for the average instead of the maximum load requirements, and the sizes of these units are thereby reduced.
As traction systems have been combined and extended, the area of operation of many of the companies has grown so that a number of direct-current stations are used for a single system. The limit of distance to which electric energy can be economically supplied at the comparatively low voltages employed is not great, and the advantage of having one or two large stations to supply system, in place of a number of smaller ones, is evident. This fact has led to the use of high-potential altemating currents for the distribution of energy, the voltage being reduced at the points of consumption, and in most cases changed to a continuous current by rotary converters. If alternating currents are used for the car motors, the eoonomical distribution of energy is greatly simplified. the rotary converters being eliminated and their first cost and losses and expense of operation saved. The expense of operating sub-stations containing rotary converters is necessarily large, and the capital outlay required for them is often greater than for the generating station.

As a rule, the cars used for electric traction have varied but slightly from the type of tramway car prevalent in different localitios The tendency, however, has been in increase their size. For eleceric railway work, as distinguished from tramway work, the cars generaliy follow the pattern that is standard on Arnerican steam Iines. The trucks used for electric cars are made of steel, with heavy axles and suspension hars for carrying the electric motors. For smaller vehicles, a single four-wheel truck is used, the wheel base being limited by the curvature of the track, but not as a rule exceeding $7 \frac{1}{\frac{1}{2}} \mathrm{ft}$. For the longer and heavier cars, two fourwheeled bogie trucks are employed. If two motors are used on a double-truck car, and if the grades on the road are very heavy, the trucks are made on the " maximum traction"" pattern, in which one pair of wheels in each truck is of smaller diameter than the other and the greater part of the weight of the car is on the larger motordriven wheels. For very large high-speed cars, trucks are used of practically the same type and weight as are employed on steam railways. (See also Tramway.)
(L. DU.)

TRACY, ANTOINE LOUIS CLAUDE DESTUTT, COMTE DE (1754-1836), French philosopher, son of a distinguished soldier, was born in Bourbonnais on the 2oth of July 1754. He belonged to a nohle family of Scotch descent, tracingits origin to Walter Stutt. who in 1420 accompanied the earls of Buchan and Douglas to the court of France, and whose family afterwards rose to be counts of Tracy. He was educated at home and at the university of Strassburg, where he was chiefly noted for his athletic skill. He went into the army, and when the Revolution broke took an active part in the provincial assembly of Bourbonnais. He was elected a deputy of the nobility to the states-general, where he sat alongside of his friend La Fayette. In the spring of 1792 he received the rank of martchal de camp in command of the cavalry in the army of the north; hut the influence of the extremists becoming predominant he took indefinite leave of absence, and settled at Auteuil, where, with Condorcet and Cabanis, he devoted himself to scientific studies. Under the Reign of Terror he was arrested and imprisoned for nearly a year, during which be studied Condillac and Locke, and ahandoned the natural sciences for philosophy. On the motion of Cabanis he was named associate of the Institute in the class of the moral and political sciences. He soon began to attract attention by the memoires which he read befote his colleaguespapers which formed the first dralt of his comprehensive work on ideology. The society of "ideologists " at Auteuil embraced, besides Cabanis and Tracy, Constantin François de Chasseboeuf, Comte de Volney and Dominique Joseph Garat (1749-1833), professor in the National Institute. Under the empire he was a member of the senate, but took little part in its deliberations, Under the Restoration he became a peer of France, but protested against the reactionary spirit of the government, and remained in opposilion. In 1808 he was elected a member of the French Academy in place of Cabaxis, and in 1832 he was also named a member of the Academy of Moral Sciences on its rcorganization. Ile appeared, however, only once at its conferences, owing to his age and to disappointment at the comparative Jailure of his work. He died at Paris on the 9 th of March 1836 .

[^14]principhes of Canditiac to their last oppacquactei, boing in full agreement with the materialistic views of Cabanis, though the attention of the latter was devoted more to the physiological, that of Tracy to the paychological or "ideological" side of man. His ideology, tho franky stated, formed "a part of soology." or, as we should say', of biolagy. To think is to foel. The four faculties into which he divides the conscious life-perception, memory, judgment, willare all varieties of sensation. Perception is sensation caused by a present affection of the external extremities of the nerves: memory - memation caused, in the absence of present excitation, by dis. positions of the nerves which are the reault of past experiences; judg; meat is the perception of relations between sensations, and is itself a species of sensation, because if we are aware of the sensations we must be aware also of the relations between them; will he identifies with the feeling α d desire, and therefore includes it as a variety of memation. It is eary to mee that auch conclumions ignose importatht dietinctions, and are, indsed, to a large extent an abuse of language. As a psychoiogist de Tracy deserves credit for his distinction bet ween active and passive touch, which developed into the theory of the muscular sense. His account of the notion of external existence, as derived, not from pure senmation, but from the experience of accion on the one hand and resistance on the ot ber, may be compared with the account of Bain and later psychologiats.
His chief works are Eltments d'idtologic (18:7-1818; 2nd cd., 18241825), in which he presented the complete statement of his carlier monographs: Consmentoire sur l'esprit des Lois de Momlesquies (I806: 5 th ed. 1828; Eng. trans., President Jeffermon. 1811); Essai ano k gtxic ef les oworgges de Nonicsquien (1808). Sce histories of philosophy, especially F. Picavet, Les Jdeologues chs. v. and vi. (Paris, 189 I), and La Philosophie de Biran (Académic dee sci. mor. et pol. 1889); G. H. Lewes, Hist. of Phil.

TRACY, BENJAMIN PRANKLN ($1830-$), American Lawyer and soldier, was born in Owego, New York, on the 26th of April 1830. He was educated at the Owego academy, was admitted to the bar in 1851 , was district-attorney of Tioga coanty in 1853-1859, and was a member of the state Assembly in 1862 . In 1862 he organized the sogt h and the 137th regiments of New York Volunteer Infantry and (Aug. 28) was made colonel of the former. In September 1864 he became calonel of the 127tb United States Colored Infantry; in 1864-1865 was in command of the prison camp at Elmira, New York, and in March 1865 was breveted brigadier-general of volunteers. He received a Congressional medal of honour in 1895 for gallantry at the Wilderness in May 1864. He was United States districtaltomey for the eastern district of New York in 1866-1873, and an associate judge of the New York court of appeals in 188 r 1882. In 1889-1893 he was secretary of the navy ia the cabinet of President Benjamin Harrison, and then resumed the practice of law in New York City. He was chairman of the commission which draited the charter for Greater New York, and in 1897 was defeated as Republican candidate for mayor of the city. In I 899 he was counsel for Venezucla before the Anglo-Venezuelan boundary arbitration commission in Paris.

TRADE (O. Eng. trod, footstep, from tredan, to tread; in M. Eng the forms tred, trod and trade appear, the last in the sense of 2 beaten track), originally a term meaning track or course, and so surviving in "trade.wind" (q.v.), a wind which always blows in one course; hence a way of life, business or cccupation, and, specifically, the handicraft in which a man has been trained and which be makes his means of livelihood, or the mercantile business which he carries on for profit, as opposed to the liberal arts or professions. A further development of meaning mokes the word synonymous with commerce, comprehending every species of exchange or dealing in commodities.

Ser Comnence; Balance or Trade; Frab Trade; Proticcton: Takiffs: Trade Organization: and also the sections dealing with trade and commerce under the various countries.

TLADE, DOARD OR. The greater part of sucb supervision of commerce and industry as exists in the United Kingdom is ererciged by the "Committee of Privy Council for Trade " or, es it is usually called, the board of trade. As early as the 14th century councils and commissions had been formed from time to time to advise parliament in matters of trade, but it was not ti: the middle of the 17th century, under the Commonwealth, thet any department of a permanent character was attempted. Cenarmell's policy in this respect was cantinued nader the

Restoration, and in 2660 a committee of the privy council was appointed for the purpose of obtaining information as to the imports and exports of the country and improving trade. A few years later anoiher committee of the council was appointed to act 25 intermediaries between the crown and the colonies, or foreign plantations, as they were then called. This foint commission of trade and plantations was abolished in 1675, and it was not until twenty years later that it was revived under William ILI. Amang the chief abjects set before this board were the inquiry into trade obstacles and the employment of the poor; the state of the silver currency wus also a subject on which Jolna Locke, its secretary, lost no time in making representations to the government. Locke's retirement in 1700 removed any chance of the board of trade advocating mone colightened opinions on commercial subjects than those generally held. It had only a small share in making the constitutions of the American colonies, as only the Carolinas, Pennsylvania, Georgia and Nova Scotia were formed after the reign of Charles IL; and in 1760 a secretary of state for the colonies was appointed, to whom the control drifted away. In 1780 Burke made bis celehrated attack on the pullic oflices, which resulted in the abolition of the board. In 1786, however, another permanent committee of the privy council was formed by onder in council, and with one or two small exceptions the legal constitution of the board of trade is still regulated by that order. Under it all the principal officers of state, including the first lords of the treasury and admiralty, the secretaries of state, and certain members of the privy council, among whom was the archbishop of Canterbury, obtained seats at the board ex offcio; and tea unofficial members, including several eminent statesmen, were also piaced on the committec. The duties of the revived boand were made the same as they were in the beginning of the century, but the growth of commerce necessarily threw new administrative dutics upon it. The board of trade thus became a mere name, the president being practically the secretary of state for trade, and the vicepresident became, in . 1867, a parliamentary secretary, with similar duties to those of in parliamentary under-secretary of state. At present, besides the president, who has usually a seat in the cabinct,' and mbose salary is $£ .5000$ y year, there is a parliamentary secretary with a salary of firioo, a permanent secretary (salary $£ 5500$, rising to f_{1800}), and four assistant secretaries (each with a salary of $[1200$) for the harbour, marine, commercial, labour and alatistical, and railway departments. There are also other important officiats in charge of different departments, as mentioned below.

1. The Commercial, Laboup and Statissical Department is the real remains of the original board of trade, as it combines the eharge of the trade statistics with the gencral consultative duties with which King Charies II.'s board was originally entrusted. The statistical work includes compiling abstracts, memoranda, tables and charts relating to the trade and industrial conditions of the United Kingdom, the colonies and forcign countries, the supervision of the trade accounts. the preparation of monthly and annual accounts of shipping and navigation. statistics as to labour, cotton, emipration and foreign and colonial customs, tariffs and resulations. The commercial intelligence department collects and disseminates accurate information on gencral commercial questions, and collects and exhibits samples of goods of forelgn origin competing with simflar British goods It keeps a register of Britsh firms who may desire to roccive confidential information relative to their respective trades and supplies that information free of charge. The labour atatisnics published by the department are exhaustive, dealing with hours of labour, the state of the labour market, the condition of the working clases and the prices of commodities; annual reports are also

[^15]published of trade unions, of strikes and lock-outs and other important subjects. The staff comprises a controller-general (salary f1200 rising to $£ 1500$), a deputy controller-general and labour commissioner, a principal for statistics, a principal of the commercial department, an assistant labour commissioner, a chief staff officer for commercial intelligence, a chief labour correspondent, a special inquiry officer, and a stafl of investigators and labour correspondents. The department also edits the Board of Trade Journal (started in 1886), giving items of commercial information, trade and tariff notices and various periodical retums. There are also branches which deal with the census of production, labour exchanges, \&c.
2. The Railway Department was originally constituted in 1840 , and performs multifarious duties under various railway acts, including the inspection of railways before they are open, inquiries into accidents, reports on proposed railways, approval of by laws, appointment of arbitrators in disputes, as well as many duties under private railway acts. The inspection of tramways, their by-laws and "provisional orders" are all dealt with here, as are similar orders relating to gas and water schemes and to electric lighting. There is a special office of inspection of railways with a chief inspecting officer (salary (1400) and an assistant staff. Patents, designs and trade marks are now dealt with by the patent office under the charge of a controller-general (salary fi8oo), which is subordinate to the railway department, and copyright, art unions and industrial exhibitions are also among the matters dealt with by the department. Annual returns with regard to its business are published by the department.
3. The Morine Department was created a separate branch of the board of trade in 1850, about which time many new and important marine questions came under the board of trade, such, for example, as the survey of passenger steamers, the compulsory examination of masters and mates, the establishment of shipping offices for the engagement and discharge of seamen. Further work fell to the marine department by the act of 1853 , which gave it the control of lighthouse funds. and to a certain extent of pilotage. The consolidating Merchant Shipping Act of 1854 and subsequent legislation so much inereased the department that in 1866 it was divided into three, viz. the present marine department, which deals with ships and seamen, the harbour department and the finance department.
4. The Harbour Department was, as stated above, a branch of the marine department until 8866 , so far as it is connected with the physical adjuncts of navigation, but variousother matters have since been added, c.t. the charge of the foreshores belonging to the crown, formerly managed by the commissioners of woods and forests. and the protection of navigable harbours and channels, long under the control of the admiralty, provisional orders under the General Pier and Harbour Acts and under the Pilotage Acts, and the settle ment of by-laws made by harbour authorities. Control over the lighthouse funds of the lighthouse authorities of the United Kingdom, the registry of British ships, wreck, salvage and quarantine are all among the matters dealt with by this department, which also has charge of the standards department for weights and measures.
5. The Finance Department was, like the harbour department, separated in 1866 from the marine department. The accounts of all the branches of the board of trade are in its charge, including the subordinate offices. It also deals with the accounts of harbours, lighthouses and mercantile marine, offices, and of the merchant seamen's fund, and with the consuls' accounts for disabled seamen abroad. Savings banks and seamen's money orders are also among the accounts and payments with which it is charged, and outside these marine matters it has to prepare for parliament the life insurance companies' accounts and to take charge of the bankruptcy estate accounts.
6. The Bankruptcy Depariment was established, under the 7ist soction of the Bankruptcy Act 1883 . At its head is the inspectorgeneral in bankruptey (salary $£_{1200) \text {. An account of the duties }}$ of the department will be found under Bankruptey.
7. The Fisheries Department.-By an act of 1886 the powers of the home office over salmon and other fisheries were transferred to the board of trade, and a small department was consequently created charged with the care of those industrics. But by an act of 1903 (3 Ed. VII. c. 31) the powers and duties of the board of trade under this department were 1 ransferred to the board of agriculture and fisheries.
TRADE MARKR. A "trade mark" may be defined as a symbol, consisting in general of a picture, a label or a word or words, applied or attached to the goods of a trader for the purpose of distinguishing them from the similar goods of other traders, and of identifying them as his goorls, or as those of his sucecssors, in the business in which they are produced or put forwar sale. A trade mark differs in its legal character bosh from patent and from a copyright. In the case of a trade mart
of the trade mark is entitled to prevent is such utse of his mark by other traders as will lead purchasers to buy, as his, goods which are not his. On the other hand, patent-right and copyright protect the substance of the article; and any unauthorized manufacture of it in the former case, or reproduction of it in the latter, while the protection lasts, is prohibited. The grounds, however, on which trade marks, patent-right and copyright obtain legal recognition, though they are to a certain extent dissimilar, have a common element. Patent-right and copyright rest upon the view that the results of the original labour of the inventor and the author ought, as a matter alike of justice and of public policy, to be secured against piracy; while, as regards theproprietor of a trade mark, the question of originality does not arise so long as the mark is sufficiently distinctive really to identify his goods and, for purposes of registration, to satisfy the Trade Marks Acts. In truth, the registration of a trade mark is ralher the recognition of a fact than the grant of a privilege (Kerly and Underhay, Trade Marks Act, 1905, p. 3). The law as to trade marks as well as that as to patents or copyright is based on a man's rights to have guaranteed to him the profit derivable from his own property. "No man," said James (L.J.), in the case of the Singer Manufacturing Co. v. Loog (i880, 18 Ch. D. 412)," is entitled to present his goods as being the goods of another man, and no man is permitted to use any mark, sign or symbol, device or means, whereby, without making a ditect false representation himself to a purchaser from lim, he crables such purchaser to tell a lie or to make a false representation to somebody cise who is the ultimate customer."
I. Brilish Trade Marks before the Registration Acts.-The existing law in the United Kingdom cannot be properly appreciated unless the subject is approached in the first instance from the historical side. English trade-mark law practically commences with the first years of the 1gth century. The use of trade marks was indeed of far earlier date, for in 1742 we find Lord Hardwicke declaring that "every particular trader had some particular mark os stamp." But in the very case in which Lord Hardwicke made that statement (Blanchard v. Hill, 2 Alkyns, 484) be refused to protect the "Great Mogul " stamp on cards, being apparently under the influence of the notion that the legal recognition of trade marks would invelve the creation of a new species of monopoly; and with regard to a case decided in the reign of James I. (Southern v. How, Cro Jac. 471), in which a clothier had applied the mark of another clothier to his own inferior goods, the reports leave it doubtful whether the action was brought by the owner of the mark, or by a defrauded customer, in which latter event it would be merely an ordinary action for deceit. But although the actual law of trade marks cannot be traced farther back than the beginning of the 19th century, Lord Eldon repeatedly granted injunctions to restrain one trader from fraudulently "passing off" his goods as those of another, and thus laid a foundation on which the present law has been built up. The stages through which its development passed possess considerable interest, and may be described quite briefly. The first reported case-apart from the doublful one in the time of James I. above referred to-in which the intringement of a trade mark (a label on blacking) was restrained by the court of chancery was Day v. Day (Eden on Injuntions, ed. 1821, p. 314) in 1816. In 1824 the common law courts, in the case of Sykes v. Sykes (3 B. \& C, 541), estahlished the right of the owner of an infringed trade mark to damages In 1833 it was held by the court of king's bench that it was not necessary for the plaintiff in an infringement action to prove that the defendant's goods were inferior to his, or that he had suffered special damage by the infringement. Later this became a mie of equity as well as of law. On anotber point, however the prictire of the couris of common law and equity diverged for a thene. It was decifled by Lord Coltenham in 1838 , in the leadine case of stillingron v. Fo工 (3 Mylne \&: Craig 338), that an property and the right to protection are in the devf gef. adopted to designate the goods to be, ", Ahthough the defendant had acted without which is manufactured and whole world to manufacture
nemained 50 till the fusion of Imw and equity by the Judicature Acts.

The eflect of Lord Cottenham's decision in the case of MillingLow v. Fox clearly wais to recognize a right of property in trade marks, and the action for infringement became a familiar species of litigation. Under the then existing law, however, the plaintif in such actions generally found himself in a very disadvaneageous and unsatisfactory position. The basis of his action was the reputed association between his trade mark and his goods. This association the defendant-often a person of no meanswould deny, and it had to be proved as a fact by witnesses at a cost to the plaintiff which there was little hope of his recovering. Moreover, even it the trade mark proprictor sccured a judgment in his favour, it carried with it no immunity from the obligation of again establishing his right to the mark against any subsequent infringer who chose to dispute it. Thus-to take an interesting and pertinent illustration given in Kerly on Trade Marks (p. 6) -the case of Rodgers v Nowill (22 L. J. Cb. 404) lasted five years and cost the plaintif (2311, without giving him in the end any security that he might not have to incur equal delay and expense in proving his title to the exclusive use of the trade mark in proceeding against other defendants. To complete this statcment of the shortcomings of the law before the Merchandise Marks Act 1862, it should be noted that the infringement of trade marks-except in cascs where the seller of spuriously marked goods cheated the buyer-was not a criminal offence. The remedies obviously needed were the estahlishment of a egstem of registration of trade marks which would simplify the proof of a plaintiff's title, and the creation of a criminal law of false marking. The first step in the accomplishment of the latter object was taken by the Merchandise Marks Act 1862.
II. Under the Registration Acts.-Provision was first made Ior the registration of trade marks by the Trade Marks Registration Act 1875 . That statute made registration in the register of trade marks which it established prima facie evidence of the right of the registered proprictor to the exclusive use of the trade mark in connexion with goods of the class for which it was registered and used, and enacted that it should after the expiration of five years be conclusive proof of such right, provided that the proprietor of the mark remained the owner of the goodwill of the business in which it was used. This provision was carried as to the act of 1883 (s. 76). The act also provided that a person should not be entitled to institute any proceeding to prevent the infringement of trade mark until it was registered, or (a heter statutory modification) until, in the case of a mark in use before the passing of the act of 1875 , registration of the mark as a trade mark had been refused. The act of 1875 was a considerable success, but no provision was made under it for the registration of words unless they either were old marks or were registered in combination with one or more of the "essential perticulars " prescribed by the act, such as a distinctive device, beading. mark, label or ticket. These limitations excluded from registration most of the trade marks ordinariiy in use.

The Patents Designs and Trade Marks Act 1883 remedied this defect besides altering the law in other important respects. The act of 1883 was amcaded in 1888 on the recommendation of a committee presided over by Lord Herschell. Neither the act of 1875 nor those of 1883 and 1888 altered the common law definition of a trade mark, nor contained any definition of the term. The description in the acts of what was registrable as a trade mark led to much litigation, and the interpretations of the judges left commercial men dissatisfied on three points: (1) the number of good and valuable trade marks which were not registrable; (2) that on allowing registration the patent offer insiated on disclaimers which hampered the owner in obeafoing protection in the colonics and foreign countries; (3) that there was no effective period of limitation to attacks on

- Fartier reference may be made, in regard to the subject of trade marta before the Registration Acts 1883-1888, to an admirahle ieprodoctory chaprer in Kerly on Trade Marks, and also to the report of tive Merchatadte Marks Committee 1862, and the annual reports of the conmistioners and the comptroller-general of patents from yoze to t8t4 (and report).
registered trade marks, because though registration for five years was declared conclusive by s. 76 of the act of 1883 , the powers of the court to rectify the register could be invoked even after the lapse of the five years (re Gesietner's Trade Mark, 1907, 2 Ch. 478). In re-enacting and enlarging the provisions of the act of 1875 the act of 1883 laid down certain essential particulars of one at least whereof a trade mark must consist to be registrable. These particulars will he considered later in dealing with the present law. The act of 1883 first provided for "word marks," and included among them "a lancy word or words not in common use " [s. 64, (1) (c)].

The expression "fancy word," used in the act of 1883, gave rise to considerable difference of opinion. It was interpreted by the court of appeal as equivalent to "obviously meaningless as applied to the article in question," or "ohviously nondescriptive." In accordance with this interpretation, the words "gem" for guns, "melrose" for a hair restorer, "electric" for velveteen, and "washerine" for a soap were all held not to be registrable. On the recommendation, however, in 1887, of a committee appointed by the board of trade, and presided over by Lord Herschell, the erpression "invented word " was substituted for" fancy word " by the act of 1888.

In 1005 and 1907 the legislation as to trade marks was amended and remodelled. A bill was introduced in 1905 at the instance of the London Chamber of Commerce, and after consideration by a select committee became the Trade Marks Act 1905. This act repeals the bulk of the provisions of the Patents, \&c., Acts of 1883 and 1888 with respect to trade marks,' and embodies them with amendments (to be noticed later) in a separate statute. The only portions of the earlier acts left standing with respect to trade marks were ss. 83 and 84 (as amended in 1885 and 1888) with reference to the administ ration in the patent office of the law as to trade marks ($1905,8.74$); ss. 103 and 104 of the act of 1883 (as amended in 1885) relating to registration of trade marks, both as cnacted in the acts of 1883 and 1885 and as applied by orders in council, are to be read as applying to trade marks registrable under the act of 1905 (s. 65). The sections of the Patents Acts of 1883,1885 and 1888, thus preserved as to trade marks, were repealed by the Patents and Designs Act 1907. Sections 62 seq . of this act replace ss. 83 and 84 of the act of 1883 , and retain the administration of trade mark law in the patent office; and s. 91 replaces ss. 103 and 104 of the act of 1883 as to international and colonial arrangements for mutual protection (inter alia) of trade marks. According to the rule laid down by the Interpretation Act 1889 the references in the act of 1905 to the acts of $1883,8 \mathrm{kc}$., are to be read as applying to the above-stated sections of the act of 1907.

The act of 1905 differs from the preceding acts in containing a definition of trade mark for the purposes of the act unless the context otherwise requires; viz that it "shall mean a mark used or proposed to be used upon or in connexion with goods for the purposeof indicating that they are the goode of the proprietor of such mark by virtue of manufacture, election, certification, dealing, with or offering for sale": and " mark" is defined as iscluding" a devioe, brand, heading, label. name, signature. word, letter, numeral or any combination thereof" (s. 3). The act, modifying to the extent indicated in italics the acts of 1883 and 1888. prescribea (8 . 9) that a trade mark to be registrable musk contain or consist of at least one of the following essential particulare:-

1. The name of a compony, individual or firm represented in a special or particular manner (under the act of 1883 if has been held that the name must be in the nomjnative case, and that ordinary printing is not representation in a particular manner).
2. The signature of the applicant for registration or some predecessor in his business, It is not clear that this includes descriptive trading styles.
3. An invented word or words.

4 A word or worda having no direct reference to the character or quality of the goods, and not being according to its ordinary sigwijcation a gergraphical name or a swrname.
5. Any other distinetive mark; buf a name. signature, or wood or words other than such as fall within the descriptions in the abore faragraphs I. 2. 3 and 4, shall not, except by order of the board of trade or of the court, be deemed a distinctive mark. By distinctive is meant Tadapted to distinguish the goods of the proprictor of the trade mark from those of other persons": and "in determining whether a trade mark is 30 ndapted the tribunal may in the case of a trade mark in actual use take into consideration the extent to which such
ser has rendered such trade mark in fact distinctive for the goods n respect of which it is registered or proposed to be registered. Vhere the mark is limited to specified colours, that fact may be aken into account in deciding whether the mark is distinctive (s .10). Chere are certain special rules as to cotton marks.
Trade marks containing the essential particulars are not regisrable if they contain any matter which would by reason of its being alculated to deceive or otherwise be disentitled to protection in a ourt of justice or would be contrary to law or morality, or any candalous design (s. t2). (See Eno v. Dunn, 1890 ! 5 App. Cas. 93, and the " Motricine" case, r907, 2 Ch . 435.) Registration of he, same matter as a trade mark under the act of 1905 and as a esign under the Patents and Designs Act (1907) is possible (re T.S. Playing Card Co.'s Applic., 1907. W. N. 251).

Old marks are registrable, i.e. any special or distinctive word or pords, letter, numeral or combination of letters or humerals, used y the applicant or his predecessors in business before the $14^{\text {th }}$ of bugust 1875, subject to the qualification that it has " continued to e used either in its original form or with additions or alterations ot substantially affecting the same down to the date of the applicaion for registration" (s. 9). In the case of new marks, but not of Id marks, a trade mark is not registrable except by order of the ourt in respect of any goods or description of goods which is dentical with a mark already on the register with respect to such oods or description of goods, or so nearly resembles such registered Most controversy arose under the acts of 1883 and 1888 as to he meaning of the phrase "invented word "preserved in the act of 1905. An invented word need not be wholly meaningless, nor is it disqualified because "words may 0 be an "invented word," although the latter part of it was Sinhalese term meaning "estate," and there were estates n Ceylon having names ending with "wattee" from which ca came; and in a leading case on the construction of the lauses under consideration (Eastman Co.s Tfade Mark, L. Rep.
898, A. C. 571), the word " solio" was held to be registrable as a rade mark for photographic printing paper under both clauses, lthough it was objected that "solio" was equivalent to " sunio." The expression "calculated to deceive" has been considered by he courts in very many cases. It is not merely or chiefly the retailer r dealer who has to be kept in view when the question of the likelirood of deception is under consideration. The courts have regard Iso, and mainly, to the ultimate purchaser whom the trade mark nay reach, and careless or unvary persons are considered as well as
hose who are careful and intelligent. The judge's eye is the ultimate est as to the degree of resemblance that is ealculated to deceive, Ithough expert evidence on the point is admissible. "Savonol" or soap (J. C. \& J. Field Lid. v. Wagel Syndicale Lid.. 1900. 17 2.P.C. 266)," tachytype" for typographical and composing nachines (in re Linatype Co.'s A pplicalion, 1000, 17 R.P.C. 380), ield not invented-" uneeda" ($=$ you need a) in re National iscuil Co. (1902;1Ch. 783): " absorbine " lor an absorbent preparaion (Christy Ef Co. v. Tipper ©o Son, 1g05, $2 t$ R.P.C. 97, 775); bioscope" (Warwick Trading Co. v. Urban, 1904, 21 R.P.C. 240); cyclostyle" (re Gestetner's Trade Mark, 1907, 2 Ch .478) ; and cl. in e Kodak and Trade Marks (1903, 20 R.P.C. 337).
Subsections (3) and (4), it should be noted, are independent: he former depls with newly-coined words, the latter deals with he existing words of the English language, or of other languages ikely to he known to the public. A word which is really "invented nay be registered, whether it is descriptlve or not. An old word sed in a new sense is not invented (Hommel v. Baxer \&f Co., 1904, I R.P.C. 576). The exact scope of clause (5) as to other distinctive narks has not been much discussed by the courts. Registration ras allowed of the word "apollinaris "as a distinctive mark for the nineral waters of the applicants, on an undertaking to apply it only o water from the Neuenahr spring or district in re Apolinaras Trade Mfark, 1907, 2 Ch. 178). Under prior legislation the mark had veen refused registration as being a geographical name (re A pallimaris -o,'s Trade Mark, 1891, 2 Ch, 186).
Identical marks (except old marks) may not be registered in the same goods, or goods of the same description, for two different persons (s. 19); and where teveral applicants make rival claims to identical marks the registrar may refuse to register until their rights have been deternined by the court or settled by agreement in manr T approved y the registrar, or, on appeal, by the board of trade (s. N). In the ase of honest concurrent user or of other special ciriumstances naking it proper so to do, the court may permit the in istration of he same mark or of nearly identical marks for the satue goods by nore than one owner, subject to such conditions or limitations, if
tny, as to mode or place of use or ocherwise as the court may think t right to impose (s. 21).
New provisions were made in 1905 as to what are called "associa ed erade marks." Where registration is sought for a mark so closely esembling a mark of the applicant already on the
sod by any one but the applicant, the registration of th
may be conditional on entering both marks as associated trade marks (s. 24). This section applies only to marks closely resembling one already on the register for the same goods or description of goods, and has nothing to do with identical Assoclated marks (Brmingham Small Arms Co.'s Application, 1907 , Marts. 2 Ch. 396).
In the case of combined trade marks provision is made for resistering as separate trade marks the part in which the applicant has exclusive rights, and as associated marks trade marks of which the exclusive portion forms a part (s. 25).

A series of trade marks of the same owner may be registered on one registration as associated marks (5, 26).

Provision is made for allowing the registration of marks used upon or in connexion with goods by an association (or person) which undertakes the examination of goods in respect stagandof origin, material, mode of manulacture, quality, basaan accuracy, or other characieristic, and certifies the result Marks of the examination by marks used upon or in connexion with the goods. These marks cannot be registered unless the board of trade consider their registration of public advantage. Their registration is not conditional on the association or person being a trader or having goodwill in connexion with the examination or certification. The registration gives tie association or person the rights of the owner of a registered trade mark, except that assignment and transmission needs permission of the board of trade (5.62).

In respect of cotton piece-goods, marks consisting of a line heading alone or a word alone are not registrable, and no word or line heading is treated as distinctive in respect of such goods. In coffor respect of cotton yarn the same rule applies with respect Marks. any exclusive right to the use of a word, letter, numeral, line, heading or combination thereof [s. 64 (10)].

By s. 68, which is a re-enactment of s. 105 of the Patents, \&c., Act, 1883 , it is made illegal for any person without the authority of the king to use the royal arms in any trade in such a manner as to create the beliel that he has authority so to do; Use of a similar provision is embodied in the Merchandise Royal Marks Act 1898 of the Isle of Man.

The central register of trade marks is kept at the Patent Office Southampton Buildings, London, and is under the charge of the comptroller-general of patents, designs and trade marks, Registries who is appointed by and acts under the superintendcuce
of the board of trade, and has a deputymo registrar of trade marks. There is a leranch registry at Manchester, whose chief officer is the keeper of cotton marks, which deals with all applications for the registration of trade marks for cotton goods falling within classes 23, 24, 25 in schedule 3 of the Trade Marks Rules 1906. The registry has been long established, but was not recognized by statute till 1905. Records are kept and are open to public inspection of all applications made since 1875, whether granted or refused.

There is a branch registry at Shefield containing the marks for metal goods ("Sheffield marks ") registered by persons carrying on business in or within six miles of Hallamshire. The care of this register is vested in the Cutlers' Company, who are substituted for the comptroller as to registration of "Shefficld marks" (s.63). Applications made to the company are notified to the registrar. and may not be proceeded with if he objects. Any person aggrieved by the registrar's ohjection may appeal to the court. Applications made to the registrar for metal marks are notified to the Cutlers' Company: Persons aggrieved by the decision of the Cutlers' Company have an appeal to the courts (s. 64).

In 1906 fourteen applications were made at the head registry which were all dealt with by the Cutlers' Company. That company, by arrangement made with the sanction of the treasury, retam all fees taken at Sheffield with respect to registration up to 6400 , and half of the fees received in excess of that amount (Parl. Pap., 1907. No. 164, p. 9).

A trade mark must be registered in respect of particular soods or classes of goods (s.8), and the classification in force is scheduled to the Trade Marks Rules 1906 (R. \& O., 1906, No. 233). Procedure. Doubts as to the class to which the goods in question mocedure
belong are settled by the registrar. The procedure for obtaining registration is regulated by the act of 1905 and the rules above mentioned. The registrar has power to refuse applications or accept them absolutely or subject to conditions, amendments and
modifications ($\mathrm{s}, 12$). His discretion is not absolute, but sulbinct to the provisions of the act (re Bimingham Smoll Ak Applicalion, 1907, 2 rcasons, and his decision is subject to appeat.
"New marks" may not be, far of the court for any goods or
with marks already on the rif with marks already on the th deceive (s. 19).
same description is same deseription
tory cinssificat
customers, knowing his mark in connexion with one set, and seeing : upon the others, would be likely to suppose that it was used upon sbem also to indicate that they were his goods?" Wine and spirits, leer, and even aperient drinks and baking powder, have been held io be "goods of the same description." When a trade mark contains (i) parts not separately registercd as trade marks or (2) matter common to the trade or otherwise of a non-distinctive character, the registrar, or the board of trade or the court, in deciding whether the mark shall be entered or retained on the register, may impose as a condition that the owner shall disclaim all right to exclusive use of any part or parts of such trade mark or of all or any portion of soch matter to the exclusive use whereof they deem him not to be entitled, or make any other disclaimer which they consider needfal to define his rights under the registration (s. 15). Marks calculated to deceive are not entitled to protection (Eno v. Dmnn, 1890, 15 App. Cas. 250).

Applications as accepted art advertised; the advertisements state the conditions, if any, imposed on acceptance (s. I3). Notice of opposition to the registration of a trade mark may be given under 5. If of the act of $\mathbf{1 9 0 5}$ (which replaces 8.69 of the act of 1883). The registrar alter consideration decides whether the opposition is avll or ill founded. His decision is subject to appeal to the High Court or by consent of the parties to the board of trade [1905, s. 14 (5)]. In 1906 there were 251 notices of opposition, of which 51 were beard. There were 4 appeals to the board of trade, all referred by the board to the court unders. 59 of the act.

There may be added to any one or more of the "essential particulars" above enumerated any letters, words or figures, or a combina. cion of these. But the right to the exclusive use of the added matter must be disclaimed. A man is not required, however, to disclaim his own mame, or trade name, or that of his place of business, if the rame appears in the mark. The number of applications to register trafle marks in 1884 was 7104. and the number of marks registered 4533. In Igo6 the corresponding Ggures were If.414 and 4731 ; These Gigures included 153 applications made to the Cutlers' Company at Sheffeld (Parl. Pap., 1907, 164, 24th report).

The register may be corrected on the request of the registered owner of a trade mark as to errors or changes of address in the name

Corncelas

 astarers the oflies fingmer. (1.33).A registered trade mark may be altered or added to in matters not substantially affecting its identity (5,34). Thus a firm on becoming a limited company has been allowed to add the word " limited" to its name upon a registered mark, but no alteration will be permitted in regard to any" essential particular." In the above cases the corrections or alterations are made by the negistrar subject to appeal to the board of trade (ss. 32, 34). A registered prade mark may be taken off by order of the court on the application of a person aggrieved, on the ground that it was registered without a. botha fide intention to use it in connexion with a particular class of roods, and that there has not been any such bona fide user, or that there has been no such bona fide user during the five years preceding the application. Non-user may be excused if proved to be owing to epocial circumstances and not to any intention not to use or to abandon the use of the mark (Ω 37). (See re Hare's Trade Mark, 1907. 24 R.P.C. 263).

The regitter may be rectified by order of the court on the application of any person agerieved, or in the case of fraud in regisuration or transmission of the mark on the application of the registrat. The powers of rectification include correcting or espunging wrong entries, supplying errors and omissions and defects is 35).

Resistration is effective for 14 years but is renewahle (s. 28). The registration if valid gives the proprietor the exclusive right to the use of the mark on or in connexion with the goods in respect of which it is registered (1905, s., 39). This rule is subject to the following qualifications. (a) Where two or more persons ate registered owners sarme or substantially the same mark in respect of the same to one of them shall as against any other of them have any
(b) Kepistration of a trade mark does
interferc with or restrain the user by on with goods upon by himsell or his trade mark from a yrel propnetor, nilar mark for
mark registraa years from ng of the act stion shall obtained by This pro-
getting rid of long registered marks by proceedings to rectify the register.

Kegistered trade marks are assignable and transmissible only with the goodwill of the business concerned in the goods for which they are registered, and are determinable with the goodwilt (s. 22). Associated marks are assignable and transmissible only as a whole and not separately (s. 27). The owner of a registered mark may assign the right to use his registered mark in any British possession or protectorate or foreign country in connexion with any goods for which it is registered, together with the goodwill of the business therein of such goods (s. 22). Provision is made for apportioning marks where the goodwill of a business by dissolution of partwership or otherwise does not pass to a single euccessor (s .23).

The assignments, \&c, on proof of tit le, are reconded on the register (s. 33). It is a condition precedent to an action for the infringement of a new trade mark that the plaintiff should be the registered proprietor of the mark at the time when the action comes on for hearing. This last provision does not apply to an action for passing-off " (vide infra). In actions for infringement, evidence of passing off, or that the infringing mark is calculated to deceive, is not necessiry. The court decides on the probability of deception by inspecting and comparing the marks (Hennessy v. Keaing, 1907. 24 R.P.C. 485).
In the case of an old mark in use belore the 14th of August 1875 proceedings may be taken if registration under the act of 1907 has been refused (s. 42).

The right to a trade mark lapses if the mark ceases to be distinctive and becomes publici juris; if it is separated from the goodwill (a trade mark can only be assigned with the goodwill); if the mark is applied by the trader to spurious goods (as where boxes of cigaret tes were so labelled, in conformity with an alleged custom of the trade, as to indicate that they were of Russian manulacture, which was not the fact; or when the mark is abandoned); (temporary disuse, however, is not abandonment unless the mark bas in the meantime become associated with the goods of another trader); or where. as in the " linoleum " case (7 Ch. D. 834) it has become the name of the goods, and 80 merely descriptive; or after fourteen years where registration is not renewed. In dealing with a claim for infringement the court must admit evidence of the usages of trade as to the get-up of the goods for which the mark is registered, and of any trade marks or get-up legitimately used with such goods by other persons (9. 43).

The registrar has an uncontrolled discretion in the administration of the act, except in those cases in which an appeal is given from his acts or refusals to the court or the board of trade
(ss. 53, 54). In cases of difficulty he consults the law Appeate Ac. officers (5. 56).

Actions or other proceedings with relation to trade marks, so far as they are for the court, may be brought in the High Court of Justice in England or Ireland and in the Court of Session in Scotland (sse 3, 69). In the case of marlos rexistered on application at the Manchester branch, the chancery court of Lancaster has concurrent jurisdiction with the 1 ligh Court (s, 71). Actions for infringement of a trade mark are not within the jurisdiction of the county court (Bow v. IIart, 1905. 1 K.B. 592). An annual report is made by the comptroller-general of patents, \&c., as to proceedings with reference to trade marks.
III. "Passing-off" and Trade Name.-A trader has generally, besides his trade mark, numerous other symbols, which he usjes as indicia of his goods, e.g. the name of title under which be himself trades, the name under which his goods are known and sold, badges of property which are tenmed "trade name," and the distinctive "get-up" of the goods as they appear in the market. These symbols enjoy the protection of the law, under certain conditions, equally with trade marks. No trader is entitled to "pass of " his goods as those of another, and \mathbf{I} he infringes this rule he is liable to an action for an injunction and damages, and these rights are preserved. by the Trade Marks Act 1905 (5.45). The right to be protected against "passing-off" is restricted to goods of the same description as those upon which the trader uses the "get-up," \&c., imitated. Even if the "pass-ing-off " is done innocently it will be restrained (Millinglon v. Fox, 1838,3 Myine and Craig, 338). This case is described as not one of the use of a properly descriptive name, but rather a case of the same class as those in which a fancy or invented name is used (Cellular Clotking Co. v. Maxton, 1899, App. Cas. 326, 341). Although the first purchaser is not deceived, still if the article delivered to him bears words or marks such that it is "calculated to deceive " purchaser from him, the use of them is illegal.

To this general rule there are several exceptions:-

1. No monopoly is allowed in names that are merely descriptive. But words which prima facie are descriptive, such as "camel-hair belting." for belting made of camel-hair (Reddoway v. Banham.

1896, App. Cas 199), or "Stone Ales" for ales brewed at Stone (Montgonery v. Thompson, 1891, App. Cas. 217), may be shown to have soquired by long use a "secondary distinctive meaning." and, in fact, to mean the goods of a particular trader. And where a defendant is not selling the genuine goods indicated by the name. as where the composition of the goods is a secret, even if the name might otherwise be taken as merely that of the goods, he cannot rely on the defence that the name is descriptive (Birmingham Vincgar Co. v. Powell, 1897, App. Cas. 710; the "Yorkshire Relish Case'). If, however, the primary meaning of the word is simple and well known, it is extremely difficult to establish a secondary meaning exclusive of the primary one (Hommel v. Bauer \mathcal{E} Co., 1905. 22 R.P.C. 43: "Haematogen," a preparation for forming blood, secondary meaning not established; cf. Fells v. Hedley \&f Co.. 1904.21 R.P.C. 91; "Naphtha soap." secondary meaning not established; Wurm v. Webster of Girling, 1904, 2I R.P.C. 373; "White Viennese Band," secondary meaning not established; Cellular Clothing Co. v. Maxton, 1899, A.C. 326." cellular" as applied to cloth, secondary meaning not established). But although a name may not, owing to the fact that it consists of well-known or descriptive words, be inherently entitled to protection, a distinctive scroll or device, in which it is embodied, may be so. Thus, in a case (Weingarten Brothers v. Bayer Ef Co., 1905, 21 Times L.R. 418 ; and see 19 Times L.R. 604) which sharply divided judicial opinion in England, the defendants were restrained from selling corsets in boxes bearing the name" Erect Form Corsets" scrolled thereon by the plaintifis in a distinctive manner. No monopoly, of course, could be claimed in the words, but it was otherwise with the scroll. The use of a fancy name "iron oxide tablets" has been restrained where it was found likely to cause deception as being used to supersede in the market certain well-known "Iron Ox "tablets (Iron Ox Remedy Co. v. Coooperative Wholesale Society Lid., 1g07, 24 R.P.C. 425). (2) A trader cannot be prevented from trading under his own name, if he is using it honestly (bona fide) ; even though from its similarity to the name of another trader-even one previously well-establishedit may injure the business of the latter (Burgess v. Burgess, 1853. 3 De Gex, M. \& G. 896; Turton v. Turton, 1889, 42 Ch. D. 128 ; Dunlop Prewmatic Tyre Co. v. Durlop Motor Co., 1907. App. Cas. 430). This right is recognized by the Trade Marks Act 1905, s. 44, which provides that regist ration of a trade mark under the act whall not interfere with any bona fide use by any person of his own name or place of business or that of any of his predecessors in business. But if a trader has never carried on such a business on his own account or in partnership with others, he cannot, by promoting and registering a joint-stock company with a title of which his name forms part, conferon the company rherights which he as an individual possesses in the use of his name (Fine Colton Spinners. ©fc., Associafion Lid. and John Cask \& Sons Ldd v. Harwood Cash \&' Co. Lid., 1907, 2 Ch. 184). If a trader's own name has, before he entered the trade, become the trade name of some other person's goods, he would probably not be allowed to use it without taking steps to prevent deception. This rule does not debar him from using "any bona fide description of the character or quality of his goods (1905, s. 44). A name can become universally known as referring to the goods of a particular maker, i.e. as having a sccondary meaning. This does not give exclusive rights to use of the name, but only to prevent other firms from using the goods so as to pass of their roods as those of the person whose name is in question (Joscph Rodgers \& Sons Lid. v. Hearnshaw, 1906, 23 R.P.C. 348)
It is provided by the Companies Act I862 (s. 20), that no company shall be registered under a name identical with that by which a subsisting company is already registered, or so nearly resembling t as to be calculated to doceive, unless the subsisting company is in process of being wound up and consents to such registration; and provision is also made for a change of the name of any company which, through inadvertence or otherwise, is registered under a name coming within the statutory prohibition. It is to be observed (cf. Buckeley, Companies Acts, 8th ed. p. 27) that (a) the Companies Act $\mathbf{t} 862$ applies only to the case of taking the name of a subsisting company already registered, and not to a case where a new company proposes to register in the name of, or in a name closely resembling, the name of an old-established company which is not regisiered, or of a firm or individual trader; (b) that as soon as the new company is registered the act ccases to apply: and (c) that the act forbids registration irrespectively of the question whether the business proposed to be carried on by the new company is the same as that of the subsisting company or not. But the provisions of the Companies Act on this subject are merely supplemental to the common law, and any company trading in the United Kingdom may rest rain persons from registering a new companyto carry on a inval business under a name dientical with or so similar as to be calculated to deceive, and a company already registered under such a name may be restrained from carrying on a rival business under it. The right to interfere depends not upon fraud but upon the tendency of the cimilarity to cause confusion, deception or mistake (Fine Cotton Spinners case above cited; Birmingham Small Arms Co. v. Webb, 1907, 24 R.P.C. 27 ; Stap Cyale Co. v. Frankenbwrgs, 1907. 24 R.P.C. 405: 16 Raddatay \& Co., 1907, 24 R.P.C. 203). In wh procecdings evidence is admissible to show how the existing
company has used the name, and what, by reason of it connecting that name with its goods, the public have come to attribute to it (Daimler Motor Car Co. v. London Daimler Co., 1907. 24 R.P.C. 379). A new company will not be allowed to talice the whole name of a subsisting company, even altbough that name is of a descriptive character (Manchester Brewery Co. Ld. v. North Chestire and Manchester Breuery Co. Lud., 1899. App. Cas. 83).

The purchaser of the goodwill of a business has the right to une the trade name under which the business is known, and to reatrain others from using it or such imitations of it as may mislead the public. But he is not entitied by the use Reptr of of the trade name to make the vendor liable, uader Asatraven the doctrine of holding out." for debts of the business incurred after the sale. And if the vendor of the goodwill gave his mame to the business, he cannot (in the aboence of any restrictive condition in the agreement for sule) be prevented from beginning to trade in his own name again, unless it be shown that in so doing he is attempting to deceive the public into the beliel that he is still the owner of the old business. In construing the words "calculated to deceive " (5,20) the courts will adopt principles clogely analogous to those applicable in "passing of "cases in which the question is raised whether a trade name or the description or get-up of a particular class of goods is or is not likely to deceive (British Vackum Cleaner Co. v. New Vacuum Cleaner Co., 1907, 2 Ch. $312 ;$ Aeralors Lid. v. Tollett, 1902, 2 Ch. 3t9, 324). When the names of the two companies contain terms of common ordinary meaning descriptive of an article, s. 20 will be applicd less readily than where the words said to create the confusion are of the character of lancy words relating rather to the maker than the article (Vacuum Cleaner Case).
IV. Merchandise Marks.-The first attempt to make the falsification of trade marks a criminal offence was in the Merchandise Marks Act 1862 (25 \& 26 Vict. c. 88). That statute provided that the forgery of a trade mark with intent to defraud, and the false application of a trade mark to goods with the like intent, should be misdemeanours, but left upon the prosecutor the burden of establishing the fraudulent intent. The act contained no provision for summary prosecutions, and did not provide for the scizure of falsely-marked goods on importation from abroad. The international convention for the protection of industrial property, made at Paris in 1883, to which Great Britain acceded in 1884, contalns a provision that all goods illegally bearing a trade mark or trade name may be seized on importation into those states of the union where the mark or name has a right to legal protection, and that the seizure shall he effected at the request of either the proper public department or of the interested party, pursuant to the internal legislation of each country. The law had to be amended in order to carry out this article in the convention, and the Merchandise Marks Act 1887 was passed to effectuate this ohject and generally to make better provision for the protection of merchandise. It was subsequently amended in 1891 and 1894. The effect of the provisions of these statutes may be brielly stated. Any person is guilty of an offence, punishable on indictment or summery conviction by fine or imprisonment, who does any of the five following acts, unless he proves as regards the first four of them that he acted without intent to defraud (there is a special defence to No. v. which is noted below): (i). forges any trade mark, or makes, disposes of, or has in his possession for such purpose any dic or instrument; (ii.) falsely applies any trade mark or a colourable imitation of any trade mark to goods; (iii.) applies any false trade descriplicn to goods; (iv.) causes any of the above offences to be committed; (v.) sells or exposes for sale, or has in his possession for sale, trade or manu-
 - R.P.C. 663).

Trade description

 ther indication as co hould be observed),the material of the goods, or as to their being subject to an existing patent, privilcge or coppright; conventional or customary descriptions lawfully in use in August 1887 to indicato Trad that the gooda are of a particular class or method of Descroctow manufacture are allowed to the continued; but if they contain the name of a place and are calculated to mislad as 10 the real place of production, the name of the laster must be added. The test of what is a trade description depends upon the understanding of the trade and not on scientific correctness (Fcosiry v. Cripps, 1go6, I K.B. 16).

Un a prosecution for any of these offences, there is a power to torfeit the things found although no one is convicted. If the offender is indicead (it is in his opsion to be tried in Ihis way) the punishment is fine and imprisonment, the latter not to exceed two years. On sammary conviction the pumishment is not to exceed. for a first offence. four munths' imprisonment, with or without hard labour, and a tine of £20: and for any subsequent offence six months' imprisenment and a fine of 6.50 . The importation is forbuden of goods by means of or in relation to which an offence against the acts has been committed, and also of all poods of foreign manufacture bearing any name or trade name being or purporting 10 be that of a mannfacturer or trader within the country, unless it be accom. panied by a definite indication of the country where the goods were made or produced. There are also special provisions with regard to the marking f^{f} catch-cases. The commissioners of customs have power to make general orders for carrying out the Merchandise Marks Acts. (See Regulations of the Ist of December 1887. Stat. R. \& Revised, 1904, vol. viii. tit. Merchandise Marks.) Proserutions may be unfertaken by the board of trade in cases appearing to affect the general interests of the country or of a section of the community, or of a trade, subject to regulations made on the $215 t$ of May $189 z$; and the board of ayriculture and fisheries has a like moner in the rase of the produce of agricu!rure, hortivulture and fisberies fact of 1894 . 5. I ; Board of Agriculture and Fisheries Act 1903. I (8); see the regulations of the 27th of October 1804 , Stat. R. O. Revised. vol. viii. tit. Merchandise Marks.]. Under the Sale of Food and Drugs Act 1809 , and the Butter and Margarine Act 19a7, the importation, except in containers showing their character, of margarine, maryarine cheese. adulterated or innpoverished butter, inilk-blended butter or condensed, separated or akimmed milk, is penalized, and it is provided that the commissinners of custons, in accordance with directions given by the treasury after consultation with the boand of ayriculture, shall take such samples of consigmments of imported articles of food as may be necessary for the enforcement of the law.
Y. Internalienel Aprangements:-(The Trade Marks Act 1905 applies to the Britist Islands.) By the international convenLion for the protection of industrial property (sce Patents), which was signed at Paris in $\mathbf{t 8 3}$, the signatory states (others twice since acceded) agreed that the subjects or citizens of each seate should, in all the other states, enjoy as regards trade marks and trade names the advantages that their respective laws then granted, or should thereafter grant, to their own subjects or citizens. So far as Great Britain is concerned the provisions made for camying out this convention are contained in 5.65 of the Trade Marks Act 1005 and in 5. 96 of the Patents and Designs Act to07. ${ }^{1}$ The effect of that section is to confer on an applicant for the protection of a trade mark in one of the other contracting states a priosity over other applieants for registration in the United Kingdoun during the space of four months. The section fors not, however, exempt the applicant from the conditions and formalities incumbent on ordinary applicants for registration in Creat Britain; nor does the fact thet the foreign application has been successful of itself give the applicant a righe to have his mark accepled for registration Veraer the Convention of Madrid of the tath of April 1801 (to which Greal Britain is not a party) a trade mark may be Eteftered as the result of a single application in the countri"s of all the signatory powers. Besides the Eenecal international ettuenthos there are alco particular arrangements between f the 24th ignatory it have Prave 4a昷

Forcign State.	Date of Order in Council.
Belgium.	June 26, 1884.
Brazil	June 26, 1884.
Cuba	January 12, 1905.
Denmark (including the Farve Ishands)	November 20,18
Dotninican Republic.	October 31, 1890.
Ecuador.	May 16, 1893.
France ${ }^{\text {Cermany }}$	June 26, 1884.
Grecce	October 15, 1894.
Honduras.	September 26,1 yos.
Italy.	June 26, 1884.
Japan	Uctober 7, 1899.
Mexico . Netherlands	May 28, 1889.
Netherlands (East Indian Colonjes).	June 26, 1884. November 17, 1888.
- " (Curacoa and Strinam)	May 17, 1890.
Norway (and Sweden) . . .	July 9, 1885-
Paraguay - .	
Portugal. Rumania	June 26, 188.4.
Servia	Mugust 5,1892 June 26,1884,
Spain .	June 26,1884 .
Swerlen (and Norway).	July 9, 1885.
Switzerland	June 26, 188.
Tunis	fune 26.1884.
U'rited States . . . Uruguay	Tuly 12, 1887. ${ }^{2}$

All these orders in council are printed in the Statutory Rules and Orders Revised (ed. tgo4), vol. ix., under the title "Patents, \&c." By orders in council, made under the provisions of the lioreign Jurisdiction Acts, penalties have lseen imposed on British subjects committing offences against the Patents, \&c., Act 188,3-1888 (naw represented by the Trade Marks Act 1905 , and the Patents and Desagns Act 1007) and the orders in council issued thereunder, and the Merchandise Marks Act 1887: China and Corea (1904), Egypt (1899). Morocco (1889). Muscat (1904). Ottoman Empire (1899) Persia, Persian coast and istands (1889-1901), Siam (1906) and Zanzitar (1906).

By s. 91 of the Patents and Designs Act $190 ;{ }^{\circ}$ and s. 65 of the Trade Marks Act 1905, the king is empowered by order in council to apply the provisions of s.9: above mentioned, with such variations or additions as may seem fitt 'o any British possession. The following is a list of the orders in council that have been issued:-

The orders in council up to 1903 are printed in the Stalutory Rules and Orders Revised (ed. 1904), vol. ix...under the title "Patents, \&er." It should be added thal the protection of the Merchandise Marks Act 1887. extends ta any trade mark which. either with or without registration. is proterted bv Liw in any Brilish possession or foreign srate to which the provisions of s. 103 of the act of 1883 nr s .91 of the act of $\$ 907$ are, under order in council, for the time being applicable.
A forcizner suing in the Uniled Kingdom for infringement of a trade mark, or for "passing off," is in the same position as a subject.
VI. Colonial and Foreign Trade Mark Lasos.-The British colunies gencrally follow the model ol the English Trade Marks Acts (1883-1888).
Ausfrolid.-Legislation on trade marks is one of the subjetts which the Commonwealth of Australia Constitution Aet 10,0 (s $0, \mathrm{pt} . \mathrm{v} .5_{1}$, x viii.) places within the exclusive competence of the Federal Parliament. By the Commonwealth Trade Marks Act 1005, 5. 20, provision is made for pegistration of trade marks throughout the Commonwealth, and subject to this act and other Commonwealth legislation the common law of Fingland as to trade marks is applicd throughout the Commonwealith. Prtor to this act most of the states had their own trade mark law (New South Wales, No. 19 of 1900 ; Tasmania, No. 9 of 1893; Victoria, No. 1146, 1800; Western Australia, Nos. 7

* A treaty was also concluded between Great Bratain and the United States on the 24th of October 1877. for the protection of trede marks.

This sertion re-enacts the provisions of ss. 103, 104 of the Patents, Act 1883.
of 1884, 5 of $\mathbf{1 8 8 6}, 4$ of $\mathbf{1 8 9 4}$). But the state Trade Marks Acts, with certain savings, cease to apply to trade marks (rgos, 3. 6).
The Commonwealth act contains certain novel provisions:
2. As to a Commonwealth trade mark to be applied to all goods included in or specified by a resolution passed by both houses, that in their opinion the conditions as to the remuneration of in connexion with their manulacture are fair and reasonable The mark consists in a device or label bearing the words "Austraitinn Labour Conditions.

As to workers' trade marks intended to protect the prodecits of any individual Australian worker or association of such . other than primary products of agricultural or pastoral indusirics (s. 74). Sections 115,116 of the act contain provisions for international and intercolonial arrangements as to protection of trade marks based on Es. 103, 104 of the act of 1883. By the Commerce Trade Descriptions Act, No. 16 of 1905 , the import into and export from Australia of falsely marked goods is prohibited.
In Canada the law as to trade marks (Rev. Stats. C. 63) and merchandise marks (c. 41 of 1888) has been regulated by Dominion acts, similar to English statute law. Neve Zealond has an act of 1889. The Hong-Kong ordinance, No. 18 of 1898 , is a typical instance of an ordinance in a Crown colony [see also Ceylon, No. 9 of 1906, Jamaica (laws 17 of 1888 and 6 of $\mathbf{x 8 8 9}$) \}. In the Bahomas a trade marks law was passed on the 20 th of May 1go6, based on the imperial act of 1905. In the Sirails Sellements there is no registration of trade marks, but the common law as to " passing off" is applied.

Uniled Slates.-Provision for the registration of trade marks in the United States was first made by an act of Congress of 1870; but that enactment was subscquently declared invalid by the Supreme Court (U.S. v. Steffens 1879 , 100 U.S. 82), on the ground that the constitution of the United States did not authorize legislation by Congress on the subject of trade marks, except such as had been actually used in commerce with foreign nations or with the Indian tribes. Congress legislated again on the subject in 1881 (act of the 3rd of March 1881, Revised Stats. U.S. ss. 4937-4947). The act of 1881 was repealed by an act of the 20th of February 1905 (s. 592), which, as modified by an act of the 4th of May 1906, now regulates the subject. A trade mark may be registered by the owner if he is domiciled within the United States, including all territory under the junsdiction and control of the United States (s. 29), or resides or is located in any foreign country which by treaty, convention or law affords similar privileges to citizens of the United States (s. 1).

The right of persons domiciled in the United States was in 1906 extended to owners of trade marks who have a factory in the United States, so lar as concerns the registration, \&c., of trade marks used in the products of the factory (1906, s. 3). To obtain registration the owner of the mark (whether firm, corpora tion, association or natural person) must file in the patent office an application (a) specifying the name, domicile, location and citizenship of the applicant; (b) stating the class of merchandise and the particular description of goods in the class to which the mart is appropriated; ${ }^{1}$ (c) annexing a drawing of the trade mark and as many specimens as may be required by the commissioner of patents; (d) giving a description of tbe trade mark (only when needed to express colours not shown in the drawing); and (e) specilying the mode in which the mark is applied and affixed to goods; ($)$ stating the time during which the m rk has been used (1906, c. 2081, s. 1).

The application must be accompanied hy a fee of $\$ 10$, and be aupported by a sworn declaration verifying the ownership and the drawing and description and stating that no one else lins a right to use the mark, nor one so like it as might be calculated to deceive, and that the mark is in use in commerce amont the several states or with foreign countrics or with Indian tribes (1905 C. 592, 8. 2).

Where the applicant resides or is located in a foreign country he must also show that the mark is registered In the foreign country, or that application has been made to register it there. Registralits on behal of loreign registranta is not made until foreign regist racion is proved nor unless application for United States registratios is

By the law of 1906 (s. 21) the commisioner of patentis is directed to establish clasees of merchandice.
made within four months of the application abroad (1905, c. 59 , ss 2, 4).

The United States policy is to require registration of all trade marks unless they (a) consist of or comprise scandalous or immoral matter; (b) consist of or comprise the flag or insignia of the United States, or of any state or municipality, or of any foreign nation; (c) are identical with another known or registered trade mark owned and used by another and appropriated to merchandise of the same description, or so nearly resenible such other marks as to be likely to cause confusion or mistake in the mind of the public or to deceive purchasers; (d) consist merely in the name of an individual, firm corporation or association, unless it is written, printed, impressed or woven in a particular or distinctive manner, or is associated with a portrait of the individual; (e) consist merely in words or devices descriptive of the goods with which they are used, or of the character or quality of such goods, or merely of a geographical name or term; (f) contain the portrait of a living individual unless his consent is evidenced by an instrument in writing.

Oid marks may be registered irrespective of the above rules, no proof that they have been actually and exclusively used as a trade mark of the applicant or his predecessors from whom be derived title in such commerce as aforesald for ten years before the 20th of April 1905. Applications made in proper form with the prescribed fee are at once examined in the patent office and if in order are gazetted to give opportunity for "interference.

Decisions of the examiners on applications or oppositions are subject to appeal to the cornmissioner of patents, and from him to the court of appeals for the District of Columbia (ss. 8,9). The general jurisdiction in trade mark cases is given to the Federal courts below the Supreme Court. which has power by certiorari to revicw the decisions of circuit courts of appeal upon such cases (ss. 17, 18). The maximum protection given by registration is twenty years The protection given to marks already registered in a foreign country lapses when the mark ceases to be protected in the forcign country (s. 12). Curtificates of registration are issued under the seal of the pateat office.

Provision is made to prevent importation of merchandise which copies or simulates the name of any domestic manufacture, manufacturer or trader, or of a manufacturer or trader located in a cauntry affording like privileges to the United States, or which copies or simulates the trade mark registered in the United States, or which bears names or marks calculated to create the belicf that it is made in the United States, or in any country other than the true country of origin. United States traders who seek protection can have their names and marks recorded and communicated to the customs department (s. 27). At any time during the six months prior to the expiry of the term of twenty years the registration may be renewed on the same terms and for a like period. The right to the use of any registered trade mark is assignable (with the goodwill of the business in which it is used) by an instrument in writing and provision is made for recording such instruments in the patent office (s. 10).
France-In France (laws of the 23rd of June 1857, and the 3rd of March 189o) trade marks are optional, but may be declared compulsory for certain specified articles by decrees in the form of administrative orders. The decrees regulating registration are of the 27th of February 1891 and the 17 th of December 1892. The following are considered trade marks: names of a distinctive character, appellations, emblems, imprints, stamps, seals, vignettes, .eliefs, letters, numbers, wrappers and every other sign serving to distinguish the products of a manufacture or the articles of a trade. A fixed fee of one franc is charged for entering the minute by registration (depot) of each mark, and making a copy thereof. exclusive of stamp and registration fees. By legislation of the 1st of August 1905 and the 11th of July 1906 provision is made for marking certain classes of commodities, mainly lood products, to prevent falsification and the sale of forcign products as French.

Germany.- Under the German trade mark law of the 12th of May 1894 any person whatsoever can acquire profection for a trade mark. and all foreigners in Germany are placed on an exactly equal footing witb Germans in the eycs of the law, solong as they have a domicile (Niederlassung) within the empire, i.e. a place of business or a residence whicb involves the payment of German taxes. The registration of a trade mark expires ipso faclo after ten years from its date, but may be renewed for a similar period. Germany acceded to the international convention on the ist of May 1903
In the Nehherlands (law of the 3oth of September seps) twe distinct forms of registration are in force: (a) registration memely for the Netherlands; (b) internatio
the states of the international union.

The following other foreign trade
Austria-Henfary, taw of 1800 (puh
January and in Budapest on the 6th of April
of the 30th of July 1895 , which ecastumit
of the 30th of July 1895 , which eeat
marks. Denmork (law of the 814
marks thenmark law
words or figure

of the 26th of February [9th of March] 1896). Switzerland (law of te 26 th of September 1890).

Aushortties. -Sebastian, Trade Marks (4th ed., London, 1899; 14 this work the Anerican cases are fully dealt with); Kerly, Trade Marks (London, 3 rd ed., 1908): Kerly and Underhay, Trade Marks Act roos (London. Igo6); Cartmell's Digest (London, 1876-1892); Jebastian, Digest (London: cases down to 1879): Gray, Merchamdise Marks Act (London, 1888); Saffard, Merchondise Marks (London, 1893). The reports of the Departmental Committee of 1887, and of the Select Committees of the House of Commons appointed in 1887 and 1890 to consider the law with regard to merchandise marks and false marks, and the annual Reports of the Comptroller-General, throw great light on both the history and the practical working of the law. For American law, see Browne, Treatise on Trade Marks (Boston, 1873): Cox. American Trade Mapk Cases (Cincinnati, 1871): Mastwal of Trade Mark Cases (Boston, 1881); Greelcy, Foreign Patents and Trade Marks (Washington, 1899); Paul, Law of Trade Marks (St. Paul, Minn., Igo3); and the rcports of the comraimioner of patents. As to foreign trade mark laws generally, set the following: Brifisk Parl. Papers; Reports relative to Legislation if Foneigw Couztries (1879; Cd. 2284, 2420); Reports from H.M.'s Repersenfatives Abroad, on Trade Marks, Laws and Regulations (1900: Cd. 104): Summaries of Forcign and Colonial Laws as to Merchandise Marks (1900 ; Cd. 358, p. 850 seq.).
(A.W.R.; W.F.C.)

TRADE ORGANIZATION. The development of commercial organization which attended the growth of trade and industry during the sith century assumed two distinct phases. In the first we see the creation of associations of persons engaged in trade and industry for the purpose of protecting their interests and of facilitating and fostering commercial relations. In the second, governments elaborate departmental organizations for the supervision of commerial matters, and utilize their consalar services as means of commercial intelligence and influence,

The associations belonging to the first category comprise three classes:-
a. Those which are themselves engaged in trade, like ordinary jount-stock companies, of which result from the combination of froms or individuals in the same or connected trades, for the purpose of facilitating or restricting production, limiting competition, regulating prices, \&c.
b. Thase which, without engaging in trade, aim at providing facilities for the transaction of commercial or financial operations. They chiefly take the form of exchanges, bourses, public sale rooms. \&c., such as the Baltic, Lloyd's, the Stock Exchange, the Corn and Coal Exchanges, the Commercial Sale Rooms.
c. Non-trading bodies, in the nature of public institutions, -hose objects are to protect the interests of trade.

When, at the close of the s 8th century and early in the 19 th, the power of the old trade gilds and corporations of merchants had been broken, both governments and commercial men soon realied that the ancient societies would not follow the commercial evolution, and that new organizations must be created to racet new requirements. Two systems were evolved, which, enta from their prototypes, are known as the British Framel and the French systems. In the former, trade sutbere organizations were left to develop themsclves in Their owa way, and in whatever direction they might think is. Fithout any official interference. In the latter, on the coverary, the government constituted itself the creator of trade ogranizations, which it incorporated into the administrative yyten of the country, and to which it gave an official status as andegral part of the machinery of the state. The former lequwa cbiefly into associations for the promotion and

conditioning establishments, port and dock works, tac. The British system obtains in the United Kingdom and the British colonics, in the United States and in Belgium, while the French has been adopted in most European countries, and in Japan.

I.-Great Britain and Colonies A.-Commercial Associations.

In the United Kingdom commercial associations arose with the growth of trade, without any assistance from the state and free from all government restriction or control. The first in point of date were the "commercial societies" which were formed, chiefly during the last quarter of the 18 th century, in Birmingham, Exeter, Halifan, Leeds, Liverpool and Manchester, and which exercised a not unimportant influence upon com mercial developments at the close of the 18 th and in the early years of the rgth centuries. The modern associations which superseded them divided themsclves into four classes, viz:-
a. Chambers of commerce and associations which aim at becoming representative of general commercial interests;
b. Associations or institutes which represent particular trades or branches of trades;
c. Trade protection societies, which look after the interests of retail as well as wholesale traders, and undertake ta supply them with information as to the standing and credit of firms, expose swindlers, collect dehts, \&c.; and
d. Non-representative associations rendering general commercial services.
a. Chambers of Commerce and Ceneral Associations.-Most of the chambers of commerce in the United Kingdom were formed during the latter half of the $19 t h$ century, although a few were in existence much earlier. The oldest British chamber is the Jersey chamber, which dates from 1768 . The Glasgow chamber was founded in 1783. Dubtin followed in 1785 . Edinburgh in 1786, Manchester in 1794 , Belfast in 1796. Birmingham in 1813. Newcastle-upon-Tyne in 1818, Liverpool in 1851 . Sheffield in 1857, \&c. The London chamber was the last of the chambers of impor tance to be established: it dates only from 1881 .

The London Chamber of Commerce, which has over 3000 menbers. is one of the most representative associations of its kind, and the organization adopted has been very effective in securing this. The chamber has been divided into trade sections, The London of which there are at present forty-four, and members caumber. specify the sections to which they desire to belong. Each section has a separate organization, and is presided over by a chairman elected by itself, who may be helped by an elected committce if found advisable. The general councit of the chamber confirms the election of chairmen of sections, and no action can be taken by the chamber on the recommendation of a section without authorization of the council. The chamber has placed itself in connexion with a number of mercantile associations which, whilst preserving their scparate organizations and their independence of action, have lound it advantageous to work in conjunction with it, either for general or for particular purposes, and to have a voice in its council. The more important of these are the Institute of Bankers, the Institute of Chartered Accountants, the Society of Accountants and Auditors, the General Ship Owners' Society, the General Produce Brokers' Association, the Federation of Grocers" Associations of the United Kingdom, the West India Committee, the Corn Trade Association, the United Planters' Association of Southern India, \&c.

Particular reference should also be made to the Liverpool charnber. which, as regards division into trade sections and co-operation with independent associations, works on similar lines to those of the londoa chamber. The Alrican trade section of the Liverpool chamber has been prominent The in conmexion with Alrican questions, and since its Liverpoor foundation in 1884 has been the leading voice ia all matters relating to West Africa.

The Association of Chambers of Commerce of the United Kingdom. which was lormed in 1860, contributed much to give chambers of commerce as a whole a national importance. This association, like the charnbers themselves, was of course Associatioa purely voluntary, and at its foundation only sixteen of Chasibern chambers decided to join it. The association is main- /farechambers decided to join it. The association is mainchambers. It has been instrumental in passing many usefulacts of parliament, and in otherwise influencing legistation upon commercial topics. The general meetings, which are held annually in March, in London, and at which delegates are present from all parts of the country, have come to be considered as a kind of parlia. ment of trade, and representatives of the Board of Trade, the general post office, and the foreign and colonial offices are generally in strendance. Sperial meetings take place in September, and are held in provincial towns on the invitation of the local chamber.

The association has limited it work to the United Kingdom, and has not taken advantage of the commercial development of the colonies to afford colonial intercsts an opportunity of voicing their nceds in the metropolis. To supply this need the London Chamber of Commerce has, from time to time, organized congresses of chambers of commerce of the empire. Some of these congresses have been held in the tolonies, the first being at Montreal in 1903.
The home organization of chambers of commerce is supplemented by a few British chambers which have been established in foreign Bridsh countries. These institutions are self-supporting, and not, Chambers or controlled by bome chambers. The British Chamber Abroed. of Commerce in Paris, which is the oldest of them, dates from I873, and wasoriginally established by British merchants in Paris for the delence of their own tradeinterests. lts scope soon extended, however, and it admitted to membership British firms trading with France although not resident in France, and incourse of time became reprcsentative of general British commerclal interests in the French markets. Other British chambers are to be found in Crenoa, Alexandria, Barcelona, Constantinople and St Petersburg. In Brussels an Anglo-American chamber jointly represents British and American interests. Several countries are represented in London by chambers of commerce, while the American Chamber (Liverpool),

Forchat

 Chambers is Exgland. of Commerce of the United Kingdom. The United States are represented inCommerce in Liverpool.

Commercial organization in the colonies is very much on the same footing as it is in the United Kingdom. The most representacolvent tive associations are the chambers of commerce, whose Cohentif constitution and functions are similar to those of the British chambers. In Canada the chambers, which are also sometimes called Boards of Trade, after the American custom, number over sixty, the most important being the Montreal and Toronto Boards of Trade and the Quebec Chamber of Commerce. The Canadian chambers have no association, but hold periodical conferences. There $1 \mathrm{~s}_{\text {, }}$ in addition, the Canadian Manufacturers' Association, with headquarters in Toronto and branches in all the provinces, which incorporates all the associations of manufacturers in the Dominion. The Australian chambers of commerce, which number some thirty, have joined into an associarion called the Creneral Council of the Chambers of Commerce of the Commonwealth of Australia. In New Zealand, South Africa, India and many British colonies there are chambers of commerce in all the more important towns.
b. Assoctations Representing Particular Trades.-Associations representative of particular trades are almost innumerable. The London General Shipowners' Society, the Liverpool Shipowners' Association, the North of England Shipowners and Steamship Owners' Associations may be mentioned as representative. The chambers of shipping and shipowners' associations joined forces in 1878 in order to establish the Chamber of Shipping of the United Kingdom, which does for them what the Association of Chambers of Commerce does for chambers of commerce. The Iron and Steel Institute affords a means of commumication between members of the iron and steel trades, while the British Iron Trade Association is ane of the most powerful. The nature of other associations is sufficiently indicated by their titles. In addition there are the Cotton Association, the Drapers' Chamber of Trade, the Fish Trade Association, the Sugar Refiners' Committee, various tea planters' associations, the Oil Seed Association, the Petroleum Delence Committee, the Mansion House Association on Railway and Camal Traffic, \&e.
c. Trade Protection Societies.-These seem to be, on the whole, more ancient bodies than chambers of commerce. In the early part of the 19th century they were already strongly organized, especially in the West Riding of Yorkshire. Outside of that district the Dublin Society was the most important. They number more than 100 throughout the United Kingdom.

The Manchester Guardian Society, which dates from 1826, occupies a position of special prominence in the Midlands, and may be taken as the model of such associations. Its objects are-the making of private inquities as to the respectability and credit of traders, the detection and exposure of swindlers; the collection of debts; the winding-up of insolvent estates; the issue of notices of bills of sale, judgments, bankruptcies, \&e.; and generally the improvement of laws and regulations affecting trade. The society has over 6000 members, and its usefulness may be gauged by the fact that it answers an average of 40,000 credit inquinics every year.

Trade protection societies formed themselves, as early as 1848 , into an association, which was at first an association of secretaries, hut in 1865 was transformed into an association of societies. The association issues quarterly joumal called the Trade Protection Jowrnat.

B -State Departmental Organizations

Although the British government allowed commercial orgamieations within its jurisdiction to grow independently of official
control, it does not follow thet it took no interest in the protection and promotion of British trade and the dissemination of commercial intelligence. As long ago as the reign of Charles II. the body which is now the British equivalent of what is known in most countries as the ministry of commerce, viz. the board of trade, was established. The commercial jurisdiction of the Board of Trade does not extend beyond the limits of the United Kingdom, but the Foreign Office, through the negotiation of commercial treaties and by means of the consular body, came into touch with international trade. With the development of the colonies, the colonial and India ofices also found themselves called upon to act, to a certain extent, as guardians of commercial rights and channcls for the dissemination of commercial intelligence. But when competition began to displace British goods from foreign markets, and when the British trader noticed the efforts which were being made by: foreign governments for the promotion of trade, he came to the conclusion that the British government was not doing anything for him.

Complaints were especially loud against the consuls, who were accused of systematically disregarding commercial interests, whilst their American, German, French and Belgian colleagues did not consider it below their dignity to take advantage

Consular of their position, in order to promote the trade of the Service. country they represented. British Consular Reports were also unlavourably compared with those issued by foreign consuls, notally the American. The result was that, in 1886, instructions were issuied to the consular service which, for the completeness and fairness with which they deal with the subject, have frequently been quoted as models which might advantageously be followed (see Parlia. mentary Paper, Commercial, No. 16, 1886). The preparation of consular reports, however, continued to be most unfayourably criticised and frequent instructions were issued by the foreign office in regard to them. The whole question was raised again in 1896 , when, as
the result of lengthy communications between the Foreign Office on the one hand, and the Association of Chambers of Commerce and the London chamber on the other, fresh instructions were sent to British consuls, reiterating the instructions of 1886.

The consular service has of late years been supplemented by the appointment of commercial attaches.

The pressure exercised by the chambers of commerce upon the government led to the appointment in 1897 of a departmental committee on the dissemination of commercial intelligence, which was charged with considering means of Commencold more adequately supplying traders with commercial Bramgrong information, of improving consular and colonial reports, Bramch of and with reporting on the advisability of appointing frada commercial agents to the colonies and establishing a com-
mercial intelligence office. The chief result of the committee's reoommendations was the establishment of the commercial intellivence branch of the Board of Trade. It publishes the Board of Trade Journal weekly. Attached to the branch is an advisory committec. composed of representatives of the various government deparments and of the Association of Chambers of Commerce.
The scope of the commercial intelligence branch was further increased, and its means of action strengthened, by the transfer of the Imperial Institute to the Board of Trade, which was effected in 1002 by the passing of a private act of parliament.
The self-governing colonies are represeated in London by agentageneral ($q . v$.), while the commercial interests of the crown colonies are in the hands of the crown agents for the colonies.

L.-Unted States of America A.-Commercial Associations.

American trade organizations have been developed mainly on the lines of the British system. Of the associations which come within the scope of this article, the most important are the chambers of commerce, which in certain cases ate callied hoards of trade. Theoretically there is a distinction between the tro, chambers of commerce being cntrusted with the protection of general commercial interests, especially in connexion with foreign trade, whilst boards of erade look after local commercial questions. But in practice the diference is of no as chambers of commerce lafie cognisance of loc
international trade matters, and the boands of tha himit the sphere of their activity to purely
The oldeat American comper hal
Claamber of Conmerce, which was,
by royal dharer ill

Was it catry into
exrend just and lawful commerce." It was the prototype of all the ot her chambers of commerce and boards of trade which have since been established in the United States, and which are sinid to exceed 1000 in number. American trade organirations are associated in a National Board of Trade, which corresponds to the Association of Chambers of Commerce of the United Kingdom. The oljects of this institution are to secure unity and harmony of action in reference to commercial questions, and to obtain, through its representative character. more satisfactory consideration of the matters which it brings under the notice either of the Federal government or of the local state administrations. The expenses of the National Board of Trade are defrayed out of a fund formed by the subscriptions of the various associations belonging to it. The United States has a number of ehambers of commerce establighed in foreign countries. The first institution of this kind was started so long ago as 1801, when the American Chamber of Commerce in Liverpool was established. This chamber is the only one represeating American commercial interests in the United Kingdom, there being no aseociation of this nature in London. The American Chamber of Commerce in Paris is one of the most active, important and representative forcign associations on the continent of Europe. In some places where neither the American nor the British element is strong enough to maintain separate associations (notably in Brussels), they have joined hands to support an Anglo-American Chamber of Commerce. which is found to work fairly satisfactorily The American commercial museums, alebough of recent foundation, have at!racted much notice owing to the practical and businesslike manner in which they are conducted, and are considered to be among the best equipped institutions of this nature. Those in Philadelphia and at San Francisco are the best known. The Philadelphin museum, which,came first and is better known, was established by an ordinance of the municipality in 1894 , and is supported by subscriptions and by municipal subsidies, administered by a boand of erustees, who are appointed for life and serve without remurneration. The work of the museum is supervised by anadvisory board, composed of representatives of the principal commercial organitations in the United States. Its objects are to assist American manufacturens and merchants in securing wider foreign markets for their products, to aid them in forming connexions abroad, and to bring foreign buyers in touch with them. One of the chief ways in which this is done is by means of an index file of foreign customers supplied to American manufacturers, and vice versa. In addition to the reyular service to members, the museum also maintains abroad, in various cities, index files covering some sixty American trades or trade divisions, containing the names of American manufacturers of standing, with full particulars of their various lines of manulacture. These files are generally entrusted to chambers of commerce, of minilar commercial institutions, and are placed gratuitously at the disposal of foreign manufacturers and merchants. The Philadelphia museum has also a noet valuable library and a museum of samples.

B.-State Departmental Organimalion.

The American state organization for dealing with commercial ratters lacks the theoretical completeness of the organization of most European states, but is nevertheless found to give satisfaction. Official control is exercised through various burcaus placed, for the most part, under the treasury depastment. The most important of these are: the intershise commerce commission, which deals with matters affecting the inland irade; the industrial commission, which looks chiefly after manufacturing; and the fishery burean. Foreign commercial matters come within the cognisance of the bureau of foreign commerce, a section of the state department which also controls the consular body, and sees to the publication of their reports and to the dissemination of foreign commercial intelligence. The tate department corresponds to the British forcign office.

The Pan-American Union, uatil 1910 called the Burean of Amer. in in Republics, was established in 1889 , as a result of the PanAmerican Conference called together in that year by the late James G. Blaine, gecrefary of state at that time. This burcau, which tad its office in Washington, is supported by a contribution from all is repwhlics of North, Central and South America, which is fixed ic repsulus of North, Central and South America, which is inxed
at the rase of 1000 dollars a year per million inhabitants, Its
ibject is the distemimation of erustworthy comnereial information
 phercial matiers. nactice, has no sutatives are Their work, as pited, and they hipping interests hoping interests
daily, as fast as they are received, and circulates them in advance. sheets, printed on one side of the paper only, like printers' proofs. They are afterwards republished in permanent form.
The American consular body, which numbers some 400 members, and is exclusively composed of American citizens, is distributed according to the commercial importance of towns.

III.-France
 A.-Commercial Associations.

The French government was the first to elaborate a regular system of trade organizations, which it endeavoured to make as complete as possible. This system comprises:-
a. Chambers of commerte;
b. Consultative chambers of arts and manufactures; and
c. Syndical chambers of trade and industry.
a. Chambers of Commerce.-Chambers of commerce one their origin to the city of Marseilles, where, in 1599, the town council, which had hitherto looked after the commercial interests of the city, found it no longer possible to combine comOrtgin. mercial with municipal lunctions, and established an association which it called the "Chamber of Commerce" to take up the commercial part of its duties. This reems to be the first time that the title was used. The new chamber soon became a most important body, and in 1650, during the minority of Louis XIV., lellres patentes were granted to it. It settled the law merchant and the customs of the port, was entrusted with the appointment of cunguls and the control of French consulates in the Levant, fitted out expeditions against corsairs, owned flects, sent embassies to the Barbaresque countrics, organized commercial missions, \&c. its ordinary budget, at one time, amounted to over one million livres. Louis XIV. conceived the idea of a system of organizations which, whilst not being allowed to become so dangerously powerful as that of Marseilles, would nevertheless be useful in other towns, and in 1700 he caused an arrílé to be published, ordering the creation of chambers of commerce, which were entrusted with the nomination of deputies to the Royal Council of Comanerce which had just been created in Paris. Chambers were conscquently established in Lyons, Rouen, Toulouse, Montpellier, Bordeaux, La Rochelle, Lille, Bayonne, Amieas, \&c. These bodies, however, did not exercise much influcnce under the monarchy. Including the Marscilles chamber. they were suppressed. with all trade gilds and other trade associations, in 1789. Napoleon re-established the chambers by decree of the 24th of becember 1802, and endowed them with a constitution similar, in essential particulars, to the one they have at present, which has served as a model for chambers of commerce on the Continent, but he submitted them to a uniform and narrow administrative jurisdiction which practically deprived them of all initiative.

They are now regulated by the law of the 9 th of April 1898 , which codified, altered and completed previous legislation on the subject. Under this law, chambers of commerce can only be established by a decree countersipned by the Coastlow minister of commerce, upon the advice of the municipal shon. council of the place where the chamber is to be; of the, general council of the department, and of the existing chambers of commerce of the district. The members of chambers of commerce used to be elected by the " Notables Commerçants," who ware a body of commercial clectors selected by the prefects in accordance with the provisions of the Code of Cormmerce. They were abolished by law in 8875 , but those who were then entitled to the designation still continue to use it, which-explains the words " Notable Commergant," so puzzling to foreigners in French commercial directories and on French business cards. At present, commercial houses paying patenie-which is a special tax upon people engaged in trade -elect the members of the chamber, the number of whom is fixed for cach chamber by the minister of commerce.

Their functions, which are consultative and administrative, are net out in part if. of the law of 1898 . The government is bound to take their opinion regarding the ragulation of commercial usages, the establishment of public institutions of a commereial or financial nature, and of tribunals of commerce, the improvement of transport and communications, the application of laws of a local character, the sale price of prison-made goods and the tariff for prison labour, and local public works, and loans or taxation in connexion therewith. On the other hand, they are allowed to submit observations to the government, with out being asked, on proposed charges in the commercial or economic legislation of the country; on customs tariffs and regulations; on rallway, canal and river rates: and on transport regulations. As regards their administrative functions, they may be authorized to establish and administer such institutions as bonded warehouses, public sale-rooms, fire-arm testing establishments, conditioning rooms for wool, silk, textiles; paper, \&c., commercial, professional, or technical schools and muscums, \&c. They may be granted concessions for public works, and may undertake the carrying out of public services, especially in regard to the ports, docks, canals and navigable rivers in their district, and be authorised to issue loans for the purpose.

Previous to 1896 it was illegal for chambers of commerce to hold joint meetings for the discussion of matters of public interest, and they were not even allowed to correspond or consult in any way, except through the medium of the minister of commerce. The new law relaxed to a certain extent this prohibition, by authorizing direct correspondence and permitting chambers in a district to meet for the joint consideration of questions affecting their district. but for no other purpose. Such a thing as an association of chambers of commence is still illegal in France.

When, in 1873, British merchants in Paris started a British chamber of commerce in the French capital, the French governFresch meat looked rather askance at the new venture, and M. Cbembers of Leon Say, when migister of commerce, even threatened Commence it with forcible dissolution uniess the title "Chamber Abroear. of Commerce" was dropped. This demand was not ultimately pressed, and the services rendered by the British chamber soon opened the cyes of the French government to the advantages which they might derive from the formation of similar institutions to represent French commercial interests abroad. In 1883 the minister of commerce started the organization of such chamberg, which endeavoured to combine to a certain extent the French and the Brisish systems.

Foreign commercial interests are represented in Paris by seven foreign chambers of commerce, of which the British Chamber is

Forelgy Hungarian, Belgian, Italian, Spanish and Russian Commerce chambers. In 1896 these chambers formed themCommerce selves into an Association of Foreign Chambers of fty Paris.

Commerce, but the French government gave it to be understood that, as they did not allow associations of French chambers, they could not treat foreign todics more favourably, and the association had to be dissolved.
b. Consultative Chambers of Apts and Manufocfures.-These institutions, organized somewhat after the model of chambers of Comstiom commerce, represent manufacturing and industrial toa. interests. They were established by Napoleon I. in 1803, and formed part of the complete system of commercial organizations which he intended to give France. They are now regulated by decrecs of 1852 and 1863 , and are composed of twelve members elected for six years by merchants and manufacturers inscribed upon an electoral list specially drawn up by the prefects. These chambers, of which there are some fifty in existence, are placed under the control of the minister of commerce. but instead of being k kept out of the patenies, like chambers of commerce, they-are supported by the municipality of the town where they are sit uated, which has also to provide them with offices rent free, and with clerical assistance. In addition to giving Fanctloas advice in connexion with manufacturing and industrial upon im provements in manutaetures and machunery, new mandral proand international exhibitions, They are also entrusted with the nomination of the Consultative Committee of Arts and Manufactures, a body whose functions are to advise the ministers of commerce and finance, as well as those of the interior and of public works, as regards the regulation of dangerous trades and industrics, patents and trade marks legislation, and the interpretation of customs regulations.
c. Syndical Chambers of Trade and Industry.-By the side of the official trade organizations other associations have grown up, which, although regulated by law, are in the nature of voluntary and self-supporting bodies, viz. the syndical chambers of trade and industry. The repeal in 1884 of the law of 1791 , which prohibited the formation of trade or professional association, was the signal for the formation of those chambers, which soon acquired great influence. A few syndical chambers existed before that date, the oldest, the Chamber ol Master Buiders, dating back as far as 1809 , but they were only tolerated, and their existence, being illegal, was most precarious.

The syndical chambers, which are divided into chambers of cmployers and chambers of cmployed, are the official organs and Constron= representatives of the trade and professional syndicates authorized by the law of the 31st of March 1884, which was the work of M. Waldeck-Rousseau. Each syodicate bas its separate chamber. They may be established without government authorization, but a copy of their rules and a list of their officials must be sent to the prefect. Membership is strictly fimited to persons of French nationality. The only way in which the government can dissolve them is by application to the courts of justice for an order of dissolution on the ground of infriagement of the provisions of the law. In Paris, most of the syndical chambers have formed an association called the Union Nationale du Commerce et de l'Industrie-Alliance des Chambres Syndicales. Another association, intended to take up the defence of the interests and rights of syndical chambers, has been formed under the title of Syndicat du Commerce et de l'Industrie-Syndicat des Chambres Syndicales. The syndical chambers are kept up by the subscriptinns of their members, and have the rigbt to hold real property, as have also the associations of chambers, which are kept up by subscriptions from the constituent chambers.

According to the law which authorized their formation, the objects of the syndical chambers are exclusively "the study and defence of economic. industrial, commercial and agricultural interests." and for this purpose they have Fanctoas complete freedom of intercommunication and can hold congresses. They are authorized to establish for their members mutual benefir societies and pension and relief funds, to open employment agencies. to give legal advice to, and in certain cases to bring actions on behalf of their members, and to organize the settement of disputes by arbitration. They take part in the clection of judges of the tribunals of commerce and of the Conseils de Prud'hommes.

B.-State Deparimental Organimation.

The state commercial departments and oftices are chiefly centred round the ministry of commerce, to which is assigned the commercial part of the duties fulfilled in England hy the board of trade. A ministry of commerce existed Comery ef for short periods in 18.11 and in 1828, but it was ultimately suppressed in 1829 , and from that date until 1886 , when the department received its present form and separate existence, commerce was only represented in the French government by a subsidiary bureau attached sometimes to one ministry, sometimes to another. The ministry is divided into three main hureaus- the first entrusted with all matters connected with the home erade and industry, the second with foreign and colonial relations, and the third with the compilation of statistics.

Attached to the ministry of commerce is a body called the Conseil Supéricur du Commerce et de I'Industrie, which acts as an adyisory council to the minister. Its origin goes back to the council of commerce established by Louis XIV., but it is dow regulated by a decree of 1882 .

The Office National du Commerce Extérieur was established by a law of the $4^{\text {th }}$ of March 1898 , and is carried on jointly by the ministry of commerce and the chamber of conmerce of Paris, the latter having provided it with an installation at a cost of over $1,200,000$ francs. The office, whicl has been founded for the promotion of French trade with foreign countries and the dis-

Nalloon? Orfice for Forsira Trede. semination of commercial intelligence, fulfils duties similar to those of the commercial intelligence branch of the board of trade. It also publiches the weekly Monikur offciel du commerce.

The Office Colonial, whose duties are especially to furnish information concerning the French colonies, to promote emigration thither, and to foster a demand in France for the produce of her colonies, was established by a decree Offee colasial of the 14th of March 1899 . It is entrusted, in addition, Colashal with a permanent exhibition of colonial produce and a museurn of samples of goods supplied by or required in the colonies. The office is also in charge of a colonial garden at Vinceanes, where experiments are made for the acclimatization of colonial planis and produce in France, and the cultivation of French produce in the colonies. The office publishes monthly bullet in of miscellantous colonial information, and issues yearly commercial and other reports dealing with the colonies. It is a dependency ol the ministry of the colonies.
French consuls are instructed to transmit to their government all information which they may consider useful for the prosperity of Frepch trade. It is also their duty to spread, in the country where they reside, a knowledge of such French commercial and financial matters as they may consider most useful in the interests of their own country. The close relations which they are recommended to cultivate with the French commercial Consular community within their jurisdiction through the Serviox. local French chamber of commerce and the councillors of forcign trade are intended to enable them to keep in better touch with commercial questions. They have had, however, to be frequently reminded of their commerial duties, and the French chambers of commerce have criticized them almost as much as the British chambers have British consuls. The most important instructions issued to consuls were contained in circulars from the minister for foreign affairs dated the 15 th of March and the 24th of Aptit 1883. French consula have to malke a return to their government every fort night-every month if the district is not of great commercial importance-showing, upon forms specially provided, the naturs quantity, origin or destination, prices wholesile and retail. and ci iel trade marks of the goods imported into and district, the results of transport, contemplated public worle produce, theytinh when of state of the labour market, artistic and rumours concerning importint foical are mostly of a confidential natt tion. bat whenever the min
information to be conveyod other channels, to ehe consular reports are
lear officid du cu

IV. Germany
 A.-Commercial Associalions.

Genman trade organizations are of three kinds, vis.:a. Oficial organizations established by law, and called HandelsLammern, or chamber of commerce;
b. Semi-official amociations; and
c. Voluntary or "free" amociations.
a. Chambers of Cowmerces-Contrary to the ides prevalent in England, official trade organizations in Germany are in a soniewhat chaotic stare. They have been established under more or less different conditions and systems in each state of the empire. and in certain districts atill bear the 1 mprint of foreign origin. They are under the control of the lomal state governments and lack the homogeneity and unity of direction of the French official system.
Befort proceeding to a gencral examination of the German regime, apecial mention must be made of the chambers of commerce of the old Hanseatic Confederacy which zeand

Ancmett

Orpuate
then apart, and whose duties, as well as constitution, difler from thove of trade organizatlons in the rest of Germany. The chamber: of commerce in Hamburg, Bremea and Labeck are not only the successors of, but (contrary to what happened in Germany as well as in other countries) have been evulved out of the old corporations which looked after the interests of the Hans traders in the olden days, and which. in the case of the llamburg "Commerz-Deputation, lor insance, dated as lar bark as 1665.
The Hamburg Chamber of Commerce, whose present constitution dates from 1860, is composed of twenty-four members elected for vir years by the ancient "Versammlung eines ehrbaren Kaufmannes." that is to say, the merchants and commercial men whose memes appear on the register of the "Honest Merchants" of the city. Its income is chiefly derived from special taxition, to which are added the procceds of the sale of contract and transfer etamps; and also the amount paid every ycar for the re-registration of each "Honest Merchant." This latter source of income amounts to about 70,000 marks per annum. The chamber has to submit it accounts for approval to the Senate of the Repubtic.

In addition to the general duties of chambers of commerce in connexion with trade matters, the Hamburg chamber-the same may also be suid of the other Hanscatic chambers-fulfils the combined functiont of a chamber of shipping and of a port and docks board. It has the right of proposing judges and of nominat. ing experts atesched to the courts. The exchanges and publie sle rooms of the city are under its control, and it publishes the offeial quotations, as well as a weekly price tist of goods and produce at the port of Hamburg. It is entitled tb elect members 10 the "Bengerschaft" or lower house of representatives, who are epecially competent to deal with trade and shlpping questions. cusoms durier and emigration. The chnmber must be consuhed by the "Burgerschalt" with reference to all proposals affecting trade and navigation.
In Bremert the chamber is composed of twenty-four members elected by the "Ausuchuse des Kautmanis-Konvents," which comprives all the important commercial houses of the city. Two members go out every year, and no one can remain a member for more than eighteen years. The Bremen chamber is intimately conmected with the Senate of the Republic, a standing committee of both being in existence to entle questiong affecting trade end neripation.
The Lubbeck chamber is composed of twenty members elected for ax years by the assoriations representing the wholesale and retait trades. The president must be approved by the senate. and is sworn in as a state official. He holds oftice lor two years, and is not paid for his services, but when he groes ont of office is presented with a sum of moncy sulscifiled by the townspeople. The Lubeck chamber is probahty the wealthiest organization of its kind in Cermany, and is entristed with the administration of the property of the old corporation of the "Vorstand der Kaufmannechaft." which is very important. The scnate must consult it not ally in trade and navigation matters, bus also with reference to afl coneracis entered into on behall of the state.

Chambers of commerce in ether parts of the German Empire are tot important, nor are their duties so varied. as in the Humeratic Gemisen of towns. The oldst ones were established ny Napoleon in 1802 in Cologne. Crecld, Aachen, Stolberg and France. and shey were submirted to the legislation which regu-
thand the ehambersaprawht on france st ils sme time. The ure in other Int on the te der
I . the f, the
of Cermany chambers are under tive thict aupervision of the state minister of commerce, and cannot be extabliched except with his permisaion. He fixes the number of members as well as theamount of the state allocation to the chamber. In Prussia and Bavaria the government is entitled to dissolve chamber whenever it considers it advisable to do so, and there is always a government commissioner in attendance at all meetings. In mont cases the local government allows a fixed sum for the expenses of chambers of commerce, and if this amount is excecded the clectore who are on the commercial register have to make good the excess by the striking of a special rate. In some states, e.g. Brunswick, Warttemberg and Baden, the electors cannot be called upon to pay for deficiencies more than an amount fixed by law. In Bavaria chambers get a subvention from the district and central funds.

The duties and powers of the Cerman chambers are practically the same as those of the French chambers.

The German government did not, like the French, interfere with the liberty of association of chambers of commerce, and as a result German chambers have united, together with oiber trade corporations, in an association called the "Deutsche Handetstag," founded in 186t, and carried on in its present form since 1886.

The Crerman government is understood to be opposed to the formation of Cocrman chambers of commerce abroad, and as a German matter of fact there are no German chambers in Europe Cbambers outside of Germany. A few have been established Abrosidand in South America, but they are purely voluntary Porwise associations. No lorelgn chambers of commerce exist chamberato in Cermany.

Gamangs
b. Semi-Official Corporations.-Bcsides the chanbers of commerce, there exist, chicfly in Prussia, various old-established and quasi-official corporations. Whose views reccive as carefui consideration from the government as do those of chambers of com. merce. The Beriner Aclteste der Kaufmannschalt is one of the most important of these corporations, but the Gewerbekammer of Memel, the Kaulmannische Vcrein of Breslan, the Vorsteher Amt der Kaufmannschaft of Koenigsberg also deserve mention. Others exist in Elbing, Stettin, Danzig, Tilsit and Magdeburg. They originated for the mont part in ancient gilds or aneocintions of commerctal firms, and were organized it their present form bet ween $\mathbf{1 8 2 0}$ and 1825 .
c. Volutary Associations.-Germany poskesests also a large number of infuential commercial associations of a voluntary character called the "Freie Vercine," which, especially in recent years, have greatly contributed to the commercial development of the empire.

B.-State Departmental Organization.

The German Empire has no ministry of commerce. As in the United States, commercial matters form only a department ol the ministry of state. Most of the states of the empire have, however, their own ministrics of commerce, the oidest being the Prussian ministry of commerce and industry, which dates from 1848.

In Prussia, the minister of commerce is advised by the Volkswirthschaftsrath, or council of mational economy, an official body constiruted in 1880 by the Emperor William I. The functions of this council, which arserables periodically under the presidency of the minister of commerce, are also similar to those fulfitled in France by the Conseil Supericur du Commerte et de I'Industrie. Bco semination of commencial intelligence by the farilitate the nis commercial museums. which are variously called "Handelsmuseen." "Ausfuhrmusterlaser" or "Ex- Commendal portmusterlager." The first of these, which are on the Museums. model of the Vienna Handelsmuscum, was opened in Berlin in 1883 Others followed in Munich. Karlsrute, Frankiort. Cologne. Dresden Leipzig. Weimar, \&c. They perform. to a certain extent. much the same functions as those performed in England by the comnercial inteligence branch of the board of trade

A perusal of the instructions given to Cerman consuls with repard in commercial matters shows that the Cerman consular hody is in this respect very much in the came position as Consutar the British consular body. If German consuls as a Consub
whole have been especially active and successful in Service. promoting German commercial imerests, it is nos on account of the nature of the instructions received from their goverament, there instructions being to all intenss and purponss similar to those issued to British consuls, but because particular care was taken 10 select consuls from a class of men imbued with the desire of increasing the great ness of their country by the promotion of German prade

Of distinctly commercial attaches. like those of Great Britain and Russia, Germany has none: but in addition to the consular body she is regresented in foreign countries by five altachés or experts. Whose futies are to study the movements of Agrkuhars agricultural produce. and intewest themselves in agri- Alracs Rusia, the Danube district and the United States.
conviction is liable to a maximum fine of faO , or to a maximum imprisonment of three months with hard labour, who willutly and maliciously breaks a contract of service or hiring, knowing or having reasonable cause to believe that the probable consequence of his so doing, either alone or in combination with others, will be to endanger human life or cause serious bodily injury, or to expose valuable property, whether real or personal, to destruction or serious injury; or, who, being employed by a municipal authority or by any company or contractor on wbom is imposed by act of parliament, or who have otherwise assumed, the duty of supplying any place with gas or water, wilfully and maliciously breaks a contract of service or hiring, knowing, or having ressonable cause to believe, that the probable consequence of his so doing, alone or in combination with others, will be to deprive the inhabitants of that place, wholly or in part, of their supply of gas or water; or who, with a view to compel any other person to do or to ahstain from doing any act which such other person has a right to abstain from doing or to do, wrongfully and without legal authority uses violence to or intimidstes such other person or his wife or children, of injures his property, or who persistently follows such person about from place to place, ot who hides any tools, clothes or other property owned or used by such other person, or deprives him of or hinders him in the use thereof, or who watches or besets the house or other place where such person resides or works or carries on business or bappens to be, or the approach to such bouse or place, or who follows such other person with two or more other persons in a disorderly manner in or through any atreet or road. Attending at or near the house or place where a person resides or works or carries on business, in order merely to obtain or communicate information was not watching or besctting within the statute, but this proviso has since been repealed. In regard to registration, trade unions are placed on a similar footing with friendly and provident and industrial societies, and they enjoy all the privileges, advantages and facilitics which those associations possess and command, except in so far as they differ by the fact that there is no legally enforceable contract between a trade union and its members, and that the right of a registered trade union to invest funds with the National Debt Commissioners is limited, and in a few other matters. On their side, however, they have to comply with the same conditions, are subject to the same liahilities, and are compelled to make the same periodical returns.

During the years. following 8876 several important amendments of the law, other than spectal trade union legialation, zater and the decisions of the courts in various cases, led Lagtartetiom up to the important act of 1906 . These affected principally the liability of trade union funds to be taken in execution for the wrongful acts of agents of the union, the statute law relating to picketing and other incidents of strikes, and the law of comspiracy as affecting trade unions.
The two latter points are dealt with in the article on Strikes ano Locx-Outs, and it may suffice bere to say that the clauses in the act of 1875 prescribing punishment forwatching and beset. ting a house, \&ce, with the view of compelling any other person in the manner set forth, have been amended by the repeal of the proviso that "Attending at or near the house or place where a person resides, or works, or carries on business, or happens to be, or the approach to such house or place, ia order merely to ohtain or communicate information, shall not be deemed a watching or besetting within the meaning of this section" by the enactment in the act of 1906 that; "It shall be lawiul for one or more persons, acting on their own behalf or on behalf of a trade union or of an individual cmployer or firm in contemplation or furtherance of a trade dispute, to attend at or near a bouse or place where a person resides or works or carries on husincss or happens to be, if they so attend merely for the purposo of peacefully obtaining or communicating information, or of peacefully persuading any person to work or abstaln from working."
The objoct was to linclude the right of peaceful persinaion
which had been supposed by parlinment to be implied in the terms of the act of 1875 . Further, the law of conspiracy has been amended by enactments in the act of tgo6 that: "An act done in pursuance of an agreement or combination by two or more persons shall, if done in contemplation or furtherance of a trade dispute, noi be actionable unless the act if dane without any such agreement or combination would be actionable," and "An act done by a person in contemplation or furtherance of a trade dispute shall not be actionable on the ground only that it induces some other person to break a contract of employment or that it is an interference with the trade, business or employment of some other person, or with the right of some other person to dispose of his capital or his habour as he wills."

The act of 8875 , In the words of Lord Cairs, wes framed on the principle that " the offences in relation to trade disputes should be thoroughly known and understood, and Loeding that persons should not be subjected to the indirect caseran ano and deluding action of the old law of conspiracy," Law-courth but no one during the diacussion of the bill was thinking of the civil action. This mater became important when the dicta of various judges in the House of Lords in the case of Quisn V. Leothem showed that there might be. an action for damages hased on any conspiracy to injure or do harm, particularly when it is considered that the very essence of a strike is in one sense injury to those against whom it is directed, and these opinions became of the utmost import to trade unions when the Taff Vale case showed that the fact of procuring to strike might also involve trade union funds in liability, even where there had been no procuring to break contracts. This important decision arose through the amendment of general procedure under the Judicature Acts in 188r. The distinction was abolished between legal and equitable rules as regards parties to sue and be sued, and in 1883 there was issued a General Order No. rvi. of the supreme court, rule 9 of which prescribed that where then are numerous parties having the same interest in one caus or matter, one or more of such persons may sue or be sued or may be nuthorized by a court or judge to defend in suc cause or matter, on hehalf or for the benefit of all persol $s 0$ interested. It was decided in Temperton V. Russell in 18 where three trade unions were made deiendants to represe all the members, and the order did not apply in the case a trade union, because the words of the order "numer parties haviag the same interest in one cause or matter "co only be satisfied by parties wbo hed, or claimed to have beneficial proprietary right which they were asserting or fending, from which it was inferred that they could not be : at all, and in the report of the Royal Commisaion on Lal in 1894 the opinion was either assumed or expressly st that tbey could not be sued in tort. In rgor the If of Lords overruled Temperion v. Russell in the case o Duke of Bedford v. Ellis, holding that the General Ordex zvi. rule 9 , was universal in its application. In the year the Taff Vale case came before the House of 1 In the first place, expounding the Trade Union Act they held unanimously that from the provisions in th concerning registered trade anions there is to be lega ferred an intention of parliament that a trade union m sued in tort in its registered name, with the conmequence that trade union funds would be liable for any damages that might be awarded. Secondily -apart from the Trade Union Act-Lord Macnagh! Lord Lindley expressed an unhesitating opinion chat u: General Order No: zvi, as interpreted in Dabe of B Ellis, any trade union, whether registared or mot apout in tert
protest
a prac
the sel
587t, :
combinations and as to the law affecting them, and to report on the law applicable to the same and the effect of any modifications thereof.

The majority of the commission reported in January 1906 in favour of an ilteration in the law relating to picketing and

Acter

 conspiracy, but against any alteration of the law as laid down in the Tafi Valc judgment. A diferent view was, however, expressed in the Trade Dippotes Act passed in the same year, whereby it was enacted with reference to trades union funds that "an action against trade union, whether of workmen or masters, or against any members or officials thereol on behalf of themselves and all other members of the irade union in rempeet of any tortious act alleged to have been committed by or on behalf of the trade union, shall not be entertained by any court," although "nothing in this seetion shall affect the Mability of the trustee of trade union to be sued in the events provided for by the Trades Union Act 1871, section 9 , except in respect of any tortions act committed by or on behalf of the union in contemplation or in furtherance of a trade dispute." This act and the two previous acts are cited together as the Trade Union Acts i87i to igo6, and form the present statutory enactments upon the subject.In December 1909 one of the most important judgments in commexion with trade unions was delivered in the
case of Osborme v. Amalgomated Society of Rainmay
Ta Ondane Antrienel years, ending in tbe House of Lords (December 21, 1909) upholding the decision of the court of appeal (L.R. 1909, ch. 163). The plaintif, who had been a member of the Amalgamated Society of Rallway Servants since 1892, sued his trade union to have it declared that one of its current rales, which provided, amongst other things, for parliamentary represemation and the enforced levy of contributions from him and other members of the society, towards the payment of salaries or maintenance allowance to members of parliament pledged to observe and fulfil the conditions imposed by the Labour Party, was wlira vires and void. It was decided in the King's Bench against the plaintiff, but the judgment was reversed by the court of appeal, whose decision was upheid by the House of Lords. This meant that the Labour Party in the House of Commons would have to find other ways and means than contributions from trade unionists to maintaln their members in parliament. A volantary levy was attempted, hut did not meet with any success, and in $19 r o$ agitation was set on foot by the Labour Party for the reversal of the "Osborne judgment. "They also announced in September their intention of making a change in the constitution of their party by eliminating the necessity of each member signing an acceptance of certain conditions, on the ground that the party had arrived at a state when It could trust to ordinary party loyalty to keep their members' action in accordance with tbe policy of the party. It was also hoped that it would meet many obfections raised against their agitation for the reversal of the Osborne judgment. The agitation had the result of increasing the force of the movement for payment of members. not only in the Liberal party hut also among the more proareque Conservatives.
Trade unions, in the sense in which the term is now underapd, appear to be almost exclusively of modern growth. Though combinations among various classes of Fopirnat to fuprove their position have doubtBetim time to time from an early teatively recent years, among whom to have
(e.g. under the Stutute of Apprentices of Elizabeth), combinations to exact higher rates or other conditions than those so fixed were naturally regarded as illegal compiracies.

The craft gilds of the middie ages have sometimes been regarded as the true predecossors of trade unions, but the analogy must mot be presed too far. The stracture, constitution and functions of a gild of craltmen, aiming at the protection and regulation of the craft as a whole, were essentially different from those of a trade union, formed to protect one class of persons engaged in an industry against another. Nor is there amy trace of direct continuity between gilds and trade unfons, for the claim of certain Irish trade unions to be descended from gilds will not bear scrutiny (see Webb, History of Trade Unionism, appendix). The only true sense in which it can be said that there is a certain indirect historical filiation between gilds and trade unions is that, as pointed out by Brentano, some of the earliest trade unions had for their original objoct the enforcement of the decaying Elizabethan legisation, which in its turn had taken the place of the obsolete regulation of industry hy the crale gilds, so that among the rules and objects of such unions would naturally be some bearing a likeness to gild regulations.
The actual way in which trade unions first came into being probsbly varied very greatiy. In some cases, as stated above, their origin can be definitely traced to ascociations for enforcing the legal regutation of industry against the opposition of employers; in others, the meetings of journeymen belonging to the same trade for such purposes as sick or burial clubs became naturally the nucleus of secret combinations to raise wages. The growth of the "capitalistic" system of industry, under which the workman no longer owned the materials or instruments with which he worked, was one of the most potent causes of the development of workmen's comhinations. The efforts of trade unions to revive the enforcement of the Elizabethan legislation not only failed, hut led to its repeal (r8131814); but the laws against combinations, which had been made more stringent and more general by the acts of $\mathbf{1 7 9 9 - 1 8 0 0}$, remained unakered until 1824. In spite of these acts, which made all combinutions illegal, there is evidence that trade clubs of joumeymen existed and were tolerated in many trades and districts during the first quarter of the rith centuify, thougb they were always subject to the fear of prosecution if they took bostile action against employers; and in many cases strikes were suppressed by the conviction of their leaders under these acts or under the common luw of conspiracy. The partial protection accorded to societies for the purpose of regulating wages and hours of labour by the law of 1825 led to a rapid maltiplication and expension of trade unions, and to an outburst of strikes, in which, however, partly owing to the widespread commercial depression, the workmen were mostly unsuccessful. Thus the first impetus given to trade unions by the modification of the combiation laws was followed hy a collapse, which in its turn was followed (in the third decade of the century) hy a succession of attempls on the part of workmen to extablish a federal or universal combination, to emhrace members not of one but of several trades. To this new form of combination, which excited a good deal of alarm among employers, the term "trades union," as distinct from trade union, was applied. All tbese general movements, however, proved short-lived. and the most extensive of them, the "Grand National Consolidated Trades Union," wbich was formed in 1834 and claimed half a miflion adherents, only had an active existence for a few months, its break-up being hastened by the conviction and tramsportation of six Dorchester labourers for the administration of unlawful oaths. In the years of depressed trade which followed, trade unionism once more declined, and the interest of workmen was largely diverted from trade deabinations to more general political movements, e.g. Chartism,
E Anti-Corn-Law agitation and Robert Owen's schemes of peration.
form 1845 we trace another revival of trade unions, the
characteristic tendency of this period being the amalgamation of local trade clubs to form societies, national in scope, but confined to single or kindred trades. High rates of contrihution, and the provision of fricndly as well as trade benefits, were among the features of the new type of union, of which the Amalgamated Society of Enginecrs, formed in 1851, was the most important example. The growth of unions of the new type was followed by a development of employers' associations in the 'sixties, and by a number of widespread strikes and lock-outs, and also by various efforts to promote arhitration and conciliation by the establishment of joint boards of employers and employed. (See Arbitration and Concillation and Strikes and Lock-odts.)
A series of outrages at Sheffield and Manchester in 1865s866, in which officials of some local trade societics were implicated, led to the appointment in 1867 of a Royal Commission on Trade Unions, whose report was followed by the passage of the Trade Union Act of 1871 , which as amended in 1876 and 1906 now governs the legal position of trade unions. Conferences of trade union representatives held in 1866 and 1867 to determine their policy with respect to the royal commission of inquiry, led to the gatherings of the trade union congress which are still held annually.

The period of inflated trade which began in 1871 caused, as usual, another rapid growth of trade combinations, of which the most characteristic feature was their extension to agricultural and general labourers. To meet this new development of combination, the National Federation of Associated Employers of Labour was formed in 1873. The years of depression, 1875^{-} 1880, were marked by a series of unsuccessful strikes against reductions of wages, and by a general decline of trade unions, which did not again revive until nearly ten years later, when the new wave of prosperous trade brought with it an outburst of strikes, chicfly among unskilled labourers, for improved conditions, of which the most notable was the strike of the Londion dock labourers in 1889 . These trade movements were accompanied by the formation of a large number of unions of a type more akin to those of $1830-1834$ than to the more modern trade-friendly socicty with its high contributions and benefits. The "new unions" were chicfly among unskilied labourers; their rates of contributions were from 1d. to 3 d . a week, and as a rule they only offcred strike bencit. Another characteristic was the extent to which their leaders were permeated with the Socialistic doctrines which had then recently taken root in Great Britain, and which led them to advocate positive state interference with industry in the interests of the labourers (e.g. the legal limitation of hours of labour)

The reports of the Royal Commission on Labour, which sat from 1891 to 1894, contain much valuable information on the state of facts and on the opinions of employers and workmen at this period.

From 1892 onwards the progress of trade unionism can be traced statistically. The depression of trade, 1892-1895, brought with it, as usual, some decline in trade unionism; hut though many of the "new unions" collapsed, some of the more important have survived to the present time. The revival of trade which began in 1806 was naturally accompanied by an increase in the strength of trade unions; hut the most marked characteristic of this period was the cxtension and consolidation of employers' associations, of which perhaps the most notable is the Engincering Employers' Federation, which was originally formed on the Clyde, but gradually extended to other districts and became a national organization of great strength during its successful struggle with the Amalgamated Society of Engineers in 1897-1898. Among the other more important employers' associations and federations of a national character may be mentioned the Shipping Federation, the Federated Coal Owners, the Ship-building Federation, the Federation of Master Cotton-Spinners' Associations, the National Federation of Building Trade Employers, and the Incorporated Federated Asociations of Eoot and Shoc Manufacturets.

In r809 a general federation of trade unions was established which had in 1907 a membership of 650,000 in 117 affiliated societies. This federation links the trade unions of the United Kingdom with those of other countries by its affiliation with the international federation of trade unions, which emhraces the national federations of the principal European countries. During recent years there has been a noticeable tendency towards the creation of federations of trade unions, and the absorption of the smeller by the larger societies. Trade unions, both in their historical development and their present organization, present a very greal variety of constitutions. The oldest type is that of the local trade club, consisting of a comparatively small number of men

Constho then. following the same occupation in the same locality.
A large number of unions have never progressed beyond this primitive form of organization. The government is of the simplest kind, by a general assemhly of all the members, while such officers as are required to carry on the necessary routine husiness of the society are chosen by rotation or even by lot.

Indisposition to concentrate power in the hands of permanent officers and a tendency to divide the husiness of management equaliy among all the members, instead of delegating authority to a few chosen representatives, are leading characteristics of trade unions in this primitive form. The organization here described, even if adequate for ordinary current requirements, is ill suited for conducting a contest with employers, and accordingly in times of strife an improvised " strike committe" often comes into existence and practically govems the conduct of the disputc. No doubt this double constitution of the old trade cluh as a loosely organized friendly socicty, converting itself at times into a more or less secret strike combination ruled byan irresponsible committee, is to be traced to the time when trade unions as such were illegal combinations and had to carry out their objects under the guise of friendly societics. The Friendly Society of Ironfounders (established in 1809), though it has to a great extent outgrown its primitive constitution, retains in its name the mark of its origin, while the government of the London Socicty of Bookhinders, by mass mecting of its members, offers an example of the persistence of traditional methods under wholly changed conditions. The Sheffield trade clubs, responsible for the outrages which led to the appointment of the Trade Union Commission in 1867, and subsequently to the passage of the Trade Union Acts, conformed as a rule to the primitive type. At the present time over 750 trade unions are known to exist which are purely local in character, with no branches. The next step in trade union evolution seems to have generally been an alliance or federation of two or more local clubs belonging to the same trade. This federation would make it necessary to provide some machinery for common management, the simplest and crudest expedient being for each of the allied clubs to act in rotation as the governing branch. Thus the government of the federation or " amalgamated society" was at any given time confided to the members of a single locality, and the seat of government was periodically shifted. Some federal societies (e.g. the Mutual Association of Journeymen Coopers) still retain this primitive form of government.

As the tendency developed for local clubs to unite, the necessity of permanent officials to cope with the growing business of the amalgamation caused the institution of a paid secretary (usually clected by the whole body of members), and this led naturally to the fixing of the seat of administration at a particular centre instead of rotating among the branches. Some continuity of policy and of office tradition was thus made possihle, but the executive committee almost invariably continued to consist of the lural committee of the district where the seat of government harpencil to be Thus up to 1892 the business of the Amalgamaned Suciety of Enginecrs, a society with hundreds of branches all over the United Kingdom and even abroad, was conducted by a coramitepelocted by the London branches. The Boilermakers mof government up to 1895:

Carpenters and Joiners, continut a somewhat simifar system to the present day.

The plan of entrusting the government of a national society to a bocal executive has obvious conveniences, where tbe society consists of a body of working men scattered over a large area and with no leisure for travelling. But the control exercised by a locally-clected committee over a general secretary deriving his aothority not from them but from the vote of a much wider constituency, could hardly be expected to be very effective; while the expedients of referring all important questions to a vote of the whole body of membera, and of summoning at periodical intervals special delegate meetings to revise the rules, have proved in practice but clumsy substitutes for the permanent control and direction of the executive officers by a representative council. Quite as ineffective in some cases has been the authority of a mere local executive over the committees of other districts. Accordingly, some of the largest " amalgamated " unions have now adopted a representative system of government. Thus in 1892 the Engincers revised their rules so as to provide for the election of the executive council by vote of all the members divided into eight equal electoral districts. The members of council so elected are permanent paid officials, devoting all their time to the work of the society. The gencral secretary, however, continues to be chosen by the whole body of members, while the responsibility of the council is also weakened by the institution of "district delegates" nominally responsible to them, but chosen by direct election in the various districts. (This division of authority and consequent weakneess of responsibility was ane of the causes of the state of thinga which led to the great engineering dispute of ${ }^{2} \mathrm{BO7}_{2}$ and it also led to a deadlock in negotiations on the north-east coast in 1908, the executive being powerless to enforce its views.) The Boilermakers adopted the system of a permanent executive in 1895.

In the case of certain highly-localized industries, such as cotton and coal, the conditions have admitted of a somewbat different form of constitution from that described above. Thus the Amalgamated Association of Operative Cotton-Spinners is a federal organization, consisting of a number of local associations, 2ll, however, situated within a comparatively small area. The governing bodies of the association are-(1) a quarterly meeting of about a bundred represcntatives of the districts; (2) an executive committee of thirteen chosen by the above representative meeting, of whom seven must be working spinners and the other six are usually permanent district officials; (3) a subcouncil to transact the ordinary daily work oi the association, consisting of the six official members referred to above. The secretary is chosen by the representative meeting, and engages his oun office assistants. Here we have the familiar features of representative institutions-a large legislative body, a small execative chosen by and respongible to this body, and a still smaller group of permanent officials to transact ordinary business.

Lastly, there are some large societies constituted not by the egegregation of local clubs or the federation of neighbouring associations, but originally founded as " national societics" divided into districts and branches for administrative convenience. An example is the Amalgamated Society of Railway Servants, founded in 1872.

Besides the tendency of the national societ y with branches to swallow up the local trade club, there is a further tendency among the larger socicties to form federations for certain common purposes: Such federations are to be distinguished from national trade unions, inasmuch as their members are societies and not individuals, and as a rule their powers over their constituent organizations are limited to certain specific objects. On the other hand, they are more than merely consultative bodies (such as lecal trades councils).

Some federations consist of unions in the same industry in different districts (e.s. the Miners' Federation). "Single trade" tederations like this have usually considerable powers, including that of imposing levies.

In tbe cotton-spinning trade, the trade union organization has a federal chapacter, and the Amalgamated Association of

Operative Cotton-Spinners, in spite of its names is, strictly speaking, a federation.

Other federations (e.g. in the building trade) are formed of allied trades in the same locality, and usually have little executive power. The Federation of Engineering and Shipbuilding Trades has among its objects the settlement of disputes between members of its constituent societies as to the limits of their wort. Some federations aim at embracing societies in all kinds of ind ustries, but as a rule such organizations have not proved long-llived. The most recent example is the "General Federation of Trade Unions," formed in $\mathbf{1 8 9 9}$, referred to above.

Since 1866 a congress of delegates from trade unions has met annually for discussion, and a parliamentary committee elected by tbis congress watches over matters in which trade unions are interested during the ensuing year.

The principal object of every trade union is to protect the trade interests of its members, and to strengthen their position in bargaining with their employers with regard to the conditions under which they work. The chief means objects and by which they seek to attain these objects (apart
from political metbods such as the promotion of legislation or on administrative action by public authorities) are twofold: viz. the support of members when engaged in a collective dispute with employers by the payment of "dispute" benefit, and the insurance of members against loss from want of work by the payment of "unemployed" benefit, so as to enable them to refuse any terms of employment inferior to those recognized by the trade union. All trade unions in one form or another provide " dispute" benefit, but a separate " unemployed "benefit is by no means universal, though, except in certain groups of trades, it is usual among more powerful and well established societies. Thus in the mining, clothing, and even many branches of the building trade, comparatively little is spent by trade unions on "unemployed" benefit, while, on the other hand, in the metal, engincering, shipbuilding, printing and other trades a large proportion of the total expenditure is devoted to this object (see Stalisfics below). In some important societies, such as the Amalgamated Society of Engineers, "unemployed" and "dispute" benefits are mixed up logether, members engaged in a dispute receiving an addition of 5 s . per week (known as "contingent" benefit) to the ordinary out-of-work pay (knowit as " donation").

Unemployed benefit may, of course, be regarded as a "friendly" benefit, i.e. a provision against one class of the casualties to which a workman is exposed-the loss of employment through slackness of trade. But in practice it also operates as a method of maintaining the "standard" rate of wages, members being entitled to it who could obtain employment, but only on conditions disapproved by the society or branch.

The conditions under whicb the members of a union are entilled to financial support in a strike vary in different societies, and are prescribed in the rules. Usually, though the initiative may come from the localities, the central executive must approve of the strike before it takes place, and may at any time declare it to be closed, though in some societies the central authority is often unwilling to take the responsibility of curbing its members by excreising its powers in this respect.
"Dispute" and " unemployed" benefits are the only ones which are specially characteristic of trade unions, and as regards the latter benefit, it may be said that trade unions have hitberto been the only form of organization capable of meeting the difficulties arising from "malingering." Most of the more firmly established unions, however, add to their trade functions those of friendly societies, providing sick, accident, superannuation, and funcral benefits, or some of these. The position of a trade union, however, with regard to these bencfits differs very materially from that of a friendly society. The trade union is under no legally enforceable contract with its members to provide the stipulated benefits: it can change their scale, or even abolish them, by vote of its members, and a member wbo has contributed for years in hope of receiving them has no legal redress. Again, a member excluded from the society for some "trade". reason
incident lly loses all claim to friendly benefits. The funds of a trade un on applicable to trade and friendly purposes are never kept distinct (in the few cases in which some distinction is attempt d, the socicty may "borrow "from the one fund in aid of tile other in case of emergency); and a prolonged strike or depr ssion of trade may so deplete the funds as to make it impo ible for the society to meet its engagements as regards sickness or superannuation. Thus the friendly society operations of trade unions have strictly no actuarial basis, and in some rases the scale of contribution and benefit have been fixed with litele regard to ultimate solvency.

On the other hand, the power of levying and varying the scale of contributions adds to some extent to the financial stability of the fuyts, and the provision of "friendly "as well as "trade" benefits by a trade union undoubtedly gives strength and continuity to the society, and increases its power of discipline over its mombers. Socicties that only provide "dispure" pay are expesed to violent oscillations of membership, and also to a dangerons temptation to rush into an ill-considered strike owing to the tuere accumulation of funds which can be used for no other pu posc.

The siatistics of trade union expenditure on benefits of various classes ar: given below. Of the 100 principal unions, all provide dispute lenefit; 79 in the year 1905 provided unemployed benefit (includis: ${ }^{\prime}$ in some cascs traveling pay); 79 , sick or accident bencfit; 37, superannuation benefit; and 87 , funcral benefit; 32 unions providing all four classes of benefit.

One ai the most imporlant functions of trade unions in many industric is the negotiation of agrecments with employers and employe: 's associations for the regulation of the conditions of employn ut in those industrics. While undoubtediy the prower of withdruwing its members from employment in the last resort adds to the power of a trade union in suchnegotiations, many of the most important agreements by which the conditions of labour of large bodics of workmen are governed are habitually concluded, and from time to time reviscd, by conferences of reptesentatives of the trade union and employers without any strike taking fiace. To the functions of trade unions as fighting organizaiions and as friendly benefit societies should therefore be addeci that of providing the necessary machinery and basis for the conclusion of industrial agreements between bodies of workpeonle and their employers (see Arbitration and Concillathon, an Sthunes and Lock-outs).

While the hroad objects of trade union policy are generally slmilar, their methods and features vary greatly in detail. Among the objects most frequently met with (besides those of raising vages and shortening hours, which may be said to be universal) are the enforcement of a " minimum" wage; the limitatio: of overtime; the restriction of numbers in the trade through the limitation of apprentices, or the regulation of the age of entrance; the restriction or regulation of piecework (in trades accustomed to "time" work); the preservation for members of the trade of the exclusive right to perform certain classes of work claimed by other trades (leading to so-called demarkation" disputes); resistance to the encroachment of labourer on work considered to be " skilled " (leading to disputes as to the class of persons to be eroployed on machincs, \&c.); and the securing of a monopoly of employment for members of the union by a refusal to work with non-unionists.

Year.	Number of Unions.	Membership of Unions.
1897	1292	1.622 .713
1898	1261	1.659 .480
1899	1255	$1,820.755$
1900	1244	1.928 .035
1901	1238	1.939 .585
1902	1203	1.925 .800
1903	1187	1.903 .596
1904	1153	1.961 .374
1905	1136	1.887 .823
1906	1161	$2.106,283$

${ }^{1}$ Includes a small number of members abroad.

The statistics of trade unions are very complete for recent years, but for earlier years the records are so fragmentary that it is impossible to give exact figures showing the total growth of trade unions over a long period. The table at Statiatics. foot of preceding column, based on the statistics published by the baard of rrade, shows the number and mentbership of all trade unions in the United Kinglom making continuous returns for each of the ten years 1897 to 1906.

The fluctuations in membership correspond in the main to the oscitlations of trade, membership declining in the years of depression and increasing with the revival of trade. The decline in the number of separate unions is chicfly duc to the growing tendency to amalgamate into large societies.
The following table shows the distribution of trade unions among the various groups of trades in 1905:-

Groups of Unions.	总	Membership in 1905.	
		Number.	Percentasc of Total.
Mining and quarrying	68	495,968	26
Metat enginecring and shipbuilding	222	339,282	18
Textite.	253	239.539	13
Building : ${ }^{\text {a }}$ -	101	205.383	
Railway, dock and other transport	55	162.563	
Public employment.	48	72,182	4
Printing, bookbinding and paper	40	62,368	3
Cothing Wood-working and furnishin	35	60,407 $.40,115$	
General labour . . .	18	96,094	
All other unions.	196	113.922	
Total	1136	1,887,823	100

This table shows that the strength of trade unionism lies in the five first-named groups of trades-mining; metal engineering and shipbuilding; textile; building: and railway, dock and other trans-port-winch among them account for over three-quarters of the total membership.

In agriculture, trade unionism is at present practically nonexistent. but in 1875 there were imponant unions of agricultural labourers, though at no time did they include any considerable proportion of the total agriculeural population.

Taking the men belonging to all trade untons together, we find that their number does not amount to more than about one in five of the adult men who belong to the classes from which trade unionists are drawn. Only in a lew groups do trade unjonists form a high percentage of the total working population, e.f. coal-mining and cotton manulacture. The number of women belonging to trade unions at the end of 1906 was 162.453 , distributed among 156 unions, of which, however, only 28 consisted exclusively of women. The great bulk of women trade unionists are found in the cotton trade, in which they actually outnumber the male members. Of all the women employed in lactorics and workshops, about one in twelve belongs to a trade union.

The avalable statistics with regard to the financial resources of trade unions, and their expenditure on various objects, are not so complete as those of membership, as the board of trade figures only relate to 100 of the principal unions. As, however, these unions include nearly two-thirds of the total membership, the figures showing their financial position may be accepted as being representative of the whole number of societies. In 1906 the income of these too societics was $\{2,344,157$ or 365 . 9$\}$ d. per head; and their expenditure $\{t, 958.676$ or 30 s . gd. per head; and at the end of the year the funds in hand amounted to $55,198,536$ or $81 s .7 \frac{1}{1} d$. per head.

The actual rates of contribution per member vary greatly among the unions-from 7 s. up to $\mathcal{L} 4$ per annum. Generally speaking, the highest income per member is found among the unions in the metal, engincering and shiphuilding group, where in gos it averaged 63. 5s. 7d. while the average in the mining unions was only Li. 4s. 1d., and among dock labourers still lower. The metal erades and the textile unions appear to hold the highest amount of funds compared with their. membership, the amounts at the end of 1905 being $\left\{6,35.8 \frac{1}{d}\right.$. and $\{6,0 \mathrm{~s} .3 \mathrm{~d}$. per head respectively in these groups: while in the building trade unions it was only $18 s, 8 \frac{1 d}{}$. and in tome socictics of unskilled labourers for less than this.

The main iterns of expenditure of trade unions are "dispute" benefit, "unemployed " benefit, various frim") becefite fincluding sick and accidcnt, superannuations 4 penses. The proportione of naturally vary greatly in
different years, come
general state of portant dispate
years 189
years
cure
benefits (other than " unemployed "). $\mathbf{4} \mathbf{2} \cdot \mathbf{5} \%$; on working expenses 32% The $\mathbf{4 2} \cdot 5 \%$ of expenditure on friendly benefits is made up of 19.1% on sick and sccidene, 12.4% on superannuation and 11% on funeral and other bencita
The mining unions devoted 28.6% of their expeaditure to the support of disputes (Iriendiy benefits in this industry being targely provided by other agencies), while the unions in the printing and bookbinding trades only used 3.9% for this object, over threequartere of their expenditure going to unemployed or friendly benefits. As illustrations of the variation in the expenditure by the same group of unions on a particular object from year to year, it may be stated that within the ten years' period relerred to the aooual expenditure of the metal, engineering and shipbuilding group on disputes varied from 5514,637 in 1897, the year of the great engineering dispute, to $\{13,266$ in 1899 . Again, the expenditure of the same group of unions on unemployed benefit varied from £ 80,512 in 1899 to $£ 303,749$ in 1904. The burden of superannuation payments by the 100 unions has steadily increased during the ten years from $1: 37,813$ in 1896 to $\mathbf{E 3 0 6 , 0 8 9}$ in 1906 .
At the end of 1906 there were 89 federations. including societies vith a groes membership of over a million and three-quarters. but a considerable deduction must be made from this total on account of duplication. In the same year 231 "trades councils" were known to exist, with an affiliated membership of over 895,000.
The number of employers' associations and federations known to exist in the United Kingdom in 1906 was 953 . including 60 federations and national aseociations. Of the tolai number of amociations 398 are in the building trades.

II.-Formen and Colonzal

Modern trade unionism has had its chief development in Eng-lish-speaking countries, and especially in the United Kingdom, where the conditions necessary for its growth have been present to the fullest extent. With some exceptions, such unions as are found elsewhere are either derived or copied from English organizations, or are associations with political objects. It is therelore unnecessary to give more than a brief summary of the position of trade unions in some of the principal countries and colonies outside the United Kingdom (for United States see IV. below).
Garmany.-In Germany the majority of trade unions are of a political character, being closely connected with the Sociai Democratic party. These Socialist trade unions, termed "Gewerkschaften, " were started by a congress held at Berlin in 1868, under the auspioes of Fritscher and Schweitzer, two followers of Lassalle. In 1878 many of them were dissolved under the law prohibiting socialistic organizations, but shortly after their place was taken by local unions termed "Fachvereinc," which ostensibly abstained from politics, but which in various ways surceeded in evading the law and carrying on the work of the Gewerkschaiten. In 1887 a general committee of the German Gewerkschaften was formed, and in 8890 the General Commission of Trade Unions in Germany was established. Later yars of prosperous trade have been marked by a rapid growth in the strength of trade unions in Germany.

The Sorial Democratic (Gewerkschaften) trade unions inclurled in 1907 a membership of $1.886,147$ as compared with 743.290 in 1903 and 419.162 in 2897 . Of the sotal number of members is 1907. 1.865 .506 belonged to branches affiliated to central federations: the membership of non-federated local unions being returned only 20.641 . The income of the federated trade unions in 190 Eas $\{2,569,839$, or over 27 s . per member as compared with $\mathbf{f 5 5 4 , 8 8 7}$ (or Loout 153 , per member) in 1902 and $\{204,185$ (or about ros. per nem ber in 1897, and the expenditure in the same years to $156,126,500,276$ and $f^{1} 77,140$ respectively. Of the 6 f federain 1907. 43 paid travelling bencfit, 42 paid unem47 paid sick benefit and 57 paid funeral, removal

e unions in Cermany. Iess important

 unip than the above, are the " Cuewer'dthip than de anions, sometimes known as" Hirct is-
Emmes of their fonnders. "These unions 8. inmenlin tely after the Berlin congress ty modelled on British trade have been excluded. In in membership from a series lears they have been mostly kvereine embraced 108.889 577.068 in 1907 and their

Thistinn trade unions (Christliche In 1907 the membership
oone of these unions
in 1907 was f223,82y, and the expenditure $\{167,867$. Benidot these groups of unions there were a number of independent societios with a membership of 96,684 in 1907 .
It will be scen that German trade uaions of one type or another included a membership of nearly two and a hall miltions in 1907. their membership having more than doubled in the last five years.

Fronce.-In France combinations of workmen as well as of employers were prohibited by the laws of the rath of June and the 28th of September 1792, which overthrew the old gild or corporation system. They were also penalized under various articles of the Penal Code, and it was not till 1864 that the prohilition was modified by law. At present the status of trade unions in France is regulated by the law of 1884, which repealed that of 1791 and modified the articles of the Penal Code so fal as regards professional syndicates of employers or workmen. Since then there has been a considerable growth of work men's unions, which in 1906 numbered 5322 with a membership of 896,012 . Of the unions in existence in 1906, 3675 with a membership of 752,362 belonged to 187 federations. There is, however, some duplication owing to the lact that some unions belong to more than onc federation. In 1906 there were 260,869 members of unions in the transport, warehousing, \&c., groups of trades, 103,835 in the metal, 73,126 in the mining and quarrying, 78,854 in the textile, 66,678 in the building, 51,407 in the agricultutal, forestry, fishing and cattle breeding, 48,353 in the food preparation trades and the remainder in various other trades.

A ustria.-Apart from the Austrian gilds, membership of which is compulsory for persons engaged in non-factory handicrafts and trades (under a law of 1883) and in mining (under a law of r896), there are a certain number of trade unions in Austria, though freedom of combined action among workmen is less complete than in many other European countries. Such rigbt of combination as cxists rests on the law of 1870 , which removed the restrictions imposed hy the Penal Code on combinations for influencing the conditions of labour. The impulse given to the formation of unions by this law, and hy the advantages gained for the work. men during the years of prosperous trade that immediately followed, received a severe checik during the succeeding depression of trade, when these advantages were mostly lost. Trade unionism did not revive until $\mathbf{1 8 8 8}$, from which time the unions formed have mostly been on a Social Democratic basis, the majority being affliated to a central organization in Vienna.
Since soot statistics relating to the trade unions of Austria have been published annually by the Central Trade Union Commission (Gewerkschafts-Kommission) at Vienna. In 1907 there were 5156 trade unions in particular trades, with a membership of 501,094 , affiliated to the Social Democratic trade unions (Gewerkschafien). Of the total number of unions, 49 were central unions, 77 were district unions and 5030 were local unions. Of the total number of members 454,693 were males and 46,40r were females. The greatest membership, 84,085 in 1907, is shown to have been in the metal engineering and shipbuilding group of industries, the building trades coming next with 68.543 members. The transport trades showed a memberchip of 61.744, and the textile trades, 51,632 . The chemical. glass and pottery trades included 54.469 members and the wood-working and lurnishing group included $\mathbf{3 6 , 5 0 2}$ members. Food and tohacco trades accounted for 32,679, and mining and quarrying for 30.715 members.

The total receipts of the trade unions in 1907 amounted to $\{338.365$ and the total expenditure to $\{297.822$, exchuding receipte and expendilure for disputes. The expenditure on account of disputes, for which $f 136,822$ was collected by special free organizations of the branch unions, amounted to $£ 76,066$ in 1907.
There are besides these unions a number of general unions not confined to ore trade. and trade-clubs-educanional aseociations discharging to a greater or less extent trade union functions. These associations have, however, been excluded from the statistics published by the Gewerkschafts Kommission as not being trade unions proper.
Hungary.-The trade union movement in Hungary is of very recent growth. The membership of unions affiliated to the Central Federation at the end of 1907 is given in the Volkwirtschafliche Mitteilungen aus Ungarn as 130.19?, compared with 129.332 at the end of 1906 Independent local unions had a membership of 11,838 at the end of 1907. The largest groupe of organized workera are in the building trade (35.630), metal workers (27.732), rail way employees (17,192) and wood-workers (14.665).
Italy.-The Bolfelino of the bureau of tabour for August 1908 states that the membership of trade unions at the beginning of 1908 numbered 191,599 (in 2550 local unions). Included in the
membership of 1908 are 48,877 building trades-workers, 40,000 railway employes and 17,110 metal-trade workers. The agricultural labourers' trade unions were stated to have a membership of 425,983 at the beginning of 1908 as compared with 273,698 at the beginaing of 1907.

Denmark-Lo 1907 there were 99,052 members of 1249 trade unions in Denmark, and of these 78,081 were in unions affiliated to the National Federation. The largest unions in the Federation are those of the general labourers with 22,660 members; blacksmiths and machinists with 8000 members; masons, 5300 members; railway employés, 4990 members; carpenters, 3855 members; textile workers, 3700 members; and cabinet-makers, 3590 members.

Sweden.-In Sweden there were, in $1906,126,272$ members of I 596 erade unions, and of these 30,645 were lactory workers (trades not specified), 24,485 were in unions connected with the metal trades, 10,706 were in the traosport trades, 17,862 were in the woodworking trades, 7132 were in the food, \&c., trades, 6602 were in the building trades, and 6005 were in the clothing trades.

Norway.-The trade union movement in Norway dates practically from 1884 . At the end of 1906 there were 25.339 members of trade unions, as compared with 16,087 at the end of 1905 . Of the membership in 1905, 5277 were iron and metal workers, 4910 journeymen (factory workers), and In17 printers.

Holland.-In 1893 a National Labour Secretariat was formed, to which, in 1899,45 societies with 13,050 members were said to be affiliated. After a peneral strike in April 1903 the membership of trade unions in Holland decreased considerably, the Secretariat losing half its members and several trade unions dissolving. In 1906 it was stated in the International Report of the Trade Union Movement that new national centre of unions had been formed with trade unions affiliated to it, baving a membership of 26,227 , while the old centre still continued with a membership of 5000 . The Diamond Workers Federation, with a membership of over 8000 , was affiliated with the new national centre.

The total number of members of trade waions at the end of 1906 is given as $128,845,33,125$ of these belonging to Christian organizations, while 95720 belonged to other organizations,

Belgium- The status of trade unions in Belgium is regulated by the law of 1898, under which they can be incorporated, provided that their objects are non-political and are confined to the furtherance of the interests of particular trades. Belgian trade unions, nevertheless, are mostly political in character, the majority being connected either with the Socialist-Labout, Catholic or Liberal parties. The membership of the Socialist-Labour group of unions in 1905 was 94,151 , of the Catholic unions 17,814 , of the free trade unions 34,833 and of the Liberal unjons 1685 , making a grand total of $14^{8,483}$.

Of the 94,000 members of the Socialist-Labour unions, 60,000 are employed in mining, 11,500 in the textile industry and 7800 in the metal industry. Of the 17800 in the Catholic trade unions, 5300 are in the textile trades, and 3200 in the building trades. Of the 35,000 in the free trade unions, 11,000 are in the textile industry, 6000 in the glass industry, 3600 in the applied art trades and 3300 in the printing and bookbinding trades.

Several organizations, e.g. the diamond workers, the printers' federation of Brussels, \&c., are affiliated with the trade union committee without, however, joining the political organization. The Catholic and Liberal associations also do not affiliate with the other organizations.

Brilish Dominions and Colonies.-Trade unionism has only developed to any considerable extent in a few of the industrial centres of the self-governing dominions. A great number of the uoions in Canada are branches of organizations having their headquarters in the United States or in England. In July 1907 the Canadian Labour Gazelle stated that of the 1593 local trade unions known to be in existence, 1346 were affiliated with central organizations of an international character. Besides these 1593 local trade unions, there were 8 congresses and national associations of labour, 49 trade and labour councils and 31 federations of trade unions known to be in existence.

Between 1876 and 1890 all the principal Australian states passed statutes more or less resembling the Trade Union Acts of the United Kingdom. A similar law was passed in New Zcaland in 1878 , but in this dominion and in some of the Australian states trade unions can now become incorporated and acquire a special legal slatus by registration as industrial unions under the laws relating to industrial conciliation and arbitration. In New Zealand there were, in $1906,26 \mathrm{x}$ unions of workers with a member. ship of 29,869 and 133 unions of employers with a membership of 3276. In the years immediately preceding I 800 certain Australian unions, especially among the shearcrs and the seamen and wharf labourers, acquired great strength, sind sheir delermined attempts to secure a monopoly of employment fos fiemberine.
their organizations led to prolonged labour disputes in i8go and 1891 (sec Strikes AND Lock-OUTs), which resulted in the defeat of the unions and a consequent diminution of their membership and influence. More recently the unions have revived. They are encouraged by the laws relating to arbitration and conciliation, which (inter alia) permit preference for employment to be awarded to members of trade unions in certain circumstances.

Authorities.-For stanistics of recent progress of trade unions, see reports on trade unions published by the board of trade from 1887 oowards). Much informatioo respecting trade unions is contained in the reports of the royal commission on trade unions (1867) and of the royal commission oo labour (1891-1894). See also report of royal commission on trade disputes and trade combinations (1903-1906). The reports of the chicf registrar of friendly societics give information with regard to trade unions registered under the Trade Unjoo Acts. On the history and constitution of trade unions the fullest information is given in Webb's History of Trade Unionism and Industrial Democracy, both of which contain valuable bibliographical appendices which may be consuited as regards other sources of information respecting British trade unions. On trade unions abroad (besides the reports on forgign countrics and the colonies of the royal commission on labour). see Kulemann's Die Gewerkschaftsbewegung (Jena, 1900), dealing with trade unions in all countries, and the board of trade "Abstract of Foreign Labour Statistics" and Laboter Gazelle, both of which give numerous references to the foreign official sources of information on trade unioos, together with n summary of the statistics which they contain.

III.-Economic Effects of Trade Unionism

There is no general consensus of opinion as to the extent to which trade unions can attain success in achieving the ohjects which they set before themselves, or as to how far their action is beneficial or otherwise to the general community. One of the principal objects of trade unions being to maintain and increase the rates of wages paid to their members, the first question would be practically solved if statistical evidence were available to connect the course of wages with the action of combinations. Such evidence, however, is inconclusive. The period of growth of trade unionism in Great Britain has certainly been on the whole a period of rising wages. But many other causes tending to raise wages have been operative over the same period, and some of the facts might be explained as much by the tendency of rising wages to strengthen combinations as by that of combinations to raise wages.

Again, the observed fact that the rise has not been confined to industries in which organizations are strong might be explained either by the supposition that the rise brought about by trade unions has benefited a wider circle than their membership, or that the rise both within and outside the ranks of trade unions is due to causes other than their action. Pcrhaps the strongest statistical evidence of the power of trade unions to affect wages io particular districts is afforded by the local differences of wages in the same trade, which, it is contended, cannot be wholly explained by local differences of cost of living or industrial conditions, but which often correspond clasely to differences of strength of trade union organization. This argument, however, does not touch the question of the effect of combination on the general level of wages.

Hardly more conclusive than the reasoning founded on statistics have been the attempts to solve the question by pure ecooomic theory. During the prevalence of the old view of wages known as the "wage-fund" theory, combinations were usually held to be powerless to affect the general rate of wages, because they could not alter the proportion between capital and population, on which wages were thought to depend. The question however, was reopened by the change in theory which led economists to regard wages as depending primarily on the productivity of industry, and secondarily (and within comparatively narrow limits) on the relative power of bargaining as bet ween the lubourers or groups of Labourers and the organiness of labouty. According to this view, the effert of comhtibashay eat the gate of wages will Uo this view, the cficct of compibaseas an the gate of wages will
ult
is undoubtedly a view widely held among emplosers. Stritly professional associations tend generally to become conservative so far as methods of worl are concerned; and even trade unions Which may not " officially "oppose the introduction of new procestes and the use of machinery may nevertheless serve to focus and make effective the hootility felt by the artisan towards methods of business organization which seem to him likely to decrease the demand for his mervices or to alter the conditions of work to his detriment. In some trades also trade unions are charged with encouragin ${ }^{\prime}$ or permitting their members to restrict the amount of work performed by them in a siven time, with the short-sighted object of making more work for others Many unions have attempted also with varying degrees of auccess to keep up the valuo of their la bour by creating an artificial scarcity by restricting the numbers ontering the trade, and have in various ways sought to control the management of business to a degree which must restrict the freedom of experiment on which the attainment of the maximum productiveness of industry must depend. By the resort to strikes-an ewsentially wasteful method of setuling difierences with employers-they bave also to some extent restricted production, though the loss directly due to this cause is often exaggerated (soe Stripes and Lock-Outs). Moreover, by their insistence on the payment to all workmen of a fixed " minimum" wage they have diminished the field for the profitable ecmployment of the old and less capable, and may to some extent have discouraged the expert workman from carning and receiving the full reward of his extra ability.
On the other hand, it is claimed that trade unions have in many cases acted in the interests of industrial peace by restraining their members from ill-considered strikes, and that, by providing a recognized channel through which the workmen's grievances may find expression, they have often assisted in adjusting dfferences which would otherwise have led to the interruption of production. In particular they have frequently formed a convenient basis on which to build a system of conciliation or arbituation boards by which strikes are prevented (see Arbitratrox). It is also claimed that by protecting the "standard of life" of their members through the policy of securing a "minimum" rate of wages, trade unions may tend in the long run to build up a physically and industrially superior class of wo:kmen, and thus ultimately increase the efficiency of industry.
The comparative weight of the above considerations differs according to the point of view from which the question is regarded. At any given time an individual employer may tepd to feel most strongly the disadvantages of the restrictions under which he is placed by the action of a particular trade union, and may attach but little importance to the general effects, in the long run, on the national output of the pressure which such combinations exercise-which from the point of view of the general well-being of the commanity is by far the most important consideration. Generally speaking, any action of trade unions tending to diminish the efficiency and industry of the individual worlman is as injurious to the com. munity as to the individual employer, except in so far as such restriction may conceivably affect the health of the working community from over-strain. But the policy of "levelling up" the etandard rate of wages, which may mean loss or ruin to a particular employer, may neverthcleas act quite othorwise with respect to the national well being, in so far as it tends to eliminate the "unfit" employer and to concentrate the industry in the hands of the more capable and more enterprising of the employinf clase, and in the localities most suited for the purpose. The papoure of rising wages has undoubtedly acted as a stimulus to 4 anpention of labour-saving devices and the adoption of pal methods, as is shown in America, where the highest - Hten ceen concurrently with the lowest labour cost. . Wende unionism sometimes lay much stress on this Coperation. On the other hand, it must not be apmpetlion, both as between different prades of men ac local advantages, is now international, imprition of an industry in the most suitelile
localities and in the hands of the most capable organizers, which is claimed as a beneficial result of trade onion action, may for any particular country mean the transference of the industry abroad; and this Lransference, especially in the case of industries dependent on export to neutral markets, may involve a considerable national loas.

Apart from the effect of trade unions on the total amount of the "national dividend," their supporters claim that they are able to alter the mode of distribution of this dividend. It is not usually claimed that they are able to affect the proportion of the total product which is paid as rent or interest for the use of the instruments of production, but that they can alter the proportions in which the residue is shared between the organizars of labour and the manual labouring class, to the advantage of the latter. The methods by which trade unions seek to achieve this result require separate examination.

The first group of methods are those which aim at creating a scarcity of some particuler kind of lebour 30 as to alter the relation of demand and supply. The particular methods employed for this purpose have been already sufficiently described. With regard to all of them ft may be remarked that they are ineffective as regards the raising of the general rate of wages throughout the country (i.e. the average income per head of the manual labour classes), seeing that an artificial scarcity of one sort of labour implies a redundancy of some other kind. As regards the rate of wages in particular occupations there is no doubt but that at least for a time such methods may cause a considerable rise of wages, only limited at first by the imperfection of the control exercised by the union over the number competing in the labour market and by the extent to which the rise in the cost of production so caused is checked by the competition of goods imported from abroad, or of alternative commodities, or by the loss of foreign markets, or the diminution of hone demand. But as time goes on other forces of a more subtle kind tend to come into play which further limit the power of the combination to keep up wages through restricting the supply of labour. Besides the substitution of alternative commoditics, alternative processes of production may be invented, diminishing the demand for the services of the members of the exclusive trade union, while the artificial rise of wages is also likely to attract labour into the trade.

Generally speaking, it may be said that while the artificial restriction of the supply of workmen in a trade may raise wages for a cime, it calls into play forces tending to restore the cquilibrium of demand and supply by diminishing demand, and that these forces grow progressively stronger as time goes on, while the restrictive capacity of the combination usually tends to diminisb. This is apart from the fact that restriction of thesupply of labour entering a trade almost always involves the narrowing of the field of ability from which the trade can be recruited, and thus a lowering of the general standard of efficiency.
The other group of trade union methods which requires examination is that which aims at strengthening the economic position of the lebourer by substituting collective for individual negotiations as regands wages, supported by a common reserve fund out of which the labourer may be maintained while waiting for his terms to be accepted. Undoubtedly these methods of mutual insurance and collective bargaining aford a powerful instrument for preventing "sweating" and for enabling the whole body of workmen to exact at the earliest moment and retain to the latest moment the full amount of the wages which a given state of trade and prices will enable the industry to support. The establishment of general working rules and st andards of time or piece wages throughout a trade or district may also serve to protect the better and more capable employers againat their more inefficient or unscrupulous competitors, and thus tend towards the survival of the " fittest" among the employing clats. It is always to be remembered that the effect of collective bergaining is not in the long run one-sided. Combinations of workmen beget countercombinations of employers, and the conditions of important industries tend to be settled more and more by "treaties" concluded between powerful bodies of employers and employed.

Were the combinations on both sides which enter into these agreementa conterminous with the entire trades which they represent, and especially if the trades were protected from foreign competition, the interests of the general unorganized mass of consumers might conceivably suffer from these agreements.

As regards the future prospects of trade unions in Great Britain it is difficult to prophesy. The hopes of those who look for a universal expansion of these organizations so as to include the whole or the majority of the members of the manual-Labour classes are probably extravagant. Not less chimerical is the expectation of the opponents of trade unions that a few defeats at the hands of determined employers or employers' organizations will permanently cripple them and lead to their decay and extinction. Probably for many years trade unions will include, as now, in their membership a poweriul minority of the working classes, wielding an influence out of all proportion to their actual numbers. It is to be expected that experience and the spread of education may cause them gradually to abandon the rules and methods which interfere most with the economical application of labour and capital to industry.

Lastly, it may be pointed out tbat trade unionism has heen the result of the growth of a class of manual workmen working for wages for employers who provide the materials and instruments of industry, and into whose ranks it is relatively difficult for the average workman to rise. It remains to be proved whether the class feeling which enables powerful trade unions to flourish can permanently be fostered and maintained except among workmen who expect to remain workmen most of their lives. If these conditions should be materiaily altered, trade unionism in its present form must decay or undergo a profound alteration.
(X)

IV.-United States

Trade unions in the United States are best treated from the broad standpoint of labour organizations generaily, i.e. associations of wage-earners having for their general purpose the improvement of their members, either through a lessened working day, increased wages, or more satisfactory rules and conditions of employment. They may or may not admit employers, but as a rule they do not admit them. Sometimes they are formed for a specific purpose, like the Eight-Hours League, hut generally they have platforms comprehending all the demands which lahour Labomr usually makes. Labour organizatioas in the United orgazter- States cannot be given a definite birthday. Prior to Sbes. 1825 there were very few of them. In colonial days we have hints of their existence, but their purpose was partly political, and their membership often consisted of politicians. The purpose of the Caulkers' Cluh, in the early days of Massachusetts, was " to lay plans for introducing certain persons into places of trust and power." Tradition has it that the word "caucus" was derived from this club. It is also said that Samuel Adams's father, as carly as 5724 , was active in the cluh's work. There was probably a union of journeymen hakers in the city of New York in 1741 and of shoemakers in Philadelphia in 1792. The shipwrights of New York City were incorporated on the 3rd of April 1803 , and the tailors and carpenters of that city were organized in 1806 . The New York Typographical Society was in existence in 1817 , and was prohably organized in the early years of the igth century. Peter Force was its president for a time, and Thurlow Weed was a member. A strike occurred in Mr Weed's office in 1821 on account of the employment of a non-union man, who was then designated a "rat." In 1823 was organized the Columbian Charitable Society of Shipwrights and Caulkers of Boston and Charlestown.

The period from 1825 to 1860 may be called the formative period. About $\mathbf{1 8 2 5}$, and for some years afterwards, there was a Formathe pertod. general discussion of socialistic theories, growing out of Robert Owen's experiments at New Lanark, in Scotland, and out of his communistic attempt at New Harmony, Indiana, in 1825 . The wave of philosophic transcendentalism also, which swept over the country between 1825 and 1840, affected not only social but industrial life. Lahour papers
in New Yort City in 1825, was probably the very first American labour journal. Soon afterwards there appeared the Daily Sentinal and Young Americe, projected by two Englishmen, George Henry Evans and Frederick W. Evans. The chief demands advocated by these journals were the freedom of public lands, the breaking up of monopolies, the adoption of a general hankruptcy law, a lien for the labourer upon his work for his wages, the abolition of imprisonment for debt, equal rights for women with men, and the abolition of chattel and wage slavery. These demands were endorsed hy over 600 newspapers. In 1830 a Working-man's Convention was held in Syracuse, New York, the outcome of which was the nomination of Ezekicl Williams for governor. In 1832 a delegated convention which met in the state house at Boston initiated the ro-hours movement. The Tribune (New York), under the leadership of Horace Greeley, was opened to the advocacy of Fourierism, and so on all hands the movement towards organization was helped. In 8845 the New England Working Man's Association was organized, and such men as Charles A. Dana, George Ripley, Albert Brisbane, Wendell Phillips, William Lloyd Garrison, Theodore Parker, and others participated in its meetings. The first industrial congress of the United States was convened in the city of New York on the 12 th of October 1845 , but little came of it. Other and more important labour congresses were held in that city and in Chicago in 1847 and 8850 respectively. During the latter part of the formative period, that is, from 1825 to 1860 , most of the great national trade unions that are now influential were projected and organized, though their great and rapid growth has been since the Civil War. The National Typographical Union was organized in 1852 , its name being changed to International in 1862 in order to admit Canadian members; the National Union of Hat Finishers in 1854 ; the Iron Moulders' Union of North America on the 5th of July 1859 ; and in the same year the Machinists' and Blacksmiths" Union of North America. By 1860 the national unions already formed numbered 26.

During the next few years, among other important organizations, were instituted what are known as the group of railway brotherhoods, the oldest and largest of which is the International Brotherhood of Locomotive Engineers. Refmay The grand division was founded at Detroit, Michigan,

Brobser on the 17th of August. 1863, under the name of the Brotherhood of the Footboard. The society was reorganized under its present title at Indianapolis, Ind., on the 17th of August 1864 . The second national association of railway employés that was organized was the Conductors' Brotherhood, formed at Mendota, Illinois, on the 6th of July 1868 , hy the conductors from various railways in the United States. This brotherhood was recognized, and a general governing board established, on the 15 th of December of the same year. Ten years later the name of the organization was changed from the Conductors' Brotherhood to the Order of Railroad Conductors of America. The Brotherhood of Locomotive Firemen was organized at Port Jervis, N.Y., on the 1st of December 1873 . The Brotherhood of Railroad Trainmen was organized at Oneonta, N.Y., on the 23 rd of September 1883. It was called the Brotherhood of Railroad Brakemen until the ist of January 1890 , when the present name was adopted. The Brotherhood of Railroad Trackmen is ona of the younger and smaller organizations. The first efiorts to found it were made in the spring of 1887 , but its permanent organization took place a year later. The Brotherhood of Railroad Carmen of America was founded on the 9th of September 1890, by the consolidation of the Carmen's Mutual Aid Association, the Brotherhood of Railroad Car Repairers, the Car Inspectors, Repairers and Oilers' Protective Association and the Brotherhood of Railroad Carmen of Canada. The Switchmen's Union of North America is the outgrowth of the Stritchmen's Mralal Aid Association, the present organization dating from 180\%. Several of these railway brotherhoods suffered materially their membership and influence through the organization of the American Railway Union in 1893 .

The Cigar-Makers' National Union dates from 1864, the began to be established. The Working Mun's Adsocate, published

Octobser 1865, the United States Wool Hat Finishers' Association from 1869 and the National Union of Horseshoers of the United States from 1875. The Amalgamsted Association of Iron and Steel Workers resulted, as its name signifios, from the consolidetion of various other orders and societies, the present order being organized at Pittsburg in August 1876. The consolidated

Mertiant Unlone societies were known previously to the new onder of things as the United Sons of Vulcan, the Associated Brotberhood of Iron and Steel Heaters, Rollers and Romachers of the United States, and the Iron and Stee Roll Hande' Union. The oldest wes the United Sons of Vulcan, originating in Pitcsburg on the 17th of April 1858, and afterwards called the Inon City Forge. The organization is now known as the Amalgamated Association of Iron, Steel and Tin Workers. The Granite Cutters' National Union was organized in 1877, the Brotherhood of Carpenters and Joiners in 1881 and the Journeymen Bakers' National Union in 1886.

There have also been attempts to organize labour on a gencral or universal plan. The first of these was the International Association of Working-men, known as the "International." which was organized in London in the autumn of 1864. This society sought to associate working-men wherever mannfacturing has been extended. The International grew for a while, but never at any time had a member-
The hatere ship exceeding 100,000 and probahly never over 50,000 . It did not oxtend to the United States with mach force; certainly no large number of the working-men of the country were involved in it, and branches were not organized in the union until 1870 or 8871 .

The second attempt was the Noble Order of Knights of Labour of America, which was founded in Philadelphia on Thanksgiving Day 1869, through the efforts of Uriah \mathbf{S}.

crepges of

 Letomp. Stephens and six associates, all garment-cutters. For scveral years the garment-cutters of Philadelphia had been organizod as a trade union, but failed to maintain satisfactory rates of wages. Dissatisfaction prevailed, and resulted in the autumn of 1869 in the disbandment of the union. Stephens, who was a far-seeing maa, and anticipated the disruption of his union, had prepared the outlines of a plan for an organization embracing, as he said, "all branches of honourahle toil." He advocated education, co-operation and an intelligent use of the hallot as the proper means for gradually abolishing the present wage-system. The order had a varied career. Mr Stephens, himself a Mason, brought into the ritual of the aew order many of the features of speculative Masonry. Tbe obligations were in the nature of oaths, taken with much solemnity upon the Bible, and the members were sworn to the strictest secrecy. The order was known for a long time as "Five Stars," that designation being used in printing and writing. Many expressions taken from Greek literature were introduced into the ceremonies. The instructions given to every person admitted into the order are perhaps the best exponent of the nature of the ritual:-Labour is noble and holy. To defend it from degradation; to divest it of the evils to body. mind and estate which ignorance and greed have imposed: to rescue the toiler from the grasp of the selfanh-is a work worthy of the noblest and best of our race. In all the multifarious branches of trade capital has its combinations; and, whether intended or not, they crush the manly hopes of labour and trample poor humanity in the dust. We mrean no conflict with legitimate enterpise. no antagonism to necessary capital. but men, in their haste and greed, blinded by self-interests, overlook the interests of others and sometimes violate the rights of those they deem helpless. We mean to uphold the dignity of labour, to affrm the notility of all who earn their bread by the sweat of their brows. We mean to create a healthy public opinion on the subject ol habour (the only creator of values), and the justice of its receiving a full, just share of the values or capital it has created. We shall. - ith all our strengih, support laws made to harmonize the interests of hbour and capital, and also those laws which tend to lighten the exhaustivensts of toil. To pause in his soil, to devote to his own materest (sit), to gather a knowledge of the world's commence, to mixe. combine and co-operate in the great army of peace and Iodustry. to nourish and cherisb, build and develop, the temple he fres in, is the highest and noblect duty of man to himself, to his fellow men and to his Creator.

The ritual was meither printed nor written, and in all probability there is not now in existence a copy of it. So long as the utmost secrecy was retained the order did not grow rapidly; gradually it lost its secrecy and worked on more general plans. From the best evidence that can be secured it is probable that the first local assembly of the Knights of Labour was organived as early as 1873 in Philadelphia. Attempts at outaide organization had been unsuccessful. The second assembly conaisted of ship carpenters and caulkers employed in Cramp's shipyard. After this the order spread quite rapidiy, 20 assemblies being organized in Philadelphia daring 1873. A district assembly, consisting of delegates from local assemblies in Philedelphia, met in that city on Christmas Day 1873 and organisod District Assembly No. I. The order increased during the years following this action, and in 1877 delegates were chosen to organize a general assembly. These delegatos met at Reading, Pennsylvania, on the sist of January 1878, and organized the first general assembly, Mr Stephens, the founder, presiding as temporary chairman. Seven states were represented. Genetal astamblies have been held each year since that time, and changes in the constitution or work of the order have been the subject of warm discussion. At the meeting of the first general assembly the membership must have been small, probably only a few thousand. It did not reach 50,000 till five years later. The general assemhly of 1880, at Pittsburg, denounced strikes as injurious and not worthy of support except in extreme cases. At the fifth session, at Detroit, in 2881, the most important actions in the history of the order were taken, and from this session the rapid growth of the order may be dated. The assembly then declared that on and after the 1st of January $188 e$ the name and objects of the order should be made public. It also declared that women should be admitted upon an equal footing with men, and a strong committee was appointed to reviee the constitution and the ritual. At the next general assemhly, September 1882, in New York, the revised constitution was adopted, as well as laws and regulations for supporting strikes. After this the order began to grow rapidly. It antagonized the trade unions, the contention being that the order emhraced higher and grander principles than those underlying the organization of the former. The trade unions in existerce at that time struggled to preserve their organimetions against what they considered the encroachment of the Knights of Labour. The high-water mark of the order was probebly during $1883,1884,1885$ and 1886, when, according to the very best information, it numbered not less than 1,000,000 members. In 1900 its membership was estimated at ebout 130,000.
The order of the Knights of Labour is based on the federal plan, and has a hierarchy of asomblies-the local assembly the district assembly. the state and the general assembly. The officers of the local assembly consist of a master Orgatacworkman, worthy foreman, venerable sage, recording wos. secretary, financial secretary, treasurer. worthy inspector, almoner, statistician and eome minor officers. These are elected semi-annually by ballot or by acclamation. The districi assembly is composed of duly accredited delegates from at least five local assemblies, and is the highest tribunal of the Knights of Labour within its jurisdietion under the general laws of the order. It has the power to levy ascessments for its maintenance upon all locals, and has also the power to establish locals in the territory governed by it. The officers and their duties are simitar to those of the local assembly, except that the master workman is called the district master workman. The constitution of the general assembly is a very imposing document, containing twenty articles. The asserahly consists of representatives chosen by the district assemblies, and has full and final jurisdiction, being the higbest tribunal of the order. It alone possesses the power and authority to make, amend or repeal the fundamental and general laws of the order, to decide finally all controversies arising, and to issue chartere to state, district and local assemblies. The officers are elected at each annual session, and their titles correspond almost completely with those of the local and distritt assemblies, with the exception that the word "general" takes the place of "districi," as "general master workman." Ac. The general masser workmen have been Uriah S. Stephens (the founder of the order) Terence V. Powderly. James R. Sovereign. John N. Parsons and Henry A. Hicks. The order has a publiration knownas the Journol of the Kerights of Labowr, published at Washingion. D.C.

The third attempt to bring into one order men employed in different vocations was the American Railway Union,

Amertant

 Usion. rganized in Chicago on the 20th of June 1893. It included all railway employes born of white parents. It was organized for the protection of members in all matters relating to wages and their rights as employés, and affirmed that such employés were entitled to a voice in fixing wages and in determining conditions of employment. The union won a great victory on the North-Western railway in April 1894, but its action in the great strikes in Chicago in 1894 cost it its life. Its membership reached at one time 150,000 .The separate unions found that the co-operation of other unions was needed to periect and extend their work, and

Federatlone of Labour.

 attempts were made from time to time to organize a When the trades assemblies of New York City and Baltimore called a national labour congress, the 100 delegates sent by 60 secret and open organizations from different trade unions meeting on the zoth of August. In 1867 a second convention was called to meet in Chicago, the aim being to form a Trades Union Congress like that existing in Great Britain. The National Labour Union held two conventions in 1868, the first in May and the other in September; it met again in Chicago in 1869, in Boston in 1870, in Philadelphia in 1871 and in Columbus, Ohio, in $\mathbf{5 8 7 2}$. This closed the experience of the National Labour Union. During 1873, owing to the industrial depression, many of the trade unions were suspended. An industrial congress met in Rochester, N.Y., in April 1874 , consisting of some of the leading trade unionists of the United States, and on the 14th of that month a convention was held representing the Sovereigns of Industry. The expectation was that the old National Labour Union should be taken up. The Industrial Brotherhood of the United States, another secret order, partaking largely of the character of the Knights of Labour, was represented in that convention. As might have been expected, the two ideas-that on which the Knights of Labour was organized and the trade union idea-immediately became antagonistic, yet a plaform containing most of the principles of the Knights of Labour was adopted. The movement ended with the Rochester meeting. The years 1875 and 1876 saw other attempts; but they were chiefly political in their character and the temporary orders then organized were disbanded. Between 1876 and 1881 other attempts were made at federation. A call issued jointly by the Knights of Industry and a body known as the Amalgamated Labour Union, consisting of some dissatisfied members of the Knights of Labour, resulted in a convention held at Terre Haute, Ind., on the 2nd of August 188ı. The chief purpose was to supplant the Knights of Labour by the creation of a new secret order. The membership of the convention, however, hed trade union procijvities and did not believe in multiplying labour societies. The secret organization was not effected. Another convention was held in Pittsburg, on the Igth of November 1881, as the result of the following statement:-We have numberless trades unions, trades assemblies or councils, Knights of Labour, and various other local, national and international labour unions, all engaged in the noble task of elevating and improving the condition of the working classcs. But great as has been the work done by these bodies, there is vastly more that can be done by a combination of all these organizations in a federation of trades and labour unions.
It is claimed that the 107 delegates represented 262,000 workmen. Thelr deliberations resulted in the Federation of Organized Trades and Labour Unions of the United States and Canada. Its platform difiered hut very little from that of the Kinights of Labour, although it was in some respects more comprehensi It demanded eight hours as a day's work; called for national and state incorporation of trade unions; favoured obligatory education of all children, and the prohibition of their ewoplayment under the age of fourteen; favoured the uniform apprentice laws; opposed bitterly all
labour and the truck system for payment of
laws giving to working men a first lien on property upon which their labour had been expended; insisted upon the abrogation of all so-called conspiracy laws, advocated the establishment of a national bureau of labour statistics; urged the prohibition of the importation of foreign labour; opposed government contracts on public work; favoured the adoption by states of an employers' liability act; and urged all other labour bodies to vote only for labour legislators. The second convention was held at Cleveland, O., on the 21 st of November 1882.

The American Federation of Labour is the largest labour organization in the United States. It was organizedat Columbus, O., on the Sth of December 1886, under the name it now bears. In 1888 it was declared that it owed its existence to the Federa. tion of Organized Trades. \&c., founded in 288 I at Pittsburg, and that the American Federation meetings or conventions should date from that year; hence it is generally staced that the Federation was founded in 188r. From the start in 1881 the Federation had a constitution, but it revised it at the convention held in Baltimore on the r6th of December 1887, under the name of the American Federation of Labour. The order is not secret, nor do individual members, through local trades unions or otherwise, owe any allegiance to it. Its object is the encouragement and formation of local trades and labour unions and the closer federation of such societies through the organization of central trades and labour unions in every state, and the combination of such bodies into state, territorial or provincial organizations for the purpose of securing general harmony not only in the interests of the working masses, but of legislation. While it is a federation, it cannot be called a federal body, like the Knights of Labour, although there are local trade unions, trade assemblies in cities and state federations; nevertheless, there is not the hierarchical character of the other body. Most of the trade unions in the United States are affiliated with the American Federation. The great railway brotherhoods are not so affiliated, except the Amalgamated Association of Railroad Employes of America, the Order of Railroad Telegraphers and the Brotherhood of Railroad Trackmen.

The federation has affiliated with it 117 international unions. 37 state federations, 574 city central bodies and 661 local trade and lederal labour unions. The international unions are made up of approximately 28,500 local unions. The average membership on which dues have been paid was 264,825 in 1897, and ten years later the number was $1,538,970$.
The chief officers of the federation are a president, first, second, third, fourth. fifth and sixth vicc-presidents, treasurer and secretary. Samuel Gompers of New York was the first president, holding that position till 8894 , when he was defeated through the endeavours of the Socialist Labour Party, and John M'Rride elected. At the next session, however, he was re-clected. The numerical strength of the American Federation of Labour is probably not far from 1,600,000. It maintains a journal called the A merican Federationist, published at Washington, D.C. The doctrine of the federation relative to strikes is that each affiliated society has its own government, distinct from the government of the national convention, which has no power to order strikes. such matters being left to the affiliated societies, but is advisory and not conclusive in its action.

Unions are often organized for temporary purposes, their existence ceasing as soon as the purposes succeed or fail. The total number of members of all kinds of labour organizations cannot be stated. There are many Estimaned local socicties and associations other than those
belonging to the Knights of Labour or those affiliated with the American Federation of Labour, but which are distinctly labour bodies. According to the best possibie classification there are $20,000,000$ wage-earners in the United States, including men. women and children. The most liberal estimate of the membership of all labour organizations places the total at $2,000,000$. This would be about 10% of the whule body of wage werhers, but in some occupations, like that of the printing trade, the organizasion probably includes from 75 to co\%.
The law relasing is trice saions varies somewbal in the
and Nebraska have specially provided for incorporating assemblies of the Knights of Labour. Hardly any advantage, however, has been raken of these statutes. Some states have passed laws eccepting trade unions from restrictions on combinations and conspiracies imposed by other statutes or the common law (e.g. New York), and eapocinlly from the operation of anti-trust haws (Michigan, Wisconsitn, Nebraska, Montana, North Carolina and Texas). The Texas law, however, has been held unconstitutional. A number of states have passed laws, some of doubsfal validity, prohibiting employers from making it a condition of employment that labouress should not belong to s union. Most states have adopted statutes legalizing union mbels to indicate the products of members of trade unions.
By act of Congress, associations of the nature of lahour organizations, having branches in several states or territories, may, on filing articles of association for tecord in Washington, become corporations. American legislation generally is friendly to tnde unions. Their purposes are regarded as lewfui by the courts, but if they use unlawful means for their accomplishments, a remedy will be applied. Injury to property, intimidation by threats, personal violence, or boycotts enforced by terrorism, are such unlawful means. The liberty of action thus secured to organizations of dabour is equally the right of the employer. Thereforc, a statute making it an offence for one to require those wbom he employs to withdraw fromatrade union is unconstitutional and void (see Reports of American Bar Association, xxi. 367, 372). The courts recognize that membership in trade unions is a species of property, of which no one can be deprived exeept through a formal procedure in conformity with the rules of the organization. Some of the states, notably New Yort, have a statute prohibiting trade unions from making any discrimination in consexion with their admission requirements on account of membership in the state militia or national guard.
Actaouries.-Ely, The Labour Moovent in America (New York, N.Y., 1886); M'Neill, The Labour Movement (Boston, Mass. 1887): Powderly, Thiry Years of Labour (Columbus, O ., 1889): Simoode, The Shory of Nanual Labour iz all Lands aind Ages (Chicago, 1886): Blise, The New Encyclopaedia of Social Reform (New York, 1008): Aldrich, "The American Federation of Labour," Economic sludics (August, 1898); Wright, Industrial Evolution of Uhe Umited States (Meadville. Pa., 1893)); "Historical Sketch of the Knights of Labour." Ouart. Journ. of Economkes (January 1887): "The Amalgamated Aseociation of Iron and Secel Workers," Qrart. Jourr. of Ecoromes (July 1893 and November 1901): \}. R. Commons. Trade Unıonism and Labor Problems: Hollander ind Barnett. Studies in A mertcan Trade Unionism: Barnett, A Trial Bibluctraphy of A mericam Trade Uwion Publications. (C.D.W.)

TRADE WINDS, the name given to the winds wblch how from the tropical belts of high pressure towards the equatorial belt of low pressure, from the north-east in the northern hemisohere and from the southeast in the southern. They are axceeingly regular, especially over the occans, where there is 20 disturbing influence from the great land masses. They feecive their name from this feature, the term "trade" being used in the otherwise obsolete sense of "" direction " or "course" (f. "tread"). The area of their greatest influence may be taken to extend from about 3° to $35^{\circ} \mathrm{N}$., and from the equator to 28° S., though these belts are actually somewhat narrower at any given season, as the whole system of surface winds over the globe moves north and south following the sun. The westerly wiods prevalent in the belts respectively north of the northern cropical belt of high pressure, and south of the southern, are sometimes known as anti-trades, their direction being opposite To that of the trade winds.
TRAFALGAR. BATTLE OF. The British victory over the rencb off Cape Trafalgar, fought on the alst of October $\mathbf{1 8 0 5}$, was a sequel of the breakdown of Napoleon's great scheme for he invasion of the British Isles (See Napoleonic Casipaicns: risan). When tilleneuve gave up in despair the attempt to riter the Channcl, he steered for Cadiz, and anchored in that the 20th of August 1805. He found three British line, under the command of Vice.Admiral Cuthbert aD the watcb. Collingwood, resolvel bat the
allices should not drive bim through the Straits of Gfbraltar without being compellod to follow, retired slomy, and at a abort discance ahead of the ships sent to pursue him. They, not being willing to be drawn into the Mediterranean, gave up the pursuit. The British officer then resumed his watch off Cadiz. On the 2and of August he was joined hy Rear-Admiral Sir Richard Bickerton with four ships of the line, and on the 3oth by Vico-Admiral Sir Robert Calder with 88. The allied fleet, consisting of 29 sail of the line which had come with Villeneuve, and five already at Cadiz, 34 in all, remained quiescent. The use to be made of it, or the measures to be taken for its destruction, were matters of urgent consideration to Napoleon and to the British govermment. On the 14th of September Napoieon gave orders that the French and Spanish shipe at Cadiz should put to sea at the first favourable opportunity, join seven Spanish ships of the Une then at Cartagens, go to Naples, and land the soldiers they carried to reinforce his troops then in that king. dom, and should fight a decisive action if they met a British fleet of inferior numbers. Two Spanish ships of the line were to be counted as equal to one French. Their final destination was to be Toulon. On the rsth he decided that Villeneave, whose "excessive pusillanimity" rendered him incapable of vigorous action, must be replaced by Admiral Rosily. Rosily received his orders on the 17th and left for Cadiz. The British government, determined to confine the allies to Cadiz, or beat them if they came out, sent Nelson to take command and prepared to despatch reinforcements. Nelson left Portsmouth on the 1 sth of Scptember, and reached Cadiz on the 28 th , bringing three ships of the fine with him. He gave orders that no salute should be fired for bim lest the enemy should leam tbat reinforcements had arrived. The buik of the flect-23 sail-was kept well out at sea, and five ships of the tine under Rear-Admiral Louis were appointed to cruise close to Cadiz as an inshore squadron. On the sth of October Louis was sent to Gibraltar to renew his provisions and water, and tbe watch was left to two frigates. Between the 7 th and the 13th of October Nelson was joined by six ships of the line, making a total of 34 . But Admiral Calder, having been summoned home to stand a court-martial, took his flagship with him on the 14th, and on the 17 th another line-of-baitle ship had to be detached to renew her stores As Admiral Louis could not return before the battle of the 2xst, Nelson had at his disposal 27 ships of the line in all. Napoieon's order of the 14th of September reached Villeneuve on the 28 th . He learnt also that Rosily was coming, but not that he bimself was to be superseded. On the sth of October he held a council of war of Frencb and Spanisb officers. They decided that the condition of theif ships did not justify them in boping for victory over the Britisb flect, but Napoleon's orders were peremptory, and they agreed that a sortie must be made. Easteriy winds were needed to facilitate the sailing of a large and awkward fieet from Cadiz, and till the isth the wind was bard from the west. Even when it feil the allies lingered. On the 38 th of October Villeneuve heard that Rosily had reachod Madrid, and of his own supersession. Stung by the prospect of being disgraced before the fleet, he resolved to go to sea before his successor could reach Cadiz.

The allies, aided by a light land breeze which blew from the east, though the wind at sca was westerly, began to leave Cadiz Bay on the igth. Their movements were at once known to the British look-out frigates, and were transmitted by signal to Nelson, who was cruising some thirty miles to the west. During the period of blockade he had instructed his captains as to how he meant to Gight tbe approaching battle. The memorandum In whicb his instructions were embodied was dated the gth of October. It was drawn up in view of the circumstances which did not arise-that the enemy would come to sea with a strong easteriy wind wbich would give bim the weather gage: that he might be reinforced to a strength of over so ships of the line from Brest, Rochefort and Cartagena; that the British flet might be raised by reinforcements to 40 ships. But the governing principles of the memorandum were independent of such details. They were that the order of sailing in which the
lleet was when the enemy was seen was to be the order of battle; that no time was to be wasted in forming a precise line; that the attack was to be made in two hodies, of which one, to be led by the second in command, Collingwood, was to be thrown on the rear of the enemy, while the otber, led by Nelson himself, was to take care that the centre and van should not come to the assistance of the ships cut off. Nelson was carcful to point out that "Something must be left to chance. Nothing is sure in a sea fight beyond all others "; and he left his captains free from all hampering rules by telling them that "No captain can do very wrong if he places his ship alongside that of the enemy." In short the execution was to be as circumstances should dictate, subject to the guiding rule that the enemy's rear was to be cut off and a concentration of superior force on an inferior sought for.

The uncertainties of naval warfare in the days of sailing ships were fully shown at Trafalgar. The allies, having left Cadiz on the 2oth of October, were 33 sail of the line strong, one of the fieet having been left behind. They sailedin five squadrons. Three were nearer the land than the other two, The leading squadron of the three was commanded by the Spanish admiral, Alava; Villeneuve followed; and the French admiral, Dumanoir, commanded the rear. The other two squadrons of six ships of the line each, commanded by the Spanish admiral, Gravina, and the French admiral, Magon, were paralle! with, and outside of the threc. All headed for the Straits of Gibraltar in the westerly hreezes, which had become very light. The British fleet of 27 sail in two divisions also headed for the Mediterranean. During the night of the 20th-2ist of October several movements were made to gain position, and there was an inevitable tendency to straggle among vessels which did not all sail equally well and were moving in light winds. On the early morning of the 2 st the allics were some twelve miles off Cape Tralalgar. The British fleet was some ten or twelve miles out at sea to the west of them. Seeing that a battle would now be forced on him, Villeneuve ordered his whole aleet to turn so as to bring their heads on Cadiz. He was painfully aware that the incomparably more expert British fleet would not be content to attack him in the old-fashioned way, coming down in a parallel line and engaging from van to rear. He knew that they would endeavour to concentrate on a part of his line. But Villencuve was too conscious of the inexperience of his officers and men to think it possible to make counter movements with them. It has been said that the French and Spanish ships which had taken part in the late cruise to the West Indjes and back must be considered as trained in the same sense as the British. But apart from the fact that these vessels formed little more than a half of the allied fleet, the comparison is childish. It could only have occurted to writers who, wishing to exalt the glory of Trafalgar, forget that the superior quality of the British fleet, the fruit of foresight; of good sense, and the strenuous work of a people, was itself the best of all claims to honour. A hasty cruise across the Atlantic and back was no equivalent for years of training. The blockades maintained by the British fleet had made it difficult for the allies to obtain stores and their ships were ill fitted. Their crews contained a minute proportion of men bred to the sea, and as they had to be taught the elements of seamanship on the few occasions when they got to sea, their gunnery was neglected. There was valour in the allied fleet, but there was neither skill nor confidence. Moreover the very light wind then blowing rendered manouvring all but impossible for the most expert crews. Villeneuve could do nothing more than order his flect to turn so as to bring the ships' heads on Cadiz, to form the line, and await the enemy's attack. He, however, Ieft his captains free to act for the best when the battle had begun, by telling them that whoever was not under fire was not at his post. The movement of conversion ordered at 60° clock a.m. was not executed till about 100° clock, and it was ill done. The three squadrons nearest the shore turned first, the rear beginning, to leave room for the others. Thus Dumanoir now led the van and Alava followed Villeneuve.

The two squadrons of Gravina and Magon, which had been outside, fell in behind Alava. No accurate line was formed. The allies drifted rather than sailed into a curve of some five miles long, stretching from north to south, concave on the west side, and more pronounced at the southern than at the nortbern end. Their ships did not follow one another, but were in many cases two, and in some cases three, abreast in groups. To some extent this was to their advantage, as the effective range of fire of tbe artillery of the day was barely 1200 yds ., and as the power of concentrating the fire of guns out of ports was limited, the danger to an assailant bearing down was not great during his approach. The peril was that he would be engaged with two or three enemies when he had broken into the line, and this risk was increased by the accidental group formation of the allies.

The confidence and promptitude of the British fieet presented a marked contrast to the passivity of the allies. When in the early moming the enemy was seen to the east, Nelson's fleet was in two divisions, somewhat scattered-his own of 12 sail of the line being to the westward and windward in the light breeze from W.N.W.; Collingwood's of 15 sail being to leeward and east. At 6.40 the signal was made to form the order of sailing and prepare for battle. The enemy's movement of conversion was already seen, and it was obvious that unless he were rapidly stopped he might reach Cadiz Bay in safety. A few minutes before 7 o'clock the signal to bear up, No. 7^{6}, was made hy Nelson. Much discussion has arisen as to whether this was an order to bear up together, or in succession; the first if exactly executed would have caused the Brilish ships to approach the enemy in a line abreast (side by side) since all would have turned at once; the second would have caused them to approach in a line ahead (one after the other) since they would bave turned successively. The discussion is in reality futile, because the want of wind rendered it impossible to arrange exact formations, because it had been decided that no time should be wasted in dressing the line, and becausc Nelson's flagship, the "Victory" (100), and Collingwood's flagship, the "Royal Sovereign" (100), were quick-sailing vessels, and both admirals moved at the best attainable speed. The slow ships could not keep up with them. The two squadrons went down heading to north of east, Collingwood to the right and leeward, Nelson to the north and windward, in two bodies without exact formation, according to the speed of the ships. Ccllingwood headed for the centre, and the pronounced curve at the south end of the allied line caused the ships of his division to come into action in a close approach to a parallel with the enemy. The "Royal Sovercign" was the first British ship to break into the enemy's line, which she did about midday and astern of Alava's flagship the "Santa Ana." She was alone for a few minutes, but the ships of Collingwood's division, as they sailed int o the curve, were mostly able, by steering to the right, 10 get into action very soon after their admiral. Nelson's division was headed by himself to cut through the enemy between his van and centre, and to bar his road to Cadiz. It was certainly in a nearer approach to a line ahead than Collingwood's. After making a demonstration at the allied van, he broke into their line astern of the "Bucentaure" (100), the flagship of Villeneuve.

The exact movements of all the ships engaged could only be given in a very detailed account of the hatule, but the main lines of the action are already indicated. To the allies it appeared that the British fleet assailed them in two lines cotr-
 tration on this part of their line.
or too hald-a statement of the
the truth. The allied form
the rear part was the scuerest bloms foti, withe the cent
the severest
The butle.

Admiral Dumanoir were met and captured of Cape Ortegal on the ath of November by a British squadron of five ships under Sir Richard Strachan. The stormy weather which followed the batte gave the enemy an opportunity 20 retake some of the prizes, and others were lost. Four only were carried into Gibraltar by the British fleet-ehree French and are Spanish. Only eleven of the allied fleet succeeded in froding safety in Cadis. The fragment of the French squadron remained there under Admiral Rosily till he was forced to surrender to the Spaniards in 1808 on the breaking out of the Pesinsular War. The loss of life of the allies cannot be stated rith precision. In the British fleet the reported boss In killed and mounded wes 1690 , of whom 1452 belonged to 14 out of the 27 ships of the line present-the inequallty of loss being mainly due to the fact that it was as a rule these vestels which came earliest into action. For the circumstances of Neloon's death see the article Nelson.
Authonitises.-Accounts of the battle of Trafalgar are to be found in all the naval, and most of the gencral, histories of the time. The mort essential of the original authorilies are collected by Sir N . Harris Nicolas in his Despatches and Letters of Vice-Admaral Lord Viscount Nelson, vol. vii. (London 1844-1846). The controversy as to the exact method on which the battle was fought, and the significance of the signal to bear down. is fully worked out with many relerences to authorities in The Times from the 14th of July to the 21 st of October 1905. both in a general correspondence and in a scrics of articles on "Tralalgar and the Nelson Touch." 16th, 19th, 22nd, 2 fith. 28th and zoth of September tgos; see also J. S. Corbett, The Cempaigr of Trafolear (2910).
(D. H.)

IRAFPIC, properly the interchange or passing of goods or merchandise between persons, communities or countries, commerce or trade. The term in current usage is chiefly applied collectively to the goods, passengers, vehicles and vemels passing to and fro over the streets, roads, sea, rivers, canals, railways, \&c.
The orizin of the word is obscure. It occurs in Fr. trafique, and trafigmer. Ital. traffico, traffcare, Sp. trafago, Irafagar, Du Cange (Glass. Med al Inf. Lat.) quotes the use of traffigare from a treaty between Milan and Venice of 1380 , and gives other variants of the word in medieval Latin. There is a medieval Latin word transfegator, an explorer, spy, investigator (see Du Cange, op cut, 3.D.) which occurs as eariy as 1243. and is stated to be from transfegare, a corruption of trenffeceare. to crows oner the sea (lrans, across. fretum, gulf, strait. channel). Diez (Elymologisches Worterbuch der remanischen Sprachen) connects the word with Port. trasfegar. to decant, which he traces to Late Lat. vicare, to exchange. Lat. vicis, change. turn. A sugestion (Athemaewm, app. 7, 1900) has been made that it is to be referred to a kte Hebrew corruption (brafok) of Gr. rporaixd. pertaining to a trophy, applied to a silver coin with the fgure of vicuory upon it and termed in Latin vichorialus.
TRAHERNE THOMAS (1637 P-1674), English writer, wes, according to Ant hony i Wood, a "shoemaker's son of Hereford." He entered Brasenose College, Oxford, in 1652, and after receiving his degree in 1656 took holy orders. In the following year he was appointed rector of Credenhill, near Hereford, and in $\mathbf{1 6 6 1}$ received his M.A. degree. He found a good patron in Sir Oriando Bridgeman, lord keeper of the seals from 1667 to 1672 . Traherne became his domestic chapiain and abso "mnister" of Teddington. He died at Eridgeman's house at Teddington on or about the 27th of Seprermber 1674. He led, we are told, a simple and devout life, and wres well read in primitive antiquity and the fathers. His

discovery included, beside the poems, four complete "Centurics of Meditation," abort paragraphs embodying refexions on religion and morals. Some of these, evidently autobiographical in character, describe a childhood from which the "glory and the dream" was slow to depart. Of the power of nature to inform the mind with beauty, and the ecstatic harmony of a child with the natural world, the earlier poems, which contain his best work, are full. In their manner, as in their matter, they remind the reader of Blake and Wordsworth. Traberne has at his best an excellence all his own, but there can be no reasonable doubt that he was familiar both with the poems of Herbert and of Vaughan. The poems on childhood may well have been inspired by Vaughan's lines entitled The Retreat. His poetry is essentially metaphysical and his workmanship is uneven, but the collection contains passages of great beauty.
See Bertram Dobell's editions of the Poetical Works (1906) and Conluries of Meditation (1908).

TRAILL HENRY DUFF (1842-1900), British author and journalist, was born at Blackbeath on the rath of August 1842 He belonged to an old Caitbness family, the Traills of Rattar. and his father, James Traill, was stipendiary magistrate of Greenwich and Woolwich. H.D. Traill was sent to the Merchant Taylors' School. He rose to be head of the school and obtained a scholarship at St John's College, Oxford. He was destined fot the profession of medicine and took his degree in natural sciences in 1865, but then read for the bar, being called in 1869 . In 187x he received an appointment in the education office which left him leisure to cultivate his gift for literature. In 1873 be became a contributor to the Pall Mall Gaselle, then under the editorship of Frederick Greenwood. He followed Greenwood to the St James's Gaselle when in r88o the Pall Mall Gasette took for a time the Liberal side, and he continued to contribute to that paper up 20 1895. In the meantime he had aleo joined the stafl of tbe Saturday Reoierv, to which he sent, amongst other writings, weekly verses upon subjects of the hour. Some of the best of these he republished in 1882 in a volume called Recaptured Rhymes, and others in a later collection of Salurday Songs (1890). He was also a leader-writer on the Daily Telegraph, and acted for a cime as editor of the (Sunday) Observer. In 1897 be became first editar of Litcrature, when that weekly paper (afterwards sold and incorporated with the Academy) was established by the proprietors of The Times, and directed its fortunes until his death. Traill's long connexion with journalism munt not obscure the fact that he was a man of letters rather than a journalist. He wrote best when he wrote with least sense of the burden of responsibility. His playful humour and his ready wit were only given full scope when he was writing to please himself. One of his moat brilliant jeux d'esprit was a pamphlet which was published without his mame soon altet he had begun to write for the newspapers. It was called The Israditish Question and the Comments of the Canaan Journals athereon (1876). This told the story of the Exodus in articles which parodied very cleverly the style of all the leading journals of the day, and was at once recognized as the work of a born humorist. Traill sustained this reputation with The New Luciap, which appeared in 1884 (and ed., with several new dialogues, 1900); but for the rest his labours were upon more serious lines. He directed the production of a vast work on Social England in 1893-1898; he wrote, for several series of biographies, studies of Coleridge (1884), Sterne (1882). William III. (1888), Shaftesbury (1886), Strafiord (1889), and Lord Salisbury (1891); he compiled a biography of Sir John Franklin, the Arctic explorer ($\mathbf{1 8 g} \mathbf{6}$); and after a visit to Egypt he published a volume on the country, and in 1897 appeared his book on Lord Cromer, the man wbo had done 50 much to bring it back to prosperity. Of these the biterary studies are the best, for Trailt possessed great critical insight. He published two collections of escays: Number Twenty (i892), and The New Fiction (1897). In 1865 his Glawcess; a tale of a Fisk, was produced at the Olympic Theatre with Mise Nellie Farren in the pert of Glaucus. II conjunction with Mr Robert Ricbess
he wrote The Medicine Man, produced at the Lyccum in 1898 . He died in London on the 21st of Fcbruary 1900 .

TRAIN (M. Eng. trayn or trayne, derived through Fr. from Late Lat. trahinare, to drag, draw, Lat. trahere, cf. trail, trace, ultimately from the same source), a general term applied to that which is drawn or trailed behind or after anytbing else, the hind part or rear of anytbing. It is thus used of the portion of a skirt, robe or cloak which is leng thened behind so that when allowed to fall it trails along the ground. In ceremonial processions and other state functions the duty of keeping raised the train of the sovereign's robes, or of the robes of great officials and dignitaries, is assigned to pages or to official train-bearers. The length of the train which ladies must wear at royal courts, drawing-rooms or other state functions is fixed by regulations from the lord chamberlain's office. The ehief specifie uses of the term are for the trail of a gun, that portion of the carriage which rests upon the ground when it is unlimbered, the line of gunpowder or other combustible material whicb is used to ignite a charge of explosives, and, figuratively, to an ordered series or sequence of events, thoughts, \&c. The most familiar application is to a number of carriages, wagons or trucks coupled logether and drawn by a locomotive engine on a railway (sce Rallways). A special use of the verb "to train," in the sense of to educate, to instruct, to bring into fit and proper condition, mental, moral or physical, is developed. as in "educate" (Lat. educare, literally, to draw out), from the sense of drawing or bringing out the good qualitics aimed at in a course of instruction; a specific use is that of training for a race or other form of athletics, i.e. getting into fit physical condition.
trajan [Marcus Ulpius Trajanus] (A.d. 53-117), Roman emperor, was born at Italica, in Spain, on the 18 th of September 52 (or 53). The family to which he belonged was probably Italian and not Iberian by blood. His father began as a common legionary soldier, and fought his way up to the consulship and the governorship of Asia. The younger Trajan was rigorously trained by him, and imbued with the same principles and tastes. He was a soldier born and bred. No better representative of the truc old hardy Roman type, litule softened by either luxury or education, had come to the head of affairs since the days of Marius. His training was almost exclusively military, but his experience as an officer gave him an acquaintance with almost every important province of the empire, which was of priceless value to him when he came to the throne. For ten years he held a commission as military tribune, which took him to many lands far asunder; then he filled important posts in Syria and Spain. By the year 89 he had achieved a considerable military reputation. At that time L. Antonius Saturninus headed a rebellion in Germany, which threatened seriously to bring Domitian's rule to an end. Trajan was ordered in hot haste from Further Spain to the Rhine. Although he carried his troops over that long and arduous march with almost unexampled rapidity, he only arrived after the insurrection had been put down. But his promptitude raised him higher in the favour of Domitian, and he was alvaneed to the consulship in $9 x$. Of the next five years of his life we know nothing definite. It is not unlikely that they were spent at Rome or in Italy in the fulfilment of some official duties. When the revolution of 96 came, and Nerva replaced the murdered Domitian, one of the most inportant posts in the empire, that of consular legate of Upper Germany, was conierred upon Trajan. An officer whose nature, as the event showed, was interpenetrated with the spirit of legality was a fitting servant of a revolution whose aim it was to substitute legality for personal caprice as the dominant principle of affairs. The short reign of Nerve really did start the empire on a new career, which lasted more than threcquarters of a century. But it also demonstrated how impossibie it was for any one to govern at all who had no claim, either personal or inherited, to the respect of the legions. Nerva saw that if he could not find an Augustus to control the army, the almy would find another Domitian to trample the senate under foot. In bis difficulties he took counsel with L . Licinius Sahe,
a lifelong friend of Trajan, and on the 27th of October in the ycar 97 be ascended the Capitol and proclaimed that he adopted Trajan as his son. The senate confirmed the choice and acknowledged the emperor's adopted son as his successor. After a little hesitation Trajan accepted the position, which was marked by the titles of imperator, Caesar and Germanicus, and by tbe tribunician authority. He immediately proceeded to Lower Germany, to assure himself of the fidelity of the troops in that province, and while at Cologne he received news of Nerva's death (Jan. 25, 98). The authority of the new emperor was recognized at once all over the empire. The novel fact that a master of the Romans should have been born on Spanish soil seems to have passed with little remark, and this absence of notice is significant. Trajan's first care as emperor was to write to the senate an assurance like that which had been given by Nerva, that he would neither kill nor degrade any senator. He ordered the establishment of a temple and cult in honour of his adoptive father, but he did not come to Rome In his dealings with the mutinous practorians the strength of the new emperor's hand was shown at once. He ordered a portion of the force to Germany. They did not venture to disobey, and were distributed among the legions there. Those who remained at Rome were easily overawed and reformed. It is still more surprising that the soldiers should have quietly submitted to a reduction in the amount of the donative or gift whicb it was customary for them to receive from a new emperor; though the civil population of the capital were paid their largess (congiarium) in full. By politic management Trajan was able to represent the diminution as a sort of discount for immediate payment, while the civilians had to wait a considerahle time before their full due was handed to them.
The secret of Trajan's power lay in his close personal relations with the officers and men of the army and in the soldierly qualities which commanded their esteem. He possessed courage, justice and frankness. Having a good title to military distinction himself, he could afford, as the unwarlike emperors could not, to be generous to his officers. The common soldiers, on the other hand, were fascinated by his personal prowess and his camaraderie. His features were firm and clearly cut; his figure sas tall and soldicrly. His hair was already grey before he came to the throne, though he was not more than forty-five years old. When on service be used the mean fare of the common private, dining on salt pork, checse and sour wine. Nothing pleased him better than to take part with the centurion or the soldier in fencing or other military exercise, and he would applaud any shrewd hlow which fell upon his own helmet. He loved to display his acquaintance with the career of distinguished veterans, and to talk with them of their battles and their wounds. Probably he lost nothing of his popularity with the army by occasional indulgence in sensual pleasures. Yet every man felt and knew that no detail of military duty, bowever minute, escaped the empcror's cye, and that any rclaxation of discipline would be punished rigorously, yet with unwavering justice. Trajan emphasized at once his personal control and the constitutionality of his sway by bearing on his campaigns the actual tille of "proconsul," which no other emperor had done. All things considered, it is not surprising that he was able, without serious opposition from the army, entirely to remodel the military institutions of the empire, and to brian them into a shape from which there was com, arativcly Bithe departure so long as the army lasted. In ding puram natter, no emperor since Augustus had been allog to keep so strong a
control over the troops. Pliny tiahtly praives Trajan as the control over the troops.
Augustus, Trajan and \$hadian together
morale of the a
Trajan and his
his reiga.

he deterinined to put sffairs in train for the attainment of this object. He made a thorough inspection of the great lines of delence between the Danube and the Rhine, and framed and pardy carried out a vast scheme for atrengthening and securing them.
The policy of opposing uncivilized tribee by the construction of the limas, a raimed embankment of earth or other material, intersecred bere and there by fortifications, was not his invention, but it owed is great measure its development to him. It is probabie that the northernmost part of the great limes Germanioc, from the Rhine at Rheinbrohl, nearly midway between Coblenz and Bonn, to a point on the Main east of Franklort, where that river suddenly changes its course from north to west. was begun by Domitian. The extension of this great barrier southwards to the point at which it thet the limes Rectiae was undertaken by Trajan, though we cannot Wy thow far he carried the work, which was not enturely completed tid long after his time. We may without hesitation follow the opinion of Moromeen, who maintains that the liwes was not intended. Gite Hadrinn's Wall between the Tyne and the Solway, and like the great wall of China, to oppose an absolute barrier against incursions trom the outside. It was useful as marking definitely the boundary of the Roman sway, and as assuring the Romatns that no inroad could be made without intelligence being had of it beforehand, Whice the limes itself and the syatem of ronds behind it enabled troops to be directed rapidly to any threatened point, and the fortified positions could be held against large numbers tiil reinforcements arrived. Great importance was no doubt attached to the perfection of the lincs of coramunication bearing on the limes. Armong a people of roadmakers, Trajan was one of the greatest, and we have definire evidence from inscriptions that come of the military roads in this region were constructed by him. The more mecure control Which the Romans now maintained over the territory within the Fimes tended to its rapid civilization, and the Roman influence, if not the Roman arms, scon began to affect powerfully the regions beyond.

Mter his careful survey of the Rhine end of the frontier defences, Trajan proceeded to atrengthen them in the direction of the Danube. From the age of Tiberius onwards the Romans possessed the whole gouthers bank of the river from its cource to the Euxine. But the precarious tenure of their possession had been deeply impreased oo them by the disasters and humiliations they had undergone in these districts during the reign of Domitian. A prince had arisen emong the Dacians. Decebalus by name, worthy to be placed at the head of all the great barbarian antagonists of Rome. Like Marobodoua, he was able to combine the forces of tribes commoniy boscile to each other, and biss military ability aimost went the length of genius. Domitian attacked him but was compelled to rake an Enominious peace. He agreed to pay to Decebalus an annua -abeidy, and to supply bim with eagineers and craftamen skilled in all linds of construction, but particularly in the orection of fortifications and delensive works. During the nithe or ten years Fhich had elapsed since the conclusion of this remarkable treaty the Dacian prince had immenscly strengthened the approaches to the kingdom from the Roman side. He had also equipped and drilled Inis formidable army after the Roman fashion. It was impousible Sor a soldier like Trajan to endure the conditions accepted by Domitian; but the conquest of Dacia had become one of the most formidable tasks that had ever confronted the empire. Trajan mo doabt planned a war before he left the Danube for Rome late in 99

The arrival of the emperor had been awaited in the capital with an impatience which is expressed by Pliny and by Martial. ${ }^{1}$
the city and went on loot to the Capitnl the plaudits of the people were unmistakably genuine. During his stay in the city he riveted more firmly still the affections both of the senate and of the peopic. The reconciliation of the empire with liberty, inaugurated, as Tacitus says, by Nerva, seembed now to be securcly achicved. Trajan was absolutely oper and simple, and lived with men at Rume as he had lived hith bis soldiers andile on service. He realized the senate ine citizen rulcr. The assurance that no senator shoutd
of purnd by oath. All the old republican formalitics bserved-even those attendant on consulate, so far as they did not d order of voting at the comitia is curiously attested is types of coin struck that the Germmnia of nains the enlighten-- character of the e readly with the of the necessity of
by enstorial oficurs. Trajaz metzed every opportunity fot emphasizing his viow that the proncops whe merely the greatest of the magistrates, and so was not above but under the laws. He was determined, he said, to be to his subjects such a ruler as he had deaired for himself when a subject. Real power and influence were accorded to the senate, which had now, by the incorporation of members whose origin was provincial, become in a manner representative of the whole empire. Trajan asociated with the senators on equal terms, and anjoyed in their company every kind of recreation. All pomp was diatasteful to him and discarded by him. There was practically no court, and no intrigues of any kind were possible. The approach to his house was free, and he loved to pase through the city umattended and to pay unexpected visits to his friends, He thirsted for no senator's blood, and used severity against the delatores alone. There was but one insignificant conspiracy against him during his whole reign. Though not literary bimsell, Trajan conciliated the literary men, who at all times had close relations with the senate. His intimate, M. Licinius, played an excellent Maecenas to his Augustus. In his efforts to win the affections of Roman wociely Trajan was aided by his wife Plotina, who was as simple as her hushand, benevolent, pure in character, and entirely unambitious. The hold which Trajan acquired over the people was no less firm than that whlch be maintained upon the army and the senate. His largesses, his distributions of food, his public works, and his spectacles were all on a generous scale. The exhibitions in the arena were perhaps at their zenith during his tenure of power. Though, for some unexplained reason, he abolished the mimes, so beloved of the populace, at the outset of his reign, he availed himself of the occasion of his first triumph to restore them again. The people were delighted by the removal of the imperial exodra (a large chamber with open front) in the circus, whereby five thousand additional places were provided. Taxation was in many directions reduced, and the financial exactions of the imperial officers controlled by the erection of a special court. Eiaborate precautions were taken to save Italy from famine; it is said that com for seven ycars' consumption at the capital was retained in the granaries. Special encouragement was given to merchants to import articles of food. The corporation of bakers was organized and made more effective for the service of the public. The internal trade of Italy was powerfully stimulated by the careful maintenance and extension of the diffcrent lines of road. But the most striking evidence of Trajan's solicitude for his people's welfare is found in his institution of the alimenta, whereby means were provided for the rearing of poor and orphan children In Italy. The method had been sketched out by Nerva, but its great development was due to Trajan. The moneys allotted by the emperor were in many cases supplemented by private benevolence. As a soldier, Trajan realized the need of men for the maintenance of the empire against the outer barbarians, and he preferred that these men should be of Italian birth. He was only carrying a step farther the policy of Augustus, who by a system of rewards and penaities had tried to encourage marriage and the nurture of children. The actual effect of Trajan's regulations is hard to measure; they were probably more effectual for their object than those of Augustus. The foundations were coniscated by Pertinax, after they had existed less than a century.

On the 1st of September in the year 100, when Trajan was consul for the third time, Pliny, who had been designated consul for a part of the ycar, was appointed to deliver the "Panegyric" which has come down to us, and forms a most important source of our knowledge concerning this emperor. Pliny's culogy of Trajan and his denunciation of Domitian art alike couched in extravagant phrases, but the former perhaps rests more uniformiy on a basis of truth and justice than the latter. The tone of the "Panegyric" certainly lends itself to the supposition of some historians that Trajan wes inordinately vain. That the emperor bad an honest and soldierly satisfaction in his own well-doing is clear; but if he had had anything like the vanity of a Domitian,

On the 25 th of March in the year 101 Trajan left Rome for the Danube. Pretexts for a Dacian war were not difficult to find. Although there was no lack of hard fighting, victory in this war depended largely on the work of the engineer. The great military road connecting the posts in Upper Germany with those on the Danube, which bad been begun by Tiberius, was now extended along the right bank of the river as far as the modern Orsova. The campaign of xox was devoted mainly to road-making and fortification. In the following campaign, after desperate fighting to the north of the Danube in the mountainous region of Transylvania, Sarmizegethusa, the capital of Decebalus, was taken, and he was forced to terms. He agreed to raze all fortresses, to surrender all weapons, prisoners and Roman deserters, and to become a dependent prince under the suzerainty of Rome. Trajan came back to Italy with Dacian envoys, who in ancient style begged the senate to confirm the conditions granted by the commander in the field. The emperor now enjoyed his first Dacian triumph, and assumed the title of Dacicus. At the same time he royally entertained the people and no less royally rewarded bis brave officers. But the Dacian chief could not school his high spirit to endure the conditions of the treaty, and Trajan soon found it necessary to prepare for a nother war. A massive stone bridgo was built across the Danube, near the modern Turn Severin, by Apollodorus, the gifted architect who afterwards designed the forum of Trajan. In ros began the now struggle, which on the side of Decebalus could now only lead to victory or to destruction. The Dacians fought their ground inch by inch, and their army as 1 whole may be said to have bled to death. The prince put an end to his own life. His kingdom became an imperial province; in it many colonies were founded and peopled by settlers drawn from different parts of the empire. The work done by Trajan in the Danubian regions left a lasting mark upon their history. The emperor returned to the capital in ro6, laden with captured treasure. His triumph outdid in splendour all those that went before it. Games are snid to have been held continuously for four months. Ten thousand gladiators are said to have perished in the arena, and eleven thousand beasts were killed in the contests. Congratulatory embassies came from all lands, even from India. The grand and enduring manument of the Dacian wars is the noble pillar which still stands on the site of Trajan's forum at Rome.

The end of the Dacian wars was followed by seven years of peace. During part of that time Pliny was imperial legate in the provinces of Bithynia and Pontus, and in constant communication with Trijan. The correspondence is extant and gives us the means of observing the principles and tendencies of the emperor as a civil governor.

- The provinces (hitherto senatorial) were in considerable dieorder, which Pliny was sent to cure. It is clear from the ernperoris letters that in regard to nine out of ten of the matters which his anxious and deferential legate referred to him for his decision he would have been better ploased if the iegate had decided them for himellf. Trajan's notions of civil government were, like those of the duke of Wellington, strongly tinged with military prepossessions He regarded the provincial ruler as a klad of officer in command, Who ought to be abie to discipline his province for himself and only to appeal to the commander-in-chief in a difficuit casc. In advising Piny about the different free communities in the proprivileges which he had exhibited in face of the senate at Rome. At the same time, these letters bring home to us his conviction that, particularly in financial affairs, it was necessary that local self-government should be carried on under the vigilant supervision of imperial officers. The control which he began in this way to exercise, both in traly and ton the provinces, over the " municipia" and "liberae civitates," by means of agents entilied (then or Later) "correctores civitatium libcrarum," was carried continually farther and farther by his successors, and at last ended in the complete centralization of the government. On this account the rcign of Trajan constitutes a turning-point in civil as in military history. in other directions, though we find many salutary civil measurea, yet there were no far-reaching schemes of reform. Many details In the administration of the law, and particularly of the criminal law, were umgroved. To cure corruption in the menate the ballot
guarded from oppression.
on great worles of oublic
Trajan never lacked money to expend compared with Augustus His forum and its nurnerous append bee were constructed on a magnificent scale. Many regions of Italy and the provinces besides the city itsell benefited by the care and munificence which the emperor bestowed on such public Improvements. His attitude towards religion was, like that of Augustus, moderate and conservative. The famous lettef to Pliny about the Cliristians is, according to Roman ideas, merciful and coasiderate. It was impossible, however, for a Roman magistrate of the time to rid himself of the idea that all forms of religion must do homage to the civil power. Hence the conflict which made Trajan appear in the eyes of Christians like Tertullisn the most infamons of monsters. On the whole, Trajan's civil administration was cound, careful and sensible, rather than brilliant.

Late in 113 Trajan left Italy to make war in the East. The never-ending Parthian problem conironted him, and with it were more or less connected a number of minor difficultics. Alrcady by 106 the position of Rome in the East had been materially improved by the peaceful annexation of districts hordering on the province of Syria. The region of Damascus, hitherto a dependency, and the last remaining fragment of the Jewish kingdom, were incorporated with Syria; Bostra and Petrs were permanently occupied, and a great portion of the Nabataean kingdorn was organized as the Roman province of Arabia. Rome thus obtained mastery of the most important positions lying on the great trade routes between East and West. These changes could not but afiect the relations of the Roman with the Parthian Empire, and the affairs of Armenia became in 114 the occasion of a war. Trajan's campaigus in the East ended in complete though brilliant failure. In the retreat from Ctesiphon (117) the old emperor tasted for almost the first time the bitterness of defeat in the field. He attacked the desert city of Hatra, west ward of the Tigris, whose importance is still attested by grand ruins. The want of water made it impossible to maintain a largt force near the city, and the brave Arabs routed the Roman cavalry. Trajan, who narrowly escaped being killed, was forced to withdraw. A more alarming difficulty lay before him. Taking advantage of the absence of the emperor in the Far East, and possibly by an understanding with the leaders of the rising in Armenia and the annesed portions of Parthia, the Jews all over the East had taken up arms at the same moment and at a given signal. The massacres they committed were portentous. In Cyprus 240,000 men are said to have been put to death, and at Cyrenc 220,000. At Alexandria, on the other hand, many Jews were killed. The Romans punished massacre by massacre, and the complete suppression of the insurrection was Jong delayed, but the Jews made no great stand against disciplined troops. Trajan still thought of returning to Mesopotamia and of avenging his defeat at Hatra, but he was suricken with sickness and compelled to take ship for Italy. His illness increasing, he landed in Cilicia, and died at Selinus early in August in7.

Trajan, who had no children, had continually delayed to eettle the succession to the throne, though Pliny in the "Pancgyric" had pointedly drawn bis attention to the matter, and it must have caused the senate much anxiety. Whether Hadrian, the relative of Trajan (cousin's ton), was actually adopted by him or wot in impossible to determine; certainly Hadrian had not been advanced to any great honours by Trajan. Eyen bis militnry service had not been distinguished. Plotina asserted the adoption, and it was readily and most fortunately accepted, if not believed, as a fart.

The senate had decretd to Trajan as many triumphs as he chose to celebrate. For the first tirne a dead general triumphed. When Trajan was deified, he appropriately retained, alone among the emperors, a title he had won for himself in the field, that of "Parthicus." He was a patient organizer of victory rather than a strategic genius. He laboriously perfected the military machine, which when once set in motion went on to victory. Much of the work he did wes great and enduring, but the last year of his life forbade the Romans to attribute to him that feliciles which they megarded as an inborn quality of the highest senerals. Each was saluted with the wish that he might be and more fort unate than Augustus." Xef the breach m felicilos by the failure in the East wras no greater
in the Jelicilas af Augustus by his retiremeat
of the Rhine. The questio

It vass cartainly wive If the thente unisted which wert nooumary to carry it out and sustain it. But succeeding history proved that those means did not exist. The assertion of Mommsen that the Trxis mas a more defensible frontier than the desert line which epperated the Parthian from the Roman Empire can hardly be socepted. The chanse would cerraialy have created a demand for nore legions, which the resourcea of the Romana were not pufficient to meet without danger to their posecsaions on other frontiers.
The records of Trajan's reign are miserably deficient. Our best enthrority is the 68ch book of Dio Camius; then comen the "Panegyric " of Pliny, with his correspondence. The fact to be mathered from other ancient writers are ocattered and scanty. Fortunately the inscriptions of the time are abundant and important. O modern historien which comprise the relgn of Trajas the bext in Enctiah is that of Merivale: but that in Cerman by H. Schiller (Ceschiche der robmischen Kaiserzeif, Gotha, 1883) is more on a revel Gith receat inquirics. There are special works on Trajan by H. Francke (Gütrow. 1837), De la Betge (Paris. 1877), and Dieraver in M. Bodinger's Unbersuchunger zur romischen Kaisergestivitie, (Leipaig. 1868). A paper by Mummsen in Hermes, iti, pp. 30 sert entitled" Zur Lebensgeschichte des jungeren Plinius," is importari for the chronology of Trajan's reign. The inscriptions of the reig: ond the Dacinn campaigns, have been much studied in recent years a scattered artich and montorpaplis.
TRALES, a market town and seaport, and the county town on Co. Eerry, Ireiand, on the Ballymullen or Leigh River, about a mie from its mouth in Tralee Bay, and on the Great Southern $\&$ Western railvey. Pop (r901), 9687, A ship canal, permitting the persage of ships of 200 tons burden, coneects it with Tralee Bay. Large vessels discharge at Fenit, 8 m , westward, ehere there is a pier connected with Tralee hy rail. Coal, iron and timber ase imported, and there is considerable export of pain. There is a large irade in butter. Railways serve the beigbouring seaside watering-places of Ballybunnion and Castlegregory, and the coast scenery of this part is grand and raried. Four miles north-west of Tralee is Ardfert, with its cabedral, one of the oldest foundations in Ireland, now united to the see of Limerick. St Brendan was its original founder, and it had once a university. A neighbouring round tower fell in thjo. Seven miles north of this again is the fine round tomer of Raltoo.
Tralee, anciently Traleigh, the " strand of the Leigh," owes its erigin to the foundation of a Dominican monastery in 1213 by John Fitz-Thomas, of the Geraldine family. During the reign E Ereabeth it was in the possession of Earl Desmond, on whose fareiture it came into possession of the Dennys. At the time of the rebellion in 1641 the Eaglish familics in the neighbourhood nited 10 be placed in the castle under the charge of Sir Edward Depy. but during his absence a surrender was made. The town ons incorporated by James I., and returned two members to the I- partiament. Though disfranchised at the Union in 1800 , itexined the privilege of retarning one member in 183^{2}, but in yes it was merged in the county division. It is governed by an the diserict council.

TAlIt (mod. Guted Hissar), an ancient town of Caria، Asia Y-or, situated on the Eudon, a tributary of the Maeander. It - moputed an Argive and Thracian colony, and was long under neter rule, of which we hear in the history of Dercyllidas' raid Ere Ephesus in 397 b.c. Fortified and increased by :he Scieu--. ${ }^{-1}$ d Pergamenians, who renamed it successively Selcucia and engeria, it passed to Rome in r33. Though sattrized in a lipe (Juv. Sat. firi 70) as a remote provincial place, it wealthy inhabitants in the Roman period and, to objects discovered there, contained many notahle art. Two of the best marble heads in the Constantinople came from Tralles; and both in the excavations at for that monentifindren Dey (1904), and by o light on mas super-
exhibite beld icifí sceaory. The bay if opea to the wouth, and is dangerous to navigators, as in foggy weather it has been frequeatly mistiken for the entrance to Waterford Harbour. On the cHfa to the west are three towers, one having a curiosis iron figure known as the "metal man," erected as a warning to mallors. The bay is divided into an outer part and an inner lagoon (the Back Strand) by a spit of sand, with a strait, crossed by a ferry at its eastern extremity. A monument commemorates the wreck of the troopship "Seahorse" in 1816. Four miles weat is Dunhill Castle, well situated on a precipitous rock.

TRAMP, a vagrant, one who "tramps" or walks the roads begging from house to house or ostensibly looking for work, but with no home and habitually sleeping oul or moving on from the casual ward of one workhouse to that of another (see Vacrancy). The word is the shortened form of "tramper," one who tramps or walks with heavy tread. The term "tramp" is also used of a zargo steamer not running on a regular line hut passing from port to port where freight may be picked up.

TRAMWAY, a track or line of rails laid down in the public roeds or streets (bence the American equivalent "sureet railway "), along which whoeled vehicles are run for the conveyance of passengers (and occasionally of zoods) by animal or mechanical power; also a light roughly laid railway used for transporting coals, both underground and on the surface, and for other similar purposes. The word has been connected with the name of Benjamin Otutram, an engineer who, at the beginning of the 19 th century, was concerned in the consiruction of tram roads, and has been explained as an abbreviation for "Outram way." But this is clearly wrong, since the word is found much earlier. It appears to be of Scandinavian origin and primarily to mean 2 beam of wood, cf. Old Swedish 1 dim, Irum, which have that sense. In a will dated isss reference is made to amending a " higheway or tram" in Bernard Castle, where a log road seems to be in question. In Lowland Scottish "tram" was used both of a beam of wood and specifically of such a beam employed as the shaft of a cart, and the name is still often given in England to the wheeled vehicles used for carrying coal in mining. "Tramway," therefore, is primerily either a way made with beams of wood or one intended for the use of ". trams". containing coal (sec Rarlway).

Construction. -The firt tramway or street railway designed for passenger cars with flanged wheels was built in New York in 1832. The construction of this tramway does not appear to have been a buccess, and it was soon discontinued. In $18 \mathrm{~s}_{2}$ tramways were revived in New York by a French enginecr named Loubat, who constructed the track of flat wrought-iron rails with a wide, deep groove in the upper surface, laid on longitudinal timbers. The groove, which was designed for wheel flanges similar to those employed on railways, proved dangerous to the light, narrow-tired vehicles of the American type. To meet this difficulty a step-rail consisting of a flat plate with a step at one side raised aboat 7 in. above the surfece was designed and laid at Philadelphia in 1855 . When tramways were first introduced into England by G. F. Train in 1860 a rail similar to that laid at Philadelphia was adopted. This rail (fig. i) was made of wroughtiron and weighed 50 tb per yard. It was 6 in . wide and had a step $\frac{1}{3}$ in. above the sole. The rails were spiked to longit udinal timbers, which rested on transverse sleepers, and they were laid to a gauge of $451.8 \frac{1}{2} \mathrm{in}$. Tramways of this type were lajd at Birkenhead in 1860, at London in 1861, and in the Potterics (North Staffordshire) in 1863. The English public, however, would not tolerate the danger and ohstruction caused hy the step-rail, withits large area of alippery iron surface, and the tramway laid in Lomdon had to be removed, while those at Birkenhead and the Potteries were only saved by being relaid with grooved raik. Thus, while the step-rail became the standard form used in the United States, the grooved-rail became generally adopted in Europe. From the cramway point of view the slep-tail has many advantages. A groove collects ice and dirt, and on carves binds the whed flanges, increasing the resiat ance to tractiva. A grooved rail is, however, iar less of a nuisance to the
ordinary vehicular traffic, and it has come to be largely used in the principal cities of America.

After the passing of the Tramways Act of 1870 the construction of tramways proceeded rapidly in England. A flat grooved rail supported on a longitudinal timber and laid on a concrete bed was generally adopted. The paving consisted of stone setts from

(Figa. and 3 from D. K. Charke's Tramarys, thri, Constructiom and Worling Fig.

Fic. 2.

Early Tramway Rails.
4 to 6 in . in depth, laid on a thin bed of sand and grouted with cement, mortar or a bituminous mixture: With the exception of the design of the rail and the manner of supporting it on the concrete foundation, which has continually changed, this method of constructing the track has varied but little to the present day.
The flat gection of rail which was wanting in vertical stifness scon proved unsatisfactory. A fillet or flange was, then added to each side, which, bedding into the supporting timber, not only increased the vertical strength but also prevented horizontal displacement of the rail. With the addition of the side flanges a greatly improved method of fixing the rail to the slecpers was adopted. The old vertical spike, which was a crude fasièning, was replaced by a "dog" or double-ended side spike, one end of which was driven through a bole in the flange of the rail (fig. 2). This fastening was very strong and proved a great improvement.
The next change was the use of cast-iron chairs to support the rails, which were introduced by Kincaid in 1872 . These led to a modification of the rail section, and instead of the two side flanges a rail with a central flange (fig. 3) which fitted into the cast-iron chairs was used. The chairs weighed about 75 ib each, and were spaced at intervals of about 3 ft . The Barker rail laid in Manchester in 1877 was somewhat similar to thet shown in fig. 3, but a continuous cast-iron chair was used to support it.

The introduction of steam traction about $\mathbf{~} 880$, with its heavier axle loads and higher speeds, was a severe test of the permanent way. The flat section laid on timber sleepers and the buitt-up rails of the Kincaid and Barker types began to be discarded in favour of the solid girder rail rolled in one piece. The solidity and depth of this section gave it great vertical stiffness, and its introduction materially assisted in solving the problem of providing a smooth and serviceable joint.

The merits of the girder rail soon caused it to be generally adopted, and although the design has been greatly improved it remains to-day the standard form of tramway rail used throughout the world. At first difficuliy was experienced in rolling the heavier sections with thin webs and wide bases, but the introduction of steel and improvements in the rolling mills overcame these troubles. The early girder rails laid about 1880 usually weighed from 70 to 80 lb per lineal yard, and were 6 or 6$\} \mathrm{in}$. deep. The groove varied from ito $1 / \mathrm{in}$, and the tread was about it in. in width. The fish-plates were not designed to give any vertical support, and were merely used to keep the rail ends in line. The girder rails were either bedded directly on the foundation or spiked to timber sleepers which were buried in the concrete.

The form of head adopted for tramway rails in Europe has almost universaily been one with the groove on one side. With this section the wheel flange forces out the dirt clear of the tread. In a few isolated cases a centre grooved raii has been used. As with railways, the adoption of many different gauges bas led to much inconvenience. This want of uniformity in the gauge is in some parts of the country a great obstacle to the construction of inter.urban lines. London and the larger provincial towns
adopted the standard gauge of 4 ft .81 fm ., but in many towns narrow gauges of 3 ft . or 3 ft .6 in . were laid. Glasgow and a few other towns adopted the gauge of 4 ft . 7 il in . with a view of making the narrow grooved rail of the tramways available for railway wagons, but without any real success.

With the introduction of electric traction the weight and speed of the cars greatly increased, and experience soon proved that only the most substantial form of permanent way was capable of withstanding the wear and tear of the traffic. The early electric lines were laid with girder rails weighing about 75 th per lineal yard. These proved to be too light, and, at the present time, rails weighing from 05 to 110 th per lineal yard are in genersl use. The large number of rail sections designed a few years ago gave considerable trouble to makers of rails. The issue in 1903 by the Engineering Standards Committed of a set of standard girder tramway rail sections was therefore generally welcomed. The sections comprise raits of Gve different weights. Modified sections for use on curves were also published, together with a standard form of specification. Fig. 4 shows the section of the 100 ft . B.S. rail (No. 3).
Tramway ralls are generally ordered in 45 ft lengths. Rails 60 ft . long are sometimes used, but they are difficult to handle, especially in narrow streets. The rail joints still prove the weakest part of the track. Numerous patents have been taken out for fishplates and sole-plates of special design, but none has proved quite satisfactory. The" Dicker "joint. in which the bead of the rail on the

(Reprodiced by permbsiun of the Enginesrog Standards Committe)
Fig. 4.-British Standard Tramway Rail, No. 3-
tread side is partly cut away and the fish-plate carried up so that the wheel runs on its top edge, and the ", anchor "joint, in which a short piece of inverted rail is bolted or riveted to the undersides of the abutting rals, have been largely used. The latter makes a good stuff joint, but when buried an concrete it interferes with the bedding of the rail as a whole, often causing it to work loose in the cenire. Various processes have also been introduced for uniting the ends of the rails by welding. Electric welding was first tried in the linited States about 1893 , and has since been considerably used in that country. in this process two specially prepared fogh-plasi applied. one to each side of the joint. Each frate? bosses or projections, one in the centre o
near each end. By passing a heavy al
voltage between the opposite bosses the
the rail. The current is obtained froms the
fencrator and stalic transformer.
used considerably in the United =
in England, is the cas
ends are enclosed is a
which make a mope of
creat drawback to these two proceswes is the costly and cumbersome spparatus required. The "thermit" process (see WeldmG) doe not require any large initial outlay, and has been applied to welding the joints on both old and new tracks. The cost of making each joint is about $\{1$.

Points and crossings are used on a tramway to deflect a car from one road to another. In the days of horse tratction no movable witch was used, the car being guided by making the horscs pull the leading wheels in the required direction. With the introduction of mechanical traction a movable switch was fitted in one of the castings toact as a guide to the wheel flanges. On modern tramways the points consist of a pair of steel castings, one being a fixed or dummy poist. and the other containing a movable switcl. On a single track af passing places the cars in Great Britain always take the lefthand road. and a spring is fitted to hold the movable switch to lead in that direction. The bottom of the grooves at open points and crostines are raised so that the car wheel runs on its lange over the break in the tread of the rail. Double switch points in which the two longucs are connected are sometimes laid. In recenr ycars the size and weight of the castings and the length of the movable switches have cunsiderably inereased. Manganese steel is very generally used for she tongucs and sometimes for the whole casting. Ordinary cast steel with manganese steel insct pieces at the parts which wear most quickly are a feature of the later designs. At sqme junctions the points are moved by electric power.
While the form of concrete foundation remains the same as that In in at Liverpool in 1868. far greater care is now given to the bedding of the rails After the excavation bas been completed the rails are set up in the trench and carefully packed up to the finished level. The concrete is then Laid and packed under the rail, generally for e depeh of 6 in . When the surface is to be paved with stone setts bedded on and the concrete may be tcit rough, but where wood is to be laid the surface must be floated with fine mortar and finished to armooth surface. Both hard and soft wood blocks are used for paring. Wood should not be used unless the whole width of the cafriage-way is paved. Many differcnt qualities of stone setis have been laid. Hard granite such as that supplied from the quarries arar Aberrieen is the most suitable.

In urban districts the road authorities almost always require the tramway surface, i.e. between the rails and for 18 in . on either side, to be paved. In country districts many tramways have been laid with only a sett edging along each rail, the remainder of the Eurface being completed with either ordinary or tarred macadam. This construction, however, is only suitable on roads with very light traffic. After a tramway is laid, especially in a macadamized road, the heavy vehicular traffic use the track, and the wear is very much greater than on other parts of the carriage-way.

Sicam and Cable Tromways,-Horse traction, especially in billy districts, has many limitations, and early in the history of tram ways experiments were made both withsteam cars and cable halage. Alhough experimental stcam cars were tried in England in 1873 the first tramways whicb regularly employed steam engincs were French, though the engines were supplied by 2 a English firm. About 1880 many improvements were made in the design of the engines employed, and this form of traction was adopted on several tramways in England. Beyond
formed of concrete, with cast-iron yoizes spaced at intervals of 4 ft . to support the slot beams. The conduit was I i in. deep by 9 in . wide. The slot was $\frac{?}{3} \mathrm{in}$. wide. The running rails were of the ordinary girder type bedded in concrete. Fig. 5 shows a cross-section of the track at a yoke. This form of construction is very similar to that employed in forming the tubeon a modern electric conduit tramway. At Edinburgh and other places where a shallow conduit is used the supporting pulleys are placed in pits sunk below the general level of the tube. On the Birmingham cable tramway, where the tube is 2 ft .8 in . deep, pits are not required at the supporting pulleys. This reduces the difficulty of draining the conduit. The yokes in this case are made of steel T-bars spaced 4 ft . apart.

Electric Trampays.-Electricity is now the standard motive power for tramway service, and is applied in three main ways: (1) the overhead or trolley system; (2) the open conduit system; and (3) the surface contact or closed conduit system. (See also Traction.)

Ona tramway worked on the overhead principle current is supplied to the cars by two overhead conductors or wires. Round copper wires varying in size from 0 (0.324 in .) to 0000 (0.40 in .) S.W. gauge are generally used. With feeding points Ovestien at every mile, the o wire is electrically sufficient on most 7 roday. roads. but from a mechanical point of view oo wire is the smallest it is desirable to erect. Wires having figure 8 or elliptical grooved sections have been employed, and have the advantage of allowing the use of a mechanical clip ear which is clear of the trolley wheel. The ordinary round wire is usually supported by a gun-metal or gun-metal and iron ear grooved to bit the wire, which is soldered or sweated to it. In Great Britain the overhead conductors are required by the board of trade to be divided into half-mile sections. The wires on adjoining sections are connected by section insulators. These consist of gun-metal castings in two parts, insulated from each other. The line wires are clamped to the metal ends. The continuity of the path of the trolley wheel is provided for on the underside of the insulator by fixing a hardwood strip between the ends or by the ribs on the castings with air gaps.

The trolley wires are supported by ears either from span wires which extend across the roadway between two poles or from bracket arms carried on a pole on one side only of the road. The span wire and short bracket guspension wires are also insulated, so that there is double insulation between the conductor and the pole. The overhead conductors are usually hung about 21 ft . above the rails. (For catenary suspensions bee Traction.) The poles which carry the span wires and the bracket arms are placed not more than 40 yds . a part and are generally placed at the edge of the kerb. They are built up of three sections of stecl tubes, one overlapping the other: the joints are shruak together while bot. A cast-iron case is used to improve the appearance of the pole, and cast-iron collars hide the joints. Standard specifications for poles have been issued by the Engineering Standards Committee.
When permission can be obtained the span wires are sometinves supported by rosettes attached to the walls of the houses on either side of the street. This method has been largely adopted in Germany.

Fig. 5.-Section Edinburgh Cable Conduit.
acquiring a better constructed track it docs not necessitate any clifentions in the general design of the permanent way. The
and by dispensing with the poles in the roadway it improves the appearance of the street.
Overhead conductors will not be tolcrated in some citics, and to avoid the use of them open conduit and surface contact tramway have been introduced. In the conduit system the conductors are carried in a conduit or tube bencath the surface of the track, and the electric current is picked up

Ope by means of plough carried by the cars. Modcrn condut tramway are divided into two kinds: those which have the conduit at the side are divided into two kinds: those which have the conduit at the side the track. The only example of the former to be found in England is at Bournemouth, but it is used at Vienna, Brussels, Paris, Bcrlin and Budapest. Centre conduit construction has been adopted in London, Nice, Bordeaux, New York, Washington. \&c. The advantages of the side alot eystem are the reduction in the amount of metal
in the roadway, less breaking up of the pavement, and slightly cheaper cost of construction. Its chiel disadvantage is the difficuity it introduces in connexion witin points and crossings. It is also objected that if the side slot is made the same width as the rail groove

(From The Tramany end Railway Forld.)
Fig. 6. -Section of Side Conduit.
it becomes a danget to narrow-tired vehicics. The difficuity in regard to points and crossings is overcome by bringing the slot into the centre of the track at junctions and turn-outs. Fig. 6 shows a section of the side slot track laid at Bournemouth. The width of

Froce The Tramesy and Railesy Forld.)
FIg, 7.-Section of Centre Conduit (London County Council type) the slot is I in., which is the least width possible. In London $\frac{1}{f}$ in. was first adopted as the width of the centre slot, but later this was increased to I in., so that in this particular there is not much to choose between the two systems. Fig. 7 shows a section of the London County Council track at one of the cast-iron yokes. These are spaced 3 ft .9 in. apart, every second yoke being now continued out under the running rail which is hastened to it. There is no doubt that the extended yoke greatiy increases the strength of the track. The slot beams weigh 60 to per yard. The conductor bars are of mild stcel, T-shaped. They weigh 22 tb per yard and are supported on insulators at intervals of 15 ft . Each insulator is covered over in the roadway with a castiron frame and movahle iid. There are two conductor rails-positive and negative-so that the whole circuit is insulated from earth. The conduit or tube is formed of cement conerete. The track between the rails is paved with granite setts in order that there may be no trouble with wood biocks swelling and closing the slot.

Arnerican practice in conduit construction has become fairly weil standardized (fig. 8). The conduit is ovai in shape, its major axis being vertical, and is formed of concrete. An excavation about 30 in . deep and 5 ft . wide is made, and in this are laid cast-iron yokes weighing 4 to th each, and spaced 5 ft. apart centre to centre. Every third yoke contains bearings for a hand-hole plate, and weighs about 600 the These yokes surround the conduit proper and are provided with extensions on each side for the attachment of the railis. In the oider construction the rails were Laid directly upon the iron of the yokes, steel wedges and shims being used under them for the final alinement of the rails. In the more recent construction, on the Third Avenue railroad in New York City, a wooden
 to yoke on the bearing surfaces, and the rail laid upon this. The rail is held down on the yoke by means of two bolts at each bearing-point, these bolts having turned-up heads winch embrace the foot of the rait. The siot rails, or Z bars forming the two jaws of the Lin. slot, are bolted to the upper part of the yokes. The weights of the metal used per linear
yard of construction of this type are: castiron, including both types of yokes, 500 lb ; track rails, 214 lb ; slot rails, 116 tb ; conductor rails. 42 lh; and conduit piate, 16 lb -ncariy 400 tb of roiled steel per yard. Afeer the rails, which are of a high girder type, are fastened in place thin plates of sheet steci are bent into the oval hoies in the yokes extending from yoke to yoke, and form the inner surface of the completed conduit. Around this is carcfuily laid a shell, 4 in. thick, of Portland coment concrete. The yokes are furnished with lugs which serve to retain, tomporarily, wooden boards forming a mould in which the concrete is rammed. Sectional wooden shapes serve to hold the thin steel lining in piace while the concrete is hardening. Around this concrete tule, and on each side of it, to form a hasis for the street pavement, is laid a mass of coarser concrete. In each side of the special yokes is placed an insuiator of porcelain, protected by a cast-iron sheil and carrying a support for the conductor raii, which is of T-shaped steel, weighing 21 th per yard. It is in 30 ft . lengths and is supported every 15 ft . by the insulators, the ende of separate rails being matched at and held by an insulator support. This rail is, of coursc, bonded with copper bonds. Two such con-

Fig. 8.-Cross-section of Open Conduit Road (American type). ductor rails are installed in the conduit 6 in. apart, the flat facea corresponding to the upper surface of the T being placed towards cach other. Elaborate provisions for drainage and inspection are also provided, depending upon the situation of the tracks and nature of the street. The current is fed tn the conductor raiis by heavy copper conductors of from 500,000 to 1,000,000 circular mils crosesection, insuiated and lead-covered, laid in ducts alongside of or between the two tracks of doubie-track systems. Connexion is

(From J. II. Rider'v Elecricic Traction, by perminsion of Whillaker \& Co_{0})
Fic. 9.-Cross-section of Stud. Skates and Magnets. Lorain Systeme
made between the cars and the conductor rails by means of a "plouyh," carried by a hard steel plate, which is channelled to receive the insulated wires leading up to the controller on the car. The plough carrics two cast-iron rubbing-blocks, which are pressed outgard into contact with the conductor rails by springs, the two being, of course, very carefully insulated from each other and from the other metal-work of the plough. It has bcen found expedient in practice to reverse the polarity of the current ased on these condurt raads from time to time, since electrolytic deposits, formed by small leakage currents in the vicinity of insulators, Scc., are thus dispolved belone they become a source of trouble.

Creat difficulty is experienced with all conduits in keeping thers clean and free from water. On the London tramways a sump has been formed at intervals of about 60 yds . into which the conduit drains. Thesc sumps are connected with the sewers. The principal objection to the conduit system is its heavy first cost. The tracks alone in London are estimated to cost about $\{13,000$ per mile of single track against about $\{8000$ per mile for a track to be worked on the overhcad system.

This high cost of construction has caused considerable attention to be dinected by inventors to devising surface contact systems. surfee Many of the designs which have been patented coutect appear excellent in theory, but have been found unworked commencially in England are (1) the Lorain systera in operation at Wolverhampton; (2) the Dolter system at Torquay. Mastings end Mexborough, and (3) the C.B. system at Lincoln. Of all these systems current is supplied from iron studs lairl in the roadway between the rasls of the track to a skatecarricd on the car. The studs are plaoed 10 ft - to 15 ft . apart and contain a movable switch or eontact, which is operated by the influence of a magnet carried under the car. In the Lorain system (fig. 9) connexion is made to the source of power through two carbon contact pirces. The lower carbon contact is carried on a soft iron strip which is connected to the supply cable by means of a flat copper ribbon sping. When the magnet passes from over a stud the iron armature and the lower carbon coneact, which has been magnetically attracted. [alls vertically, assisted by the copper ribbon spring. In the Dolter system the contact box (fig. 10) contains a belf crank lever with a carbon contact at its lower end. The upper arm of this fever is of soft iron. which is attracted by the matenet carried under the car. When the lever is moved the carbon block at the lower end is brought into contact with the fixed carbon contact in the side of the box which is perma. neatly connected to the supply cable. In the G.B. contact box

Fia. 10-Crow-section of Stud. Skates and Magnets. Dolter System.
pader the boxet. The switch, consisting of a piece of galvanized iron, is suapended freety by means of an lasulazed phoupfior bronxe epring. At the lower end of this moving piece a carbon contact proce is attached. When the magnet carried by the car passes over atud, the moving piece is magnetically attracted to the cable against the pull ol the spring. In tbe Lorain and the Dolter syatems
objectionable feature-and the current is collected by a skate, suspended under the car, touching the projecting surface. In the G.B. 日ystem the stud heads are kept flush with the pavement, and the collector consists of iron links spring suspended. As the collector passes over the box the links are magnetically attracted, and move down, making contact with the stud.

In all surface contact systems, short circuiting devices are provided to detect any studs which may remain live after the skate has passed. either by blowing a fuse or by ringing a bell, but it is questiotiable how much reliance can be placed on their efficiency under all conditions. The collecting skate and magnets carried by the cars on a surface contact tramway are of considerable weight, and the skate requires renewal at frequent intervals.

An efficient system of street traction may be defined as one which, while giving a reasonable return on the capital invested, provides the public, without disfigurement of the highway, with B quick and frequent service of comfortable cars.

When tramways were first introduced the surlace of the streets was often exceedingly rough. The tramcar running on rails was therefore a great advance in comfort of travelling on the old stage carriage. Horse traction, however, limited the weight of the car and

(From The Tiomesy and Raibay
Fic. II.-G. B. Stud. the speed of travelling. The substitution of stcam traction for horse traction was a great advance. Higher speeds and quicker accelcration were obtained, and larger and more comfortable cars Advantusva could be worked. The power, however, was limited, of Dysfems, and the locomotives, built as light as possible, were
expensive in first cost and maintenance. Cable traction, owing to the heavy first cost of the track, requires a great density of traffic to make it pay. The speed is limited both up and down hill to that of the cahle. It has the advantage that it can be safely worked on severe gradients, and once installed the working costs are low.

Electric traction by accumulator cars was tried in Birmingham in 1890 and abandoned after some years of unsatisfactory working. The cars were costly to work and maintain. The storage batteries had to be recharged at frequent intervals, and they rapidly dropped in capacity. There was little reserve of power, and the cells added considerahly to the weight of the car.

Those forms of electric traction in which the power is supplied to the cars from an outside source have many advantages. Only the weight of the motors has to be carried. These are efficient over a wide range of specd, acceierate quickly, have a large reserve of power and are clean and silent. The electric conduit and surface contact tramways do not require any disfguring overhead wires. They have, however, troubles of their own. The construction of the electric conduit is so expensive that its choice must necessarily be limited to largo cities. The conductors are casily short-circuited. Gaps in the conductors must be left at the points and crossings. The cost of keeping the conduit clean is considerable. It has the advantage, however ${ }_{\text {t }}$ of having both the positive and negative conductors insulated. Surface contact systems require studs or contact boxes to be placed in the road. In most systems these project above the surface of the street. The switclies which they contaln are hidden away from inspection. A failure of insulation or the sticking of a switch may allow a live stud to be unprotected in the roadway. The weight of the car and consoquently the power required to move it is considerably increased by the skate. magaet aad battery which have to be carried.

For simplicity of working the overhead system easily conas
first. The conductors are out of reach, they can easily be doubly or trebly insulated, and with their insulators are open to inspection. The poles and wiring can be erected without closing or obstructing the street. The supply of power is not interfered with by heavy rain, snow or other climatic causes. Duplicate conductors are used, and repairs can be rapidly executed. The only objection is that of unsightliness, which, however, can be greatly reduced by good design.
The cost of establishing tramways to be worked on the various systems of traction mentioned above has varied considerably. The locality and the amount of street widening have considerable influence on the total. Horse tramways in the larger cities cost in the past about $\left[15,000^{1}\right.$ per track mile complete with horses, cars, \&c., tramways worked by steam power about $\left\{18,000^{\prime}\right.$ per track mile including locomotives and cars. The Edinburgh Corporation cable tramways cost $\left\{23.31^{2}\right.$ to establish complete with powerhouse, cars, \&c. Of this figure, the cost of the permanent way construction amounted to $\left\{14,4311^{3}\right.$ The construction and equipment of the South London conduit tramways cost $\left\{25,106^{2}\right.$ per mile of single line; the permanent way, its electrical equipment and the distributing cables cost $115,895^{\circ}$ per track mite. More recient estimates appear to show that the average cost in London will be between $£ 26,000$ and $\{30,000$ per track mile. In Glasgow the total cost of constructing and equipping the electric tramways on the overhead system, including the provision of a power station, cost £19.7874 per track mile, and at Leeds £13.206. At Manchester, where current is provided by the lighting station, the complete cost works out at $\left\{12.498\right.$. $^{\text {b }}$. The cost of the permanent way, cables and electrical equipment per track mile varies from 6575 at Manchester to f 9959 at Glasgow. The cost of laying down a surface contact electric tramway is about slightly more than that of constructing and equipping a track with overhead conductors. The cost of the permanent way and its electrical equipment together with the cables at Wolverhampton on the Lorain surlace contact principle amounted to f 860 I per track mile.

The working expenses of the various systems of traction are largely affected by the age of the tramway, the locality, and, in the case of electric lines, by the cost at which power is obtained. In Birmingham in 1890-1891 ' horse traction cost 9.79d. per car mile, steam traction 10.99 d . per mile, cable traction 6.33 d . and electric accumulator traction 9.90d. per car mile. Modern electric trollcy lines generating their own current work at from 50 . to Gd, per car mile. Where current is purchased the costs vary from 6d. to 7 \}d, per car mile. The working costs of the London County Council conduit tramways worked on purchased current amounted to 8-02d. per car mile in the year $1905-1906$.

Tramway Cars.-The modern tramway car is made up of two distinct parts, the body and the truck. The present type of double ended car with a platform at each end was first used on the American street railways about 1860 . The car body was supported directly on axle-boxes through helical steel or rubber springs

When the early pioneers were experimenting in the United States with electric traction they attached the motor to the car body. This proved unsatisfactory, and resulted in the develop. ment of the modern truck. The truck may be described as a carriage or frame supported on the axde-boxes by springs and supporting by another set of springs the car body. The truck carries the motors and in itself resists all the strains of the driving mechanism.

Modern car bodies are mounted either on a single four-wheeled truck, with a fixed or rigid wheel-base, or on two four-whecled bogies or swivelling trucks. Four-wheeled radial trucks have been tried on several tramways, but they have not proved satis-factory. The wheel-base of the fixed or rigid truck usually varies from 6 to 7 ft . The length of the wheel-base should be determined by the radius of the sharpest curve. To obtain steady running it should be made as long as possible. Two motors are generally fitted on a car.
Of the bogie or swivelling trucks the greater number now in use are of the "maximum traction "type. This truck is used to obtain the greatest tractive effect from two suotors when fitted to a car supported on eight wheels. Etach bogie is a mnall lour-wheeled

[^16]truck in itself. It has one pair of its wheels driven by the single motor and of the standard size-about 30 in.-while the guiding or "pony" wheels are of small diameter. The weight of the car body is supported eccentrically on the truck, so that about 70% to 80% is available for adhesion under the driving-wheels. While this form of truck has many merits, it also has many disadvantagen. The amall wheels easily leave the rails, while the adhesion of the driving-wheels compared with a four-wheeled car is considerably reduced. Quick acceleration is difficult, and on a greasy rail much energy is lost in slipping. The use of equal-wheeled bogies with a motor on every axle gets over the difficulty of the loss of adhesion but at a greatly increased cost. The current consumption is increased. the frst cost is greater, and there are four instead of two motori to be maintained. Steel-tired wheels have langely replaced the castiron chilled wheel for many years used on tramcars.

While the various forms of trucks are common both to Britieh and American practice, car body construction differs in many points. The single-deck car is universal outside the United Kingdom. where, although many single-deck cars are worked, the greater number are of the double-deck type. It is claimed that with small single-deck cars a quicker service can be maintained, as they are easier to load and unload and generally handier. On the other hand. the double-deck car seats more than double the number of passingers, requires the same number of men to work it, and takes but little more power to drive it. Expericnce has proved that the 58 -passenger -28 inside and 30 outside-double-deck car mounted on a fourwheeled truck is the type of rolling stock most suitable for British conditions. For heavy rush traffic or long distance travel the larger bogie cars are convenient. They are, however, slow to start and stop, and a $7^{2-p a s s e n g e r ~ c a r ~ i s ~ t o o ~ m u c h ~ f o r ~ o n e ~ c o n d u c t o r ~ t o ~ w o r k ~}$ efficiently. Another difference is due to the width of the cars. In the United States car bodies vary from 8 ft . to 9 ft .6 in . in widsh. In Great Britain the width is limited by the Tramways Act of 1870 to II in. beyond the outer edge of the wheels, which, on the standard gauge, allows the maximum width to be 6 ft . 10 in . This limit has governed the arrangement of the seating in the cars. Inside, the ordinary side seat is almost invariably adopted. Cross seats have beea used, hut they leave a very narrow gangway-a great disadvantage at times of overcrowding. On the top deck, where the available width is grcater aad standing is never permitted, cross eeats are universally fitted.

On the old horse cars a straight type of stairway was used. The reserved stairway, brought in about 1902, gave greater protection from accident and increased the seating accommodation on the top deck. It had, however, two great disadvantagcs. The stairway shut out the motorman's view on the left-hand side, and the stream of passengers descending met the stream of passengers leaving the inside of the car, causing delay. The reversed type of stairway has now been abandoned and the straight type, well protected by railings. is usually fitted.

In addition to the ordinary single-deck and double-deck types of cars which are in gencral use many other designs are to be found. Single-deck open cars of the "t toast-rack " type with transverse scats are popular on many holiday lines. They have the advantage of being quickly filled and emptied. Centre vestibule cars are now seldom seen. It is inconvenient not to have the conductor at the back of the car where he can look out for passengers, and, if necessary. "nurse" the trolley. There is also danger of a passenger being struck by the axle-boxes of the rear bogie truck when leaving the car. The Californian type of car body, with the central part closed in and one or two double-sided transverse seats at each end, has been used on routes where low bridges do not allow of the use of double. deck cars. The carrying capacity of this type in wet weasher when the exposed seats cannot be used is small. A demi or one-man car has been worked in some towns. It saves the wages of one man, but the average speed of the scrvice is reduced. Top deck covers have in reeent years been largely fitted. Their use practically doubles the covered scating capacity of the car and provides accommodation for smokers, a ditificult matter on a single.deck car.

In Great Britain the board of trade requires all cars to be fitted with an efficient form of lifeguard. The gate and tray pattern. in which anything striking the vertical gate drops the tray. is that principally employed. In addition to the ordinary hand-brake which operates shoes on all the wheels, and the electric reverse switch, a large number of cars are fitted with some form of elertric brake (see Traction).

Legislative Conditions in Greal Briloin.-The first tramways constructed in Great Britain were promoted by private enterprise under powers conferred by private acts of parliament. Considerable opposition was offered to pioneer schemes, but after a few private acts had been passed, parliament, in 1870, passed a general act providing for the laying of rails upon roads, and specifying the procedure for tramway promotion and the main rclations between tramway undertakers and local authorities. The Tramways Act 1870 , which is still in force, enabled promoters to epply to the board of trade for a provisional order which, when confirmed by parliament, possesses all the force of an act of
perfiament. The procedure is therefore simpler and cheaper than private bill procedure. Under this act promoters are ohliged ∞ obtain, as a condition precedent to making application for a provisional order, the consent of local authorities in whose areas the proposed tramways are to run. This provision is referred to as the " veto clause." Where a line is laid in two or more districes and two-thirds of the line are in districts where the local suthorities do consent, the board of trade may dispense with the consent of the remainder. When procedure hy private hill is adopted a similar "veto" provision is made by Standing Order 23, which requires the consent of the local authority (and of the road authority where there is one distinct from the local authority) before the bill goes to first reading; in this case also the consent of authorities for two-thirds of a continuous line are deemed sufficient. The powers granted under the Tramways Act are in perpetuity, subject to the right of the local authorities (under the 43 rd section) to purchase, at the end of twenty-one years or each scptennial period following (or within three months aiter the promoters have discontinued working the tramway or have become insolvent), so much of the undertaking as lies within their areas, on paying the then value of the properties suitable to and used for the undertaking, exclusive of any allowance for past or future profits or compensation for compulsory sale or any other consideration whatsoever, such value to be determined hy an arbitrator appointed by the board of trade. Another part of the arrangement specified between the local authorities and the undertakers is that the undertakers shall pave the tramway track between the outer rails and for 18 in . beyond each outer rail. Mr G. F. Shaw-Lefevre (afterwards Lord Eversley), when introducing the bill in 1870 , said that it "would give powers to the local authorities to construct tramways, hut not, of course, to work them." The idea apparently was that local euthorities should retain full control of the roads by constructing the tramways, and would make arrangements with lessees on terms which rould secure reasonable fares and ot her cunditions for the benefit of the travelling public. It was not until 8896 that parliament permitted local authorities to work tramways as well as own them, except in cases where lessees could not be obtained. The precedents for municipal working were created by private acts at a time when puhlic opinion was in favour of that policy; and after the first few bills for municipal tramway working had been successlul, other municipalities found practically no difficulty in obtaining the desired powers, although parliament had sever adequately discussed, as a specific reform, the departure from the principte laid down hy Mr Shaw-Lefevre in 1870 . The conditions in fact proved more favourable to municipal than company promoters, since the local authorities, as soon as they apired to work tramways as well as own them, used the power of veto against the proposals of companies.
The situation entered a more acute phase when electric traction was introduced on traroways. The Tramways Act provides, by section 34, that all carriages shall be moved hy the power prescribed hy the special acts or provisional order, and where no sucb power is prescribed, by animal power only. The mechanical power used must be by consent of the board of trade, and subject to board of trade regulations. Owing to the capital expenditure involved in electric traction, undertakings nearing the end of their twenty-one years' tenure found that it was not commercially feasible to carry out the change without an extension of tenure. The local authorities were reloctant to grant that extension, and they were also reluctant to give permission for the promotion of new lines.

The difficulties of the attered conditions created hy the advent of electric traction were met to some extent by the Light Reifweys Act $\mathbf{1 8 9 6}$. This act contains no definition of a light railway, and it has been usod largely for electric tramway purposes. Lord Morley, when piloting the bill through the Lords, said that "light railway" includes "not menely all tramways but any railway which the board of trade thinks may justly be brought within the scope." It certainly includes tramways in towns, and it might include large trunk lines throughout the country." Accordingly it has been used for the construction
of many miles of tram lines on the public streets and also in some cases for extensions where the track leaves the puhlic road ${ }_{2}$ and is laid on land purchased for the purpose. These tracks are generally constructed with grooved girder raibs, baving a wide groove and a high check, so that the shallow flanged tramcar wheels can run on them with salety at high speeds. The raile are laid on cross sleepers and ballasted in the ordinary railway fashion. Fencing is ere ted, but level-crossing gates are often omitted, and cattle guards only are used to prevent animals straying on the track. These sleeper tracks on private ground are cheap to maintain if well constructed in the first instanc. Speeds of 20 to 25 m . an hour have been sanctioned on electric lines of this character, worked hy ordinary tramway rolling stock. There is no purchase clause in the Light Railways Act, hut arrangements for purchasc of the undertaking were usually made with the local authorities and the terms embodied in the order. The act contains no veto clause, section 7 stating that the commissioners are to "satisfy themselves that all reasonable steps have been taken for consulting the local authorities, including road authorities, through whose areas the railway is intended to pass, and the owners and occupiers of the land it is proposed to take." The Ligbt Railway Commissioners, however, have interpreted the act in the spirit of the Tramways Act, so that for all practical purposes the veto remains. The new act differed from the Tramways Act in providing for the compulsory purchase of land under the Lands Clauscs Acts- the Tramways Act expressly stating that the promoters should not be empowered to acquire land otherwise than by agreement. The board of trade has held that the act does not apply to tramways wholly within one borough. County, borough and district councils as well as individuals and companies are empowered to promote and work light railways.

The passling of the act gave a great impetus to the construction of tramways worked hy electric traction. But owing to the practical retention of the veto, there was not so much progress an was anticipated. Another cause of restriction was section 9, sub-section 3, which provides that if the board of trade considers that " by reason of the magnitude of the proposed undertaking, or of the effect thercof on the undertaking of any railway company existing at the time, or for any other special reason relating to the undertaking, the proposals of the promoters ought to be submitted to parliament," they should not confirm. the order. In many cases railway companies, hy pleading the competitive influence of proposed tramways promoted under the Light Railways Act, were able to force the promoters to apply to parliament or to drop the scheme. The latter alternative was frequently adopted, owing to the costs of partiamentary procedure being too heavy for the undertaking.

Commercial Resulfs.-Interest in the commercial results of tramway enterprise is practically limited to electric traction, since other forms of traction have been almost entirely superseded owing to their economical inferiority. The main advantages of electric traction over horse traction lie in the higher speed, greater carrying capacity of cars, and the saving in power over a system in which only a small proportion of the power source is available at one time. Steam. compressed air and gas traction possess the disadvantages that each car has to carry the dead ueight of power-producing machinery capable of maintaining speed up to the maximum grade. Cable traction has the disadvantages that the speed of the cars is limited by the apeed of the cable, that the range and complexity of the arstem ans reatricted, and that construcion is expensive. The electric system, in which power is generated at a central source and distributed to cars which take power in proportion to the work being done, possesses a higher degree of fexibility, convenlence. and economy than any odher system. Electric tramways in Great Britain are mostly equipped on the overhead trolley system, though the conduit and the surface eontact systems have been installed in a few inslances. Roughly the capial expenditure required for the three systems is in proportion of 2, it and 1 , and both the conduit and the surface contuct syekema are more costly to maimetin than the overhend system. A ourth yyntem of electric traction, in which the cars are fitted with storage batteries charged at Intervals, has been tried frequently and as frequently abandoned. The great weight of the batteries, the eerious initial cost and high rave of dererioration prevented the attainment of financial succeso.
The carliest development of electric roed traction on a large scale took place in America and on the continent of Europe, sod the
estimates for British tramways were therefore prepared from | The financial results achicved by electric traction companies American and continental results. The following figures summarize are summarized in the next table:a number of estimates made at this period; the first table gives the figures for capital cost, and the second for operating expenses. The receipts were estimated at tod per cas mile.

	Capital cost per mile of
single track.	

Year.	Number of companties.	Aggregate capital.	Average ordinary capital.	Average prefcrence capital.	Average loan and debenture capital.	Total average.
		6	$\%$	$\%$	$\%$	$\%$
$1899-1900$	24	$9,056.332$	3.87	5.56	4.64	4.37
$1900-1901$	37	$15,021.137$	4.27	5.53	4.57	4.65
$1901-1902$	62	28.322 .117	4.07	4.44	4.53	4.29
1903	64	35.479 .296	4.31	5.11	4.47	4.57
1904	77	$48,789.525$	4.13	4.81	4.53	4.41
1905	99	$61,273.986$	3.79	4.92	4.39	4.33
1906	117	77.202 .373	3.47	4.81	4.88	4.13
$190 ;$	118	$99,315.028$	2.87	4.25	4.38	3.781

Total . . . $£ 9500$

Operating expenses per car mite.

Electrical energy	t 50d.
Wages ol drivers and conductors	$1 \cdot 10$
Car shed expenses, wages and sto	0.55
General expenses	0.90
Repairs and maintenance	I-25

Total 5-30d

The estimates gave reason to expect that electric traction would mean cheaper fares and more frequent services at a higher speed, resulting in a considerable increase in traffe receipts per mile and a substantial reduction of working expenses. The result of pioncer undertakings in South Staffordshire, Bristol and Coventry supported this expectation. Later experience, however, showed that the estimates were too optimistic. Taking the actual figures realized for the undertakings included in the above tables, the capital expenditure per mile of single track was $£ 12,000$ and the working expenses per car mile 6.3d. The expectations as to gross revenue have been gencrally realized, but the increase in capital expenditure and working expenses over the estimates is typical of electric tram. ways in Great Britain. In the matter of wear and tear the estimates have also been too low. The reasons for the larger capital expenditure are (1) superior track construction, (2) more claborate overhead equipment. (3) use of larger cars, (4) higher cost of road paving and other improvements imposed upon tramway undertakings.
According to the official returns of tramways and light railways for the year 1905-1906, there were 312 tramway undertakings in the United Kingdom, and 175 of these belonged to local authorities. Out of the total of 1491 m . of line owned by local authorities, 1276 m . are warked by these authoritics themselves, and the remaining 215 m . by leasing companies. Local authorities working as well as owning their tramways made a net profit of $£ 2.529 .752$, applying 6663.336 to the reduction of tramway debt and $\{205,98 \mathrm{i}$ to the relief of rates, while carrying $£ 623.617$ to reserve and renewal funds. The following table summarizes the amounts expended by local authorities on electric traction:-

Year.	Municipalities.	1
1900	11	$1,169,429$
1901	18	$2,748,873$
1902	47	$10,519.543$
1903	61	$14,644.126$
1904	92	$21,295,771$
1905	115	$27,876,320$
1906	131	$34,147.824$
1907	3.31	$35,965.9=0$

The corresponding table for electric traction companies (including electric railways), detailing the amounts and proportions of ordinary preference and loan and debenture capital, is as follows :-

The total expenditure on tramways and light railways (omitting railways-main, branch and suburban) was $£ 15,195,993$ in : 8 g6 and 458,177.832 in 1906.
One effect of the increased cost of expenditure per mile of track is to discourage extensions of rural and inter-urban lines where the traffic is not heavy. Proposals have been made to adopt the " raillless trolley" (used in some places on the continent of Europe) for such extensions. In this system the cars run on ordinary wheels and take power from overhead trolley wircs. But so far no such arrangement has been put into practice in Great Britain, and outlying districts are generally dealt with by petrol or steam motor vehicles, running as feeders to the tramways and railways. The future commercial development of tramways lies more in the economics in working than in growth of track mileage. Owing to the enormous volume of traffic a very slight alteration in one of the items of expense or revenue produccs a large result in the aggregate. The addition of ld . per car mile to revenue or a corresponding reduction in expenses would, on the 240 millions of car miles run in 1905-1906. result in a gain of about $(500,000$ per annum, which is equal to nearly 1% on the entire capital expenditure in respect of tramways and light railways. The tables given above show that the yield upon the capital invested in electric traction is not high. The effect of increased capital expenditure has been accentuated by reductions in farcs. In 1886 the average fare per passenger was 1.6 Id. and in 1896 it was $\mathrm{r} \cdot 31 \mathrm{id}$., falling in 1906 as low as triod. Some sybtems carry passengers over $2 \frac{1}{2} \mathrm{~m}$. For one penny, workmen being carried twice the distance for the same sum. Halfpenny fares are represented as a boon to the working man, but they have been abandoned as a failure after several years' trial on several systems, and in Glasgow it is found that halfpenny fares contribute only 20.4% of the carly morning traffic, while the penny fare contributes 72.3% of that traffic. The general manager of the Birmingham Corporation tramways reported against halifpenny fares on the basis of his experience as gencral manager of ahe London County Council tramways that all the halfpenny passengers there are carried at a loss. The adjustment of lares and stages to their proper value is a question now carefully studied by tranway managers along with many problems of economy in working. The close adjustment of the service to the fluctuations in traffic is one source of economy which is: being more scriously considered. Many systems have adopted top covers to cars in order to carry more passengers during wet weatler. The adoption of these covers is not popular in fine weather: it adds to the weight and wind-resistance of the cars, thusincreasing current consumption, and it adds to the cost of construction and maintenance. Economy in electrical energy is, in its broader aspects, secured by purchasing current from an outside source in preference to generating it at a special station. The average cost per unit of electricity for all tramway undertakings in the United Kingdom is 1 -ood., but one tramway company which purchases its energy from a large power company pays only 0.85 d . per unit. In its narrower aspects economy in current may be secured by reducing waste car mileage-that is to say, eliminating the running of cars at times and places where they are not required for an. adequate service. Saving may also be effected by supervision of the driwing of the cars, since the difference of as much as 20% has been noted between different drivers. One tramway manager secured

Year.	Number of undertakings.	Ordinary capital.	Percent. to total.	Preference capital.	Percent. to total.
1896	17	5.041.375		$1{ }^{1}$	
	17	5.041,375	83	412.776	7
1897	30	6,564,147		124.850	
1808-1890	51	9,793,2.54	68	1,640,780	15
1809-1900	66	11.770.7.1	in	3,834.76t	20
1900-1901	75	84.55*, 127	55	5.904 .998	33
190t-1902	125	19.748,9\%5	54	9,748,891	24
1903	126	21,600,056	4)	11,170,319	25
1904	${ }^{56}$	3,3,491,604	54	13, $319.4{ }^{3} 7$	23
1005	159	$36.9 .49,010{ }^{4} 9$	47	22,853,948	29
1906	170	38,5,30,4\%	41	75, 2060.988	27
1907	17.3	53,034.778	4.9		

1 Average reduced owing to inclusion of Merropolitan and Merropolitan District railwaya capital.
aloo improve the net resulta by seduciag the proportion of standing charges (wages, otc.) to the traffic capacity of the system without mahing the cost of maintenance or current more than slightly greater. A 15% increase in average apeed means a saving of fd . per car mile. The development of parcels traffe io a source of revenue, and additional receipte cam be earned by the hiring-out of cars for picnics and other special purpoees. An troportant point pa the proper melection of the size of car. A small four-wheeled car is suitable to continual traffic of comparatively small volume, but when the traffic is heavy cars of larger enpecity are advinable. A serious burden on trammays is the cost of insurance against accidents, although the number of serious accidents on electric tramways is exceedingly small in proportion to the number of pasengers carried, the ratio of tramway accidents of all kinds being about one accident to every 15000 peasengers.

There are many adjoining towns having ceparate tramway undertakings which do not provide intercommunication. Experience bas shown that a break of tramway facllities reduces the receipts by 20 to 50% on the lines which have been severed; and the terminal half-mile, except in populous districts, is the least remunerative ection of a tramway route.

Statisfics.-Each year the British board of trade issues a return of street and road tramways and light railways authorized by act or order, showing the amount of capital authorized, paid up and eqpended: the length of line authonzed and the length open for mbic traffic; the groee receipts, working expenditures, net receipts and appropriation of net receipta; the number of passengers conveyed; the number of miles run by cars and the quantity of electrical energy used; together with the number of horses, engines and cars in use The return published in January 1909 deals with the figures for local authorities up to the 31 at of March igo8 and for companies ap to the 318t of December 1907. The following comparative table cummarizes the most important general figures for the United Kingdom provided by this official rerurn:-

The following table gives a few tatals, ration, and percentages for the last two years of what may be called a period of electric traction, in comparison with a typical "steam" period (i.e. a period in which the use of stean power in tremways was at ita maximum) and e typical " horse "period:-

	Electric period. 1907-1908.	Steam period. 1896.	Horse period, 1879.
Length of route open.	2.464 .22	1009	3201
Teral number of paxcengers carried.		${ }^{7501466,047}$	150,881,515
Percentage of working expenditure to gross reccipts	62.64	74.79	3.97 8.81
Passengers carried per mile of route open . . .	1.065.462	732,691	169,641

From the above fgures it will be noticed that the capital cost per mile has increased as a result of the adoption of electric traction while at the same time the percentage of the return on the capital has been reduced motwithstanding that the rate of working expend1ture has fallen and the number of paceengers carried per mise has increased, the farcs charged having been disproportionately reduced.
(E. Ga.)

TRAKCE (through the French, from Lat. aransilus, from transire, to cross, pass over), a term used very loosely in popular speech to denote any kind of sleeplike state that seems to present obvious differences from normal sleep; in medical and scientific literature the meaning is but little better defined. In its original usage the word no doubt implied that the soul of the entranced person was temporarily withdrawn or passed away from the body, in accordance with the belief almost universally held by uncultured peoples in the possibility of such withdrawal. But the word is now commonly applied to a varicty of sleeplike states without the implication of this theory; ordinary sleep. walking, extreme cases of melancholic lethargy and of anergic stupor, the deeper stages of hypnosis (see Hypnotism), the

Years ended June 30.					Year endinf Dec. 3^{1} (companice) and March 31 (local
	1878.	1886.	1898.	1909.	1907-1908
Total capital authorized.			$\{24,435,427$	\{51,677.471	\{91,305,439
Total capital expended Lerget of route open (miles) : : :	4,207,350	[12,573.041 86	$116.492,869$	6,31.562,267	(68,199.918
Number of horses. : :	9,222	24.335	38.777	24,120	3,288
Number of locomotive engines. -	14	44°	589	388	64
Number of cars Toual number of passengers carried. -	146,001,223 ${ }^{1.124}$	384, 157.520^{3}	858,485.524	$\begin{array}{r}7.752 \\ \hline \text {, }\end{array}$	10, ${ }^{10,988}$
Quantity of electrical energy used, B.O.T. units	146,001,223	384,157,524	$858,485.524$	452,983	2025,532,895
Grose receipts. ${ }^{\text {Working expenditure }}$.	[1,099,271	\{2,630,338	44.560,126	66,679,298	+12,439,625
Working expenditure. : : : ..	\{ 2868,315	(2,021,556	23,507,895	$44,817,873$ $[1,861,418$	$67,792,663$ $4.646,962$

The total figures at the date of the return are summarized in the following table, which is accompanied by one showing the lengt hs of line worlced by various methods of traction:-
cataleptic state, the ecstasy of religious enthusiasts, the self induced dream-like condition of the medicine-men, wizards or priests of many savage and barbarous peoples; and the abnormal

	Capital expenditure on lines and works open for traffic.	Total expenditure on capital account.	Length open for traffic.						$\begin{aligned} & \text { No. of } \\ & \text { under. } \\ & \text { cakinge } \end{aligned}$
			Dou				Tot		
	E	E	\boldsymbol{m}	ch.	M.	ch	M.	C.	
tocal authoritiee	33,978,579	44,920,317	1113	77	505	77	1619	74	177
Tramways and hght railwaya belonging to companies and private individuals	18,641,279 ${ }^{1}$	23.279,601	408	58	435	46	844	24	128
Total United Kingdom	51,619,858	68,199,918	1522	55	941	43	2464	18	305

Table showing leng ths worked by various methods of traction :-

Method of uraction.	England and Scotland.				Ireland.		Total.	
Ekectric	${ }_{1922}$	${ }_{6} \mathbf{C 7}$	${ }_{2}^{435}$	Ch 35	${ }_{127} \mathbf{H}$	ch_{6}	${ }_{2286}^{\text {M. }}$	Ch.
Sceam.	22	67	$\underline{ }$	$\xrightarrow{3}$	29	45	52	32
Cable.	4	49	22	72	-	-	27	41
Gay motors		${ }^{2}$	-	3	-	-	4	2
Horse.	82	60	4	28	7	5	94	13
Total.	2037	4	262	55	164	39	2461	18

Thear frures include cost of buidinge and equipnent in respeet of enteis local aushoritias' lines worked in conjunction with othet lines.
state into which many of the mediums of modern spiritualistic seances seem to fall almost at will; all these are commonly spoken of as trance, or trance-like, states. There are no wellmarked and characteristic physical symptoms of the trance state, though in many cases the pulse and respiration are slowed, and the reflexes diminished or abolished. The common feature which more than any other determines the application of the name seems to be a relative or complete temporary indifference to impressions made on the sense-organs, while yet the entranced person gives evidence In one way or another, either by the expression of his features, his attitudes and movements, his epeech, or by sabsequent relation of his experiences, that his
condition is not one of simple quiescence or arrest of mental life, such as characterizes the state of normal deep sleep and the coma produced by defective cerebral circulation by toxic substances in the blood or by mechanical violence done to the brain.

It we refuse the name trance to ordinary sleep-walking, to normal dreaming, to catalepsy, to the hypnotic state and to stupor, there remain two different states that seem to have equal claims to the name; these may be called the ecstatic trance and the trance of mediumship respectively.

The ecstatic trance is usually characterized by an outward appearance of rapt, generally joyful, contemplation, the suhject scems to lose touch for the time being with the world of things and persons about him, owing to the extreme concentration of his attention upon some image or train of imagery, which in most cases seems to assume an hallucinatory character (see Hallucination). In most cases, though not in all, the subject remembers in returning to his normal state the nature of his ecstatic vision or other experience, of which a curiously frequent character is the radiance or sense of brilliant luminosity.

In the mediumistic trance the subject generally scems to fall into a profound sleep and to retain, on returning to his normal condition, no memory of any experience during the period of the trance. But in spite of the seeming unconseiousness of the subject, his movements, generally of speech or writing, express, either spontaneously or in response to verbal interrogation, intelligence and sometimes even great intellectual and emotional activity. In many cases the parts of the body not directly concerned in these expressions remain in a completely lethargic condition, the eyes heing closed, the muscles of neck, trunk and limbs relaxed, and the breathing stertorous.

Trances of these two types seem to have occurred sporadically (occasionally almost epidemically) amongst almost all peoples in all ages. And everywhere popular thought has interpreted them in the same ways. In the ecstatic trance the soul is held to have transcended the bounds of space or time, and to have enjoyed a vision of some earthly event distant in space or time, or of some supernatural sphere or being. The mediumistic trance, on the other hand, popular thought interprets as due to the withdrawal of the soul from the body and the taking of its place, the taking possession of the body, by some other soul or spirit; for not infrequently the speech or writing produced by the organs of the entranced subject seems to be, or actually claims to be, the expression of a personality quite other than that of the sleeper. It is noteworthy that in almost all past ages the possessing spirit has been regarded in the great majority of cases as an evil and non-human spirit; whereas in modern times the possessing spirit has usually been regarded as, and often claims to be, the soul or spirit of some deceased human being. Modern science, in accordance with its materialistic and positive tendencies, has rejected these popular interpretations. It inclines to see in the ecstatic trance a case of hallucination induced by prolonged and intense occupation with some emotionally exciting idea, the whole mind becoming so concentrated upon some image in which the idea is bodied forth as to bring all other mental functions into abeyance. The mediumistic trance it regards as a state similar to deep hypnosis, and seeks to explain it by the application of the notion of cerebral or mental dissociation in one or other of its many current forms; this assimilation finds strong support in the many points of resemblance between the deeper stages of hypnosis and the mediumistic trance, and in the fact that the artificially and deliberately induced state may be connected with the spontaneously occurring trance state by a series of states which form an insensible gradation between them. A striking feature of the mediumisie rance is the frequme.
occurrence of antomatic" speech and writine: feature especially may be regarded as warmition cation of the theory of mental dissociat for such automat duced by a considerable
limaits to the scope of telepathic communication between
embell
while in a waking condition which presents little or no other symptom of abnormality. In these cases the subject hears his own words, or sees the movement of his hand and his own hand writing, as he hears or sees those of another person, having no sense of initiating or controlling the movements and no anticipatory awareness of the thoughts expressed by the movements. When, as in the majority of cases, such movements merely give fragmentary expression to ideas or facts that have been assimulated by the subject at some earlier date, though perhaps seemingly completely forgotten by him, the theory of mental dissociation affords a plausible and moderately satisfactory explanation of the movements; it regards them as due to the control of ideas or memories which somehow have become detached or loosened from the main system of ideas and tendencies that make up the normal personality, and which operate in more or less complete detachment; and the application of the theory is in many cases further justified by the fact that the "dissociated" ideas and memorics seem in some cases to become taken up again by, or reincorporated with, the normal personality.

But in recent years a new interest has been given to the study of the mediumistic trance by careful investigations (made with a competence that cummands respect) which tend to re-establish the old savage theory of possession, just when it seemed to have become merely an anthropological curiosity. These investigations have been conducted for the most part by memhers of the Society for Psychical Research, and their most striking results have been obtained by the prolonged study of the automatic speech and writing of the American medium, Mrs Piper. In this case the medium passes into a trance state apparently at will, and during the trance the organs of specth or the hand usually express what purport to be messages from the spirits of deceased relatives or friends of those who are present. A number of competent and highly critical observers have arrived at the conviction that these messages often comprise statements of facts that could not have come to the knowledge of the medium in any normal fashion; and those who are reluctant to accept the hypot hesis of " possessjon " find that they can reject it only at the cost of assuming the operation of telepathy ($q . v$) in an astonishing and unparalleled fashion. During 1907-1908 the investigation was directed to the obtaining of communications which should not be explicable by the most extended use of the hypothesis of telepathic communication from the minds of living persons. The plan adopted was to seek for "cross-correspondences" between the communications of the Piper "controls" and the automatic writings of several other persons whieh claimed to be directed by the same disembodied spirits; i.e. it was sought to find in the automatic writings of two or more individuals passages each of which in itself would be fragmentary and unintelligible, but which, taken in connexion with similar fragments contemporaneously produced by another and distant writer, should form a significant whole; for it is argued that such passages would constitute irrefutable evidence of the operation of a third inteligence or personality distinct from that of either medium. The results puhlished up to 1009 seem to show that this aftempt met with striking success; and they constitute a body of evidence in favour of the hypothesis of possession which no impartial and unprejudiced mind can lightly set aside. Nevertheless, so long as it is possible to believe, as so many of the most competent workers in this field helieve, that dissociated fragments of a personality may become synthesized to form a secondary and as it were pamasitic personality capable of assuming temporary control of the oggans of expression, and so long as we can set no ligaits to the scope of telepathic communication between evidence in favour of the
(Acodone 1906). Sma abo verious articles in Gacesframen des Novosesad Sealerslebens, edited by L. Loewenfeld and H. Kurella (Wieabaden, 1900), expecially the article "Somnambulismus und Spiritismus "; abo articles in Proceadisgs of the Society for Psychical Research, especially pta. liii., Iy. and Ivii., and in the Jowrs. of Abnormal Prechology, edited by Morton Prince (Boston, 1906-1909); also literature cited under Automatism; Hypnotism; Medium; Telepathy and Possession.
(W. Mc D.)

TRANENT, a police burgh of Haddingtonshire, Scotland. Pop. (1001), 2584 It lies 91 m . E. of Edinburgh by road and I m. S.E. of Prestonpans station on the North British railway. The town possesses the oldest coal-mining charter (1202-1218) in Great Britain, and the mines and quarries in the neighbourhood provide the staple industry. A fragment of a parish church, said to have been built in the inth century, still stands. Of the palace of the Setons which stood in the parish there are mo remains. It was demolished towards the close of the 18 th century and a modern mansion was erected on its site.
In the neighbouring village of Ormiston, in 1885, a grenite obelisk was erected in memory of Robert Moffal ($1795-1883$), a native, the South Airican missionary and father-in-law of Livingstone. At Ormist on Hall, a seat of the marquess of Linlithgow, there is a yew trec, beneath which the reformer George Wishare ($1513-1$ 546) wed to preach. Hard by is the village of Pencaitland, divided into an eastern and a western portion by the Tyne. The parish church in Easter Pencaitland probably dates from the I 3 th century. The aisle may belong to the original building, but the rest is of the 16kh century. excepting the small belfry of the 17th century. The old house of Pencaitland stands in the grounds of Wiaton Castle, which was erecied by the 3rd earl of Winton in 1620 but forfeited by the 5 th earl. who was involved in the Jacobite rising of 1715 . Five miles south-east of Tranent is the village of Salton (or Saltown), where Gilvert Burnet, afterwards bishop of Salisbury, had his Erst charge (1665). At his drath be bequeathed the parish 20,000 marks cor the clothing and educating of poor children. He was tutor to Andrew Fletcher, who was born at Salton in 1655 and buried there in 1716. At Fletcher's instigation James Meikle, a neighbouring millwright, went to Holland to learn the construction of the won-worts of bariey mills, and the mill which he erected at Salton after his return not only gave Salton barley a strong hold on the market, but was also for forty years the only mill of its kind in the British Isles. Mcikle's son Andrew (1719-1811), inventor of the thresbing machine, carried on bis trade of millwright at Howston Mllll near Dunbar. Andrew Fletcher, also of Salton (1692-1766), nephew of the elder Andrew, became lord justice clerk in 1735 under the style of Lord Milton. By hio mother's energy the art of zeaving and dressing holland linen was introduced into the village She travelted in Holland with two skilled mechanics who contrived to learn the secrets of the cralt. The British Linen Company Lid down their Girst bleachfeld at Salton under Lord Milton's patronage. Salton also lays claim to having been the birthplace of the poet William Dunbar.
TRANI, a seaport and episcopal see of Apulia, Italy, on the Adriatic, in the province of Bag, and 26 m . hy rail W.N.W. of that town; 23 ft . above sea-level. Pop. (1go1), 34,688. Trani bas lost ifs old walls and bastions, but the inth-century Gothic citadel is used as a prison. Some of the streets remain much as they were in the medieval period, and many of the houses display more or less of Norman decoration. The cathedral (dedicated to St Nicholas the Pilgrim, a Greck assassinated at Trani io 1004 and canonized by Urban II.), on a raised open site near the sea, was consecrated, before its completion, in 1143 ; it is a basilica with three apses, a large crypt and a lofty tower, the later erected in $1230-1239$ by the architect whose name appears on the ambo in the cathedral of Bitonto, Nicolaus Sacerdos. It has an arch under it, being supported partly on the side wall of the church, and partly on a massive pillar. The arches of the Romanesque portal are beautifully ormamented, in a manner engestive of Arab influence; the bronze doors, executed by Batimans of Trani in 1175, rank among the best of their period in moushern Italy. The capitals of the pillars in the crypt are Geremmplas of the Romanesque. The interior of the cat hedral mes been berbarovely modernized, but the crypt is fine. Near H. Hhour is the Gothic palace of the doges of Venice, which Wined as a seminary. The church of the Ognissanti has merque relief of the Annunciation over the door. S. ry ind S. Francesco also have Romanesque facades and -riter of Trani produces an excellent wine (Moscalo di Trani);
and lts figs, oll, almonds and grain are also profitable articles of trade.

Trani is the Turenum of the itineraries. It first became a flourishing place under the Normans and during the crusides, but attained the acme of its prosperity as a seat of trade with the East under the Angevin princes. The harbour, however, has lost its importance.

TRANQUBEAR, a town of British India, in the Tanjore district of Madras, on the sea-coast, 18 m . N. of Negapatam. Pop. (1901), 13,142. A Danish factory was opened here as early as 1620 . It was taken by the British in 180\%, but restored in I814, and finally purchased, with the other Danish settlements in India, in 8845. In Danish times Tranquebar was a busy port, hut it lost its importance when the railway was opened to Negapatam. It was the first settlement of Protestant missionarics in India, founded by Ziegenbalg and Plutschau (Lutherans) in 1706; and there is still a Lutheran mission high school and mission press.

TRANSBAIKALIA (sometimes also known as Dauria), a province of Eastern Siberia, lying E. of Lake Baikal, with the government of Irkutsk on the N.W. and N., the provinces of Amur and Manchuria on the E. and Mongolia on the S. Its area (232,846 sq. m .) is nearly as large as that of AustriaHungary, but its population does not much exceed half a million.

Transbaikalia forms an intermediate link between Siberia, Mongolia and the northern Pacific littoral. The Yablonoi Mountaine which run north-cast front the sources of the Keruleit to ilie bend of the Olekma in $56^{\circ} \mathrm{N}$., divide the province into two queite distinct parts; to the west, the upper terrace of the high east Asian plateau, continued from the upper Selenga and the Yenisei (4000 to 5000 ft . high) towards the pliteau of the Vitim (3500 to 4000 ft .) ; and to the east the lower terrace of the same plateau (2800 ft .). forming a continuation of the eastern Gobi. Beginning at Lake Baikal, a valley, deep and broad, penetrates the north-western border-nidge of the plateau, and runs eastward up the river Uda, with an imperceptible gradient, like a gigantic railway cutting enclosed between two steep slopes, and it sends another branch south towards Kiakhta. After having served, through a succession of geological periods, as an outlet for the water and ice which accumulated on the plateau. it is now utilized for the two highways which lead from Lake Baileal across the plateau (35004000 ft .) to the Amur on the east and the Chinese depression on the south. Elsewhere the high and massive border-ridge on the north-western edge of the plateau can be crossed only by difficult footpaths. The border-ridge just mentioned, gapped by the wide opening of the Selenga, runs from south-west to northeast under different names, being known as Khamar-daban (6900 ft) routh of Lake Baikal, and as the Barguzin Mountains (7000 to 8000 ft.) along the east bank of the Barguzin river, while farther northeast it has been described under the namea of the South Muya and the Chara Mountains (6000 tn 7000 ft .). Resting jts south-east base on the platcau, it descends steeply on the north-west to the lake and to the broad picturesque valleys of the Barguzin, Muya and Chara. Thick forcsts of larch, Gr and cedar clothe the ridsc, whose dome-shaped rounded summits (goltsy) rise above the limits of tree vegetation, but do not reach the snow-line (here above $10,000 \mathrm{ft}$.). The high plateau itself has the aspect of an undulating table-land, intersected by ranges, which rise some 1500 or 2000 ft . above its surface, and are separated hy broad, fat, marshy valleya traversed by aluggish meandering streams. The better drained valleys have fine meadow lands, while the hills are clothed with forests (almost exclusively of larch and hirch). Numberiess lakes and ponds occur along the river courses. Tunguses hunt in the forests and meadows, but permanent agricultural settlements are impossible, com seldom ripening on account of the early frost. The lower parts of the broad, flat valley of the Jida have, however, a Cew Cossack settlements, and Mongolian shepberds inhahit the elevated grassy valieys about Lake Kosso-gol (5300 ft. above the sea). Quite different is the lower terrace of the plateat, occupied by the eastern Gobi and the Nerchlnsk region, and separated from the upper terrace by the Yahlonoi range. This hast is the mouth eastern border-ridge of the higher terrace. It rises to 8035 it. in the Sokhondo peak, but elsewhere its dome-shaped summits do not exceed 5000 or 6000 ft . Numberless lakes, with flat undefined margins, feed stseams which join the great north-poing rivers or the Amur and the Pacific. Low hille rise above the edge of the plateau, but the slope is abrupt towards the south-east, where the loot-hills of the Yablonoi are ncarly 1500 and 2000 ft . lower than on the north-west. Climate, flora and fauna change suddenly as soon as the Yablonoi has been crosed. The Siberian flore gives way to the Daurian flora, r.nd this is in turn exchanged for the Pacific littoral fors on the Manchurian plaiss and lowlende.

The lower terrace has the character of a steppe, but is intersected by a number of ranges, plications of Sllurian and Devonian rocks, all running wouth-west to north-east, and all containing silver, lead. copper and auriferous ands. Agriculture can be easily carried on in the broad prairies, the only drawbacks being droughts, and frosts in the higher closed valleys of the Nerchinsk or Gazimur Mountains The lower terrace is in its turn fringed by a border-ridge-the Great Khiagan-which occupies, with reference to the lower terrace, the same position that the Yabionoi does in relation to the upper, and separates Siberia from northeru Mancburia. This important ridge does not run from south to north, as represented on the old maps, but from south-west 10 north-cast : It is picreed hy the Amur near Albazin, and joins the Okhorsk Mountains, which thowever do not join the Yoblonoi Mountains.
The rivers belong to three different aystems-the affluents of Lake Baikal, of the Lena and of the Amur. Of the first the Selenga (800 m . long) rises in north-west Mongolia, one of its tributaries (the Eginugot) being an emissary of Lake Kosso-gol. The Chikoi, Khilok and Uda arc its chief tributaries in Transbaikalia. The Barguzin and the upper Angara eater Lake Baikal from the northeast Of the tributaries of the Lena, the Vitim with its afluents (Karenga, Tsipa, and Muya) flows on the high plateau through uninhabited regions, as also does the Olekma. The tributaries of the A mur are much more important. The Argunf, which at a quite recent epoch received the waters of the Dalai-nor, and thus had the Keruleil for its source, is no longer in communication with the rapidly desiccating Mongolian lake, but bas its sources in the Gan, which flows from the Great Khingan Mountains. It is not navigable, but receives the Gazimur and scveral other streams from the Nerchinsk mining district. The Shilka is formed by the union of the Onon and the Chita rivers, and is navigable from the town of Chita. thus being an important channel to the Amur.
Lake Baikal. with an area of $13,200 \mathrm{sq}$. m . (nearly equal to that of Switzerland), extends in a hall crescent from south-west to northeast, with a length of nearly 400 m . and a width of 20 to 50 m . Its level is $1,500 \mathrm{ft}$. above the sea. . The wide deita of the Selenga narrows it in the middle, and renders it shailower In the east than in the west. The other lakes include the Gusinoye and Lake Ba: unt on the Vitim plateau. Many lakes yield common salt.
The high plateau is built up of granites, gneisses and syenitcs, overlain by Laurentian schists. Silurian and Devonian marine deposits occur only on the lower terrace. Since that epoch the region has not been under the sea, and only fresh-water Jurassic deposits and coal beds are met with in the depressions. During the Glacial period most of the high terrace and its border ridges were undoubtedly covered with vast glaciers. Volcanic rocks of more recent origin (Mesozoic?) are met with in the north-western border-ridge and on iss slopes, as well as on the Vitim plateau. During the Glacial period the fauna of the lowest parts of Transbaikalia was decidedly arctic; while during the Lacustrine or postGlacial periods this region was dotted over with numberless lakes, the shores of which were inhabited by Neolithic man. Only lew traces of these survive, and they are rapidly drying up. Earthquakes are very frequent on the shores of Lake Baikal, especially at the mouth of the Selenga, and they extend as far as lrkutsk, Barguzin and Selenginsk; in 1862 an extensive area was submerged by the lake. Numerous mineral springs, some of them of high repute, exist all over Transbaikalia. The most important are the hot alkaline spring (130° F.) at Turka, at the mouth of the Bargurin, those of Pogromna on the Uda (very similar to the Selteer springs), those of Molokova near Chita and those of Darasun in the Nerchinsk district.
The ctimate is, as a whole, exceedingly dry. The winter is cold and dry, the thermometer dropping as low as - $58^{\circ} \mathrm{F}$. But the snow and dry, the thermometer dropping as lingats are able to procure food throughout the winter on the steppes, and in the very middle of the winter wheeled vehicles are used all over the west. To the east of the Yablonoi ridge the Nerchinsk district feels the influence of the North Pacific monsoons, and snow falls more thickly especially in the valleys; but the summer is hot and dry. On the figh plateau even the summer is cold, owing to the altitude and the humidity evising from the marshes, and the soil is frozen to a great depth. At Chita the daily range in summer and spring is sometimes as much as 33° to 46°. In the vicinity of Lake Baikal there is a cooler summer; in winter exceedingly deep snow covers the mountains around the lake:

- The estimated population in 1906 was 742,200. The Russian population is gathered around the mines of the Nerchinsk district, while the steppes are occupied by the Buryats. A string of villages has been planted along the Shilka between Chita and Stryetensk. The valleys of the Uda, the lower Selenga, and especially the Chikoi and the Khilok have been occupied since the beginning of the rgth century by Raskolniks, some of Whom, living in a condition of prosperity auch as is unknown in

[^17]Rusaia proper, rank amongst the finest representatives of the Russian race. The remainder of the steppe of the Uda is occupied by Buryats, while the forests and marshes of the plateau are the hunting grounds of the nomad Tunguses. South of the Khamar-daban the only settled region is the lower valley of the Jida. On the Upper Argun the Cossacks are in features, character, language and manners largely Mongolian. The Russians along the Chinese frontier constitute a separate roisko or division of the Transbaikal Cossacks. The Buryats number about 180,000 , the Tunguses over 30,000 . The province is divided into five districts, the chief towns of which are Chita, the capital, Barguzin, Nerchinsk, Selenginsk and Verkhneudinsk.
Although a good deal of land has been cleared by the settlers, nearly one-half of the entire airea is still covered with forests. The principal varieties are fir, larch, aspen, poplar and birch, with Abies pectinata in the north and the cedar in the mouth. Only about one-third of the surface is adaptable for cultivation, and of that only about one-tenth is actually under tillage.
Agriculture is carried on to a limited extent by the Buryats and In all the Russian settlements; but it prospers only in the valleys of West Transbaikalia, and partly in the Nerchinsk region, while in the steppes of the Arguin and Onon even the Russians resort to pastoral pursuits and trade, or to hunting. Livestock rearing is extensively carried on, especially by the Buryats, but their herds and flocks are often destroyed in great numbers by the snowstorms of spring. Hunting is an important occupation, even with the Russians, many of whom leave their homes in October to spend six woeks in the laige (forest region). The fisheries of Lake Baikal and the lower parts of its affluents are important. Enormous quantities of Salmo omula are taken every year; and S. thymalus, S. oxy hynchus and S. fuviatilis are also ta ken. Mining, and especially gold mining. is important, but the production of gold has fallen off. Siver mines have only a very amall output. Iron mining is gradually developing, and good coal mines are now being worked. Salt is raised from several lakes, and the extraction of Epsom salts has considerably developed. Manufactures, though insignificant, have increased. The trade is chicfly concentrated at Kiakhta. The Cossacks on the frontier traffic in brick-tea, cattle and hides with Mongolia. The export of furs is of considerable value.

Transbaikafia in crossed by the Trans-siberian railway from Mysovaya on Lake Baikal, via Chita, to Stryetensk, andfrom Kaidalovo, near Chita, to the Mongolian frontier; the latter section is continued across Manchuria to Vladivostok and Port Arthur. Regular steamer communication has been established along Lake Balkal, not only for the transport of passengers and goods between the two raitway stations of List vinichnoye and Mysoyaya, but also with the object of developing the fishing industry, which is of great importance. Steamers ply up the Selenga river as far as Selengiask. considerable cargoea of tea being transported along this line.
(P. A. K.; J. T. BE.)

TRANSCASPIAN REGION, Russian territory on the E. of the Caspian, bounded S. by Khorasan and Alghanistan, N. by the Russian province of Uralsk, N.E. by Khiva and Bokhara and S.E. by Aighan Turkestan. Area, 212,545 sq. m. Some of the most interesting problems ol geography, such as those relating to the changes in the course of the Jaxartes (Syr-darya) and the Oxus (Amu-darya), and the supposed periodical disappearance of Lake Aral, are connected with the Transcaspian deserts; and it is here that we must look for a clue to the physical changes which transformed the Euro-Asiatic Mediterranean-the Aral-Caspian and Pontic basin-into as series of separate seas, and desiccated them, powerfully influencing the distribution of floras and faunas, and centuries ago compelling the inhabitants of Western and Central Asia to enter upon their great migrations. But down to a comparatively recent date the arid, barren deserts, peopled only by wandering Turkomans, were almost a berra incognita.
A mountain chain, comparable in length to the Alps, separate the deserts of the Transcaspian Irom the highlands of Khorasan. It begins in the Krasnovodsk peninsula of the Caspian, under the names of Kuryanyn-kary and Great Balkans, whome masces of granite and ot her crystalline rock reach an aititude of some 5350 ft . Farther soutb-east they are continued in the Little Balkans (2000 ft .) and the Kopepet-dagh or Kopet-dagh. The latter rises seeep and rugged above the flat deserts over a stretch of 600 m . In tructure it is homologous with the Caucanus chain; it appeen as an outer wall of the Khorasan plateau, and is separated trom it by a broad valley, which. lake the Rion and Kura yalley of Transcaucasia, in drained by two rivers flowing in opposite direclons-the Atrek, which flows nonh-west into the Caspian, and the Keshel-rud, which fiows to
the wouth-enat and in a tributary of the Merghab. On the other stde of this valley the Alla-dagh (Aladagh) and the Binalund borderanges (9000 to 11.000 ft .) Iringe the edge of the Khorasan plateau. Desceoding towards the steppe with steep stony slopes, the mountain barrier of the Kopet-dagh nises to heights of $6000-9000 \mathrm{ft}$. to the east of Kyryl-arvat, while the passes which lead from the Turkoman deserts to the valleysol Khormsan are seldom as low as 3500 , and umally rise to 5000,6000 and even 8500 It., and in most cases are very difficult. It is pierced by only one wide opening, that between the Great and Lirtle Balkans, through which the sea, which once covered the steppe, maintained connexioa with the Caspian.
White the Alla-dagh and Binalund border-ranges are chiefly composed of crystalline rocks and metamorphic slates, overlain by Devodian deposits, a series of more recent formations- Upper and Lower Cretaceous and Miocene-crops out in the outer wall of the Kopet-dagh. Here again we find that the mountaias of Asia which atretch towards the north-west continued to be uplifted at a geologically recent epoch. Quarternary deposits have an extensive development on its slopes, and its foothills are bordered by a girdle of loess.
The loese terrace, called Atok (" mountain base "), 10 to 20 m . in widih, it very fertile; but it will produce nothing without irrigation, and thentreams flowing from tha Kopet-dagh are few and scanty. The winds which impinge upon the norhern slope of the mountains bave been deprived of all their moisture in crossing the Kara-kumthe Black Sande of the Turkoman desert; and even such rain as ball on the Kopet-dagh ($\mathbf{I O}$ in. at Kyryp-arvat) too often reaches the soil in the chape of light showers which do not penetrate it, so that the average relative bumidity is only 56 as compared with 62 at even so dry a place as Krasnovodisk. Still. at those places where the mountain streams run closer to one another, as at Geok-tepe, Asthabad. Lutfabad and Kaaka, the villages are more populous, and the bouses are surrounded by gardens, every aquare yard and every tree of which is nourished by irrigation.
North of this narrow strip of irrigated land begins the desertthe Kara-kum-which extends from the mountains of Khorasan to Lake Aral and the plateau of Ust-Urt, and from the Caspian to the Amu-darya, interrupted only by the oeses of Merv and Tejen. But the terrible shifting sands, blown into barkhons, or elongated hills, sometimes 50 and 60 ft . in height, are accumulated ehieny in the west, where the country has more recently emerged from the sea. Farther cest the barkhans are more stable. Large arese amidat the sands are occupied by takyrs, or flat surfaces paved winh clay, which, as a rulc, is hard but becomes almost impassible after heavy rains. In these talyyrs the Turkomans dig ditches draining into a kind of cistern, where the water of the spring rains can Le preserved for a few months. Wells also are sunk, and the water is found in them at depthe of 10 to 50 , or occasionally 100 ft . and more All is not desert in the strict sense; in spring there is for the most part a carpet of grass.

The vegetation of the Kara-kum cannot be described as poor. The rypical representative of the sandy deserts of Asia. the saksaul (Amebosir cmmodendion), has been almost destroyed within the lat bundred years, and occurn only sporadically, but the borders of the epaces covered with saline clay are brightened by forests of tamarisk, which are inhabited by grear numbers of the desert rartler (Atraphornis aralensis)-a typical inhabitant of the sandssparrows and ground-choughs (Podoces); the Houbare macqueeni, chough not abundant, is characteristic of the repion Harea and loxes jackals and woives, marmots, moles, hedgehogs and one species of marten tive in the steppe, especially in spring. As a whole. the fauna is richer than might be supposed, while in the Atok it contains representatives of all the species known in Turkestan, interningled with Persian and Himalayan species.

Ine Usboi.-A feature distinctive of the Turkoman desert is the very numerous shors, or elongated depressions, the lower portion of which are mostly ocrupied with moist sand. They are obviousty the relics of brackish lakes, and, like the lakes of the Kirghiz steppes, they often follow one another in quick succession, thus closely merabling river-beds. As the direction of the shors is generally from the higher terraces drained by the Amu-darya towards the fowlands of the Caspian, they were usually regarded as old beds of the Amu-darya, and were held to support the idea of its onoe maving flowed acrose the Turkoman desert towards what is now the Caspian Sea. It was formerly considered almost setiled, not oaly that that river (see Oxus) flowed into the Caspian during historinal limes, but that after having ceased to do so in the 7th centry, ina waters were again diverted to the Caspian about 1221. A chain of elongated depreasions, bearing a faint resemblance to old rivcrbeda, was traced from Urgenj to the gap between the Great and the Little Balkans; this was marked on the maps as the Uzboi, or old bed of the Oxns. ${ }^{2}$ The idea of again diverting the Amu into the Capian was thus set afloat, but the investigations of Russian engimeers, eipecially A. E. Hedroitz, A. M. Konshia, I. V. Mushketov,

[^18]P. M. Lesmar and Sviatsow; went to mbow that the Ushol is no river-bed at all, and that no river has ever diacharged ifs waters in that direction. The existence of an extensive lacustrine depression, now represented by the smatl Sary-kamygh lakes, was proved, and It was evident that this depression, having a length of more than 130 m ., a widt h of 70 m .. and a depth' of 280 it . below the preseat level of Labee Aral, would have to be filled by the Amu before its waters could advance farther to the south-west. The sill of this basin being only 28 ft . below the present level of Lake Aral, thls latter could not be made to dicappear, nor even be notably reduced in size, by the Amu flowing south-west from Urgenj. A more careful exploration of the Uzboi has shown that, while the deposits in the Sary-kamysh depression, aod the Aral shells they contain, bear unmistakable testimony to the fact of the basin having once been fed by the Amu-darya, no such traces are found along the Uzboi below the Sary-kamysh depression;' on the contrary, ahells of mollusc: still inhabiting the Caspian are found in numbers all along it, and the supposed old bed has all the characteristics of a series of lakes which continued to subsist along the foothills of the Ust-Urt plateau, while the Caspian was slowly receding weatwards during the postPliocene period. On rare occasions only did the waters of the Sarykamysh, when raised by inundations above the sill just mentioned, send their surplus into the Uzboi. It appears most probable that in the 16 th century the Sary-kamysh was confounded with a gulf of the Caspian: ' and this gives much plausibility to Konshin's supposition that the changes in the lower course of the Amu (which no geologist would venture to ascribe to man, if they were to mean the alternative discharge of the Amu into the Caspian and Lake Aral) merely meant that by means of appropriate dams the Amu was made to flow in the 13th-16th centuries alternately into Lake Aral and into the Sary-kamysh.

The ancient texts (of Pliny, Strabo, Ptolemy) about the Jaxartes and Oxus only become intelligible when it is admitted that, since the epoch to which they relate, the ourlines of the Caspian Sea and Lake Aral have undergone notable changes, commensurate with those which are supposed to have occurred in the courses of the Central Asian rivers. The desiccation of the Aral-Caspian basin proceeded with such rapidity that the shores of the Caspian cannot possibly have maintained for some twenty centuries the outlines which they exhibit at present. When studied in detail, the general configuration of the Transcaspian region leavea no doubt that both the Jaxartes and the Oxus, with its former tributarics, the Murghab and the Tejcin, once flowed towards the west; but the Caspian of that time was not the sea of our days; its pulfs penetrated the Turkoman steppe, and washed the base of the Ust-Urt plateau. (See Caspian and Aral.)

Kelif-Uzboi.-There is also no douht that, instead of flowing north-westwand of Kelif (on the present Bokhara-Aighan frontier), the Amu once bent south to join the Murghab and Tejeñ; the chain of depressions described by the Russian engineers as the KelifUzboi ${ }^{6}$ eupports this hypothesit, which a geographer cannot avoid making when studying a map of the Transcaspian region; but the date at which the Oxus followed such a course, and the extension which the Cespian basin then had towards the east, are uncertain.

In 1897 the population aumbered 377,416 , of whom only 42,43: lived in towns; but, besides those of whom the census took account, there were about 25,000 strangers and troopa.

- Their original papers are printed In the Frowsia of the Rusuian Geographical Society, 1883 to i887, also in the Jowral of the Rumian ministry of roads and communications.

According to A. E. Hedroitz and A. M. Konsbin the ofd Tonudarya bed of the Amu contains shells of molluses now living in the Amu (Cyrena Axminalis, Dreissensia polymorpho and Anodonta). The Sary-lcamysh basin is characterized by deposits containing Neritina liturada, Dreissensia polymorpha and Limnacus, characteristic of this basin. Below the Sary-kamysh there are no deposit: containing shells characteristic of the Amu: A nodortace are lound quite occasionally on the surface, not in beds, in company with the Caspian Cardium (Didacna) trigomoides, var. Crassmm, Cardimn piramidatum. Dreissensia polymoripha, D. rostpiformis, Hydrobia caspia, Neritina liturata and Dreissensia beardii: the red claya eontaining these fossils extend for 130 m . east of the Caspian (levestio of Russ. Geog. Soc., 1883 and 1886).
${ }^{4}$ As by Jenkinson, who mentions a freshwater sulf of the Caspian within six days march Irom Khwarezm (or Khiva), by which gulf be could only mean the Sary-kamysh depression
"The Turkomans call this southern " old bed " Unghyuz or Onsuz (" dry old bed "), and there can be no doubt that when the BolshiodChertesh of the ifth ceatury (speaking from anterior information) mentions a river: Ughyuz or Ugus. flowing west (rom the Anau towards the Caspian, it is merely describing as a river what the very name shows to have been a dry bed, supposed to have been once occupied by a river. The similarity of the names Ongus and $\mathrm{U}_{\mathrm{g}} \mathrm{at}$ with Ogus and Ochus possibly helped to arcencuate. if not to give rise to, the confusion. Cf. N. G; Petruevich. "The South-eant Shores of the Caspian," in Zopishi of the Caucasian Geographical Society (1880), vol. xi.

Included in the total were some 280,000 Turkomans, 60,000 Kirghiz, 12,00c Russians, 8000 Persians, 4250 Armenians, and some Tatars. The estimated population in 1906 was 397,100. The province is divided into give districts, the chief towns of which are Askhabad, the capital; Krasnovodsk; Fort Alexandrovskiy, in the district of Manghishlak, on the Caspian Sea; Merv and Tejen. Until a recent date the chief occupations of the Turkomans were cattle-rearing and robbery. Even those Who had set tled abodes on the oases of the Atok, Tejen and Merv were in the habit of encamping during the spring in the steppes, the khanates of Afghan Turkestan from Balkh to Meshhed being periodically devastated by them. The aspect of the steppe has, however, greatly changed since the Russian advance and the fall (188 I) of the Turkoman stronghold of Geok-tepe. Their principal oases are situated along the Atok or loess terrace, the chief settlements being Askhabed, Kyzyl-arvat and Geok-tepe. The oasis of Merv is inhahited by Akhal-tekkes (ubout 240,000), mostly poor. In January 1887 they submitted to Russia. The oasis of Tejen has sprung up where the river Tejen (Heri-rud) terminates in the desert.

South-rest Turcomania.-The region between the Heri-rud and the Murghab has the characteristics of a plateau, reaching about 2000 ft above the sca, with hills 500 and 600 ft . high covered with sand, the spaces between being filled with loess. The Borkhut Mountains which connect the Kopet-dagh with the Sefid-kuh in Alghanistan reach 3000 to 4000 (t., and are cleft by the Heri-rud. Thickets of poplar and willow accompany both the Murghab and the Heri-rud. Pistachio and mulberry trees grow in isolated clumps on the hills; but there are few places available for cultivation, and the Saryk Turkomans (zome 60,000 in number) congregate in only two oases-Yol-otan or Yelatan, and Penjdeh. The Sarakhs oasis is oocupied by the Salor Turkomans, hereditary enemies of the Tekike Turkomans; they number about 3000 tents at Old Sarakhs, and 1700 more on the Murghab, at Chardjui, at Maimene (or Meimane), and close to Herat.
The Transcaspian Region is very rich in minerals. Rock-salt. petroleum, gypsum and sulphur are extracted. Nearly 300,000 acres are irrigated by the natives, and attempts are beng made by the government to increase the irrigated arca; it is considered that over $5,000,000$ acres of la nd could be rendered suitable for agriculture. Several hundred thousand trees are planted every year, and a forest guard has been established to prevent useless destruction of she saksaut trees, which grow Ircely in the steppes. A model garden and a mulberry plantation have been established at Askhabad in conncxion with the gardening school. The land in the oases, especially those of the Atrek River, is highly cultivated. Wheat and barley are grown, in addition to sorghum (a species of millet). maize, rice. millet and sesame for oil. Raw cotton is extensively grown in the Merv district. Gardening and fruit-growing are well developed, and attempts are being made to encourago the spread of viticulture. Livestock breeding is the chief occupation of the nomad Turkomans and Kinghiz. Considerable fishing is carried on in the Caspian Sea. and zonls are killed off the Manghishlak peninsula. The natives excel in domestic industrics, as the making of carpets, travelling bage, felt goods and embroidered leather. The Russian population is mostly limited to the military and the towns. Wheat, flour, wool, raw cotton and dried truit are exported; while tea, manulactured goods, timber, sugar, iron and parafin oil are imported as also rice and fruit Irom Bokhara, Turkestan and Persia. The Transcaspian rilway, constructed across the province from Krasnovodsk to Merv. with a branch to Kushk, and Irom Merv to Bokhara and Russian Turkestan, has effected quite a revolution in the trade of Central Asia. The old caravan routes via Orenburg have lost their importance, and goods coming from India, Persia, Bokhara and even Chica are now carried by rail. (For the history of the region me Merv.)
See the researches of Andrusov, Bogdanovich, Konshin, Mushketov and Obruchev in the Memoirs, the Bulletin (Investia) and the Annuals of the Russian Geographical Society ($1890-1900$); P. M. Lessar, L'Ancienne jonctinn de (Oxus avec la mer Caspicnse (1889); Zarudnoi (zoology) in Bulletin de la socitte des naluralistes de Moscou (1889 seq.).
(P. A. K; J. T. Be.)

TRANSCAUCASIA, a general name given to the givernments and provinces of Russian Caucasia, excluding the steppe provinces of Kuban and Terck and the steppe government of Stavropol. It thus includes the governments of Baku, Elisaverpol. Erivan, Kutais and Tillis; the provinces of Batum, Daghestan and Kars; and the military districts of the Black Ses (Chemomorsk) and Zakataly. ils area is os,02 sq. $\boldsymbol{m}_{\boldsymbol{n}}$ and the estimated population in 8906 was $6,314,000$. (See Cavcasea and Caucasus.)

TBANSCENDENTALIEH (Lat. trams, across, acemdere, climb, whence transcendere, to pass a limit), in philosophy, any system which emphasizes the limited character of that which can be perceived by the senses and is based on the view that true knowledge is intuitive, or supernatural. The term is specially applied to Kant's philosophy and its successors which hold that knowledge of the a priori is possible. It is traceable as far back as the schoolmen of whom Duns Scotus describes as "transcendental " those conceptions which have a higher degree of universality than the Aristotelian categories. Thus ens (being) is more universal than God or the physical universe because it can be predicated of both. Kant distinguishes as "transcendent " the world of thing-in-themselves as being without the limits of experience; while "transceadental" is his term for those elements which regulate human experience, though they are themselves beyond experience; such are the categories of space, time, causality.
In general use the term is applied rather promiscuously and frequently hy way of criticism to an attitude of mind which is imaginative, aloof frum mundane affairs and unmoved by practical considerations. The most famous example of the pseudo-phllosophic use of the term is for a movement of thought which was prominent in the New England states from about 1830 to 1850 . Its use originated in the Transcendental Cluh (1830) founded by Emerson, Frederic Henry Hedge (1805-1800), and others. This movement had several aspects: philosophical, theological, social, economic. Its main theme was regeneration, a revolt from the formalism of both Unitarian and Calvinist theology and a widening literary outlook. It took its rise to a large extent in the study of German (and to a less extent French) philosophy and spread widely mong the cultured classes. In 1840 the club began to issue an official organ, The Dial, and the settlement of Brook Farm (q.v.) followed in 184 I . These enterprises themselves did not receive general support even among the Transcendentalist leaders, and the real significance of the movement was the stimulus which it gave to philanthropy, to the Abolition movement, and to a new ideal of individual character. The chief mames associated with it, besides those of Emerson and Hedge, are those of A. B. Alcott (q.v.). Margaret Fuller (q.v.), George Ripley (q.v.), W. E. Channing (q.v.), and H. D. Thoreau (q.p.)
TRANSEPT (from Lat. Irans, across, and seplum, enclosure; synonymous terms in other languages are Fr. croiste, nef Iramsversle; Ital. crociata; Ger. Querban, Querschiff), in architecture, the term given to the large and lofty structure which lies at right angles to the nave and aisles of a church. The first example is that which existed in the old St Peter's at Rome, but as a rule it is not found in the early basilicas. At the present day the transept might be better defined as that portion of a cruciform church which extends from north to south across the main body of the building and usually separates the choir from the nave; but to this there are some exceptions, as in West minster Abbey, where the choir, with its rood screen, occupies the first lour bays of the nave; in Norwich two bays; in Gloucester one bay; and Winchester one bay. In some of the English cathedrals there is an eastern transept, as in Canterbury, Lincoln, Salisbury and Worcester; at Durham that which might be regarded as an eastern transept is the chapel of the Nine Altars, and the same is found in Fountains Ahbey. Four of the English cathedrals have aisles on east and west sides, viz. Ely, Weils, Winchester and York, while at Chester there are aisles to the south transept only, and at Lincoln, Pcterborough and Salisbury on the east side only. In some cases the transept extends to the outer walls of the aisles oniy, but there are many instances in which it is carricd beyond, as st Lincoln (225 ft . long), Ely (180 ft .), Peterborough (i80 ft.), Durham (175 ft .) and Norwich (172 ft.); in all these cascs the transept is carried three bays beyond; in York (220 ft .), St Albans (170 ft), Lichfield (145 ft .) and Canterbury, east transept (165 ft.), two bays beyond; and in Canterbury, western 1 ransept (130 ft), Chichester (160 ft .) and Worcester (132 ft.), only one bay on each side, the dimension in all casea being taken within the north and soath walls of the transept.

Th Ansirin (from Lat. Howofores, to beat ecroes, tarry over), the handins over, removal or conveyance of anything from one person or plece to amother; also the subject of this transference or the form or method by which it is effected. The term is particularly ubed in law of the conveyance of property from one person to another, eapecially of the conveyance of real property (see Conveyanctag). For the simplification of this process by eens of registration of title, see Lasp Regisizaition. For the transference of designs, drawings, \&ke., by means of transferpaper to the surface of pottery and porcelain, see CrFarics; for their transfer to stones for printing, wee Lrimocrapme.
TRANSPORMRRs. An electrical transformer is the name given to any device for producing hy means of one electric current another of a different character. The working of such an appliance is, of course, subject to the law of conservation of energy. The remulting current represents less power than the applied current, the difference being represented by the power deipated in the translating process. Hence an electrical transfocmer corresponds to a simple machine in mechanics, both transforming power from one form into another with at certaia energy-dissipation depending upon frictional losses, or something equivaleat to them. Electrical transformers mey be divided into several classes, according to the nature of the eransformation effected. The first division comprises those which change the form of the power, but keep the type of the carrent the semse; the seeond those that change the type of the current as well as the form of power. The power given up electrically to any circuit is measured by the product of the effective solue of the current, the effectipe malue of the difference d potentlal betwoen the ends of the circuit and a fector called the power factor. In dealing with periodic currents, the effective value is that called the root-mean-square value (R.M.S.), that is to sey, the square root of the mean of the squares of the time equidistant instantaneous values during one complete pariod (hee Eiectroinetics). In the case of continuous current, the power factor is unity, and the effective value of the cerrent or voltage is the true mean value. As the electrical measure of a power is always a product involving current and voltage, wo may transform the character of the power by incressing or diminishing the current with a corresponding decrease or increase © the voltage. A transformer which raises voltage is generally called a step-tap transformer, and one which lowers voltage a sep-down transformer.

Apain, electric curseots may de of various types, such as conthoos, single-phase alternating, polyphase alternating, undirectimal but pulsating, \&c. Accordingly, tracsiormers may be minguished in another way, in accordance with the type of trancoformation they effect. (1) An alforating current tramsfarmer is an appliance for creating analternating current of any nequired magnitude and electromotive force from another of difent value and electromotive force, but of the same freerency. An tilesnating corrent tranaformer may be conerected to transform either singlo-phase or polyphase currents. (a) A condinuour current fransformer is an appliance which effects a pi.vilar trangformation for continuous currents, with the Herance that some pert of the machine must revolve, wherees in the altamating current transformer all parts of the machine ase stationary; bence the former is generally called a rotatory tramsormer, and the latter a scatic transfocmer. (3) 1 retelory W.judery masuformer may consist of one machine, of of two enpurate machines, udapted for cooverting a single-phese alterpating curreat into a polyphase current, or a polyphase current Ho s coutinuous current, or a contingous current into an alternting current. If the portions receiving and putting out power ers soparate machines, the comhination is called a motor-gmeneto. (4) A transformer adapted for converting a single-phase siremating corrent into a midirectional but prasestory current is called a rectifier, and is much used in connesion with are Fhting in alternating current scopply stations. (5) A phase tresssFinmer is an arrangement of static transformers foz producing a polyphase alternating current from a single-phase alternating current. Alternating current transformers may be furthermore
alvided into (a) single-phase, (b) polyphese. Transformers of the first class change an alternating current of single-phase to one of single-phase identical frequency, but different power; and transiormers of the second class operate in a similar manner on podyphase currents. (6) The ordinary induction or spark coil may be called an intermittent current transformer, since it transforms an intermittent low-tension primary current into an intermittent or alternating high-tension current.

Altermaling Current Trawsformer.-The typical alternating - Arent transformer consists essentially of two insulated electric circuits wound on an iron core constituting the magnelic circuit. Thoy may be divided into (i) open magnetic circuit atatic transformers, and (2) closed magnetic circuit static transformers, according as the iron core takes the form of a terminated bar or a closed ring. A closed circuit alternating current transformer consists of an iron core built up of thin sheets of iron or steel, insulated from one another, and wound over with two insulated conducting circuits, called the primary and secondary circuits. The core must be laminated or built up of thin sheels of iron to prevent local electric currents, called eddy currents, from being established in it, which would waste energy. In practical construction, the core is either a simple ring, round or rectangular, or a double rectangular ring, that is, a core whose section is like the figure \&. To prepare the core, thin sheets of iron or very mild steel, not thicker than oo14 of an inch, are stamped out of special iron (seo Electromagnetism) and carefully annealed.
The preperation of the particular abeet steel or iros used for this purpose is now a speciality. It must posess extremely emall hysteresis loss (me MAGNBTLSM), and various trade names, euch as
 Browa and Iilafeit heve thown (Jowrw. Inst. Elec. Engr Lond., 1902, 31, A. \%13j tiat if silicon iron containing $\mathbf{3 - 8 7 \%}$ of mificon has a hystersiss loss far les than that of the beat Swedish solt iron. In any C ae the hyster is loes should not exceed 3^{-0} watts per kilogram of iron measured at a frequency of $50 \sim$ and a flux-density of 10,000 lines per square centimetre. This is now called the "figure of merit" of the iron.
Examples of the chapes in which these stampings are supplied are shown in fig. 1. The plates when annealed are varnished or covered with this paper on one sicle, and then piled up so as to make an iron core, being kept together by boits and nuts or by pressure platec. The dexignier of a transformer core has in view, first, economy io metal, so that there may be no wade fragments, and scconn, a mode of construction that facilitates the winding of the wire circuita. These consist of coils of cottoncovered copper wire which are wound on formers and baked after being weh saturated with ahellac varnish. The primary and secondary circuits are sometimes formed of separate bobbins which are sandwiched in between each other; in other cases they are wound one over the other (fig. 2).
 In any case the primary and socoadary coile must be symmetrically distributed. If they were placed on opposite sides of the iron circult the result would be considerable magnetic leakage. It is usual to insert sheets or cyliaders of micanite between the primery and secondary windinge. The transformer is then well baked and placed in a cast-iron case sometimes filled in with heavy insulating oit, the ends of the primary and secondary circuita being brought out through water-tight glands. The most ordinary type of alternating current transformer is one intended to transform a staall electric cufrent produced by a hase electromotive force (2000 to 10,000 volts) into a larger current of low electromotive force (100 to 200 volts). Such a stepdown transformer may be obviously employed in the reverse direction hoe raining' premure and reducing current, in which case it is a step-up transformer. A transformer when manufactured has to be carefully tested to ascertain, finct, ith power of resisting breakdown, and, second, its energydiscipating qualities With the first object, the transformer is subjected to a meties of pressure teste. If it is intencied that the primary whall carry a curreat

Fic. 2.-Closed Cirtuit Transformer.
produced by an electromotive Sorce of 2000 volth, an ineculation tex must be applied with double this voltage between the primary and the secondary, the primary and the case, and the primary and the core, to ascertain whether the insulation is sufficient. To prevent eloctric discharges from breaking down the machine in ordinary work, this extra presure ought to be applied lor at lenst a quenter of an hour. In some cases three or four times the working presaure is applied for one minute between the primary and secondary circuits. When such an alternating current transformer has an afternating current passed through its primary circuit, an alterranting magnetirbtion is produced in the core, and this again induces an alternating secondary current. The secondary current has a greater or leses electromotive force than the primary current according as the number of windings or turns on the secondary circuit is greater or lese than thope on the primary: of the power thus imparted to the primary circuit one portion is dissipated by the beat generated in the primary and secondary circuits by the currents, and anbther portion by the iron core losses due to the energy wasted in the cyclical mapreetization of the core; the latter are partly eddy current losses and partly hysteresis loseen.
In open magnetic circuit transformers the core takes the form of a laminated iron bar or a bundle of iron wire. An ordinary induction coil is an instrument of this description. It has been shown. however. by careful experiments, that lor altemating current transformation there are very few cases in which the closed magnetic circuit transformer has not an mdvantage. An immense number of designs of closed circuit transformers have been elaborated since the year 1885. The principal modern types are the Ferranti, Kapp. Mordey, Brish, Westinghouse, Berry, Thomson-Houston and Ganz. Diagrammatic representations of the arrangements of the core and circuits in some of these transformers are given in fig. 3 .

FtG. 3.-Diagrams of (A) Mordey (in section), (B) Kapp and (C) Ganz Transformers.

1. I Primary circuit; 2,2 Secondary circuit.

Alternating current transformers are classified into (i.) Core and (ii.) Sheth transformers, depending upon the arraagernents of the iron and copper circuits. If the copper circuits are wound on the outside of what is virtually an iron ring, the transformer is a core transformer; if the iron excloses the copper circuits, it is a shell transformer. Shell transformers bave the disadvantage generally of poor ventilaton for the copper circuits. Berry, however, has overcome this difficulty by making the iron circuit in the form of a number of bunches of rectangular frames which are set in radial tashion and the adjacent legs all embraced hy the two copper circuits in the form of a pair of concentric cylinders. In this manner he secures good ventilation and a minimum expenditure in copper and iron, as well as the possihility of insulating the two copper circuits well from each other and from the cors. An important matter is the cooling of the core. This may be effected either by ordinary radiation, or by a forced draught of air made by a fan or else by immersing the transformer in oil, the oil being kept cool by pipes through which cold water circulates immersed in it. This last method is adopted for large high-tension transformers.
The ratio between the power given out by a transformer and the power taken up by it is called its efficiency, and is best amaveco. represented by a curre, of which the ordinate is the efficiency Expressed as a percentage, and the corresponding abscissae represent the fractions of the full load as decimal fractions. The output of the transformer is generally reckoned in kilowatts, and the load is conveniently expressed in decimal fractions of the full load taken as unity. The efficiency ou one-tenth of full load is gencrally a fairly good criterion of the economy of the transformer as a transiorming agency. In large transformers the one-tenth load efficiency will reach 90% or more, and in small transformers 75 to 80%.

The gexernl ferm of the efficiency curve for a clowed circuit tringformer is shown in fig. 4. The horizontal distances reptesent tractionas of full secondary load (represented by unity), and the vertical distances efficiency in percentiges. The efficiency curve has a maximum value corresponding to that degree of lond at which the copper losses in the trunformer are equal to the iron losest.
In the case of modern cosed magnetic circuit transformans the copper loseses are proportional to the equare of the mecondary current (I_{2}) or to $q T_{3}$, where $q=R_{1} g^{2}+R_{s}$; R_{1} being the resistance of the primary and R_{t} that of the secondary circuit, while a is the ratio of the number of secondary and primery windinge of the transformex. Let \mathbf{C} ztand for the core low, and V_{2} for the secondary terminal potential difference (R.M.S. value). We can then write as an expression for the efficiency ($\boldsymbol{\theta}$) of the transformer $\left(7=I_{2} V_{2} /\left(C+q I_{2}^{2}+I_{2} V_{2}\right)\right.$. It is easy to show that if $C_{1 .} V_{8}$ and q are constants, but I_{4} is variable, the above expression lor $\#$ his a maximum value when $C-q h^{\prime}=0$, that is, when the iron cose Loss $\mathrm{C}=$ the tocal copper loness $\mathrm{ql}_{3} \mathrm{~s}^{2}$.

The iron core energy-waste, due to the hysteresis and eddy currents, may be stated in watts, or expressed as $₹$ fraction of the full yond secondary output. In small trans- noesen formers of 1 to 3 kilowatts ostput it may amount coper to 2 or 3% and in large transformers of 10 to so Leteen. kilowatts and upwards it should be 1 or less than 1%. Thus the core loss of a $30-\mathrm{kilowatt}$ transformer (one having a secondary output of 30,000 watts) should not exceed 250 watts. It has been shown that for the constant potential transiormer the iron core loss is constant at all loads, but diminiskes slightly as the core temperatare rises. On the other hand, the copper loseses due to the resistance of the copper circuits increase about 0.4% per degree C. with rise of temperature. The current taken in at the primarys side of the transformer, when the secondary circuit is

Fraction of Full Lood.
Fic. 4.-Typical Efficiency Curve of Closed Circuit Transformer. unclosed, is called the
magnetizing current, and the power then absorbed by the transformer is called the open circwil loss or magnetizing watts. The ratio of the terminal potential difference at the primary and secondary terminals is called the tramsformaction ratio of the transformer. Every transformer is designed to give a certain transformation ratio, corresponding to some particular primary voltage. In sorne cases transformers are designed to transform, not potential difference, but current in a constant ratio. The product of the root-meansquare (R.M.S.), effective or virtual, values of the primary current, and the primary terminal potential difference, is called the apparent porocr or apparent watts given to the transiormer. The true electrical power may be numerically equal to this product, hut it is never greater, and is sometimes less. The ratio of the true power to the apparent power is called the permer factor of the transformer. The power factor approaches unity in the case of a closed circuit transformer, which is loedod noninductively on the secondary circuit to any considerable fraction of its full load, but in the case of an open circuit transformer the power factor is always much less than unity at all louds. Power factor curves show the variation of power factor with load. Examples of these curves were first given by J. A. Fieming, who suggested the term itself (see Jourr. Insh. Eloc. Eng. Lond., 1892, 21, p. 606). A low power factor always implies a magpetic cirauit of large reluctance.
The operation of the alternating current is then as follows: the periodic magnetixing force of the primary circuit creates a periodic magnetic Aux in the core, and this being linked with the primary circuit creates by its variation what is called the back eloctromotive force in the primary circuit. The varistion of the particolar portion
athe periodic flax linked with the mocodyry circuit, oripinate 3 thin Int a periodic electromotive force. The whole of the flux Entred with the primary circuit is not interlinked with the secondary cincuit. The difference is called the magnetic leakage of the transformer. This leakage is increased with the socondary output of the tran ormer and with any disposition of the primary and socondery coils which tends to meparate them. The leakage exhibits itsedf by increasiag the scoondary drop. If a transformer is worked at a comentant primary potential difference, the secondary terminal potential differenoe at no load or on open secondary circuit is greater than it is when the secondary is closed and the transformer giviag its fall output. The difference between these last two difierepces of potsatial is called the secondary drop. This secondary drog should not exceed 2% of the open socondary circuit potential difference.

The facts required to be known about an alternating current transformer to appraise its value are (1) its full loed secondary outpat or the numerical value of the power it is

49+5

 designed to transform, on the assumption that it will not rise in temperature more than about $60^{\circ} \mathrm{C}$. above the atmosphere when in normal use; (2) the primary and aecondary terminal voltages and currents, accompanied by a statement whether the transformer is intended for producing a constant secondary voltage or a constant secondary current (3) the efficiency at various fractions on secondary load from one-tenth to full load taken at a stated frequency; (4) the power factor at one-tenth of full load and at full load; (5) the secondary drop bet ween full load and no load; (6) the iron core loss, also the magretizing current, at the normal frequency: (7) the total copper losses at full load and at one-tenth of full loed; (8) t'ie final temperature of the transformer after being left on open secoodary circuit but normal primary potential for twenty-four hours, and at full load for three hours.The matters of mont practical importance in connexion with an akernating current transformer are (I) the iron core loss, which abliects the efficiency chiefly, and must be considered (a) as to its initivl value, and (b) as affected by " ageing " or use; (2) the secondary drop or difference of accondary voltage between full and no load, primary voltage being constant, since this affects the eervice and power of the transformer to work in parallel with others; and (3) the temperature rise when in normal use, which affects the insulation and We of the tranoformer. The ahellacked cotton, oil and other materials with which the translormer circuits are insulated suffer a deterioration in inariating power if continuously maintained at soy eemperature much above $80^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$. In taking the tests for core lose and drop the temperncure of the transformer should therefore be seated. The iron losses are reduced in value as temperature rises and the copper losses are increased. The former may be 10 to 15% less and the latter 50% greater than when the transformer is cold. For the purpose of calculations we require to know the number of turns on the primary and secondary circuits, repreented by N_{1} and N_{2}; the resistances of the primary and secondary circuits, represented hy R_{1} and R_{2}; the volume (V) and weight (W) of she iron core; and the mean length (L) and section (S) of the maznetic section. The hyrteresis loss of the iron reckoned in watts per 1 lb per 100 cycles of magnetization per second and at a maximum lux density of 2500 C.G.S. units should aleo be determined.

The experimental examination of transformer involves the measarement of the efficiency, the iron core loss, and the rowne secondary drop; also certain tests as to insulation and heating, and finally an examination of the relative phase position and graphic form of the various periodic quantities, currents and electromotive forces taking place in the transformer. The efficiency is best determined by the employment

Fio. 5-Arragement for Teating Trmanormers. of a properly constructed waltmeter (see Watryeten). The transformer T (fig. s) should be so arranged that, if a constant potential transformer, it is supplied with its normal working pressure at the primary side and with a load which cas be veried, and which is ohtained either b) incandescent lamps, L, or resistances in the secondary cincit. A wattmeter, W; should be placed with its series cei. Se, in the primery circuit of the Lransformer, and its
shont coil, 5 Sh , either across the primary mains in series, with a suitable mon-inductive resistance, or connected to the secondary circuit of anather transformer, $\mathrm{T}^{\mathbf{1}}$, calied an ascriliary transformer, having its primary terminals connected to those of the tranaformer under test. In the latter case one or more incandescent lamps, L, may be connected in series with the shunt coil of the watimeter so as to regulate the current passing through it. The current through the series coil of the wattmeter is then the same as the current through the primary circuit of the transformer under test, and the current through the shunt cail of the wattmeter is in step with, and proportional to, the primary voltage of the transiormer. Hence the wattmeter reading is proportional to the mean power given up to the transformer. The wattmeter can be standardized and its scale reading interpreted by replacing the transformer under test by a non-inductive resistance or series of lamps, the power absorption of which is measured by the product of the amperes and voles supplied to it. In the secondary circuit of the transformer is placed another wattmeter of a similar kind, or, if the load on the secondary circuit is non-inductive, the secondary voltage and the secondary current can be measured with a proper alternating current ammeter, A_{2}, and voltmeter, V_{2}, and the product of these readings taken-as a measure of the power given out by the transformer. The ratio of the powers, mameiy, that given out in the external secondary circuit and that taken in by the primary circuit, is the efficiency of the transformer.

In testing large transformers, when it is inconvenient to load up the secondary circuit to the full load, a close approximation to the power taken up at any assumed secondary load can be obrained by adding to the value of this secondary load, measured in watts, the iron core loss of the transformer, measured at no load, and the copper lossea calculated from the measured copper resistances when the transformer is hot. Thus, if C is the iron core loss in watts, measured oa open secondary circuit, that is to say, is the power given to the transformer at normal frequency and primary voltage, and if R_{1} and R_{1} are the primary and secondary circuit resistances when the transformer has the temperature it would have after running at full load for two or three hours, then the efficiency can be calculated as foilows: Let O be the nominal value of the full secondary outpus of the transformer in watts, V_{1} and V_{1} the terminal voltages on the primary and secondary side, N_{1} and N_{2} the number of turns, and A_{4} and A_{1} the currents for the two circuits: then O / V_{2} is the full load secondary current measured in amperes, and $\mathrm{N}_{2} \mathrm{~N}_{1}$ multiplied by $\mathrm{O} / \mathrm{V}_{3}$ is to a sufficient approximation the value of the corresponding primary current. Hence $\mathrm{O}^{\circ} \mathrm{R}_{2} / \mathrm{V}_{2}{ }^{2}$ is the watte loat in the secondary circuit due to copper resistance, and $\mathrm{O}^{2} \mathrm{R}_{1} \mathrm{~N}_{2}{ }^{2} N_{2}{ }^{2} \mathrm{~N}_{1}{ }^{2}$ it the corresponding loos in the primary circzit. Hence the total power lose in the transformer (-L) is such that

$$
L=C+\frac{\partial^{2}}{V_{2}^{2}} R_{2}+\left(\frac{N_{3}}{N_{V}}\right)^{2} \frac{O^{2}}{V_{2}^{2}} R_{1}=C+\left(R_{2}+R_{4} e^{2}\right) O^{2} / V_{2}^{2}
$$

Therefore the power given up to the trinsformer is $\mathrm{O}+\mathrm{L}$, and the efficiency is the fraction $O^{\prime}(O+\mathrm{L})$ expressed as a percentage. In this manner the efficiency can be determined with a considerable degree of accuracy in the case of targe transformere without actually loading up the secondary circuit. The secondary drop, however can only be measured by loading the transformer up to full load, and. while the primary voltage is kept constant. measuring the potential difference of the secondary termiaals, and comparing it with the same difference when the transformer is not kaded. Another method of testing large transformers at full load without supplying the actual power is by W. E. Sumpner's differential method. which can be dore when two equal transiormers are available (see Fieming. Hasdbook for the Electrical Laberatory and Tasting Room, ii. 602).

No test of a transformer is complete which does not comprise some investigation of the "ageing" of the core. The slow changes which take place in the hysteretic quality of iron when heated, in the case of certain hrands, give rise to a time-increase in iron core loss. Hence a transformer which has a core loss, say, of 300 watts when new, may, unless the iron is well chosen, have its core loss increased from 50 to 300% by a few months' use. In some cases specifications for transformers include fines and deductions from price for any such increase; but there has in this respect been great improvement in the manufacture of iron for magnetic purposes, and makers are now able to obtain supplies of good magnetic iron or steel with non-ageing qualities. It is always desirable, however, that in the case of large sub-station transformers tests should be made at intervals to discover whether the core loss
has increased by agehsg. If so, it may mean a very considerable increase in the cost of magnetizing power. Consider the case of a 30 -kilowatt transformer connected to the mains all the year round; the normal core loss of such a transformer should be about 300 watts, and therefore, since there are 8760 hours in the year, the total annual energy dissipated in the core should be 2628 kilowatt hours. Reckoning the value of this electric energy at only one penoy per unit, the core loss costs £(ro, rgs. per annom. If the core loss becomes doubled, it means an additional annual expenditure of nearly fir. Since the cost of such a transformer would not exceed $£ 100$, it follows that it would be economical to replace it by a new one rather than continue to work it at its enhanced core loss.

In Great Britain the sheet steel or iron alloy used for the trangformer cores is usually furnished to specifications which state the maximum hysteresis loss to be allowed in it in watts per ib (avoirdupois) at a frequency of 50 , and at a maximum flux-density puring the cycle of 4000 C.G.S. units. When plates having a thickness i mils are made up into a transormer core, the total energy loss in the core due to hysteresis and eddy current lose when worized at a frequency n and a maximum flux-density during the cycle B is given by the empirical formulae

$$
T=\cdot 0032 n B^{1 \cdot 85} 10^{-7}+(m B)^{2} 10^{-18}
$$

or
where T otands for the loss per cubic centimetre, and T_{1} for the same in watts per pound of iron core, B for the maximum fluxdensity in lines per square centimetre, and B_{1} for the same in lines per square inch. for the thickness of the plates in thousandths of an inch (mils), and f_{1} for the same in inches. The hysteresis loss varies as some power near to 1.6 of the maximum flux-density during the cycle as shown by Steinmetz (see Electromagnetism). Since the hysteresis loss varies as the I-Gth power of the maximum fux-density during the cycle (B max.), the advantages of a low flux-density are evident. An excessively low dux-density increases. however, the cost of the core and the copper hy increasing the size of the transformer. If the form factor (f) of the primary valtage curve is known, then the maximum value of the fux-density in the core can always be calculated from the formula $\mathrm{B}=\mathrm{E}_{1} / 4 \mathrm{fn} \mathrm{SN}_{1}$, where E is the R.M.S. value of the primary voltage, \mathbf{N}_{1} the primary turns, S the section of the core, and n the frequency.

The study of the processes taking place in the core and circuits of a transformer have been greatly facilitated in recent years by curve Tracters. the improvements made in methods of observing and recording the variation of periodic currents and electromotive forces. The original method, due to Joubert, was greatly improved and employed by Ryan, Bell, Duncan and Hutchinson, Fleming, Hopkinson and Rosa, Callendar and Lyle; but the most important improvement was the introduction and invention of the oscillograph by Blondel, subsequently improved by Duddell, and also of the ondograph of Hospitalier (see Oscillograpr). This instrument enables us, as it were, to look inside a transformer, for which it, in fact, performs the same function that a steam engine indicator does for the steam cylinder. ${ }^{1}$ Delincating in this way the curves of primary and secondary current and primary and secondary electromotive forces, we get the following result: Whatever may be the form of the curve of primary terminal potential difference, or primary voltage, that of the secondary voltage or terminal potential difference is an almost exact copy, but displaced 180° in phase. Hence the alternating current transformer reproduces on its secondary terminals all the variations of potential on the primary, but changed in scale. The curve of primary current when the transformer is an open secondary circuit is different in form and phase, lagging hehind the primary voltage curve (fig. 6); but if the transformer is loaded up on its
in, Primary current curve; co. 8. Primary curragt curve
Secondary voltage curve.
${ }^{1}$ For a uteful list of relerences to published papers on alternating current curve tracing, gee a paper by W. D. B. Duddell, read before the British Association, Toronto. 1897: also Electrician (1897). xxix. 636; also Handhook for the Electrical Laboratory and Testing Room (1. A. Fleming), i. $4 \subset$;-
secondary side, then the primary current curve comes more into step with the primary voltage curve. The secondary current curve, if the secondary load is non-inductive, is in step with the secondary voltage curve (fig. 7). These transformer diagrams yield much information as to the nature of the operations proceeding in the transformer.

The form of the curve of primary current at no secondary load is a consequence of the hysteresis of the iron, combined with the fact that the form of the core flux-density curves of the transformer is always not far removed from a simple sine curve. If e_{1} is at any moment the electromotive force, i_{1} the current on the primary circuit, and b is the flux-density in the core, then we have the fundamental relation $e_{1}=R_{1} i_{1}+S N_{1} d b_{1} / d$, where R_{1} is the $r e-$ sistance of the primary, and N_{1} the number of turns, and S is the cross-section of the core. In all modern cloned circuit transformers the quantity $R_{1} i_{1}$ is very small compared with the quantity SNab/df except at one instant during the phase, and in taking the integral of the above equation, viz. in finding the value of fe,ds, the integral of the first term on the right-hand side may be neglected in comparison with the second. Hence we have approvimately $b_{7}=\left(\mathrm{SN}_{2}\right)^{-1} / e_{1} d t$. In other words, the value of the fluxdensity in the core is obtained by integrating the area of the primary voltage curve. In so doing the integration must be started from the time point through which passes the ordinate bisecting the area of the primary voltage curve. When any curve is formed euch that its ordinate y is the integral of the area of another curve, vir. $y=\int y^{i} d x$, the first curve is always smoother and more regular in form than the second. Hence the process above described when applied to a complex periodic curve, which can hy Fourier's theorem be resolved into a seriea of simple periodic curves, resules in a relative reduction of the magnitude of the higher barronnics compared with the fundamental term, and hence a wiping out of the minor irregularities of the curve. In actual practice the curve of electromotive force of alternators can be quite sufficiently reproduced by employing three terms of the expansion, viz. the first three odd harmonics, and the resulting fux-density
 curve is always very
a simple sine curve.

Fig. 7.- Tranaformer Curves it full lowd.
We have then the follow- a, Primary voltage curve; in. Primary ing rules for predetermining current curve; on. Secondary voltage the form of the current curve curve; in, Secondary current curve. of thetransformerat noload, assuming that the bysteresis curve of the iron is given, set out in terms of flux-density and ampere-turns per centimetre, and also the form of the curve of primary electromotive force. Let the time base line be divided up into equal small elements. Through any selected point draw a line perpendicular to the base line. Bisect the area enclosed by the curve representing the hall wave of primary electromotive force and the base line by another perpendicular. Integrate the area enclosed between the electromotive force curve and these two perpendicular lines and the base. Lastly, set up a length on the tast perpendicular equal to the value of this area divided by the product of the cross-section of the core and the number of primary turns. The resulting ralue will be the core fux-density of at the phase instant corresponding- Look out on the hysieresis loop the same fux-density value, and corresponding to it will be found two values of the magnetizing force in ampere-turns per centimetre, one the value for increasing flux-density and one for decreasing. An inspection of the position of the point of time velected on the time line will at once show which of thene to select. Divide that value of the ampereturns per centimetre by the product of the values of the primary turns and the mean length of the magnetic circuit of the core of the transformer, and the result gives the value of the primary current of the transformer. This can be set up to scade on the perpendicular through the time instant selected. Hence, given the form of the primary electromotive forct cune and that of the bysteresis loop of the iron, we can draw the curves representing the changes of flux-density in the core and that of the corresponding primary current, and thus predict the root mean-aquare value of the magnetizing current of the mansformer, It is therefore possible, when given the primary electromotive force curve and the hysteresis curve of the iron, to predetermine the curves depicting all the other variables of the transinmer, provided that the magnetic leakge is negligible.

The dementary theory of the closed iron circuit tranaformer may be stated as follows: Let N_{1}, N_{2} be the turns on the primary and secondary circuits, R_{f} and $R_{\text {t }}$ the resistances, S the section of the core, and b_{1} and b_{2} the co-instantaneous values of the flux-density just inside the primary and

Theery. tecondery vindiags. Then, if i_{1} and in and if and of ere the primery
and eacondiny currents and pocemtial diffentroes at the same instant these quantities are connected by the equations

$$
a_{1}=R_{1} i_{1}+S N_{1} \frac{d b_{1}}{d l}, c_{2}-S N_{2} \frac{d b_{3}}{d!}-R_{i}
$$

Hence, if $b_{1}-b_{2}$, and if $R_{1} i_{1}$ is negligible in companson with SNidbidh, and $i=0$, that is, if the secondary circuit is open, then $e_{i j}{ }_{z}=\mathbf{N}_{1} / \mathbf{N}_{2}$ or the transformation ratio is cimply the ratio of the -ieding: This, however, is not the case if b_{1} and b_{n} have not the mare value; in other words, if there is magnetic leakage. If the magnetic leakage can be neglected, then the resultant magnetizing force, and therefore the iron core loss, is constant at all loads. Accordingly, the relation between the primary current (iv), the secoodary current (i), and the magretizing current (i), or primary curent at no load, is given by the equation $N_{1} i_{1}-N_{2} i_{2}=N_{1} i$. Then triting b for the instantaneous value of the flux-density is the core, everywhere supposed to be the same, se arrive at the identity

$$
e_{1} i_{1}=c_{3} i_{2}+\left(R_{1} i_{1}^{2}+R_{4} i^{2}\right)+S^{d b}\left(N_{1} i_{1}-N_{3} i_{2}\right)
$$

This equation merely expresses the fact that the power put into the translormer at any instant is equal to the power given out on the secondary side together with the power dissipated by the copper losees and the constant iron core loss.

The efficiency of a translormer at any load is the ratio of the mean value, during the period, of the product $c_{1} i_{1}$ to that of the product eis. The efficiency of an alternating current transiormer is a function of the form of the primary electromotive lorce curve. Experiment has shown that if a transformer is tested for efficiency on various alternators having electromotive force curves of different forms, the efficiency values found at the same secondary load are not identical, thowe being highest which belong to the alternator with the most peaked curve of electromotive force, that is, the curve having the largest form factor: This is a consequence of the fact that the hysteresis loss in the iron depends upon the manner in which the magnetization (or what here comes to the same thing, the flux-density in the core) is allowed to changc. If the primary electromotive force curve has the form of a high peak, or runs up auddenly to a large maximum value, the flux-density curve will be more square-shoutdered than when the voltage curve has a lower form factor. The hysteresis loss in the iron is less when the magnetigation changes its sign somewhat suddenly than when it does so more gradually. In otber words, a diminution in the form factor of the core flux-density curve implies a diminished bysteresis loss. The variation in core loss in transformers when tested on various lorms of commercial alternator may amount to as much as 10%. Hence, in recording the results of efficiency tests of alternating current transformers, it is always necessary to specify the form of the curve of primary electromotive force. The power factor of the transformer or ratio of the true power absorption at no load to the product of the R.M.S. values of the primary current and voltage, and also the secondary drop of the translomer, vary with the form lactor of the primary voltage curve, being also both increased by increasing the form factor. Hence there is a slight advantage in working alternating current transformers of en aternator giving a rather peaked or high maximum value electromotive force curve. This, bowever is disadvantageous in otber Fays, as it puts a greater strain upon the insulation of the transformer and cables. At one time a controversy arose as to the melative merits of closed and open magnetic circuit transformers. It ras, however, shown by tests made by Fleming and by Ayrton on Swinburne's "Hedgehog " transormers, having a straight core of iron vires bristling out at each end, that for equal secondary outputs, as regards efficiency, open as compared with closed magbetic circuit transformers had no advantage, whilst, owing to the enaller power lactor and consequent large R.M.S. value of the magnetizing current, the former type had many disadvantages (gee Fleming. "Experimental Researches on Alternate Curtent Taneformerg," Journ Inst. Elec. Eng., 1892).

The discusaion of the theory of the transformer is not quite so cimple when magnetic leakage is taken into account In all cases Amperte a certain proportion of the maguetic flux linked whith the primary circuit is not linked with the secondary circuit, and the difference is called the magnetic leakage. This magretic leakage constitutes a wasted lux which is nont effective in producing secondary electromotive force. It increases rith the secondary current, and can be delineated by a curve on the transformer dagram in the following manaer. The curves of primary and scoondary electromotive force, or terminal potential differeace and current, are determined experionentally, and then two curves are plotted on the same diagram which represent the variation of $\left(a_{4}-R_{4} i_{1}\right) / \mathbf{N}_{4}$ and $\left(\alpha_{2}+R_{4} i_{2}\right) / N_{2}$; these will reprecent the cime differentials of the total magmetic fluxes $S h_{1}$ and $S b_{3}$ linked respectively with the primary and secondary citcuits. The above curves are then progressively integrated, starting from the time
${ }^{1}$ See Dr G. Roessler. Electrician (1895), xaxvi. 150; Beeton, Taytor and Barr, Journ. Inst. Elec. Eng. xxv. 474 ; also J. A. Fleming, Etectlicier (1894), गxiii. $\mathbf{5 8 0}$.
point through which pasaes the ondinate bisecting the area of each half wave, and the resulting curves plotted to express by their ordinates S_{1} and S_{2}. A curve is then plotted whose ordinates are the differences $\mathrm{Sb}_{2}-\mathrm{S}_{2}$, and this is the curve of magnetic leakage.

The existence of magnetic leakage can be proved experimentally by a method due to Mordey, by placing a pair of thermometers, one of mercury and the other of alcohol, in the centre of the core aperture. If there is a magnetic leakage, the mercury bulb is heated not only by rediant heat, but by eddy currents set up in the mercury, and its rise is therefore greater than that of the alcohol thermometer. The leakage is also determined by observing the secondary voltage drop between full load and no load, and deducting lrom it the part due to copper resistance: the remainder is the drop due to leakage. Thus if V_{2} is the secondary voltage on open circuit, and $V_{1}{ }^{1}$ that when a current A_{3} is taken out of the tranaformer, the leakage drop Φ is given by the equation

$$
y=\left(V_{5}-V_{2}^{d}\right)-\left\{R_{3} A_{2}+R_{1} A_{4}\left(N_{2} / N_{1}\right)^{2}\right\}
$$

The term in the large bracket expresses the drop in secondary voltage due to the copper resistance of the primary and secondary circuits.

In drawing tp a specification for an alternating current transformer, it is necessary to specify that the maximum secondary drop between full and no load to be allowed shall not exceed a certain value, say 2% of the no-load secondary voltage; also that the iron core loss as a percentage of the fult secondary output shall not exceed a value, say, of i \% after six mont hs' normal work.

In the design of large transformers one of the chief points for attention is the arrangement for dissipating the beat generated in their mass by the copper and iron losses.
For every watt expended in the corc and circuit, a Treantormer surlace of 3 to 4 sq . in. must he allowed, so that the
beat may be dissipated. In large transformers it is usual to employ some means of producing a current of air through the core to ventilate it. In these, called air-blast transformers, apertures are left in the core by means of which the cooling air can reach the interior portions. This air is driven through the core by a fan actuated by an alternating current motor, which docs not, however, take up power to a greater extent than about 4 or $1 \% \%$ of the full output of the transformer, and well repays the outlay.

In some cases transformers are oil-insulated, that is to say, included in a cast-iron box which is filled in with a heavy insulating oil. For this purpose an oil must be selected free from mineral acids and water: it should be heated to a high temperature before use, and tested for dielectric strength by observing the voltage required to create a spark between metal balls immersed

Matcrith	Dielectric strenthe in kilowalk per centimedre	Material.	Delectric streagth in kitowatts per centimetre.
Class	285	Lubricating oil .	83
Ebonite	538	Linseed oil	67
Indiarubber	492	Cotton-seed oil.	57
Mica :	2000	Air film 02 cm .	5
Alicanite in ${ }^{\text {a }}$	4000	thick.	27
American linen paper paraffined ..	540	Air film 1.6 cm . thick	48

in it at a distance of 1 millimetre apart. Oils, however, are inferior in dielectric strength or spark-resisting power to solid dielectrics, such as micanite, ebonite, \&c., as shown by the above table of diclectric strengths (see T. Gray, Phys. Red., 1898; p. 199).

Polyphase Transformers are appliances of similar construction to the single-phase transformers already described, but modified so as to enable them to transform two or more phase-related primary alternating currents into similar secondary currents. Thus, a three-phase transformer may be constructed with a core, as shown in fig. 8. Each core leg is surrounded with a primary coil, and these are joined up either in star or delta fashion, and connerted to the three or four line wires. The secondary circuits are then connected in a similar lashion to three or four secondary lines. In the case of twophame tranmimsion with two 品parate pairs Fic. 8.-Bruch Threeof leads, single-pham tranoformers may be phase Transformer.
employed in each braoch, but wht two-phase three-wire supply, twophase transformers must be supplied.
Phase Transformers are arrangoments of static ot rotary trame formers intended to transform siagle-phase alternatiog currents into polyphase currents. An important system of phase transformation has been deacribed by C. F. Scott.' It is known that if two altornat. ing electromotive forces differing in phase are connected in series. the resulting electromotive force will in general differ in phase and value from cither of the components. Thus, if two alternating electromotive forces differing 90° in phase, and having magnitudea in the ratio of $8: \sqrt{3}$, are connected in series, the resulting electromotive force will have a magnitude represented by 2 , and the three can be represented by the sides of a triangle which is half an equilateral triangle. If then a two-phase alternator, D (fig. 9).

Fig. 9.-Scott'y Arrangement for Transformation of Two-pliase to Threephase Currentsp provides two-phase currents, and if the two circuits are connected, as shown, to a pair of single-phase transformers, T_{1} and T_{1} we can obtain three-phase alternating currents from the arrangement. The primaries of both transformers are the same. The secondary circuit of one transformer, Ts, has, eay, 100 turna, and a connexion is made to its middle poiat O, and this is connected to the secondary of the other transformer which has $87(-50 \sqrt{3})$ turns. From the points A, B, C we can then tap off three-phase alternating currents. The advantages of the Scott eystem are that we can transform two-phase alternating currents into three-phase for transmission, and then by a similar arrangement retransiorm back again into two-phase for use. In this manner an economy ol 25% in copper is effected, for instead of four transmission lines we have only three. The system adapte itself for the tranamission of curren ts both lor power in driving three-phase motors and for working incandescent lamps. A somewhat similar system has been designed by C. P. Steinmetz for producing threephase currents from single-phase (see Electrician, xiii. 236). When a number of alternating electromotive forces are maintained in a closed circuit, the sum of all must be zero, and may be represented by the sides of a closed polygon. The fundamentai principle of Mr Steinmetz's invention consists in so choosing the number of these electromotive forces that the polygon must remain stable. Thus, if three single-phase alternators are driven independently at constant speed and excitation, and if they are joined in ecries, then three wires led away from the junction points will provide three-phase currents to a system from which tampe and motors may be worked.
Reference must be made to the continuous current transformer. The conversion of a continuous current supplied; say, at 100 volts,

Candamons

Curreat

Trane:
foraters. into one having an electromotive force of 10 volts, can of course be achicved by coupling together on the same bedplate a suitable electric motor and a dynamo. The eombination is called a motor-dynamo set, and each machine preserves its own identity and peculiarity. The same result may, however, be accomplished by winding two separate armature circuits on ope iron core, and furnishing each with its own commutator. The two circuits are interlaced or wound on together. An arrangement of chis kind constitutes a rolalory or rotary fransformer, or continuous current transformer, It has the advantage of greater cheapness and efficiency. because one field magnet serves for both armature windings, and there is only one armature core and one pair of bearings; moreover, no shift or lead of the brushes is required at various loars. The armature reactions of the two circuits annul each other. Machines of this description are self-starting, and can be constructed to take in primary current at high pressures, 3 y 1000 to 2000 volts, a nd yield another larger curtent of much lower voltage, say 100 or 150 volts, for use with clectric lamps. They are used in connexion with public electric supply by continuous current in many places.

Another important class of rotatory transformer is that also called a ratatory converler, by means of which continuous current is tranalated into alternating current of one-, two or three-phase, or vice veras. The action of such an appliance may best be understood by considering the simple case of a Gramme ring armature

[^19] tod, U.S.A., 1894); aleo Electricion (1894), xuaii, $6 \nmid a$
(Dee DrNam0) having, in addition to itt commutator, a peir of the sulated rings on its abalt connected with opposite ends of the arme ture winding (fig. 10). If such a ring is placed in a bipole field magnet, and if a pair of brushes make contact with the commutator C and another pair with the two rings called slip rings, $S_{1} S_{1}$, and if continuous current at a constant voltage is supplied to the commutator side, then the armature will begin to revolve in the field and from the brushes in contact with the slip ringe we can draw of an alternating current. This reaches its maximum value when the points of contact of the rings with the armature circuit pasa the axia of commutation, or line at right angles to the direction of the magnetic field, for it has at this moment a value which is double the steady value of the continuous current being poured into the armature. The maximum value of the electromotive force creating this atternating current is nearly equal to the electromotive force on the continuous current side. Hence if \mathbf{A} is the maximum value of the continuous current put into the armature and V is the value of the brush potential difference on the continuous current side, then 2 A is the maximum value of the outcoming alternating current and \mathbf{V} is the maximum value of ita voltage. Hence $2 \mathrm{AV} / 2=\mathrm{AV}$ is the maximum value of the outcoming alternating current power, and if we neglect the loss in the armature for the moment, the power given out is equal to the power put in. Hence, assuming a simple harmonic law of vatiation, the effective value of the alternating current voltage is $V / \sqrt{2}$, and that of the alternating current is $2 \mathrm{~A} \sqrt{2}$. This conclusion follows at once from the fact that the mean value of the square of a sine function is half its maximum value, and hence the R.M.S. value is

Fic. 10.-Rotary Converter, continuous to two-phase. $1 / \sqrt{2}$ times the maximum value. The outcoming alternating current has ite zero value at the instart when the ends of the diameter of the axis to which the ring: are connected are in the direction of the magnetic field of the transformer. Hence the power output on the alternating current side varies from a maximum value AV to zero. The rotatory transformer thus absorbs continuous current power and emits it in a periodic form; accordingly, there is a continual storage and emission of energy by the armature, and thereíore its kinetic energy is periodically varying during the phase. The ammature is also creating a back-electromotive force which acts at some instants against the voltage driving the current into the armature and at others is creating an electromotive force that asgists the external impressed voltage in driving a current through the alternating current side. If we put on a nother pair of insulated rings and conneet them to points of the insulated diameter at right angles to the points of connexion of the first pair of rings, we can draw off another alternating current, the phave of which differs 90° from that of the first. Similarly, if we provide three rings connected to points removed 120° a part on the armature circuit, we can tap off a three-phase alternating current.

Returning to the case of the single-phase rotatory transformer, we may notice that at the instant when the oufcoming alternating current is zero the armature is wholly engaged in absorbing power and is acting entirely at a motor. When the alternating current is a maximum, the armature on the other hand is acting as a generator and adds current to the current put Into lt. The ratio between the potential difference of the brushes on the continuous current side and the root-mcan-square or effective volue of the voltage between any pair of rings on the alternating current side is called the transformation ratio of the converter.

The following table, taken from a paper upon retatery converters by S. P. Thompson (Proc. Insl. Elec. Eng., November 1898), gives the voltage ratio or conversion ratio in the case of various forme of rotatory transformer:-

Number of slip ringe.	Angle between points of connexiont to *rmatures.	Type of current gemerated.	Voltage ratio.	Effective voltage on elternating current áde as percentage of voltage on continuotrs current side.
$\begin{aligned} & 8 \\ & 3 \\ & 4 \\ & 6 \\ & 6 \end{aligned}$	$\begin{array}{r} 680^{\circ} \\ 120^{\circ} \\ 90^{\circ} \\ 90^{\circ} \\ 60^{\circ} \\ 60^{\circ} \end{array}$	Single-phase Three-phase Two-phase Four-phase Three-phase Six-phame	$\begin{gathered} \sqrt{2}: 1 \\ 2 \sqrt{2}: \sqrt{3} \\ \sqrt{2}: 1 \\ 2: 1 \\ 3 \sqrt{3}: \sqrt{3} \\ 2 \sqrt{2}: 1 \end{gathered}$	$\begin{aligned} & 70 \cdot 7 t \\ & 61 \cdot 23 \\ & 70 \cdot 71 \\ & 50 \\ & 61 \cdot 23 \\ & 35 \cdot 35 \end{aligned}$

Neglecting the energy losses in the armature, and assuming that the continuous chircent side of the transformer is supplicd wiih 100 amperes, the following table, also taken from a paper by S. P. Thompeon, shows the effective vilue of the cursent on the alernating side put out into each line:-

Number of slip rings.	Angle betwein points of connexion to armature.	Typeof current generated.	Effective cur- rent put out on each tine in amperes.
2	180°	Single-phase	
3	120°	$1+1.4$	
4	90°	Threephase	94.3
6	60°	Sixo-phase	70.7

It is obvious that the same results of conversion can be obtained by coupling together two separate machines on the sime shaft; thus we might obtain a single-phase alternating current from a continuous current by coupling ingether mechanically a continuous current motor and a single-phase alternator. Such a combination is generally called a motor-dynamo. In this case there are two fold magnets and two scparate armatures, and the hysteresis eddy current and copper losses are all in duplicate. If, however, the same armature winding is made to serve both purposes, the resulting machine is called a rolatory or rotapy contrricr. In the former combiration the brushes of the continuous current part require to be set with the usual lead or lag according is that part is generator or motor, but in the latter the armature reactions nearly annul each cther, and lead or lag is no longer necessary.

Recfifiers are devices for transforming an alternating (gencrally single-phase) current into a continuous but pulsatory Recifiers current. They may shortly be described as appliances for scparating out each alternate current flux in an alternating current. An immense number of more or less imperfect methods of doing this have been proposed, and here we shall describe two whicll may be called respectively the mechanical and the electrolytic methods. Of the first class a grod example is the Perranti rectifier (fig. 11). This consists of a s;achronous alternating current motor which is started up and driven in step with the alternator supplying the current. The

Fig. 11.-Ferranti Rectifier.
motor drives a commutator of insulated segments, each alternate segment being connected to two insulated rings, against which
press a pair of hrushes. Another pair of brushes, so adjusted as to be in contact simultancously with a pair of adjacent commutator segments, are in connexion with the alternator supplying the current to be commutated. The insulated rings are in connexion with the external circuit. It will casily be seen that when the commutator revolves at proper speed the currents delivered from the insulated rings are unidirectional. The Ferranti rectiner is much employed for rectifying alternating current for are lighting purposes. With this object it is associated with a constant current transformer which converts alternating current supplicd at constant potential 10 one supplied at constant current. This is achicved by taking advantage of the repulsive foree existing betwicen the primary and secondary circuits of a transformer. These are wound separately, and so balancen? that any increase in the current presses them away from each other and so reduces the secondary current to normal value. Such an appliance is useful for rectifying currents up 1010 or 15 amperes.
The electrolytic rectifier is based upon the fact that if plates of aluminium and carbon are placed in an electrolyte, say a solution of alum or dilute acids which yield oxygen on electrolysis, it is found that a current can he sent through the liquid from the carbon to the aluminium, but that great counterclectromotive force is created to a current in the opposite dircction. Gritz and Pollak (Elektrotechnische Zcilschrift, 1897, 25: [. 359), taking advantage of thas fact, have constructed a rectifying arrangement by arranging two scrics of carbon aleminium (CAI) cells with alum or hydro-potassic phosphate solution as electrolyte. In one set the order of the plates is (CAl), (CAI), \&c., and in the other series (AIC), (AIC), counting from the same end. These serie being connected in parallel, it follows that if an alternating current is sent through the parallel series all the currents in one direction pass through one battery and all those in the opposite direction through the other. Thus the constituents of the alternating current are separated out. By using very large cells so as to reduce the internal resistance, an efliciency of 95% is said to be obtained.

There are many points in the operation of the elcetrolytic rectifier which have as yet been imperfectly explained. The action of the aluminium electrolytic rectifuer, consisting as it does rheory of of an aluminium plate and a lead or carbon plate Electrotye placed in an aqucous electrolyte, is to oppose a Rectifer. great obstruction to a current passing out of the
ifuminium plate, but litele or no obstruction to the current passing into the aluminium plate, especially if the aluminium has been subjected to a previous treatment called formation. This unitateral conductivity is dependent on a eertain voltage or potential difference between the plates not being exceeded, but within these limits a phate of carbon and aluminium placed in a solution, say of hydro-sodic phosphate, acts as an electrical valie. allowing current to pass in one directicn but not in another. An examination of the aluminium plate after it has been so used shows that its appearance has changed and that its surface is covered by a thin film. the thickness of which varies with the electrolyte and the time of formation. After a certain period of use this film is seen as a grey, du't enating traversed by dark lines. It is impossible that the unilateral conductivity can be due to a true electrolytic pularization, because we know of no polarization of this latter kind which exceeds three voles, and the film can be made to resist the flow of a current under an electromotive lorce of 140 to 200 vols. The resistance of this film has been measured and found to be very high, so high as to be practically an insulation. Light was thrown upon the subject by F. Kohlrausch's discovery of the polarization capacity of metallic electrodes, and this discovery was applied to revelop the theory of the aluminium celt by Streintz (1888), Scott (180y) and others.
This theory was expounded by K. Norden (Electrician, xlviit. 107). According to this view, the deposit covering the aluminium clectrode forms the dielectric of a condenser. Une plate of the condenser is formed by the aluminium plate and the other by an opposite layer of electrically-changed ions in the electrolyte. The dielectric film on the aluminium having been formed, the electramotive force of the circuit then charges the resulting condenser to the value of its own voltage, but immeliately the impressed electromotive force is removed this condenser discharges itself. This condenser theory receives support from the behaviour of the aluminium cell when flaced"in the circuit of an alternating current dynamo, for it is found that in these circtumstances the current through the cell is in advance in phase of the difference of potential. The question then arises, What is the nature of this insulating film? The
first discoverer of the phenomenon (Buf) considered it to consist of silicon. Later Professor Bectz disproved this by experiment. and, with many others, assumed that a sub-oxide of aluminium was formed; but this has never been demonstrated in a satisfactory manner. By forming a sufficient quantity of the film Dr K Norden was able to obtain sufficient of the material to make a chemical analysis, and this revealed the fact that it consists of normal aluminium hydroxide, $\mathrm{Al}_{8}(\mathrm{OH})_{6}$.
According to the facts above stated, one wave of the alternating current produces the insulating film by converting the surface of the aluminium into hydroxide, practically, therefore, blocking its own path very quickly by the creation of this Gim. 1f, then, the electromotive force reverses its direction the current immediately flows. According to Dr Norden, the rapid removal of the insulating film is due to the action of the electrolyte corroding or dissolving the weak points in the coating and thus breaking down its insulating power. The insulating gim is thercfore a conductor in one direction, but when the current is reversed and flows out of the aluminium plate the insulating fim is renewed and is continualiy being repaired and kept in order. Thus different electrolytes yiedo aluminium vaives having very different efficiencies.
Rectifying cells have been made by Pollak which will bear a voltage of over 140 volts, and which are said to have an efficiency of 75%. The phates, however, must be removed when not in usc, otherwise the film of hydroxide is destroyed by the electrolyte. One great practical difficulty in connexion with the aluminium rectifier is the rendency to heat in working.
The historical development of the discovery of this unilateral conductivity of an electrolytic cell with an aluminium clectrode is as foliows. The effect was first noticed by Buft in 1857, but was not applied technicaliy until 1874, when Ducretet employed it in telegraphy. Beret in 1877 and Streintz in 1887 discussed the theory of the cell and sought for an explanation. In 1891 Hutin and Leblanc, in their study of alternating current. showed its uses in rectifying an alternating current. Poilak and Grätz laboured to give it a practically useful form. Pollak took out patents in 1895 , and made a communication to the Academy of Sciences in Paris in Junc 1897: and Graiz presented a memoir at a meeting of the German Association of Eleclrochemists in Munich in 1897. M. Blondin has summarized all the work so far done on the aluminium rectifier in two articles in L'Eclairage declrique (1898), xiv. 293. and x xviii, 117 (1901). The choice of $2 n$ electrolyte is of great importance. Buff. Ducretet and Gratz employed dilute sulphuric acid, and the greatest difference of potential which could then be applied to the celt without breaking down its insulation in one direction was 20 volts. Pollak in 1896 found that when aqueous solutions of aikaline salts were used, and when the aluminium was subjected to a preliminary formation, the back electromotive force or what is equivalent to it could be raised to 140 or 200 volts. Pollak found that the best results were given by the use of phosphate of potassium or sodium. It appears, therefore, that the pons of K or Na effect the breaking down of the fitm of aluminium hydroxide more quickly than the ion of hydrogen. The practical form of aluminium recifice, according to Pollah, consists of piates of thick aluminium and lead placed in a large deep glass vessel filied with a solution of potassium hydrogen phosphate.

In 1899 Albert Nodon of Paris began experimenting with an electric rectifier which is now on a commercial footing. It is known as the Nodon electric valve, and it is claimed

Noler
 Valre.

 that it will give an efficiency of 75 to 80% when used to transform single or polyphase currents into continuous currents. In the form used for transforming singlephase currents the valve is made up of 4 cells, each consisting of an iron cylinder with an insulating plug at the bottom through which is passed a cylinder formed of an alloy of zinc and
aluminium. This cylinder is concentric with the iron tube and provided with a terminal at the lower end. The cell is filled with a saturated solution of ammonium phosphate, and a nonconducting shielding tube can be slid over the aluminium electrode to alter the exposed area.

The valve is shown in section in fig. 12, and the 4 cells are arranged in a Wheatstone's Bridge fashion, as shown in Ig_{g}. 13 - A and A^{2} are the terminals to which the alternating current is supplied. C and C the terminals from which the continuous current is drawn nff. The electrolytic actions which take piace in the cells are as follows: When the alternating current passes in the positive direction from the zinc-aluminium cylinder to the iron cylinder there is formed instantly on the former a film of aluminium bydraxide; this film, presenting an enormous resistance, opposes the passage of the current. On the other hand, if the current passes in the opposite direction the film is reduced instantly and the current now fows. When used with polyphase currents the valve comprises as many times two cells as there are wires in the distribution. The ceifs must stand a pressure varying from 50 to 140 volts, and for higher pressures two or more valves in series are employed.

The aluminium-iron electrolytic rectifier is not suitable for the rectification of very high frequency currents, because the chemical actions on which it depends involve a time element.
It was, however, discovered by J. A. Fleming that an Vomen of oscillation valve could be constructed for rectifying electrical oscillations, as follows (see Proc. Roy. Soc.
Lond., 1905, 74, p. 476): In a glass bulb similar to that of an incandescent lamp a carbon filament is fixed. Around the carbon filament, but not touching it, is placed a cylinder of nickel connected to an external terminal by means of platinum wire sealed through the glass. If the carton filament is made incandescent by an insulated battery (and for this purpose it is convenient to have the filament adjusted to be fully incandescent at a pressure of about 12 volts), then the space between the incandescent filament and the embracing cylinder-possesses a unilateral conductivity such that negative electricity can pass from the incamdercent filament to the cylinder but not in the opposite direction Hence if the negative terminal of the filament and the terminal attached to the cylinder are connected to an oscillation transformer (sce Induction Coll) which supplies a high frequency alternating oscillatory current, the flow of electricity in one direction is cut out and the oscillatory current is therefore converted into a continuous current. Such valves have been employed by Fleming in connexion with wireless telegraphy. Wehnelt discoveted that if a platinum wire was covered with oxide of barium or any of the oxides of rare carth metals, it possessed in the same manner, when used in a valve of the above type, an even greater power than incandescent carbon. The explanation of this action is to be sought for in the fact that incandescent carbon in a vacuum or incandescent earthy oxides copiously emit negative electrons.

A rectifier dependent upon the peculiar qualities of thercury vapour has been devised by Cooper-Hewitt for the transformation of polyphase currents into continuous currents. The three-phase trandormer is made as follows: A large glass buib (see fig. t4) has four iron electrodes seaied through the walls as positive electrodes and a negative electrode consisting of a pool of mercury in the bottom of the bulb connected with platinum wires scaled through the giass: the bulb is highiy exhausted and contains only mercury vapour. The tifree iron electrodes are connected to the terminals of a starconnected poljphase transformer and one of them to the pusilive pole of a continuous current starting current, the connexions being shown as in fig. is. The mercury vapour is a non-conductor for low voltages, but if sufficiently high voltage is placed on the mercury bulb by means of the continuous current it begins to conduct and if the three-phase current is then swiached on the mercury vapour will allow the components of the three-phase current to pass when the mercury electrode is negative, not when it is positive. Hence for altermate current wave of the three-phase, supply is cut down and a continuous current can be

Cooper.Hewitt Rectifier. drawn by the connexions as shown in fig. Isfor the purposes of suppitying secondary batteries, are lamps, Ic.

Owing to the fact that the mercury vapour ceases to conduct When the clectromotive force on it falls below a certain critical value the valve will mot work with singlephase currents but will work with polyphase currents at all volage from 100 to 1000 or more and can transform 25 much as 100 amperes. It is stated to heve an efficiency of 88 to 89% (Sep 7he Electrician, 1998. 5a, p. gra)

A mectanical polyptase reetifer or rotary devived by Bragread and La Cour is described in Der Kashaden umformer, by E. Arnold and J. Le La Cour, Sturtgart, 1904. It consives of a three-phase induction motor coupled direct to a continnous cerrent dyanma the armatares of the two machines being electrically connected © that the three-phase current created in the rotar of the induction

Fic. 15.
zotor enters the continuous current armature and create around it a rotary field. The conticxions are such that the rotating feld turos ia a direction opposite to that in which the trmature is tarmine. to that the field is stationary in space. From the congipeops current armature can therefore be drawn of a continuons current and the device acts as a transformer of three-phase altemat ing current to a continuous curtent.

The ordinary induction coid (q.s.) may be regarded as the traneLormer for converting continuous current at low voltage into high voltage intermittent continuous current. but the difficulties of interrupting the primary carrent render it impossible to transform in this way more than a small amount of power. Where, however, high voltages are required. high potential transormers are used which are now built for the purpose of wireless telegraphy and the transformation of power to give secondary voltages up to 20.000 58,000 or 60,000 volts. Transformers have even been built to cive meondary voltages of half a million volts capable of giving a 14 in. spark in air. These machines, however. must be regarded as more physical laboratory instruments than appliances for techtieal work. For description of one such extra high potential transformer see H. B. Smith. on "Experiments on Transformers for Very High Potentials", The Electracion (1904), 54, p. 358. A trant former of this kiod must invariably be an oil insulated transformer, as ander extremely high voltage the air itsclf becomes a conductor and no solid inalator that can be put upon the wires is strong epough to stand the electric strain.

AUTmonitias.-J. A. Fleming, The Allemale Cwrrent Transformer (yrd ed., 1901); "Experimental Rescanchos on Alternate Current Iransformers ", Jowrn. Insh. Elec. Eng. (1892): "Alternate Current Transformers," Captor Leclures (Society of Arts, 1896); "Electric Decithations and Electric Waves," Contor Ledimes (Socicty of Arts, 8900-1901): Harndent for the Electrical Laboralory and Testing Room (190n) : S. P. Thompron, Dynamo Electric Hachinery (1896): Polvthase Electric Currents and Altersats Curreut Malors (and ed., 8900): "Rotatory Converters," Proc. Insh. Elec. Eng. (1898): G. Kapp, The Eletrical Transmission of Energy and its Transgarmelion (3895): Allernaling Cwrrents of Electrizily (i896); Transformers for Sonple and Mulifiphase Currents (1896); C. C. Hawkins and F. Wallis, The Dymano (2nd ed. 1896) : F. Bedell, The Principles of the Transformer (New York, 1890); W. E. Coldsborough. "Transformer Tetes." Prac. Net. Electric Lisht A ssociations, U.S.A. (1899): C.P. Steinmetx. The Theory and Calculation of Altirnating Currerit Phenoment (4thed., New York, 1908); A. Stili, Allernating Currents of Electricity and the Theory of Tratiformers; D. C. Jackson, Text Boot on Electro-magnetism (1896), vol. ii.; Loppe. Altornating Cerrents in Proctice: Martin, intertions, Rescarches and Writings of Nibole Tade (New York, 1894); W. G. Rhodes, Am Elomentary Trantise on Altontating Corrents (ig02); A. Hay, Allermating Currents (rgos); D. K. Morris and G. A. Lister, "The Testing of Trans lormers and Transformer Inon," Journ. Inst. Elec. Eng. (1906), 57. p. 264; J. Epstein," The Teting of Electric Machinery and Tiaterial of Comstroction," Jomm. fest. Elec. Emg. (1906), 36. p. 28.
(U.A.F.)
transit circle, or Mempinn Circle, an instrument for obscrving the time of a star's passing the meridian, at the same time measuring its angular distance from the zenith. The idea of having an instrument (quadrant) fixed in the plane of the meridian occurred even to the ancient astronomers, and is mentioned by Ptolemy, het it was not carried into practice until Tycho Brahe constructed a large meridian quadrant. This instrument enabled the observer to determine simultaneously right ascension and declination, but it does not appear to have been much used for right ascension during the 17 th century, the method of equal altitudes by portable quadrants or measures of the angular distance between stars with a sextant being preferred. These methods were, however, very inconvenient,
which induced R8mer to invent the transit instroment about 1690. It consists of a horizontal axis in the direction east and west resting on firmly fixed supports, and having a telescope Gred at right angles to it, revolving freely in the plane of the meridian. At the same time Romer invented the altitude and azimuth instrument for measuring vertical and borizontal angles, and in 1704 he combined a vertical circle with his transit instrument, so as to determine both co-ordinates at the same time. This latter idea was, however, not adopted elsewhere, although the transit instrument soon came into universal use (the first one at Greenwich was mounted in 1721), and the mural quadrant continued till the end of the century to be employed for determining declinations. The advantage of using a whole circle, as less liable to change its figure, and not requiring reversal in order to observe stars north of the zenith, was then again recognized by Ramsden, who also improved the method of reading off angles by means of a micrometer microscope as described below. The making of circles was shortly afterwards taken up by Troughton, who in 1806 constructed the first modern transit circle for Groombridge's observatory at Blackheath, but he afteryards abandoned the idea, and designed the mural circle to take the place of the mural quadrant. In the United Kingdom the transit instrument and mural circle continued till the middle of the 1gth century to be the principal instrument in observatories, the first transit circle constructed there being that at Greenwich (mounted in 1850) hut on the continent the transit circle superseded them from the years 1818-1819, when two circles by Repsold and by Reichenbach were mounted at Göttingen, and one by Reichenbach at Königsberg. ${ }^{1}$ The firm of Repsold was for a number of years eclipsed by that of Pistor and Martins in Berlin, who furnished various observatories with first-class instruments, hut since the death of Martins the Repsolds have again taken the lead, and have of late years made many transit circles. The observatories of Harvard College (United States), Cambridge and Edinburgh have large circles by Troughton and Simons, who also made the Greenwich circle from the design of Airy. ${ }^{2}$

In the carliest transit instrument the telescope was not placed In the middle of the axis, but much nearer to one end, in order to prevent the axis from bending under the weight of the telescope. It is now always placed in the centre of the axis. The latter consists of one piece of brass or gun-metal with carefully turned cylindrical steel pivots at each end. Several recent instruments have been made entircly of steet, which is much more rigid than brass. The centre of the axis is shaped like a cube, the sides of which form the basis of two cones which end in cylindrical parts. The pivots rest on V-shaped bearings, cither let into the masgive stone or brick piers which support the instrument or attached to metal frameworks bolted on the tops of the piers. In order to relieve the pivots from the weight of the instrument which would eoon destroy their figure, the cylindrical part of each end of the axis is supported by a hook supplied with friction rollers, and suspended from a lever supported by the pier and counterbalanced so as to leave only about 10 it pressure on each bearing. Near each end of the exis is attached a circle or wheel (generally of 3 or 3 l $f t$. diametet) fincly divided to 2^{\prime} or 5^{\prime} an a slip of silver let into the face of the circle near the circumference. The graduation is read of by means of microscopes, generally four for cach circle at 90° from each other, is by taking the mean of the four readings the ecoentricity and the accidental errors of graduation are to a great extent eliminated." In the earlier instruments by Pistor and Martins the microscopes were fixed in holes drilled through the pier but afterwards they let the piers be made narrower, so that the mictoscopes could be at the sides of them, attached to radial arme starting from near the bearings of the axis. This is preferable as it allows of the temporary attachment of auxiliary microscopes for the porpose of investigating the errors of graduation of the circle, but the plan of the Repsolds and of Simms, to make the piera short and to let the microscopes and supports of the axis be carried by an iron framework, is better still, as no part of the circle is
The most notable exception was the transit instrument and vertical circle of the Pulkovo observatory, specially designed by the elder Struve for fundamental determinations,
${ }^{2}$ This instrument differs in many particulars from others: the important principle of symmetry in all the parts (scrupulonsly followed in all others) is quite díscanded; there is only one circle; and the instrumeat cannot be reversed. There is a similar insirumeni at the Cape observatory.

IOn Reichenbach's circlea there were verniers instead of mieroscopes, and they were attached to an alidade circle, the immovability of which was tested by a level.
exposed to radiation from the pier, which may cause st rain and thereby clange the angular distance tetween various parts of the circie Each microscope is furmished with a micrumeter srew, which moves a frame carrying a cross, or better two close parallet threads of spider's web, with which the distance of a division line from the centre of the field can te measured, the dram of the screw being divided to single seconds of arc ($0 \cdot i^{\prime \prime}$ being estimated). while the number of revolutions are counted by a kind of comb the number of revolutions
in the field of view. The periodic errors of the screw

vided with a clamping apparatus, by which the observer, after havins beforchand set to the approximate declimation of a star, can clamp the axis so that the telescope cannot be moved except sery slowly by a handle pushing the end of a tine screw against the clamp arm. which at the other side is pressed by a strong spring. By this slow motion, the star is made to run along one of the horizontal wires (or if there are two close ones, in the middle betwecn thenat, after which the microscopes are read off. A movable horizontil wire or declination-mierometer is also often used. The field or the wires can be illuminated at the observer's pleasure; the lamps are placed at some distance from the piers in oricr not to heat the instrument, and the light passes through holes in the piers and through the hollow axis to the cube, whence it is directed to the eyeend by a system of prisms. "

The time of the star's transit over the middle wire is never exactly equal to the actual time of its meridian passage, as the plane in which the telescope turns never absolutely coincides with the meridian Let the production of the west end of the axis mect the celestial sphere in a point of which the altitude above the horizon is b (the error of inclination), and of which the azimuth is $90^{\circ}-a$ (the azimuth being counted from south through west), while the optical axis of the telescope makes the angle $90^{\circ}+c$ with the west end of the axis of the instrurnent. then the correction to the observed time of eransit will be $|a \sin (\phi-b)+b \cos (b-b)+c| / \cos \delta_{0}$ wheres is the latitude af the station and s the declination of the star. This is called Tobias Mayer's formula, and is very convenient if only a few obsenations have to be reduced. Puting $b \sin \phi-a \cos \phi=n$. we get Hansen's formula, which gives the correction $=b \sec \phi+w(\tan s-\tan , \theta)+c \sec s$, which is more convenient for a greater number of observations. The daily aberration is always deducted from c. as it is also multiplied by $\sec 8$ (being $0-31^{\prime} \cos \phi \sec 8$). The above corrections are for upper culmination; below the pole $180^{\circ}-\delta$ has to be substituted for $\$$. The constant c is determined by pointing the instrument on one of the collimators, measurirg the distance of its wire-cross from the centre wire of the transit circle by a vertical wire movable by a minnometer screw, reversing the instrument and repuating the operation, or (without reversins) by pointing the two collimators on one another and measuring the distance of first onc and then the other wire-cross from the centre wire. The inchination b is measured directly by a level which can be suspended on the pisots." Having thus found b and c, the observation of two stars of known right acension will fumish two equations from which the clock error and the avimuth can be found. For finding the azimuth it is most advantageous to use two stars differing as nearly 90° in declination as possible, such as a star near the pole and one near the equator, or better still (if the weather permits it) two successive meridian transiss of a close circumpolar star (one atwve and one below the pole), as in this case errors in the assumed right ascencion will not influerice the result.

The interval of time between the culminations or meridiao transits of two stars is their diference of right ascension, 24 hours corresponding to 360° or 1 hour $t 015^{\circ}$. If once the cuscolmie righe ascensions of a number of standard sters are known, it is very simple by means of these to determine the R.A. of any number of stars. The absolute R.A. of a star is found by obsening the internal of time between its culmination and that of the sun. If the inclioation of the ecliptic (e) is known, and the drclination of the $\sin (\delta)$ is obscrved at the time of transit, we have sin a tan $e=\tan \delta$, which gives the R.A of the sun, from which, lasether with the observed interval of time corrected for the rave of the clock, we set the R.A. of the star. Differentiation of the formula shows that obsertations neat the equinoxes are most advantageous, ant that errors in the assumed and the observed s will have no influeace if the Δ e is obstrixd at two epochs when the sun's R.A. is A and $180^{\circ}-A$ or as ncar thereto as possible. A great number of observations of this kind will furnish materials for a standard catio logue; but the right ascensions of many important catalogucs havo been found by making use of the R.A.'s of a previous catalongue to determine the clock error and thus to intprove the individual adopied K.A's of the former catalogue.

In order to determine absolute declimations or polar distances, it is first nocessary to determine the co-latitude (or distance of the pule from the zenith) by obserting the upper and lower culminationt of a number of circumpolar stars The differcoce between the cincle reading after obsering a star and the readiag corresponding to the zenith is the zenith distance of the star, and this plus the cobtutitude is the notith polar dispance or $90^{\circ}-3$. In order 10
and by pressing an electric key causcs a raark to be made on a puper stretched over a uniformly revulsing drum, on which the clock beats are at the same time also marked clectrically.

The ilca of illuminating thruugh the axis is due to H. Ussher, profesur of astronomy in Dublin (d. 1790).
-To avoid the use of a very large level, the pivots of the new transit circle at Kiel are supplied with small "rifters" carrying a wirecross: these can in curn be obscrved throuth a horirontal telescope with a hansing mirror in front of its oljuct-giass, whereby the difference in height of the two pirots abuve a borizontal live may be measured.
chermine the zenith point of the circle, the teleacope is directed vertically downwards and a basin of mercury is placed under it, forming an absolutely horizontal mirror. Cooking through the telescope the obterver sees the horizontal wire and a reflected umage of the tame, and if the velescope is moved so as to make these coincide, its optical axis will be perpendicutar to the plane of the horizon, and the circle reading will be $180^{\circ}+$ zenith point. In observations of stars refraction has to be taken into account as well as the errors of graduation and bexare, and, if the bisection of the star on the horizontal mire was not mide in the centre of the feld, allonence mist be made for curvature (or the deviation of the sar's path from a great circle) and for the inclination of the horizontal wire to the horizon. The amount of this inclination is found by taking repeated observations of the zenith distance of anear during the one transit, the pole star being the most suitable oring to its alom motion.
Attempts have been made in various places to record the transits of 2 star photographically; with most success at the Georgetown College Observatory, Washington (since 1889). A sensitive plate is placed is the focus of a transit instrument and a number of short exposures made their length and the tirue they are made boing regiscered automatically by a clock. The exposing shutter is a thin strip of steel, fixed to the armature of an electromagnet. The phate thus gives a series of dots or short lines, and the vertical vires are photographed on the plate by throwing light through the object plase for one or two seconde. This seems to give better results than the method adopted at the Paris observatory, where the plate is moved by clock-work and the exposure is comparatively long. white the image of a fixed slit is photographed at different recorded instants.

LatEra toae. - The methode of imyestigating the errors of a tramit circle and correcting the results of observations for them are given in Brunnow's and Chavenet's manuals of spherical astronomy. For detailed descriptions of modern transit circles, see particulary the Washington Obxrmations for 1863, the Publications of the Washbern Obrervatory (rol. ii.) and Astronomische Boobrchturagow zus Kial (Igos). The Creenwich circle is deacribed in an appendix to the Grecnuick Obserations for 1852. Accounts of photographic transit instruments will be lound in The Photochronogroph (Washingma, 1891), Annales de robsenatoire de Tokyo, tome ini. and Comples rewims (July 16, 1906).
U.L.E.D.)

TRANESES, one of the divisions of the Cape province, South Africa, east of the Kei River, being part of the country known varioushy as Kafiraria ((q.v.), "the Native Territories" (of the Cape) and the Transkeian Territorics. The majority of the iahabitents are Fingo (q.o.).
TRNTSLATION (Lat. Wans, across, and lowns, the participle af fare, to carry), literally a carrying over or transference from one to another, and sofrom one medium to another. Among the more literal usages is the Transiation of Enoch in the Bible (Heb. ii. 5), or the ecclesiastical removal of a bishop to another tee. But the commonest sense of the word is in connexion with the rexdering of one lauguage into another.
The characteristics of a good transtation in the literary sense, and the history of the influcnce, through transintions, of one Herstore on andher, are worth more detailed notice. Diyden bes prescribed the course to be followed in the execution of the ideal translation: "A transhator that would write with any corce or spirt of an original must never dwell on the words of his anthor. He onght to possess himsel entirely, and perfectly comprehend the genius and sense of his author, the nature of the mbject, and the terms of the art or subject treated of; and then be will express himself as justly, and with as much life, as if he wrote sa original; whereas, be who copies word for word loses all the spith in the tedious transfusion." Comparatively few unnslators have satisfied this canon. A writer capable of attaining the standard set up by Dryden is naturally more dispoued to use his powers to express his own views than those of his boreign predecessors. No doubt at eh times, and in all coantries, transdations have usually been produced for utilitarian purposes, and not from artistic motives. In the first instance we may atsome that trasulations wert undertaken in a spirit of educacional propaganda as a means of communicating new ideas and sew facts to a somewhat uninstructed and uncritical public, indifferent as to mafters of form. But, though the translator's primary motive is didactic, be is insensibly led to reproduce the mamper as well as the matter of his original as closely as possible. Mootaigne warns aspirants of the difficulty in dealing with atisors remarkable for the finish of their exsecution. "Il fnict
both," be writes in the Apalogio \& Rajmend Scbonde, "traduire les aucteurs comme caluy-la ou il n'y a guirrea que la matière \& representer; mais ceux qui ont donné beaucoup à la grace et à léfegance de langage ils cont dangereux i entreprendre nommement pour les rapporter ì un idiome plus foible." As it happens, bowever the tast of trabslating foreign masterpieces has frequently been undertaken by writers of undisputed hiterary accomplishment whose resderings have had a permanent effect on the literature of their native country.

It was certaisly the case when Rome, having conquered Greece, was captured by her captive. There is much point and little exaggeration in the statement that " when the Greek nation became a province of Rome, the Latin titerature becames a ppoviace of the Greek "; and this peaceful victory was initiated by a series of transkations made by writers of exceptional ability and, in some cases, of real genius. The first transiator whose name is recorded in the history of Europenn literature is L. Livius Androticus, a manumitted Greek slave who about 14° B.C., rendered the Odyssey into Saturnian verse. This transtation, of which some fragments are preserved, was long in use as a school text, for Horace studied it under the formidable Orbilius; but Andronicus appears to have recognized his mistake in using the native Latin mensure as a vehicle of litcrary expression, and is said to have rendered Greek tragedies and comedies into metres corresponding to those of his Greck originals. The decision was momentous, for it infleenced the whole metrical development of Letin poetry. The example set by Andronicus was followed by Nacvius and Ennius, both of whom laid the foundations of the Latin theatre by translating Greek plays-especially those of Euripides-and naturalized in Rome the hexameter, which, as practised later by Lucretius and Virgil, was destined to become "the stateliest measure ever moulded by the lips of man." The tradition of transiating more or less freely was continued by Pacuvius, the nephew of Ennius, as well as by Plautus and Tcrence, whose comedies are skilful renderings or adaptations from the New Attic Comedy of Philemon, Diphilus and Menander. A persistent translator from the Greek was Cicero, who interpolates in his prose writings versified renderings of pascages from Homer, Aeschylus, Sopbocles and Euripides which prove the injustice of the popular verdict on his merits as a poet. Cicero not only translated the aration of Demosthenes On the Crown, but also made Latin versions of Plato's Timacus (part of which survives), of Xenophon's Occonomicus, and of the Phecnomenc, an astronomical poem by Aratus of Soli, an Alexandrian imitator of Hesiod. This last performance was a tribute to the prevailing fashion of the momert, for the Alezandrian poets had supplanted the early Greek school in favour among the literary circles of Rome. To the foregoing tist may be added the great name of Catullus, whose Coma Berenices is transleted from Callimachus, and Cornelius Gallus is mentioned es a translator of Eupborion. Complete translations became less and less necessary as a knowledge of Greek spread among the educated class. But the practice of translating fragments of Greek verse continued throughout the classic period of Latin literature, and the translations of Greek originals incorporated by Virgil were duly pointed out by Octavios Avitus.

The knowledge of Greek declined with the empire, and transLations were accordingly produced for the benefit of students who were curious concerning the philooophic doctrines of the Athepians and the Neoplatonists. Porphyry's introduction to Aristotle's Calegories was translated by Victorinus abouk the reign of Julian the Apotate; at the end of the 5th century this introduction was once more transfated by Boetius, whose translations of Aristothe's Categorics and other logical treatises began the movement which ended in establishing the Greek philosopher as the most profound and authoritalive exponent of intellectual problems during the middle ages. Plato was lest fortunate, for he was known to students chiefly by the Latin vervion of the Timoeus made by Chalcidits (it is said) for Hosius, the bishop of Cordova. Cassiodorus, the contemporary of Boetios, went farther afield when he ordered a Latin translation of Josephus to be prepered; but the interest in Aristalle ertended to the

East, and in the Gth century he wras translated into Syriac by Sergius of Resaina. The Syrians acted as interpreters of Greek learning to the Arabs, and during the 8th and 9 th centurieschiefly through the staff of translators organized at Bagdad by Honein ibn Ishak-the works of Plato and Aristotle, as well as those of Hippocrates and Galen, were translated into Arabic. These translations are of capital importance in the history of European thought. Many of them were introduced into Spain by the Arabs, and were rendered-in some cases through the intermodiary of a Castilian-speaking Jew-into Latin at the college of translators founded in 1130 (or shortly afterwards) at Toledo by Raymund, archbishop of that city. Circulating widely throughout western Europe, these Latin translations supplied the learned with a third- or fourth-hand knowledge of Greek philosophy. When Albertus Magnus, St Thomas Aquinas, or any other early light of the schools refers to Aristotle, it must be borne in mind that be often had no more exact acquaintance with the text which he expounds or confutes than could be gathered from an indirect Latin version of an Arabic rendering of a Syriac translation of a Greek original. This accounts for many misunderstandings and errors which would otherwise be incomprehensible. Among the earliest European translators who made their way to Toledo were Adelard of Bath, who rendered an Arabic version of Euclid into Latin; the Englishman known as Robert de Retines, afterwards archdeacon of Pamplona, the first translator of the Koran, which he did into Latin in 1141-i1 143 by order of Peter the Venerable; and Gerard of Cremons, who, towards the end of the Iath century, was responsibie for over scventy translations from the Arabic, including Ptolemy's Almages! and many of Aristotle's treatises, as well as works by Galen, Hippocrates and Avicenna. Early in the 13th century Micheel Scot, who had begun his Arabic studies at Palermo; visited Toledo and (perhaps with the help of the Jew Andreas, if we are to believe the statement of Hermann the German, repeated by Roger Bacon) translated into Latin various works of Aristotle, Avicenne, and-more especially -Averroes. These Latin translations by Michael Scot introduced Averroes to the notice of Western scholars, and the fact that they were used at the universities of Paris and Bologna gave the first impetus to the vogue of Averroistic doctrine which lasted from the time of St Thomas Aquinas to the rise of Martin Luther. At Toledo, between 1240 and 1256, Hermann the German translated into Latin the commentaries of Averroes on Aristotle's Elkics, together with abridgments of the Poctic and the Rheloric made respectively by Averroes and Alfarahi. But, at the very period of Hermann the German's residence at Toledo, a more satisfactory method of translation was begun. Within half a century of the conquest of Constantinople in 1204 a visit to Spain was no longer indispensable for a would-be translator of Greek philosophical treatises. The original texts slowly became more available, and a Latin translation of Aristotie's Elhics seems to bave been made from the Greek by order of Robert Grosseteste, bishop of Lincoln, hetween 1240-1244. Towards the end of the century the indefatigable William of Mocrbeke (near Chent)-mentioned as "Wiliam the Fleming" by Roger Bacon-produced, amongst numerous other Latin renderings from the Greek, versions of Aristotle's Rheloric and Politics which have commended themselves to more exact scholars of the modern German type. The Latin renderings from the Arabic were current till a much later date; but it was henceforth accepted, at least in principle, that translations of the Greek classics should be made direct from the original text.

Meanwhile the work of translating foreign produclions into the local vernacular had been begun in the north and west of Europe. Towards the end of the 9 th century an illustrious English translator appeared in the person of King Alfred, who rendered St Gregory the Great's Cura Aastoralis into West Saxion " sometimes word for word, sometimes sense for sense." Alired is also reganded, though with less certainty, as the translator Bede's Hisloria ecclesiortica and the Historia edsersus pagenos of Orosius. The version of St Gregory's treatise is the most literal of the three; omissions are frequent in the
renderinge of Bede and Orosius, and in all the dietion is disfigured by latinisms. A larger conception of a translator's function is noticeable in Alfred's version of Boetius's De comsolatione philosophioe, a famous Neoplatonic treatise which was the delight of the middle ages, and was translated later into German by Notker Labeo, into French by Jean de Meung, and twice again inta English by Chaucer and by Queen Elizabeth respectively. In translating Boetius, Alfred deals more freely with his author, interpolates passages not to be found in the extant texts of the original, and yet succeeds in giving an adequate interpretation which is also an excelient specimen of English prose. If the alliterative verses found in one manuscript of Alfred's translation are accepted as his work, it is clear that he had no poetic faculty; but he has the credit of opening up a new path, of bringing England into contact with European thought, and of stimulating such writers as Werferth, bishop of Worcester -the translator of St Gregory's Dialogues-to proceed on the same line. Some forty years earlier John Scotus (Erigena) had won celebrity as a translator by his Latin renderings of works ascribed to the mysterious 5 th century Neoplatonist who passes under the name of Dionysius the Areopagite. Towards the close of Alired's reign some counirymen of Erigena bettered his example by producing Irish versions of Hippocrates and Galen at St Gallen. St Gallen became a centre of translation, and there, at the beginning of the 1ith century, Notker Libeo presided over a committee of intcrpreters who issued German renderings of certain treatiscs by Aristotle, Terence's Andria and Virgil's Eclogues. Far greater literary importance attaches to Symapas, the title given by Michael Andreopulos to a collection of ancient Oriental tales which he translated from an intermediate Syriac version into Greek at the request of the Armenian duke of Melitene about the end of the 1ith century. These stories were retranslated into French verse and (by Jean de Haute-Scille) into Latin during the course of the iath century under the respective titles of the Sept sages de Rome and Dolopothas; they were utilized in the Cento novelle antiche, in the Libro dei setle savj, and in the Decamerone, and were finally absorbed by every literature in Europa. Immense popularity was won by the Liber gesforum Borloom et Joscphal, a Latin translation made in the 1 ith or 12 th century from the Greek, and recast in many European languages during the 13th century. The book is in fact a legendary life of Buddhz adspted to the purposes of Christianity by a monk; but it was accepted as an historical record, the undiscerning credulity of the faithful informally canonized Barlaam and Josaphat, and ultimately compelled the Latin Church to include these two fictitious beings as saints in the Marlyrologiom romanwm. This is perhaps the most curious result attained by any translation. The interest in Eastern apologues and moralizing stories, which was early shown in Marie de France's translation of Aesopic fables, was further demonstrated by the Castilian translations of Kalilal and Dimrah and Sindibad made about the middle of the $23^{\text {th }}$ century, by (or at the command of) Alphonso the Learned and his brother the Infante Fadrique respectively.

The enthusiasm for these Oriental stories was communiceted to the rest of Europe by Jobn of Capua's Directorium humanae vitac (1270), a Latin translation of Kalibah and Dimmah; but, in the meanwhile, as the younger European literatures grew in power and variety, the field of translation necessarily widened to such an extent that detailed description becomes impossible. Geofircy of Monmouth's Eistoria regwm Brilanniae, which purports to be a free version of an uanamed Breton book, is the source of the Arthurian legends which reappeared transformed in elaborate French versions, and were transmitted to the rest of Europe during the 12th and r3th centuries During this period of French literary supremacy instances of bilingual faculty are not wanting in the form of translations: shortly after the middle of the I3th century Brunetio Latini translated passages of Cicero into Italian, and selections from Sallust into French. A hundred years later there are unmistakable indications that the middle ages arc departing, that the French suzerainty over literature is at an end, and that tho advent of
the New Humanism is an accomplished fact. The early Renaissance had already dawned in Italy: a renewed interest in the Latin classics (Greek was not yet generally cultivated by scholars) proved that there was a revival of learning in France. Livy was done into French hy Bersuire, Seneca by Bauchant, Boccaocio by Laurent de Premier Fait, and a celebrated Iranslator appeared in the person of Nicolas Oresme, who, however, rendered Aristotle from a Latin version. In England Chaucer crecated translations of Boetius and part of the Roman de la rose, and suoceeded equally in interpreting the philosophic treatise and the allegorical poem. A still further advance is discrenible in the book of travels ascribed to Sir John Mandeville: this work, which scems to have been originally written in French, is rendered into English with an exceptional felicity whith has mon for the translator the loose-fitting but nol ahogether inappropriate title of "the father of English prose." The English version of Mandeville is assigned to the beginning of the isth century. About 1470 Sir Thomas Malory produced Irom French originals his Morte d'Arthor, a pasticbe of different texts transhated with a consummate art which amounts to originality. Malory's inspired version, together with the numerous renderings from the French issued (and often made personally) by Caxton, stimulated the public taste for romantic narrative, raised the standard of execution, and invested the translator with a new air of dignity and importance.

Yet the 1 gth century has a fair claim to the regarded as the golden age of translation. The Gothic version of the Bible, grade by Ulfias during the $4^{\text {th }}$ century almost simultaneously with St Jerome's Vulgate, is invaluahle as the sole literary monament of a vanished hanguage; the 14th century English version by Wyclifie and the 15 th century English versions which bear the names of Tyndale and Coverdale are interesting in themscives, and are also interesting as having contributed to the actual Authorized Version of 16iri. But they are incomparably less important than Luther's German translation of the Bible (1522-1534) which, apart from its significance as indicating the complete victory of the liberal middle class and the irremediable downfall of the feudal and ecelesiastical autocracy, sapplanted minor dialects and fixed the norm of literary expression in German-speaking countries. Luther, it has been truly said, endowed Germany with a uniform literary language, a possession which she had lost for nearly three hundred years. The efiect of profane literature was speedily visible in Fischart's translations of Rabclais's Partagrueline (1572) and the first book of Garganian (1575). But before this date France had produced a prince of translators in Jacques Amyot, bishop of Arxerre. In 1548 Nicolas de Herberay had published a French translation of Amadis do Gaule which enchanted the polite rorld at the court of Henry II., had its day, and is forgotten. But Amyot's transiation of Plutarch (1559) remains an acknowledged masterpiece, surviving all changes of taste and all variations of the canon of translation. Montaigne writes: "Je donne la palme avecque raison, ce me semble, à Jacques Amyot, sur tous nos escripvains François." If "escripvain " be understood to mean "' (ranslator," this judgment is beyond appeal.
Lord Berners will not bear comparison with Amyot ip achievement or infinence; but. though less completely equipped and less uniformly happy in his choice of texts (for Amyot translated the Aelhiopian Histary and Daphnis and ChLoe as well as Plutarch), Lord Berners holds a distinguished place in the ranks of English translators. His renderings of Fernandez de San Pedro's Cdrcel de amor and of Guevara's Libro aurco are now read solely by specia lists engaged in tracing English euphuism to its remoter sources, and some of his other translations-the Boke of Dube Hwos of Burdeux asd Arthuy of Litlle Britain-are too poor in substance to be interesting nowadays. But Lord Berners is justly remembered by his notable translation of Froissart (5 523-1515). Froissart offers fewer opportunitics than Guevarn for the display of that "fecundious art of rhetoric "in which the English eranslator thought himself deficient, and, with this temptation removed, Lord Berners is seen at his best. In his version of Froissart, apart from endless confusion of proper
names, he makes few mistakes of any real importance, and, il he scarcely equals his original in brio, he is almost invariably adequate in reproducing the French blend of simplicity with stateliness. Such translations as Phaer's Virgit (1557) and Golding's Ouid (is6i) have not the historical importance of William Painter's Palace of Pleasure, a miscellaneous collection of storics rendered from the Italian, nor of Jasper Heywood's version of Seneca (1 581) whose plays had exercised immense influence upon the methods of Garnier and Montchretien in France. Though Kyd translated Garnier's Corndlie, the Senecan system was destined to defeat in England, and Heywood's translation did not even postpone the catastrophe. On the other hand Marlowe found the subject of his Tambxrlaine in Painter's collection, and thus began the systematic exploitation of the Palace of Pleasure which was continued hy his successors on the stage. A translator of the rarest cxcellence was forthcoming in Sir Thomas North, who rendered Guevara (1557) from the French (revising his second edition from the Spanish), and The Moroll Philosophio of Doni-"' a worke first compiled in the Indian tongue" from the Italian (1570). But, good as they are, both these versions are overshadowed by the famous translation of Piutarch which North published in $\mathbf{1 5 7 9}$. He may have referred occasionally to the Greek, or perhaps to some intermediate Latin rendering; but the basis of his work is Amyot, and his English is not inferior to the Frencb in sonority and cadence of phrase. This retranslation of a translation is a masterpiece of which fragments are incorporated with scarcely any change in CorioLanus, Julius Caesar and Antony and Cleopatra; and touches from North have been noted also in the Midsummer Night's Dream and in Timon of Athens. Amyot greatly influenced the development of French prose, and his translation was the source of Racine's Mithridote; but, if we reffect that Shakespeare not only took some of his subjects from the English Plutarch and found nothing to amend in the diction of many passages, North's triumph may he recioned as even more signal than Amyot's. Very little below North's translation of Plutarch comes John Florio's translation of Montaigne (1603), a fantastically ingenious performance which contributed a celebrated passage to The Tempest and introduced the practice of the essay into England. It is impossible to cope with the activity of English translators during the last half of the 26th century and the first half of the $17^{t h}$. To this period belongs Chapman's impressive and resounding translation ($1598-1616$) of Homer, which was to enrapture Keats two hundred years later. Adlington's version of Apulelus, Underdown's renderings of Heliodorus and Ovid, the translations of Livy, Pliny, Suetonius and Xenophon issued in quick succession by Philemon Holland are vivid and often extravagantly picturesque in their conveyance of classic authors into Elizabethan prose. With them must be named the translator of Tacitus (1591), Sir Henry Savile, who served later on the committee which prepared the Authorized Version of the Bible, and must therefore be counted amongst those who have exercised 2 permanent influence on English prose stylc. Thomas Shelton produced the earliest translation (1612) of Don Quirote, a version which, in spite of its inaccuracies and freakishness, preserves much of the tone and atmosphere of the original. Nabbe's translation (1622) of Guzman de Alforache was lauded by Ben Jonson, and widely read during the rith century, and his version of the Celestina deserved a success which it failed to obtain. It compares most favourably with a version of Tasso (1600) by Edward Fairfax, who has been persistently overpraised. But the Puritanical instinct of the English people, powerful even when not in the ascendant, was an insuperable obstacle to the acclimatization of Spanish literature in England. The Leviathen has obscured Hobbes's fame as a translator, but he is known to scholars hy his sound but crabbed rendering of Thucydides (1629), and by a wholly unnecessary version of Homer which he published at the very end of his career (1674). Sir Roger L'Estrange is responsible for translations of Seneca, Cicero and Josephus, which are usually lively enough to be readable and unfaithful enough to be misleading; the most popular of his renderings is a translation of Quevedo's Sueries
(made through the French) which owes most of its vogue during the Restoration rather to its reckless indecency than to its intrinsic merit. Dryden's free translations of Juvenal (\mathbf{I}^{693}) and Virgil (1697) treat the original autbors with a cavalier freedom, but at least they preserve tho meaning, if not the conciseness and point, of the Latin.
Among the multitudinous English translations of the 18th century it is only necessary to mention Pope's versions of the Iliad (1715-1720) and the Odyssey (1725-1726), and Cowper's rendering of Homer, issued in $\mathbf{1 7 9 1}$. These neat translations necessarily fail to convey any impression of Homer's epica! grandeur, and they set a mischicvous fashion of artificial "elegance" which has been too often adopted by their successors; but both Pope and Cowper conform faithlully to the mistaken canon of their age, and both have fugitive moments of felicity. A posthumous translation of Don Quixole bearing the name of Charles Jarvis appeared in 1742, has been reprinted times innumerable ever since, and has helped to make Cervantes's masterpiece known to generations of English-speaking people. Defective in point of exact scholarship, it has the merit of agreeable perspicuity, and there scems no reason to belicve the remark, ascribed by Warburton to Pope, that Jarvis "translated Don Quixole without knowing Spanish ": the available evidence is strongly against this malicious theory. The most remarkable translations of the i8th century, however, appeared in Germany: these are the versions of the Odyssey (1781) and Iliad (1793) by Voss, and A. W. von Schlegel's rendering of Shakespeare (17971810), which gave a powerful impulse to the romantic movement on the Continent.
Byron's version of a Spanish ballad and Shelley's renderings of Calderón are interesting exhibitions of original genius voluntarily accepting a subordinate ròle. More importance attaches to Carlyle's translation of Wilhelm Meister (1824), a faithful tendering free from the intolerable mannerisms and tricks which the translator devcloped subsequently in his original writings. William Taylor had long before translated Bürger's Lenore, Lessing's Nalhan and Coethe's Iphigenia; but sach interest as the English nation has been induced to take in German literature dates from the appearance of Carlyle's translation. If he did wothing more, he compelled recognition of the fact that Germany had at last produced an original genius of the highest class. Calderón (ound accomplished translators in Denis Florence MacCarthy (1848-1873) and in Edward FitzGerald (1853), who also attempted to render Sophocles into English; but these are on a much lower plane than the translation of the Rubaiyd (1859) of Omar Khayyam, in which, by a miracle of intrepid dexterity, a half-lorgotten Pcrsian poet is transfigured into a pessimistic English genius of the 19th century. Versions of Dante by Longiellow (whose translations of poerns by minor authors are often admirable), of Latin or Greek classics by Conington, Munro, Jowett and Jebb, maintain the best traditions of the best ttanslators. William Morris was less happy in his poetical versions of Virgil (1875) and the Odyssey (1887) than in his prose translations of The Slory of Grettir the Strong (1869) and The Volsunga Saga (1870)-both made in collaboration with Magnusson-and in his rendering of Beownulf (1895). In his Lays of France (i872) Arthur O'Shaughnessy skirts the borders of translation without quite entering into the ficld; be elaborates, paraphrases and embroiders rather than translates the lais of Marie de France.

- Most versions of modern loreign writers are mere hackwork carelessly executed by incompetent hands, and this is even more true of England than of France and Germany. But, with the devclopment of literature in countries whose languagesare unfamiliar, the function of the translator increases in importance, and in some few cases he has risen to his opportunity. Through translations the works of the great Russian novelists liave become known to the rest of Europe, and through translations of Ibsen the dramatic methods of the modern stage have undergove a revolution.
(J. F.-K.)

TRANSOM (probabyv = mypption of Lat. transtrum, a thwart, in a boat; equivalo
the architectural term given to the horisontal lintel or beam which is framed across a window, dividing it into stages or heights. In early Gothic ecclesiastical work transoms are only found in belfry unglazed windows or spire lights, where they were deemed necessary to strengtben the mullions in the absence ol the iron stay bars, which in glazed windows served a similar purpose. In domestic work, on account of the opening casements, they are more Irequently found. In the later Gothic, and more especially the Perpendicular period, the introduction of transoms became very general in windows of all kinds.

TRANSUBSTANTLATIOM, the term adopted by the Roman Catholic Church to express ber teaching on tbe subject of the conversion of the Bread and Wine into the Body and Blood of Christ in the Eucharist. Its signification was authoritatively defined by the Council of Trent in the following words: 'If any one shall say that, in the Holy Sacrament of the Eucharist there remains, together with the Body and Blood of Our Lord Jesus Christ, the substance of the Bread and Wine, and shall deny that wonderful and singular conversion of the whole substance of the Bread into (His) Body and of the Wine into (His) Blood, tbe species only of the Bread and Wine remaining-which conversion the Catholic Church most fittingly calls Transubstantia. tion-let him he anatbema." : The word Transubstantiation is not found earlier than the 12 th century. But in the Eucharistic controversies of the gth, loth and Inth centuries the views which the term embodies were clearly expressed; as, for example, by Radbertus Paschasius (d. 865), who wrote that " the substance of the Bread and Wine is efficaciously changed interiorly into the Flesh and Blood of Christ," and that after the consecration what is there is " nothing else but Christ the Bread of Heaven." ${ }^{2}$ The words "substantially converted" appear in the formula which Berengarius was compelled to sign in ro79. Assuming that the Expositio canonis missae ascribed to St Pietro Damiani (d. 1072) is doubtful, we may take it that the first use of the word is in a passage of Hildebert de Savardin ${ }^{3}$ (d..1133), who brings it into an exhortation quite informally, as if it were in common use. ${ }^{4}$. It is met with in a Decretal of Innocent III. ${ }^{6}$ The lourth Council of Lateran Iully adopted it (1215). It is clear from the treatise of Radbertus Paschasius already quoted that the word "substance" was used for reality as distinguiahed from outward appearance, and that the word "species "meant outward appecor. ance as opposed to reality. The terms, therefore, were not invented by St Tbomas Aquinas, and are not mere scholastic subtlety. The definition of the Council of Trent was intended both to enforce the accepted Catholic position and to exclude the teaching of Luther, wbo, whilst not professing to be certain whether the "substance" of the Bread and Wine could or could not be said to remain, exclaimed against the intolcrance of the Roman Catholic Church in defining the question.6

For a lull and recent exposition of the Catholic teaching on Transubstantiation the reader may consuli De ecclessae sacramentis, auctore Ludovico Billor, S.J. (Rome, Proparanda Press, 1896). The Abbe Pierre Batifol, in his Eiudes d'Fistoire at de theolagie position, $2^{\text {me }}$ série (Elaboration de la notion de conrersion. and Consersion al lransubslantiation) treats it from the point of view of development (V. Lecoffre, Paris, 1905).
(4. J. H.)

TRANSVAAL, an inland province of the Union of South Africa between the Vaal and Limpopo rivers. It lies, roughly, between $22 \frac{1}{2}^{\circ}$ and $27 \frac{1}{2}^{\circ} \mathrm{S}$. and 25° and $32^{\circ} \mathrm{E}$., and is bounded S. by the Orange Free State and Natal, W. by the Cape province and the Bechuanaland Protectorate, N. by Rhodesia, E. by Portuguese East Africa and Swaziland. Seve on the south-west the frontiers, for the main part, are well defined natural features. From the south-west to the north-east corners of the colony is 570 m. ; east
${ }^{1}$ Concil trident. Sess. XIII. Can. 2,
${ }^{2}$ P. L. Migne. CXX De corpore at songuine Domini, cap. viii. 2, cf. xv. 2.
${ }^{3}$ Sometimes called of Tours, or of Le Mans.
4 See Batifol, Eludes d'hisloire et de thtologic positine, 2^{00} sérit.
${ }^{6}$ Lib. 111. Decretolium, tit. 4I. n. 6.

- De captrivitate babylonica ceclesiae. De coent Domini. But Luther elscwhere professed Consubstantiation: that is, in modern Lutheran phramology, the "presence of our Lord's Body " in, with and under the broad.

10 west its greatest extent is 397 m. The total area is 111,196 sq. m., a litule less than the area of Great Britain and Ireland. The boundaries of the Transvaal have varied from time to time. The most important alteration was made in January 1903 when the districts of Utrecht and Vryheid, which then formed the south-eastern part of the country were annexed to Natal. The area thus lost to the Transvaal was 6970 sq. m. (For map see Sourie Arerca.)

Physical Fectures.-About five-sixths of the country ties west of the Drakensberg (q, v), the mountain range which forms the inner rim of the great tableland of South Africa. For a few miles on the Natal-Transvaal frontier the Drakensberg run east and west and bere is the pass of Laing's Nek. Thence the mountains sweep round to the north. with their precipitous outer slopes facing enst. For some 250 m . within the province the mountains form a more or less continuous range, the highest point being the Mauchberg (6725 ft .) in $24^{\circ} 20^{\circ} 10^{\circ} \mathrm{S} .30^{\circ} 35^{\circ}$ E., while there are several heights of 7000 or more leet. Eastward from the loot of the Drakensberg ifretches a broad belt of low land beyond which rise the Lebombo bills running north and south along the parallel of 32° E. and approaching within 35 m . of the sea at Delagoa Bay. The Lebombo bills are flat topped but with a weli-defined break on their seaward side. This eastern edge forms the frontier between Transvaal and Fortaguese territory.

The country west of the Drakensberg, though part of the main South African tableland, is not uniform in character, consisting of (1) elevated dowas. (2) their slopes, (3) the lat "bottom" tand. The downs or plateaus cccupy ali the southern part of the coumary sloping gradualiy west ward /rom the Drakensberg. That part of the plateau east of Johannesburg is from 5000 to 6400 ft. high; the western and somewhat larger half is generally below 5000 fI . and sinks to about 4000 ft on the Bechuanaland border. This plateau land is called the high veld, and covers about $34,000 \mathrm{sq} . \mathrm{m}$. The northern edge of the plateau follows an irregular line from suncwhat north of Maleking on the west to the Mauchuerg on the cast. This edge is marked by ranges of hills such as the Witwaters* rand, Witwatersterg and Magaliesberg; the Witwatersrand, which extends eastward to Johannesburg, lorming the watershed betwicen the rivers flowing to the Atlantic and Indian Ocean. Farther north, beyond the intervening slopes and low bush, are two eleyated regions covering together over $4000 \mathrm{sq} . \mathrm{m}$. They are the Waterberg. and, more to the east, separated from the Waterberg by the valley of the Magalakwave tributary of the Limpopo, the Zoutpansberg. The Zoutpansbery has stecp slopes and is regarded as the morthern termination of the Drakensuerg. An eastern offshoot of she Zoutpansberg is known as the Murchison Range. The low land between the high veld and the Waterberg and Zoutpansberg is traversed by the OlifantsRiver, an east llowing tributary of the Limpopo.

The true high veld, extending east to west 120 m . and north to wuth 100 mi , consists of rolling grass covered downs, absolutely treeless, save where, as at Johannesburg, plantations have been madc by man, the crest of the molls being known as buills and the bollowa is beagtes or theys. The surface is occasionally broken by kopjes-either lable-shaped or pointed-rising sometimes 100 It. above the general level. Small springs of fresh water are frequent and there are several shallow lakes or pans-liat bottomed depresions with no outlet. The largest of these pans, Lake Chrissie. some 5 m . long by I it. broad, is in the southeastern part of the high veld. The water in the pans is usuaily brackish. The middle veld is marked by long low stony ridges, known as rands, and these rands and the kopjes are often covered with scrub, whil mimoca trees are found in the river valleys.

The bankea veld, formed by the denudation of the plateau, is much broken up and is rich in romantic scenery. It covers about 27.000 99. m., and has an average breadith of 40 m . In places, 2s bet ween Malcking and Johannesburg, the descent is in terraceKike stepa, each step marked by a line of hilis; in other places there is a stadual slope and elsewhere the descent is abrupt, wish outtrim hills and deep well-wooded valleys. The rocks at the base of the slopes are granite, the upper escarpments are of sedimentary rocks. Therce iscue many streams which in their way to the ecean heve forced their way through the ranges of hills which mark the eteps in the plateaw. forming the marrow pasees or poorts characterietic of South Alrican scenery.

As in the middle veld, rands and kopjes occur in the low or bush velu. but the gereral characteristic of this part of the country; thich covers over 50,000 sq. m. is its uniformity. The low veld east of the Drakensber begins at about 3000 ft . above the sed and slopes to 1000 ft. or less until it meets the ridge of the Lebombo mills. The Iowest point is at Komati Poort, a gorge through the Lebombo bills only 476 ft . above the sea. West and north of the Drakensberg the general level of the low veld is not much below that of the lowest altitudes of the middle veld. though the climatic

I By the Boers the western and less clevated part of the plateau in kyown as the middle veld.
conditions grantly differ. North of the Zoutpamberg the ground falls mapidly, however, to the Limpopo flats which are little over 1300 ft. above the sea. Near the north.west foot of the Zoutpansberg is the large saltpan from which the mountains get their name. The low veld is everywhere covered with scrub, and water is scarce, the rivers being often dry in the winter season.

River Systems.- There are four separate river basins in the Transvaal. Of these the Kormati ($q \cdot 0$.) and its affluents, and the Pongola and its afflucnts rise in the high veld and flowing eastward to the Indian Ocean drain but a comparatively small area of the province. of which the Pongola forms for some distance the south-eastern frontier. The rest of the country is divided between the drainage areas of the Vanl and Limpopo. The Vaal (q.v.) nises in the nigh veld in the Ermelo diatrict not far from the source of the Kernati and that of the Usuto tributary of the Pongola. The Vaal drains the greater part of the plateau, flowing westward towards the Atlantic. The waters of the northern escarpments of the plateau and of all the region farther north are carried to the Indian Ocean by the Limpopo (q.v.) and its tributaries the Olifants, Great Marico, Great Letaba, Sic. Both the Vaal and the Limpopo in their main course have high steep banks. They carry an immense volume of water during the summer rains, but are very small streams in the winter, when several of their tributaries are completely dry. None of the rivers is navigable within the limits of the province. The absence of alluviai deposits of any size is a nother characteristic of the Transvaal rivers. For a considerabie distance the Vaal forms the frontier between the province and the Orange Free State and in similar manner the Limpopo separates the Transvaal from Bechuanaland and Rhodesia. Since the first advent of white colonists many sprifgs and pans and small streams have dried up, this desiccation being attributed, not so much to decreased rainfall, as to the burning off of the grass every winter, so that the waler, instead of soaking in, runs off the bard, baked ground into the larger rivers.
(F. R. C.)

Geology.

A broad ring of crystalline rocks (Swaziland schists) encircles the Transvant except on the south, where the Karroo formation extends over the Vaal River. Within this nearly complete circle of crystailine rocks several geological formations have been determined, of which the age cannot be more definitely fixed than that they are vastly older than the Karroo formation and newer than the Swazitand schists.

The following subdivisions have been recognized by Molengraaff: Karroo System, Transvaal System, Vaal River System, South Arrican Primary System. Each of these systems is separated from the other by a strong unconlormity.

Soulh African Primary Syslem.-The South Arrican Primary Systern includes a complex ol rocks as yet littie understood. According to Moiengraall it includes the two following series:-
$\left\{\begin{array}{c}\text { An upper group inclading the auri- } \\ \text { ferous congiomerates of the Rand: }\end{array}\right.$

Wit whtersrand Series. a lower group (Hospital Hill series)

 of quartzites, shales and conglomerates.Barberton and Swaziland \{ Crystaliine schists, quartzites, conglomSeries $\quad\{$ erates, intrusive granites.
Barberlon Series.-Molengraaf considers the Barberton series to be the metamorphosed equivalent of the Haspital Hin series. while Hatch regards it to be older and to form a portion of tits Archaean series (Swaziland schists) 10 which position it is here assigned. The chiel outcrops are in the south-western Transvaal. around Zoutpansberg and in Swaziland. They show a great variety of type made up of slates, quertzites, occasional conglomerates, schists with large masses of intrusive granites and gneisc.
Wimotersvand Series.- It is now generally acknowledged that this important series consists of two main groups. Their chief occurrences are in the districts of Witwatersrand. Heidelberg, Kkerkdorp and Venterskroon. The lower group (Hospital Hill slates) consists of quartzites and shales, resting on the eroded surface of the older granites and schists, and estimated to be from 10,000 to $12,000 \mathrm{ft}$. thick. There are occasional bands of conglums erates, sometimes auriferous. In the absence of fossils their age cannot be determined. The upper group consists of conglomerates. grits and quartzites with a few bands of shaies. It has obtained notoriety from the conglomerates along certain bands containint gold, when they constitute the fimous "banket." The thicknese varies from 2300 to over $11,000 \mathrm{ft}$. The conglomerate Leds orcur in belts larming in descending order the Elsburg series. Kimberley series, Bird Reef series, Livingstone Reel serics. Main Reel serjes. The richest in gold are to be found among the Main Reel series, which yields by lar the greater part of the total output of gold from the Transvaal. The individual beds. eldom more than a few feet in thickness and somenimes oniy a lew inches, are interstratified with animmense thickness of quartzites. The conglomerates consist almost entirely of pebibles of quartz set in a hard

* At the Standerton gauge on the Vaal in t905-1906. a year of extreme drought, the total flow was $8,017,000,000$ cub. it., of which $7,102,000,000$ was storm water.
matrix consolidated by the deposition of secondary silica. The conglomerate bands and quarteites contain large quantities of iron pyrites deposited subsequent to their formation. that in the conglom: erates containing the gold. Sericite in the form of scales and films characterizes those portions which have been faulted, squeezed or sheared. Sheets of diabase, apparently volcanic fows, and numerous dykes interfere with the regularity of the stratification. The theory of the subsequent infiltration of the gold is that generally accepted. No fossils have been discovered. and except that they represent some portion or portions of rocks of the Pre-Cape formatioa the age of the upper Witwaterstand beds, as well as that of the lower division, remains an open question. They may safely be considered to be among the oldest auriferous sediments of the world.

Vaal River System. -This consists largely of rocks of igneous origin. of which the amygdaloidal diabase of Klipriversberg forms the type. The other rocks include igneous breccias, shales, coarse conglomerates and grits. Near Reitzburg the coarse conglomerates reach a thickness of 400 ft . and about 500 ft . at Kroomdraai. This system rests unconformably on the Witwatersrand series and is unconformably overlain by the Transvaal system. it must, however, be ack nowledged that these relationships are very imperfectly understood. Compared with other formations they occupy restricted areas, being only met with south of Johannesburg, around Wolmaransstad, Lichtenburg and cast of Marico.

Transval Syslem.-This is a very definite sequence of rocks covering immense areas in the centre of the country. The following groups are recognized: Waterberg Series, Pretoria Series, Dolomite Series, Black Ree! Serics.

The Block Reef Serics is composed of quartzites, sandstone, slates and conglomerate. It varies in thickness from 100 ft . in the southern Transvaal to 1000 ft. at Lydenburg. Thin bands of conglomerate, sometimes auriferous, oceur near the base.

The Dolomile Series, known tp the Dutch as "Olifants Klip." consista of a bluish-grey magnesian limestone with bands of chert. The thickness varies from 2600 ft . in the Witwatersrand area to 500 ft . around Pretoria; and is about 2600 ft , about Lydenburg. It is worn by solution into caves and swallow-holes (Wondergarten). Gold, lead, copper and iton ores occur as veins. So far it has proved to be unfossiliferous. Dy;kes and intrusive rocks are common.

The Pretoric Series, formerly known as the Gatsrand series, consists of repeated alternations of flagstones and quartzites, shales and sheets of diabase. These follow conformably on the Dolomite series. In the Marico district the shales become highly ferruginous and resemble the Hospital Hill slates of the Witwatersrand scrics. Near Pretoria duplications of the beds, due to overthrusting. are not uncommon.

The Waterberg Series lies unconformably on the Pretoria series. The colour is usually red, forcibly recalling the Old Red Sandstone and Trias of England. Sandstones, quartzites, conglomerates and brecria make up the formation. They occur to the northeast of Pretoria and occupy still wide areas in the Waterberg district.

A complex of igneous rocks of different ages covers immense areas in the central Transvaal. Various types of granite are the pretominant varicty. Syenites. gabbros, norites and volcanic rocks are also represented. The granite contains two varietics. One is a red granite intruded subsequently to the Waterberg sandstones; another is a grey variety considered to be older than the Black Reef series and possibly older than the Witwatersrand series.

The Karroo System attains its chic! developmeat in the south. eastern Transvaal in the districts of Ermelo, Standerton and Wakkerstroom.

The latest classification of Molengraall subdivides the beds 25 follows:-

ILangratidectas Beanfort beds of Cape Culan';
Picca shales.
Dwika eonglomerate.

cont ains coal-scams
 Not present at Verecniging.

Sundstones and conglomerates with coal-seanis at Verceniging
The Dwykn conclomerate resembles the same bed in the Cape province. The boulders consist of very various rocks often o lare size. Many of them show glacial striae. The dircction of the Douglas colliery, Baimoral, point to an ice movement Irum the horth-north-west to south-sonth-east

The Ecca srrics, as in the Cape, consists of sandstones and shales Scams of coal lic rear the base, some of them excecding 20 ft . in thickness, but in this case linyers of shaly coal are ineluded. The overljing sandstones afford good building stones, and frequently, as at Verecniging, yicid many fossil plants. These include amoris ethers, Glassopteris trocniana, Gangamopteris ewlopteroides. Sigil. Jria Brardi, Boltrodewdror Leslii, Nockerrathiopsis Jislopi.
The Kartoo beds lie almost horizontally. in marked cont

Their distributions, of her llan in
in maty, in marked contrast Remnant
 Pretoria: aml portions of the Busliveld Siundstune lave recently

The diamond pipes prohably represent some of the raont recens rocks of the Transvaal. They may be of Cretaceous age or even later, and in any case belong to the sanie class as those of Kimberley. The reeent deposits of the Transvaal may be considered to be insignificant. They Include the gravels and alluviums of the present atreams and the almost ubiquitous red sand of aeolian origin. 1
(W. G.")

Climate.-Although lying on the border of and partly within the tropics, the Transvaal, owing to its ligh general elevation, and to the absence of extensive marshy tracts, enjoys on the whole a healthy invigorating climate, well suited to the European constitution. The climatc of the high veld is indeed one of the finest in the norld. The air is unusually dry, owing to the proximity of the Kalahari Desert on the west and to the interception on the east by the Drakensberg of the moist ure bearing clouds from the Indian Ocean. The range of temperature is often considerable-in winter it varies from about $100^{\circ} \mathrm{F}$. in the shade at $1 \mathrm{p} . \mathrm{m}$. to freezing point at night. During summer (Oct.-April) the mean teniperature is about 73°; during winter about 53°. Nov--Jan. are the hottcst and Juneuly the coldest monihs. The chief characteristic of the rainfall is its frequent intensity and short duration. During May to Augest there is practically no rain, and in early summer (Sept.-Dec.) the rainfall is often very light. The heaviest rain is experienced bet ween January and April and is usually accompanied by severe thunderstorms. On the castern escarpment of the Drakensberg the rainfall is heavy, 50 or 60 in. in the year, but it diminishes rapidly towards the contre of the plateau where it averages, at Johannesburg albout 30 in. ${ }^{2}$ while in the extreme west as the Kalahari is approached it sinks to about 12 in. The winds in wirter are uniformly dry while dust storms are írequent at all seasonsa fact which renders the country unsuitable for persons suffering from chest complaints. In the eastern part of the plateau snow occasionally falls, and frost at night is common during winter.
The banken veld district is also generally healt hy though hottet than the platcaus, and malarial ferer prevails in the lower valleses. Malarial fever is also prevalent throughout the low veld, but alove 3000 ft . is usually of a mild type. - Nearly all the rountry below that elevation is unsuitable for colonization by whites, while the Limpopo flats and other low trarts, including the district between the Drakensberg and the Lebombo hills are extremely unhealthy, blackwater lever being endemic. In the low veld the shade tempera: ture in summer rises to $113^{\circ} \mathrm{F}$., but the nights are generally cool, and down to 2000 ft . Irost occurs in winter. The rainfall in the low country is more erratic than on the plateau, and in some districts a whole year will pass without rain.

Flora.-The gencral charactcristic of the flora is the prevalence of hertaceous over forest growt hs; the high veld is covered by short sweet grasses of excellent quality for pasturage; grass is mingled with protea scrub in the middle veld; the banken veld has a richer flora, the valley levels are well wooded. scattered timber trees clothe their sides and the hills are covered with aloe. euphorbia, protea and other scrub growiths. Among the timber irees of this region is the bolkenhout of terblanz (Fawren Saligna) which yields a fine wood resembling mahogany. The scrub which covers the low veld consists mainly of gnarled stunted thorns with flattened umbrella shaped crowns, most of the species belonging to the suborder mimoseac. A rare species is the acacia erioloba Rameel doorn, akin to the acacia giraffae of Bechuanaland. The wild seringa (Burkea ofricana) is also characteristic of the low weld and extends up the slopes of the plateau. The meroola (scterocarya caffa) a medium sized deciduous tree with a rounded spreading top is found in the low veld and up the slopes to a height of 4500 ft . It is common in the lower slopes of the rands of the low veld. Cotton and cotton like plants and sines are also native to the low veld. Few of the low veld bushes are large or straight enough to furnish any useful wood, and timber trees are wholly absent from the level country. The lorest patches are confined to the deep kloofs of the mountains, to the valleys of the larger rivers and to the seaslopes of the Drakensberg and ot her ranges, where they dourish in regions exposed to the sca mists. These patches, called "woodbushes," contain many hardwood trees of great size, their flora and fauna being altogether different from that immediately outside the wood. Common species in the woodbush are three varieties of yellow wond (Padocarpus), often growing to an enormous size, the Cape beech (myrsine), several varieties of the wild pear (Olinia) and of stinkwood (Oreodaphnc) ironwood and ebony. The largese forest areas are in the Pongola district and the Haenertsburg and

[^20]Woodppali distrizts north of the Oxfants niver. Minceas and the Fild wilgo-boone (Selis coponsis) are the common trees on the banks add rivers, white the weeping willow is frequent round the farmstends Many tree have bees introduced and considerable plantations made, as for instance on the slopes betweent Johannesbury and Pretorin. Among the mont unocesful of the imported trees ane citrus trees, the Austrulian wattie and the euculyptua. Tobacco and the vine both flourish and molt European fruita and vegetables thrive Of native fruits the misple (Vangmaria infausta), miacalled the Tid mediar, is of excellent flavour. Lt is common on the rands and toppies of the bush veld. Rose and other Gowering shrubs and trees grow well on the banken veld and in the valleys A large yellow eutip (fiomarica pallide) is one of the mout abundant flowers oa moin vei lands on the high veld and is oocacionally met with in the tow veld; clangkop (Uraines Byrkei) with red bulbo like a beetroot is a low bush plant apparently restricted to the Transveal and adjacent Portuguee territory. Boch these and many other plants auch as gít-blaar and drouk-gras are poisonous to cattle. These poisonous plunts are found chicly in the bankeo and low add.
Famese-When first entered by white men the Transraal abounded iz bis game, the lion, leopard, elephant, giraffe, zebra and rhinoceros being very numerous, while the hippopotamus and crocodite were foond ia all the rivers. The indiscriminate destruction of these animais has greatly reduced their numbers and except in the Ponpha district, ar one or two other places on the Portuguese frontier. and along the Limpopo the hippopotaxnus, rhinoceros and crocodile are now extinct in-the province. A few elephants, girafles and zebras (equus burchell;-the true zebra is extinct) are still found in the morth and northeastern districts and in the same retions Foas and leopards survive in fair numbers. Other animals fairly parmerous are the spotted hyenn, long-eared fox, jackal, aard wolf. red lyni, wild cat, wild dog and wart hog. Many specics of antelope are found, mostly in small numbers, including the kudu, hartebeest, the sable and roan antelope, the white tailed and the brindled gnu, Gaterbuck, red buck, duiker, blesbok, palla, springbuck (numerous) stainbok, grybook and klipspringer. The Arricander breed of cattie is a well-marked variety, and a characteristic native domestic asienal. Whether originally imaported from Europe by the Portugese or brought from the north by Nricans is not certain. It is mot found in a wild state a nd the auffalo (bos caffer) is almost if not quite extinct in the Transvaal. Amsong edentata the ant-bear, caly ant-eater and porcupine are plentiful. The spring hare (peletes capensis) abounds Baboons and other apes are fairly comanon and there are several species of anakes. The ostrich is found in the Marion and Limpopo districts, and more rarely elso--here; the great kori bustard and the koorhase are common.

Insects abound, the greatest pert being the tsetse fly, common in the form weld. Six species of tict, inctuding the blue tick common rimonghout South Alrica, are iound, cspecially in the low veld, where they are the means of the transmistion of disease to cattle. Motquitoes, locusts and ants are aho common.

The baba or cat fish and the yellow fish are plentiful in the rivers and tbe trout has been acclimatized.

To preserve the native fauna the low country on the Portuguese froptier has been made a pame reserve. It is searly 300 m . long with an average breadith of 50 mm . Other reserves have been contiturted in the north of the province.

Imkebitants.-The population of the Transvaal, on the 17th of April 1904, when the first complete census of the country was taken, was $1,269,951$ (inclading 8215 British soldiers in garrison), ${ }^{1}$ or $11 \cdot 342$ persons per sq. m . Of these 20.67%, namely 297,177, rere Europesn or white. Of the coloured population 937,127 were aboriginals; and 35.547 were of mixed or other coloured races. Of the whites 178,244 (59.95%) were males. The white popalation is broadly divisible into the British and Dutch elements, the percentage of other whites in 1904 being but 8.6. The Dutch, as their usual designation, Boers, implics, are mainly farmers and stock-raisers and are still predominant elsewhere than in the Witwatersrand and Pretoria districts. They speak the patois of Dutch known as the Taol. The British element is chiefly gathered in Johannesburg and other towns on the Rand and in Pretoria. The total white population in the Witwatersrand and in Pretoria in 1904 was 135,135, and the Erength of the British in these districts is shown by the fact that only 20% was Transvaal born. Of those born outside the Transvasa 24.6% came from other British possessions in Africa and 24.92% from Great Britain or Britisb colories other than African. Of the non-British or Boer whites Russians torm $\mathbf{3 . 0 1} \%$, Germans 1.62% and Dutch (of Holland) 1.14%

The natives are foumd chiefly in Zoutpansberg district,

- For noot porposes this military element is onsilted in the census turns.
where there were 34,797 at the 1004 census, and the adjoining districts of Lydenburg and Waterberg, i.c. in the northern and northeasterp region of the country. The natives belong to the Bantu negro race and are represented chielly by Basuto, Bechuana, Bavenda, and Xosa-Zulu tribes. None of these peoples has any claim to be indigenous, and, save the Bavenda, all are immigrants since c. 1817-1820, when the greater part of the then inhabitants ware exterminated by the Zulu chief Mosilikatze (see $\$$ Hisfory). After that event Basuto entered the country from the south, Bechuana from the west and Swazi, Zulu, Shangann and other tribes from the east and south eeast.

The Basuto, who number 410,020 and Iorm 40% of the total population, are now found mostly in the central, northera and northeastern districts, forming in Lydenburg about 67% and in Zoutpansberg about 50% of the inhabitants. The Bechuana, who number 64,751, are almost confinced to the western and south-western districts.

Next, numerically, to the Basuto and Bechuana pcoples are the tribes known collectively as Transvaal Kafirs, of whom there were 159.860 enumerated at the 1904 census. Altogether the Transvaal Kaffirs form 50% of the inhabitants of Waterberg district. 30% of Zoutpansberg district and 18% ol Middelburg district. Zulus number 75,601 and form 54% of the population in Wakkerstroom district and 18% in Standerton district. Elsewhere they are very thinly represented. Swazis form more than half the total population of the Barbertos and Ernelo districts and are also numerous in Wakkerstroom. In Barberton, Lydenburg and Zoutpansberg districts Shangain and other east coast tribes are setted, 80,$83 ;$ being returned as born in the Transvaal. The Shangann are members of a Bantu tribe from the Delagoa Bay region who took refuge in the Transvaal between 1860 and 1862 to escape Zulu raids. They were for some time ruled by a Portuguese, Joao Albasini, who had adopted native custoras. Since 1873 Swiss Protestant missionaries have lived among them and many of the Shangsans are Christians and civilized. Several other cast coast tribes, such as the Bankuna, are of mixed Zulu and Shangaan blood. Among the mixed and other coloured races in the census returns figure 1592 Bushmen, 3597 Hottentots and 1147 Koranna; these people are found chiclly in the southwestern regions and are remnants of the true aboriginal population.
Besides the tribes whose home is in the Transvaal considerable numbers of natives, chiefly members of east coast tribes, Cape Kafirs and Zulus, go to the Witwatersrand to work in the gold and other mincs In all there were, in 1904, 135,042 Bantus in the country born clsewhere. Many cast coast natives after working in the mines settle in the northern Transvaal. Of the aboriginal South Arricans in the Transvala, at the 1904 census, 77.69% were born in the Transvaal. Among the aborigines the number of females to males was $1 t 4$ to 100 . (See further Kaffirs; Bechuanas: Zululand: Busumex; Hottentots; and for languages, Bantu Languages).

The number of Asiation in the Transvaal in April 1904 was 12,320, including 904 Malays, natives of South Africa, and 9986 Britiot Indians. They were nearly all domiciled in the Witwatersrand and in the towns of Pretoria and Barberton, where they are engaged mainly in trade.

Admintistrative Divisions and Chief Tonsns.-The province is divided into slxteen magisterial districts. Zoutpansterg, 25,654 sq. m.; Waterberg, 15,503 sq. m.; Lydenburg, 9868 sq. m., occupy the north and north-castern parts of the country and inctude most of the low veld areas. Barberton district, 5106 sq. m., is east central. Pict Retief district (in the south-east), 1673 sq. m., lies between Swaziland and Natal. Along the southern border, going east to west from Piet Retief, are the districts of Wakkerstroom, 2128 sq. m.; Standerton, 1959 sq. m.; Heidelberg, 2410 sq. m.; Potchefstroom, $4805 \mathrm{sq} . \mathrm{m}$.; Wolmaransstad, $2169 \mathrm{sq} . \mathrm{m}$., and, occupylng the south-western corner of the province, Bloembef, 3003 sq. m . In the west are the districts of Lichtenburg, 4487 sq . m.; Marico, 3626 sq . m. and Rustenberg, 9511 sq. m . The central regions are divided into the districts of Witwatersrand, 1653 sq. m.; Pretoria, 6525 sq . m.; Middelburg, 4977 sq. m.; Carolina, 1877 sq. m.; Ermelo, 2995 sq. m. and Betbel, 1959 sq. m . It will be seen that twenty districts are enumerated, these being the divisions znder the Boer government and still commonly used. In 1904 Bloemhof was officially included in Wolmaransstad; Bethel in Standerton; Piet Retief in Wakkerstroom, and Carolina in Ermelo. Each district is sub-divided into field-cornetcies, the cornetcies being thernselves divided, where necessary, into urban and rural areas. For parliamentary purposes the districts are divided into single member constituencies. The capital of the
province, and of the Union is Pretoria, with a population (rgo4) of 36,839 (of whom 21,114 were whites). Johannesburg, the centre of the gold-mining industry, had a population, within the municipal boundary, of 155,642 (83,363 whites). Other towns within the Witwatersrand district are Germiston (29,477), Boksburg (14,757) and Roodepoort-Maraisburg (19,949), virtually suburbs of Johannesburg, and Krugersdorp (20,073) and Springs (5270), respectively at the western and east ends of the district. Besides Pretoria and the towns in the Witwatersrand district, there are few urhan centres of any size. Potchefstroom, in the south near the Vaal (pop. 9348), is the oldest town in the Transvanl. Klerksdorp (4276) is also near the Vaal, S.S.W. of Potcheistroom. Middelburg (5085) is the largest town on the railway between Pretoria and Delagoa Bay; Barberton (2433), the centre of the De Kaap gold-fields, lies on the slopes of the Drakensberg overlooking the De Kaap valley.

Communications.-Before 1888 the only means of communication was by road. In that year the government sanctioned the building of a " steam tramway "-a ralway in all but name from the Boksburg collieries to the Rand gold mines. In 1890 the construetion of the Transvaal section of the railway to connect Pretoria with Delagoa Bay was begun, the line from Lourenco Marques having been completed to Komati Poort in December 1897. The line to Pretoria was not opened until July 1895 . Meantime, in September 1892, the Cape railway system had been extended to Johannesburg and in December 1895 the through line between Durban and Pretoria was completed. Since that date many other lines have been built. The majority of the railways are the property of and are worked by the state. With the exception of a few purely local lines they are of the standard South African gauge-3 $\mathbf{f t} .6$ in. The lines all converge on Johannesburg. The following rable gives the distances from that city to other places in South Árica ${ }^{2}$:-
Inland Centres-

Besides the lines enumerated the other railways of importance anc: (1) A line from Johannesburg eastward via Springs and Breyten to Machadodorp on the Pretoria-Delagoa Bay railway. (2) A line, 68 m . long Irom Witbank, a station on the Pretoria-Delagoa Bay line, to Brakpan on the Springs line. By (i) the distance between Johannesburg and Lourenco Marques is 364 m ., hy (2) 370 m . A continuation of the Springs-Breyten line eastward through Swaziland to Delagoa Bay will give a second independent railway ftom that port to the Rand, some 60 m . shorter than the route via Pretoria, while from Breyten a line (90 m . long) runs south and east to Ermelo and Piet Retiel. (3) A line from Krugersdorp to Zeerust (128 m .). (4) A line from Pretoria to Rustenburg (61 m .). (5) A line from Pretoria to Pietersburg (177 m). This line was continued (1910) north west to effect a junction with (6) the "Selati" railway, which, efarting from Komati Poort, runs north west and was in 1910 continved to Leydsdorp. North of the junction with the Pietersburg line the railway goes towards the Limpopo. (7) A line from Bellast on the Pretoria- Delagoa Bay railway to Lydenburg (65 m .). (8) A line from Potchefstroom to Lichtenburg (70 m .).

There is an extensive telegraphic system linking the towns of the province to one another, and, through the surrounding countries, with Europe and the rest of the world. There is inland communica. tion via Rhodesia with British Central Alrica and Ujiji on Lake Tanganyika. The telegraph lines within the Transvaal have a length of about 3000 m . There is a well-organized postal gervice with about 400 offices. In connexion with the postal services to outlying districts tbere is a public passenger service by mailcarta. In the Pietersberg district zebras are occasionally employed.

Minerel Resources.-The Transvaal, the principal gold producing country in the world, is noted for the abundance and variety of ita malneral resources. The minerals chielly mined besides gold are diamonds and coal, but the country possesses bleo silver, iron, copper, lead, cobalt, sudphor, saltpetre and
reefs are found along the
bly connected with the Rand
Niw the journey between Europe
Fowrme, Doc. 1910.
reefs are the gold-bearing rooks in the Klerksiorp. Potchefitroon and Venterskioon districts Other aurifcrous reefs are found ah along the eastern escarpment of the Drakensberg and are worked in the De Kap (Barberton) district, on the Swariland fromtier, in the Lydenburg district, in the Murchison Range and in other places in the Zoutpansberg. Goldfields also exist in the Waterberg and on the western frontier in the Marico district (the Malmanj fields). The cotal value of the gold extracted from mines in the Transval up to the end of 1909 was about $\{246,000,000$.
a. The Witwatersrasd and Neighbowrimg Mimes.--The Rand reefa, first mined in 1886, cover a targe area. The main reef, continuously traced, measures about 62 m . and runs in an east and west direction. The gold is found in minute particles and in the richets ores the metal is rarely in visible quantitics before treatment. In many places the main reef lies at a great depth and some bore-holes are over 5500 ft. deep. The yield of the Rand mines, ia 1887 but 23,000 oz. rose in 1888 to 208,000 oz. In 1892 the yield wat 1,210,000 02.: in 1896 it exceeded $2,280,000$ oc. and in 1898 was 4,295,000 of The war that followed prevented the proper working of the mines. In 1905 when a full supply of labour was again available the oatput was $4,760,000$ 02., in witich year the cum distributed in dividends to shareholders in the Rand mines was over $64,800,000$. The total output from the Rand mines up to the end of 1908 was $56,477.240$ oz. (sce Collo. and Jouannes. aURG). The Klerisdorp and Potchefstroom goldinelds, known atso as the Western Raad, were proclaimed in 1887 and up to the close of 1908 had yictded $44^{6,224} \mathrm{oz}$.
b. The De Kaap (Barberlan) Fields.-Gold was discovered in this district of the Drakensberg in 1875. but it was not until 1884 that the felds attracted much attention. The mines are, in general, situated on the slopes of the hills and are easily opened up by adita The reefs are narrower than those of the Rand, and the ore is usually very hard. The output, 35,000 oz. in 1889, was 121,000 oz in 1896, bat only 43,000 oz. in 1905 . The total production (including the Komati and Swaziland ficlds) to the end of 1908 was $1,097.685$ az.
c. The Lydenburg and other Fields--The Lydenburg ficlds, reported to have been worked by the Portuguese in the ifth century. and rediscovered in 1869. though lying at an clevation of 4500 to 5000 ft . are alluvial-and the only rich alluvial goldffelds in South Alrice. The groand containing the gold is soil wtich has escaped denudation. Though several large nuggets have boen found (the largest weighing 215 oz.), the cotal production is not great, the highest output obtained by washing being worth about $[200,000$ in one year. Besides the alluvial deposits a little mining is carried on, gold being prescnt in the thin veins of quartz which cross the sandstone. The chiel centres of the fields are Lydenburg. Pilgrims Rext and Spitakop. Tbe total output of the Lydenbure felds up to the end of 1908 is estimated at $1,200,000$ oz. Fatther north. in the Zoutpansberg and on its spurs are the Hitte-worked mimes generally known as the Low Country goldfields. Near Pietersbore in the Zoutpansberg is the Eersteling. the first mine worked in the Transvaal. Operations began in 1873 but in 1880 the machinery was destroyed by the Bocrs. It was not until 1904 that prospecting in the neighbourtiood was again undertaken. The frelds in the Waterberg and along the Malmani river are very small producers. The total yield to the end of 1908 of the Zoutpansberg. Low Country and other minor fields was 160.535 ae.

Diamends.-The chicf diamond fields are in the Pretoria district. The ground was discovered to be diamondiferous in 1897. hut it was not until 1903. when mining began on the Premier mine, situated 20 m . north-east of Pretoria, that the weakh of the folds was prowed. The site of the Premier mine had been reoegnized as diamond-bearing in March 1898 . The owner of the land, a Boer named Prinsloo. refused to allow experimental spade work, but after the conclusion of the Anglo-Boer War in 1902 sold his property for $\mathbf{5 5 5 . 0 0 0}$ to T. Cullinan (a Cape colonist and one of the chief contractors in the building of Johannesburg), whose faith in the ric bnese of the ground was speedily justified. In june 1903 miniog began and the dia monds found in the first five months realized over 690,000 . On the 27th of January 1905, the largest diamond in the world, weighing 3025 ? carats. over if it avoirdupois, was found in the mine and aamed the Cullinan. The Premier mine is of the same character as the diamond mines at Kimberley (see Dumond), and is considerably larger. The area of the "pipe"containing blue ground is estimated at $350,000 \mathrm{sq}$. yda .

Besides the Pretoria fields there are dimenondiferous areas (allavial diggings) in the Bloemhof district on the Vall river sorth-east of Kimberley, and in other regions. In 1898 the output for the whole of the Transvaal was valued at 144,000 . The output since the opening of the Premier mine has been: 1903-1904, 6685,720 ; 1904-1905, \{1,198.530; 1905-1906, C068,229; 1906-1907, C2,203.511: 1907-1908, $1,879.551$; 1908-1909, $\{1,295,296$.
Coal and other Aisinerals.-There are extensive beds of good coal. including thick sen ms of steam coal near the Rand and other gold: fields. Coal appears to have been first discovered in the neighbourhood of Bronkhorat Spruit between the Wilge and Otifants rivers. where it was so near the surface that larmers dug it up for their own use. In 1887 coal was found at Boksburg in the East Rand. and a mine was at once started. The principal collierien are those
at Boksburg and at Brikpan, aloo on the Eate Rand, with a coal arez of 2400 acres; at Verceniging and Klerkadorp, near the Vaal; at Watervaal, 12 m . north mf Pretnita; and in the Middelburg district. between Pretoria and Lourenco Marques. Like that of Natal the Transval coul bucna with a dear llame and leaves listle ach. The mines are free from pas and fire damp and none is more than 500 it. deep. The output in 1893. the first year in which statistica are avitable. was 548.534 tons (nf 2000 m): in 1898 it was $1,907,808$ cons, and for the year ending $30 t h$ of June 1909 was $3.312,413$ tons, valued at 8851.150
lron and copper are widely distributed. The Yzerbers near Marabestad in the Zoutpansberg consists of exceedingly rich iron ore, wich has been smelted by the natives for many centuries. Silver is found in many districts, and mines near Pretoria have yielded - one pear ore worth 830,000 .

Salt is obtainable from the many pans in the platcaus, notably is the Zout(salt)pansberg, and was formerly manufactured in considerable quantities.
Acricullure.-Next to mining agriculture is the most important industry. At the census of 1904 over 500,000 persons (excluding young children), or 37% nf the population, were returned as engaged in agriculture. Some 25% more women than men were so employed, this preponderance being due to the large number of Kaffir wamen and the few mative men who work in the mealie fields. The chiel eccupation of the majority of the white farmers is stock-raising. The high veld is admirably adapted for the raising of stock, its grases being of excellent quality and the climate good. Even better pasture is foond in the low veld, but there stock suffers in commer from many endemic diseases, and in the more northerly regions is subject to the attack nf the tsetse fly. The banken veld is also unsuited in summer for horses and sheep, though cartle thrive. Much of the stock is moved from the lower to the higher regions according to the season. Among the high veld farmers the breeding of merino sheep is very popular.

The amount of land under cultivation is very small in comparison tith the area of the province. In 1904 only 951,802 acres, or 1.26% of the total acreage was under cultivation, and of the cultivated land nearly half was farmed by natives. The small proportion of hand cilled is due to many causes, among which paucity of populations is not the least. Mnreover while large areas on the high veld are saitable for the raising of crops of a very varied character, in ot ber districts, including a great part of the low veld, arable farming is impossible or unprofitable. Many regions suffer permanently from deficient rainfall; in others, owing to the abseoce of irrigation works, tbe water supply is lost, while the burning nf the grass at the end of summer, a practice adopted by many farmers, tends to impoverish the soil and render it arid. The country suffers also from periods nf excessive heat and general drought, while locusts oceasionally sweep over the land, devouring every green thing. In someseasons the locusts, both red and brown, come in enormous surms covering an area 5 m . broad and from 40 to 60 m . long. The chief method employed for their destruction is spraying the swarms with arsenic. The districts with the greatest arca under cultivation are Heidelberg, Witwatersrand. Pretoria, Standerton and Krugersdorp. The chief crops prown for grain are wheat. mixe (mealie) and kaffir corn, but the harvest is inadequate 10 zeeet local demands Maize is the staple lood of the Kaffirs. Since 1906 an important trade has also arisen in the raising of mealies for export by white farmers. Oats, barley and millet are Laredy grown for forage. Oats are cut shortly before reaching maturity, when they are known as oat-hay. The chief vegetables prown are potatoes, pumpkins, carrots, nnions and tomarocs.
Fruit farming is a thriving industry, the slopes of the plateaue and the river valleys being specially adapted for this culture. At the census of 1904 nver $3.032,000$ fruit trees werce enumerated. There were $\mathbf{1 6 3 . 0 0 0}$ nrange trees and nearly 60,000 other citrus trees, 430,000 grape vines, 276,000 pine plants and 78,000 banama planst Oranges are cultivated chielly in the Rustenburg, Waterbers, Zoutpansberg and Pretoria districts, grapes in Potchefstroom, Pretoria and Marico, as well as in the Zoutpansberg and Waterberg. to whicb northern regions the cultivatinn of the banana is confined. la the tropical district of the Limpopo valkey there is some cultivation of the coffec-tree, and this region is also adapted for the growing of tea, sugar, cotton and rice. Tobacco is grown in every diatrict, bat chiely in Rustenburg. Of the $3,032,000$ Do of tobacco grown is 1904 . Rustenburg produced 884,000 th.
A department of agriculture was established in 1902, and through its efforts grent improvements have been made in the methods of farming. To further aseist agriculture a land bank was established by the governtnent in 1907 and an agricultural college in 1910.
Land Selllement.-The land board is a gnvernment department charged with the control of Crown lands leaved to settiers on easy termos for agricultural pupposes. Between 1902 and 1907 about 3so families were placed on the land, their holdings aggregating over 500,000 acres. The Crown lands cover in all about $21,500.000$ acres. Large areas of these bands, especially in the oorthera districts, are used as mative reserves.
Other Industries.-There are few manufacturing undertakings otber than thook connected with mining, agriculture and the developmeot of Jobannesburg. There is a large factory for the supply nf
dynamite to the gold mines. The buildige and construction trade is an important industry on the Rand, where there are also brickworks, irnn and brass loundries, breweries and distilleries. There are a number of four mills and jam factnries in various centres. A promising hoonc industry, atarted under English auspices after the war of 1899-1902, is the weaving by women of rugs, carpets, blankets, \&ec., from native wool.

Expart and Import Trade. - Before the discovery of gold the trade of the Transvaal was of Insignificant proportions. This may be illustrated by the duties paid on imports, which in 1880 amounted to 620,306 . In 1887 when the gold-mining industry was in its infancy the duty an imports had risen to $\{190,793$, and in 1897 , when the industry was fully developed, to $\{1,289,039$. The Angio-Boer War campletely disorga nized trade. but the close of the cnntest was marked by leverish activity and the cuatoms receipts in 1902-1903 rose to \{2,176,658. A period of depression followed, the average annual receipts for the next three years being $\{1,683,159$. In 1908-1909 they were $1,588,960$.

The chied expurts are gold and diamonds. Of the tatal exports in 1908, valued at $\{33,323,000$, gold was worth $\{29.643,000$ and diamonds $41,977,000$. Next in value came wool ($£ 226,000$), horses and mules (1 i 10,000), skins, hides and hnrns ($£ 106,000$). tobacco ($£ 89,000$), tin, coal, copper and lead. The gold and diamonds are sent to Eagland via Cape Town; the other exports go chiefly to Delagoa Bay. The impors, valued at $\{16,196,000$ in 1908, include goode of every kind. Machinery, provinions, targely in the forna of tinned and otherwise preserved food, and liquors, clothing, texties and hardware, chemicals and dynamite, iron and steel work and timber, and jewelry are the chicl iterns in the imports. Of the Imports about 50% comes from Great Britain and about 20% from British colonies (including otber South African states). Hall the imports roach the Transvaal ihrough the Partuguesc port of Lourenço Manques, Durban taking 25% and the Cape ports the remainder. There is free trade between the Transvaal and the nther British posecsions in South Arrica, and for external trade they all adhere tn a Customs Union which, as fixed in 1906, imposes a general ad zalorem duty of 15% on most goods save machinery, on which the duty is 3%. A rebate of 3% is granted on imports from Great Britain.

Consfiturion.-The existing constitution dates from 1910 The province is represented in the Union Parliament by eight senators and thirty-six members of the House of Assembly. For parlinmentary purposes the province is divided into singlemember constituencies. Every adult white male British subject is entitled to the franchise, subject to a six months' residential qualification.' There is no property qualification. All electors are eiigible to the assembly. Voters are registered biennially, and every five years there is an automatic redistribution of seats on a ynters' basis.

Central Coccrnment.-At the head of the cxecutive is a provincial administrator, appointed by the Union ministry, who holds office for five years and is assisted by an executive committee of four members elected by the provincial council. The provincial council consists of 36 members elected for the same constitucncies and by the same electorate as are the members of the House of Assembly. The provincial council, which has strictly local powers, sits for a statutory period of tbree years. The control of elementary education was guaranteed to the provincial council for a period of five years from the establishment of the Union.

In May 1903 an inter-colonial council was established to deal with the administration of the railways in the Transval and Orange River Colony (known as the Central South African railways), the South Arican constabulary and other matters common to the Orange River and Transvaal colonies. This council was presided over by the governor of the Transvaal and formed an important part of the administrative machinery. By agreement between the two colonies the council was dissolved in 1908 . In 1910 the control of the railuays passed to tbe harbours and railway board of the Union of South Alrica.

Local Gobernment.-The unit of administration is the field cornetcy. The seml-military organization of these divisions. which existed under the South African republic, has been abolished, and field-cornets, who are nominated by the provincial government, are purcly civil officials charged with the registration of voters, births and deaths, the maintenance of public roads, \&c. The chief local authorities are the municipal bodies, many " municipalities" being rural areas centred round a small town. The municipal boards possess very

IThe aumber of electars at the first registration (1907) was 105.368.
wide powers of local government. The Witwatersrand municipalities are for certain purposes combined into one authority, and representatives of these municipalities, together with representatives of the chamber of mines, compose the Rand water board. The basis of municipal qualification is ownership of real property of the value of $£ 100$, or the tenancy of premises of the value of $f 300$, or annual value of $\{24$. Neither aliens nor coloured British subjects can exercise the franchise.

Finance.-In 1883, before the Rand gold mines had been found revenue and expenditure were about fiso,000; in 188%, when the mines were beginning to be developed, the receipts were $\{668,000$ and the expenditure $\{721,000$; in 1889 the receipts had risen to $\mathcal{L}, 577,000$ and the expegnditure to $\{1,226,000$. In 1894 the receipts first exceeded two millions, the figures for that year being: revenue $\{2,247,000$, expenditure $\{1,734,000$, The figures for the lour following years were:-

	Revenue.
1895	$\{3.539,000$
1806	$\$ 4.807,000$
1897	$44.480,000$
1898	$33.983,000$

Expenditure.
(2,679,000
6,4,671,000
44,394,000
13.971,000

The public debt of the Boer government was $\{2,500,000$. In 1899 war broke out and the finances of the country were disorganized. The accounts of the colony began, for normal purposes, with the year ending 30th of June 1903, and ended in June 1910 on the establishment of the Union. In May 1903 a loan of 235.000,000, guaranteed by the imperial government and secured on the general revenues of the Transval and Orange River, colonies, was issucd to the extent of $830,000,000$, the balance being raised about the middle of 1904 . This loan bears interest at 3% per annum, with a sinking fund of 1%, and as to the $\{30,000,000$ was issued at par, the $(5,000,000$ being put up to tender and realizing an average price of $\{98,108.3 \mathrm{~d}$. The principal head in the allocation of this loan was the purchase of the railways in the two colonies at a cost of $\{13.520,000$, while an additional $\{5.958,000$ was devoted to the buidding of new lines, purchases of rolling stock, \&ce. The debt of the South African Republic was paid off; $\{542,000$ went to make good the deficit on the administration for 1901-1902: the sum of L1,561,000 was paid to burghers of the Cape Colony and Natal as compensation for war losses; E3,000,000 was devoted to land setilement schemes and $\{2,000,000$ to public works other than railways. The railways were treated as the common property of both colonies. and to administer them and other common services the inter-colonial council was created. In addition to the charges enumeraicd £5,000,000 were spent out of the loan on "repatriation and compensation "' of burghets who had suffered during the war.' In addition to the $\{35.000,000$ guaranteed loan of 1003 -1904 two small loans for land settlement and public works, together amounting to $£ 254,800$, were issued, and in 1907 an imperial guarantee was given for the raising of another loan, of $\mathbf{5 , 0 0 0 , 0 0 0}$, by the colonial government. The act authorizing the loan devoted $\ell 2,500,000$ to the cstablishment of a land and agricultural bank, and $£_{2}, 500,000$ to railways, public works, irrigation and agricultural settlement and development, The loan was raised, as to $\ell 4,000,000$, in January 1909, the average price obtained being 196, 35. 7d.

The chief sources of revenue are customs, mining royallies, railways, native revenue (poll tax and passes), posts and telegrapbs, stamp and transfer duties, land revenue and taxes on trades and professions. A tax of 10% is levied on the annual net produce of all gold workings (proclamation of r902) and the government takes 60% of the profits on diamond mines. In 1907 an excise duty was, for the first time, levied on beer. The principal beads of expenditure are on railways and other public works, including posts and telegraphs, justice, education, police, land settlement and agriculture generally, mincs and native affairs. Since June 1910 the control of state finance passed to the Union parliament, but the Transvaal provincial council is empowered to raise revenue for provincial purposes by direct taxation and, with the consent of the Union government, to borrow money on the sole credit of the province.

In the five years 1902-1907 the average annual receipts and expenditure amounted to $¢ 4,500,000$, exclusive of the sums received and expended on account of the loans meationed. The inter-colonial council received and spent in the four years $1003-1907$ over $\{21,500,000$, including some $63.500,000$ paid
in from revenue by the Transvaal and Orange River colonies in from revenue by the Transvaal and Orange River colonies
to make good deficits. Fully two-thirds of the revenue and

expenditure of the Council was derived from and spent upon the Transvaal, so that had the accounts of the two colonies been entirely distinct the figures of the Transvaal budget for 1903^{-} 1907 would have balanced at about $£ 8,500,000$ a year. In July 1007 when the control of the finances passed into the hands of the Transvaal legislature the credit balance on the consolidated fund was 6960,000 . In 1908 the inter-colonial council was dissolved, but the railways continued to be administered as a joint concern by a railway board on which the governments of both colonies were represented. This board in 1910 handed over its duties to the harbour and railway board of the Union. The Transvaal revenue (apart from railway receipts) in sgos1000 was $[5,735,000$, the corresponding expenditure $\{4,524,000$. The budget figures for 1000-1910 were: revenue $\{5,943,000$; expenditure $\ell 5,23 \mathrm{r}, 000$. The diamond revenue yielded $£ 235,000$ and the gold profits tax $£ 965,000$. The balance handed over to the Union government was $\{1,0 \mathrm{x} 5,000$.

Justice.-The laws are basod on Roman-Dutch law, as modified by local acts. Courts of first instance are presided over by magistrates, the whole colony being divided into sixteen magisterial wards. There is a provincial division of the Supreme Court of South Arica sitting at Pretoria (consisting of a judge president and six puisne juslices) with original and appeliate jurisdiction in civil and criminal matters, A local division of the Supreme Court. formerly known as the Witwatersrand high court (consisting of one or more judges of the Supreme Court) sits permanently at Johannesburg and has civil and criminal jurisdiction throughout the Rand. Circuit courts are held as occasion requires.

Police.-Pretoria and Johannesburg have their own police forces. The rest of the province is policed by the South African constabulary, a body 3700 strong, to which is also entrusted customs preventive work, fire brigade work and such like [unctions.

Education.-Since 1910 education other than elementary is under the control of the Union parliament. The provincial council is responsible for elementary education. At the head of the permanent staff is a director of education. School boards and district committees are formed, but their lunctions are almost entirtly advisory. In accordance with the terms of the Education Act of. 1907 of the Transvaal colony, state schools are provided for the free instruction of all white children in elementary subjects. Artendance at school between the ages of 7 and 44 is , with certain exceptions, compulsory. The medium of instruction in the lower standards is the mother tongue of the children. Above standard III. English is the medium of instruction. No religious tests are imposed on tcachers and religious teaching is confined to undenominational Bible tcaching. No government grants are given to private schools. (In 1906 members of the Dutch community established a "Christian National Education " organization and opened a number of denominational schools.) Secondary education is provided in the fowns and high schools are maintained at Pretoria, Johannesburg and Potchelstroom. There are University colleges at Pretoria and Johanneshurg. Education of the natives is chiefly in the hands of the missionaries, but the government gives grants in aid to over $\mathbf{t 0 0}$ schools for natives. At the census of 1904 the natives able to read formed less than 1% of the population. Ae the same census 95% of the white population over $2 t$ wcre able to read and writc; of the whites between the ages of 5 and 1459% could read and write.

State schools for white children were established by the Boer government, and in the last year (I898) before the British occupation there were 509 schools and 14.700 scholars, the education vote that year being $\{226,000$.. In 1902 the property vested in various school committees was transferred to government and control of the schools vesied in a department of state. In 1909 there were 670 government elementary schools, with more than 42,000 scholars. In $1907-1908$ the education vote exceeded 500,000 .

Relogion.- Of the total population 26.69% are Christians, and of the Christians 80% are whites. No fewer than 70% of the people, including the bulk of the natives, are officially returned as of no religion., Of the 336,869 Christians 69,738 were natives. Nearly half of the white community $1.142,540$ persons, belong to one or other of the Dutch Churches in the Transvata, bur they have only 4305 native members. Of Dutch Churches the first and chief is the Nederduitach Hervormde Kerk, lounded by the Voortrekkers and originally the state Church. The others are the Nederduit sch Gereformeerdo Kerk, an offshoot of the Church of the same name at the Cape, and the Cereformeende Kerk (the Dopper " Church) with some $\mathbf{1 5 , 0 0 0}$ members and adherents in the Transvaal. The "Dopper" Church, an offshoot of the Separatist Reformed Church of Holland, is distinguished from the other Dutch churches in being more rigidly Calvinistic and "Biblical." and in not using hymns A "Scouts" Church was formed at the end of the war of $1899-1902$ by burghers who had previously acted as "Natinnal Scouts "a and were ost racized loy the synods of their former Churches. After some years of friction "Nanional Scouts" werc however readmitted, on terma, to their lormer mernbership.

The Anglicane number 67,882 (including ${ }^{\circ}$ z 303s nativen), and ape 19% of the European population. At the head of the community is the bishop of Pretoria. Next in numbers according to European membership among the Protestant bodies are Presbyterians, 19.821 Gincluding 1194 natives), and Mechodiste 37,812 (lacluding 20,648 aetives). Tbe Lutherans are the chief miosionary body. Of a tocal membership of 24.175 only 5770 are European. The Protestant European community amounts altogether to 35% of the white population. The Roman Catholics number $16 ; 453$ (including 2005 matives) and form 5% of the European population. and the Hebrews $25-478$ or $5-34 \%$ of the European inhabitants.
Defence.-A strong garrison of the British army is maintained in the province, the headquarters of all the imperial military forces in Sorth Africa being at Pretoria. These forces are under the command of a lieutenant-general, who, however, acts under the cupreme direction of the governor-general. The Transvaal forms a distinct district command under a major-general.
A volunteer force was established in 1904, for service within the Transvaal, or wherever the interests of the country might require. The force, disciplined and organized by a permanent stah of oficers and non-commissioned officers of the regular army, is about 6500 strong. and consists of a brigade of artillery, four mounted, three composite and four infantry corps, a cyclist corps, ac. There are also cadet companies some 3000 strong.
(F. R. C.)

History

A. Fourdation of the Republic.-At the beginning of the 10th century the country now known as the Transvaal was inhabited, apparently somewhat sparsely, by Bavenda and other Bantu negroes, and in the south-west by wandering Bushmen and Hottentots. About $\mathbf{8 8 1 7}$ the country was invaded by the chieftain Mosilizatze and his impis, who were fleeing from the vengeance of Chaka, king of the Zulus. The inhabitants were unable to withstand the attacks of the disciplined Zula warrionor Matabele, as they were henceforth called-hy whom large areas of central and western Transvaal were swept bare. The remnants of the Bavenda retreated north to the Waterberg and Zoutpansberg, while Mosilikatze made his chief kraal at Mosega, not far from the site of the town of Zeerust. At that time the region between the Vaal and Limpopo was scarcely Lnown to Europeans. In 1829, however, Mosilikatze was visited at Mosega by Robert Moffat, and between that date and 1836 a few British traders and explorers visited the country and made known its principal features. Such was the situation when Boer emigrants first crossed the Vaal.
The causes which led to the erodus of large numbers of Dutch farmers from Cape Colony are discussed elsewhere (see Soutir Arpica and Cape Colony). Here it is only necessary to state that the Voortrekkers were animated by an intense desire to be altogether rid of British control, and to be allowed to set op independent communities end govern the natives in sach fashion as they saw fit. The first party to cross the Vaal consisted of 98 persons under the leadership of Louis Trichard and Jan van Rensburg. They left Cape Colony in 1835 and trekked to the Zoutpansberg. Here Rensburg's party separated from the others, but were soon afterwards murdered by natives.' 'Trichard's party determined to examine the conntry between the Zoutpansberg and Delagoa Bay. Fever carried off several of their number, and it was not until 1838 that the survivors reached the coast. Eventually they proceeded by boat to Natal. Meantime, in 1836, another party of farmers under Andries Hendrik Potgieter had established their headquarters on the banks of the Vet river. Potgieter and some companions followed the trail of Trichard's perty as far as the Zoutpansberg, where they were shown gold workings by the natives and saw rings of gold made by native workmen. They ulso ascertained that a trade between the Kaffirs and the Portoguese at Delagoa Bay liready existed. On retorning to the Vet, Potgieter learned that a bunting party of Boers which had crossed the Vaal had been attacked by the Matabele, who had also killed Boer women and coildren. This act led to reprisals, and on the 17th of January 1837 a Boer commando surprised Mesilikatze's encampment at Mosega, inflicting heavy loss on the M atabele without themselves
' Two small children were spared and brought up as Kaffirs In 1867 they were given over to the Boer government by the Swazis, tho had ecquired them Irom their captors.
losing a man. In November of the same year Mosilikatze sufficred further heavy losses at the hands of the Boers, and earty in 1838 he fled north beyond the Limpopo, never to return. Potgieter, after the flight of the Matabele, issued a proclamation in which he declared the country which Mosilikatze had abandoaed forieited to the emigrant farmers. After the Matabele peril had been removed, many farmers trekked across the Vaal and occupied parts of the district left derelict. Into these depopulated areas there was also a considerable immigration of Basuto, Bechuana and other Bantu tribes.

The first permanent white setulement north of the Vaal was made by a party under Potgieter's leadership. That commandant had in Manch 1838 gone to Natal, and had endeavoured to avenge the massacre of Piet Retiel and his comrades by the Zulus. Jealous, however, of the preference shown by the Dutch farmers in Națal to another commandant (Gert Maritz), Potgieter speedily recrossed the Drakensberg, and in November 1838 he and his followers settled by the banks of the Mooi river, founding th town named Potchefstroom in honour of Potgieter. This party instituted an elementary form of government, and in 1840 entered into a loose confederation with the Natal Boers, and also with the Boers south of the Vaal, whose headquarters were at Winburg. In 8842 , however, Potgieter's party declined to go to the help of the Natal Boers, then involved in conflict with the British. Up to 8845 Potgieter continued to exercise authority over the Boer communities on both sides of the Vaal. A determination to keep clear of the British and to obtain access to the outer world through an independent channel led Potgieter and a considerable number of the Potchefstroom and Winburg hurghers in 1845 to migrate towards Delagoz Bay. Potgieter settled in the Zoutpansberg, while other farmers chose as headquarters a place on the inner slopes of the Drakensberg, whene they founded a village called Andries Ohrigstad. It proved fever-ridden and was abandoned, a new viligge being laid out on higher ground and named Lydent hurg in memory of their sufferings at the abandoned settement.

Meantime the southern districts abandoned by Potgieter and his comrades were occupied by other Boers. These were joined in 1848 by Andries W. J. Pretorius (q.v.), who became commandant of the Potchefstroom settlers. When the British government decided to recognize the independence of the Transval Boers it was with Pretorius that negotiations were The Sew conducted. On the 17th of January 1852 a con- Rter
rention was signed at a farm near the Sand Coavention. river in the Orange sovereignty by assistant commissioners nominated by the British high commissioner on the one hand, and by Pretorius and other Boers on the other. The first clause was in the following terms:-
The astistant commimionery guarantee in the fullest manBer, on the part of the British government, to the emigrant farmers beyond the Vaal river, the right to manage their own affairs, and to govern themsclves according to their owa hws, without any interlerence on the part of the British government, and that no encroachment shall be made by the said government on the territory beyond to the north of the Vaal river, with the further assurance that the warmest wish of the Britich government is to promote peace, free trade, and friendly intercourse with the emigrant farmers now inhabiting. or who hereatter may inhabit. that country; it being understood that thin system of aon-interference is bindiag upon both parties

At this time there were setfled nocth of the Vaal sbout soos families of European extraction-about 40,000 persons, inctuding yoang children. They bad obtained Independence, but they were far from being a united people. When Pretorius conducted the regotiations which led to the signing of the Sand River Convention be did so without consulting the volksraad, and Potgieter's party accused him of usurping power and aiming at domination over the whole country. Hovrever, the volksraad, at a moeting beld at Rustenburg on the 16 th of March 1852, ratified the convention, Potgieter and Pretorius having been publicly reconciled on the morning of the saino day. Boch leaders were near the end of their careers; Potgieter died ia March and Pretorius in July 1853.

Whatever their interal dissensions the Boers were united
in regard to what they considered their territorial rights, and in the interval between the signing of the Sand River Convention and the death of Pretorius an incident occurred significant alike of their claims to jurisdiction over enormous areas and of their manner of treating the natives. Within a few weeks of the signing of the convention Pretorius had asked the British authorities to close the "lower road" to the interior, that is the route through Bechuanaland, opened up by Moffat, Livingstone and other missionaries. Pretorius alleged that by this means the natives were obtaining firearms. At the same time the Transval Boers claimed that all the Bechuana country belonged to them, a cluim which the British government of that day did not think it worth while to contest. No boundary westward had been indicated in the Sand River Convention. The Barolong, Bakwena and other Bechuana tribes, through whose lands the " lower road " ran, claimed however to be independent, among them Sechele (otherwise Set yeli), at whose chief kraal-Kolobeng-Livingstone was then stationed. Sechele was regarded hy the Boers as owing them allegiance, and in August ${ }_{18}{ }_{5}$ a Pretorius sent against him a commando (in which Paul Kruger served as a field cornet), alleging that the Bakwena were harbouring a Bakatla chief who had looted cattle belonging to Boer farmers. It was in this expedition that Livingstone's house was looted. There was little fighting, but the commando carried off between two and three hundred native women and children-some of whom were redermed hy their friends, and some escaped, while many of the children were apprenticed to farmers. Sechele's power was not hroken, and he appeaied for British protection, which was not then granted. The incident was, however, hut the first step in the struggle for the possession of that country (see Bechuanaland). It served to atrengthen the unfavourahle impression formed in England of the Transval Boers with regard to their treatment of the natives; an impression which was deepened hy tidings of terrihle chastisement of tribes in the Zoutpansberg, and by the Apprentice Law passed hy the volksraad in $1856-\mathrm{a}$ law denounced in many quarters as practically legalizing stavery.
On the death of Andries Pretorius his son Marthinus W. Pretorius ($q .$.) had been appointed his successor, and to the younger Pretorius was due the first efforts to end the discond and confusion which prevailed among the burghers-a discord heightened by ecclesiastical strife, the points at issue being questions not of failt hut of church government. In 1856 a scries of public meetings, summoned hy Pretorius, was beld at different districts in the Transvaal for the purpose of discussing and deciding whether the time had uot arrived for substituting a sitrong central government in place of the petty district goveraments which had hitberto existed. The result was that a representative assembly of delegates was elected,

Patcives

Patarest 1856 Wr, weels was engaged in modelling the constitution of the country, The name "South African Republic" was adopted as the title of the state, and the new constitution made provision for a volksraad to which members were to be elected by the people for a period of two years, and in which the legisalative function was vested. The administrative authority was to be vestad in a president, aided by an executive council. It was stimulated that mentbers both of the volkstaad and council should be members of the Dutch Reformed Church, and of European blood. No equality of coloured people with the white inhabitants would be colerated either in church or state. In reviewing an incident so important in the history of the Transvaal as the appointment of the Potchefstroom assembly it is of interest to note the gist of the complaint among the Boers which led to this revolution in the government of the country as it had previously existed. In his History of South Africe Theal says: "The community of Lydenburg was accused of attempting to domincer over the whole country, without any ather right to pre-eninence than that of being composed of the eardice inh hitanes, a right which it had forfcited by its opposi-
tion to the genertal weal." In hater years this complaint was precisely that of the Uitlanders at Johanneshurg. To conciliate the Boers of Zoutpansberg the new-born assemhly at Potchefstroom appointed Stephanus Schocman, the commandantgeneral of the Zoutpansberg district, commandant-general of the whole country. This offer was, bowever, dectined hy Schoerran, and both Zoutpansberg and Lydenhurg indignantly repudiated the new assembly and its constitution. The execrtive council, which had been appointed by the Potchefstroom assemhly, with Pretcrius as president; now took up a bolder atlitude: they deposed Schoeman from all authority, declared Zoutpansberg in a state of blockade, and denounced the Boers of the two northern districts as rebels.

Further to strengt hen their position, Pretorius and his party unsuccessfully endeavoured to hring about a union with the Orange Free State. Peaceful overtures having failed, Pretorius and Paul Kruger placed themselves at the head of a commando which crossed the Vaal with the object of enforcing union, hut the Free State compelled their withdrawal (see Orance free State). Within the mertmone Transvaal the forces making for union gained strength promes. not withstanding these events, and hy the year 1860 Zoutpansberg and Lydenhurg had hecome, incorporated with the repuhlic. Pretoria, newly founded, and named in honour of the elder Pretorius, was made the seat of government and capital of the country. The ecclesiastical efforts at unity had not heen equally successfuL. The Separatist Reformed Church of Holliand had sent out a young expositor of its doctrines named Postona, who, in November $\mathbf{x 8 5 8}$, became minister of Rustenhurg. In the following year a general church assembly endeavoured to unite all the congregations in a common government, but Postma's consistory rejected these overtures, and from that date the Separatist (or Dopper) Church has had an independent existence (see ante, \& Rcligion). Paul Kruger, who lived near Rustenburg, became n strong adberent of the new church.

Pretorius, while still president of the Transvaal, had been elected, through the efforts of his partisans, president of the Orange Free State. Hंc thereupon (in Fehruary 1860) ohtained six months' leave of ahsence and repaired to Bloemfontein, in the hope of peacefully hringing about a union between the two repuhlics. He had no sooner left the Transvaal than the old Lydenburg party, headed by Cornelis Potgieter, landdrost of Lydenburg, protested that the union would be much mand more beneficial to the Free State than to the people of Dineme Lydenhurg, and followed this up with the contention Ebous that it was illegal for any one to be president of the South African Repuhlic and the Free State at the same time. At the end of the sir months Pretorius, after a stormy meeting of the volksraad, apparently in disgust at the whole situation, resigned the presidency of the Transvaal. J. H. Grobelaur, who had been appointed president during the temporary absence of Pretorius, was requested to remain in office. The immediste followers of Pretorius now became extremely incensed at the action of the Lydenburg party, and a mass meeting was held at Potchelstroom (October 1860), where it was resolved that: (a) the volksraad no longer enjoyed its confidence; (b) that Pretorius should remain president of the South African Repuhlic, and have a year's leave of absence to bring about union with the Free State; (c) that Schoeman should act as president during the absence of Pretorius; (d) that before the return of Pretorius to resume his duties a new volksrand should be elected.
If at this stage of their existence the real ambition of the Transvaal Boers was to found a strong and compact republican state, their conduct in opposing a scheme of union with the Orange Free State was foolish to a degree. The events of the year 1860 , as well as of all the years that follo wed down to British annexation in 1877 , show that licence rather than liberty, a narrow spirit of faction rather than patriotiam, were the dominant instincts of the Boer. Had the fusion of the two little republics which Pretorius sought to hring about, and from which apparently the Free State was not averse, actually been accomplished in 1860, it is more than probable that a republican state on liberal

Enes, wht some prospect of permanence and atability, might bave been formed. But a narrow, distrustiul, grasping policy on the part of whatever faction might be dominant at the time invariably prevented the state from acquiring stability and security at any stage of its history.

The complications that ensued on the action of the Pretorius perty subsequent to his resignation were interminable and complicated. Some of the new party were arraigned for treason and fined; and for several months there were two acting presidents and two rival governments within the Transval. At length Commandant Paul Kruger called out the burghers of his district and entered into the strife. Having driven Schoeman and his followers from Pretoria, Kruger invaded Potchefstroom, which, after a skirmish in which three men were killed and seven wounded, fell into his hands. Ho then pursued Schocman, who doubled on his opponent and entered Potchefstroom. A temporary peace was no ewoner secured than Commandant Jan Vilioen rose in revolt and engaged Kruger's forces. Viljoen's commando, with which Pretorius was in sympathy, was known as the Volksleger, or Army of the People. Kruger's force called itself the Staatsleger or Army of the State. Pretorius in 1863 resigned his Free State presidency and offering himself as mediator (not for the first time) succeeded at length in putting a period to the confused series of intestine quarrels. In January 1864 a conference, which hasted aix days, was held between the parties and an agrecment was reached. This was followed by a new election for president, and once more Pretorius was called apon to fill that office. Kruger was appointed commandant-general.
Civil strife for a time was at an end, but the injuries inflicted on the state were deep and lasting. The public funds were echausted; taxes were impossible to collect; and the natives on the borders of the country and in the mountains of the north had thrown of all allegiance to the state. The prestige of the country was practically gone, not only with the world outside, but, what was of still more moment, with her neighbour the Free State, which fedt that a federation with the Transvas, which the Free State once had sought but which it now forswore, was an rovecuero evil avoided and not an advantage bost. A charge efsmert yytut Heres frequently laid at the door of the Boers, at that time and since, was that of enslaving the black races. This charge was not without some justifcation. It is true that laws prohibiting slavery were in existence, but the Boer who periodically took up arms aguinst his own appointed government was not likely to he, nor was he, restrained by laws. Natives were openly translerred from one Boer to another, and the fact that they were described as apprentices by the farmers did not in the least alter the status of the native, who to all intents and purposes became the property of his master. These apprentices, mostly bought from slave traders when little children, formed, bowever, a very small proportion of the native population, and after some fifteen years' servitude were usually allowed their freedom. Natives enjoying tribal government were not enslaved, but nothing could exceed in ferocity the measures taken to reduce recalcitrant tribes to submission. Education, as need hardly be said, was in the 'sixties at a very bow ebb, and nothing approaching the standurd of a bigh echool existed. The private tutor was a good deal in demand, but his qualifications were of the slightest. An unsuccessful Europeen carpenter or other mechanic, or even labourer, not infrequently occupied this position. At the various chatchea woch elementary schools as existed were to be found, but they did not profess to teach more than a smattering of the throe "R's" and the principles of Christianity.
In 1865 an empty exchequer called for drastic measures, and the volkeraad determined to endeavour to mpeet their liabilities and provide for further contingencies by the issue
 of noter. Paper money was thus introduced, and in a very short time fell to a considerable discount. In this same year the farmers of the Zoutpansbers diserice wero driven into leagers by a native rising which they were unable to muppres. Schoemanaded, a village at the toot
of the zoritpansbers, was the most important settlement of the district, and the most advanced outpost in European occupation at that time in South Africa. It was just within the tropics, and was aituated in a well-watered and beautiful country. It was used as a base by hunters and traders with the interior, and in ita vicinity there gathered a number of settlers of European origin, many of them outcasts from Europe or Cape Colony. They earned the reputation of being the most lawless white inhabitants in the whole of South Africa. When called upon to go to the aid of this settlement, which in $\mathbf{3 8 6 5}$-1866 was sore pressed by one of the mountain Bantu tribes known as the Baramapulana, the burghers of the southern Transval objected that the white imhabitants of that region were too \ln wless and reckless a body to merit their assistance. In $\mathbf{8 6 7}$ Schoemansdal and a considerable portion of the district were abandoned on the advioe of Com-mandant-general Paul Kruger, and Schoemansdal finslly was burnt to ashes by a party of natives. It was not until 1869 that peace wos patched up, and the settlement arrived at left the mountain tribes in practical independence. Meanwhile the public credit and finances of the Transvaal went from bad to worse. The paper notes already issued had been constituted by law legal tender for all debts, but in 1868 their power of actual purchase was only 30% compared with that of gold, and by 1870 it had fallen as low as 25%. Civil servants, who were paid in this depreciated scrip, suffered considerable distress. The revenue for 1869 was stated as $f 3 \mathrm{r}, 511$; the expenditure at $\mathrm{f}_{3} 9,836$.

The discovery of gold at Tati led President Pretorius in Aprii 1868 to issue a proclamation extending bis territories on the west and north so as to embrace the goldfeld and all emorto to Bechuanaland. The same prociamstion extended owtane Transvaal territory on the east $s 0$ as to include part Seaporth of Delagoa Bay. The eastern extension claimed by Pretorios was the sequel to endeavours made shortly before, on the initiative of a Scotsman, to develop trade along the rivers leading to Delagoa Bay. It was asoo in accord with the desire of the Transvaal Boers to obtain a seaport, 2 desire which had ted them as earty as 1860 to treat with the Zulus for the possession of St Lacia Bay. That effort had, however, failed. And now the proclamation of Pretorius was followed by protests on the part of the British high commissioner, Sir Philip Wodehouse, as well as on the part of the consul-general for Portugal in South Africa. The houndary on the east was settled by a treaty with Portugal in 1869, the Boers abandoning their chaim to Delagoa Bay; that on the west was dealt with in 8878 .

The Sand River Convention of 8852 had not defined the western border of the state, and the discovery of gold at Tati to the northwest, together with the discovery of diamonds on the Vaal in 1867, offered Pretorius every inducement to extend his boundary. Although to-day the great diamond mines are south of the Vaal River, the early discoveries of diamonds were made chiefly on the northern bank of the Vaal, near the site of the town now known as Barkly West. This territory was claimed by the South African Republic, by Baralong and Batlapin

The reate Bechuanas, by Koranas, and also by David Armot, on behalf of the Griqua captain, Nicholas Waterboer. To settle the boundary question an axbitration court was appointed consisting of a Transvaal landdrost, A. A. O'Reilly, on behalf of the South African Republic, and John Campbell on behalf of the other clamants, with Likutenant-Governor Keate of Natal as referse: The judges disagreed, and the final decision, ifterwards known as the Keate award, was given by the referec on the 17th of October 187y. The decision' was in favour of Waterboer, who had, on the 25 th of August 1870 , before the appointment of the urbitration court, offered his territory to Great Britain, and it was anderstood by all the parties interested that that offer would be accepted. The award, admittedly just on the evidence beforo Keate, placed, bowever, outside the territory of the republic tho Bloembof district, in which district Boer farmers were settied, and over which the Pretorin government had for some years exercised jarisiction. A few days after the publication of the Keate award Sir Henry Barkly, the Britinh high commissioner, isomed prockemations tuking over Waterbocr's teritiory under the
titlo of Griqualand West (q.v.). The eastern boundary of the new territory was made to include the region between the Harts river and the Vaal, in which the diamond diggings were situated, but not the Bloemhof district. To this district Sir Henry Barkly asscrted the British rights, but no steps were taken to enforce them and as a matter of fact the Bloemhof district continued to be part of the Transvaal.
The award caused a strong leeling of resentment among the Boers, and led to the resignation of President Pretorius and his executive. The Boers now cast about to find a man who should have the necessary ability, as they said, to negotiate on equal terms with the British authorities should any future dispute arise. With this view they asked Mr (afterwards Sir Burgers John) Brand, president. of the Free State, to allow acooges them to nominate him for the presidency of the Preshorat South African Republic. To this President Brand 1872.
would not consent. He recognized that, even at this early stage of their history, the Transvaal Boers were filled with the wildest ideas as to what steps they would take in the future to counteract the influence of Great Britain. Brand intimated to many of the leading Transvaal Boers that in his opinion they were embarking on a rash and mistaken policy. He urged that their true interests lay in friendship with, not in hostility to, Great Britain and the British. Having failed with Brand, the Boers invited the Rev. Thomas Frangois Burgers, a member of a well-known Cape Colony family and a minister of the Dutch Reformed Church, to allow himself to be nominated. Burgers accepted the offer, and in 1872 was elected president. About this time gold reefs were discovered in the Zoutpansberg district near Marabastad, and a few gold seekers from Europe and Cape Colony began to prospect the northern portions of the Transvaal. The miners and prospectors did not, however, exceed a few hundred for several years.
The appointment of Burgers to the presidency in 1872 was new departure. He was able, active and enlightened, but he was a visionary rather than a man of affairs or sound judgment. Instead of reducing chaos to order and concentrating his attention, as Brand had done in the Free State, on establishing security and promoting industry, he took up, with all its entanglements, the policy of intrigues with native chiefs beyond the border and the dream of indefinite expansion. In 1875 Burgers proceeded to Europe with the project of raising a loan for the construction of a railway to Delagoa Bay. He was empowered by the volksraad to raise 6300,000 , but with great difficulty he obtained in Hollend the sum of $\{00,000$ only, and that at a high rate of interest. With this inadequate sum some railway plant was obtained, and subsequently lay for ten years at Delagoa Bay, the scheme having to be abandoned for want of funds. On his return to the Transvaal in 1876 Burgers found that the conditions of alfairs in the state was worse than ever. The acting-president had in his absence been granted leave by the volksrasd to carry out various measures opposed to the public wellare; native lands had been indiscriminately allotted to adventurers, and a war with Sikuluni (Secocoeni), a native chief on the castern borders of the country, was imminent. A commando was called out, which the president himself led. The expedition was an ignominious failure, and many burghers did not hesitate to asign their non-success to the fact that Burgers's views on religious questions were not sonnd. Burgers then proceeded to levy taxes, which were never paid; to enrol troops, which never marched; and to continue the head of a government which had neither resources, credit nor power of administration. In 1877 the Trangraal one-pound notes were valued at one shilling cash.- Add to this condition of things the fact that the Zulus were threatening the Transval on its southern border, and the picture of utter collapse which existed in the state is complete.
B. Pirst Annexalion by Great Britain.-This condition of affirs coincided with the second movenent in South Airica for a confederation of its various colonies and states, a movement of which the then colonial secretare, the th eari of Carnarvon, ats whom advocate. As, mial in particular,
it was fele by Lord Carnarvon "that the safety and prosperity of the republic would be best assured by its union with the British colonies." Sir Theophilus Shepstone (q.r.) was given a commission, dated the 5th of October, 1876, instructing him to visit the Transvaal and empowering him, if it was desired by the inhabitants and in his judgment necessary, to annex the country to the British crown. Sir Theophilus went to Pretoria in January 1877, with an escort of twenty-five mounted police, and entered into conferences with the president and executive as to the state of the country. By this time Burgers was no longer blinded by the foolish optimism of a visionary who had woven finespun theories of what an ideal republic might be. He had lived among the Boers and attempted to lead their government. He had found their idea of liberty to be anarchy, their native policy to be slavery, and their republic to be a sham. His was a bitter awakening, and the bitterness of it found expression in some remarkahle words addressed to the volksraad:
"I would rather," said Burgers in March 1877, "be a policeman under a strong povernment than the president of such a state. It is you-you members of the Raad and the Boers-who have lost the country, who have sold your independence for a drink. You have ill-treated the natives, you have shot them down, you have sold them into slavery, and now you have to pay the penalty, . . . We should delude ourselves by entertaining the hope that matters would mend by-and-by. . . . Do you know what recently happened in Turkey? Because no civilized government was carred on there, the Great Powers interfered and said, 'Thus far and no farther. And if this is done to an empire, will a little republic be excused when it misbehayes?. . If we want justice, we must be in a position to ask it with unsullied hands. . . ."

After careful investigation Shepstone satisfied himself that anneration was the only possible salvation for the Transvaal. He had gone to Pretoria hoping that the Transvaal volksrasd would accept Carnarvon's federation scheme; but the federation proposals were rejected by the raad. Shepstone was willing to find some way other than simple annexation out of the diffculty, but none appeared to present itself. The treasury was empty, the Boers refused to pay their taxes, and there was no power to enforce them. A public debt of $£ 215,000$ existed, and government contractors were left unpaid. Sir Theophilus Shepstone, finding that the raad would not adopt any remedial measures, on the zath of April 1871 issued a prociamation annexing the country. The proclamation stated (among other things); " It is the wish of Her Most Gracious Majesty that it [the state] shall enjoy the fullest legisiative privileges compatible with the circumstances of the country and the intelligence of its people." The wisdom of the step taken by Shep- artenh stone has been called in question. For many years Angorates, subsequently the matter was so surtounded with 8877.
the sophistry of English party politics that it was difficult for Englishmen to form any impartial opinion. The history of the Transvanal is more complete and better understood to-day than it was in 1877, and no one who acquaints himsell with the facts will deny that Sbepstone acted with care and moderation. The best evidence in favour of the step is to be found in the publiely expressed views of the state's own president, Hurgers, already quoted. Moreover, the menace of attack on the Zulu side was a serious one, however able the Boers may have been to meet a foe who fought in the open, and who had been beaten hy them in previous wars. Even before annexation had occurred, Shepstone felt the danger so acutelythat he aent a mesaage to Cetywayo, the Zulu chicf, warning him that British annextion was about to be proclaimed and that invasion of the Transvasa would not be tolerated. To this warning Cetywayo, who, encournged by the defeat of the Boers at Sikukuni's hands, had already gathered his warriocs together, replied: "I thank my father Somtseu.[Shepstonel for his message. I am glad thet he has sent it, because the Dutch have tired me out, and 1 intended to fight with them . . . and to drive them over the Vash . . " A still further reason for Shepstone's annexation, given by Sir Bartle Frere, was that Burgers had abready cought allianco with European powers, and Shepstone had no reacon to doubt that if Great Britain refused to interfere, Germany would intervane. Moreover, apart from the attitede
of Presideat Burgers, which catnot be suid to hiave been one of active opposition, a considerable number of the Boers accepted the annexation with complacency. Burgers himsolf left the Transval a disappointed, heart-broken man, and a deathbed statement publishod some time after his deccase throws a lurid light on the intrigues which arose before and after annexation: He shows how, for purely persomal ends, Kruger allied himself with the British faction who were agitating for annexation, and to undermine him and endeavour to gain the presidency, ureed the Boers to pay no taxes. However this may be, Burgers was crushod; but as a consequence the British government and not Paul Kruger was, for a time at least, master of the Transveal In view of his atlitude before 2anexation, it was not surprising that Kruger should be one of the first men to agitate against it afterwards. The work of destruction had gone too far. The plot had miscarried. And so Kruger and Dr Jorissen, by whom be was accompanied, were the first to approach Lord Carnarvon with an appeal for revocation of the proclamation. Lord Carnarvon's reply was that the act of annexation was an irrevocable one. Unfortunately the train of events in England favoured the intrigues of the party who wished the annexation cancelled. In 1878 Lord Carnarvon resigned, and there were other evidences of dissension in the British cabinet.

Kruger, who since the annexation had held a salaried appointment under the British Government, again became one of 2 deputation to England. His colleague was Piet Joubert. They laid their case before Sir Michael Hicks Beach (who had succeeded Lord Carnarvon) but met with no success. Sir Michael, however, in a despatch dated September the 16th 1878, reiterated the intention of the British cahinet to grant the state "to the utmost practicable extent, its individuality and powers of seli-government under the soverrignty of the queen." On the occasion of Kruger's second mission to endeavour to get the anneration revoked Sir T. Shepstone determined to dispense with his further services as a government servant, and terminatod the engagement. In the beginning of 1879 Shepstone was seralled and Colonel Owen Lanyon, who had served in Bechuanaland and was then administrator of Griqualand West, was appointed administrator in tbe Transsaal. In the meantime, the Zulu forces which threatened the Transveal had been turned against the British, and the disaster of Isandhiwann occurred. Rumours of British defeat soon reached the Transvaal, and celentoe encouraged the disaffected party to become bolder tre indo per havior Bartle Frere wrote at the time: "All accounts from Pretoria represent that the great body of the Boer popalatioa is still under the belief that the Zulus are more than a match for us, that our difficulties are more than we can sarmount, and that the present is the favourable opportunity sor demanding their independence." In April Frere visited Pretoria and conferred with the Boers. He assured them that they might look forward to complete self-government under the Crown, and at the same time urged them to sink political differences and join hands with the British against their common enemy, the Zulus The Boers, however, continued to agitate for complete independence, and, with the honourable exception of Piet Uya, a gallant Boer keader, and a small bandof followers, who assisted Colonel Evelyn Wood at Hlobani, the Boers held entirely aloof from the conflict with the Zulus, a campaige which cost Great Britain many lives and $\{5,000,000$ before the Zutu power was finally broken. In June Sir Garnet Wolseley went to Soath Airica as commander of the forces against the Zulus, and as high commissioner "for a time," in the place of Sir Bartle Frere, of the Transvaal and Natal. Meantime Frere's proposels to fulfil the promises made to grant the Boers a liberal constitution were shelved. After the " settle ment " of the Zulu question, Sir Garnet Wolseley proceeded to Pretoris and immediately orpasized an expedition against Sikukuni, who throughout tbe Zulu campaign had been acting under the advice of Cetywayo. Sikukuni's stropgbold was captured and his forces disbanded.

Sir Garpet Wolseley pow assured the Boers at a public gathering
that so long as the sun shone the British fiag would fly at Pretoric In May 1880 he returned to England, having established in the Transvaal a legislative council with powers so limited as to convince many of the Boers that there was no intention of fulfiling Shepstone's promises. Meanwhile events in Great Britain had once more taken a turn which gave encouragement to the disaffected Boers. Already in November 1879 Gladstone had conducted his Midlothian campaign. In one speech, referring to Cyprus and the Transvaal, he said: "If those acquisitiona were as valuable as they are valueless, I would repudiate them, because they were obtained hy means dishonourable to the character of our country." And in another speech he said that the British had insanely placed themselves emeet of Mr in the strange predicament of the free subjects of a armertame": monarchy going to coerce the free subjects of a spoesbes in repuhlic. Expressions such as these were trans-Eaglaed. lated into Dutch and distrihuted among the Boers, and they exercised a good deal of inftuence in fanming the agitation already going on in the Transvaal. So keenly were the Midlothian speeches appreciated by the Boers that the Boer committer wrote a letter of thanks to Cladstone, and expressed the hope that should a change in the government of Great Britain occur, "the injustice done to the Transvaal might find redress." In April 1880, this change in the British Government did occur. Ghadstone became prime minister, and shortly afterwards Frere was recalied. Could events he more auspicious for the party seeking retrocession? On being directly appealed to hy Kruger and Joubert, Gladstone however replied that the liberty which they sought might he " most easily and promptly conceded to the Transvaal as a member of a South African Confoderation." This was not at all what was wanted, and the agitation continued. Meanwhile in the Transvaal, concurrently with the change of prime minister and high commissioner, the administrator, Colonel Lanyon, hegan vigoreusly to enforce taxation among the Boers. Men who would not pay taxes to their own appointed governments, and who were daily expecting to be allowed to return to that condition of anarchy which they had come to regard as the normal order of things, were not likely to respond willingly to the tax-gatherer's demands. That many of them refused payment in the circumstances which existed was natural.

In November matters were brought to a head by the wagons of a farmer named Beruidenhout being seized in respect of the non-payment of tazes, and promptly retaken from the sheriff by a party of Boers. Lagyon began to Outbreak of recognize that the position was becoming grave, and telegraphed to Sir George Colley, the bigh commissioner of Sorth-East Africa, for military aid. This, however, was not inmediately available, and on the $13^{\text {th }}$ of December the Boers in pablic moeting at Paardekraal resolved once more to prochajm the South Arrican Repuhlic, and in the meantime to appoint a triumvirate, consisting of Kruger, Pretorius and Joubert, as a provisional government. Within three days of the Pasodekraal meeting a letter was sent to the administrator demanding the keys of the government offices. Formal prodamation of the repuhlic was made on the 16th of December (Dingaan's Day) at Heidelberg. Hostilities forthwith began Meaowhile pressure was put on the British prime minister to carry out the policy he had avowed while out of office. But it was not until Great Britain was suffering from the humiliation of defeat that be was convinced that the time for granting that retrocession had arrived. The first shots fred were outside Potcheftroom, which was then occupied by a small British garrison (see Poncaersizioun). On the zoth of December some 240 men under Colonel Anstruther, chiefly belonging to the 94th Regiment, while marching from Lydenhurg to Pretoria, were surprised at Bronkhorst Spruit, and cut up by the Boer forces. Half the men were killed and wounded; the other half including some officers, were taken prisoners. Captain EHiot, ove of the prisoners, who had been released on parole, was shot dead by Boers while crossing the Vaal, and Captain Lambert, another paroled prisoner who accompanied Elliol, was also shot,
but escaped. Pretoria, Rustenberg, Lydenburg, and other smaller towns had been placed in a position of defence under the directions of Colonel Bellairs, who remained in command at Pretoria, the garrison consisting of a small number of troops and the loyal inhabitants. Sir George Colley, with about 1400 men. marched towards the Transuaal frontier, hut before reaching it he found, on the 24th of January 1881, that the Boers had already invaded Natal and occupied Laing's Nek. He pitched his camp at Ingogo. Having been defented at Laing's Nek, and suffered considerable loss in an engagement near Ingogo,
Matula Mmy ster. Colley took a force to the top of Majuba, a mountain overboking the Boer camp and the nek. He went up during the night, and in the moming was attacked and overwhelmed by the Boers (Feb. 27). Of the 554 men who constituted the British force on Majuba, 92 were killed and 134 wounded, Sir George Colley himself being amongst those who were slain.

Ten days previous to the disaster at Majuba Sir Evelyn Wood had arrived at Newcastle with reinforcements. On Coiley's death he assumed command. Negotiations had been opened with the Boers before the attack on Majuba and the British cabinet refused to allow that disester to influence their action. On the 6th of March a truce was concluded and on the $215 t$ terms of peace were arranged between the Boer triumvirate and Sir Evelyn Wood. The most important of these terms were that the Transvial should have complete internal self-government under British suzerainty and that a British resident should be stationed at Pretoria. Another article reserved to her majesty "the control of the external relations of the said state, including the conclusion of trenties and the conduct of diplomatic intercourse with foreign powers," and the right to marcb troops through the Transvaal. The boundaries of the state were defined, and to them the Transvaal was strictly to adhere. These terms practically conceded all that the Bocrs demanded, and were never regarded as anything else than surrender either hy the Boers or the loyalists in South Africa. The agreement had hardly been concluded when Sir Frederick Roberts arrived at the Cape witb ro,000 troops, and after spending forty-eight hours there returned to England.

In the meantime, while the British general was making a treaty under the instructions of British ministers on the frontier, the beleaguered garrisons of Pretoria. Potchefstroom, and other smaller towns were gallantly holding their own. The news of the surrender reached Pretoria through Boer sources, and when first received there was laughed at by the garrison and inhabitants as a Bocr joke. When the bitter cruth pas at length realized, the British dag was dragged through the dust of Pretoria streets by outraged Englishmen. Presently there assembled in Pretoria a commission to claborate the terms of peace. On the one side were the Boer triumvirate, on the otber Sir Evelyn Wood, Sir Hercules Robinson (Frere's successor in the high commissionership), and Sir J. H. de Villiers, chief justice of Cape Colony, while President Brand of the Orange Free State gave the comminsion the bencfit of his advice. Tbe terms agreed upon were drawn up in the form of a convention and signed (Aug. 3). The preamble to the Pretoria Convention of 188_{1} pontorta contained in brief hut explicit terms the grant of self-goverament to the Boers, subject to British suserainty. In later years, when the Boers desired to regard the whole of this convention (and not merely tbe articles) as cancelled by the London Convention of 1884 , and with it the surerainty, which was only mentioned in the preamble, Mr Chamberlain, a member of the cabinet of 1880-1885, pointed out that if the preamble to this instrament were considered cancelled, so also would be the grant of self-government.

The government of the state was handed over to the triumvirate on the 8th of August and was continued in their name until May 1883 , when Kruger was elected president.
C. Prom the Redrocestion to 1809.-The retrocemaion of the Transval was a terrible blow to the loyalists. The Boers, on the other hand, found themselves in better plight than litey had ever been before. Their native foes bad been
crushed by British forcen; their liabilities were consolidated into a debt to Great Britain, to be repaid at convenience and leisure-as a matter of fact, not even interest was paid for some time. If ever a small state was well treated by a large one, the Transvaal was so in the retrocession of 1881 . Unfortunately, this magnanimity was fortheoming after defeat It appeared as though a virtue had been made of a necessity, and the Boers never regarded it in any other light.

The pew volksrad had scarcely been returned and the Pretoria Convention ratified (Oct. 25) before 2 system of government concessions to pitvate individuals was started. These concessions, in so far as they The Nuw prejudiced the commerce and general interests of the inhabitants, consisted chiefly in the granting of monopolies. Among the first monopolies which were granted in 1882 was one for the manufacture of spirituous liouor. The system continued steadily down to 1899 , by which time railways, dynamite, spirits, iron, sugar, wool, bricks, jam, paper and a number of other things were all of them articles of monopoly. In 1882 also began that alteration of the franchise law which subsequently developed into positive exclusion of practically all save the original Boer burghers of the country from the franchise. In $\mathbf{8 8 1}$, on the retrocession, full franchise rights could be obtained after two years' residence: in 1882 the period of residence was increased to five years. Meanwhite the landhunger of the Boers became stimulated rather than checked by the regaining of the independence of their country. On the western border, where the natives were of less wadike character than those on their southern and northern frontiers, intrigues were already going on with petty tribal chiefs, and the Boers drove out a portion of the Barolongs from their lands, setting up the so-called republics of Stellaland and Goshen. This act called forth a protest from the 1 sth Lord Derby (now secretary of state for the colonies), stating that be could not recognize the right of Boer freebooters to set up govern. ments of their own on the Transvaal borders. This protest had no effect upon the freebooters, who issued one proclamation after another, until in November 1883 they united the two new republics under the title of the "United States of Stelis. land." Simultaneously whit this "irresponsible" movement for expansion, President Kruger proceeded to London to interview Lord Derby and endeavour to induce him to dispense with the suzerainty, and to withdraw other clauses in the Pretoria Convention on foreign relations and ratives, which were objectionable from the Boer point of view. Moreover, Kruger requested that the tern "South African Republic" should be substituted for Transiaal Siate.

The result was the London Convention of the 27th of Pebruary 1884. In this document a fresh set of articles was substituted for those of the Pretoria Convention of 188 I . In the articles of the new convention the houndaries were once more defined, concessions being made to the Transvaal on the Bechuanaland frontier, and to them the republic was bound to "strictly adhere." In what followed it must always be remembered that Lord Derby began by emphatically rejecting the first Boer draft of a treaty on the ground that zadoe $n 0$ treaty was possible except between equal sove- comesreign states Moreover, it is undeniable that lord ata, ache Derby acted as though he was anxions to appear to be giving the Boers what they wanted. He would not formally abolish the suserainty, but he was willing not to mention it; and though, in substituting new articles for those of the Pretoria Convention be left the preamble untouched, be avoided anything which coald commit the Boer delegates to a formal recognition of that fact. On the other hand, be was most indignant when in the House of Lords be was accused by Lord Caims of impaining British interests and relinquishing the queen's suzerainty. He declared that be had preserved the thing in its substance, if he had not actually used tbe word; and this view of the matter was always officially maintained in the colonial office (which, significantly enough,
dealt with Transvaal affairs) whatever the political party in power. Unfortunately, the timid way in which it was done made as ineflaceable an imprestion on Kruger even as the sarrender after Majuba. Article 4 stated:
"The South Airican Republic will conclude no treaty or eagagemeat yith any atate or nationa, other than the Orange Free State, por with any native tribe to the eastward or westward of the Repreblic, until the same has been approved by her Majesty the Queen."
The other article to which the greatest interest was subsequently attached was art. 14:
"All perwons, other than natives, conforming themselves to the laws of the South Arrican Republic (a) will have full liberty, with their families to enter, travel, or reside in any part of the Soutb Arrican Republic: (b) they will be entitited to hise or posecse houmse, manufectories, warehouses, sbope and premises; (c) they may carry an their commerce either in person or by any agents whom they oray think fit to employ: (d) they will not be subject, in respect of their persons or property, or in respect of their commerce or industry, to any taxes, whether general or local other than thowe Hhich are or may be imponed epoas citizen of the naid Republic."

Notwithstanding the precise fixing of the boondaries of the repablic by the London Convention, President Kruger rempurtey endeavoured to maintain the Boer hold on Gosben Esurnere and Stellaind, but the British government on envers this point proved firm, and on expedition set out in 1884 under Sir Charles Warren, broke up the freebooters' two states, and occupied the country without a shot being fired (bee Bibcroaralind). The expedition coest Great Britain a ration and a hall, brat the attempt at farther ertencion westmands was foiled, and a little later treaties with Lobengrela and the grant to Cecil Rhodes and his co-directors of a dearter for the British South Africa Company pat a check on designs the Boers held to expand northward (see Rroossia). On the eastern border a similar policy of expansion was followed by the Boers, and in this instance with more success. Following up the downfall of the Zulu power after the British conquust in 1879, several parties of Boers began intriguing with the petty chiefs, and in May $\mathbf{2 8 8 4}$, in the presence of 10,000 Zulas, they proclaimed Didizulu, the son of Cetyway, to be king of Zululand (see Zolluland). As a "reward" for their services to the Zulus, the Boers then took over from them a tract of country in which they established a "New Repablic." In 1886 the *New Republic" with limits considerably nartowed, was recognised by Great Britain, and the territory became incorporeted with the Transvaal in 1888. Their eastern boundary, in the teeth of the spirit of the convemtions, and with but scant. observance of the letter, was by this means considerably entended. A similar policy eventually brought Swaziland ahnost entirely under their dominion (sce Swaeriand). At the ame time President Kruger revived the project of obtaining a seaport for the state, one of the objects of Boer ambitions since 1860 (vide supra). Kruger endeavoured to acquire Kosi Bay, to the north of Zululand and only 50 m . east of the Swasi frontier. Meanwhile, events occurring whithin the state augured iil for the future of the country. In 1884 a concession to a ramber of Hollander and German capitalists of all rights to make railways led to the formation of the Netherlands Railway Company. This company, which was not actually floated Economis till 1887, was destined to exercise a disastrons inpowrope fluence upon the fortunes of the state. Cold anciap 6 Minetry digsing had hitherto enjoyed in the Transvalal but a precarious existence. In 1883 the discovery of Moodie's Reef near the Kaap Valley led to a considerable influx © digesers and prospectors from the colonies and Europe, and by 1884 the Shebs Mine had been opened up, and Barberton, with a population of 5000 inbabitants, sprung into existence. In 1886 the Rand goldfields, which had jast been discovered, were prochaimed and Johannesburg was founded. From thas time the gold industry made steady progress until the Rand gold mines proved the richest and most productive goldfield in the world. As the industry prospered, so did the Earopean popalation increase. The revenue of the state went boy lenpm and bounds. At the end of 1886 Johmpesburg
comsisted of a few. storee and some few thousand inhabitants In October 1896 the sanitary board census estimated the population as 107,078 , of whom 50,907 were Europeans. The wealth which was pouring into the Boer state coffers exceeded the wildest dreams of President Kruger and his followers. Land went up in value, and farma, many of them at comparatively remote distances from the goldicids, were sold at enormously enbanced prices. In fact, 30 attractive did this asie of land become to the Boers that they eveal ually parted with e thind of the whole land area of the country to Uithander parchasers. Yet in spite of the wealth which the industry of the Uitlanders was creating, a policy of rigid political esclusion and restriction was adopted towards them.

An attempt was made in 1888, after the coaference beld between Cape Colony, the Orange Free State and Natal, to iaduce the Transval to enter a customs union. mentomes Kruger woukd have none of it, although by so doing writhernat he could have obtained permision for a setulement of South at and railway to Kosi Bay. A convention to this Afres. effect was signed in August 1890, the Transvaal being athowed three years in which to take advantage of its provisions Kruger's design at this time was to bring the whole of the external trade of the state, which was growing yearly as the gold intustry developed, through Delagoa Bay and over the Nether 4 tands railway. His hostility towards Great Britain and even Cape Colony led him to adopt a commercial policy both narrow and pejiudicial to the interests of the gald industry. In the appointment of F. W. Reits as president of the Orange Free State (January $\mathbf{x 8 8 9}$) on the death of Sir John Brand, Kruger recognized a new opportunity of endeavouring to cajole the Free State. Brand had arranged, in the teeth of the strongest protests from Kruger, that the Cape railway should extend to Bloemfontein and subsequently to the Vaal river. Kruger now endeavoured to control the railway policy of the Free State, and induced that republic to agree to a treaty whereby each state bound ieself to help the other whenever the independence of either shoeld be threatened or assailed, unlesa the cause of quarrel was, in the eyes of the state called in to ascist, an unjust one (see Oramge Free Sinte).
In 1890 a feeling of conaiderable iritation bad growa up among the Uitlanders at the various monopolies, but particularily at. the dynamite monopoly, which pressed solely and witb peculiar severity upon gold miners. ortowetheal Requests for consideration in the matter of the
framehise, and also for a more liberal commercial policy in the matter of railways, dynamite and customs dues, began to be made. In response Kriger enacted that the period of qualifiction for the full franchise should now be raised to ten years instead of five. He at the same time instituted what was called a second chamber, the franchise qualifications for which were easier, but which was not endowed with any real power. During this year Kruger visited Johannesbure. and what was known as "the flag incident" occurred. He had by this time rendered himself somewhat unpopular, and in the evening the Transvall flog, which flew over the land. drost's house, was pulled down. This incensed Kruger so much that for many years be continued to quote it as a reason why no consideration could be granted to the Uillanders.
By 2892 the Uithanders began to feel that if they were to obtain any redress for their grievances combined constitutional action was called for and the first reform move-
ment begm. The Transval National Union was ambober formed. This coosisted at the outser chiefly of mencantile and profescional men and artisans. The mining men, especially the heads of the larger houses, did not care at this juncture to run the risk of political agitation. The Hon. J. Tudbope, an ex-minister in the Cape government, was elected chairman of the ruion. The objects of this body were evotred from the oatsel. They desired equal rights for all citizens, the abolition of monopolies and aboses, together with the maintenance of the state's independence. In the furtbering of this poity Tudbope wis expported by Charlea leonand and his brother

James Leonard, at one time attorney-general of Cape Colony. Both the Leonards, as well as many of their followers, were Scuth Africans by birth. They, in common with the great bulk of the Uitlanders, recognized that the state had every right to have its independence respected. But they asserted that a narrow and retrogressive policy, such as Kruger was following, was the very thing to endanger that independence. The soundness of these views and the legitimacy of Uittander aspirations were recognized by a few Boer officials at Pretoria. Some prominent hurghers even spoke at Uitlander meetings in lavour of the Uitlander requests. At 2 later date, Chief Justice Kotze, when on circuit, warned the Boers that in its retrogressive action the government was undermining the grondued or constitution of the state. It soon became evident that one course, and one only, lay open to President Kruger if he desired to avert a catastrophe. It was to meet in a friendly spirit those men who had hy their industry converted a poor pastoral country into a rich industrial one, who represented more than half the inhabitants, who paid more than threefourths of the revenue, and who were andious to join him as citizens, with the rights of citizenship. He chose a course diametrically opposite. In an interview accorded to seven delegates from the National Union, in 1892, he told Charles Leonard to "go back and tell your people that I shall never give them anything. I shall never change my policy. And now let the storm burst." In 8894 there oocurred an incident which not only incensed the Uitlanders to fury, but called for British intervention. A number of British subjects resident in Commers. the Transvaal, in spite of their baving no political deeriag ises status, were commandeered to suppress a native aseatisse. rising. This led to a protest, and eventually a visit to Pretoria, from Sir Henry Loch the high commissioner. In the negotiations which followed, President Kruger at length agreed to extend " most favoured nation" privileges to British subjects in reference to compulsory military service, and five British subjects who had been sent as prisoners to the front were released. This result was not, however, achieved before President Kruger had done his utmost to induce Sir Henry Loch to promise some revision in favour of the Transvaal of the London Convention. Following this incident came a further alteration in the franchise law, making the franchise practically impossible to ohtain. At a banquet given in honour of the German emperor's birthday in Pretoria in January ${ }^{1895}$, Kruger referred in glowing terms to the fricndsbip of Germany for the Transvaal, which in the future was to be more firmly established than ever. This speech was public evidence of what was known to be going on behind oermen the scenes. The German consul at Pretoria at this Firmetba, juncture as a volatile, sanguine man, with visionary ideas of the important part Germany was to play in the future as the patron and ally of the South African Republic, and of the extent to which the Bismarckian policy might $g \circ$ in abetting an anti-British campaign. Whether he deceived himself or not, he led President Kruger and the Boers to believe that Germany was prepared to go to almost any lengtb in support of the Transvaal if any opportunity occurred. His influence was an undoubted factor in the Kruger policy of that time.

The Delagoa Bay railway being at length completed to Pretoria and Johannesburg, Kruger determined to take steps to hring

Dr-tis

Iacidiat.
the Rand traffic over it. The Netheriands railway nowron the Vaal river. Not to be cocrced in this manner, the Rand merchants proceeded to bring their goods on from the Vaal by wagon. Kruger then closed the drifts (or fords) on the river by whict the magons crossed. He only roopened them after the receipt of what was tantamount to an ultimatum on the subject from Great Britain.

In May 1895, on the urgent representations of Sir Henry Loch, the British government annexed Tongaland, including Kosi Bay, thus making the British and Portuguese boundaries conterminous on the coast of south-east Africa. In the previous month certain native territories between Tongaland and Swaziland had
been annered by Great Britain. The Boers, who had failed to fulfil the conditions under which they might have secured Kosi Bay, nevertheless resented this action, which peor pooer took away from them all chance of obtaining 2 tothe Soe seaport. Kruger telcgraphed that "this annexation Bloctod. caunot be regarded by this government otherwise than as directed against this republic. They must therefore regard it as an unfriendly act, against which they hereby protest." The protest was unheeded, the British government having realized the international complications that might ensue bad the Transvaal a port of its own.

At this time the Uiluanders formed a majority of the population, owned hali the land and nine-tentits of the property, and they were at least entitled to a hearing. When umundor in August 1895 they forwarded one of their many Refore petitions praying for redress of their grievances movemern and an extension of the franchise, their petition, with over 35,000 signatures, was rejected with jecrs and insult. One member of the Raad, during a debate in the chamber, called upon the Uitlanders to "come on and Gight" for their rights if they wanted them. The words were but the utterance of an individual Raad member, but they were only a shade less offensive than those used hy Kruger in 1892, and they too accurately describe the attitude of the Boer executive. In Septerber a meeting of the chamhers of mines and commerce was held at Johannesburg, and a letter on various matters of the greatest importance to the mining industry was addressed to the Boer executive. It was never vouchsaied an answer. What the next step should be was freely discussed. Soma urged an appeal to the Imperial government; but others, especially men of colonial birth and experience, objected that they would be leaning on a hroken reed. That men who had still the memory of Majuba in their bearts should have felt misgiving is not to be wondered at. At this juncture (October 1895) came overtures to the leading Uillanders from Cecil Rhodes, then prime minister of Cape Colony, and from Dr Jameson, keading to the Jameson Raid. To one or two men this scheme, subsequently known as 7 m the Jameson Plan, had been revealed in the pre "Jenerion vious June, but to the majority even of the small Prac."
group of leaders it was not known till Ostober or November 1895. The proposition came in a tempting hour. Rhodes and Jameson, after considerable delibcration, came to the conclusion that they might advantageously intervene between Kruger and the Uillanders. . They induced Alfred Beit, who was an old personal friond of Rhodes, and also largely interested in the Rand gold mines, to lend his co-operation. They then submitted their scheme to some of the Uitlander leaders. Betwoen them it was arranged that Jameson should gather a force of 800 men on the Transvaal border; that the Uitlanders should continue their agitation; and that, should no satisfactory concession be oblained from Kruger, a combined movement of armed forces should be made against the government. The arsenal at Pretoria was to be seized; the Uithanders in Johannesburg were to rise and hold the town. Jameson was to make a rapid march to Johannesburg. Meanwhile, in order to give Kruger a final chance of making concessions with a good grace, and for the purpose of stating the Uillander case to the world, Charles Leonard, as chairman of the National Union, issued a historic manifesto, which conduded as followe:-

We bave now only two questions to consider: (a) What do we want? (b) How shall we get it? I have stated plainly what our grievanccis ere. and I sbail answer with equal directness the question. What do we want? We want: (1) the establishment of this republic as a truc republic; (2) a gronduel or constitution which shall be framed by competent persons selected by representatives of the whole people and framed on lintes laid down by them-na constitution which shall be cafeguarded against hasty alteration: (3) an equitable franchise Law, and fair representation: (4) equality of the Dutch and English Languages: (5) responsibility to the heads of the great departments of the iegislature: (6) removal of religious disabilities; (7) independence of the courts of juktice, wish adequate and wecured remuneration of the judges; (8) liberal and comprebensive education;
(9) efficient civil service, with adequate provision for pay and pension: (10) free trade in South African products. That is what we want. There now remains the question which is to be put before you at the meeting of the Grth of january, viz. How shall we get it? To this question I shall expect from you an answer in plain terms nccording to your deliberate judgment.
The Jarmeson conspiracy lared no worse and no better than the great majority of conspiracies in history. It failed in its inmediate object. Jameson did not obtain more than 500 men. Johannesburg had the greatest difficulty in smugging in and distributing the rifles with which the insucgents were to be armed. The scheme to seize the Pretoria fort had to be abandoned, as at the time fixed Pretoria was thronged with Boers. Finally, to make confusion worse confounded, Jameson, becoming impatient of delay, in spite of roceiving direct messages from the leaders at Johannesburg telling bim on no account to move, marched into the Transvaal.
The policy of delay in the exccution of the plot which the Uithander leaders found themselves compelled to adopt was determined by a variety of causes. Apart from the difficulty of obtaining arms, a serious question arose at the eleventh bour which filled some of the Uitlanders with mistrust. The reform leaders in the Transvaal, down to and including the Johannesburg rising, had always recognized as a cardinal principle the malatenance of the independence of the state. From Cape Town it was now hinted that the movement in which Jameson was to co-operate should, in Rhodes's view, be carried out under the British flag. A meeting of Uitlander leaders was hastily summoned on the 2 jth of December. Two messengers were that night despatched to interview Rhodes, who then gave the assurance that the flag question might be left to a plebiscite of the inhabitants of the Transval' (sec Blae-book, 1897, 165, p. 21). It was determiped nevertheicss to postpone action; however, on the 29th of December, Jameson started, and the news of his having done so reached Johannesburg from outside sources. A number of leading citizens were at once formed into a reform committee. In the absence of cedmase of Charles Leonard, who had been sent as one of the dencoue delegates to Cape Town 10 interview Rhodes, the largest mining firm on the Rand, was elected chairman. Philips had been for three years in succession chairman of the chamber of mines, and he had persistently for several years tried to induce Kruger to take a reasomable view of the requirements of the industry. Under the supervision of the reform cornmittee, such arms as had been smuggled in were distributed, and Colonel Frank Rhodes was given charge of the armed men A large body of police was enrolled, and order was maintained croughout the town. On the 2nd of January iggo Jameson, whe found himself at Doornkop in a position surrounded by Boers, surrendered. Jameson and his men were conveyed to Pretoria as prisoners, and subsequently handed over to the laigh conmiesioner (Sir Hercules Robinson, who had succeeded Sir Fienry Loch in June 1895).

Significant of the attitude of Cermany-whose "flirtation" with the Trinsvaal has been noted-was an open telegram sent by the emperor William II. the day after the surrender of Trecamore Jameson congratulating Kruger that "without Tekgrati. appealing to the help of friendly powers" he had repelled the raiders. The British government rejoined by commissioning a flying squadron and by calling attention to the London Convention, reserving the supervision of the foreign relations of the Transvaal to Great Britain. In Johannes-
${ }^{1}$ Jameson, speakiog at Durban on the 9th of August 19 ro, derlared that the raid was not racial in the sense usually understood. but an eflort towards federation. During the raid he cerried a lexter confaining the names of the proposed new ewecutive. and had che raid sacceeded it was proposed to make General Lukias Meyer (d. 1002) president. Jameson subsequently explhined that Rhodes and he in designating " an eminent Dutchman " as president of "the new provincial republic" had had no communication with Mejer on the subject. Neither he (Jameson) nor Rhodes had any krowiedere of a proposal. to which General Botha had publicly referred that Charles Leonard should be president. (See the Cape TEmes Wally Edittos. Sept. 7, 1910, p. 15.)
burg meatwhile the Kruger government regaided control. The whole of the reform committee (with the exception of a few who fled the country) were arrested on a charge of high treason and imprisoned in Pretoria. In April, at the trial, the four leaders-Lionel Phillips, Frank Rhodes, J. H. Hammond and George Farrar, who in conjunction with Charles Leonard had made the arrangements with Jameson-were sentenced to death, the sentence being after some months' imprisonment commuted to a fine of $\{15,000$ each. The rest of the committee were each sentenced to two years' imprisonment, $\{2000$ fiwe or another year's imprisomment, and three years' banishment. This sentence, after a month's incarceration, was also commuted. The fine was exacted, and the prisoners, with the exception of Woolls Sampson and W. D. (Karri) Davies, vere liberated on undertaking to abstain from politics for three years in lieu of banishment. Messrs Sampson and Davies, refusing to appeal to the executive for a reconsideration of their sentence, were retained for over a year.
Sir Hercules Robinson was unfortunately in feebie health at the time, and baving reached Pretoria on the 4 th of January, he had to conduct negotiations under great physical the Surdisadvantage. He had no sooner learnt of the raid reeter of in Cape Town than he issued a proclamation through dohamase Sir Jacobus de Wet, the British resident at Pretoria, Dorz. warning all British subjects in Johannesburg or elsewhere from aiding and abetting Jameson. This was freely distributed amang the public of Johannesburg. While in Pretoria the high commissioner in the first instance addressed himself to inducing Johannesburg to lay down its arms. He telegraphed to the reform committee that Kruger had insisted "that Johannesburg must lay down arms unconditionally as a precedent to any discussions and consideration of grievances." On the following day, the 7th of January, Sir Hercules telegraphed again chrough the British agent, who was then at Johannesburg, saying: "That if the Uitlaiders do not comply with my requcst they will forfeit all claims to sympathy from Her Majesty's government and from British subjects throughout the world, as the lives of Jameson and the prisoners are now practically in their hands." The two thousand odd riles which bad been distributed among the Uitlanders were then given up. With regand to the inducements to this step urged apon the reform committee by the high commissioner, it is only necessary to say with reference to the first that the grievances never were considered, and with reference to the second it subsequently appeared that one of the conditions of the surrender of Jameson's force at Doorakop was that the lives of the men should be spared. It was after the Johannesburg disarmament that Kruger had sixty-four members of the reform committee arrested, announcing at the same time that his motto *ould be "Forget and lorgive." Sir Hercules Robioson; in response to a message from Mr Chamberlain, who had been secretary of state for the colonies since July 1895, urging him to use firm language in reference to reasonable concessions, replied that be considered the moment inopportune, and on the 15 th of January he left for Cape Town. In 1897 he was succeeded in the high commissionership by Sir Alfred Milner.

In the period which intervened between the Jameson raid and the outbreak of the war in October 1899 President Kruger's administration continued to be what it had been; that is to say, it was not merely bad, but it got progressively worse. His conduct immediately after Johannesburg had given up its arms, and while the reform committee were in prison, was distinctly disingenuous. Instead of discussing grievances, as belore the Johannesburg disarmament he had led the high commissioner to believe was his intention, he procecded to request the withdrawal of the London Convention, because, among other things, "it is injurious to dignity of independent repuhlic." When Kruger found that no concession was to be wrung from the British government, he proceeded, instead of considering grievances, to add considerably to tbeir number. The Aliens Expalsion
and Aliens Immigration Laws, as well as the new Press Law, were passed in the latter part of 1896 .

In 1897 a decision of Chief Justice Kotze was overruled by an act of the volksraad. This led to a strong protest from the judges of the high court, and eventually led to the dismissal of the chief justice, who had held that office for over twenty years, and during the whole of that time had been a loyal and patriolic friend to his country. An industrial commission appointed during this year hy President Kruger fared no better than the high court had done. The commission was deputed to inquire into and report on certain of the grievances adversely affecting the gold industry. Its constitution for this purpose was anomalous, as it consisted almost entirely of Transvaal officials whose knowledge of the requirements of the industry was scanty. In spite of this fact, however, the commission reported in favour of reform in various directions. They urged, among other things, tue enforcement of the liquor law, more police protection, the abolition of the dynamite concession, and that foodstufis should be duty free. These recommendations made by President Kruger's own nominces were practically ignored. In 1898, to strengthen his relations with foreign powers, Kruger sent the state sceretary, Dr Leyds, ${ }^{1}$ to Europe as minister plenipotentiary, his place on the Transvaal executive being taken by Mr Reitz, the ex-president of the Free State. At bome Kruger continued as obdurate as ever. In January $\mathbf{1 8 9 9}$ Mr Chamberhin pointed out in a despatch to President Kruger that the dynamite monopoly constituted a breach of the London Convention. To help the Transvaal government out of its difficulty, and to make one more effort towards conciliation, the financial houses of Johannesburg offered to lend the Transvaal government $\{600,000$ wherewith to buy out the dynamite company, and so terminate the scandal and bring some relief to the industry. The offer was not accepted. Meantime Sir Alfred Milner had also endeavoured to induce the Transvaal government to grant the necessary reforms, but his efforts were equally unavailing (see Mruner, Viscount). In March the Uitlanders, hopeless of ever obtaining redress from President Kruger, weary of sending petitions to the Raad only to be jeered at, determined to invoke intervention if nothing else could avail, and forwarded a petition to Perkion to Queen Victoria. This petilion, the outcome of atre Queen. the second Uitlander movement for reform, was signed by 21,000 British subjects, and stated the Uit lander position at considerable length. The following extract conveys its general tenor:-
The condition of your Majesty's uubjects in this state has become well-nigh intolerable. The acknowledged and admitted grievances, of which your Majesty's subjects complained prior to 1895. not only are not redressed, but exist to-day in an aggravated form. They are still deprived of all political rights, they are denied any voice in the government of the country, they are taxed far above the requirements of the country, the revenue of which is misapplied and devoted to objects which keep alive a continuous and wellfounded fecling of irritation, without in any way advancing the general interest of the state. Maladminisiration and peculation of public moneys go hand in hand, without any vigorous measures being adopted to put a stop to the scandal. The education of Uitlander children is made subject to impossible conditions. The police afford no adequate protection to the lives and property of the inhabitants of Johannesburg: they are rather a source of danger to the peace and safety of the Uitlander population.
In response to this appeal, Mr Chamberlain, in a despatch dated the roth of May, proposed a conference at Pretoria. Six days before Sir Alfred Milner had telegraphed to London a summary of the situation, comparing the position of the Uitanders to that of helots and declaring the case for intervention to be overwheiming. Neither of these despatches was made public at the time. But on the very day Mr Chambetlain wrote his despatch the friends of the Transvaal government in Cape Colony and the Orange Free State invited Sir
${ }^{1}$ Dr W. J. Leyds, a Hollander born in Java in 1859, went out to the Transvaal in 1884 as attorney gencral and was, in 1887, made government commiscioner for the Netherlands (S. A.) railway. In i8go he became state secretary and in that position was regaried as Kruger's light-hand man

Alfred Milner to meet President Kruger at Bloemfontein, hoping to be able to exert pressure on both parties and to arrange a settlement as favourable as possible 10 anomthe Transvaal. The conference opened on the forlete 3 ist of May and closed on the sth of June. It no Cemfereas. sooner opened than it was evident that Kruger had come to obtain, not to grant, concessions. He offered, it is true, a soven years' franchise law in place of the five years' Iranchise which Sir Alfred Milner asked for. But apart from the relief suggested being entirely inadequate, it was only to be given on certain conditions, one of which was that all future disputes which might arise between the Transval and the Imperial government should be referred to court of arbitration, of which the president should be a foreigner. No arrangement was possible on such terms. Meanwhile feeling was running high at Johannesburg and throughout South Africa. Meetings were held in all the large towns, at which resolutions were passed declaring that no solution of the Transvaal question would be acceptable which did not provide for equal political rights for all white men. Sir Alfred Milner urged the home government strongly to insist upon a minimum of reform, and primarily the five years' franchise; and Mr Chamberlain, backed by the cabinet, adopted the policy of the hugh commissioner.

- (A. P. H.; F. R. C.)
D. The Crisis of 1809 -A state of extreme diplomatic tension lasted all the summer. The British public, in whom there had always been the latent desire to retrieve the surrender to the Boers which had followed the disaster at Majuba, were at last awakened by the ministerialist press to the necessity of vindicating British influence in South Africa, and the government soon found that, in spite of a highly articulate Radical minority, the feeling of the country was overwheimingly behind them. It was not then realized either by the public or the government how serioualy, and with what considerable justification, the Boers believed in their ability. if necessary, to sweep the British " into the sea." President Kruger had every expectation of large reinforcements from the Dutch in the two British colonies; he believed that, whatever happened, Europe would not allow Boer independence to be destroyed, and he had assured himself of the adhesion of the Orange Free State, though it was not till the very last moment that President Steyn formally notified Sir Alfred Milner of this fact. Tho Boers profoundly despised the military power of Great Britain, and there was no reason why they, any more than Germany or France, should contemplate the possibility of the empire standing loget her as a whole in such a cause. In Engiand, on the other hand, it was thought by most people that if a firm enougt attitude were adopted Mir Kruger would "climh down," and the effect of this error was shown partly in the whole course of the negotiations, partly in the tone personally adopted hy Mr Chamberlain. It was only later that it was seen that if Great Britain intended effectually to champion the Uithander cause, the moment for a test of strength had inevitably arrived Negotiations could only bring the conflict a little nearer, delay it a little longer, or supply an opportunity to either side to justify its action in the eyes of the world. Tbe conditions of the problem were such that unless Great Britain were to accept a humiliating rebuff, any correspondence, however skilfully conducted, was bound to bring into greater prominence the standing causes of offence between the two sides. The exchange of despatches soon led to a complete impasse. The peraistent attempt of the South African Republic to assert its full independence, culminating in a Cormal denial of British suzeratity, made it additionally incumbent on Creat Britain to carry its point as to the Uillander grievances, while, from Mr Kiruger's point of view, the admission of the Uitlanders to real political rights meant the doom of his oligarchical régime, and apprared in the light of a direct menace to Boer supremacy. The franchise, again, was an internal affair, in which the cortvention Rave Great Britain no right to interfere, while if Creat Britain relied on certain definite breaches of the convention, satisfaction for which was sought in the first place in such a guarantec of
amendmear as the Uithander franchin monld involve, the Boer answer was an offer of arbituation, 2 course which Greal Britain could not accept without adsaitting the South African Republic to the position of an equal. Here was material enough for an expiosion, even if personal mistinderstandings and aggravations, adding fael to the fire, had not naturally occurred (or even been deliberately plotted) during the negociationa But the trath was that the Boers thought they stood to gain by fighting, whice the British, though not expecling war, and acting up till the lest month or $s 0$ on the assumption that serious military perparations were either unnecessary or sufficiently unlikely to be recesmary to make them politically inexpedient, had with oo less confidence committed thernselves to a policy which -as impracticable on peacefol terms.

After July the tactics of the Boer esecutive were simply directed towands putting off a crisis till the beginning of October, when the grass would be growing on the veld, and meanwhile towards doing all they could in their despatches to put the blame on Great Britain. At last they drafted, on the 27th of September, an ultimstum to the British government. But, although ready drafted, many circumstances conspired to delay its preseatation. Meanwhile, the British war office began to act. Certain departmental details were despatched to Soush Africa to forma a morking nucleus for military bases, and early in September the cabinet sanctioned the despetch to Natal from India of a mixed force, 5600 atroag, while two bathations were ordered to South Africa from the Mediterrancan. Sir George White was nominated to the chief command of the forces in Natal, and sailed on the 16th of September, while active preparations were set on foot in England to prepare agiost the necessity of despatching an army corps to Cape Town, in which case the chicf commaind was to be vested in Sir Redvers Baller. Fortunately, although the draft of an ultirantum was lying in the state secretary's office in Pretoria, the Boors, unprepered in departmental arrangements which are mecoseary in harge military operations, were unable to take the field with the promptitude that the situation demanded. They conseqsently forfited many of the advantages of the initiative:
The military strength of the two republics was practically an unknown quantity. It was certain that, since the troublous times of 1896 , the Transvalal had greatly increased its armaments; but at their best, except by a very few,' the Boers wers looked upon by British military experts as a disarganized rabble, thich, white contsining many individual first-class marksmen, would be incapable of maintaining a prolonged resistance gerinst a disciplined army. As was to be subsoquently shown, the hoatilities were not confined to opposition from the. fighting streagth of the two litele republics alone; the British had to hace Dutch opposition in their own colonies. The tatal feghting strength of the Boer republics is difficut to ascertain enactly. Ceneral Botha stated that there were 83,000 burghers from 15 to 65 years of age on the commando lists. Lond Eiscluener pat the total number of combratants on the Boer side at 95,000 (Cd. 1790, p. 13). The British official History of the Wer gave the number as 87,000 ; another calculation, based on the number knlied, taken prisoner and surrendered, made the total 90,000 . In the second (Igoi) rebellion of the Cape Datch about 8000 joined the burgher forces. The nomber of Bocrs in the field at any one period was probably litule more than 40,000 . Bat the lact that it was to a large erient a serugele with a nation in arms doubled the numbers of the force that the Transvaal executive was able to draw upon. The bull of the Dutch levies were organized on the burgher ystem-that is, each district was furnished with a commandant, Tho had under him field-cornets and assistant field-cornets, tho admiaistered the fighting capacity of the district. Each feld-cornet, who, with the commandant, was a paid official of the state, was responsible for the arms, equipment and attendance of his commando.
'Lowd Wolseley foresaw the strength of the Boers Writing - the 13th of September 18 gg he seid, "Il this war comes off it vitit be the most grious war England has ever had" (sce Militory Live of ill Dube of Cambridge. ii. 421).

The plan of ampaign which found favour with the Boers, when they determined to put their differences with Great Britaia to the test by the ordeal of the sword, was to attack ad the principal Britisir towns adjacent to their own borders; at the same time to despatch a field army of the necessary dimensioss to invade and reduce Natal, where the largest British garrison existed. It is not too much to suppose that the execulive in Pretoria had calculated that the occupation of Durban mould inspire the entire Dutch nation with a spirit of unanimity which would eventually wrest South Africa from the British. On paper the scheme had everything to recommend it as the expedient most likely to bring about the desired end. But the departmental executive could not launch the Natal invading force as early as had been anticipated, and it was not until the gth of October that the ultimatum was presented to Sir (then Mr) Conyngham Greene, the British agent at Protoria. The schoduled demands were as follow:-
"o. That all points of mutual difference shall he regulated hy the friendly course of arbitration, or hy what- 7 he ever amicable way may he agreed upon by the uniante. government with Her Majesty's Government.
" b. That the troops on the borders of this republic shall be instantly withdrawn.
" c. That all reinforcements of troops which have arrived in South Africa since the $15 t$ of June 1899 shall be rcmoved from South Africa within a reasonable time, to be agreed upon with this government, and with a mutual assurance and guarastee on the part of this government that no attack upon or hostilities against any portion of the possessions of the British Government shall be made by the republic during further megotiations within a period of time to be subsequently agreed upon between the povernments, and this government will, on compliance therewith, be prepared to withdraw the armed burghers of this republic from the borders.
"d. That Her Majesty's troops now on the high seas shall not be landed in any part of South Africa."

To these demands the Transvad government required an answer within 48 hours.

There could be only one reply, and on Wednesday, the ith of October 1899, at five o'clock p.m., a state of war existed between the British govermment and the two Boer republics. On the following day the Boer attack on an amoured train at Kraaipan, a railway station in Cape Colony soath of Malching and close to the western (rontier of the Transvaal, witnessed the first hostile shot of a bloody war, destined to plunge South Africa into strife for two years and a hall.
(H. Сп.)
E. The War of $\mathbf{r} 890-1902$. -For the purposes of history the South African War may be conveniently divided into five distinct periods. The first comprises the Boer invasion, terminating with the relief of Ladysmith on the 28th of February. The second, the period
of Boer organized resistance, may be said to have finished with the occupation of Komati Poort in October 1900 (a monith after Lord Roberts's formal annexation of the Transvaal) and the flight of President Kruger. The third may be characterized as a period of transition; it marks the adoption in earnest of a guerrilla policy on the part of the enemy, and an uncertain casting about on the part of the British for a defnite system with which to grapple with an unforeseen development. This phase endured up to the failure of the Middelburg negotiations in March 1go1. The next stage was that which saw the slow building up of the blockbouse system and the institution of small punitive columns, and may be considered to have extended until the close of 1901. The fifth, and last period-which, after all ot her expedients had failed, finally brought the residue of uncaptured and unsurrendered hurghers to submission-was the final development of the blockhouse system, wedded to the institution of systematic "driving" of given areas, which operations were in force untid the 3 1st of May 1902, when peace was ratified at Pretorin.

The first of these periods saw the severest fighting of the
campaign. It opened with the investment of Mafeking by a Transvaal force under P. A. Cronje and the envelopment of Kimberley by Free State commandos under General Opcrations a Natas. Wessels. But these were minor operations. The main Boer effort was made in Natal, where their forces wore commanded by P. J. Joubert, while Lieut.-Gencral Sir George White was the British commander-in-chief. The northern part of Natal presented two faces of a triangle to the two enemies, the short base being formed by the Tugela river. Close to the head of the triangle at Dundee and Glencee was posted a small British force under Majot-General Sir W. Penn Symons. Against this force there advanced a Boer force under Lukas Meyer from the east, and, more slowly, the foremost portion of the main Boer army from the north, while at the same time other Transvaalers descended upon the railway between Glencoe and Ladysmith, and the Free Staters from the passes of the Drakensberg advanced toward3 Ladysmith, the British centre of operations at which the reinforcements sent from India gathered. On the 20th of October the Dundee brigade vigorously and successfully attacked Tahna Hill, and drove back Lukas Meyer, but this success was dearly hought. Symons was mortally wounded, and 226 officers and men were killed and wounded. Half the mounted men lost their way in altempting to pass the enemy's flank and were taken, and the brigade, threatened to its left rear by Joubert's advance and by the force that had seized the railway, only escaped being enveloped by retreating upon Ladysmith, where it arrived in an exhausted state on the 26th of October. Mcanwhile Sir George White had discovered the Boer force on the railway, and, though anxious on account of the advance of the Free Staters, on the 2rst, stinnulated by the news of Talana, he sent out a force of all arms under General (Sir John) French to drive the Boers from Elandslaagte and so to clear Symons's line of retreat. This was accomplished by French and his subordinate, Colonel (Sir) Lan Hamilton, in the action of Elandslagte on the 215 l of October (British losses, 258 all ranks). But on the 22nd the Free Staters' advance caused the victorious force to be recalled to Ladysmith, and the third action north of that town, Rietfontein (24th), was anly a demonstration to cover the retircment of the Dundee force. By the 2gth of October all the British forces at the front and their reinforcements bad fallen in on Ladysmith, which the Transvaalers on the north and east and the Free Staters on the west side began to invest. Before the junction of the two allied wings was complete Sir George White attempted by a gencral attack to break up their linc. The result of this decision was the battle of Lombard's Kop, outside Ladysmith, in which the whole of the avalable British force was engaged. The engagement was disastrous to the British, who had undertaken far too comprehensive an attack, and the Natal Field Force was obliged to fall back upon Ladysmith with the loss of 1500 men , including a large number of prisoners belonging to the left column under Lieut.-ColonelF.R.C. Carleton, who were cut off at Nicholson's Nek and forced to surnender by a mixed force of Transvaalers and Free Staters under Christian de Wet. From that day the role of the Natal Field Force was changed from that of a mobile field army into that of a garrison, and two days later it was completely isolated, but not before General French had succeeded in escaping south by train, and the naval authorities had been induced by Sir George White's urgent appeals to send into the town a naval brigade with a few guns of sufficient range and calibre to cope with the heavy position artillery which Joubert was now able to bring into action against the town.

General Sir Redvers Buller, who had been appointed to the supreme command in South Airica as soon as it was perccived

Bulfer's
Arrtval. that war was imminent-his force being one army corps in three divisions, the divisional generals bcing Lord Methuen, Sir W. Gatacre and Sir C. F. Cleryarrived in Cape Town, abead of his troops, on the day following Lombard's Kop. The situation which presented itself was delicate in the extreme. In Natal practically the whole of the avail. able defence force was swallowed up by the steady suecess of the invasion; on the western frontice two British towns were isolated
and besieged, and Boer commandos were on the point of invading Cape Colony, where the Dutch population seemed on the verge of rebellion. The army corps was about to arrive, practically as a whole unit, in Soutb Africa; but it was evident that the exigencics of the situation, and the widely divided areas of invasion, would at least defer the execution of the plan which biad been formed for an invasion of the Orange Free State from Cape Colony. The first duty was to effect the relief of the British forces which had been rendered immobile, and another duty imposed by political circumstances was to relieve Kimberley (where Cecil Rhodes was), while the prospect of rebellion forbade the complete denudation of the central part of the colony. Thus Sir Redvers Buller had no choice but to disintegrate the army corps. Clery and some hrigades were sent to Natal; Gatacre with less than a brigade, instead of a division, was despatched to Queenstown, Cape Colony; while Lord Methuen, with a division, was sent off to relieve Kimberley. As November wore on, the situation did not improve. Cape Colony was invaded; while in Natal a flying column of Boers, pushing down from the Tugela, for a short time isolated the newlytarrived force under General (Sir) H. J. T. Hildyard, which opposed Joubert's advance on Pictermarilzburg at Estcourt. The siluation in Natal seemed so serious that on the 2 2nd of November Sir Redvers Buller left Cape Town and sailed for Durban. In the meantime Lord Methuen had commenced his march to the reliel of Kimberley. He encountered resistance at Betmont on the 23rd, hut attacking resolutcly he drove the Boers out of their strong fullures of positions. Two days later he won another action at Metbsen Enslin. Still persevering he moved on to the Modder, andGaiacre. where he was seriously opposed by De la Rey and P. A. Cronje, the latter having posted down from Mafeking with 2000 men and arrived on the previous night. The Boers, who beld a river line, kept the British altack at bay all day, but eventually fell back, relinquishing the position after dark, as their right had been turned by General Pole-Carew's brigade. It was a iong and wearing fight, in which the British lost 485 killed and wounded, and what was more serious, Lord Methuen (bimself wounded) found that his force had exhausted its forward momentum, and that he would have to collect sapplies and reinforcements on the Modder before fighting his next battle. The extent of the operations and the gravity of the situation now began to be felt is England; every available man was calied up from the reserves, and the war office made what at the time appeared to be adequate provision for the waste which it was seen wauld occur. On the 3oth of November the mobilization of a sixth division was ordered, offers of colonial aid were accepted, and every facility provided for local recruiting in the South African ports. Thus in tbe carly duys of December confidence was considerally restored. Buller was arranging for the relief of Ladysmith, which had already shown its spirit by two successful sorties against the besiegers' batteries. In every theatre the British strength was consolidating. But the full significance of the situation presented by these two small nations in arms had not yet been appreciated. The confidence restored by the lull during the early part of December was destined to be roughly shattered. On the toth of December Catacre essayed a night march and attack upon the enemy's position at Stormberg, and, misled by his guides in unknown ground, was himselí surprised and forced to return with a loss of 719. On the following day Lord Methuen delivered an allack upon Cronje's position between the Upper Modder river and the Kimberley road, a line of kopjes called Spytfontein and Magersfontcin. In a night attack on Magersfontein bill the llighiapd brigade came under heavy fire while still in asscmbly formation, and lost its general, A.G. Wauchope, and 750 men , and in the battle by day which followed the other brigades were unable to retricve the failure, the total losses amounting to about 950 . But even this could be suffered with cquanimity, since Buller was about to bring his own force into play, and Buller, it was comfidently supposed, would not fail. He had collected at Chieveley in Natal a brigade of mounted men, foar brigades of infantry and six batteries of artillery, and I he centied wikh him the trust plike of the army and the nation.

On the 15 th of Decrember Buller made his efiort and faited. Behind the Tugela at Colenso were Louis Botha's forcen mugre covering the siege of Ladysmith, and, imperfectly Ferive. acquainted with the topography, Buller sent a Lard Raberts force to turn Botha's left, in conjunction with a semon. frontal attack. But the fank attack became entangled in mass in a loop of the river and suffered heavily, and two batteries that formed part of the frontal attack came into action within a few hundred yards of unsuspected Boer creaches, with the result that ten guns were lost, as well as in all some itoo men. Buller then gave up the figh. The full malure of the failure was not realized by the British public, nor the spicit in which the general had received the finding of fortune. He loat beart, and actually suggested to White the surrender of Ladysmith, believing this to be inevitable and desiring to cover White's responsibility in that event with his own authority; but White replied that he did not propose to surrender, and the cabinet at horee, aware of Buller's uespondency, appointed Field Marshal Lord Roberts to the supreme command, with MajorGeneral Lord Kitchener as his cbief of staff. A wave of military enthusiasm arose throughout the empire, and as the formation of a seventh division practically drained the mother-country of trained men, a scheme for the employment of amatear soldiers was formulated, resulting in the despatch of Imperial Yeomanry and Volunteer contingents, which proved one of the most striking features of the Soath African campaign. Pending the arrival of Lord Roberts and reinforcements, the situation in South Alrica remaimed at a deadlock: the tbree besieged towns-Mafeking, Kimberky and Ladysmitb-still held theit own, but no beadway was made by the relief columns; all they could do was to stand on the defensive. The only bright spot, as far as the British were concerned, was to be found in northern Cape Colony, where Cemeral French, with two cavalry brigades and details, by his skilful tactios and wonderful activity kept at arm's length a superior force of the enemy in the vicinity of Colesberg, an achievement the more noteworthy since he had pitted against bim both De la Rey and De Wet, two of the thetee men of military genius produced by the war on the Boer side. On the 6th of January the Boers in Natal made a desperate attempt to storm Ladysmith. The garrison, though already weakened by privation and sictuess, made a stubborn resistance, and after one of the fiercest engagements of the war, repulsed the attack at Caesar's Camp and Wagon Hill with severe loss to the enemy, itself having 500 casualtics.

When Lord Roberts arrived in Cape Town on the roth of January 1900 the three garrisons were still invested, and the relieving forces were still meintaining their role of passive resistance, while at the same time restraining the Duteh in Cape Colony. The commander-in-chief's first duty was to create a field army ert of the tangle of units in Cape Colony. In the meantime, Sir Redvers Builer, who had been reinlorced by Sir Charles Warren and the sth division, essayed a second attempt to cross the Tugek, by turning the Boer left. But much time was consumed and the plan underwent several modifications before its execuLion began in earaest on the 16 h of January. Warren was placed is command of the main body, which crossed the Tugela at Trichardt's Drift on the igth and 18th. The mounted troops -ane-sengaged a Boer force north-west of the point of general right wheel of the rorces of the fugela; pivoting on Trichardi's Drift. But meantime the nablie enemy, whose origina! dank had been turned, had gathored at the new centre of gravity, and the upshot of several diys fighting was the serreal of the British. They had penetrated the enemy's right centre by the scizure of Spion Kop, bui the force there became the target for the concentrated aitarks of the Boers, and, after sufiering heavily, was withdravn (Jan. 24, 1900); चjich a loss of $1 ; 00$ men.

Dy the rst of February Lord Roberts liad matured his plans and begus to prepare for their exccution. On the 3rd of February he oudered a demonstration against the right of the Boer We ervered a demonstration against the right of the Boer
of Genenal French and the cavalry from before Colesberg, and the concentration of his army at Modder River, disregarding another set-back in Natal to Sir Redvers Bulker, who had against his advice made a third attempt to relieve Ladysmith on the sth of February, and failed to make good the purchose which be secured across the Tugela (Vaal Krantr).

Lord Roberts's plan was first to concentrate to his left, taking every measure to induce the Boers to believe that the original scheme of invasion by the centre would now be resumed, and in this purpose be succeeded so well that his freld army with the necessary transport for a cross-country march was assembled between the Orange and the Modder without serious mishap. Cronje at the new centre of gravity was not reinforced, all available Boers drawing down towards Colesberg. The concentration effected, Cronje still believed that the relief of Kimberley was the object of the gathering behind Modder River, and thercfore held on to his Magersfontein kopje. The relief of Kimberley was indeed urgent, for dissensions between Rhodes and the military authorities had become acute. But to this part of the task only the cavalry division assembled under French was assigned. The army itself was to force Cronje into the open and then advance on Bloemfontein from the west. Roberts began his operations on the inth of Fcbruary. French started from Ramdara (near Graspan) eastward on that day, intending to make a wide swecp round Cronje's immobile army. Skirmishing with De Wet in the first stages of their ride, the cavalry brigades crossed the Modder at Klip Drift on the rith. Cronje sent only detach. ments to oppose them, hut these detachments were brokea through by a sword-in-hand charge of the whole division, and Kimbertey was relieved on the isth. The infantry, meeting with great difficulties in its crossing of the Riet at Waterval owing to the country and its own unwieldy transport, followed $1 \frac{1}{}$ to 2 days later. But Cronje had now realized his danger, and slipped away westward behind French and in peardeberes.
front of the leading infantry at Klip Drift. This was defected by Kitchener westward to follow up the Boer rearguard, and after some delay the remainder of the infantry. at first fronting northwards, swerved westward likewise, while French from Kimberley, with such of his men as he could mount on serviceable horses, headed off Cronje in the north-west. The result, after one premature and costly assault on Cronje's lines had been made by Kilchener, was the surrender of 4000 Boets at Pazrdeberg with their leader on the 2oth of February, the annivetsary of Majuba. At the same moment came in news at last of the relief of Ladysmith.

It was part of Roberts's purpose to relieve the pressure in Natal by his own operations. Buller began his fourth advance on the 14th of February, and though this was pethefor checked the foothold gained was not abandoned, Reiteforman and a fifth and last attempt (Pieter's Hill) was successiful. Ladysmith was relieved on the 28th of February. It had fared worst of all the beleaguered garrisons, and its 22,000 inhabitants were almost at their last gasp when relief came. The casualties from shell-fire had been few, but those from sickness were very heavy. Buller's operations, too, had cost at Colenso itco men, at Spion Kop 1700, at Vaalkrantz 400, and now in the last long-drawn effort 1600 more-over 5000 in all. But the tide of war had changed. The Natal invaders fell back to the mountains which enclose the north of the colony; Oliver and Scboeman retired from Cape Colony before the small forces of Gatacre and Clements; and the presidenis of the republics, realizing that the British Empire was capable of more resistance than they had calculated upon, put formard feelers aiming at the restoration of the status quo before the war. These proposals were rejected by Lord Salisbury: there could be no end now hut a complete destruction of the Boer power.

The surrender of Cronje and the relief of Ladysmith for the time being paralysed the Boer resistance. Two half-hrarted attempts were made on the ;ith and poth of March, at Poplar Grove and Driefontein, to stem Lord Roberts's advance upon

Bloemfontein, President Kruger himself arriving on the scene to give confidence to his burghers; but the demoralization was

Captere of
Bloment sometefic so great that nether the military genius of the few of March 1900 Lord Roberts's army marched into the Free State capital. This great move was persevered in and eccomplished, in spite of the fact that at the very outset of the cross-country march (Fetruary 13) the great body of transport which had been collected at Ramdam had been cut off by De Wet (who had stayed on the Riet after French had shaken him off). It was therefore only made possible at all by reducing the rations of the fighting men to a minimum and by undertaking the risks of changing the line of communication three times. Naturally and necessarily the capture of Bloemfontein was followed by a period of reaction. It was not until the 2gth of March that the new railway communication recommenced to feed the army. In the meantine rebellion had broken out in the Prieska district of Cape Colony, which was promptly quelled by Lord Kitchener. The halt at Bloemfontein was marked by the publication of proclamations, offering protection to the burghers, which, however, the invaders had not yet the power to fulfi. The enforced halt was unfortunate; it not only resulted in a bad outbreak of enteric, but it gave the Boers time to recuperate, and by the beginning of April they again took the initiative. The death of their commandantgeneral, Piet Joubert, on the 28 th of March, seemed to mark a change in the fortunes of the Republican army. Christian De Wet, who had first come into prominence as the captor of Lord Roberts's convoy at Waterval, and was now operating east and south-west ni Bloemfontein in order to counteract the influence of Roberts's numerous flying columns which rode hither and thither oflering peace, added to his laurels by ambushing Broadwood's mounted brigade and horse artillery at Sannah's Post, just outside Bloemfontein, on the 3 ist of March. Four days later he reduced a detachment at Reddersburg, and then went south and invested Colonel Dalgety and a mixed force at Wepener, which was relieved after ten days by Gencral Hunter's. Ladysmith division, brought round to Aliwal North from Natal.

These successes, if they retarded Roberts's progress, at least enabled him to rearrange his forces in accordance with the new

Relivi of
 Maflders

capital. The army moved and three infantry divisions (the cavalry commanded by French, and the infantry divisions by Generals Tucker, PoleCarew and Ian Hamilton). Rundle's division took the right of the advance; Methuen and Hunter moving from Kimberley, formed the left. Kelly Kenny, Colvile and Chermside held the communications based on Blocmfontcin. A flying column dctached from Hunter, under Mahon, in conjunction with Colonel H. C. O. Plumer's Rhodesian levies from the north, on the rith of May relieved Mafcking, where Colonel (Lieut-General Sir) R.S.S. Baden-Powell had throughout shown a bold front and by his unconventional gaiety as well as his military measures had held off the assault until the last. The same day the Natal Field Force under Buller moved up into the Biggarsberg and occupied Dundec. On the roth of May Lord Roberts had crossed the Sand River; on the 12th of May he entered Kroonstad. After a halt of eight days at Kroonstad, the main army again moved forward, and, meeting but small resistance, marched wit hout a halt into Johanoesburg, which was occupied on the $31 s t$ of May,

Conderie

 the Orange Free State having been formally annexed by proclamation three days earlier. On the 3oth of May President Kruger fled with the state archives, taking up his residence at Waterval Boven on the Komati Poort line. The gold mines were now securely in the possession of the British, and on the sth of Junc Lord Roberts's army occupied the capital of the Transvaal practically without resistance, setting frec about 3000 British prisoners of war detained there.It had been anticipated that the occupation of both the
capitals would have brought the hostilities to a close, but this was not the case, and though after the 5 th of June regular resistance was at an end, the army of occupation had still to face two years of almost unprecedented partisan warfare. On the 8th of June Sir Redvers Buller,

Ding

 who had made a long halt after the relief of Ladysmith and reorganized his army and its line of communication, forced his way over Alleman's Nek, and on the following day occupied Laing's Nek, the Natal gate to the Transvaal, while the field marshal fought a widespread battie against Botha, De la Rey and Kemp at Diamond Hill, 20 m . east of Pretoria. The object of this action was to push back the Boers from the neighbourhood of Pretoria, but no sooner was this done than the north-western Transvaal became active, in spite of Hunter's and Baden-Powell's advance from Mafeking through this district. As the British line of operations now extended eastward from Pretoria, the advance of these Boers to the Magaliesberg threatened their rearward communications, and as Buller had moved far moro slowly than the main army there was not as yet an alternative line through Natal. Most serious of all was the pressure between Bloemfontein and the Vaal, where the Free Staters, under De Wet and other commanders, had initiated the guerrill as soon as Botha and the Transvaalers retired over the Vaal and ceased to defend them by regular operations. Large forces had beem left behind during tbe advance on Johannesburg for the protection of the milway and the conquered terri-Primiloo's tory, and these were now reinforced from Kimberley Surreader. and elsewhere as well as from detachments of the main army. These, under Sir Archibald Hunter and Sir Leslie Rundle, successfully herded Prinsloo with 4000 Frce Staters into the Brandwater Basin (July 29)-a very satisfactory result, but one seriously marred by the escape of De Wet, who soon afterwards raided the Western Transvaal and again escaped between converging pursuers under Kitcheper, Methuen, SmithDorrien, Lan Hamilton and Baded-Powell.
Before this Lord Roberts had initiated 2 movemeat from Pretoria to sweep down to Komati Poort on the Portuguese frontier, in which Buller, advancing across country from the south, was to co-operate. On the 26th to 27th of Angust the combined forces engaged and defeated Botha in the action of Belfast or Bergendal, with the result that the enemy dispersed into the bush-veld north of the Middelburg railway. On the 3oth of August the remainder of the British prisoners wero relcased at Nooitgedacht. On the 6th of September Bulier, crossing the track of the main army at right angles, occupied Lydenburg in the bush-veld, and five days later the aged president of the republic took refuge in Lourenco Marques. On the sath of September Barberton was occupied by French, and on the 2 sth Komati Poort by Roberts's infantry. From October the military operations were confined to attempts to reduce guerrilla commandos which had taken the bield. Mr Kruger, deserting his countrymen, left for Europe in a Dutch man-of-war, and General Buller sailed for Europe. The Boer leaders definitely decided upon a guerrilla and a wearing policy, deliberately dispersed tbeir field army, and then swelled and muliplied the innumerable local commandos. On the 25 th of the month the ceremony of annexing the Transvaal was performed at Pretoria
In November the prevailing opinion was that the war was over, and Lord Roberts, who had been appointed commander-in-chief at home. left South Africa, handing over the command to Lord Kitchener. Then followed a long period of groping for a means to cope with the development of guerrilla

```
mindraw
``` tactics, which for the next six months were at their zenith.
cantas The railway communications were constantly damaged, isolated posts and convoys captured, and the raiders always seemed able to avoid contact with the columns sent in pursuit. De Wet, after escaping Irom Brandwater Basin, was hunted north-westward, and crossed into the Transvaal, where joining the local guerrila bands, he surrounded an infantry brigade at Fredriketad. But, unable to reduce it, and threatened on all sides, he poinh turned back. On the 6th of November he was severely De Her handled and his guns and wagons captured at Bothavilie. But this misadventure only stimulated him. His emisearics roused the Free Statera west of Bloenfontein, and disaflection broke out ia

Cape Colody to an alorming degres. while. en forerunneis of the promised Invasion. scattered bodies of Free Staters crossed the Orange River to swell the rebelion. From Bothaville De Wet made for Thaba Nchu. where the Bloemfontein parrison held a cordon of posts These were traversed on the ith of November and the raiders pateed on to Bethulie captuting Dewetsdorp and 500 men 8 m roule Pursued closely and finding the rivers in flood De Wet hid some of his men under Kritzinger near the Orange and himself doubled back. traversing again the line of posts east of Bloem\{ontein. Kritzinger, Hertzog and bodies of Cape rebels raided Cape Colony as yona as they were able to cross the Orange, and Hertiog penetrated so lar that he exchanged shots on the Atlantic coast with a British warship. All that the British forces under Sir Charles Knox and serea.s others could do was to localize the raids and to prevent secomace. the spread of retellion. So lar, however, energy and vigitance made them successfut. Both meanwhile beld his own in the northern Transvaal, both against forces from Pretoria. Middelbury and Lydenburg, and against the Rhodesian Field Force under Sir F. Carrington, which had been sent up from Beita (by arrangement with the Portuguesc) to sout hern Rhodesia. At the close of 1900 the commandos under the direct influence of Louis Botha attacked the railway posts on the Middelburg railway and captured Helvetia. De la Rey operated in the western Transvasl. and in concert with Beyers., whose presence in this region was not known to the British, he inflicted a sharp reverse on General R. A. P. Clementa at Nooitgedacht in the Hekpoort valley on the 13h of December. Beyers then slipped away to the east. crossing the line between Johanncsburg and Pretoria wilh impunity. Lord Kirctiener called lor more men, and on the 22nd of December the war office announced that 30,000 more mounted men would be desparched to the seat of war.
With the opening of 1901 Lord Kitchener tried new schemes. He تithdrew all his detached garrisons except in the most important anonere centres, and set himself to make his railway communicacine patr. tions perfectly secure. He determined to make the tion carnpe, into which he intended to bring the whote of the noncombalant inhabitants of the two republics. He despateched French fith a large force to clear the south-eastern districts of the Transvaal and for the rest maint ained a force to watch De Wet, and organized a defence force in Cape Colony, while uring the residuc of his mounted zmen to sweep the country of stock, forage and inhabitants. Although there were no great disasters, the new policy was not prolific in success. The enemy invariably dispersed before superior forces, and the removal of the women and children from the farms did not bsye the effect of disheartening the burghers as had been anticipated -it rather mended their vitality by relieving them of responsibility for their families' wellare. Nor were the Boer leaders destitute of comprehensive schemes. Botha arranged to penetrate Natal, De Wet to make a second attempt on the Colony, in connexion with Hertzog and Kritzinger. On the soth of Febmary De Wet, with Give guns and 3000 men, carried out his promised invasion of Cape Colony. Passing the Bloemfontein-Thaba Nchu line a thind time, he crossed the Orange to join Hertuog and rouse the Cape Dutch. But this invasion Cailed. By judicious use of the railway Kitehener concentrated sufficient troops in the colony to cope with the attempt, and. after being hunted for eighteen days, De Wet escaped back into the Orange River Colony with the lows of all his guns, munitions of war and hall his force. In the northern Transvaal a orree under Sir Bindon Blood cleared the country, but could not prevent Viljoen from excaping eastward to join Botha. Botha's activity in the woutheast caveed Kitchener to despatch a large force under French thither. Thim ewept the country up to the Swariland border. But Botha eacaped. On the 3 rd of March, after various raids and adventures in company with Smuts and Kernp. De La Rey the lion of the restern Transvaal. essayed an attack upon Lichtenburg. in which be was heavily repulsed. Signs of weakness were now apparent, and as a resah Louis Botha, arting with the authority of Schalk Burger, the representative of President Kruger, opened negotiations -ith Kitchener. A meeting took place at Aiddelburg, Transvaal, on the 28 th of February. These negotiations, however, broke down mainly over the treat ment to be awarded to Cape rebels.

The hortilities now entered upon a new phase. The establishment of a lize of defensive ponts between Bioenfontein and Ladybrand.

\section*{purts} though De Wet had three times traversed it, had given thowe siready lencing in areas by chains of blockhouses such as the menatime, while these ports were protertion of the railways. An of the commandos by mobile columns was continued. In March Babington, pursuing De ta Rey aiter the latter's Lichtenburg misadvemture, captured three guns and six maxims near Ventersdorp. In April Piumer occupied Pietersburg. the last remaining seat of soverament open to the enemy. Rawtinson captured a bager and \%uns at Klerksdorp. and, though neither De Wet nor De la Rey had been brought to book, matters had so far improved in llay that municipal government was given to Johannesburg. and a certain momber of mines were allowed to recommence working. Kemp was defeated by Dison at Vialdontein, after 各 desperate encounter. Juse brought hitle of moneent, though the Boers ccored two minor
succeses, Kritainger capturiag the village of Janiestom in Cape Colony, and Muller reducing a force of Victorians at Wilmansmust, south of Middelburg. In July there were further evidences of weakness on the part of the Boers. and Botha applied for permizeion to communicate with Kruger. This was allowed, but. as Kruger adrisod a continuapce of the struggle, the slow course of the war continued. In the meantime, the concentration camps were becom. ing filled to overflowing, and a seady stream of captures and surrenders were reducing the hostile power of the republics.
In August a proclamation was promulgated formally threarening the Boer leaders who should not surrender with permanent banishment from South Africa, but this proclamation had very little effect: Smuts, with a small force from the Magaliesberg, traversed Orange River Colony and stimulated the Cape rebels alresh. But Seprember showed some slight improvement in the situation in Cape Colony. where French was in supreme command. On the \(5^{\text {th }}\) Scobefl caprured Lotter, who was subsequently executed for murder: though this was balanced a few days later by Smuts; successful attack on the 17th Lancers at Tarkastad. In the southeastern Transvaal Botha made a new effort to invade Natal, but, although he captured 300 men and three guns in an action on the 171 h of September at Blond River Poort near Vryheid. his plans were rendered abortive by his failure to reduce the posts of Mount Prospect and Fort Itala in Zululand, which he attacked on the 26th, and he only escaped with difficulty from the converging columns sent against him. Desultory fighting continued till the close of the year, the balance of success being with the British, though on the 3 oth of October Botha. returning from the south-cast towards Pretoria, defeated Colonel Benson's column at Bakenlangte Benson being killed. About the same time, the force in front of De la Rey and Kemp in the west being depleted to find the troops for laryer operations, the Boers made a herce sulprise attack on Colonel Kekewich's column at Moedville, in which Kekewich was wounded and his troops hard pressed for a time. De la Rey next attacked part of Methuen's column near Zeerust, but was repulsed (Oct. 24). Affairs again took an unsatisfactory turn in Cape Colony, and oa the 8th of October the whole colony was placed under martial law. In November an unsuccessful attempt was made by several columns to run De Wet to earth in the Lindley district, whither. atter his second raid on Cape Colony, he had returned. Bur in December matters improved. The reverse at Bakenlaagte was repaired by a forte under Bruce Hamilton. This swept the south-eastern Transvaal as French had done. and with no better effect, for Botha escaped. But the British commander thereupon began a constant succession of night marches and raids which practically borted out the resistance in the eastern Tranovat. The corps of National Soouts (formed of burfhers who had taken the oath of allegiance) was inaugurated and the Johannesburg atock exchange reopened. By the end of the year the blockhouse system was complete. bul this phase of the war was destined to close badly as De Wet on Christmas Eve captured a Large lorce of Yeomanry at Twecfontein, west of Harrismith.

With 1902 the last phase of this protracted struggle commenced. The biockhouse system was practically finished, and Kitchener determined upon a new means of harassing the enemy, who still had a total of about 25,000 men in the feld. But the blockhouses had already begun to serve the purpose for which they were designed. In the past the mabile columns, of which there were over sixty in the field. had aiways been bound to the railway for suppiy; now convoys could be pushed out to thein along whatever blockhouse line they touched. In January Bruce Hamilton contipued his suecessful night marches, and late in the month General Ben Viljoen was captured in the Leydenburg district. The only set-back was the descent which Beyers made upon Pietersburg, breaking into the concentration camp and carrying off a number of able-bodied relugces. Eariy in I ebruary Lord Kitchener commenced his first drive, and it was so successful that it was evident that the key to the situation had been lound. First the country east of the line Blocmiontein-Vereeniging was swept four times over, then the method was employed in the Transvaal, east and west. and finally against the Cape rebels. There were a few small reverses, of which De la Rey's successful ruch upon Paris's column and capture of Lord Methuen was the most important, but when some initial mistakes in the composition of the driving lines, which robbed the earlier drives of part of their effect, were made good, the system worked like a machine. The Boers were at last convinced of the futility of any attempt to prolong the struggle. and on the 23rd of March the representatives of the Boer governments came into Pretoria. Six weeks were spent in negotiation, and then a meeting of delegates, under the presidency of General Kemp, was held at Vereeniging.

As a result of this conference articles of peace were signed at Pretoria on the \(315 t\) of May, and the South African war was a peace of history of the past. The terms of peace may be Vereerifite condensed into the following points: (1) Surrender of all burghers in the field, with all arms and munitions of war; (2) all burghers duly declaring themselves subjects of King Edward VII. to be repatriated; (3) no burghers who should surrender to be deprived of cither their liberty or property; (4) no proceedings to be taken against burghers for any legitimate acts of war during the period of hostilities; (5) the Dutch language to be taught in public schools on the request of parents, and to be allowed in courts of law; (6) sporting riffes to be allowed upon the taking out of licences; (7) the military administration to be superseded by civil administration as soon as possible, the civil administration to lead up to self-government; (8) the question of the native franchise not to be considered until after the introduction of self-government; (9) landed property not to be subjected to any special tax to defray the cost of the war; (ro) a commission to be formed to facilitate the repatriation of the burghers, a grant of \(£_{3}, 000,000\) being given as compensation for the destruction of farms.

In the whole war the British lost 5774 killed and 22.829 wounded, white the Boers lost about 4000 killed. The number of Boer prisances in the hands of the British at the end of the war was about 40,000.
(L.J.*; C.F.A.)
F. From the Annexation to 1915 .-On the \(4^{\text {th }}\) of July 1900, a month after the occupation of Pretoria, a commission was issued to Lord Roberts authorizing him to annex the Transvaal. The proclamation of annexation was dated the rst of September. Lord Roberts held the post of administrator of the colony until his departure for England in December following, when he was succeeded by Sir Alfred Milner, the high commissioner. It was not, however, until March 1901 that Milner, who resigned his governorship of Cape Colony, arrived at Pretorin to inaugurate a civil administration. \({ }^{1}\) Hostilities were still proceeding, but in the areas under control Lord Milner (who was raised to the peerage in May) speedily set the machinery of government in motion. The civil administration of justice began in April; in October a reformed judicial system, with Sir J. Rose Innes as chief justice, was put into operation; in 1902 this was followed by the establishment of a supreme court. Besides law, the important departments of finance and mines were organized, and stens taken to remedy the grievances of the commercial and mining classes. Sir David Barbour, who had presided over a commission to inquire into the concessions granted by the late republic, presented a valuable report in Junc, and suggested a tax of \(10 \%\) on the profits of the gold mining industry, a suggestion carried out a year later (June r902). Meantime Johannesburg had heen given a town council, and some of the gold mines permitted to festart crushing (May 1901). In November of 1001 the main body of the Uitlanders Fere allowed to return to the Rand. The work of They had fled the country immediately before Recoustroce the outhreak of war and had been living at the tlon. seaports. While thus cating for the urban areas the administration was equally alive to the needs of the country districts. A commission which had been appointed to inquire into schemes of land settlement reported in June, and this was followed by the creation of a land board in December 1901. Lord Milner cherished the ideal of racial fusion by the establishment of British settlers on a large scale. He also recognized the necessity, if agriculture was to be developed, of an extensive system of irrigation, and Sir William Willoocks, formerly of the Egyptian Irrigation Department, was engaged to draw up a comprehensive scheme, laving in view alao the needs of the gold mines. Another department raken in hand was that of education; and the success which attended the opening of schoolsin the refugee ovyet war inost Ctsilding At the time the articles of peace
 Colony, sextal of the resoms atopred hor the Transvaal applicd to or allected the sutter ecloay. poes Omange Fere State.)
being educated in these camps under the supervision of Mr E. B. Sargant

This work of reconstruction was carried out in face of many difficulties other than those inherent to the undertaking. More than one plot on the part of Boers who had taken the oath of allegiance was hatched in Johannesburg, the most serious, perhaps, being that of Brocksma, formerly third public prosecutor under the republic. On the 15 th of September 1901 Brocksma and several others were arrested as spies and conspirators. Letters to Dr Leyds and to Dr Krause of a treasonable character were found in Brocksma's possession, and being found guilty of high treason he was shot (3oth of September). Krause, who was then in London, was arrested, tried and convicted for attempting to incite to murder, and sentenced to imprisonment. In November another conspiracy, to scize Johannesburg with the help of General De la Rey, was discovered and frustrated. More injurious than plots of this nature was the political agitation carried on in Cape Colony and in Great Britain. This agitation was directed with particular virulence against the high commissioner, whose recall, it was asserted, would remove the chief obstacle to peace. Mr J. X. Merriman and Mr J. W. Sauer came to England in the summer of igo: on a mission from the Cape Africanders, and received much encouragement from Radical politicians. Nevertheless, much had been done to establish order and restart commerce by the time peace was made.

After the signature of the articles of peace the work of reconstruction was accelerated. The end of the military government was signalled by the assumption (on the 21st of June) by Lord Minner of the title of governor of the Transvaal and by the creation of an executive council. The Boer leaders unreservedly accepted British sovereignty. Generals Botha, De Wet and De la Rey, however, paid a visit to England (August-September, 1902) in an unsuccessful endeavour to get the terms of peace modified in their favour; they received little encouragement from a tour they made on the continent of Europe. On their return to South Africa the Boer generals and their colleagues aided to some extent in the wotk of resettlement, but the seats offered to the Boers on the executive council-were declined. The work of repatriation and resettlement was carried out by commissioners acting in conjunction with a central advisory committee at Pretoria. These supplied the people with food, shelter, stock and implements. The burgher and native concentration camps were rapidly broken up; by December 1902 only 7600 out of 70,000 were left in the burgher camps.
At this period Mr Chamberlain determined to visit South Africa and use his personal influence to help forward the settlement of the country. After the almost total cessation of commerce during the war, there was in the last half of 1902 and the beginning of 1903 a great impetus to trade. When Mr Chanmerlain reached the Transvalal in January 1003 the feeling among the British section of the community was optimistic. Mr Chamberlain was well received by the Boer leaders; it was, however, to the Rand magnates that he qurned for financial help. That large sums were imperatively needed to accomplish the work of reconstruction was apparent. An agreement was reached whereby a loan of \(f 35,000,000\), guaranteed by the imperial government, was to be raised for the bencit of the Transvaal and the Orange River Colony; a further loan of \(f 30,000,000\) was to be issued in instalments of \(\{10,000,000\) and paid into the British exchequer as the Transvaal's contribution towards the cost of the war. The first instalment of this loan, to be issued in 1904, was guaranteed by the great mining firms of Johannesburg. With the proceeds of the first loan the debt of the South African Republic was paid off, the Transvaal and the Orange River Colony railways were bought by the state, and new railways and other puhlic works were undertaken. The £3,000,000 granted by the articles of peace, and other considerable sums, besides \(\{7,000,000\) from the loan, were expended on repartialion and compensation.

The efforts made by the administration to restore the Boers to the land, to develop the material resources of the country,
and to remove all barriers to the intellectual and moral developmeat of the people, were soon, however, hampered by severe commercial depression. One of the least results of
Depocent -action Lememe. this depression was that the econd war loan arranged by Mr Chamberlain was never issued, of these the most apparent was the shortage of labour at the Rand mines. When work restarted atter the war, the mine owners offered the Kaffir workmen little more than half the wages paid in 1898; but this effort at economy was abandoned, and the old rates of pay were restored in January 1903. Nevertheless, the labour available continued to be very much below the needs of the mines. The consequent small gold output meant a serious decrease of revenue, which was not compensaled for by the heavy tax levied on the output of the Premier diamond mine, where operatioas began in 1903 . Finally, to enable them to work their mines to their full capacity, the Rand houses asked for leave to import Chinese labourers. \({ }^{1}\) Milner, anxious above everything else to obtain sufficient revenue to carry on his work of reconstruction, gave his consent to the experiment. The bome goverament concurred, and during 1904-1906 over 50,000 Chinese were brought to the Rand on three-years' indentures. The objections to the introduction of the Chinese, arged in South AIrica, in Great Britain and in other parts of the British Empire, are discussed under South Arpica: Hisfory, \(8 D\); bere it need only be added that in the Transvalal the point upon which all parties were agreed was that no new racial or economic complications should be permitted; and these wete guarded against by the restriction of the coolies to unstilled labour in the gold mines and by their compulsory ecpatriation. By the introduction of the Chinese the gold output from the mines was greatly increased, with the result that the Transvaal sufficed less than any other part of South Airica from the restriction of commerce, which lasted for several years.

The discussions in the legistative council on the Chinese coolie question had been accompanied by a demand on the part of the Boers that such an important step should not be taken " without the constitutional approval of the white people of the Transral "r; and after the importation of the coolies had begun, the agilation for the grant of representative institutions grew in volume. The British government was also of opinion that the time was near for the setting up of such institutions, and the pending grant of a constitulion to the Transveal was announced in parliament in July iga4. Meantime the existing (nominated) legistative council was dealing with another and a vital phase of the Asiatic question. There were in the Transvaal some 10,000 British Indians, whose right to "enter, travel or reside" in the country was secured by the London convention of 1884. Under republican rule these Indians-who were mainly small shopleepers, but included some professional men of high stand. ing-had suffered many restrictions, and their cause bad been antoe espoused by the British government. Neveribeless, Bratis under British rule their situation was in no way improved, and a determination was shown hy the European inhabitants of the Transvaal further to restrict their privileges and at the same time to stop the immigration of other Indians. In this matter the Boer and British sections of the community were in agreement, and they bad the support of the Transvaal government and of the other South African colonies. The problem was both economic and racial. and on both grounds South Africans showed a determination to exclude the competition of Indians and other Asiatics. Mr Alfred Lytielton (who had succeeded Mr Chamberlain as secretary of state for the colonies) endeavoured to meet the wisbes of the Transvaal by sanctioning legislation which would greatly restrict the immigration of Indians, but he would allow
- A careful summary of the facts regacding the shortage of tabour and of the economic mituation in the Transvaal at that time, together vith the debates in the legislative conncil, will be found in The Amanal Register for 1903 . from the pen of Mr H. Whates.
no tamperiats with the rights of Indians already in the colony. In 1907 the royal assent was given to bils restricting the immigration of Asiatics and providing for the registration of all Asiatics in the country.

In accordance with the promise made in 1904 a constitution for the Transvaal on representative lines was promulgated by letters patent on the 3rst of March 1905; but there sell-aoverswas already an agitation for the immediate grant amar-1te of full self-government, and on the accession to botha affice of the Campbell-Bannerman administration Minktry. in December 1905 it was decided to accede 10 it. New letters patent \({ }^{2}\) were issued (December 12, 1906), and the frst general election (February 1907) resulted in the retum of a majority belonging to \(H / \& \quad V a / k\), Boer organization formed for political purposes. (See further, Souta Apica: History, 8 D.) Sir Richard Solomon, \({ }^{2}\) it was thought, might have formed a conjition cabinet, but he was among the defeated candidates. Lord Selborne, who had during roos succeeded Lord Milner as high commissioner and governor of the Transvalal, entrusted General Botha with the formation of a ministry. Bothe chose as his colleagues Messrs J. C. Smuts (colonial secretary), Jacob de Villiers (attorney general), H. C. Hull (colonial tressurer), J. F. B. Rissik (minister of lands and native affairs) and E. P. Salomon (minister of public works). These were all men of progressive, in some respects democratic, views, and in thus forming his cabinet General Botha showed his determination not to be dominated by the "back veld" Boers. Botha was strengthened in his attitude by the firm action of the Progressive (i.e. the ex-Uillander) party, which secured 21 seats (out of a total of 69) in the legislative chamber, entircly in the Rand and Pretoria districts, and was led by Sir George Farrar and Sir Percy Fitapatrick.4 The government, which obtained an imperial guarantee for a loan of \(£ 5.000 .000\), announced that while there would be no wholesale repatriation of Chinese, the labour ordinance under which they were recruited would not be renewed, and by February 1910 all the Chinese coolies had returned home. At the same time successinl efforts were made by the ministry to increase the supply of Kaffir labour for the mines. In the re-establishment of the field cornets and in other directions a relurn was made to the republican forms of administration, and on the education question an agreement satisfactory to both the British and Dutch-speaking communities was reached. Ample facilities were given for the tesching of Dutch, but it was provided that no pupil should be promoted to a higher standard unless he (or she) was making satisfactory progress in the knowledge of English.

One of the first problems which confronted the Botha ministry was the altitude to be adopted towards the other British colonies in South Alrica. Lord Milner, by the creation of an inter-colonial board-which administered tbe

TBe Uataat raitways of the Transvaal and Orange River Colony
and controlled the constabulary of both colonies-and in other ways (e.8 the inclusion of the Transvall in the South Africa customs union), had endeavoured to peve the way for federation. Mr Chamberlain when in South Africa in 1903 had also put forward federation as the desired goal. The existence of the inter-colonial council hampered, however, the freedom of the Transvaal government, and steps were taken to determine it.
\({ }^{2}\) The letters patent provided. as to the Chinese coolics, that no further licences be issued for the introduction of indentured labour, and that none of the contracts be renewed.
: Sir Richard Solomon (b. 1850) was attorney-general of Cape Colony 1898-1900, altorney general of the Transvaal 1902. and acting lieutenant-governor of the Transvaal 1905. He resigned office to contest a seat for the Transvaal parliament. Subsequently. he was ngent-general for the Transyaal in London, and (1910) agentgeneral for the Union of South Alrica.
- Sir George Herbert Farrar (b. 1859) was a son of Charles Farrar, M.D., of Chatteris, England, and was a member of the Johannesburg Reform committee at the time of the Jameson Raid. He served in the war of 1899-1902, and was knighted in the last-named year. Sir James Percy Fitzpatrick (b. 1862) was a native of Cape ColonyHe went to the Transval in 1884 and became honorary secretary to the Johannesbur Reform commitice. He was the author of The Transoal from Within; Jock of the Buskedd, \&oc.

Nevertbeless, on economic as well as political grounds, the leaders of both parties in the Transvaal were prepared to consider favourably the proposals put forward by Dr Jameson at the close of 1906 for a closer union of all the self-governing colonies, and the first direct step to that end was taken at an inter-colonial conference held in May 1908 . The bistory of this movement, which resulted in the establishment of the Union of South Africa on the \(313 t\) of May 1980, is given under South Arpica: History, §D. Apart from this movement the most notable events in the Transvaal at this period were the development of agriculture, \({ }^{1}\) the gradual revival of trade (the output of the goid mines in 1909 totalled \(\{30,925,000\), and at the end of the year 156,000 native labourers were employed), and the continued difficulty with regard to British Indians. Ministers declared their determination to keep the Transvasl a white man's country. With the example of Natal before them as a warning, it was (they argued) to the whites a question of life and death, and unless registration were enforced they could not prevent the surreptitious entry of new-comers. Attempts at compromise made in 1008 ended in failure. For failing to register Mr M. V. Gandhi and other leaders were imprisoned; and large numbers of Indians were deported. Notwithstanding the remonstrances of the Indian government, the imperial authorities could not effectively intervene; a self-governing colony (in which whites alone Dossessed the franchise) must be allowed to take its own course. By the end of 1900 it was stated that 8000 Indians-most of whom claimed the right of domicile-had been compelled to leave the country, white 2500 had been imprisoned for failure to comply with the Registration Act. The establishment of the Union of South Africa removed from the competence of the Transvaal provincial council all legislation specially or differentially affecting Asiatics. Thereupon the Union ministry was urged by the British government to effect a permanent settlement acceptable to all partics. The ministry replied (July 23,1910) that whatever policy might be adopted regarding Indians legitimately resident in South Africa, unrestricted Indian immigration into the Transvaal would not be permitted (see Blue-book Cd. \(536_{3}\)).

When the Union was estahlished General Botha became prime minister, two of his colleagues, Messrs Smuts and Hull, also joining the Union ministry. A fourth minister-Mr Rissik-was appointed first administrator of the Transvaal province, while a fifth minister, Mr E. P. Solomon, became a senator of the Union parliament. The elections to the Union House of Assembly, held in September, were notable as showing the strength of the Progressive (or Unionist) party. General Botha was defeated at Pretoria East by Sir Percy Fitapatrick, and at Georgetown-a Rand constituencyMr Hull was beaten by Sir George Farrar. Both ministers, however, subsequently secured seats elsewhere.

Bibliography.-(1) General descriptions, zoology, ethnology comomics, Efc.: A. H. Keane. The Boer States, Land and People (1900): Harriet A. Roche, On Trek in the Transwaal (1878) \({ }^{8}\) Mrs Carey-Hobson, At home in the Transtcal (2 vols. 1884); iH. L. Tangye, In New Soufh Afnce (1896); J. A. C A. Timmerman. Eenige opgaven betreffende de Zuid-Atrikaansche Republiek \({ }^{*}\) (valuable bibliographies). Tuds. R. ned. Aarde. Genoots. (Leiden, 1896). H. Hettema, jun.. "Geschiedenis van het grondgebied der Zuid Afrikaansche Republiek," Tyds k. ned. Aande. Genoots. (1901), xviii.; T. G. Trevor, "The Physical Features of the Transvaal." Geof. Journ. (July, 1go6); W. L. Distant, A Naturalist sn the Transocal (8R92), and Insecla transvaduensia (1900 seg.): M. R. Collins, Imigation in the Transvaal," Minutes of P. I. Cist Engineers (1906): R. T. A. Innes, "Meteorology in the Transvaal," Journ. Scolhsh Mes. Sac. (1900) , xv.: D. E. Hutchins, Transseal Forest Report (Pretoria, 1904): Transvaal Dept. of Agriculturc, Annual Reports (Pretoria): Tramsoaal Agricullural Journal (Pretoria, monthly): British War Office. The Natize Tribes of the Transrad (1gos): Shori History of the Natise Tribes of the Tranmoal (Native Affairs depi.. Pretoria, 1905): E. Gotischling. "The Bawenda," Journ. Amthrop. Inst ((goj). xxav.; R. Wessman (trans. Leo Weinthal). The Bewenda of the Spelowhen (1go8): Report on the Census of 100, (Pretoria,
ioot): Ropors of the Sauth Afriran Asex.: Annual Reports of ihe
Transvad Chamber of Mines (Johannesburg); L. V. Pragh, The

Transpoat and its Mines (1907): W. Bleloch. The New Sonth Africa (1901), J. Buchan, The Africon Colony (Edinburgh. (1903); L. E. Name, The Asiatic Danger in the Colonies (1907); J. Leclertq, Les Boers at lewr that social (Paris, 1900).

History.-For the period from the foundation of the Transvaal to \(\mathbf{1 8 7 2}\) see G. MicCall Theal. History of South Africa sance 1705 (5 vols. 1908 ed.): for general summaries consult Sir C. P. Lucas. History of South Africa to the Jameson Kand (Oxford, 1899), and F R. Cana, South Africa from the Great Trek to the Union (igog). Also H. Kloessel, Dre sudofrikanischen Republiken (Leiprig. 1888): D. Postma, Eenage scheisen yoor eene zeschiedenss dan der Trekboeren (Amsterdam, 1897). A. Siedel, Transuaal (Berlin, 1900): 1. F. Y. Oordt. P. Kruger en de opkomst der Zued-Afrikaansche Republiek (Amsterdam, 2898); C. J. van der Loo, De Transtaal en Engeland (Zwolle, 1898 cd .). . Poirier, Le Transsaal 1852-1800 (Paris, 1900): G. Demanche, "La Formation de la nation Boer," Re. franfuise (1006), xxxi. For more detailed study, besides the Transvaal and Bntish official publications (cf. Williams and Hicks, Selected Oficzal Documents, 1900), see Sir Percy Fitepatrick, The Transial from Withen (1899); A. Aylward, The Tranmeal of To-day (Edinburgh. 1878): R. J. Mann. The Zulus and Boers of South Africa (1879); H. Rider Haggard, Cetywayo and his Whisle Neighbours (1882), W. J. Leyds, The First Annexation of the Transtoal (1906); A. P. Hilliet Raid and Reform (1898) and Soulh Afrucan Studies (1900); Report of the Trual of the (Johannesbur)) Reform Srisoners (1896); Report of the Select Committer of the House of Commons on the Jamesom Raid, Bluc-book (165) of 1897; Repart of the Seleat Cownillee of the Cape Pariument on the Jameson Raud (Cape Town. 1896) Jameson Tral., Transcripe from. Shorthand Writers' Noles and Copies of Exhibuts (2 vols, 1896): E. T. Cook, Rights and Wrongs of the Transsael War (1got): Lionel Phillips. Transnoal Prablems (tgos).
For the Majuba campaign. sce Sir Wm. Butler. Life of Sir George Pomeroy Colley (18y9), and the British Blue Books C. 2783, C. 2837. C. 2966 and C 2950 of 1881. For the war of 1899-1902, see the British official History of the War in Sow/h Afruca (4 vols., \(1 g 06-\) 1910): "The Times" History of the War in South Afreca (7 vols. 1900-1909): C. R. de Wet. Three Years' War (1902): Sir A. Conan Doyle. The Great Boer Wur (1902); German army staff. The War in Soufíh Afrect, trans by Colonel W. H. H. Waters (1904). L Penning. De Ooriog in Zuad-Afrika (Roterdam, 1899-1903): G. Gilbert, Gwerre sud-africarme. H. Lanklois, Lessoms of Two Rocemi Wars (Eag. trans. 1910); Hamdook of the Boer War (1980)
(F.R.C.)

TRANSVERSE RIB (Fr. arc doublean), the term in architecture given to the rib of a vault which is carried across the nave, dividing the same into bays. Although as a rule it was sunk in the barrel vaut of the Thermae, it is found occasionally below it, as in the Piscina at Baiae and the so-called Baths of Diana (Nymphaeum) at Nimes. In the Romanesque and Cothic styles it becomes the principal feature of the vautt, so much so that Scolt termed it the master rih (see Vault).
tRansylvania: (Lat. Transsilania; Ger. Siebenbirgen; Hung. Erdely; Rumanian, Ardeal), a former principality (Grossfurstentwm) occupying the extreme eastetn portion of the kingdom of Hungary. It is bounded by Hungary proper on the W and N., by Bukovias on the N.E. and by Rumania on the E. and S., and has an area of about 21,000 sq. \(m\).

Transylvania has the form of an irregular circle, and is a high plateau of a mean altitude of \(1000-1600 \mathrm{f}\). above sea-level, surrounded on all sides by mountains. These are known under the general name of Transylvanian Mountains (gv), which are the southeastern continuation of the Carpathian system, and fill the interior of the coumiry with their ramifications. On the west or Hungarian side there are comparatively easy passes into the interior. but on the east and south frontiers the Iofty mountains give Transylvania the aspert of a huge natural fortress. Among the highest peake are Negoi (8345 ft.), Bucsecs (8230 ft.). Pietrosu (7544 ft.) and Konigssein (7352 it.). There are numerous valleys, ravines and cañons in the network of mountains covering the interior of the country. The principal plains are: in the valley of the Szamos near Dis and Besztercze (Bistritz): in the middle course of the Maros the beautiful Hátszeg valley; the fertile Cibin valley around Nagy-Szeben; the valley of the Aluta near Csik-Szereda, and the one extending from Reps to the Rotcturm pase: and lastly the beautiful and fertile Burpenland in the vicinity of Brasso. The altitude of the valleys gencrally increases towards the east of Transylvania, the lowest depression being found in the western pert of the Maros valley. Almost in the centre of the eountry lies a fertile plainabout 60 m . in length and 50 m . in breadth, called Mezóseg of
"The Latin name appears first after the izth century, and signifies "beyond the woods" t.e. from Hungary; the Hungarian and Rumanian name both mean "fonest land." The Cerman name is usually derived from the seven princinal fortified towns or "burgs." founded by the German colonists, though some authorities prefer to connect it with the Cibin Mountains on the south frontier
de Traendveain plain The purdipat rivers of Tansylvanim, which ere either cributadie of the Theits, or flow direct into the Dapube, are: the Margs, which rises in the mountains Jorming the eactern Fall of Transylvania, and taking first a northern course fows through the counatry from east to wett ; its principal affiuenta are the Correny. the Creat and Little Kokel or Nasy and Kiy Kukulo, the Strell (Satrigi) and the Ceerna on the left, and on the right the Ampoly and che Aranyos, which is rich in auriterous sediments. The Auth (Alt or Ol) rises not far from the Maros, but takes a southerty direction and pierces the Carpathians at the Roteturm pass, to enter Rumania; ite principal tributarios in Tranglvania are the Vargyas, the fomorod, the Cibia and the Burzen. The Smanos, formed by the junction of the Great (Nagy) and Little (Kis) Samos, whose pricipal affuent is the Bistritz; the Zsil or Jiul; and the White and the Swift Korbs are the other pnincipal nivers. The largest lake of Tramsyivania is the Creger or Hodower See, 43 m . long, situated mear Samon-Ujvar, while a great number of small but beautilul mountain lakes are found. The climate of Transylvania is healthy; hot summers alternate with very cold winters, but the rainlall is not great. Trensylvania abounds in mineral springs of all kinds, epecially meline and chalybeate, the principal onge being lound at Eorstik, Elopatalc, Homorod, Rodna, Tusnád and Zaizon.

The principal occupations of the inhabiants are agriculture, cattle-rearing and mining. Of the total area of Transylvania \(\mathbf{2 2 . 6} \%\) is arable land; \(16.5 \%\) meadows and gardens; \(9.5 \%\) pastures and e \(5 \%\) vineyands; while \(37.3 \%\) is covered by forests and \(13.5 \%\) te unproductive woil. The vegetation of Transylvania is luxuriant, exept of course in the bigher mountain zones. Fruits abound, as apples pears, peaches, apricots, plume, cherries, chest nuts and amoods; mulberries are also cultivated. The vine flourishes best in the valley of the Maros. The chief crop is maize; but wheat, rye and other grains, potatoes, saffron, hemp, fax and tobacco are also prown. On the boundary mountains the trees are mainly conilerous; to the interior oalos, elms, beeches and ashes are conspicuous.

Bears, volves, foxes, boars and various varieties of game are lound, and on some of the mountains the chamois. There is abundant pasturage on which excellent cattle are reared; and in some districts buffaloes are bred for draught purposes. More important in the breeding of a sturdy race of horses, thousands of which are anmally exported. The mountains maintain large fiocks of sheep. of which two kinds are distinguished-with a fine short-stapled and a coare long-stapled wool respectively. Silkworms are bred, and some silk is spun; and the export of honey and wax is not icconsiderable. Transylvania poxserses the richest gold munes in Europe, and this metal is also " washed" in some of the streams, chiefy by gipsies. The gold is often lound in conjuncion with ellurium (first discovered in Transylvania in 1782) and is extracted principally at Nagyág, Kapnik-Bánya, Zalatna and Vorópatak. In 1900 the value of the gold extracted was 6300,000. Silver, copper, lead and ison are worked to some profit, while arsenic, alum. Caphite. marble, porcelain, precious and building stunce are also Tound. Coal is mined in tbe valley of the \(Z \mathrm{Sil}_{1}\) but the abundance of timber has retarded its exploitation. Some of the saline spriags yield allt enough to render their evaporation profitable. The primigal places where salt is extrected are at Maros-Ujvar. DesAken, Kolasy, Torda and Vizakna. In 1900 the value of the mineral products, except malt. was \(11,000,000\)

The industry of Transylvania, although not very developed, ande some progress during the last quarter of the joth century, and is mostly in the hands of the "Saxons." The principal branches ore brewing, distilling. flour-milling, sugar, leal her, paper, petroleumnefoneries, cloth and earthenwares. The production of inen from fat and bernp is a bome industry throughout Transylvania. The commerce is fairly active, asd is mainly in catte, dairy producis, cood and wooden articles, aod petroleum.

The population in 5900 numbered 2,456,838. Until 8848 the chief influence and privileges, as well as the only political rights. were divided among the three "priviteged mations" of the Hungarians, Szeklers and Saxons. The first are the descendants of the Magyar conquerors. The Szeklers are of disputed erigin, but closely akin to the Magyars (see Szeriers). The Saxons are tbe posterity of the German immigrants brought by King Geza II. (1t4i-116i) from Flanders and the lower Rhine to cultivate and repeople his desolated territorics. At first these were known as Teutones, Teutonici Hospites and Flandrenses, but since the beginning of the intb century the general name of "Saxons," as tantamount to" Germans," bas prevailed. They are generally the most advanced nection of the population. Their literary language is High German, but their spoken language is more of the Low German character. The Hungarians and Szeklers together number 8i4,994, and the Saxons 233.019 , but by far the most numerous clement, though long excluded from power and political equality, - Socmed by the Rumanians, 1,397,282 in number, who are
spread all over the country. The gipeies of Trannyluania, who are hend of under a voivode or prince of their own in 1417, are estimated at 50,000 ; many of them have taken to agriculture or gold-washing. Jews, Armenians, Bulgarians, Ruthenians and Grecks are also represented in the medley of peoples. The Magyars are mostly Roman Catholics or Unitarians, the Germans Protestants, and the Rumanians adherents of the Greek Church

Transylvania, which was completcly incorporated with Hungary in \(\mathbf{1 8 6 8}\), forms since 1876 one of the seven large administrative divisions into which Hungary was divided in that year. It was subdivided into fifteen countries, and contains the following principal towns: Kolozsvar, Brass6, NagySzeben, Maros-Vasarhely, Besztercze, Fogaras, Torda, Segesver, Gyula-Fehérvir, Dés, Szamos-Ujvár.

History.- Iransylvania formed part of the Roman provime of Dacia. After the withdrawal of the Romans the country becarne for centurics the prey of the various peoples who swept across it in their restess migrations. At the beginning of the ith century (1004) Stephen I. of Hungary made bimself master of the land, which was thenceforward governed as a Hungarian province by a voivode. As mentioned above, King Geza IL introduced German colonists, who founded Nagy-Sueben (IIermannstadt), and in 1215 King Andreas II. called in the German Teutonic orders, who settled in the Burzenland. These German colonists were granted spccial privileges, and founded many of the Transylvanian towns. As by the death of King Louis II. In \(\mathbf{5} 26\) the Hungarian crown fell to the house of Austria, the voivode John Zapolya succeeded in rendering himsetf independent. He and his successors, who were generally clected by the people, were supported by the Turks against the House of Austria, while the difficult nature of their country preserved them on the other hand from becoming too dependent on their powerful allies. After the defeat of the Turks at Vienna id 1683 , their influence in Transylvania waned, and in 1699 , by the peace of Carlowitz, the Porte acknowledged the suserainty of Lcopold I. of Austria over Transylvania. By the Leopoldine diploma of \(169 t\) Lcojold had guaranteed the ancient rights and laws of the land, and united it formally with the Hunganan crown. In 1765 Maris Theresa made it a grand principality (Grossfurstentum). The efforts of the Rumanian inhabitants to secure recognition as a fourth " nation," and the opposition of the non-Magyar population to a closer union with Hungary, led to troubles early in the toth century, culminating in 1848. In 1849 Transylvania was divided from Hungary by an imperial decree, and became an Austrian crown-land; but in 1860 Transylvania became an aulonomous province, with a separate Diet, and a high executive power of its own. The Diet assembled in Nagy-Szeben in 1863 decreed the complete separation from Hungary, the union with Austria, and the recognition of the Rumanians as the "fourth nation." But the Hungarian government did not recognize this Diet, and the Diet assembled at Kolozsvar in \(\mathbf{8 6 5}\), in which the Hungarians had the majority, decreed again the union with Hungary. By the compromise of 1867 Austria granted the union ol Transylvania with Hungary. which was completed in 1868. Transylvania lost every vestige of autonomy, and was fully and completely incorporated with Hungary Sioce that time the Magyarization of the priocipality has steadily been carricd through, in spite of the bitter protests and discontent of both the Saxons and Rumaniams. A Hungarian university was founded at Kolotsvar in 1872; and Hungarian is recognized as the official language.

See F Umlauft. Die Lärder Osterreich-Ungams in Worl ynd Bila, vol xinl. (Vienna, 1881); E. A. Bielz. Slebenbüfgen (3rded., Hermannstadt. 1003): L. H, Gebhardi, Gesehtchte des Grossfirstentums Siebembirgen (Vienna, 8803): S. Szilagyi, Monumenta comitialia regwi Transsyleoniac, vols i.-xxi. (Budapest. 1880-1898): F. Teutsh, Geschichte der Siebenbirger Sacksen (2 vols., 3rd ed., Hermannstads. 1899).

TRANSYLVANTAN MOUNTARE. the general name of the mountain system which surrounds the Transylvanian highland or plateau on all four sides, and forms the south-eastern and southern continuation of the Carpathian systern (q.v.). At the mouths of the Vis6 and the Colden Bistritza. where the

Eastern or Wooded Carpathians end, the range of mountains divides and sends ramifications in two directions, to the south and to the west. These chains which encluse Transylvania, giving it the general aspect of a great natural fortress, are the mest eastern offshoots of the mountain system of central Europe. and guard the approach from the east to the great Hungarian plain. They slope gently towards the interior of Transylvania, but rather abruptly towards Rumania, and while the western wall possesses several large and easy passes, the eistern and southern walls are much more difficult to cross.

The eastern wall of the Transylvania quadrilateral is composed of two parallel ranges of mountains divided by the valleys of the Maros and Aluta. The outer range is composed of the foflowing groups: the Gyergyó Mountains (including the Kclemen range) with the highest peaks Kelemenhavas (6600 ft .) and Pictrosul (6908 (t): the Csik Mountains with the highest peaks Nagy.Hagymas (5900 ft.) and the volcanic Büdös (3300 ft.) ; and the Bereczk Mountains with the highest peak Lakócza (5830 ft .). The inner range is composed of the following groups: the Gorgeny Mountains with the highest peak Mezohavas (5826 It); the Hargitta Mountains with the highest peak Hargitta (5900 ft,); and the Barota Mountains with the highest peak Kukukhegy (5120 ft .). Near the mouths of the Maros and the Aluta are sit uated the celebrated Györgyö valley, one of the most beautiful in the whule Transylvania, and the famous Borseek valley with its mincral springs.
The southern wall of the Transylvanian hightand is occupied by the Transylvanian Alps. They have a length of 230 m ., and are the highest and wildest mountain range of the whole Transylvanian system, resembling the High Tatra in their bold and high peake, their beautiful scencry, and their flora. The Transylvanian Alps rise to an altitude of 7200 ft . above the level of the Danubian (Rumanian) plain, and are divided into a considerable number of groups. From cast to west these groups are: the Bodza Mountains with the highest peak Csukas (Ciucas, 6424 It); the Burzenland Mountains with the beautiful pcaks of Bucsecs (8230 ft). Konigstcin (7352 ft.) and Schuler (5910 ft.); the high Forgaras group. extending to the Roteturm pass, and containing Negoi (8345 it .), the highest peak in the Transylvanian mountains, Butyan (8230 ft) and Surul (7482 it). West of the Roteturm pass the Tranaylvanian Alps are also known under the name of the Hatsexg Mountains, and consist of the following groups: the Cibin Mountains with the highest peak Cindrel (7366 ft); the Paringul Mountains with the highest peak Mandra (8260 ft .); the Vulkan Mountains. and the Hátsecg Mountains proper with the beauliful peak Reticzat (\(8: 25 \mathrm{ft}\)) The southowestern parr of the Transslvanian Alps is formed by the Cserna or Ruszka Mountaina with the highess peak Verfu Petri (\(81,40 \mathrm{ft}\).) whose offshoots, of a mean altitude of \(3200-4700\), known as the Banat Mountains, fill the Banat. The southern part of the Cserna Mountains, known as the Sirctinye Mounsains, extend to the Danube, and together with the Miroch Mountains, on the right side of the Danube, and belonging, therefore, to the Balkan system. form the famous gorge of the Iron Gate near Orsova,
The western and northern wall of the Transylvanian quadrilateral do not present the charactet of an uninterrupted chain of mountains, but possess many low and easy passes tawards the Hungarian plain. Going from south to north the principal groups are: the Transylvanian Ore Mountains with the basaltic mass of the Det unata (3768 ft .) near Abrudbánya; the Bihar Mountains, with romant ir scenery and numerous caverns, with the highest peak the Cucurbera (6045 (t.) ; to the east of this group are the Ara nyos Moumtans wilh the highess peak, the Muntelui Mare (5970 It), to the south.west of Kolozsvar; then come the Meszes group and the Kraszna Mounrains. The northern wall is formed by the Lapos Mountains with the highest peak Ciblesiu (6020 ft .), and the Rodna Mountains with the highest peaks Muncsel (5835 ft .), Pietrosu (7544 ft .) and fneu (7484 it.).
Inside this mountainous quadritateral lies the Transylvanian highland or plateau, which has a mean elevation of \(1000-1600\) ft. It is improperly called a plateau, for it does not possets anywhere extensive plains, but is formed of a network of valleys of various sipt. ravines and cañons. united toget her by numerous small mountait ranges. which usually attain a lleight of 500-800 ft, above the alitude of the valley.
In the Transylvanian Mountains the principal passes are: the Codna, the Borgo. the Tolgyes and the Békas. Then come the pimes, the Uiz and Oitnz, the Bodza or Buzeu. the Tomus or Predcal Ruteturm pass (ilis ft) Ihrough the narrow gorge of the Aluta. crossed by ahe railway from Nagy-Szeben to Burfiretet, the Vulkan. the Teregova pass, and the
Transylvania ints Rumania. are the Bánfy-Hunyad paet railway frem Aryd to Bo
of the Aluta to that of the Maros (near their respective mouths) and the pass of Csik-Szereda over the Hargitta Mountains.

TRAP (O. Eng. treppe or traz̃ppe, properly a step, as that on which an animal places its foot and is caught, cl. Ger. Treppe, fight of stairs), a mechanical device for the snaring or catching anything, and especially wild animals. Traps for animals are of great antiquity, and no savage people bas ever been discovered, whatever its culture scale, that did not possess some variety of saare. In the most primitive form of trap no mechanism need be present, eg a cavity into which the animal walks, as the pitfall of the Arabs and Africans or the snow-hole of the Eskimos. Dr O. T. Mason has divided traps into three classes: enclosing traps, which imprison the victim without injury; arresting traps, which seize the victim without killing it, unless it be caught by the neck or round the lungs; and killing traps, which crush, pierce or cut to death.
Enclosing traps include the pen, cage, pit and door-traps. Pentraps are represented by the fences built in Africa into which antelopes and other animals are driven: and by fish-seines and poundncts. Among cage-traps may be mentioned bird-cones filled with corn and smeared with bird-lime, which adhere to the bird's bead. blinding it and rendering its capture easy; the fish-trap and lobster-pot; and the coop-traps, of which the turkey-trap is an example. This consists of a roofed ditch ending in a cul-de-sac into which the bird is led by a row of corn-kermels. Over the further end a kind of coop is built ; the bird, instead of endeavouring to retrace its steps, always seeks to escape upward and remains cooped. Pitlalls include not only those dug in the earth, at the bottom of which knives and spears are often fixed, but also scveral kinds of traps for small animals. One of these consists of a box near the top of which a platform is hung, in such a way that, when the animal leaps upon it to secure the bait, it is precipitated into the bottom of the box, while the platform swings back into place. Another kind of pitiall is formed of a sort of funnel of long poles, into which birrls fall upon alighting on a perfectly balanced bar, to which a dish of corn is made fast. The door-traps form a large and varied class. ranging in size from the immense cage with sliding door in which such beasts as tigers are caught, to the common box-trap for mise or squirrels, the door of which falls when the spindle upon which the batt is fixed is moved. The box-trap with a smple ratchet door. allowing the animal or bird to push under the door or wares which fall back and imprison them, is alike an enclosing and an arresting trap. There are four general classes of arresting traps. the mesh. the set-hook, the noose and the clutch. The mesh-traps include the mesh and thong toits used of old for the capture of the tion and other large game, and the gill-net in the meshes of which fish are caught by the gills. To the set-hook divison are reckoned the set-lines of the angler, several kinds of trawls and the toggle or gorge attached to a line. which the animat. bird or fish suallows only to be held prisoner. The noosc-trap class is a very extensive one The simplest examples are the common slip-noose snares of twine, wire or horschair; set for birds or small mammals cither on their feerling grounds or runways, the victim being caught by the neck. body or foot as it tries to push through the noose. When the noose is used with bail it is generally attarhed to a stout sapling, which is bent ovet and kept from springing hark by some device of the "fgure-4" kind. This is constructed of three pieces of wood, one of the horizontal spindle on which the bait is plared. one of the upright driven inso the ground, and the third the conneraing ernss-piece. fifted to the ot hers so loosely that only the strain of the elastic sapling keeps the srap together. When the victins tries 10 secure the bait he dislodges the cross-piece and is caught by the noose, which is spread on the ground under the bait. The Patagonjans take the vicuna with one variety o! this snare. and. before the moose (Cerves alces) was protected by law in North America. even that animal, weighing often 1200 bb , was caught in snares of wire and rope. There are two widdly different types of clutchtraps: bird-lime and other tenacious substances, and jaw and clapraps. The simplest form of the first is adhesive Ay-paper. A common practice in ltaly is to smear with bird-lime the branches in the neighbourhood of a captive owl, which results in the capture of numbers of Lirds, gathered to scold at their common enemy. Examples of the clap-rrap are the clap-net, consisting of two nets laid flat on the ground and attached to cords in such a manner that they fly up and close when the draw-cord is pulled by a concealed Irapper: and the various other spring.rraps used by bird-catchers. The jaw-1 rapss are the most important class of device for the capture of fur bearing animals, and are the product of civilization. While rude specimens are known to have existed in the middle ages, the sterl-trap as used io day dates from the middle of the 28 th ceatury; and reached perlection in the latter half of the tgth. the "New. house." named from the Ameriran inventor. having been the first trap of high grade Secel-iraps consist of two jaws, wish or without
teeth, which are worked by powerful single or double springs and whruag" "when the victimentul single or double springs and
phaced between the jaws and attached to a lever. They ere made m many siees, from the smallest, designed for rats, to the " Great Bear Iamer." weighing over 40 H, with jaws of 16 in. in which fions, tigers and grizzly bears are trapped. The steel-trap is set and concealed in such a manner that the animal must step on its pan in pasoing over it to secure the bait. In trapping such wary animals as the sable, martes, mink, otter or beaver, great care is taken to obliterate all tigns of the trap and of human presence, the ecent of the hands being neutralized by smoking the traps of woided by the use of gloves. In North America castoreum, musk, asaloetida, oil of anise and common Gisb-oil are used to entice the victims to the trape. Trails of some one of these scents are laid from different dirertions to the trap.

With the clutch-craps must also be reckoned the oldest form of steel-trap, now to be seen only in museums, the man-trap, which was used first about the middle of the 18 th century when the metematic preservation of game rendered protection against poachers a mecestity. Such a trap, from Gloucestershire, is over 6 ft . bong, has \(19-\mathrm{in}\). serrated jaws and weighs 88 m . Another Corm of man-trap, the spring-gun, belongs to the next category, the killing traps, which are divided into traps of weight, point and edge. The most important of the weight class is the dead-fall, of which the typical lorm consiste of a pen over whome narrow entrance one or more logs are laid acrosa a lighter log. which is balanced upon a epindle necescarily struck by the entering animal, causing the logt to fill upon its back. In some cases the bait is attached to the spindle itself. The dead-fall was always the favourite trap of the American Indians, and is in use atnong many aboriginal tribes in Africa and South America. A slab of stone is often used as a weight. The common mouse-trap which kills either by a blow or strangulation is a variety of dead-lall. Of point-trape may be mentioned thone of the impaling and the missile classet An example of the former is the stake or spear placed by Arab and Alrican tribes at the batiom of pirfalls for big game. Another impaling trap common in Africa is the harpoon down-fall, generally used for the hippopotamus. It consigts of a heavily weighted harpoon suspended in such a way that the animal. passing beneath, breaks a cord and precipitaten the bappon upon itself. Another example of impalement is the hawktrep. coosisting of a circle of stout sharp wires, in the centre of which a Ifve fowi is placed. A bird of prey attempting to secure the ford is impaled upon the wircs. Of missile traps the most universal are the ancient springbow and its modern representative the spring: tum. This is fixed upon stakes, or against a tree, with a line attached to the trigger and stretched immediately in front of the muzzte. An amimal pressing againgt the string pulls the trigger and discharges the piece into its own body. An arrangement of sticks holding the bait in front of the muzzle is sometimes substituted for the string. Of edue-traps a curious example is the wolf-knife of Western America, Wich consists of a very sharp blade embedded in frozen fat. One of the wolves, licking the fat, cuts ite tongue and a flow of blood errues, with the result that not only the wolf itmell but its come panions become infuriated by the smell and taste, and the wounded cast, and often many of the others, are killed and devoured. The Aancan lenife-trap for large garne consists of a heavy blade attached to a lever, which, when released by the animal biting at the bait, Fies over and kills the victim.
See Shifts and Expedients of Camp Life, by W. B. Lord (1871); Case Lije and the Tricks of Trapping, by W. H. Gibson (1902); 0. I. Mason, "Traps of the Aniericin Indians," Annual Reporf, Smithsonian Institution, for 1gor; The Story of the Treppot, by A. C. Lant (1903).

TBAPANI (anc. Drepanam), a city and episcopal see of Sicily, capital of the province of the same name, situated an the west coast, 3 m . W. of the Monte San Ciuliano, which rises ubove it, 131 m . W. by S . of Palermo by nil, and 47 m dirrect. Pop (I 906), town 47,578 , communce 68,986 . The ancient Drepanum (bpeiravor, a sickle, from the shape of the low spit of hand on which it stands) seems originally to have beea the port of Eryy, and never to bave been an independent city. His represented hy Virgil in the \(A\) encid as the xene of the death of Anchies, hut firt appears in history as an important Carthacinian naval station in the First Punic War (about 260 B.c). part of the inhabitants of Eryx being trassferred thither. Near Drepanum the Roman fleet was defeated in 250 s.c., while the strugele to ohtain possession of it ended in the decisivo Roman victory of the Aegates Islands in 24I, which led to the conciusion of peace (sece Pomac Wars). It continued to be an important harbour, but never acquired municipal rights. Under the Norman kings, at the time of the frrst crusade, it became a place of importance; while it was 2 reidence of the Aragonese kinge In the 16 ith and 12 th centuries it was stronsly fortiofed. In 18,s it vas the first Sicilian city to rise embipst the Boartons.

Ko remains of the classical period cxist except a portion of the conle. Thure are some fine Gothic and bacoque palaces,
and a few charches with Interesting details. The Oratorio S. Michele contaims wooden groups representing scenes from the Passion, executed in the 17th centary and used for carrying in procession. On the tiled pavement of Sta Lacia is an interesting view of Tmpani, showing the strong fortifications on the land side, which have been demolished to permit of the extension of the town in that direction. The Madonna dell' Annunxista, about it m. east of the town, founded in 1332, is now restored to lits original style. The adjacent Cappella del Cristo Risorto contains a statue of the Virgin and Child in marble aaid to have been hrought from Cyprus, to which an immense number of valuable offerings have been made, among them two bronze candelabra and a model of the city in silver; while the statue itself is hung with jewels, necklaces, cameos, rings, watches, \&c. The modern town is clean and well built, with a fine esplanade on the south. It is a harbour of considerable importance, It was entered by 144 vessels, representing a tonnage of 129,164 in 1go6. The imports showed a value of \(£ 276,674\), the most important items being wheat, coal and timber; while the exports amounted to \(£ 143,347\), the chief items being salt, wine, salt fish and building-stone. There are also large salt-pans to the south of the city, extending along the coast as far as Marsak, which produce about 200,000 tons of salt annually, of which in 1906 121,192 tons were exported, chiefly to Norway, Sweden, Canada and the United States. The numerous windmills are used for grinding the salt.
(T. As.)
trap-ball, or Knur and Speti (M. Eng. Inurte, knot; Dan. spil, spindle), an old English game, which can he traced back to the beginning of the 14 th century, and was commonly played in northern England as late as \(\mathbf{1 8 3 5}\), but has since been practically confined to children (bat, trap and ball). It was played with a trooden trap, by means of which a ball (knur) of hard wood about the size of a walnut was thrown into the air, where it was atruck by the player with the "trip-stick," a hat consisting of two parts: the stick, which wes of ash or lancewood and aboust 4 ft . long, and the pommel, a piece of very hard wood about 6 in . long, 4 in . wide and I in. thick. This was swung in both hands, althougb shorter bats for one hand were sometimes used. Originally the ball was thrown into the air by striking a lever upon which it rested in the trap; but in the later development of the game, usually called knus and spell, a spell or trap furnished with a spring was used, thus ensaring regularity in the height to which the knur was tossed. The object of the game was to strike the knur the greatest possible distance, either in one or a series of strokes.
TRAPEEE, or Tenpese, a form of swing, consisting of a crossbar suspended by. ropes and used for gymnastic exercises: acrobatic displays and the like. The name was so applied in Fretch (bapdes) from the resemblance of the apparatus to a " trapezium " or irregular four-sided figure. The Greek tpant \(510 \%\) is a diminutive of rphretsa, a table, literally a four.footed or four-legged object, being a shortened form of rerpdreffa (retpa-, four, and ndsa, foot).
TRAPEZOPHOROH, the Greek term (from tparesa, table, and \$hecw, to bear) given to the leg or pedestal of a small side table, gencrally in marble, and carved with winged lions or griffins set back to back, each with a single leg, which formed the sepport of the pedestal on cither side. In Pompeii there was a fine example in the bouse of Cornelius Rufus, which stood behind the impluvium. These side tables were known as mensae vascriac and were used for the display of vases, lamps, \&c. Sometimes they were supported on four legs, the example at Pompei (of which the museums at \(N\) aples and Rome contain many varieties) had two supports only, one at each end of the table. The term is also applied to a single leg with lion's head, breast and forepaws, which formed the front support of a throne or chair.
TRAPPIETB, Cistercian monks of the reform instituted by Armand J. le B. de Rance (q.v.), abbot of La Trappe. 1664. La Trappe was a Cistercian abbey near Soligny, in the diocese of Stes, in Normandy, founded it4o. It suffered eievously from the English wert and lrom commendatory
abbots, 30 that towards 1650 the commurity was reduced to half a dozen monks who had long ceased to comply with the obligations of their state, and were an open scandal to the neighbourbood. Armand Jean de Rancé became commendatory abbot at the age of ten, 1636; and on his conversion from a worldly life be began to interest himself in bis abbey and conceived the project of restoring the monastic life therein, \(\mathbf{1 6 6 2}\). With this object he visited La Trappe, but the monks were recalcitrant and threatened his life; through the intervention of Louis XIV. he was able to pension them off; they were replaced by a community of Cistercians of the strict observance, and the monastic buildings, which had fallen into ruin, were repaired at de Rance's expense. He himself then entered the novitiate in one of the reformed Cistercian abbeys, and on his profession he came to La Trappe as regular abbot, 1664 . But he desired a return to the full programme of the primitive Cistercians. His influence with Louis XIV. and with the court of Rome secured him a free hand in carrying out changes without trammel from the Cistercian superiors, who looked askance at the project; and he was able to persuade his community to adopt a manner of life peyond the original Cistercian practice, and far beyond St Benedict's rule. Thus they abstained wholly from wine and fish, and rarely ate eggs; on certain days they had only bread and water, and on two days in the year they went barefooted; and they slept in their day clothes: these practices are in contradiction to what St Benedict allowed. On the other hand manual labour occupied only \(3 \frac{1}{f}\) hours, but the church services 7-herein reversing St Benedict's apportioning of the time. In short, the Trappist régime is probably the most penitential that has ever had any permanence in the Western Church. Yet it attracted vocations in such numbers that de Rance had 300 monks under him. Through age and ill health he resigned his abbacy in 1695, and died five years later.

During the 18th century La Trappe continued faithful to de Rance's ideas, but the observance spread only into two monasteries in Italy. It was the dispersal of the community at the French Revolution that turned the Trappist into a congregation in the Cistercian order and finally into a separate order. Dom Augustine de Lestrange, the novicemaster at the time of the suppression in 1790 , kept twenty of the monks together and obtained permission for them to settle at Val-Sginte in Fribourg, Switzerland. Here they made their life still stricter than that of La Trappe, and postulants flocked to them in such numbers that in two years' time colonies went forth to establish Trappist monasteries in England, Belgium, Piedmont, Spain and Canada; and in 1794 Dom Augustine was named by the Holy See Father Abbot of all these foundations, thus formed into a congregation. In 18 r 7 they returned to La Trappe, many new foundations were made, and by Dom Augustine's death in 1827 there were in all some seven hundred Trappist monks. In the course of the century three or four congregations arose-a Belgian, an Italian, and two in France-each with a vicar subject to the general of the Cistercians. In 1892 these congregations were united into a single Order of Reformed Cistercians, or of Strict Observance, with an abbot-gencral resident in Rome and independent of the general of the Cistercians of the Common Obscrvance. In 1898 the Trappists recovered possession of Citeaux, the mother-house of the Cistercians, secularized since the Revolution, and it was declared by Rome to be the head and mother house of the Reformed Cistercians, who thus were recognized as the authentic representatives of the primitive. Cistercian movernent.

The Trappists are a thriving and vigorous order. In ygos they had 58 monasteries with 1300 professed choir monks and 1700 lay brothers. At the time of the recent expulsions (1003) they had twenty houses in France, and they have two of three in all the countries of western Europe, including England (Mount St Bernard, near Leicester) and Ireland (Mount Mellery in Wherford and Roscrea); abo in the United States
and in Canada. Besides they have a house in Chima, with over filty Chinese monks; one each in Japan, Asia Minor, Palestine, Bosnia and Dalmatia, and four in various parts of Africa. The abbey of Mariannhill in Natal is devoted to the christianizing and civilizing of the Kaffirs; there are numerous stations with elementary schools and chapels, and at the abbey is a high school and printing-press for books in the Zulu and Basuto languages. In heathen countries the Trappists now give themselves up to missionary work and the task of civilizing the natives.
The first Trappist numnery was the abbey of Les Clairet, near Chartres, which de Rance persuaded to adopt his reforms. Dom Augustine de Lestrange establishod another in 1796, and now there are fifteen with 350 choir nuns and 500 lay sisters. One is in England at Stapehill, near Wimborne, founded in 1802. The manner of life of the nuns is almost the same as that of the monks.

See the Lives of de Ranct. A minate account of the observance is in de Rance's Raglemeens de la Trappe (1701). The beginning of the reform is told by Helyot, Histoire des ordres religicux (1718), vol. vi. ch. \(\mathbf{r}\); the developments under Dom Augustine de Lestrange are described in the supplementary matter in Migne's Dictionnaire des ordras religiemx (1858). The whole subject is well treated by Max Heimbucher. Orden u. Kongregationen (1907), vol. i. 548 ; and in Wetzer und Weite, Kirchenlexicon (2nd ed.), and Herzog. Realencyklopidic (3rd ed.). A realistic and sympathetic picture of Trappist life is the redeeming feature of J. Huysman's En route.
(E.C.B.)

TRAQUARR, SIR JOHN STEWART, IST EAAL OF (d. 1659), Scottish statesman, was the son of John Stewart, the younger; of Traquair in Peeblesshire, of a branch, originally illegitimate, of the house of Buchan, and was created Baron Stewart of Traquair in 1628 and sarl of Traquair in 1633 . He was appointed treasuret depute of Scotland and an extraordinary lord of session in 1630, and is said to have given the casting vote against the second Lord Balmerino at his trial in 1634, but afterwards obtained his pardon. From 1636 to 1641 he held the office of lord high treasurer of Scotlend, and aided Charles I. in introducing the liturgy. He endeavoured to prevent a conflict by impressing on the king the necessity of caution and the danger of extreme measures against the rioters. He was, however, compelled to publish Charies's proclamation enforcing the use of the liturgy and forbidding hostile demonstrations on pain of treason (1638). This was followed by military measures in which Traquair assisted by secretly conveying munitions of war to Dalkeith Palace. He was, however, obliged to surrender the place with the regalia to the Covenanters (March 1639). After the treaty of Berwick be was appointed the king's commissioner to the assemhly at Edinburgh (August 1639), and he assented in writing to the act abolishing episcopacy, but prevented its ratification by adjourning the opening of parliament. His apparent double-dealing made him suspected by both parties, and in 164 x the Scottish parliament issued a warrant for his arrest. In his absence he was sentenced to death, bat, although the king secured the remission of this penalty, he was dismissed from bis office of treasurer, and in 1644, for repairing to the court and opposing the covenant, he was declared an enemy to religion and fined 40,000 marks. His son, Lord Linton, whom be had sent to Montrose with a troop of horse, withdrew on the eve of the battle of Phiiinhaugh (September 1645) and it has becinsupposed that Traquair betrayed Montrose's plans to Leslic. He was readmitted to parliament in 1646, raised cavalry for the "engagement" between the king and the Covenanters, and was captured at Preaton (2648). He was released by Cromwell \(\ln 2654\), and died on the 2 年h of March 1657 . He was surceeded by his only som John (c. 1622-totin), whose desrendants held the title unuli 8861 , when on the death of Charle
or extinct.
See aloo Spalding, Memorialls
Anmels (ed. Haig, 1824): Dice.
TRASIMENE, LAKE (Lat

3 m. to 14 m . across. Having no natural outlet, it was fomerly ubject to sudden rises, which occasioned inundations, and these in turn malaria. An artificial outlet was completed in \(\mathbf{8 9} 8\) tom the south-cast corncr of the lake to the Caina, a small ubutary of the Tiber. The work, which is about 4 m . long, orst only about \(£ 26,000\). It is intended to leave about 2500 astes of land dry, and to convert another 2800 acres of marshy sil into cultivable land. The lake contains three small islands: (sola Maggiore, with a monastery, Isola Minore and Isola 2olvese. Standing on a promnntory jutting out into the lake is the town of Castiglione del Lago, which possesses a castle of the dukes of Cornia, huilt by Galeazzo Alessi, the anchitect of many of the Genoese palaces. Napoleon I. formed a. project for draining the lake, which may ultimately be adopted. there Hannibal disastrously defeated the consul C. Flaminius. Unnnibal left his winter quarters in Cisalpine Gaul in the sping of 217 B.c. and crossed the Apennines, probably by the Fiss now known as the Passo dei Mandrioli (from Forli to BibUtona in the upper valley of the Arno). His march was much indered hy marshes (probably those in the Arno valley between Bibbiena and Arezzo). The Roman army under Flaminius was stationed at Arczzo (anc. Arretium), and Hannibal marched ost it Flaminius followed, and Hannibal occupied the heights on the north of the lake between Terontola and Tuoro, cummanding the road from Cortona to Perugia, and also those on the east of Tuoro, so that when the Roman army (which had encamped the night before outside the entrance to the samall valley of the brook now called Sanguineto, west of Tuoro), samble in the mists of early morning to sce the enemy's forces, had entered the valley, it was surrounded and there was no escape except by forcing a passage. The vanguard succeeded in making their egress on the east by Passignano, but the defeat of the rest of the army was complete, the Romans losing no lewer than 15,000 men.
Ser I. Ashby In Journal of Philology (1go8), and refs. (T.As.)
TRASS, the local name of a volcanic tuff occurring in the Eilel, there it is worked for bydraulic mortar. It is a grey or creamcoloured fragmental rock, largely composed of pumiceous dust, tod may be regarded as a trachytic tuff. It much resembles the Italian puzzolana and is applied to like purposes. Mixed ath lime and sand, or with Portland cement, it is extensively mployed for hydraulic work, especially in Holland; whilst che compact varieties have been used as a building material 221 as a fire-stone in overs. Trass was formerly worked tuensively in the Brohl valley and is now obtained from ne valley of the Nette, near Andernach.
TRAD (Serbo-Croatian Tragir; Lat. Tragurium), a seaport \(\therefore\) Dalmatia, Austria. Pop. (1000) of town and commune, :.064 Traù is situated 16 m . W. of Spalato by road, on an Live in the Trail channel, and is connected with the mainland 201 :he adjoining island of Bua by two hridges. The city wails are intact on the north, where a 1 gth-century fort, the Castel Camerlengo, overlooks the sea. Above the main suteway the lion of St Mark is carved, and the general aspect of Trad is Venetian. Its strects, which are too narrow for -heeled traffic, contain many interesting churches and medieval bouses, including the hirthplace of the historian Giovanni Lucio (Lucius of Traù), author of De regno Dalmatice ef Croatiae (Amaterdam, 1666). The loggia, built by the Venetians, in E Ene specimen of a 16th-century court of justice; and the eathedral is a basilica of rare beauty, founded in 1200 and completed about 1450 . It was thus mainly buitt during ite period of Hungarian supremacy; and, in consequence, its epchitectare shows dear signs of German influcice. Among
 iad has some trade in
of dyruploy, water melon, from a fancied similarity in shape. He states that Traù was one of the few Dalmatian cities which preserved its Roman character. In 998 it submitted to Venice; but in 1105 it acknowledged the supremacy of Hungary, while retaining its municipal freedom, and recaiving, in 1108 , a charter which is quoted by Lucio. After being plundered by the Saracens in 1123, it was ruled for brief periods by Byzantium, Hungary and Venice. In 1242 the Tatars pursued King Béla IV. of Hungary to Traù, but were unable to storm the island city. After 1420, when the sovereignty of Venice was finally estahlished, Trau played no conspicuous part in Dalmatian history.
See T. G. Jackson, Dalmatia, the Quarnero, and Istria (Oxford, 1887); E. A. Freeman, Sketches from the Swbject and Neighbow Lands of Venice (London, 188s); and G. Lucio, Memorie istoriche di Tragurio, ora detuo Traù (Venice, 1673).

TRAUN, OTTO PERDINAND, COUNT von Abenspero ond (\(1677-1748\)), Austrian feld marshal, came of a noble family and was born on the 27 th of August 1677 at Oldenburg. He was sent to Halle to complete his education, but in 1693 left the university to serve with the Prussian contingent of the allied army in the Low Countries. He saw much service in the War of the Grand Alliance, and at its close entered the imperial army. The War of the Spanish Succession soon followed, and Traun served with distinction in Italy and on the Rhine till 1709 , when be became lieutenant-colonel and aide-de-camp to Field Marshal Count Guido Starhemberg (1654-1737) in Spain. A year later, for specially distinguished services, he was made colonel, and in 1712 chief of a regiment of foot. Soon after the close of the war he was again actively employed, and at the action of Francavilla in Sicily (June 20, 1719) he received a severe wound. For his services in this campaign in southern Italy he was promoted General-Feldwachtmeister in 1723. In 1727 be became governor of Messina, and in 1733 attained the rank of lieutenant field marshal. In 1734 he won a European reputation by his defence first of the pass of S . Germano and then of the half-ruined fortress of Capua, which he surrendered, marching out with the honours of war on the 30th of November. He was at once promoted Feldzeugmeister and employed in a dificult semi-political command in Hingary, after which be was made commander-in-chief in north Italy and interim governor-general of the Milanese, in which capacity Le reccived the homage of the army and civil authorities on the accession of Maria Theresa in 1740 . In the following year he was made a ficld-marshal. The Italian campaigns of the War of the Austrian Succession were successfully conducted by him up to 1743, when, on the death of Field-Marshal Count Khevenhiller (\(q . v\).), he was made the principal military adviser of Prince Charles of Lorraine (q.v.), who commanded the Austrians in Bohemia and on the Danube. In this capacity he inspired the brilliant operations which "led up to the passage of the Rhine (see Austrian Succession, War of the) and the skiliful strategy whereby Frederick of Prussia was forced to evacuate Bohemia and Moravia (1744) without a battle. Traun's last active scrvice was the command of an army which was sent to Frankfurt to influence the election of a new emperor to succeed Charles VII. He died at Hermannstadt on the iSth of February 1748.
See Biographien k. . Heerführer. herausgegeben v. d. Direktion des k. und k. Kriegsarchiv: Thürheim, F. M. OLto Ferdinand, Graf - Abensperg und Traun.

TRAUNSTEIN, a town and summer resort of Bavaria, situated, at an elevation of nearly 2000 ft , on the river Traus, 73 m . by rail S.E. of Munich. Pop. (1905), 7447. It distils salt from the hrine of Reichenhall, whence (22 m . distant) it is brought in pipes. It has an historical museum, four churches (three of which are Roman Catholic), two fine foun-tains-a monument of the war of \(1870-78\) and one to King Maximilian II. There are saline haths and breweries. In the vicinity are Empfing, with baths of all kinds and a coldwater cure establishment on the Kneipp system. Traunsteio received civic rights in 1375 .

TRADTENAU (Czech Trutnos), a town of Bohemis, 120 mm . E.N.E. of Prague by rail. Pop. (1900), 14,77\%, mostly German. It is situated on the Aupa, a tributary of the Elbe, at the foot of the Riesengebirge, and possesses a beautiful church built in 1283 and restored in 1768. Trautenau is the centre of the Bohemian linen industry and has factories for the manufacture of paper and for the utilization of the waste products of the other mills. Trautenau was founded hy German colonists invited to settle there by King Otto Kar II. of Bobemia, and received a charter as a town in 1340. ' It was the scene of two battles between the Prussians and Austrians on the 27th and the 28th of June 1866.

TRAVANCORE, a state of southern India, in political relation with Madras. Area, 7091 sq. \(m\). In 1901 the population was \(2,952,157\), showing an increase of \(15 \%\) in the preceding decade. The state stands sixteenth among the native states of India in area and third in population. Travancore extends more than 150 m . along the west coast as far as Cape Comorin, the southernmost point of the peninsula. The Western Gbats rise to an elevation of 8000 ft . and are clothed with primeval forest; they throw out spurs towards the coast, along which there is a belt of fat country of about 10 m . in width, covered with coco-nut and areca palms, which to a great extent constitute the wealth of the country. The whole surface is undulating, and presents a series of hills and valleys traversed from east to west by many rivers, the floods of which, arrested by the peculiar action of the Arabian Sea, spread themselves out into lagoons or backwaters, connected here and there by artificial canals, and forming an inland line of smooth-water communication for nearly the wbole length of the coast. The chief river is the Periyar, 142 m . in length. Other important rivers are the Pambai and its trihutary the Achenkoil, the Kallada, and the Western Tambraparni. Iron is ahundant and plumbago is worked. Elephants are numerous, and tigers, leopards, bears, bison and various kinds of deer abound in the forests. Travancore has an abundant rainfall, with every variety of temperature. The priscipal ports are Alleppi, Quilon and Paravur; but there is no real harbour. The state has a fine system of roads, and the Cochin-Shoranur and the Tinnevelly-Quiloa railways pass through it. The Periyar irrigation project conducts water through the ghats in a tunnel to irrigate the Mfadras district of Madura, for which compensation of Rs. 40,000 is annually paid to Travancore. Trade is large and increasing, the chief exports being copra, coir and other coco-nut products, pepper, tea, sugar; areca-nuts, timber, hides, coffee, \&e. The capital is Trivandrum. The revenue is \(£ 670,000\); tribute, f80,000; military force, 1360 infantry, 61 cavalry and 30 artillery with 6 guns. The maharaja of Travancore claims descent from Cheraman Perumal, the last Hindu momarch of united Molabar, whose date is variously given from a.D. 378 to 825 . Though he is a Kshatriya, the succession follows the local custom of inheritance through females; consequently bis sanad of adoption authorizes him to adopt sisters' sons. For some generations the rulers have been men of education and character, and the state is conspicuous for good administration and prosperity. Education, and female education in particular, is more advanced than in any other part of India. The two dominant sections of the population are the Namburi Brahmins and the Nairs or military caste. Native Christians, chiefly of the Syrian rite, form nearly one-fourth of the whole, being more numerous than in any Madras district.

See V. Nagam Aiya, Tresancore Slate Manual (Trivandrum, 1906).

TRAVE, a river of north Germany, rising in the ldenburg principality of Läbeck, between Eatio and Ahrensbficl. Flowing at first southwards through small lakes and marshes, it then turns west and, confined within flat and sandy baniss, enters the Prussian province of Schleswig-Holstein. It wew bends due south to Oldesloe, from which point it is mavigable. Hence it takes an easterly course, and, entering the territory of the free city of Libeck, receives from the right the stecknits, through which and the Stecknitz canal built by the merchants
of Labeck in 1398) a direct water communication is maintained with the Elbe, and passing the city of Labeck discharget itself into the Baltic at the port of Travemunde after a course of 58 m . Its lowes course from Lubeck to the sea has been dredged to a depth of 25 ft ., permitling sen-going vessels to lio alongside the wharves and quays.

TRAVBLLBR'S THEB, a remarkable tree, native of Madagascar and Reunion, with a straight stem reaching 30 ft . in height and bearing at the top a number of large longetalked leaves which spread vertically like a fan. The leaf has a large sheath at the base in which water collects in such quantity as to yicld a copious draught-hence the popular name. The plant is known botanically as Rarenala Madagascarionsis and belongs to the same family as the banana (Musaceae).
TRAVEMONDE, a seaport of Germany, in the free state of Lubeck, situated on the Baltic, at the mouth of the Trave. Pop. (1gos), 2017. It has an Evangelical church, dating from the end of the 15 th century, and is a much frequented wateriagplace. There are extensive herring fisheries. Travemunde arose out of a stronghold placed bere by Henry the Lion, duke of Saxony, in the 12 th century to guard the mouth of the Trave, and the Danes subsequently strengthened it. It became a town in 3177 and in 1329 passed into the possession of the free city of Lubeck, to which it has sinco belonged. Its fortifications were demolished in 1807 .

TRAVBRSE, in fortification, a mass of earth or other material employed to protect troops against enfilade. It is constructed at right angles to the parapet manned by tbe defenders, and is continued sufficiently far to the rear to give the protection required by the circumsfances, which, mareover, determine its beight. A traverse is sometimes utilized as a casemate. Ordinary feld-works, not less than those of more solid construction, require traversing, though if. the trenches, instead of being continuous, are broken into short lengths, they are traversed by the unbroken earth intervening between each length. (For traversing in surveying see Surveying.)

TRAVERSE CITY, the county-scat of Grand Traverse county, Michigan, U.S.A., on the Boardman river, between Boardman Lake and the west arm of Grand Truverse Bay, in the N.W. part of the lower peninsula. Pop. (1900), 9407, of whom 2068 were foreign-born;(1910, census), 12,115. It is served by the Pere Marquette, the Grand Rapids \& Indiana and the Manisteo 8 North-Eastern railwavs, and by steamboat line to Chicago and other lake ports. The climate, scenery and good fishing attract summer visitors. The city has a public library and a library owned by the Ladies' Library Association, and is the seat of the Northern Michigan Asylum for the Insane (opened 1885). There are various manufactures, and in 1004 the total value of the factory product was \(82,176,903\). Traverse City was settled in 1847, incorporated as a village in 188ı and chartered as a city in 1895 .

TRAVESTY (Fr. travesfie, from bradestir, to disguise, se travestiv, to change one's clotbes; Lat. Irams, across, and acslire, to clothe), a burlesque, particularly a grotesque imitation of a serious work of literature or art, in which the subject, characters, erc., are retained, but the style, language and treatment generally are exaggerated and distorted to excite ridicule (see also Burlesque).

TRAVNK, the capital of a department of the same name in Bosnia; situated on the Laǐva, a left-hand tributary, of the Bosna, 44 m . by rail N.W. of Serajevo. Pop. (2895) about 6000. Travnik is mainly buile round a stecp mass of ruck, crowned by an ancient citadel. Several mosques, palaces, arcades and a fine bazaar, left among its narruw lanes and wooden hats, bear witness 10 its former prosperity, and there are some good modern barracks and puhlic buildiags.

The old name of Travnik, Losoe, was last used in the 181 h century. It is likely, from the number of Roman remains, that Travnik stands near the site of a Roman colony. it was a Btrongholil of the Bogomits duriag the asth oentun
government from Banjaluka, which was dangerously near the Humgarian frontier, and the Turkish governors, officially styled " valis of Hungary," ruled in Travnik from 1686 to 1850.
Several interesting villages, none containing more than a few hundrod inhabitanta arc grouped together, ncar Travnik Prozor, with its ruined citadel. which withstood the Turkish advance until the beginning of the 16th century, when almost the whole of Bosnia pald been enslaved, was then the capital of the princes of Rama, a dis. trica lying north-west of the Narenta. The thermal sta tion of Kiseljak, where the Fojnica and Lepenica rivers mect, is a cluster of oldfashioned Turkish villas, with a casino, baths, barracks, hotels and park. In 1396, Tvrtko 1. of Bosnia granted the privilege of siver-mining here to the Ragusans. Remains of old workings may still be seen. Krcievo, 5 m . N.N.E.. is likewise rich in iron, cinnabar, quicksilver and the argentiferous load which was worked by the Saxons in the middle ages. The citadel of Zahor, or Gradina, now a ruin. guarded the mines. Bugojno, on the Vrbas, is a picturesque place, with a large cattle and horse trade. The Franciscan monastery of Fojnica, 18 m . east, is the largest and wealthiest foundation in Bossia. les Byzantine church is full of ancient ornaments and relics. The archives contain many valuable manuscripts, including a charter bestowed on the monke, in 1463 by the Sultan Mahomet 11 .
trawling, seining and netting. The innumerable kinds of fishing nets which may be distinguished, if all nets difitering in details of structure or use be placed in separate classes, fall naturally into two main groups, namely stationary nets and nets used in motion. The former group contains the most primilive nets, though nets of great complexity are now included in it; and the simplest fixed nets, themselves derived probably from dams of rushes or stones so placed as to lead fish in to a "pond " or enclosure, may with some confidence be considered as the ancestors of the great otter trawls now shot and towed daily from powerful steamers on fishing grounds more than a thousand miles from the market they work to supply. The more primitive fixed nets are of far less importance than movable nets (except in the capture of certain particular species), owing to the fact that they are necessarily confined to very shallow water. The main types of movable nets may therefore be treated first.
All nets are constructed in accordance with what is \&nown of the hahits of the fish they are designed to capture; and as fishes may be roughly divided into those spending at least the greater part of their lives on or near the sea-boltom and those spending a great portion of their lives near the surface, two lines have been followed in the development of ncts, some heing desugned ta work on the botiom, others to work near the surface. The most important nets used in the capture of "demersal " or bottomliving fishes are trawls; the most important pelagic nets are drittnets. The word trawling' was at one time applied to more than one method of fishing, but has, at all events in Europe, now become restricted to the operation of a flattened concal net or trawl, dragged along the sea-bottom There are two trawls in common use, the beam trawl and the otter trawl. They difier in the method adopted for extending the mouth of the vet. The original form is the beam Irawl.
The beam trawl may be described as a fattened conical net whore mouth is kept open when in use by a long beam supponted 2e Bears at the ends by fron runners, the trawl-heads. Elm that is generally preferred for the beam. sclected if possible from timber grown just to the proper thickness, that he natural strength of the wood may not be lessened by more trimming or chipping than is absclutcly necessary. It the required length and thickness cannot be obtained in ont piece. two quiren three pieces are scarfed together, and the joints secured by roa bands. The trawl-huads differ somewhat in lorm in diferent cevmeries and in different boralitics. The usual form is heart-
 Waped the "shoe" or part actually in contact with the ground front of the head, to the
is towed, and, within the point of the heel, for the purpose of allowing the mouth of the net to be scized or lashed to the trawl-head at a point close to the ground. The shoe of the trawl-head is in the iull-sized trawls made of double thickness, to resist wear.

When the net is spread out in the position it would take up when working, the upper part or back has its straight front edge fastened to the beam, but the corresponding lower part or belly is cut away in such a manner that the front maryin The Not forms a deep curve extending from the shoe of one trawl-head to that of the other, the centre of the curve or "trosom," as it is called, being at a considerable distance behind the Ueam. The usual rule in English I rawls is for the distance bet ween the beam and the centre of the bosom to be about the same as the length of the beam. In French trawls this distance is generally much less; but in all cases the beam and back of the net must pass over a considerable space of ground when the trawl is at work before the fish are disturbed by much of the lower margin of the net. This lower edge of the mouth of the trawl is fastened to and protected by the "ground-rope," which is made of an old hawser "rounded " or covered with small rope to keep it from chafing, and to make it heavier. The ends of the ground. rope are fastened at each side by a few turns round the back of the trawl-hcads, just above the shoe, and the rope itsclf rests on the ground throughout its entire curve. The fish which may be disturbed by it have therefore no chance of escape at either the sides or top of the net unless they can pass through the meshes, and as the outlet under the beam is a long way past them, and is steadily moving on, sooner or later they mostly pass over the ground. rope and find their way into the funnel-shaped end of the net. from which a small valve of netting prevents their return.

It must not be supposed, of course, that all gishes entering a trawl are retained in it. Numerous investigations have been made into the size and number of the various species of fish which get through the meshes of the trawi, by lacing small-meshed netting over the ordinary net, and examining the fish remaining in this outer net. Fish are found to escape all parts of the net, but chiefly the " bat ings," i.e, the part of the net where it is narrowing to the "cod end "; and as the chance of escape depends on the size and shape of the fish and the mesh of the net, it is naturally found that the maximum size of the individuals which can cocape in any numbers differs in different species If small fish are on the sround, the total number escaping is, however, in all cases very large, frequenty grcatly excceding the number caught. This is for the most part desurable, the fish being of a size to render them of but little value to the fishormen or to the public. It is in any case inevitable, since a full-sized trawl made entirely of small-mesh would offer so great a resistance to the water as to be unworicable.

The ground-rope bears dircctly on the ground, and to prevent the possibility of the fish passing under it, the rope should have some weight in it so as to "bite" well, or press the ground closely. It is, however. always made of old material, so that it may break in case of getting foul of rocks or euch otber chance obstruction as may be met with on the gencrally smooth ground where the trawl can only be worked with advantage. If In such a contingency the rope were so strong and good as not to break, there would be serious danger of the tow-rope snapping, and then the whole apparatus might be lost; but the ground-rope giviog way enables the net to be cleared and hauled up with probably no more damage to it than the broken rope and perhaps some tom netting. The remaining part of the trawl, extending from the bosom to the extrene end, forms a conplete bag gradually dimisishing in hreadth to within about the last 10 ft -, which part is called the " cod or purse," and is closed by a draw-rope or "codline" at the extremity when the net is being used. To avoid the abrasion of the under part of the codend pressed by the weight of fish against the stones and shells of the sea-bottom, stout pieces of old net are laced across bencath it in parallel stripm These strips thus trail bencath the trawl and protect it. They constitute the "rubbers "or" false belly." Thecod-end is the gencral receptacle for the various fishes which enter the net; and when the trawl is hauled up and got on board the vessel, the draw-rope is cast off and the fish all fall out on the deek.

It has been mentioned that the body of the net tapers away to the entrance to the purse. It is at this point the opening of the pockets are placed; and they are so arranged that the fish having passed into the purse, and then seelaing to escape by returning along its sides, are pretty oure to go into the pockets which extend for a bength of about 15 or 16 ft along the inner side of the body of the net, and there. the more they try to press forward, the more tightly they become packed, as the pockets gradually narnowaway to nothing at their upper or front extremity. These pockets are not separate parts of the trawl, but are made by mercly tacing logether the back and belly of the net, beginning close to the margin or side nearly on a level with the bosom, and then being carried on with slowly increasing breadth backwand as far as the entrance to the purse. At this point the breadth of the net is divided into three nearly equal spaces, the central one being the opening from the mann body of the net into the purse. or general receptacle for the fish, which must all pass through it, and those on each side being the mouths of the pockets facing the opposite direction. The central
passage has a valve or veil of netting called the "flapper," which only opens when the fish press against it on their way into the purse. To understand clearly the facilities offered to the fish to enter the pockets, it is necessary to remember that the trawl, when at work, is towed along, with just sufficient force to expand the net by the resistance of the water. But this resistance directly acts only on the interior of the body of the net between the pockets and then on the purge; it does not at first expand the pockets, but tends rat her to flatten them, because they are virtually outside the general cavity of the trawl and their openings face the father end of it. The water, however, which has expanded the body of the net, then passes under or through the flapper or valve, and enters the purse, which, being with a much smaller mesh than the rest of the net, offers so much resistance that it cannot readily escape in that direction; return currents are consequently formed along the sides, and those currents open the mouths of the pockets, which, as before mentioned, are lacing them; and the fish, in their endeavours to escape, and finding these openings, follow the course of the pockets until they can go no farther. The whole of the net is therefore well expanded, but it is so by the pressure of the water in one direction through the middle, and in the opposite direction at the sides or pockets.

The dimensions of a full-sized beam trawl, such as has been described above are from 45 to 50 ft . along the beam and about Sho and 100 ft . in length. Trawls of practically all smalier Mefl. sizes down to some 30 ft . are to be found, but except for shrimp trawls the large sizes predominate almost to the exclusion of smaller nets. The trawi-heads support the beam at about 3 or \(3 \frac{1}{\mathrm{f}} \mathrm{f}\), above the ground. The meshes of the net behind the beam (the square) are about 5 in. from knot to knot, when drawn out taut. In the batings, the part of the net in which the narrowing mostly occurs, they decrease gradually from 4 to ahout 3 in.; in cod end they are \(2 \frac{1}{2}\) in. In the hope of protecting the small fish from capture some local authorities enforce within their jurisdiction a minimum size of mesh for trawls, as for orther nets. According to certain recent by-laws of the Lancashire and Western Sea Fisheries District Committce, for instance, every trawl used in their waters, except for the caprure of shrimps and certain specified fish, must allow a square wooden gauge of a certain size to pass easily through its meshes when these are wet. The difficulties in the way of the efficacy of such restriction are that a mesh which would allow the escape of fish of but little value of one species might allow the escape of very valuable individuals of another kind; and that both local and national authorities alike have powers of jurisdiction over such narrow strips of coastal water, that in the absence of an international agreement on the matter, the ground affected by the regulations is exceedingly small in comparison with the ground untouched. The same remarks apply to the similar regulations as to fength of beam and circumference of nets.

Considerable skil! is needed to work a beam trawi suecessiully. A knowledge of the ground and of the direction and time of the Workige tide is essential; for the trawl is towed with the stream, rhe Nof. a little faster than it is runnitig, so that there may be lation of speed, seeing that beam trawls are worked only from sailing vessels, is a matter of difficulty; when, however, there is a sufficiency of wind much can be done by an adjustment of the length of tow rope. Lowering the trawl is also a matter of diffculty especially when wind and tide are contrary, as in that case the vessel tends to drift over the net: the apparatus is first got into position by paying out the rope attached to the trawl-heads in such proportions that the beam takes its proper position while close to the surface. These ropes, called "bridles," are some 15 fathoms long: they meet and are shackled to the trawl warp, manilla rope of 6 in. circumference, of which 150 fathoms are generally carried. The trawl being in proper position. the warp is allowed to run out and the trawl lowered to the bottom, the vessel slowly noving on meanwhile; usually the length of warp which is below the sufface in towing is a few fathoms over three times the depth of water The ant of shooting the trawl lies in eausing it to alight on its runners of shoes, with the net freely trailing behind: should the net be twisted, or the trawl alight on its beams the trawl has been ahot " foul, " and must behauled and shot again. While towing. an experienced fisherman can tell by pressing his hand firmly on the warp outside the ship's bulwark whether the progress of the trawl over the bottom is satisfactory, any irregular progress over rough graund revealing itself in the character of the vibration of the warp.

The traw usually remains on the bottom for a whole tide, or six hours, and will in this time have passed over some 15 m . of ground. Hauling, a most lengthy and laborious process if carried out by hand-windlass, is in pracically all modern fishing smacks carried out by a smail steam capstan, the "steam man" as it is frequently called, a most efficient instrument with very compact engine housed under a small iron cover on the capstan's top. When the trawl comes olongside the heavy beam is secured by it two heads, the net is hauled over the side bit by bit, by hand, untit the cod.end is reached, when a rope is passed round it above the bulging end which contains the catch. and then over a " tackle "or
pulley, and so the cod end is hoisted inboard. The knot of the codline is untied, and the fish, mixed with various invertebrate animals, star-fish and rooted forms (confounded in the one term " scruff "). falls to the deck.

A small trawl is often used from an open boat for shrimping, It clorely resembles a beam trawl, but has no pockets. The usual dimensions of this net are about 15 ft . beam and 20 total length, of which ahout 4 ft. are taken by the cod Shrmp end. The mesh is about hall an inch square, but where no restrictions are enforced it decreases to a considerably smaller size as the cod end is approached. The beam when in use is about a foot and a half above the ground.

Shank nets are also similar to beam trawls in general shape, but differ in that the mouth is kept open by a rectangle of wood. Frequently the lower margin of the trawl's mouth is not in contact with the ground, being attached to a Shase Ncts. bar of wood which is fixed parallel to the bottom of the wooden rectangle and a lew inches above it. A fish or prawn is thus disturbed by the bottom bar of the wood, and either jumps over it and below the net and so escapes, or over both bottom bar and middle bar into the net. The theory of the net's action is that the fish tends most frequently to take the former course. the crustacean the latter; and there is oome evidence that this is partially realized in practice. Shank nets are sometimes worked from carts, when they are known as "Trollopers."
Owing to their fine netting and the very shallow water in which they work, shrimp trawls are exceedingly destructive to very small fish. Johnstone \({ }^{1}\) has found for instance that in a two mile haul of a shrimp trawl on the Lancashire coast 567 small plaice aje caught on an average, beside great numbers of whiting, dabes soles and other fish. In most parts of the English coast regulations are in force as to the mesh, size of beam and length of haul of shrimp nets, and shrimpers working on the beach are ordered to sort their catch at the water's edge, returning as many young fish alive as possible. The proportion saved by these means is not known with accuracy; it is much greater in the case of short hauls than in bonger ones. A shrimp trawl is usually kept down from half an hour to an hour, or when not subject to regulation rather longer. It is scldom towed for a langer period than 2 houns, the mpeed being somewhat under two miles per hour oa an average, thougb subject to variation.

The heam trawl has been described at some length because its structure is somewhat more simple than that of the trawl now in more gencral use; the importance of the net as an engine of capture has undoubtedly declined greatly within the past generation. Some interesting Ggures collected by the British Board of Agriculture and Fisheries prove this incontestably. In 1893 the number of first-class British sailing

Decay of

\section*{Bcera}

Traw/ing and rise of otber Trantlay from Steamer: trawlers was 2037, and their average net tonnage 57.4 ; in 1900 they numbered 925 , with a net tonnage of 411 , and from that year up to 1906 (the last year quoted in these returns) they never again reached a thousand in number or a tonnage of 40 tons net; on the other hand, there were in no one of the years quoted as few as 800 first-class sailing trawlers registered, nor did the average tonnage sink below 37, about which figure it remained constant. It is obvious therefore that about 1894 beam trawling began to decline, and that after a time this dechne lost most of its power, the number of hoats and size of boats baving sunk to a condition in which they fulfilled a certain function, which for some years has remained fixed The new factors which brought about this change went band in hand. They were the invention of the otter trawl and the increasing use of steam in fishing vessels. The otter trawt has no rigid and heavy beam, but relies on the force with which it is towed through the water to keep it open, and it is a far more efficient instrument for the capture of all but small flat fish than the beam trawi. Owing to the second of these facts its employment inevitably spread, and owing to the first a sailing vessel needing at least a moderate breeze to give it the requisite speed for keeping a large net open was unswitable for working it. Thus the introduction of the oter trawl ans doubtedly hastened the replacement of sails by steam as motive power for the great fishing flects. That the adoption of weam would have occurred in any case is al amina dime

Wore, ior instance, nearly 200 steam fishing vessels of various descriptions working from English and Welsh ports in 1883 ; and the desire to exploit new and more distant grounds had unsoubtedly become powerful by 189.4 , and accounted to some extent for the increase of steam trawling about that time. Nevertheless this increase is so sudden, that its occurrence at the time of the adoption of the otter trawl can scarcely be a coincidence. In 1893 there were 480 steam trawlers working from English and Welsh ports: in 1899 there were over a thousand.

The subsequent listory of British trawling is dominated by the sieamers. Garstang has calculated from a study of market statistics that a steamer (between the years 1889 and 1893) caught on the average between four and seven times as much in a year as a sailing smack. Against this competition the smacks could not succeed; if it was profitable for the steamers to fish they could gradually eliminate the smacks, as has occurred at Grimsby. The line fishery also decreased owing to the increasing transfer of the haddock and some other fisheries to the trawlers. The change from masts and sails to steam has, bowever, never been complete. The increased cost of huilding and running steamers made the handling of large catches a necessary condition of their profitable employment. A sailing trawler costs from \(\{500\) to \(\{8200\) to build \(\{1000\) would probably be a tair average. A frst-class steam trawler of the present day costs \(£, 10,000\) or more, quite ten times as much, and about \(£ 5000\) e year to run; and although the cost was less in the early years of steam trawling there was always an approach to these proportions. On the other hand their rapidity and independence of wind made distance between fishing ground and port of landing a matter of minor consequence. These causes, combined with a very general belief in the exhaustion of the home-groundsthere seems no doubt that at all events the catch per vessel declined-led to the growth in size and power of the steamers, which were used for distant waters and the exploitation of new grounds. Thus in 1906 there were only 200 more steam trawlers than to 1899 , but the average tonnage in the same period increased from 54 to nearly 62. To this increase in power and range of action of the steamers must be attributed the great increase in the quantity of trawled fish landed, since the engine of capture, the trawl, has changed but little since 1894: but another result occurred, namely a partial division of the area travied between sail and steam. The grounds wit hin easy reach of the English ports were left chicfly in the bands of the " smacks," the catcbes never being really very great, though rossessing a bigh proportion of "prime " (i.e. valuable species of) fish. The persistence of Lowestoft and Ramsgate as smack Iorts speak for this. The longer voyages of the smacks, on the other hand, were gradually discontinued, and the distant grounds besides a multitude of new grounds were opened up by the steamers. Grimsby, Hull, Aberdeen, Milford, tncreased enor. rously in importance, and now send vessels to the north of Ruseia, to the coast of Africa and far into the Atlantle. Steam trawling died at Yarmouth, the place of its birth; sailing trawlers disappeared from Grimsby, one of their greatest strongholds, but a port near cheap coal, deep water, and a market for fish from more distant grounds.

The estential features of the otter trawl are that the mouth is kept open by two large wooden boards, whose position when in use corresponds to that of the trawl heads in a beam trawl no beam being used. The action of these boards resembles that of a kite A kite dragged through still air, owing to the position of the point of attach-

The Otter TraviL ment of the string, takes up an oblique position, in
of Actlos. which it is acted on by forces in two directions, viz. that exerted through the sering, pulling forward, and that exerted by the resistance of the air in front of the kite, which, being perpendicular to the kite's surface, acts in an upward and backward direction. The resultant of these two forces necessarily acts in a direction between them, and the kite accondingly ascends. Constrain the kite to move in a horizontal plane, and the same forces would cause it to move not upwards, but to the side. A trawl board is practically a kite made to move on its side.

The trawl boards resemble massive wooden doors strengthened by iron bands. In action they move with their short edges vertical and their long edges horizontal. one in each case in contact with the sea bottom: the front bottom corner of each board is rounded off, so that the board resembles a sleigh runner Four strong chains, which meet in one iron ring, are attached to each board by ringbolts, and to each ring a wire warp. by whith the trawl is towed, is shackied. The ringbolts are about the same distance from the centre of the board. but the two chains attached to the after-ring. bolts of the board are longer than the two forechains. The trawl board when towed thus takes up an oblique position as regards the line in which it is towed, though remaining vertical to the ground. The force with which it is towed urges it forward, the resistance of the water urges it in a direction perpendicular to its surface, viz. backwards and to the side; it accordingly moves in an intermediate direction, going forward by tending to diverge from the line of towing Meanwhile the other trawl-board is diverging in a similar mannes but in the opposite dircction, and the mouth of the net, being attached to the hinder end of the boards, is thus pulled both right and left until stretched to its utmost, and the net is thus held open. The margin of the net which forms its upper lip is lashed to a rope called the headline: and the resistance of the water to the net's progress causes this to assume an arched form, the centre of the headline being probably some 10 or 15 ft . from the ground.

It has been calculated by Fulton, who experimented on the suhject, that the distance between the boards of an otter trawl of go ft . headline is about 60 ft ., owing to this arching upwards and bickwards of the upper margin of the net. The loss in the spread of the net is, however, compensated for very largely, as far as certain round fish arc concerned, by the increase in height of the mouth, the fish which are swimming near but not actually on the bottom tending to "strike upward" when disturbed. Indeed, the raising of the headline is accentuated occasionally by glass spheres or other buoyant objects to its centre; corks are still used in this way, but otherwise the practice has not been generally adopted in commercial trawling.
The earliest use of the otter board appears to have been due to Hearder, an electrician and inventor who designed it about 1860 , It was litule used except by amateurs working by steam yachts (to whom doubtless the ease with which it could be stowed a way recommended it). until the late 'eighties, when Danish fishermen used otter boards to spread their plaice scines. In 1894 a parent was taken out by Scott of Granion for an otter tra wh which differed from the most modern Corms chiefly in possessing rigid bars or brackets instead of chains. Chains replaced the bary in the form used by Nielsen, a Dane, in 1895. Although numerous variants have since arisen, no cssential difference in the 1 rawl has been generally adopted.

The trawl boards, or as they are frequently "called "doors," are of deal, 8 to 9 ft . loag, and 4 to 5 ff . high; they are liberally shod and strengthened with iron, and are about 3 in. thick. The net is fastened to eyes placed at the top and bottom of the after-end of the board but not to any intermediate Structure. point. This is to allow the part of the water owirling The Boards. past the board to escape: the entry of the whole of the water upon which the net's mouth advances would cause too great a resistance.

Two warps are used, one to each trawl board. These are com posed of wire rope 21 in . round, and when the traw! is inboard lie coiled up on the separate drums of steam winch.
As wire can be run off or wound in on either drum The Warps. separately, the adjustment of the lengths is much simplified. In the larger trawlers a thousand fathoms of warp is carried on each drum, and the warp is designed to stand a breaking strain of 23 tons.

The main form of net is that of the beam trawl. We have as in that net, a coarse meshed netting used near the mouth, a decrease in size of mesh as the net narrows, and a bay The Net. or cod end whose end is lastened by a cod line passed The Net.
through its final meshes. The only essential diference lies in the through its inal meshes. The only essentual difference lies in the
net behind the headline. This has not, as in the beam trawl, a
hi margin, but a curved one, the pointed sides of the net being
d the "top wings" of the trawl, the corresponding pants of ottom being in both trawls the bottom wings. The ground
rope resembles that in the beam-trawl, but is in some cases furnished with chains or "dangles " or with "bobbins.". Bobbins are heavy cylindrical wooden rollers, threaded on the wire warp which forms the core of the ground rope: they are of two sizes (the larger a foot through) placed alternately to ensure freedom of rotation. Their object is to turmount or crush obstacles which, by carching the ground rope, might capsize the trawl boards and destroy the success of the haul, they are accordingly used only on rough ground The chains are fastened to the ground rope in loops, to give it weight. and are used on very solt ground to ensure the trawl's effectually disiodging the fish. The headline is a rope some 3 in. in circumierence.

The meshes are, from knot to knot when drawn taut, from 5\} to nearly 6 in . in the square and wings, 5 to \(4 \frac{1}{\mathrm{in}}\). above, and 5 to rather over 3 in. below in the extreme back of the under batings called the " helly," about 21 in. in the cod end.

The successul shooting of the net is a matter of great skill. The paying out of the net. the lowening of the boards, the running out Wortiay of unequal lengths of the two warps to square the the Net trawl into proper position and the subsequent lowering of the whole to the bot tom, resemble the corresponding operations with the beam trawl. The fore warp is then drawn close to the quarter of the vessel and shackled to the after-warp close to the vessel's side, and the vessel proceeds on her course at a speed of some 2t or 2i m . per hour. The length of haul made varies enortnously. On a ground where fish is very abundant, as in the early days of Iceland fishing, it may be half an hour or less: on the Eastern Grounds, of Denmark, where the great English fleets usually work, it is about 3 hours. When about to haul, the fore warp is released from the shackle and the vessel is immediarely steered towands the side from which the trawl has been towed, while the warps are rapidly wound in; the warpe thus speedily come to stand at right angles to the vessel. If this were not the case they might probably foul the vessel's propeller, with very serious and possibly fatal conscquences to her safety. The trawl boards, having been drawn right up to their powerful iron supports or pallows, remain suspended there if the trawl is to be re-shot while the net is emptied; they are otherwise lowered between the gallows and the bulwark, and secured. The hauling in of the catch occurs as in the beam-trawl. Trawlers carry a trawl on each side of the deck, and in continuous trawling these are worked alternately. On each side of the deck a square enclosure called a pound is made for the reception of the fish falling from the cod end. by fitting planks turned on their sides into stanchions grooved for their reception. The fish is sorted into baskets in the pound. cleaned and packed in trunks in ice in the hold or fish-room.

A moteworthy method of trawling is the custom of 50 or 60 boats fishing together in a fleet. All these vessels will trawl as Floef directed by an "admiral," In proximity to p "markFlshles. boat." whose position is known to the owners from fast "carrierg." There are four such flects of British vessels wort ing in the North Sea. It is also worthy of mention that wireless telegraphy has recently been fitted to several German trawlers and drifters, which can thus communicate with the fishery protection cruisers, who pass on information concerning the fishery, and with the shore. The practice will doubtiess spread, although as yet the distance over which a message can be sent by these vessels is very emall.

The use of steam has not only increased the radius of action of the vessel. but by facilitating the process of hauling enables trawling Depolis to be carried out in greater depths. The sailing worked. vessels rarely work in greater depths than 30 fathoms. Ireland) in over 200 fathoms. Commercial trawling in 500 fathoms is not unknown, and the Irish rescarch vessel "Helga" works in as much as 800 fathoms.

The movable nets resembling trawls are scines, from which trawls were in all probability developed. The scine is an Selace. extremely ancient net, used by Phoenicians; Greeks being derin other Mediterrancan peopics, the word seine ance. In essence it is a long strip of peting with a buoyed headline and weighted ground rope. It is taken out in a boat some little distance from the shore, paid out during the boat's progress, and the lines attached to the ends being then brought back to the shore, the net is hauled up on the beach. From this simple form, which is still in use for the capture of smelts and ot her small fish, numerous developments have occurred Before mentioning the details of a few of the chief of these it may be said that the changes mainly consist in the formation of a purse or pocket in the middle of the net, somewhat resembling the cod end of a trawl, and in the working of the net from boats or ships instead of from the sea.

The boat is anchored during the hauling, the net being drewn to it. A net with a wide spread, [urnished with a purse, drawn over the sea botiom to a boat, is obviously very near a trawl in its action. When in the late 'eighties Danish fishermen fastened otter boards to their plaice-scines, and allowed the boat to drift, the seine was dragged by, not to the boat, and when Petersen used a similar arrangement, presently to be described, drageed Ifke a trawl, the evolution of a trawl from a seine was practically complete. Some such process, with the use of a beam instead of otter boards, probably occurred in the past and resulted in the beam trawl.

Pikhard seines. as the most elaborate forms of simple seines, may be briefly described. The pilchards approach certain parts of the Cornish coast, notably St Ives aud Penzance, in shoals which are eagerly awaited; and when they are

Pluluen sufficiently near two boats start out on the fishery. One carries a short seine, the stop net, which has previously been joined to the large seine, and shoots this net as it rows towards ghore. The other rows along the shore, shooting its net as it goes Ultumately the boats turn to meet each other, and when they do so the ends of the long scine are joined, the stop net removed, and the circle of netting towed to the beach until its ground rope touches the bottom. The pilchards are then removed at leisure by a smaller seine called a tuck-net-seine being a word which in the west of England is confined to nets worked from the beich. This net is very deep in the middle, and as the foot rope is drawn well in in hauling. a thoor is formed for it as it approaches the boat from which it is worked, a simple form of purse or bag resulting. The pilchards are dipped out in large baskets. In a good catch this process of "tucking \({ }^{4}\) out the fish may be carried on for some daya. The long seine used may be 200 fathoms long. and is about 6 fathons deep at the ends and 8 fathoms in the middle. The tuck-net is about 80 fathoms long, 8 deep at the ends and 10 fat boms in the middle. The meshes are larger at the ends or wings than in the middle, as in the trawl, bringing a tuck-net from 30 down to 42 the vard.

The seine is far more used in the United States than in the British Islands, its operations being so successful that complaints, have in some cases been made that local fisheries for certain species have been enturely destroyed owing to the diminution of the fish which it has brought about.
It is used in water of any depth, for the purpose of cat ching maclenel Rings are fastened to the ground rope, and by means of a mope passed through these rings the lower margin of the net is drawa together. converting the circle of netting into a complete bisin. shaped purse. The slack of the net is then gradually drawn in, the fish collecting in the last of the net (the fullness or "bunt ") to he reached. Purse seines are also used in Japan, where there is also in use a net which is a combination of seine and pound-net A long wall of netting forms a "leader" to the fish, and ends in an oval enclosure formed by a purse seine with incompletely closed ends. Two anchored boats, to which the seine is lashed. keep it extended. On hauling, the opening is closed and the slack of the net hauled into one boat, which approaches the other. until the fial portion containing the fish is brought to the surface.

The pockets of seines, though answering the same purpose as those of trawls in preventing the escape of the fish, "Sepmes resemble not the pockets but the cod end of the latter an wan net. In the ficts de betf of the Mediterranean the pocket is a very long bag, trailing behind the arms of pocket is a very long bag, trailing behind the arms of the seine, and constricted for some distance before joining it. It is without "flapper" or other valve.

(Nier Dechact.)
Fig. 2.-Diagram of a Danish Plaice-seine at work.
Most efficient pocketed seines are used in Denmark for the capture of eels and plaice. In both these nets the depth increases rapidly as soon as the extreme wings are left, and is very great in the
midare. Thus aiten in action but listle of the ret is vertical; the ground and bead ropes, though not perallel, tend to become. to.

\section*{Dencos} and the net trails in a curve behind then. Seen from above, the whole front margin of the net is semiciscular, but the net itself is shaped like the hinder part of a trawl: in fact, did the beadline of a trawl lie not in front but exactly over the ground rope, the two aeta would be almost identical.

The cel drag-sine is worked from \(a\) boit. in shallow water. The extreane ends or wiags are attached to two ohort apars, which

\section*{Endras} gelion in use are uphight, and each of these is turnished with to the ropen by which the net is hauled ia. The total of the nef sabout 140 It from wing to wing, the leagth of the bag 30 ft ., the depth at mouth is 20 ft opening, the depth at the ends 6 or 8 It.

The cel drift-net resernbles the preceding, but is not drawn to an anchored buat, but drifts with the boat; it has accordingly Eworlt. to be made much smaller, its arms being each about eve 24 ft. or a total length of 50 . The wings vere someends of which the seine was attached by short ropes, the spar itself being towed. A funsel-shaped valve leads into the bag.

Petersen's trawi mas dengred by Dr Peternen for use in deep
rater. and for the capture of rapidly moving animals it is es-

\section*{Putercanif} sentially a drift-seine of the preceding pattern, worked Traink furnished with but a single warp, to which the otter boards are attached by shorter ropea or bridles. When used in very deep water these are prevented from twisting by attaching at the point of their junction with the warp a glass float and a leaden weight. This net is undoubtediy highiy suitable for great depths. It is probably the "trawl" which it has been reported has been repentedly ased in the grest depth of 9900 fathoms from the Norwegian research vemel "Michael Sars," in the course of the cruise in the Atlantic carried out ia 1910 by Sir John Murray and De Hjort. It is practically a small otter trawl with the equare eat out, leaving only wings, back part of batings and cod end. which last in emered by a fumpel of metting. The meshes, in the met first constructed by Dr Petersen, were about a centimetre -quare in the wings and 8 millimetres square in the bag. The arms were each 24 ft . long, the bag about 16 ft . The boards were 79 in. by. 32 in. and 1 in. thick. Glass floats are irequently used with this trawi, to keep up the headllne.

The Danish plaice-seine resembles the cel-seine in form, but is mach larger, each arm being about 180 ft . long; the bag is 20 ft . pamese long. The drag lines are also much longer, sometimes preverata, reaching to 1200 fathoms, These nets are worked the chief North sea port engaged in the fishery. The vessels are yawl rigged, of the sire of all but the largest smacks, and each is now furnished with a motor-boat. The boat takes the net to a considerable distaoce from the parent vessel. which is anchored, and shoots it in a wide curve. The drag lines are then brought back to the smack Cor hauling. By this method piaice are captured ative, and are kept in large floating fash-bozea pntil required.

Next in importance to trawling among the English fisheries f the use of drift-nets for mackerel, herrings and pilchards. It is undoubtedly the most common method of netfishing on the coests of the British islands, but no-
t so general as in Scolland. There are, however, great Dryin Mofty where is it so general as in Scolland. There are, however, great
drift fisheries on the eastern and southern coasts of England, and an important mackerel fishery mainly at the western end of the channel, though owing to a high import duty on mackerel levied by France this now of far less importance. The. value of the mode of fishing technically known as "drifting or driving" will be anderstood when it is remerabered that it is the only meabod by which such fishes as herrings, mackerel and pilchards, which generally swim at or near the surface, can be readily canght in the open sea, at any distance from land, and in any depth of water, so long as there is sufficient for the floating of the mets in the proper position. The term "drift-net" is degived from the manner in which the nets are worked. They are neither fred nor towed within any precise limits of water. but are cast out or " shot " at any distance from the land where there are signs of finh, and are allowed to drift in whichever dinection the tide may happen to take them, until it is thought desirable to haul them in. The eseential principle of the working of the drift-net is that it forms a lotg wall or barrier of netting Hanging for a few fathoms perpendicularly in the water, but extending for a great length horizontally, and that the fish, mecting these nets and trying to pass them, become meshed; Ingy force their heads and gill-covers through the meshes, but
can go no farther; and as the gill-covers catch in the sides of the mesh, the fish are unable to withdraw and escape. Whether it be mackerel, herring or pilchard, the manner in which the net works is the same; the variations which exist relate only to the differences in habits and size of the fash sought after.

The nets used are light cotton nets, each about 30 yards long and to or 12 deep, and when designed for herring have a mesh of about an inch square, pilchard nets being smaller and mackerel nets larger in mesh. These nets are laced end to end in a long row, the whole row, called a "fleet" or "traia" of nets being. in the case of the large herring boath as much as \(3 t\) miles long. One of the long edges of the net is lastened to a rope corked at regular intervals, whose purpose is to keep that part uppermost. This edge is called the "back" of the net. The corks are, however, not sufficient to keep the whole nat from sinking, and this is done by buoys called " bowls," which are attached to the back rope at intervals. It is always a matter of uncertainty at what depth the fish may be found, and a deal of judgment is needed in deciding what length of rope should be used in attaching the buoys. In the hearing fishery of the English east cosst the Britich boats ustually work in somewhat shallower water than the foreign drifters, and set their nets at about 4 fathoms from the surface. the foreigners, lying outside them, using deeper-eet nets. It is found convenient to colour certain of the bowls distinctively to indicate their position in the "fleet." Otherwise they are coloured to show ownership.

Drift-net fishing is with rare exceptions only carried on at night. The time for beginning is just before sunset, and the nets are then got into the water by the time it is dark. A likely place to fish 2s known (though there is much uncertaiaty in the matter) by signs recognizatle oaly to the practised eye. An obvious one is the premence of many wea-birds, or of the fish themselves. But besides these the appearance and even the smell of the water furniskes a guide. In the case of the mackerel these sigas have been shown by G. E. Bullen (Journ. Larize Biol. Assoc. viii. 269) to be due to the character of the microscopic organisms in the water. tome of which furnish the food of the mackerel, othere of which it avoids. If fish is betieved to be present the vesoel is miled slowly before the wind and if powible across the tide; shen the net is shot or thrown ont over the vessel's quarter, the men being distributed at regular btations, come hauling up the met from below, others throwing it over and taicing care that it falls so that the foot is clear of the corked back; others, again, looking after the warp which has to be paid out at the same time, and seeing that the seizings are made fast to it in their proper places. When it is all overboard, and about 15 or 20 fathoms of entre warp, called the "swing-rope," given out, the vessel is brought round head to wind by the warp being cartied to the bow; the sails are then taken in, the mast lowered, a small misen set to leep the vossel with her head to the wind, and the reguIation lights are hoisted to show that the is fishing. A few of the hands remain oa dock to keep a look out, and the vessel and nets are leit to drift wherever the wind and tide may take them. It is very rarely that there is an absolute calm at sea; and if there is the faintest breath of air stirring the fishing boat will of course feel it more than the buoys supporting the nets; she will consequently drift faster, and being at the end of the train, extend the whole fleet of nets In roagh weather: as the strain may be greater, more rope is used. The first net in the train is often hauled aiter an hour to enable the men to judge whether the position is a good one. When the whole are hauled, the nets are taken in and the fish shaken out in the same orderiy way as in shooting, each man having his own proper duty.

The sailing drifter is last disappearing. giving place to the steam drifter. These vessels, though costing lat more (12500 to 13000 against (400 only) catch more fish, have a greater radius of action, reach market more quickly and are independent of weather. It has been calculated that a thousand square feet of berring metting used by a steamer catch 431 Cwt. of herring, while a sailing vessel catches 20 cwt. with the same area of netting; and the steamer-eaght fish, being more quickly delivered, letches a better price. It may be noted that of recent years herring have been caupht at the bottom in considerable quantities by the trawl. The fishing of herring is thus increasing in variety of method. as well as in intensity. Such sailing boats as tend to remain are long shore boats, and such drifters as have been fitted with petrol motors.

Stationary nets, being of very small importance relatively to the preceding. must be dismissed more shortly. They are of four main kinds, viz.: stake nets Statoenty pound and kettle nets, stow and bag nets, trammelnets and hose nets.

Stake nets are usually at between tide-marls, or in shallow water, and, as their name implies, are kept up by stakes placed at intervals. They are generally set actoss the direction of the tide. They act as gill nets, and are chiefly used stane Nets. in America. In same cases a conical bas instead of
a flat net occupies the space between every toro stakes, forming a series of simple bag nets. This form is tused on tbe German shores of the North Sea.

In another modification the get is supported on the taloes, which is sorne 200 ft . long, does not act as a gill net but as a " leader, proed ase and one of its ends passes through a narrow opening Ketulo Nets into a circular enctosure surtounded by a similar for the capture of the salmon are merely elaborated forms of this type. The pound is roofed by netting, in the fy net, and in the hag net, which is floated-not staked-floored also. It is wedge-shaped, narrowing gradually from the entrance end, and divided incompletely by oblique internal walls or valves of netting in to side compartments.
The bag net just described is practically a floating stake net. A simpler form is used in the Elbe, consisting of a pyramidal net Stow Nets. whose mouth is held open by its sides being attached This is the simplest form of stow net. The stow net is used in the Thames and Wash; it is specially designed for the capture of sprats. although many young herrings are sometimescaught, and it is worked most extensively at the entrance of the Thames. The stow net is a gigantic funnel-shaped bag having nearly a square mouth. 30 ft . from the upper to the lower side, and 21 ft . wide. It tapers for a length of about 90 ft . to a diameter of 5 or 6 ft ., and further diminishes to about haif that size for another 90 ft . to the end of the net. The whole net is therefore about 180 ft . or 60 yards iong. The upper and lower sides of the square mouth are kept extended by two horizontal wooden spars called "balks," and the lowet one is weighted so as to open the mouth of the aet in a perpen. dicular direction when it is at work. The sixe of the meshes varies from 1 in. near the mouth to in. towards the end, where, however, it is again slightly enlarged to allow for the greater pressure of the water at that part. The mode of working the net is very simple. Oyster smacks are commonly used in this fishery. aithough shrimping boats are also employed in it in the Thames. The smack takes up a position at the first of the tide where there are signs of fish, or in such parts of the estuary as are frequented by the sprats during that part of the scason; she then anchors, and at the same moment the net is put overboard and so handled that it at once takes its proper position, which is under the vessel. It is kept there by a very simple arrangement. Four ropes leading. one from each end of the two balks, and therefore from the four corners of the mouth of the net, are united at some little distance in front, forming a double bridle, and a single mooring rope leads from this point of union to the vessel's anchor: so that the eame anchor holds both the vessel and the net. The net is kept at any desired distance from the bottom by means of two ropes, one from each end of the upper balk to the corresponding side of the smack, where it is made fast. The open mouth of the net is thus kept suspended below the vessel, and the tong mass of netting streams away astern with the tide. The strain of this immense bag-net by the force of the tide is often very great, but if the vespel drags her anchor, the net being made fast to the same mooring. both keep their relative positions. Here they remain for several hours till the tide slackens, the vessel's sails being all taken in and only one hand being left on deck to keep watch. The way in which the Gish are caught hardly requires explanation. The sprats, swimming in immense shoais, are carried by the tide into the open mouth of the net and then on to the small end, where they are collected in enormous numbers; from this there is no escape, as the crowd is constantly increasing, and they cannot stem the etrong tide setting into the net. The first thing to be done in taking in the net is to close the mouth, and this is effected by means of a chain leading from the bow of the vessel through an iron loop in the middle of the upper balk down to the centre of the lower one, and by heaving in this chain the two balks are brought together and ultimately hoisted out of the water under the vessel's bowaprit. The net is then brought alongside and overhauled till the end is reached, and this is hoisted on board. The rope by which it is closed having been cast off, the sprats are then measured into the hold of the vessel by about three bushels at a time, until the net has been emptied. The quantity of sprats taken in this manner by many scores of fiching craft during the season, which lasts from November to February, is in some years simply enormous; the markets at Billingsgate and elsewhere are inundated with them, and at last in many years they can only be disposed of at anominal price for manure; and in this way many hundreds of tons are got rid of. The stow boats do not generally take their fish on ehore, but market boats come off to them and buy the fish out of the vessel:s hold, and carry it anay. The mode of working is the same in the Solent and the Wash as that we have described in the Thames and large quantities of eprats are landed by the Southampton boats.
" Whitebait," or young sprats, mixed with some young herring and other amall fish, are caught in the Thames by a net which is practically nothing else but a very small ntow net, and it is worked in ementially the same manner. An interesting form of stow net is used in the Channels of the Frisian Inland, chiefty during the rush of the ebb-tide, for the capture of rays (prineipally Raje clatola, the Thornback) which are highly valued by the Dutch. It consists of a net shaped like an otter trawl, furninhed with otter boards,
which are attached to ropes passed to the ends of long booms whing project from the sides of the vessel usiog the net, and flso to the two anchors by which the former is anchored.

The remaining stationary nets to be mentioned partake of the nature of traps. The trammel net consists of three nets joined togetber at the top, bottom and siden. The whole system of nets hangs vertical, the head line being buoyed and the ground line weighted. The. two outer nets are much emaller than the inner net, but of wride-meshed netting. Whercas the inner net is of very small mesh. Consequently a fish meeting an outer net passes through it, strikes the fine-meshed aet and forces it before it through one of the meshes of the farther wide-meshod net; it is thus in a mall pocket from which it cannot exape.
The hose net is a long cylindrical net from which trap-ifie pockete open. The main cavity is kept open by rigid rings. The hose nets are set between tide marks, at low water, so that the tide runs through them; and they are emptied at now Neb next low tide.

While unimportant compared with the huge quantity of fish lasded from seagroing vescels, the catch of the in-shore sets described is of importance in respect of the kinds of fish talsen, whitebait and pilchards, for instance, being not otherwise obtained, while salmon, though taken in rivers as well as in estuaries and alons the coast, ia very rarely captured at sea.

Authourtes.-Brabazon, The Doep-Sea and Coast Fisheries of Ireland (1848): Holdsworth, Detp-Sea Fishing and Fishing Baats (London, 1874); 2. L. Tamner, Bulietin Uwited Statet Fishery Commisrion (1896), vol. xvi.: Garstang, ibid., vol. vi.; Kyle, Journal of the Marime Biological Association of the United Kingdow, new series, vol. vi. (London); Cunningham, ibid. vol. lv.; Petersen, Report of the Damish Biological Association, voi. viii. (Copenhagen, 1899); Hjort. Report on Nortoegian Fishery axd Marine Inpastigation, vol. i (Christiania, 1900); Millheilungen: Deutscher SeefischerVerein, various numbers; Fulton, Reports of the Scottish Fishery Board, 19th Report (1900); and in other numbers; Report and Minutes of Evidence of the Committee, "appointed to inquire into the scientific and statistical inventigetions now being cerried on in relation to the Gishing industry of the United Kingdom." (London, 1908).
(I.O.B.)

TRAY, a flat receptacle with a raised edge used for a variety of purposes, chiefly domestic. The tray takes many formsoblong, circular, oval, square-and is made in a vast number of materials, from papicr mache to the precious metals. Duke Charles of Lorraine had a pen-tray of rock crystal standing on golden feet; Marie Antoinctte possessed a wonderful oral tray, silver gitt and enamelled, set with \(1+4\) camcos engraved with the heads of sovercigns and princes of the house of Austria, and their heraldic devices. The tea-tray is the most familiar form; next to it comes the small round tray, usually of silver or electroplate, chiefly used for handing letters or a glass of wine. When thus employed it is usually called a "waiter." The English tea-trays of the latter part of the 18 th century were usually oval in shape and sometimes had handles; mahogany and rosewood were the favourite materials. Sheraton and Shearer among other cabinet-makers of the great English period, are credited with trays of this type. These were succeeded in the early and mid-Victorian period by trays of japanned iron, which possessed no charm but had the virtue of durability. Sheffield plate snuffer-trays of satisfying simplicity were made in large numbers, and are now much sought after.

TRAZ-OS-MONTBS (i.e, across the Mountains), an ancient frontier province in the extreme N.E. of Portugal, bounded on the N. and E. by Spain, S. by the river Douro which separates it from Beira, and W. hy the Gerez, Cabreira and Marto Mountains, which separate ft from Entre-Minho-Douto. Pop (190) , 427,358; area, 4,763 sq. m . For administ ratlve purposea Traz-0s-Montes was divided in \(\mathbf{1 8} \mathbf{3} 3\) into the districts of Braganze (g.v.) and Ville Real (q.e.). The surface is senerally mountainous, aithough there are tracts of level land in the ecigat or cultiveted plains of Chaves and Miranda do Douro, and in the cimas or plateau region of Mogadouro. The highest peak is Marto (4642 ft.). The province belongs to the basin of the Douro and is chiefly drained by its tributaries the Tus, Tamega and Sabor. Its inhabitants belong to the old Portuguese stock, and resemble the Spaniards of Calicla in physical type, dialect and character. The Pais do Vinho (see Opomro) is the chief wine-growing district in Portugal; other products are ailic, maire, wheat, rye, hemp, olive oil and honey. There are important mineral springs and baths at Vidago and Pedras

Salgadas. The priacipal towns are Braganza, Chaves and Villa Real.

TRFACLS, the thick viscid syrup obtained in the eariy procesess of refining sugar, the uncrystalizable fluid obtained is the process of procuring refined crystallized sugar being known " "golden syrup" and ibe drainings from the crude sugar as "molmstes" (see Sugar: Manyfactwre). The word was properiy and first used for a medical compound of varying ingredients which was supposed to be a sovereign remedy against make bites or poison generally. A well-known specific was Venice treacle, Theriaca Andromochi, a compound of a large number of drugs reduced to an electuary, \({ }^{1}\) a medicinal compound prepared with honey, which dissolves in the mouth. The ofd French triache, of which "treacle," earlier " triacle," is an adaptation, is a corruption of theriaque, Latin herioca, Greek Onpuard (sc. фа́ppama), literally drugs used as an antidote agoinst the bite of poisonous or wild animals (Ohpow, dim. of Oifp, wild beas:). The word " triacle" came to be used of any remedy or antidote. The composition of electuaries with boney or syrup natarally transferred the name to the most familiar syrup, that obtained from the drainings of sugar.

TARAD-IILh, a penal appliance introduced by Sir William Cubitt in 1818 and intended by him as a means of employing criminats usefully. It was a large hollow cylinder of wood on an iron frame, round the circumference of which were a series of steps about it in. apart. The criminal, steadying himself by hand-rails on either side, trod on these, his weigbt causing the mill to revolve and compelling him to take each step in turn. In the brutalizing system formerly in vogue the necessary resistance was obtained by welghts, thus condemning the offender to useless toil and defeating the inventor's object. The tread-mill, however, was subsequently utilized for grinding corn, pumping water and other prison purposes. The speed of the wheel was regulated by a brake. Usually it revelved at the rate of 32 ft . per minute. The prisoner worked for 6 hoors each day, 3 boars at a time. He was on the wheel for 15 minutes and then rested for 5 minutes. Thus in the course of his day's laboar he climbed 8640 ft . Isolation of prisoners at their work was obtained by screens of wood on each side of the mill, converting the working space into a separate compartment. Each prisoner was medically examined before gaing to the mill.
By the Prison Act 186 s every male prisoner over 16, sentenced to hard labour, had to spend three months at least of his sentence is labour of the first clase. This consisted primarily of the tread-milh, or, as an alternative, the crank. The latter consisted of a small wheel, like the paddle-wheel of a steamer, and a handle tursed by the prisoner made it revolve in a box parly filled with gravel. The amount of gravel regulated the hard labour; or the necessary resistance was obtained by a brake, by which a pressure, usually of 12 Ib , was applied. The prisoner had to make 8000 or 10,000 revolutions during his 6 hours' work, according to his strength, the number being registered on a dial. The crank too, however, was subsequently made to serve ascful purposes. Both tread-mill and crank have gradually been abolished; in 1895 there were 39 tread-mills and 29 cranks in use in Eaglish prisons, and these had dwindled down to 13 and 5 respectively in 1901. They are now disused.
The fundamental idea of Cubitt's invention, i.e. procuring sotary motion for industrial purposes by the weight of men or animals, is very old. "Tread-wheels," of this type, usually consist of hollow cylinders, round the ianer surface of which a torse, dog or man walks, foothold being kept by slabs of wood aniled across at short intervals.
TREASON (Fr. Lrakison, Lat. Iradilio), a general term for the crime of attacking the safety of a sovereign state or its bead. The law which punishes treason is a necessary consequence of the idea of a state, and is essential to the existence of the state. Most, if not all, nations have accordingly, at an early period of their history, made provision by legislation or otherwise for its pumishment. The principle is universal, though its
\({ }^{1}\) Electury (Let. dectuarixm), is probably derived from Gr. mamerty, med in the same sense, from indel \(x\) ev, to lick out.
application has led to differences of opinion. What would have been a capital crime at Rome under Tiberius may be ao offence at all in England. It is to the advantage of the state and the citizen that what is treason and what is not should be clearly defined, so that as little as possible discretionary power, apt to be strained in times of popular excitement, should be left to the judicial or executive authorities. The importance of this was seen by Montesquieu. Vagueness in the crime of treason, says he, is sufficient to make the government degenerate into despotism. \({ }^{2}\) At the same time, it may be observed that despotic governments have not alvays left the crime undefined. The object of Henry VIII., for instance, was ratber to define it as closely as possible by making certain acts treason which would not have been so without such definition. In both ancient and modern history treason has generally been a crime prosecuted by exceptional procedure, and visited with afflictise as distinguished from simple punishments (to ase the terminology of Bentham).

Roman Laze.-In Roman law the offences originally falling under the head of treason were almost exclusively those committed in military service, such as in England would be dealt with under the Army Act. The very name perduclio, the namie of the crime in the older Roman law, is a proof of this. Parduelles were, strictly, public enemies who bore arms against the state; and traitors were regarded as having no more rights than public enemies. The Twelve Tables made it punishable with death to communicate with the enemy or to betray a citizen to the enemy. Other kinds of perducllio were pumished by: interdiction of fire and water. The crime was tried before a special tribunal, the dweworini perdmellionis, perhaps the earlieat permanent criminal court existing at Rome. At a later period the aame of perdxellio gave place to that of laesa majestas, deminuta or minula majeslas, or simply majestas. The lex Julia mojosiatis, to which the date of 48 Bc . has been conjecturally assigned, continued to be the basis of the Roman law of treason until the latest period of the empire, and is still, with the law of perdivellio, the basis of the law of British South Africa as 10 treason. The original text of the law appears to have still dealt with what were chiefly military offences, such as sending letters or mesages to the enemy, giving up a standard or fortress, and desertion. With the empire the law of mojestas received an enormous development, mainly in the reign of Tiberius, and led to the rise of a class of professional informers, called delotores.! The conception of the emperor as divine \({ }^{4}\) had much to do with this. It became a maxim that treason was next to sacrilege' in gravity. The law as it exfoted in the time of Justinian is contained chiefly in the titles of the Digest \({ }^{4}\) and Code' "Ad legere Juliam majastatis." The defnition given in the Difest (taken Irom Ulpian) is this: " majestatis crimen illud est quod adversus populum Romanum vel adversus securitaten ejus committitur." Of treasons other than military offences, some of the more noticeable were the raising of an army or levying war without the command of the emperor, the questioning of the emperor's choice of a successor, the murder of (or conspiracy to murder) hostages or certain magistrates of high rank, the occupation of publac places, the meeting within the city of persons hostile to the state with weapons or stones, incitement to sedition or administration of unlawful paths, release of prisoners justly confined, falsification of public documents, and failure of a provincial governor to quit bis province at the explration of his office or to deliver his army to bis successor. The intention (volurlas) was punishable as much as an overt act (effectus).' The reported opinions as to what was not treason

\footnotetext{
2 Espril des lois, bk. xii. c. 7.
See Merivale, History of ite Romans muder the Empine, iti. 467, v. 141 .
- Principen instar deorum etse" are the worde of Tacitus.
"This erime wes called leasa majacter divina in later law.
xiviii. 4.
\({ }^{7}\) ix. 8.
- A similar provision was contained in the Golden Bull of Charles IV. C. 24 In English lew, with the one exception of a seatute of 1397 (2I Ric. II. C. 3) repealed in the first year of Henry IV.,
}
show the lengths to which the theory of treason was carried. It was not treason to repair a statue of the emperor which had decayed from age, to hit such a statue with a stone thrown by chance, to melt down such a statue if unconsecrated, to use mere verbal insults against the emperor, to fail in keeping an oath sworn by the emperor or to decide a case contrary to an imperial constitution. Treason was one of the publica judicia, i.e. one of those crimes in which any citizen was entitled to prosecute. The law deprived the accused in a charge of treason of his ordinary remedy for malicious prosecution, and also took from him the privilege (which those accused of other crimes generally possessed) of immunity from accusation hy women or infamous persons, from liability to be put to the torture, and from having his slaves tortured to make them testify against him (see Torture). The punishment from the time of Tiberius was death (usually by beheading) \({ }^{1}\) and confiscation of property, coupled with complete civil disability. A traitor could not make a will or a gift or emancipate a slave. Even the death of the accused, if guilty of treason of the gravest kind, such as levying war against the state, did not extinguish the charge, but the memory of the deceased became iniamous, and his property was forfeited as though he had been convicted in his lifetime.

English Law.-The law of England as to treason corresponds to a considerable extent with Roman law; in fact, treason is treated by Blackstone as the equivalent of the crimen laesoe majestatis. The history of the crime in the two systems agrees in this that in both the law was settled by legislation at a comparatively early period, and subsequently developed by judicial construction, In both, too, there were exceptional features distinguishing this crime from other offences. \({ }^{\text {² }}\) For instance, at common law treason was not bailable (except by the king's bench) nor clergyable, could not be cleared by sanctuary, and did not admit of accessorics before or after the fact, for all were principals, nor could a married woman plead coercion by her husband. To stand mute and refuse to plead did not save the lands of the accused, as it did in felony, so that the peine forte ad dure (see Torture) was unnecessary in treason. These severities were due to the conception of treason as a breach of the oath of allegiance. Other differences introduced by stat ute will be mentioned later. In some cases a statute simply afirmed the common law, as did the Treason Act issi to a great extent, and as did an act of 1534 , depriving those accused of treason of the benefit of sanctuary. How far the Roman law was consciously imitated in England it is impossible to determine. It was certainly not adopted to its full extent, for many acts were majestas which were never high treason, even in the most despotic periods. Treason was the subject of legislation in many of the pre-Conquest codes. The laws of Alfred' and Fthelred \({ }^{4}\) punished with death any one plotting against the life of the king. The Leges Henrici Primi"s put anyone slaying the king's messenger in the king's mercy. The crime was shortly defined by Glanvill, \({ }^{\prime}\) and at a greater length by Britton,' and by Bracton, \({ }^{8}\) who follows Roman law closely.

The offence of high treason was not precisely defined by the common law (I Hale, 76), and until the passing of the Treason Act 1351 depended much on the opinions of the king and bis judges. That statute appears to be the answer to a petition of the Commons in 1348 (r Hale, 87), praying for a definition of the offence of accroaching royal power, a charge on which several persons-notahly Gaveston and the Despensers-had suffered. The offences made high treason by the statute which still remain an overt act has always been necessary. The diffeulty of proving a mere intention is obvious. In French and German law the overt act (Altentai or Unternehmen) is as indispensable as in English.
\({ }^{1}\) To harbour a [ugitive enemy was punishable only by deportation. Dig, xlviii. 19, 40.
\({ }^{2}\) The position of treason an a special crime prosecuted by special prucedure is one common to mont legat syitcras et some period of their existence. For fnetance is Gemmany, by a constitution of llenry vill the niegotiur wate to be ancmans, sime strapiss ef
are these: (1) to compass or imagine \({ }^{*}\) the death of the king, \({ }^{10}\) the queen or their eldest son and heir; (2) to violate the king's companion, or his eldest daughter unmarried, or the wife of his eldest son and heir; (3) to levy war against the king in his realm, or be adherent to the king's enemies in his realm, giving them aid and comfort in the realm or elsewhere (perduellio); (4) to slay the chancellor, treasurer, or the king's justices of the one bench or the other, justices in eyre, or justices of assize, and all other justices assigned to hear and determine, being in their places doing their offices. In all cases of treason not specified in the statute the justices before whom the case came are to tarry without going to judgment until the cause has been showed and declared before the king and his parliament whether it ought to be judged treason or felony. The statute, so far as it defines the offence of high treason, is still law.

The statute also treated as high treason forgery of the great or privy seal, counterfeiting the king's coin and importing counterfeits thereof. These offences are now felonies. It also defined petly treason (now merged in wilful murder) as the slaying of a master by his servant, a husband by his wife, or a prelate by a man secular or religious owing him allegiance. The act of 1351 protects only the king's life, and its insufficiency was supplemented in periods of danger by legislation, often of a temporary nature. Under Richard II, many new offences were made treason, "1 but the acts creating these new treasons were repcaled at the earliest opportunity by the parliaments of his successors. The reign most prolific in statutory additions to the law of treason was that of Henry VIII. Legislation in this reign was little more than a register of the fluctuating opiniens of the monarch. Thus, by one act of 1534 it was treason not to believe Mary illegitimate and Elizabeth legitimate; by another act of 5336 it was treason to believe either legitimate; by an act of 1543 it was treason not to believe both legitimate. Another act of this reign (1545) shows that a class of men like the Roman delatores must have been called into existence by all the new legislation. The act made it felony to make anonymous charges of treason without daring to appear in support of them before the king or council. These acts were repealed in 1553 (1 Mar. st. 1. C. 1. s. 1.) and the act of 1351 was made the standard of the offence.

Besides the aets of \(\mathbf{1 3 5 1}\) and 1553 the following statutes are still in force with respect to the substantive law of treason. By an obscurely penned statute of 1495 (11 Hien. VII. e. 1. s. 1) persons serving the king for the time being in war are not to be convicted or attainted of treason; see Steph., Dig. Cr. Law (6th ed.), article 56. This statute has been held not to apply in British South Africa.
By an act of 157: (13 Eliz. c. 2) as a counterblast to papal attacks on the right of Elizabeth to the English crown, it was declared that persons using in England papal bulls offering absolution and reconciliation to persons forsaking their due obedience to the English crown should be punishable as traitors. The penalties were abolished in 2846, but the act 5 against which the statute was aimed were declared to be still unlawful (see Steph., Dig. Cr. Law, 6th ed., P. 45n.). By an act of 1702 (t Anne st. 2. c. 2t s. 3) it is treason to endeavour to hinder the next successor to the crown from succeeding, and by the Succession to the Crown Act 1707 it is treason maliciously advisedly and directly by writing or printing to maintain and affirm that any person has a right to the crown otherwise than according to the Aets of Settlement and Union, or that the crown and parliament cannot pass statutes for the limitation of the succession to the crown.
By an act of 1796 , made perpctual in 1817, the definition of treason is extended so as 10 include plots within or without Great Britain to cause the death or destruction, or any bodily harm tending to the death, destruction, maiming, or wounding, imprisonment or restraint of the king, if such plots are expressed by publishing ary prinsing or writing, or by any overt act or deed. Since that date no new forms of ireason have been created. There are many instances of offences temporarily made treason at different times. A

\footnotetext{
- These words, according to Luders (Law Tracts, note od fin.), mean to altempt or contrive.
is This by act of 1553 includes a queen regnant.
\({ }^{11}\) Onc reason for making ofiences treason rather than fetony was no doubt to give the Crown rather than the lord of the fee the right to the real estate of the criminal on forfeiture. Had the offenes been felony the king would have had only his year. day and waste on the estate escheating to the lord. as was the case in treason before the Statute of Treasons.
}
C. of the menc intereoting may be briety noticen. It was treason to attempt to appeal or anaul judgments made by pariarment against certain trajiors (1398); to breale a truce or safe-conduct (\(1414-1490\)); to bold castles, fortresses or monitions of war against the fing (i552) ; to adbere to the Uaited Provinces (1665); to return without Hence if an adhereat of the Pretander (1696); to cortespond with the Pretender (170!); and to compase or inagine the death of the prince repent (1817). In eddition to these, many acts of attainder tere paceed at different times. One of the most aevere wat that draist Catherine Howard (\(\mathbf{t} 541\)), which went as far as to make it tonnonable for any queen to conceal ber ante-nuptial locontivence. Other acts were thone against Archbishop Scrope, Owen Glendower, Juk Cade, Lord Seymoar, Sir John Fenwick, James Stnart and Biathop Atterbury. In one case, that of Cromwell, Ireton and Bradshav, an act of attainder was paseed after the death of thome geilicy of the treason (666), and their bodies were exhumed, beheaded asd exponed. Acts ofindemnity were peseed to reliteve tho who had taken pert in the auppreseion of rebellion from any powible liabitity for illiegai proceedings. Three such acts were passed in the reign of William Ill. (1689-1690). Sirvilar acts were paseed after the Irish rebellion of 1798 .

The punishment of treason at common law was barbarous in the extreme. \({ }^{2}\) The sentence in tbe case of a man was that the Prefor offender be drawn on hurdle to the place of execuned tion, tbat there he be banged by the neck but not till be be dead, and that while yet alive be be disembowelled and that then his body be divided into four quarters, the head and quarters to be at the disposal of the Crown. Until ifgo at common law a woman was drawn to the place of execution and there burned. In that year hanging was substituted for burning in the case of fermale traitors. In 1814 the part of tbe sentence relating to hanging and to disembowelling was altered to hanging until death supervened. Drawing and beheading and quartering after hanging were abolished in 1870 . There is no legislation authorizing the execution of traitors within the walls of a prison as in the case of murder (see Capital Punishment). The act of 1814 in the case of men enables tbe Crown, by warrant ander the sign manual, countersigned by a secretary of state, to change the sentence to beheading. Attainder and forfeiture for treason are abolished by the Forfcitures Act 1870 , except where the offender has been outlawed. The maximum penalty for a felony under the act of 1848 is penal servitude for life. In every pardon of treason the offence is to be particularly specified therein (soe Pardon).

Trials for treason in Great Britain and Ireland were at one time frequent and occupy a large part of the numerous volumes of the Sate Trials. Some of the more interesting may be mentioned. Before the Statute of Treasons were those of Gaveston and the Despensers in the reign of Edward II. on charges of accroaching the royal power. Alter the statute were those (some belore the peers by trial or impeachment, most before the ordinary criminal courts) of Empeon and Dudley, Fisher, More, the ear of Surrey. the duke of Somerset, Anne Boleyn, Lady, Jane Crey, Sir Thomas Wyatt. Cranmer, the queen of Scots, Sir Walter Raleigh,Strafford, Laid. Sir Henry Vane and other regicides, William Lord Rucell, Aleernon Sydney, the duke of Monmouth, and those implicated in the Pilgrimage of Grace, the Gunpowder, Popish, Rye House and other plots. Cases where the proceeding was by bill of attainder have been already mentioned. Occasionally the result of a trial was confirmed by statute. In some of these trials, as is well known, the lav was considerably trained in order to insure a conviction. since the Revolution there have been the cases of those who took part in the risings of 1715 and 1745 . Lord George Gordon in 17804 Thomas Hardy and Horne Tooke in 1794, the Cato Srreet conspira. cors in 1820 , Thomas Frost in \({ }^{1840}\), Smith O'Brien in 1848 , and in tgo3. Arthur Lynch, for adhering to, aiding and comforting the long's enemies in the South Alrican war." The bulk of the treavon

\footnotetext{
1 The exseptional character of the punishmeat, filce that of the procedure may be paralleled from Germany. The punishment of traitors by Frederick II. by wrapping them in iead and throwing thern into a lumace is alluded to by Dante, Inferno, xxiii. 66.

I Ser the sentesce in full in Latin in \(R\) v. Walcol, 1696, 1 Eng. Rep 87.
\({ }^{2}\) Proceedings after the death of an alleged traitnr might at one lime have been taken, but only to a very limited extent as compared rish what was allowed in Roman and Scots law. Coke (4 Rep. 57) metes that shere might have been forfeiture of the land or goods of one slaim in retuellion on view of the body by the lord chief justice of England as supreme coroner.
- Igo3. K.B. 446. He was sentenced to death. The sentence as: commated to penal wervitude for life. Lynch whs released -a bicence after one year in pricon asd has since been pacoloned.
}
trials are reported in Fiowell's Saste Thials and the Now Serios of Slake Trall. The statuce of I35t at interpreted by the judres in these cases is still the standard by which an act is determined to be treason or not. The judicial interpretation has been sometimes strained to mect onses ecarcely within the contemplation of the framers of the statute: c.g. it became establiahed doctrine that a conspiracy to bovy war against the ling's perwon or to imprison or depose him might be given in evidence as an overt act of compassing bis death, and that spoken words, though they could not in themselves amount to treazion, might constitute an overt act. and 50 be evidence. Besidea decisions on particular cates, the judges at difierent times came to geperal resolutions which had an appre ciable effect on the law. The principal resolution were those of 1397 (confirmed 1398), of 1557 , and those agreed to in the case of the regicides at the Restoration and reported by Sir John Kelyng. The effect of this legislation, according to Sir James Stephen, : that such of the judicial constructions as extend the imagining of the king's death to imagining his death, destruction or any bodily harm tending to death or destruction, maim or wounding, imptisonment or restraint, have been adopted, while such of the constructions as make the imagining of his depooition, conspiring to levy war againsk him, and instigeting foreigners to invade the realm, have not been abolished, but are left to rest on the authority of decided casen. The legislation in force in 1878 as to treason and kindred ofiences was collected by the late Mr R. S. Wright and its substance embodied in a draft consolidation bill (Pari. Pap. 1878 H. L. 178), and in 8879 the existing law was incorpornted in the draft criminal codes of 1879. The code draws a distinction between treasom and treasomable crimes, the former including sach acts (omitting those that are obviously obsolete) as by the Ireason Act 1351 and subsequent legislation are resarded at treason proper, the latter including the crimes contained in the Treason Felony Act 1848.

In the words of the draft (\(\mathbf{5} 76\)) "treason is (a) the act of killing Her Majesty, or doing her any bodily harm tending to death or destruction, maim or wounding, and the act of imprisoning or restraining her: or (b) the forming and manifesting by an overt act an intention to kill Her Majesty, or to do her any bodily herm tending to death or destruction, maim or wounding, or to imprison or to rentrain her; or (c) the act of killing the eldest son and heir-apparent of Her Masjesty, or the queen consort of any king of the United Kingdom of Great Britain and Ireland; or (d) the forming and manifesting by an overt act an intention to kill the eldest son and heir-apparent of Her Majesty, or the queen consort of a ry King of the United Kingdom of Creat Britain and Ireland; or (c) conspiring with any person to kill Her Majesty, or to do ber any bodily harm tending to death or destruction, maim or wounding, or conspiring with any person to imprison or restrain her; or (\(\cap\)) levying war against Her Majesty either with intent to depose Her Majesty from the tyle, bonour and royal name of the Imperial Crown of the United Kingdom of Great Britain and Ireland or of any other of Her Majesty's domigions or countries; or in onder by force or constralnt to compel Her Majesty to change her mensures or counsels, or in order to intimidate or overawe both Howes or either House of Partiament; or (s) conspiring to levy war against Her Majesty with any such intent or for my such purpose as aforesaid; or (h) instipating any foreigner with force to invade this realm or any other of the dominions of Her Majesty; or (i) astisting any public enemy at war with Her Majesty in soch war by any means whatwover; or (\(j\)) violating, whether with her consent or not, a queen consort, or the wife of the eldest son and heir-apparent for the time being of the king or queen regnant.'

No amount of residence abroad exempts a British aubject from the peaclet of trenson if be bears arms agoinst the ling, it unless he has become maturalized as the subject of a foreign state before the outbreak of the war in which he bean arms. To become naturalized as the subject of an enemy during a war is in itself an act of treaton. It is well established that an alien resident within British teritory owes local allegiance to the Crown and may be indicted for high tremon, and there are wumerous instances of proescution of foreigners for treatorn. Such are the casel of Leslic, bishop of Rose, ambasmador to Elizabeth from the queen of Scots (i584), the marqui4 de Gulicard in Queen Arne's reign and Gyilenborg; the ambiseador from Sweden to George I. (1717). Proceedings against ambasadort for treason have mever gone beyond imprisonment, more for salt custody than as punishment. In 1781 La Motte, a Frenchman resident in England, was convicted of holding trensonable communi. cotions with Franre, and in Canada American citizens were tried for treason lor alding in the rebelion of 1837-1818 (Forsyth, 200). Assistance by a resident alien to invaders of British territory. in high treason even if the territory in question is in military occupation by the forces of the foreign power.

Of the modes of trying high treason two are obsolete, viz. (t) by appeal in the common law courts, which ceased by coart and the effect of statutes between 1322 and \(t 399\) and pitce of were finally abolished in 18ig; (2) before the con- Trith stable and marshal. The last instance of this inode of trial was an

\footnotetext{
'Aeneas Macdonald'z case, 18 SI. T. 857: R. v. Lynch (1903) i K.B. 46-ace Mayne. Ind. Cr. Lamo (iR96), Pp. 459, 460
- De Jager's cane (1907) App, Can 306.
}
award of battle in 1631 in the case of Lord Reay. \({ }^{1}\) Four modes of trying high treason still remain, viz. impeachment, trial of a peer by his peers, trial by court-martial and trial by jury on indictment before the High Court or a court of assize or a special commission. The offence is not triable at quarter sessions.
At common law and under the Great Charter a peer, and, by an act of 1442, a peeress in right of her hushand, are triable for treason before the House of Lords, or, when parliament is not sitting, in the court of the lord high steward. The last trial of a peer for treason was that of Lord Lovat in \(1746-1747\) (18 Howell's S6. Tr. 529).

In the reign of Edward IV, and perhaps later, treason was at times tried by martial law. The issue of commissions of martial law in time of peace was in 1628 declared illegal by the Petition of Right. But the prerogative of the Crown to deal by martial law with traitors in time of war or open rebellion within the realm or in a British possession still exists. \({ }^{2}\)
Treasons committed within the admiralty jurisdiction or out of the realm were originally triable only by the admiral or the constable and marshal according to the civil law, but were made triable according to the courts of the common law by the Offences at Sea Act 1536 . and by acts of \(1543.1552^{\text { }}\) and 1797. Provision is made for the trial in British possessions of treasons committed in the admiralty urisdiction (Offences at Sea Act 1806).
Treasons committed within the realm are tried in the High Court, the central criminal court or another court of assize, or by special commission, except in the case of peers. In two acts dealing with Ireland (of 1809 and 1833) it was provided that nothing in the acts was to take away the undoubted prerogative of the Crown for the public safety to resort to the excrcise of martial law against open enemies and traitors, while actual war or insurrection is raging (see Martial Law). \({ }^{4}\) Treason by persons subject to military law is triable by court-martial under the Army Act (5881) ss. 4, 41 (a), where the offence cannot with reasonable convenience be tried in a civil court, and treason by persons subject to maval discipline by court-martial under the Naval Discipline Act (1866) s. 7. The procedure in such trials is regulated by the acts.
In certain cascs of treason the procedure on the trial is the same as upon a charge of murder. Those cases, which are stalutory proccdures. exceptions from the statutory prooedure prescribed roccdure. for the trial of high treason and misprision thereof, are: (a) Assassination or killing of the king, or any heir or successor of the king, or any direct attempt against his life or any direct attempt against his person whereby his life may be endangered or his person may suffer bodily harm (1800, 1814); (b) attempts to injure in any manner the person of the king (1842).
In all other cases of treason the procedure is regulated by acts of 1695,1708 and 1825 . A copy of the indictment must be delivered to the accused ten days at least before his arraignment, with a list of the witnesses for the prosecution (1708) and a list of the petty jury, except in the High Court, where the petty jury list is to be delivered ten days before the trial (1825). \({ }^{\text {b }}\). The accuted is entitied to be defended by counsel, and on application to the court may have two counsel assigned to him (1695), a right extended in 1746 to impeach. ments for treason. Witnesses for the defence have since 1702 been craminable upon oath. The accused may by the Criminal Evidence Act 1898 consent to be called as witness for the defence. It is doubtful whether the wife or husband of the accused is a compellable witness for the Crown (Archb. Crim. Pleading, 23rd ed., 398).
Prosecurions for treason must be begun within three years of the ofience, except in cases of attempts to assassinate the king. The sules as to the indictment are stricter than in the case of felony and misdemeanour, much of the modern statutory power of amendment not extending to indictments for the graver offence. No evidence may be given of any overt act (boie de fait) not expressly stated in the indictment. The accused is entitled to peremptory challenge of thirty-five of the jurore summoned for the petty jury: but they need not now be freeholders. The accused can be convicted only on his own confession in open cour, or by the oath of two witnesses either both to the same overt act charged, or one to one overt act and the other to another overt act of the same treason. If two or more treasons of different kinds are charged on the same indictment, one witness to prove one treason and another to prove another are not sufficient for a lawiul conviction. Persons charged with treason are not admitted to bail exeept by order of a secretary of state or by the High Court (k.b.d.) or a judge thereof in vacation (Indictable Offences Act 1848, 8. 23). Witnesses for the defence are examined on oath and their attendance is secured in the same way as that of witnesses for the Crown (1695, 170).

\footnotetext{
A case of treason out of the realn as to which alonc the constable and marshal had jurisdiction (3 Howell's St. Tr. 1).

See case of D. F. Marals (rgo2, App. Cas. 109)
\({ }^{3}\) There is no trace of recourse to the act of 1552 . In 1903 Art hur Lynch was tricd under the act of 1543 for high treason in South Alrica, and Lord Maguire in 1645 for r reason ia licland (4 \(S t\). Tr. 65,3)
- The decision
able by ordinary
In these respects pernons accused of traispos are in a better position than thosc accused of felony.
}

Misprision of treason consists in the concealment or keeping secret of any high treason. (a) This offence was in 1552 declared to be high treason (5 and 6 Edw. VI. C. \({ }^{11}\), s. 8), but the misnision former law was restored in 1553 - 5554 (i Mary 5t. i. c. I of Tressos. s. 1 ir \(\& 2\) Ph. and Mary c. 10, s. 7). The definition is vague of Ireasoa and the exact scope of the offence uncertain, but in strictness it does not include acts which in the case of felony would constitute an accessory after the fact. In the Queensland Code of 1899 (5. 38) every person is guilty of a crime who, knowing that any person intends to commit treason, does not give information thereof with all reasonable despatch to a justice or use other reasonable endeavours to prevent the commission of that crime. The procedure for the trial of misprision of treason is the same as in the case of high treason. The punishment is imprisonment for life and forfeiture of the offender's goods and of the profits of his lands during his life. (Steph. Dig. Cr. Law, 6th ed., 121, 401.) The forfeitures are not abolished by the Forfeitures Act 1870. There is no case of prosecution of this offence recorded during the last century.

The necessity of prosecutions for treason has been greatly lessened by a series of statutes beginning in 1744 which provide for the punishment as felonies of certain acts which might fall within the definition of trcason, e.g.

Offeaces piracies (1744, 18 Gco. II. c. 30), incitement to Ming 70 mutiny (1797), unlawful oaths, including oaths to commit treason (1797, 1812), and aiding the escape of prisoners of war (1812). By the Treason Act 1842 it is a high misdemeanour, punishable by penal servitude for seven years, wilfully to discharge, point, aim or present at the person of the king any gun or other arms. loaded or not, or to strike at or attempt to throw anything upon the king's person, or to produce any firearms or other arms, or any explosive or dangerous matter, near his person, with intent to injure or alarm him or to commit a breach of the peace. The offence is one of the few for which flogging may be a warded.

By the Treason Felony Act 1848, S. I., it was made a felony within or without the United Kingdom to plot (a) to deprive or depose the king from the style, \&c., of the imperial crown of the United Kingdom, (b) to levy war against the king in any part of the United Kingdom in order by force or constraint to change his measures or counsels or to put force or constraint on or to intimidate or overawe either or both houses of parliament, (c) to move or stir any foreigner with force to invade the United Kingdom or any of the king's dominions. The plot to be within the act must he expressed by puhlishing in printing or writing or by an overt act or deed. "Open and advised speaking," originally included as an alternative, was removed from the act in 1891 . For other offences more or less ncarly connected with treason reference may be made to the articles: Libel; Oatbs; Petition; Riot; Sedition.

The act of 1848 does not abrogate the Treason Act of 1351, but merely providcs an altemative remedy. But with the exception of the case of Lynch in 1903, all prosecutions in Enpland for offences of a treasonable character since 1848 have been for the felony created by the act of 1848. The trials under the act, mostly in Ireland, are collected in vols. 6, 7 and 8 of the Nem Serics of Sate Trials. The procedure in the case of all the offences just noticed is governed by the ordinary rules as to the trial of indictable offences. and the accused may be convicted even though the evidence proves acts constituting high treason.

Scolland.-Treason included treason proper, or crimes against the Crown or the state, such as rebellion, and crimes which, though not technically treasonable, were by legislation punished as treason. Scottish procedure was as a rule less lavourahle to the accused than English. In one matter, however, the opposile was the case. Advocates compellable to act on behalf of the accused were allowed him by 1587, c. 57, more-than a century before the concession of a similar indulgence in England. At one time trial in ahsence and even after death was allowed, as in Roman law. In the case of Robest Leslie, in 1540 , a summons after dcath was beld hy the estates to be competent, and the bones of the deceased were exhumed and presented at the bar of the court.' The act of \(1542, \mathrm{c} .13\) (rep. 1906), confined this revolting procedure to certain treasons of the more heinous kind.
- This act was passed in conseguence of a seriea of assaulte on Queen Victoria. Sce 4 Sl. Tr. N. S. 1382 ; 7 Sh. Tr. N. S. 1130 \({ }_{3} \mathrm{nif} 8\) Si, Tr. N. S. 1 .
ia the one instance in England-that of Cromwell, Ireton and Bradichaw-where the bodics of alleged traitors were exhumed after death they evere not brought to the bar of a court as in Scotland.

By the Treasion Act 1 yod trial in abeepce-the last fnstarnge of which had occurred in 1698 -was abolished. The same act ascimilates the law and practice of treason to that of England by enecting that no crime should be treason or misprision in Scotland but such as is treason or misprision in England. The act further provides for the finding of the indictment by a grand jury as in Englind and that the trial is to be by a jury of twelve, mot fifteen as in other crimes, before the court of justicisry, or a commission of oyer and terminer containing at least three lords of juaticiary. To slay a lord of justiciary or lord of session sitting in judgment, or to counterfeit the great seal, is made treason. The act also contains provisions as to forfeiture, ' qualification of jarocs and procedure, which are not affected by the Criminal Procedure (Soolland) Act 1887. The punishment is the same as it was in Englaod before the Forfeitures Act 1870, which does not ertend to Scolland; and aftainder and farfeiture are still the effects of condemnation for treason in Scotland.

One or two other statutory provisions may be briefly noticed. Byacts of 1706 and 1825 the trial of a pecr of Great Britain or Scotland for treason committed in Scotland is to be by a commission from the Crown, on indictment found by a grand jury of twelve. Bail intreason-felony is only ellowed by consent of the public promertor or marrant of the bish or circuit court of justiciary (Treason Felony Act 1848, 2. 9). The term lese-majesty was sometimes used for what was treason proper (e.p. in 1524, c. 4, making it lese-majesty to transport the long out of the realm, repealed in t906). sometimes as e synonym of loasint-meking: This crime (also called verbal redition) consisted in the engendering discord berween king and people by slander of the king. The earliest act against leasing-making co nomire was in \({ }^{1524}\). The reign of James VI, was pre-eminently prolific in legislation against this crime. It is now of no practical interest, as prosecutions for lemeing-matring have long talten into desuctude. At one time, bowever, the powers of the various acts were put into force with greal severity, especially in the trial of the earl of Argyll in 1681 . The punishment for leasing-making, once capital, is now, by acts of 1825 and 1837 , fine or imprisonment or both.
Irelowed.-The Treason Act 1351 was extended to Ireland by Poyning's law, but at the union there were considerable differences between the Irish and the English law. The law and practice of Ireland as to treason were assimilated to those of England by acts of 8821 (182 Geo. IV. c. 24), 1842 (5 \& 6 Vict.c. 51), 1848 (11812 Vict.c. 12, 5. 2), and 1854 (17 \& 18 Vict. c. \(5^{6}\)).

Prior to 1854 the provisions as \(t 0\) procedure in the English treason acts did not apply to Ircland (Smith O'Brien's case. 18, 8 8, 7 St. Tr: N. 5. 1). A series of enactments called the "Whiteboy Acts" (paseed by the lrish and the United Kingdom parliaments bet ween 1775 and 1831) was intended to give additiona! facilities to the exeantive for the suppression of tumulunus risings, and powers Cor dealing with "dangerous associations" are given by the Criminal Law and Procedure (lreland) Act 1887. Prosecutions for treason it Ireland were namerous in \(\mathbf{1 8 4 8}\). Since that date numerous prosecutions have taben place under the Treason Felony Act 1848.
Brilish Possessions.-Numcrous temporary acts were passed in India at the time of the Mutiny, one of the most characteristic being m act of 1858 making rebellious villages liable to confscation. By the Indion Penal Code, a. 121. it is an offence punishable by death or transportation for life and by forfeiture of all property to wage or actempt to wage war against the king. By s. 125 it is an offence punishable by transportation for life (as a maximum) to wage of etrempt to wage war against any Asiatic government in afiance or at peace with the king or to abet the waging of such war. By 2. 121 A, added in 1870, it is an offence punichable by transportation for iffe (as a maximum) to conspire within or without British India to commit an offence against s. 121 or to deprive the king of the covereignty of British india or of any part thereof, or to overawe by criminal lorce or the show of crininal fouce the government of ladia or any local government in India. Other cognate offences are included in the same chapter (vi.) of the Criminal Code.
The Penal Codes of Canada (1892, s5. 65-73) and New Zealand (i893. s. 77-82) closely lollow the provisions of the English draft code of 1879 . Prosecutions for treason have beere rare in Canadn. Those of moct note were in 1837, alter ibe rebellion (sce the Canadian Primoners case, 1839. 9 Ad(olphus) El(les) [731]) and of Riel alter
\({ }^{1}\) The provigions. in the act as to forfeiture (now repealed) were accordiaf to Blackntone (Comen. iv. \(3^{81}\)), the result of a comwomise between the House of Lords, in lavour of its continuance and the House of Commons, supported by the Scottish nation, corageling to secure a total immunity from this disability.
'it is calted by Hallam "the old mystery of iniquity is Scots 4."
the Red River fising in 1884 (see Riel v. R. 1885, 10 App. Can 675)

The Commonweahth perliament of Australia has not kegislated on the subject of high troason, which is in Australiz goveraed by the laws of the conetituent scates, i.e. by the law of England as it stood when they were colonized, subject to local legislation. In the codes of Queensland (1809) and West Australia (1902) the offence is defined in a form which is litte more than a redrafting of the English statutes. The provisions of the Treason Felony Act 1848 have been adapted by legistation to New South Wales (1900), Queencland (1899). Western Australia (1902) and Tasmania (i868). In Victoria there is legislation as to procedure but none as to the substantive law of treason. In Mauritius the offence is regulated by the Penal Code of 1838, arts: 50-6il (Mayritius Laum Revised, 1903, i 372).

In the Astatic colonies treason is defined on the lines of the Indian Penal Code, i.e. Ceylon, Straits Settlements, and HongKong.
In the West Indies the law of treason is defined by code in Jamaica and in British Guina (the code muperseding the Dutch Roman law).
In South Arica the law of treason is derived through. Holland from the Roman law. It includes the crimen perducllionis, i.e. disturbing the security or independence of the state with bostile intent. This is spoken of as high treason, as distinct from the crimen leesae majoslatis, in which the hostile intent need not be proved, and from vis publica, i.e. insurrection and riot involving danger to public peace and order. By a Cape law of 1853 passed during the Griqualand rebellion it is made treason to deliver anms or gunpowder to the king anemics.
The Treason Felony Act \(18 \boldsymbol{y}^{8}\) was also adopted in Natal in 1868.

During the Sourth Alrican War of 1899-1902 many erials took place for treason, chiefly under marrial law, including cases of British subjects who had joined the Boer forces. In some cases ix was comended that the accused had been recognized by the British authoritics as a belligeren: (Loüw. 1904, 21 Cape Supreme Court Reports. 36). The decisions of the ordinary courts are collected in Nathan, Common Law of Soush Africa, iv. 2425 (London, 1907). The decisions of courts-martial were not reviewable by the ordinary cours and are also protected by acts of indemnity. Astriking feature of colonial legislation Is the great number of such acts passed after rebellions and native risings. Instances of such acts orcur in the legislation of Canada, Ceylon, the Cape of Good Hope, Natal, New Zcaland, St Vincent and Jamaica. The moort important in the history of kaw is the Jamaica Act of 1866, indemnifying Governor Eyre for any acts committed during the suppression of the rising in the previous year. It was finally held that this act protected Eyre from being tivilly sued or criminally prosecuted in England Tor acts done during the outbreak (Phillips v. Eyre, 1871, L. R. 6 Q. B. B). The validity of an act passed in 1906 after disturbancee among the Kaffirs of Natal was unsuccessfully challenged in 1907 (Tilontio's case, 1907, App. Cas. 93).

United Stalcs.-The law is based upon that of England. By art. 3, \&. 3 of the constitution " treason against the United States shall consist only in levying war against them, or in adhering to their enemies, giving them aid and comfort. No person shall be convicted of treason unless on the testimony of two witnesses to the same overt act, or on conlession in open court. The Congress shall have power to declare the punishment of treason; but no attainder of treason shall work corruption of blood or forfciture, except during the life of the person attainted." By art. 2, 8. 4 impeachment for and conviction of treason is a ground for removing the president, vice-president and other civil officers. The punishment by an act of 1790 was declared to be death by hanging. But during the Civil War an act (July 17, 1862) was passed, providing that the punishment should be death, or, at the discretion of the court, imprisonment at hard habour for not less than five ycars, and a fine of not less than 10,000 dollars to be levied on the real and personal property of the offender, in addition to disability to hold any office under the United States. The act of 1862 and ot her acts also deal with the crimes of inciting or engaging in rebellion or insurrection, criminal correspondence with foreign governments in relation to any disputes or controversies with the United States, or to defeat the measures of the government of the United States, sedilions, conspiracy, recruiling coldiers or sailors and enlistment to serve against the United States. The act of 1700 further provides for the delivery to the prisoner of a copy of the indictment and a list of the jurors, for defence by counsel, and for the finding of the indictment within three years after the commission of the treason (see Story, Conslitution of the Unild States, Rev. Stat. U.S. p. 104i). Treason' against the United States cannot be inquired into by any state
court, but the states may, and some of them have, their own constitutions and legislation as to treasons committed against themselves, generally following the lines of the constitution and legislation of the United States. In some cases there are differences which are worth notice. Thus the constitution of Massachusetts, pt. 1,825 , declares that no subject ought in any case or in any time to be declared guilty of treason by the legislature. The same provision is contained in the constitutions of Vermont, Connecticut, Pennsylvania, Alabama and others. In some states the crime of treason cannot be pardoned; in others, as in New York, it may be pardoned by the legislature, and the governor may suspend the sentence until the end of the session of the legislature next following conviction. In some states a person convicted of treason is disqualifed for exercising the franchise. In New York conviction carries with it forfeiture of real estate for the life of the convict and of his goods and chattels.

France.-By the Code Pénal treason falls under the head of crimes against the safety of the state (bk. iii. tit. i. c. 1). It is a capiral offence for a Frenchman to bear arms against France (s. 75) or to plot with a foreign power or its agents to commit hostilities or undertake war against France whether war follows or not (a. 76), or to intrigue with the enemies of the state for lacilitating their entry into French territory, or to deliver to them French ships or fortresses, or to supply them with munitions of war, or aid the progress of their arms in French possessions or against French forces by sea or land (5. \(7^{8}\)).

Germany.-The Strafgesetzbuck distinguishes between high treason (Hockterret) and treason (Landesverrat). The offences denominated high treason are (1) murder or attempt to murder the emperor or a federal sovereign in his own state, or during the stay of the offender in the sovereign's state (s.80); (2) undertaking to kill, take prisoner, or deliver into an enemy's power, or make incapable of government a federal sovereign; to change by violence the constitution of the empire or a state thereof or the successor to the throne thercin; to incorporate by force the federal territory or the territory of any such state with a foreign or another fedcral state (s. 81). The code treats as treason, but does not punish by death, the offences included in the French code (ss. 87-89), and uader certain circumstances punishes alien residents for these offences (s. 91). The code also punishes insults on the emperor and federal sovereigns (ss. 95, 97) under the name of Majestaitsbele idigung.
Ihaly.-Treason in the Penal Code 1888 (tit. i. c. 1) includes direct acts to subject ltaly or any part thereof to foreign domination or to diminish its independence or break up its unity (s. 104), to bear arms against the state (s .105)) or intrigue with foreign states with the object of their levying war against ltaly or helping them in such war (s. 106), or to reveal political or military secrets affecting the national independence (s. 107).
Spain--The Spanish code distinguishes between treason (lesa majestad) and rebellion (rebelion). Under the former are included assassination, or attempts on the life or personal liberty of the king (arts. 158, 159), or insults to the king (161, 162), and provisions are made as to attacks on the heir or consort of the sovereign (163,164). Under rebellion are included violent attempts to dethronc the king or to interfere with the allegiance to him of his forces or any part of the realm (243).
(W. F. C.)

TREASURE TROVE, the legal expression for coin, bullion, gold or silver articles, found (Fr. troute) hidden in the earth, for which no owner can be discovered. In Roman law it was called thesourus, and defined as an ancient deposit of money (eetus depositio pecunioc) found accidentally. Under the emperors half went to the finder and hall to the owner of the land, who might be the emperor, the public treasury (fiscus), or some other proprietor. Property found in the sea or on the earth has at no time been looked on as treasure trove. If the owner cannot be ascertained it becomes the property of the finder (sec Lost Property). As the feudal system spread over Europe and the prince was looked on as the ultimate owner of all lands, his right to the treasure trove became, according io Grotius, jus cowmane a quasi gentium, in England, Gernany: France, Spain and Denmark. In England for centuries the right is treasure trove has been in the Crown, who may grant it out as a franchise. It is the duty of the finder, and indect of any one who acgulres knowledge, to report the matter to the coroner, who must forthwith hold an inçuest to find whether the discovery be tressume trove or no. Although the taking of the find is this he done, the conccalment is an indic able in practice, and formerly and to larceny," In the kitit and to larceny." In the suitu
(4 Edw. I. c. 2) the coroner is enjoined to inquire as to treasure trove both as to finders and suspected finders, ", and that may be well perceived where one liveth riotously and have done so of long time." The Coroners Act of 1887 continues this power as heretofore. In Scotland the law is the same, but the concealment is not a criminal offence; it is there the duty of the king's and lord treasurer's rememhrancer, with the aid of the local procurator fiscal, to secure any find for the Crown, whose rights in this respect have been pushed to some length. Thus in 1888 a prehistoric jet necklace and some other articles found in Forfarshire were claimed by the authorities, though they were neither gold nor silver. The matter was finally compromised by the deposit of the find in the National Museum. By a treasury order of 1886 provision is made for the preservation of suitable articles so found in the various national museums and payment to the finders of sums in respect of the same. Also if the things are not required for this purpose they are to be returned to the finder. In India the Treasure Trove Act (16 of 1878) makes claborate provision on the subject. It defines treasure as "anything of value hidden in the soil." When treasure over Rs. Io is discovered, the finder must inform the collector and deposit the treasure or give security for its custody. Concealment is a criminal offence. An inquiry is held upon notice; if declared ownerless the finder has threc-fourths and the owner of the ground one-fourth. The government, however, has the right of pre-emption.

In the United States the common law, following English precedent, would seem to give treasure trove to the public treasury, but in practice the finder has been allowed to keep it. In Louisiana French codes have been followed, so that one-half goes to finder and one-half to owner of land. Modern French law is the same as this, as it is also in Germany, in Italy and in Spain. In the latter country formerly the state had threequarters, whilst a quarter was given to the finder. In Austria a third goes to the finder, a third to the owner of the land, and a third to the state, and provision is made far the possible purchase of valuable antiquities by the state. In Denmark treasure trove is known as "treasure of Denmark," and is the property of the king alone. In Russia the usage varies. In one or two of the governments, in Poland and the Baltic provinces, the treasure is divided between the owner of the land and the finder, but throughout the rest of Russia it belongs exclusively to the owner of the land. This was also the law amongst the ancient Hebrews, or so Grotius infers from the parable of the treasure hid in a field (Matt. xiii. 44).

See Blackstone's Cowmenlaries: Chitry's Prerogatives of Libe Crown; R. Henslowe Wellington, The King's Coroner (1905-1906): Rankine on Lasdowership; Murray, Archaeological Surwey of the Uniled Kingdom (1896), containing copious references to the litera ture of the subject.
(F. WA.)

TREASURY, a place for the storage of treasure (Fr. trésor, Lat. thcsaurus, Gr. Onaavpós, store, hoard); also that department of a government which manages the public revenue. The head of the department was an important officlal in the early history of English institutions. He managed the king's hoard or treasury, and under the Med. Latin name of thesourarius, i.e. treasurer, grew into increased Importance in times when the main object of government secmed to be to fill the king's purse. He received the title of lord high treasurer (q.v.) and ranked as the third great officer of state. In course of time the English treasury grew into two departments of state (ser Exciequer). Sinse 1754 the office of lord high treasurer has been in com. anission, and his duties have been administered by a board, consisting of a first bord, secharcellor and lour or more junior londs. The boant fredf never meets, except on extraordinary on extraordinary
the soth century
the office being to all intents and purposes a sinecure, it is usually beld by the prome minister of the day. Indeed from 1783 to 1885 it was invariably so held, but in the latter year there was a departure from the practice, and again in 1887, 1891 and 1895. The junior lords of the treasury are also political rather than fancial officers, acting as assistant whips in the House of Commons. There are two joint secretaries to the treasury, one of whom, the patronage secretary, is merely a political officer, acting as chief whip; the other is termed financial secretary and is the chancellor of the exchequer's chief assistant. All the above officers are members of the Housc of Commons and of the government. The salaries of the first lord of the treasury and of the chancellor of the exchequer ate \(\ell 5000\) per annum; of the joint secretaries \(\{2000\) per annum each; of three of the junior fords fro00 per annum each, the other junior lords being unpaid. The vast bulk of the work of the treasury department is performed by the permanent staff, at whose head is the permanent secretary and auditor of the civil list, with a salary of \(£ 2500\) per annum. The chancellor of the exchequer (ser Ministay), as Goance ministet of the Crown, is the officer who is responsible to parliament for the carrying oun of she business of the treasury. He performs practically the ancient dutics of under-treasurer and presents the annual budget of revenue and expenditure.

The treasury department of the United States is responsible for the fanances of the government and the controf of the currency. Its genesis was a treasury office of accounts estabbished in 1776 for the purpose of examining and auditing accounts In 1779 it was reorganized, but was abolished in 178t. on the election of Robert Morris as superintendent of frances, and in 1789 the present executive department of the treasury was established by act of Congress. Its scope is more varied and complex than that of any olber United States govern. ment department. It is presided over by a sectetary, who is a member of the cabinet and has a salary of \(\$ 12,00\) per annum. He is assisted by three assistant secretaries, two of them having salaries of \(\$_{5000}\) and the third a salary of \(\$ 4500\). The treasury department looks after the revenue administration of the United States, and has for this purpose a customs scrvice division and an internal revenuc division. There is also the division of the treasury, in the strictest sense of the word; bureaus of auditing and accounting, of currency and of banking and certain miscellaneous bureaus, as the life-saving service, the public health and marine hospital scrvice, the supervising architect and the bureau of engraving and printing.

TREATIRS. A treaty is a contract between twoor more states. The Latin term "tractatus," and its derivatives, though of occasional occurrence in this sense from the izth century onwards, only began to be commoniy 50 employed, in iieu of the older technical terms "conventio publica," or "foedus," from the end of the 17th century. In the language of modern diplomacy the term "traty" is restricted to the more imporiant international agreements, especially to those which are the work of a congress; wlite agrecments dealing with subordinate questions are described by the more general term "convention* The present article will disregard this distinction.
The making and the observance of treatics is necessarily a wery early phenomenon in the history of civilization, and the theory of treaties was one of the first departments of international Mer to attract attention. Treaties are recorded on the monupeents of Egypt and Assyria; they occur in the Old Testament Soxiptures; and questions arising under owồкut and foedera cocupy much space in the Greek and Roman historians.'
Treaties have been classificd on many principles, of which
- II cuffice 10 mention the more important. A "personal tenay." having reference 10 dynastic interests, is contrasted eith " "real treaty," which binds the nation irrespectively
\[
\begin{aligned}
& \text { Mated treaty of } 509 \text { B.C. betwern Rome and } \\
& \text { lybius iii, 22; and, on the subject, generally. } \\
& \text { but very uncriticat Histoire des anciens tratit= } \\
& \text { xhmus, Geschichte des Volkerrechts im Alterthoum } \\
& \text { Etudes historiques sur les traities publics chre ies }
\end{aligned}
\]
of constitutional changes; treaties creating outstanding obligations are opposed to "transitory conventions," e.g. for cession of territory, recognition of independence, clangen and the like, which operate irrevocably once for \({ }^{2}\) all, leaving nothing more to be done by the contracting partics; and treaties in the nature of a definite transaction (Rechtsgeschafl) are opposed to those which aim at establishing a general rule of conduct (Rechlasata). With reference to their objects, treaties may perhaps be conveniently classifed as (1) political, including treaties of peace, of alliance, of cession, of boundary, for creation of international servitudes, of neutralization, of guarantee, for the submission of a controversy \(t 0\) arbitration; (a) commercial, including consular and fishery conventions, and slave trade and navigation treatles; (3) confederations for special social objects, such as the Zollverein, the Latin monetary union, and tbe still wider unions with reierence to posts, telegraphs, submarine cables and weights and measures; (4) relating to criminal justice, e.g. to extradition and arrest of fugitive seamen; (5) relating to civil justice, e.g. to the protection of trade-mark and copyright, to the execution of foreign judgments, \(t 0\) the reception of evidence, and \(t 0\) actions by and against foreigners; (6) promulgating written rules of international law, upon topics previously governed, if at all, only by unwritien custom, with reference e.s. to the peaceful seltlement of international disputes, or to the conduct of warfare.

It must be remarked that it is not always possible to assign a treaty wholly to one or other of the above classes, since many treaties contain in combination clauses referable to several of them.
The amalogy between treat \(y\)-making and legislation is striking when a congress agrees upon general principles which are afterwards accepted by a large number of states, as, for instance, in the case of the Geneva conventions for improving the treatment of the wounded. Many political treaties containing *transitory conveations," with reference to recognition, boundary or cession, become, as it were, the title-deeds of the nations to which they redate. \({ }^{2}\) But the closest analogy of a treaty is to \(a\) coatract in private law.
The making of a valid treaty implics several requisites. (1) It must be made between competent parties, i.e. sovereign states. A "concordat," to which the pope, as a spiritual authority, is one of the parties, Regobifes. is therefore not a Ireaty, nor is a convention between ia state and an individual, nor a convention bet ween the rulers of two states with reference to ibeir private afiaiss. Semi-sovercign states, such as San Marino or Egyps, may make conventions upon topics within their limited competence. It was formally alleged that an infictel state could not be party to a treaty. The question where the treaty-making power resides in a given state is answered by the municipal law of that state. In Great Britain it resides in the executive (see the parliamentary debates upon the cession of Heligoland in 1890); sometimes, however, it is shared for all purposes, as in the United States, or for certain purposes onty, as in many countries of the Earopean continent, by the legislature, or by a branch of it. (2)There must be an expression of agreement. This is not (as in private law) rendered voidable by duress; eg the cession of a province, though extorted by overwhelming force, is nevertheless unimpeacivabie. Duress \(t 0\) the individual negotiator would, however, vitiate the effect of his signature. (3) From the nature of the case, the agreement of states, other than those the government of which is autocratic, must be signified by means of agents, whose authority is either express, is in the case of plenipotentlaries, or implied, as in the case of e.f. military and naval commanders, for matters, such as truces, capitulations and cartels, which are necessarily confided to their discretion. When an agent acta in excess of his implied authority, he is said to make no trealy, but a mere "sponsion," which, uniess adopted by his government, does not bind it, e.g. the affair of the Caudipe Forks

\footnotetext{
© Cf. Sir Edward Hertslet's very useful collections entiolind: The Mop of Europe by Treofy (4 vols., 1875-1891), and The Map of Africa by Troaly (2 vola, 1894).
}
(Livy ix. 5) and the convantion of Closter Seven in 5757 . (4) Unike a contract in privale low, a treaty, even though made on pursuance of a full power, is, according to modern views, of no effect till it is ratified. It may be remarked that ratification, though hitherto not thought to be required for "declarations," such as the Declaration of Paris of 1856 , was expressly stıpulated for in the case of those signed at the peace conferences of 1809 and 1007. (5) No special form is necessary for a treaty, which in theory may he made without writing. It need not even appear on the face of it to be a contract between the parties, but may take the form of a joint deciaration, or of an exchange of notes. Latin was at one time the language usually employed in treaties, and it continued to be so employed to a late date by the emperor and the pope. Treaties to which several European powers of different nationalities are partics are now usually drawn up in French (the use of which became general in the time of Louis XIV), but the treaties of Aix-la-Chapelle of 1748 and 1784 contain, as does the final act of the congress of Vienna, a protest against the use of this language being considered obligatory. French is, however, exclusively used in the treaties constitut. ing the great "international unions"; and bilingual treaties are sometimes accompanied by a third version in French, to be decisive in case of alleged variances between the other two. A great European treaty has usually commenced
In the name of the Most Holy and Indivisible Trinity," or, when the Porte is a party, "In the name of Almighty God." (6) It is sometimes said that a treaty must have a lawful object, but the danger of accepting such a statement is apparent from the use which has been made of it by writers who deny the validity of any cession of national territory, or even go so far as to lay down, with Fiore, that "all should be regarded as void which are in any way opposed to the development of the free activity of a nation, or which hinder the excrcise of its natural rights." (7) The making of a treaty is sometimes accompanied hy acts intended to secure its better performance. The taking of oaths, the assigning of "conscrvatores pacis " and the giving of hostages are now obsolete, but revenue is mortgaged, territory is piedged, and treaties of guarantee are entered into for this purpose.

A " transitory convention " operates at once, leaving no duties to be subsequently performed, but with reference to conventions Duration. of other kinds questions arise as to the duration of the obligation created by them; in other words, as to the moment at which those obligations come to an end. This may occur by the dissolution of one of the contracting states, by the object-matter of tbe agreement ceasing to exist, by full performance, by performance becoming impossible, by lapse of the time for which the agrecment was made, by contrafies conscosus or mutual relcase, by "denunciation" by one party under a power reserved in the treaty. By a breach dn either side the treaty usually becomes, not void, but voidable. A further cause of the termination of treaty obligations is a total change of circumstances, since a clause "rebus sic stantibus" is said to be a tacit condition in every treaty. \({ }^{1}\) Such a contention can only be very cautiously adraitted. It has been put forward by Russia in justification of her repudiation of the clauses of the Treaty of Patis neutralizing the Black Sea, and of her engagements as to Batoum contained in the Treaty of Berlin. The London protocol of 1871, with a view to prevent such abuses, lays down, perhaps a little too broadly, that it is an essential principle of the law of nations that no power can liberate itself from the engagements of a treaty, nor modify the stipulations thereof, unless with the consent of the contracting powers, by means of an amicable arrangement." Treaties are in most cases suspended, if not terminated, by the outbreak of a war between the contracting parties (though the Spanish decree of the 2 zrd of April 1898 went too far when it asserted that the war with the United States had terminated "ail conventions that have been in force up to the present between the two countries " \(\rangle\), and are therefore usually revived in express terms in the treaty of peace.

Ct. Bynkershock, Quest. sur pub. vol, it. Cb: sa

The rules for the interpretation of treaties are not so diJcrent from those applicable to contracts in private law as to need bere a separate discussion.

Collections of treaties are either (i.) general or (it) national.
The first to publish a general collection of treaties was Leibnitz. whose Coder juris gentium, containing documents frotu 1097 to 1497. appeased in 1693. and was followed in 1700 by the conectoms, appeased in 1693 and was followed in 1700 by the
Manissa. The Corps umisersel diplomatique du droit des gens of J. Dumont, continued by J Barbeyrac and Rousset in thirteen folio volumes, containing treaties from A.D. 315 to 1730 , was published in 1726-1739. Wenck's Corpus juris gentium recentissimi (3 vols. 8vo, 1781-1795) contams treaties from 1735 to 1772 . The 8 vo Recueil of G. F. de Martens continued by C. de Martens, Saalield. Murhard, K. F. Samwer, K. Hopf, F. Stoerk and H. Triepel, commenced in 179 with treaties of 1761 , and is still in progress. The series in 1910 extended to eighty-eight volumes; that for 1910 being the third of the Nouseas recueil genéral (23oseric). See also the Recueil miernational des fratiés de \(x x^{4}\) siècle (1904, ma), by Descamps en Renanlt, and che following periodical publications: Das Slaafs archio, Sammlung der officiellen Actenstucke zur Geschachte der Gegerseart (Leipzig, commencing in 1861): Archives diphomafiques (Srutrgart, since 1821). Archines diplomaliques, recrueil mensurt de diflomalie et d'husfore (Paris, since 1861), and Hertslet's Bratisk and Foresgn State Papers, from the Termination of the War of 1814 to the Latest Period, compiled at the Fareign Offce by the Librarian and Keeper of the Papers (London, since 1819, and still in progress).
ii. The more important collections of national treatics are those of MM Neumann and de Plasson from 1855, and of the commilsion for modern history from 1903. for Austria; Beutner for the German Empire, 1883: C. Calvo for "l'Amérique latine," 1862-1869: de Clerra for France, 186-1908. De Carcia de la Vega for Belgium, 1850, \&c., Lagemans and Breukelman for the Netherlands, 8558, \&c.: Soutzo for Gricece, 1898: Count Solar de la Marguerite for Sardinia. 1836-186: : Olivart for Spain, 1890, \&c. Da Castro for Portugal. 1856-t879; Rydberg for Sweden, 1877; Kaiser, 8861, and Eichmanm. 1885 . for Swilzerland: Baron de Tesia, 2864, \&c., Aristarchi Bcy 1873-1874. and Effendi Noradounghian, 1897-1903. Ior Turkey: F. de Martens for Russia (the 9 vols. published 1874 -1907 contain the trealies made by Russia with Austria, Germany, Great Britain and France respectively): W F. Mayers for China, 1877. The official publication for Italy begins in 1864 (see also the collection by Luigi Palma, 1879, \&c.). for Spainin 1843. For Denmark in 1874. The srealics of Japan were publishod by authority in 1899 . Those of the United States are contained in the Statules as Large of the United States, and in the Trealees, Conientions, efc.0 between the United Siates of America and Oher Poweri 1776-1g00 (Washington. 19t0): also in the collections of J. Elliott (1834) and \(\mathbf{H}\). Minot (\(\mathrm{t} 8+4-1850\)); see also Mr Bancroft Davis's Notes upoz the Treaties of the United Statei with other Powers, preceded by a list of the Treaties and Canientians will, Foreign Powers, chronologically arranged and followed by an Analytical Index and a Symoptical Index of the Trealies (1873). In England no treaties were published before the \({ }^{77}\) th cenlufy, surh matcers being thought "not fit to be made vulgar. "O The treaty of 1604 with Spain was, however, published by authority, as were many of the treaties of the Stuart kings. Rymer's Foedera was published, under the onders of the government. in twenty valumes. from 1704 to 1732 ; but for methodical collections of the earlier British treaties we are indebted to private enterprise; which produced three volumes in 1710-1713. republished with a fourth volume in 1732. Other three volumes appeared in 1772-1781, the collection commonly known as that of C. Jenkinson (3 vols.) in 1785 and that of \(G\). Chalmers (2 vols.) In t795. The recent treaties made by Great Britain, previousty dis. persed through the numbers of the London Cazoue or embedded in masses of diplomatic correspondence presented to parliament at irregular intervals, are now officially published as soon as ratified in a special svo. "Treaty Series "t of parliamentary papers commenced in 1902. J. Macgregor published (1841-3844) eight volumes of compnercial treatice but the great collection of the commercial treatics of Great Britain is that of L. Hertslet, librarian of the fortign office, continued by his son, Sit Edward Hertslet and later holders of the same ofice, entitled \(A\) Complete Collection of the Treaties and Comentions and Reciprocal Regulotions af present subsistiag Wetween Greal Bribein and Foreign Powers, and of the Laws and Oiders in Council conccrying the same. so far as thry relate to Commierre and Navigation, the Slave Trade. Posi Offer. Ec..
and to the Privilges isnd Inierests, of the Subjerts of the Contracting Parties (a4 vols., \(1820-190 ;\)). Sir E.dward Hertalet also comraenced in 1875 a series of volumes containing Trealiza and Tariffs mewatimg the Trade betacen Bribain and Forcign Notions

\section*{Treatice
Netion}

\section*{\begin{tabular}{l}
8 \\
8 \\
\hline
\end{tabular}}

\section*{Pe}
officially

E-geqements and Sanmods relating to India one Neighbourive Cometrues, by C. V. Aitchison. This work, with the index, extends to eight volumes. which appeared at Calcutta in 1862-1866. A continuation by A. C. Talbot was published in 1876, and it was brought up to date by the government of India in 1909. Usefal lisses of national collections of treaties will be found in the Rerwe de dreit international for 1886, pp. 169-187, and in the Marquis Olivart's Catalogue de ma bibiothèque (\(1899-1910\)).

It may be worth while to add a list of some of the more important treaties, now wholly or partially in force, some of which are thr of discussed under separate headings, especially those mpartam to which Great Britain is a party, classified accordTreites ing to their objects, in the order suggested above.
i. The principal treaties affecting the distribution of territory between the various states of Central Europe are those of Westphalia (Osnabruck and Manster), 1648; Utrecht, 1713i Paris and Hubertusbarg, 5763 ; for the partition of Poland, 1772 , 1793; Vienna, 1815; London, for the separation of Belgiun from the Netherlands, 183 r , 1839 ; Zurich, for the cession of a portion of Lombardy to Sardinia, 1859 ; Vienna, as to SchleswigHolsteis, 1864; Prague, whereby the Gemman Confederation was dissolved, Austria recognizing the new North German Confederation, transferring to Prussia ber rights over SchleswigHotstein, and ceding the remainder of Lombardy to ltaly, 1866 ; Frankfort, between France and the new German Empire, 1871. The disintegration of the Ottoman Empire has been regulated by the Great Powers. or some of them, in the treaties of London, 1833, 1863 , 1864, and of Constantinople, 188r, with reference to Greece, and by the treatics of Paris, 1856; London, 1871; Bertin, 1878; London, 1883, with reference to Montenegro, Rumania, Servia, Bulgaria and the navigation of the Denube. The encroachments of Russia upon Turkey, previous to the Crimean War, are registered in a series of treaties beginning with that of Kuchuk-Kainarji, 1774, and ending with that of Adrianople in \(\mathbf{1 8 2 9 .}\). The independence of the United States of America was acknowledged by Great Britam in the treaty of peace signed at Paris in 1783 . The boundary bet ween the United States and the British possessions is regulated in detail by the reatics of Washington of 1842, 1846, 1871, 1903 and 1908. The territorial results of the war of 1898 between the United Slates and Spain are registered in the treaty of 1899, and those of the Russo-Japanese War in the treaty of Portsmouth of 1905 Various causes of possible misonderstanding between Great Britain and France were removed by the convention of 2904; and a similar treaty was concluded with Russia in 1908. The navigation of the Suez Canal is regulated by a treaty of 1888 , and that of the future Panama Canal by one of igor. The boundaries of the tertitories, protectorates and spheres of influence in Africa of Great Britain, Germany, France, Italy, Beigium and Portugal have been readjusted by a series of treaties, especially bet ween the years 1885 and 1894 . Switzerland, Beigium, Corlu and Paxo and Luxemburg are respectively peutralized by the treaties of Vienna, 1815, and of London, 1839, 1864, 1867. A Ist of treaties of guarantee supposed to be then in force, to which Great Britain is a party, beginning with a treaty made with Portugal in 1373, was presented to parliament in 1850 Treaties of alliance were made hetween Great Britain and Japan in 1902 and 1905.
ii. For the innumerable conventions, to which Great Britain
a party, as to conmorce, consular juriati-tioss, fisheries and The slave trade, it must suffice to refer to the exhaustive and stilfolly devised index 10 vols. 1-21 of Hertslet's Commercial Treaties, published in 1905 as vol. 22 of the series.

The social intercourse of the world is facilitated by conwuch as those establishing the Latin monetary union, international telegraphic union, 1865 : the universal ion. 1874; the iaternational bureas of weights and providing for the protection of submarine of peace, 1884 ; the railway traftic union, 1890. numerous, are somewhat misleadingly (L. von Stein and F de Martens) as inistratil international "
reaties of extradition to which

Great Britain is a party, it will be sufficient to refer to the article Extradition. It may be observed that all of them, except the treaty of 1842, now, however, varied by one of 1889, with the United States, are subsequent io, and governed by, the provisions of 33 \& 34 Vict. c. 52 , The Extradition Act 1870. Before the passing of this general act it had been necessary to pass a special act for giving effect to each treaty of extradition. The most complete collection of treaties of extradition is that of F. J. Kitchner, L'Extradilion, Recxcil, Erc. (London, 1883).
v. General conventions, to which most of the European states are parties, were signed in 1883 at Paris for the protection of industrial, and in 1886 at Bern for the protection of literary and artistic, property, and, from 1899 onwards, a series of general treaties, to none of which is Great Britain a party, have been signed at the Hague, as the result of conicrences, invited by the government of the Netherlands, for solving some of the more pressing questions arising out of "the conflict of laws."
vi. Quasi-legisiation by treaty has been directed mainly to encouraging the settlement of international disputes by peacelul methods, snd to regulating the conduct of warfare.
The first peace conference, held at the Hague in \(\mathbf{1 8 9 9}\), devoted mucb time to producing the generally accepted "Convention for the Pacific Settlement of International Disputes." An important achievement of this convention was the establishment at the Hague of an international tribunal, always ready to arbitrate upon cases submitted to it; and the convention recommended recourse not only to arbitration, but also to good offices and mediation, and to intemational commissions of inquity. This convention has now been superseded by the revised and amplified edition of it adopted by the second peace confetence in 1907. The provisions of neither convention are abligatory, but merely "facultative," amounting orly to recommendations. Creat efforts were made, esperially in 1907 , but without success, to draft a generally acceptable convention, making resort to arbitration compulsory, at any rate with reference to certain chasses of questions. In the meantime, however, agreements of this nature between one power and another have multiplied rapidly within the last few years (see Arbitratrons.

Certain bodies of rules intended to mitifate the horrors of war have received the adhesion of most civilized states. Thus the declaration of Paris, 1856 (to which, however, the United States, Veneruela and Bolivia have not yot (ormally acceded), prohibits the use of privateers and protects the commerce of neutrals; the Geneva conventions, 1864 and 1906, give protection to the wounded and to those in attendance upon thern; the St Petersburg declaration, 1868 , prohibits the employment of explosive bullets weighing less than 400 grammes; and the three Hague declarations of \(\mathbf{1} 899\) prohilit respectively (i) the launrhing of projectiles from balloons, (2) the use of projectiles for spreading harmful gases, and (3) the use of expanding bullets. The second Hague conference, of \(\mathbf{9 0 7}\), besides revising the convention made by the first conference. of 1899 , as to the laws of war on land, produced new conventions. dealing respectively with the opening of hostilities; neutral rights and duties in land warfare; the status of enemy merchant ships at the outbreak of war; the conversion of merchant ships into ships of war; subanarine mines; bombardment by naval forces; the application of the Geneva principles to naval waffarc; the rights of maritime capture; the establishment of an international prize court, and neutral rights and duties in maritime watfare. These conventions, as well as a republication of the first Hague declaration. which had in 1907 expired by efflux of time, have been already largely ratified.

It were greatly to be wished that the official publication of treaties could be rendered more speedy and more methodical than it now is. The labours of the poblicist would also be much lightened were it possible to consolidate the various general collections of diplomatic acts into a new Corps diplomatique universel, well furnished with cross references, and with brief annotations showing how far each treaty is supposed to be still in force.

Literalure.-In addition to the works already cited in the course of this article the following are for various reatoas important

Joh. Lupus, De confederatione principum (Strassburg, 1511, the first published monograph upon the subject); Bodinus, Disserfatio de contractibus summarum potestatums (Halle, 1696), Neyron, De ou foederwm inter pentes (Gottingen, 1778). Neyron, Essat historique et polifique sur les garanties, ©́t. (Gortingen, 1797). Wachter. De modis tollendi pocta inter gentes (Stutigart. 1780), Dresch, Ueber die Dauer der Volkerwerlrage (Landshut. 1808), C. Bergbohm, Staatsvertrige und Geselze als Quellen des Volkerrechts (Dorpat, 1877); Jellinek, Die rechlliche Natur der Statenvertrage (Vienna, 1880); D. Donati, Trattati zatermazionali nel dirito costituszonale (1907); Holzendorf, Hardbuch des Volkerrechs (1887) vol. iii. ; Fleischmann, \(V\) olkerrechtsquellen in Auswahl herausgegeben (1go5). de Lapradelle, Recueit des arbitrages internationaux (igos); B. Moore, Hissory and Digest of the International Arbitrations to which the United Siates kas been ., Party (1898) 6 vols. For a list of the principal "concordats," see Calvo, Droil international héarique et pratigue t. On the history of the great Europcan treaties generally, see the Histoire abrigee des traites de paix entre les puissances de l'Earope. by Koch, as recast and continued by Scholl (1817 and 1818), and again by Count de Garden in 1848-1859, as also the Recucil maruel of De Martens and Cussy, continued by Geffcken. Forthe peace of Westphalia, Pütcr's Geist des westphalischen Friedens (1795) is useful: for the congress of Vienna Klüber's Acten des Wiener Congresses (1815-1819) and Le Congrés de Vienne et les traités de 8815 précedé des conftrences de Dresde, de Prague a de Chatillon, survi des Congres d'Aix-la-Chapelle, Troppau, Laybach et Vérome, by Count Angeberg. The last-mentioned writer has also published collections of treasies relasing to Poland, 1762-1862: to the Italian question, 1859; to the Congress of Paris, 1856 and the revision of its work by the Conference of London, 1871; and to the Franoo-German War of 1870-71. For the treaties regulating the Eastern question see The Europeon Concert in the Easlern Question, by T. E. Holland (1885) and La Turquic et ie Tanzimat, by E. Engelhardt (1882-1884).
(T. E. H.)

TREATISE. a written composition, dealing fully and systematically with the principles of some subject of serious importance. The M. Eng. tretis, O. Fr. Iretis, or Ireitis, is a doublet of "treaty," which also meant a discourse or account. Both words are to he referred to Lat. tractare, to treat, handle, frequentative of trakere, troctus, to draw. "Treatise" thus would mean, hy etymology, somet hing well handled, nicely made.
TREBIA (mod. Trebbia), a river of Cisalpine Gaut, a trihutary of the Padus (Po) into which it falls some 4 m . west of Placentia (Pliacenza). It is remarkable for the victory gained on its hanks by Hannibal over the Romans in 218 b.c. The latest investigations make it clear that Polyhius's account, according to which the hattle took place on the left bank of the river, is to be preferred to that of Livy (sce W. J. Kromayer in Anzeiger der phil. hish. Klasse der k. Akademie der Wissenschaften, Vienna, October 14, 1008). Its valley is followed past Bohbio hy the modern highroad from Piacenza to Genoa (88 m.).
TREBLNJE, a Lown of Herzegovina, situated 9 m . N. E. of Ragusa, on the small river Trehinjčica, and on a hranch of the railway from Metkovic to Castelnuovo, near Cattaro. Pop. (1895), ahout 1700. Trehinje is tuilt in a low-lying oasis among the desolate limestone mountains, close to the Dalmatian and Montenegrin fronticrs. Its half-ruined wall and citadel testify to its former strategic importance. Trehinje was built by the Slavs, prohahly on the site of a Roman town laid waste hy the Saracens in 840 . In the tenth century Constantine Porphyrogenitus mentions it as Terbunin. It commanded the road from Ragusa to Constantinople, traversed, in 1096, hy Raymond of Toulousc and his crusaders. Under the name of Trihunfa or Travunja (the Trebigne of the Ragusans), it belonged to the Servian Empire until 1355 . Io 1483 it was captured by the Turks.
TREBIZOND (Gr. Trapezus), a city of Asia Minor, situated on the Black Sea, near its south-eastern angle. From the time of its foundation as a Greek colony to the present day it has always heen a considerahle emporium of commerce, and it was for two centuries and a half the capital of an empire. Its importance is due to its command of the point where the chicf trade route from Persia and Central Asia to Europe, over the table-land oi Armenia by Bayezid and Erzerum, descends to the sea. Its safety also was secured by the barrier of rugged mountains (7000 to 8000 ft) which separates its district from the rest of Asia Minor. So complete is the watershed that no streams pass through these ranges, and there is hardly any communication in this dircation bet ween the interior of Asia Minor and the coatt. I or the same
reason, together with its northern aspect, the climate is humid and temperate, unlike that of the inland regions, which are exposed to great extremes of heat in summer and cold in winter. The position which was occupied hy the Hellenic and medieval clly is a sloping table of ground (whence the original name of the place, Trapezus, the "Tahle-land"), which falls in steep rocky precipices on the two sides, where two deep valleys, descending from the interior, run parallel at no great distance from one another down to the sea. The whole is still enclosed by the Byzantine walls, which follow the line of the cliffs and are carried along the sea-face, and the upper part of the level, which is separated from the lower hy an inner cross wall, forms the castle; while at the highest point, where a sort of neck is lormed hetween the two valleys, is the keep which crowns the whole. On cach side, about half-way between the keep and the sea, these ravines are crossed by massive hridges, and an the farther side of the westernmost of these, away from the city, a large tower and other fortifications remain. The area of the ancient city is now called the Kalch, and is inhahited hy the Turks; eastward of this is the extensive Christian quarter, and heyond this again a low promontory juts northward into the sea, partly covered with the houses of a well-built suburh, which is the principal centre of commerce. The harbour lies on the eastern side of this promontory, hut it is an unsale roadstead, being unprotected towards the north-east and having been much silted up, so that vessels cannot approach within a considerable distance of the shore. From here the caravans start for Persia, and at certain periods of the year long trains of camels may he seen, and Persian merchants conspicuous by thcir high black caps and long rohes. The route which these caravans follow is a choussie as far as Erzerum, hut this io places is 100 much hroken to admit of the transit of wheeled vehicles. The railway hy Batoum to Baku hy way of Tillis has icnded greatly to turn the channel of commerce from Trehizond into Russian territory, since it helps to open the route to Erivan, Tahriz and the whole of Persia. The total population of the place amounts to about 40,000 , of whom 22,000 are Moslems and 18,000 Christians. Great Britain and all the larger European states have consulates there.
The vilayet, of which Trebizond is the chief town, consists of a long irregular strip of coast country, the eastern half of which is deeply indented and mountainous.
History. -The city of Trapezus was a colony of Sinope, hut it first comes into notice at the time of the Retreat of the Ten Thousand, who found repose there. Notwithstanding its commercial importance, the remoteness of its position prevented it from being much known to fame cit her in the Hellenic or the early medieval period; its greatness dates from the time of the fourth crusade (1204), when the Byzantine Empire was dismembered and its capital occupied by the Latins. During the confusion that followed that event Alcxius Comnenus escaped into Asia, and, having collected an army of Iberian mercenaries, entered Trehizond, where he was aclinowledged as the legitimate sovereign, and assumed the title of Grand Comnenus. Though only twenty-two years of age, Alexius was a man of ahility and resolute will, and he succeeded without difficulty in making himself master of the greater part of the southern coast of the Black Sea. The empire thus founded continued to exist until 1461, when the city was taken by Mahommed II. The cause of this long duration, and at the same time the secret of its history, is to be found in the isolated position of Trebizond and its district, between the mountains and the sea, which has already heen described. By this means it was able to defy both the Seljuks and the Ottomans, and to maintain its independence against the emperors of Nicaea and Constantinople. But for the same reason its policy was always narrow, so that it never exersiond any beneficial infliuence on the world at large. It was chiefly in the way of matzimonial alliances that it
was brought into contact wah other states. The imperial family were renowned for theit teauty, and the prineneas of this
race were sought as benles hy Byzuntime cmperurs of the dynary
of the Palacologi, by W'esiefn publen, and by Minommedna
diplomatic relations and friendly or offensive alliances. The palace of Trebizond was famed for its magnificence, the court for its luxury and elaborate ceremonial, while at the same time it was frequentiy a hotbed of intrigue and immorality. The Grand Comneni were also patrons of art and learning, and in consequence of this Trebizond was resorted to by many eminent men, by whose agerey the library of the palace was provided with valuable manuscripts and the city was adorned with splendid buildings. The writers of the time speak with enthusiasm of its lofty towers, of the churches and monasteries in the suburbs, and especially of the gardens, orchards and olive groves. It excited the admiration of Gonzales Clavijo, the Spanish envoy, when he passed through it on his way to visit the court of Timur at Samarkand (Clavijo, Histeria del gran Tamorlan, p. 84); and Cardinal Bessarion, who was a native of the place, in the latter part of his life, when the city had passed into the hands of the Mahommedans, and he was himself a dignitary of the Roman Church, so little forgot the impression it had made upon him that he wrote a work entitled"The Praisc of Trebizond"('Eymo \(\mu\) op Tpartscirros), which exists in manuscript at Yenice. Litte was known of the history of the empire of Trebizond until the subject was taken in hand by Professor Fallmerayer of Munich, who discovered the chronicle of Michael Panaretus among the books of Cardinal Bessarion, and from that work, and other sources of information which were chiefly unknown up to that time, compiled his Geschichte des Kaiserthums von Trapesun' (Munich, 1827). From time 10 time the emperors of Trebizond paid tribute to the Seljuk sultans of Iconium, 10 the grand khans of the Mongols, to Timur the Tatar, to the Turkoman chieftains, and to the Ottomans; but by means of skilful negotiations they were enabled practically to secure their independence. We find them also at war with many of these powers, and with the Genoese, who endeavoured to monopolize the commerce of the Black Sea. The city was several times besieged, the most formidable attack being that which occurred in the reign of Andronicus l., the second emperor, when the Seljuks, under the command of Melik, the son of the great sultan Ala-ed-din, first assaulted the northern wall in the direccion of the sea, and afterwards endeavoured to storm the upper citadel by night. They failed, however, in both attempts; and in the latter, owing to the darkness, and to the occurrence of a viotent storm which suddenly swelled the torrents in the ravines, their force was thrown into inextricable confusion, and they were compelled to abandon their camp and make the best of their escape from the country. So great was the strength of the fortifications that Mahommed II. might have experienced much difficulty in reducing it, had it not been for the pusillanimous conduct of David, the last emperor, who sursendered the place almost unconditionally.

Ancient Memorials.-Several interesting monuments of this period remain at Trebizond in the form of churches in the Byzantine style of architecture. One of these is within the area of the old city, viz. the church of the Panaghia Chrysokephalos, or Virgin of the Golden Head, a large and massive but excesfively plain bulleing, which is now the Orta-hissatr mosque. Yis ind irther zide of the eastern ravine stands a smaller but very well proporlioned structure, the church of St Eugenius, the patron saint of Trebizond, now the Veni I)juma djami, or Niew Friday mosque. Still more important is the church of Houghis Sophia, which occupies a conspicuous position overlacking the sea, about 2 m . west of the city. The porches shis are handsomely ornamented, and about 100 ft . from trees a tall campanile, the inner walls of which have been red in parts with frescocs of religious subjects, though these We now much defaced. But the most remarkable memorial e siddle ages that exists in all this district is the monastery of a rocky glen, at a beight of 4000 ft . above the sea traordinary, for if occupies a cavern in of a perpendicular clifi 1000 ft offer a marked contrast to the setting. It is approached by a life, from which a tlight of storio
steps and a mooden stairease give access to the monastery. The valley below is filled with the richest vegetation, the undergrowth being largely composed of azaleas and rhododendrona. An antiquity of 1500 years is claimed for the foundation of the monastery, but it is certain that the first person who raised it to importance was the emperor Alexius Comnenus LII. of Trebizond; he rebuilt it in 1300, and richly endowed it. The golden bull of that emperor, which became thenceforth the charter of its foundation, is saill preserved; it is one of the finest specimens of such documents, and contains portraits of Alexiua himself and his queen. The monastery also possesses the firman of Mahommed IL. by which he accorded his protection to the monks when he became master of the country.

Bibliography.-J. Ph. Fallmerayer, Geschichte des Kaiserthums von Trapezunt (Munich, 1827); also Fragmente aks dem Orient, vol. i. (Stuttgart, 1845); C. Texier, Asis, Nimeure (Paris, 1862); C. Texier and R. P. Pullan, Bytomlime Architecture (London, 1864); G. Finlay, History of Crecce. vol. iv. (Oxford, 1877); H. F. Tover, Turkish Armenia and Eastern A sia Minor (London, 188ı). (H.F.T.)

TRERLE (a doublet of "triple," three-fold, from Lat. Iriplus, triple; cf. "double " from duplus), the term applied, in music, to the bigh or acute part of the musical system, as opposed to and distinguished from the "hass," the lower or grave part. The middle C is the practical division between the parts. The word is also used as equivalent to the "soprano" voice, the highest pitch or range of the human voice, but generally it is confined to a boy's voice of this quality, "soprano." being used of the corresponding female voice. The treble-clef is the G-clef on the second line. The origin of this application of the term "treble," triplus, threefold, to the highest voice or part is due to the fact that in the early plain-song the chief melody was given to the tenor, the second part to the alto (discantus) and where a third part (lvip/ume) was added it was assigned to the highest voice, the soprano or treble.

TREBUCHET, a medieval siege engine, employed cither to batter masonry or to throw projectikes over walls. It was developed from the post-classical Roman onager (wild asa), which derived its name from the kicking action of the machine. It consisted of a frame placed on the ground to which a vertical frame of solid timbet was rigidly fixed at its front end; through the vertical frame ran an axle, which had a single stoul spoke. On the extremity of the spoke was a cup to receive the projectile. In action the spoke was forced down, against the tension of twisted ropes or other springs, hy a windlass, and then suddenly released. The spoke thus kicked the crosspiece of the vertical frame, and the projectile at its extreme end was shot forward. In the trébuchet the means of propulsion was a counter-weight. The axle which was near the top of 2 high strutted vertical frame served as the bridge of a balance, the shorter arm of which carried the counter-weight and the longer arm the carrier for the shot. An alternative name for the trebuchet is the mangonel (mangonncan).

TREBULA, the name of five ancient towns in Italy. (1) Trebula in Samnium, a town of the Caraceni, on the left bank of the Sangro, some 30 m . below Castel di Sangro; the church of the Madonna degli Spineti near Quadri marks the site. It appears to have been a municipium, but we only know of its existence in Hadrian's time. (2) Trebula in Campania, between Saticula and Suessula. The site is probably identical with the hills bearing the modern name Tripaola (about 1000 ft . above sea level) above the entrance to the valley of Maddaloni. It is possibly this Trebula the citizens of which received Latin rights in 303 E.C. Its territory extended as far as the Vis Appia, and its place was taken in imperial times by the Vicus Novanensis, on the road itself, near Suessula. (3) Trebola BalluEnss (mod. Treglia), also in Campania, 22 m . north of Capua, in the mountaims, about 1000 ft . above sea-level. It revolted to Hannibal and was reduced to obedience by Fabius. Remains of walls, aqueduct and tombs exist. Its territory was mentioned in the projected distributions of land in Cicero's time: ard its wine was well thought of under Nero. It was a mumicipium. (4) Taebula Muitiesca in the Sabine country, 2 m
east of the point where the Via Caecilia diverges from the Via Salaria. It lies about 1 m . south-west of the modern Monteleone, and an amphitheatre and other remains are visible. In a dedication made there by the consul Mummius in 146 s.c. it is spoken of as a picus, but when the pracfecturoc were abolished it became a municipium. The post station of Vicus Novus on the Via Salaria (mod. Osteria Li Massacci) belonged to its territory (sce N. Persichetti in Romische Milteilunger, 1898 , p. 193). (5) Trebula Suifenas is generally placed 6 m . south of Reate (mod. Rieti) on the Via Quiactia, but is with considerable probahility identifed with Ciciliano, 10 m . cast of Tivoli, 2030 ft . above sea-level, by O. Cuntz (Jahreshefle des ocsicrr. urch. Instituts, 1899, ii. 89), wbo combines the evidence of inscriptions and of the description in Martial (v. 71), with a new interpretation of the Itineraries. There are remains of an ancient road, witb substructures in rough polygonal work ascending to it in zigzags.
(T. As.)

TREDEGAR, an urban district in the western parliamentary division of Monmouthshire, England, on tbe Sirhowy river, 24 m . north of Cardiff, on a joint line of the London \& NorthWestern and the Rhymney railways. Pop. (1001), 18,497. It stands at an elevation of about 1000 it., and owes its existence to the establishment in the beginning of the roth century of the works of the Tredegar Iron and Coal Company, which employ most of the large industrial population. The place gave the tite of Baron Tredegar (c. 1859) to Sir Chartes Morgan Robinson Morgan. Bart. (1792-1875), whose grandfather, Sir Charles Gould, Bart., marricd the heiress of John Morgan of Tredegar and changed his name to Morgan. He was M.P. for Brecknock in 1835-1847. He married a granddaughter of tbe ist Lord Rodney. His son Codirey (b. 1830), who succecded to the barony, was created Viscount Tredegar in icos; he had served in the Crimea and taken part in the fa mous Bahaclava chafge.

TREDGOLD. THOMAS (1788-1829), English engineer, was bofn at Brandon, near Durham, on the 22 nd of August 1788, and at the age of fourteen was apprenticed to a carpenter. In 1808 he went to Seotland, and after-working there as a journeyman for five years, obtained employment in London with an architect. He began to practice as a civil engineer on his own account in 1823, but much of his time was devoted to.the preparation of his engineering text-books, which gained a wide reputation. They included Elementary Principles of Carpentry (1820), almost the first book of its lind in English; Practical Treatise on the Strength of Cast Iron and other Mfetals (1824); Principles of Warming and Ventilating Public Buildings (1824); Practical Treatise on Railroads cnd Carrioges (1825); and The Steam Engine (1827). He died in London on the 28 th of January 1829.

TREE SIR HERBERT BEERBOHM (\(1853^{-}\)), English actor and manager, was born in London, on the 17 th of Desember 1853 , the son of Julius Beerbohm, a London merchant of German parentage; his half-brother, Max Beerbohm (b. 1872), became well known as a dramatic critic a miscellaneous writer and caricaturist. Taking the stage name of Beerbobm Tree he made his first professional appearance in London in \(\mathbf{1 8 7 6}\). After some years of vasied experience he made a striking success In 1884 as the curate in The Privatc Secretery, but he was making himseff well known meanwhile in dramatic circles as an admirable actor in many roles. In September 1887 be became lessee and mamager of the Haymarket theatre, London, where bis representations of meiodramatic "characier" parts, as in Jim the Penman, The Red Lamp, and A Man's Skadow, were highly successiul. His varied talents as an actor were displayed, however, not only in a number of modern dramas, such as \(H\). A. Jones's Dancing Cirl, but also is romantic parts such as Gringoire, and in the production of so essentially a literary play as Henley's Beau Austin; and in classic parts his ability as a comedian was shown in The Merry IVives of IVindsor, in which he played Falstaff, and as a tragedian in Hamlel; his presentations of Shakespeare were notable too as carrying forward the methods of realistic staging inaugurated at the Lyceum under Irving. In 1897 Mr Trec moved to the new Her Majesty's (afterwards

His Majesty's) theatre, opening with Gilbert Parker's Seafs of the Mighty; but his chief successes were in Stephen Phillips's poetical dramas, and in his splendid revivals of Shatespeare (especially Richard II. and the Merchant of Venice). The magnificence of the mounting, the origiowlity and research shown in the "business" of his productions, and his own versacility in so many diferent types of character, made his management memorable in the bistory of the London stage; and on the death of Sir Honry Lrving he was generally recognized as the leader in his profession. His wife (Mfaud Holt), an accomplished actress, and their daughter Viola, were also prominently associated with him. In 1907 he took his company to Berlin at the invitation of the German emperor, and gave a sclection from his repertoire with great success. In the same yeat he established a school of dramatic art, for the training of actors, in London; and in this and other ways he was promitient in forwarding the interests of the stage. He was knighted in 1909.

TREE (O. Eng. treo, troow, ci. Dan. trec, Swed. tradd, tree, trat, timber; allied forms are found in Russ. drevo, Gr. opirs, oak, and סóp, spear, Welsh dery, Irish darog, oak, and Skr. där, wood), the term, applied in a wide sense, to all plants which grow with a permanent single woody stem or truak of some beight, branching out at some distance from the ground. There is a somewhat vague dividing line, in popular nomenclature, between "shrubs" and "trces," the former term being usually applied to plants witb several stems, of lower height, and bushy in growth. The various species to which the name " iree" can be given are treated under their individual titles, e.f. oak, ash, elm, \&c.; the articles Fir and Pine treat of two large groups of conifers; general information is provided by the articles Plants and Gyinosperns; tree cuitivation will be found under Forests and Forestry and Horticulture; and the verious types of tree whose wood is useful for practical purposes under Timber Apart from this gencral meaning of the word, the chief transferred use is that for a piece of wood used for various specifc purposes, as a framework, bar, \&c., such as the tree of a saddle, asle-tret, cross-tree, dc.

TREE-CREEPERR, one of the smallest of British birds, and. regard being had to its requiremems, one very generally distributed. It is the Certhia familiaris of ornithology, and is remark. able for the stiffened shafts of its tong and pointed tail-icathers, aided by which, and by its comparatively large feet, it climbs the trunks or branches of trees, invariably proceeding upwards or outwards and generally in a spiral direction, as it secks the small insectsthat are hidden in the bark and formits chiel lood. When in the coursc of is search it nears the end of a branch or the top of a trunk, it fins to anoiher, always alighting lower down than the place it has left, and so continues its work. Inconspicuous In colour-for its upper plumage is mostly of various shades of brown motled with white, buff and tawny, and beneath it is of a silvery white-the tree-creeper is far more common than the incurious suppose; but, attention once drawn to it, it can be frequently scen and at times heard, for though a shy singer its song is loud and sweet. The rest is neat, generally placed in a chink formed by a half-detached piece of bark, which secures it from observation, and a considerable mass of material is commonly used to stufl up the opening and give a sure founda. tion for the tiny cup, in which are laid from six to aine eggs of a translucent white, spolted or blotched with rust-colour.
The tree-crecper inhabits almost the whole of Europe as well as Algeria and has been traced across Asia to Japan. It is now recog. nized as an inhabitant of the grealer part of North America, though for a time examples from that part of the world, which differed alightly in the tinge of the plumage, were accounted a distinct species (\(C\). cmericana) and even those from Mexico and Guatemala (\(C\). mexicana) have lately been referred to the same. It therefore occupies an area not exceeded in extent by that of many passerine birds and is one of the atrongest witnesses to the close alliance of the so-called Nearctic and Palacarctic regions.

Allied to the tree-creeper, but without its lengthened and atif tail- Ceathers, is the genus Tichodroma. the single member of which is the wall-creeper (7, masyaria) of 1 he Alps and some of her mountaiaous parts of Europe and Asia. It is occasionally seen in Switzeriand. fluttering like a big butterfy against the face of a rock cosspicuous
foum the ecarlet-crimeon of its wing-coverts and its white spotted primaries. Its bright hue is hardly visible when the bird is at rest, frd it then presentsa dingy appearance of grey and black. It is a species of wide range, extending from Spain to China, and. though brut seldom leaving its clifis, it has wandered even so far as England. Merrett (\(P 1\) nax, \(p .177\)) in 1667 included it as a British bird, and the correspondence between Marsham and Gilbert White (Proc. Norf: and Nore. Nat Socrety, ii. 180) proves that an example was shot in Norfolk, on the 3oth of October 1792: while another is reported (Zoologist, and series, p. 4839) to have been kilted in Lancashire on the 8th of May 1872.
The passerine lamily Certhildae contains a number of genera of birds to which the general name "creeper" is applied: they occur in North America, Europe and Asia, the greater part of Arrica, and Anstrila and New Guinca.
(A. N.)

TRES-FIRM. In old and well-grown specimens of some of the familiar ferns of temperate climates the wide-spreading crown of fronds may be observed to rise at a distance often of a good many inches above the ground, and from a stem of considerable lhickness. The common male fern Lastraea (Fifix-mas) afords the commonest instance of this; higher and thicker trunks are, however, occasionally presented by the royal fern (Osmunde regalis), in which a height of 2 ft . may be attained, and this with very considerable apparent thickness, duc, however, to the origin and descent of a new scries of adventitious roots from the bases of cach annual set of fronds. Some tropical members and allies of these genera become more distinctly tree.like, e.g. Todea; Plcris also has some sub-arboreal forms. Oicandra is branched and shrub-like, while Angiopteris and Morartia may also rise to 2 It . or more. But the tree-ferns proper are practically included within the family Cyatheaceac. This includes seven genera (Cyalhea, Alsophila, Hemilelia, Dicksonia, Thyrsopleris, Cibotium and Balantium) and nearly 300 species, of which a few are herbaccous, but the majority arboreal and palm-like, reaching frequently a height of 50 ft . or more, AlsoPhila excelsa of Norfolk Island having sometimes measured 60 to soft. The froads are rarefy simple or simply pinnate, but usually tripinnate or decompound, and may attain a length of 20 [t., thus forming a splendid crown of foliage. The stem may occessionally branch into many crowns.

The gencra are of wide geographical range, montly within the tropics: but South Australia. New Lealand, and the southern Pacific islands all possess yheir tree-ferns. In Tasmania Alsophile oustrolis has been found up to the snow-level, and in the humid and mountainous regions of the tropics tree-ferns are also found to range up to a considerable altitude. The fronds may either contribute to the apparent thickness of the siem by lcaving more or less of their bases, thich tecome hardened and persistent, or they may be articulated to the stem and fall off. leaving characteristic sears in spiral series upon thestem. The stem is frequently much increased in apparent thickness by the downgrowth of aerial roots. forming a black coating several inches or even a foot in thickness, but its esential structure differs litile in principle from ebat familiar in the rhlwome of the common bracken (Pkeris). To the ring or rather netted cylinder of fibrovasculat bundles characteristic of all fernstems scattered internal as well as extermal bundles arising from these are superadded and in a tree-fern the outer bundles give off branches to the deacending roote from the region where they past inte the leaves.

Tree-feras are cultivated for their beauty alone: a few. however. are of some economic applications, chicfly as sources of starth. Thu the beautiful Atsophila excelsa of Norfolk Island is said so be threatened with extinction for the sake of its sago-like pith, which is greedily eaten by bog: Cyathra medularis also furnishes a kind of sago to the natives of New Zealand, Qurensland and the Pacific islands. A Javanese species of Dicksonia (D. chrysotricha) (urnishes silky bairs. which have been imported as a styptix, and the long sillky or rather woolly bairs, so abundant on the stem and frond-tenves is the various species of Cibotium have not only been put to a similar use, but in the Sandwich Islands furnish wool for stuffing mattreses and cushions, which was formerly an article of export. The "Tartarian lamb," or Agxws sxyhickr of old travellers' tales is China and Tartary. is simply the woolty stoct of Cibotima Baroviets, which. when dried and inverted, with all save lour of its frond-atalles eut away, has a droll resemblance to a toy sheep.

TRES FROA. Many different groups of tailless Batrachinns (see Froc) are adapted 10 arboreal bie, which is indicated by expansions of the tips of the fingers and toes, adhesive disks which ascist the animal in climbing on vertical smooth surfaces. These disks do not act as suckers, but adhere by rapid and intense presure of the distal phalanz and special musdes upen the lower
surface, which is also provided with numerous glands producing a viseous secretion.

The best-known tree frog is the little \(H\) yla arborea of continental Europe, rainelle of the French, Lambfrosch of the Germans, often kept in glass cylinders provided with a ladder, which the frog is supposed to ascend or descend in prevision of the weather. But recent experiments conducted on scientific principles sbow that not much reliance can be placed on its prophocies. This frog is one of the smatlest of European Batrachians, rarely reaching 2 in in length; its upper parts are smooth and shiny, normally of a bright grass-green, which may change rapidly to yellow, brown, olive or black; some specimens, deprived of the yellow pigment which contributes to form the green colour, are sky-blue or turquoise blue; the lower parts are granulate and vhite.

The family Hylidae, of which the European tree frog is the type. is closely related to the Bufoaidae or true roads; being distinguished from them by the presence of teeth in the upper jaw and by the clawlike shape of the terminal phalanx of the digits. ft is a large family. represented by about three hundred species, two hundred and fifty of which betong to the genus \(H\) yda, distriboted over Europe, temperate Asia, North Africa, North and Sourth America, Papus and Australia. Close allies of Hyic are the Nololrema of Central and South America. in which the female develops a dorsal broad poucl in which the young undergo part or the whole of their metamorphoses. The genus Phyllomedusa. also from Central and South America, are qaadrumanous; the inner finger and the toe being opposable to the others. and the foot leing very similar to the hand. These frogs deposit their spawn between the leaves of branches overhanging water, into which the tadpoles drop and spend their larval life.

TRER KANGAROO, any individual of the diprotodont marsupial genus Dendrolagms (see Marsuplaiza). Three species are inhabitants of New Guinea and the fourth is found in North Quecnshand. They difier sreatly from all other members of the family (Macropodidae), being chiefly arboreal in their habits, and feeding on bark, leaves and fruit. Their hinder limbs are shorter than in the true kangaroos, and their fore limbs are londer and more robust, and have very strong curved and pointed claws. The best-known species, Lumbolts' tree kangaroo (Dendrolagns lamholti), is found in North Queensland. It was named by Professor Collett in bonour of its discoverer, who described it as living on the highest parts of the mountains, in the densest scrub and most inaccessible places. If is bunted by the blacks with trained dingoes; the ficsh is much prized by the bincks, bett the prcsence of a worm between the muscles and the stin renders is less inviting to Europeans.

TRRTMEREW, any of the arboreal insectivorous mammals of the genus Typeio. There are about a dózen species, widely distributed over the east. There is a general resemblance to squirrcls. The species differ chiefly in the size apd in colour and length of the fur. Nearly all have long bushy tails. Their food consists of insects and fruit, which they usually seek for in the trecs. When fecding they often sit on their baunches, holding the focd, after the mannet of squirrels, between their fore paws. The pen-tailed tree-shrew (Piflocercuslowi), from Borneo, Sumatra and the Malay Peninsula, is the second generic representative of the family Tupaiidae. The head and body, clothed in blackishbrown fur, are about 6 in . long; the tall, still longer, is black, sealed and sparsely haired for the upper two-thirds, while the lower third is fringed on each side with long hairs, mostly white. One shrew from Borneo and a second from the Philippines have Deen referred to a separate genus mider the name Urogede earelli and U. cylindrura, on account of their aniformly short-haired, in place of varicd, tatls. (See Insectivora.)

ERER-WORSHIP. Primitive man, observing the growth and death of trees, the elasticity of their branches, the sensitiveness and the annual deray and revival of their coliage, anticipated in his own way the tendency of modera science to lessen the gulf between the animal and the vegetable world. When sober Greek philosophers (Aristoile, Plutarch) thought that trees had perceptions, passions and reason, less profound thinkers may be excused for ascribing to them human concepions and supernattral powers, and for entertaining beliefs which were entirely rational and logical from primitive points of view. These behefs trere
part of a small stock of fundamental ideas into which scientific knowledge of causation did not enter, ideas which persist in one form or another over a large portion of the world, and have cven found a place in the higher religions, inevitably conditioned as these positive [aiths are by the soil upon which they flourish. \({ }^{1}\) In fact, the cvidence for tree-worship is almost unmanageably large, and since comparative studies do not as yet permit a concise and ornclusive synopsis of the subject, this article will confine itself to some of the more prominent characteristics.
Numerous popular stories reflect a firmly rooted belicf in an intimate connexion between a human being and a tree, plant

Trues and or flower. Sometimes a man's life depends upon the Tres and tree and suffers when it withers or is injured, and we encounter the idea of the external soul, already found in the Egyptian "Tale of the Two Brot hers" of at least 3000 years ago. Here one of the brothers leaves his heart on the top of the flower of the acacia and falls dead when it is cut down. Sometimes, however, the tree is an index, a mysterious token which shows its sympathy with an absent hero by weakening or dying, as the man becomes ill or loses his life. These two leatures very casily combine, and they agree in representing a - to usmysterious sympathy between tree- and human-life, which, as a matter of fact, frequently manifests itself in recorded beliefs and customs of historical times. \({ }^{2}\) Thus, sometimes the new-born child is associated with a newly planted tree with which its life is supposed to be bound up; or, on ceremonial occasions (betrothal, marriage, ascent to the thronc), a personal relationship of this kind is instituted by planting trees, upon the lortunes of which the carcer of the individual depends. Sometimes, moreover, boughs or plants are selected and the individual draws omens of life and death from the fate of his or her choice. Again, a man will put himself into relationship with a tree by depositing upon it something which has been in the closest contact with himself (hair, clothing, \&cc.). This is not so unusual as might appear; there are numerous examples of the conviction that a sympathetic relationship continues to subsist between things which have once been connected (e.g. a man and his hair), and this may be illustrated especially in magical practices upon material objects which are supposed to affect the former owner. \({ }^{3}\) We have to start then with the recognition that the notion of a real inter-connexion between human life and trees has never presented any difficulty to primitive minds.
The custom of translerring disease or sickness Irom men to trees is well known. 4 Sometimes the hair, nails, clothing, \&c., of a sickly person are fixed to a tree, or they are lorcibly inserted in a hole in the trunk, or the tree is split and the patient passes through the aperture. Where the tree has heen thus injured, its recovery and that of the patient are often associated. Dificrent explanations may be found of such customs which naturally take rather different forms a mong peoples in different grades of
\({ }^{1}\) In this as in orher subjects of comparative religion (see SERPENTWORSHIP), the compararive and historical aspects of the problems should not be severed from psychology. which investigales the actual mental processes themsclves. A nave rationalism or intellectualism which would ridicule or deplore the modern retention of "primisive" ideas has to reckon with the psychology of the modern average mental constitution: a more critical and more symparhetic auturde may recognize in religiotss and in other forms of belief and custom the necessary consequences of a continuous development linking toxether the highest and the lowest conceptions of life.
"See the evidence collected by E. S. Hartland. The Legend of Persews (1894-1896) ii.: J. G. Frazer. The Golden Bowgh (19no), iii. 351 sq9., 391 ; and in general, A. E. Crawlcy, The Idea of the Sowl (1909).
*There appears to be fundamental confusion of associarion, likeness and identity, which on psychological grounds is quite intelligible. It is appropriate to notice the custom of injuring an enemy by simply beating a trin-stump over which his mame had previously been pring. vod iA, B, Ellit, The Eve-speaking Peoples of The folk-lore of the and sertain fentures and its name were the one affected
of the tree-sturnp
civilization. Much depends upon the theory of illness. In India, for example, when the patient is supposed to be tormented by a demon, ceremonies are performed to provide it with a tree where it will dwell peacefully without molesting the patient so long as the tree is left unharmed.0 Such ideas do not enter, of course, when the rite merely removes the illness and selfifhly endangers the health of those who may approach the tree. \({ }^{6}\) Again, sometimes it is clearly felt that the man'spersonality has been mystically united with some healt hy and sturdy tree, and in this case we may often presume that such trees already possessed some peculiar repulation. The custom finds an analogy when hair, nail-clippings, \&c., are hung upon a tree for safety's sake lest they fall into the hands of an enemy who might injure the owner by means of them.

In almost every part of the world travellers have observed the custom of hanging objects upon trees in order to establish some sort of a relationship between the offerer and the tree Such trees not infrequently adjoin a well or are accom. Vereration panied by sacred huildings, pillars, \&c. Throughout Europe, also, a mass of exidence has been collected testifying to the lengthy persistence of "superstitious " practices and beliefs concerning them. The trees are known as the scenes of pigrimages, ritual ambulation, and the recital of (Christian) prayers. Wreaths; ribbons or rags are suspended to win tavour for sick men or cattle, or merely for "good luck." Popular belief associates the sites with healing, bewitching, or mere " wishing "; and though now perhaps the tree is the object only of some vague respect, there are abundant allusions to the carlier vitality of cohcrent and systematic cults.' Decayed or fragmentary though the features may be in Europe, modern observers have found in ot her parts of the world more organic examples which enable us. not necessarily to reconstruct the fragments which have survived in the higher religions and civilizations, but at least to understand their earlier significance. In India, for example, the Korwas hang rags on the trees which form the shrines of the village-gods. In Nebraska the object of the custom was to propitiate the supernatural beings and to procure good weather and hunting. In South America Darwin recorded a tree honoured by numerous offerings (rags, meat. cigars, \&c.); libations were made to it, and horses were sacrificed." If, in this instance, the Gauchos regarded the tree, not as the embodiment or abode of Walleechu, but as the very god himsclf, this is a subile but very important translerence of thought, the lailure to realize which has not been confined to those who have venerated trees.
Among the Arabs the sacred trees are haunted by angels or by jinr;; sacrifices are made, and the sick who sleep beneath them receive prescriptions in their drcams. Here, as freguently elsewhere, it is dangerous to pull a bough. This dread of damaging special trees is familiar; Cato Enabody instructed the woodman to sacrifice to the male or female deity before thinning a grove (De re rustica, 139), while in the Homeric poem to Aphrodite the trec nymph is wounded when the tree is injured, and dies when the trunk falls." Early Buddhism decided that trees had neither mind nor fecling and might lawfully be cut; but it recognized that certain spirits might reside in them, and this the modern natives of India firmly believe. Propitiation is made before the sacrilegious axe is laid to the huly trees; loss of life or of wealth and the failure of rain are feared should they be wantonly cut; and there are even trees which it is dangerous to climb to The Talein of Burma prays to the tree before he cuts it down, and the Alrican woodman will place a fresh sprig upon the
- W. Crooke. The Popwlar Religion and Folk-lore of Norther India (t896). ii, \(92 \mathrm{sq9.;} \mathrm{cl}. \mathrm{p}. \mathrm{96} ,\mathrm{where} \mathrm{the} \mathrm{demon} ,\mathrm{the} \mathrm{cause} \mathrm{of} \mathrm{sterility}\). is removed 10 irees.
- Cr. E. B. Tylor, Primitive Cwliure (igo3), ii. 149 вея.. G. L. Gomme, Ethmology in Folk-lore (1892). 141 seq.

THartlandii. 175 sqq.; Gomme, pp. 85, 94 sen.. 102 sqq., and the literalure at the end of this article.

Tylor uí 223 seq
- See generally Frazeri. 170 sq7. Tylor i. 475 sqq. ii. 219 seq. For the survival of the idea of mudern (ireece, see]. ©. Lewson, Mndern Greek Folk-forc (1910), p. 158 seq.
\({ }^{10}\) Crooke iif. 77, 87, 90 sq9.
thenp as a new home for the syinit. In the Gold Come the str cotton and odum (poison) trees are especially sacred as the abode of the t wo deities, who are bonoured hy sacrifices-even of human victins; these indwelt trees must not be cut, and, since all treea of these species are under their protection, they can be felled only after certain purificatory ceremonies. In general the evidence shows that sacred arees must not be injured unless they (i.e. their spirits) have been appeased, or means taken to provide the occupant with another abode. That the difference between the sacred abject and the sacred occupant was not always clearly drawa is quite intelligible from those beliefs of much less rudi. mentary religions which confuse the unessential with the essential.

Again, when the juagle-races of India clear the forests, they leave bebind certain trees which are carefully protected lest the sylvan gods should abandon the locality (Crooke ii. 90). These trees embody the local deities much in the same way as the north European homestead had a tree or a small grove for the guardianspirit or " lord of the home," and they resemble the tree tutelary genius of old Cerman villages and the Japanese trees which are the terrestrial dwelling-places of the guardian of the hamlets.' Such beliefs as these are more significant when trees are associated with the spirits of the dead. Trees were planted around graves in Greece, and in Roman thought groves were associated with the manes of the pious. The Baduyas of the central provinces of India worship the souls of their ancestors in groves of Saj trees, and this may be supplemented by various modern burial usages where the dead are huried in trees, or where the sacred tree of the village enshrines the souls of the dead forefathers. Thus among the natives of South Nigeria each village has a big tree into which the spinits of the dead are supposed to emer; when a woman wants a child or when a man is sick, sacrifice is made to it, and if the "Big God" Osdwo who lives in the sky is favourable the request is granted. \({ }^{3}\)

Often the tree is famous for oracles. Best known, perhaps, is the aak of Dodona tended by priests who slept on the ground. Parea of The tall oaks of the old Prussians were inhabited cat by gods who gave responses, and so numerous are the examples that the old Hehrew "terebinth of the teacher" (Gen. xin. 6), and the "terebinth of the diviners" (Judg. ix. 37) may reasonahly be placed in this category. Important sacred trees are also the object of pilgrimage, one of the most noteworthy being the branch of the Bo tree at Ceylon brought thither before the Christian era. \({ }^{4}\) The tree-spirits will bold sway over the surrounding forest or district, and the animals in the locality are often sacred and must not be harmed. Thus, the pigeons at the grove of Dodona, and the beasts around the north European tree-sanctuaries, were left untouched, even as the modern Dyak would allow no interference with the snake by the side of the hush which enshrined a dead kinsman. \({ }^{b}\) Sacred fres burned before the Lithuanian Perkuno and the Roman Jupiter; both deities were closely associated with the oak, and, Indeed, the oak seems to have been very commonly used for the perpetual holy fires of the Aryans." The powers of the treedeities, though often especially connected with the elements, are not necessarily restricted, and the sacred trees can form the centre of religious. and sometimes, also, of national life. Such deities are not abstract beings, but are potent and immediate, and the cultus is primarily as utilitarian as the duties of life itself. They may have their proper ministrants. (a) the chief sanctuary of the old Prussians was a holy oak around which lived priests and a high priest known as ". God's mouth"; (b) in Africa there are
:A. B. Ellis, op. cil. pp. 49 sgq.; cf. Purther Frazer i. \(\mathbf{3 8 0}, 182\) mq9.
:Tylor ii. 225 ; H. M. Chadwick. "The Oak and the Thunder god. Journ. of the Anlhrop. Inss. (1000), pp. 30. 32, 43.
iC. Partridge, The Cross River Natives (1904), p. 273: cf. further Crooke ii. 85. 91 ; Tylor ii. 10 seq. ; Frazer i. 178 sq9.: J. G. Forlong. Failhs of Man, iii 446 .
- Tylor ii. 218, and for or her examples, pp. 224, 226; W.R. Smith, Religion of the Senities (1894), p. 185.
- frazer \(i\). 179, ef. 230.
- 1bid. 168; tee his Lactures on the Early Hislory of the Kingship (1905). pp. 209, 281. ,

\section*{\[
{ }^{2 n}
\]}
vart ous
ches.
Euphentica it
ecent Gely 1
scepe of telacea:-

tree and a portion in : and sone...
invisible spirit naturally ene w
ofterings is elici which then. ...
the Mrican negro: Humany mot
and in the Punjab; it when practur
Otin's grave at Upiala. It is alom amow Pruscian sacred groves and spring tor in a was atoned for by human victims crstom a
popur writers various and tradition, and from the Writers, various grisly rites and acts of licentionnom more advanced Hebrew prophets denounced) weme unusual features in the cults of trees and vergetation wis.

Alhough trees have played so prominent atilum, of religions, the uinost caut lon is neement part in the estimate the significance of isolated evidey in any atien, w, relation to the contemporary thought. Let it ad its an a to notice that in West Equatorial Africa the death of Dows the sacred tree near the temples leads to the deandonment of the village, that in Rome the withering of the sacred figtree of Romulus in the Forum caused the freatest consteration. On, can now understand in some metsure why an moch ingortane should be attached to a venerated tree, hut these eannoples wint illustrate the different historical and religious condilions which one constanily reaches the point where the the modern observer has failed to record the required iniores, os Moreover we do not encounter tree cults a case we arrest the evidence at a certain st acir nse: ifterery It is often impossible to delermine why certais irees are ancred. sometimes it may be that the solitaty tree is the survivot of forest or grove, or it has attracted atiention from its curioras or uncanny form, or again it stands on a spot which has an immemorial reputation for sanctity. The persistence of ancred localities is often to be observed in the East, where more radia mentary forms of tree-cults stand by the side of or outlive highet types of refigion. The evolution of sacred trees and of religions beliefs and practices associated therewith have not always proceeded along parallel lines. As ideas advanced, the spirits associated with trees were represented by posis, idols, or masks; altars were added, and the trunk was roughly shaped to represent the superhuman occupant. There is reason to believe that the last-menioned transformation has frequently happened in the development of iconography. Indeed, the natives of the Antilles suppose that certain trees instructed sorcerers to shape their trunks into idols. and to instal them in temple huts where they could be worshipped and could inspire their priest 5 with oracles. \({ }^{\text {is }}\)
\({ }^{7}\) (a) Chadwick 32; (b) Tylor iti. 224: (c) The Slandard. Sept. 19, 1gou. For an Alrican tree-god with priesthood and "wives." see Ellis, op. cit. p. 50.

Tylor iL 216 (citing Waitz, Am/hrop. \#̈. 188).
- Sce Golden Bowkh, i. 171 seq.; Lucan. Phor. iii. 405: P. H. Mallet. Norlhern Amtiguilies, i. 113. Chadwick 32; and, for the ourvivals. Goiden Bouth iii. 345 -
\({ }^{3}\) So in Asia Minor where a tree hung with rags stands by a rock with an ancient "Hittite" representation of the god of vegetation (W. M. Ramsay. The Expositor. Nov., 1906. p. 461 seq.). "Hitlite" religion has long pasmed away, but the locality preserves its sacred character and presents a form of cult older than the "Histite" civilization itself (cf. also the persistence of the veneration of trece in Palestine ia spite of some four thousand years of history). There has not been a reversion to ancient forms of cult in their organic enlitety. but with the weakening and loss of the positive infuences in the course of history. there has been no progression. and the communities live in simpler conditions and at a simpler stage of mental evolution and they are "childike" rather than "senive " or " decadent.

11 Tylor, ii. 216 . Here one may oberve: (a) the virtues of the tree as a whole will be retained-as in the case of the relic of a medieval saint-in any part of it (d. ibid. 217; the ofishoote. of the oak of

These words were sung by the men of Cornwall, who seem to have assembled during the bishop's short imprisonment in 1688. It is probable, however, that a similar threat wiss heard in 1628, when John Trelawny (1592-1665), grandfacher of the bishop, was imprisoned by the House of Commons for opposing the election of Sir John Eliot to parliament. The "Song of the Western Men," which contains the above refrain, was composed in 1825 by R. S. Hawker.
- TREMATODES, or flukes (as they are called from their fish-like shape), one of the three classes that compose the phylum Platyelmia (q.s.). They are flattened organisms provided with two or more suckers, hence their name (rртuatübps, pierced with holes), and are exclusively parasitic both in their earlier and mature stages of life. Their struct ure has undergone little degeneration in connexion with this habit, and may be compared organ for organ with that of the Planarians (q.v.). The chief peculiarities that distinguish Trematodes from their free-living allies, the Turbellaria, are the development of adhering organs for altachment to the tissues of the host; the replacement of the primitively ciliated epidermis by a thick cuticular layer and deeply sunk cells to ensure protection against the solvent action of the host; and (in one large order) a prolonged and peculiar life-history. The only organs that exhibit any sign of degeneration are those of sense, but in the ectoparasitic Trematodes simple eyc- like struct ures are present and perhaps serve as organs of temperature. The class as a whole is imked to the Turbellaria not only by its similarity of structure, but by the intermediation of the singular class the Temnocephaloidea (see Planarians), which in habit and in organization form an almost ideal annectant group.
Exiernal Characters. - The body, which varies in length from a few millimetres to a couple of leet, is usually oval and fattened. In certain genera the margins are infolded cither along their whole length (ihe male of Schistostom mm haematobium; fig. 9. A) or anieriorly only (Holostomidae). The anterior third of the body is attenuated and sharply marked of irom the bulbous trunk in Didymozoos. Trematodes never exhibit segmentation, though a superficial annulation may occur, ep. in Udanella.
The ventral surface is characterized by one or more suckers and apertures. The mouth lies usually in the centre of the amerior
 by permanina of Macmitha \& (a, Lud.)

Fic. t.-A Group of Trematodes.
A. Nematobothrimm filarima, 1 wo specimens (0 and b) from the Tunny. B. Udonella caligorum, attached to the ova of the copepod Caligus. C. Epibdella hippoglossi (from Halibut): wh, the two adoral suckers with the mouth (\(m\)) between them; ps, ventral sucker: op, ovary. Le testes. D, Octobothrium merlengi; ms, oral sucker; int. intestine; sc: poserior suckers; yh. yolk-glanda.
and eub-terminal sucker or between two adoral suckers, but in Gasterostomum and its allies it is mid-ventral. A second sucker of variable size and shape lies behind the oral one. In the ectoparasitic Trematodes this post-oral sucker is a complex disk placed near the hinder end and provided with suckertets, hooka and a musculature arising from a special skeleton. In the majority of endoparasitic forms it is merely a muscular disk just behind the mouth; but in the Aspidocotylea this sucker forms a muscular ribbed sole extending over the greater part of the ventral surface (Gig. 7).

The anterior and posterior ends of the body are well defined. The former is specially modified in a few genera in a manner analogous to the "proboscis" of certain Rhabdocoel Turbellaria. Thus in the recently discovered arctic genus Prosorhynehws the muscular and glandular extremity is protrusible, but in the allied Casterasfamym this organ is represented by a sucker with fimbriased or tentacular margins. Another form, Rhopalophorus, has two eephalic tentacles that are retractile and eovered with hooks. The chief genital pore is placed anteriorly between the oral sucker and the ventral one, and is posterior only in Holostomidae: Gasterostomidae and a few Distomidae. Uaually this aperture is median, but occasionally asymmetrical. Both male and fernale gonoducts open through a com mon atrium to the exterior by this pore, but in three bisexual genera the male and female ducts are developed in separate individuals (Bitharzia, Didymosoon, Koellikeria). A single or paired accessory gonopore is met with in many Tremalodes just as in certain Turbe laria (e.s. Cylindroslomum, Trigonoporus). This accessory pore is not of uniform significance. In ectoparasisic Trematodes it is paired and usually ventral (fig. 4 B . \(\mathbf{v}\)), but the two apertures may run into one, and may also open dorsally (Hexacotyle). In this group, the accessory gonopore is the opening of the "vagina," in contradistinction to the median and atrial opening of the uterus which is a "birth-pore." In most endoparasitic Trematodes the accessory gonopore is a median and dorsal structure. It is the opening of Laurer's canal and is homologous not with that of the "vagina" just meationed, but with a totally distinct structure-the "yolkreceptacle "-which in ectoparasitic forms discharges into the gut instead of to the exterior (seefig. 3).

The excretory pore is rerininal and posterior in endoparasitic forms: paired, anterior and dorsal in the ectoparasitic class.

Parasivic Habils.- The Trematodes with few exceptions select a vertebrate for their host. Speaking generally each species of parasite has a particular host, upon the blood of which it nourishes itself and matures its reproductive organs. This strange partiality is now to some extent intelligible. It has been shown in the mammals that blood-relationship. in the strict and literal sense, holds good. The blood of most species behaves diferentially towards precipitants and it is therefore conceivable that when blood is used as food and is elaborated into special compounds for the nutrition of the reproductive organs of a parasite. these sperific or larger differences in the blood of animsl hosta may prevent the ripening of the gonads of a widely diflused parasite and only one particular kind of blood prove suitable. It would seem that the Trematodes present various degrees of such adaptation, for whilst some-e.e. the common liverfluke (Distommem hepaticum)-mature equally well in the bile-ducts of a man as in those of a sheep or rabbit, other and in fact the majority are resiricted apparently to one host. It must, however, be borne in mind that a Trematode may develop in an " aberrant " manner in one host and "normally" in another: and unless we knew the initial stock, the iwo forms would be regarded as distinct species, each with iss own host.
The position of the Trematode on its host is of far-reaching importance. If ectoparasitic and atrached to the skin. apertures or gills, the Trematode adopts more elaborate adhesive organs and undergoes a less complex development than are required for the endoparasitic members of the class. The latter are almost invariably swallowed by their host in an immature state with its food, and from the stomach or intestine they work their way into the lungs, liver, body-cavity or blood vessels. These endoparasites have a peculiar larval development, the results of which are to increase their numbers and enhance the opportunity of their gaining the necessarily remote station in some (resh individual host. It is usual to consider the ectoparasitic habit as leading up to the endoparasitic one. From what we know of the Platyelmia, however, it is more probable that the two are quite independeat and have been evolved separately.

The influence of trematodes on their hosts is a varied one. Probably all of them seerete an metive poison by the aid of their glands, but the effects of these substances a re not readily perceptible. In addition to this, they constituts a drain upon the blood which may result in anaemia. If present in large numbers they may give rise to obstruction of the liver-ducts or to inflammation of ou her tissues. The most important of the Trematodes in its effect on man is Schistontownm (Bilheraia). This parasite is one of the plagues
of Africa. In Egypt \(30 \%\) of the natives are affected by haematuria which arises from congestion of the bladeler consequent upun the attacks of this anirmal. The noxious intluence of Trematodes is. moreover, not contined to their mature phase of life. The rapid multiplication that takes place in the larval stage of nearly all endaparasitic forms affects the tissues of the " intermediate" host in whith chey live. In most cases this is a mollusc, and the larvae bore their way into the most diverse organs, often accumulating to such an extent as to give a distinctly orange colour to an otherwise cobourless tissue, and to cause the demolition of particular structures e.2. the liver and gonad. Perhaps the most remarkable of these effects is that produced by the larvae of Gasterostomum. These organisms live in cockles, oysters and other lamellibranchs and they so affect the gonads of these molluscs as to castrate and sterilize their host. A different but still more interesting result is produced by these Irematode larvae on certain lanellibranchs. The production of pearls by oysters and mussels is common knowledge, but it is only recently that the origin of pearls has beentraced and admitted to be due to inflammation set up by a parasite. In the case of the pearl oyster this parasite is a cestode larva. but in the less valuable but no less genuine pearl produced by Mytilus, dic., the nucleus is a Trematode-lirva (Jameson).

Sirwefure- - The anatomical structure of the Trematodes is fairly uniform (Braun). The body is enveloped by a thick striated protective cuticle which is frequently rased into hooks or spines. In Distamum acanthncephafum the cuticle lorms circlets of lange and small hooks at the anterior end, somewhat as in Cestodes. The epidermis has lost its connected epithelial character and its cilid, and the isolated cells have becone surk inwards retaining their

Fig. 2.
A. Fosciala hegratica, from the ventral surface; the alimentary and nervous systems only shown on the left side of the figure, the excretory only on the right: a, right main branch of the intestine; \(c\), a diverticulum; s, lateral ganglion; \(n\), lateral nerve; o. mouth: \(p\), pharynx: s, ventral sucker; cs, cirrus sac: d. Ieft anterinr dorsal excretory vessel; m, main vessel; D , left anterior sentral trunk: x, excretory pore.
8. anterior portion more highly magnified (from Marshall and Hurst, after Sommer): cs, cirrus sac: d, ductus ejaculatorius; f. female aperture; o, ovary; of, oviduct; p, penis; s, shelf-gtand; \(\ell\), anterior testis; \(u\), uterus; na, op, vasa delcrentia; es, vesicula seminalis; \(y\), yolk-gland; yd, its duct.
C. genital sinus and ncighbouring parts (from Sommer); a, ventral eucker: B, cirrus suc; \(c\), genital pore; \(d\). evaginated cirrus sac; \(e\) end of vagina: \(f\), vasa deferentia; g, vesicula seminalis; \(h\), ductus cjaculasorius: 1 , arcessory gland.
D. a flame-cell from the excretory apparatus, highly magnified (from Fraipont).
E. ege of foscioly hepatica. (from Thomas).
attachment to the innermost cuticalar layer by slender proresses. This layer also forms the attallment for the muscles, of which there are two caveloping coats, a circular and a longitudinal layer and also dorso-ventral fibres. The muscles are remarkable fur two reasons. They occasionally exhibit striation and originate from large branched celts, the nucleus and unmodified part of which form conspicuous elements. The digestive system consists of a simple or bifurcated sac, opening through the mouth by means of a "pharyox bulbosus," adapted to act primarily as a sucker, arad secondarily, when drawing blood, as an aspirator. Beeween the blind gut and the cuticle is a reticular branched tissue which forms the chief substance of the body. This is the mesenchyma. As in other Platyelmia the elements of this tissue undengo the most varied differentiation. The naain maks of it forms a spongy vacuolated matrix, but some of the cells become glandular and open by pores on the surface of the cuticle, others become " tlame-cells" (6g. 2, D) and canalieuli of ehe excretory system as in Turbellaria, others again muscle-cells. Embedded in the matrix lies the complex genital apparatus composed usually of both male and femate reproductive organs (fig. 2, B). The former consist of one pair or more of vesicular testes communicating by fine ducts with a vesicula seminalis. Frotn this point a glandular tube runs to the genital atrium and during the last part of its courve is converted into an eversible hooked "cirrus" or penis. The female argans consist of distinct ovaries and yolk-ghands. the ducts of which unite in the neighbourhoorl of a "shell-gland " or "cotype." Here the two clements, ovum and yolk-cells, are surrounded by a shell of operculate or of spindte-canped sypes. Coincidently, to allow of fertifization and the cscape of excess of yolk, and of spermatozoa, other accessory ducts open at this point. Thus in ectoparasitic Trematodes, the paired vagina innsmits spermatozoa to the egg: and a canal carries off yolk from this point of junction either to the gut for resorption or to the extcrior for exudation. Tinis duce (Laurer's canai) is sometimes madimentary and ends blindly beneath the skin. The fertilized ovz, provieled with yolk and a shell, are next eransferred to the "uterts" along which they travel to the exterior. In the endonarasitic trematodes the uterus is the only passage by which fertilization can be effected, and in cases of cross and selfimpregnation this duct is physiologically a vagina. Lastly the nervous system is well developed and consists of a pair of well-marked and interconnected panglis placed mear the antcrior end and dorsal to the ocsophagus. From these ganglia, nerve-iracts provided with ganglion-cells are given off. Of these there are three on cach side of the body: a Large ventral tract, smaller lateral strinds and rlursal ones. From these tracts a plexus of nerve-fibres is devefoped in connexion with the musculature and cuticle.

The Trematodes are divided into three orders, primarily distinguished by the character of their suckers, viz.: Heterocotylea, Aspidocotylea and Alalacocntylea.
Order i. Heterocolylea. - Ectoparasitic Trematodes, in which a large posterior adhesive apparatus is present and is usually accompanied by a pair of suckers placed anteriorly in relasion to the mouth. The large posterior organ of attachment is usually wheel-shaped and provided with hooks; but the ridges may become sepurated

Fig. 3.-Diagmamatic projections to show the relations of the female reproductive ducts; \(A\), in the Malacocotylia; \(B\), in the Heterocotylea. The ovary (c) leads into (\(b b\)) the oviduct, which is joined at (8) by the duct of the yolle-clands (\(h\)). In \(\mathbf{8}\) it is also joined by a paired vagina (\(k k\)) and by the " vitello-intestinal duct " (Laurer's canal). \(f\) ((c) Shell-glands: (d) ootype; (e) uterus; (s) merdian-vitello-duct; (\(i, i\) intestine.
into a number of independent suckers set on a disc or "cotylophore." Eye-spots are gencral and the nervous system maintains a primitive diffused condition. The excretory system opens to the exterior by a pair of dorsal pores at the level of the pharynx. The eggs are comparatively few, and development is direct, the embryo after reaching its host remaining attached to it for life.

All the members of this order are parasitic on aquatic vertebrates and in rare cases derive their food from a vertebrate host indirectly by means of another invertebrate parasite (e.g. Udonella occurs on parasitic Crustacea). They are transparent leaf-like organisms and may often be found attached to the skin, mouth, nostrils or gills of fish; on the skin and bladder of Amphibia; and on those of certain Reptilia. Polystomum inlegerrimum (fig. 5) occurs commonly in the "bladder" of frogs and toads; Diplosoon on the skin of the minnow; Gyrodactylus (figs, 5,6) on the gills of various fresh-watcr fish; and a large number of genera occur on the skin, cloaca and gills of Elasmobranchs and other marinc fish. They ingest the mucus and, co some extent, the blood of their host by the aid of a sucking pharynx through which the food passes into the bifurcated alimentary sac and its branched cacca.

The life-history of this order offers many points of interest. The eggs are stalked and provided with chisinoid of ten operculate shell. Each shel! contains a single ovum and a mass of yolk-cells. In most cases the eggs are attached to the host, but in Polystomum the eggs are laid in water. The egg of Gyrodoctylus develops ia the body of the parent.

(From Lankester's Treatise on Zoology, pt. ty.)
Fig. 4.-Schematic figures of a Heterocotylean Trematode to illustrate its structure (after Benham).
A. Dorsil view showing the nervous system and digestive system; \(a\), mouth: \(b\), pharynx: \(c, d\), e. gut: t. post-genital union of two limbs of gut ; \(f\), excretory pore; \(f\), vaginal porc; \(h_{\text {, }}\) i. \(k\), brain and nerves; \(l_{\text {, }}\) dorsal nerves: \(m\), veneral nerves; \(n\), adoral sucker: \(a\), posterior sucker; \(p\), hooks on posterior sucker; \(r\). vitello-intestinal duct.
B, Ventral view showing the
reproductive system: \(C\), Cirrus; H, hooks on the ventral sucker; l. small piece of the intestine to show its connexion with the repro ductive organs by the narrow duct that passes from it to the union of the vaginae; \(M\), mouth; \(O_{\text {, }}\) ovary; S oral sucker; SC, sucker: \(\mathrm{SH}_{1}\) shell-gland; T, Testis: U, uterus: \(V\), vaginal pore: \(Y\), yolkgland.

The further history of the animal is only known in a few cases. Polystomum hatches out six weeks after ovi-position as a minute (.3 mm . long) tarva capable of swimming freely for a short time by the aid of five girdles of ciliated cells. If in the courge of the first twenty-four hours this larya meet with a tadpole it attaches itself at once and undergoes further development. If unsuccessful it dies. In the former case the larva creeps along the tadpole until it reaches the branchial opening into which it darts, fixes its sucker, and then throws off its cilia. Its further development takes place partly in the branchial chamber and partly in the bladder, which it reaches by travelling the whole lemith of the alimentary canal. lis the former position the euckers tre developed and growith procreals for 8 to to weeks antil the matamorphosis of its host. In the bladder it remains for throe years befone attaisiog maturity. Some-
 and in that case growe morn wing batvenome mature in five wecks, die at the metamorphoefs of the th in Wrey difier structurally
from the normal form in being capable of self-fertilization only. and in the shape and details of their spermatozoa

A, Diplazoon paradoxum: two united specimens.
B. Polystomum integerrimum. (Xabout 100 ; after Zeller.)

C, Microcotyle mormyri.
D, E. Two views of the chitinous framework of a sucker of Axine belones; highly magnified (after Lorenz).
F. Aspidogaster conchicola. (Xabout 25; after Aubert.)

G, Gyrodaciyius elegans. (Xabout 8o; alter Wagener.)
The life-history of Diplozoon (fig. 5) is remarkable in that two larvae (the so-called Diporfore) unite and fuse permanently into an \(X\)-shaped organism. Unless this occurs. the develop-
ment of the larvae is soon arrested. The ciliated stage is only capable of free life for five or six hours, and if at the end of that time it has not encountered and attached itself to a minnow, it dies. If successful, the larva throws off its cilia and develops a dorsal papilla, a median ventral sucker and an additional pair of lateral suckers. Then the Diporpa stage is attained. This stage is capable of isolated existence for two or three months but remains immature. Should it, however, encounter another Diporpo, the mid-ventral sucker of cither is applied to the dorsal papilla of the other, and complete fusion takes place across the junction. The compound organiam now develops two sets of inter-connected genitalia and becomes a Diploznon.

Gyrodactylus produces only one large egs at a time and this develeps in sulu into an embryo: but within this embryo another appears before the first leaves the parent. This anomalous phenomenon is still obscure, for we do not yet know whether the second embryo is developed sexually or asexually from the first. Von Linstow has indeed suggested that Gyrodactylus is a larval form capable of reproduction by an asexual method.

After V. Nordmana From Order 2. A spidacolylea. - Endoparasitic Combridse Nodural Bistery, Trematodes provided with a large vol. ii, "Worms. 8c". by per. ventral sucker which is almost co-exien. miasj. sive with the lower surface of the body and is divided into rectangular compartments. The alimentary sac is simple and devoid of caeca. The development is direct.

Fig. 6--Gypodactylus elegans from the fins of the Stickleback; emb.em. bryo.

These Trematodes occur in the alimentary canal and adjacent ongans of Mollusca. the gall-bladder of Chimaera. and the intestine

Gutet Honlicetil. From apketct's Tregrise ow Fig. pert iv.) Fig. 7.-Aspido aster conchicola: ventral aspect; \(a\). mouth: b. marginal sense organs of Chelonia and of certain fish. Aspidogaster conchicola is a form not uncommon in Anadon, Unio and certain fresh-water Gastropods. When young it is found in the intestine, but becomes mature in " Keber's organ " and the pericardium. An allied form (A. margarisiferae) occurs in the pericardium of the Ceylon

This order differs in several points from the preceding one. The excretory system is highly developed and opens at the posterior extremity by a paired muscular bladder. The testis is a single compact organ. From the oviduct a long duct full of yolk passes back. wards almost to the hinder end of the body and end blindly in a globular dilatation just below the skin. This structure is regarded as the homologue of a canal (Laurer's canal) which in the Heterocotylea opens into the intestine and so gets rid of the excess of yolk. The life-history of the order is almost unknown, but at the time of hatching the young Aspidocotylean has an oral sucker at the anterior extremity and an equally simple post-aral one at the other, thus resembling the members of the next order. Subsequently the body grows backwards and the ventral sucker comes to occupy a relatively more
f.ateriar posilion. ransverse ridges i if compartments. a a single row and later on into paired rows - nature condition curious form (Slichocolyle) described in an tou lobster probably belongs to this order.
Order 3. Malacocotylea (Distomae, Leuck: Digenea v. Ben.). Erdoparasitic Trematodes with a variable adhesive apparatus. The oral sucker may alone be present (Monostomidae), more usually a second is developed on the under surface, but may be mid-ventral (Distomidae) or terminal. It is posterior (Amphistomiclac), or anterior (Casterostomidac). In addition to these suckers the sides of the anterior region may become infolded and give rise to an accesmory adhesive organ (Holostomidae). In all these families ipines and glandular papillae may be super-added. The intestinal suc has become bifid and is usually devoid of branches. The excretory system is highly developed; the larger collecting ducts are elaborately looped and open postcrionly by a single terminal aperture. A canal (Laurer's canal) leads from the oviduct or yolk-duct to the dorsal urface. The development is indirect. From the egg a larva arises. This enters a temporary host. Here it gives rise by a peculiar process to numerous individuals of a second larval form, and these usuaily pmoduce a third form from wbich the minute immature Trematode is developed. In this manner a single egg may give rise to a large asmber of sexual individuals. The larvac usually live in Molluscs, the rature worm in vertcbrates, and the immature but metamorphosed Trematode in either host and also in pelagic and littoras] marine and fresh-water invertebrates.

The Malacocotylea occur in all classes of vertebrates. They are usually found in the alimentary canal or its appendiges but occasionally work their way into the serous cavilies, nervous system and blood vessels. Fourteen species belonging to five genera have been found in man, but only one (Schistostommm (Bilharzio) haematobimel is of serious medical importance, the others being sare and occasioned by want of cleantiness and close association with infected domestic animals. Domestic animals suffer periodically to a much greater extent. The liver fuke (Distomum hejaficmm) undike most Trematodes flourishes in a wide range of hosts and infects min, horse, deer, oxen, sheep. pig, rabbit and kangaroo. Sheep, how ever, suffer most from this parasite and from the allicd D, mugnum. The former fluke is found in Europe, North Arrica, Abyesinia, North Ania, South America, Australia and the Hawaiian Islands: the latict is the United States. Wet summers are followed by an acute outbreak of liverjot amongst sheep and this, together with the efuects of other diseases that accompany wet seasons, cause the death of vast numbers of sheep, the numbers from both sources being evtimated in bad years at from \(1 \frac{1}{}\) to 3 millions in England alonc. The anatomy of Distomum hepoficum is fully described in many accessible memoirs [Sommer (10), Marshall and Hurst. Braun (3)]. If has been shown that this parasite feeds upon the blood, not the bile of its host, though it occurs mainly in the blle ducts.

The life-histories of the Malacocotylea lorm the most interesting reature of the order. The majority of species are hermaphrodite and many are capable of eclf-impregnation. In these, the male organs ripen before the ova and spermatoroa may pass into the uterus before the extcrnal pore is formed (Looss). A (cu species, however, are bisexual, eg. Schistostomum (Bilharzio) hacmalobium in which the male is larger than the female and encloses the latier in a ventral canal ; Koolikeria flicolle Rud (Distomum okenif, Kolli) Fhich also occurs in pairs, a large female and a smail male being found together encysted in the branchial chamber of Brama raji:
and Didymozoon thynni (Monostomum biporlitum) which occurs in pairs fused for the greater part of their length and only free anteriorly; the larger individual is the female.

The egg consists of a fertilized ovum and a mass of yolk-cells. Segmentation takes place during its passage down the uterus. The result of this process is a minute ovord embryo consisting of a solid mass of cells surrounded by a Iollicle of flattened yolk-cells. The central mass soon becomes differentiated into an outer epidermal and a dermal layer of flat-cells. Some of the central eells remain in clumps as "germ-balls," others form a mesenchyma in which "Alame-cells " arise; others again give rise to muscles; and at the thicker end of the body, rudiments of the brain and digestive system are observable. A pair of "eye-spots" develof's immediately over the brain. If the egg with its contained embryo falls into water

(All from Mashall anil Hurst, after Thomas.)
Fig. 8.-Five stages in the life-history of Fasciola hepalice; all highty magnified.
A, The free-swimning embryo. B, A sporocyst containing young rediac. C, A young redia, the digestive tract shaded. D. An aduit redia, containing a daughter-redia, two almost mature cercariae, and germs." En A free cercaria The letters hase the same significance throughout.
c. Nearly ripe cercariac: cc. cystogenous cells: dr, daughter redia: \(d f\). limbs of the digestive tract; \(f\), head-papilla; \(h\), eye-spots; \(k^{\prime}\), same degencrating: \(k^{\prime}\), germinal cell; \(f\), cells of the anterior row; m, embryo in optical section, gastrula stage; \(n\), pharyns of redia; o, digestive sac; oe, oesophagus.
P. Lips of redia; q. collar; \(F\), processes serving as rudimentary feet; s. embryos; \(t\), trabecula crossing body-cavity of redia; u. glandular cells: \(v\), birth-opening; w. w', morulae; \(y\), oral sucker; \(y^{\prime}\), ventral sucker; 2 , pharyna.
with the faeces of the host the larva hatches out and swims freely for a time. In dry localities or in the absence of the internediate host (usually a mollusc) this larva soon dies. II, however. it encounters the host the larva bores its way in, and aftacks the liver, mouth or gonad in which it comes to rest. In all Malacocotylea evcept the llolostomidae the ensuing change is a degenerative one. The cilia are lost, the eye-spots disappear, the digesfive sac vanishes and the larva becomes a sac or "sporocyst full of germ-cells. The origin of these cells is a moot point. According to some writers (Leuckart) they are derived from undiferentiated blastomeres, other authorities (Thomas, Bichringer. Heckert) trace them to the parietal cells of the larva. I hese colls aggregated in masses become the bodies of another generation of larvae within the sporocyt. By a seriel of changes similar to those by which the primary larva arose from a sepmented ege, so do these secondary larvae or "rediae" arise from the germ-cells or germ-balis within the sporocyst. The structure of a redia, however, is an advance on that of its parent. Though not possessing eyes or cilia. it has a pharynx and short straight digestive sac: and iss mesenchymatous cavities are filled with germ-balls in various stages of development.

The movements and activity of the redia cause it to burst the wall of the sporoayst. It escapes into the adjacent tissue and there gives risc either to one or more generations of rediae or at once to a new type of organism-the cercaria. What determines the origin of the eercaria rather than a new generation of rediae is unknown. It originates from germ-balls by a differentiation similar in general to that already described, though profoundly dilferent in detail. The cercaria is just visible to the naked eye and has an oval or discoidat body and usually a long tat of variable form. The tail may be a simple hollow muscular process or provided with stiff bristles set in transverse rows, or divided into two equally long procesces, or finally it may form a large vesicular structure The body contains in miniature all the organs of the adult fluke. including the gonads and in addition "eye-spers," a stylet, rod-cells and cystogenous cells. The latter structures are only employed for an interval belore the final host is entered.
The number of cercariae proxluced by the putlulating rediae in a single water-snail is immense, and as they, are emitted at a given jeriod or a lew successive periods, the snall at these times appears enclosed in a cloud of whitish fiocculent matter. The cercaria swims freely for a time and either encysts dieertly on grass or weeds or it enters a second host which may be another mollusc, an insect, crustacean or fish, and then encysts. In this process it is aided by; the stylet with which it actively bores its way, throws oft its tail

Fig. 9.
A. Schistostomum (Bithar=ia) haematobium. the thin fernale in the Bynaecophoric canal of the stouter male. (aftor Lecuckart).
B. Distomum macrestomum, showing the iligestive and the groater part of the genital apparatus with the cirrus prot ruderl.
C. Sniail (Succimed), the tentacles deformed by Leucochloridium. (Natural size.)
D, Leucochoridium removed from the tentacle. (Natural size; after Zeller.)
[:, Bucephalus polymorphus. (Ilighlv magnified; After Ziegler.)
F. Portion of a sporocyst containing Bucephalf in process of development. (\(X\) about 50; after Licaze-Duthiers.)
and then, surrounding itself with the secretion of its cystogenous cells, comes to rest. The further development of the cercaria is dependent on the weed or animal in which it lies being eaten by the final host which is usually a prodaccous fish or one of the higher vertebrates. When that occurs, the cyst is dissolverd and the minute fluke works its way down the alimentary eamal into some part of which it inserts its suckers and commences to foed on the blood of its host. Occasionally the fule migrates into the blood vessels and may reach the lunge, kidnays, urethra and blackler. In the courne of a few months is attaing full size and maturity and probably in most casee dies in the course of a year after laving given risc to another gencration of larvas

A few epecial cases of this seneral description of the life-history
ay bo mentioned. The liver-Guloc (Distomum hepolicum) passes
through its larval stages in the water snail Limnaec fruncainla in Europe in \(L\) oodizchsis in the Hawaiian Islands: in L. viafor in South America and in L. humilos in North America: and is eaten by sheep during its encysted stage attached to herbage. Distomum macrosfomum, which occurs in various birds, produces a very curious sporccyst in the body of the smail Succined putris. This sporocyse assumes a branched structure and penetrates into the tentacles of the snail (fg. 9, \(c, d\)). In this sitwation it becomes much swollen and banded with colours, and produces a large number of ecaudare cercariac. The attention of birds is speedily attracted to the snail by this appearance and by the peculiar movenients whech the worm exccutes, and the passage of the parasite into its final host is advan. tagerously effected. In many cascs it appears that only the brilliantly. coloured tentacle is pecked off by the bird, and as the snail can easily regencrate a new one, this in turn becones infected by a fresh brank of the sporocyst ramilying through the snail and thus a new supply' of larvae is specylily provided (Hockert).

The life-history of Shisfostomam, haenatobitum is still unknown, but the diffeculty in obeaining developmental stages in any of the numerous intermediate hosts that have been tried sugqests that the ciliated larvae may develop directly in man ard cthloer gain access to him by the use of impure water for drinking or n:ay perforate his skin when bathing. Experiments on monkeys have. however, given negative resulta.

The life-histury of the Holostomitae differs from that of the Distomidae in an important regard. These Trematodes live chicfly in the intestine of aquatic birds or reptites. The ciliated larva essapes from the egg into the water and enters an intern.cdiate host (lexh, mollusc, arthropod, tatrachian or fish) where it undergoes a metamorphosis into a second stage in which most of the adult organs are present. In this condition they remain encysted as immature Gukes antil caten by their fimal host.

The cycle of development taken by the Malacocotylea has been generally regarded as an alternation of one or more asexual gencra. tions with a sexual one. The question, however, is complicated by the uncertain nat ure of the germ-cells in the sporocysts and rediae. Some authors looking upon these as parthenogenctic ova regard the developmental cycle as one composed of an alternation of parthenogenetic and of scxual generations. Others again consider that the whole cyele is a metamorphosis which, beginming In the Heterocotylea as a direct development, has become complicated in the llolostomidae by a larval history, and fimally in the Malacocotylea has acquired additional complexity by the intırealation of two larval forms, and is thus spread over several generations.
Literature,-R. Leuckart, Die Parasiten des Menschen (i8891894). vol. ii.: M. Braun, "Trematodes," Klassen M, Ordruengen des Tierreichs (t889-1893), vol. iv. (Monograph), and The Animal Parasites of Jfan (London, 1906): W. A. Benham in Lankester's Trealise on Zoology (1901), pt. iv.: A. Heckert. "Untersuchungen uber die Entwicklung und Lebensgeschichte des Disjontum marro sfomum," Bibliotheca zoologica, Heft 4 (Cassel, 1889); J. T. Cunning. ham, "On Stichocotyle nephropsis," Irans. Roy. Soc. Edin. (1887). vol. xxxii.: A. Looss, "Die Distomen unserer Fische und Frosche," Bibliothece ronlogico (t894). Heft i6; H. L. Jameson." Pearl-formation." Proc. 7ool. Soe. p. t40 (London, 1902): A. E. Shipley and J. Hornell. "Parasites of the l'earl Oyster." Report on the Peard Oyster Fisheries of the Gulf of Manuar. The Royal Society (1904), pt. if, pp. go-98: F. Sommer, "Anatomy of Liver-lluke," Zeu. f. wiss. Zoologie (1880), vol. xxxiv.: Thomas. "Development of liver-lluke," Ouarh. Jowrn. Mic. Sci. (1883), vol, xxiii,: J jagerskiold, Fauna ortica. (F. W. Ga.)

TREMOLITE, a member of the amphibole group of rock-forming minerals (sec Amphibole). It is a calcium and magnesium metasilicate, \(\mathrm{CaM} \mathrm{ge}_{\mathrm{g}}\left(\mathrm{SiO}_{3}\right)_{4}\), crystalizing in the monoclinic system with an angle of \(55^{\circ} 49^{\prime}\) between the perfcct prisnatic cleavages. It orcurs sometimes as distinct crystals, but more usually as long bladed and fibrous forms. The colour is white or grey, but when iron is present it is green, then forming a passage to actinolite. The hardness is \(5 \frac{1}{2}\) and the specific gravity 3 -o. Tremolite is a characteristic mineral of crystalline limestones, especially dolomitic limestones, but also occurs as an alteration-product of olivine in basic igncous rocks. Typical specimens have long been known from the white crystalline dolomite of Campolongo in the St Gotthard region, Switzerland, near to which is the Tremola Valley, atter which the mineral was named in \(1 / 06\). Fine crystals are found in crystalline limestone at Couverneur. Pierrepont and other places in Now lork, and at several localities in Sweden.
(L. J. S.)

TRENCH, RICHARD CHENEVIX (1807-1886), Anglican archbishop and poet, was loorn at Dublin on the gt hof Septeruber © So\%. Ile went to school at Ilarrow, and graduated at Trinity College, Cambridge, in 1820 . In 1830 he visited Spain. While incumbent of Curdrijge Chapel near Bishops Waltham in Hampshire, he published (1835) The Story of Justin Mantyr and Oiher

Pocme, which was favourably received, and was followed in 1838 by Sabbation, Homor Neale, and other Pocms, and in 1842 by Pocmus from Eastern Sources. These volumes revealed the author as the most gifted of the immediate disciples of Wordsworth, rith a warmer colouring and more pronounced ecclesiastical sympathies than the master, and strong affinities to Tennyson, Keble and Monctiton Milnes. In i8ar be resigned his living to become curate to Samuel Wiiberforce, thes rector of Alverstoke, and upon Wilberforce's promotion to the deanery of Westminster in 1845 he was presented to the rectory of Itchenstoke. In 1845 and 1846 he preached the Hulsean lecture, and in the former year was made examining chaplain to Wilberforce, now bishop of Oxiord. He was shortly afterwards appointed to a theological chair at King's College, London. In 185z he established his lame as a philologist by The Sludy of Words, originally delivered as lectures to the pupils of the Diocesan Training School, Winchester. His purpose, as stated by himself, was to show that in words, even taken singly, " there are boundless stores of moral and historic truth, and no less of passion and imagination laid ep "-a truth enforced by a number of most apposite illustrations. It was followed by two little volumes of similar char-acter-English Past and Present (1855) and A Select Glossary of Esegish Words (1859). All have gone through numerous editions and have contributed much to promote the historical study of the English tongue. Another great service to English philology was rendered by his paper, read before the Philological Society, "On some Deficiencies in our English Dictionaries" (1857), which gave the first impuise to the great Oxford New EngliskDictionary. His advocacy of a revised translation of the New Testament (\(\mathbf{1 8} 58\)) nided to promote another great national undertaking. In 1856 be published a valuahle essay on Calderon, with a transiation of a portion of Life is a Dream in the original metre. In 184 he had publisbed his Nolcs on the Parables, and in 1846 his Notes on the Miracles, popular works which are treasurics of crudite and scute illustration.

In 1856 Trench was raised to the deanery of Westminster probably the position which suited him best. Here he instituted evening nave services. In January 1864 he was advanced to the more dignified but less congenial post of archbishop of Dublin. A. P. Stanley had been aamed, but rejected by the Irish Church, end, according to Bishop Wilberforce's correspondence, Treich's appointment was favoured neither by the prime minister nor the lord-lieutenant. It was, moreover, unpopular in Ircland, and a blow to English literature; yet the course of events soon proved ii to have been most fortunate. Trench could do nothing to prevent the disestablishment of the Irish Church, though he resisted with dignity. But, when the disestablished communion had to be reconstituted under the greatest dificulties, it was found of the highest importance that the occupant of his position should be a man of a liberal and genial spirit. This was the work of the remainder of Trench's life; it exposed hirn at times to considerable misconstruction and obloquy, but he came to be appreciated, and, when in November 1884 he resigned his archbishopric from infirmity, clergy and laity unanimously recorded their sense of his " wisdom, learning, diligence, and munificence." He had found time for Lectures on Medieval Church History (\(\mathrm{rS}_{7} 8\)); his poetical works were rearranged and collected in two volumes (last edition, 1885). He died in London, after a lingering Hness, on the 28th of March 1886.
See his Lethers and Memorials (2 vols., 1886).
TRENCHARD, 8IR JOHM (\(1640-1695\)), English politician, belonged to an old Dorset family, hiṣ father being Thomas Trenchard (\(1615^{-1671}\)), of Wolverton, and his grandfather Sir Thomas Trenchard (\(\mathrm{I}_{582-1657 \text {), also of Wolverton, who was }}\) knighted by James I. in 1613 . Born at Lytchett Matravers, near Poole, on the 30th of March \(\mathbf{3 6 4 0}\), and educated at New College, Oxford, John Trenchard entered parliament as member for Taunton in 1679, and associated himself with those who proposed to exclude the duke of York from the throne. He attended some of the meetings held by these malcontents and was possibly concerned in the Rye House plot; at all events he was arrested in July 1683, but no
definite evidence was brought against him and he wes released. When Monmouth landed in the west of England in June \(\mathbf{1 6 8 5}\) Treachard fled from England, but was pardoned through the good offices of William Penn and returned home two years later. Again he entered parliament, hut he took no active part in the Revolution of 1688, although be managed to secure the good will of William III. He was knighted by the king and made chief justice of Chester, and in \(\mathbf{1 6 9 2}\) he was appointed a secretary of state. He and the government incursed much ridicule through their failure to prove the existence of a great Jacobite plot in Lancashire and Cheshire in which they had been led to believe. Sir John died on the 17th of April 1695. His wife was Philippa (d. 1743), daughter of George Speke (d. 1690) of White Lackington, Somerset.

Ariother member of the Trenchard family was the writer, Joun Trencanap (1663-1723), erroneously referred to by MacauLay as a son of Sir John Trenchard. Educated at Trinity College, Dablin, Trenchard inherited considerable mealeh and was thus able to devote the greater part of his life to writing on political subjects, bis point of view being that of a Whig and an opponent of the High Church party. His chief works are A Short \(\boldsymbol{H}\) istory of Standing Armies in England (1698 and r731) and The Natural History of Smperstivion (1709). With Thomas Gordon (d. 1750) he producod a weekly periodical, The Independent Whis, and with the same colleague he wrote a number of letters to the London Journal and to the Britisk Journal under the pseudonym of Cato. These letters were published in four valumes in 1724 and the collection has often been repainted. Trenchard died on the 17 th of December 1723.
TRENCHER (M. Eng. trenchowr, trewchere, Acc.,O. Fr. Henchooir trenckeior, a place on which to cut up food, from trencher, mod. hameher, to cut, probably from Lat. Irwacarc, lop, cut off, or from trassecare, to cut across), a platter, being a flat piece of wood, in its earliest form square, later circular, on which food was carved or cut up and served. These wooden " trenchers " took the place of earlier ones which were thick slices of coarse bread; these, after being soaked with the gravy and juices from the meat and other food were eaten or thrown to the alms basket for the poor. The wooden treacher went out of use on the introduction of pottery and later of porcelain plates. At Winchester College, the old square beechwood trenchers are still in use. The potters of the 18 Lh century made earthenware plates very flat and with a shallow rim; these were known as " trencher plates." "Trencher salt-cellars "were the small salts placed near each person for use, as opposed to the ornamental "slanding " salts.
For "trench," a ditch, and "entrenchment;" mee Posititication and Sregecraft.
TRENCK, PRANZ, Fgeibenk von der (171t-1749), Austrian soldier, was born on the ist of January 1711, of a military family. Educated by the Jesuits at Oedenhurg, he entered the Imperial army in 1728 but resigned in disgrace three years later. He then married and lived on his estates for some years. Upon the death of his wife in 1737 he oflered to raise an irregular corps of "Pandours" for service against the Turks, but this offer was refused and he then entered the Russian army. But after scrving against the Turks for a short time as captain and major of cavalry he was accused of bad conduct, hrutality and disobedience and condemned to death, the sentence being commuted hy Field Marschal Munnich to degradation and imprisonment. After a time he returned to Austria, where his father was governor of a small fortress, but there too he came into conflict with every one and actually " took sanctuary" in a convent in Vienna. But Prince Charles of Lorraine, interesting himself in this strange man, obtained for him an amnesty and a comraission in a corps of irregulars. In this command, besides his usual truculence and robber manners, be displayed conspicuous personal btavery, and in spite of the general dislike into which his vices brought him his services were so valuable that he was promoted licu-tenant-coloael (1743) and colonel (1744). But at the battle of Soor he and his irregulars plundered when they should have been fighting and Trenck was accused (probably falsely) of having allowed the king of Prussia himelf to escape. After a time be
was brought before a court-martial in Vienna, which convicted him of having sold and withdrawn commissions to his officers without the queen's leave, punished his men without heed to the military code, and drawn pay and allowance for fictitious men. Mach was allowed to an irregular officer in all these respects, but Trenck had far outrun the admitted limits, and above all b's brutalities and robberies had made him detested throughout Austria and Silesia. A death sentence followed, but the composition of the court-martial and its proceedings were thought to have been such as from the first forbede a fair trial, and the sentence was commuted by the queen into one of cashiering and imprisonment. The rest of his life was spent in mild captivity in the fortress of Spiclberg, where he died on the 4 th of October 1749.

His cousin, Friedich, Fremerr von der Trenck (\(1726-1794\)), the writer of the celehrated autobiography, was born on the 16 th of February 1726 at Konigsberg, bis lather being a Prussian general. After distinguishing himself for his quickness and imagination at the university of Konigsberg, he entered the Prussian army in 1742, and soon became an orderly officer on Frederick's own staff. But within a year he fell into disgrace because of a love affair-whether real or imaginary -with the king's sister Princess Amalie, and when in 1743 bis Austrian cousin presented him with a horse and opened a correspondence, Frederick had him arrested, a few days after the battle of Soor, and confined in the fortress of Glatz, whence in 1746 he escaped. Making his way home and thence to Vienna, in the vain hope of finding employment under his now disgraced cousin, be finally met a Russian general, who took him into the Russian service But, receiving news that owing to his cousin's death he had become the owner of the family estates, he returned to Germany almost immediately He was made a captain of Austrian cavalry, but never served, as his time was fully taken up with litigation connected with the Inherited estates. In 1754 be visited Prussia, but was there arrested and confined in Magdehurg for ten years, making frequent attempts, of incredible audacity, to escape from the harshness of his gaolers. But efter the close of the Seven Years' War, Maria Theresa requested that he should, as being a captain in her service, be at once released. Trenck then spent some years in Aix-la-Chapelle, managing an agency for Hungarian wines and publishing a newspaper, and on the lailure of these enterprises he returned to his Hungarian estates. Here be composed his celebrated autobiography and many other writings. He visited England and France in 1774-1777, and was afterwards employed by the goverament in diplomatic or secret service missions. Alter the death of Frederick the Great he was allowed to enter Prussia, and stayed in Berlin for two years. In 1788 he visited Paris, where he was the hero of society for a moment; next year he returned to Itungary in order to collect his writings in a uniform edtion, but in 791 be returned to Paris to be a spectator of the Revolution, and after living in safety througboul the Terror be was at last denounced as an Austrian spy and guillotined on the 25 th ol July 1794 .
His autobiography, which has been translated into several languages, first appeared in German at Berlin and Vienna (13 vols.) in \(17^{87}\), Shortly afterwards a Freach version, by his own hand, was published at Strastburg. His other published works are ia eight volumes and appeared shortly after the autobrography at Leipzig. A reprint of the autobiography appeared in 1910 in "Reclam's Universal Series."
See Wahrmann, Lebex und Thaten des Frans, Freiherr oow der Trenck and Friedrick Freikerre wow der Treacks Leben, Kerker und Tod (both published at Leiprig in 1837).

TRENDELBNEURG, FRIEDRICH ADOLF (1807-1872), German philosopher and philologist, was born on the \(30 t h\) of November 1802 at Eutin, near Lubeck. He was educated at the universities of Kiel, Leipzig and Berlin. He became more and more attracted to the study of Plato and Aristocle, and his doctor's dissertation (1826) was an attempt to reach through Aristotle's criticisms a morc accurate knowledge of the Platonic philosophy (Platomis de idois ef numeris doctrina ex Avistotele illustrala). He declined the effer of a chasical chair at Kiel,
and accepted a poat as tutor to the son of an incimate friend of Altenstein, the Prussian minister of education. He held this position for seven years (\(1826-1833\)), occupying his leisure time with the preparation of a critical edition of Aristote's De anima (1833; and ed. by C. Belger, 1877). In 1833 Altenstein appointed Trendelenburg extraordinary professor in Berlin, and four yearm later be was advanced to an ordinary professorship. For pearly forty years he proved himself markedly suecessful as an academical teacher, during the greater part of which time be hed to examine in philosophy and pedagogics all candidates for the scholastic profession in Prussia. In 1865 be became involved in an acrimonious controversy on the interpretation of Kant's doctrine of Space with Kuno Fischer, whom he attacked in Kuno Fischer und sein Kant (1869), which drew forth the reply Anti-Trendelenburg (1870). He died on the 2tth of January 1872.
Trendelenbury shilosophizing is conditioned throughout by his loving study of Plato and Aristotit. whom he regards not as opponents but as building jointly on the broad basis of idealism. Hit own standpoint may almost be called a modern version of Aristotie thus interpreted. While denying the possibility of an absolute method and an absolute philosophy, as contended for by Hegel and others, Trendelenburg was emphatically an idealist in the ancient or Platonic sense; his whole work was devoted to the demonstration of the ideal in the real. But he maintained that the procedure of philosophy must be analytic, rising from the particular facts to the universal in which we find them explained. We divine the system of the whole from the par we know, but 1 he process of reconstruction must remain approximative. Our position forbids the possibility of a final system. Instead, therefore, ol constantly beginaing afresh in apeculation, it should be our duty to attach ourselves 10 what may be considered the permanent results of historic developments, The classical expression of these results Trendelenburg finds mainly in the Platonico-Aristotelian system. The philosophical question is stated thus: How are thought and being united in knowledge? how does thought get at being? and bow docs being enter into thought? Proceeding on the principle that like can only be known by like. Trendelenburg next reaches a doctrine peculiar to himsell (though based upon Aristotic) which plays a central part in his speculations. Motion is the fundamental fact common to being and thought: the actual motion of the external world has its counterpart in the constructive motion which is involved in every instance ol perception or thought. From motion he proceeds to deduce time, space and the categories of mechanics and natural science. These, being thus derived, are at once subjective and objective in their acope. It is true matter can never be completely resolved into motion, but the irreducible remainder may be treated like the rpuir \({ }^{1} \mathrm{~A}_{7}\) of Aristotle as an abstraction which we asymptotically approach buz never reach. The facts of existence, however, art not adequately explained by the mechanical categories. The utrimate interpretation of the universe can only be found in the higher category of End or final cause. Here Trendelenburg fopds the dividing line between philosophical systems. On the one side stand those which acknowledge none but efficient causes-which make force prior to thought, and explain the universe, as it were, a tergo. This may be called, typically, Democritiom. On the other side stands the "organic" or teleological view of the world, Which interprets the parts through the idea of the whole, and sees in tbe efficient causcs only the vehicle of ideal ends. This may be called in a wide sense Platonism. Systems like Spinozism, which seem to form a third class, neither sacrificing force to thought nor thought to force, yet by their denial of final causes inevitably fall back into the Democritic or essentially materialistic standpoint, leaving us with the great antagonism of the mechatical and the organic systems of philosophy. The latter view, which receives its first support in the facts of life, or organic nature as such. finds its culmination and ultimate verification in the ethical world, which essentially cansists in the realization of ends. Trendelenburg's Naturrechi may, therefore. be taken as in a manner the completion of his system. his working our of the ideal as present in the real. The ethical end is taken to be ihe idea of humanity, not in the abstract as formulated by Kant, but in the context of the state and of history. Law is treated throuphout st the vehicle of ethical requirements. In Trendelenburg's treatment of the state. as the ethical organism in Which ine individual (the potential man) may be mid first to emerge into actuality, we may trace his nurture on the best ideas of Helienic antiquity.
Trendelenhurg was aiso the author of the following: Elcmenta logices A risotelicae (1836: 9th ed., 1892 : Eng. trans., 1881). a selection of passages from the Organon with Latin iranslation sid notes. containing the sbstance of Aristotle's logical doctrine. supplemented by Erlewlerup in den Elementex der Aristolelischen Logik (1842: urd ed. 1876) Logische Untersuchungen (1840: 3rd ed. 1870). and Die logische Fige in Hegels System (1843). important factors in the reaction éainst Hegel; Historische Beitrage exp Philosophic
(st \(6-1867\)), in thate volumea, the first of which containg a history of the doctrine of the Categories; Das Naturrecht auf dow Grunde Ler Ethil (1860): Lücken im Volkerrecht (1870), a treatise on the defects of international law, occasioned by the war of 1870. A nember of his papers dealing with non-philosophical, chicfly national and educational subjects, are collected in his RLeime Schrifton (1871).
On Trendelenburgs life and work see H. Bonitz. Zar Erinneruxaf en F.A.T. (Berlin. 1872); P. Kleinert, Grabrede (Berlin, 1822): E Bratuschek, Adoff Trendelenbury (Betin. 1873): C. von Prant1, Gedechtsisurade (Munich, 1873): G. S. Morris in the Now Englander (1874), xwoii.

Thitr (Lat. Tridendum; Ital. Trento; Ger. Trient), the capital of the sonth or Italian-speaking portion of the Austrian province of Tirol. It stands on the left bank of the Adige where this river is joined by the Fersina, and is a station on the Brenner railway, 35 m . S. of Botzen and 564 m . N. of Verona. If has a very picturesque appearance, especially when appronched from the north, with its embatted walls and towers siling the whole breadth of the valley. A conspicuous leature in the view is the isolated rocky citadel of Doss Trento (the Roman Verruca), that rises on the right bank of the Adige ic a beight of 308 ft . above the city and is now very strongly fortifed, as are various other positions near Trent giving access to Trent from the east (Val Sugana) or the west (vallcy of the Sarca). With its numerous palaces, substantial houses, broad streets, and spacious squares, Trent presents the aspect of a thoroughly litalian city, and its inhabitants (24,868 in 1900 , including a garrison of over 2000 men) speak Italian only-it is the centre of the region called Italia Irralconia by fervent Ilalian patriots. The Duomo or cathedral church (dedicated to San Vigilio, the first bishop) was built in four instalments between the itth and 15 th centuries, and was restored in 1882-1889. More interesting historically is the church of Santa Maria Maggiore, builh in 1514-1539, aad the scene of the sessions of the famous Ecumenical Council (as to which, see below) which lasted, with several breaks. from 1545 to 1563 ; near it, in the open, a column was erected in 1845, on the occasion of the three hundredth anniversary of the opening of the Council. To the east of the city rises the Castello del Buon Consiglio, for centuries the residence of the prince-bishops, but now used as barracks. There is a huge cown hall, which also bouses the museum and the very extensive town library. Trent lives rather on its historical souvenirs than on its industrles. which are not very extensive, viticuleure, silk-spinning and the preparation of salami (a grongly spiced kind of Italian sausage) being the chief. Ecclesiastically Trent is a suffragan see of the archbishopric of Salkburg. Opposite the railway station a stasue of Dante was erected in 1896 , for he is believed to have visited this region about \(t 304\).
Trent was originally the capital of the Tridentini, and is mentioned in the Antonine Ilinerary as a station on the great road from Verona to Veldidena (Innsbruck) over the Brenner. It was later ruled by the Ostrogoths (jth century) and the Lombards (6th century) after the conquest of whom by the Franks (774) Trent became part of the kingdom of Italy. But in 1027 the emperor Conrad II. bestowed all temporal rights in the region on the bishop (the see dates from the 4th century) and transferred it to Germany, an event which fixed all its later history. The Venetian attacks were finally repolsed in 1487 , and the bishop retained his temporal powers till 1803 when they passed to Austria. to which (save \(1805-1814\), when first the Bavarians and then Napoleon held the region) they have ever since belonged, the Trentino being annezed Sormally to Tirol in 1814.
(W. A. B. C.)

TREIT, COUNCIL OF. The Council of Trent (\(1545-1563\)) hes a long antecedent history of great significance for the fortunes of the Catholic Church. During the istb and the earlier half of the 16 th century, the conception of an "ecumenical council" semained an ideal of which the realization was expected to provide a solution for the serious ecclesiastical difficulties which were then prevalent. True, the councils of Constance and Baned had fallen short of the desired goal; but confidence in the unknown quantity persisted and took decper root as the
popes of the Renaimance showed themselves len and less inclimed to undertake the reforms considered necessary in wide circles of the Church. The papacy indeed did not recognize the jurisciction of the ecumenical council, and in 1459 Pius II. had prohibited any appeal to soch a tribunal under penalty of excommunication. This, however, bad no effect on public opinion, and the council continued to be invoked as the supreme court of Christianity. So in 1518, for instance, the university of Paris demanded the convocation of a general coumcil, to which it referred its solemn protest against the papal encroachments on the privileges of the French Church. Thus, when Luther took this very step in the same year, and repeatedit later, bla action was not devoid of precedent. Again in 1529 the evangelical estates of Cermany made a formal appeal in the Diet of Spires, and, in the preface to the Augsburg Confession of \(\mathbf{5} 530\), requested a "general, unfettered council of Christendom." The same demand was formulated by Charles V. The emperor indeed-though, as a statesman, he had found himself in frequent opposition to the papal policy of his day-had never entertained the slightest doubt as to the truth of Catholic doctrine, and had rendered inestimable services to the Church in the perilous years which followed the emergence of Protestantism. Still he could not blind himself to the fact that ecclesiastical life stood in urgent need of reform; and the only method of effecting an alteration in the existing régime was by means of a council. Consequently he declared himself in favour of convening a general assembly of the church-a project which be pursued with the greatest energy. True, the passive resistance of the Curis was so stubbom that the decisive step was post poned time and again. But the goal was finally attained, and this result was essentially the work of Charles. Actually, the meeting came too late: the Evangelica! Church had gathered strength in the inlerim, and the council failed to exercise the decisive influence anticipated on the relations between Catholicism and Protestantism. In 1536 its convocation seemed imminent. Pope Paul III., who in the conclave had already admitted the necessity of a council, convened it on the and of June \(\mathbf{1 5 3 6}^{6}\), for the 23rd ol May 1537, at Mantua. He then altered the date to the ist of November of the same year. Later it was summoned to meet at Vicenza on the ist of May 1 538, only to be postponed till the Easter of 1539 . Finally, he adjourned the execution of the project sine die. Chartes met this dilatory policy by arranging colloquies bet ween Protestant and Catholic at Worms and Regensburg, the result being that the Curia became afraid that the emperor might take the sett lement of the religious question into his own hands. This consideration forced Paul III. to compliance, and fresh writs were issued convoking the council, first for Whitsuntide, \(\mathbf{1 5 4 2}\), then for the ist of November of the same year. In consequence, bowever, of the hostilitics between Charles and the French king Francis 1., the conference was so scantily attended that it was once more prorogued to the 6th of July is43, before it had come into active existence. Not till the peace of Crespy, I544, when the emperor showed some disposition to attempt an accommodation of the ecclesiastical feud in a German Diet, did the pope resolve to translate his numerous promises into deeds. The bull Loelare Hierusalem (November 19, 1544) Wxed the meeting of the council for the 15 th of March 1545. in Trent, and assigned it three tasks: (1) the pacification of the religious dispute by doctrinal derisions, (2) the reform of ecclesiastical abuses, (3) the discussion of a crusade against the infidels. The selection of the town of Trent, the capital of the Italian Tirol, and part of the empire had a twofold motive: on the one hand it was a token of concession to the emperor, who wished the synod to be beld in his dominions; on the other, there was no occasion to fear that an assembly, meeting on the southern border of Germany, would fall under the imperial influence.

The opening of the council was deferred once again. Towards the end of May 1545 , twenty hishops were collected at Trent: but there was no sign of action, and the papal legatesDel Monte, Corvinus and Reginald Pole-delayed the inauguration. The cause of this procrastinating polizy whe that
the emperor and the pope were at cross purposes with regard to the mode of procedure. In the eyes of Paul III. the council was simply the means by which he expected to secure a condemnation of the Protestant heresy, in hopes that he would then be in a position to impose the sentence of the Church upon them by force. For him the question of ecclesiastical reform possessed no interest whatever. In contrast to this, Charles demanded that these very reforms should be given precedence, and the decisions on points of dogma postponed till he should have compelled the Protestants to send representatives to the council. The pope, however, alarmed by the threat of a colloquy in Germany, recognized the inadvisability of his dilatory tactics, and at last ordered the synod to be opened (December 13. 1545).

Since there was no definite method by which the deliberations of ecumenical councils were conducted, special regulations were necessary; and those adopted were of such a nature as to assure the predominance of the Roman chair from the first. As the voting was not to be by nations, as at Constance, but by individuals, the last word remained with the Italians, who were in the majority. In order to enhance this superiority the legates as a rule denied the suffrage to those foreign bishops who desired to be represented by procurators; and a number of Italian prelates werc enabled to make their appearance at Trent, thanks to special allowances from the pope. The dispute as to the order of precedence among the subjects for deliberation was settled by a compromise, and the questions of dogma and ecclesiastical abuses were taken simultaneously, the consequence being that in the decisions of the council the doctrinal and reformatory decrees rank side by side. In pursuance of a precedent established by the last Lateran Council, the sessions were divided into two classes: those devoted to discussion (congregationes generoles), and those in which the results of the discussion were put to the vote and formally enacted (sessiones pubicac). To ensure a thorough consideration of every proposition, and also to facilitate the exercise of the papal infuence on the proceedings, the delegates were split into three groups (congregationes), each group debating the same question at the same time. This arrangement, however, only endured till 1546. Since these sections were only brought into conjunction by the legates, and met under their presidency, the pontifical envoys in effect regulated the whole course of the deliberations. They claimed, moreover, the right of determining the proposals submitted, and were throughout in active and constant communication with Rome-a circumstance which provoked the bon mot of the French deputy (1563), that when the rivers were flooded and the Roman post delayed the Holy Ghost postponed his descent. These precautions nullified any possible disposition on the part of the council to enter on dangerous paths; and in addition the clause "under reservation of the papal authority" was affixed to all enactments dealing with ecclesiastical irregularities-thus leaving the pope a frce hand with regard to the practical execution of any measures proposed. Contrary to the emperor's wish, the council began its labours in the region of dogma by defining the doctrines of the Church with reference to the most important controversial points-a procedure which frustrated all his projects for a reconciliation with the Protestants. On the 8th of April 1546 the doctrine of the Holy Seriptures and tradition (sessio iv.) was proclaimed; on the 17 th of June 1546 , the doctrine of original sin (sessio v.); on the 13th of January 1547, the doctrine of justification (scssio vi.); and on the 3 rd of March 1547, the decree concerning the sacraments in general, and baptism and confirmation in particular (sessio vii.). On the 11th of March, however, the council was transferred to Bologna on the pretext that an cpidemic was raging in Trent (sessio viii.), though, at the impcrial command, part of the bishops remained behind. But on the and of June the council of Bologna resolved (sessio x.) to adjourn its labours. The cmperor's demands that the council should agila be pemoved to Irent were vain, till on the ath of April rigigy alive bate of Mlahlberg

were now free, and he utilized his military successes to balance his account with the Church. At the Diet of Augsburg be secured the enactment of a modus vivendi, Ieavened by the Catholic spirit, between the adherents of either religion; and this provisory settlement-the so-called Interim of Augsburg-was promulgated as a law of the empire (June 3,1548), and declared binding till the council should reassemble. The Protestants, it is true, received certain concessions-the non-celibacy of the priesthood and the lay chalice-but the Roman hierarchy, the old ceremonial, the feast-days and the fasts, were reinstated. Since the bishops who had remained in Trent abstained, at the emperor's request, from any display of activity qua synod, the outbreak of a schism was avoided. But the confusion of ecclesiastical affairs had grown worse confounded through the refusal of the pope to continue the council, when the death of Paul III. (November 10, 1549) gave a new turn to events.

Pope Julius III., the former legate Del Monte, could not clude the necessity of convening the council again, and, though personally he took no greater interest in the scheme than his predecessor in office, caused it to resume its labours on the 15t of May 1551 (scssio xi.), under the presidency of the Iegate, Cardinal Crescentio. The personnel of the synod was, for the most part, different; and the new members included the Jesuits, Laynez and Salmeron. More than this, the general character of the second period of the council was markedly distinct from that of its carlier stages. The French clergy had not a single delegate, while the Spanish bishops maintained an independent attitude under the aegis of the emperor, and Protestant deputics were on this occasion required to appear at Trent. The German Protestants who, in the first phase of the council, had held aloof from its proceedings, since to have sent representatives to this asscmblage would bave served no good purpose, had now no choice but to obey the imperial will. Charles V. was anxious to assure them not merely of a safe conduct, but also of a certain hearing. But in this be ren counter to the established facts: the Catholic Church had already dcfined its atutude to the dogmas above mentioned, and the Curia showed no inclination to question these results by ropening the debate. Thus the participation of the Protestants was essentially superfuous, for the object they had at heart-the discussion of these doctrines on the gound of Holy Writ-was from the Catholic standpoint an impossible aspiration. The Würtemberg deputies had already submitted a creed, composed by the Swahian reformes Johann Brenz, to the council, and Melanchthon was under way with a confessio saxonica, when there came the revolt of the Elector Maurice of Saxony (March 20, 1552), which compelled the emperor to a speedy fight from Innshruck; and dissolved the conclave. Its dogmatic labours were confined to doctrinal decrees on the Lord's Supper (sessio xiii. October 11, 1551), and on the sactaments of penance and extreme unction (November 25, 1551, sessio xiv.). On the 28th of April 1552, the sittings were suspended on the news of the elector's approach.

Ten years had elapsed before the council reassembled for the third lime in Trent; and on this occasion the circumstances were totally changed. During the intervening period, the religious problem in Germany had received such a solution as the times admitted by the peace of Augshurg (1555); and the equality there guaranteed between the Protestant estates and the Catholic estates had left the former nothing to hope from a council. Thus the motive which till then had governed the cmperor's policy was now nullificd, as there was no necessity for sceking a reconciliation of the two parties by means of a conference. The incitement to continue the council came from another quarter. It was no longer anxiety with icgard to Protestantism that exercised the pressure, but a growing conviction of the imperative need of more stringent reforms within the Catholic Church itself. Pope I'aul IV. (1551-1550), the protector of the Inquisition, and the opponent of Philip II. of Spain as well as of the emperor Ferdinand, turned a deaf ear to all requests for a revival of the synod. The regime of Pius IV. (\(1550^{-1} 506\)) was signalized by an absolute reversal of the papal policy: and it was high time. For in France and Spain-
the very countriea where the Protestant heresy had been most vigorously combated-t great mass of discontent had accumuhated; and France already showed as atrong inclination to attempt an independent mettlement of her ecclesiastical difficulties in 2 national coupcil Pius IV. saw himself constrained to take these circumstances into account. On the 2gth of November 1560 he announced the convocation of the council; and on the 18th of January 1562 it was actually reopened (sassio zvii.). The presidency was entrusted to Cardinal Gonzaga, assisted by Cardinals Hosius, bishop of Ermeland, Seripando, Simonetta, and Mare de Alemps, bishop of Constance. The Protestants indeed were also invised but the Evangelical princes, assembled in Naumburg, withheld their aesent-a result which was only to be expected. In order to enhance the synod's freedom of action, France and the emperor Ferdinand required that it should rank as a new council, and were able to adduce in support of their claim the fact that the resolutions of the two former periods had not yet been formally recognized. Pius IV., however, designated it a continuation of the earlier meetings. Ferdinand, in addition to regulations for the amendment of the clergy and the monastic system, demanded above all the legalization of the marriage of the priesthood and the concession of the "lay chalice," as he feared further defections to Protestantism. France and Spain laid stress on the recognition of the divine right of the episcopate, and its independence with regard to the pope. These episcopal tendencies were backed by a request that the bishops should reside in their sees-a position which Pius IV. acknowlodged to be de ierre divino; though, as it would have implied the annihilation of the Roman Curia, he refused to declare it as such. In consequence of these reformatory aspirations, the position of the pope and the council was for a while full of perii. But the papal diplomacy was quite competent to shatter an opposition which at no time presented anabsolutely unbroken front, and by concessions, threats and the utilization of political and politico-ecelesiastical dissensions, to break the force of the attack. In the third period of the council, which, as a result of these feuds, witnessed no session from September 1562 to July 150.3, doctrinal resohutions were also passed concerning the Lord's Supper sub utroque specie (sessio xxi., July 16, 1562), the sacrifice of the Mass (sessio xxii., September 27, 1562), the sacrament of ordination (sessio xxiii., July 15. 1563), the sacrament of marriage (sessio xaiv., November 11, 1563), and Purgatory, the worship of saints, relics and images (December 3, 1563). On the 4 th of December 1563 the synod closed.
The dogmatic decisions of the Council of Trent make no attempt at embracing the whole doctrinal system of the Roman Catholic Church, but present a selection of the most vital doctrines, partly chosen as a counterblast to Protestantism, and formulated throughout with a view to that creed and its objections. From the discussions of the council it is evident that pronounced differences of opinion existed within it even on most important subjects, and that these differences were not reconciled. Hence came the necessity for reticences, equivocations and temporizing formulae. Since, moreover, the council issued its pronouncements without any reference to the decisions of earlier councils, and omitted to emphasize its relation to these, it in fact suppressed these earlier decisions, and posed not as continuing, but as superseding them.

The reformatory ensctmenta touch on numerous phases of ecdesisstical life-dministration, discipline, appointment to spiritual offices, the marriage law (decretwom de reformatione matrimonit "Tametsi," seasio miv.), the duties of the clergy, and so forth. The resolutions include many that marked an advance; but the opportunity for a comprehensive and thorough reformation of the life of the Church-the necessity of which was recognized in the Catholic Church itself-was not embraced. No alteration of the abuses which obtained in the Curia was effected, and no annulment of the customs, so lucrative to that body and deleterious to others, was attempted. The question of the annates, for instance, was not so much as broactied.

The Council of Trent in fact enjoyed only a certain eppearance
of independence. For the freedom of speech which had been accorded was exercised under the supervision of papal legates, who maintained a decisive iofluence over the proceedings and could count on a certain majority in consequence of the overwhelming number of Italians. That the synod figured as the responsibic author of its own decrees (sancta acownenica a gemeratis bridentima symadus ins. spiritu samato legitime congregala) proves very little, since the following clause reads pracsidemtious apostolicae sedis legatis; while the legates and the pope expressly refused to sanction an application of the words of the Council of Constance-minioarsolem ecclesiam repraesentans. The whole course of the council was determined by the presupposition that it had no autonomous standing, and that its labours were simply transacted under the commission and guidance of the pope. This was not merely a claim put forward by the Roman sec at the time: it was acknowledged by the attitude of the synod throughout. The legates confined the right of discussion to the subjects propounded by the pope, and their position was that he was in no way bound by the vote of the majority. In difficult cases the synod itself left the decision to him, as in the question of clandestine marriaged and the administration of the Lord's Supper seb utraque specie. Further, at the close of the sessions a resolution was adopted, by the terms of which all the enactments of the council de morwom reformatione alque ecalesiassica disciplina were subject to the limitation that the papal autbority should not be prejudiced thereby (sessio Inv. cap. 21). Finally, every doubt is to the papal supremacy is removed when we consider that the Tridentine Fathers sought for all their enactments and decisions the ratification (confirmotio) of the pope, which was conferred by Pius IV. in the bull Benedictus Deus (January 26, 1564). Again, in its last moeting (eessio xxv.), the synod transferred to the pope a number of tasks for which their own time had proved inadequate. These comprised the compilation of a catalogue of forbidden books, a catechism, and an edition of the missal and the breviary. Thus the council presented the Holy See with a furtber opportunity of extending its influence and diffusing its views. The ten rules de libris prohibitis, published by Pius IV. in the ball Dominici gregis exstadioe (March 24, 1564), became of great importance for the whole spiritual life of the Roman Catholic Church: for they were an attempt to exclude pernicious influences, and, in practice, led to a censorship which has been more potent for evil than good. These regulations were modified by Leo XIII. In his Constitution Officiormme ac mwinerwm (January 24, 1897). Acting on a suggestion of the council (sessio miv. c. 2; sessio xuv. c. 2), Pius IV. published a short conspectus of the articles of faith, as deternined at Trent, in the hull Injunctum nobis (November 13, 1564). This socalled Professio fidei tridentince, however, goes beyond the doctrinal resolutions of the synod, as it contains a number of ctauses dealing with the Church and the position of the pope within the Church-subjects which were deliberately ignored in the discussions at Trent. In 1877 this confession-binding on every Roman Catholic priest-was supplemented by a pronouncement on the dogma of papal infallibility.

The great and increasing need of a manual for the instruction of the people gave rise in the first balf of the 16 th century to numerous catechisms. At the period of the council, that composed by the Jesuit Peter Canisius, father-confessor of the emperor Ferdinand, enjoyed the widest vogue. It failed, however, to receive the sanction of the synod, which preferred to undertake the task itself; and, as that body left its laboure unfinished, the pope was entrusted with the compilation of a textbook. Pius V. appointed a commission (Leonardo Marini, Egidio Foscarari, Francisco Fureiro and Murio Calini) under the presidency of three cardinals, among them Charles Borromeo; and this commission discharged its duties with such rapidity that the Catechismus a decreto concilii tridentini ad parachos was published in Rome as early as the year 1568 . The book is designed for the use of the cleric, not the layman. The Missole romanum, moreover, underwent revision: also the Breviorinm romanum, the daily devotional work of the Roman priest. The
necessity of still further improvements in the latter was forcibly urged in the Vatican Council.

The numerical representation of the Council of Trent was marked by considerable fluctuations. In the first session (December 13, 1545) the spiritual dignitaries present-omitting the 3 presiding cardinals-consisted of one ot her cardinal, 4 archbishops, 21 bishops and 5 generals of orders. On the other hand, the resolutions of the synod were signed at its close by the 4 presidents, then by 2 cardinals, 3 patriarchs, 25 archbishops, 166 bishops, 7 abbots, 7 generals of orders and 19 procurators of archbishops and bishops. In this council-as later in the Vatican-Italy was the dominant nation, sending two-thirds of 1be delegates; while Spain was responsible for about 30, France for ahout 20 , and Germany for no more than 8 members. In spite of the paucity of its numbers at the opening and the unequal representation of the Church, which continued to the last, the oecumenical character of the council was never seriously questioned. On the motion of the legates, the resolutions were submitted to the ambassadors of the secular powers for signature, the French and Spauish envoys alone withholding their assent. The recognition of the council's enactments was, none the less, beset with difficulties. So far as the doctrinal decisions were concerned no obstacles existed; but the reformatory edicts-adhesion to which was equally required by the synod-stood on a different footing. In their cbaracter of resolutions claiming to rank as ecclesiastical law they came into conflict with outside interests, and their acceptance by no means implied that the rights of the sovereign, or the needs and circumstances of the respective countries, were treated with sufficient consideration. The consequence was that there arose an active and, in some cases, a tenacious opposition to an indiscriminate acquiescence in all the Tridentine decrees. Under Charles IX. and Henry IV. the situation was hotly debated in France: but these monarchs showed as little complaisance to the representations and protests of the Curia as did the French purlement itself; and only those regulations were recognized which came into collision neither with the rights of the king nor with the liberties of the Gallican Church. In Spain, Philip II, allowed, indeed, the publication of the Cridentinum, as also in the Netherlands and Naples, but always with the reservation that the privileges of the king, his vassals and his subjects, should not thereby be infringed. The empire, is such, never recognized the Tridentinum. Still it was published at provincial and diocesan synods in the territories of the spiritual princes, and also in the Austrian hereditary states.

In his official confirmation Pius IV. had already stricely prohibited any commentary on the enactments of the council unless undertaken with his approval, and had claimed for himself the sole right of interpretation. In order to supervise the practical working of these enactments, Pius created (1564) a special department of the Curia, the Congregatio cardinalium concilii tridentini interpretum; and to this body Sixtus V. entrusted the further task of determining the sense of the conciliar decisions in all dubious cases. The resolutiones of the con-gregation-on disputed points-and their declaraliones-on legal questions-exercised a powerful influence on the subsequent development of ecclesiastical law.

The Council of Trent attained a quite extraordinary signifcance Jor the Roman Catholic Church; and its pre-eminence was unassailed till the Vaticanum subordinated all the labours of the Church in the past-whether in the region of doctrine or in that of law-to an infallible pope. On the theological side it fixed the results of medieval scholasticism and gleaned from it all that could be of service to tbe Church. Further, by pronouncing on a series of doctrinal points till then undecided it claborated the Catholic creed; and, finally, the bold front which it offered to Protestantism in its presentation of the orthodox faith gave to its memhers the practical lead they so much needed in their resistance to the Evangelical assault. The regulations dealing with ecclesiastical life, in the widest sense of the wo came, for the most part, to actual fruition, so that, in tion also, the council had not laboured in va

Roman Catholic Church of the 16 th century its consequences are of an importance which can scarcely be exaggerated: it showed that Church as a living institution, capable of work and achievement; it strengthened the confidence both of her members and herself, and it was a powerful factor in heightening her efficiency as a competitor with Protestantism and in restoring and reinforcing her imperilled unity. Indeed, its sphere of influence was still more extensive, for its labours in the field of dogma and ecclesiastical law conditioned the future evolution of the Roman Catholic Church. As regards the position of the papacy, it is of epoch-making significance-not merely in its actual pronouncements on the papal see, but also in its tacit subordination to that see, and the opportunities of increased influence accorded to it.

There were three periods of the council, separated by not inconsiderable intervals, each of an individual character, conducted by different popes, but forming a single unity-an indivisible whole, so that it is strictly correct to speak of one Council of Trent, not of three distinet synods.
Bibliography.- Sources for the history of the council: Concilium tridentinum; diariorum, actorum, epistularum, traclatuum nona collectio, ed. Societas Goerresiana. Tom. i. (Diariorunl pars i. Herculis Severoli commentarius, Angeli Massarelli diaria 1-4, collegit S. Merkle), Freiburg (1901). Tom. iv. (Actorum pars i.; Monumenta concilium praecedentia; trium priorum sessionum acta: collegit St Ehses). Freiburg (1904). Till the completion of this splendidly planned work, the following deserve especial mention: F. le Plat, Monumenioram ad kisioriom concilit tradenini specianlium amplissimg collectio (Lovanü, \(1781-1787\)); G. F. Planck. Anecdota ad historiam concilii tridentini pertinentia, 26 fasc. (Göttingen, 1791-1818) ; Acta genuina s. oecumenici concilii tridentimi ab A. Massarello comscripta, ed. A. Theiner (Zagrabiae, 1874): F. v Dollinger, Sammlung ton Urkunden zur Geschichte des Konzils son Trient, i. 1, 2 (Nördlingen. 1876): Id., Beitäge zup politischen kirchliches, und Kulturgeschichie (3 vols., Regensburg, 1862-1882): G. Paleottus, Acta roncilit tridenimi a 1562 et 1563 usque in finem concilii. ed. F. Mendham (London, 1842); A. v. Druffel, Monumenta dridentina (3 parts, Munich, 1884-1887, parts 4 and 5 , continucd by K. Brandi, 1897-1899); Zur Geschuchte des Komeils von Trieni. Aktensluicke aus den oslerreichischen Arehiven, cd. T. v. Sickel (3 parts, Vienna, 1870-1872): F. Lainez, Disputationes Aridentinoe, ed. Grisar (2 vols., Innsbruck, 1886); Die römische Kurie und das Konzil von Trient unter Pius IV. Ahbenstücke zur Geschichte des Kontils vom Tricmt, ed. F. Susta (vols. i. ii., Vienna, 1904-1gog); Canones a decreta concilii tridentini (Rome, 1564 ; critical cdition by A. L. Richter, leipzig, 1853); the most important decisions on dogma and ecclesiashical law reprinted by C. Mirbt, Quellen rur Gcschichte des Papsttums (ed. 2, Tübingen, Nr. 289 sciq. p. 202 sqq.).

Literature.-P. Sarpi, Istoria del concilio tridentimo (London. 1619): Cardinal Slorza Pallavicini, Istorio del concilio di Trento (Rome, 1656-1657. a counterblast to the preceding); Brischar, Zur Beurtcilung der Kontroversen zwischen Sarpi und Pallavicini (184н): Salig. Vollstdndige Historie des tridentuischen Kanzils (Halla, 1741-1745): Wessenberg, Die grossen Kirchentersammangen des gsien und roten Johrhunderts, vols. iii. and iv. (Constance, 1840): I. y. Ranke. Die romiscken Papste im I6 und 17 Jahrhwndert, vol. i. ; ibid. Deulsche Geschichte im Zeilaller der Reformation. i. (Stuttgart, 1889): P. Tschackert, s.0. "Trienter Konzil," in Herzog-Hauck, Realencyktopadie fur protestantische Theologie (1908), vol. xx., ed. 3. P. 99 sqq.; G. Kawerau-W. Moeller, Lehrbuch der Kirchengeschichie, iii. 237 sgq. (Tübingen, 1907); F. Hergenrôther, Handbuch der allgemeines Kurchengeschichte, cdition by F. P. Kirsch, Bd. III. p. I88 seq. (Freiburg im Breisgau, 1909).

TRENT, the chief river in the midlands of England, the third in length in the country, exceeded only by the Thames and Severn. It rises in the north of Staffordshire, and discharges through the Humber lnto the North Sea, having a course of about 170 ml ., and a drainage area of \(4052 \mathrm{sq} . \mathrm{m}\). The source is on Biddulph Moor, which rises to a height of 1100 ft . The course of the river is at first southerly, and it skirts the manufacturing district of the Potteries, passing Stoke-upor-Trent. Immediately below this town the valley widens, and the fall of the river, from a point 85 m . from the source to the mouth, is only \(3,88 \mathrm{ft}\). Fassing Stome, the coutse bcoomes south-tasterly,
and the united wation

Marton-apon-Trent, in this part of its course forming the boandary between Stafiordshire and Derbyshire. The fall from Burton to the mouth, a distance of 109 m ., is 148 ft . The valley opens out as the stream, dividing into several channels at Burton and receiving on the left the Dove, enters Derbyshire. It then separates that county from Leicestershire and Notinglemshire, receives in cuick succession the Derwent (left), Soar (right) and Erewash (left), enters Nottinghamshire, and passes Nottingham, 814 m . from the mouth. The next important town is Newark, which, bowever, the main channel of the river passes at a considerable distance to the west; the Devon joins bere on the right, and the fall from this point to the mouth, a distance of \(57 \frac{1}{2} \mathrm{~m}\)., is only 18 ft . The valley becomes flat, though the river is rather deeply entrenched in some parts. Forming the boundary between Nottingham and Lincolnshire, the Trent passes Gainsborough (\(26 \frac{1}{2} \mathrm{~m}\). from the mouth), receives the Idle on the left, and, entering Lincolnshire and skirting the Isle of Axholme, joins the Yorkshire Ouse near Faxflect. The lower part of the valley resembles the Fens in character, and is drained by many artificial channels. The borthward turn at Newark is of interest inasmuch as it is considered that the liver from this point formerly flowed towards Lincolm, and, following a depression in the escarpment there, pessed down the valley at present occupied by the Witham to the Wash. It is suggested that the waters were diverted to tbe Humber by a stream within that system cutting back southward and tapping the Trent in the vicinity of Newark; and in high food the Trent has been known to send water across the low parting to the Witham (gee Avebury, Scewery of England. ch. xi.). The highest tides are felt about 40 m . up river, and the phenomenon of an "eagre" (bore or tidal wave) is seen rising on spring tides to a height of 4 or 5 ft . 15 m . above the mooth of the river.
The Trent is navigable for a distance of 947 m . from its junction rixt the Ouse, to a point a abort distance above the junction of the Derwent, the Trent Navigation Company having a general control of the pavigation down to Gainsbotough. the line of which passes through Nottingham by canals. On the river itself there are eight bocks. Below Gainsborough the navigation is open, and vessels drawing 9 ft . can reach this point on apring tidect. From the Derwent mowth the Treat and Mersey Canal iollows the Trent valley upward, and gives connexion with the entire inland navigation mystem of the midlands and west of England. Short canals give arress to Derby and the Erewash valley; the Leicester Navigation, following the Scar, connects with the Grand Junction canal; and the Grantham Casalcarriesa little traffic between that town and Notting* ham. The Fossdyke, distinguished as the oldest navigable waterway ceill in use in England, as it was originally of Roman construction, connects the Trent with Lincoln and the Witham, and lower down the Sheffield and South Yorkshire canal joins the river from ithe west at Keadby. There is also a canal, little used, to Chesterficid.
TREMTE ET QUARANTE (called also Rauge et Noir), a game of French origin played with cards and a special table. It is one of the two games played in the gambling rooms at Monte Carlo, soulette being the other. The diagram illustrates one half of the table, the other hall precisely corresponding to it. Two croupiers sit on each side, one of them being the dealer; behind the two on the side opposite to the dealer a supervisor of the game has his seat. Six packs of fifty-two cards each are used; these are well shufled, and the croupier asks any of the players to cut, handing him a blank card with which to divide the zixed packs. There are only four chances at trente et quarnie: reage or noir. known as the grand tobleau; coulewr or Bherse, known as the pelit bablean. At Monte Carlo the stakes are placed on the divisions indicated on the table, the maximum being 12,000 francs and the minimum 20 francs which must be staked in gold. The dealer, who has placed all the cards before him, separates a few with the blank card, takes them in his Fff hand and invites the players to stake with the formula, laites volre jeu!" After a pause lic exclaims rien ne va plus!" after which no stake can be deals the cards in a row until the aggregate somet hing more than thirty, upon which he and that which comes nearest to thirty wink, always distinguisbed as noir, and the lower
as rouge. In announcing the result the word trente is always omitted, the dealer mercly announcing un, trois, quotre, as the case may be, though when forty is curned up it is described as quarante. The words noir and inverse are also never used, the announcement being rouge gagne or rouge perd, comlemg gagne or couleme perd. Gain or loss over coulew and inverse depends upon the colour of the first card dealt. If this should be also the colour of the winning row, the player wins. Assuming, for example, that the first card dealt is red, and that the lower row of the cards dealt is nearest to thirty, tbe dealer will announce " Rouge gagne et le couleur." If the first card dealt is red, but the black or top row of cards is nearest to thirty, the dealer announces "Rouge perd et le couleur." It frequently happens that both

Diagram of Helf of Trente et Quarante Table. rows of cards when added together give the same number. Should they both, for instance, add up to thirty-three, the dealer will announce "Trois apres," and the deal goes for nothing except in the event of their adding up to thirty-one. Un apres (i.e. thirty-one) is known as a refaif; the stakes are put in prison to be left for the decision of the next deal, or if the player prefers it he can withdraw half his stake, leaving the other half for the bani.. Assurance against a refail can be made by paying \(1 \%\) on the value of the stake with a minimum of five francs. When thus insured against a refait the player is at liberty to withdraw his whole stake. It has been calculated that on an average a refoit occurs once in thirty-eight coups. After each deal the cards are pushed into a metal bowl let into the table in front of the dealer. When he has not enough left to complete the two rows, he remarks "Les cartes passent "; they are taken from the bowl, reshuffied, and another deal begins.

TREXTON, a city and the county-seat of Grundy county, Missouri, U.S.A., on the E. fork of the Grand River, in tbe north central part of the state, about 100 m. N.E. of Leavenworth. Pop. (1890), 5039; (1900), 5396, including 192 foreign-born and 200 negroes; (1910), 5656 . It is served by the Chicago, Rock Island \& Pacific (which has repair shops here) and the Quincy, Omaha \& Kansas City railways. It has a picturesque situation, and is laid out over a high uneven Muff. The city is a trading centre for a prosperous farming region, and coal is mined in the vicinity. Trenton was platted in 1841 , became the county-seat in the same year, and was incorporated as a town in 1857. In 1893 it received a city charter under a general state law. In 1900-1903 it was the seat of Ruskin College, an institution founded by Walter Vrooman (b. 1869), a native of Missouri, and tbeorganizer of the Ruskin Hall Workingmen's College, Oxford, England. The college was removed to Glen Ellyn, Llinois, in 1903 and after 1906 to Ruskin, Florida.

TneirTON, the capital of New Jersey, U.S.A., and the countyseat of Mercer county, on the eastern bank of the Delaware river, about 33 m . N.E. of Philadelphia, and about 59 m . S.W. of New York. Pop. (1890), 57,458 ; (1900), 73,307, of whom 16,793 were foreign-bom (including 4114 Germans, 3621 English, \(3^{329^{2}}\) Irish, and 1494 Hungarians), and 32,879 were of forciga parentage (both parents foreign-born), including 8873 of German parentage, 8324 of Irish parentage, 5513 of English parentage, and 2143 of Hungarian parentage; (1910 census), 96.815 . Area, 9 sq. \(m\). Trenton is served by the Pennsylvania (main line and Belvidere division) and the Philadelphia \& Reading railway systems, by inter-urban electric railways, and hy small freight and passenger steamers on the Delaware river; the Delaware \& Raritan Canal connects with
the Raritan river at New Brunswick. Trenton is at the head of navigation on the Delaware river, which falls 8 ft . here. Riverside park extends along its water front for about 3 m ., and on the outskirts of the city lies Cadwalader park (100 acres), containing a zoological garden. In the centre of the city, marking the spot where Washington planted his guns at the battle of Trenton, stands the Battle monument, a RomanDoric column of granite, 150 ft . high, hollow and fluted, its cap forming an observatory, with a statue of Washington by William R. O'Donovan (h. 1844). In Perry Street, mounted on a granite pedestal, is the "Swamp Angel," the great gun used by Federal troops in the marshes near Charleston, South Carolina, during their attack on that city in August 1863. There are many buildings in tbe city which are rich in historic associations. Chief among these is the barracks, erected by the colony in 1758 to mitigate the evils of billeting, and occupied by British troops during the Seven Years' War, and at different times by British. Hessian and American troops during the War of Independence. Other interesting landmarks are "Woodland" (formerly called "Bloomsbury Court"), built early in the 18th century by William Trent, and said to have sheltered, at various times, Washington, Lafayette sand Rochambeau; the "Hermitage," erected some time before the War of Independence; and "Bow Hill," in the suburbs of the city, a quaint old colonial mansion which for some time before 1822 was a home of Joseph Bonaparte. Among the public buildings are the state capitol, the post office building, the county court house, the city hall, the second regiment armoury, publie library (containing about 42,000 volumes in 1909), and the building (rgio) given by Henry C. Kelsey to the city for the school of industrial arts (founded in 1898). Here also are the state normal and model schools (1855), the state library, housed in the capitol, the state school for deaf mutes, the state home for girls, one of the two state hospitals for the insane (opened in 1848), the state arsenal-the building being the old state prison-the state prison (1836), St Francis hospital (1874), Mercer hospital (1892), the William McKinley memorial hospital (1887), the city hospital, two children's day nurscries, the Friends' home, the Union industrial home (for destitute children), the Florence Crittenton home (1895), the indigent widows' and single women's home (1854), the Har Sinai charity society, the home for friendless children, and the society of St Vincent de Paul. Trenton is the see of Protestant Episcopal and Roman Catholic hishops.

Trenton is an important industrial centre. Its proximity to the coal fields of Pennsylyania and to the great markets of New York and Philadelphia, and its excellent transportation facilities by rail and by water, have promoted the development of its manufactures. The city is the greatest centre for the pottery industry in the United States. In 1905 there were 40 establishments for the manufacture of pottery and terracotta, employing 4571 labourers; and their total product was valued at \(\$ 5,882,701\)-or \(9.2 \%\) of the value of the pottery product of the United States, and \(18 \%\) of the value of all the city's factory products, in this year. The chief varieties of this ware are vitrified chins, helleck china, semi-porcelain, white granite and c. c. ware, vitrified porcelain for electrical supplies, porcelain bath tubs and tiles, and terra-cotta. Clay for the "saggers," or cases in which the wares are fired, is mined in the vicinity, but the raw materials for the fice grades of pottery are obtained olsewhere. Some pottery was made in Trenton by crude and primitive methods near the beginning of the 19th century, but the modern methods were not introduced until 1852, when yellow and Rockingham wares were first made bere. In 1859 the manufacture of white granite and creamcoloured ware was auccessfully established. The fine exhibits from the Trenton potteries at the Centennial Exhibition in Philadelphia in 1876 greatly stimulated the demand for these wares and increased the competition among the manufacturers; and since that date there has been a marked development in both the quantity and the quality of the product. In Trenton, also, are manufactured iron, steel and copper wire, rope, cables
and rods-the John A. Roebling's Sons Company has an immense wire and cable manufactory here-iron and steel bridge building materials and other structural work, plumbers' supplies (manufactured by the J. L. Mott Company), and machinery of almost every character, much of it being exported to foreign countries. Much rubber ware is also manufactured. In 1905 Trenton contained 312 factories, employing 14,252 labourers, and the total value of the factory products was \(\$ 32,719,945\).

The charter, as amended, provides for a mayor elected for two years and a common council of two members from each ward elected for two years. Other elected officers are: city clerk, comptroller, treasurer, counsel، receiver of taxes, engineer, inspector of buildings, overseer of poor, street commissioner and sealer of weights and measures. The municjpality owns the water works and the sewer system; the water supply is obtained from the Delaware and is stored in 2 reservoir having a capacity of about \(110,000,000\) gallons.

The settlement of Trenton began in 1680 with the erection by Mahlon Stacy, a Quaker colonist of Burlington, of a mill at the junction of the Assanpink creek \({ }^{1}\) with the Delaware river. By 1685 a number of colonists had settled at this point. which became known as "The Falls" on account of the rapids in the Delaware here. In 1714 Stacy sold his plantation at "The Falls" to William Trent (c. 1655-1724), speaker of the New Jersey Assemhly (1723) and chief justice of the colony (1723-1724), in whose honour the place came to be called Trenttown or Trenton. In 1745 Trenton received a royal charter incorporating it as a borough, but in 1750 the inhabitants voluntarily surrendered this privilege, deeming it "very prejudicial to the interest and trade " of the community. In 1783 the New Jersey delegates in Congress proposed that Trenton be made the seat of the general government, but as this measure was opposed by the Southern delegates, it was agreed that Congress, pending a final decision, should sit alternately at Annapolis and Trenton. Congress accordingly met in Trenton in November 1784, but soon afterwards removed to New York, where hetter accommodation could be obtained. Trenton became the capital of the state in 1790 , was chartered as a city in 1792, and received new charters in 1837, 1866, and 1874. The borough of South Trenton was annexed in 1850; the borough of Chambersburg and the township of Millham in 1888; the borough of Wilhur in 1898; and parts of the townships of Ewing and Hamilton in 1900.
See The City of Trenton, N.J., a Bibliogrdphy (rg09), prepared by the Trenton Free Library; John O. Raum, History of the City of Trenton (Trenton, 1871); George A. Wolf, Indxsifial Tremtom (Wilmington, Del., 1goo); F. B. Lee, History of Trenlos (Trenton, 1895).

TRENTON AND PRINCETON, BATTLES OF (1776-1777). These battles in the War of American Independence are noted as the first successes won by Washington in the open field. Following close upon a series of defeats, their effect upod his troops and the population at large was marked. After the capture of Fort Washington on Manhattan Island, on the \(\mathbf{1 6 t h}\) of November 1776, the Brilish general, Sir William Howe, forced the Americans to retreat through New Jersey and across the Delamare into Pennsylvania. Howe then went into winter quarters, leaving the Hessian geaeral, Rahl, at Trenton on the river with a brigade of 1200 men. Although Washington's army had dwindled to a mere handful and was discouraged by the year's disasters, it could still be trusted [or a promising exploit. Ascertaining that the Hessians at Trenton were practically unsupported, the American general determined to attempt their capture. On the night of the 25th of December 1776
be recrossed the Delaware through foating ice to a noint he recrossed the Delaware through floating ice to a point
9 m . above the enemy, whom he expected to reach at dawn of the following day, the zath. Dividing his loree of as ambul \({ }^{1}\) The name Assanpink is a eurrpptivn of an to mean "place of stone imy lyraig th
near Trenton many sto -
nuto two divisions under Generals Sullivan and Greene, he approached the town by two roads, surprised the Hessian outposts, and then rushed upon the main body before it could form effectively. The charge of the American troops and the fire of their artillery and musketry completely disconcerted the enemy. All avenues of retreat being closed and their general mortally wounded, the later to the number of 950 quickly sutrendered and were marched back into Pennsylvania on the same day. The American loss was five or six wounded.
Elated by this success and eager to beat up the enemy's adranced posts at other points, Washington again crossed the Delaware on the zoth of December and occupied Trenton. Hearing of this move Lord Cornwallis at Princeton, 10 m . north of Trenton, marched down with about 7000 troops upon the Americans on the 2nd of January 1777, and drove them across the Assanpink, a stream running east of the town. The Americans, who encamped on its banks that night, were placed in a precarious position, as the Delaware, with no boats at their disposal at that point, prevented their recrossing into Pennsylvania, and all other roads led towards the British lines to the northward. Washington accordingly undertook a bold manoeuvre. Fearing an attack by Cornwallis on the next morning, he held a council of war, which confirmed his plan of quietly breaking camp that night and taking a by-road to Princeton, then cutting through any resistance that might be offered there and pushing on to the bills of northern New Jersey, thus placing his army on the flank of the British posts. His tactics succeeded. At Princeton (q. v.) he came upon three British regiments which for a time beld him at bay. The 27th foot especially, under Coloncl Mawhood, twice routed the American advanced troops, inflicting severe loss, but were eventually driven back toward Trenton. The other regiments retreated north toward New Brunswick, and Washington continued bis march to Mortistown, New Jersey. He had braken througb Howe's lines and placed bimself in an advap. tageous position for recruiting his army and maintaining a strong defensive in the next campaign. These two affairs of Trenton and Princeton put new life into the American cause, and established Washington in the confidence of his troops and the country at large.
See IV. S. Seryker, The Batles of Trenton and Princeton (Boston, 1898).
TREPTDATION (from Lat. trepidare, to tremble), a term meaning, in general, fear or trembling, but used technically in astronomy for an imagined slow oscillation of the ecliptic, having a period of 7000 years, iatroduced hy the Arabian astronomers to explain a supposed variation in the precession of the equinoxes. It figured in astronomical tables until the time of Copernicus, but is now known to have no foundation in lact, being based on an error in Plolemy's determination of precession.
trescot, willial heniy (\(1822-1898\)), American dipfomatist, was born in Charleston, South Carolina, on the zoth of November 1822. He graduated at Charleston College in 1840, studied lam at Harvard, and was admitted to the bar in \(\mathbf{1 8} 43\). In \(\mathbf{~ 8 8 5 - 1 8 5 4 ~ h e ~ w a s ~ s e c r e t a r y ~ o f ~ t h e ~ U . S . ~ l e g a t i o n ~}\) - Lomdon. In June 1860 he was appointed assistant secretary
and he was acting secretary of state in June-Octotar, General Lewis Cass's absence from Washington, and for a Lew days in December after Cass's resignation. His position the important, as the only South Carolinian holding anything Whe evicial rank, becaure of his intimacy with President Evintati, Cath the rehtions with the secessions leaders of Fort the fort nvention the the signaSouth ritten in
tion from the state department in December. He returned to Charleston in February 1861; was a member of the state legislature in 1862-1866, and served as colonel on the staff of General Roswell S. Ripley during the Civil War; and later returned to Washington. He was coureel for the United States before the Halifax Fishery Commission in 1877; was commissioner for the revision of the treaty with China in 1880; was minister to Chile in 1881 - 1882 ; in 1882 with General U.S. Grant negotiated a commercial treaty with Mexico; and in \(\mathbf{1 8 8 9}-1890\) was a delegate to the Pan-American Congress in Washington. He died at Pendleton, South Carolina, his country place, on the 4th of May 5898.

His writings include The Diplomacy of the Revolution (i852), An Amercan \(V\) ieno of the Eastern Question (1854) and The Diplomatic History of the Administrations of Washinglon and Adams (1857).
tresham, prancis (c. 1567-1605), English Gunpowder Plot conspirator, eldest son of Sir Thomas Tresham of Rushion, Northamptonshire (a descendant of Sir Thomas Tresham, Speaker of the House of Commons, executed by Edward IV. in 1471), and of Murici, daughter of Sir Thomas Throckmorton of Coughton, was born about 1567, and educated at Oxíord. He was, like his father, a Roman Catholic, and his family had already suffered tor their religion and politics. He is described as " \(a\) wild and unstayed man," was connected intimately with many of those afterwards known as the Gunpowder Plot conspirators, being cousin to Catesby and to the two Winters, and was implicated in a series of seditious intrigues in Elizabeth's reign. In \(\leq 596\) he was arrested on suspicion together wilh Catesby and the two Wrights during an illness of Queen Elizabeth. In r601 he took part in Essex's rebellion and was one of those who conined the Lord Keeper Egerion in Essex House on the 8th of February. He was imprisoned and only suffered 20 go free on condition of a fine of 3000 marks paid by his father. He was one of the promoters of the mission of Thomas Winter in 1602 to Madrid to persuade the king of Spain to invade England. On the death of Elizabeth, however, be, with several other Roman Catholics, joined Southampton in securing the Tower for James I.
Tresham was the last of the conspirators to be initiated into the Gunpowder Plot. According to bis own account, which receives genieral support from Thomas Winter's confession, it was revealed to him on the 14th of October 1605 . Inferior in zeal and character to the rest of the conspirators, he had lately by the death of his father, on the \(\mathbf{x i t h}\) of September 1605 , inherited a large property and it was probably his financial support that was now sought. But Tresham, as the possessor of an estate, was probably less inclined than before to embark on rash and hazardous schemes. Moreover, he bad two brothers-in-law, Lords Stourton and Monfeagle, among the peers destined for assassination. He expressed his dislike of the plan from the first, and, according to his own account, he endeavoured to dissuade Catesby from the whole project, urging tbat the Romanist cause would derive no benefit, even in case of success, from the attempt. His representations were in vain and he consented to supply money, but afterwards discovered that no warning was to be given to the Roman Catholic peers. All the evidence now points to Tresham as the betrayer of the plot, ?nd it is known that he was in London within 24 hours of the despally of the famous letter to Lord Monteagle which revealed the plot (see GUNPOWDER Piot). In all probability he hac betrayed the secret to Monteagle previously, and the method of discovery bad been settied between them, for it bears the marks of a prearranged affair, and the whole plan was admirably conceived so as to save Monteagle's life and inform the government, at the same time allowing the conspirators, by timely warning, opportunity to escape (see Montencle, Williak Parker, 4 th baron). Tresham avoided meeting any of the conspirators as he had agreed to do at Barnet, on the 2gth of October, but on the 3rst he was visited by Winter in London, and summoned to Barnet on the following day. There he met Catesby and Winter, who were prepared to stab him for his betrayal, bat were dissuaded by his protestations that he knew
nothing of the letter. His entreaties that they would give up the whole project and escape to Flanders were unavailing. After the arrest of Fawkes on the night of the \(4^{\text {th }}\) Tresham did not fly with the rest of the conspirators, but remained at court and offered his services for apprchending them. For some days he was not suspected, but he was arrested on the 12th. On the 13th he confessed his share in the plot, and on the 29th his participation and that of Father Garnet in the mission to Spain. Shortly afterwards he fell ill with a complaint from which he had long suffered. On the 5 th of December a. copy of the Trealise of Equidocation, in which the Jesuit doctrine on that subject was treated, was found amongst his papers by Sir Edward Coke (see Garnet, Henry). From the lessons learnt here he had evidently profited. On the gth of December he declared he knew nothing about the book, and shortly before his death, with the desire of saving his friend, be withdrew his statement concerning Garnet's complicity in the Spanish negotiations, and denied that he had seen him or communicated with him for 16 years. His death took place on the 22nd. His last transparent falsehoods had removed any thoughts of leniency in the government. He was now classed with the other conspirators, and though he had never been convicted of any crime or received sentence, his corpse was decapitated and he was attainted by act of parliament. Tresham had married Anne, daughter of Sir John Tufton of Holtfield in Kent, by whom he had two daughters. His estates passed, not withstanding the attainder, to his brother, afterwards Sir Lewis Tresham, Bart.

TRESPASS (O. Fr. Irespar, a crime, properly a stepping across, from Lat. trans, across, and passus, step, cf. "transgression," from transgredi, to step across), in law, any transgression of the law less than treason, felony or misprision of either. The term includes a great variety of torts committed to land, goods or person, distinguished generally by names drawn from the writs once used as appropriate to the particular transgression, such as vi et armis, quare clausum fregit de bonis asportatis, de mxore abducta cum bonis viri, quare flium eb heredem rapuit, \&cc. Up to 1694 the trespasser was regarded, nominally at any rate, as a criminal, and was liable to a fine for the breach of the peace, commuted for a small sum of money, for which 5 Will. and Mar. c. 12 (1693) substituted a fee of 6 s . 8d. recoverable as costs against the defendant. Trespass is not now criminal except by special statutory enactment, e.g. the old statutes against forcible entry, the game acts, and the private acts of many railway companies. When, however, trespass is carried suffciently far it may become criminal, and be prosecuted as assault if to the person, as nuisance if to the land. At one time an important distinction was drawn between trespass general and trespass special or trespass on the case, for which see Tort. The difference betwieen trespass and case was sometimes a very narrow one: the general rule was that where the injury was directly caused by the act of the defendant the proper remedy was trespass, where indirectly case. The difierence is illustrated by the action for false imprisonment: if the defendant himself imprisoned the plaintiff the action was trespass; if a third person did so on the information of the defendant it was case. A close parallel is found in Roman law in the arlio directa under the lex Aquilia for injury caused directiy, the actio wilis for that caused indirectly. One of the reasons for the rapid extension of the action on the case, especially that form of it called assumpsif, was no doubt the fact that in the action on the case the defendart was not allowed to wage his Jaw (see Wager).

In its more restricted sense trespass is generally used for entry on land without lawful authority by cither a man, his gervants or his cattle. To maintain an action for such trespass the plaintift must have posscssion of the premises. The quantum of possession necessary to enable liin to bring the action is often a quetion difficult to decide. In most instances the fonant can bring trespass, the reversioner only case. Remedie for treapasa are cilher judicial or extra-judicial. The mey
minute invaston of privale right is trespass, though the damag minute invasion of pirivate right is trespass, thoughte dameges!
may be nominal if the injury was trivial. On the other hand, they may be exemplary if circumstances of aggravation were present. Pleading in tbe old action of trespass was of a very technical nature, but the old-fashioned terms alia enormia, replication de smjuria, new assignment, \&c., once of such frequent occurrence in the reports, are of merely historical interest since the introduction of a simpler system of pleading, unless in those American states where the old pleading has not been reformed. The venue in trespass was formerly local, in case transitory. In addition to damages for trespass, an injunction may be granted by the court. The principal instances of exira-judicial remedies are distress damage feasant of eattle trespassing, and removal of a trespasser without unnecessary violence, expressed in the terms of Latin pleading by molliter manus imposuit.

Trespass may be justified by exercise of a legal right. as to serve the process of the law. or by invitation or licensc of the owner. or may be excused by accident or inevitable necessity, as deviation from a highway out of repair. Where a man abuses an authority given by the law, his wrongful act relates back to his entry. and he becomes a trespasser ab initio, that is, liable to be treated as a trespasser for the whole time of his being on the land. Mere breach of contract. such as refusal to pay for wine in a tavern which a person has lawfully entered, does not constitute him a trespasser abinitio. A trespass of a permanent nature is called a continuing trespass; such would be the permitting of one's cattle to feed on another's land without authority.
In Scots law trespass is used only for tarts to land. By the Trespass (Scotland) Act 1865 trespassers are liable on summary conviction to fine and imprisonment for encamping. lighting fires, \&c., on land without the consent and permission of the owner.
TRES TABERNAE (Three Taverns), an ancient village of Latium, Italy, a post station on the Via Appia, at the point where the main road was crossed hy a branch from Antium. It is by some fixed some 3 m . S.E. of the modern village of Cistema just before the Vis Appia enters the Pontine marshes, at a point where the modern road to Ninfa and Norba diverges to the north-east, where a few ruins still exist (Grotte di Nottola), 33 m . from Rome. It is, however, more probable that it stood at Cisterna itself, where a branch road running from Antium by way of Satricum actually joins the Via Appia. Ulubrac, mentioned as a typical desert village by Roman writers, lay in the plain between Cisterna and Sermoneta. Tres Tabernac is best known as the point to which St Paul's friends came to mect him on his journey to Rome (Acts xaviii. 15) It became an episcopal see, but this was unived with that of Velletri in 592 owing to the desertion of the place.

The name occurs twice in other parts of Italy as the name of post stations.
TRESVIRI, or Triurvirr, in Roman antiquities, a board of three, either ordinary magistrates or extraordinary commissioners.
1. Trespiri capitales, whose duty it was to assist the higher officials in their judicial functions, especially criminal, were first appointed about 289 B.c., unless they are to be identified with the trespiri nocturni (Livy ix. 46, 3), who were in existence in 304. They possessed no criminal jurisdiction or jus prensionis (right of arrest) in their own right, but acted as the representatives of others. They kept watch over prisoners and carried out the death sentence (e.e. the Catilinarian conspirators were strangled by them in the Carcer Tullianum); took accused or suspected persons into custody; and exercised general control over the city police. They went the rounds by night to maintain order, and had to be present at outbreaks of firc. Amongst ather things they assisted the aediles in burning forbidden books. It is possible that they were entrusted by the practor with the settlement of certain civil processes of a semi-criminal nature, in which private citizens acted as prosecutors (sce G. Cintz in Rhcimisches Museum, xxx. 16.3). in Rscinisches Museum, xxx. 162).
he ssoramenfa (deposit iorleited by and examined the plea of exemption ned the plea of exemption
act as jurymen. Cacsar act as jurymen. Cacsar
uguatus reverted to threc. uguatus reverted to threc.
2. Tressiri apulowas, a priestly body (open from its first institution to the plebeians), assisted at public banquets. Their nember was subsequently increased to seven, and by Caesar to ten, although they continned to be called septewdiri, a name which was still in use at the end of the 4th century A.D. They were first created in 196 B.c. to superintend the epulum Josis oan the Capitol, but their services were also requisitioned on the occasion of triumphs, imperial birthdays, the dedication of temples, games given by private individuals, and so forth, then entertainments were provided for the people, while the senate dined on the Capitol.
3. Tresviri monetales were superintendents of the mint. Up to the Social War they were nominated from time to time, but afterwards became permanent officials. Their number was increased by Caesar to four, but again reduced by hugustus. As they acted for the senate they only coinid copper money under the empire, the gold and silver coinage being under the exclusive control of the emperor. The oficial title was "tresviri sere argento auro flando feriundo."
4. Tressiri reipablicae constifucndae was the tile bestowed upon Octavianus, Lepidus and Antony for five years by the ler Titia, 43 s.c. The coalition of Julius Caesar, Pompey and Crassus has also been wrongly called a "triumvirate," but they never had the title tresviri, and held no office under that name:
See T. Mommsen, Romisches Slaatsrecht (1888), ii. 594-601, 638، 601,718 ; J. Marquardt, Romasche Slaakserwallung (1885), iii. 347.
TREVELYAM, SIR GEDROE OTTO, BaRT. (1838 British author and statesman, only son of Sir Charles Trevelyan, was born on the 20th of July 1838 at Rothley Temple, Leicestershire. His mother was Lord Macaulay's sister. He was educated as Harrow and at Trinity College, Cambridge, where he was second in the classical tripos. In 1861 he wrote his Horace af the Universily of Athens, a topical drama in verse, parts of which are said to have offended Whewell and lost Trevelyan a fellowship. The following year he went out as a civil servant to India, where he spent several years. During his stay he contributed "Letters of a Competition Wallab" to Macmillan's Magarime (republished 1864). Catmpore, an account of that terrible tragedy, was published in 1865 . During the same year be was elected to parliament for Tynemouth im the Literal interest. In 180 ; he wrote Itie Ladies in: Parliamend, a humorous political brochure in verse. At the general election of 1868 he was returned for the Hawick burghs, which be continued to represent until 1886. When the first Gladstone ministry was formed, in December 1868, Trevelyan was appointed civil lord of the Admiralty, but resigned in July \(\mathbf{8 8 7 0}\) on a point of conscience connccted with the government Education Bill. He adrocated a sweeping reform of the army, including the abolition of the purchase of commissions, and both in and out of parliament he was the foremost supporter for many years of the extension of the county franchise. In ibe session of 1874 he brought forward his Houschold Franchise (Counties) Bill, which was lost on the sccond reading; it was not till ten years later that the agricultural labourer was enfrancbized. Among other causes which he warmly supported vere women's sufirage, a thorough reform of metropolitan wal government, and the drastic reform or aholition of the Howe of Lords. He was also in favour of the direct veto and ether temperance legislation. In 18;6 he published The Life and Leffers of Lord Mocoulay, one of the most admirable and most delightful of modern biographies; and in 1880 he published The Early History of Charles James Fox. In the latter year he - aspointed parliamentary secretary to the Admirally. This ofsice be held until May 1882, when, after the assassination of Lond Frederick Cavendish, he became for two years chief secretary for Ireland. From November 1884 to June 1885 le was chancellor of the duchy of Lancaster. In Pehruary became secretary for Scotland. but resigned on the on account of his disagreement with some of Irish Home Rule proposals. The same year father in the baronetcy. At the general
election of 1886 Sir George Trevelyan lost his seat for Hawick. As a representative of the Unionist party he took part in the Round Table Conference, and, being satisfied with the modifications made by Mr Cladstone in his Home Rule scheme, be formally rejoined the Liberal party. In August 1887 be re-entered the House of Commons as member for the Bridgeton division of Clasgow; and from 1892 to 1895 he was secretary for Scotland. Early in 1897 he resigned his seat in parliament and retired into private life. In 1899 he published the first volume of a History of the American Revolution, which was completed (3 vols.) in 1905; in the latter year, as Interludes in Prose and Verse, be republished his early classical jewx d'esprit and Indian pieces. He had married in 1869 Caroline Philips, whose father was M.P. for Bury. His eldest son, Charles Philips Trevelyan (b. 187o), becamc Liberal M.P. for the Elland division of Yorkshire in 1899, and in 1908 was appointed parliamentary secretary to the Board of Education. The third son, George Mlacaulay Trevelyan (b. 1876), became well known as a brilliant historical writer, notably with two books on Garibaldi (1907 and 1909).

TREVET (or Thivet), MICHOLAS (c. 1258-c. 1328), English chronicler, was the son of Sir Thomas Trevet (d. 1283), a judge, and became a Dominican friar. After studying at Oxford and in Paris, he spent most of his subsequent years in writing and teaching, and died about 1328 . His chlef work is his Annales sex regum Anglice, a chronicle of English history covering the period between 1135 and 1307; this is valuable for the later part of the reign of Henry III. and especially for that of Edward I., who was the author's contemporary. A member of the same family was Sir Thomas Trivit (d. 1383), a soldier of repute, who saw a good deal of service in France, and died in Oclober 1383.
The Annales were published in Paris in 1668, in Oxford in 1719, and were edited by Thomas Hog for the English Historical Society in 1845. Mlanuscripts are at Oxford and in the British Museum. Trevets other historical works are Catologus regum anglo-saxanum durante heptarchia, and Les Cronicles qe frere N. Trevet escript a dame Marse ("Marie " was Edward 1.'s daughter Mary). From the latter Chaucer is believed to have obtained his Man of Latv's Tale. Trevet also wrote a number of works of a theological and philological character.
TREVI (anc. Trebice), a town of the province of Perugia, Italy, 30 m . S.E. of Perugia and 5 m . S. of Foligno by rail. Pop. (1901), 5708. The town stands on a steep bill 1355 it . ahove sea-level. Several of its churches are architecturally interesting, especially the Madonna delle Lacrime (\(\mathbf{1 4 8 7}\)) outside the town, the elegant early Renaissance architecture of which resembles that of the Madonna del Calcinaio at Cortona, and most of them (and also the municipal picture gallery) contain paintings by artists of the Umbrian school-notably Lo Spagna, a pupil of Perugino. S. Emiliano has a group of three altars decorated with fine sculptures by Rocco da Vicenza (1521). The ancient town is believed to have been situated \(1 \frac{1}{2} \mathrm{~m}\). to the north-west, but little is known of it, and no remains save inscriptions exist.
TREVIGLIO, a town of Lombardy, Italy, in the province of Bergamo, 14 m . by rail S . by W. of that town, 410 ft . above sea-level. Pop. (1got), 5809 (town); 14.897 (commune). It has a fine church (5 . Martino) containing pictures by Butinone and Zenale (\(1436-1526\)), both natives of the town, and having a lofty campanile of the 13 th and 14 th centuries. It bas important silk works, wool-spinning, and other manufactories. It is a junction for Verona, Cremona and Bergamo, and steam tramways run to Monza, Lodi, \&c.
TREVIRANUS, GOTTPRIED REINHOLD (1776-1837), German naturalist, was born at Bremen on the 4 th of February 1776. He studied medicine at Cöttingen, where he took his doctor's degree in 1796, and a year later he was appointed professor of medicine and mathematics in the Bremen lyceum. He died at Bremen on the 16th of Fehruary 1837.
In the first of his larger works. Biologie; oder die Philosophic der lebenden Nafkr. which appeared from 1802-1805. Treviranus, gave clear expression to the theory of "descent with modification." He believed that simple forms (Protists), which he termed " zoopbytes,"
were" the primitive types
classes had arisen by grad fundamental proposition physical influences which degree and direction." to the influence of the \(m\) variation, but laid empha adaptation to surroundin regard to the priority and
by Treviranus to the the he was a learned naturalist and an acute thinker. His most important later work of a synthctic nature was entitled Erscheinungen zud Gesetze des organaschen Levens (1831).

His younger brother, Ludolph Christian Treviranus (1779-1864), studied medicine at Jena, and was successively professor of medicine at Bremen lyceum (1807), professor of natural history at Rostock (8812), professor of botany and director of the botanical garden at Breslau (18 r 6), and professor of botany at Bonn (1830)

TREVISO (anc. Taroisium), a town and episcopal see of Venetia, Italy, capital of the province of Treviso, 49 It . above sea-level. Pop. (1901), 16,933 (town); 36,433 (communc). It is situated on the plain between the Gulf of Venice and the Alps, 18 m . by rail \(\mathbf{N}\). of Venice, at the confluence of the Sile with the Botteniga. The former flows partly round its walls, the latter through the town; and it has canal communication with the lagoons. It is an old town, with narrow irregular colonnaded streets and some interesting old frescoed houses. The cathedral of San Pietro, dating from 1141 and restored and enlarged in the 15 th century by Pietro Lombardo, with a classical racade of \(4 \$_{3} 6\), has five domes. It contains a fine "Annunciation" by Titian (1519), an imporeant "Adoration of the Shepherds" by Paris Bordone (born at Treviso in 1500), and frescoes by Pordenone. There are also sculptures by Lorenzo and Battista Bregno and others. The Gothic church of San Niccold (\(1310-1352\)) contains a fine tomb by Tullio Lombardo, and a large altarpiece by Fra Marco Pensa. bene and others; in the chutch and adjoining chapter-house are frescoes by Tommaso da Modena (1352), some frescoes by whom (life of S. Ursula) are also in the Museo Civico. The Monte de Pietà contains an "Entombment " by an artist of the school of Pordenone (wrongly attributed to Giorgione). The churches of S. Leonardo, S. Andrea, S. Maria Maggiore, and S. Maria Maddatena also contain art treasures. The Piazza dei Signoni contains picturesque brick battlemented palaces-the Salone del Gran Consiglio (\(\mathbf{1 1 8 4}\)) and the Palazzo del Commune (1268). Treviso is the seat of various manufactures--ironworks and pottery, macare:i, cotton-spinning and rice-husking, paper, printing, brushes, brickyards, flourmills-and is the centre of a lertile districl.

The ancient Tarvisium whs a municipium. It lay off the main roads, and is hardly nemtioned by ancient writers, though Pliny speaks of the Silis as flowing "ex montibus Tarvisanis." In the 6th century it appears as an important place and was the seat of a Lombard duke. Charlemagne made it the capital of a marquisate. It joined the Lombard league, and was independent after the peace of Constance (1883) until in 1339 it came under the Venctian sway. From 1518 it was for a short time the seat of a university. In the igth century its walls and ramparts (still extant) were rencwed under the direction of Fra Giocondo, two of the gates being built by the Lombardi. Treviso was taken in 1797 by the French under Mortier (duke of Treviso). In March 1848 the Austrian garrison was driven from the town by the revolutionary party, but in the following June the town was bombarded and compelled to capitulate.
TREVITHICK, RICHARD (1771-1833), English engineer and inventor, was born on the r3th of April in the parish of IHogan, Cornwall, and was the only son of Richard Trevithick (1735-i797), manager of the Dolcoath and other important Cornish mines. He attended his first and only school at Camborne, and was in general a slow and obstinate scholar, though he showed considerable aptitude for figures. He inherited more than the average strength for which his family was
famous; he stood 6 ft .2 in . in height, and his feats in wrestling and in lifting and throwing weights were unexampled in the district. At the age of eighteen he began to assist his father, and, manifesting great fertility of mechanical invention, was soon recognized as the great rival of James Watt in improvements on the steam-engine (\(q . v\). .). His earliest invention of importance was his improved plunger pole pump (1797) for deep mining, and in 1798 he applied the principle of the plunger pole pump to the construction of a water-pressure engine, which he subsequenlly improved in various ways. Two years later he built a high-pressure non-condensing steamengine, which became a successful rival of the low-pressure steam-vacuum engine of Watt. He was a precursor of George Stephenson in the construction of locomotive engines. On Christmas Eve 1801 his common road locomotive carried the first load of passengers ever conveyed by steam, and on the 24th of March 1802 he and Andrew Vivian applied for a patent for steam-engines in propelling carriages. In 1803 another steam, vehicle made by him was run in the streets of London, from Leather Lane along Oxford Street to Paddington, the return journey being made by Islington. He next directed his attention to the construction of a steam locomotive for tramways, with such success that in February 1804 at Pen-ydarran in Wales he worked a tramroad locomotive which was able to haul twenty tons of iron; a similar engine was supplied to the Wylam colliery (Newcastle) in the following year. In 1808 he constructed a circular railway in London near Euston Square, on which the public were carried at the rate of twelve or fifteen miles an hour round curves of 50 or 100 ft . radius. Trevithick applied his high-pressure engine with great success to rock boring and breaking, as well as to dredging. In iso6 be entered into an engagement with the board of Trinity House, London, to lift ballast from the bottom of the Thames, at the rate of 500,000 tons a year, for a payment of 6 d . a ton. A lintle later he was appointed to execute a driftway under the Thames, but the work was abandoned owing to the water breaking in. He then set up workshops at Limehouse, for the construction of iron tanks and buoys. He was the first to recognize the importance of iron in the construction of targe ships, and in various ways his ideas also influenced the construction of stcamboats. In the application of steam to agriculture his name occupies one of the chicf places. A highpressure steam threshing engine was erected by him in 1812 at Trewithen, while in the same year. in a letter to the Board of Agriculuure, he stated his belief that every part of agriculture might be performed by steam, and that such a use of the steam-engine would "double the population of the kingdom and make our markets the cheapest in the world." In 1814 he entered on an agreement for the construction of engines for mines in Peru, and to superintend their working removed to Peru in 1816. Thence he went in 1822 to Costa Rica. He returned to England in 1827 , and in 1828 petitioned parliament for a reward for his inventions, but without success. He died, penniless, at Dartford on the 22nd of April 1833.
A Life of Richard Trevitheck, with an cccoumt of his Inventions was published in 1872 by his third son, Francis Trevilhick (1812-1877).
TREVOR, SIR JOHN (16:6-1672), English politician, was a son of Sir John Trevor (d. 1673) of Trevelyn, Denbighshire. His father was a member of parliament under James I. and Charles 1., and sat also in the parliaments of Oliver and of Richard Cromivell, and was a member of the council of state during the Commonwcalth. One of his uncles was Sir Sach vill Trevor (d. c. 1640), a naval officer, who was knigbted I and another was Sir Thomas Trevor (\(1586-165\)
decided in favour of the Crown in the famous
legality of ship-money, and was afterwards imp
Sir John Trevor was returne
for Flintshire. After fillin
Commonweateh and I
iowards the end of 1668 , just after be had belped to arrange an important treaty between Englard and France. He married Ruth, daughter of the great John Hampden, and died on the 28 th of May 1672.
His second son, Thomas, Baron Trevor (\(1658-1730\)), was knighted in 1692 as solicitor-general and in 1605 became attorneygeneral. In ifor he was appointed chief justice of the common pleas, and in 1752 be was created a peer as Baron Trevor of Brombam. On the accession of George I. in 1754 be was deprived of the justiceship, but from 1726 to 1730 he was lord privy seal Three of his sons succeeded in turn to his barony, and a fourth son, Richard Trevor (1707-1771), was bishop of St Davids from 1744 to 1752 , and then bishop of Durham. Robert, 4th Baron Trevor and ist Viscount Hampden (\(1706-1783\)), represented his country at the Hague from 1739 to 1746, during which time he maintained a regular correspondence with Horace Walpole. He took the additional name of Hampden in 1754, on succeeding to the estates of that family, and in 1776, twelve years after he had become Baron Trevor, he was created Viscount Hampden. From 1759 to 1765 be was joint post-master-general. He wrote some Latio poems which were published at Parma in 1792 as Poemala Hampdeniana. His second son, John Hampden-Trevor (\(1749-1824\)), British minister at Munich from 1780 to 1783 and at Turin from 1783 to 1708 , died only three weeks after he had succeeded his brother Thomas as 3rd Viscount Hampden, the titles becoming extinct.
Anot her member of this family was Sir John Trevor (\(1637^{-}\) 3717). Speaker of the House of Commons (1685). A partisan of James 11., he was deprived of his office on the accession of Willism III., but in 1690 he was again a member of parliament, becoming Speaker for the second time in 1690 and master of the rolls in 1693 . In 1695 be was found guilty of accepting a bribe and was expelled from the House of Commons, but he retained his judicial position until his death on the zoth nf May 1717. Through his daughter Anne Sir John was the ancestor of the Hills, marquesses of Downshire, and of the family of HillTrevor, Viscounts Dungannon from 1766 to 1862.
TREVOUX, a town of eastern France, chief town of an arrondissement in the department of Ain, 16 m . N. of Lyons on the Paris-Lyons railway. Pop. (1906), 1934- The town is situated on the slope of the left hank of the Sadne, which is here crossed by a suspension bridge and is dominaied by two towers, remains of a feudal castic of the 12 th century. The fortifications date from the isth century, and the church from the same period. The me-court is a building of the 17 th century, and was once the seat of the parlement of Dombes. Trevoux has a sub-prefecture and a tribunal of first instance. Gold and silver wire-drawing, introduced into the town by Jews in the 14th century, and the manufacture of apparatus for wire-drawing, are its chief industries.
Trévoux (Trevos) was hardly known before the ith century, after which it was included in the domain of the lords of ThoireVillars, from whom it acquired its freedom. It was bought by the Bourbons in 5402 , heame the capital of the Domhes, and had its own mint. In 1603 a well-known printing works was eltablished there, from which in the 18 th eentury the Jownai de Intoouse and a universal dictionary known as the Diction,neire - Jrevoux were issued hy the Jesuits.

TRILL, in English law, the hearing by a court of first instance the haves of fact and law involved in a civil or criminal The term is inappropriate to rchearing by an appelate Trial follows upent the completion of the steps nececsary the parties belore the court and to adjust the issuas

ramera, or to attempl
The essential part of Eunty to both sides Whe rest of Europe. the d. Whereas under the
continental system the bulk of the proofs in civil cases are reduced to writing before the hearing.

The modes of trial have altered with legal development in English as in Roman law (see Action). Many forms of trial, notably those hy ordeal, by wager of battle or of law (see Ordeal and Wager), and by grand assize, have become ohsolete, and new forms have been created by legislation in order to meet altered circumstances of society. Up to a very recent date the tendency of the Roman and English systems was in upposite directions. In the former and in systems founded on it, such as the Scottish and French, trial hy the judge became the rule, in the latter trial by judge and jury. In England the metbod of trial of issues of fact arising under the common haw was by jury and a bench of judges. In truth the trials were the sittings of commissioners sent to inquire and report with the ald of the neighbourhood on questions of crime and civil wrongs in a county; the practice is summed up in the old phrase ad quaestionem juris judices respondeant, ad quaestionem facti juratores. In courts which administered equity or derived their law or procedure from the civil or canon haw no jury was used, and the judges determined both law and fact. The system of trial before a full bench of judges even with a jury is now used on the European continent, but has been superseded in England hy trial before a single judge with a jury except in the rare cases of trial at bar. This latter mode of trial is a survival of the mode universal in the superior courts before the writ of nisi prius, and is now only used in the king's bench division, when claimed by the Crown as of right or in cases of unusual importance and difficulty. Recent instances are the trial in 1904 of Arthur Lynch for treason in South Africa, and in 1905 of questions raised on a petition of right in respect of a claim to make the Crown responsible on the conquest of the Transvaal for acts of the Transvaal government belore or during the war.
The necessity for trial by jury has been removed in many cases by legislatlon and rules of court (see Juxy; Sunnary Jursoicrion), and the present English practice is summarized in the following statement.
In the High Court of Justice in Eagland and Ireland several modes of trial are now used:-
i. Trial by judge with a jury used in the king's bench divisioa and in probate and matrimonial cases. There is a right to have a jury as a matter of course in actions of delamation, lalse imprisonment, malicious prosecution, seduction and breach of promise of marriage. In other cases, subject to exceptions to be noted, a jury can be obtalned on the application of either party.
2. Trial by a judge without a jury is invariabie in the chancery division and now common in the other divisions. Cases in the chancery division are not tried with a jury unkess a apecial order io made (Ord. 36, r. 3); and the High Court in cases in which trial without jury could be ordered without consent (1875) still retains the power of wo.trying ,thern, and bas also acquired power to direct trial without a jury of any issue requiring prolonged examination of documents or accounts or scientific or bocal investigation.
3. Trial with assessors, usual in admiralty cases (the assessors being nautical) hut rare in other divisiona.
4-Trial by an offcial referce in certain cases invoiving much detail (R.S.C.O. 36). In the county court the ordinary mode of trial is by the judge alone, but a jury of eight is allowed in certain cases on application, and in the admiralty jurisdiction marine assescors can be called in. In other local civil courts the trial is olten by jury. as in the mayor's court of London. sometimes without, as in the viechancellor's court of the university of Oxford. In all civil cases the parties can by a proper submission have a trial before an arbitrator selected by or for them. As regards criminal cases the right to trial by due process of law before condemnation is given by art. 29 of Magna Carra : and ithe 1rial must be by jury unless a statute otherwise provides (see Court-Martial: Sumury Jurisdiction).
The parties may be represented by lawyers, soliciior or counsel or both, according to the court, in county courts by accredited lay agents, or may conduct their case in person. The trial is carried on by stating 10 the court the pleadings if any and by opening the plaintif's casc. This is forlowed by she evidence of the witnesses. who are sworn and examined and crossexamined. On the completion of the plaintiff's case and evidence, the delendant's case is stated and evidence adduced in support of it. The plaintiff or his cawyer has as a rule the reply or hast word, though in some courts, described as single speech courts, no reply is given. At the conclusion ihe judge sums up the law and facts of the case to the jury. if there is one, and their verdict is returned. or il there is no jury
gives judgment，stating his conclusions on the law and lacte involved．
There remain certain modes of trial not obsolete but rarely used． Such are impeachment of the House of Commons before the House of Lords；and in the case of a charge of treason or felony by 2 person having privilege of peerage，trial on indictment before the House of Lords，or in vacation before the court of the lord high steward． Trials by certificate，by inspection and by record，are obsolete．
The decisions on a trial at first instance are reviewed by appeal （q．⿻上丨．），or in trial cases heard before a jury by application for a new trial，where the judge has not directed the jury correctly as to the law or has permitted them to consider inadmissible evidence，or the jurors have in their verdict acted without evidence or against the weight，i．e．the quality not the quantity of the evidence．Under the Criminal Appeal Act 1907 the decisions in criminal trials on indictment，whether on matters of law or of fact or on mixed ques－ tions of haw or fact，are reviewable by the court of criminal appeal； but that court has no power to order a retrial of the case before a jury．
Scotland．－Jury trial was introduced into Scotland for certain classes of civil cases in the 19th century but is not much used．In criminal cases it is used where summary jurisdiction has not been conferred．
Ireland．－The law of Ireland as to trials is in substance the same as in England，except as to appeals in criminal cases．

United Siates．－In the United States the system of trial is that of the English common law as varied by Federal and state legishation．
（W．F．C．）
TRIANGLB，in geometry，a figure enclosed by three lines； if the lines be straight the figure is called a plane triangle；but if the figure be enclosed by lines on the surface of a sphere it is a spherical triangle．The latter are treated in Triconometry； here we summarize the more important properties of plane triangles．In a plane triangle any one of the angular points can be regarded as the vertex；and the opposite side is called the base． The three sides and angles constitute the six elements of a triangle；it is customary to denote the angular points by capital letters and refer to the angles by these symbols；the sides are usually denoted by the lower case letter corresponding to that of the opposite angular point．Triangles can be classified according to the relative sizes of the sides or angles．An equilateral tri－ angle has its three sides equal；an isosceles triangle has only two sides equal；whilst a scalene triangle has all its sides unequal． Also a right－angled triangle has one angle a right angle，the side opposite this angle being called the hypothenuse；an obtuse－ angled triangle has one angie obtuse，or greater than a right angle；an acute－angled triangle has three acute angles，i．e． angles less than right angles．The triangle takes a prominent place in book i．of Euclid；whilst the relation of the triangle to certain circles is treated in book iv．（See Geometry： 8 Euclidean．）
The following is a summary of the Euclidean results．The angles at the base of an isosceles triangle are equal and converscly；hence it follows that an equilateral triangle is also equiangular and con－ versely（i．5．6）．If one side of a triangle be produced then the exterior angle is greater than either of the two interior opposite angles（i．16），and equal to their sum（i．32）；hence the sum of the three interior angles equals two right angles．（ln i． 17 it is shown that any two angles are less than two right angles．）The greatest angle in a triangle is opposite the greatest side（i．18，19）． On the identical equality of triangles Euclid proves that two tri－ angles are equal in all respects when the following parts are equal each to each（a）two sides，and the included angle（i．4），three sides （i．8，cor．），two angles and the adjacent side，and two angles and the side opposite one of them（i．26）．The mensuration is next treated． Triangles on the same base and between the same parallels，i．e． having the same altitude，are equal in area（i．37）；similarly triangles on equal bases and between the same parallels are equal in area （i．38）．If a parallelogram and triangle be on the same base and between the same parallels then the area of the parallelogram is double that of the triangle（i．41）．These propositions lead to the result that the area of a triangle is one hall the product of the base into the altitude．The penultimate proposition（i．47）establishes the beautiful theorem，named after Pythagoras，that in a right－ angled triangle the square on the hypothenuse equals the sum of the squares on the other two sides．Two important propositions occur in book ii．viz． 12 and 13；these may be stated in the follow． ing forms：If \(A B C\) is an obtuse－angled triangle with the obtuse angle at \(C\) and a perpendicular be drawn from the angular point \(A\) cutting the base BC produced in D ，then \(\mathrm{AB}^{3}\)（i，e，square on the side subtending the obtuse angle）\(=\mathrm{BC}^{2}+\mathrm{CA}^{2}+2 \mathrm{BC} \cdot \mathrm{CD}\)（ii．\({ }^{\text {t2 }}\) ）； in any triangle（with the same construction but with the side AC subtending an acute angle B ，we lave \(\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{CB} \cdot \mathrm{BD}\) （see Triconombtry）．

Book iv．deals with the circles of a triangle．To inscribe a circle in a given triangle is treated in iv． 4 ；to circumscribe a circle to a given trangle in iv．5．The centre of the first circle is the intersection of the bisectors of the interior angles；if the meet of the bisectors of two exterior angles be taken，a circle can be drawn with this point as centre to touch two sides produced and the third side；three such circles are possible and are called the escribed circles．The centre of the circum circle is the intersection of the perpendiculars from the middle points of the sides．Concerning the circum circle we observe that the feet of the perpendiculars drawn from any point on its circumference to the sides are collinear，the line being called Simson＇s line．We may here notice that the perpendiculars from the vertices of a triangle to the opposite sides are concument ；their meet is called the orthocentre，and the triangle obtained by joining the feet of the perpendiculars is called the pedal triangle．Also the lines joining the middle point of the sides to the opposite vertices，or medians，are concurrent in the centroid or centre of gravity of the triangle．There are several other circles，points and lines of interest in connexion with the triangle．The most important is the＂nine point circle＂so called because it passes through（a）the middle points of the sides；（b）the feet of the perpendiculars from the vertices to the opposite sides：and（c）the middle points of the lines joining the orthocentre to the angular points．This circle touches the inscribed and escribed circles．For the Brocard points and circle．Tucker＇s circles－with the particular forms coaine circle，triplicate ratio（T．R．）circle Taylor＇s circle，McCay＇s circled \＆c．．see W．J．M＇Clelland，Geomelry of the Circle；or Casey，Sequal to Euchud．
TRIANGLE，in music（Fr．triangle，Ger．Triangel，Ital．triangolo）， an instrument of percussion of indefinite musical pitch，consisting of a triangular rod of steel，open and slightly curved at one corner． The triangle，suspended by a loop，is played by means of a steel stick with a wooden handle．．Varied rhythmical effects and different grades of forte and piano can be obtained．A sort of tremolo or roll can be produced by striking each end of the tri－ angle altemately in rapid succession．When the triangle is scored for on a separate staff，the treble clef is used，but it is more often included with the bass drum on the bass stave．The tone of the triangle is clear and ringing，but it should have no definite pitch．The small triangles are the best．Beethoven，Mozart， Weber and other great masters employed the instrument．
TRIASSIC SYSTEM，in geology，the lowest or youngest system of the Mesozoic era；it occupies a position above the Permian and below the Jurassic system of rocks．The principal forma－ tions of the type region，Germany，are the Bunter，Muschelkalk and Keuper；these were for the first time grouped together

under the systematic name＂Trias＂by F．von Alberti（ \(\mathbf{1 8 3 4} \mathbf{3}_{4}\) ）． A description of the rocks in these formations will be found under their respective headings．For 2 long time this German development of the strata was regarded as typical of the period； later，however，the discovery of another more fossiliferous phase in the Alps and Mediterranean region，and subsequently in Asia and elsewhere，led geologists to take a different view of the system as 2 whole．It was clearly seen that there existed two distinct phases of Triassic rock－building，the ane con－ tinental（terrestrial and hagoonal），the other marine（pelagic）．

The original Trias of the "Germanic " area (ineluding Great Britain) must be understood as a special local expression of the continental Trias, while the thoroughly marine type represents the normal aspect of sedimentation. Similarly, the fauna of the marine Trias is the standard for comparison with the life of other geological systems. The term Trias-indicative of the threefold grouping in Cermany-thus loses its original significance when applied to the workd-wide deposits of the period; its use, however, is continued by general consent.
Continenal Trias.-The records of the terrestrial and tagoonal eonditions during this period are to be lound in the coarse conglomer. ates, red and motticd andstones, marls and clays with their accompanying beds of dolomite and limestone, and layers of gypsum. anhydrite, rock-salt and coal. The coarser breccias and conelomerates appear to represent ancient arrecs and shore deposits, and in part at least their formation may have been due to torrenial action. The remarkable oblique bedding in many of the sandstones, coupled with the fact that the sand grains are often very perfectly rounded, points to the transporting action of wind. Even tbe pebbles occasionally exhibit the dreskunicr form. familiar in our modery deserts. But the marls, murls and many sandy beds were certainly deposited in sheets of water, which were evidently shallow and subject to frequent periods of desiceation. Of this *e have evidence in the great abundance of reptilitin foot-prints. of rain pits, ripple marks, and sun cracks upon what were once arface muda and sands. That the drying up of the water sheets repeatedly produced a highly saline condition is shown by the common oceurrence of rock-salt, gypsum and anhydrite. In short, the physical conditions under which the continental Trias was formed appear to have been similar to those obtaining at the present day in the Caspian region.
In Europe the earlicr deposits of the continental Trias occupy a compact area covering nearly the whole of Germany, whence they soy be followed into central and northern England. Heligoland. Cpper Silesia and the Vosges. Another tract lay over what are now the western Alps and southeast France ; also in the Pyrences. Balearic Jslands. Sardinia, Sicily and southern Spain. and on to the morth coast of Africa. In the Carpathians the same rorks appear. and they cover a large area in northeast Russia (Tartarian), and eorth-west Siberia. Later, the Muschelkalk limestones point to a temporary influx of the sea involving most of the above regions except Britain and Rusia. Three encroachments of the sca are indicated. each followed by a period of excessive evaporation and cont raction: these happened in the time of the Röih. the Lower and the U'pper Muschelkalk. Finally the last infux, that of the Rhactic Sca, not only spread much beyond the limits of the carlier incursions but remained as the forerunner of the succeeding Jurassic waters In North America the continental Trias appears with a close resemblance to that of western Europe along the At lantic coastal stip Irom Prince Edward, Ishnd, through New Brunswick, Nova Scotia, Connecticut. New York, Pennsylvania, Virginia, to North Carolina. These are the rocks of the Newark series. Southrards it may be traced is Honduras. the Andes. Brazil. Argentina and Chile. Another large arca in the western interior. Wyoming and New Mexico, is occupied hy "red beds" (600-2000 ft., in part Permian) with gypsum and rock-salt. In southern Arrica the upper part of the Karoo formation appears to represent Triassic time-the Stormberg beds (Permo-Trias) and the Beaufort beds (Rhaetic). In India the Panchet beds of the Condwinna system and in New South Wales the Hawkesbury series (W'ianametta shales with coals and iron-stone, Hawkesbury sandstone, and at the base the Narraburra beds) belong to about the same horizon. In New Zealand the Otapiri. Wairoa and Oreti scrics appear to contain fossils indicating a transition from Permian to Rhactic.
The Hapine or open-sea Trias.-This type of Triasic deposit, is frequenaly relerred to under the titles "Alpine."." Mediterrancan" ar "Pelagic." It first came inso notice through the discovery of foscits in the neighbourhood of Recoaro and St Cassian on the southern side of the Alps, and these rocks were subseguently corre. tited with those at Hallstatt on the northern side. On boih sides af the Alps rocks of this age fiank the central core, but they are better developed, thicker and less altered towards the eask than towards the west. In the western Alps Triassic beds can be only dimly recognited amonges the masses of schists called the Sehistes.fustres and Buadnerschiefer. In the eastern Alps, however, athough there are sondy and ennglometatic members, such as the Werfen beds and Lunz sandstone, yet the most striking feature, in contrast with the continental Trias, is the prevalence of calcareous and dolomitic arata. to which must be adled the enormously greater abundance of organic remains. The Alpine Trias varics in lithological character so rapidly from point to pornt. and has furthermore been subjected to so much dislocation. that great difficulty has been experienced correlating the beds in different areas and in placing them in their proper onder of sequence. The result of this difficulty has been the production of a nomenciature so unwieldy that no attempt at a detailed expostiton is possible in the space here availuble. The principal members of the Alpine Trias will be found in their correct
relative positions in the table. One of the most otriking aspects of the Alpinc Trias, on both the northern and southern sides, is the great development of dolornite which is 90 prominent a feat ure in the scencry of southerm Tirol (Drei Zinnern, acc.). Some of these rocks contain the remains of corals, still more beat the fossils of calcarcous algae, and although the vicw originally advanced by F.v. Richthofen that they represent Triassic coral reefs has been strongly oppoend, it still seems to be the most reasonable explanation of their origin. The rocks of the marine Trias generally are argillaccous beds and dark limestones; in the Alpine regions many of the latter have been marmorimed. The well-known white marble of Carrara in the Apuan Mountains is a metamorphosed Triassic limestone. The same type of Trias occurs also in south Italy (Longobartion). in Sicily, Barcelona, Balearic Islands, Crere, Bosnia, East Hungary, and the Carpathian Mountains by Bukovina and Dobrudia.

The Alpine-Mediterranean Trias sea evidently had a prolongation into Westem Asia, for in Asia Minor, Armenia and Bokhara rocks with eloscly related fostils have boen found. In Central Asia Triassic rocks are known in Archanistan (sandstonce with coal). Russian Turkestan, and in the Pamir. In India the lower Trias of the Salt Range presents the mort iypical example of the marine deponits of this stage. The Himalayan Trias more perfectly repretents the upper portion of the system. Triassic limestones are found also in Kashmir and Hazara, and shales in Baluchistan. The marine Trias is known in Burma, Tongking. China and northeeast Tibet; also in Japan. Siberia and in the arctic regions of Spitsbergen and Bear Island. In the Australasiatic region the marine Trias is found in the Sunda Jslands, Sumatra, Roth and Timor and in New Caledonia.

Climate. Vulcanism.-There secms little raom for doubt that the climate of Triassic times was, over large tracts of the northern continental region, dry and arid in character, certain leatures in the flora tending to support this view. On the other hand. the southern continental deposits, with Glossopteris and its allies, is more suggestive of a moist climate. There is no evidence of the glacial condition of the preceding Permian period. The Triassic period was one of rest 80 lar as crustal movements were concerned. Volcanic activity, however, was exhibited on a large scale in the north-western part of North Amcrica, the great batholith of the Coast Range being nearly 1000 m . long: in British Columbia and Alaska large bodics of igneous rock are supposed to belong to this period. On the eastern side of the continent the diabase and dolerite lava fiows, veins and sills of the famous Palisades of the Hudson valley belong to the Newark system. In Europe and Asia igneous rocks are scarce, but tufis, porphyrites. \&c., occur in the Schlern district (Upper Cassian age) and at Falzarego Strasse, Trarenanzes (Wengen horizon). in the Alpine region.

Life of the Triassic Period.- The plant life of this period exhibits on the whole a closer relationship with the Jurassic than with the preceding Palaeozoic formations. Flowering plants are unknown in the Triaseic deposits and the dominant forms are all gymnosperms, the prevailing types being ferns and fern-like plants. cycadeans, conicers and cquisetums. The Palaeozoic calamites, sigillarias and lepidodendrons became extinct enrly in this period; but in the southern bemisphere the Glossoptcris hora still held on in consider* able force. Amongst the ferns were Lepidopteris, Sogenoptcris. Danacopicris, with the Carbonifcrous genera Sphesopieris. Pecopteris and others. Equisetiles and Schizoncura became common. Characterist ic conifers were .Vollsid. Araucariles. Brachyphyllum. The Cycadeans were represented by Plerophyllum, Cycadiles, Podozamiles, \&c. Baiera. was the representalive of the ginkgos. Calcartous algae were important rock builders in some of the Triassic seas (Gyroporella, Diplopora). Fish remains are not generally common in the Trias: teeth and scales are crowded together in the "bone beds" in the Rhactic and between the Keuper and Muschelkalk; in the marine Trias of the Alpine region skeletons are much more common. They are abundant also in the bituminous shales of the Connceticut Vallcy and in the Hawkesbury series of New South Walcs. Selachiansare represent ed by species of \(H\) ybodus, \(A\) crodus and Palacobates; dipnoids by Ceratadus and Gosfordia. The ganoids, with Palacozoic as well as younger forms, include Gyrolepis. Scmionotus, Diclyopyge, Graphiurws, Belonorkynchus and Pholidopleuras. Bony fish were very feebly represented. The amphibian labyrinthodonis (Slegocephalia) were numcrous, their bonct being found in the "bone beds". and in the Bunter and Keypet sandstones and theit equivalents in North America, South Alrica and India (Lobyrinthodonf, Afastodonsaurws, Tremalosaurns, Capilosourns). Theit foot prints are often very abundant. e.g. Cheirolherium. The rept iles of the Triassic deposits. unlike the amphibians, which are Permian in character, show a closer relationship with Jurassic forms: one of the most interesting lacts in the life-history of she group is the development during this period of sea-going forms such as at a luter geological period played so prominent a part. Eacly crocodilian reptiles arc repretented by Brlodon, Mysfriasuchus. Staronolepis, Parasuchus; and Rhymcorephalia by Telcrpeton and Hyperodaprdon. Ichihyopterygians were represented by Mirosaurns. Nethosaurus. Cymatosautus; early dinosaurs (camivorous) by Zanclodon. Anchisaurus, Thecodontosaurus. Palarosanris; ihe remarkable theromorphs (anomodonts), by Efginic, Dirynodon, Geikie, Gordonn.

Turtes became well established during this period (Psammockelys, Chelyroow). Of great interest is the discovery of the carliest traces of mammals in the Trias of Europe. South Airica and North America. The imperfoct remains (tecth and jaw-bones) do not admit of any certainty in deciphering their relationships. Wicrocostes from the Rhaetic of England and Würtemberg and Dromotherium from North America are perthaps the best known; Tritylodoz from South Africa may also be added. Among the lower forms of marine life foraminifera and sponges play a subordinate part. Corals, which with the cakareous algae built considerable reels in some regions, at this time began to assume a modem aspect, and henceforth the Hexacorallids took the place of the Palaeozoic Tetrecorallid lorms (Sylophyllum, Pinocophylizm. Thecossmilia). Crinoids were locally very numerous individually (Encrinus lilififormis. Dadocrinus frocilis). Urchins were not very common, but an important change from the Palacozoic to the Mesozoic type of shell took place about this time. Brachiopodis were important; rostrate forms like Terebratula and Rhymchonella from this time onward became more prevalent than broad hinged genera. Pelecypods were abundant, 1 yophoria, Halobic, Daonella, Psendomonotis. Avicula, Gervillio and many others. Gasteropods atso were numerous; at the beginning of the period, as in other groups, many Palacozoic lorms lingered on, but one of the main changes about this time was the development and expansion of siphonostomous lorms with canaliculate shells, Quite the most important Mollusca were the Cephalopods. In the carly Trias there still remained a few of the Palaeozoic genera, Orihoceras.

Hungariks, and forma which linked up the goniatites with the a mmonites, which henceforth took the lead in numbers and variety. Prianolobus, Aspidites, Cellites. Mechoceras. Tirolites. Pipchies, Tropites. Ceratiess, Arecses, Psioceras and Fiemingites are a lew of the prominent Triassic genera. The nautioids were tairly well represented, but they exhibit no cuch marked development from Palaeozoic to Mesozoic types as is shown among the ammonoids.
In the tabulated synopsis of the Triassic system given betow it has been impossible to include many of the names of groups and subordinate divisions. Some of these, such as the terna "Noric" (Norian), have been used in a variety of waya. A clear ancount of the history of the sludy of the Trias will be lound in K. A. won Zittel's Hisory of Geology and Palocomidogy (Eng. trans, London 1901).

References.-The literature of the Trias is very voluminous. A full account, with full references as to date of publication, in Lelhaca.. Geognostio. ed. by F. Frech, Theil II.: Das, Mesazoicum. Bd. i .. Einieciung des Mesozoicum und der Trias" (F. Frech): "Continentale Trias" (E. Philippi and J. Wysogorski). 1903: \({ }^{2 n d}\) Lieferung. "Die asiatische Tris" (F. Noetling). !905; 3rd Licicrung. "Die Alpine Tris des Mediterran-Gebiete. "(E. Von Hathaber). Stutigart. 1905 .
(J. A.. .)

TRIAZINEs, in organic chemistry, a series of cyclic compounds, containing a ring system composed of three carbon and three nitrogen atoms. Three series are possible, the positions of

Comtrinental Trias Marine Trias of the Atptine and Indine Types.

che varions undts of the ring aystent being illustrated in the anpered formulae:-

e.Triazines,

\(\beta\)-Triazince,

Cyanidines.

Pew simple derivatives of the a-series are known, those which have been prepared result by such reactions as the condensation of aminoguanidine or a similar type of compound (e.s. semicarbaride) with ortho-diketones (J. Thiele, Amn., 1898, 302, p 299):

Wolf has obtained a chloro-derivative by the action of potassium cyanide on diazoacetophenone and subsequent treatment with acid. The phen-a-triazines are more numerous, and are obtained either by the action of concentrated acids on the formazyl compounds (E. Bamberger, Ber., 1893, 26, p. 2786):-
 by the reduction of symmetrical acyl-ortho-nitropbenyl hydrazines (c.g. \(\mathrm{NO}_{4} \mathrm{C}_{4} \mathrm{~K}_{4} \cdot \mathrm{NH} \cdot \mathrm{NH} \cdot \mathrm{CHO}\)); or in the form of dibydro derivatives by the condensation of aldehydes with ortho-aminoaso compounds (H. Goldscbmidt and Y. Rosell, Ber., 1890, 23, p. 487), or from the aminoazo compound and a mustard oil, the resulting thiocarbanilido derivative being beated with acetic acid (M. Busch, Ber., 1899, 32, p. 2960) :-

C. Rarries (Ber., 1895; 28, p. 1223) has also shown that as-phenylhydraxino-acetic esters, when heated with formamide and substituted formamides under pressure, yield dihydrotri-axines:-
\[
\mathrm{CO}_{2} \mathrm{R}\left(\mathrm{C}_{3}\right) \mathrm{NH}_{3}+\mathrm{RNH} \cdot \mathrm{CHO} \rightarrow \begin{aligned}
& \mathrm{CO}-\mathrm{NR}^{\prime}-\mathrm{CH} \\
& \mathrm{CH}_{2} \cdot \mathrm{~N}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right) \cdot \mathrm{N}
\end{aligned} .
\]

The phen-a-triavines are yellow-coloured crystalline compounds of a somewhat basic character.
Derivatives of \(\beta\)-triazines are formed by the action of nitrous acid on ortho-aminobenzylamines (M. Busch, Ber., 1892, 25, p. 445), or in small quantity by the action of nitrous acid on artho-aminobenzoylphenylhydrazines (A. Konig and A. Reistert, Ber., 1899, 32, p. 782), the chiel product in this latter reaction being an iscindarolone:

The best drawn series of the triazines is the symmetrical or cyanidine eries, members of which result (rom the condensation of acid anbydrides with aromatic amidines (A. Pinner, Ber.3 1892, 25, p. 1624):

or by the condensation of aromatic nitriles with acid chlorides in the presence of aluminium chloride (Eitner and Kraft, Ber., 1892 , 2s. p. 2263). In using benzoy chloride in this reaction the con:dencation is found to proceed better if a little ammonium chloride be added:

The cyanidines behsve as weak basca.
Mention may be made here of cyanuric acid, \(\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{~N}_{5} \mathrm{O}_{3}\), which ccotains the same ring system as the cyanidines. It was first
 prepared by C. Scheele and is formed when urea is strongly heated or when cyanuric chloride is treated with water. It is usually represented by the inset formula and is closely related to cyanic acid and cyamelide, the selationsipe exirting between the three compounds being shown in the diegram (ree awo A. Hantsich, Ber., 1906, 39, p. 139):

TAIMzolss (pyrro-a and \(\boldsymbol{\beta}\)-diazoles), in organic chemistry, a series of heterocyclic compounds containing the ring complex (annexed formula). Derivatives were obtained by J. A. Bladin
 (Ber., 1892, 25, p. 183) by the action of acetic NH anhydride on dicyanophenyllyydrazine (formed from cyanogen and phenyllyydrazinc), the resulting acetyl derivative losing water and yielding phenylmethylcyanotriazole, which, on bydrolysis, gives the free acid. By eliminating carbon dioride, phenylmethyltriazole results. In a similar manner, formic acid and dicyanophenylhydrazine yields a phenyl-trinsole carboxylic acid, in which the phenyl group may be nitrated, the nitro group reduced to the amino group, and the product oxidized to a triazole carbozylic acid, which, by elimination of carbon dioxide, yields the free triazole:

They also resalt when the acidylthiosemicarbazides are strongly heated, the mercapto-triazoles so formed being converted into triazoles on oxidation with hydrogen peroxide (M. Freund, Ber., 1896, 29, p. 2483); by the condensation of hydrazides with acid amides; and by the distillation of the triazolones (see below) with phosphorus pentasulphide. The triazoles behave as wenk beses, the imido-hydrogen being replaceable by metal.
The keto-dihydrotriazoles or triazolones are obtained by the action of hydrazines on acetyl uret hane (A. Andrecoci, Ber., 1892, 25, p. 235). These compounds may be considered as 5 -triazolonea, a series of isomeric 3-triazolones resulting from the condensation of phenylcemicarbazide with aromatic aldehydes in the presence of an oxidant. The diketotetrahydrotriazoles, or urazoles, are formed by condensing urea derivatives with hydrazine salts, urazole itself resulting by the action of urea or biuret on hydrazine or its salts. It behaves as a strong acid and on treatment with phosphorus pentachioride at high temperatures gives triazole.

fsomeric triazoles of the following constitutions are known:-

The osotriazoles are obtained by heating the osazones of orthodiketones with mineral acids: by the action of acetic anhydride on the hydrazoximes of orthodiketones, or by condensing diazo-methase with cyanogen derivatives (A. Peratones and E. Arrarelio, R. Acod. Lincei, 1907 [v.] 16, pp. 237, 318). They are feeble basces which distil unchanged. The ring is very stable to most reagents. The iminobiazoles are formed by convervion of diacylibydraxines into iminocblorides which with ammonia or bases yield the required triazoles (R. Stolle, Jowrn. prak. Chem., 1906 [if.], 74, PP. 1, 13). M. Busch (Ber, 1905, 38; pp. 836, 4049) has isolated a series of bridged ring compounds which he describes as endo-iminodihydrotriazoles,
 the triphenyl derivative (annexed formula) being prepared by candensing triphenylaminoguanidine with formic acid The nitrate of this base (known as nitrow) is so insoluble that nitrates may be gravimetrically estimated with its help.
Triphenyl-exdo-
iminodihydrotriazole. These bases combine with the allyl iodides to yield quaternary ammonium ealits.
TRIBALLI, in qacient geography, a Thracian people whose earliest home was near the junction of the Angrus and Brongus (the east and west Morava), and included towards the soutb "the Triballian plain"" (Herodotus iv. 49), which correaponds to the plain of Kossovo in Turkey. In 424 B.c. they were attacked by Sitalces, king of the Odrysae, who was defeated and lost his life in the engagement. On the other hand, tbey were overcome hy the Autariatae, an Illytian tribe; the date of
this event is uncertain (Strabo vii. 317). In 376 a large band of Triballi crossed Mt Haemus and advanced as far as Abdera; they were preparing to besiege the city, when Chabrias appeared off the coast with the Athenian fleet and compelled them to retire. In 339, when Philip II. of Mfacedon was returning from his cxpedition against the Scythians, the Triballi refused to allow him to pass the Haemus unless they received a share of the booty. Hostilities took place, in which Philip was defeated and nearly lost his life (Justin ix. 3), hut the Triballi appear to have been subsequently subdued by him. After the death of Philip, the Triballi having taken up arms again, Alexander tbe Great in 334 crossed the Haemus and drove them to the junction of the Lyginus with the Danube. Their king Syrmus took refuge in Peuce (Peuke, an island in the Danube), whither Alexander was unable to follow him. The punishment inflicted by him upon the Getae, however, induced the Triballi to sue for peace (Arrian, Anabasis, i. 1, 4; 2, 2-4: 4, 6). About 280 a host of Gauls under Cerethrius defeated the Getae and Triballi (Justin xxv. 1; Pausanias x. 19, 7). Nevertheless, the latter for some fifty years (\(135-84\)) caused trouble to the Roman governors of Macedonia. In the time of Ptolemy their territory is limited to the district between the Ciabrus (Tzibritza) and Utus (Vid), in the modern Bulgaria, their chief town being Oescus (Olakos T \(\rho \not \beta \not \beta a \lambda \lambda \omega \bar{\nu}\)). Under Tiberius mention is made of Treballia in Moesia, and the Emperor Maximin (235237) had been commander of a squadron of Triballi. The name occurs for the last time during the reign of Diocletian, who dates a letter from Triballis. The Triballi are described as a wild and warlike people (Isocrates, Panathenaicus, 227), and in Aristophanes (Birds, 1565-1693) a Tribalian is introduced as a specimen of an uncivilized barbarian.
See W. Tomaschek, "Die alten Thraker" in Sitewngsberichte der k. Akad. der Wissenschaficn, cxuviii. (Vienna, 1893).
TRIBE (Lat. tribus, from tres, threc), a word which is helieved to have originally meant a "third part " of the people, in reference to the three patrician orders or political divisions of the people of Ancient Rome, the Ramnes, Tities and Luceres, representing the Latin, Sabine and Etruscan settlements. Its et hnological meaning has come to be any aggregate of families or small communities which are grouped together under one chief or leader, ohserving similar customs and social rules, and tracing their descent from one common ancestor. Examples of such "enlarged families" are the twelve tribes of Israel. In general the tribe is the earliest form of political organization, nations being gradually constituted by tribal amalgamation. (See Family.)

TRIBERG, a town and bealth resort of Germany, in the grand duchy of Baden, in the Black Forest, pleasantly situated on the Gutach and surrounded by well-wooded hills, 2250 ft . above the sca, 35 m . by rail S.E. of Offenburg. Pop. (1905), 3717. It bas four churches, one of them Anglican. Triberg is one of the chief centres of the Black Forest clock-making industry. Straw-plating, saw-milling, brewing, and the manufacture of wooden wares are also carried on, and the town has a permanent industrial exhibition. Triberg is what is called a Luftkurort, a place to which convalescents resort after a course of baths elsewhere. Near the town is the fine wateriall lormed by the Gutach. Triberg came into the possession of Austria in 1654 and into that of Baden in 2806.
TRIBONIAN, the famous jurist and minister of Justinian, was born in Pamphylia in the latter part of the \(\mathbf{s t h}\) century. Adopting the profession of an advocate, he came to Constantinople and practised in the prefectural courts there, reaching such eminence as to attract the notice of the emperor Justinian, who appointed him in 528 one of the ten commissioners directed to prepare the first Codex of imperial constitutions. In the edict creating this commission (known as, Haec quae) Tribonian is named sixth, and is called "viram magnificum, magisteria dignitate inter agentes deooration' (10) Benc puse and Symma reipublicae, pref in te the futety, Whes th 50mmission of sixteen eminest lusch nowderied is siblthe he fay more
laborious and difficult duty of compiling a collection of exracts from the writings of the great jurists of the earlier empire, Tribonian was made president and no doubt general dırector of this board. He had already been raised to the office of quaestor, which at that time was a sort of ministry of law and justice, its holder being the assessor of the emperor and his organ for judicial purposes, something like the English lord chancellor of the later middle ages. The instructions given to these sixteen commissioners may be found in the constitution Deo auctore (Cod. i. 17, 1), and the method in which the work was dealt with in the constitution Tanta (Cod. i. 17, 2). great praise being awarded to Tribonian, who is therein called exquaestor and ex-consul, and also as magister ofnciorum. This last constitution was issued in December 533, when the Digrst was promulgated as a law-book. During the progress of the work, in January 532, there broke out in Constantinople a disturbance in the bippodrome, which speedily turned to a terrible insurrection, that which goes in history by the name of Nika the watchword of the insurgents. Tribonian was accused of having prostituted his office for the purposes of gain, and the mob searched for him to put him to death (Procop. Pers. i. 24-26). Justinian, yielding for the moment, removed him from office, and appointed a certain Basilides in his place After the suppression of the insurrection the work of codification was resumed. A little earlier than the publication of the Digest, or Pandects, there had been published another but nuch smaller law-book, the Institutes, prepared under Justinian's orders by Tribonian, with Theophilus and Dorotheus, professors of law (see Preface to Inslifutes). About the same time the emperor placed Tribonian at the head of a fourth commission, consisting of himself as chief and four others-Dorotheus, professor at Beyrut, and three practising advocates, who were directed to revise and re-edit the first Codex of imperial constitutions. The new Codex was published in November 534 (see constitution Cordi nobis prefixed to the Codex). With it Tribonian's work of codification was completed. But he remained Justinian's chief legal minister. He was reinstated as quaestor some time after 534 (Procop. Pers. i. 25; A necd. 20) and seems to have beld the office as long as be lived. He was evidently the prime mover in the various changes effected in the law by the novels of Justinian (Norellae consitutiones), which became much less frequent and less important after death had removed the great jurist. The date of his death has been variously assigned to 545,546 and 547 . Procopius says (Anecd, 20) that, although he left a son and many grandchildren, Justinian confiscated part of the inheritance.
The above facts, which are all that we know about Tribonian, rest on the authority of his contemporary Procopius and of the various imperial constitutions already cited. There are, however, two articles in the Lexicon of Suidas under the name "Tribonianos. They appear to be different articles, purporting to refer to different persons, and have been generally so reccived by the editors of Suidas and by modern legal historians. Some authorities, houever, as for instance Cibbon, have supposed them to refer to the same person. The first article is unquestionably meant for the jurist. It is based on Procopius, whose very words are to some extent copied. and indeed it adds, nothing to what the latter tells us, except the stat ement that Tribonian was the son of Macedonianus.
 wholly averse to the Christian faith. The second article say's that the Tribonian to whom it refers was of Side (in Pamphylia), was
 various books. among which are mentioned certain astronomical treatises, a dialogue \(\boldsymbol{O}_{\mathrm{n}}\) Happiness, and two addresses to Justinian. None of these books relate to law: and the better opinion seems to be that there were two Tribonians, apparently contemporaries. though possibly some of the attributes of the jurist have been. by a mistake of the compilers or transcribers of the Lexicon of Suidas, extenderl to the man of letters of the same name.

The character which Procopius gives to the jurist, even if touched by personal spise. is entitled to some credence, because it is contained in the Histories and not in the scandalous and secret Anecdote. It is a follows: "Tribonian was a man of great natural powerb, and had attained as high a culture as any one of his sime; but he was greedy of money, capahle of selling justice for gain, and every day he repraled or enacted some law at the instance of people who purchased this from him according to their several needs. . . . He
- pes phanat in manner and renerally areoble, and able br the abundance of his accomplishments to cast into shade his faults of avarice " (Pers. i. 24, 25). In the Anecdota Procopius adds as an illestration of Justinian's vanity the story that he took in good faith an obervation made to him by Tribonian, while sitzing as asmestor, that be (Tribonian) greatly feared that the emperor might some day, on account of his piety, be suddenly carried up into beaven. This agrees with the character for flattery which the minister seems to have enjoyed. The charge of heathenism we find in Suidas is probable enough; that is to say. Tribonian may well have been a erypto-pagan, like many other eminent courtiers and litterateurs of the time (including Procopius himself), a person who, while professing Christianity, was at least indifferent to its dogmas and rites, cherishing a sentimental recollection of the alder and more thorious days of the empire.

In modern times Tribonian has been, as the master workman of Justinian's codification and legislation, charged with three offences \(\vec{C}\) bad Latinity, a defective arrangement of the legal matter in the Cade and Difest, and a too free handling of the extracts from the older jurists included in the batter compilation. The first of these charges cannot be denied: but it is hard to sce why a lawyer of the 6th century, himself born in a Greek-spealing part of the empire, thould be expected to write Latin as pure as that of the age of Cicero. or even of the age of Gaius and the Antonines. To the second charge also a plea of guilty must be entered. The Code and Digesl are badly arranged according to our nolions of scitentific arrangement. These, however, are modern notions. The ancients Eenerally cared but litte for what we call a philosophic distribution of topics, and Tribonian seems to have merely followed the order of the Perpetual Edict which custom had already established, and from which custom would perhaps have refused to permit him to depart. He may more lairly be blamed for not having arranged the extracts in each title of the Digesf according to some mational principle; for this would have been easy, and would have spared puch trouble to students and practitioners ever since. As to the third complaint, that the compilers of the Digest altered the extracts they collected, cutting out and inserting words and sentences at their own pleasure, this was a process absolutely necessary according to ibeinstuctions piven them, which were to prepare a compilation representing the existing law, and to be used for the actual administration of justice in the tribunals. The so-called Emblemata (insertions) of Iribonian were therefore indispensable, though, of course, Fe cannot say whether they were always made in the best way. Upon the whole subject of the codification and legislation ia which Tribonian bore a part, sec Justivian.

Tribonian, from the little we know of him, would seem to have been a remarkable man, and in the front rank of the great ones of his time. There is nothing to show that he was a profound and philosophical jurist, like Papinian or Ulpian. But he was an energetic. ciear-headed man, of great practical force and skill, culivited, accompished, agreable, fexible. possibly unscrupulous, just the sort of person whom a restless despot like Justinian finds useful. His interest in legal learning is proved by the fact that he had collerted a vast legal library, which the compilers of the Digest found valuable (see const. Tenta).

Tbe usual criticisms on Tribonian may be found in the AntiTribon ianus (\(156 \%\)) of Francis Hot man, the aim of which is shown by its alternative title, Sire discursus in quo jurisprudentiae Triboniances sterilitas et legum potriayum excellentia exhibetur: and an answer to them in J. P. von Ludewig, Vila Justinioni el Theodorae, mec non Triboniani.
(J. Br.)
 mame ascigred to officers of several different descriptions in the constitution of apcient Rome. The original tribunes were no doubt the commanders of the several contingents of cavalry and infantry which were supplied to the Roman army by the carty gentilician tribes-t he Tities, the Ramnes and tbe Luceres. In the historical period the infantry in eacb legion were commanded by six tribunes, and the number six is probably to be traced to the doubling of the three tribes by the incorporation of the new elements which received the names of Tities secundi, Ramnes secundi, Luceres secundi. The tribuni celerum or cominanders of the horsemen an longer existed in the later times of the republic, having died out with the decay of the genuine Roman eavalry.' So long as the monarchy lasted these tribunes were doubtless nominated by the commander-in-chief, the king; and the nomination passed over on the establishment of the republic to his successors, the consuls. But, as the army fincreased, the popular assembly insisted on having a voice in the appointments, and from 362 b.c. six tribuncs were annually mominated by popular vote, wibile in 311 the number was raised
In the legends of the foundation of the republic Brutus is repreented as having exercised authority, when the king was banished. merely by virtue of bolding the office of tribunsu celcrum.
to elyteen, and in 207 to twinty-four, at wheh figure it remained. The trihunes thus elected sufficed for four legions and ranked as magistrates of the Roman people, and were designated tribuni militum a pognlo, while those who owed their office to the consuls bore the curious title of tribuni rufult. The name was traced to a commander Rutilius Rufus (Liv. 7, 5; and Fest. Ep. 260), but was more probably derived from the dress (Mommsen, Slaatsrecht, 1, 434). The rights of the assembly passed on to the emperors, and "the military tribanes of Augustus" were still contrasted with those nominated in the camp by the actual commenders The obscure designation tribanews aerariws (tribune of the treagury) had also, in all probability, a connexion with the carly organization of the army. The officer thus designated may have been the levier of the tributum, the original property tax, and was at any rate the paymaster of the troops. The soldier who wras deifanded of his pay was allowed to exact it from this tribune by a very summary process. There was still another and important class of tribunes who owed their existence to the amy. In the long struggle between the patrician and plebeinn sections of the population, tbe first distinctions in the public service to which the plebeians forced their way were military, and the contest for admission to the consulate was, in large part; a contest for admission to the supreme command of tbe national forces. In 445 B.C., the year in whicb mixed marriages of patricians and plebeians were for the first time permitted, power was given to the senate (then wholly patricion) of determining from year to year whether consuls or military tribunes witb consular authority (tribuni milifares consmlari potestote or imperio) should be appointed. But, even when the senate decided in favour of electing tribunes, no election was valid without the express sanction of the senate superadded to the vote of the centurinte assembly. If it happened to he too invidious for the senate openly to cancel the election, it was possible for the patricians to obtain a decision from the sacred autborities to the effect that some religious practice had not been duly observed, and that fn consequence the appointment was invalid. According to tradition, recourse was had to this device at the first election, a plebeian having been successful. Forty-five years elapsed after the creation of the office before any plebeian was permitted to fill it, and it was held by very few down to the time at which it was abolished (367 B.c.) and the plebeians were fully admit ted to the consulate. The number of consuiar tribunes elected on each occasion varied from three to six; there was no year without a patrician, end to tbe patrician members were probsbly confined the most highly estecmed duties, those relating to the administration of the liew and to religion.
But by fat the most important tribunes who ever existed in the Roman community were the tribunes of the commons (Iribuni plebis). These were the most characteristic outcome of the long struggle between the two orders, the patrician and the plebeian. When in 494 B.c. the plebeian legionaries mel on the Sacred Mfount and hound themselves to stand by each other to the end, it was determined that the plebeians should by themselves annually appoint executive officers to stand over against the patrician officers-iwo tribunes (the very name commemorated the military nature of the revolt) to confront the two consuls, and two helpers called aediles to balance the two patrician helpers, tbe quaestors. The ancient traditions concerning the revolution are extremely confused and contradictory, and have caused endless discussions. The commonest story is that the masses assembled on the Sacred Mount bound themselves by a solemn oath to regard tbe persons of their tribunes and aediles as inviolable, and to treat as forfeited to Disna and Ceres, the plebeian divinitjes, the lives and property of those who offered them insult. That this purely plebeian oath was the real ultimate basis of the sanctity which attached to the tribunate during the whole time of its existence can bardly be believed. The revolution must bave ended in somet ling which was deemed by both the contending bodies to be a binding compact, although the lapse of time bas blotted out its terms. The historian Dionysius may have been only technically wrong in supposing
that peace was concluded between the two parties by the fetial priests, with the forms adopted by Rome in making treaties with a foreign state. If this were fact, the " sacrosanctity" of the tribunes would be adequately explained, hecause all sucb formal foedera were "sacrosanct." But, notwithstanding that the plebeians may safely be assumed to have been conscious of having to a large extent sprung from another race than the patricians and their retainers, it is not likely that the feeling was sufficiently strong to permit of the compact taking the form of a treaty between alien powers. Yet there must have been a formal acceptance by the patricians of the plebeian conditions; and most probably the oath which was first sworn by the insurgents was afterwards taken by the whole community, and the "sacrosanctity" of the plebeian officials became a part of the constitution. There must also have been some constitutional definition of the powers of the tribunes. These rested at first on an extension of the power of veto which the republic had introduced. Just as one consul could invalidate an order of his colleague, so a tribune could invalidate an order of a consul, or of any officer inferior to him. There was no doubt a vague understanding that only orders which sinned against the just and established practice of the constitution should be annulled, and tben only in cases affecting definite individuals. This was technically called auxilium. The cases which arose most commonly concerned the administration of justice and the levying of troops.

Although the revolution of 494 gave the trihunes a foothold in the constitution, it left them with no very definite resources against breaches of compact by the patricians. The traditional history of the tribunate from 494 to 451 B.c. is obscure, and, so far as details are concerned, nearly worthless; but there is a thread running through it which may well be truth. We hear of attacks by patricians on the newly won privileges, even of the assassination of a tribune, and of attempts on the part of the plebeians to bring patrician offenders to justice. The assembled plebeians attempt to set up a criminal jurisdiction for tbeir own assembly parallel to that practised by the older centuriate assembly, in which the nobles possess a preponderating influence. Nay, more, the plebs attempts something like legislation; it passes resolutions which it hopes to force the patrician body to accept as valid. As to details, only a few are worth notice. In the first place, the number of tribunes is raised to ten, how. we do not know; but apparently some constitutional recognition of the increase is obtained. Then an alteration is made in the mode of election. As to the original mode, the ancient authorities are hopelessly at variance. Some of them gravely assert that the appointment lay with the assembly of the curiae-the most ancient and certainly the most patrician in Rome, even if we allow the view, which, in spite of great names, is more than doubtful, that the plebeians were members of it at any time when it still possessed political importance. The opinion of Mommsen about the method of election is more plausible than the others. It was in accordance with the Roman spirit of order that the tribunes, in summoning their assemblies, should not ask the plebeians to come en masse as indjviduals, and vote by heads, but should organize their supporters in bands. The curia was certainly a territerial district, and the tribunes may have originally used it as the basis of their organization. If tribuncs were clected by plebeians massed curictim, such a meeting would easily be mistaked in later times for the comitia curiala. At any rate, a change was introduced in 478 by the Publilian Law of Volero, which directed that the tribunes should be choson in an assembly organized on the basis of the Servian or local tribe, instead of the curio. This assembly was the germ of the comisia tributa. The question by what authority the Law of Volero was sanctioned is difficult to answer. Possibly the law was a mere resolution of the plebeians witb which the patricians did not interfere, because they did not consider that the mode of election was any concern of thcirs. In the first period of the tribunate the tribunes almost certainly agitated to obtain for their supporters a share in the bencfits of the state domain.
And, whatever view magy be taken of the moveraend which led
to the decemvirate, an important element in it was of a certainty the agitation carried on by the tribunes for the reduction of the law of Rome to a written code. Until they obtained this it was impossible for them effectually to protect those who appealed against harsh treatment by the consuls in their capacity of judges.
During the-decemvirate the trihunate was in abevance. It was called into life again by the revolution of 449, which gave the tribunes a considerably stronger position. Their personal privileges and those of the aediles were renewed, while sacrosanctity was attached to a body of men called judices decensviri, who seem to have been the legal assistants of the tribunes. The road was opened up to valid legislation by the tribunes through an assembly summoned by them on the tribe-basis (concilimm plebis), but in this respect they were submitted to the control of the sennte. The growth of the influence of this assembly over legislation belongs rather to the history of the comitia (q.v.) than to that of the tribunate. After the Hortensian Law of 287 B. C. down to the end of the republic the legislation of Rome was mainly in the hands of the tribunes. The details of the history of the tribunate in its second period, from 449 to 367 B.c., are hardly less obscure than those which belong to the earlier time. There was, however, on the whole, undoubtedly an advance in dignity and importance. Gradually a right was acquired of watching and interfering with the proceedings of the senate, and even with legislation. Whether the absolute right of veto had been achieved before 367 may well be douhted. But the original auxilium, or right of protecting individuals, was, during this period, undergoing a very remarikable expansion. From forbidding a single act of a magistrate in relation to a single person, the tribunes advanced to forbidding hy anticipation all acts of a certain class, whoever the persons affected by them might prove to be. It therefore became useless for the senate or the comitia to pass ordinances if a tribune was ready to forbid the magistrates to carry them out. Ulimately the nrere announcement of auch an intention by a trihune was sufficient to cause the obnoxious project to drop; that is to say, the tribunes acquired a right to stop all business alike in the deliberative assembly, the senate, and in the legislative assemblies, the comitia. The technical name for this right of veto is infercessio. To what extent the tribunes during the time from 449 to 367 took part in criminal prosecutions is matier of doubt. The XII. Tables had settled that offenders could only be punished in person by the centuries, but tradition speaks of prosecutions by tribunes before the tribes where the penalty sought was pecuniary. The two main objects of the tribunes, however, at the time of which we are speaking were the opening of the consulate to plebeians and the regulation of the state domain in the interests of the whole community. Both were attained by the Licinio-Sextian Laws of 367.

Then a considerable change came over the tribunate. From being an opposition weapon it became an important wheel in the regular machine of state. The senate became more and more plebeian, and a new body of nobility was evolved which comprised both orders in the state. The tribunes at first belonged to the same notable plebeian families which attained to the consulate. The old friction between senate and tribunes disappeared. It was found that the tribunate served to fill some gaps in the constitution, and its power was placed by common consent on a solid constitutional basis. From 367 to 134 日.c. (when Tiberius Gracchus became tribune) the trihunate was lor the most part a mere organ of senatorial government. As the change made by the Gracchi was rather in the practice than in the theory of the trihunate, it will be convenient at this point to give a definite sketch of the conditions and privileges attaching to the office.

Even after the difference between patrician and plebeian birth had ceased to be of much practical consequence in other directions, the plebeian character was a necessity for the tribune. When the patricians P. Sulpicius Rufus and, later, P. Clodius (the antagonist of Cicero) desired to enter on a demagagic coufse. they were compelled to divest themselves of their patrician quality by a peculiar legal process. Even the patricians who became so by mere fat of the emperors were excluded from the tribunate. The other necessary qualifications were for the most part such as attached to the ot her Roman magistracies-complete citizenship, absence of certain conditions regarded as disgraceful, fulfilment of military duties The minimum age required for the office was, as in the case of the quaestorship, twenty-seven. The tribunate, however, stood outside the round of magistracies, the conditions of which were regulated by the Villian Law of 180 B.c. The election took place in a purely plebeian assembly, ranged by tribes, under the presidency of a tribune selected by lot. The tribune was bound by law to see a complete set of ten tribunes appointed. Technically, the tribuncs were reckoned, not as magistrates of ihe Roman people, but as magistrates of the Roman plebs; they therefore had no special robe of office, no liciors, but only messengers (viatores), no official chair, itke the curule seat, but only benches (subsellia). Their right to summon the plebs rogether, whet her for the purpose of listening to a speech (in which cave the meeting was a conlio) or for passing ordinances (comitia dribula), was rendered absolute by the "laws under sacted sanction"
arges maretan), which had been incorporated with the coosaitution on the abolition of the docemvirate. The right to summon the senate and to lay business before it was acquired scon after 367 , but was seldom exercised, as the tribunes had abundant means of eeruring what they wanted by preseure applied to the ordinary presidente-the consuls or the praetor. When an interregnum came about and there were no "magistrates of the Roman people." the piebeian tribuncs became the proper presidents of the senate and conductors of ordinary state business. At the end of the republic there were intarragua of several months' duration, when the tribunes beld a position \(\alpha\) more than usual importance. A tenure of the tribunate did not, until a comparatively late period (probably about the time of the Second Punic War). confer a claim to a permanent sent in the wenate. The candidates for the office wert mainly young men of good family who were at the beginning of their political career, but the office was often filled by older men of a mbition who were strugyling upwards with few advantages. The plebeian aediles very soon after 367 became dissociated from the tribunes and associated with the curule aediles, so that in the political hierarchy they really ranked higher than those who were originally their superior officers.

The real kerael of the tribune's power consisted in his intercessio, or right of iovalidating ordinances, whether framed by the senate or proposed by a magistrate to the comitia, or issued by a magistrate in pursuance of his office. From 367 s.c. down to the time of the Gracchi the power of veto in putblic matters was, on the whole, used in the interests of the aristocratic governing lamilies to check opposition arising in their own ranks A recalcitrant consul was most readily brought to obedience by an exercise of tribunician power. But, atthough modern readers of the ancient historians are apt to carry away the idea that the tribunate was an intensely political efince, it is sate to say that the occasions on which tribunes lound it powible to play a prominent part in politics were extremely lew. even in the late republic. On the other hand, the tribunes lound a field for constant activity in watching the administration of justice and in rendering ascistance to thowe who had received harsh treatment from the magisaraten. The tribunes were, in lact, primarily |rgal functionaries, and constituted in a way the only court of a ppeal in republican Rome. It was to this end that they were forbidden to past a whole night away from the ciry, except during the Latin lextival on the Alban Moumt, and that they were expected to keep their doors open to supplisnts by night as well as by day. They beld court by day in the Forum close by the Porcian baalica, and frequently made elaborate legal inquiries into cases where their help tas sought. Naturally this ordinary humdrum work of the tribunes lass left little mark on the pages of the historians, but we hear of it not infrequently in Ciceros speeches and in other writings which deal with legal matters. According to the general principle of the constitution, magistrates could forbid the acts of magistrates equal to or inferior to themselves. For this purpose the tribunes were deemed superior to all ot her officers. If a tribune exercised his veto so otber tribupe could annul it, for the veto could not be itself vetoed. bot it was pomible for another tribune to protect a definite individual from the consequences of disobedience. The number of the tribunes (ren) made it always possible that one might balk the action of amorher, except at times when popular feeting was strongly roused. In any cese it was of littie use for a tribane to move in any importanat gaatter unless he had secured the co-operation or at least the neutrality of all his colleagues. The veto was not, however, aboolute in at directions. In some it was limited by statute; thus the law passed by Gaius Gracchus about the consular provinces did not permit a tribure to veto the annual decree of the menate concerning therm Whea there was a dictator at the head of the state, the veto was of so avail aginst him One of the important political functions of the triburee was to conduct prosecutions of state offenders, partionlarly ex-magistrates. These prosecutions began with a sentence pronounced by the tribune upon the culprit, whereupon, exercising the right given him by the X11. Tables, the culprit appealed. If the tribane sought to inflict punishment on the culprit's person. the appeal was to the ascembly of the centuries: if he wished for a large frae, the appeal was to the amembly of the tribes. As the tribume had no right to summon thecenturies, be had to obtain the mecesary meetings through the urban prector. In the other event he himself called together the tribute astembly and proposed a bill for fining the culpit. But the forms of trial gone through were very similar in both cases.

It is commonly stated that a great change pased over the tribunate at the time of the Gracchi, and that from their day to the end of the reppoblic it was used as an instrument for setting on foot political agitation and for inducing revolutionary changen. This view is an invervion of the facts. The tribunate did not create the agitation and the revolutions, but these found vent through the tribunate, Hich gave to the democratic leaders the hope that acknowiedged evils moght be cured by constitutional means, and is the desperate serugale to realize it the best democratic tribunes strained the theoretic powers of their office to their ruin. For the bad tribunes did not hesitate to use for bad ends the powere which had been armined in the attempt to wecure what was good. But hercin the tribumate only fared lite all other parts of the republican constitution in ins last period. The consuls and the erenate were at least as guilty
as the tribuses. After a mevere rentriction of fits powers by Sulla and a rextoration by Pormpey, which gave a twenty yeurn", respite, the exmential force of the tribunate was merged into the imperial constitution, of which indeed it became the principal constituent on the civil side. The ten tribunes remained, with very restricted functions. The emperors did not becorne tribunes, but took up into their, privileges the escence of the affice. the "tribunicisa authority." This distinction between the principle of the office and the actual tenure of the office was a creation of the late republic. Pompey, for example. when he went to the East, was not made proconsul of all the Eastern provinces, but he exercised in them a "proconsular authority" which was equal to that of the actual proconsuls-an authority which was the germ of the imperial authority on its military side. Similarly the emperor, as civil governor, without being tribune, exercised powers of like quality with the powers of the tribune, though of superior force. By virtue of his tribunician authority he acquired a veto oa legislation. he became the supreme court of appeal for the erapire, and to his person was attached the ancient sacrosanctity. Augustus showed the highest statesmanship in founding his power upon a metamorphosed tribunate rather than upon a metamorphowed dictatorship, upon traditions which were democratic rather than upon traditions which were patrician and optimate. The tribuncs continued to exist till a late period, with gradually vanishing dignity and rights. but it is not necessary, here to trace their decay in detail.

The name iribune was once again illuminated by a passing glory when assumed by Cola di Rienzi. The movement which ho headed was in many respects extremely like the early movements of the plebeians against the patricians, and his scheme for uniting Italy in nne free republic was strangely parallel with the greatest dream of the Gracth.

The history of the tribunate is interwoven with that of Rome, and must, to a large extent, be sought for in the same sourcer. The principies attaching to the office are profoundly analysed by Mommsen in his Sicatsrecht, and are clearly set forth by E. Herzog in his Geschichle w. Systeme der romischen Slaatsperfassmng (Leipzig, 1884).
(J.S.R.)

TRIBUNE (med. Lat. tribuma, from classical Lat. tribural), in architecture, the term given to the scmicircular apse of the Roman basilica, wilh a raised platform, where the presiding magistrate sat; subsequently applied generally to any raised structure from which speeches were delivered and to the private box of the emperor at the Circus Maximus. In Christian basilicas the term is retained for the semicircular recess behind the choir, as at S. Clemente in Rome, S. Apollinare in Classe, Ravenna, S. Zeno at Verona, S. Miniato near Florence, and other churches. The term is also loosely applied to various other raised spaces in secular as well as ecclesiastical huildings, in the latter sometimes in the place of "pulpit," as in that of the refectory of St Martin des Champs at Paris. It is also given to the celebrated octagon room of the Uffixi at Flarence, and sometimes to a gallery or triforium.

TRIBUTB (Lat. tributam, a stated payment, contribution), \(a\) sum of money or other valuable thing paid by one state or person to another state or person, either \(3^{-}\)an acknowlodgment of submission, or as the price of peace or protection. Hence, in a secondary sense, an offering to mark respect or gratitude. Revenue by means of tribute was ope of the most characteristic forms of the financial systems of ancient states. In imperial Athens large revenves were derived from the states of tho Delian league (q.o.), while in both Carthage and Rome inferior or dependent districts and races were laid under contribution to a very considerable extent (see Fmanct)
The word tribute was aleo applied in the Roman republic to (1) certain extraordinary taxes, as opposed to the ordinary vectigalia. Such. in parlicular, were certain property taxes, raised to meet the expenses of war. They were levied on all citizens alike. in proportion to the extent of a man's fortune, and varied according to the total amount of revenue to be raised. (2) To the ordimary stipendium or tax of fixed amount paid either in money or in kind, on property, trades, or as a poll-tax, raised in the Roman provipces (see Province).

TRICHIROFOLY, a city and district of British India, in the Madras presidency. The city is on the right bank of the river Cauvery, 250 m . by rail S.W. from Madras. Pop. (1901), 104,721. The fort which forms the nucleus of the city measures about 1 m . by \(\frac{1}{\frac{1}{2}} \mathrm{~m}\); its defences have been removed. Within it rises the Rock of Trichinopoly, 273 ft . above the city, and so completely isolated as to provide a remarkable view over the surrounding plains. It is ascended by a covered stone staircase, entered by a carved gateway, and profusely ormamented. At
intervals up this stair are chambers comnected with the temple on the rock. Buddhist inscriptions and carvings in some of them are attributed to the 5th or 6th century. Near the foot of the rock is a fine masonry tank called the Teppakulam, and the palace of the nawab, of which the fine domed audience hall is now used as a town-hall. In Trichinopoly is St Joseph's first-grade college, maintained by the Jesuit mission and occupying, among ot her buildings, a house formerly the residence of Clive. Another first-grade college is maintained by the Society for the Propagation of the Gospel; it has grown out of schools founded by the missionary Schwarz. The Roman Catholies have a fine cathedral. Trichinopoly is important as a trading centre, especially as being a railway junction. It has special industries in goldsmiths' work and modelling in pith, the wellknown Trichinopoly cigars are chiefly manufactured from tobacco grown outside the district at Dindigul. Trichinopoly and its neighbourhood was the scene of much hard fighting between the English and the French during the Carnatic wars between 1749 and 1761.

The District of Trichinopoly has an area of 3632 sq. m . The surface is generally flat, though diversified hy masses of erystalline rock, of which the Trichinopoly Rock in the fort is a well-known example. The only mountains are the Pachamalais, whicb rise to 2500 ft . and extend into Salem district. The Cauvery and its branch, the Coleroon, are the only rivers of any importance. The climate is very hot and not liable to great variations; the annual average rainfall is about 34 in. The principal crops are rice, millets, other food-grains and oil-seeds, with a little cotton and tobacco. The main line of the South Indian railway traverses the district, with a hranch to Erode. In 1901 the population was \(1,444,770\), showing an increase of \(5 \%\) in the decade. The district came into the hands of the British along with the rest of the Carnatic in 180 r .

See Trichinopoly Districl Gazelleer (Madras, 1907).
TRICHIMOSIS, or Trichiniasis, a disease, in man and other animals, caused by infection by the parasite trichina or trichinella spiratis. The presence of encysted trichinae in the muscles was discovered by Sir James Paget (q.0.) in 1835, and they were named by Sir R. Owen; hut it was not until some ycars after that the clinical characters of the acute disease caused by the invasion of the parasite were discovered. This discovery was made in 1800 by Friedrich von Zenker (\(1825-1898\)) on examining the abdominal muscles of a patient who died at Dresden with symptoms taken to be those of typhoid fever, the case being afterwards accounted one of trichinosis on the post mortem cvidence. Epidemics of this disease occur from time to time, especially in north Germany, from the eating of uncooked swine's Desh, in which trichinae are not uncommon. Out of 6329 cases in Germany during the years 188, to 1898,5456 occurred in states where raw pork is a common article of food. And, from the point of view of public health, the hog is the animal which is the main source of infection, others-except rats-being only rarely infested with the parasite. The greatest care is now taken 20 examine the carcases of swine for trichinae, a piece of the diaphragm of every animal being searched with the microscope by an inspector specially appointed, and the trichinous hogs being condemned. But it has not heen found that this microscopic examination serves as an effective check, indeed it is apt to create a false feeling of security. Over \(32 \%\) of the German cases of trichinosis between 1881 and 1808 were traced to meat so inspected and passed as free from trichinae. In America accordingly microscopic examination is not considered to give any guarantee of soundness from trichinae, in spite of a government mark " inspected and passed " (see B. H. Ransom, Circular 108 of U.S Dep. of Agriculture, 1907). The symptoms in man are oceasioned hy the presence of the free parasites in the intestine, by the development of young trichinac from the eggs, and most of all by the migration of the parasites from the intestinal canal to the muscles, where they becom from four to six weeks. Lin capsule, the calcification ren capsule, the calcification ren
change usually takes five or
small quantity, the parasites may give rise to no marked symptoms, and they are sometimes found accidentally in muscular fibre in the bodies of those who had probably experienced no definite symptoms from their invasion. In the more acute and serious cases, sometimes ending fatally, the early symptoms are nausez, failure of appetite, diarrhoea and fever, later, when the migration to the muscles begins, there is more fever, stifness, pain and swelling in the limbs, swelling of the eyelids, continued exhausting diarrhoea, perspirations and sometimes delirium. During convalescence there is desquamation of the cuticle. The discovery by T. R. Brown of a marked leucocytosis with an extraordinary increase of eosinophiles now enables a diagnosis to be made in cases where the symptoms are obscure. If the diagnosis be made early in the case, brisk purgatives, particularly calomel, are the best treatment, if the parasites are already on their way to the muscles, the only thing left 10 do is to support the patient's strength. There need, however, be no fear of infection at all if the meat be thoroughly cooked and cured before caten. This is the only effective precaution.
TRICK, a crafty or fraudulent device, deceitful artifice or stratagem, hence an exhibition of skill, especially in sleight of hand or jugglery, the term being also used of a peculiar trait or manner of speech, character or physical habit. A specific use is that for the cards played at 2 single round, which are taken up and count towards the winning of the game. The origin of the word is ultimately to be found in Lat. tricae, triffes, hindrances, wiles, whence tricari, to delay, shuffle, play tricks, which has also given "intricate," "extricate," "intrigue." The M. Eng. trichen, to cheat or trick, was adapted from the O . Fr, trichter, trechier, whence came trecherie, Eng. "treachery:" a betrayal of faith, perfidy or trickery of the grossest kind. There has been also a confusion, which has influenced the meaning and form of "trick," with the Dutch trikken, to pull, draw, cf. the South African Dutch trek, a journey, migration, properly the action of drawing a vehicle or travelling by ax-wagon. "Tsick " or "tricking" is thus used, in beraldry, as the technical term for the drawing of a coal of arms in monochrome, giving the tinctures by the conventions of vertical, horizontal or diagonal lines, \&c.
TRICLMIUM, in Roman antiquities, a set of three couches (lecti) arranged round a four-sided dining table, one side of which was left open to provide free access for the attendant slaves These couches were distinguished as the highest (A, lectus summas), the middje (\(B\), leclus medius) and the lowest (\(C\), leclus imus); the guests who reclined on B had A on their left and C on their right. Each coucb was usually occupied by three persons, whose left arm rested on a cushion, the right hand being thus disengaged for purposes of eating. The nine places were allotted in accordance with strict etiquette. A and B were reserved for the guests (B for the most distinguished), C for the host and his ramily. In A and C the chicf place was 1 ; in B it was 3, which

was consequently the place of honour at the banquet. It was called locus consuluris (inaruós), probably as being next to the host. Another explanation is that, since it was on the open and unsupported side of the couch, it was chosen in order that, if a consul happened to be present among the guests, he might be able to receive communications, sign documents or transact business with the least inconvenience. It the lorws classicus in Harace (Sasires, ii. \(8,20-23\)), which describes the banquet tiven by Nasidienus in honour of Maecenas. the host appears
to have resipped his place to Nomentanus, as being more capabie of entertaining the guest of the evening In inter republican times, after the introduction of round tables of citrus wood, the three couches were replaced by one of crescent shape (callod sigme from the form C of the Greck letter; aloo stibodivin and cccubiemsen), which as a rule was only intended to hold five persons. The two corper seats (cornue) were the places of honour, that on the right being considered superior. The remaining seats were reckoned from left to right, so that the least important seat was oa the left side of the most important. The ure of the sigma continued till the middle agea. The dining-room itself was also called triclimimes, and in the houset of weallhy Romans there were several tridinis suited to the different seasons of the rear.
See Marquardt, Das Privalleben dor Romm (1886), p. 300.
TELCOUPIS (or TaHCOUP1), CHARILAOS (\(1832-1896\)), Greek staterman, was born at Nauplia in 1832 . After studying law and literature in Athens and in Paris, be was sent to London in 1851 as an atteche of the Greet legation. By 1863 be had risen to be charge d'affaires, but he aimed rather at a political than a diplomatic career. In 1865, therefore, after be had conpluded the negotiations for the cession by Great Britain to Grecce of the Ionian Islands, he entered the Greek chamber of deputies, and in the following year was made forexgan minister, at the early age of thirty-four. In 1875 he became prime minister for a few months, but had no opportunity even to begin carrying out the policy which he had in mind. This policy was to develop the resources of his country so as to create an army and a leet, and thus to give Greece the power to acquire a leading place among the nations of south-eastern Europe. It was not until 1882 that he was able to take measures to this ead. In that year he became prime minister for the thisd time (his sccood period of office, two years earlier, had lastod only firs a fow montbs), and at once set about the task of putting Greck fnance upon a firmer basis, and of increasing the prosperity of the country by making roads, railways and harbours. He was defeated at the general election in 1885 , but in the following year he resumed office, and again took up the labour of economic and financial reform. His difficulties were now incressed by the large expenditure which had been incurred fre military preparations while be had boen out of office as the rexult of the union effected between Bulgaris and eastern Rumelia. The Greeks had demanded from Turkey a compensation for this shilting of the balance of power, and had prepared to enforce their dermand by an appeal to arma. The Great Powers, bowevar, had interfered, and by blockading the Piraeus hed compelled Greace to remain quict. Tricoupis, nevertheless, bdieved that he could in a few years raike the value of Greek peper currency to par, and upon that assumption all his calculations were based. Unfortunately for himself and his country. te was not able to make his belief good. His desterity in fance called forth general admiration, and his schemes for the construction of roads and railways met with a certain amount af succesa. But at last he was obliged to recognize that the munnings offered to him had boen sound. Gresce could rot meet her obligations. Tricoupis tried to make terms with the creditors of his nation, but he failed in this also. The first turation which he proposed aroused great hostility, and in Jamasry 1895 be resigned. At the general election, four months hater, he and his party were defeated. He at once retired from poblic life, and soon afterwards the disease deciared itself which eventually proved fatal. He died at Cannes on the 13th of April 1896. The faults of excossive ambition and of a far \(t 00\) sanguine optimism, which marked Tricoupis' character, could not prevent him from being regarded, even duriag his Hifetime, as the foremost Greck statesman of his time. He was Dot a favourite with the popolece, bor was he beloved somuch as respected by his followers. By nature be was reservedhis nickname was "the Englichman "-and be had no sympathy with the arts of the demagogue. But, both in the ranks of his own party and by the nation at large, his abilities and his force of character were unqueationed. If was his misfortune that the
circumstances of the time did not allow his wide schemes for the benefit of his country to be carried into effect. (H. H. F.)

TRICOUPIS, 8PYRIDION (\(1788-1873\)), Greek author and stateamen, son of the primate of Missolonghi, was born on the 20th of April 1788. Aiter studying in Paris and London he became private secretary to the fifth earl of Guilford, who resided in the Ionian Islands. He was a friend of Lord Byron, and pronounced his funeral oration in the cathedral of Missolonghi (1824). During the Greek War of Independence he occupied several importenc administrative and diplomatic posts, being a member of the provisional government in 1826 and of the bational convention at Troesen in 1827, and president of the council and minister of foreign affairs in 1832. He was thrice Greek minister is London (1835-1838, 1841-1843 and 18501861), and in 1850 envoy-extraordinary to Paris. After the Revolution be became minister of foreign affairs and of public instruction, and held portiolios in several subsequent shortlived ministrics. He died on the 24th of February 1873.
A collection of his earlier religious and political orations was published in Paris in 1836. His chief work is a history of the
 London. 1853-1857; 2nd ed.. 1862). He also wrote a martial

TRICYCLS (from prefix tri, three, and Gr. kikdos, circle, wheel). The tricycle, as a machine for pleasure riding, has steadily diminished in relative importance since the advent of the safety bicycle (see Cycting). In its modern form it is a chain-driven rear-driver. The driving axle is provided with a differential gear, whicb allows of both whecls being driven whether the tricycle is moving in 2 straight or in a curved path. There are four rows of balls, two near the middle resisting the pull of the driving chain and two near the road wheds supporting the vertical load. Two types of driving axle are in use. In one the axle is supported from a parallel frame tube by four short brackets. In the other type, the StarleyAhingdon axle, the frame tube is concentric with the axle, and the middle portion is enlarged to form a casing for the chainwheel, with two apertures for the chain to pass through. The other mechanical details are nearly all similar to those on a bicycle.

Carrier tricycles, for tradesmen's delivery purposes, are made ia two types, one with an extended wheel base and the carrier behind the rider, the other with a single rear driving wheel, the two steering wheels and the carrier being mounted in front on a transverse tube or frame which is jointed to the rear frame at the steering head. The second arrangement gives the simplest possible form of tricycle, but it is unsuited for touring purposes.

Tricars.-The tricar or motor tricycle was first made hy removing the front wheel of a motor bicycle and replacing it by a frame carrying two side steering wheels and a seat. With a powerful engine this arrangement gives a light vehicle from which good performances are ohtained on roads with easy gradients. On steeper gradients the power must be increased, and the belt drive with only one speed is inadequate. The modern tricar is on different lines, resembling a small motor car on three wheels. The engine is 6 to \(10 \mathrm{~h} . \mathrm{p}\)., preferahly with two cylinders, air or water cooled, with clutch and gearbax giving two or three speeds, sometimes also a "reverse" speed. The transmission is usually by a chain from the engine shaft to the gear-box, thence hy another chain to the rear road wheel. The frame or chassis is supported on the three road wheels by springs. The steering gear is on the same general lines as that of a motor car. The weight of a tricar of 7 to \(10 \mathrm{~b} . \mathrm{p}\). is between 700 and 1000 il . It is 2 much faster vehicle, especially uphill, than 2 small car of equal price. The rear tire, however, is subject to severer working conditions than the two driving wheel tires of a small car, and must be of adequate strength, or trouble will be frequent.

The tricar cannot be anid to have attained to the ame degree of trusworthiness and freedom from breakdown as the motor bicycle or motor car. The rear tire is difficult to remove, in case of puncture. The chain drive, direct lrom a small chain-wheel on the engine shaft, is faulty in principle. The engine shaft ruaning often af 2000 revolucions per minute, the chain is necemarily aciny.
and is subject to continual gradual atretching; necessitating frequent readjustment, In all respects, except apeed, the tricar is incerior to the small car.
TRIDEAT (Lat tridews, tris, tres, three and dens, tooth), a three-toothed or three-pronged fork or spear. It is and has been from primitive times the typical instrument for spearing fish, the Scottish "leister" (Norw. ljoster), and was thus taken as the badge or emblem of the Greek Poseidon, the god of the sea. In Homer (cf. Il. xii. 27; Od. lv. 506 seq.) Poseidon is armed with the rplava (another word is \(\tau\) pobocos, cf. Pind. Ol. ix. 45). The trident as the symbol of the sovereignty of the sea is found as early as Archilochus (c. 700 b.c.); a more familiar example is to be found in Aristophanes (Eq. 839). The emblematical figure of Britannia bolds the trident as mistress of the sea. In the gladiatorial shows of ancient Rome the retiarius was armed with a trident as a weapon.
TRIDYMITE, a mineral consisting of silicon oxide or silice, \(\mathrm{SiO}_{2}\), but differing from quartz in crystalline form. The crystals are small, thin hexagonal plates or scales, which are usually twinned together in groups of three; hence the name of the mineral, from Greek roidunos, triplet. The apparent hexagonal plates are themselves pseudo-symmetric twins of optically biaxial material, and the exact crystalline form is doubtful. The plates are colourless and transparent and have a vitreous lustre. The hardness is 7 and the specific gravity 2.3 (that of quartz being 2.65). Unlike quartz, it is soluble in a boiling solution of sodium carbonate. Tridymite occurs in the cavities of acid volcanic rocks (rhyolite, trachyte and andesite); the best-known localities are Cerro San Cristobal near Pachuca in Mexico, the Euganean Hills near Padua, and the Sicbengebirge on the Rhine. Probably identical with tridymite is the form of silica known as asmanite, found in the meteorite which fell at Breitenbach in the Erzgebirge, Bohemia.
(L. J. S.)

TRIER (French Trives), an ancient city of Germany, formerly the capital of an archbishopric and electorate of the empire, and now the seat of a Roman Catholic bishop and the chief town of a governmental department in the Prussian province of the Rhine. Pop. (1885) 33,019, (1905) 46,709 (\(86 \%\) Roman Catholics). It is situated on the right bank of the Moselle, about 6 m . from the frontier of Luxemburg and 69 m . S.W. of Coblenz, on the main lines of railway from Coblenz to Metz and from Cologne to Saarbrícien. The city lies in a fertile valley shut in by vine-clad hills, and the picturesque red sandstone buildings of the old town are interspersed with orchards and gardens. On the north, east and south boulevards with gardens follow the line of the medieval walls, which have mostly disappeared. The Roman city extended much farther south and east.
Trier contains more important Roman remains than any other place in northern Europe. Perhaps the oldest remains are some of the piers and buttresses of the bridge over the Moselle, which may date from about 28 B.c. The well-preserved amphithentre just outside the modern town to the south-east was probably built in the reign of Trajan or Hadrian. Its eastern side is built into the hill, its longer diameter is 76 yds ., and it accommodated seven or eight thousand spectators. In 306 the emperor Constantine the Great caused multitudes of Frankish prisoners to be thrown to the beasts here, and in 313 made a similar spectacle of the captive Bructeri. The most remarkable Roman building in Trier is the Purta Nigra, the north gate of the city, a huge fortified gateway, 115 ft . long, 75 to 93 ft . high and 29 ft . deep, built of sandstone blocks blackened with age (whence the name), and held together with iron clamps. The age of this building is very uncertain; it has been assigned to dates ranging from the ist to the 4 th century A.D. It is also called the Simeonstor, after a Greek hermit who inhabited it. On his death in 1035 Archbishop Poppo converted the gate into two churches, one abree the other, hut all the additions except the apse have now been removed. In the south-east corner of the city are the picturesique ruins of the Roman imperial palace. and near the bridge are the extensive substructures of th. century Roman bathe, 660 ft . in length. On the
plate stands the magnificent brick bastlica, probably of the age of Constantine, though the south and east walls are modern. Having been converted into a palace for the Frankish kings and their deputies, it passed in 1197 to the archbishops, and was restored (\(1846-1856\)) and turned into a Protestant church. The adjoining barracks were formerly the elector's palace. Another Roman basilica forms the nucleus of the cathedral. Built under the emperors Valentinian I. and Gratian as a quadrilateral hall with four huge granite columns (now removed) in the centre, it was converted into a church about the close of the 4th century, and restored by Bishop Nicetius about 550. It is the most important pre-Carolingian church in Germany. Archbishop Poppo and his successors in the 11th and rath centuries extended the cathedral westwards and added an apse at each end. The vaulting of the nave and aisles and the beautiful cloisters were added in the 13th century. In the vaults are buried twenty-six archhishops and electors. Among the monuments are those of the electors Richard von Greiffenklau (d. 153x) and Johann yon Metzenhausen (d. 1540), fine examples of German Renaissance work. The most famons of the relics preserved in the cathedral is the "Holy Coat of Trier," believed by the devout to be the seamless robe of the Saviour, and said to have been discovered and presented to the city by the empress Helena. Since 1512 it has been periodically exhihited. The exhibition of 1844, which was attended by more than a million pilgrims, aroused protests, resolting in the formation of the sect of German Catholics (q.v.). In 1891 nearly two million pilgrims viewed the coat, and eleven miraculous cures were claimed.
The cloisters coanect the cathedral with the church of Our Lady (Liebfrawenkirche), a beautiful building in the form of a circle intersected by a cross, with a lofty vault, built \(1127-\) I 143, and said to be the oldest Gothic church in Germany.

The earliest churches were without the walls. Of these St Matthias in the south, now represented by a 12 th-century building, has a Christian cemetery of the Roman age.
In the market-place is the market cross, said to date from 958, and a beautiful Renaissance fountain, the Petersbrwmene, erected in 1595. Close by are the Sleipe or Rotes Haus, formerly the town hall, of the 15 th century, and the Frankentur \(\mathrm{m}_{\text {o }}\) or propugnaculwme, of the roth century, said to he the oldest stone domestic building in Germany.

The Provincial Museum (8885 -1889) contains many Roman and medieval antiquities. The town library contains about 100,000 volumes, including some valuable examples of early printing. Among its most treasured MSS. are the codex anrews, a copy of the gospels presented to the abbey of St Maximin by Ada, a reputed sister of Chariemagne, and the coder Egbersi of the roth century.

At Igel near Trier is a very remarkable Roman column, 83 ft . high, adorned with sculptures. It dates from the and century, and was the family monument of the Secundini. At Nennig is a fine Roman mosaic paveinent.

The industries of Trier include iron-founding, dyeing and the manufacture of machinery. There is a school of viticulture and a very considerable trade in Moselle wines, especially during the annual auctions.
History.-Trier had had two periods of greatness, firtly as the favowrite residence of Constantine the Great and his suc. cessors in the west, and secondly as the capital of a powerful spiritual electorate.

The Treveri or Treviri, from whom the city derived its name, were one of the most poweriul tribes among the Belgae, and according to Julius Caesar, who conquered them in 56 g.c., possessed the best cavalry in Gaul. Attempis have heen made to show that they were of German origin (see Belgar), but although they were doubthess subject to Germanic influences.
 ralsod a rebellion aptioss thn Romans in 84 B.C., and his sucand his suc-

Farus in a.b. 21 was soon quelled. The Roman city, Augusta Treverorum, was probably fortified by Augustus about 14 B.C., and organized as a colony about a.D. so in the reign of Claudius, but is not mentioned before the war of Civilis in 69 (Tacitus, Hist. iv.). At first the Treveri resisted the appeal of Civilis and bis Batavi to join the revolt, and built a defensive wall from Trier to Andernach, but soon after the two Treverans, Tutor and Classicus, led their fellow tribesmen, aided by the Lungones (Langres), in the attempt to set up a "Gallic empire" After a brief struggle the rebels were overthrown at Tricr by Cerealis, and ity senators emigrated to Germany (70). Towards the end of the grd century, the inroads of the Franks having been repelled by the emperor Probus, the city rapidly acquired vealth and importance. Mainly on account of its strategic position, Diocletian on bis reorganization of the empire made Trier the capital not only of Belgica Prima, but of the wbole " diocese" of Gaul. For a century. from Maximian to Maximus (286-388), it was (except under Julian, who preferred to reside in Paris) the administrative centre from which Gaul, Britain and Spain were ruled, so that the poct Ausonius could describe it as the second metropolis of the empire, or "Rome beyond the Alps." Constantine the Great, who generally resided here from 306 to 331, and his successors also, beautilied the city with public works, and villas arose upon the hill-sides.
The Church added a lustre of a different kind. Legend associated Trier with the martyrdom of part of the Theban legion (c. 286) and with the relics found by St Helena in the Holy Land. St Agritius (d. 332) is the first bistorical bishop. Four great saints of the 4 th century are connected with the city. It was the scene of the first banishment of St Athanasius in 336. A baseless legend relates that he composed the Quiconque Vull while hiding here in a cistern. St Amhrose, one of the greatest sons of Trier, was born here about 340. St Jerome's mind was fir'st seriously directed to religion while studying at Trier about 370, and St Martin of Tours came in \({ }^{38} 5\) to plead with the tryant Maximus for the lives of the beretic Priscillian and his followers.

The Franks, who had thrice previously sacked the city, gained permanent possession of it about 455. Although some Frankish kings resided here, it gradually yielded place to Metz is 2 Frankish capital. The great bishop St Nicetius (\(528-566\)), who was banished for rebuking the vices of ling Clotaire \(I\). and eulogized by the poet Venantius Fortunatus, repaired the cathedral, and built a splendid castle for himself. The city passed to Lorraine in 843, and to the East Frankish king dom in 870 . It was sacked by the Northmen in 88I. Hetti, who occupied the see from 814 to 847 , is said to have been the first archbishop of Trier, and Radbod acquired the rights of the counts of Trier in 808 , thus founding the temporal power of the see. Robert claimed in vain the right to crown the German king Otto I. in 936, on the ground of the priority of his see, and in the toth century Arehbishop Dietrich I. obtained the primacy over Gaul and Germany.
The tcmporal power of the archbishops was not gained vit bout opposition. The German kings Otto IV. and Conrad IV. granted charters to the city, which however admitted the jurisdaction of its archbishop, Baldwin of Luxemburg, in 1308 This prince, a brother of the emperor Henry VIl., ruled from 1307 to 1354 , and was the real founder of the power of Trier. His predecessor Diether III. of Nassau had left his lands beavily ecambered with debt. Baldwin raised them to great prosperty by his energy and foresight, and chiefty as a result of the active political and military support he rendered to the mpars Henry VII., Louis the Bavarian and Charles IV. and his dominions almost to their ultimate extent. He the title of archchanccilor of Gaul and Arks (or Bur, and in 1315 admitted the claim of the archbishop of : to the highest place after the archbishop of Mainz Tive spiritual prinecs of the empire Thenceforward of Trier heid the thrd place in the electoral college rin's death the prosperity of Trier was checked

1496 the eatates united for the purpose of restoring order, and secured the right of electing their archbishops.

Throughout the middle ages the samcla civilas Trevirormme abounded in religious foundations and was a great seat of monastic learning. The university, founded in 1473, existed until 1797 The elector Richard von Greiffenklau (1467-853) successfully opposed the Reformation, and inaugurated the exhibitions of the holy coat, which called forth the denunciations of Luther, but have continued since his day to bring wealth and celebrity to the city. In the latter half of the i6th century the direction of education fell into the hands of the Jesuits.

During the Thirty Years' War the elector Philip Christopher von Sötern davoured France, and accepted French protection in 1631. The French in the following year expelled both Spaniards and Swedes from his territories, but in March 2635 the Spaniards recaptured Trier and took the elector prisoner. He remained in captivity for ten years, but was reinstated by the French in 1645 and confirmed in his possessions by the peace of Westphalia. The French again temporarily took Trice in 1674 and 1688.

The last elector and archbishop, Clement Wenceshans (i 768 1803). granted toleration to the Protestants in 1782, estahlished his residence at Coblenz in 1785, and fled from the French in 1794. By the peace of Lunéville in 18oi France amexed all the territories of Trier on the left bank of the Rhine, and in 1802 the elector abdicated. A new bishopric was created for the French department of the Sarre, of which Trier was the capital. The Treveran territorics on the right bank of the Rhine were secularized and given to Nassau-Weilburg in 1803, and in 1814 nearly the whole of the former electoral dominions were given to Prussia. A bishopric was again founded in 182t, with nearly the same boundaries as the old archbishopric, but it was placed under Cologne. The area of the former electoral principality was 3210 sq. m , and its population in the 18th century was from 250,000 to 300,000 . Roughly speaking. it was a broad strip of territory along the lower Saar and the Moselic from its confluence with that river to the Rhine, with a district on the right bank of the Rhine bebind Ehrenhreitstein. The chief towns in addition to Tricr were Coblenz, Cochem, Beilstein, Oberwesel, Lahnstein and Sayn Far more extensive was the territory under the spiritual authority of the archbishop which included the bishoprics of Metz, Toul and Verdun, and after 1777 also those of Nancy and St Dié

See E. A. Freeman's article "Augusta Treverorum" in the British Quarlerly Rericw for July 1875: Hett ner. Das romische Trier (Trier, 1880). J. N. von Wilmowsky, Der Dow au Tricy in seinen drei Haupipersoden (Trier, 1874): S. Beissel, Geschichte der trixier Kirchen (Trier, 1888). '. Gesta Treveronum " (ed G Waitz), in Mon. Germ. hest viii., xxiv.; J. N. von Hontheim. Historta trevirensis diplomatica el pragmatica (3 vols., Augsburg. 1750): Marx, Geschachte des Erssifis Frier (5 vols., Trier, 1858-1864) Leonardy. Ceschuchie des erierischen Landes wed Volkes (Saarlouis, 1871); Woerl, Führer durch dic Sladt Truer (8th ed., Leiprig, 1898).
(A.B.Ga)

TRIESTE (Ger. Triest; Slav. Trst; the Roman Tergeste, q. \()\), the principal seaport of Austria. 367 m . S.W. of Vienna hy rail. Pop. (1900), 132,879, of which three-fourths are Italians, the remainder being composed of Germans, Jews, Grecks. English and French. Trieste is situated at the northcast angle of the Adriatic Sea, on the Gull of Tricste, and is picturesqucly built on terraces at the foot of the Karst hills. The aspect of the town is Italian rather than German. It is divided into the old and the new town, which are connected by the broad and handsome Via del Corso, tbe busiest street in the town. The old town, nestling round the Schlossberg, the hill on which the castle stands, consists of narrow, steep and irregular strects. The castle, built in 1680 , is believed to occupy the site of the Roman capitol The new town, which lies on the flat expanse adjoining the crescent-shaped bay, partly on ground that has been reclaimed from the sea, has large and regularly built streets, and several large squares adorned with artistic monuments. The cathedral of San Ciusto was formed as it now stands by the union in the iath century of thret adjacent carly Christian buildings of the 6Lh century;
the tower incorporates portions of a Roman temple. The church of Santa Maria Maggiore, built in 1627-1682, is a characteristic specimen of Jesuit architecture; the church of Sant \({ }^{\prime}\) Antonio Nuovo, built in 1827-1849, is in the Greek style, as also the Greek Orthodox church, built in 1782, which is one of the handsomest Byzantine structures in the whole of Austria. Among the most prominent secular buildings are: the Tergesteo, a buge edifice containing a cruciform arcade roofed with glass, where the exchange is established, besides numerous shops and offices; the town-hall, rebuilt in 1874, with the handsome hall of the local Diet; the imposing old exchange, now the seat of the chamber of commerce; the palatial offices of the Austrian Lloyd, the principal shipping company; the commercial and nautical academy, with its natural history museum, containing the complete fauna of the Adriatic Sea; and finally the municipal museum, Revoltella, are all worth mentioning. The Museo Lapidario contains a collection of Roman antiquities found in or near the town. It is an open-air museum, installed in a disused burial-ground, and is situated near the castle. The Arco di Riccardo, which derives its name from a popular delusion that it was connected with Richard Coeur-de-Lion, is believed by some to be a Roman triumphal arch, but is probably an arcb of a Rosuan aqueduct.

At the head of the industrial establishments of Trieste stand the two ship-building yards of the Austrian Lloyd and of the Stabilimento Tecnico Trestino, which are the largest of their kind in Austria. The Stabilimento Tecnico is also fitted up for the construction of war-ships. They are equipped with all the latest technical innovations, and employ over 5000 workmen. Pet roleum refineries, iron-foundries, chemicals, soap-boiling, silk-spinning and the production of ships' firtings, as marine steam boilers, anchors, chains, cables, are the other principal branches of industry. Several marhle quarries are worked in the neighbourhood, and there are some large cement factories. Good wine, fruit and olive oil are the most important natural products of the country round Trieste.
The great importance of Trieste lies in its trade. It is the first port of Austria, and the principal outlet for the over-sea trade of the monarchy. It may be said nearly to monopolize the trade of the Adriatic, and has long eclipsed its ancient rival Venice. It owes its development to its geographical situation in the nonth-east angle of the Adriatic Sea at the end of the deeply indented gulf, and to its harbour, which was more accessible to large veneels than that of Venice. Besides, it was declared a free imperial port in 1719, and was therefore released from the obstructions to trade contained in the hampering legislation of the period. It was deprived of this privilege in 1891, when only the harbour was declared to be out side the customs limit. But during the last thirty years of the 19th century the increase in its trade was the lowest in comparison with the increase in the other great European ports. This was due in the first place to the lack of adequate railway communication with the interior of Austria, to the loss of part of the Levant trade through the development of the Oriental railway system, to the diversion of traffic towards the Italian and German pons, and fnally to the growing rivalry of the neighbouring pon of Fiume. whose interests were vigorously promoted by the Hungarian government. But in the 20th century a more active policy was inaugurated. New and direct services were started to East Africa. Central America and Mexico; the service to India and the Far East, as well as that to the Mediterranean ports, was much improved, and lastly. Trieste was made the centre of the large emigration from Austria to America by the inauguration (Jun- 1904) of a direct emigrant tervice to New York. But the most irmportant measure, designed to give a great impet us to the trade of Trieste. and to the over-sea trade of Austria generally, was the construction of the so-called second railway connexion with Trieste. begun in 1got. This measure provided for the construction of a railway over the Tauem Mountains between Schwarzach in Salzburg and Möllbrîcken in Carimithia: and of a railway over the Karawanken be ween Trieste and Klagen. furt, with a branch to Villach. The to al lenget of borth lines is 100 m . The Karawanken railway, a dire : connexion with Bohemia and the northern industrial provinces o: Austria, is calculated to counteract the gravitation of rraffic to ards the Cerman poris: While the Tauern railvay constitutes the shortest route to the interior of Austria and to the sourt of C rmany. By the new line the distance between Salzburg, for instance, and Trieste, is lessened by 160 m .

In onder to accommodate the increase in traffic resulting from the above improvements, important works for ment of the harbour were undertaken, al plered in 1910 . The capacious harbor the old and the new, is protected by exten, consisting of iwo marts. The new hartour , is protected by extensive moles and breakwiers Et,500,000. The new additions to the barbour, which ar
situated at the wouth end, were designed to rive more than double the receiving capacity of the port, and were estimated to cost \(\mathbf{4 3 . 6 2 5 , 0 0 0}\). The bulk of the over-sea trade of Trieste is done with the Levant. Egypt, India and the Far East, Italy, Great Britain and North and South America. Its most important trade by land. besides Austria, is done with Cermany, Trieste being the entrepót for Germany's commerce with India and the Mediterrancan countries. The principal articles imported are cotton and cotion goods, coffee, coal, cereals, hides, (ruit and tobacco; the principal articles exported are wool and woollen goods, sugar, paper, timber, machinery and various manufactured goods.

About 4 m . nortb-west of Trieste on the very edge of the sea is the famous castle of Miramar, built in \(1854-1856\) in the Norman style, for the archduke Maximilian, the ill-fated emperor of Mexico. It belongs now to the emperor of Austria, and its beautiful gardens are open to the public. About 4 m . nortbeast of Trieste is the village of Opxina, which possesses an obelisk 1146 ft . high, from which a beautiful view is obtained.

The town of Trieste, with its adjoining territory of a total area of 36 sq . m., forms a separate Austrian crown land. It had in 1900 a population of 178,672 , of which \(77 \%\) were Italians, \(18 \%\) Slovenes and \(5 \%\) Germans. The municipal council of Trieste constitutes at the same time the local Diet of tbe crown land, and is composed of 54 members. To the Reichsrat Trieste sends five deputies. Trieste is the seat of a Roman Catholic bishop, and the seat of the administration for the Kístenland or litteral, composed of the crown lands of Trieste, Grrz and Gradisca, and Istria.

History.-At the time of the foundation of Aquileia by the Romans, the district which now includes Trieste was occupied by Celtic and Illyrian tribes; and the Roman colony of Tergeste (q.p.) does not seem to have been established till the reign of Vespasian. After the break-up of the Roman dominion Trieste shared the general fortunes of Istria and passed through various hands. From the emperor Lothair it received an independent existence under its count-bishops, and it maintained this position down to its capture by Venice in 1203. For the next 180 years its history consists chiefly of a series of conflicts with this city, which were finally put an end to by Trieste placing itself in 1383 under the protection of Leopold III. of Austria. The overlordship thus established insensibly developed into actual possession, and except in the Napoleonic period (17971805 and \(1800-1813\)) Trieste has since remained an integral part of the Austrian dominions. It was an imperial free port from 1719 until 1891. The harbour was blockaded by an Italian fleet from May until August 1848. During the Italian and Hungarian revolutions Trieste remained faithful to Austria, and received the title of Cilla Fedelissima. In 1867 Trieste and tbe adjoining territory was constituted into a separate crown land. In 1888 a monument was erected in commemoration of the sooth anniversary of the connexion of the town with Austria.

Giulio Caprin, Triesle (Bergamo. 1906): Mainati's Croniche ossia memorie stor-sacro- profare di Trseste (7 vols., Venice. 1817 1818); Löwenthal. Gesch. der Stadt Truest (Trieste, 1857); Della Croce. Storta di Trueste (ibid., 1879); Scussa, Sorra cronografica di Trueste (ibid., new ed., 1885-1886); Neumann.Spallart. Osterrecchs maritime Encouckivng und die Hebung von Triest (Stuttgart, 1883): Die osterrect-ungaryshe Monarchie: Das Kuskenland (Vienna, 1891). Montanelli. Il Mosimento storico della popolazione di Trieste (1905): Hartleben, Fukrer durck Triest und Umgebung (5th ed., Vienna, 1905).

TRIFORIUM, an architectural term, the origin of which is unknown but probabiy derived from "thoroughfarum," as is was used as a passage from one end of the building to the other. The derivation from Lat. tres, tri, three, and foris, door, entrance, does not seem appropriate. The earlicst examples in the pagan basilicas. where it constituted an conversation and tusi was usually
mave of the cathedral or church, and being of less height gives more importance to the ground storey or nave arcade. In consequence of its less height it was usually divided into two arches, which were again subdivided into two smaller arches and these subdivisions increased the scale. On account of the richness of its mouldings and carved ornanient in the sculpture introduced in the spandrils, it became the most highiy decorated feature of the interior, the triforium at Lincoln being one of the most bcautiful compositions of Cothic architecture. Even when reduced to a simple passage it was always a highly enriched feature. In the 1 sth-century churches in England, when the roof over the aisles was comparatively flat, more height being required for the clerestory windows, the triforium -as dispensed with altogether. In the great cathedrals and abbeys the triforium was often occupied by persons who came to wilness various ceremonics, and in early days was probably utilized by the monks and clergy for work connected with the church.
From the constructive point of view, the triforium sometimes merved very important functions, as under its roof exist arches and vaults carried from the nave to the outer wall, to which they transmitted the thrust of the nave vault: even when the flying butiress vas frankly adopted by the Gothic architect and emphasized by its architectural design as an important feature, other cross arches were introduced under the roof to strengthen it.

TRIGLYPH (Gr. tpeis, three, and rגuфi, an incision or carving), an architectural term for the vertically channelled tablets of the Doric frieze, so called because of the anguiar channels in them, two perfect and one divided-the two chamfered angles or hemiglyphs being reckoned as one. The square sunk spaces between tbe trigiyphs on a frieze are called metopes.
TRIGOMOMETRY (from Gr. tplifwion, a triangle, \(\mu\) itpon, measure), the branch of mathematics which is concemed with the measurement of plane and spherical triangles, that is, with the determination of three of the parts of such triangies when the numerical values of the otber three parts are given. Since any plane triangle can be divided into right-angled triangles, the solution of all plane triangles can be reduced to that of right-angled triangles; moreover, according to the theory of similar triaggles, the ratios between pairs of sides of a rightangled triangle depend only upon the magnitude of the acute angles of the triangle, and may therefore be regarded as functions of either of these angles. The primary object of trigonometry, therefore, requires a classification and numerical tabulation of these functions of an angular magnitude; the acience is, however, now understood to include the compiete investigation not only of such of the properties of these functions as are necessary for the theoretical and practical solution of triangles but also of all their analytical properties. It appears that the solution of spherical triangles is effected by means of the same functions as are required in the case of plane triangles. The trigonometrical functions are employed in many branches of mathematical and physical science not directly concerned with the measurement of angles, and hence arises the lmportance of analytical trigonometry. The solution of triangles of which the sides are geodesic lines on a spheroidal surface requires the infurduction of other functions than those required for the solution of triangles on a plane or spherizal surface, and therefore gives rise to a new branch of sciencettioh is from analogy frequgntly called spheroidal erigononietry. Every new class may be considered would have in this exd sense a figugpoctry of its own, which would consist in whe and properties of the functions of the sides and angles of triangles sariaces.
with astronomical science; and since spherical triangles specially occur, it happened that spherical trigonometry was developed before the simpler plane trigonometry. Certain theorems were invented and utilized by Hipparchus, but material progress was not recorded until Ptolemy collated, amended and developed the work of his predecessors. In book xi. of the Almazest the principles of spherical trigonometry are stated in the form of a few simple and useful temmas; plane trigonometry does not receive systematic treatment although several theorems and problems are stated incidentally. The solution of triangles necessitated the construction of tables of chord- the equivalent of our modern tables of sines; Ptolemy treats this subject in book i., stating severai theorems relating to multipie angles, and by ingenious methods successfully deducing approximate results He did not invent the idea of tables of chonds, for, on the authority of Theon, the principle had been stated by Hipparchus (see Ptolemy).
The Indiana, who were much more apt calculators than the Greeks, availed themselves of the Greek geometry which came from Alexandria, and made it the basis of trigonometrical calculations The principal improvement which they introduced consists in the formation of tables of half-chords or sines instead of chords. Like the Greeks, they divided the circumference of the circle into 360 dcgrees or 21,600 minutes, and they found the length in minutes of the arc which can be straightened out into the radius to be \(343^{3}\). The value of the ratio of the circumference of the circle to the diameter used to make this determination is 62832:20000, or \(\pi=3.1416\), which value was given by the astronomer Aryabhata (476-550) in a work called Aryabhaiya, written in verse, which was republished ' in Senskrit by Dr Kernat Leiden in 1874. The rela. tions bet ween the sines and cosines of the game and of complementary arce were known, and the formula win \(\mathrm{f}=\mathrm{F}=\sqrt{ } / 1719(3438\)-cose) \()\) was applied to the determination of the sine of a hall angle when the sine and cosine of the whole angle were known. In the Süry-Siddhdifa, an astronomical treative which has been translated by Ebeneser Bourgess in voi. vi of the Journal of the American Oriental Society (New Haven, \(\mathbf{1 8 6 0}\)), the sides of angles at an interval of \(3^{\circ}, 45^{\prime}\) up to \(90^{\circ}\) are given; these were probably obtained from the sines \(\alpha 60^{\circ}\) and \(45^{\circ}\) by continual application of the dimidiary formula given above and by the use of the complementary angle. The values sin \(15^{\circ}=890^{\prime}, \sin 7^{\circ} \quad 30^{\prime}=49^{\prime}\) sin \(3^{\circ}, 45^{\circ}=225^{\prime}\) were thos obtained. Now the angle \(3^{\circ} 45^{\prime}\) is itself \(225^{\prime}\); thus the arc and the aine of it of the circumference were found to be the same, and consequently special importance was mitached to this arc, which was called the right sine. From the tables of sines of angles at intervals of \(3^{\circ} 45^{\circ}\) the lavexpressed by the equation
\(\left.\sin \left(\pi+7.225^{\prime}\right)-\sin (\pi .225)^{\prime}\right)=\sin \left(\pi .225^{\prime}\right)\)
\[
-\sin \left(n-1.225^{\circ}\right)-\sin \frac{\left(\pi .225^{\prime}\right)}{225}
\]
was discovered empirically, and used for the purpose of recalculation. Bhastara (1.1150) used the met bod, to which we have now returned, of expreasing sines and cosines as fractions of the radius; he obtained the more correct values sin \(3^{\circ} 45^{\prime}=100 / 1529,0003^{\circ} 45^{\prime}=466 / 467\), and showed how to form a table. accerdint to degrees, from the values \(\sin 1^{\circ}=10 / 573\), coe \(1^{\circ}=6568 / 6569\), which are much more accurate than Ptolemy's values. The Indians did not apply their trigonometrical knowledge to the solution of triangles: for astronomical purpones they wolved right-angled plane and opherical triangles by geometry.
The Arabs were acquainted with Piolemy's Almagest, and they probably learned from the Indians the use of the sine. The celebrated atatronomer of Ratnae, Albategnius (9. V.), who died in A.D. 929-930, and whose Tables were translated in the 12th century by Plato of Tivoli into Latin, under the title De seiendia stellarwor, employed the sine regularly, and was fully conscious of the advantage of the sine over the chord; indeed, he remarks that the continual doubling is eaved by the use of the former. He was the first to calculate ain \(\phi\) from the equation \(\sin \$ /\) coe \(\phi=k\), and he aiso made a table of the length of shadows of a vertical object of height 12 for altitudes \(1^{\circ}, 2^{\circ}, \ldots\) of the sun; this is a sort of cotangent table. He was acquainted not only with the triangle formulae in the Alma. gest, but also with the formula cos \(a=\cos b \cos c+\sin b \sin c \cos A\) for a spherical triangie ABC. Aba't-Wafi of Bagdad (b. 940) was the first 10 introduce the tangent as an independent function: his "umbra" is the halt of the rangent of the double arc. and the secant he defines as the " diameter umbrae." He empployed the umbra to find the angle from a table and not merely as an abbreviation for sin/cos: this improvement was, however, afterwards forgotten, and the tangent was reinvented in the 15th eentury. Ibn Yünos of Cairo. who died in 1008, showed even more skill than Albategnius in the solution of problems in spherical Irigonometry and gave improved approximate formulae for the calculation of sines. Among the West Arabs, Geber (g.v.), who lived
\({ }^{1}\) See also vol. ii. of the Asiatic Researches (Calcutta).
at Seville in the 11 th century, wrote an astronomy in nine books, Which was translated into Latin in the 12th century by Gerard of Cremona and was published in I534. The first book contains a trigonometry which is a considerable improvement on that in the Almagest. He gave proofs of the formulae for right-angled spherical triangles, depending on a rule of four quantities, instead of Ptolemy's rule of six quantities. The formulae \(\cos B=\cos b \sin A, \cos c=\) cot \(A \cot B\), in a triangle of which \(C\) is a right angle had escaped the notice of Ptolemy and werc given for the first time by Geber. Scrangely enough. he made no progrese in plane trigonometry. Arrachel, a Spanish Arab who lived in the 12 th century, wrote a work of which we have an analysis by Purbach. in which, like the Indians. he made the sine and the arc for the value \(3^{\circ} 45^{\prime}\) coincide.

Georg Purbach (\(1423-1461\)), profescor of mathematics at Vienna, wrote a work entitled Tractatus super propasitiones Plolemaen de sinubus et chordis (Nuremberg. 1541). This treatise consists of a development of Arrachel's method of interpolation for the calculation of tables of sines, and was published by Regiomontanus at the end of one of his works. Johannes Muller (1436-1476), known as Regiomontanus, was a pupil of Purbach and taught astronomy at Padua: he wrote an exposition of the Almagest, and a more important work, De triangulis planis et sphericis cum tabulis sinuиm. which was published in 1533, a later edition appearing in 150t. He reinvented the tangent and calculated a table of tangents for each degree, but did not make any practical applications of this tahle. and did not use formulae involving the tangent. His work was the first complete European treatise on trigonometry, and contains a number of interesting problems; but his methods were in some respects behind those of the Arabs. Copernicus (1473-1543) gave the first simple demonstration of the fundamental formula of epherical trigonometry: the Trigonometria Copernici was published by Rheticus in 1542. George Jeachim (1514-1576). known as Rheticus, wrote Opus palatinum de sriangulis (see Tables, Mathematical), which contains tables of sines, tangents and secants of arcs at intervals of \(10^{\circ}\) from \(0^{\circ}\) to \(90^{\circ}\) His method of calculation depends upon the formulae which give sin na and \(\cos\) wa in terms of the sines and cosines of \((n-1)\) a and \((n-2)\) a: thus these formulae may be regarded as due to him. Rheticus found the formulae for the sines of the half and third of an angle in cerms of the sine of the whole angle. In 1599 there appeared an important work by Bartholomew Pifiscus (i56t-1613), entitled Trigonometrige sew De dimensione triangulorum; this contained several important theorems on the trigonometrical functions of two angles, some of which had been given before by Finck. Landsberg (or Lansberghe de Meuteblecke) and Adriaan van Roomen. François Vietce or Vieta (\(1540-1603\)) employed the equation \(\left(2 \cos \{\phi)^{2}-3(2 \cos \} \phi\right)=2 \cos \phi\) io solve the cubic \(x^{3}-3 a^{2} x=a^{2} b(a>b b)\) : he obtained, however, only one root of the cubic. In 1593 Van Roomen proposed, as a problem for all mathematicians, to solve the equation
\[
45 y-3795 y^{3}+95634 y^{4}-\ldots+945 y^{11}-45 y^{4}+y^{41}=C .
\]

Vieta gave \(y=2 \sin f(\phi\). where \(C=2 \sin \phi\). as a solution, and also twenty-two of the other solutions, but he failed to obtain the negative roots. In his work Ad angulares sectiones Vieta gave Cormulac for the chords of multiples of a given arc in terms of the chord of the simple arc.

A new stage in the development of the sience was commenced alter John Napier's invention of logarithms in 1614. Napier also simplified the tolution of spherical triangles by his well-known analogies and by his rules for the solution of rightangled triangles. The first tables of logarithmic sines and tangenis were const ructed by Edmund Gunter (is8:-1626), profeswor of astronomy at Gresham College, London; he was also the first to employ the expressions cosine, cotangent and cosecant for the sine, tangent and secant of the complement of an arc. A treatise by Albert Girard (15901634), published at the Hague in 1626, contains the theorems which give areas of spherical triangles and polygons, and applications of the properties of the supplementary triangles to the reduction of the number of differcnt cases in the solution of spherical triangles. He uted the notation sin, tan, sec for the sine tangent and secant of an arc. In the second haif of the i7th century the theory of infinite series was developed by John Wallis, Gregory, Mercator, and afterwards by Newton and Leibnitz. In the Amalyuis per aequationes mamero kerminorum infinilas, which was written before 1669. Newton gave the teries for the are in powers of its sine; from this he obtained the series for the sine and cosinc in powers of the arc: but these series were given in such a form that the law of sbe formation of the coefficients was hidden. James Gregory discovered in 1670 the series for the arc in powers of the tangent and for the tangent and secant in powers of the arc. The first of these series was also discovered independently by Leibnitz in 1673 , and published without proof in the Acta erudilorum for 1682. The aeries for the sine in powers of the arc he publiched in 1693 ; this he obtained by differentiation of a series with undetermined coefficients.

In the t8th century the science began to take a more analytical form: evidence of this is given in the works of Kresa in 1720 and Mayer in 1727. Friedrich Wilhelm v. Oppel's A malysis triangulormas (1746) was the first complete work on analytical trigonometry. None of shese mathematicians used the notation sin, cos, tan, which is the more murprime- \({ }^{-3}\), case of Oppel, since Leonhard Euler
had in 1744 employed it in a memoir in the Acte eruditormin. Jean Bemoull was the first to obtain real results by the use of the symbol \(\sqrt{ }-1\) : he published in 1712 the general formula for tan mo in terms of tan \(\phi\), which he obtained by means of transformation of the are into imaginary logarithms. The greateat advance was however, made by Euler, who brought the sciemce in all essential respects into the state in which it is at present. He introduced the present notation into general use. whereas until his time the trigonometrical functions had been. except by Girard, indicated by epecial letters, and had been regarded as certain straight lines the absolute lengths of which dcpended on the radius of the circle in which they were drawn. Euler's great improvement consisted in his regarding the sine, cosine, \&c., as functions of the angle only. thereby giving to equations connecting these functions a purely analytical interpretation, instead of a geometrical one as heretofore. The exponential values of the sine and cosine, De Moivre's theorem, and a great number of other analytical properties of the trigonometrical functions. are due to Euler, most of whose writings are to be lound in the Memoirs of the St Petersburg Academy.

Plane Trigonometry.
1. Imagine straight line terminated at a fixed point \(O\), and initially coincident with a fixed straight line \(O A\). to revolve round \(O_{1}\) and finally to rake up any position OB. We shall sup-Conergeto pose that, when this revolv. of Aagdes ing straight line is tuming of amy ing straight line is turning
in one direction, say that pposite to that in which the hands of clock turn. it is describing a positive angle, and when it is turning in the other direction it is describing a negative angle. Before finally taking up the position \(O B\) the straight line may have passed any number of limes through the position \(O B\), making any number of complete revolutions round \(O\) in either direction. Each time that the straight

Fig. 1. line makes a complete revolution round \(O\) we consider it to have described four right angles, taken with the positive or negative sign, according to the direction in which it has revolved; thus, when it stops in the position \(O B\), it may have revolved through any one of an infinite number of positive or negative angles any two of which differ from one another by a positive or negative multiple of four right angles, and all of which have the same bounding lines \(O A\) and \(O B\). If \(O B^{\prime}\) ' is the final position of the revolving line, the smallest positive angle which can have been described is that described by the revolving line making more than one-half and less than the whole of a completc revolution, so that in this case we have a positive angle greater than two and less than four right angles. We have thus shown how we may conceive an angle not restricted to be less than two right angles, but of any positive or negative magnitude, to be generated.
2. Two systems of numerical measurement of angular magnitudes are in ordinary use. For practical measurcments the sexagesimal system is the one employed: the ninetieth part of a right angle is taken as the unit and is called a degree; the Namertal degree is divided into sixty equal parts called minutes: and the minute into sixty equal parts called seconds: and the minute into sixty equal parts called seconds: Ampres Mowsers: decimals of a second. the "thirds," "fourthe," \&ec., not being in ordinary use. In the common notation an angle, for example, of 120 degrees, 17 minutes and 14.36 eeconds is writien \(120^{\circ} 17^{\prime} 14-36^{\circ}\). The decimal system measurement of angles has never come into ordinary use. In analytical trigonometry the circular measure of an angle ls employed. In this gystem the unit angle or radiaa ia the angle mbtended at the centre of a circle by an are equal in kength to the radius. The constancy of this angle follows from the geometrical propositions-(1) the circumferences of difierent circles vary as their radit; (2) in the same circle angles at the centre are proportional to the arcs which subtend them. It thus follows that the radian is an angle independent of the particular circle used in defning it. The constant ratio of the circumference of a circle to its diameter is a number incommensurable with unity. usually denoted by . We thall indicate later on wome of ife methods which have been employed to approximate to the value of this number. Its value to 20 places is 3.1415926535897932386 ; its reciprocal to the same number of places is \(0-31830988618379067153\) In circular measure every angle is measured by the ratio which it bears to the unit angle. Two right angles are measured by the number ., and, since the same angle is \(180^{\circ}\), we wee that the number of degrees in an angle of circular messure is obiained from the formula \(180 \times 0 / \mathrm{r}\). The value of the radian has been found to \(4^{1}\) places of decimals by Glaisher (Proc. London Moik. Soc. vol. iv.) the value of \(I / r\), from which the unit can easily be calculated, is given Io 140 places of decimals in Grwnerts Archio (1841), vol. i. To 10 decimal places the value of the unit angle is \(57^{\circ} 17^{\prime} 44^{\circ} 8062470964^{\circ}\). The unit of circular measure is too large to be conveniont for practical purposes, but its use introduces a simplification into the series in analytical trigonometry, owing to the fact that the sine of
an ancle and the ample itrelf in this measure, when the magnitude of the angle is indefinitely diminithed, are ultimately In a ratio of equality. 3. If a point moves from a position \(A\) to another position \(B\) on a straight the, it has described a length \(A B\) of the straight line. It syan is convenient to have a simple mode of indicating in on wich direction on the straight line the length \(A B\) has ar foesens been deacribed; this may be done by supposing that a ceratele Lman point moving in one specified direction is describing a positive length, and when moving in the opposite direction a negative length. Thus, if a point moving Irom \(A\) to \(B\) is moving in the positive direction, we consider the lengtb \(A B\) as poritive: and, since a point moving from \(B\) to \(A\) is moving in the negative direction, we consider the length \(B A\) as megative. Hence any portion of an infinite straight line is considered to be positive or negative according to the direction in which we suppose this portion to be described by a moving point: which direction is the positive one is, of course, matter of coavention.
If perpendiculars \(A L, B M\) be drawn from two points, \(A, B\) on any straight line, not necessarily in the same plane with \(A B\), the Praletomas length LM, taken with the positive or negative sign
of Stratith Lhere according to the convention as stated above, is called the projection of \(A B\) on the given straight line; the projection of \(B A\) being \(M L\) has the opposite sign to the projection of \(A B\). If two points \(A, B\) be joined by a number of lines in any manner, the algebraical sum of the projections of all these lines is LM-that is, the same as the projection of AB. Hence the sum of the projections of all the sides, taken in order, of any closed polygon, not necessarily plane, on any straight line, is zero. This principle of projections we shalt apply below to obtain some of the most important propositions in trigonometry.
4. Let us now return to the conception of the generation of an angle as in fig. 1. Draw \(B O B^{\prime}\) at right angles to and equal to \(A A^{\prime}\). Definlo We shall suppose that the direction from \(A^{\prime}\) to \(A\) is the of Triteen anditien positive one for the straight line \(A O A^{\prime}\), and that from
\(B^{\prime}\) to \(B\) for \(B O B^{\prime}\). Suppose \(O P\) of fixed length, equal to OA, and let PM, PN be drawn perpendicular to \(A^{\prime} A, B^{\prime} B\) respectively: then \(O M\) and \(O N\), taken with their proper signs, are the projections of \(O P\) on \(A^{\prime} A\) and \(B^{\prime} B\). The

Fig. 2. ratio of the projection of \(O P\) on \(B^{\prime} B\) to the absolute length of \(O P\) is dependent only on the magnitude of the angle POA, and is called the sine of that angle; the ratio of the projection of OP on \(A^{\prime} A\) to the length \(O P\) is called the cosine of the angle POA. The ratio of the sine of an angle to its cosine is called the canterut of the angle, and that of the cosine to the sine the codangent of the angle; the reciprocal of the cosine is called the secant, and that of sine the cosecant of the angle. These functions of an angle of magnitude a are denoted by sin \(\mathrm{E}, \cos \mathrm{a}, \tan \mathrm{a}, \cot \mathrm{a}, \sec \mathrm{a}, \operatorname{cosec} \mathrm{E}\) respectively. If any straight line RS be drawn parallel to \(O P\). the projection of \(R S\) on either of the straight lines \(A^{\prime} A A^{\prime} B^{\prime} B\) can be easily seen to bear to \(R S\) the same ratios which the correspond. ing projections of \(O P\) bear to \(O P\) : thus, if a be the angle which \(R S\) makes with \(A^{\prime} A\), the projections of \(R S\) on \(A^{\prime} A, B^{\prime} B\) are \(R S\) cos 2 and RS sin a respoctively, where RS denotes the abmolute length RS. It must be observed that the line \(S R\) is to be considered as paralle-1 not to \(O P\) but to \(O P^{*}\), and therefore makes an angle \(F+\) a - ith \(A^{\prime} A\); this is consistent with the fact that the projections of \(S R\) are of opposite sign to thoue of RS. By observing the signs of the projections of \(O P\) for the positions \(P, P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}\) of \(P\) we see that the cine and cosine of the angle POA are both positive: the sine of the angle \(P O O A\) is positive and its cosine in negative; both the sine and the cosine of the angle \(P^{\circ} O A\) are negative; and the sine of the angle ProA is negative and its cosine positive. If a be the numerical value of the smallest angle of which \(O P\) and \(O A\) are boundaries, we wee that, since these straight lines also bound all the angles \(2 n=+\mathrm{e}\). where is is any positive or negative integer, ibe sines and cosines of all these angles are the same as the sine and cosine of a. Hence the sine of any angle \(2 n \pi+a\) is positive if \(a\) is between 0 and \(\pi\) and negative il a is between \(r\) and \(2 r\), and the cosine of the same angle is positive if \(\varepsilon\) is between 0 and \(\} r\) or \(\mid \mathrm{T}\) and 2 rand negative if an between ir and is.
In fir: \({ }^{2}\) the angle \(P O A\) is a, the angle \(P{ }^{\prime \prime} O A\) is - a. \(P O O A\) is F-a. \(P^{-} O A\) is \(\pi+\) a. \(P O B\) is \(\{\pi-a\). By observing the signs of the projections we see that
\(\sin (-\varepsilon)=-\sin a, \sin (r-a)=\sin a, \sin (x+a)=-\sin a\),
\(\cos (-a)=\cos a, \cos (r-a)=-\cos a, \cos (r+a)=-\cos a\), \(\sin (15-a)=\cos a, \cos \left(\frac{1}{2}-a\right)=\sin a\).
Also \(\sin (3 \pi+a)=\sin \left(\pi-\frac{1 \pi}{2}-a\right)=\sin (1 \pi-a)=\cos a\). \(\cos (1 \pi+a)=-\cos (\pi-1 \pi-a)=-\cos (1 \pi-a)=-\sin a\)

From there equations we have \(\tan (-a)=-\tan a \tan (\pi-\mu)=\) \(-\tan \alpha, \tan (\pi+a)=-\tan a . \tan (\pi \pi-a)=\cot a, \tan (4 \pi+a)=\) - cot e, with corresponding equations for the cotangent.

The only angles lor which the projection of OP on \(B^{\prime} B\) is the same as for the given angle \(P O A(=a)\) are the two sets of angles bounded by \(O P, O A\) and \(O P\). \(O A\); these angles are \(2 n \pi+m\) and \(2 n \mathrm{r}+(\mathrm{x}-\mathrm{a})\), and are all included in the formula \(\mathrm{rr}+(-\mathrm{t}) \mathrm{ra}\) where \(r\) is any integer; this therefore is the formula for all angles having the same sine as a. The only angles which have the same cosine as a are those bounded by OA, OP and OA. OP'N, and these
 that \(n \pi+a\) includes all the angles which have the same tangent as a.
From the Pythagorean theorem, the sum of the squares of the projections of any straight line upon wwo straight lines at right angles to one another is equal to the square on the projected line, we get \(\sin ^{1} a+\cos ^{2} a m\), and from this by the help of the definitions of the other functions we

pelatore
porwees \(\operatorname{cosec}^{2}\) a. We have now six relations between the six froctoses functions; these enable us to express any five of these functions in terms of the sixith. The following table shows the
 and the signs of the functions of angles between these values; i denotes numerical increase and \(D\) numerical decrease:-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Angle . & - & 0...1. & 45 & \(\frac{1}{2 \times 1 . . .5}\) & T & - ... \({ }^{\text {Ir }}\) & 1\% & 15...25 & 25 \\
\hline Sine. & - & + 1 & 1 & +D & - & -1 & -1 & -D & - \\
\hline Cosine : & 1 & \(+D\)
+1 & + \({ }^{\circ}\) & - -1 & -1 & \(-D\)
+1 & - & \(\pm 1\) & 1 \\
\hline Tangent & \({ }_{+\infty}^{0}\) & \(+\quad\)
\(+D\) & \(\pm\) & - -1 & \(\bigcirc\) & + + & + \({ }^{+\infty}\) & -D & \(\bigcirc\) \\
\hline Secant & 1 & + 1 & - & -D & -1 & -1 & \(\pm \infty\) & +D & 1 \\
\hline Cosecant & & + \(D\) & 1 & \(+I\) & & -D & -1 & - 1 & \(\pm \infty\) \\
\hline
\end{tabular}

The correctness of the table may be verified from the Gigure by considering the magnitudes of the projections of \(O P\) for different pusitions.
The following table shows the sine and cosine of some angles for which the values of the functions may be obtained geometrically:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\frac{12}{12}\) & 15* & \[
\frac{\text { sine }}{\sqrt{6}-\sqrt{2}} 44
\] & \[
\begin{gathered}
\text { cosine } \\
\frac{\sqrt{6}+\sqrt{2}}{4}
\end{gathered}
\] & \(75^{\circ}\) & \(\frac{5}{12}\) \\
\hline \(\underline{10}\) & 18* & \[
\frac{\sqrt{5}-1}{4}
\] & \(\frac{\sqrt{10+2 \sqrt{5}}}{4}\) & \(7{ }^{\circ}\) & \(\frac{2}{5}=\) \\
\hline \(\frac{7}{6}\) & \(30^{\circ}\) & \(\frac{1}{2}\) & \(\frac{\sqrt{3}}{2}\) & \(60^{\circ}\) & \(\frac{1}{3}=\) \\
\hline \(\frac{7}{3}\) & \(36^{\circ}\) & \(\frac{\sqrt{10-2 \sqrt{3}}}{4}\) & \(\frac{\sqrt{5}+5}{4}\) & \(34^{*}\) & \(\frac{3}{10}\) \\
\hline \% & \(45^{*}\) & \[
\frac{1}{\sqrt{2}}
\] & \[
\frac{1}{\sqrt{2}}
\] & \(45^{\circ}\) & \(\frac{1}{4}=\) \\
\hline
\end{tabular}

These are obrained as follows. (1) it. The sine and cosine of this angle are equal to one another, since sin \(t=\cos \left(\frac{1}{2} x-\{-)\right.\) : and since the sum of the squares of the sine and cosine is unity each is \((\sqrt{2}\). (2) \(1 \approx\) and \(j x\). Consider an equilaterel triangle: the projection of one side on another is obviously hall a side; hence the cosine of an aggle of the triangle is or con \(\mathbf{y}\) an -1 , and from this the sine is found. (3) \(\pi / 10,5 / 5\), \(2 \pi / 5.3 \pi / 10\). In the triangle constructed in Euc. iv. Io each amgle at the base is \(\mathbf{i r}\), and the vertical angle is ir. If a be a side and \(b\) the bare, we have by the conscruction \(a(a-b)=b^{2}\); hence \(2 b=a(\sqrt{5}-1)\); the sine of \(\pi / 10\) is \(b / 2 a\) or \(f(\sqrt{ } \xi-1)\), and cos \(1 \pi\) is \(a / a b=l(\sqrt{ } /+1)\). (4) \(\mathrm{f}_{\mathrm{a}} \mathrm{F}, \mathrm{F}_{\mathrm{g}} \mathrm{r}\). Consider a right-angled triangle, having an angle ir. Bisect this angle, then the opposite side is cut by the bisector in the ratio of \(\sqrt{3}\) to 2 ; hence the length of the smaller segment is to that of the whole in the ratio of \(\sqrt{3}\) to \(\sqrt{3}+2\). therefore tan isr=| \(\sqrt{3} /(\sqrt{3}+2) \mid\) tan 1 r or \(\tan \sin ^{2}=2-\sqrt{3}\). and from this we can obtain sin to and cos ir
5. Draw a straight line \(O D\) making any angle \(A\) with a fixed straight line OA, and draw OF making D an angle \(B\) with \(O D\). this angle being mieacured posi tively in the same direction as \(A\) : draw \(F E\) a perpen dicular on DO (produced if necessary). The projection ofterad of \(O F\) on \(O A\) is the sum of Two Aagtor the projections of \(O E\) and \(E F\) on OA. Now \(O E\) is the projection of \(O F\) on \(D O\)

\section*{Vakes of} Trtace: metrital Fumaloas for some Alathes.

\section*{\(\qquad\)}
on a straight tine making an angle \(+\frac{1}{j}\) with \(O D\), and is therefore equal to \(O F \sin B\); bence
\(O F \cos (A+B)=O E \cos A+E F \cos (1 \pi+A)\) \(=O F(\cos A \cos B-\sin A \sin B)\).
or \(\quad \cos (A+B)=\cos A \cos B-\sin A \sin B\).
The angles \(A\). \(B\) are absolutely unrestricted in magnitude, and thus this formula is perfectly general. We may change the sign of \(B\), thus \(\cos (A-B)=\cos A \cos (-B)-\sin A \sin (-B)\).
or \(\quad \cos (A-B)=\cos A \cos B+\sin A \sin B\).
If we projected the sides of the triangle \(O E F\) on a straighe line riaking an angle \(+j \pi\) with \(O A\) we should obtain the formulae \(\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B\),
which are really contained in the cosine lormula, since we may put \(1 \times-B\) for \(B\). The formulae
\(\tan (A \neq B)=\frac{\tan A * \tan B}{I \neq \tan A \tan B}, \cot (A \neq B)=\frac{\cot A \cot B \neq t}{\cot B+\cot A}\) are immediately deducible from the above formulac. The equations \(\sin C+\sin D=2 \sin \frac{1}{2}(C+D) \cos \{(C-D)\).
\(\sin C-\sin D=2 \sin (C-D) \cos 3(C+D)\).
\(\cos D+\cos C=2 \cos (C+D) \cos (C-D)\).
\(\cos D-\cos C=2 \sin (C+D) \sin \frac{1}{2}(C-D)\).
may be obtained directly by the method of projections. Take two equal straight lines \(O C, O D\), making angles \(C, D\), with \(O A\), sind draw \(O E\) perpendicular to \(C D\). The angle which \(O E\) makes

Fic. 4 with \(O A\) is \(I(C+D)\) and that which \(D C\) makes is \(f(\pi+C+D)\); the angle
\(C O E\) is \(t(C-D)\). The sum of the projections of \(O D\) and \(D E\) on \(O A\) is equal to that of \(O E_{2}\) and the sum of the projections of \(O C\) and \(C E\) is equal to that of \(O E\) : hence the sum of the projections of \(O C\) and \(O D\) is twice that of \(O E\), or \(\cos C+\cos D=2 \cos \{(C+D)\) cos \(1(C-D)\). The difference of the projections of \(O D\) and \(O C\) an \(O A\) is equal to iwice that of ED, hence we have the formula \(\cos D-\cos C\) \(=2 \sin f(C+D) \sin f(C-D)\). The other two formulae will te obtained by projecting on a straiglt line inclined at an angle +15 to OA.
As another example of the use of projections, we will find the sum of the series \(\cos a+\cos (a+\beta)+\cos (a+2 \beta)+\ldots+\cos (a+n-1 \beta)\).

Sumes
Sertes of Costocs la arlitmeakal Progrtatios. Suppose an unclosed polygon each angle on which is \(\pi-\beta\) to be inscribed in a circlc, a a d let \(A, A_{1}, A_{2}\), \(A_{3}\). \(\dot{D}\) 解 the be \(n+1\) consecutive angular points: let \(D\) be the diameter of the circle; and suppose a straight line drawn making an angle a with \(A A_{1}\), then \(a+\beta, a+2 \beta\)
are the angles it makes with \(A_{1} A_{1}\). \(A_{2}, A_{2}, \ldots\) we have by projections
\(A A_{n} \cos \left(a+\frac{1}{n-1}(\beta)=A A_{1}|\cos a+\cos \overline{a+\beta} \ldots+\cos a+(\overline{n-1}) \beta|\right.\), also \(A A_{1}=D \sin \boldsymbol{\|} A, A A_{n}=D \sin \ln \boldsymbol{f}_{;}\)
hence the sum of the serics of cosines is
\(\cos (n+\sqrt{n-i} \beta)\) in \(\mid n \theta \operatorname{cosec} j \beta\).
By a double application of the addition formulae we may obtain the formulae
Formalee tor \(\quad \sin \left(A_{1}+A_{1}+A_{1}\right)=\sin A_{1} \cos A_{2} \cos A_{1}\)
Slaeand
Coslat of
Sume of
\(+\cos A_{1} \sin A_{1} \cos A_{1}+\cos A_{1} \cos A_{2} \sin A_{2}\) \(-\operatorname{tin} A_{1} \sin A_{1} \sin A_{1}:\)

Aagke.
\(\cos \left(A_{1}+A_{2}+A_{1}\right)=\cos A_{1} \cos A_{1}, \cos A_{2}\)
\[
\begin{gathered}
-\cos A_{1} \sin A_{2} \sin A_{1}-\sin A_{1} \cos A_{2} \sin A_{2} \\
-\sin A_{1} \sin A_{2} \cos A_{2}
\end{gathered}
\]

We can by induction extend these lormulae to the case of \(n\) anglea.
Assume \(\left.\quad \begin{array}{ll}\sin \\ \cos \left(A_{1}+A_{1}+\ldots+A_{A}\right) & =S_{1}-S_{3}+S_{t}-\ldots \\ \cos \end{array}\right)=A_{5}-\ldots\)
where \(S_{r}\) denotes the sum of the products of the sines of tof the angles and the cosites of the remaining \(n-r\) angles; then we have \(\begin{aligned} \sin \left(A_{1}+A_{2}+\ldots+A_{n}+A_{n+1}\right) & =\cos A_{n+1}\left(S_{1}-S_{3}+S_{5}-\ldots\right) \\ & +\sin A_{n+1}\left(S_{0}-S_{1}+S_{4}-\ldots\right) .\end{aligned}\)
The right-hand side of this equation may be written
\[
\left(S_{1} \cos A_{n+1}+S_{6} \sin A_{n+1}\right)_{1}-\left(S_{3} \cos A_{n+1}+S_{1} \sin A_{n+1}\right)+\ldots
\]
or
where \(S^{\prime}\), denotes the quantity which corresponds for \(n+1\) angles to \(S\), for \(n\) angles; similarly we may proceed with the cosine formula. The theorems are true for \(\boldsymbol{n = 2}\) end \(\boldsymbol{n}=3\); thus they are true generally. The lormulae
Formulize \(\cos 2 A-\bar{t}-1-\sin ^{\circ} A-2 \cos A-1-1-2 \sin ^{\circ} A\), tor Mulipie
 \(A\) anfes. \(\sin 3 A=3 \sin A-4 \sin ^{3} A, \quad \cos 3 A=4 \cos ^{3} A-3 \cos A\), \(\sin n A=n \cos ^{n-8} A \sin A-\frac{n(n-1)(n-2)}{3!} \cos\)
\[
+(-1) \cdot \frac{n(n-1) \cdots(n-2 r)}{(2 n+1)!} \cos ^{n-2-1} A \sin ^{2 x+1} A
\]
\(\cos n A=\cos ^{4} A-\frac{n(n-1)}{2!} \cos ^{n-1} A \sin ^{1} A+\ldots\)
\(+(-) r^{n(n-1) \ldots(n-2 r+1)} \cos ^{n-6} A \sin ^{2} A+\ldots\)
may all be deduced from the addition formulae by making the angles all equal. From the last two formulae we obtain by division

In the particular case of \(n=3\) we have \(\tan 3 A=\frac{3 \tan A-\tan ^{2} A}{1-3 \operatorname{can}^{2} A}\).
The values of \(\sin \left\{A, \cos \$ A, \tan \frac{1}{2} A\right.\) are given in terms of \(\cos A\) by the formulae
\(\sin \left\lvert\, A=(-1) \cdot\left(\frac{1-\cos A}{2}\right)^{\prime}\right., \cos 1 A=(-1) \cdot\left(\frac{1+\cos A}{2}\right)^{\prime}\).
\[
\tan \left\lvert\, A=(-1) \cdot\left(\frac{1-\cos A}{1+\cos A}\right)^{\prime}\right.
\]
where \(p\) is the integral part of \(A / 2 \pi, q\) the integral part of \(A / 2 \pi+\frac{1}{2}\), and \(r\) the integral part of \(A / r\).
Sin \(\{A, \cos \{A\) are given in terms of \(\sin A\) by the formulae
\(2 \sin \left\{A=(-1) p^{\prime}(1+\sin A)!+(-1)^{\prime}(1-\sin A) t\right.\). \(2 \cos \left\{A=(-1) p^{\prime}(1+\sin A) t-(-1) r^{\prime}(1-\sin A) d\right.\).
where \(p^{\prime}\) is the integral part of \(A / \mathbf{2 x}+\frac{1}{2}\) and \(q^{\prime}\) the integral part of A/2x-4.
6. In iny plane Irisngle \(A B C\) we will denote the lengthe of the sides \(B C, C A, A B\) by \(a, 6, c\) respectively, and the angles \(B A C, A B C\). \(A C B\) by \(A, B, C\) respectively. The lact that the projec-
tions of \(\delta\) and \(c\) on a strajght line perpendicular to the Propertea side a are cqual to one another is expressed by the equa- of Triagates. tion \(b \sin C=c\) sin \(B\); this equation and the one obtained by projecting \(c\) and \(a\) on a straight line perpendicular to a may be written \(a / \sin A=b / \sin B=c / \sin C\). The equation \(a=b \cos C+c \cos B\) expresees the lact that the side a is equal to the sum of the proiections of the sides \(b\) and \(c\) on itself; thus we obtain the equations
\[
\left.\begin{array}{l}
a=b \cos C+c \cos B \\
b=c \cos A+a \cos C \\
c=a \cos B+b \cos A
\end{array}\right\} .
\]

If we multiply the first of these equations by \(-a\), the second by \(b\), and the third by \(c\), and add the resulting equations, we obtain the formula \(b^{3}+c^{3}-a^{2}=2 b c \cos A\) or \(\cos A=\left(b^{3}+c^{1}-a^{2}\right) / 2 b c\), which gives the cosine of an angle in terms of the sides. From this expression for \(\cos A\) the formulae
\[
\begin{gathered}
\sin \left|A=\left\{\frac{(s-b)(s-c)}{b c}\right\}, \cos \right| A=\left\{\frac{s(s-a)}{b c}\right\}! \\
\tan 1 A=\left\{\frac{(s-b)(s-c)}{s(s-a)}\right\}!, \sin A=\frac{2}{E c}|s(s-a)(s-b)(s-c)|^{\prime}
\end{gathered}
\]
where s denolea \(1(a+b+c)\), can be deduced by means of the dimidiary formula.

From any general relation between the sides and angles of a triangle oiber relations may be deduced by various methods of transformation, of which we give two examples.
e. In any general relation between the sines and cosines of the angles \(A, B, C\) of a triangle we may substitute \(p A+q B+r C\), \(\nabla A+p B+q C, \quad q A+r B+p C\) lor \(A, B, C\) respectively, where p. q. . are any quantitics such that \(p+q+r+1\) is a positive or negative multiple of 6 , provided that we change the signs of all the sines. Suppose \(p+q+r+1=6 n\), then the sum of the three angles \(2 n \pi-(p A+q B+r C), 2 m \pi-(v A+p B+q C) \cdot 2 n \pi-(q A+r B+p C)\) is \(:\) and, since the given rclation follows from the condition \(A+B+C\) \(=\pi\). we may substitute for \(A, B, C\) respectively any angles of which the eum is r ; thus the translormation is admissible.
A. It may easily be shown that the sides and angles of the triangle formed by joining the leet of the perpendiculars from the angular points \(A\). B. \(C\) on the opposite sides of the triangle \(A B C\) 2 re respectively \(a \cos A, b \cos B, c \cos C,-2 A,-2 B,-2 C\); we may therefore substitute there expressions for \(a, b, c, A, B, C\) respectively in any general formula. By drawing the perpendiculars of this second triangle and joining their leet as before, we obtain a triangle of which the sides are \(-a \cos A \cos 2 A,-b \cos B \cos 2 B\), \(-6 \cos C \cos 2 C\) and the angles are \(4 A-\pi, 4 B-\pi, 4 C-\pi\); we may shercfore substitute these expressions for the sides and angles of the original triangle; for example, we obtain thus the formula
\(2 b \cos B \cos C \cos 2 B \cos 2 C\)
This transformation obviously admits of further exten.
siots.
(1) The three sides of a triankle \(A B C\) being given. Sofroter ef the angles can be determined by the formula
\(L \tan \mid A=10+1 \log (s-b)+1 \log (s-c)-1 \log s-1 \log (s-s)\) and two corresponding formulae for the other angles.
(3) The two aidee e. 6 and the included angle \(C\) being tiven. the angles \(A, B\) can be determiaed from the formulae
\(A+B=\pi-C\).
\(L \tan \left\{(A-B)=\log (a-b)-\log (a+b)+L \cot \frac{1}{} C\right.\).
and the side \(c\) is then obtained Irom the formula
\[
\log c=\log a+L \sin C-L \sin A
\]
(3) The two sides \(a, b\) and the angle \(A\) being given, the value of \(\sin B\) may be found by means of the formula
\[
L \sin B=L \sin A+\log b-\log a ;
\]
this gives two supplementary values of the angle \(B\), if \(b \sin A<a\). If \(b \sin A>a\) there is no solution, and if \(b \sin A=a\) there is one solution. In the case \(b \sin A<a\), both values of \(B\) give solutions provided \(b>a\), but the acute value only oi \(B\) is admissibie if \(b<\varepsilon\).

The other side \(c\) can be then determined as in case (2).
(4) If iwo angles \(A, B\) and a side \(a\) are given, the angle \(C\) is determined from the formula \(C=r-A-B\) and the side \(b\) from the formula \(\log b=\log a+L \sin B-L \sin A\).

The area of eriangle is half the product of Aroas of a side into the perpendicular from the opposite Tripattes angle on that side; thus we ohtain the expressions meare ibc \(\sin A,|s(s-a)(s-b)(s-c)| t\) for the area of a triangle. A large collection of formulae for the area of a triangle are given in the Ammals of Mathematics for 1885 by M. Baker.

Let \(a, b, C, d\) denote the lengths of the sides \(A B, B C, C D, D A\) respectively of any plane quadrilateral and \(A+C=2\) a; we may obtain an expression for the area \(S\) of the quadrilateral in terms of the sides and the angle a-
We have \(\quad 2 S=a d \sin A+b c \sin (2 a-A)\)
and \(\quad 1\left(a^{2}+d^{2}-b^{2}-c^{2}\right)=a d \cos A-b c \cos (? a-A)\);

If \(2 x=a+b+c+d\). the value of \(S\) may be written in the form \(S=\left\{s(s-a)(s-b)(x-c)(s-d)-a b c d \cos ^{2} a \mid:\right.\).
Let \(R\) denote the radius of the circumscribed circle, \(F\) of the inscrited, and \(r_{1}, r_{3}, r_{3}\) of the escribed circles of a triangle Pan ctor \(A B C\); the values of these radij are given by the followconcrive
tacorned
Cinclive ofo Trumes.
\(8=a b c / 4 S=a / 2 \sin A\)
\(r=S / s=(r-a) \tan 1 A=4 R \sin \$ A \sin \$ B \sin \mid C\).
\(r_{1}=S /(s-a)-5 \tan |A=4 R \sin | A \cos |B \cos | C\)

Spherical Trigonomelry.
7. We shall throughout assume such elementary propositions in spherical geometry as are required for the purpose of the investigatoon of formulae given below.

A spherical triangle is the portion of the surlace of a sphere bounded by three arcs of great circles of the sphere. If \(B C, C A\), Drnation \(A B\) denote these arcs, the circular measure of the orfintion, angles subiended by these arcs respectively at the Triangla centre of the sphere are the sides \(a, b, c\) of the spherical through these arcs and the centre of the sphere be drawn, the anclet between the portions of planes intersecting at \(A, B, C\) respectively are the angles \(A, B, C\) of the spherical triangle. It is not necessary to consider triangles in which a side is greater than \(r\), since we may replace such a fide by the remaining arc of the great circle to A ownew which it belongs. Since two great circles intersert Trinesen each other in two points, there are eight triangles of If we consider one of these triangles \(A B C\) as the fundamental one. then one of the others is equal in all respects to \(A B C\). and the remaining six have each one side equal to. or common with, a side of the triangle \(A B C\), the opposite angle equal to the corresponding angle of \(A B C\). and the other sides and angles supplementary to the corresponding sides and angles of \(A B C\). These triangles may be called the associated triangles of the fundamental one \(A B C\). It follows that from any general formula containing the sides and angles of apherical triangle we may obtain other formulac by replacing two sides and the two angles opposite to them by their supplements, the remaining side and the remaining angle being unaltered, for such formulae are obtained by applying the given formulae to the associaled triangles.

If \(A^{\prime}, B^{\prime}, C^{\prime}\) are those poles of the arcs \(B C, C A, A B\) res pectively which lie upon the same sides of them as the opposite angles \(A, B, C\), thon the trismole \(A^{\prime} R^{\prime} C^{\prime}\) is malled the
 sides of the polar eriangle ive \(\boldsymbol{\Sigma} \boldsymbol{- A}\). T-B. \(\quad=-C\), and the angits \(\quad-\boldsymbol{a}_{\text {, }}\) I- \(b\), \(\quad\) - \(c\). Hence from ally seneral formula connecting the sides and angles of a spherical triangle we may obtain another formula by changing cach side into the supplement of the opposite angle and each angle inno the supplement of the opposite side.
8. Let \(O\) be the centre of the aphere on whirh is the spherical triangle
\(A B C\). Draw \(A L\) perpendicular to \(O C\) \(A B C\) Draw \(A L\) perpendicular to \(O C\)
end \(A M\) perpendicular to the plane
\(O B C\). Then the projection of \(O A\) on \(O B\) is the win of the projections of \(O L, L M, M A\) on the same straight line. Since AA- has no projection on any straight line in the fuado. plane \(O B C\). this gives angles.

\section*{Geast}
\(O A \cos c=O L \cos a+L M \sin a\).
Now \(O L=O A \cos b, L M=A L \cos C=O A \sin b \cos C ;\) therefore \(\cos c=\cos a \cos b+\sin a \sin b \cos C\). Eqpationa bofwery We may obtain similar formulae by interchanging the Adertes. letters \(a, b, c\), thus
\[
\left.\begin{array}{l}
\cos a=\cos b \cos c+\sin b \sin c \cos A \\
\cos b=\cos c \cos a+\sin c \sin a \cos B \tag{1}\\
\cos c=\cos a \cos b+\sin a \sin b \cos C
\end{array}\right\}
\]

These formulae (I) may be regarded as the fundamental equations connecting the sides and angles of a spherical triangle; all the other relations which we shall give below may be deduced analytically from them; we shall, however, in most cases give independent prools. By using the polar triangle transformation we have the formulae
\[
\left.\begin{array}{l}
\cos A=-\cos B \cos C+\sin B \sin C \cos a \\
\cos B=-\cos C \cos A+\sin C \sin A \cos b \tag{2}\\
\cos C=-\cos A \cos B+\sin A \sin B \cos C
\end{array}\right\}
\]

In the figures we have \(A M=A L \sin C=r \sin b \sin C\). where \(r\) denotes the radius of the sphere. By drawing a perpendicular from \(A\) on \(O B\), we may in a similar manner show that \(A M=\) \(r \sin c \sin B_{0}\)
therefore \(\quad \sin B \sin c=\sin C \sin b\).
By interchanging the sides we have the equation
\[
\begin{equation*}
\frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin C}=k \tag{3}
\end{equation*}
\]

We shall find below a symmet rical form for \(k\). If we eliminate cos \(b\) between the first two formulae of (1) we have
\(\cos a \sin ^{\circ} c=\sin b \sin c \cos A+\sin c \cos c \sin a \cos B\);
therefore cot \(a \sin c=(\sin b /\) in \(a) \cos A+\cos c \cos B\)
\(=\sin B \cot A+\cos C \cos B\).
We thus have the six equations
\(\cot a \sin b=\cot A \sin C+\cos b \cos C\)
\(\cot b \sin a=\cot B \sin C+\cos \& \cos C\)
\(\cot b \sin C=\cot B \sin A+\cos c \cos A\)
\(\cot c \sin b=\cot C \sin A+\cos b \cos A\)
\(\cot c \sin a=\cot C \sin B+\cos a \cos B\)
\(\cot a \sin c=\cot A \sin B+\cos c \cos B\))
When \(C=\frac{1}{1} \pi\) formula (i) gives
\begin{tabular}{|c|c|}
\hline and (3) gives & \(\cos c=\cos a \cos b\) \(\left.\begin{array}{l}\sin b=\sin B \sin c \\ \sin a=\sin A \sin c\end{array}\right\}\) \\
\hline Irom (4) we get & \(\tan a=\tan A \sin b=\tan 6 \cos B\) \\
\hline The formulae & \begin{tabular}{l}
\(\tan b=\tan B \sin a=\tan c \cos A\}\) \\
\(\cos c=\cot A \cot B\)
\end{tabular} \\
\hline and & \(\cos A=\cos A \sin B\), \\
\hline
\end{tabular}
lollow at once from (a), (\(\beta\)), (\(\gamma\)). These are the formulae which are used for the solution of tight-angled triangles. Napier gave mnemonical rules for remembering them.

The following proposition follows easily from the theorem in equation (3): If \(A D, B E, C F\) are three arcs drawn thrs igh \(A, B, C\) to mee! the opposite sides in \(D . E, F\) respectively. and if these arcs pass through a point, the segments of the sides satisfy the relation \(\sin B D \sin C E\) \(\sin A F=\sin C D \sin A E\) sin \(B F\) : and conversely if this relation is satisfied the arce pass through a point. trom this theorem it follows that the three perpendiculars from the angles on the opposite sides. the three bisectors of

Fig. 6. the angles, and the three arcs from the angles to the middle points of the opposite sides, each pass through a point.
9. If \(D\) be the point of intersection of the three formule bisectors of the angles \(A, B, C\), and if \(D E\) be drawn for Shae perpendicular to BC, it may be shown that BE ard Costoe \(=1(a+c-b)\) and \(C E=\frac{1}{2}(a+b-c)\), and that of HaH the angles \(B D E, A D C\) are supplementary. We have Aagtes also \(\frac{\sin c}{\sin B D}=\frac{\sin A D B}{\sin \mid A}, \frac{\sin b}{\sin C D}=\frac{\sin A D C}{\sin \mid A}\); therefore \(\sin \quad 1 A\) \(=\frac{\sin B D \sin C D \sin C D E \sin B D E}{\sin b \sin C}\). But \(\sin B D \sin B D E=\sin B E\) \(=\sin 1(a+c-b)\), and \(\sin C D \sin C D E=\sin C E=\sin f(a+b-c)\) : therefore
\[
\begin{equation*}
\sin \frac{A}{2}=\left\{\frac{\sin \{(a+c-b) \sin \}(a+b-c)}{\sin b \sin c}\right\} \tag{5}
\end{equation*}
\]

Apply this formula to the associated triangle of which \(\overline{-}-A\). \(=-B, C\) are the angles and \(x-a, z-b\). \(c\) are the sides: we obtain
the formula \(\quad \cos _{2}^{A}=\left\{\frac{\sin 1(b+c-a) \sin j(a+b+c)}{\sin b \sin c}\right\}\)

By division we have
\[
\begin{equation*}
\tan \frac{A}{2}=\left\{\frac{\sin \{(a+c-b) \sin \{(a+b-c)}{\sin \{(b+c-a) \sin \{(a+b+c)}\right\}^{\prime} \tag{7}
\end{equation*}
\]
and by multiplication
\(\sin A=2\{\sin (a+b+c) \sin \eta(b+c-a) \sin \{(c+a-b) \sin \{(a+b-c) \mid\}\) \(\sin b \sin c=\left|1-\cos ^{2} a-\cos ^{2} b-\cos ^{2} c+2 \cos a \cos b \cos c\right| f \sin b \sin c\). Hence the quantity \(k\) in (3) is
\(11-\cos ^{2} a-\cos ^{2} b-\cos ^{2} c+2 \cos a \cos b \cos c \mid 1 / \sin a \sin b \sin a\)
or hath- Apply the polar triangle translormation to the formulae
whes.

\section*{(5), (6), (7) (8) and we obtain}
\[
\begin{align*}
& \cos \frac{a}{2}=\left\{\frac{\cos 1(A+C-B) \cos \frac{1}{2}(A+B-C}{\sin B \sin C}\right\} \tag{9}\\
& \sin \frac{a}{2}=\left\{\frac{-\cos \{(B+C-A) \cos \}(A+B+C}{\sin B \sin C}\right\}^{\prime} \tag{10}\\
& \tan \frac{\alpha}{2}=\left\{\frac{-\cos 1(B+C-A) \cos 1(A+B+C}{\cos \}(A+C-B) \cos \{(A+B-C}\right\}
\end{align*}
\]
\(\left\|k^{\prime}=11-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C-2 \cos A \cos B \cos C\right\| / 1 / \sin A \sin B \sin C\), we have.
\(k k^{\prime}=1\)
(12)
10. Let \(E\) be the middle point of \(A B\); draw \(E D\) at right angles to

Fic. 7. \(A B\) to meet \(A C\) in \(D\); then \(D E\) Delombre's bisects the angle ADB. Formules. Let \(C F\) bisect the angle pendicular to \(B C\), then
\[
C G=1\left(a-b, 6 F B E=\frac{1}{1}(A+B)\right. \text {, }
\]
\[
\angle F C G=90^{\circ}-\frac{1}{2} C .
\] From the triangle \(C F G\) we have \(\cos C F C=\cos C C\) sin \(F C G\), and from the triangle \(F E B \cos E F B=\) \(\cos E B \sin F B E\). Now the angles \(C F G, E F B\) arc each supplementary to the angle \(D F B\), therefore \(\cos 1(a-b) \cos \frac{1}{} C=\sin \frac{1}{(A+B) \cos k c .}\)
Also \(\sin C G=\sin C F \sin C F C\) and \(\sin E B=\sin B F \sin E F B\); therefore \(\sin \left\{(a-b) \cos \frac{1}{2} C=\sin !(A-B) \sin \right\} c\).
(14)

Apply the formulae (13), (14) to the associated triangle of which \(a, m-6, \pi-c, A, \pi-B, \pi-C\) are the sides and angles, we then have
\[
\begin{align*}
& \sin \{(a+b) \sin \{C=\cos \{(A-B) \sin 1 c \tag{15}\\
& \cos \{(a+b) \sin \} C=\cos \}(A+B) \cos \{c .
\end{align*}
\]

The four formulac (13), (14), (15) (16) were first given by Delambre in the Connaissance des Temps for 1808 . Formulae equivalent to these were given by Mollweide in Zach's Monalliche Correspondens lor November 1808 . They were also given by Gauss (Theorio molus, 1809), and are usually called after him,
il. From the sume figure we have
Napoters \(\quad \tan F G=\tan F C G\) in \(C G=\tan F B G \operatorname{din} B G\); Aratagene therefore cotil \(C \sin \}(a-b) \tan \mid(A-B) \sin \{(a+b)\).
\[
\text { or } \quad \tan 1(A-B)=\frac{\sin \frac{1(a-b)}{\sin } \frac{1}{2}(a+b)}{\cot \frac{1}{2} C .}
\]
(17)

Apply this formulac to the associated triangle (\(\pi-a, b, \pi-c, \pi-A\), \(B, z-C)\), and we have
or
\[
\begin{align*}
& \left.\cot 1(A+B)=\frac{\cos f(a+b)}{\cos 1(a-b)} \tan \right\rvert\, C \\
& \tan \left\{(A+B)=\frac{\left.\cos \frac{(a-b)}{\cos \frac{1}{1(a+b)}} \cot \right\rvert\, C .}{} .\right.
\end{align*}
\]

11 we apply these formulae (17), (18) to the polar triangle, we have
\[
\begin{align*}
& \tan \left\{(a-b)=\frac{\sin \}(A-B)}{\sin \{(A+B)} \tan \right\} c \tag{19}\\
& \left.\tan j(A+B)=\frac{\cos \frac{1}{\cos }(A-B)}{\cos \}(A+B)} \tan \right\} c . \tag{20}
\end{align*}
\]

The formulae (17). (18), (19), (20) are called Napicr's" Analogies": they were given in the Mirif. logar camonis descriptio.
12. If we use the values of sin \(\$ a_{1} \sin \ b, \sin \left\{c_{1} \cos j a, \cos 3 b\right.\). cos je, given by (9), (10) and the analogous lormulac obtained by Scmememsers interchanging the letters we obtain by multiplication
Formelas.
\(\sin j a \cos \frac{1 b \sin C=\sin j \cos h(B+C-A)}{}\)
\(\cos j a \cos j b \sin C=\cos \{c \cos \}(A+B-C)\}\)
\(\sin \{\sin \} b \sin C=\cos \{c \cos 1(A+B+C)\}\)
These formulae were given by Schmicsser in Crelle's Journ., vol. \(x\).
The relation ain \(b\) sin \(c+\cos b \cos c \cos A=\sin B \sin C\) \(\cos B \cos C \cos a\) was given by Cagnoti in his Trigonometry (1786). Cagoppe and was rediscovered by Cayley (Phil, Alag. 1859). Farouptes. It follows from (1), (2) and (3) thus: the right-hand Forneles. ide of the equation equals sin \(B\) sin \(C+\cos\) a \((\cos A-\) \(\sin B \sin C \cos a)=\sin B \sin C \sin ^{4} a+\cos a \cos A\). and this is coual to \(\sin b \sin c+\cos A(\cos a-\sin b \sin c \cos A)\) or \(\sin b \sin 6+\) \(\cos \delta \cos 6 \cos A\).
13. The formulae we have given are sufficient to determine three parts of a triangle when the other three parts are given; moreover such formulae may always be chosen as are adapted to logarithmic calculation. The solutions will be unique except in the two cases (1) where two sides and the angle

Triege opposite one of them are the given parts, and (2) where two angles and the side opposite one of them are given.
Suppose n, b. \(A\) are the given parts. We oetermine \(B\) from the formula \(\sin B=\sin b \sin A / \sin a\); this gives two supplementary values of \(B\). one acute and the other Ambinooss obtuse. Then \(C\) and \(c\) are determined from the Cases. equations
\(\left.\tan \} C=\frac{\sin \{(a-b)}{\sin (a+b)} \cot 1(A-B), \tan \right\} c=\frac{\sin \{(A+B)}{\sin (A-B)} \tan \{(a-b)\). Now \(\tan \frac{1}{1} C\), \(\tan \frac{1}{2} c\), must both be positive; hence \(A-B\) and \(a-b\) must have the same sign. We shall distinguish three cases. First, suppose \(\sin b<\sin a\); then we have \(\sin B<\sin A\). Hence \(A\) lies between the two values of \(B\), and therefore only one of these values is admissible, the acute or the obtuse value according as a is greater or lass than \(b\); there is therefore in this case always one solution. Secondly, if \(\sin b>\sin a\), there is no solution when \(\sin b \sin A>\sin a\) : but if \(\sin b \sin A<\sin\) a there are two values of \(B\), both greater or both less than \(A\). If \(a\) is acute, \(a-b\), and therefore \(A-B\), is negative; hence there are two solutions if \(A\) is acute and none if \(A\) is obtuse. These two solutions fall together if \(\sin \delta \sin A=\sin a\). If \(a\) is obtuse there is no solution unless \(A\) is obtuse, and in that case there are two. which coincide as before if \(\sin b \sin A=\sin a\). Hence in this case there are two solutions if \(\sin b \sin A \leq \sin a\) and the two parts \(A, a\) are both acute or both obtuse, these being coincident in case \(\sin b \sin A=\sin a\); and there is no solution if one of the two \(A\), \(a_{i}\) is acute and the other obtuse, or if \(\sin b \sin A>\sin a\). Thirdly, if \(\sin b=\sin a\) then \(B=A\) or \(x=A\). If \(a\) is acute, \(a-b\) is zero or negative, hence \(A-B\) is zero or negative; thus there is no solution uniess \(A\) is acute, and then there is one. Similarly, il a is obtuse, \(A\) must be so too in order that there may be a solution. If \(a=b=1 \pi\), there is no solution unless \(A=\frac{1 \pi}{} \pi\), and then there are an infinite number of solutions, since the values of \(C\) and \(c\) become indeterminate.
The other case of ambiguity may be discussed in a similar manser, or the different cases may be deduced from the above by the use of the polar triangle transformation. The method of classification according to the three cascs \(\sin b \frac{>}{\hat{<}} \sin a\) was given by Profeswor Lloyd Tanner (Messenger of Matk., vol. xiv.).
14. If \(r\) is the angular radius of the small cirele inscribed in the triangle \(A B C\), we have at once tan \(r=\tan \{A \sin (s-a)\), where \(2 s=a+b+c\); from this we can derive the formulae tan \(\mathrm{f}=n \operatorname{cosec} \mathrm{~s}=\boldsymbol{\|} N \sec |A \sec | B \sec \mid C=\) \(\sin a \sin |B \sin | C \sec 1 A\)
where n, \(N\) denote the expressions
\[
\begin{align*}
& |\sin s \sin (s-a) \sin (s-b) \sin (s-c)| 1, \tag{2i}\\
& |-\cos S \cos (S-A) \cos (S-B) \cos (S-C)|\} .
\end{align*}
\]

The escribed circles are the small circles inscribed in three of the associated criangles; thus, applying the above formulae so the triangle \(\left(a, \pi-b_{1} \pi-c_{1} A, x-B_{1} \pi-C\right)\), we have for \(r_{1}\), the radius of the escribed circle opposite to the angle \(A\), the following formulae \(\tan r_{1}=\tan \left\lvert\, A \sin s=n \operatorname{cosec}(s-a)=\left\{N \sec \left\lvert\, A \operatorname{cosec} \frac{1}{2} B \operatorname{cosec} 1 C\right.\right.\right.\) \(=\sin a \cos 1 B \cos 1 C \sec \{A\)
(23)

The pole of the circle circumscribing a triangle is that of the circle inscribed in the polar triangle, and the radii of the two circles are complementary: hence, if \(R\) be the radius of the circumactribed circle of the triangle, and \(R_{1}, R_{\mathrm{f}}, R\) the radit of the circles circumscribing the assoctated triangles, we have by writing \(l_{x}-R\) for \(r\), \(1=-R_{1}\) for \(R_{1+} \pi-a\) for \(A\). \& c ., in the above formulae
\(\cot R=\cot l a \cos (S-A)=\) in \(\operatorname{cosec} l a \operatorname{cosec} d b \operatorname{cosec} j \sigma=-N \sec S\) \(=\sin A \cos 3 b \cos \{c \operatorname{cosec}\} a \quad(23)\)

The lollowing relations follow from the formulae just given:-
\(2 \tan R=\cot r_{1}+\cot r_{2}+\cot r_{1}-\cot r_{1}\)
\(2 \tan R_{1}=\cot r+\cot r_{2}+\cot r_{2}-\cot r_{1}\),
\(\tan r \tan r_{1} \tan r_{1} \tan r_{2}=n^{2}, \sin ^{2} s=\cot r \tan r_{1} \tan r_{2} \tan r_{s}\) \(\sin ^{2}(s-a)=\tan r\) cot \(r_{1} \tan r_{1} \tan r_{1}\).
15. \({ }^{1!} E=A+B+C-\pi\), it may be whown that \(E\) multiplied by the square of the radius is the area of the triangle. We give some of the more important expreasions for the quantity \(E\), which is called the spherical excess.
We have

therefore

\section*{}

Similarly therefore
\(\tan \frac{1}{2} E \tan ^{4} \frac{1}{4}(C-E)=\tan \frac{1}{2}(s-a) \tan \frac{1}{f}(s-b) ;\)
\(\tan \{E=\{\tan \} s \tan \}(s-a) \tan \{(s-b) \tan \{(s-c) \mid\}\)
This formula was given by J. Lhuilier.
Also
\[
\begin{align*}
& \sin \left\{C \operatorname { c o s } \{ E - \operatorname { c o s } \} C \operatorname { s i n } \left\{E=\frac{\left.\cos \frac{1(a+b)}{\cos \frac{1}{f} c} \sin \right\} C ;}{}\right.\right. \tag{25}
\end{align*}
\]
whence, molviag for \(\cos \{E\), we get
\[
\begin{equation*}
\cos \left\{E=\frac{i+\cos a+\cos b+\cos c}{4 \cos \frac{1 a \cos s b \cos j c}{j}}\right. \tag{26}
\end{equation*}
\]

This formula was given by Euler (Nowa acra, vol. x.). If we find in \(\mathcal{j} \mathbb{E}\) from this formula, we obtain after reduction
\[
\sin \frac{1}{2} E=\frac{n}{2 \cos y a \cos y \cos \frac{1}{6}}
\]
- formula given by Lexell (Acta Petrop., 1782).

From the equations (21), (22), (23), (24) we obtain the following formulae for the spherical excess:\(\sin ^{2} \boldsymbol{j} E=\tan R \cot R_{1} \cot R_{2} \cot R_{1}\)
\(4\left(\cot r_{1}+\cot r_{1}+\cot r_{2}\right)\)
\(\left(\cot r-\cot r_{1}+\cot r_{1}+\cot r_{8}\right)\left(\cot r+\cot r_{1}-\cot r_{1}+\cot r_{2}\right) X\) \(\left(\cot r+\cot \gamma_{1}+\cot r_{1}+\cot r_{1}\right)\).
The formula (26) may be expressed geometrically: Let \(M, N\) be the middle points of the eides \(A B, A C\). Then we find \(\cos M N\)

A geometrical construction has been given for \(E\) by Gudermann Sin Crelle's Journ., vi and viii). It has been shown by Cornelius Keogh that the volume of the paralielepiped of which the radii of the sphere passing through the middle points of the sides of the triangle are edges is sin 16 . Let \(A B C D\)
16. Let \(A B C D\) be a spherical quadrilateral inscribed

Properthon in a amall circie; let \(a, b, c_{1} d\) denote the sidea \(A B, B C\), ofsportell \(C D, D A\) respectively, and \(x\), y the diagonals \(A C, B D\). arat neverel ares It can easily be shown by joining the angular points of the quadrilateral to the pole of the circle that \(A+C=B+D\). If we use the last expression in (23) for the radii of the circles circumacribing the trianglea BAD, BCD, we have
\(\sin A \cos \frac{1 a}{} \cos \frac{1 d}{d} \operatorname{cosec} \frac{1}{1} y=\sin C \cos \frac{1}{2} b \cos \left\{C \operatorname{cosec} \frac{1}{j} y ;\right.\) Whence \(\quad \frac{\sin A}{\cos \frac{16}{} \cos \frac{3}{C} C}=\frac{\sin C}{\cos \frac{1}{a} \cos \frac{1 \delta}{} \delta}\)
This is the proposition correspondiag to the relation \(A+C=\pi\) for a plase quadrilateral. Also we ohtain in a eimilar manner the theorem
\[
\frac{\sin 1 x}{\sin B \cos 3 b}=\frac{\sin 1 y}{\sin A \cos g}
\]
analogous to the theorem for a plane quadrilateral, that the diagomals are proportional to the sines of the angles opposite to them. Also the chords AB, BC, CD. DA are equal to \(2 \sin \left\{a_{1} 2 \sin \right\} b, 2 \sin \frac{1}{2} c\), \(z\) in \(4 d\) respectively, and the plane quadrilateral formed by these chords is inscribed in the wame circle as the spherical quadrilateral; bence by Ptolemy's theorem for a plane quadrilateral we obtain the analogous theorem for a spherical one
\(\left.\sin \frac{1}{} x \sin \right\} y=\sin \{a \sin \} c+\sin \left\{b \sin \frac{1}{2} d\right.\).
It has beep shown hy Remy (in Crelle's Journ., vol. iii.) that for any quadriateral, if a be the spherical distance between the middle poines of the diagonals,
\(\cos a+\cos b+\cos c+\cos d=4 \cos j x \cos \frac{b y \cos \mid x}{}\)
This theorem is analogous to the theorem for any plane quadriateral, that the sum of the squares of the sides is equal to the sum of the equares of the diagonals, topether with twict the square on the straight line joining the middle points of the diagonals.

A theorem for a right-angled spherical triangle, analogous to the Pythagorean theorem, has been given by Gudermann (in Crelle's Jowrw., vol. stii.).

\section*{Analytical Trigonometry.}
17. Analytical trigonometry is that branch of mathematical analysie in which the analytical properties of the trigonometrical Purbas functions are investigated. These functions derive their cty of importance in amalysis from the fact that they are the sim.
\(\qquad\) plest singly periodic functions, and are therefore adapted to the representation of undulating magnitude. The sine. cosine, secant and cosecant have the single real period 2 r : i.e. each is unaltered in value by the addition of \(2 \pi\) to the variable. The tangent and cotangent have the period \(\pi\). The sine, tangent, cosecant and cotangent belong to the clase of odd functions; that is, they change sign when the sign of the varable is changed. The cosine and secant are even functions, since they remain unaltered then the slign of the variable is reversed.

The theory of th - trigonometrical functions is intimately connected with that of complex numbers-that is, of numbers of the form \(x+a y(a=\sqrt{-i t)}\). Suppose we multioly together, by the conserion rulee of ordinary algebra, two such numbers we have what Theory
\(\left(x_{1}+\iota y_{1}\right)\left(x_{1}+\iota y_{2}\right)=\left(x_{1} x_{1}-y_{1} y_{2}\right)+i\left(x_{1} y_{1}+x_{2} y_{2}\right)\). о/ Сопррекх We observe that the real part and the real factor of the Qanstition. imaginary part of the expression on the right-hand side of this equation are sintilar in form to the expressions which occur in the addition formulate for the cosine and sine of the sum of two angles: in fact, if we put \(x_{1}=r_{1} \cos \theta_{1}, y_{1}=r_{1} \sin \theta_{1}, x_{7}=r_{3} \cos \theta_{2}\) \(y_{1}=r_{1} \sin \theta_{2}\), the above equations becomes.
\(r_{1}\left(\cos \theta_{1}+t \sin \theta_{1}\right) \times r_{1}\left(\cos \theta_{2}+t \sin \theta_{2}\right)=r_{1} r_{2}\left(\cos \overline{\theta_{1}+\theta_{2}}+t \sin \overline{\theta_{1}+\theta_{2}}\right)\).
We may now, in accordance with the usual mode of representing complex numbers, give a geometrical interpretation of the meaning of this equation. Let \(P_{1}\) be the point whose co-ordinates referred to rectangular exes \(O x, O y\) are \(x_{1}\) \(y_{1}\); then the point \(P_{1}\) is employed to represent the number \(x_{1}+t y_{1}\). In this mode oir representation real numbers are measured along the axis of \(x\) and imaginary ones along the axis of \(y\), additions being performed according to the parallelogram liw. The points \(A, A_{1}\) represent the numbers \(\neq 1\), the points \(a_{1} a_{1}\) the numbers \(\neq a\). Let \(P_{1}\) represent the expression \(\boldsymbol{x}_{2}+4 y_{1}\) and \(\boldsymbol{P}\) the expression \(\left(x_{1}+\iota y_{1}\right)\left(x_{2}+\iota y_{7}\right)\). The quantities \(r_{1}, \theta_{1}, r_{2}, A_{1}\) are the polar coordinates of \(P_{1}\) and \(P_{2}\) respectively, referred to \(O\) as origin and \(O x\) as initial line; the above equation shows that \(i_{3} i_{2}\) and \(\boldsymbol{o}_{1}+\boldsymbol{\theta}_{\mathbf{2}}\) are the polar co-ordinates of \(P\); hence \(O A: O P_{1}: O P_{s}: O P\) and the angle \(P O P_{1}\) is equal to
 the angle \(P_{1} O A\). Thus we have the following geometrical construction for the detcrmination of the point \(P\). On \(O P_{x}\) draw a triangle similar to the triangle \(O A P_{1}\) so that the sides \(O P_{1}, O P\) are homologous to the sides \(O A, O P_{1}\), and so that the angle \(P O P_{3}\) is positive; then the vertex \(P\) represents the product of the numbers repre sented by \(P_{1}, P_{2}\). If \(x_{2}+1 y_{1}\) were to be divided by \(x_{1}+t y_{1}\) the triangle \(O P^{\prime} P^{\prime}\), would be drawn on the negative aiste of \(P_{3}\), mimilar to the triangle \(O A P_{1}\) and having the sides \(O P^{\prime}, O P_{3}\) homologous to \(O A, O P_{1}\), and \(P^{\prime}\) would represent the quotient.
18. If we extend the above to \(n\) complex numbers by continual repetition of a similar operation, we have-
\(\left(\cos \theta_{1}+s \sin \theta_{2}\right)\left(\cos \theta_{1}+\leq \sin \theta_{2}\right) \ldots\left(\cos \theta_{2}+i \sin \theta_{n}\right) D_{0}\) Mathru's \(=\cos \left(\theta_{1}=\theta_{1}+\ldots+\theta_{a}\right)+i \sin \left(b_{1}+\theta_{1}+\ldots+\theta_{2}\right)\) Tharom.
If \(\theta_{1}=\theta_{1}=\ldots=\theta_{n}=\theta_{1}\), thit equation becomes (cos \(\theta+\) : \(\sin \theta\)) \(=\cos n \theta+c \sin n\); this shows that \(\cos \theta+4 \sin \theta\) is a value of (con notisin moly. If now we change \(\theta\) into \(\theta / n\), we see that \(\cos \theta / n+4 \sin \theta / n\) is a value of \((\cos \theta+4 \sin \theta) \frac{1}{n}\); raising each of these quantities to any positive integral power \(m\), \(\cos \operatorname{sn} / n+i \sin n+/ n\) is one value of \((\cos \theta+i \sin \theta) \frac{\cos }{n}\). Also
\[
\cos (-m \theta / m)+i \sin (-m \operatorname{sen} \pi)=\frac{1}{\cos m \theta / \pi+i \sin m d / n} ;
\]
hence the expression of the left-hand side is one value of (cose \({ }^{\theta}+\)
 is always one value of (cos \(1+1\) sin o) \({ }^{k}\) where \(k\) in any rationa! number. This theorem can be extended to the case in which \(k\) is irrational. if we postulate that a value oi \((\cos \theta+a \sin \theta)^{k}\) denotes the limit of a sequence of corresponding values of (\(\cos \theta+s \sin \theta)^{4}\). where \(k_{1}, k_{1} \ldots k_{1} \ldots\) is a eequence of rational numbers of which \(k\) is the limit, and further observe that as \(\cos k+r\) sin \(k \theta\) is the limit of \(\cos k, \delta+i \sin k \beta\).
The principal object of De Moivre's theorem is to enable us to find all the values of an expression of the form \((a+b)^{=\prime \cdot}\), where \(m\) and \(n\) are positive integers prime to each other. If \(a=r\) cos \(e_{1} b=p \sin \theta\). we require the values of 750e Roots \(r^{m}(\cos \theta+1 \sin \theta)^{m}\). One value is immediately fur- of ocomplez nished by the theorem; bat we oberve that since the Queathy. expression cos \(\theta+\imath\) sin \(\theta\) is unattered by adding any multiple of \(2 \pi\) to \(\theta\), the \(n / m\) th power of \(m\) (\(\cos m \cdot \hat{\rho}+25 x / n+1\) sin \(m \bar{\theta}+25 \pi / n\)) is \(a+i b\), if \(s\) is any integer; hence this expression is one of the values required. Suppose that for two values \(f_{4}\) and \(s_{1}\) of ; the values of this exprestion are the sarne; then we must have \(m . \bar{e}+2 s_{1} \bar{n} / n-m \bar{s}+2 s_{m} / n_{;}\)a multiple of \(2 \pi\), or \(y_{1}-s_{1}\) must be a multiple of \(n\). Therefore, if we give s the values \(0.1,2, \ldots n-1\) successively, we shall get \(n\) different values of \((a+b)^{-1 a}\), and these will be repeated if we give sother values; hence all the values of
\((s+\infty)^{m}\) are obeained by giving, 5 , the values \(0,1,2, \ldots n-1\) in the expresion rim (cos \(n n . \bar{\theta}+25 \pi / n+4 \sin m . \overline{0}+25 \pi / n\)), where \(\left.\mathrm{r} \boldsymbol{a}\left(a^{4}+b^{2}\right)\right\}\) and \(\theta=\) arc tan \(b / a\).
We now return to the geometrical representation of the complex numbers. If the points \(B_{1}, B_{n}, B_{2} \ldots B_{0}\) represent the expression \(x+\iota y\). \((x+c y)^{3}:(x+c y)^{2}\), \(\ldots(x+y)\) - respectively, the triangles \(O A B_{1}, \quad O B_{1} B_{1}, \ldots\) \(O B_{2,1} B_{1}\) are all similar. Let \((x+c y)^{2} m a+b\), then the converse problem of finding the nth root of \(a+b\) is equivalent to the geometrical problem of describing such a series of tri. angles that \(O A\) is the first side of the first triangle and \(O B_{2}\) the second side of the nth. Now it is obvious that this geometrical problem has more solutions than one, since any number of complete re volution: round \(O\) may be made in travel. ling from \(B_{4}\) to \(B_{2}\). The first solution is that in which the vertical angle of each triangle is \(B_{n} O A / n\); the second is that in which each is (\(\left.B_{n} O A+2 \pi\right) / n\). in this case one complete revolution being made round \(O_{i}\) the third has (\(B_{2} O A+4 r\))/n for the vertical angle of each triangle; and so on. There are \(n\) sets of triangles which satisfy the required conditions. For simplicity

Fig. 10. we will take the case of the determina. tion of the values of \((\cos \theta+i \sin \theta)\) i. Suppose \(B\) to represent the expression \(\cos \theta+i \sin \theta\). If the angle \(A O P_{\mathrm{t}}\) is \(\theta \theta\), \(P_{1}\) represent the root cos \(1 \theta+t\) sin \(\theta\); the angle \(A O B\) is filled up by the angles of the three similar triangles \(A O P_{1}\), \(P_{1} O p_{1}, p_{1} O B\). Also, if \(P_{3} P_{1}\) be such that the angles \(P_{3} O P_{3} P_{1} O P_{3}\) are \(i^{3}\) r, in respectively, the two sets of triangles \(A O P_{2} . P_{1} O p_{1} . p_{r} O B\) and \(A O P_{1}, P_{1} X_{p_{2}}\), po \(O B\) satisly the conditions of similanty and of having \(O A, O B\) for the bounding sides; thus \(P_{1}, P_{3}\) represent the roots \(\cos f(\theta+2 \pi)+t \sin f(\theta+2 \pi)\), \(\cos f(\theta+4 \pi)+t \sin f(\theta+4 \pi)\) respectively. If \(B\) coincides with \(A\), the problem is reduced to that of finding the three cube roots of unity. One will be represented by \(A\) and the others by the two angular points of an equilateral triangle, with \(A\) as one angular point, inscribed in the circle.
The problem of determining the values of the nith roots of unity is equivalent to the geometrical problem of inscribing a regular prepolygon of a sides in a circle. Gauss has shown in his pooteof Disquisitiones arilhmeticae that this can aiways be done Uallo. by the compass and ruler only when \(n\) is a prime of the form \(2 \%+1\). The determination of the uth root of any complex number requires in addition, for its geometrical solutlons, the division of an angle into \(n\) equal parts.
19. We are now in a position to factorize an expression of Factortion the form \(x^{-}-(a+b)\). Using the values which we thang have obtained above for \((a+\omega)\) th, we have
\[
\begin{equation*}
x-(a+b)=\underset{s=\sigma}{\vec{P}-\pi-1}\left[x-r^{\frac{x}{a}}\left(\cos \frac{\theta+25 \pi}{n}+i \sin \frac{\theta+2 s_{\pi}}{x}\right)\right] . \tag{1}
\end{equation*}
\]

If \(b=0, a=t\), this becomes

If \(\ln (\mathrm{I})\) we put \(\mathrm{am}-\mathrm{I}, \mathrm{bma}\), and therdore \(\theta=\pi\), we have
\[
\begin{equation*}
x+1=(x+1)_{s=0}^{x-1(m-s)}\left[x^{s}-2 x \cos \frac{2 s+1 \pi}{m}+1\right] \quad(n o d d) . \tag{5}
\end{equation*}
\]
\[
\begin{align*}
& \underset{s=0}{s=i(m-\pi)}\left[x^{3}-2 x \cos \frac{\overline{2 s+1 \pi}}{n}+1\right] \text { (n even). } \tag{4}
\end{align*}
\]
\[
\begin{align*}
& x-1=P_{i=0}^{5=-1}\left[x-\cos \frac{25 r}{m}-1 \sin \frac{25 \pi}{n}\right] \\
& =(x-j)(x+1) P_{i=1}^{\frac{s}{2-i m-1}}\left(x-\cos \frac{25 \pi}{n}+4 \sin \frac{25 \pi}{m}\right) \\
& -(x-1)(x+1) P_{s=1}^{j-1 n-1}\left(x^{4}-2 x \cos \frac{25 \pi}{n}+i\right)(n \text { cven }) . \tag{2}\\
& x-1=(x-1) P_{s=1}^{s=1(n-1)}\left(x^{3}-2 x \cos \frac{2 x x}{n}+1\right) \quad \text { (} n \text { odd). } \tag{3}
\end{align*}
\]

Also \(x^{2}-2 x^{2} y^{4} \cos m+y^{m}\)
\[
\begin{align*}
& ={\underset{i=0}{P}-1}_{\left.x=y \cos \frac{\theta+23 \pi}{n}+4 \sin \frac{2+2 s m}{n}\right)}^{n} \\
& -\underset{y=0}{P=-1}\left[x^{2}-2 x y \cos \theta+\frac{21 x}{m}+y^{2}\right] \text {. } \tag{6}
\end{align*}
\]

Airy and Adams have given proofs of this theorem which do not involve the use of the symbol (see Camb. Phil. Trans., vol. xi).
A large nulnber of interesting theorems may be derived from De Moivers theorem and the factorizations which we have deduced from it; we shall notice one of them.

In equation (6) put \(y=1 / x\), take logarithms, and then
Braniper of De Motvre' 7hopres.
differentiate each side with respect to \(x\), and we get
\[
\frac{2 \pi\left(x^{3 n-1}-x^{2}-1\right)}{x^{2}-2 \cos n+x^{-2}}=\sum_{x=0}^{s=0} \frac{2\left(x-x^{-6}\right)}{x^{2}-2 \cos \theta+\frac{2 f \pi}{\pi}+x^{-3}} .
\]

Put \(x^{d}=a / b\), then we have the expression
\[
n\left(a^{2 n}-b^{2 n}\right)
\]
for the sum of the series
\[
\sum_{s=0}^{s=0} \frac{1}{a^{2}-2 a b \cos \theta+\frac{2 s \pi}{n}+b^{2}}
\]
20. Denoting the complex number \(x+i y\) by \(z\), let us consider the series \(1+z+z^{4} / 2!+\ldots+z^{4} / n!+\ldots\) This series converges uniformly and absolucely for all values of \(z\) whose moduli do not exceed an arbitrarily chosen positive number R. Consequently the function \(E(s)\), defined

The Erpoovetiol Serles. as the limiting sum of the above series, is continuous in every finite domain. The two series representing \(E\left(x_{1}\right)\) and \(E\left(x_{2}\right)\). when multiplied together give the series represented by \(E\left(s_{1}+x_{2}\right)\). In accordance with a known theorem, since the series for \(E\left(x_{1}\right) E\left(m_{n}\right)\) are absolutely convergent, we have \(E\left(s_{1}\right) \times E\left(s_{3}\right)<E\left(s_{1}+s_{n}\right)\). From this fundamental relation, we deduce at once that \(\{E(s)\}^{\prime}\) \(-E(n z)\), where \(n\) is any positive integer. The number \(E(1)\), the sum of the convergent series \(1+1+1 / 2!+1 / 3!\ldots\) is usuaily denoted by e; its value can be shown to be \(2 \cdot 718281828459 . .\). It is known to be a transcendental number, i.e. it cannot be the root of any algebraical equalion with rational coefficients; this was Grat established by Hermice. Writing \(x=1\), we have \(E(n)=c^{\circ}\), where \(s\) is a positive integer. If 8 has as a value a positive fraction \(p / q\), we find that \(|E(p / q)|=E(p)-e^{p}\); hence \(E(p / q)\) is the real positive value of \(e^{x t}\). Again \(E(-p / g) \times E(p / q)=E(0)=1\), hence \(E(-p / g)\) is the real positive value of chis. It has been thus ahown that for any real and rational number \(x\), the value of \(E(x)\) is the principal value of \(\varepsilon^{\text {e }}\). This result can be extended to irrational values of \(x\). if we assume that of is for such a value of \(x\) defined as the limit of the sequence on, \(\boldsymbol{c}^{\infty}, \ldots\), where \(x_{1}, x_{2} \ldots\) is a sequence of rational numbers of which \(x\) is the limit, since \(E\left(x_{1}\right), E\left(x_{2}\right) \ldots\), then converges to \(E(x)\).
Next consider (\(1+2 / m\))", where \(m\) is a positive integer. We have by the binomial theorem,
\(\left(1+\frac{s}{n}\right)^{m}-1+s+\left(1-\frac{1}{n}\right)^{\frac{s}{2}}+1+\left(1-\frac{1}{2}\right)\left(1-\frac{2}{m}\right) \ldots\)
\[
\left(1-\frac{s-1}{m}\right)^{x^{6}}+\ldots+\left(\frac{8}{m}\right)=
\]

Also
\[
\left(1-\frac{1}{m}\right)\left(1-\frac{2}{m}\right) \ldots\left(1-\frac{s-1}{m}\right)
\]
lies between \(i\) and \(\quad i+\left(\frac{1}{m}+\frac{2}{m}+\ldots+\frac{s-1}{m}\right)\);
hence the product equals \(1-\theta_{5} .5-1 / 2 m\) where \(\theta_{0}\) is such that \(0<0\), 8 .
We have now
\[
\begin{aligned}
\left(1+\frac{2}{m}\right)^{m}= & 1+s+\left(1-\frac{1}{m}\right) \frac{s^{\prime}}{2!}+\ldots+\left[1-0 \cdot \frac{s-1}{2 m}\right] \frac{s_{i}}{s!}+\ldots \\
& +\left[1-\theta_{m} \frac{m-1}{2}\right] \frac{2 m}{m!} \\
& =1+8+\varepsilon^{2} / 2!+\ldots+8 / s!+R_{\infty}
\end{aligned}
\]
where
\(R_{1}=\frac{s+1}{(s+1)}+\ldots+\frac{s^{-}}{m!}-\frac{s}{2 m}\left\{1+\theta_{1}^{2}+\ldots\right.\)
\[
\left.+\theta_{0} \frac{m-2)}{(s-2)}+\ldots+\theta_{n} \frac{m-1}{(m-2)}\right\} .
\]

Since the series for \(E(s)\) converges, s can be fixed so that for all values of \(m>s\) the modulus of \(\left.s^{+1+1}(s+1)!+\ldots+z^{-1} / m\right)\) is less than an arbitrarily chosen number fa Also the modulus of \(1+\theta s / 1+\ldots+\theta_{m}=-1 /(m-2)!\) is less than that of \(1+1 / s|/ 1|\)
 mod (2sc) <a, if \({ }^{(1)}\) be chosen sufficiently great. It follow: that \(\operatorname{tim}_{-\infty}(x+z / m)=E(z)\), where \(s\) is any complex number. To evaluate \(E(z)\), write \(i+x / m=\rho \cos \phi . y / m=\rho\) sin \(\phi_{0}\), then

 \(\rightarrow\) C. limano \(\left\{x+\frac{y^{\prime}}{m(\sqrt{m}+x / \sqrt{m})^{2}}\right\}^{\} m}\). Let , be a fixed number lese than \(\sqrt{m}+x / \sqrt{m}\), then \(\lim _{m-\infty}\left\{1+\frac{y^{\prime}}{-m(\sqrt{m}+x \sqrt{m})}\right\}^{\text {b/ }}\) lies between \(t\) and \(\lim _{m-\infty}\left\{1+\frac{y^{4}}{\operatorname{mon}^{2}}\right\}^{\text {dan }}\), or between \(t\) and wan; bence
ghoe \(r\) can be taken arbitrarily large, the limit is 1 . The limit of mpor \(\operatorname{man}^{-1}|y /(x+m)|\) is the same as that of \(m y /(x+m)\) which is \(y\). Hence we have shown that \(E(s)=e(\cos y+i \sin y)\).
21. Since \(E(x+i y)=i^{=}(\cos y+\sin y\), we have cos \(y+i \sin y\) \(-E(i y)\), and cos \(y-i \sin , y=E(-i y)\). Therefore con \(y=i \mid E(j y)\) \(+E(-i y) \mid\) sin \(y=1 i(B(i y)-E(-i y))\); and using Ergeanetht the aries defined by \(E(i y)\) and \(E(-i y)\), we find that
values of Trtracomertal frictione con \(y=1-y^{/ / 2} 1+y^{4} / 41-\ldots\), sin \(y m y-y^{1 / 31}\) \(+y / 5\) ! - . \(B\), where \(y\) in any real number. These are the well. Enown expansions of coe \(y\), ain \(y\) in powers of the circular measure \(y\). Where \(s\) is a complex number, the symbol of may be defiped to be such that its principal ralue is \(E(x)\); thue the principal values of \(e v,{ }^{4 y}\) are \(R(i y), E(-i y)\). The above expressions for cos \(y\), sin \(y\) may then be writen cos \(\left.y=\frac{1}{2}\left(\mu^{2}+\right)^{-9}\right)\) sin \(y=\frac{1}{2}\left(d^{4}-\Gamma^{0}\right)\). These are known as the exponential ralues of the cosine and sine. It can be dhown that the rymbol ate defined here satisfes the utual laws of combination for exponents.
22. The two functions \(\cos z_{1}\) sin \(s\) may be defined for all complex or real values of \(s\) by means of the equations cos \(y=\$ I E(s)+\) Amprotel \(E(-x) \mid\), sin \(s=(t)|E(\mathrm{~s})-E(-x)|\), where \(E(s)\) represents Brinitare - 7 There motrip Fructsers
 For real values of \(z\) this is in accordance with the ordinary definitions, as appears from the series obtained above for \(\cos y, \sin y\). The fundamental properties of cose 8 , sin \(s\) can be deduced from this definition. Thus \(\cos \mathrm{s}+\mathrm{i}\) sia \(\mathrm{s}=\mathrm{E}(\mathrm{z})\), cos \(\mathrm{s}-\mathrm{i} \sin \mathrm{s}-E(-\mathrm{iz})\) : therefore
 \(\left.\left|\left|E\left(i i_{1}+i m_{1}\right)+E\left(-i m_{1}-i i_{2}\right)\right|=1\right| E\left(i i_{1}\right) E\left(i i_{1}\right)+E\left\{-i i_{1}\right) E\left(-i m_{1}\right)\right\}\) or \(\left|\left|E\left(i \xi_{1}\right)+E\left(-i \xi_{1}\right)\right|\right| E\left(i i_{1}\right)+E\left(-i m_{2}\right) \mid+i\left(E\left(i_{1}\right)-E\left(-i \xi_{i}\right) \mid\right.\)
 sin \(s_{4} \sin z_{h}\). Similar!y, we find that \(\sin \left(x_{1}+z_{1}\right)=\sin s_{1} \cos z_{2}+\) cos \(\Sigma_{1}\) sin \(5_{3}\). Again the equation \(E(\varepsilon)=1\) has no real roots except \(\mathrm{z}=\mathrm{o}\), for \(>1\), if \(s\) is real and \(>0\). Also \(\mathrm{E}(\mathrm{s})=1\) has no comp. plex root a \(+i \beta\), for \(a-i \beta\) would then also be a root, and \(E(2 a)=\) \(E(a+i f) E(\mathrm{a}-i \beta)=1\), which is impossible unless \(a=0\). The roots of \(E(s)=1\) are therefore purely imaginary (except \(s=0\)); the smallest numerically we denote by \(2 i \pi\), so that \(E(2 i \pi)=1\). We have then \(E(\) (2irr \()=(E(2 i x) F=1\), if \(r\) it any integer; therefore zint is a root. It can be shown that no root lies between airr and \(2(r+1) i r ;\) and thus that all the roots are given by \(s=2 i \pi m\). Since \(E(y+2 i x)=E(\mathrm{~s}) E(\mathrm{zir})=E(\mathrm{~s})\), we see that \(E(\mathrm{~s})\) is periodic, of period zir. It follows that \(\cos \mathrm{s}, \sin \mathrm{s}\) are periodic, of periods 2 r . The number here introduced may be identified with the ratio of the circumference to the diameter of a circle by considering the case of seal values of s .
23. Consider the binomial theorem
\[
\begin{aligned}
& \text { Pramenoar } \\
& \text { orfowere } \\
& \text { a/stera } \\
& \text { Mreme } \\
& \text { Shese exd } \\
& \text { Contreal } \\
& \text { anumer } \\
& \text { ATS } \\
& (a+b)=a^{n}+2 a^{n-1} b+\frac{n(n-1)}{2!} a^{n-1} a+\ldots \\
& +\frac{n(n-1) \ldots(n-r+1)}{r \mid} a^{n-1}+\ldots+k n \\
& \text { Putting } a=a_{0}, b=c+\infty \text {, we obtain } \\
& (2 \cos \theta)^{\circ}=2 \cos m+n 2 \cos \overline{n-2} \\
& +\frac{n(n-1)}{2!} 2 \cos \overline{n-4}+\ldots \\
& +\frac{n(n-1) \cdot(n-r+1)}{r!} 2 \cos (n-2 r) \theta+\ldots
\end{aligned}
\]

When \(n\) is odd the last term is \(\frac{n(n-1)}{n(n-1)!} \frac{1(n+3)}{} \operatorname{cose}\), and when \(n\) is even it is \(\frac{n(n-1)!(l n+1)}{\text { !n! }}\)

If we put \(a=e e^{f}, b=-e^{0}\), we obtain the formula
\((-1)=n(2 \sin \theta)=-2 \cos n-2 n \cos (x-2) \theta+\frac{n(n-1)}{1.2} 2 \cos (n-4) \theta-\ldots\)
\(+(-1)-\frac{n(n-1) \ldots(n-r+1)}{\sum} 2 \cos (n-2 r) \omega\)
\[
+(-1) \frac{n(n-1) \cdots\left(\frac{n}{n}+1\right)}{\lfloor n!}
\]
when \(n\) is even, and
\((-1)^{(k-1)}(2 \sin \theta)^{-}=2 \sin n-n .2 \sin (n-2)+\frac{n(n-1)}{1.2} 2 \cos (n-4) \cdots\)
\[
+(-) \frac{\frac{n}{1}}{n(n-1) \cdot(n+3)} \frac{1(n-1)!}{1(n)}
\]
when is is odd. These formulee enable us to expreses eny ponitive integral power of the sine or conine in terms of sines or cosines of multiples of the argument. There are corresponding formulae when \(n\) is not a positive interer.

Consider the identity \(\log (1-p x)+\log (1-q x)=\) \(\log \left(x-\bar{\rho}+\overline{\alpha^{x}}+\rho \alpha^{x}\right)\). Expand both nides of this equation in powers of \(x\), and equate the coefficients of 5 , we then get
\(p^{n}+q^{n}=(p+q)^{n}-n(p+q)^{-1} p q\)
\[
+\frac{(\pi-3)}{2!}(p+q)=-4 p^{2} q^{2}+
\]
\(+(-1)^{r n(n-r-1)(n-r-2) \ldots(n-2 r+1)} \frac{r}{r}\)

\section*{Arpmanto} etrimes and Casture of Moletate Arco ir Puwne Stiver and Cratere of Ars:
\((p+q)-\boldsymbol{q} \Phi+\ldots\)
If we write this geries in the reverse onder, we have
\(p^{n}+q^{n}=2(-1)^{\frac{n}{2}}\left[\left(p_{q}\right)^{\frac{1}{3}}-\frac{n^{2}}{2}\left(p_{q}\right)^{\frac{1}{2}}\left(\frac{p+q}{2}\right)^{2}\right.\)
\[
\begin{aligned}
& \quad+\frac{n^{2}\left(n^{4}-q^{n}\right)}{4!^{2}}(\rho q)^{\frac{2}{2}}\left(\frac{p+q}{2}\right)^{4} \\
& \left.-\frac{n^{2}\left(n^{2}-2^{n}\right)\left(n^{8}-4^{4}\right)}{6!}(p q)^{\frac{6}{2}-3}\left(\frac{p+q}{2}\right)^{4}+\ldots+(-1)^{\frac{8}{2}}[p+q)^{4}\right]
\end{aligned}
\]
when \(m\) is even, and
\(p^{n+q^{n}-2(-1)^{-1}}\left[n(p q)^{\frac{n-1}{2}}\left(\frac{p+g}{2}\right)-\frac{n\left(n^{1}-1^{2}\right.}{3!}(p q)^{\frac{n-q}{2}}\left(\frac{p+q}{2}\right)^{n}\right.\)
\[
\left.\left.+\frac{n\left(n^{2}-1^{n}\right)\left(n^{2}-3^{2}\right)}{5!}(p q)^{\frac{n-6}{2}}\left(\frac{p+q}{2}\right)^{4}+\ldots+(-1)^{\frac{n-1}{2}} \right\rvert\,(p+q)^{n}\right]
\]

Then \(x\) in odd. If in these three formulae we put \(p=a \infty, q=\sim \infty\), we obtain the following series for \(\cos x \boldsymbol{x}\) :-

\[
\begin{equation*}
+(-1) r \frac{n(s-r-1)(n-p-2) \ldots(n-2 r+1)}{n}(2 \cos \theta) \cdots+1+ \tag{7}
\end{equation*}
\]
when \(m\) is any positive integer:

\[
\begin{equation*}
+\ldots+(-1)^{8} z^{-1} \text { con } \theta \tag{8}
\end{equation*}
\]
when \(n\) is an even positive integer;

\[
\begin{equation*}
\ldots+(-1)^{\frac{-1}{2}} 2 m-1 \cos \theta \tag{9}
\end{equation*}
\]
when \(n\) Is odd. If in the same three formulac we put \(p\) ment, \(q=-{ }^{*}\), we obtain the following four formulae:-
\((-1)^{6} \cos ^{n}=(2 \sin \theta)^{n}-n(2 \sin \theta)^{m-1}+\frac{n(n-3)}{2!}[2 \sin \theta)^{m-0}-\ldots\)
\(+(-1)^{n(n-r-1) \ldots(n-2 r-1)}(2 \sin n)^{n-2}+\ldots(n\) even \() ;(10)\) \((-1)^{\frac{-1}{2}} 2\) sin sen \(=\) the same series (10 odd);

\[
\begin{equation*}
+\ldots+2^{-1} \sin 川(n \text { even }) \tag{12}
\end{equation*}
\]
\(\sin \omega \operatorname{mos} \sin -\frac{n\left(n^{2}-1^{2}\right)}{3} \sin 3+\frac{n\left(n^{4}-T^{2}\right)\left(\omega^{0}-3^{0}\right)}{5!} \sin 4-\ldots\)
\[
\begin{equation*}
+(-1)^{\frac{\pi-1}{2} 2^{-1}} \sin \theta(\text { odd }) \tag{13}
\end{equation*}
\]

Next consider the ideatity \(\frac{p}{1-p x}-\frac{q}{1-q x}=\frac{p-q}{1-\left(p+p x^{2}+p q^{2}\right.}\)
Expand both sides of this equation in powers of \(x\), and equate the coeficienst of \(x^{-r-1}\), then we obtain the equation
\[
\begin{aligned}
& \frac{\hat{p}^{n}-\rho^{n}}{p-9}-(\phi+q)^{-1}-(n-2)(\phi+q)^{n-p} p q \\
& +\frac{(n-3)(s-1)}{2!}(p+q)-1 p^{2} q^{2}-\ldots \\
& (-i)-\frac{(n-r-1)(n+r-2) \ldots(s-s p)}{r!}(p+q)=-m p q+\ldots
\end{aligned}
\]

If, as before, we write this in the reverse order, we have the serico
\[
\begin{aligned}
& (-1)^{\frac{n}{2}-1}\left[\equiv\left(\frac{p+y}{2}\right)(p q)^{\frac{5^{-1}}{1}}-\frac{n\left(n^{2}-2^{2}\right)}{3^{!}}\left(\frac{p+q}{2}\right)^{2}(p q)^{\frac{8}{2}-3}\right. \\
& \left.+\frac{n\left(n^{2}-2^{2}\right)\left(n^{n}-4^{p}\right)}{3!}\left(\frac{p+q}{2}\right)^{4}(p)^{\frac{n}{2}}+\ldots+(-1)^{5^{-1}}(p+q)-1\right]
\end{aligned}
\]

\[
\left.+\frac{\left(m^{2}-1^{2}\right)\left(n^{2}-3\right)}{41}\left(\frac{p+q}{2}\right)^{1}(p q)^{\frac{n-5}{2}}+\ldots+(-1)^{\frac{n-1}{2}}(p+q)-1\right]
\]
when \(n\) is odd. If we put \(\phi=e^{+\infty}, q=e-*\), we obtain the formulae \(\sin \theta=\sin \left\{(2 \cos \theta)^{-1}-(n-2)(2 \cos \theta)=+\frac{(n-3)(n-4)}{2!}(2 \cos \theta) \cdots\right.\) \(\left.+(-1) r^{(n-r-1)(n-r-2 \ldots(n-2 r)}(2 \cos n)^{m-n}+\ldots\right\}(14)\)
where \(x\) is any positive integer;

\((-1)^{\frac{n-1}{2}} \sin \operatorname{non} \sin \theta\left\{1-\frac{n^{2}-1^{2}}{2 l} \cos 4+\frac{\left(n^{2}-1^{2}\right)\left(n^{2}-3^{2}\right)}{4!} \cos 4-\ldots\right.\)
\[
\begin{equation*}
\left.+(-1)^{\theta^{-1}}(2 \cos \theta)-1\right\}(n \text { odd }) \tag{16}
\end{equation*}
\]

If we put in the anme three formulae \(p=c ⿻, q=-4\), we obtain the series
\(\sin \pi=\cos \theta\left\{n \sin \theta-\frac{n\left(n^{2}-2^{2}\right)}{3!} \sin ^{2} \theta+\frac{n\left(n^{2}-2^{2}\right)\left(n^{4}-4^{2}\right)}{5!} \sin 4+\right.\)
\[
\begin{equation*}
\left.\ldots+(-1)^{\frac{\theta}{2}}(2 \sin \theta)-1\right\}(\text { even }) \tag{19}
\end{equation*}
\]
\(\cos \pi t-\cos \theta\left\{1-\frac{\pi^{2}-1^{2}}{2 I^{2}} \sin ^{2} \theta+\frac{\left(n^{2}-1^{2}\right)\left(n^{1}-32\right)}{4} \sin 4 \theta-\ldots\right.\)
\[
\begin{equation*}
\left.+(2 \sin \theta)^{m-1}\right\}(n \text { odd }) \tag{20}
\end{equation*}
\]

We have thus obtained formulae for \(\cos n \theta\) and sin \(\begin{gathered}\theta \\ \theta\end{gathered}\) ascending and in descending powers of \(\cos \theta\) and sin \(\theta\). Vieta obtained formulac for chords of multiple arcs in powers of chords of the simple or complementary arcs equivalent to the formulae (13) and (19) above. These are contained in his work Theorcmata ad angulares sectiones. Jacques Bernoulti found formulae equivalent to (12) and (13) (Mem, de I' Academic des Sciences, 1702), and transformed these series into a form equivalent to (io) and (11). Jean Bernoulti published in the Acte truditorum for 1701, among other formulae already found by Vieta, one equivalent to (i7). These formulae have been extended to cases in which \(m\) is fractional, nega. tive or irrational; see a paper by D. F. Gregory in Camb. Math. Jowet. vol. iv., in which the series for cos mo, sin me in ascending powers of cos \(\theta\) and sin are extended to the case of a fractional value of th. These series have been considered by. Euler in a metnoir in the Nowa acta, vol. ix, by Lagrange in his Calcuil des fonctions (1806), and by Poinsot in Recherches sum Camalyse des sections angubaires (1825).
24. The general definition of Napierian logarithms is that, if \(e x+a y=a+b\), then \(x+t y=\log (a+i b)\). Now we know that

 according as a is positive or negative; benoe
\[
\begin{aligned}
& \log _{0}(a+b)=\log _{4}\left(a^{2}+b^{2}\right)+4(\arctan b / a \neq 2 n m) \\
& \log _{1}(a+b)=\log _{e}\left(a^{2}+b^{2}\right)+1(\arctan b / a=2 n+\pi),
\end{aligned}
\]
according as \(a\) is positive or negative. Thus the logarithm of any complex or real quantity is a multiple-valued function, the differ. reporbaric ence between succesaive values being \(2 \mathrm{~F} ;\) in particular, rrapoos- the most general form of the logarithm of a real positive Trapoes quantity is obtained by adding positive or negathis subject, see De Morgan's Trigomometry and Dowble Algebra, ch. iv. and a paper by Profesor Cayley in vol. fi. of Proc. London Math. Sbc.
25. We have from the definitions given In 21 cos \(4 y=\) \(1(c y+c-y)\) and sin \(1 y-\frac{1}{2}(\alpha-\varepsilon-y)\). The expressions, \((c y+e-y)\), (ey- \((-y)\) are said to define the byperbolic cosine and sine of \(\gamma\) and are written cosh \(y\), sinh \(y ;\) thus cosh \(y=\cos 4 y\), sinh \(y=-1\) sin \(c y\). The functions cosh \(y\) sinh \(y_{1}\), when with the rectangular
\[
\begin{align*}
& (-1)^{\frac{5-2}{2}} \sin n=\cos \theta\left[\sin ^{\omega-4} \theta-(n-2) \sin \theta-\theta+\frac{(n-3)(n-4)}{2!} \sin n^{n-4} \theta-\ldots\right. \\
& \left.+(-1) \frac{(n-r-1)(n-r-2) \ldots(n-2 r)}{r} \sin n-1 \theta+\ldots\right](n \text { even }) ;(17) \\
& (-1)^{\frac{0-1}{2}} \mathrm{cos} n+\mathrm{m} \text { the same series (} n \text { odd); } \tag{18}
\end{align*}
\]
sine are connected with the circle. We may entily ahow from the definitions that
\(\cos ^{2}(x+1 y)+\sin ^{2}(x+4 y)=1\),
\(\cosh ^{2} y-\sinh ^{3} y=1\);
\(\cos (x+c y)=\cos x \cosh y-i \sin x \sinh y\),
\(\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y\).
\(\cosh (\alpha+\beta)=\cosh a \cosh \beta+\sinh a \sinh \beta\),
\(\sinh (a+\beta)=\sinh a \cosh \beta+\cosh a \sinh \beta\)
These formulac are the basis of a complete hyperbolic trigonometry. The connexion of these functions with the hyperbola was first pointed out by lambert.
26. If we equate the coefficients of \(\pi\) on both sides of equation (13), this process requiring, however, a justification of ite vilidity, we get
- must lie between the values \(\pm \mathbf{1} x\). This equation offertan. may also be written in the form
\[
\operatorname{arc} \sin x=x+\frac{1}{2} \frac{x^{4}}{3}+\frac{1.3}{2.4} \frac{x^{4}}{5}+\frac{1.3 .5}{2.4 .6} \frac{x^{3}}{7}+\ldots
\]
when \(x\) lies between 11 .
By equating the coefficients of \({ }^{8}\) on both sides of equation (12) we get
\[
\begin{equation*}
=-\sin ^{2} \theta+\frac{2}{3} \frac{\sin ^{4} \theta}{2}+\frac{2.4}{3.5} \frac{\sin ^{\theta} \theta}{3}+\frac{2.4 .6}{3 \cdot 5 \cdot 7} \frac{\sin ^{0} \theta}{4}+\ldots \tag{22}
\end{equation*}
\]
which may also be written in the form
\[
(\arcsin x)^{2}=x^{2}+\frac{2}{3} \frac{x^{4}}{2}+\frac{2.4}{3.5} \frac{x^{2}}{3}+\frac{2.4 .6}{3 \cdot 5 \cdot 7} \frac{x^{4}}{4}+\ldots
\]
when \(x\) is between 1 . Differentiating this equation with regard to \(x\), we get
\[
\frac{\operatorname{arc} \sin x}{\sqrt{1}-2}=x+\frac{2}{3} x^{2}+\frac{2 \cdot 4}{3 \cdot 5} x+\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} x^{3}+\ldots ;
\]
if we put are sin \(x=\) arc tan \(y\), this equation becomes
\[
\begin{equation*}
\text { arc } \tan y=\frac{y}{1+y^{3}}\left\{1+\frac{2}{3} 1+y^{2}+\frac{2}{3} \cdot 4\left(\frac{y^{4}}{1+y}\right)^{2}+\ldots\right\} \tag{23}
\end{equation*}
\]

This equation was given with two proofs by Euler in the Nova acta for 1793.
It can be shown that if mod \(x<1\), then for any such real or complex value of \(x\), a value of \(\log _{0}(1+x)\) is given by tbe sum of the series \(x^{1}-x^{2 / 2}+x^{2} / 3-\ldots\)

We then have:
\[
\frac{1}{2} \log \frac{1+x}{1-x}-x+\frac{x^{0}}{3}+\frac{x^{3}}{5}+\frac{x^{x}}{7}+\ldots ;
\]
\[
\begin{aligned}
& \text { argersea } \\
& \text { Sporten }
\end{aligned}
\]
put ay for \(\dot{x}\), the left side then becomes \(1(\log (1+t y)-\log (1-a y) \mid\) or a arc tan \(y=183\);
hence
\[
\arctan y=n \mathrm{r}=y-\frac{y^{2}}{3}+\frac{y^{5}}{5}-\frac{y^{2}}{7}+\ldots
\]

The series is conversent if \(y\) fies between \(\pm 1\); if we suppose ase \(\tan y\) restricted to value between \(=1 \pi\), we have
\[
\begin{equation*}
\text { are } \tan y=y-\frac{y^{4}}{3}+\frac{y^{4}}{5}-\ldots \tag{24}
\end{equation*}
\]
which is Gregory's series
Various series derived (rom (24) have been employed to calculate the value of \(\bar{m}\). At the end of the 17 th century F was calculated to 72 places of decimals by Abraham Sharp, by means of the series obtained by putting arc tan \(y=\pi / 6\), Setet Aor \(y=1 / \sqrt{3}\) in (24). The calculation is to be found in Colonialona Sherwin' Ma/hematical Tables (1742). About the same afe
time J. Machin employed the series obtained from the equation 4 arc tan 1 -arc tan \(=1 \pi\) to calculate \(\pi\) to 100 decimal places. Long afterwards Euler employed the series obtained from fryarc tan \(+\operatorname{arc} \tan\) 1. which, however, gives less rapidly converging series (Introd., Anol. infin. vol. it.). T. F. de Lagny employed the formula are \(\tan 1 / \sqrt{3}=16\) to calculate \(T\) to 127 places; the reault was communicajed to the Paris Academy in 1719. G. Vega calculated 5 to 140 decimal places by means of the eeries obtained from the equation \(t=5=5\) arc \(\tan \mid+2\) arc tan fo: The formula \(\left.\frac{1}{2} \pi=a r c t a n\right\}\) tarc tan \(t+a r c t a n\) was used \(b y\) J. M. Z. Dase to calculate \(\mathbf{I} 10200\) decimal places. W. Rutherford used the equation \(=4\) are tan \(\mid\) - arc tan \(t_{0}+\operatorname{arc} \tan\) o.

If in (23) we put \(y=1\) and \(t\), we have
\(=8\) arc \(\tan 1+4\) arc \(\tan \left\{-2 \cdot 4\left\{1+\frac{2}{3} \cdot \frac{1}{10}+\frac{2}{3} \frac{4}{5} \frac{1}{10}+\ldots\right\}\right.\)
\[
+36\left\{1+\frac{2}{3} \cdot \frac{2}{100}+\frac{2}{3 \cdot 5}\left(\frac{2}{100}\right)^{2}+\ldots\right\}
\]
a rapidly convergent eeries for . which was first given by Hutton in Phil. Trans. for 3776, and afterwards by Euler in Nowe acta for 1794 Euler gives an equation deduced in the ame manner from the sdentity \(=\mathbf{m} 20\) arc tan \(\phi+8\) arc tan \(\hat{f}\). The calculation of \(\boldsymbol{T}\) hat been carried out to 707 places of decimals; see Proc. Roy. Soc. vols. xxi. and xxili. ; also Circle.
37. We shall mon obrain expromione for sha 2 and con \(x\) as inficite products of rational factorn. We have
pactortat
treotsin
4acmion
\[
\sin x-2 \sin \frac{x}{2} \sin \frac{x+T}{2}-2^{x} \sin \frac{x}{4} \sin \frac{x+5}{4}
\]
\[
\sin \frac{x+2 \pi}{4} \operatorname{tin} \frac{x+3 \pi}{4}
\]
proceeding continually in this way with each factor, we obtain
\[
\sin x=2^{x-1} \sin \frac{x}{6} \sin \frac{x+\pi}{\pi} \sin \frac{x+2 \pi}{2} \ldots \sin \frac{x+\sqrt{n}-1 \pi}{m},
\]
ebere \(m\) is any positive integral power of 2. Now
and
Hence the above may be written
\[
\begin{gathered}
\sin x-2^{-1} \sin \frac{x}{\left(\sin ^{2} \frac{\pi}{m}-\sin ^{2} \frac{x}{n}\right)\left(\sin ^{2} \frac{2 \pi}{n}-\sin ^{2} \frac{x}{n}\right) \ldots} \\
\left(\sin ^{2} \frac{k r}{m}-\sin ^{2} \frac{x}{m}\right) \cos \frac{x}{\pi^{4}}
\end{gathered}
\]
where \(k=1 n=1\). Let \(x\) be indefinitely amall, then we have
\[
I=\frac{x^{2-1}}{\pi} \sin ^{2} \frac{\pi}{2} \sin ^{2} \frac{2 \pi}{m} \ldots \sin ^{2} \frac{k \pi}{m} ;
\]
hence
\(\sin x=\pi \sin \frac{x}{n} \cos \frac{x}{n}\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} \pi / n}\right)\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} 2 \pi / n}\right) \cdots\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} k \pi / n}\right)\). We may write this
\[
\sin x=\omega \sin \frac{x}{n} \cos \frac{x}{n}\left(1-\frac{\sin ^{2} x / n}{\sin ^{2} \pi / n}\right) \ldots\left(1-\frac{\sin ^{5} x / n}{\sin ^{2} \pi / \pi / n}\right) R_{1}
\]
where \(R\) denotes the product
\[
\left(1-\frac{\sin ^{2} x / m}{\sin ^{2} m+1 \pi / m}\right)\left(1-\frac{\sin ^{2} x / \pi}{\sin ^{2} m+2 \pi / m}\right) \ldots\left(1-\frac{\sin ^{2} x / m}{\sin ^{3} k \pi / m}\right) .
\]
and me is any fixed integer independert of \(\%\). It ts necessary, when we make \(n\) infinite, to determine the limiting value of the quantity \(B\); then, since the limit of \(\frac{\sin x}{\sin x / 4 \cos x / n}\) is \(\frac{\sin x}{x}\) and that of \(\frac{\sin m+/ \pi}{\cos / \sqrt{n}}\) is unity, we have
\[
\frac{\sin x}{x}=\left(1-\frac{x^{2}}{x^{2}}\right)\left(1-\frac{x^{2}}{2^{2} x^{2}}\right) \ldots\left(1-\frac{x^{2}}{m^{2} x^{2}}\right) \lim \frac{R .}{m=0}
\]

The modulus of \(R-1\) is less than
\[
\left(1+\frac{\alpha^{2}}{\sin ^{2} m+1 \pi / n}\right)\left(1+\frac{\rho^{2}}{\sin ^{2} m+2 \pi / n}\right) \ldots\left(1+\frac{\hat{m}^{2}}{\sin \frac{1}{2 \pi} / n}\right)-1
\]
where \(\rho=\bmod\) sin \(x / n\). Now \(A \rho^{2}>1+A \rho^{2}\), if \(A\) is positive; hence mod. \((R-1)\) is less than exp. \(\left\{\rho^{2}\left(\operatorname{cosec}^{2} \overline{1}+1 \pi / n+\ldots t\right.\right.\) cosec \(k \pi /(u)-1\), or than \(\exp . ~ 1 \rho^{2} n^{2} \mid 1 /(m+1)^{2}+\ldots+1 / 14-1\), or than exp. \(\left|\rho^{2} w^{2} / 4 m^{2}\right|-1\). Now \(\rho^{2}=\sin ^{2} \quad a / m \cdot \cosh ^{2} \rho / n+\cos ^{2} \mathrm{a} / \mathrm{m}\). sinh \(\beta / \bar{z}\) if \(x=a+i \beta\); or \(\rho^{2}=\sin ^{2} a / n+\sinh ^{2} \hat{p} / m\). Hence \(\lim _{\mathrm{m}=\infty} \boldsymbol{\rho}^{2} \boldsymbol{n}^{3}=\mathrm{a}^{2}+\beta^{2} . \lim _{m=\infty} p=\bmod . x\). It follows that mod.w- \((R-I)\) is belween 0 and exp. \(\left\{(\bmod .4)^{2} / x^{2} \mid-1\right.\), and the latter may be made arbitraridy small by taking m large enough, It has now been shown that \(\sin x=x\left(1-x^{2} / x^{2}\right)\left(1-x^{2} / 2^{2} x^{2}\right) \ldots\) (\(\left.1-x^{3} / m^{2} r^{2}\right)\left(1+1,{ }^{2}\right)\) where mod. \(u_{m}\) decreases indefinitely as \(m\) is increased indefinitely. When \(m\) is indefinitely increased this becomes
\[
\begin{equation*}
\sin x=x\left(1-\frac{x^{2}}{3}\right)\left(1-\frac{x^{2}}{2^{2} \pi^{2}}\right) \ldots=x_{n=1}^{m=0}\left(s-\frac{x^{2}}{n^{2} x^{2}}\right) . \tag{25}
\end{equation*}
\]

This has been shown to hold for any real or complex value of \(x\). The expression for cos \(x\) in factors may be found in a similar manner by means of the equation \(\cos x=2 \sin \frac{-2 x}{4} \cos \frac{3 x-2 x}{4}\), or may be deduced thus
\[
\begin{align*}
& \cos x=\frac{\sin 2 x}{2 \sin x}=\frac{P\left(1-\frac{4 x^{4}}{\pi^{3} x^{2}}\right)}{P\left(1-\frac{x^{3}}{\pi^{2} x^{3}}\right)}=\left(1-\frac{4 x^{4}}{\pi^{2}}\right)\left(1-\frac{4 x^{4}}{3^{2} x^{2}}\right)\left(1-\frac{4 x^{4}}{5^{2}}\right): \tag{26}
\end{align*}
\]

If te change \(x\) into \(x\), we have the formulae for sinh \(x, \cosh x\) as infinite products-
\[
\sinh x=x_{=-0}^{\infty=0}\left(1+\frac{x^{2}}{n^{3} \pi}\right), \cosh x=P=0\left(1+\frac{4 x^{2}}{(2 n+1)^{2} r^{2}}\right)
\]

In the formula for sin \(x\) as an infinite product put \(x=\frac{1}{3} \pi\), we then get \(I=\frac{\pi}{2} \cdot \frac{3 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \ldots}{2 \cdot 244 \cdot 6 \ldots}\); if we stop after \(2 n\) factors in the numerator and denominator, we obtain the approximate equation
\[
I=\frac{\pi}{2} \frac{i^{2} \cdot 3^{2} \cdot 5^{2} \ldots(2 n-1)^{1}}{2^{2} \cdot 4^{2} \cdot 3^{3} \ldots(2 n)^{2}} \cdot(2 n+1)
\]
or \(\frac{2.4 .6 \ldots, 2 n}{1.3 .5 \ldots 2 n-1}=\sqrt{\text { nm }}\) where \(\pi\) is a large integer. This expression was obtained in a quite different manner by Wallis (Arithmetica infimitorwim, vol. i. of Opp.).
28. Wa have
\[
\frac{\sin (x+y)}{\sin x}=\frac{(x+y) P\left(1+\frac{x+y}{x y}\right)}{x P\left(1+\frac{x}{x y}\right)} \quad \text { Cot, foses }
\]
or cos \(y+\sin y \cot *\)
\[
\omega\left(1+\frac{y}{x}\right)\left(1+\frac{y}{x+\pi}\right)\left(1+\frac{y}{x-\pi}\right)\left(1+\frac{y}{x+2 \pi}\right)\left(1+\frac{y}{x-2 \pi}\right) \ldots
\]

Equating the coefficienta of the Girst power of \(y\) on both sides wo obtain the series
\[
\begin{equation*}
\cot x=\frac{1}{x}+\frac{1}{x+5}+\frac{1}{x-\pi}+\frac{1}{x+2 \pi}+\frac{1}{x-2 \pi}+\ldots \tag{27}
\end{equation*}
\]

From this we may deduce a corresponding seriea for cosec \(\%\), for, since cosec \(x=\cot \{x-\cot x\), we obtain
\(\operatorname{cosec} x=\frac{1}{x}-\frac{1}{x+\pi}-\frac{1}{x-5}+\frac{1}{x+2 \pi}+\frac{1}{x-2 \pi}-\frac{1}{x+3 x}-\frac{1}{x-3 x}+\ldots\)
By resolving \(\frac{\cos (x+y)}{\cos x}\) into factors we should obtain in a similar manner the series
\(\tan x=\frac{2}{\pi-2 x}-\frac{2}{x+2 x}+\frac{2}{35-2 x}-\frac{2}{3 x+2 x}+\frac{2}{5 \pi-2 x}-\frac{2}{5 x+2 x}+\ldots\). (29) and thence
\(\sec x=\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)-\tan x=\frac{2}{5-2 x}+\frac{2}{5+2 x}-\frac{2}{3 \pi-2 x}-\frac{2}{3 \pi+2 x}+\ldots(30)\) These four formulae may also be derived from the product formulae for \(\sin x\) and \(\cos x\) by taking logarithms and ihen differentiating. Glaisher has proved them by resolving the expressions for cos \(x / \sin x\) and \(1 /\) sin \(x \ldots\) as products into partial fractions (see Qwart. Josere. Mah., vol. Ivii.). The series for cot \(x\) may also be obtained by a continued vese of the equation cot \(\left.x=\frac{1}{3} \cot \right\rvert\, x+\) \(\cot |(x+\pi)|\) (see a paper by Dr Schroter in Schlomilch's Zeifichrifh vol. xiii.).
Various series for I may be derived from the series (27), (28), (29). (30), and from the series obtained by differentiating them one or more times. For example, in the formulae (27) and (28), by putting \(x=\pi / n\) we get
\[
\begin{aligned}
& \pi=n \tan \frac{\pi}{n}\left\{1-\frac{1}{n-1}+\frac{1}{n+1}-\frac{1}{2 n-1}+\frac{1}{2 n+1} \ldots\right\} . \quad \begin{array}{l}
\text { Sermen ferfived }
\end{array} \\
& \text { - }-\mathrm{m} \sin \frac{\pi}{}\{1+1
\end{aligned}
\]

If we put \(n=3\), these becone
\[
\begin{gathered}
1 \quad=3 \sqrt{3}\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{8}+\ldots\right) . \\
\quad=\frac{3 \sqrt{3}}{2}\left(1+\frac{1}{2}-\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{8} \ldots\right) .
\end{gathered}
\]

By differentiating (27) we get
\[
\operatorname{cosec}^{2} x=\frac{1}{x^{2}}+\frac{1}{(x+\pi)^{2}}+\frac{1}{(x-\pi)^{2}}+\frac{1}{(x+2 \pi)^{2}}+\frac{1}{(x-2 \pi)^{2}}+\ldots ;
\]
put \(x=\frac{\text { F }}{6}\), and we get \(\boldsymbol{m}^{2}=9\left\{t+\frac{1}{5^{2}}+\frac{1}{7^{i}}+\frac{1}{1 t^{i}}+\ldots\right\}\).
These series. among others, were given by Glaisher (Quart. Journ Math. vol. xii.).
29. We have sinh \(\pi x=r x P\left(s+\frac{x^{2}}{n}\right), \cosh \pi x=P\left(1+\frac{x^{4}}{(2 n+1)^{2}}\right)\). if we differentiate these formulae after taking loga. rithms we obtain the series

\section*{sume of \\ Certals \\ Sertes.}
\[
\frac{5}{2 x} \tanh \pi x=\frac{1}{3^{2}+x^{2}}+\frac{1}{3^{3}+x^{2}}+\frac{1}{5^{2}+x^{2}}+\ldots
\]

These series were given by Kummer (in Crelle"s Journ. vol. zvii.) The sum of the more general series \(\frac{1}{i^{1 \pi}+x^{2 n}}+\frac{1}{2^{2 n}+x^{30}}+\frac{1}{3^{3 n}+x^{2 n}}\) + has been found by Glaisher (Proc. Lond. Math. Soc., vol. vii.) If \(U^{=}\)denotes the sum of the series \(\frac{1}{10}+\frac{1}{1}+\frac{1}{1}+\ldots \ldots V^{\prime}\) that
of the series \(\frac{1}{1^{n}}+\frac{1}{3^{n}}+\frac{1}{5^{n}}+\ldots\), and \(W^{m}\) that of the series Saus of \(\frac{1}{1^{n}}-\frac{1}{3^{m}}+\frac{1}{5^{n}}-\frac{1}{7^{m}}+\ldots\), we obtain by taking logaRectprocals, rithms in the formulae (25) and (26)
of Natura!
Numbers.
\(\log (x \operatorname{cosec} x)=U_{1}\left(\frac{x}{x}\right)^{2}+\frac{1}{2} U_{1}\left(\frac{x}{x}\right)^{4}+\frac{1}{3} U_{4}\left(\frac{x}{x}\right)^{4}+\ldots\).
\(\log (\sec x)=V_{1}\left(\frac{2 x}{x}\right)^{2}+\frac{1}{2} V_{1}\left(\frac{2 x}{x}\right)^{4}+\frac{1}{3} V_{4}\left(\frac{2 x}{x}\right)^{4}+\ldots\);
and differentiating these series we get
\[
\begin{align*}
& \frac{1}{2} \cot x=\frac{1}{2 x}-\frac{U_{5}}{x^{2}} x-\frac{U_{4}}{x^{4}} x^{3}-\frac{U_{4}}{x^{4}} x^{4}-\ldots . \tag{31}\\
& \frac{1}{2} \tan x=\frac{V_{4}}{\pi^{2}} 2^{2} x+\frac{V_{4}}{x^{4}} x^{3}+\frac{V^{6}}{x_{6}} 2^{4} x^{4}+\ldots . \tag{32}
\end{align*}
\]
 equation (30) in the form
\[
\sec x=\sum(-1)=\frac{(2 N+1) r}{(2 n+1} \frac{1}{2)^{2}-x^{\prime}}
\]
and expand each term of this series in powers of \(x^{2}\), then we get
\[
\begin{equation*}
\sec x=\frac{2^{2} W_{1}}{\pi}+\frac{2^{4} W_{2} x^{2}}{\pi^{2}}+\frac{2^{2} W_{3} x^{4}}{5^{2}}+\ldots \tag{33}
\end{equation*}
\]
where \(x\) must lie between \(=1 \mathrm{r}\). By comparing the series (31), (32), (33) with the expansions of \(\cot x, \tan x, \sec x\) obtained otherwise, we can calculate the values of \(U_{1}, U_{1} \ldots V_{1}, V_{4} \ldots\) and \(W_{1}, W_{3} \ldots\) When \(U_{n}\) has been found, \(V_{*}\) may be obtained from the formula \(2^{n} V^{n}=\left(2^{n}-1\right) U_{m}\)
For Lord Brounker's series of \(\mathbf{x}\), see Circle. It can be got at once
Combered by putting \(a=1, b=3, c=5 \ldots \ldots\) in Euler's
Facters theorem \(=\frac{1}{a}-\frac{1}{b}+\frac{1}{c}-\ldots=\frac{1}{a+b-a+c-b+} \frac{a^{2}}{b^{2}} \ldots\)
Sylvester gave (Phil. Mag., 1869) the continued fraction
\[
\frac{\pi}{2}=1+\frac{1}{1+} \frac{122334}{1+} \frac{3}{1+} \cdots ;
\]
which is equivalent to Wallis's formula for \(\pi\). This fraction was originally given by Euter (Comm. Acad. Peiropol. vol. xi.); it is also given by Stern (in Crelle's Journ. vol. \(x\)).
30. It may be shown by means of a transformation of the series Condloved for \(\cos x\) and \(\frac{\sin x}{x}\) that \(\tan x=\frac{x}{1-\frac{x^{2}}{3}-\frac{x^{2}}{5-1} \frac{x^{2}}{7} \ldots}\) for Triteano This may be also easily shown as follows. Let metrical \(y=\cos v x\), and let \(y^{\prime}, y^{*} \ldots\) denote the differenial Puactome, coefficients of \(y\) with regard to \(x\), then by forming inese we can show that \(4 x y^{\prime \prime}+2 y^{\prime}+y=0\). and thence by
Leihnitz's theorem we have
\[
4 x y^{(n+1)}+(4 n+2) y^{(n+1)}+y^{(n)}=0 .
\]

Therefore \(\frac{y}{y}=-2-\frac{4 x}{y / y^{3}}, \frac{y^{n}}{y^{(2+1)}}=-2(2 m+1)-\frac{4 x}{y^{(n+1)} / y^{(n+1)}}\); hence \(-2 \sqrt{x} \cot \sqrt{x}=-2-\frac{4 x}{-6} \frac{4 x}{-10}=\frac{4 x}{-14} \ldots\)
Replacing \(\sqrt{ } x\) by \(x\) we have \(\tan x=\frac{x}{1-\frac{x^{2}}{3}-\frac{x^{2}}{5-\cdots} .}\)
Euler gave the continued fraction
\[
\tan x x=\frac{\operatorname{n} \tan x}{7} \frac{\left(n^{2}-1\right) \tan ^{2} x}{3} \frac{\left(n^{2}-4\right) \tan ^{2} x}{5-} \frac{\left(n^{2}-9\right) \tan ^{2} x}{7} \ldots ;
\]
this was published in Mćm. de Pacad. de St Pétersb. vol. vi. Glaisher has remarked (Mess. of Math. vols. iv.) that this may be derived by forming the differential equation
\[
\left(1-x^{2}\right) y^{(x+3)}-(2 m+1) x y^{(-+1)}+\left(n^{1}-m^{2}\right) y^{(n)}=0 \text {. }
\]
where \(y=\cos (n \operatorname{arc} \cos x)\), then replacing \(x\) by \(\cos x\), and proceeding as in the former case. If we put \(x=0\), this becomes
\[
x=\frac{\tan x}{1+} \frac{\tan ^{2} x}{3+} \frac{4 \tan ^{2} x}{5+} \frac{2 \tan ^{2} x}{7+} \ldots ;
\]
whence we have
\[
\arctan x=\frac{x}{1+} \frac{x^{2}}{3+} \frac{4 x^{2}}{5+} \frac{9 x^{2}}{7+} \ldots+\frac{n^{2} x^{4}}{2 m+1+} \ldots
\]
31. It is possible to make the investigation of the properties of the simple circular functions rest on a purely analytical basis other than Purely the one indicated in \(\% 22\). The cine of \(x\) would be

of Clicular then \(y=\sin x\); the quantity \(\frac{F}{2}\) would be defined to be the complete integral \(\int_{0}^{1} \frac{d y}{\left(1-y^{2}\right)}\) We should then have \(\frac{\pi}{2}-x=\int \frac{d y}{\sqrt{1+y}}\). Now change the variable in the integral to \(z\), where \(y^{3}+z^{3}=1\), we then have \(\frac{z}{z} \cdots-\int_{\cdots}^{1} \frac{d y}{\left(1-x^{2}\right)}\), and
\({ }^{3}\) must be defined as the conise of \(x\), and is thus equal to \(\sin (4 x-x)\). satisfying the equation \(\sin ^{2} x+\cos ^{2} x=1\).

Next consider the differential equation

This is equivalent to
\[
\frac{d y}{\sqrt{\left(1-y^{3}\right)}}+\frac{d z}{\sqrt{\left(1-z^{2}\right)}}=0 .
\]
\[
d\left|y \sqrt{ }\left(1-x^{2}\right)+z \sqrt{ }\left(1-y^{2}\right)\right|=0 ;
\]
hence the integral is
\[
y \sqrt{ }\left(1-2^{3}\right)+2 \sqrt{ }\left(1-y^{4}\right)=2 \text { constant. }
\]

The constant will be equal to the value \(u\) of \(y\) when \(s=0\); whence \(\quad y \boldsymbol{V}\left(1-z^{3}\right)+x \sqrt{ }\left(1-y^{3}\right)=\mathrm{z}\).
The integral may also be obtained in the form
\[
y=\sqrt{2}\left(1-y^{2}\right) v\left(1-x^{2}\right)=\sqrt{ }\left(1-x^{2}\right) .
\]

Let \(a=\int_{0}^{y} \frac{d y}{\sqrt{\left(1-y^{3}\right)}} \quad \beta=\int_{0}^{i} \frac{d z}{\left.\sqrt{\left(1-x^{3}\right.}\right)^{\prime}} \quad \gamma=\int_{0}^{z} \frac{d x}{\sqrt{\left(1-x^{2}\right)}}\);
we have \(a+\beta=\gamma\), and \(\sin \gamma=\sin a \cos \beta+\cos a \sin \beta\).
\(\cos \gamma=\cos a \cos \beta-\sin a \sin \beta\).
the addition theorems. By means of the addition theorems and the values \(\sin \left\{\pi=x, \cos \frac{f \pi}{}=0\right.\) we can prove that \(\sin \left(\frac{3}{2}+x\right)=\) \(\cos x_{i} \cos \left(\frac{1}{2}+x\right)=-\sin x_{\text {; }}\); and thence. by another use of the addition theorems, that \(\sin (x+x)=-\sin x \cos (\pi+x)=-\cos x_{0}\) from which the periodicity of the funetions \(\sin x, \cos x\) follows:-
We have also \(\left.\int \frac{d y}{\sqrt{\left(1-y^{2}\right)}}=-i \log \cdot \right\rvert\, \sqrt{ }\left(1-y^{2}\right)+(y)\);
whence log. \(\left\{v\left(1-y^{v}\right)+\sqrt{2}|+\log | \sqrt{\prime}\left(t-z^{2}\right)+x \mid=\right.\) a constant. Therefore \(\left|\sqrt{ }\left(1-y^{2}\right)\right|+a y\left|\sqrt{ }\left(1-z^{2}\right)+u\right|=\sqrt{ }\left(1-x^{2}\right)+\Delta w_{1}\) since \(u=y\) when \(z=0\); whence we have the equation
\((\cos a+i \sin a)(\cos \beta+i \sin \beta)=\cos (a+\beta)+\imath \sin (a+\beta)\).
from which De Moivre's theorem follows.
References.-Further information will be found in Hobson's Plane Trigonometry, and in Chrystal's Algebra, vol. ii. For further information on the history of the subject, see Braunmuhl's Vor. Lesungen über Geschuchte der Trıgonometrie (Leipzig, tgoo). (E. W. H.)

TRIGONON, small triangular harp, occasionally used by the ancient Greeks and probably derived from Assyria or Egypt. The trigonon is thought to be either a variety of the sambuca or identical with it. A trigonon is represented on one of the Athenian red-figured vases from Camciros in the island of Rhodes, dating from the 5 th century b.c., which are preserved in the British Museum. The triangle is here an irregular one, consisting of a narrow base to which one end of the string was fixed, while the second side, forming a slightly obtuse angle with the base, consisted of a wide and slightly curved sound-board pierced with holes through which the other end of the strings passed, being cither knotted or wound round pegs. The third side of the triangle was formed by the strings themsetves, the front pillar, which in modern European harps plays such an important part, being always absent in these early Oriental instruments. A small harp of this kind having 20 strings was discovered at Thebes in \(\mathbf{1 8 2 3}\).
(K. S.)

TRIKKAlA (anc. Trika), a town of Greece, capital of the department of Trikiala, and the see of an archbishop, 38 m . W. of Larissa. In winter, when great numbers of Vlach herdsmen take up their quarters in the town, its population exceeds that of Larissa. It has the appearance of a Mussulman town on account of its mosques (only two of which are in use) and it is a centre of trade in wheat, maize, tobacco and cocoons. The town was in ancient times a celebrated seat of the worship of Acsculapius. Pop. (1889), 14,820; (1907) 17,809; of the department, 90,548 .
TRILEMMA (Gr. tpeits, three. \(\lambda \boldsymbol{j} \mu \mu \mathrm{n}\), something taken), in logic, an argument akin to the dilemma (q.v.), in which there are three possibilitics. By getting rid of two, the third is proved, provided the original three exhaust the number. The terms "tetralemma " (four possibilities) and "polylemma" (many) have also been used.
TRILOBITES, extinct Arthropoda, formerly classified with the Crustacea, but of Late years relegated to the Arachnida (q.v.), which occurred abundently in seas of the Cambrian and Silurian periods, but disappeared entirely at the close of the Palaeozoic epoch. Both their origin and the causes which led to their extinction are quite unknown. Widely divergent forms make their appearance suddenly in the Cambrian period amongst the carliest known fossils, and the high perfection of structure to which they had at that time attained
implies the antecedent existence of much simpier types, and refers the origin of life to a date immeasurably distant from that at which we have actual proof of the existence of animal and vegetable organisms.

However different in structure Trilobites may be, they all agree in possesuing a head-shicld usually semi-circular in shape, which results from the fusion of apparently five segrnents, and bears, except in some blind forms, a pair of large reniform compound eyes like those of the kiag-crab (\(X\), phosura). This head-shicld is succreded by a varying number of free segments, each of which con. sists of a medium convex tergal piece and a pair of arched lateral plates, the pleura, of which there is one on each side. The terga and pleara of each individual ecgroent overlap those of the segment that serially succeeds it. Ttie mud-region of the body, composed of jointed segments, is followed by a larger or smaller region consisting of fused segments and termed the pygidium or caudal shield, which in some cases is as large as the hear-shicld itsclf, in other cases much maller. When the pygidium is large and compoeed of many segments, the number of free body segments is correspondingly reduced, and vice versa. It is with respect to this number of egegments that respectively constitute the pygidium and the midregion of the body that Trilobiles differ most markedly from each other: and it is a singular fact that the extremes in structural organization in this particular to be rice with in the Trilnbita are found side, by side in strata of Cambrian age. In Paradoxides, for example, there are about twenty freely movable segments followed by a very short and small pygidium, whereas in Agnostus the frecly movable segments are reduced to two and the pygidium is as large as the cephalic shicld. In this genus the number of segments composing the pygidium is obscured, as also it is in the genus Illaenus, which has as many as ten movable segments preceding the large semi-circular pygidium; but in such forms as Ogygia and Asapkus. which have about eight free segments, the eutural lines on ihe pygidium indicate that it is comprosed of about a dozen or more segments. Somewhat rescmbling Agnostus is Microdiscus, with lour movable segnents and a large pygidium consisting of about five fused segments, the lines of union between the latter being clearly indicated.

The tergal and pleural elements of the pygidium are penerally well marked. They are also well marked on the cephalic shield the tergal elements being represented by a median axial elevated area showing indistinct signs of segmentaition, and a lateral unsegmented plate, the gena, which carries the eyen. The posterolateral angles of the gena are commonly produced into spinilorm processes, which may project backwards beyond the middie of the body as in Paradorides, or considerably beyond its posterior termination as in Trinucleus or Ampyx. The latter is further remarkable for having the median area of the head-shield, the fabellum, produced into an anteriorly directed spike.

For many years only the dorsal surface of Trilobites was known, motbing having been ascertained of the ventral surface and appen:dages Comparatively recently. however, sperimens have been obrained with the ventral surlace exposed, revealing the number and etructure of the limbs. A pair of the latter was articulated to the sides of a moderately wide dorsal plate on each segment of the body, and similar limbs were attached to the ventral surface of the head-shield behind the mouth. Each of these limbs was twobranched, the external branch consisting of a slender fringed flagellum possibly respiratory in function, and the inner of a normal jointed ambulatory leg. These two branches arose from a common basal angment or coxa, the inner surface of which was produced into a strong process underiying the external area In the region of the mouth the basal segments were armed with reeth and subserved the purpose of mastication As in all Arachnida there is only a single pair of appendages in front of the mouth. and these were onebranched. long and filiform and acted as antennae. Under the pygidium or caudal shield the appendages were much shortened, and their main branch consisted of broader and flatter segments than those of the preceding limbs

Surb was tbe atructure of the appendages in Trilobites belonging to the genus Triarthrus; but considering the great structural difterences that obtain between Triarikrus and many other genera, it would be rash to assume that there were not corresponding differ. ences in the structure of the himbs It must not indeed be assumed that those of the first pair were in all cases antenniform,
It is probable that no saluslactory classification of the Trilobites will be proposed until the limbs of most of the genera have been examined. Up to the present time all attempts to arrange the genera in natural and definable groups have fauled to meet with general approval; and this criticism must be extended to Beecher's subdivision of the class into three orders, named Hypoparia, Proparia and Opisthoparin, based upon the form and position of a groove, the so-called genal suture. which marks the lateral portion of the head-thield. In the majority of Trilohites this groove passes backwards from the anterior or anterolateral edge of this plate to its posterior or postero-lateral border. dividing it into an inner portion continuous with the flabellum and fused iergal regions, and an outcr portion bearing the cye. Those genera, Jike

Paradoxidas, Olemus, Asaphus, Phillipsia and others, in which this groove cuts the posterior edge of the head-shield on the inner side of its angle are referred to the Opisthoparia; those, like Dalmastites and Phacops, in which it cuts the lateral border in front of the ponerior angle, belong to the Proparia. But in oertain genern, like Conocoryphe, Calymmene and Triarthrus, it cuts the margio of the head-shicid so close to the posterior angle that the distinction between the two groups practically breaks down. To the Hypoparia belongs a comparatively small number of genera, like Trinucleus and Aqmastus, in which this groove or genal euture is beneath the margin of the bead-shield and does not appear upon its upper surface.

In external form Trilobites are not unlike Isopod Crustaceans, especially the terrestrial species commonly called "woodlice", and until the nature of their appendages was known, it was thought by some authorities that the two groups might be related. Like the woodlice they were capable of rolling themselves up into a ball, many specimens having been found fossilized in this state, with the pygidium pressed tightly against the head-shield. There is very little doubt that they lived at the bottom of the sea, feeding upon worms or other soft marine organisms, crawling slowly about the sandy or muddy bottom and burying themselves beneath its surface when danger threatened. That these animals were widely distributed in former times is proved by their occurrence at the present day in palaeosoic fossillferous strata both of the northern hemisphere and of Australia; and desplte the fact that their remains have not been found in rocks of the Mesozoic or Kainozoic epochs, it was conceived to be possible that living specimens might be dredged from the sea-foor during the exploration of the ocean depths undertaken by the "Challenger "expedition. Needless to say this faint hope was not borne out by results.
(R. I. P.)

TRIM, a market town and the county town of Co. Meath, Ireland, on the upper waters of the Boyne, \(30 \mathrm{~m} . \mathrm{N} . \mathrm{W}\). by W. from Dublin on a hranch of the Midland Great Western railway. Pop. (1901), 1513 . The county buildings are bere; monthly fairs are beld, and there is considerable trade in corn and flour: but the chief interest of the town lies in its historical associations and remains, enhanced by a beautiful situation. It was the seat of a very early bishopric. A Norman tower, called the Yellow Steeple, is supposed to mark the site of St Patrick's Abbey of St Mary. Two gates remain from the old town walls. King John's Cestle (incorrectly so called, as this monarch only resided here on the occasion of a visit) was originally founded by Hugh de Lacy in 1173, but a later date is assignable to the greater part of the magnificent moated building, of which the kecp, flanking turrets, drawbridge, portcullis and barbican, still testify to its former strength, which was augmented by its frontage to the river. Other smaller fortified buildings are Talbot's and Scurlogstown Casiles; the former erected by Sir John Talbot, lord lieutenant of Ireland in 1415 -afterwards eard of Shrewsbury, the latter dating from 1180 . About a mile east of the town, the ruins of the abbey of St Peter and St Paul occupy both banks of the river. These include the transitionalNorman cathedral on the north bank, and a castle. guarding the crossing of the river, on the south, together with a chapel and ot her remains. Nort hof the town ruins may be seen of a Dominican friary of the ith century. The tower of the old parish church dates from t449. In the annals of Trim many famous names have a place. Humphrey of Gloucester and Henty of Lancester were imprisoned here by Richard II before Henry came to the throne; and Richard, duke of York. and father of Edward IV held court at the castle, where also several Irish parliaments met until the middle of the rgth century, and a mint was established in 1469 . The residence in a house in Dublingate Street of the famous duke of Wellington is commemorated by a Corinthian column and statue. Trim is governed by an urban district council. It was incorporated by Fdward III, and returned two members to the Irish parliament until the Union in 1800 .

TRIMMER, JOSHOA (3905-1857), English geologist, was born at North Cray in Kent, on the irth of July 1795 . He was son of Joshoa Kirby Trimmer of Brentford, and grandson
of Mrs Sarah Trimmer (1741-1810), authoress of the Story of the Robins (1786). At the age of nineteen he was sent to North Wales to manage a copper-mine for his father, subsequently be was placed in charge of a farm in Middlesex, where he acquired a knowledge of and an interest in soils: in 1825 he became manager (for his father) of slate quarries near Bangor and Carnarvon, and in this district he remained for many years. He discovered the marine shells in the drift of Moel Tryfaen. During the years \(1850-1854\) he was engaged on the Geological Survey, and surveyed parts of the New Forest in Hampshirc. He died in London on the \(\mathbf{1 6 t h}\) of September 1857.

He published menoirs on the Origin of the Soils which cover the Chalk of Kent, On the Geology of Norfalk, as Illuslrating the Laws of the Distribution of Soils (1847); and Proposals for a Ceological Surrey, specially directed to Agricultural Objects (1850); in this respect he was a pioneer in agricultural geotogy He was author also of a useful work Praclical Geolagy and Mineralogy (ı8it). Obituary by J. E. Portock, in QuarL Journ. Geol. Soc. (1858).

TRIMONTIUM, the name of a Roman fort at Newstead, near Melrose, Scotland, close under the three Eildon Hills (whence the name trium monlum). It was an advanced post of the Romans towards Scolland both about 80 a.d. and aiter, and again (after an interval of evacuation) from about A.D. \(140-180\). Excavations during the last four years have yielded finds of almost unique importance. These include the foundations of several successive forts, one above the other, which throw mucb light on the character of the Roman military post; an unparalleled collection of Roman armour, including ornate helmets, and a good series of coins and datable pottery. The whole illustrate the history of the Roman army and that of Roman Scolland very remarkably and to an extent equalled by no Scottish site as yet explored.
See the report published for the Society of Antiquaries of Scotland by the exca vator Mr James Curle.
(F. J. H.)

TRINCOMALEE, a town and former naval station on the north-east coast of Ceylon, 100 m . N.E. by N. of Kandy. Pop. (1901), 11,295. It is built on the north side of the bay of Trincomalee, on the neck of a bold peninsula separating the inner from the outer harbour. There is a lighthouse on the extremity of Foul Point at the southern side of the bay, and another on the summit of Round Island. The inner harbour is landlocked, with a safe anchorage and deep water close to the principal wharves; the outer harbour has an arca of about 4 sq. m . with a depth of about 70 fathoms. With its magnificent harbour-one of the five or six greatest natural harbours in the world-it used to be the headquarters of the admiral commanding on the East Indian station, with a garrison of infantry and British artillery. The breadth of the streets and esplanades somewhat atones for the mean appearance of the houses, but the town generally has a gloomy and impoverished aspect. Pcarl oysters are found it the lagoon of Tambalagan to the west of the bay. A steamer from Colombo calls weekly with and for passengers and cargo. Average annual rainfall, \(62 \frac{3}{4}\) in average temperature, \(8 \mathbf{1} \cdot 2^{\circ} \mathrm{F}\). Some tobacco, rice, and palm int grown in the district.
Attention was directed to the importance of Trincomalee as at naval base in \(\mathbf{1 8 n 6}\), when a commission of officers recommended its being turned into a modern fortress. The work was commenced in 1898 and finished in 1904. All the batterics were rebuilt and fitted with modern appliances. The whole arca was connected with cable and telephone communication, and armed with the latest type of guns; and the fort ress was supposed to be impregnable; but in the following year the station was abandoned, the naval yard closed, and the military garrisoa withdrawn. A man-of-war is still kept in Trincomalee Harbour, to work the defences.

The town was one of the first settlements of the Tamil rare in Ceylon, who at a very early period erected on a height at the extremity of the peninsula, now crowned by Fort Frederich, a temple dedicated to Konatha, or Konasir, named the "temple of a thousand columns." The building was desecrated and estroyed in 1622 , when the town wastaken by the P'ortuguese, who made use of the materials for the crection of the fort. The
town was successively beld by the Dutch (i639), the French (1673), the Dutch (1674), the French (1782), and the Dutch (1783). After a siege of three weeks it surrendered to tho Bratish flent in 1795, and with other Dutch possessions in Ceyion was formally ceded to Great Bxitain by the Treaty of Amiens in 1802.

TRING, a market town in the Watford parliamentary division of Hertfordshire, England. \(31 \frac{1}{2} \mathrm{~m}\). N.W. by W. from London by the London and North Western railway. Pop. of urban district (1901), 4349. It lies on the western slope of the Chiltern Hills, close to the entrance to a narrow valley which pierces them, and forms one of the highways through them to London, carrying the railway, the Grand Junction Canal, and a main road. The church of St Peter and St Paul shows fine Perpendicular work, especially in the ornate interior of the nave. Industries include straw-plaiting and the weaving of canvas and silk. The Rothschild Museum, erected in 1889 , contains an extensive natural history collection. Living wild animals are also kept in a neighbouring paddock and cages. The road which passes through Tring and along the face of the hills represents the ancient Icknield Way, and there may have been a Romano-British village on the site of Tring.

TRINIDAD, the most southerly and, with the exception of Jamaica, the largest of the British West Indian Islands. Pop. (1901), 236,397 . It is situated 6 m . E. of the const of Venezuela, between \(10^{\circ} 3^{\prime}\) and \(10^{\circ} 50^{\prime} \mathrm{N}\). and \(60^{\circ} 39^{\prime}\) and \(62^{\circ} \mathrm{W}\). Its average length is 48 m ., its breadth \(\mathbf{3 5} \mathrm{m}\). and its area 1754 sq. m. In shape it is almost square, but it throws off two peninsulas westward from its north and south corners. Corozal Point projecting from its nonth-western and Icacos Point from its south-western extremity enclose the Gull of Paria. To the west of Corozal Point lie several islands, of which Chacachacare, Huevos Monos and Monos Gaspar Grande are the most important. The surlace is level or undulating, excepting in the north and south where there are ranges of hills, with eastern and western axes, prolongations of the Venezuelan coast ranges. Of these the northern is the more elevated ridge, its highest point being Tucuche Pcak (3100 ft .). The southern hills attain an elevation of 600 ft . A small ridge runs east to west by south through the centre of the island, from Manzanilla Point to San Fernando, having an isolated clevation in Mt Tamana (1028). The hills of the northern and southern ranges are furrowed by innumerable ravines, and are clad to their summits with dense forests. There are numerous small streams, none navigable, and all flowing either east or west.
In its geology, as well as in its flora and fauna Trinidad differs little from the mainland, with which it was probably at one time connecied. There are four mincral springs and several mud volcanoes, hut the two most striking naturalicalurcs are the Mararas Falls, and the Pitch Lake. The Maracas Falls are situated at the head of a valley of the same name, to the north cast of Port of Spain, where the river leaps in a foaming torrent over a sheer wall of rock 312 ft . high. The Piuch Lake lies some 38 m . by water south east of the capital, in the ward of La Brca. It is circular in form, about 3 m . in circumference, and 104 arres in extent. Underground forces acting on the pitch cause it to rise in unequal masses, which are rounded of like huge mushrooms, separated from one another by narrow fissures, in which the rainwater collects and forms pools Near the centre of the lake the pitch is always solt and can be observed bubbling up in a liquid state. When the sun is hot the lightest footiall leaves an impression and the pitchemits an unpleasant odour. The soil of the surrounding district is charged with asphalt. but is very ferile. while the road to the neighbouring port of La Brea, running on a bed of asphalt, moves slowly towards the sea like a glacier The lake is worked by a company which exports the asphalt to the United States; paying royaley to the local government on every ton exported.
The mountain range which runs along the north coast is formed of clay-slates. micaceous and talcose schists, and crystalline and compact limestoncs, constituting the group called the Caribbean series, the age of which is unknown. The rest of the island is composed of Cretaccous. Tertiary and Quanernary strata. The Cretaceous beds rise to the surface in the centre and are flanked to north and south by the later deposits. Owing to the rarity of satisfactory sections the relations of the various divisions of the Tertiary formation are still somewhat obscure: but they are grouped by J. B. Harrison into (1) Nariva and Sin Ferna ndo beds, = Eocene
and OF ocene; (a) Naparima marls wiocene and (3) Moruga eries - Pfiocene and Pleistocene. The Naparima marts consist of a Lower division containing Clotigerina and an upper division with Radolaria and diatoms and are clearly of deep-sea origin. The biturnen of the Pliocene and Pleistocene deposits appears to have been formed by the decomposition of vegetable matter. Salses or mud volcanoes occur upon the island, but there is no evidence of true volcanic action in Tertiary or recent times, except the presence of occasional bands of pumiceous earth in some of the Tertiary deposits, and the pumioe in these cases was probably derived from a dintance.

The presence of oil in large guantities in Trinidad had been suspected for many years, and early in the 20 h century the govern. ment undertook a geological survey to determine the probabilities of an industry. This survey revealed the presence of a series of anticlines at payable depthe in the southern division of the island and experimental borings by three companies at La Brea and Point Fortin in the south-west and Guayaguayare in the south-east proved the presence of oil in large quantities. In \(19 t 0\) the commercial exploitation of Trinishad oif was being tapidly pushed forward.
The soil of the island is exceedingly rich, and well adapted to the growth of tropical products, especially of sugar and cocoa, which are its staples. The planting of new lands is rapidly progressing, the greater part of the unsold crown lands (various blocks of which have been formed into forest or water reserves) being covered with foresta, containing a valuable supply of timber. Poisonous and medicinal herbs grow everywhere. Owing to the varicty of its resources, Trinidad has suffered less Irom general depression than the other islands in the British West Indies. It exports cocon, wigar, rum, molasses, coffee, tobacco, coco-nuts, fruit, timber, dye moods, balata gum, india-rubber and asphalt. Large quantitiea of toaga-beans, the produce of the mainland, are cured in bond at Port of Spain. The manufacture of bitters (Angostura and others) is an important industry, as is also the raising of stock. In addition Trinidad has a large carrying trade with the neighbouring republics, and rivals St Thomas (q.s.) as a centre of distribution for British and American merchandise through the West Indies and Venezuela.

Lying in the tract of the trade winds and being practically a part of the mainland. Trinidad is immune from the vicissitudes of climate to which the other Antilles are exposed. It is never visited by hurricanes and its seasons are regular, wet from May to January, with a short dry seasoo in October known as the Indian summer and lasting usuaily about four weeks, and dry from end of January to middie of May. The average annual rainfall is 66.26 in. and the mean teraperature is \(78-6^{\circ} \mathrm{F}\). A volunteer force was established in 1879. and now consiste of infantry, garrison artillery and three oompanics of Light Horse stationed in Port of Spain, San Fernaado and Se Joseph. Elementary education is piven chiefly in the grate-aided cchools of the different denominations, but there are a number of entirely secular achools managed by the government. The Presbyterian schools are conducted by a Canadian mission. Instruction is free, but in some few schools lecs are paid. Agriculture is a compulsory subject in all the primary schools. Higher education is provided by the Queen's Royal College, a eecular institution, to which the Presbyterian Naparima Colkge and the Roman Catholic St Mary's College are affilited. Attached to these colleges are four echolarships of the annual value of \(f 150\) for four years, tenable at any British university. The religious bodies, both Christian and pagan are exceedingly numerous. The Roman Catholics (with an archbishop at Port of Spain) and the Anglicans, With the bishop of Trinidad at their head, are the more powerful bodies. Of the inhabitents of the island, one-third are East Indians. Immigration from India is conducted under government control, and the prosperity of Trinidad is largely due to the contract labour obrained under this nystem. Of the rest the upper classes are creoles of British, French and Spanigh blood, while the lower classea are of pure or maixed negro origin, with a few Chinese. English is spoken in the towns and in some of the country districts but in the north and generally in the cocoa-growing arcas a French palois prevails, and in several districts Spanish is still in use. English moncy is legal tender, as also is the United States gold currency. Aocounts are kept in dollars by the geoeral public, but in sterling by the government. There is a complete system of main and local roads constructed or under construction; there are about 90 m . of railways. and practically all the towns of any size can be reached from Part of Spain by rail. Steamers ply daily bet ween Port of Spain and the islands at the northern entrance to the Gulf of Paria and between San Fernando (the southern terminus of the railway) and the south-western ports of the island, while two steamers of the Royal Mail Company under contract connect Port of Spain with the other parts of Trinidad and Tobago. Port of Spain is also in direct conmunication with Southampton.

The colony (Trinidad and Tobago) is administered by a governor assisted hy an executive council and a legislative council of twenty members of whom ten are officials sitting by virtue of office and ten are unofficials nominated by the Crown. Port of Spain, the capital, is situated on the west coast on the shores of the Gulf of Paria. It is considered one
of the finest towns in the West Indies, its streets are regular and well shaded, its water supply abundant, and an excellent service of tramways connects the various quarters of the town. It has two cathedrals, a fine block of public buildings containing the principal government departments, the courts of justice and the legislative council chamber, many other large government buildings, a public library, and many good shops, while one of its most beautiful features is its botanical garden, in which the residence of the governor is situated. The harbour is an open roadstead, safe and sheltered, but so shallow that large ships have to lie at anchor half a mile from the jetties. It is, nevertheless, the place of shipment not only for the produce of the entire island but also for that of the Orinoco region. The population is about 55,000 . The other towns are San Fernando (pop. 7613), also on the Gulf of Paria, about 30 m , south of the capital; and Arima (pop. 4076), an inland town 16 m . by rail east of Port of Spain.

Trinidad was discovered by Columbus in 1496. It remained in Spanish possession (although its then capital, San Jose do Oruna, was burned hy Sir Walter Raleigh in 1595) until 1797, when a British expedition from Martinique caused its capitulation. It was finally ceded to Great Britain by the Treaty of Amiens in 1802.

See F. Eversley, The Trinidod Revietoer (London, 1900): Stark's Cuide-book and History of Trinidad (London); the Journal of the Royal Colonial Institule, passim: and lor geology, G. P. Wall and I. C. Sawkins, Report on the Ceology of Trinidad (London. 1860): J. B. Harrison and A. J. Jukes-Browne, "The Oceanic Deposita of Trinidad " (British West Indies), Quart. Journ. Geal. Soc. (London, 1899), iv. 177-189: R. J. L. Guppy. "Tbe Growth of Trinidad." Trans. Canadran Inst. (1905), viil. 137-149, with plate. The last paper gives a list of all the more important works and papers on the geology of the island.

TRINIDAD, an uninhabited island in the South Atlantic, \(680 \mathrm{~m} . \mathrm{E}\). of the coast of Espirito Santo, Brazil, in \(20^{\circ} 30^{\prime} \mathrm{S}\). \(39^{\circ} 30^{\prime} \mathrm{W},, 4 \mathrm{~m}\). long by 2 broad. It is of valcanic formation, and has springs of fresh water. As a possible coaling and telegrapb station in mid-ocean, it formed a subject of contention between Brazil and Great Britain in 1895. The dispute was settled in favour of Brazil, which claimed on the ground of its discovery by Tristan da Cunha early in the toth century, while Great Britain relied on its occupation by the astronomer Halley in the name of England in the year 1700 . About 30 m . cast are the three islets of Martin Vaz so named from the Portuguese mariner who discovered them about 1510 .

TRIMIDAD, a city and the county-seat of Las Animas county, Colorado, U.S.A., in the south part of the state, about 100 m . S. of Pueblo. Pop. (1800) 5523; (1900) 5345 (659 foreign-born); (1910) 10,204. Trinidad is served by the Denver \& Rio Grande, the Colorado \& Southern, the Colorado \& Wyoming, and the Atchison, Topekz \& Santa Fe railways and by electric railways to the neighbouring coal-mining towns. The city is regularly laid out on a hilly site, on both sides of the Purgatory (or Las Animas) river, near a picturesque canyon and mountain district, including the Stonewall Valley, and at the foot of the Raton Mountains, of which the highest peak, Fisher's (or Raton) Peak (9586 ft.), is \(x 0 \mathrm{~m}\). south of Trinidad. The city has a Camegie library, a Federal huilding, an opera house, an amusement park, and the San Rafael hospital, under the charge of the Sisters of Charity. A steam heating plant pipes heat to many shops, offices and residences. Trinidad is in a coal and coke and stock-raising region, and alfalfa, frijole and sugar beets are produced in large quantities in the surrounding region, much of which is irrigated. Dry farming has been successfully carried on at an experiment farm, established in \(1906,12 \mathrm{~mm}\). north of the city. Trinidad has railway shops, foundry and machine shops, and coking ovens, ships large quantities of coal, has a woolscouring mill, and various manufaciures. The municipality owns and operates the waterworks. Trinidad was incorporated as a town in 1876, and in 1879 became a city of the second class.

TRINIDAD, a town near the southern coast of Cuba, in Santa Clara Province, about 45 m . south-east of Cienfuegos, and 3 m . from its seaport, Casilda, which lies due south.

Pop. (1907), 11,r97. There is a small local railway, not connected (in 1909) with the central trunk line of the island. The city lies on the slope of La Vigia hill (900 ft .) amid higher mountains, and on the banks of the Jayoba (San Juan) river. The streets are narrow, broken and tortuous, and the general aspect of the town is medieval. There are some attractive huildings and a very fine market square. The fine scenery in the neighbourhood, and the climate, which is possibly the healthiest in Cuba, make the place a favourite resort for natives and foreigners. Casilda (pop. in 1907, 1246) has a landlocked, shallow harbour; but Masio Bay, a trifie farther distant, accommodates larger craft; and there are excelleat deep-water anchorages among the quays off the coast. The Manati river is navigahle for about 7 m . inland, and is used as an outlet for sugar and molasses crops. These and honey are the chief exports; tobacco and various vegetables and fruits are of minor importance. Trinidad is one of the seven original cities of Cuba established by Diego Velasquez. It was founded in 1514 on the coast, but after being attacked hy pirates was removed inland. It was thrice sacked by English buccaneersin 1642, 1654 and 1702 ; and in the following years, up to and for a time after the peace of Utrecht (1713), it maintained ships and soldiers. Indecd, throughout the first half of the 18th century it was on a continuous war footing against English corsairs, making reprisals on British ships and thriving at the same time on a large contrahand trade with Jamaica and other forcign colonies. In 1818 Casilda was opened to legal commerce under the national and forcign flags.

TRINITARIANS, a religious order founded in 1 rog by St John of Matha and St Felix of Valois, for the liheration of Christian prisoners and slaves from captivity under the Moors and Saracens. The two founders went to Rome and there obtained the approbation of Innocent III., 1198. The rule was the Augustinian, supplemented by regulations of an austere character. The habit was white, with a red and blue cross on the breast. The Trinitarians arc canons regular, but in England they were often spoken of as friars. The first monastery and head house of the order was at Cerfroy ncar Soissons. Among the earliest recruits were some Englishmen, and the first to \(g o\) on the special mission of the order were two Englishmen, who in 1200 went to Morocco and returned thence to France with 186 liberated Christian captives. This success excited great enthusiasm and led to the diffusion of the order all over Western Christendom. At the beginning of the 18th century there were still 250 houses, and it is stated that there had been 800; this, however, includes 43 in England, where Dugdale says he could find traces only of a dozen: so that the high figures are probably apocryphal. The first house in England was at Mottenden, in Kent, founded in 1214. The ordinary method of freeing captives was by paying their ransom and for this purpose vast sums of money were collected by the Trinitarians; but they were called upon, if other means failed, to offer themselves in exchange for Christian captives. Many thousands were liberated by their efforts. In the 17th century a reform called the Barefooted Trinitarians was initiated, which became a distinct order and is the only one that survives. There are now less than 500 members. Their headquarters are at San Crisogono in Rome. They devote themselves to the ransoming of negro slaves, especially children, and agreat district in Somaliland has been slnce 1904 entrusted to them as a field for missionary work. Tbere were Trinitarian nuns and a Third Order.
The chief modern book on the Trinitarians is Deslandres, L'Ordre frangais des Trinitaires (2 vols. 1903). Sufficient information will be found in Helyot, Histoire des ondres religienx (1714), vol. ii. chs. 45-50; and in Max Heimhucher, Orden u. Kongregalionen (1007), ii. \(\$ 57\).
(E. C. B.)

TRIMITY HOUSE, CORPORATION OF, an association of English mariners which originally had its headquarters at Deptford in Kent. In its first charter, received from Henry VIII. in 1514 , it was described as the "guild or fraternity of the most glorious and undividahe Trimity of St Clement." The first
master appointed was the founder of the corporation, Sir Thomas Spert, comptroller of the navy to the king, and commander of the "Harry Grace de Dieu." Deptiord having been made a royal dockyard by Henry VIII., and being the station where outgoing ships were supplied with pilots, the corporation rapidly developed its influence and usefulness. By Henry VILI. it was entrusted with the direction of the new naval dockyard. From Elizabeth, who conferred on it a grant of arms in 1573 , it received authority to erect beacons and other marks for the guidance of navigators along the coasts of England. In 1604 a select class, was constituted called Elder Brethren, the other members being called Younger Brethren. By the charter of 1609 the sole management of affairs was conferred on the Elder Brethren; the Younger Brethren, however, having a vote in the election of master and wardens. The practical duties of the fraternity are discharged by the acting Elder Brethren, 13 in number, of whom 2 are elected from the royal navy and It from the merchant service; but as a mark of honour persons of rank and eminence are admitted as honorary Elder Brethren. In 1647 the corporation was dissolved by parliament, but it was reconstructed in 1660 , and the charter was renewed hy James IL. in 1685. In 1687 a by-law of the Trinity House for the first time required an agreement in writing between the master and crew of a ship. A new hall and almshouses were erected at Deptford in 1765 ; but for some time the offices of the corporation had been transferred to London, where for a while they had a house in Water Lane, Lower Thames Street, and in 1705 their headquarters were removed to Trinity House, Tower Hill, huilt from the designs of Samuel Wyatt. By an act of 1836 they received powers to purchase from the Crown, as well as from private proprictors, all interests in coast lights. For the maintenance of lights, buoys, \&c., they had power to raise money by tolls, the surplus being devoted to the relicf of old and indigent mariners or their near relatives. In 8853 the control of the funds collected by the corporation was transferred to the board of trade, and the money over which the brethren were allowed independent control was ultimately reduced to the private income derived' from funded and trust property. Their practical dutics in erection and maintenance of lighthouses, buoys and beacons remain as important as ever. Similar functions are carried out by the Northern Lighthouse Board and the Irish LIghthouse Board, for Scotland and Ireland respectively. They have also the care and supervision of pilots. Other Trinity Houses established under charter or act of parliament for the appointment and control of pilots are at Hull and Newcastle. The Elder Brethren of Trinity Masters also act as nautical assessors in the high court of admiralty. The corporation has a large wharf and repair shop at the mouth of the river Lea, where most of the work in connexion with buoying the Thames is. carricd out.

Sce W. H. Mayo, Trinity House, London, Past and Present (London, 1905); C. R. B. Barrelt, The Trinily House of Deplford Sirond (1893).

TRINITY SUNDAY, the Sunday next after Whitsunday. A festival in honour of the Trinity had been celebrated locally at various dates before Pope John XXIL in 1334 ordered ils general observance on the octave of Whitsunday. According to Gervase of Canterhury, it had been introduced into England hy Thomas Becket, archbishop of Canterbury, in 1162. It has, however, never been reckoned among the great festivals of the Church. From Trinity Sunday onwards all Sundays until the close of the ecclesiastical year are reckoned as "after Trinity." In the Roman Church these Sundays are also reckoned as "after Pentecosl." In the latter case they are described as dominicue trinitatis, not to be confused with dominicae post trinitatis; e.g. Dominica sexta post trintitatis is the same as Dominica septime trinilatis.

TRINODA NECESSITAS, the name used by modern historians to describe the threefold obligation of serving in the host (/yrd), repairing and constructing bridges (bryc-geveorc), and the conatruction and maintenance of fortresses (burhbol), to
which all freeholders were subject in Anglo-Sazon times. The obligations are usually mentioned in charters as the sole excepcions to grants of immunities; sometimes, however, a fourth obligation (siagulare praelimet contra alism) is reserved, as in the charter granted by Wiglaf of Mercia on the 28th of December 831 (Cod. dip. i. 294). Ceolwulf's charter of 822 to Archbishop Wilfed is remarkable, as the military service is there restricted to expeditiones contra puganos ostes (ibid. l. 272). The threefold obligation is first mentioned in a Latin charter (expeditione pontis arcisue constructione) of doubtful authenticity, which prolesses to have been granted by Eadbald of Kent in A.D. 616 (Cod. dip. v. 2), but it is not until the 81h century that lt appears in documents which are generally admitted to be genuine. Athough there were corresponding obligations in the Frankish Empire which were called by Charles the Bald (antiquam et aliarum gentime consuetudinom), Stubbs held that the arguments which refer them to a Roman origin want both congruity and continuity.

The phrase " trinoda necessitas " is not to be found in the AngloSaxon laws and charters; and Selden was probably the first historian of eminence who used it. "These three exceptions," he says, "are noted by the term of a three-knotted necessity in an old charter wherein King Cedwalla granted to Willrid, the first hishop of Shelsey in Sussex, the village of Paganham." This charter is an IIth-eentury copy of a lost original, bul the words to which Silden referred are plainly written as trimoda necessitas not trinoda necessilas. Du Cange gives two examples of the word trimoda in medieval Latin, in which language it meant " triple"; bul he cites no modieval crample of trinoda; and in classical Latin the form is unknown. while trinodis (ler-nodus. "triple-knotted") occurs only rarely (Ovid. Her. iv. 115: Fast, i. 575).

Soe Du Cange, Cionsarium: W. Stubbs. The Constitutional History of England, i. 86. 87 ; J. M. Kemble. Codex anglo-saxonicus. passim: Selden, English Janus (London, i682), p. 43; Walter de Gray Birch, Carnilarium saxonicum, passim: Facsimiles of Ancient Charters in the British Museum, pt. iv. Cotton MS Auguseus, ii. 86 .
(G. J. T.)

TRINOVALTES (commonly Trinobantes), a powerful British tribe about 50 E.c.-A.D. 50 dwelling north and north-east of London, rivals and neighbours of the Catuvellauni. When Caesar lavaded Britain 54 b.c. they joined him against their docestic rivals and it is possible (though not certain) that half a century after Caesar's departure they succumbed to them. Certainly they were conquered by Rome in A.D. 43 and joined in Boadicea's revoli in 61. In the tribal division of Roman Britain given by Ptolemy their land included Camulodunum (Colchester), but not hing more is known of them. But their name plays a part in medieval legends and romances. There it was interpreted as Troy Novant, the " new Troy," and connected with the names of the Trojans Brutus and Corineus who were reputed to have given their names to Britain and Cornwall.
(F. J. H.)

ThiOLET, one of the fixed forms of verse Invented in medieval France, and preserved in the practice of many modern literatures. It consists of eight short Ines on two rhymes, arranged abaa a \(h a b\), and in French mually begins on the masculine shyme. The first line reappears as the fourth line, and the seventh and eighth Innes repeat the opening couplet; the first line, therefore, is repeated throe times, and hence the name. No more typical specimen of the triolet could be found than the following, by Jacques Ranchin (c. 1690):-

> "Le premier jour du mois de mai Fut ke plus heureux de ma vie: Le beau dengein que je formais Le premior jour du mois de mai le vous vis et je vous aimais Si ce dessein vous plut, Syivie. Ke premier jour du mois de mal. Fut le plus heureux de ma vie."

This poem was styled hy Menage "the king of triolets." The great art of the triolet consists in using the refrain-line with such naturalness and ease that it should seem inevitable. and get in each repetition alightly altering its meaning. or at least its relation to the rest of the poem. The trioket seems to have been invented in the \(13^{\text {th }}\) century. The earliest example known occurs in the Cliomadets of Adenez-le-Roi
(125-1297). The medieval triolet was usually written in lines of ten syllables, and the lightness of touch in the modern specimens was unknown to these perfectly serious examples. One of the best-known is that of Froissart, "Mon cocur s'ebat en odorant is rose." The rules are laid down in the Ant et Science de Rhelhorique (1493) of Henry de Croi, who quotes a triolet written in words of one syllable. According to Sarrasin, who introduces the triolet as a mourner in his Powpe funèbre de Voilure, it was that writer who "remis en vogue" the ancient precise forms of verse, "par ses balades, ses triolets et ses rondeaux, qui par sa mort (1648) retournaient dans leur ancien decri." Boileau threw scorn upon the delicate art of these pieces, and mocked the memory of Clement Marot because he "tourna des triolets," but Marmontel recognized the neatness and charm of the form. They continued to be written in France, but not by poets of much pretension, until the middle of the 19th century, when there was a great revival of their use.

The earliest triolets in English are those of a devotional nature composed in 165 by Patrick Carey, a Benedictine monk at Douai, where he probahly had become acquainted with what Voiture had made a fashionable French pastime. In modern times, the triolet was re-introduced into English by Robert Bridges, in 1873 , with his-

> " When first we met, we did not guess That Love would prove so hard a master: Of more than common riiendliness When first we met we did not guess. Who could forcetll the sore distress. This irretrievable disaster
> When first we met?-we did not guest
> That Love would prove so hard a master."

Since then the triolet has been cultivated very widely in English, most successfully by Austin Dobson, whose "Rose kissed me to-day," "I intended an Ode" and "In the School of Coquettes " are masterpieces of ingenuity and easy grace. In later French literature, triolets are innumerable; perhaps the most graceful rycle of them is "Les Prunes," attached by Alphonse Daudet to his Les Amourcuses in 1858; and there are delightful examples by Theodore de Banville. In Germany the triolet has attracted much attention. Those which had been wrilten before his day were collected by Friedrich Rassmann, in 1815 and \(\mathbf{8 1 7}\). But as early as \(\mathbf{1 7 9 5}\) an anthology of triolets had been published at Halberstade, and another at Brunswick in 1796. Rassmann distinguished three species of triolet, the legitimate form (which has been described above), the loose triolet, which only approximately abides by the rules as to number of rhymes and lines, and singlestrophe poems which more or less arcidentally approach the true triolet in character. The true triolet was employed by W. Schlegel, Hagedorn, Rtickert, Platen and other romantic poets of the eariy roth century. In many languages the triolet has come into very frequent use to give point and brightness to a bricf stroke of satire; the French newspapers are full of examples of this. The triolet always, or at least since medieval times, has laboured under a suspicion of frivolity, and Rivarol, in 1788, found no more cutling thing to say of Conjon de Bayeux than that he was "si recherche pour le triolet." But in the hands of a genuine poet who desires to record and to repeat a mood of graceful reveric or pathetic humour, the triole(possesses a very delicate charm.
See Friedrich Rassmann, Sammonng triolettischer Spiede (Leipzig.
s8i7).
TRIPHENYLMETHANE, \(\left(\mathrm{C}_{4} \mathrm{H}_{3}\right)_{2} \mathrm{CH}\), a hydrocarbon, important as heing the parent substance of several series of exceedingly valuable dyestuffs, e.f. rosanilines and mafachite greens derived from aminotriphenylmet hanes, and aurins and phthaleins derived from oxytriphenytmethanes. It is oblained by condensing benzal chloride with mercory diphenyl (Kekule and Franchimont. Ber., 8872. 5. p. 907): from benzal chloride or benzotrichloride and zine dust or aluminium chloride; from chforoform or carhon tetrachloride and benzene in the presence of aluminium ehloride; and deamidating di - and tri-aminotriphenylmetbane
with nitrous acid and alcohol (O. and E. Fischer, Antt., 1881, 206, p. 152). The last reaction is most important, for it established the connexion between this hydrocarbon and the rosanilines. Triphenylmethane is a white crystalline solid, melting at \(92^{\circ}\) and boiling at \(35^{\circ}\). It separates from benzene and thiophene with one molecule of the "solvent of crystallization." On oxidation it gives triphenylcarbinol, \(\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)_{3} \mathrm{C} \cdot \mathrm{OH}\), and reduction with hydriodic acid and red phosphorus gives benzene and toluene. It combines with potassium to give \(\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)_{3} \mathrm{CK}_{\text {, }}\) which with carbon dioxjde gives potassium triphenylacetate, \(\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C} \mathrm{CO}_{2} \mathrm{~K}\). Fuming nitric acid gives a paratrinitro substitution derivative which on reduction gives paraleucaniline; the salt of the carbinol formed on oxidizing this substance is the valuable dye rosaniline.

Considerable interest is attached to the remarkable series of hydrocarbons obtained by Gomlerg (Ber., 1900, 33. p. 3150, et seq.) by acting on triphenylmethanc chloride (from triphenylmethane carbinol and phosphorus pentachloride, or from carbon tetra. chloride and benzene in the presence of aluminium chloride) and its homologues with zinc, silver or mercury. Triphenylmethane chloride yiclds triphenylmethyl: ditolylphenylmethyl and tritolylmethyl have also been prepared. They behave as unsaturated compounds, combining with oxygen to form peroxides and with the halogens to form triarymethane halides. Triphenylmethyl also combines with ethers and esters, but the compounds so formed are unsaturated. In the solid state triphenyl is colourless, crystaltine and bimolecular. It was thought that it might be identical with hexaphenylethane, but the supposed synthesis of this substance by Ullmann and Borsum (Ber., 1902, 35, p. 2877) appeared to disprove this, although it showed that triphenylmethyl readily isomerized into their product, under the influence of catalysts. A.E. Tschitschibabin (Ber., 1908, 41, p. 2421), however, has shown that Ullmann and Borsums preparation was para-benzhydroltetraphenylmethane \(\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{8} \mathrm{CH} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \cdot \mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{3}\right)_{3}\) : and the view that solid triphenylnethyl is hexaphenylethane has much in its favour. Another remarkable fact is that these substances yield coloured solutions in organic solvents; triphenylmethyl gives a yellow solution, whilst ditolylphenyl and tritolymethyls give orange solutions which on warming turn to a violet and to a magenta, the changes being reversed on cooling. Several views have been published to explain thes fact. A surmmary is given by Tschitschibabin (Journ. prok. Chem., 1907 (ii.), 74. p. 340). It appears probable that the solutions contain a quinonoid modification (see Gomberg and Cone, Ann., 1909, 370, p. 142).
TRIPOD (Gr. tpítoos, Lat. tripus), in classical antiquities, any "thrce-footed" utensil or articie of furniture. The name is specially applied to the following: (1) A seat or table with three legs. (2) A stand for loolding the caldron used for boiling water or cooking meat; when caldron and stand were made in one piece, the name was given to the complete apparat us. (3) A sacrificial tripod, or altar, the most famous of which was the Delphic tripod, on which the Pythian priestess took her seat to deliver the oracles of the god, the seat being formed by a circular slab on the top, on which a branch of laurel was deposited when it was unoccupied by the priestess. Another well-known tripod was the " Platacan," made from a tenth part of the spoils taken from the Persian army after the battle of Plataca. This consisted of a golden basin, supported by a bronze serpent with three heads (or three serpents intertwined), with a list of the states that had taken part in the war inscribed on the coils of the serpent. The golden bowl was carried off by the Phocians during the Sacred War; the stand was removed by the emperor Constantlne to Constantinople, where it is still to be seen In the Atmeidan (hippodrome), but in a damaged condition, the heads of the serpents having disappeared. The inscription, however. has been almost entirely restored (see Frazer on Pausanias, v. 299 seq.). Such tripods were wisually of bronze and had three "ears" (rings which served ats mandles). They also frequertiy had a central upright as support in addition to the three legs. Tripods are frequently mentioned in Homer as prizes it. athletic games and as complimentary gifts, and in later tin:ts, highly decorated and bearing inscriptions, they served the sanit purpose. They were also used as delicatory offerings to the inds, and in the dramatic contests at the Dionysia the victoriotis choreges (a wealthy cirizen who bore the expense of equiping and training the chorus) received a crown and a trivnd, which
marble structure erected in the form of a small circular temple in a street in Athens, called the "street of tripods," from the large number of memorials of this kind. One of these, the " monument of Lysicrates," erected by him to commemorate his victory in a dramatic contest in 335 B.c. is still in existence (see Frazer, ii. 207).

See C. O. Müller. De tripode delphico (1820); F. Wieseler, Weber den delphischen Dreifuss (1871); E. Reisch, Griechische Weibfeschenke (1890) and his article "Dreifuss" in Pauly-Wissowa, Realencyclopadie der classischen Allentumswassenschaft, v. pt. 2 (1905).

TRIPOLI, a Turkish vilayet (regency) of North Airica, It is bounded \(N\). by the Mediterrancan (between \(11^{\circ} 40^{\prime}\) and \(25^{\circ} 12^{\prime}\) E.) and has a coast-line of over 1100 m . Tripoli comprises at least five distinct regions-Tripoli proper, the Barca plateau (Cyrenaica), the Aujila oases, Fezzan (q.v.) and the oases of Chadames and Ghat-which with the intervening sandy and stony wastes occupy the space between Tunisia and Egypt, extend from the Miediterranean southwards to the Tropic of Cancer, and have a coilective area of about 400,000 sq. m., with a population estimated at from 800,000 to \(3,300,000\). Towards the south and east the frontiers are undefined. But on the west side the conventional line laid down by agreement with France in 1886 was more accurately determined in t892, when the terminal point on the Mediterranean was shifted from Borj-el-Biban to Ras Ajir, 18 m . to the south-east, in \(33^{\circ} 12^{\prime} \mathrm{N} .11^{\circ} 40^{\prime} \mathrm{E}\). From this point the line passes along the Wad Magla and across the Erg (sand) dunes in such a way as to leave Chadames to Turkey. In consequence of frontier collisions the boundary as far as Ghadames was precisely defined in 1910. South of that point the rival claims of France and Turkey remained in dispute.

For some distance east of Tunisia the seaboard is low and sandy, and is often regarded as a part of the Sahara, which. however, begins only some 80 m . farther south, beyond the Jebels Nefusi, Yefren and Ghurian Phyakal' (Gharian). The "Jebel," as this system is locally called, terminates east wards in the Tarhona heights of the Homs (Khoms) coast district, has a mean altitude of about 2000 ft . and culminates in the Takut (Tekuk) volcano (2800 ft.) nearly due south of the capital. It is not a truc mountain range, but rather the steep scarp of the Saharan plateau, which encloses southwards the Jefara coast plains, and probably represents the original coast-line. The Ghurian section is scored in places by the beds of intermittent coast streams, and on its bower slopes is clothed with a rich suh-tropical vegetation. South of these escarpments, the vast Hammada el-Homra, the "Red Hammada," an interminable stony table-land covering some \(40,000 \mathrm{sq}\). m ., occupies the whole space between Tripoli proper and the Fezzan depression. The now uninhabited and waterless Hammada formerly drained through several large rivers, such as the Wadis Targelat (Uani, Kseia), Terrgurt, Sofejin, Zemzem and Bel, north-eastwards to the Gulf of Sidra (Syytis major). Southwards the table-land is skirted by the Jebel Welad Hassan, the Jebel es-Suda, the Jebel Morai.Yeh, and other detached ranges, which bave a normal west to east trend in the direction of the Aujila oases, rising a litule above the level of the plateau, but falling precipitously towards Fezzan. The Jcbel es-Suda (Black Mountains), most conspicuous of these ranges, with a mean altitude of 2800 ft ., takes its name from the blackened aspect of its limestone and sandstone rocks, which have been subjected to volcanic action, giving them the appearance of hasalt. Eastwards this range ramifies into the two crescent-shaped chains of the Haruj el-Aswad and Haraj cl-Abiad ("Black" and "White" Haraj), which rise some 700 ft . above the Red Hammada, and enclose an extensive Cretaceous plateau. Rocks of Cretaceous age cover, indeed, an immense area of the northern part of the vilayet, recent eruptive rocks being represented by the lavas and ashes of the craters of Takut and Manterus. The later palaeozoic formations occur in Fezzan.
Beyond the barren Ghadama district in the north of the Hammada the dreary aspect of the wilderness is braken by
several tracts under grass, corn and date-palms, and containing some permanent reservoirs in the beds of the Wadis Sofejin and Zemzem, where the plateau falls from a mean height of \(3000 \cdot \mathrm{ft}\). to 1000 and 530 ft . respectively. But it again rises rapidly southwards to a somewhat uniform level of 1600 or 1700 ft., and here the main caravan roate from Tripoli to Murzuk and Lake Chad traverses for a distance of fully 130 m . a monotonous region of sandstone, underlying clays, marls, gypsum and fossiliferous silicious deposits. In its northern section this part of the Hammada, as it is locally called in 2 pre-eminent sense, is relieved by 2 few patches of herbage, scrub and brushwood, with a little water left in the rocky cavities by the heavy showers which occasionally fall.
Northeastwards the Neddik pass over the Jebel Morai-Yeh leads down to the remarkable chaia of low-lying oases, which, The A-fit from the chijef member of the group, is commonly calied the Aujila depression. Collectively the oases is enclowed on the north side by the southern escarpments of the Barca platean, expands at intervals into patches of perennial verdure and shallow saline basins, and extends from the Wadi e-Fareg, vear the Gulf of Sidra, through the Bir Rassam, Aujila, Jalo, Faredgha, and Siwa oases, to the Natron lakes and the dried-up branch of the Nile delta known as the Bahr bila-Ma (waterless river). The whole region presents the aspect of a silted-up marine iniet, which perhape in Pliocene times penetrated some 300 m , south east: wards in the direction of the Nile. Nearly all the fossil shells found in its sands belong to the fauna now living in the Mediterranean, and Sjwa is 98 ft . below sea-level. This is true also of its eastern extensions, Sittra (80) and the Birket el-Kerun in the Fayum (141). But Aujila and Jalo stand 130 and 296 ft . respectively above sealevel, so that the idea entertained by the explorer Gerhard Rohils of transforming the chain of oases into a marine gulf, and thus ofraverting the Barca plateau into an island or peninsula in the midst of the Mediterranean waters, and in fact fooding the Libyan desert, must uhare the fate of Colonel Francois Roudaire's equally visionary chbeme in respect of the Western Sahara.
The Barca plateau, which consists largely of strata of tertiary tormation, falls in terraces down to the Aujila depression, and The Bera presents an unbroken rampart of steep cliffs towards pheverar of the vilayet. Its many natural advantages of climate, soil and vegetation led to the establishment of several Greek colonies, the oldeat and most famous of which was that of Cyrene (q.v.), dating from about 630 p.C. From this place the whole region took the zarme of Cyrenaica (g.v.) and was also known as Pentopolis, from ike "five citien" of Cyrene, Apollonia, Arkinoe, Berenice and Barca. The elevated plateau of Cyrenaica, which encloses the Guff of Sidraon the west, is separated couthwards by the Aujila depression from the Libyan desert, and projecte northwards far into the Mediterraneant, might seem, hike the Atlas region in the weat, to belong geologically rather to the European than to the African mainland. It has a mean altitude of considerably over 2000 ft ., and in the Jebel Akhdar (Green Mountains) attains a height of nearly 3500 ft . Enstwards the Barca uplands merge gradually in the leas elevated Marmarica plateau, which nowhere rises more than 1800 ft. above mer-level, and disappears altogether in the direction of the Nite delta. The most casterly spot on the coast belonging to Tripoli is the head of the Gull of Soium; from this point the frontier line eeperating the regency from the Egyptian dominions runs couth to as to leave the Siwa oessis on the Egyptlan side of the line.
South of the Aujila depression the land rises steadily to a beight of mearly 1200 feet in the \(K\) ufra oases, which lie between \(21^{\circ}\) and \(2{ }^{\circ}{ }^{\circ}\) E, The treve The group consists of Cancer and due east of Fezzan. Onoelt the Libyan desert-Taizerbo Zigber, Bu-Zeima, Erbena and Kebabo which extend for a distance of 200 m . northwext and sonth-east, and have a collective area of 7000 sq . m. and a population of 6000 or 7000 Ar bo-Berber nomado. Good wrater is obpomed in a bundance from the underground reservoirs, which lie within a few feet of the surface, and support over a million date-palma. Kufras that io "Infidels" (ia reference to the now extinct pagan Tibu aboriginet), is a centre of the Senussite brotherhood, whose surye (convent) at Jor, in Kebabo, ranks in importance with that of Jarabub. their chied otation in Cyrenaica. This circummantance, topether with the great fertility of the group and its position midway on the caravan route between Cyrenaica and Wada, imparts excepon the caravan route between Cyrenaica and wada, imparts excepcise authority in Kufra, the influence of the Senussi being paramount. Kufra, moreover, is outside the limits usually assigned to Tripoli. But in 1910 Ottoman troops were in occupation of the oases
Ghat stands 2400 feet above the sea, on the Wadi Aghelad in che Igharghar bacin, and consequentiy belonss, not to the Fezzan owel depression, but to the Saharan plateau. The Aghelad, or eat foot of the Ta \({ }^{\text {an }}\) il platea, that is, the divide between the waters
which formerty flowed north to the Mediterranean, west to the Atlantic, and wouth to the Niger and Chad basins. Ghat, which is skirted eastwards by the Akakus range, is a sandy plain dotted over with clumps or groves of date-palms. In the centre is an open space where is held a great annual hair, and to this, combined with its position on one of the caravan routes acrose the desert, the oasis owes all its importance. For several years, at the end of the \(19 t h\) and begianing of the 20th centuries, the only caravan route ased from the Niger countries to Tripoli was by way of Gbat, disturbances in Bormu and raids by Tuareg having closed all other routea There is in the coasis, a population of pertape 10,000 , nearly all Ihajenen Tuareg, about hall of whom tive in the town of Ghat (350 m . wouth of Ghadames and 250 south-west of Murzuk), which appears to be a relatively modern place, succetwor to Rapsy, a great commercial centriand military station under the Roman Empire.
Ghodames, on the contrary, is ancient being the Cydamus of the Garamantes, the capture of which by L. Cornelius Balbus Minor led to the overthrow of their empire. The oasis, which stands on the cretaceous Tinghert platean 300 mm . south-west of Tripoli, and 1200 ft. above the sea, is enclosed by a circular rampart over 3 ma . in circumference. The town, which occupies the mouth-west corner of the enclosure, has a population of about 7000 . Owing to its perennial springs and artesian wclls, the oasis yields anabundance of dates, figs, apricots and vegetables, besides some wheat, barley and millet. It occupies a highly advantageous position at the converging-point of several caravan routes and has extensive trading relations with the markets of Tripoli, Tunisia and the Sudan.
Climate.-The elimate of Tripoli is very variable; cold nights often surceed warm days. The rainfall in the northern regions varies from 5 in . to \(15 \mathrm{in} .\mathrm{a} \mathrm{year-December}\), the rainy season. The mean temperature on the coast lands is \(68^{\circ}\); it is very much higher in the Hammada, where rain seldom falls.
Plora and Founc.- The fiora in the greater part of the regency is Saharan, the date-palm being the characteristic tree. The gumyielding acacia, the tamarisk, sapan, mastic and pistachio are found in the wadis, and ski (wormwood) grows in clusters on the stony plateaus. Ia the Barca plateau and in parts of the coast belt the flora is more varied, resembling that of the Mediterrancan countries generally. In these regions the laurel, myrtle and other evergreens are fainly common, and the oak, cypress, pine, carob and other trees occur, notably the olive, found also in the oases. Other fruit trees are the almond, fig, pomegranate, quince and apricot. Vines flourish in a few districta.
The larger wild animals are scercely represented in Tripoli. The wild bour is found in Jebel Alchdar, the hyena, fox and jackal in the deserts. The mouflon, gazelle. hares, rabbits and marmots are among the commoner animals. Reptiles include the horned viper and the gecko. The characteristic animal is the camel, found only in the domenticated state. Horses and cattie are bred, but the horses are not numeroua; goats and a fat-tailed variety of abeep are kept in large numbers. Birds include the ostrich, vultures, hoopoes, wood pigeons and doves. Bees are numerous and honey forms an article of export.
The explorations of Heari Duveyrier, Vietor Largeau, Erwin von Bary and H.S. Cowper during the second half of the 19th century showed that Tripoli was not only inhahited lababs by primitive man, but was the seat of a flourishing ciatu Neolithic culture, comparable to and in many respects resembling that of Iberia, Brittany and the British Isles. As in other parts of Mauretania, many now arid and uninhabitable wastes are strewn with monolithic and other remains, which occur in great variety of form and in vast numbers, as many as 10,000, chiefly of the menhir type, having been enumerated in the Mcjana steppe alone. All kinds of megalithic structures are found-dolmens and circles like Stonehenge, cairns, underground cells excavated in the live rock, barrows topped with huge slabs, cap stones, mounds in the form of step pyramids, and sacrificial altars. Most remarkable are the "Senams," or trilithons of the Jebel Msid and other districts, some still standing, some in ruins, the purpose of which has not been determined. They occur either singly or in rows, and consist of two square uprights so (t. high standing on a common pedestal and supporting a huge transverse beam. In the Terrgurt valley "there had been originally no less than eighteen or twenty megalithic trilithons, in a line, each with its masive altar placed before it " (Cowper). There is reason to believe that the builders of these prehistoric monuments are represented hy the Berber people, who still form the substratum, and in some places the hulk, of the inhabitants of Tripoli proper. But even here the Berbers have for the most part been driven to the Ghurian and Tarhona uplands by the Arab nomads, who now occupy the Jefara flats
about the capital, and are in armost exclusive possession of Cyrenaica, Marmarica, and the Aujila oases. In Fezzan the Saharan Berbers (Tinylkum Tuareg) are dominant, hut are here largely intermingled with Negro or Negroid intruders from the Sudan. But even in the uplands many of the Berbers have been Arabized, and Cowper describes the people of the Tarbona heights as "pure-bred Arabs." Other early intruders are the Jews, some of whom arrived from Egypt in the time of the Ptolemies, and still lead the life of troglodytes in the limeatone caves of the Ghurian escarpments. They are also numerous in the large towns, where there are also colonies of Turks, and Maltese, Italian, Cretan and other South European traders and artisans.
On the other hand, no trace can be now detected either of the Greeks who colonized Cyrenaica in the 7 th century b.c., ntpoll atad or of the Phoenicians who at a still earlier date oftor Towne. tended the three great cities of Oea, Sabrala and projecting seas Magna (g.v.), from which the western region of Tripolitana. Later, when Oea, which stood between the two others, was made the capital of the province lt was called Tripolis, the "Three Cities," as it were, rolled into one, and this name it has retained since Roman times, being now distinguisbed from the Tripolis of Syria as West Tripolis, the Tarabulus ed-Charb of the Turks and Arabs. Tripoli (q...), the capital of the province, is thus one of the oldest places in the world, and no doubt owes ita stability in large measure to its position over against Sicily at the northern terminus of three great historic caravan routes, one of which runs due soutb to Lake Chad through Fezzan and Bilma, that is, across the narrowest part of the Sahara; anotber runs south-west through Ghadames and Ghat to Timbuktu and Kano, and the third south by east through Sokna to Wadai and Darfur. East of Tripoli are the small seaports of Homs (Khoms) and Lebda.
In Barca the largest town is Bengazi (q.r.), the ancient Berenice, at the southern extremity of a headland which formerly enclosed a spacious natural haven on the north-east side of the Gulf of Sidra. But the harbour has been partly filled up by the ruins of 2 large fortress, and is inaccessible to vessels drawing over 6 or 7 ft . East of Bengazi are Merj, the ancient Barca (q.0.), and the exposed roadstead of Derna (q.v.). Marsa-Susa, the ancient Apollonia, lies under the Ras Sem headland, and was the emporium of the neighbouring city of Cyrene (Ain Shahat-Grenna). The Turkish government displayed much activity in this fertile and healthy district in the period \(1897-\) 1903. To it were removed many of the Moslem inhabitants of Crete dissatisfied with the autonomous rtgime established in that island in 1898.

Agricalluse and Trade.-Tripoli proper is purely an agricultural and trading country; it posecses no manufactures of importance. nor exploited mineral wealth save salt. The uncertainty of the rainfall, the apparent increasing poverty of the soil and the heavy taxation of the peasants reduced agricult ure at the close of the igth century to a iower point than theretofore recorded. The cultivation of wheat was largely supplanted by that of bariey-the staple food of the peanantry. whilst esparto grass, a fibre growing wild in the rural districts within the cercal sone, acquired the chiel place among local exports. The importation of soreign flour, begun in 188 I , asculmed targe dimensions in providing for the deficiencies occasioned by ever-recurring failures of the wheat and barley harvests. Besides Wheat and barley the principal products of the councry are esperto grase, olives, eaffron, fige and dates-these last being perhaps the finest in North Africa. Fruit also is abundant in certain parta, including oranges and lemons, and to are many kinds of vegetables. There is a lucrative sponge fishery, a monopoly of Greek traderi, over 100 barques being engaged in the industry.

Trade, before the suppression of the oversea slave traffic, was largely in negroes, brought across the Sahara with other Sudan produce, for the Turkish market. It now consists chiefly in the export of esparto, barley in years of plenty, eggs, cattle, sponges, mats and henna, all articles of local production, and, from Ceniral Africa, ivory, ostrich feathers, tanned goat-skins and a little gold dust. The cattle go mainly to Malta, the erparto. barley, eges and ivory mostly to England, the feathers to Paris and London. and the kkins to New York. The henna and mats are sent to Turkey,
the success or failure of the cereal cropa; thus in toos the value of barley exported was \(\{70,800\), and of esparto \(\{76,400\). In 1904 the exports of barley lell to 83,200 and those of esparto rove to (126,000. From Bengaxi hundreds of thousands of sheep are exported to Egypt, Malta and Crete. With Egypt there is an overland as well as gea trade. The caravan trade, which in the forty years ending 1901 had an annual average value of \(£ 114.000\), is so costly that only articles yielding considerable profit can be carried: the desert trade is, moreover, being deflected to the Niger and the Guinea coast. Tripoli imports, chiefly, food-atuffe (flour. rice, sugar tea) cotton goods, tobacco, metals and hardware About two-thirds of the imports are from Great Britain. Exclusive of Bengazi the value of trade, imports and exports combined, was for the last thirty years of the 19 th century some \(677^{0,000}\) per annum. The trade of Bengazi and Derna, chicfly with Great Britain and Malta, largely increaned at the beginning of the zoth century. For the five years 1902-1906 the average annual vaiue of imports was £2 14,000, of exports \(\mathbf{1 4 5 5}, 700\). From these ports the chief exports are sheep and goats, oxen, wool and akins, barley and camely-the last sent overland to Alexandria. Food-stuffs, tea, olive oil and cotton goods are the chicf imports. There is an active contraband trade with Greece and Malta in firearms and gunpowder.

Barley is the chief food of the people both in Tripoli proper and in Bengazi. The nomad Arabs possess thousands of camels, cattle and sheep. They weave rough wooilen garmenss, make reed matting, carpets of alternative strips of woven goat and woven camel hair and manufacture butter. Olive and date-palm trees are cultivated in large numbers. Tea has become a favourite beverage both in the regency and with the Sudanese. Tca, sugar and cottons form the staple articles of exchange with the Sudanese for their produce.
Communications.-The town of Tripoli is connected by telegraph cabie with Malta, and telegraph lines run inland from that town to Murzuk, Bengazi, Derna and other towns in the regency, and to Gabes in Tunisia. A wireiess telegraphic apparatus connects Derna and Rhodes. There are regular sailings between Malta and Tripoli and between Tunis and Tripoli. Italian vessels also call regularly at Bengazi and Derna. The shipping trade is mostly in the hands of Italians-who have more than half the total tonnage-and French, British shipping coming third. Inland communication is almost entirely by camet caravana.
Administration. - The vali or governor-general, who exercises chief authority both civil and military, is appointed by tbe sultan of Turkey and holds office at his majenty's pleasure. The syatem of government, executive and judicial, resembies that of other Turkish provinces, but with some modifications in the direction of local autonomy. Bengazi or Barca is a separate sub-province with an administration responsible direct to Constantinople. Revenue is derived chiefly from customs, tithes and a poll tax called werghi. Owing to expenditure on the army, some 10,000 Turkish treops being stationed in the regency, the receipts from revenue are generally below the cost of administration. The receipts in the period \(1900-\) 1905 averaged about i \(^{150,000 ~ a ~ y e a r ~ a n d ~ t h e ~ e x p e n d i t u r e ~} £ 170,000\), of which amount some (100,000 was on military requiremente.

History.-The early history of Cyrenaica and Tripoli is distinct though similar. Cyrenaica was first colonized by Greeks, afterwards it fell under the sway of the Piolemies and from them passed to the Romans (see Cyrenaica). Tripoli, on the other hand, was originally a Phoenician colony (vide ante, Towns). Later it was dependent on Carthage and followed its fortunes. From the Romans the province received its present name. In the sth century both Tripoli and Cyrenaica were conquered by the Vandals, whose power was destroyed by the Byzantine general Belisarius in the following century. In the middle of the 7th century the whole country was overrun by the Arabs, and Christianity gave place to Islam. From this period, for many centuries, Tripoli was subject to the successive rulers of Tunisia. It was pillaged in 1146 by the Normans of Sicily. In 1321 the Beni Ammar established an independent dynasty, which lasted with an interval (1354-1369), during which two sovereigns of the Beni Mekkl reigned, until 1401 when Tripoli was reconquered by the Tunisians. In 1510 Ferdinand the Catholic of Spain took Tripoli, and in 1528 it was given to the knights of St John, who were expelled in 1553 by the Turkish corsairs Dragut and Sinan. Dragut, who afterwards fell in Malta, lies buried in a much venerated \$ybbe close to one of the mosques. After his decease the connexion between Tripoli and Constantinople scems to have been considerably weakened. But the Tripolitan pirates soon hecame the terror and scourge of the Mediterranean; hall the states of Europe seem at one time or other to have sent their fieets to bombard the capital. In 1714 Ahmed Pasha Caramanli achieved practical independence and be and his descendants
governed Tripoll as a rogency, the clakns of the Porte being recognized by the payment of tribute, or "presents." In the early part of the igth cenlury the regency, owing to its pratical practices, was twice involved in war with the United States. In May \(\mathbf{x} 801\) the pasha demanded from America an increase in the tribute (\(\$ 83,000\)) which the government of that country had paid since 1796 for the protection of their commerce from piracy. The demand was refused and a naval force was sent from America to blockade Tripoli. The war dragged on for four years, the Americans in 1803 loaing the frigate "Philadelphia," the commander (Captain William Bainbridge) and the whole crew being made prisoners. The most picturesque incident in the war was the expedition underlaken by William Eaton (q.v.), with the object of replacing upon the Tripolitan throne an exiled pasha, elder brother of the reigning sovereign, who had promised to accode to all the wishes of the United States. Eaton at the head of a motley assembly of 500 men marched across the desert from Alexandria, and with the aid of American ships succeeded in capluring Derna. Soon afterwards (June 3, 1805) peace was concluded, the reigning pasha relinquishing his demands but receiving 860,000 (about \((12,000\)) as ransom for the "Philadelphia "prisoners. In 1815 , in consequence of further outrages, Captains Bainbridge and Stephen Decatur, at the head of an American squadron, again visited Tripoli and forced the pasha to comply with the demands of America. In 1835 the Turks took advantage of a civil war to reassert their direct authority, and since that date Tripoli has been an integral part of the Ottoman Empire, rebellions in 1842 and 1844 being unsurcessiful. After the occupation of Tunisia by the French (1881) the Turks increased their garrison in Tripoli considerably. After the Anglo-French agreement of 1889 recognizing the central Sahara as within the French sphere, various disputes arose as to the extent of the Tripolitan hinterland, which the French endeavoured to circumscribe (see Tunisin). The French, on their part, believed that their opponents in Wadai and elsewhere in the central Sudan received support from the Turks.
The khouan (ikhrodn) or semi-religious semi-political Moslem fraternities are powerful in Tripoli. The most remarkable is that of the Senussites. The explorers Rohlfs, Nachtigal and Duveyrier formd their passage barred by Senussite agents. (See Sentussi)
Authomings-Sir R. L. Playfair, Bibliography of the Barbary Slates, pl. i., "Tripoli and the Cytenaica" (London, 1892); H. M. de Mathuisiculx, A trapers la Tripolitaine (Paris, 1903): Sheik al Hachaichi, Voyge as pays des Semoussin a travers la Tripotilaise (Paris, r903): G. de Martino, Cirene a Cartagine (Bologna, 1908);入. Medana, il Vilayad di Tripoli di Barberia nell anne 1002 (Italian Foreign Office, Rome, 1904); G. Roblfs. Von Trpolis noch Alex. gxdrien (Bremen, 1871); and Kifra: Reiso won Iripolis mach der Oase Kufre (Leiptis, 1881); M. Bisson, La Tripalilaine at la Twoistic (Paris 1881): M. Fourmel, La Tripolicaine, Eic., (Paris, 1887); F. Borzari, Ceografia, 8ic. della Tripolitania, \&c. (Naplez, 1888); H. S. Cowper, The Hill of the Graces (London, 1897): "Notes on a lourney in Tripoli," Geographical Jowrnal (February, 1806): and J. Further Notes on the Tripoli Hill Range." Geographical fournal (June, 1897): P. V. de Regny, "~ La Tripolitania," in Le Ressequa cualiase for 1908; F. W. and H. W. Beechey, Proceedings of the Expedidion to Explore the Northern Coost of Africa from Tripoli Eastoards (London, 1828). Admiral W H. Smyth's Medilerranean. (London, 1854), contains a deacription of the coast. The Letters (London, 1819) of Richard Tully, consul at Tripoli from 1783 to 1793. throw a etrange and vivid light on Tripolitan life during the 1823. century. See also the British Foreign Office reports on the urade of Tripoli and Bengazi and consult the bibliography under Cynemaica.
(A.H.K. ; F.R.C.)

TRIPOLI (Tarabulus d-Gharb, i.e. Tripoli of the West), capital of the Turkish vilayet of Tripoli, North Africa, situated in \(32^{\circ} 53^{\prime} 40^{\circ} \mathrm{N}\). and \(13^{\circ}: 11^{\prime} 32^{\circ} \mathrm{E}\). on a promontory stretching out into the Mediterranean and forming a small crescent-shaped bay which shelters the harbour from the north winds. Its crenellated enceinte wall has the form of an irregular pentagon. A line of small ancient forts is supposed to protect one side of the harbour, and the citadel the other. This citadel. dating from the lime of the Spanish occupation. now serves as the residence of the governor. The harbour has a depth of water
varying from 15 to 24 ft ; steamers draving 22 It . can anchor inside, but shoals render the entry difficult. At the quayaide the depth of water is from 2 to 5 ft . oaly. The desert almost touches the western side of the city, while on the east is the verdant oasis of Meshia, where are still to he seen the sombs of the Caramanlian sultanas and the twelve-domed \&ubbe of Sidi Hamonda. The aspect of the city is picturesque; the houses (many possessing benutiful gardens) rise in terraces from the seashore. The Turkish quarter contains mumerous mosques whose minarets and cupolas break the monotony of the flat-roofed and whitewashed houses. The Grand mosque and the Pasha mosque (originally a church built by the Spaniards) both have octagonal minarets. By the harbour are several houses built in European style, but the general aspect of the city is Oriental. Many of the streets are arcaded; the swks or markets are the scene of much animation. Near the port stands a Roman trumphal arch. This arch, quadrifrontal in form, is made entirely of white marble, the blocks being heid together with cramps, and is richly emhellished with sculpture. It was begun in the reign of the emperor Antoninus, according to a atill unmutilated dedicatory mescription, and finished in that of Marcus Aurelius. In the arch, now partly buried in débris, a cabaret has been installed.
A few small manufactures of carpets and silks as well as "Cordova leather " are carried on, but Tripoli is ementially a trading town, being the chief Mediterranean gateway to the Sahara. The population, about 60,000 , is very mixedBerber, Arab, Turk, Jew, Maltese, Italian and Negro. The Maitese inhabitants number about 4000 , the Italians 1000 and the Jews 8000 . The local trade is almost entirely in the hands of the Jews and Maltese; the shipping in the port is largely Italisn.
See H. M. de Mathuisleulx, A traprs la Tripolitaine (Paris, 1903).
TRIPOLI, or Tarabulus (anc. Tripolis), the chif town of a sanjak of the same name in the Beirut vilayet of Syria, situated about 2 m . inland from its port, al-Mina. The ancient Phoenician city, which we know only by its Greek name of Tripolis, was the seat in Persian times of the federal council of Sidon, Tyre and Aradus, each of which cities had ita separate quarter in the "triple town." In the mad and 1st centuries B.c., under Seleucid and Roman influences successively, it struck autonomous coins. These are succeeded by imperial coins ranging from 32 B.C. to A.D. 221. About 450 , and again in 550 , it was destroyed by earthquake. The Arabs took it in 638 after a prolonged siege, the inhabltants withdrawing by sea. Moaviya recruited the population by a colony of Jews and gave it fortifications and a garrison against the naval attacks of the Greeks, who, notwithstanding, retook it for a brief space in the time of Abdalmalik. It was again taken by the Greeks in the war of 960-69 and was besieged by Basil II. in 995. after which date it was held by a garrison in the pay of the Fatimite caliphs of Egypt, who treated the city with favour and maintained in it a trading fleet. At this time, according to the description of Nasir Khosrau, who visited it in 1047, it lay on the peninsula of Al-MIna, bathed on three sides by the sea, and had about 20,000 inhabitants and important industries of sugar and paper-making. Of the great sea-walls and towers there are still imposing remains. From this date till it was taken by the crusaders, after a five years' siege, in 1100 , the ruling family was that of "Ammar, which founded a library of over 100,000 volumes. Under the crusaders Tripoli continued to flourish, exported giass to Venice, and had 4000 looms. In 1289 it was taken and destroyed by the sultan Kola'un of Egypt, and a new city was begun on the present site, which rapidly rose to importance. Its medieval prosperity has obliterated most relics of remoter antiquity. Tripoli had a troubled existence during tbe period of Ottoman weakness (the 181 h and carly 19 th cent uries), being frequently in dispute between the pasha of Aleppo and the rebel pashas of Acre. After the Egyptian conquest of Syria it was made the capital of a province in 1834 ; but in 1840 it reverted to the minor posituon which it now bolds. It is connected by a
carriage road with Homs and by a steam tramway with Beirut, and is the natural outlet of the upper Orontes valley; but its inland trade has been greatly damaged by the Homs-Aleppo railway. From its own district, however, it exports silk, tobacco, oil, soap, sponges, eggs and fruit, and is a prosperous and growing place with a large Christian element in its population (about 30,000 , the port-town included). It is served regularly by the Levantine lines of steamers.
(D. G. H.)

TRIPOLITSA, officially Tripolis, a town of Greece, capital of the nomarchy of Arcadia, and the seat of an archbishop, situated in a plain over \(2,000 \mathrm{ft}\). above sea-level, 22 m . S.W. of Argos. The name has reference to the three ancient cities of Mantineia, Pallantium and Tegea, of which Tripolitsa is the modern representative. It does not stand on any ancient site. Before the war of independence it was the capital of the Morea and the seat of a pasha, with about 20,000 inhabitants; but in \(\mathbf{1 8 2 1}\) it was taken and sacked by the insurgents, and in 1825 its ruin was completed by Ibrahim Pasha. The town has since been rebuilt, and contains 10,789 inhabitants (1907).
TRIPTOLEMUS, in Greek mythology, the inventor of agriculture, first priest of Demeter, and founder of the Eleusinian mysteries. His name is probably connected with the "triple ploughing" (трis, по入єiv), recommended in Hesiod's Works and Days and celebrated at an annual festival. It may be noted that in some traditions he is called the son of Dysaules (possibly identical with diaulos, the " double furrow" traced by the ox), and that, according to the Latin poets (c.g. Virgil, Georgive, i. 19), he is the inventor of the plough. \({ }^{1}\) Later, as the god of ploughing, he is confounded with Osiris, and on a vase-painting at St Petershurg he is represented leaving Egypt in his dragon-drawn chariot on his journey round the world. According to the hest known Attic legend (Apollodorus, i. 5, 2) Triptolemus was the son of Celeus, king of Eleusis, and Metaneira. Demeter, during her search for her daughter Persephone, arrived at Eleusis in the form of an old woman. Here she was hospitably received by Celeus, and out of gratitude would have made his son Demophon immortal by anointing him with ambrosia and destroying his mortal parts hy fire; but Metaneira, happening to see what was going on, screamed out and disturbed the goddess. Demophon was burnt to death, and Demeter, to console his parents, took upon herself the care of Triptolemus, instructed him in everything connected with agriculture, and presented him with a wonderful chariot, in which he travelled all over the world, spreading the knowledge of the precious art and the blessings of civilization. In another account (Hyginus, Fab. 147) Triptolemus is the son of Eleusinus, and takes the place of Demophon in the above narrative. Celeus endeavoured to kill him on his return, hut Demeter intervened and forced him to surrender his country to Triptolemus, who named it Eleusis after his father and instituted the festival of Demeter called Thesmophoria. In the Homeric hymn to Demeter, Triptolemus is simply one of the nohles of Eleusis, who was instructed by the goddess in her rites and ceremonies. The Attic legend of Eleusis also represented him as one of the judges of the underworld. His adventures on his world-wide mission formed the subject of a play of the same name by Sophocles. In works of art Triptolemus appears mounted on a chariot (winged or drawn by dragons, symbols of the fruitfulness of the earth), with Demeter and Persephone handing him the implements of agriculture. His attributes were a sceptre of ears of corn, sometimes a drinking-cup, which is being filled by Demeter. His altar and threshing-lloor were shown on the Rarian plain near Eleusis, hence he is sometimes called the son of Rarus.

\footnotetext{
See the Homeric hymn to Demeter, 153. 474: Ovid. Metam. v. 642-661, Virgil. Georgirs. i. 19. and Servius ad Ioc.; Hyginus, Astronow. i. 14: Dion Halic. i. 12, Preller, Griechische Mythologie (4th ed., 1894).

TRIPTYCE (Gr. rpirruxer, three-fold, made in three layers, TP- Tpeis, tlerefi sruxth a fold; sriogev, to fold, douhle over),

}
a painting, carving or other decorative design, executed on three compartments or panels, so constructed that the two wings may fold on binges over the centre-piece; the hacks of the wing-pieces are often also painted, carved or otherwise decorated. The subject of the side-pieces are usually appropriate and subsidiary to that of the centre. The triptych is most frequently designed as an altar-piece. An earlier use of the term is for a set of three wooden or ivory writingtablets, hinged or otherwise fastened together, the central tablet being waxed on both sides for the impression of the stifus or writing implement, the outer tablets only on the inside. The three tablets thus formed a small book.

TRISECTRIX, a curve which is a variety of the limagon (q.v.) of Pascal, and named from its property of trisecting an angle. The polar equation is \(r=1+2 \cos \theta\) and the form of the curve is shown in the figure. To trisect an angle by means of this curve, déscribe a circle with centre \(O\) and radius \(O E\), and let the given angle which is to be trisected be hid off from OE and cut the circle at S; let the chord ES cut the tri-
 sectrix in J . Then OJ trisects the given angle.

TRISTAN, or Tristram, one of the most famous heroes of medieval romance. In the earlier versions of his story he is the son of Rivaltn, a prince of North West Britain, and Blancheflor, sister to King Mark of Cornwall. Rivalin is killed in battle, and Blanchefor, after giving birth to a son, dies of grief. The boy is brought up as his own hy Roald, or Rual, seneschal of the kingdom, who has him carefully trained in all chivalric and courtly arts. With the possible exception of Horn, Tristan is by far the most accomplished hero in the whole range of Enightly romance; a finished musician, linguist and chess-player, no one can rival him in more knightly arts, in horsemanship or fencing. He has, besides, the whole science of "venérie" at his finger-tips; in fact Tristan is the "Admirable Crichton" of medieval romance, there is nothing he cannot do, and that superlatively well-it must be regretfully admitted that he is also a most accomplished liar! Attracted by his gifts, pirates from the North Sea kidnap the boy, hut terrified by the storms which subsequently beset them, put bim ashore on the coast of Cornwall, whence he finds his way to the court of his uncle King Mark. Here we have a first proof of his talent for romancing; for alike to two pilgrims who show him the road and to the huntsmen of Mark's court (whom he instructs in the rightful method of cutting up and disposing the quarry). Tristan invents different, and most detailed, fictions of his land and parentage. He becomes a great favourite at court, and when Roald, who has sought his young lord far and wide, at last reaches Tintagel, Mark welcomes the revelation of Tristan's identity with joy. Cornwall is at this time in subjection to the king of Ireland, Gormond, and every third ycar must pay tribute; the Irish champion, Morolt, brother to the queen, arrives to claim his toll of thirty youths and as many maidens. The Cornish knights (who in Arthurian romance are always represented as hopeless cowards), dare not contest his claim but Tristan challenges him to single combat, siays him and frees Cornwall from tribute. Uniortunately he himself has been wounded in the fight, and that by a poisoned weapon; and none but the queen of Ireland, Isolt, or Iseult, possessed the secret of healing. Tristan causes himsell to be placed in a boat with his harp, and committed to the waves, which carry him to the shores of Ireland. There he gives himself out for a minstrel, Tantris, and as such is tended and healed hy Queen Iseult and her daughter of the same name. When recovered he makes a plausible excuse for leaving freland (pretending he has left a wife in his native land, and returns to Cornwall. His uncle receives him with joy, but the barons of the court are bitterly jealous and plot his destruction. They persuade Mark that be should marry, and Tristan, who has sung the praises of the princess 1 seule, is despatched to Ireland to demand her hand, a most dangerous errand, as Gormond, incensed at
the death of Morolt, has sworn to slay any Cornish knight who sets foot in Ireland. Tristan undertakes the mission, though he stipulates that he shall be accompanied by twenty of the barons, greatly to their disgust. His good fortunc, however, does not forsake him; be lands in Ireland just as a Gerce dragon is devastating the country, and the king has promised the hand of the princess to the slayer of the monster. Tristan achieves this feat, but, overcome by the venom exhaled from the dragon's tongue, which he has cut out, falls in a swoon. The seneschal of the court, a cowrard who has been watching for such an opportunity, cuts of the dragon's head, and, presenting it to the king, claims the reward, much to the dismay of Iseult and her mother. Suspecting that the seneschal is not really the slayer of the dragon, mother and daughter go secretly to the scene of the combat, find Tristan, whom they recognize as the minstrel, Tantris, and hring him back to the palace. They tend kim in secret, but one day, through the medium of a splinter from his sword, which had remained fixed in Morole's skuil, and been preserved by the queen, the identity of Tantris and Tristan is made clear. The princess would slay him, but is withheld by her mother, who sees they have need of Tristan's aid to unmask the seneschal. This is done in the presence of the court; Tristan is pardoned, formally declares his errand, and roceives the hand of Iseult for his uncle King Mart.

Tristan and Iseult set sail for Cornwall, Iseult accompanied by her waiting-woman, Brangaene (who, in some versions, is also a kinswoman), to whose care the queen, skilled in magic arts, confides a love-potion. This is intended to be drunk by king and queen on their bridal night and will ensure their undying love for each other. Unhappily, on the voyage, by some mistake (acoounted for in different ways), Tristan and Iseult drink the love drink, and are forthwith seized with a fital passion each for the other. From this moment begins a long-dramnout series of tricks and subterfuges, undertaken with the view of deceiving Mark, whose suspicions, excited by sumdry of his courtiers, from time to time get beyond his control, and are as often laid to rest hy some clever ruse on the part of his nephew, or his wifc, ably seconded by Brangaene. In the poems, Mark is, as a rule, represented in a favourable light, a geatic, kindiy man, deeply attached to both Tristan and Iscult, and only too ready to allow his suspicions to be dispelied by any plausible explanation they may choose to offer. At the same time the fact that the lovers are the helpless victims of the fatal force of a magic spell is lasisted upon, in order that their career of falsebood and deception may not deprive them of sympathy.

One episode, in especial, has been most charmingly treated by the poets. Mark, in one of his fits of jealousy, banishes Tristan and Iseult from the court; the two fly to the woods, where they lead an idyllic life, blissfully happy in cach other's company. Mark, bunting in the forest, comes upon them sleeping in a cave, and as Tristan, who knows that the king is in the neighbourhood, has placed his sword between them, is convinced of their innocence. Through a cleft in the rock a ray of light falls upon Iseult's face, Mark stops up the crevice with his glove (or with grass and fowers), and goes his way, determined to recall his wife and nephew. He does so, and the same drama of plot and counter-plot is resumed. Eventually Mark surprises the two under circumstances which leave no possible room for doubt as to their mutual relation; Tristan Giea for his life and takes refuge with Hoel, duke of Britanny. After some time, hearing nothing of Queen Iseult, and believing bimself forgoten, he weds the duke's daughter, Iseult of the white band, but weds her only in name, remaining otherwise faithful to Isealt of Ireland. Later on he returns to Cornwall in disguise, and has more than one interview with his mistress. Lltimately, while assisting bis brother-in-law in an intrigue with the wife of a neighbouring knight, Tristan is wounded py a poisoned arrow; unable to find healing, and being near to death, he sends a messenger to bring Queen Iseult to his nid; if ruccessful the ship which brings her is to have a white
sail, if she refuses to come, a black. Iseult of the white hand overhears this, and when the ship returns, bringing Iseult to her lover's aid, either through jealousy or by pure inadvertence (both versions are given), she tells Tristan that the sail is black, whereon, despairing of seeing his love again, the hero turns his face to the wall and dies. Iseult of Ireland lands to find the city in mourning for its lord; hastening to the hier, she lays herself down beside Tristan, and with one last embrace expires. (One dramatic version represents her as finding the wile seated by the bier, and ordering her away," Why sit ye there, ye who have slain him ? Arise, and begone !') The bodies are sent to Cornwall, and Mark, learning the truth, has a fair chapel erected and leys them in tombs, one at each side of the building, when a sapling springs from the heart of Tristan, and resching itt boughs across the chapel, makes its way into the grave of Iseult. However often the tree may be cut down it never fails to grow again. (In some versions it is respectively a vine and a rose which grow from either tomh and interiace midway.)

We need have litule wonder that this beautiful love-story was extremely popular throughout the middle agen. Medieval literature abounds in references to Tristan and Iseult, and their adventures were translated into many tongues and are found depicted in carvings and tapestries. Probably the story was first told in the form of short lais, each recounting some special episode, such as the lai known as the chewrefeuille; bow old these may be it is impossible to say. Professor Zimmer, in his examination of the story, sees reason to believe that the main incidents may repose on a genuine historic tradition, dating back to the gth or roth century, the period of Viking rule in Ireland. The name of Iseult's lather, Gormond, is distinctly Scandinavian; she, herself, is always noted for ber golden hair. and it is quite a misrendering of the tradition to speak of her as a dark-haired Irish princess. In the German tradition she is die likhle, Iseult of Britanny die schroarse Isolt; it is this latter who is the Celtic princess. The name Tristan is now generally admitted to be the equivalent of the Pictish Drostan, and on the whole, the story is now very generally allowed to be of insular, probably of British, origin.
Some time in the 12 th century the story was wrought into consecutive poems. The latest theory, championed with great skill by M. Bédier, is that there was one poem, and one only, at the root of the various versions preserved to us, and that that poem, composed in England, probably by an Anglo. Norman, was a work of such force and genius that it determined for all time the form of the Tristan story. The obvious objection to this view is that a work of such importance, composed at so comparatively late a date, is scarcely likely to have perished so completely as to leave no trace; if there were one poet held as an authority, the name of that poet would surely have been mentioned. Moreover the evidence of the author of the principal Tristan pocm preserved to us points. in another direction. This poet was an Anglo-Norman named Thomas; and, although little over 3000 lines of his poem bave been preserved, we have three translations; a German, by Gottfried von Strassburg; a Scandinavian, by a certain Brother Robert; and an English, by Thomas, sometimes identified with Thomas of Ercildoune, though this is doubtiul. With the help of the extant fragments and these translations we can form a very good idca of the character and content of Thomas's work, a task now rendered far more easy by M. Bedier's skilful reconstruction (cf. vol. i. of his edition of Thomas). It was certainly a work of great meril and charm. As authority Thomas ciles n certain Breri, who has now been idenulied with the Blcheris quoted as anthority for the Grail and Garain stories, and the Bledhcricus referred to by Giraldus Cambrensis as Jamosus ille fabwletor. This is what Thomas says:-
" Seignurs, cest cunte est mult divers,
E pur ço l'uni par mea vers
E di en tant cum est mester
E le surplus voil relesser.
Ne vol pas trop en uni dire!
Ici diverre la matyre.

Entre ceus qui solent cunter E del cunte Tristran parler, Il en cuntent diversement: Of en ai de plusur gent. Asex sai que chercun en dit E co quid unt mis en escrit, Mes sulun co que \(j^{\prime}\) ai ol Nel dient pas sulun Bréri Ky solt les gestes e les cuntes De tuz les reis, de ruz les cuntes, Ki orent este en Bretaingne."
(Thomas, i. 377).
These are not the words of a man who is following a complete and authoritative poem; judging from the context of the other references to Bleheris he was rather a collector and versifier of short episodic tales, and it seems far more natural to understand Thomas as having wrought into one complete and consecutive form the various poems with which the name of Bréri was astociated, than to hold that that, or a similar, work had already been achieved by another.
Thomas's work, fortunately, fell into the hands of a true poet in the person of Gottfried von Strassburg, whose Tristas und Isolde is, from a literary point of view, the gem of medieval German literature. Cottiried is a far greater master of style than Woliram von Eschenbach, and his treatment of some of the episodes, notably the sojourn in the woods, is most exquisite. He did not live to complete his poem, but happily he carried It up to the point where the original Iragments begin, so that we can judge very fairly what must have been the eflect of the whole, the style of the two poets being very similar. Inspiring as the Tristan story is, it seems improbable that it should have been handled, and that within a comparatively short period, by three writers of genius, and that of these three the first, and greatest, should have utterly disappeared I The translators of Thomas do not lail to quote him as their source, why then has no one quoted the original poct?

Besides the version of Thomas, we have a fragment by a certain Béroul, also an Anglo-Norman, and a German poem by Eilhart von Oberge, both of which derive from a common scurce. There also exists in two manuscripts a short poem, La Folie Tristan, relating how Tristan, disguised as a fool, visits the court of King Mark. This poem is valuable. as, presuming upon the sufficiency of his disguise, Tristan audaciously gives a resume of his feats and of his relations with Iscult, in this egrecing with the version of Thomas. The "Gerbert"continuation of the Perceoal contains the working over of one of two short Tristan poems, called by him the Luile Tristras; the latter part, probably a distinct poem, shows Tristan, in the disguise of a minstrel, visiting the court of Mark. Here the tradition is more in accordance with Beroul.
Besides the poems, we possess the prose Triston, an enormous compilation, akin to the prose Lancelot, where the original story, though still to be traced, is obscured by a mass of later Arthurian adventures. The interest here centres in the rivalry between Tristan and Lancelot, alike as knights and lovers, and in the later redaction, ascribed to Helie de Borron, the story is spun out to an interminable length.

Certain points of difference between the poetical and the prose versions should be noted. Tristan is here the son of Meliadus, king of Loonois; his father does not die, but is decoyed away hy an enchantress, and the mother, scerching for her husband, gives birth to her child in the forest and dics. Mcliadus marrics again, and the second wife, jealous of Tristan, tries to kill him. Mark has another nephew, Andret, who is Tristan's enemy throughout the romance. Mark himself is a cowardly, treacherous and vindictive character. Some of the carly printed editions follow the original version of Tristan's death, now found in one manuscript only (8.N. Io3), the majority represent him as having been stabbed in the back by Mark in the presence of the queen, as we find in Malory, who drew the larger portion of his compilation from the prose Tristan. It should be noted that Tristan is never more than superficially connected with Arthur, an occasional visitor at his court; though in its later form ranked among the

Arthurian romances, the Tristas is really an independent story, and does not form a part of the ordinary cyclic redaction.

The Italian prose text, La Travola ritonda differs from the French in adhering to the original version, and is classed by N . Bédier among the derivatives from Thomas. Like the story of Perceval that of Tristan has been made familiar to the present generation by Richard Wagner's nohle music drama, Tristan and Isolde, founded upon the poem of Cottiried von Strassburg; though, being a drama of feeling rather than of action, the story is reduced to its simple elements; the drinking \(n f\) the luve-potion, the passion of the lovers, their discovery by Mark and finally their deatb.
Bibliography.-Thomas, Roman de Tristan, ed. J. Bedier (2 vole, Socide des anciens kexks framgais, 1902, 1905); Béroul, Roman de Tristan (ed.E. Muret, same series, 1903); E. Kolbing, Die nordische wad die englische Version der Tristansapa (1877, 1883), pt: L., Tristrams Safo, pt. ii., Sir Tristrem. "La Folie Iristan "was publisher by F. Michel in his Tristam (1835), a collection of all the extant fragments of Tristan poems; "Tristan Menestrel" from the Perceral, ed. 1. L. Wcston and I. Bedier (Romania, vol. xxxv., Oct. 1906). Cotefried': Tristan und Isolde has been several times published; the bext editions are those of Bechstein (1890) and Golther (1889); modern German versions by Kurz, Simrock and Hertz; English prose rendering: J. L. Weston, 2 vols. (Arfhyriam Romances, No. ii.). Cf. also Piquet, L'Originatite de Gottfried de Strassburg (1905). Eilhart von Oberge, Tristan, ed. Lichtenstein (1877); La Tavola rionda, ed. Polidori; (3 vols., \(1864-1865\)). There is no modern edition of the prove romance. but a detailed analysis of the contents, compiled from the numerous manuscripts in the Paris Library, was published by E. Lsseth in Le Roman en prose de Tristan (1890). The general reader will find Gaston Paris's study of the legend in Podmes a Legendes dx mogen dge most interesting: also Joseph Bédicr's popular retelling of the tale Tristan ef Iseult. For Wagner's version cf. J. L. Weston, Legends of the Wagner Drama. For an exhaustive study of the Tristan legend and literature, see the recent work by Professor Colther; also an examination of the Welsh fragments by Ivor john in the Grimm Library.
(J.LW.)

TRISTAN DA CUNHA, the general name for a group of three small volcanic islands belonging to Great Britain, situated in the South Atlantic, the summit of the largest being in \(37^{\circ} 5^{\prime} 50^{\prime} \mathrm{S} ., 12^{\circ} 16^{\prime} 40^{\circ} \mathrm{W}\). They are about 2000 m . W. of the Cape of Good Hope and about 4000 im. N.E. of Cape Hora and lie somewhat north of a line drawn between the two capes. St Helena lies about 1500 m. N.N.E. of the group. The islands rise lrom the submarine elevation which runs down the centre of the Atlantic and on which are likewise situated Ascension, St Paul's Rocks and the Azores; the average depth on this ridge is from 1600 to 1700 fathoms, while depths of 3000 fathoms are found on each side of it. The depth between the islands is in some places over 1000 fathoms.

Tristan. the largest and northernmost island, has an area of 16 sq. m., is nearly circular in form, about 7 m . in diameter, and has a volcanic cone (7640 f .), usually capped with mow, in the ceatre. Precipitous cliffs. 1000 to 2000 ft . in height, rise directly from the ocean on all sides. except on the north-west, where there is an irregular plain, 100 ft . above ithe sea, and 21 m . in length and \(\frac{1}{} \mathrm{~m}\). in breadth. A stream crosees the northern end of the platean, lalling over the cliff edge in a fine cascade. The crater of the central cone contains a fresh-water lake about 150 yds in diameter. This and other crater laties are said never to be frozen over.

Inaccessible Island, the westernmost of the group, is about 20 m . from Tristan. It is quadrilateral in form. the sides being about 2 m. long, and its arce is about 4 sq . m . The higbest point (1840 ft .) is on the west side: all round there are perpendicular clifis ahout 1000 ft . in height. At the base of the cliffs in tome places are narrow fringes of beach a few feet above the sea-level.
Nightingale Island, the smallest and most southern of the group. is 10 m . from Inaccessible Island. Its area is not more than \(1 \mathrm{sq} . \mathrm{m}\). Its coapts, unlike those of the other two islaids, are aurrounded by low cliffs, from which there is a gentle slope up to two peaks, the one 1100 ft., the other 960 it . high. There are two small istetsStoltenkoff (325 ft.) and Middle (150 It.)-and aeveral rocks adjacent to the coast.
The rockz of Tristan ds Cunha are feispathic basalt, dolerite, augire-andesite, sideromelane and palagonite; some specimens of the basalt have porphyritic augite. \({ }^{2}\) The caves in Nightingale Island indicate that it has been elevated several feet. On almost
'On the occurrence in Tristan da Cunha of rock of continental type (gneiss) see E. H. L. Schwarz of the Geological Survey, Cape Colony, in the Transactions Soulh African Philosoph. Soc.. No. 16 of 1905.
all sidee the inlasis are surnounded by a broad bett of kelp, the gieantic southern sea meed (Macracystis pyrifera), through which a boat may approach the rocky shores even in stormy weather. There is no good anchorage in rough weather.
The beaches and lower lands are covered with a dense growth of tussock grace (Spartina arundinacea), 8 to 10 ft . in height. it shelters vast numbers of penguins (Eudyptes chrysocoma), which there form their rookeries. There is one small tree (Phylica nitida), which grows in detached patches on the lower grounds. Independently of introduced plants, fifty.five species have been collected in the group, twenty-nine being fowering plants and twenty-six ferns and lycopods. A majority of the spocies are characteristic of the present general flora of the touth temperate zone rather than any particular part of it: botanically the group is generally classed with the islands of the Southern Ocean. A finch (Nesospiss acuxhae), a thrush (Nasocichla eremila), and a water-hen (Gallinula nesiotis) are the only land birdo-the first two being peculiar to the islands. In addition to the penguins numerous other aea birds nest on the ishands. as petrels, albatrosees, terns, skuas and prions. One or two land shells, a few spiders, weveral Coleoplera, a small lepidopter and a few other insects are recorded, but no Orthoplera or Hymenoptera. There appear to have been no indigenous mammals or reptiles Seals frequent Nightingale and Inaccessible Islands, and the whale (Baloenc australis) is found in the adjacent watcrs.
The prevailing winds are werrerly. December to March is the Gire season. The climate is mild and on the whole healthy, the temperature averaging \(68^{\circ}\) Fahr. In summer, \(55^{\circ}\) in winter-sometimes lalling to \(40^{\circ}\). Rain is frequent; hail and snow falloceasionally on the lower grounds. The sky is usually cloudy. The islands have \(a\) cold and barren appearance. The tide rises and falls about 4 ft .

Eistory. -The islands were discovered in 1506 by the Portuguese admiral Tristan, or more correctly Tristso da Cunha, \({ }^{1}\) after whom they are named, during a voyage to India. Thereafter the islands (which were uninhabited) were occasionally visited by outward bound ships to the Indics. Dutch vessels brought back reports on the islands in 1643, and in 1656 Van Riebeek, the founder of Cape Town, sent a ship from Table Bay to Tristan to see if it was suitable for a military station. but the absence of a harbour led to the project being abandoned. Later in the 17 th century ships were sent from St Helena by the English Eas! India Company to Tristan to report on a proposed settlement there, but that project also came to naught. A British naval officer who visited the group in 1760 gave his name to Nightingale Island. John Patten, the master of an English mercbant ship. and part of his crew lived on Tristan from August 1790 to April 2791 , during which time they captured 5600 seals; but the first permanent inhabitant was one Thomas Currie, who landed on the island in 1810. At this time American whalers frequented the neighhouring waters and, in the same year, an American named Lambert " late of Salem, mariner and citizen thereof " and a man named Williams made Tristan their home. Lambert declared himself sovercign and sole possessor of the group (which he renamed Islands of Refreshment) "grounding my right and claim on the rational and sure ground of absolute occupancy." Lambert's sovercignty was short lived, as he and Willians were drowned while out fishing in May 1812. Currie was joined, however, by two other men and they busied themselves in growing vegetables, wheat and oats, and in breeding pigs. War having broken out in this year bet ween the United States and Great Britain the islands were largely used as a base by American cruisers sent to prey on British merchant ships. This and other consideraLions urged by Lord Charles Somerset, then governor of Cape Colony, led the British government to authorize the islands being taken possession of as dependencies of the Cape. The formal proclamation of annexation was made on the 14th of August 1816. A small garrison was maintained on Tristan until
1 Tristan da Cunha (\(\boldsymbol{A}\). \(1460-1540\)) was nominated first viceroy of Portuguese India in 1504. but was unable to serve owing to temporary blindness; in 1506 he was placed in command of a fleet which operated on the east coast of Alrica and in the Indies. Alphonso d'Albuquerque (q.v.) having charge of a squadron under da Cunha. After discovering the islands which now bear his name. da Cunha landed in Madagascar, subsequently visiting Mozambique. Brava (where he reduced the Árab power) and Sokotra, which he conquered. He also distinguished himself in the Indies in various actions. In 1514 he was ambamador to Pope Leo X. to pay homage for the new conquests of Portugal. and was, liter on, made a member of the Portuquese privy council.

November of the following year. At their own request Willam Glass (d. 1853), a corporal in the Royal Artillery, with bis wife and two children and two masons were left behind, and thus was begun the present setulement. From time to time additional settlers arrived or shipwrecked mariners decided to remain; in 1827 five coloured women from St Helena were induced to migrate to Tristan to become the wives of the five bachelors then on the island. Later coloured women from Cape Colony married residents in the island. Other setulers are of Dutch, Italian and Asiatic origin. Thus the inhabitants are of mired blood, but the British strain greatly predominates. Over the little community Class (18:7-1853) ruted in patriarchal fashion. Besides raising crops, the settlers possessed numbers of cattle, sheep and pigs, but their most lucrative occupation was seal fishing. The island was still frequented by American whalers, and in 1856 out of a total population of about 100 twenty-five emigrated to the United States. The next year forty-five of the inhahitants removed to Cape Colony; whither the younger or more restless members of the community have since gone-or else taken to a seafaring life. The inhabitants had of necessity made their aectlement on the plain on the north-west of Tristan; here a number of substantial stone cottages and a church were built. It is named Edinburgh in memory of a visit in 1867 by the duke of Edinburgh. In October 1873 the islands were carefully surveyed by the "Challenger," which removed to Cape Town two Germans, brothers named Stolt enhoff, who had been living on Inaccessible Island since November 187r. This was the only attempt at colonization made on any save the main island of the group.
After the death of Glass the head of the community for some time was an old man-of-war's man named Cotton, who had been for three years guard over Napoleon at St Helena; Cotton was succeeded hy Peter William Green, a native of Amsterdam who setiled in the island in 1836. During Green's "reign" the economic condition of Tristan was considerably affected by the descrtion ol the neighbouring seas hy the whalers; this was largely due to the depredations of the Confederate cruisers "Alabama" and "Shenandoah" during the American Civil War, many whaling boats being captured and burnt by them. As a result the number of ships calling at Tristan considerably diminished and trade languished. In 1880 the population appears to have attained its maximum-109. In 1885 a serious disaster befell the islanders, a lifeboat which went to take provisions to a ship in the offing was lost with all hands-fifteen men-and only four adult males were left on the island. At the same time a plague of rats-survivors of a shipwrecked vessel-wrought much havoc among the crops. Plans were made for the total removal of the inhabitants to the Cape, but the majority preferred to remain. Stores and provisions were sent out to them by the British government. The ravages of the rats have rendered impossible the growing of wheat; the wealth of the islanders now consists in their cattle, sheep, potatoes and apple and peach trees. The population in 1897 was only 64; in 1gor it was 74, and in 1909, 95 . They manage their own affairs without any written laws, the project once entertained of providing them with a formal constitution being deemed unnecessary. The inhabitants are described as moral, religious, hospitable to strangers, well mannered and industrious, healthy and long lived. They are without intoxicating liquors and are said to commit no crimes. They are daring sailors, and in small canvas boats of their own huilding voyage to Nightingale and Inaccessible islands. They knit garments from the wool ol their sheep; are good carpenters and make serviceable carts. From time to time ministers of the Church of England have lived on the island and to their efforts is mainiy due the education of the childrea. In 1906 the islanders passed through a period of distress owing to great mortality among the cattle and the almost total failure of the potato crop. The majority again refused, however, 10 desert the island, though offered allotments of land in Cape Colony. Similar proposals had been made and declined several times since the question was first mooted in \(\mathbf{8 8 8 6}\). In 1905 a lease of

Nightingale, Inaccessible and Gough islands, for the purpose of working the guano deposits, was granted by the British government.
Gonet Island.-Gough Island or Diego Alvarez lies in the South Atlantic in \(40^{\circ} 20^{\prime} \mathrm{S} .9^{\circ} 44^{\prime} \mathrm{W}\)., and is 250 m . S.S.E. of Tristan da Cunha and some is00 m. west by south of Cape Town. It is of volcanic origin, is rugged and mountainous, the highest peak rising to 4380 ft . The island is about 8 m . long by 4 m . broad and has an area of 40 sq . m . Precipitous cliffs, from 200 to 1000 ft. high. characterize the coast. They are divided by picturesque valleys. which, in some instances, have been cut down to sea level and afford landing-places. Streams fall over the cliffs into the sea in fine cascades. The island is visited by vast numbers of penguins and contains valuable guano deposits. It is also the home of numerous scals. The rainfall is heavy and vegetation abundant. The island is belicved to have been discovered by the Portuguese in the 16th century. Originally called Diego Alvarez, it derives its other name from a Captain Gough, the commander of a British chip which visited it in 1731. It has been claimed as a British possession since the annexation of Tristan da Cunha. In 1904 Gough Island was visited by the Antarctic exploring ship." Scotia" of the Bruce expedition, which discovered a rich marine fauna, two new buntings and three new species of plants. It has no permanent population.
A comprehensive account of Tristan da Cunha appeared in The Cape Times (January-March 1906), in a eeriee of articles by W. Hammond Tooke, the commissioner sent to the islands by the Cape government in 1904. See also Transactions of the Linnean Society for 1819 (contains a report of an ascent of the summit by Captain Dugald Carmichaei in 1817); A. Earle, Narrative of a ... Residence in New Zealand.. . ogether woith a Journal of a Residence in Tristan d'Acunhe (London, i832); Mrs K. M. Barrow, Three Years in Tristen da Cunka (London, 1910): H. N. Moscley, Notes by a Natmralist on the "Challenger " (new ed., London, 1892): F. and G. Stoltenhoff "Two Years on Inaccessible." in Cape Monthly Mug. (December 1873). Among papers relating to Tristan da Cunha published by the British government, see especially reports issued in 1897, 1903. 1906-which gives a detailed account of the island and islanders-and 1907. For the discovery of Trisian sce The Commentaries of the Greal Afonso Dalboquerque (Hakluyt Society's Serics, 1875, Yol. 53). For Gough Island, see R. N. R. Brown of the "Scotia" expedition, "Diego Alvarez or Gough Island," in Scoltish Geog. Mag. (August 1905); Brown and others, "The Botany of Gough Island," in Journ. Linnean Soc. (Botany) (1905), and The Voyafe of the "Scotia" ch. xii. (London, 1gco). The Africa Pilot, pt. il. (sth ed., 1901), contains descriptions both of Tristan da Cunha and Gough I \({ }_{\text {Bland. }}\).
TRISTAN L'RERMITR, FRANC0I8 (i601-1655), French diamatist, was born at the chateau de Soliers in the Haute Marcbe about 1601. His adventures began early, for he killed his enemy in a duel at the age of thirteen, and was obliged to flee to England. The atory of his childhood and youth he embroiders in a burlesque novel, the Page disgracid. He was in succeasion poet to Gaston d'Orleans, to the duchesse de Chaulnes and the duke of Guise. He died on the 7th of September 1655 His first tragedy, Mariamme (\(\mathrm{I}_{3} 66\)), was also his best. It was followed by Perthee (1637), La Mort de Seneque (1644), La Mort de Crispe (1645) and the Parasite (\(\mathbf{1 6 5 3 \text {). He was also the }}\) author of some admirable lyrics. Three of his best plays are printed in the Theatre francais of 1737.
TRITHEMIUS, JOHANAES (1462-1516), German historian and divine, was born at Trittenheim on the Moselle, on the ist of February 1462. His name was originally " von Heidenberg," hut according to the fashion of the times he adopted the name of his birthplace. Aiter an unhappy childhood, he studied at Heidelberg, and at the age of twenty entered the Benedictine monastery of Sponheim near Rreuznach, of which, in 1485 , he became ahbot. He established an excellent library, and through his strict discipline and consummate scholarship soon raised the monastery to an educational institution of a high order. In 1506 he resigned, and was appointed soon after abbot of the monastery of St Jakob at Würzburg; and in this city he died on the 13th of December 1516 . Trithemius was, though an accomplished scholar, untrust worthy as a chronicler, and his Annales hirsaugienses (1514), Annales de origine Francorum, is well as his Chronologis mystica (\(\mathbf{1 5 1 6 \text {) are, on this }}\) account, of doubiful value. More reliance can, however, be placed on his De scriptoribus ecclesiasticis (1494) and the Calalogus illustrinm virerum Germanioe (1491). He also wrote a fanatical book against sorcery, Antipalur maleficiormm (igo8).

See Silbermagel, J. Tritheming (1868; and ed., r8ss); Sthneganat Abl Joh. Trithemius und Kloster Sponheim (1882); and F. X. Wegele, in Allgemeine dewlsche Biographic.

TRITON, in Greek mythology, son of Poscidon and Amphitrite, the personification of the roaring waters. According to Hesiod (Theog. 930), he dwelt with his parents in a golden palace in the depths of the sea. The story of the Argonauts places his home on the coast of Libya. When the Argo was driven ashore on the Lesser Syrtes the crew carried the vessel to Lake Tritonis, whence Triton, the local deity, guided them across to the Mediterranean (Apollonius Rhodius iv. 1552). He was represented as buman down to the waist, with the tail of a fish. His special attribute was a twisted seashell, on which he blew to calm or raise the waves. Its sound was so terrible, when loudly blown, that it put the giants to flight, who imagined it to be the roar of a mighty wild beast (Hyginus, Poet. astronow. ii. 23). When Misenus, the trumpeter of Aeneas, challenged him to a contest of blowing. Triton in his jealousy flung him into the sea. In course of time Triton became the name for individuals of a class, like Pan and Silenus, and Tritons (male and female) are mentioned in the plural, usually as forming the escort of marine divinities. The beings called Centauro-Tritons or Ichthyocentaurs were of a triple nature, with the forefeet of a horse in addition to the human body and bsh tail. Pausanias (ix. 21) gives a detailed description of the ordinary Triton. It is probable that the idea of Triton owes its origin to the Phoenician fish-deities.

See Preller, Griechische Mythologie (4th ed., 1894); F. R. Dressler, Trifon und die Tritonen (Wursen, 4892).
TRIUMPH (triumphus), amongst the ancient Romans, the highest honour bestowed upon a victorious general. Originally it was only granted on certain conditions, which were subscquently relaxed in special cases. Only those who had held the office of dictator, consul or practor were entitled to the distinction; the war must have been brought to a definite conclusion, resulting in an extension of the boundaries of the state; al least 5000 of the enemy must have been slain; the victory must have been gained over a foreign enemy, victories in civil war or over rebels not being counted. The power of granting a triumph rested with the senate, which held a meeting outside the city walls (generally in the temple of Bellona) to consider the claims put forward by the general. If they were considered satisfactory special legislation was necessary to keep the general in possession of the imperium on his entry into the city. Without this, his command would have expired and be would have become a private individual the moment be was inside the city walls, and would have had no right to a triumph. Consequently he remained outside the pomoerium until tbe special ordinance was passed; thus Lucullus on his return from Asia waited outside Rome three years for his triumph.
The triumph consisted of a solemn procession, which, starting from the Campus Martius outside the city walls, passed through the city to the Capitol. The streets were adomed with garlands, the temples open, and the procession was greeted with shouts of Io triumphc! At its head were the magistrates and senale, who were followed by trumpeters and then by the spoils, which included not only arms, standards, statues, \&c., but also representations of battles, and of the lowns, rivers and mountains of the conquered country, models of fortresses, \&c. Next came the victims destined for sacrifice, especially white oxen with gilded horns. They were followed by the prisoners who had not been sold as slaves but kept to grace the triumph; when the procession reached the Capitol they were taken of to prison and put to death. The chariot which carried the victorious general (lriumphator) was crowned with laurel and drawn hy four horses. The general was attired like the Capicoline Jupiter in robes of purple and gold horrowed from the treasury of the god; in his right hand he held a laurel branch, in his left an ivory sceptre surmounted by an eagle. Above his head the golden crown of Jupiter was held by a slave who reminded him in the midst of his glory that be was a mortal man. Lest came the soldiers shouting fo frimeme and singing

Photo, Bonfils.
Fig. 1.-Arch of Hadrian, Athens.

Photo, Alinari.
Fig. 3.-Arch of Trajan, Ancona.

Phow, Alinari.
Fig. 2.-Arch of Trajan, Benevento.

Photo, Anderson
Fig. 4.-Arch of Titus, Rome.

Photo, Neurdein.
Fig. 8.-Arch at Orange.
mang both of a lavedstory and scurrions kind. On reaching the temple of Jupiter on the Capitol, the general placed the laurel branch (in later times a palm branch) on the lap of the image of the god, and then offered the thank-offerings. A feast of the magistrates and senste, and sometimes of the soldiers and people, conciuded the ceremony, which in earlier times hasted one day, but in later times occupied several. Generals who were not allowed a regular triumph by the senate had a right to triumph at the temple of Jupiter Latiaris on the Alban Mount. Under the empire only the emperors celebrated a triumph, because the generals commanded under the auspices of the emperors (not under their own) merely as lieutenants (kgali); the ooly honour they received was the right of wearing the triumphal insignia (the robes of purple and gold and the wreath of bay leaves) on holidays. After the time of Trajan, when all consuls were allowed to wear the triumphal dress on entering office and in festal processions, the oaly military reward for a soccespful general was a statue in some public place. The last triumuph recorded is that of Diocletian (A.D. 302). A naval or maritime triumph was sometimes allowed for victories at sea, the earliest being that celebrated by C. Duilius in honour of his victory over the Carthaginians in 260 B.c.
See Mommsec., Römisches Shaakrecht (1887), i 126-136; Marquardt, Römische Sleadsperwollune (1884). iii. 582-593: H. A. con. De, triumphi romani origine, permissu: apparatu, via (1854): S. Peine. "De ornamentis triumphalibus" (1885), in C. E. Aecberroon's Berliner Sladien, ii.
TRIUMPHAL ARCH, the term given to arches erected to cocrmemorate some special victory, but here extended to include those buik as memorial arches to some benefactor of the Roman Empire, such as those at Rimini, Ancona and Benevento; arches erected as monumental entrances to towns, as at Nimes and Autun; arches on bridges, as at Chamass in France and Alcantara in Spain; and lastly those which preceded the entrance to a forum or ssered enclosure, or formed part of a colonnaded street, as in Syria. There is every reason to suppose that in carty times in Greece and Etruria temporary erections, such as those of the present day, were set up on the oocasion of the public entry, after a great victory, of some emperor or general; but the Romans would seem to have been the first to erect such structures in stone or marbie, to enrich them with sculpture, and to raise aloft on their summit the quedrige or four-horsed chariot with statues and trophies. The time involved in the construction of such a memorial, and more especinlly that which would be required for its earichment with sculpture, rendered it impoustbe that they should he set up on the occasion of the triumphal entry itself, and it is known that the arch of Titus was not erected till some time after his death by his successor Domitian. There is alwaye some difficulty in deriding between triumphal and memorial arches, as they were virtually similar in desigm, equally enriched with sculpture, generally surmounted with a quadriga and statues, and as a rule were isolated structures. The earlier arches were pierced with a single arch and were comparatively simple in design, being decorated by pilasters or memi-detached columns only; the existence of chariots and statues on their summit is known only from coins or gems, on which such features are always shown. The arch of Titus in Rome (6g. 4), A.D. 8y, is the first one enriched with bas-relief sculpture, in this case representing the eriumphs of Titus with the seven-branched candlestick and the golden table brought from Jerusalem. The next scuiptural arch of triumph is that built at Benevento (fig. 2) in South Italy (A.D. 122) by Trajan, recording the Dacian victorice. The triumphal arch (ig. s) of Septimius Severus (A.D. 203) has a central and two side arches, the bac-relicis on it representing the Parthian victorics; and the last important anch in Rome is that of Constancine (Gg. 6), which had also three arches, and was embellished with bas-reliefs, representing the Dacian vistories, which were tuken from the arch of Trajan on the Via Appia and others of Constantine's time, representing the conquest of Maxentius.

Prasing to other countries, we have the triumphal arches at St Remy and at Orange (fig. 8); those at Carpentras and Cavail100, also in France, which were probably of hater date, as possibly
also the triple arch at Reims. The triumphal arch with three arches at Fano in Italy is said to have been commenced by Augustus, but completed hy Constantine, who probably added the two side arches and decorated it with inlerior sculpture. At Timgad (Thamugada) in North Africa is a triumphal arch with central and two side arches, probably of Hadrian's time, and one with triple anches at Sbeitla (Suffetula), also in North Africa, and another example at Saintes in France, built on a hridge.

Of memorial arches the earliest are the examples of Rimini (fig. 7) and Aosta, erected to Augustus, and later the arch at Ancona (fig. 3) erected to Trajan (a.d. 112) as a record of the construction of the port there. At Pols, in Istris, is an archway crected in memory of the Sergii. Of less important examples in Rome are the arches of Dolabelia, (a.D. 10), Drusus (A.D. 23), Gallienus (A.D. 262), the silversmith's arch (A.D. 204); in Verona, the Porta dei Borsari and the Porta de Leoni, erected by Gallienus (a.d. 265); at Air-les-Bains in France, an arch of late 3rd century; and at Lambesse, in North Africa, the arcbes of Commodus (a.d. 187) and of Septimius Severus (a.d. 200). In Spain there are two monumental arches erected by Trajan at Alcantara, in the centre of the bridge built by him (1.D. 108), and the arch of Santiago at Merida; a third example exists in the Arco di Bara at Tarragona.
Quadriportal archways are those which were built in the centre of four cross roads, such as the arch of Janus in Rome, built by Constans (A.D. 350), the arch of Caracalla at Tebesse (Thevesti) in North Africa, and many examples in Syria, of which the arch at Ladikiyah (Laodicea ad Mare) is in perfect preservation.

The colonnaded streets in Syria were entered through magnificent archways, of which the finest examples are those at Palmyra and Gerasa. As entrance gateways to towns there are many examples which were sometimes built as memorial arches, but formed part of the city walls, such as the entrance gate at Susa in Italy, erected in memory of Augustus (8 m.c.), decorated with reliefs of the Suovetaurelia (sacrifices); the Porte d'Avroux and Porte St André at Autun, and the Porte d'Auguste at Nimes, in France; the Porte d'Auguste at Perugia in Italy and the Porta Nigra at Treves in Germany; to these should be added the three entrance gateways to the palace of Spalato (A.D. 303), one of these, the Porta Aurea, or Golden Gate, showing in its enriched design certain decadent forms which led to the Byzantine and Renaisance styles; lastly there aro the arched entrances to sacred or civil enclosures, such as the example at Sbeitla (Suffctula) in North Africa, the arch of Hadrian at Athers (fig. 1), built to his memory by his succeasors, and the archway of the Propylaca at Damascus.

The triumphal arch found no place in medieval architecture, but in Renaiseance works there are many examples, of which the triumphal entrance arch of King Alfonso at Naples (A.D. 1470) comes first. Of isolated structures, there are in Paris the Porte St Martin (1647), St Denis (1684), arch of Carrousel in the Tuileries (1808), and the Arc de l'Etoile in the Champs Elysfes, completed in 1830; in Berlin the Brandenhurger Thor (1790); in Munich the Siegesthor (1843) and Metzger Thor (1880); in Milan the Arch of Peace, commenced by Napolcon in 1807 and completed in 1857 by the Austrians (an interesting example, as it stil preserves the chariot and horses and statues which formerly crowned all triumphal arches); and in London the Marble Arch, originally built in front of Buckingham Palace, but removed to the north-east angle of Hyde Park in 1843, and the Wellington Arch at Hyde Park Corner, without the statue of the duke on horseback, afterwards set up at Aldershol.
(R. P. S.)

TRIVAMDRDM, or Tacvanomor, a city of southern India, capital of the state of Travancore, situated 2 m . from the seacoast. Pop. (1901), 57,882 . It is the residence of the maharaja, and contains an observatory and a museum, besides several other fine buildings. The chief tame of the place, bowever, centres upon the shrine of Sri Ananta Padmanabhaswami, a great resort of pilgrims, round which the city grew up. The
best houses and chief public buildings stand on hilly terraces. The city contains the maharaja's college, a Sanskrit college, a high school, a school for girls, an industrial school of arts, and a hospital and medical school. There is litule trade, but a speciality of wood-carving. Trivandrum has a small seaport, but the vessels that touch here have to anchor at some considerahle distance from the shore, aad the port itself is not fitted for any great commercial development.

TRIVET, a small metal tripod for holding cooking vessels near a fire. The word is also applied to a round, square or oval openwork plate, usually of steel or brass, fixed to the bars of a grate by a socket for keeping hot plates, dishes, or food.

TRIVIUM (Lat. for cross-road, i.e. where three roads meet, from tres, three, and via, road), in medieval educational systems, the curriculum which included grammar, rhetoric and logic. The trivium and the quadrivium (arithmetic, music, geometry and astronomy) together made up what are known as the seven liberal arts (see Education: Schools). From the word in its original sense is derived the adjective " trivial " (postAug. Lat. trivialis), that which can be seen at the cross-roads, i.e. unimportant, commonplace. In botany and zoology the "trivial" name is the adjectival name which follows the genus mame in a binominal system of nomenclature, as canina, perenxis, in Rosa conina, Bellis perennis.

TRNOVO, or Tlrnovo, an episcopal city and the capital of a department of Bulgaria; 124 m . E.N.E. of Sofia, on the river Yantra, and on the Sofa-Varna railway, at the junction of the branch line from Rustchuk. Pop. (1906), 12,171. The city consists of two divisions-the Christian quarter, situated chiefly on a high rocky plateau, and the so-called Turkish quarter, on the lower ground; hut many of the Turkish inhabitants emigrated after \(\mathbf{8} 88\). On the Tsarevetz Hill above the city are the remains of the ancient citadel. The Husarjaini mosque is used as a military powder and dynamite factory. In the Christian quarter there are some interesting churches of the middle ages, notably that of the Forty Martyrs, in which the Bulgarian tsars were crowned. Numerous antiquarian remains have also heen discovered. There are a gymnasium and a high-class girls' school. The city possesses large dyeworks, and important manufactures of copper utensils.

Trnovo was the ancient capital of Bulgaria, and from 1186 until its capture by the Turks, 17 th of July 1394, the residence of the Bulgarian tsars. From the heginning of the 13 th century it was also the seat of the patriarchate of Bulgaria, until the suppression of the patriarchate in \(\mathbf{1 7 6 7}\). In 8877 it was taken from Turkey hy the Russians, and in 1879 Prince Alexander of Battenberg was here elected prince of Bulgaria. On the 5th of October 1908 the independence of Bulgaris was proclaimed here by King Ferdinand, in the church of the Forty Martyrs.

TROCHAIC (from Gr. tpoxaîos, tpoxainds; Lat. Irochoews), the name of a metre very commonly used by the Greeks and Romans in their tragedies and comedies. Its characteristic foot is a trochee consisting of two syllables, one long, one short (\(\sim\)). The usual form, in which the Greeks employed the measure, was the trochaic tetrameter catalectic, the scheme of which is as follows:-

The trochaic metre is rapid in movement and breathless, and is generally used to depict strong emotions or to tell an exciting narrative. It is, however, very closely related to the ordinary iambic metre; in fact, by suhtracting the first loot and a half of the longer line, we find ourselves left with a pure fambic line as used by the tragedians.

In modern times, the trochaic measure has been adopted by the prosody of England, Germany and Scandinavia. The swift and hurrying movement of it, which we see reflected in its derivation, as the Greek name is certainly to be traced back
to the verb rptixes, to run, has made it a favourite with our lyrical poets. In the early English writers on versification the foot is called a trocheus.

TROCHU. LOUIS JULES (\(1815-1896\)), French general, was born at Palais (Belle-lle-en-Mer) on the 12th of March 1815. Educated at St Cyr he received a commission in the Staff Corps in 1837, was promoted lieutenant in 1840, and captain in 1843 . He served as a captain in Atgeria under Marshal Bugeaud, who, in recognition of his gallantry in the battles of Sidi Yussuf and Isly, made him his aide-de-camp and entrusted him with important commissions. He was promoted major in 1845, and colonel in 1853. He served with distinction throughout the Crimean campaign, first as aide-de-camp to Marshal St Arnaud, and then as general of brigade, and was made a commander of the Legion of Honour and general of division. He again distinguished himself in command of a division in the Italian campaign of 1859, where he won the grand cross of the Legion of Honour. In 1866 he was employed at the ministry of war in the preparation of army reorganization schemes, and he published anonymously in the following year L'Armé frangaise on 1867, a work inspired with Orleanist sentiment, which ran through ten editions in a few months and reached a twentieth in 1870. This brochore hrought him into bad odour at court, and he left the war office on half-pay, and was refused a command in the ficld at the outhreak of the Franco-German War. After the earlier disasters in 1870, he was appointed by the emperar first commandant of the troops of Chalons camp, and soon afterwards (Aug. 17) governor of Paris and commander-inchief of all the forces destined for the defence of the capital, including some 120,000 regular troops, 80,000 mobiles, nnd 330,000 National Guards. He worked energetically to put Paris in a state of defence and throughout the siege showed himself a master of the passive defensive. At the revolution of the 4 th of September he became president of the government of national defence, in addition to his other offices. His "plan" for defending the city raised expectations doomed to disappointment; the successive sorties made under pressure of public opinion were unsuccessful, and having declared in one of his proclamations that the governor of Paris would never capitulate, when capitulation became inevitable he resigned the governorship of Paris on the 2 znd of Jnnuary 1871 to General Vinoy, retaining the presidency of the government until after the armistice in February. He was elected to the National Assembly by eight departments, and sat for Morbiban. In October he was elected president of the council general for Morbihan. In July 1872 he retired from political life, and in 1873 from the army. He published in 1873 Pour la etrits ed powr la justice, in justification of the government of national defence, and in 1879 L'Armbe francaise en 1879, par sun officier en relraile, a sort of suppiement to his former work of 1867. He died at Tours on the 7th of October 1896.

TROGEN, a neat and clean little town in the Ausser Rhoden half of the Swiss canton of Appenzell. By light railway it is 6 m . from St Gall, or hy carriage road 7 m . from Heiden (the chief goats' whey cure resort in the canton), or 9 m . from Altstatten in the Rhine valley. It is built on the side of a steepish hill, and in 1900 had 2496 inhahitants, mostly Protestant and German-speaking. In the square before the parish church the Landsgemeinde or primitive democratic assemhly of Ausser Rhoden meets in the even years (in other years at Hundwil, not far from Herisau) on the last Sunday in April. Like other towns in Appenzell, Trogen is engaged in the manufacture (in the houses of the workpeople) of embroidery and muslins.
 "cave-dwellers," a name applied by ancient writers to different tribes in various parts of the world. Strabo speaks of them in Moesia, south of the Danube (vii. 318), in the Cancasus (zi. 506), but especially in various parts of Africa from Libya (xvii. 828) to the Red Sea. The troglodyte Ethiopians of Herodotus (iv. 183) in inner Africa, very swift of foot, living on lizards and creeping things, and with a speech like the screech of an owl, have been identified with the Tibhus of Ferzan.

Acconding to Aristotic (Hist. An. viii. 12) a dwartish race of Troglodytes dwelt on the upper coume of the Nile, who possessed horses and were in his opinion the Pygmies of fable. But the beat known of these African cave-dwellers were the inhabitants of the "Troglodyte country" (Tow yholurunt) on the coast of the Red Sea, as far north as the Greek port of Berenice, of whom an account has been preserved by Diodorus (iii. 3i) and Photius (p. 454 Bekker) from Agatharchides of Cnidus, and by Artemidorus in Strabo (xvi. 776). They were a pastoral people, living entirely on the fecsin of their herds, or, in the season of fresh pasture, on mingled milk and blood. But they killed only old or sick cattle (as indeed they killed old men who could no longer follow the flock), and the butchers were called "unclean "; nay, they gave the name of pareat to no man, but only to the caltle which provided their subsistence. This last point seems to be a confused indication of totemism. They went almost naked; the women wore necklaces of shcle as amulets. Marriage was unknown, except among the chiefs-a fact which agrees with the prevalence of female kinship in these regions in much later times. They practised circumcision or a mutilation of a more serious kind. Their burial rites were peculiar. The dead body, its neck and legs bound logether with withies of the shrab called paliurus, was set up on a mound, and pelted with stones amidst the jeers of the onlookers, until its face was com. pletely covered with them. A goat's horn was then placed ahove ity, and the crowd dispersed with manilestations of joy. It is supposed that the Horim or Horites, the aboriginal ithhabitants of Mount Seir, if their name is correctly interpreted "cavedwellers," were a kindred people to the Trogiodytes on the other side of the Red Sea.

TROOON, a word apparently first used as English ' by G. Shaw (Mus. Leverionxim, p. 177) in 1792, and now for many years accepted as the general name of certain birds forming the family Trogonidae of modern ornithology. The trogons are binds of moderate size: the smallest is hardly bigger than a thrush and the largest less bulky than a crow. In most of them the bill is very wide at the gape, which is invariably besct by recurved bristles. They seize most of their food, whether caterpillars or fruits, on the wing, though their alar powar is noe exceptionally great, their flight being described as short, rapid and spasmodic. Their feet are weak and of a unique structure, the second toe, which in most birds is the inter anterior one, being reverted, and thus the trogons stand alone, since in all other birds that have two toes before and two behind it is the outer toe that is tumed backward. The phumage is very remarkable and characteristic. There is not a species which has not beauty beyond most birds, and the glory of the group calminates in the quezal (q.s.). But in others golden green and steely blue, rich crimson \({ }^{3}\) and tender pink, yellow varying from primrose to amber, vie with one another in vivid coloration, or contrasted, as happens in many species, with a warm tawny or a sombre stat y grey-to say nothing of the delicate freckling of black and white, as minute as the markings of a moth's wing-the whole set off by bands of white, producing an effect hardly equalled in any gromp. The plumage is further remarkable for the large sise of its contour-feathers, which are extremely soft and so boosely seated as to come off in scores at a touch, and there is no down. The tail is generally a very characteristic feature, the rectrices, though in some cases pointed, being often curiously aquared of the tip, and when this is the case they are usually
\({ }^{1}\) Troqonem (the oblique case) occurs in Pliny (H. N. x. 16) as the name of a bird of which he knew nothing, save that it was mentioned by Hylas, an augur, whooe work is lost; but some would read Trygomem (turtio-dove). In 1752 Mothring (Av. Cenera;: P. 85) applied the name to the " Curucui " (pronounced " Suruquat," vide Bates, Nol. Amazons, i. 254) of Marcgrav (Hisl. nat. Brasiliae, p. 211). who described and figured it in 1648 recognizably. In 1760 Brisson (Orwilhologic. iv. \({ }^{164}\)) adopted Trogon as a generic term, and, Linnaeus having fotlowed his example, it has since been universally accepted.
\({ }^{1}\) Anatole Bogdanof determined the red pigment of the feathers of Pharomocrus auriceps to be a substance which he called" zooxanthine " (Comples rembus, Nov. 2. 1857. xiv. 690).
barred ladder-like with white and black: According to J. Gould, they are larger and more pointed in the young than in the old, and grow squarer and have the white bands narrower at each succeeding moult. He also asserts that in the species which have the wing coverta freckled, the freckling becomes finer with age. So far as has been observed, the nidification of these birds is in holes of trees, wherein are laid without any bedding (wo roundish eggs, generally white, but certainly in one species (queza) tinted with bluish green.
The trogons form a very well-marked family, belonging to the coraciilorm birds, and probably to be placed in that assernblage near the colies (gee Mouse Bird) and swifts (q.p.). The remains of one, T. callicus, have been recognized by A. Milne-Edwards (Ois. fass. de Le France, ii. 395, pl. 177, figs. 18-22) from the Miocenc of the Alifer. This lortunate discovery seems to account for the remarkable distribution of the trogons at the present day. While they chicfly abound, and have developed their climax of magnificence, in the tropical parts of the New World, they yet occur in the tropical parts of the Old. The species now inhabiting Africa, forming the group Hapoloderma, can hardly be eeparated generically from those of the Neotropical Troson, and the difference bet ween the Asiatic forms, if somewhat greater, is still comparatively slight. It is plain then that the Trogons are an exceptionally persistent type; indeed in the whole class few similar instances occur, and perhaps none that can be called parallel. The extreme development of the type in the New World just noticed also furnishes another hint. While in some of the American trogons (Pharamacrus, for instance) the plumage of the females is not very much less bcautiful than that of the males, there are others in which the hen birds retain what may be fairly deemed a more ancient livery, while the cocks flaumt in briliant at tire. Now the plumage of borh mexes in all but one \({ }^{4}\) of the Asiatic trogons, Harpactes, resembles rather that of the young and of those females of the American species which are modestly clothed. The inference from this fact would seem to be that the general coloration of the Trogons prior to the establishment, by geographical cstrangement, of the two types was a russet similar to that now worn by the adults of both sexes in the Indian region, and by a portion only of the females in the Neotropical. The Ethiopian t'pe, as already said, very closely agrecs with the American, and therefore would be likely to bave been longer in connexion therewith. Again, while the adults of most of the American trogons (Pharemacrus and Euplitotis excepted) have the edges of the bill serrated. their young have then smooth or only with a single notch on either side near the sip. and this is obscrvable in the Asiatic trogons at all ages. At the mane time the most distinctive features of the whole group. which are easily taken in at a glance, but are difficult to express briefly in words, aro cqually possessed by both branches of the family, showing that they were in all likelihood-for the possibility that the peculiarities may have been evolved apart is not to be overlooked-reached before the geographical sundering of these branches (whereby they are now placed on opposite sides of the globe) was effected.
About sixty species of trogons are recognized, which J. Could in the sceond edition of his Monograph of the family (1875) divides Into seven genera. Pharomacrus, Euptilotis and Trogon inhabit the mainhnd of tropical America, no species passing to the northward of the Rio Grande nor southward of the forest district of Brazil, while none occur on the west coast of Peru or Chile. Prionotelus and \(T\) mefotrogon. cach with one specics, are peculiar respectively to Cuba and Haiti. The Alrican form Hopaloderma has two upecies. one found only on the wcst coast. the other of more general range. The Asiatic trogons, Harpacles (with eleven species according to the same authority). occur from Nepal to Malacca, in Ceylon, and in Surnatra. Java and Borneo, while one species is peculiar to some of the Phitippine Islands.
(A. N.)

TROGUS, GNAEUS POMPEIUS, Roman historian from the country of the Vocontii in Gallia Narbonensis, nearly contemporary with Livy, flourished during the age of Augustus. His grandfather served in the war against Sertorius with Pompey, througb whose influence he obtained the Roman citizenship; hence the name Pompeius, adopted as a token of gratitude to his benefactor. His father served under Julius Caesar in the capacity of secretary and interpreter. Trogus himself scems to bave been a man of encyclopaedic knowledge. He wrote, after Aristotle and Theophrastus, books on the natural history of animals and plants, frequently quoted by the elder Pliny. But his principal work was Historiae Philippicac in forty-four

In the trogon of Cuba, Prionoldus, they are mont curiously ecooped out, as it were, at the extremity, and the lateral pointed ends diverge in a way almost unique among birds.
\({ }^{4}\) Or two species if \(\boldsymbol{N}\). mocloti be more than a local form of \(H\). reinzodrdi.
books, so called because the Macedonian empire founded by Philip is the central theme of the narrative. This was a general history of the world, or rather of those portions of it which came under the sway of Alexander and his successors. It began with Ninus, the founder of Nineveh, and ended at about the same point as Livy (a.D. 9). The last event recorded by the epitomator Justin (g.v.) is the recovery of the Roman standards captured by the Parthians (20 b.c.). He left untouched Roman history up to the time when Greece and the East came into contact with Rome, possibly because Livy had sufficiently treated it. The work was based upon the writings of Greek historians, such as Thcopompus (also the author of a Philippica), Ephorus, Timaeus, Polybius. Chiefly on the ground that such a work was beyond the powers of a Roman, it is generally agreed that Trogus did not gather together the information from the leading Greek historians for himself, but that it was already combined into a single book by some Greek (very probably Timagenes of Alexandria). His idea of history was more severe and less rhetorical than that of Sallust and Livy, whom he blamed for putting claborate speeches into the mouths of the characters of whom they wrote. Of his great work, we possess only the cpitome by Justin, the prologi or summaries of the 44 books, and fragments in Vopiscus, Jerome, Augustine and other writers. But even in its present mutilated state it is often an important authority for the ancient history of the East. Ethnographical and geographical excursuses are a special feature of the work.
Fragments edited by A. Bielowski (1853) ; sce also. A. H.L. Hecren, De Trogi P. fontibus et aucloritate (prefixed to C. H. Frotscher's edition of Justin): A. Enmann on the authorities used by Trogus for Greek and Sicilian history (1880); A. von Gutschmid, Ober die Froqmente des Pompeius Trogus (1857); M. Schanz. Geschichte der pomischen Litteratur (2nd ed., 1899), if., where all that is known of Timagenes is given; Teuffi-Schwabe, Hist. of Roman Literalure, 8258 ; and article Justin.
TROIA, a town and episcopal see of Apulia, Italy, in the province of Foggia, situated 1440 It . above sea-level, 7 m . N.W. of the station of Giardincto-Troja, which is 16 m . S.W. of Foggia. Pop. (1g0t), 6674. Troia occupics the site of the ancient Aecac, \(12 \mathrm{~m} . \mathrm{S}\). of Luceria, on the Via Traiana, a town which fell to Hannibal after the victory of Cannae, hut was won back by the Romans in 214. Under the empire it appears to have become a colony. Troia was itsclf founded in 1017 by the Greek prefect Basilius Bugianus. The cathedral dates from 1ro7, hut the upper part of the façade with its curious sculptures, fine rosewindow and polychromatic decoration, the choir apse and the interior were restored early in the 13 th century. The latter has been somewhat spoilt by recent decorations. The bronze doors, partly in reliel and partly in niello, of 1119 and 1127 respectively, were cast in Beneventum hy Oderisius Berardus. The small domed church of S. Basilio has an ambo of 1158 .
TROILUS, in Greek legend, son of Priam (or Apollo) and Hecuba. His father, when upbraiding his surviving sons for their cowardice, spenks in the Jliad (xxiy. 257) of Trollus as already slain before the action of the poem commences. According to a tradition drawn from other sources and adopted hy Virgil (Act. i. 474), when a mere boy he fell by the hand of Achilles. In another account, he was dragged to death by his own horses. His death formed the subject of a lost tragedy by Sophocles. There is no trace in classical writers of the story of Shakespearas \(T\) thilus and Cressida, the materials for which were theival from Chaucer's poem of the same name, Lydgate's Mintory, Sage, and Destraccion of Troy, Caxton's Recuydl of the llistoryes of Troy (irans. from Norman French of Raoul ke Fevre), Chapman's iranslation of Homer, and perhaps a play on the subject by Dekker and Chattle.
TROITSK, a town of castern Russia, in the government of Orenburg, situated in a fertile steppe, \(3: 5 \mathrm{~m}\). N.E. of Orenburg, and 77 m. S. of Chelyabinsk, on the Siberian highway. Pop. (1885), 18,497; (1900), 23,293. It has grown rapidly in modern limes. The Troitskiy fort, erected in 1743 , became a centre for trade with the Kirghiz steppe and Turkestan, and in that trade Troitsk is now second only to Orenburg. Cotton, silk, an! especially horses and catcle are imported, while leather, cotton,
woollen and metal wares are exported. An active erade in cors for the Ural gold mines is carried on. The place has iromworks and tanneries.

TROLLE, HERLUF (\(1516-1565\)), Danish navel hero, was born on the 14 th of January 1516 at Lilld. At the age of nineteen Trolle went to Vor Frue Skole at Copenhagen, subecquently completing his studies at Wittenberg, where be adopted the views of Melanchthon, with whom he was in intimate correspondence for some years. His marriage with Brigitte, the daughter of Lord Treasurer Mogens Gjobe, broughe him a rich inheritance, and in 1557 he took his seat in the senate. Both Christian III. and Frederick II. had a very high opinion of Trolle's trustworthiness and ahility and employed him in various diplomatic missions. Trolle was, indeed, richly endowed by nature, and his handsome face and lively manners made him popular everywhere. His one enemy was his wife's nephew Peder Oxe, the subsequently distinguished finance minister, whose narrow grasping ways, especially as the two men were near neighbours, did not contribute towards family harmony. It was Trolle whom Frederick II. appointed to investigate the charges of malversation brought against Oxe. Both Trolle and his wife were far renowned for their piety and good works, and their whole household had to conform to their example or seek service elsewhere. A man of culture, moreover, he translated David's 31 st Psalm into Danish verse. He also promoted literature and learning by educating poor students both at home and abroad, endowing Latin schools and encourag. ing historical research. In 1559 Trolle was appointed admiral and inspector of the fleet, a task which occupied all his time and energy. In 1563 he superseded the aged Peder Skram as admiral in chicf. On the ioth of May he put to sea with twentyone ships of the line and five smaller vessels and, after uniting with a Lubeck squadron of six liners, encountered, off the isle of Oland, a superior Swedish fleet of thirty-eight ships under Jacob Bagge. Supported by two other Danish ships Trolle attacked the Swedish flagship "Makalös" (Matchless), then the largest battleship in northern waters, hut was beaten ofi at nightfall. The fight was renewed at six o'clock the following morning, when the "Makalds" was again attacked and forced to surrender, but blew up immediately afterwards, no fewer than 300 Lübeck and Danish sailors perishing with her. But the Swedish admiral was captured and the remnant of the Swedish feet took refuge at Stockholm. Despite the damage dane to his own fleet and flagship "Fortuna " by this great victory, Trolle, on the 14th of August, fought another but indecisive action with a second Swedish Gleet under the famous Swedish admiral Klas Horn, and kept the sea till the 13th of October. Trolle spent the winter partly at his castle of Herlufsholm coaspleting his long cherished plan of establishing a school for all classes, and partly at Copenhagen equipping a new ficet for the ensuiag campaign. On the ist of June 1565 he set sail with twenty-eight liners, which were reinforced off Femern by five Lubeck vessels. Klas Horn had put to sen still earlier with a superior fleet and the two admirals encountered of Fehmarn on the 4 th of June. The fight was severc but indecisive, and both commanders finally separated to repair their ships. Trolle had been severely wounded in the thigh and shoulder, but be would not let the ship's surgeon see to his injuries till every one else had been attended to. This characteristic act of unselfshness was his undoing, for he died at Copenhagen on the 25 th of June, seventeen days after they had put him ashore.
TROLLHAZTTAN, a town of Sweden in the district (lán) of Elfsborg, 45 m . by rail N. hy E. of Gothenburg. Pop. 6000. It lies on the left (east) bank of the Göta at the point where that river descends 108 ft . in the course of nearly a mile by the famoue falls of Trollhattan (six in number) and several rapids. The scenic setting of the falls is not striking, hut the great volume of water, nearly 18,000 cub. ft . per second, renders them most imposing. The narrowed river bere surrounds several islands, on eit her side of one of which (Toppio) are the first falls of the series, Toppb and Tjuf. These are 42 ft . in height. The waterpower is used in rolling-mills, a cellulose lactory and othes works.

Several "giant's caldrons" are seen in the exposed bed of a former channel. Below the falls are valuable salmon fisheries. To the east of the river the Berg camal, part of the Goxta canal aystern, ascends in a series of eleven new locks (Akersvass) completed in 1844. An old series of locks (1800) is in use for small vessels. There are also ruins of an abortive attempt made to lock the falls in 1755 . (See Gota.)

TROLLOPR ANTHONY (1815-1882), English novelist, was born in London, on the 24th of April 1815. His father, Thomas Anthony Trollope (\(1780-1835\)), a barnister who had been fellow of New College, Oxford, was reduced to poverty by unbusinesslike habits and injudicious speculation, and in 1829 Antbony's mother, Frances Milton Trollope (1780-1863), went with her husband to the United States to open a small fancy-goods shop in Cincinnati. The enterprise was a failure, but her three years' say in that country resulted in a book on the Domestic Manners of the Americaus (2832), of which she gave an unflatiering account that aroused keen resentment. Returning to Eagland her husband was compelled to flee the country in order to escape his creditors, and Mrs Trollope thereafter supported him in Bruges until his death hy ber incessant literary work. She published some books of travel, most of which are coloured by prejudice, and many novels, among the beat known of which are The Vicar of Wrexhill (1837) and the Widow Barnaby (1839), studies in that vein of broad comedy in which lay her peculiar gilt. She wrote steadily for more than twenty years, until her death, at Florence, on the 6th of October 1863. (See Frances Trollope. her Life and Literary Work, by her daughter-in-law 1895.) Her cldest son Thomas Adolphus Trollope (18io1893), was educated at Winchester and Oxford, and spent most of his tife in Italy. He wrote a number of works on Italian subjects, among them Homes and Haunts of Italian Poets (r 88 z), in collaboration with his second wife, Frances Eleanor Trollope, berself a novelist of no mean ability. He was a voluminous author, and perhaps the quantity of his work has obscured its real merit. Among his novels are La Beala (1861) Gemma (1866), and The Garstangs of Garstang Grange (1869). (See his autobiography, What I Remember 1887.)

Anthony Trollope was the third son. By his own account few Eaglish men of letters have had an unhappier childhood and youth. He puts down his own misfortunes, at Harrow, at Winchester, at Harrow again, and elsewhere, to his father's pecuniary circumstances, which made his own appearance dirty and ahably, and subjected him to various humiliations. But it is permissible to suspect that this was not quite the truth, and that some peculiarities of temper, of which in after life he had many, contributed to his unpopularity. At any rate he seems to have reached the verge of manhood as ignorant as if he had had no education at all. After an experience as usher in a private school at Brussels he obtained, at the age of nineteen, by favour (for be could not pass even the ridiculous examination then usual) a position in the London post office. Even then his troubles were not over. He got into debt; he got into ridiculous entanglements of love affairs, which he has very candidly avowed; he was in constant hot water with the authoritics; and he seems to have kept some very queer company, which long aiterwards stood him in good stead as models for some of his novels. At last in August 1841 he obtained the appointment of clerk to one of the post office surveyors in a remote part of Ireland with a very small salary. This, however, was practically quadrupled by allowances; living was cheap; and the life suited Trollope exactly, being not office work, whicb he always hated, but a kind of travelling inspectorship. In the discharge of his duties be evinced a business capacity quite unsuspected by his former superiors. Here he began that habit of hunting which, after a manner hardly possible in later conditions of official work, he kept up for many years cven in England. Within three years of his appointment he became engaged to Rose Heseltine, whom he had met in Ireland but who was of English birth. They were married in June \(18+4\). His headquarters had previously been at Banagher; he was now transferred to Clonmel.

Trollope had always dreamt of novel-writing, and his Irish
experiences secmed to eupply him with promising subjects. With some assistance from bis mother he got published his first two books, The Macdermets of Ballycloran (1847) and The Kellys and the \(O^{\prime}\) Kellys (1848). Neither was in the least a success, though the second perhaps deserved to be, and a third, La Vendse (1850), besides heing a much worse book than either, was equally a failure. Trollope made various literary attempts, but for a cime ill fortune attended all of them. Meanwhile be was get on a new kind of post office work, which suited him even better than his former employment-a sort of roving commission to inspect rural deliveries and devise their extension, first in Ircland, then throughout the west of England and South Wales. That he did good work is undeniable; but his curious conceplion of official duty, on his discharge of which he prided himself immensely, is exhibited by his confessions that he "got hishunting out of it," and that he felt " the necessity of travelling nitea enough "-he was paid by the mileage-" to keep his borses." It was during this work that he struck the vein which gave him fortume and fame. A visit to Salisbury Close inspired him with the idea of The Warden (i85s). It brought him litule immediate profil, nor was even Barchestar Tosoers, which followed in \(\mathbf{3 8 5 7}\), very profitable, though it contains his freshest, his most original, and, with the exception of The Last Chronicle of Barsel, his best work. The two made him a reputation, however, and in 1858 he was able for the first time to sell a novel, The Three Clorks, for a substantial sum, \(£^{250}\). A journey on post office business 10 the West Indies gave him material for a book of travel, The West Indies and the Spanisk Main (1859), which he Irankly and quite truly acknowledges to he much better than some subsequent work of his in the same line. From this time his production, mainly of novels, was incessant, and the sums which he received were very large, amounting in one case to as much as f 3525 for a single book, and to nearly \(£ 70,000\) in the twenty years between 1859 and 1879 . All these particulars are given with great minuteness by himself, and are characteristic. The full high tide of his fortunes began when the Cornhill Magasime was established. He was asked at short notice to contribute a novel, and wrote in 1861 Fraviley Parsonagc, which was extremely popular; two novels immediately preceding it, The Bertrams (1859) and Castle Richmond (1860) had been much less successiul.

As it will be possible to notice few of his other works, the list of them. a sufficiently astonishing one, may be given here: Doctor Thorme (1858); Tales of All Couniries (3rd series 1863); Orley Farm; North America (1862): Rachaed Ray (1863): The Small House at Allingtom, Can Yow forgipe Her? (1864): Miss Mackenzie (1865); The Bellon Estate (1866): The Claperings, Nina BolatAa, The Last Chronicle of Barsel (1867); Linda Tressed (1868); Phimeas Finn, He Knew He Was Right (1869); The Struggles of Brown, Jowes and Rabinson, the Vicar of Bullhampton. Atseditor's Tales, The Commentaries of Caesar (1870); Sir Harry Hotspur of Humblethwoile, Ralph the Heir (1871): The Golden Lion of Granpere (1872); The Enstace Diamonds, Australia and New Zealand (1873): Phiseas Redux, Harry Heothcole of Ganpoil, Lady Anna (1874); Jhe Way We Live Now (1875); The Prime Niniskr (1876); The American Senator (1877): Is He Popenjoy? South Africa (1878): Jahn Caldigate, An Eye for an Eke, Cowsin Henry, Thackeray (1879); The Duke's Children, Cicere (1880): Ayola's Arfel, Dr Worte's Shood (1881): Fran Frohmann, Lord Palmerston, The Fixed Period, Kept in the Dark, Marion Fay (1882): Mr Scorborough's Family, The Land Leaguers (1883); and An Old Man's Love (1884), and several volumes of short stories.

How this enormous total was achieved in spite of official work (of which, lightly as he look it, be did a good deal, and which he did not give up for many years), of hunting three times a week in the season, of whist-playing, of not a little going into general society, he has explained with his usual curious minuteness. He reduced novel-writing to the conditions of regular mechanical work-so much so that latterly he turned out 250 words every quarter of an hour, and wrote at this rate three hours a day. He divided every book beforehand into so many days' work and checked off-the amount as he wrote.

A life thus apent could not be very eventiul, and its events may be summed up rapidly. In 1858 he went to Egypt on post office business, and at the end of 1859 he got himself XXVII 6
transferred from Ireland to the eastern district of England. Herc he took a house, at Waltham. He took an active part in the establishment of the Fortinighly Review in 1865; he was editor of St Paul's for some time after 1867; and at the end of that year he resigned bis position in the post office. He stood 252 partiamentary candidate for Beverley and was deleated; he received from his old department special missions to America and elsewhere-he had already gone to America during the Civil War. He went to Australia in r87r, and before groing broke up his household at Waltham. When be returned he eqtablished himself in London, and lived there until 1880 , when he removed to Harting, on the confines of Sussex and Hampshire. He had vislted South Africs in 1877 and travelled elsewhere. He died of paralysis on the 61h of December 1882.
Of Trollope's personal character it is not necessary to say much. Strange as his conception of official duty may seem, it was evidently quite honest and sincere, and, though he is said to have been as an offcial popular neither with superiors nor inferiors, he no doubt did much good work. Privately he was much liked and mucb disliked-a great deal of real kindness being accompanied by a blustering and overbearing manner, and an egotism, not perbaps more deep than other men's; but more vociferous. None of his literary work except the novels is remarkable for merit. His Caesor and Cicero are curious examples of a man's undertaking work for which be was not in the least fitted. Thackeray exhibits, though Trollope appears to have both admired Thackeray as an artist and liked him as a man, grave faults of taste and judgment, and a complete lack of real criticism. The books of travel are not good, and of a kind not good. Ning Balatke and Linda Tresscl-stories dealing with Prague and Nuremberg respectively-were published anonymously and as experiments in the romantic style. They have been better thought of by the author and by some competent judges than by the puhlic or the publishers. The Struggles of Brown, Joncs and Robinson was still more disliked, and is certainly very bad as 2 whole, but has touches of curious originality in parts. Trollope seldom creates a character of the first merit; at the same time his characters are always alive. Dr Thorne, Mr Harding, who has the courage to resign his sinecure in The Warden, Mr Crawley, Archdeacon Grantley, and Mrs Proudic in the same ecclesiastical series, are distinct additions to the personae of English fiction. After his first failures he never produced anything that was not a faithrul and sometimes a very amusing transcript of the sayings and doings of possible men and women. His characters are never marionettes, much less sticks. He has some irritating mannerisms, notably a trick of repetition of the samc form of words. He is sometimes absolutely vulgarthat is to say, he does not deal with low life, but shows, though always robust and pure in morality, a certain coarseness of taste. He is constanlly rather trivial, and perhaps nowhere out of the Barset serics (which, however, is of itself no inconsiderable work) bas he produced books that will live. The very faithfulness of his representation of a certain phase of thought, of cultivation, of socicty, uninformed as it is hy any higher spirit, in the long run damaged, as it had first helped, the popularity of his work. But, allowing for all this it may and must still be said that he beld up his mirror steadily to nature, and that the mirror itself was fashioned with no inconsiderable art.

Trollope wrote an Autobiography, edited by his son Henry M. Trollope in 1883, explaining his literary methods with amusing franknese. See also Sir L. Stephen's Studies of a Bingrapher (1898). Jamee Bryce's Siadies in Conientporary Biography (1903), and Henry James's Particl Portrails (1888).
tromba marina, of Marine Trutrpet (Fr. irompcite ,warine; Ger. Marine Trompele, Trompetengeige, Nomangeige, Tympanischisa or Trummscheit), a triangular bowed instrument about 6 ft . in length, which owes its characteristic timbre in the peculiar construction of the bridge. The tromba marina consists of a body and meck in the shape of a truncated
cone resting on a triangular base. In the days of Michaed Praetorius (\(16: 8\)), the length of the Trummscheit was \(7 \mathrm{ft} .3 \mathrm{in}\). and the three sides at the base measured 7 in., tapering to 2 in . at the neck. These measurements varied considerably. as did also the shape of the body and the number of strings. In some cases the base of the body was left open, and in others there were sound-holes. The bridge, from its curiously irregular shape, was known as the " shoe"; it was thick and high at the one side on which rested the string, and low and narrow at the other which was left loose so that it vibrated against the belly with every movement of the bow, producing a trumpetlike timhre. It is to this feature, in conjunction with its general resemblance in contour to the marine speaking-trumpet of the middle ages, that the name of the instrument is doubtless due.

There was at first but one string. generally a \(\mathbf{D}\) violoncello string. which was not stopped by the fingers in the usual way, but played only in harmonies by lighty touching it with the thumb at the nodal points. The heavy blow, similar to that of the violoncello, is used between the highest positions of the left hand at the nodal points and the nut of the head. In a Trummscheit in the collection of the Kgl. Hechochule, at Charlottenbury (No. \(7^{72}\) in catalogue) the frets are lettered A, D, F, A, D, F, G, A, B, C, D. Sometimes an octave string. hali the length of the melody string, and even two more, respectively the twelfth and the double octave, not resting on the bridge but acting as sympathetic strings, were added to improve the timbre by strengthening the pure harmonic tones without increasing the blare due to the action of the bridge. In Germany, at the time when the trumpet was extensively used in the churches, nuns often substituted the tromba marina, whence the name Nonnewgeige. In Fraace, the Grando Ecuric du Roi cemprised five trumpets-marine and cromornes among the band in I662, when the charge was mentioned for the first time in the accounts; and in 1666 the number was increased to six The instrument fell into disuse during the first half of the 18 th century, and was only to be seen in the hands of itinerant and street musicians.
(K. S.)

TROMBONE (Fr. Irombone, Ger. Posaune, Ital. Irombonc). an tmportant member of the brass wind family of musical instruments formerly known as sackbot. The trombone is characterized by the slide, consisting of two parallel cylindrical tuhes, over which two other cylindrical tubes, communicating at their lower extremities by means of a short semicircular

Fio. 1.-Tenor Trombone (Besson \& Co.).
pipe, slip without loss of air. The outer tube, therefore, slides upon the inner, and as it is drawn downwards by the right hand opens a greater length of tube proportional to the depth of pitch required. When the slide is closed the instrument is at its highest pitch. To the upper end of one of the inner tubes is fastenced the cup-shaped moutbpiece and to the end of the other tule is fixed the bell-joint. This joint, on the proper proportions of which depend in a greater measure the acoustic propertics of the trombone, consists of a length of tubing with conical bore widening out into a large bell and doubler back once upon itself in a plane at right angles to that of the slide. The bell joint is strengthened by two or three stays, and the slide also has two, one between the inner immovahle tuhes and the other on the outer sliding tubes, by means of which the slide is drawn oyt and pushed in.

Sound is produced on the trombone, as on the hom, by means of the lips stretched like a vibrating reed across the cup mouthpiece from rim to rim; the acoustic principles involved are the same for hoth instruments. By overblowing, i.e. by the varying tension of the lips and pressure of hreath. the harmonic series is obtained, which is effective between the second and the tenth barmonics, the fundamental being but rarefy of practical use.
There se seven positions of the slide on the trombone, ench
giving a theoretical fundamental tone and its upper partials a semitone lower than the last, and corresponding to the seven shifts on the violin and to the seven positions on valve inst rumints. These seven positions are found by drawing out the slide a little more for each one, the first position being that in which the slide remains closed. The performer on the trombone is just as dependent on an accurate ear for finding the correct positions as a violinist.
The table of harmonics for the seven positions of the tenor trombone in B , is appended; they furnish a complete chromatic compass of two octaves and a sixth.

These notes represent all the notes in practical use, although it is possible to produce certain of the higher harmonics. The instrumont being non-transposing, the notation represents the real mounds.

The fur chief trombones used in the orchestra are the following: -

The Alto in \(E\) flat or \(F\).

The Tenor-Bass in B flat.

The Bass in \(F\) or \(G\)
(with double slide in E flat).

(む)
The Contra-Bass in B flat.
An octave below the Tenur-Bass.

The compass given above is extreme and includes the notes obeained by means of the slide; the notes in brackets are very difficult ; the fundamental notes, even when they can be played, are not of much practical use. The contra-bass trombone, although not mach in request in the concert hall, is required for the Nibelungen Ring, in which Wagner has scored effectively for it.

The quality of tone varies greatly in the different instruments and registers. The alto trombone has neither power nor richness of tone. but sounds hard and has a timbre between that of a trumpet and a French homs. The tenor and bass have a full rich quality suitable for heroic, majestic music, but the tone depends greatly on the performer's method of playing; the modern tendency to produce a harsh, noisy blare is greatly to be deplored.

Besides the aide trombone, which is most largely wat, there are the valve trombones, and the doutle-slide trombones. The former
are made in the same keys as the instruments given above and are constructed in the same manner, except that the slide is replaced by three pistons, which enable the performer to obtain a greater technical execution; as the tone suffers thereby and loses its characteristic timbre, the instruments have never become popular in England.

Fig. 2.
The double-slide trombone (fig. 2) -patented by Messes Rudall Carte \& Co. but said to have been originally invented by Halary in 1830is made in \(\mathrm{Bb}, \mathrm{G}\) bass and \(\mathrm{E} b\) contrabass. In these instruments each of the branches of the slide is made half the usual length. There are four branches instead of two and the two pales lie one over the other, each pair being connected at the bottom by a semicircular tube and the second pair similarly at the top as well. The usual bar or stay suffices for drawing out both pairs of slides simultaneously, but as the lengthening of the air column is now doubled in proportion to the shift of the slide, the extension of arm for the lower positions is lessened by half, which increases the facility of execution but calls for greater nicety in the adjustment of the slide. more especially in the higher positions.
The history of the evolution of the trombone from the huccina is given in the article on the Sackbut (q.v.), the name by which the earliest draw or slide trumpets were known in England. The Germans call the trombone Posounc, formerly buzoun, busine, pusim or pram in the poems and romances of the 12 th and 13 th century, words all clearly derived from the Latin buccina. The modern designation "large trumpet" comes from the Italian, in which lrombe means not only trumpet, but also pump and elephant's trunk. It is difficult to say where or at what epoch the instrument was invented. In a psalter (No. 20) of the rath century, preserved at Boulogne, there is a drawing of an instrument which bears 2 great resemblance to a trombone deprived of its bell. Sebastian Virdung, Ottmar Luscinius, and Martin Agricola say little about the trombone, but they give illustrations of it under the name of busaun which show that early in the 16th century it was almost the same as that employed in our day. It would not be.correct to assume from this that the trombone was not well known at that date in Germany, and for the following reasons. First, the art of trombone playing was in the isth century in Germany mostly in the hands of the members of the town bancis, whose duties included playing on the watch towers, in churches, at pageants, banquets and festivals, and they, being jealous of their privileges, kept the scerets of their art closely, so that writers, such as the above, although acquainted with the appearance, tone and action of the instrument would have but little opportunity of teaming much about the method of producing the sound. Secondly, German and Dutch trombone players are known to have been in request during the 5 th century at the courts of Italian princes. \({ }^{1}\) Thirdly, Hans Neuschel of Nuremberg, the most celebrated performer and raker of his day, had already won a name at the end of the 15 th century for the excellence of his "Posaunen," and it is recorded that he made great improvements in the construction of the instrumer: in 1498, \({ }^{3}\) a date which probably marks the transition from archbut to trombone, by enlarging the bore and turning the Lell-joint round at right angles to the slide. Finally in early German translations of Vegetius's De re military (1470) the buccina is described (bk. MIr., 5) as the trumpet or posaun which is drawn ia and out, showing chat the instrument was not only well known, but that it had been identified as the descendant of the buccina.
By the it century the trombone had come Into vogue in England, and from the name it bore at first, not sackbut, bul shook musher, it
\({ }^{1}\) E. Van der Straeten, Las Musiciens nérlondais p. stu
\({ }^{-3}\) See G. ven-Retberg "Lur Gesch. d. Musik-insir monte" in Anseiger fur Kunde der deulschen Vorzeil p. 241. (Nirenberg, 1860). See also letters from Jorg Neuschel! \(1540-1545\) in : 'omilusheffe \(f\). Musthwissensehaft, ix. p. 149 seq.
is evident that the instrument had been introduced from Spain and not from France (where it bore the name of saquebute), as some have assumed from the more frequent use of the word sackbut. The band of musicians in the service of Henry Vlll. included ten eackbut players, and under Elizabeth, in 1587 , there were six English instrumentalists then enjoyed a certain reputation and were sought for by foreign courts; thus in 1604 Charles II. of Lorraine sought to recruit his sackbut players from English bands. \({ }^{2}\) Praetorius \({ }^{2}\) classes the trombones in a complete family, the relative tonalities of which were thus composed: 1 Alt-Posaun, 4 Gemeine rechte Posaunen, 2 Quarl-Posauricn, 1 Octor-Posaun-eight in all. The Alt-posaun was in D. With the slide closed. it gave the first of the accompanying harmonics:-

The gemeine rechte Posaunen, or ordinary trombones, were in A. Without using the slide they gave the subjoined sounds:-

The Quart-Posaun was made either in \(E_{\text {, }}\) the fourth below the gemeine rechte Posaun, or in D , the lower fifth. In the latter case if was exactly an octave below the Alt-Posaun. The Octav-Posaun was is A. it was constructed in two different fashions: either it had a length double that of the ordinary trombone, or the slide was shortened, the length of the column of air being still maintained by the adaptation of a crook. The first system, which was invented by Hans Schreiber four years before the work of Praetorius a ppeared, gave the instrumentalist a slide by which he could procure in the lower octave all the sounds of the ordinary trombone. The second system, whieh Praetorius had known for years, was distinguished from the furst, not only by modifications affecting the form, but also by a larger bore. Merscnne \({ }^{3}\) calls the trombone frompetle harmonigue, or tuba tractilis. He describes carefully the seven positions and gives the diatonic scale for the first octave, but he does not, like Praetorius, mention the pitch of the trombones in use in his day. He establishod this fact, however, that it was customary in France, as in Germany, to lower the instrument a fourth below the pitch of the ordinary trombone by means of a tortil, a kind of crook with a double turn that was fitted bet ween the bell and the slide " in order," he said, "to make the bass to hautbois concerts." This system, so simple and rational, might have been expected always to serve for the basis of the technique of the instrument but from the middle of the 18 th century the art of playing the trombone became the object of purely empiric teaching. Owing to the decline in the popularity of the trombone during the 18 th century in England, France, Cermany and Italy, writers of that period are sometines at a loss to describe the working and effect of theslide, as were the early 16th-century authors. J. I. Eisel, and after him Jacob Lotter, whose work is a rechauffe of Eiscl's, mention four principal positions, "the others not being of much importance." The lowering of the pitch effected by means of these four positions however, is almost equal to that of the seven positions of the modern trombone. The tenor or ordinary trombone is given as an example. It stood in the first position in A. The second position, equal to the modern third produced the harmonic series of the fundamental \(G\) one tone lower than the first position. The third position gave FF again a tone lower and corresponding to our sixth position. The fourth position, which extended so far outward "that the arm could hardly reach it," gave Easfundamental. The intermediate sernitones, instead of being considered as positions, are treated as accidentals. lowering or raising any note obtained in one of the positions by drawing out, or pushing in, the slide approximately an extra two-fingers breadth. It would not be correct to state without qualification that four positions only were used on the trombone in the 18 hh century.

Samuel Wesley, who has left notes on the scales of various instruments, in his own hand (Add MS. 35011 fol. 166 Brit. Mus.), has added under the scales of the trombones-bass, tenor and altothe remark "sacbut or double trumpet, the scale of which is wanting.

Of all wind instruments the trombone has perhaps been least modified in form; changes have occasionally been attempted, but for the most part with only trifling success. The innovation which has had the most vogue dates from the end of the 18 th century; it consisted in bending the tube of the bell in a hall circle above the head of the exccutant, which produced a very bizarre effect. It also gave rise to very serious inconveniences; by destroying the regulanity of the proportions of the bell it prejudicially affected the quality of boriend limomations.of the instrument. For a lung time the curned bell with its serpene's mask known as the
- Orgonerrupkia

Bucin-a term borrowed from the French in this instance-was maintained in military music, and it is not so very long since it was completely given up. By giving a half turn more to the bell tube its opening was directed to the back of the executant ; but this

F1G. 3.-Contrabass Trombone (Boosey \& Co.).
form, in fashion for a little while about 1830 , was not long adhered to, and the trombone reassumed its primitive form, which is still maintained. As appears from a patent deposited by Stolzel and Blumel at Berlin on the 12th of April 1818 the application of ventils or pistons was then made for the first time: The ventils, at first two in number, effected a definite lengthening of the instrument. The first augmented the length of the tube by a tone, lowering by as much the natural harmonics. The second produced a similar effect for a semitone, and the simultancous employment of the two pistons resulted in the depression of a tone and a half. The principle, thercfore, of the employment of ventils or pistons is the same as that which governs the use of slicles (see Valves). Notwithstanding the increased facslity obtained by the use of pistons, they are very far from having gained the suffrage of all players: many prefer the slide, believing that it gives a facility of cmission that they cannot obtain with a piston trombone. The flat tonalities having been preferred for military music since the beginning of the \(19 t h\) century the pitch of each variety of trombones lass been raised a semitone. At present six trombones are more or less in use, viz. the alto trombone in \(\bar{F}\), the alto in \(E b\) (formerly in \(D\)), the tenor in \(\mathbf{B b}\) (formerly in A), the bass in G, the bass in F (formerly in E), the bass in Eb (formerly in D), and the contrabass in Bb. This transposition has no reference to the number of vibrations that may be officially or tacitly adopted as the standard pitch of any country or locality. A trombone an octave lower than the tenor has recently been reintroduced into the orchestra, principally by Wagner. The different varieties just cited are constructed with pistons or slides, at the case may be.

Further information on the trombone will be found in the monographs by the Rev. F. W. Galpin, "The Sackbut: its Evolution and History," Proc. Mus. Assoc. (1906-1907); by Victor Mahillan, Le Trombone, son histoive, sa theorie, so cons/ruchion (Brussels, London, 1907). Before his recent death Professor George Case had in preparation an important work on the trombone. (V. M.; K. S.)

TROMP, the name of two famous Dutch admirals.
Martin Harpertzoon Tromp (1597-1653) was born at Brielle, South Holland, in 1597 . At the age of cight he made a voyage to the East Indies in a merchantman, but was made prisoner and spent several years on board an English cruiser. On making his escape to Holland he entered the navy in 1624 , and in 1637 was made lieutenant-admiral. In February 1639 he surprised, off the Flemish coast near Gravelines, a large Spanish fleet, which he completely destroyed, and in the following September he deleated the combined fieets of Spain and Portugal off the English coast-achieverments which placed him in the first rank of Dutch naval commanders. On the outbreak of war with England Tromp appeared in the Downs in command of a large feet and anchored of Dover. On the approach of Blake he weighed anchor and stood over towards France, but suddenly altered his course and bore down on the Englisl fleet, which was much inferior to his in rumbers. In the engagement which followed (May 19, 1652) he had rather the worst of it and drew off with the loss of two ships. In November he again appeared in command of eighty ships of war, and a convoy of 300 merchantmen, which he bad under taken to guard past the English coast. Blake resolved to attack him, and, the two fleets coming to close quarters near Dungeness on tbe 30 th of November, the English, after severe losses, drew off in the darkness and anchored off Dover, retiring rext day to tbe Downs, while Tromp anchored ofl Boulogne
- This was mentioned in the Exiprig Al/g. musik, Zig. (1815), the merit of the irvention leings assigred to Heinrich Siulzel of Pless in Silesia.
till the Detch merchantmen had all passed beyond danger. The statemeat that he sailed up the Channel with a broom at his masthead in token of his ability to sweep the seas is probably mythical. In the following February (1653), while in charge of a large convoy of merchantmen, he maintained a running fight with the combined English fleets under Blake, Penn and Monk of Portand to. the sands of Calais, and, though baffing to some extent the purposes of the English, had the worst of the encounter, losing nine ships of war and thirty or forty merchantmen. On the 3td of June he lought an indecisive battle with the English fleet under Richard Dean in the Channel, but the arrival of reinforcements under Blake on the following day enabled the English to turn the scale against him and he retired to the Texel with the loss of seventeen ships. Greatly discouraged by the results of the battle, the Dutch sent commissioners to Cromwell to treat for peace, but the proposal was so coldly received that war was immediately renewed, Tromp again appearing in the Channel towards the end of July 1653. In the hotly contested confict which followed with the English under Monk on the 2gth Tromp was shot by a musket bullet through the heart. He was buried with great pomp at Delft, where there is a monument to his memory in the old church.
2. Cornelius Van Troyp (1629-169f), the second son of the preceding, was born at Rotterdam on the gth of September 1629. At the age of nineteen he commanded a small squadron charged to pursue the Barbary pirates. In 1652 and 1653 be served in Van Galen's fleet in the Mediterranean, and after the action with the English fleet off Leghorn on the s3th of March 1653 , in which Van Galen was killed, Tromp was promoted to be rear-admiral. On the 13th of July 1665 his squadron was, by a hard stroke of illfortune, defeated by the English under the duke of York. In the following year Tromp served under De Ruyter, and on account of De Ruyter's complaints of his negligence in the action of the 5th of August he was deprived of his command. He was, however, reinstated in \(\mathbf{1 6 7 3}\) by the stadtholder William, afterwards king of England, and in the actions of the 7th and of the 14th of June, against the allied fleets of England and France, manifested a skill and bravery which completely justified his reappointment. In 1675 he visited England, where he was received with honour by King Charles II. In the following year he was named licutenant-admiral of the United Provinces. He died at Amsterdam, on the 29th of May 1691, shortly after he had been appointed to the command of a fleet against France. Like his father he was buried at Delft.

See H. de Jager, Hel Geslacht Tromp (1883).
TROMSO, a seaport of Norway, capital of the aml (county) and stift (diocese) of the same name on the north-western coast. Pop. (1900), 6955. It stands on the eastern shore of a low fertile islet between Kvalo and the mainland, in \(69^{\circ} 38^{\prime} \mathrm{N} ., 18^{\circ}\) s5 E . (the latitude is that of Disco, Greenland). The vegetation of the island (mountain ash and birch) is remarkably luxuriant. The buildings, mostly of wood, include the town-hall and a museum, which contains a good zoological collection. Sealskins and other furs, and whale and seal oit, are exported, and the berring fishery is very productive. Imports are coal, textiles, salt, grain and flour. Mean temperature of year \(36.4^{\circ} \mathrm{F}\). February \(25^{\circ}\); July \(51.8^{\circ}\). Tromsì was founded in 1794 . A number of Lapps usually encamp in the neighbouring Tromsdel during summer. The coast scenery, with its islands and snowy monntains, is witd and beautiful.

TRONCHET, PRANCOIS DENIS (1726-1806), French jurist, was barn in Paris on the 23rd of March 1726 He was \(2 n\) avocat at the parlement of Paris, and gained a great reputation in a consultative capacity. In 1789 he was elected deputy to the states-general. In the Constituent Assembly he made himself especially conspicuous by his efforts to obtain the rejection of the jurisdiction of the jury in civil cases. In the king's trial, be was chosen by Louis as counsel for the defence, and performed this difficult and dangerous task with high ability and courage. During the Directory he was deputy at the Coundil
of the Ancients, where he unsuccessfully opposed the resolution that judges be nominated by the executive directory. Under the Consulate he was president of the tribunal of cassation, and collaborated in preparing the final scheme for the civil code. He had a marked influence on the code, and succeeded in introdacing common law principles in spite of the opposition of his collcagues, who were deeply imbued with Roman iaw. He died on the roth of March 1806, being the first senator of the empire to be buried in the Panthton.
See Francois de Neulchatear, Discours sur Tronchet (Paris, undated); Coqueret, Essai swy Tromched (Caen, 1867).

TRONDHSE1, or TERONDEJEM (sometimes written in the German form Drouthcim), a city and seaport of Norway, chief town of the stifl (diocese) of Trondhjem and the amt (county) of South Trondhjem, 384 m . by rail N. of Christiania. Pop. (1900), 38,156. It lies on the south side of the broad Trondhjem Fjord on a low peninsula between the fjord and the River Nid, its situation, though picturesque, lacking the peculiar beauty of that of Christiania or Bergen. The latitude is \(63^{\circ} 26^{\prime} \mathrm{N}\)., that of southern Iccland. In front of the town is the islet of Munkholm, formerly a monastery and now a fortress; on the high ground to the cast is the small stronghold of Christiansten. The houses are principally of wood, and the streets are wide, as a precaution against the spreading of fire. The principal building is the cathedral, standing finely on a slightly elevated open site, and dating in part from the close of the 1 ith century, but chiefly belonging to the 12 th and \(13^{\text {th }}\) centuries (c. \(11^{61-}\) 1248). Its extreme length is 325 ft . and its extreme breadth 124 ft .; but in the \(\mathbf{3 4} \mathrm{th}\), 5 th and \(17^{\text {th }}\) centuries it suffered greatly from repeated fires, and after the last of these the nave was completely abandoned and soon became a heap of ruins. The whole buiking, however, had been extensively and jodiciously restored, and is the finest church in Norway and the scene of the coronation of the Norwegian sovereigns. It is cruciform, with a central tower, and has an eastern octagon which may have been copied from the corona of Canterbury Cathedral, as Eystein, archbishop of Trondhjem (1160-1188) and an active builder, was in England during his episcopate. The cathedral contains rich work in Norman style, and also much that is comparable with the best Early English. In the muscums at Trondhjem there are interesting toological and antiquarian collections, also exhibits illustrative of the fisheries and other industries. The port, which has regular communication with all the Norwegian coast town--Hull, Newcastle, Hamburg, \&c.-carries on an extensive trade in timber, oil, fish, copper, \&c. The industries include shipbuilding, sawmilling, wood-pulp and fish-curing works and machine shops. Imports (coal, grain, salt, machinery, \&c.) come chiefly from Great Britain. A considerable portion of the exports pass into Sweden by the Meraker railway.

Trondhjem, originally Nidaros, was founded by Olaf Tryggvason, who built a royal residence and a church here in 996. It was made an archhishopric in 1152 . The city attained its highest development about the latter half of the \(13^{\text {th }}\) century, by which time it had become an important pilgrimage centre and had as many as fifteen churches. It sustained frequent sicges, as well as devastating conflagrations. Its importance declined about the time of the Reformation when it ceased to be a resort of pilgrims.

TROON, a police burgh, scaport and watering-place of Ayrshire, Scotland. Pop. (1901), 4764. It is situated 6 m . N. hy W. of Ayr, and 35 m. S.W. of Glasgow hy the Glasgow \& SouthWestern railway. It has the best matural harbour in the county, with over a mile of quayage, a breakwater 3000 ft . long, and two graving docks. Shipbuilding is the leading industry, and there is a rope and sail factory. The town contains a public hall and library and reading-room. The municipality controls the waterworks and gasworks. Fullarton House, 1 m . southeast, is a seat of the duke of Portland; and at Auchans, about 3 m . west, Susannah, countess of Eglinton, in 1773 entertained Dr Johnson. Adjoining this estate stands the ruined castle of the Dundonalds.

TROOP (an adaplation of Fr. troupe, O. Fr. irope; ci. Itad. troppa, truppa; Med. Lat. truppus; the origin is doubtiul; suggestions have been made that it represcnts a German conception of Latin turbe, crowd, or is an adaptation of Norw. loy \(p\), llock), a company or assemblage of persons, the term being usually applied in the plural to a body of soldiers of varying strength and of different arms. Specifically, a "troop" is one of the smaller units into which a regiment of horse-soldiers is divided, forming a subdivision of a squadron. Roughly speaking, it consists of sixteen files, and does not exceed from 30 to fo sabres; in some armies, however, a maximum limit of 60 sahres are found (see Cavalay). For the military ceremony known as "trooping of the colours," see Colours, Military.

TROPHY (Gr. tpónaloy, from tp' \(\pi \omega\), put to flight; Lat. (rupaeum), in classical antiquilies, in the strict sense a memorial of vietory set up on the field of batule at the spot where the enemy had been routed. It consisted of captured arms and standards hung upon a tree (preferably an olive or an oak) and booty heaped up at its foot, dedicated to the god to whom the victory was attributed, especially Zeus Tropaeus. If no suitable tree was at hand, a lopped trunk was fixed in the ground on an eminence. The tree or trunk bore an inscription containing the names of the god and the combatants, a list of the booty and of the chief incidents of the battle or the entire war. In the case of a naval victory the trophy, composed of the beaks of sbips (sometimes an entire ship), was generally set up on the nearest beach and consecrated to Poseidon. It was regarded as a sacrilege to destroy a trophy, since it was dedicated to a god; but, on the other band, one that had fallen to pieces through lapse of time was not restored, to prevent feelings of resentment being kept alive. For the same reason trophies of stone or metal were forbidden by law, although this rule was not always observed. To facilitate reconciliation with their conquered foes, neither the Macedonians nor the Romans in early times erected such trophics. The usual custom was to take home the spoils, and to use them for decorating public buildings and private houses. The first example of a tropby set up after the Greek fashion occurs in I2I b.C., when Domitius Ahenoharbus celebrated his victory over the Allobroges in this manner. Although instances are not uncommon in Jater times, the Romans still showed a preference for setting up the memorials of victory in Rome rather than on the field of battle. These were decorated with the spoils, and were themselves called trophies; such were the trophies of Marius recording his victories over Jugurtha and the Cimbri and Teutones. In later republican and imperial times cnormous columns, on which the chief incidents of a baltle or war were represented in bas.relief, were frequently erected, the most famous and most perfect example being the column of Trajan (see Rome: Archacology, "The Imperial Forums").

TROPIC-BIRD, so colled of sailors from early times, \({ }^{1}\) because as W. Dampicr (Voyages, i. 53) among many others testifies, it is "never seen far without either Tropick"; hence, indulging a pretty fancy, Linnaeus bestowed on it the generic term, continuer by modern writers, of Phachion, in allusion to its attempt to follow the path of the sun. \({ }^{2}\) There are certainly three wellmarked species of this genus, but their respective geographical ranges have not yet been definitely laid down. All of them can be easily known by their totipalmate condition, in which tbe

\footnotetext{
More recently sailors have taken to call it "Boatswain-bird" -a name probably belonging to a very different kind. (See Skua.)
\({ }^{2}\) Occasionally, perhaps through violent storms, tropic-birds wander very far from their proper haunts. In 1700 Leigh, in his Not. Hist. Lancashive (i. 164, 195، Birds, pl. i., Gig. 3), described and figured a "Tropick Bird " found dead in that county. Another is said by Mr Lees (Zoologist, 2nd series. p. 2666) to have been found dead at Cradley near Malvern-apparently before 1856 JJ . H. Gurnev jun., op, cui.. p. 4766)-which, like the last, would seem (NW. Heaton, op. cit p. p. 5086) to have been of the species known Peaton, oplhereus. "Naumann was told (Rhea, i. 25) of ifs supp P. acthereus. Naumann was told (Rhea, i. 25)
occurrence at Heligoland, and Colonel Legge (B. occurrence at Heligoland, and Colonel Legge (B. by Degland and Gerbe (Orwilh. Cupophenme, ii. 363) of an albatross.
}
four tocs of each foot are united by a web, and by the great length of the two middle tail-quills, which project beyond the rest, so as to have gained for the birds the name of "Rabijunco," " Paille-en-queue "and " Pijlstaart "among mariners of different nations. These hirds fy to a great distance from land and seem to be attracted by ships, frequenily hovering round or even setting on the mast-head. Their flight is performed by rapid strokes, unlike the action of other long-winged sea-fowl, and they are rarely seer on the water.

The yellow-billed tropic-bird, P. flovirostris or candidus, appears to have habitually the most northerly, as well, perhaps, as the widest range, visiting Bermuda yearly to breed there, but also occurring numerously in the southern Atlantic, the Indian, and a great part of the Pacific Ocean. In some islands of all these three it breeds, sometimes on trees, which the other species are not known to do. However, like the rest of its congeners, it lays but a single egg, and this is of a pinkish wilite, mottled, spotted, and smeared with brownish purple, often so elosely as to conceal tbe ground colour. This is the smallest of the group, and hardly excceds in size a large pigcon; but the spread of its wings and its long tail make it appear more bulky than it really is. Except some black markings on the face (common to all the species known), a large black patch partly covering the scapulars and wing-coverts, and the black shafts of its elongated rectrices its ground colour is white, glossy as satin, and often tinged with roseate. Its yellow bill readily distinguishes it from its larger congener \(P_{\text {r }}\) achereus, but that has nearly all tbe upper surface of the body and wings closely barred with black, while the shafts of its elongated rectrices are white. This species has a range almost equally wide as the last; but it does not seem to occur in the western part of the Indian Occan. The tbird and largest species, the red-tailed tropic-bird, P. qubricauda or phoenicurus, not only has a red bill, but the elongated and very attenuated rectrices are of a bright crimson red, and when adult the whole bady shows a deep roscate tiage. The young are beautifully barred above with black arrow-headed markings. This species has not been known to occur in the Atlantic, but is perhaps the most numerous in the Indian and Pacific oceans, in which last great value used to be attached to its tail-feathers to be worked into ornaments, \({ }^{3}\)
That the tropic-birds form a distinct family, Phaethontidae, of the Steganopodes (i he Dysporomorphae of Huxley), was originally maintained by Brandt. and is now generally admitted, yet it cannol be denied that they differ a good deal from the other menbers of the group'; indeed St G. Mivart in the Zoological Transactions (x. 364) hardly allowed Fregala and Phethon 10 be steganopodous at alli and one curious difference is shown by the eggs of the latter, which are in appearance so wholly unlike those of the rest. The osteology of two species has been well described and illustrated by Alph. Milne-Edwards in A. Grandidier's fine Oiseaur de Mado. gascap (pp. 708-704, pls. 279-2814).
(A. N.)

TROPINE, \(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}\), a base formed together with tropic acid, \(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{O}_{3}\), in the hydrolysis of the alkaloid atropine (K. Kraut, Ann., 1863, 128, P. 280; 1865, 133, p. 87). It crystallizes in plates which melt at \(63^{\circ} \mathrm{C}\). and boil at \(233^{\circ} \mathrm{C}\).; it is very hygroscopic and easily soluble in water. It is an optically inactive, strongly alkaline tertiary base. On heating with sodium in amyl alcoholic solution it it sransformed into a stereoisomer, identical with the \(\downarrow\)-tropine obtained by hydrolysing tropa-cocaine with hydrochloric acid. It possesses alcoholic properties, since it forms estrs, the so called "rmpermen" On distillation with caustic Laryla or Bodla line it decomposes into methylamine and (ropililine, \(\mathrm{C}_{-} \mathrm{H}_{3}\) (A. Ladenburg, Arm. 1883, 217, p. 74), the samie hydrocarbon being also obtained when it is desinuctively methylated, a certain amount of tropilime. C. \(\mathrm{H}_{10} \mathrm{O}\), being produced simaltaneously When heated wi himming hydrochloric acid to \(190-280^{\circ} \mathrm{C}\). it yields iro.
culime, CilisN, and with hydrl
iodo-compound, \(\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{NI}_{2}\), which, on reduction with zinc and hydrochloric acid, is converted intu hydrotropidine, \(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\). It yields various oxidation products. With an alkaline solution of potascium permanganate it yields tropigenine, \(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}\); with chromic acid in the presence of acetic acid it yields tropinone, \(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}\); and with chromic acid in tha, presence of sulphuric acid it yields tropinic acid, \(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}\).

Tropidine, \(\mathrm{C}_{2} \mathrm{H}_{12} \mathrm{~N}\), is a fiquid having an odour resembling that of conime. It is a etrong tertiary base, and is an unsaturated compound. forming addition products with the halogen acids. Hydrotropidine, \(\mathrm{C}_{3} \mathrm{H}_{1} \mathrm{~N}\), is also a liquid. Ins bydrochloride on distiflation loses methyl, chloride and yieids norhydrotropidinc, \(\mathrm{C}_{3} \mathrm{H}_{1} \mathrm{~N}\), a compound which is a secondary base, and whose hydsoentoride when distilled over zinc duet yields e-ethylpyridine. Tropiaic acit, \(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}\left(\mathrm{CO}_{3} \mathrm{H}\right)_{2}\), obtained as above, is inactive; it ras resolvod by J. Gadamer (Arch. Pharm.. 1901, 239. P. 663) by means of its cinchonine salt. It is a dibasic acid, and the methiodide of its dimethyl ester on fusion with caustic alkalis jields m-adipic acid. It is apparently a derivative of \(N\)-methy! pyrrollidine, since it may be oxidized ultimately to N -methyl suecinimide. Tropigenime, \(\mathrm{C}_{7} \mathrm{H}_{1} \mathrm{NO}\), is a aecondary base.
The most important of the oxidation products of tropine is tropinone, \(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}\), which is a ketone containing the grouping \(-\mathrm{CH}_{2}-\mathrm{CO} \cdot \mathrm{CH}_{2}-\) since it yields a di-isonitroso derivative, a dibenzal derivative, and also forms mono- and di-oxalic esters. It is a etrosg base and has a powerful reducing action. Its constitution is determined by the above facts and also because tropinic acid on destructive pmethylation yields a diolefine dicarboxylic acid which on reduction is converted into n-pimelie acid. These data point to tropine possessing an unbranched chain of ecven carbon atoms and incidentaily determine the constitution of the other various oxidation products, \&c. (R. Willstütter, Ber.. 1895-1901). These compounds may consequently be represented as

On the synthesis of tropine, see R. Wilstatter, Ber., 1901, 34 , PP. 130, 3163.

Tropic acid. \(\mathrm{C}_{1} \mathrm{H}_{1} \mathrm{O}_{2}\), the other decomposition product of atropine, is 2 zaturated hydroxy acid which is readily converted into atropic acid \(\mathrm{C}_{0} \mathrm{H}_{5} \mathrm{O}_{3}\), by dehydrating agents. This latter acid is shown by all its reactions to be \(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}, 11\), a fact which is confrmed by its symthesis from acetophenone by the action of phoophorus pentachloride, foilowed by the decomposition of the resulting chloride with an alcoholic solution of potassium cyanide and subsequent hydrolysis of the nitrike so formed. These results show that tropic acid must be either \(\mathrm{C}_{4} \mathrm{H}_{4} \cdot \mathrm{ClH}_{\left(\mathrm{CH}_{2} \mathrm{OH}\right.}\)) \(\cdot \mathrm{CO}_{3} \mathrm{H}\) or \(\mathrm{C}_{4} \mathrm{H}, \mathrm{C} \cdot(\mathrm{OH})\left(\mathrm{CH}_{2}\right) \cdot \mathrm{CO}_{3} \mathrm{H}\). and since the latter compound has been prepared from acetophenone hy the addition of the elements of hydrocyanic acid. foliowed by subsequent hydrolysis and is an isomer of tropic acid, it follows that iropic acid must be represented by the former of the two formulae. Hence the alkaioid atropine, being a tropine-tropate, must have the annexed formula-

TROPPAU (Polish, Oppava; Czech, Opasa), the capital of the Austrian duchy and crown land of Silesia, 180 m . N.E. of Vienna by rail. Pop. (1000), 26,725. It is situated on the Oppa river, close to the Prussian fronticr, and is a well-built town with extensive suburbs. The industries comprise the manufacture af cloth, industrial machines, sugar-refining, jute fabrics and bepwing. Troppau was founded in the 13 th century; hut Ifs only. chaim to historical mention is the fact that the enoarchs of Austria, Russia and Prussia met here on the tendencies of the Neapolitan revolution. of Troppau, bowever, left nearly the whole considered and decided at Laibach. The former F of Troppau is now divided between Austria and Hing the lion's share.

07, a conference of the allied sove-
Tatives to discuss a concerted policy with
raised by the revolution in Naples of angress, which met on the zoth of October

48io; the enperior Alexander L. of Russia and Francis L of Austria were present in person; King Frederick William ILL of Prussia was represented by the crown prince (afterwards Frederick William IV.). The three eastern powers were further represented by the ministers responsible for their foreign policy: Austria by Prince Metternich, Russia by Count Capo d'Istria, Prussia by Prince Hardenberg. Great Britain, on the other hand, which objected on principle to the susgested concerted action against the Neapolitan Liberals, sent no plenipotentiary, but was represented by Lord Stewart, ambas. sador in Vienna. France, too, though her policy was less clearly defined, had given no plenary powers to her representatives. Thus from the very first was emphasized that division within the concert of tbe powers which the outcome of the congress was to make patent.

The characteristic note of this congress was its intimate and informal nature; the determining fact at the outset was Metternich's discovery that he had no longer anything to fear from the " Jacobinism" of tbe emperor Alexander. In a three hours \({ }^{1}\) conversation over a cup of tea at the little inn he had heard the tsar's confession and promise of amendment: "Aujourd'bui je déplore tout ce que j'ai dit et fait entre les annees 1814 et \(18 \mathrm{r} 8 \ldots\) Diteg-moi ce que vous voulez de moi. Je le ferai" (Metternich to Esterhazy, Oct. 24, 1820, F. O. Austria Dom. Sep-Dec. 1820). His failure to convert Castlereagh to his views was now of secondury importance; the "free" powers being in accord, it was safe to ignore the opinions of Great Britain and France, whose governmente, what. ever their goodwill, were fettered by constitutional forms.

In a scries of conferences-to which the representatives of Great Britain and France were not admitted, on the excuse that they were only empowered to "report," not to " decide "-was drawn up the famous preliminary protocol signed by Austria, Russia and Prussia on the 19tb of November. The main pronouncement of the "Troppau Protocol" is as follows: "States which have undergone a change of government due to revolution, the result of which threaten other states, ipso facto cease to be members of the European Alliance, and remain excluded from it until their situation gives guarantees for legal order and stability. If, owing to such alterations, immediate danger threatens other states the powers bind themiselves, by peaceful means, or if need be, by arms, to bring back the guilty state into the bosom of the Great Alliance."

No effort was made by the powers to give immediate effect to the principles enunciated in the protocol; and after its promulgation the conferences were adjourned, it being decided to resume them at Laibach in the following January (sce Lareacti).

For authorities see the bibliography to ch. i. "The Congresses," by W. Alison Phillipe, in the Cambridge Med. Hist. x. 787.

TROSSACERS, TRE (Gaelic, " the bristled country," a crude allusion to its physical features), a defile in the south-west of Perthshire, Scotland. It is a narrow, beautifully mooded glen, of no great depth, extending from Loch Achray to Loch Ratrine, and continued thence by a strip on tbe borth-eastern shore to a point above the now submerged Silver Strand opposite to Ellen's isle-a total distance of \(2 \frac{1}{3} \mathrm{~m}\). It is situated 8 m . W. of Callander and 5 m . N. of Aberfoyle, with both of which places there is daily communicalion by coach during the tourist season. It lies between the steep green slopes of Ben Venue (2303 ft .) on the S.W. and the precipitous craigs of Ben A'an (1750 ft .) on the N.E. Characterized by hovely scenery, owing to its harmonious blending of wood, water, rock and hill, the region has been famous ever since the appearance of Sir Walter Scott's The Lady of the Lake and Rob Roy. Before the construction of the road that now winds through the pass, Sir Walter says that the only arcess to the lake was by means of a ladder formed out of the branches and roots of trees. A rustic pier has been built at the Trossachs end of Loch Ratrine for the convenience of tourists, and a large hotel stands on the northern shore of Loch Achray, near the beginning of the pass.

TROTZENDORFF (or TROCEDORFIUS), VALENTIN FRIEDLAND (1490-1556), German educationist, called Trotzendorff from his birthplace, near Görlitz, in Prussian Silesia, was born on the 14th \(^{\text {th }}\) February 1490, of parents so poor that they could not keep him at school. The boy taught himself to read and write while herding catule; he made paper from birch bark and ink from soot. When difficultics were overcome and he was sent for education to Görlitz, his mother's last words were "Stick to the school, dear son." The words determined his career: he refused all ecclesiastical promotion, and lived and died a schoolmaster. He became a distinguished student, learned Ciceronian Latin from Peter Mossellanus and Greek from Richard Croke, and after graduation was appointed assistant master in the school at Gobrlitz. There he also taught the rector and other teachers. When Luther began his attack on indulgences, Trotzendorff resigned his position and went to study under Luther and Melanchthon, supporting himself by private tuition. Thence he was called to be a master in the school at Goldberg in Silesia, and in 1524 became rector. There he remained three years, when he was sent to Liegnitz. He returned to Goldberg in 1531 and began that career which has made him the typical German schoolmaster of the Reformation period. His system of education and discipline speedily attracted attention. He made his best elder scholars the teachers of the younger classes, and insisted that the way to learn was to teach. He organized the school in such a way that the whole ordinary discipline was in the hands of the boys themselves. Every month a "consul," twelve " senators" and two "censors" were chosen from the pupils, and over all Trotzendorft ruled as "dictator perpetuus." One hour a day was spent in going over the lessons of the previous day. The lessons were repeatedly recalled by examinations, which were conducted on the plan of academical disputations. Every week each pupil had to write two "exercitia styli," one in prose and the other in verse, and Trotzendorf took pains to see that the subject of each excrcise was something interesting. The fame of the Goldberg School extended over all Protestant Germany, and a large number of the more famous men of the following gencration were taught by Trotzendorfi. He died on the 20th of April 1556.
See Herrmann, Merkwirdige Lebensgeschichte eines berihmien Schulmanns, V. F. Trotzendorfis (1727); Frosch. V. F. Trofzendorf. Rektor zu Goldberg (1818); Finzger, V.F. Trotzendorf (with the Goldberg portrait, and a complete list of his writings, 1825): Koehler. V. F. Trotzendorff, ein biographischer Versuch (1848). The biographical facts appear to be derived from a funeral or memorial oration delivered by Balthasar Rhau in the university of Wittenberg on the 15th of August 1564, and published in an edition of Trotzendorfi's Resarium (1565).
TROUBADOUR, the name given to the poets of southern France and of northern Spain and Italy who wrote in the languc d'oc from the 12th to the 14th centuries. In Provençal the word is spelt trobaire or trovador, and is derived from the verb trobar, to find, or to invent (Fr. Irowerer). The troubadour was one who invented, and originally improvised, poetry, who "found out" new and striking stanzaic forms for the elaborate lyrics he composed. In later times, the word has been used for romantic and sentimental persons, who dress in what is supposed to be medieval fashion, and who indite trivial verses to the sound of a lute; but this significance does less than justice to the serious artistic aims of the original and historic troubadours of Provence.
The earliest troubadour of whom anything definite is known is Guilhem LX. (b. 1071), count of Poitiers and duke of Aquitaine, whose career was typical of that of his whole class, for, according to his Provençal biographer, " he knew well how to sing and make verses, and for a lons time be roamed all through the land to deceive the ladies." The high rank of this founder of the tradition was typical of its continuation; by far the largest number of the troubadours belonged to the noble class, while no fewer than twenty-three of their number were reigning princes. Among them is a king of England, Richard 1., who is believed to have written in langue doil as well as in bangue d'oc, and who
has left at least one canzo, that written in prison, which is of remarkable beauty. These nohle troubadours were distinguished by their wealth and independence from those who made their song their profession, and who wandered from castle to castle and from bower to bower. But whether dependent or independent, the poets exercised a social influence which was extremely remarkable, and had been paralleled by nothing before it in the history of medieval poetry. They had great privileges of speech and censure, they entered into questions of politics, and above all they created around the ladies of the court an atmosphere of cultivation and amenity which nothing had hitherto approached. The troubadour was occasionally accompanied in his travels by an apprentice or servant, called a joglar, whose business was to provide a musical setting for the poct's words; sometimes it was not the troubadour himself, but his joglar, who sang the songs. It was a matter of jealous attention to the troubadour to keep his name and fame clear of the claims of the joglar, who belonged to a lower caste; although it is true that some poets of very high talent rose from being joglars and attained the rank of troubadours. The latter were looked upon with deep admiration, and their deeds and sayings, as well as their verses, were preserved and were even embroidered with fiction.
There were recognized about four husdred troubadours, during the whale period in which they flourished, from Guilhem de Poitiers down to Guiraut Riquier (c. 1230-1294). Several MS. collections of biographics have been preserved, and from these we gain some idea of the careers of no lewer than 112 of the poets. In this respect, the troubadours possess an immense advantage over the trouvères of northern France, of whose private life viry little is any longer known. Early in the living history of the troubadours their personal adventures came to be thought worthy of record. One of themsclves, Uc of St Cyr (c. \(1200-\) 1240), interested himself in "the deeds and words of goodly men and women," and in the collection of lives he seems to claim to be, in several instances, the biographer. At the beginning of the 14 th century it became the practice to preface the MS. works of each poet by a life of him, and even where the text seems to be quite independent, it is noticeable that there is little variation in the biography. One late troubadour, Rambaud of Orange, left a commentary on his own poems, and Guiraut Riquier one on those of a fellow troubadour, Guiraut of Calanson (1280). All this proves the poetry of Provence to have passed early into the critical stage, and to have been treated very seriously by those who were proficient in it. This is further shown by the respect with whicb the Provencal poets are mentioned by Dante, Petrarch and the authors of the Novelle Criliche.

The principal source of the liyes of the troubadours is a collection, evidently written by various hands, which was made towards the middle of the t 3 th century. Of these we have said that Uc of Saint Cyr was certainly one of the authors. Another source of information is the Vies des plus relibres et anciens podes provencaur, published by Jehan de Notredame or Nostradamus, in 1575. This work professed to be founded on the MSS. of a learned monk, who was librarian of the monastery of St Honorat, in the island of Lérins, and died there in 408 . He was known by no other name than that of the Monk of the Golden Isles. This book. unfort unately, lies under more than a suspicion of forgery. Nostradamus no doubt possessed valuable documents, but he did not hesitate to deal with them in a highly fantastic way. His Vies des poites has yet to be examined by careful and searching criticism. Even the genuinc biographies, and they are nu.aterous and atove suspicion, are often embroidered with fantastic and whimsical staicments which make a severe demand upon the credulity of a modern reader.

The verse form most frequently employed by the troubenturn was the sirventes, a term which is cartiest met with in the sceond half of the 12th century. The early critics believed this word to be derived from servir, and to mean that the poem was mode by a servant; but Paul Meyer has contented this derivation, and holds that a simicntes is a poe 10 say a sondoyer also employed the no mum he diblam
stanza. This was a morning-song, as the serena, a later invention, was an evensong. The planh was a funeral elegy, composed by the troubadour for the obsequies of his protector, or for those of the lady of his devotion. Most interesting of all, certaps, was the tewson, which was a lyrical dialogue between two persons, who discussed in it, as a rule, some point of amorous casuistry, but sometimes matters of a religious, metaphysical or salirical nature. The notion that the trouhadours cultivated epic or dramatic poetry is now generally discarded; they were in their essence lyrical (see Provençal. Literature).

The biographies of the troubadours, which, in spite of their imperfection and conventionality of form, throw an unparalleled light upon medieval literary life, may perhaps be most conveniently treated in connexion with the courts at which each group of them flourished it is in Poitou that we trace them first, where Guilhem, count of Poitiets, who reigned from 1087 to 1127, was both the carliest patron and the earliest poet of the school. This prince was the type of medieval gallantry, sudden and violent in arms, brilliant and impudent in wit, with women so seductive as to be esteemed irresistible. He led an army of 300,000 men in the crusade of 1 Ior, being then thirty ycars of age; he returned in dismal disarray, supported in his defeat by the arts of love and song. His levity was the wonder and delight of his contemporaries; William of Malmeshury, who speaks much of him, tells us of Guilhem's project to found a religious house at Niort for the worship of Venus. Guilhem of Poitiers was handsome, bold and of easy access; Gottfried of Vendome says that he moved among other men as a god among mortals for the beauty of his body and the magnanimity of his soul The surviving poems of the great count are simple in form; he does not attempt the technical subtleties of later poets; but he laboured at the art, and he was anxious to be thought a professional, not an amateur writer. His songs are highly personal and betray the author's variety, sensualit \(y\), wit and skill as a versifier.

The son of the earliest of the troubadours is known neither as a poet nor as a patron of poets, but the daughter of Guilhem IX. carried on her father's tradition. This was Eleanor of Guienne, at whose court Bernart of Ventadour rose to eminence. This poet was an exception to the rule that the troubadours belonged to the princely class. He seems to have been the son of a kitchen-scullion in the castle of Eble II., viscount of Ventadour. Eble was himself a poet, bolde graliosus in contilenis, but his compositions have wholly disappeared; he was eariy impressed, we know not how, by the talents of his servingboy, and be qrained him to be a poet. The wife of Ehle, the viecountess Agnes of Montluçon, who was extremely beautiful, encouraged the suit of the youthíl Bernart; indeed, they had sccretly loved one another from their childhood. The poems which this passion inspired are among the most admirable lyrics which have come down to us from the middle ages. The husband at last discovered the intrigue between his wife and the poet, and exiled Bernart from Ventadour, although, as it would scem, without violence. The troubadour took shelter with Eleanor of Guienne, who became in 1152 the queen-consort of Henry II. of England, himself́ a protector of poets It has been supposed Hat Bernart accompanicd the royal pair to London. He afterwads proceeded to the court of Raymond V. at Toulouse, where We is said to have remained until the death of that prince in rtas when be wilhdrew to a cloister at Dalou in Poitou. He min \(:=1\) hat dime have been at very old man.

The son of Herry II. Hewry Curtmantle, was the patron of anotber emineat inouloshty Wertram le ligor, wif unt of y the thom hom crigord, and he attached himself as a troubadour to the court of Richard Cocur de Lion. Dante had bees made acquainted with the highly complicated and obscure verse of Amatat Daniel by Guido Guinicelli, and thus to the historian
herature a most valuable link is provided between medieval modern poetry. Dante calls Dagitl the "smith," the
linished craftsman, of language, and it is evident that it was the brilliant ant of the Provencal's elaborated verse which delighted the Italian. In the Dc oulgori clogucntia Dante returned to the praise of Armaut Daniel, as the greatest of all those who have sung of love, and Petrarch was not less enthusiastic. His invention of forms of verse (see Sestina), in particular, dazzled the great Italians. But the seventeen siroentes which have survived scarcely sustain the traditional idea of the supremacy of Arnaut Daniel as a poet, while their lack of historical and personal allusions deprives them of general interest. Dante was curiously anxious to defend Arnaut Daniel as being a better artist than his immediate rival, Giraut de Bornelh, whose "rectitude" Dante admits, in the sense that Giraut was a singer of gnomic verses of a high morality, hut prefers the poetry of Daniel; critical posterity, however, has reversed this verdict. Giraut came from the neighbourhood of Limoges, passed over into Spain about 11 So , and became famous in the courts of Pedro II. of Aragon and other Spanish monarchs. He disappears about 1230 . There is a curious anecdote of his having incurred the hatred or the cupidity of the viscount of Limoges, who robbed him of his library and then burned his house to the ground. Giraut laments, in his poems, the brutality of the age and the lawlessness of princes. A troubadour of the same district of south-western France was Arnaut de Mareuil, to whom is attributed the introduction into Provengal poctry of the amatory epistle. He settled at the courts of Toulouse and Beziers, where he sang, in mystical terms, his passion for the countess Adalasia, in whose affections he had a dangerous rival in the person of Alfonso II., king of Aragon. Arnaut de Mareuil fled for his life to Montpellier, where he found a protector in Count Williarn VIII., hut he continued to address his sirventes to Adalasia. As that princess died in ing9, and as no planh to her memory is found among the works of Arnaut de Mareuil, it is conjectured that by that time he was already dead.
Peire Vidal of Toulouse was the type of the reckless and scatterbrained trouhadour. His biographer says that he was "the maddest man in all the world." His early life was a series of bewildering excursions through France and Spain, but he setuled down at last at Marseilles, where he made a mortal enemy of Azalass, be wife of Viscount Barral de Baux, from whom he stole a kiss (1180). Vidal fied to Genoa, but be continued to address the viscountess in his songs. At the entreaty of ber husband, Azalais forgave the poet, and Peire Vidal returned to Marseilles. He committed a thousand follies; among others, being in love with a lady called Louve (she-woll), the poet dressed himself as a wolf, and was hunted by a pack of hounds in front of the lady's castle. Starting on a crusade, he stopped at Cyprus, where a Greek girl was presented to him as being of the imperial family. Ho married her, assumed the title of emperor, and carried a throne about with him from camp to camp. According to a late poem, his eccentric adventures closed in Hungary about the year 1215. Folquet of Marscilles was a troubadour of Italian race, the son of a merchant of Genoa; Dante met Folquet in paradise, and gives an interesting notice of him. He was a rival with Peire Vidal for the favours of the beautiful Azalais; and he was one of the troubadours who gathered around the unfortunate Eudoxia, empress of Montpellier, until the close of ber singular and romantic adventure (5887). He wrote a very touching planh on the death of the viscount Barral de Baux in 1192. Soon after this, disgusted with love, Folquet took holy orders, became the abbot of the rich Cistercian house of Torronet in Provence, and in 1205 became bishop of Toulouse. Here he threw in his lot with Simon de Montfort and disgraced himself by his fanatic rage against the Albigenses, of whom a contemporary says that he slew 500,000 persons, acting " more like Antichrist than like an envoy of Rome." Folquet died in 1231 in the abbey of Grandselve, in his diocese. It is in the siments of Folquet that critics have seen the earliest signs of that decadence which was so rapidly to destroy Provencal poetry.
Gauceln Faidit came from Uzerche, in the Limousin. He
seems to have been a wandering minstrel of gay and reckless habits, and to have been accompanied by a light-o'-love, Guillelma Monja, who was the object of much satire and ridicule. In Gaucelm we prohably see, if we can credit his story, the troubadour at his lowest social level. He made, however, Maria of Ventadour, who was probably a scion of the princely and neighbouring house of that name, the object of his songs, and he addresses her in strains of unusual pathos and delicacy. Gaucelm Faidit ultimately proceeded to Italy, to the court of the marquis Bonilace of Montfermat, a prince who greatly encouraged tbe troubadours and who in 5201 undertook the conduct of a crusade. Gaucelm, who was still celebrating the perfections of Maria of Ventadour, accompanied him to the East. He wrote several canzones in the Holy Land and Syria, returned saiely to Uzerche, and disappears about 1240 . We possess sixty of bis poems. Another troubadour, Raimbaut of Vaquères, passed the greater part of his life at the same court of Montferrat; le devoted himself to the Lady Beatrix, sister of the marquis. It is believed that he died in the Holy Land in 1207. The most celebrated of the Italian troubadours mas Sordello, born at Mantua, at the beginning of the 13 th century, who owes his fame rather to the benevolence of later poets, from Dante to Robert Browning, than to the originality of his adventures or the excellence of his verse.
We bave now mentioned the troubadours who were most famous in their own time, and on the whole modern criticism has heen in unison with contemporary opinion. There are, however, still one or two names to be recorded. The English bistorian of the troubadours, Dr Hueffer, gave great prominence to the writings of a poet who had previously been chielly heard of in connexion with a romantic adventure, Guillem de Cabestanh (or Capestang). This was a knight of Roussillon, who made love to Seremonda, countess of Castel-Roussillon. The lady's husband, meeting the poet out hunting, slew him in a paroxysm of jealousy and, having cut out his heart, had it delicately cooked and served to his wife's dinner. When Seremonda had eaten her lover's heart, her husband told her what she had done, and she fainted away. Coming to her senses she said: "My Lord, you have served to me so excellent a dish that I will never eat of another," and she threw herseli out of window and was killed. The importance of this story lies in the fact that the cruelty of the count of Castcl-Roussillon was the cause of universal scandal in all good society. Fceling grew so strong that the surrounding nobles rose against the murderer, with Alfonso, king of Spain, at their head, hunted him down and killed him. The bodies of the lady and the troubadour were buried side by side, with great pomp, in the cathedral of Perpignan, and became the objects of pilgrimage. Doubt has, of course. been thrown on the veracity of this romantic story, but at all events it testifies to the fact that the trouhadour enjoyed, or was expected to enjoy, all the privileges of toleration and exemption. A burlesque or satiric troubadour, who disregarded the laws of gallantry and wrote satires of greal virulence against the ladies and their lovers, remains anonymous, and is spoken of as the monk or prior of Montaudon.
The classic period of the troubadours lasted until about 1210, and was contemporaneous with the magnificence of the nobles of the south of France. The wealth and cultivated tastes of the seigncurs, and the peace which had long surrounded them, led them into voluptuous extravagances and sometimes into a madness of expenditure. From this the troubadours reaped an immediate advantage, but when the inevitable reactien came they were the first to suffer. The great cause, howecter. of the decadence and ruin of the troubadours was the struggle between Rome and the heretics. This broke out into actual war in June 1209 , when the northern barons, called 102 crusade by Pope Innocent III, fell upon the Albigenses and pillaged Beziers and Carcassonne. Most of the protectors of the troubadours were, if not beretiss, indulgent to the heretical party, and shared in their downfall. The poets, thernselves, were not immediatel kept them
trat the darkness began to gather round them as the rain of Languedoc became move and more complete, culminating with the siege of Toulowse in 1218. The greatest name of this period, which was the begiuning of the end, is that of Peire Cardenal, of Le Pay. He was protected by Jacme I., king of Aragon, having apparently fled from Narbonne and then from Toulouse io order to escape from the armies of Simon de Monfort. He was the imventor and the principal coltivator of the moral or ethical sirnembes; and he was the anthor of singularly outspoken satires againgt the clergy, continuing the tradition of Marcaberua. The biographer of Cardenal certifies that he lived to be neariy one hundred years of age. Anothet and a still more violent troubadour of this transitional time was Guillem Figueisa, the son of a Toalorse tailor, an open beretic who atiacked the papacy with extraordmary vigoor, supported and protected by Raimon II. Figueira was answered, strophe by strophe, by a femate troubadour, Gormonda of Montpellier. The min of the southern courts, most of which belonged to the conquered Albigensi party, continued to depress and to exasperate ethe troubadours, whose system was further disintegrated by the establishment of the Inquisition and by the creation of the religious orders. The genial and caltured society of Provenge and Languedoc sant rapidy into barbarimm again, and there was no welcome anywhere for socular poets.
The last of the French troubadours was Guiraut Riquier (c. 1230-1294), who was bom at Narbonne, and addressed his eariest poems to Phillippe of Anduzs, the viscountess of that city. She does not seem to have encouraged poetry, and Guiraut Riquier left Narbonne, first appealing to St Louis, without succests. He then twrned to Spain, and found protection at the court of Alionso X. the Learned. This monaxch, himself a great poet, welcomed the crowd of troubadours who were mow flying from the troubles of southern France. It was the ambition of Alfonso to be himself a troubaiforr, but the Provengal pieces which bear his name are now attributed to Riquier and to Nat de Mons; the King's genuine poems are those written in Galician. Riquier remained in the court of Castile until about 1279, when he returned to France and settled in Rodez with the count of that town, Heari II This prince was almost the bsest selgneur in the south or contre of France whe gathered a scheol of poets around him, and at Rodez the troubadours enjoyed for a few years their latest gleams of success and recognition. Riquicr, in a sirpont6s of about 1285, gives pathetic ecpression to his sense of the gathering darkness, which makes in useless and almost onbecoming for a troubadour to practise his art, while of himself he mournfully confesses: "Song should enpess joy, but sorrow opprewses me, and I have come into the woid to0 late." Guiraut Riquier passed awny ebotet 1294, and Lel no saccesfor behiad him.
Browociapmy,-F. Diez, Leben yed Werke der Troxbadowrs Gickay. 1829 2nd ed. sevised by K. Bartach, Leipzig, 1832); Die Paesie der Troubodours, and ed., revised by K. Bartech (Leipzis, 19x): C. Chabancau. Les Biegraphics des troubadouts (Toulouse, tiv. This forms tome \(x\). of the Hirtoive generale de Longuedoc. \(]\) R. Bin 1816-1821): Manuel Mili y Fontemals, Los Tracadoras ex Trate (Barcelona, 1861 . and ed., revised, Barcelona, 1889): 51Teyer, Les Derniers Loubadours de La Provence (Paris, 1871): Hoeffer. The Troubadours (London. 1878): A. Restori, mena pownale (Milan, 1891) ; C. Appel, Provenzalische
 - troundours have beepublisp G-Guihem 1 X of Poitiers, - -ns Joujph qu fephote Bom by A. Thomas

only a short one and in February 1797 he commanded his ship, the "Culloden," at the battle of Cape St Vincent. In the following July he assisted Nebon in the unsuccessfui attack on Santa Cruz, and in August 1798, when getting info position for the attack on the Fronch fleet, the "Culloden "ran aground and was consequently unable to tare any part in the battle of the Nile. He then served in the Mediterrancan and was created a baronet in 1799: from 1801 to 1804 he was a lord of the admiralty, being made a rear-admiral just before his retirement. In 1805 Troubridge was given a command in the East and be went out in the "Bienheim." In January \(\mathbf{2 8 0 7}\) in this ship, an old and damaged one, he loft Madras for the Cape of Good Hope, but off the coast of Madagascar the "Blenheim" foundered in a cyclone and the admiral perished. His only son, Sir Edward Thomas Troubridge, bart. (d. 1852), entered the navy in 1797 and was present at the battle of Copenhagen. From 1831 to 1847 he was member of partiament for Sandwich and from 1835 to 1841 he was a lord of the admiralty. His son, Sir Thomas St Vincent Hope Coctirane Troubridge, bart. (1815-1867), entered the army in 1834, and was severely wounded at the battle of Inkerman.
TRODGATTON, BDWARD (1735-1835), English instrument maker, was born in the parish of Corney in Cumberiand in October 1753. He joined his elder brother Join in carrying on the husiness of making mathematical instruments in Fleet Street, London, and continued it alone after his brother's death, until in 1826 he took \(W\). Simms as a partner. He died in London on the 12th of June 1835 .

Troughton was very auccesgial in improving the mechanical part of mont mautical geodetic and astronomical instrumeents, but complete colour-blindniess prevented him from attempting experiments in optics. The first modern transit circle was constructed by him in 1806 for Stephen Groombridge; but Troughton was dissatisfed with this form of instrument, which a few years afterwards was brought to greal perfection by G. von Reichenbach and J. G. Repsold, and designed the mural circle in its place. The first instrument of this kind erected at Greenwich in 1812, and ten or tweive others were subsequently constructed for other observatories; but they were ultimately superseded by Troughton's carlier design, the transit circle, by which the two co-ordinated of an object can be determined simultaneously. He also made transit instruments, equatorials, \&c.; but his lailure to construct an equatorial mounting of large dimensions, and the consequent lawsuit with Sir James South, embittered the last years of his life.

ThOUSEBS, the name given to the article of dress worn by men, covering each leg separately and reaching from the waist to the loot. The word in its earlier forms is always found without the second r, e.g. trouses, treuses, troose, cf. the Lowland Scots word " trews," and is an adaptation of the French tronsses, trunk-hoee, hreeches, the plural of trousse, a bundle, pack, truss, from trousser, to pack, bundle up, tuck, tic up. girth, of which the origin is doubtiul. In English the word "trousers," when it first appears, was used of the leg-gaiments of the Irish, who wore their breeches or trank-hose and slockings in one piece; a custom to which there are many allusions in 17th-eentury literature. Knee-breeches and lop-boots for out-of-door wear or steckings for indoor use lasted till the beginning of the rith century as the regular costume for men. Pantaloons, loose trousers reaching to above the ankle, were worn in Venice by the peorer classes in the 17th century (for the origin of the name sec Pantaloon). The characters of the Italian comedy made the style of garment familiar in France, but it was only seen it the fantestic costumes of the ballet. During the reign of Louls XVI. Hoose pantaloons became fashion. able for the morning deshabilie of men. Their adoption by the supporters of the Revolution was the origin of the name of sans-culofles appled to the revolutionarics. Beau Brummel. iar ingland mas problably. the first to make the "pantaicon" ppular. A striking feature of his dress were the tight-fitting mpritutsertreachink to the ankle, where they were buttoned.
Whadeveloped the true trousers, cut over the boot at the the'fist open at the botiom and fastened by loops, fater taght under the boot. It is said that the duke of introduced this tatter form after the Peninsular
and strong opposition was takon against them by the clergy and at the universities (see Costume).
TBOUT (Salmo brulla), a fish closely related to the salmon. Most modern ichthyologists agree in regarding the various North European forms of trout, whether migratory or not, as varieties or races of a highly variable and plastic species, to be distinguished from the salmon by a few more or less constant characters, the most readily ascertainahle of which resides in the smaller scales on the back of the caudal region of the body, these being 14 to 16 (rarely 13) in an oblique series between the posterior border of the adipose in and the lateral line, and in the greater length of the folded anal fin as compared to the depth of the caudal peduncle. The gill-rakers art also usually fewer, 16 to 18 on the anterior branchial arch. The young may be distinguished from salmon-parr by the greater length of the upper jaw, the maxillary bone extending beyond the vertical of the centre of the sye, and in specimens 6 in . long often to below the posterior of the eye. The young are hrown or olive above, silvery or golden below, with more or less numerous black and red spots in addition to the parr marks, and, contrary to what is observed in the salmon, black spots are usually present below the lateral line. Except for the gradual disappearance of the parr marks, this coloration is retained in the form known as the brook trout or brown trout (\(S\). fario), which is non-migratory, and varies much in size according to the waters it inhabits, in some brooks not growing to more than 8 in ., whilst in larger rivers and lakes it may attain a weight of 20 lb or more. The coloration of the young is more strongly departed from in the races known as sea trout (\(S\). trulta) and sewin (\(S\). criox or cambricus), anadromous forms resembling the salmon in babits, and assuming in the sea a silvery coat, with, however, as a rule, more hlack spots on the sides below the lateral line.

The principal British races of trout are the following: the northern sea trout (\(S\). trulta, sensu stricto), silvery, losing the teeth on the shaft of the vomer in the adult, and migratory like the salmon; the southern sea trout (\(S\). ariox or cambricus), similar to the preceding, but with the hind margin of the gillcover more or less produced, the lower bone (suboperculum) projecting beyond the end of the upper (operculum); the brown trout (S. fario), non-migratory, usually retaining the teeth on the shaft of the vomer, brown or olive with black and red spots, rarely more silvery, with numerous black spots; the Lochleven trout (S. levenensis), distinguished from the preceding by a more silvery coloration, frequent absence of red spots and a pink or red flesh; the estuary trout (S. gillivensis and S. orcadensis), large brown trout living in salt water without assuming the silvery coloration; the Gillaroo trout (S. stomachicus), in which the membranes of the stomach are conspicuously thicker than in the other trout, more so in adult examples than in young ones. But all these forms are ill-defined and subject to such variations when transported from one locality to another as to render their recognition a matter of insuperable difficulty. The instability of the characters on which \(S\). levenensis is based has been conclusively shown by the experiments conducted by Sir James Maitland at Howietoun. Large specimens of migratory trout are often designated as bull-trout, hut no definition has ever been given by which this form could be established, even as a race.

Other European varieties are the trout of the Lake of Geneva (S. Lemanus), of the Lake of Garda (S. carpio), of Dalmatia (\(S\). dentex), of Hungary (\(S\). microlepis), of the Caspian Sea (S. caspius), \&c. The size of trout varies much according to the waters in which they live, the anadromous forms nearly equalling the salmon in this respect, specimens of over 4 ft and weighing up to 50 lb being on record.

The habitat of \(S\). trutte extends over the whole of Europe, the Atlas of Morocco and Algeria, Transcaucasia, Asia Minor and northern Persia. By the agency of man the species has been thoroughly established in Tasmania and New Zcaland, where it thrives in an extraordinary manner, and attains a very large sine.

Closely allied species are foand in North America, west of the Rocky Mountains, the best known being the rainbow trout (\(S\). iridews or shasta), which has been introduced fato many parts of Europe as well as the eastern states of North America, New Zealand and South Airica. It is more hardy than the English trout, and accommodates itsel in almost stagnant waters, and has thus proved a success in many ponds which were regarded as fit for coarse fish only; but in many places it has caused disappointment by going down to the sea, whence it is not known ever to return. It is a handsome trout, bluish or purplish above, silvery or golden below, more or less profusely spotted with black on the body and fins, and with on orango or red lateral bend. Its range extends from Alaska to North Mexico. The rainbow trout merges into a larger form, \(S\). gairdnari, which resembles the British sea trout.
A remarkable European trout is the short-snouted trout, S. oblwsirostris, a non-migratory species from Dalmatiz, Herzegovins, Bosnia and Montencgro. It has a small mouth with a feeble dentition, resembling that of the grayling. A closely allied form, S. akridanus, has recently been discovered in Macedonia.
(G. A. B.)

TROUVERE, the name given to the medieval poets of nortbern and central France, who wrote in the langue d'oil or langue d'owi. The word is derived from the French verb trowter, to find or invent. The trouveres flourished abundantly in the 12th and 13th centuries. They were court-poets who devoted themselves almost exclusively to the composition and recitation of a particular kind of song, for which the bighest society of that day in France had an inordinate fondness. This poetry, the usual subject of which was some refinement of the passion of love, was dialectical rather than emotional. As Jeanroy has said, the best trouveres were those who "into the smallest numher of lines could put the largest number of Ideas, or at least of those commonplaces which envelop thought in its most impersonal and coldest form." The trouveres were not, as used to be supposed, lovers singing to their sweethearts, but they were the pedants and attomeys of a Cantastic tribunal of sentiment. This was more monotonous in the haods of the trouveres than it bad been in those of the troubadours, for the latter often employed their art for purposes of satire, religion, bumour and politics, which were scarcely known to the poets of the northern language.

The established idea that the poetry of the trouverres was entirely founded upon imitation of that of the troubadours, has been ably combated by Paul Meyer, who comes to the conclusion that the poetry of the north of France was eseentially no less original than that of the south. The passage of Reoul Glaber, in which he says that about the year 1000 southern men began to appear in France and in Burgundy, "as odd in their ways as in their dress, and having the appearance of jongleurs," is usually quoted, but although this is valuable contemporary evidence, it proves aeither what these "jongleurs" brought from the south nor what the poets of the north could borrow from them. The first appearance of trouvires seems to be much later than this, and to date from 1137, when Eléonore of Aquitaine, who was herself the granddaughter of an illustrious troubadour, arrived in the court of France as the queen of Louis VII. It is recorded that she continued to speak her native language, which would be the Poitiers dialect of the langwe d̛oc. She was queen for fifteen years (1137-1152), and this, no doubt, was the period during which the southern influence was strongest in the Iterature of northern France. There is not any question that the successive crusades teaded to produce relations between the two sections of poetical literature. The great mass of the existing writings of the trouveres deals elaborately and artificially with the passion of love, as it had already been analysed in the langue droc. But those who are most inclined to favour the northern poets are obliged to confess that the latter rarely approach the grace and delicacy of the troubadours, while their verse shows less ingenuity and lest variety. The earliest trouveres, like Cuene de Bethune and Huges de Beraf, in writing their amatory lyrics, were
certainly infuenced by what troubadours had written, especielly when, like Bertrand de Born, these troubadours were men who wandered far and wide, under the glory of a great social prestige. We should know more exactly what the nature of the Provencal influence was if the songs of all the trouveres who tourishod belore the middle of the ath century bad not practically disappeared. When we become conscious of the existence of the trouvères, we find Cuene de Béthunein possession of the field, a poet of too much ariginality to be swept away as a mere imitator. Al the same time, even Paul Meyer, who has been the great asserter of the independence of the poetry of northern France. is obliged to admit that if, at the end of the 12 th century and throughout the 13 th, several literary centres were formed where an amatory poetry, full of conventional grace, was held in high honour, it was because several princely courts in the south had set the example. In this sense it cannot be denied that the whole art of the trouveres was secondary and subsidiary to the art of the troubadours.
Tbe poetical forms adopted by the trouveres bore curious and obscure names, the signification of which is still in some cases dubious. As a rule each poem belonged to one of three classes, and was either a rotrucnge, or a serventois, or an estrubal. The rotruenge was a song with a refrain; the serventois was, in spite of its name, quite unlike the siryentes of the troubadours and had a more ribald character; the estrabot was allied to the strambotto of the Italians, and was a strophaic forrn "composed of a front part which was symmetrical, and of a tail which could be varied at will" (Gaston Paris). But acholars are still uncertain as to the positive meaning of these expressions, and as to the theory of the verse-Iorms themselves.
The court poetry of the trouvères particularly flounished under the protection of three royal ladies. Marie, the regent of Champagoce, was the practical ruler of that country from 1181 to 1197, and she encouraged the minstrels in the highest degree. She invited Ricaut de Barbezieux to her court, rewarded the carticst songs of Gace Brule, and discussed the art of verse with Chrtien of Troyes. Her sister, Aelis or Alice, welcomed the trouveres to Blois; she was the protector of Gautier d'Arras and of be Chatelain de Couci. A sister of the husbands of these Iadies, another Aelis, who became the second queen of Louis VII. in \(1 \times 60\), received Cuene de Bethune in Paris, and reproved his for the Picard accent with which he recited his poetry. At the end of the xath century we see that the refinement and elegance of the court-poets was recognized in the north of France by those who were responsible for the education of princes. A trouvère, Gui de Ponthieu, was appointod tutor to William III. of Macon, and another, Philippe of Flanders, to Philippe Auguste. The voguc of the trouvères began during the third crusude; it rose to its greatest height during the fourth crussede and the altack upon the Albigenses. The first forty years of the \({ }^{13^{\text {th }}}\) century was the period during which the courtly lyrical poetry was cuitivated with most assiduity. At first it was a purely aristocratic pastime, and among the principal trouvères were princes such as Thibaut IV. of Navarre, Louis of Blois and John, king of Jerusalem. About 1230 the taste for court poetry spread to the wealthy bourgeoisie, espocially in Preardy, Artois and Flanders. Before its final decline, and after the courts of Paris and Blois had ceased to be its patrons, the poetry of the trouveres found its centre and enjoyed its latest successes at Arras It was here that some of the most original and the most skilful of all the trouveres, such as Jacques Bretel and Adam de la Halle, exercised their art. Another and perhapes atill later school flourishod at Reims.

About s280; having existed for a century and a half, the poetical system suddenly decayed and disappeared; the very aames of the court-poets were forgotten. During this time the zong, chanson, had been treated as the most dignified and honoarable form of literature, as Dente explains in his De valgari doquentia. But the song, as the trouveres underslood it, was not an unstudied or emotional burst of verbal melody; it was, on the contrary, an effort of the intelligence, e piece of wilfil and claborate capuistry. The poet was
invariably a lover, devoted to a married lady who was not his wife, and to whose caprices he was bound to submit blindly and petiently, in an endless and resigned humility. The progrese of this conventional courtship was laid down according to certain strict sules of ceremonial; love became a science and a religion, and was practised by the laws of precise etiquette.

The curious interest of the trouveres, for us, lies in the fact that during an age when the northern world was ignorant and brutal, sunken in a rude sensuality, the trouveres advanced a theory of morals which had its absurd and immoral side, but which demanded a devotion to refinement and a close attention to what is reserved, delicate and subele in personal conduct. They were, moreover, when the worst has been admitted about their frigidity and triviality, refiners of the race, and they did much to lay the foundation of French wit and French intelligence. The trouveres have not enjoyed the advantage of the troubadours, whose feats and adventures attracted the notice of contemporary biographers. Little is known about their lives, and they pass across the field of literary history like a troop of phantoms. Clooe students of this body of somewhat monotonous poetry have fancied that they detected a personal note in some of the leaders of the movement. It is certainly obvious that Cuene (or Conon) de Bthune had a vialence of expression which gives life to his chansons. The delicate grace of Thibaut of Champagne, the apparent sincerity of Le Chatelain de Couci, the descriptive charm of Monlot of Arras, the irony of Richard of Fournival, have been celebrated by critics who have perhaps discovered differences where none exist. It is more certain that Adam de la Halle, the hunchback of Arres, had a superb gift of versification. The rondel (published in E. de Coussemaker's edition, 1872) beginning
"A Dieu courant amouretes, Car je m'en vois
Souspirant en terre estrange!"
marks perhaps the highest point to which the delicate, frosty art of the trouvères attained. Music took a prominent place in all the performances of the trouveres, hut in spite of the erudition of de Coussemaker, who devoted himself to the subject, comparatively litule is known of the melodies which they used. But enough has been discovered to justify the general statement of Tiersot that "we may conclude that the musical movement of the age of the trouvères was derived directly from the most ancient form of popular French melody." A precious MS. in the Faculty of Medicine of Montpellier contains the music of no fewer than 345 part-songs attributed to trouvères, and an examination of these enables a: "pitiless arranger" to divine the air, the primitive, simple and popular melody

The principal authorities on the poetry and music of the trouveres are: H. Binet, Le Siyle de lo lyrique courloise en France aux xis": ef xition siéles (Paris, 1891); Gaston Paris, Les Origines de ta pofsie lyrique en France au moyen Age (Paris, 1892): A. Jeanroy, Les Orifines de la podsie lyrique en France ax moyen dge (Paris. 1889): Julian Tiersot, Histoire de la chanson populaire en France: E. de
 The works of the principal trouveres have been edited: those of Le Chatclain de Coucy by F. Michel (1830): of Adam de la Halle by E. de Coustemaker (1872): of Conon de Béthune by Wallensköld (Helsingfors, 1891); of Thibaut IV., king of Navarre, by P. Tarbs (1851).
(E. G.)

TROUVILXR a seaside town of north-western France, in the department of Calvados, on the English Channel, 34 m. N.E. of Caen by rail. Pop. (1go6), 5684. Trouville is situated on the slopes of well-wooded hills at the mouth of the Touques on its right bank opposite Deauville. Its fine stretches of sand and excellent bathing, a spacious casino and beautiful villes, are among the attractions which make it the most frequented Freneb resort on the channel. Deauville is well known for its racecourse and villas, exceeding those of Trouville in luxury, hut except during the race fortnight in August (la grande qwinzaine) it is quiet and comparatively deserted. The port shared with Deauville and formed by the Touques is entered by a channel between jetties with a depth at high tide of 181 ft . This leads on the one side to a tidal harbour, on the other to an outer and an inner basin. Timber, coals and cement are imported. The

London \& Sonth Western Railway Company have a daily steamboat service from Havre to Trouville in connexion with their Southampton and liavre boats. Besides trawling and the provisioning of ships, in which Deauville is also engaged, Irouville carries on boat-building and has rope and briquette

TROVER (O. Fr, trover, to find, mod. trowter), or "trover and converston," the name of a form of action in English law no longer in use, corresponding to the modern action of conversion. It was brought for damages for the detention of a chattel, and differed from detinuc in that the latter was brought for the rrturn of the chattel itself. The nametrover is due to the action having been based on the fictitious averment in the plaintif's declaration that he had lost the goods and that the defendant had found them. The necessity for this fictitious averment was taken away by the Common Law Procedure Act 1852. An action of trover lay (as an action of conversion still lies) in every case where the defendant was in possession of a chat tel of the plaintiff ned refused to deliver it up on request, such refund being prima facie evidence of conversion. The damages recoverable are usuatly the value of the chattel converted. In an action for detention of a chattel (the representative of the old action of sketinue), the plaintiff may have judgment and exccution by writ of delivery for the chattel itself or for its value nt his option. An action for conversion or detention must be brought within six yeurs. The corresponding action in Scots law is the netion of spuitzic. It must be brought within three years in order to entitle the pursuer to violent profits, otherwise it preseribes in forty years.

TROWBRIDGR, a market town in the Westbury parliamenfary division of Willshire, England, \(97 \frac{1}{4}\) m. W. by S. of London by the Great Western railway. Pop. of urban district (1001), 11.526. It is unevenly buill on a slope at the foot of which thows the Biss or Mere, a tributary of the Avon. The parish church of St James is a fine Perpendicular building, with a lofty fire, and a beautiful open-work rool over the nave. It was rehuilt on the original plan in 1848 . Gcorge Crabbe, the poet. was rector from 1813 to 1831 .

Trowbridge (Trubrig. Trobrigs, Trocbrigge) was probably nurntioned in Domesdily under the name of Straburg, a manor held by one Brictric together with Staverton and Trowle, now buth included withln its limits. The first reference to the "town" of Trowbridge occurs early in the 16th century; previous to that date mention is made of the manor and castie only. The latter, round which the town probably grew up. is said to have been built by the de Bohuns, who obtained imesession of tho manor by murriage with the daughter of Bidward de Sarisbury. Later it passed to William de Longesnee, son of Henry 11., to the Lancasters, to the protector Somerset (hy grant of Ilenry V'lll.) and then to the Rutlands, and Trowbrialse is now a mon-comorate town. In \(: 200\) Jobe granted a weckly market on Tiesday, Thursday and Saturday: also a pestly fair ant the zith, zith and :6th of July, on which days if continuad to be held until at the end of the iSth century it was clanged to the sth, oth and 7 th of August. Tbe manviacturc of moollen clorths has long been the staple trade of invelridge. It was introduced before the 16 th century, for Lehind, writing in the reign of Henry VIII., says. "The town Mourishoth by drapen:" In 1751 the trade was of some note. and by 1 Si 3 had attained such proportions that the whole atca of the raste site was wold for the ertection of dyeworks clush manufactories and other industrial buildings
TROWEL (Med. Line mind, A. Mr, aradk. Low Lat. memils, variant of prilds, dimiautive of mese, stiring spoos, Ladle. fir. maloth from the soot IMr, to tura round and roand: \(c\).

made of, or decorated with, the precious metals are presented to royal, official or other personages who formally lay the foundation stones of buildings.
TROY, JEAN FRANÇOIS DE (1679-1752), French painter, was born at Paris in 1679. He reccived his first lessons from his father, himself a skilful portrait painter, who afterwards sent his son to Italy. There his amusements occupied him fully as much as his studies; but his ability was such that on his return he was at once made an official of the Academy, and obtained a large number of orders for the decoration of public and private buildings, executing at the same time a quantity of easel pictures of very unequal merit. Amongst the most considerable of his works are thirty-six compositions painted for the hotel of De Live (1729), and a series of the stery of Esther, designed for the Gobelins whilst De Troy was director of the school of France at Rome (\(173^{8-1751 \text {)-a post which he resigned in a fit of irritation }}\) at court neglect. He did not expect to be taken at his word, and was about to return to France when he died on the 24 th of January 1752. The life-size painting (Louvre) of the "First Chapter of the Order of the Holy Ghost held by Henry IV.,' in the church of the Grands Augustins, is one of his most complete performances, and his dramatic composition, the "Plague at Marseilles," is widely known through the excellent engraving of Thomassin. The Cochins, father and son, Fessard, Galimard, Bauvarlet, Herisset, and the painters Boucher and Parrocel. have engraved and etched the works of De Tray.
TROY and TROAD. 1. The Troad.-The Troad (it Tpuds), or the land of Troy, the north-westem promontory of Asia Minor. The name "Troad" is never used hy Homer-who calls the land, like the city, Tpoim-but is already known to Herodotus The Troad is bounded on the N. by the Hellespont and the westernmost part of the Propontis, on the \(W\). by the Aegean Sea and on the S. by the Gulf of Adramytitum. The eastern limit was variously defined by ancient writers. In the widest acceptation, the Troad was identified with the whole of western and south-western Mysia, from the Aesepus, which thows into the Propontis, a little west of Cyzicus, to the Caicus, which flows in to the Aegean south of Atarneus. But the true eastern boundary is undoubtedly the range of Ida, which, starting from near the south-east angle of the Adramytian Gulf, sends its north-western spurs nearly to the coast of the Propontis, in the region west of the Aesepus and east of the Granicus. Taking Ida for the eastern limit, we have the definition which, as Strabo says, best corresponds with the actual usage of the name Troad. Ida is the key to the physical geography of the whole region; and it is the peculiar character which this mountain-system imparts to the land west of it that constitutes the real distinctness of the Troad from the rest of Mysia. Nature has here provided Asia Minor with an outwork against invaders from the north-west and as the Troad was the scene of the struggle between Agamemnon and Priam, so it was in the Troad that Alexander woo the battle which opened a path for his further advance

Nainal Disisions. - The length of the Troad from north to south -taking a straight line from the north-west point. Cape Sigeum (Yeni Shehr), to the south-west point. Cape Lecturn (Babl kale) -is roughly 40 m . The breadth. from the middle point of the west const to the main range of Ida, is pot much greater. The whole rearral portion of this area is drained by the Menderes (ato Sumamder). Wich rises in Ida and is by far the most imporant river of the Troad. The basin of the Meaderes is divided by tills inco two distince perts, a southera and a northern plain. The soolhera -anciently called the Samonias phim-is the great central pitio of the Troul, and takes its modern mame from Bairamich the chicf Turlish tusn. which is situased in the eassem part of it near Iha. From the north end of che pain the Menderes sinds in lares curves throngl deep gorges in metannorphic nocks, and issucs intu the forthem plain streating to the Hellespont. This is the phin of Truy, which is \(\%\) or 8 m . lose. and 2 or 3 mi . broad on the average The linis on the south are crite low. and 20 ands the east the acclivitics nge in places or ernile as to lave the limias of the plain indorimbe. Nest to the basin of the Menderes, with its two phing the bow marked feature in the rivertassem of the Trand it the
 part of Mt lis. seoif of ithe sita of R -ich from stith ins valet is divided br hills: and. alter photing for mary, miles

Ansua, is is lems than a mile distmat, it enters the Aegenn about 10 m . north of Cape Lectum. Three allevial plaine are comprieed in its course. The easternmost of these, into which the niver iasues from rugsed mountains of considerable beight, is long and narrow. The next is the broad plain round Asous, which was a fertile source of supply to that city. The third is the plain at the emr bouchure of the river on the weat coast. This was anciently called the Halesian (\(1 \lambda \begin{aligned} & \text { dqwow) plain, partly from the maritime salk-works }\end{aligned}\) at Tragasae, near the town of Hamaxitus, partly also from the hot elt-springs which exist at some distance from the sea, on the north side of the river, where large formations of rock-watt are also found. Maritime salt-works are still in operation at the mouth of the river, and its modern mame (Tuza analt) preserves the ancient association. A striking feature of the southern Troed is the high and narrow plateau which runs paralel with the Adramyttian Gulf from east to west, Sorming a southern barrier to the valley of the Tuzla. This plateau seems to have been formed by a vofeanic upheaval which carne late in the Tertiary period, and covered the linsentone of the south const with two successive flowa of trachyte. The lofty crag of Assus is like a tower standing detached from this line of mountain-wall. The western coast is of a difierent character. North of the Tuzla extenda an undutating phain. narrow at first, but gradually widening. Much of it is covered with the valonia oak (Quercus aczilops), one of the most valuable products of the Troad. Towards the middle of the west coast the adjacent ground becomes higher, with steep acclivities, which sometimes rise into peaks: and north of these, again, the caboard sabsides towards Cape Sigeum into rounded hiils, mostly tow.

Nalural Products.-The timber of the Troad is supplied chiefly by the pine forests on Mt Ida. But nearly all the plaine and hilis are more or less well wooded. Besides the valonia oak, the edm, villow. cypress and tamarisk shrub abound. Lotus, galingale and reeds are still phentilul, as in Homeric days, about the streams in the Trojan phain. The vine, too, is cultivated, the Turks making from it a kind of syrup and a preserve. In summer and autumn water-melons are among the abundant fruits. Conton, wheat and Indian corn are also grown. The Troad is, isdeed. a country highly lavoured by nature-with its fertile plains and valleys, abundanaly and continually irrigated from Ida, its numerous streams, its fine Fest seaboard, and the beauty of its scenery. Under Turkish rule, the atatural advaitages of the land suffice to minigate the poverty of the sparse population, but have scarcely any positive result.

Early History.-In the Homeric legend, with which the story of the Troad begins, the people called Troes are ruled by a king Priam, whose realm includes all that is bounded by "Lesbos, Phrygia, and tbe Hellespont" (1l. xxiv. 544), i.e. the whole "Troad," with some extension of it, beyond Ida, on the northwest. According to Homer, the Achmeans under Agamemnon utterly and finally destroyed Troy, the capital of Priam, and overthrew his dynasty. But there is an Homeric prophecy that the rule over the Troes shall be continued by Aencas and his descendants. From the "Homeric" hymn to Aphrodite, as well as from a passage In the zoth book of the lliad (75-353)a passage probably later than the bulk of the book-it is certain that in the 7 th or 6 th century B.C. a dynasty claiming descent from Aeneas reigned in the Troad, though the axtent of their sway is unknown. The Homeric tale of Troy is a poetic creation, for which the poet is the sole witness. The geographical compactness of the Troad is itself an argument for the truth of the Homeric statement inat it was once united under a strong king. How that kingdom was finally broken up is unknown. Thracian hordes, including the Treres, swept into Asia Minor from the arth-west about the beginning of the 7 th century B.C., and it is probable that, like the Gauls and Goths of later days, these fierce invaders made havoc in the Troad. The Ionian poet Callinus has recorded the terror which they caused farther south.
Greck Settlements.-A new period in the history of the Troad begins with the foundation of the Greek settlements. The carliest and most important of these were Aeolic. Lesbos and Cyme in Acolis seern to have been the cbief points from which the Aeolic colonists worked their way into the Troad. Command. ing positions on the coast, sucb as Assus and Sigeum, would maturally be those first occupied; and some of them have been in the hands of Aeolians as early as the 1oth century g.c. It appers from Hetodotus (v. 95) that about 620 e.c. Athenians occupied Sigeum, and were resisted by the Acolic colonists from Mytilene in Leesbos, who had already established themselves in that neighbourhood. Strugeles of this kind may help to account

Ior the fact moticed by Strabo, that the earlier colonies had of tea migrated from one site in the Troad to another. Such changts of seat have been, he observes, frequent causes of confusion in the topography.

The chief Greek towns in the Troad were Dium in the north. Assus in the south and Alexandria Troas in the west. The site of the Greek Ilium is marked by the low mound of Hissarlit (" place of fortresses ") in the Trojan plain, about 3 m . from the Hellespont. Exactly at what date it was founded on the top of earlier remains is uncertain (perbaps the 7th century); but it was not a place of any importance till the Hellenistic age. When Xcrues visited the Trojan plain, be "went up to the Pergamon of Priana," and afterwards sactificed to tbe Llian Athena (Herod. vii. 42). Ilion is mentioned among the towns of the Troad which yiedded to Dercyllidas (399 B.c.), and as captured hy Charidemus (359 B.c.). It possessed walls, hut was a petty place, of little strength. In 334 B.C. Alexazader, on landing in the Troad, visited Ilium. In their temple of Athena the Ilians showed him arms which had served in the Trojan War, including the shield of Achilles. Either then, or after the battle of Granicus, Alexander directed that the town should be enlarged, and should have the rank of "city," with political independence, and exemption from tribute. The battle of Ipsus (301 B.c.) added north-western Asia Minor to the dominions of Lysimachus, who executed the intentions of Alexander. He gave Ihium a wall 3 m . in circumference, incorporating with it some decayed towms of the aeighbourhood, and built a handsome temple of Athena. In the 3 rd ceatury s.c. llium was the head of a federal league (nounto) of free Greek towns, which probably included the district from Lampsacus on the Helleapont to Gargara on the Adramytion Gulf. Twice in that century Ilium was visited by Gauls. On the first occasion (278 в.c.) the Gauls, under Lutarius, sought to est ablish a stronghold at Ilium, but speedily a bandoned it as being too weak. Forty years later (218 b.c.) Gauls were hrought over by Attalus I. to help him in his war against Achaeus. After deserting his standard they proceeded to pillage the towns on the Hellespont, and fnally besieged Ilium, from which, bow ever, they were driven of by the troops of Alemandria Troas. At the beginning of the 2nd century b.c. Ilium was in a state of decay. As Demetrius of Seepsis tells us, the houses "had not even roofs of tiles," but merely of thatch. Such a lous of prose perity is sufficiently explained by the incursions of the Gauls and the insecure state of the Troad during the latter part of the 3rd century. The temple of the Ilian Athena, however, retained its prestige. In 192 B.c. Antiochas the Great visited it before sailing to the aid of the Aetolians. In 190 b.C., shortly before the battle of Magnesia, the Romans came into the Troad. At the moment when a Roman army was entering Asia, it was politic to recall the legend of Roman deacent from Aeneas. Lucius Scipio and the Ilians were alike eager to do so. He offered sacrifice to the Ilian Athena; and after the peace with Antiochus (\(\mathbf{r 8 9}\) в.c.) the Romans annexed Rhoeteum and Gergis to Lhium, " not so much in reward of recent services, as in memory of the source from which their nation sprang." The later history of Ilium is little more than that of Roman benefits. A disaster befell the place in 85 B.c., when Fimbria took it, and left it in ruins; but Sulla presently caused it to be rebuilt. Augustus, while confirming its ancient privileges, gave it new territory. Caracalla (a.d 211-217) visited lium, and, like Alexander, paid honours to the tomb of Achilles. In the 4 th century, as some rhetorical " Letters " of that age show, the llians did a profitable trade in attracting tourists by their pseudo-Trojan memorials After the sth century the place is lost to view. But we find from Constantine Porphyrogenitus (\(0: 1 \mathrm{r}-959\)) that in his day it was one of the places in the Troad which gave names to hishoprics.

Other Ancient Sites.-Many classical sites in the Troad have been identified with more or less certainty. (For Alexandria Trons and Assus, see separate aricles. Neandria seems to be rightly fixed by F. Calvert at Mount Chigri, a hill not far from Alexandria Troas, remarkable for the fine view of the whole Troad which it commands Cebrene has been conjecturally placed in the eastern part of the plain of Bairamich. Palocoscepsis wall farther east
on the slopes of Ida, while the new Scepsis was near the site of Bairamich itself. At the village of Kulakli, a litele south of the mouth of the Tuala, some Corinthian columns and other fragments mark the temple of Apollo Smintheus (excavated in 1866 by \({ }^{\text {Pullan) }}\) and (approximately) the site of the Homeric Chryse. Colonae was also on the west coast, opposite Tenedos. Scemandria occupied the site of Eneh, in the middle of the plain of Bairamich, and Cenchrece was probably some distance north of it. The shrine of Palamedes. mentioned by ancient writers as existing at a town called Polynedium, has been discovered by J. T. Clarke on a site hitherto unvisited by any modern travellet, between Assus and Cape Leetum. It proves to have been a sacred enclosure (temenos) on the acropolis of the town; the statue of Palamedes stood on a rock at the middte of its southern edge. Another interesting discovery has been made by Clarke, viz. the existence of very ancient town walls on Gargarus, the highest peak of Ida.
(R. C. J.; D. G. H.)
11. The Sile of Tray.-Troy is represented now by the important ruins on and about the mound of Hissarlik which underlie those already referred to as surviving from the Hellenistic Ilion. Hissarlik is situated about \(3 \frac{1}{3} \mathrm{~m}\). both from the Dardanclles and from Yeni Kcui, which lies on the Aegean coast north of Besika Bay. The famous academic dispute concerning the precise site, which began about a.D. 160 with Demetrius of Seepsis, may now be regarded as settled. After the full demonstration, made in 1893 , that remains of a fortress exist on the mound of Hissarlik, contemporary with the great period of Mycenae, and larger than the earlier acropolis town first identified by Schliemann with Ilion, no reasonable person has continued to doubt that this last site is the local habitation of the Homeric story. The rival ruins on the Bali Dagh have been shown to be those of a small bill fort which, with another on an opposite crag, commanded the upper Menderes gorge. It is inconceivable that this fort should have been chosen by poets, generally familiar with the locality, as the scene of the great siege, while in the plain between it and the sea there had lain from time immemorial, and lay still in the Mycenacan age, a much more important settlement with massive fortified citadel.

No site in the Troad can be brought into complete accordance with all the topographical data to be ingeniously derived from the text of Homer. The hot and cold springs that lay just without the gate of "Troy" (Il. xxii, 147) are no more to be identified with Bunarbashi, which wells out more than a mile from the Bali Dagh ruins, than with the choked conduits, opened by Schliemann in 1882, to the south of Hissarlik. But the broader facts of geography are recognizable in the modern plain of the Menderes. The old bed of that river is the Scamander, and its little tributary, the Dumbrek Su , is the Simois. In their lork lies Hissarlik or Troy. In sight of it are, on the one side, the peak of Samollhrace (xiii. 1t-14); on the other, the mass of the Kaz Dagh Ida (viii. 52). Hissarlik lies in the plain (xx. 216) less than 4 m . both from the Hellespontine and the Aegean coasts, easily reached day by day by foes from the shore, and possible to be left and regained in a single night by a Trojan visiting the camp of the Greeks (vii. 381-421).

In summarixing what has been found to exist on the mound of Hissarlik in the excavations undertaken there since \(\mathbf{3} 870\), it is not advisable to observe the order of the finding, since Schlicmann's want of experience and method caused much confusion aad error in the earlier revelations. No certainty as to the distinction of strata or their relative ages was possible till Wilhelm Dörpleld obtained entire control in 8898 , after the original explorer's death. There are in all nine strata of ancient settlement.
1. On the virgin soil of the hillock, forming the core of the mound, scanty remauns appear of a small village of the late Aegean neotithic period, at the dawn of the Bronze Age, contemporary with the upper part of the Cnossian ncolithic bed. This includes what were originatly supposed by Schliemann to be two successive primitive gettlements. Thin walls of rough stones, bonded with mud, are preserved mainly in the west centre of the mound. No ground plan of a house is recoverable, and there is no sign of an outer fortress wall. In this stratum were found implements in obsidian and other stones, clay whorls, a little worked ison, and much dark monochrome pottery, either of a rough grey surface or (im the finer examples) treated with resin, highly hand-polished. and showing simple geometric decoration, which was incised and often filled in with a white substance.
2. Superposed on these remains, where they sill asiot, but comprehendiag a much larger area. liss a berter preserved settlement. This has been twice rebuile
by a massive tortress wall of rudely squared Cyclopean character, showing difierent restorations, and now destroyed, except on the south side of the mouad. Double gates at the south-east and south-west are well-preserved. The most complete and most important structures within the citadel tie towards the north. These are two rectangular blocks lying north-west to south-east, side by side, of which the southern and larger shows a megaron and vestibule of the type familiar in "Mycenaean " palaces, while the smatter seems a pendant to the larger, like the " women's quarters " at Tiryos and Phylakopi (see Aegean Civilization). Other blocks, whose plans are difficult to bring into inter-rclation in their present state of ruin, are scattered over the area, but mainly in the soath-west. This is the fortress proclaimed by Schliemann in 1873 to be the Pergamos of Troy. But we know that, while his identifications of Homeric topographical details in these ruins were fanciful, a much larger fortress succeeded to this long before the period treated of in the Had. The settlement in the second stratum belongs, in fact, to a primitive stage of that local civilization which preceded the Mycenaean; and it is this latter which is recalled by the Homeric poems. The pottery of the second straturn at Hissartik shows the first introduction of paint, and of the slip and somewhat fantastic forms paraltel to those of the pre-Mycenaean style in the Cyclades. The beaked vases, known as schnabelkarnem, are characteristic, and rude reproductions of human features are common in this ware, which seems all to be of native fabrication. - Bronze had come into use for implenents, weapons and utensils and gotd and sitver make up a hoarded treasure found in the calcined ruins of the fortification wall near one of the gates. But the forms are primitive and singular, and the workmanship is very rude, the pendants of the great diadems being cut out of very thin plate gold. Disks, bracelets and pendants, showing advanced spiraliform ornament, found mainly in 1878, and then ascribed to this same stratum, belong undoubtedly to higher one, the sixth or "Mycenacan." Rough fiddle-shaped idols, whorls, a little worked ivory and some lead make up a find, of whose early period comparison of objects found elsewhicre leaves no sort of doubt. This treasure is now deposited in Berlin.
3. 4, 5. This primitive " Troy" suffered cataclysmal ruia (traces of conflagration are everywhere present). and Hissarlik ceased for a time to have any considerable population. Three small viltage setttements, not much more than forms, were successively erected on the site; and have left their traces superposed one on another, but they yicked no finds of importance.
6. The mound, however, stood in too important a relation to the plain and the sea to remain desolate, and in due time it was covered again by a great fortress, while a city spread out below. The latter has not yet been explored. The remains of this period on the acropolis, however, have now been examined. A portion of them was first distinguished clearly by Dörpield in 1882 , but owing to the confusion caused by Schliemann's drastic methods of trenching, the pottery and metal objects, reatty belonging to this stratum, had come to be conlused with those of lower strata; and some grey monochrome ware, obviously of Anatolian make, was alone referred to the higher stratum. To this ware Schliemann gave the name "Lydian". and the stratum was spoken of in his Troja (1884) as the "Lydian city."

In 8893 , however, excavations were carried out on the south of the mound in the hitherto undisturbed ground outside the limite of the carlier fortress; and here appeared a second curtain wall of massive ashlar masonry showing architectural leatures which characterize the "Mycenaean " fortification walls at Mycenae itself. and at Phylakopi in Mclos. With this wall was associated not only the grey ware, but a mass of painted potsherds of unmistakably "Mycenaean" character; and further search in the same stratum to west and east showed that such sherds always lay on its floot level. The inevitable inference is that here we have a city, contemporary with the mass of the remains at Mycenae, which imported "Mycenaean" ware to supplement ins own ruder products. The area of its citadel is larger than the citadel of the second stratum: its buildings, of which a large megaren on the south-west and several houses on the cast remaia, are of much finer conotruction than those which lie lower. This was the most important city yet buitt on the mound of Hissarlik. It belonged to the "Myrenaean" age, which precedes the composition of the Homeric poens, and is reficcted by them. Therefore this is Homer's Troy
Its remains, however, havins been obliterated on the crown of Hissarlik, almost escaped recopnition. When sonve centuries later
a third important city. the Hellenistic llion, was built, all the accumalation on the rop of the mound wras ent awhy and a serrace made. In this process the then quppraiges tant of ruins whally
 to the suromi
of the mound
that fot-
\(\therefore\) To "Mycenzean " Troy succeeded a smalt unfortified settleavent, which maintained itself all through the Hellenic age till the Homeric enthusiasm of Alexander the Great called a city again into being on Hissarlik.
\& The Hellenistic Ilion, however, has left comparatively litele brace, having been almost completely destroyed in 85 日.c. by Fimbria Portions of fortifications erected by Lysimachus are visible both on the acropolis (west lace chicfly) and round the lower city in the plain. A small Doric temple belongs to the foundation of this city, and a larger one, probably dedicated to Athena, scems to be of the Pergamene age. Of its metopes, representing Helios and a gigantomachia, important fragments have been recovered. Coins of this city are not rare, showing Athena on both faces, and some inscriptions have been recovered proving that Hellenistic Hion was an important municipality.
9. Lastly about the Christian cra, arose a Graeco-Roman city. w which belong the theatre on the south-east slope of the hill and the ornate gateway in the same quarter, as well as a large building on the south-west and extensive remains to northeast This seems to have sunk into decay about the 5 th century A.D.

Bibliography.-J. F. Lechevalier, Voyage de la Troade (1802); Choiseul-Gouffier, Voyage pitloresque (1809): Dr Hunt and Professor Carlyle, in Walpole's Travels (1817); O. F. v. Richter, Walljahrten im Morgenlande (1822): W. M. Leake, Journal of a Tour in A sia Minor (1824): Prokesch v. Osten, Denkurirdigheiten aus dem Orient (1836) ; C. Fellows, Excursion in A sia Minor (1839); C. Texier. Asie Mincme (I843): R. P. Pullan, Principal Ruins of Asia Minor (1865): P. B. Webb, Topographic de la Troade (1844); H. F. Tozer, Highlands of Tmpey (i869); R. Virchow, Landeskunde der Troas, in Trans Berlin Acad. (1879); H. Schlicmann. Troy (1875): Hias (1880): Troje (1884): Reise der Troas (1881): W. Durpfeld, Troje (8992) and Troja wnd Ilios (1902); C. Schuchhardt, Schliemann's Encatations (Eng. trans., 1891); P. Gardner, New Chapters im Greek Bistory (1892).
(D. G. H.)
11. The Legend of Troy.-According to Greek legend, the oldest cown in the Troad was that founded by Teucer, who was a son of the river Seamander and the nymph Idaca. Tzetzes says that the Scamander in question was the Scamander in Crete, and that Teucer was told by an oracle to settle wherever the "earth-born ones" attacked him. So when he and his company were attacked in the Troad by mice, which gnawed their bow-strings and the handles of their shields, he settled on the spot, thinking that the oracle was fuifilled. He called the town Sminthium and buitt a temple to Apollo Smintheus, the Cretan word for a mouse being sminthius. In his reign Dardanus, son of Zeus and the nymph Electra, daughter of Atlas, in consequence of a deluge, drifted from the istand of Samothrace on a ralt or a skin bag to the coast of the Iroad, where, baving received a portion of land from Teucer and married his daghter Batea, he founded the city of Dardania or Dardanus on bigh ground at the foot of Mt Ida. On the death of Teucer, Dardanus succerded to the kingdom and called the whole land Dardania after himself. He begat Erichthonius, who begat a son Tros by Astyocbe, daughter of Simois. On succeoding to the throne, Tros called the country Troy and the people Trojans. By Callirrhoe, daughter of Scamander, he had three sons-mllus, Assaracus and Genymede. From Ilus and Assaracus sprang two separate fines () the royal house-the one being Ilus, Laomedon, Prian, Hector; the other Assaracus, Capys, Anchiscs, Aeneas. Ilus went to [hrygia, where, being victorious in wrestling, he reccived as a prize from the king of Phrygia a spotted cow, with an injunction to follow her and found a city wherever she lay down. The cow lay down on the hill of the Phrygian Ates; and here accordingly llus founded the city of llion. It is stated that Dardania, Troy and llion became one city. Desiring a sign at the foundation of Ilion, Ihus prayed to Zeus and as an answer he found lying before his tent the Palladium, a wooden tatue of Pallas, three cubits high, with her feet joined, a spear in ber right hand, and a distaff and spirsile in her left. Ilus built a temple for the image and worshipped it. By Eurydice, daughter of Adrastus, he had a son Laomedon. Laomedon married Strymo, daughter of Scamander, or Placia, daughter of Atreus nr of Leucippus. It was in his reign that Poseidon and Apollo, or Poseidon alone, built the walls of Troy. In his reign also Heracies besieged and took the city, slaying Laomedon and his children, except one daughter Fritione and one son Podarces. The life of Podarces was granted at the request of Hesione; but Heracies stipulated that Poclarces ment veil for himj hence his name of Priam (Gr. Tpioodas to buy). Prians married firts Arisbe and afterwards Hecuba, and had fifty cons and twelve daughters. Among the sons were Hector and Paris, hidens thom Paris carried off from Sparta, the Greeks under Troy for ten years At last they contrived whose hollow belly many of the Greek heroes foed the siege. The Trojans conveyed the ; in the night the Greeks stole out, opened 3 and Troy was taken. 152 seg. xx. 215 seq . xxi. 446 seq. Apollo-

Antiq. Kom. i. 68 seq. The lliad deals with a period of fifty-one days in the tenth year of the war. For the wooden horse, see Homer, Od. iv. 271 geq.: Virgil, Aen. ii. 13 seq.

The Medieval Legend.-The medieval romance of Troy, the Roman de Troic, exercised greater influence in its day and for centuries after its appearance than any other work of the same class Just as the chansons de geste of the toth century were the direct ancestors of the prose romances which aiterwards spread throughout Europe, 80, even before Ifeliodorus and Achilles Tatius, there were quasi-histories, which reproduced in prose, with more or less exactness, the narratives of epic poctry. Long previous to the 'Hpenem of Flavius Philostratus (\(f\). 3rd century A.D.) the Trojan War had been the subject of many a prose fiction, dignified with the title of history; but to remodel the whole story almost in the shape of annals, and to give a minute personal description of the persons and charactera of the principal actors, were ideas which belonged to an artificial stage of literature. The work of Philostratus is cast in the form of a dialogue between a Phoenician traveller and a vine-grower at Eleus, and is a discourse on twenty-six heroes of the war. A fictitious journal (Ephemeris), professing to give the chill incilents of the siege, and said to have been written by Dictys of Crete, a follower of Idomencus, is mentioned by Suidas, and was largely used by John Malalas and other Byzantine chroniclers. This was abridged in Latin prose, probably in the 4 th century, under the title of Dicfys Cretensis de bello Trojano libri VI. It is predaced by an introductory letter from a certain L. Septimius to Q. Aradius Ruhnus, in which it is stated that the diary of Dictys had boen found in his tomb at Cnossus in Crcte, written in the Greek language, but in Phoenician characters. The narrative begins with the rape of Helen, and ineludes the adventures of the Greek princes on the return voyage. With Dictys is alwavs associated Dares, a pseudo-historian of more recent date. Old Greek writers mention an account of the destruction of the city earlier than the Homeric poems, and in the time of Aclian (2nd century A.D.) this Jiad of Dares, jricst of Hephaestus at Troy, was believed to be still in existence. Nothing has since been heard of it; but an unknown Latin writer, living between 400 and 600 , took advantage of the tradition to compile Darelis Phrygi de excidio Trojac historia, which begins with the voysge of the Argo. It is in prose and professes to be trandated from an old Greek manuscript. Of the two works that of Dares is the later, and is inferior to Dictys. The matter-of-fact form of narration recalls the poem of Quintus Smyrnaeus. In both compilations the gods and every. thing supernatural are suppressed; even the heroes are degraded. The permanent success, however, of the two works distinguishes them among apocryphal writings, and through then the Troy legend was diffused throughout western Europe. The Byzantine writers from the 7 th to the 12 th century exalted Dictys as a furst-class authority, with whom Homer was only to be contrasted as an in ventor of fables. Wertern people preferred Dares, because his history was shorter, and because. favouring the Trojans, he flattered the vanity of thowe who believed that people to have been their ancestors. Many MSS. of both writers were contained in old librarics; and they were translated into nearly every language and turned into verse In the casce of both works, \(\operatorname{sch}\) olars are undecided whether a Greek original ever existed (but see Diciys Cretensis). The Byzantine grammarian, Joannes Tzetzes (fi. 12 th century), wrote a Greek hexameter poem on the subject (liaca). In 1272, a monk of Corbie translated " sans rime L'Estoire de Troiens et de Troie (de Dares) du Latin en Roumans mot \(\mathbf{i}\) mot " because the Romen de Troie was too long. Geoffrey of Waterford put Dares into French prose; and the British Muscum has three Weish MS. translations of tbe aame author-works, however, of a much later period.

The name of Homer never ceased to be held in honour; but he is invariably placed in company with the Latin poets. Few of those who praised him had read him, except in the Latin redaction, in 1100 verses, by the so-called Pindarus Thehanus. It supplied the chief incidents of the Iliad with tolerable exactness and was a textbook in schools.

For a thousand years the myth of descent from the dispersed heroes of the conquered Trojan race was a sacred literary tradition throughout western Europe. The first Franco-Latin chroniclers traced their history to the same origin as that of Rome, as told by the Latin poets of the Augustan era; and in the middle of the 7 th century Fredegarius Scholasticus (Rer. gall. script. ii. 461) relates how one party of the Trojans settled between the Rhine, the Danube and the sea. In a charter of Dagobert occurs the statement, "ex nobilissimo et antiquo Trojanorum reliquiarum sanguine nati." This statement is repeated by chroniclers and panegyrical writers, who also considered the Hisfory of Troy by Dares to be the first of national books. Succeoding kings imitated their predecestors In giving official sanction to their legendary orlgin: Charles the Bald, in a charier, uses almost the same words as Dagobert. " ex praeclaro et antiquo trojanorum sanguine nati." In England a similar tradition had been early formulated, as appears from Nernius's Historia britomum and Geoffrey of Monmouth. The epic foundet of Britain was Brutus, son, or in another tradition, Ereat-grandson. of Aemeas in any case of the royal house of Troy. The tradition repeated in Wace's version of Geoffrey, by Matthew Paris and others persisted to the time of Shakespeare Brutus found Albion un inhabited except by a few giants He founded his capital on the
banks of the Thames, and called it New Troy. Otto Fnsingensis (tath century) and other Cernian chroniciers repeat similar myths, and the apocryphal hypothesis is echoed in Scandinavian sagas. About roso a monk named Bernard wrote De excidio Trojae, and in the middle of the \(12 t h\) century Simon Chevre d'Or, canon of the abley of Saint. Victor, Paris, followed with another poem in leonine elegiacs on the fall of the city and the adventures of Aeneas, in which the Homeric and Virgilian records were blended.
Ne now come to a work on the same subject, which in its own day and for centuries afternvards exercised an extraordinary influence throughout Europe. About the year \(1: 84\) Benoit de Sainte-More (q.v.) composed a poem of 30,000 lines entitled Roman de Troic. It forms a true Trojan cyele and embraces the entire heroic history of Hellas. The introduction relates the story of the Argonauts, and the last 2680 verses are devoted to the return of the Cireck chiefs and the wanderings of Ulysses. With no fear of chronological discrepancy before his eyes, Benoit reproduces the manners of his own times, and builds up a complete museum of the tath centuryits arts, costumes, manufactures, architecture, arms, and even religious cerms. Women are repeatedly introduced in unwarranted situations; they are spectators of all eombats. The idea of personal beauty is different from that of the old Greeks; by Benoit good humour, as well as health and strength, is held to be one of its chief characteristics. The love-pictures are another addition of she modern writer. The author speaks enthusiastically of Homer, but he derived his information chichly from the pseudo-annals of Dictys and Dares, more especially the latter, augmented by his own imagination and the spirit of the age. It is in Benoit alone that the honour of poetic invention is due, and in spite of its obligation for a groundwork to Dictys and Dares we may justly' consider the Roman de Troie as an original work. From this souree subsequent writers drew their notions of Troy, mostly without naming their authority and generally without cven knowing his name. This is the masterpiece of the pseudo-classical cycte of romances: and in the Latin version of Guido delle Colonne it passed through every country of Europe.

The De bello trojano of Joseph of Exeter, in six books, a kenuine poem of no little merit, was written soon after Benolt's work or about the years 1187-1188. At first ascribed to Dares Phrjgius and Cornelius Nepos, it was not published as Joseph's until 1620 at Frankiort. It was directly drawn from the pseudo-annalists, but the influence of Benoit was considerabte. Of the same kind was the Troilus of Abbert of Stade (1249), a version of Dares, in verse, characterized by the ofd severity and affected realism. But these I atin works can on'ly be associated indirectly with Benoit, who had closer imitators in Germany at an carly period. Herbort of Fritzlar reproduced the French text in his Lied von Troye (early 13 th century). as did also Konrad von Würzburg (\(\mathbf{d} .1287\)) in his Buch ron Troye of 40,000 verses, which he himself compared to the "boundless ocean." It was completed by an anonymous poet. To the like source may be traced a poem of 30,000 verses on the same subject by Wolfram von Eschenbach; and Jacques van Macrtant reprotuced Benott's narrative in Flemish. The Norse or Acelandic Trojumanna soget repeats the tale with some variations.

In Italy Guido delle Colonne, a Sicitian, began in 1270 and finished in 1287 a prose \(/ 1\) istoria trojane. in which he reproduced the Roman de Troic of Benolt, and so closcty as to copy the errors of the latter and to give the name of Pelcus to Pelias, Jason's uncle. As the debt was entirety unacknowledged, Benort at last carne to be considered the imitator of Guido. The original is generally abridged, andt the vivacity and poetry of the Anglo-Norman trouvere disappear in a dry version. The immense popularity of Cuido's work is shown by the large number of existing MSS. The Erench Billtiothique Nutionale possegses eighteen codices of Guido to thirteen of Benoit. while at the British Museum the proportion is ten to two. Cuido's Histary was translated into German about 1392 by Hans Mair of Nórdlingen. Two Itakian translations were made: by Filippo Ceff (1334) and by Matteo Beliebuoni (1333). In the t41h and the commencement of the 15 th century four versions a ppeared in England and Scotland. The best known is the Troy Book, written between 1414 and 1420, of John Lydgate, who had both French and Latin texts before him. An earlicr and anonymous rendering exists at Oxford (Budleian MS. Laud Misc. S95). There is the Grsillystortole of the Destruction of Troy (Early Eng. Text Soc. 1869-1874), written in a northern dialect about 1390 : a Scottish version (15 th century) by a certain Barbour, not the poet. John Barbour; and The Seege of Troy, a version of Dares (Harl, MS. 525 Brit. Mis.). The invention of printing gave fresh impet us to the spread of Guidu's work. The first book printed in English wes Thi Recesell of the Hysloryes of Troye, a translation by Casten from the Erench of Raoui Lefdyre. The Recueil des bitorires de. Troyes was "compose
par vendrable homane Raeal ie Feure prezete chappellain de mon par venerable homme Raoul ie Feure prevte ehappellain de mon

 du fart Hercus ation de Troyes
than a translation of that portion of Cuido delle Colonne which relates to Priam and his sons. Two MiSS. of the Kecueil in the Bibliotheque Nationaic wrongly attribute the work to Guillaume Fillastre, a voluminous author, and predecessor of Lefevre as secretary to the duke. Another codex in the same library, Histoire ancienne de Thebes el de Troyes, is partly taken from Orosius. The Bibliotheque Nationale possesses an unpuhlished Histoire des Troyens et des Thébains jusqud la mont de Turnus, d'apres Orose. Oride et Rooul Lefebre (early ith century), and the British Museum a Latin history of Troy dated 1403. There were atso translations into Italian, Spanish, High German, Low Sixan, Dutch and Danish; Guido even appeared in a Flemish and a Bohemian dress.

Thus far we have only considered works more or less closely imitated from the original. Boccaccio, passing by the earlier tales. took one original incident from Benoit, the love of Troilus and the (reachery of Briseida, and composed Filostrafo, a parable of his own retations wish the Neapolitan princess who figures in his works as liammetta. This was borrowed by Chaucer for his Boke of Troilus and Cresside, and also by Shakespeare for his Troues and Cressida (1609). One reason why the Round Table stories of the 12 th and 13 th centuries had a never-ceasing charm for readers of the two following centuries was that they were constandy being re-edited to suit the changing taste. The Roman de \(T\);oie experienced the same fate. By the i3th century it was translated into prose and worked up in those enormous compilations, such as the Afer des hisfoires. \&c., in which the middle ages studied antiquity. It reappeared in the religious dramas called Mysteries. Jacques Millet, who produced La Destruction de Troie la Grande between 1452 and 1454 , merely added vulgar realism to the original. Writers of chap-books borrowed the story, which is again found on the stage in Ansoine de Montchrétien's tragedy of Hector (t603)-a last echo of the influence of Benoit.
Bibliograpis.- The Troy legend is dealt with in the elaborate work of A. Jaly, Benoft de Sainte-More et le Roman de Troie (18701871): G. Körting. Der alffrans. Roman de Trose (1883); F. Settegast, Benoût de Sie-More (Breslau, 1876); G. C.Frommann. Herborty. Fritular m. Benoil de Ste-More (Stutigart, 1837); R. Jackel, Dares Phrygius it. Benult de Ste-More (Brcslau, 1875); E. Juste, Sur loripime des poémes attrib. d Honère et sur les cycles épiques de lantiq. et du Moyen-Ägr (Brussels. 1849): J. A. Fuchs, De tarielate Jabularum troicarum quacs(iones (Cologne, 1830); H. Dunger, Die Sage som trojam. Kricge (Leipzik, 1869); G. Korting, Dietys m. Dares (Halle, 1874); 11. Dunger, Diclys Sepimius (Dresden, 1878): L. Havet, "Sur la date du Dictys de Septimius," Rev. de phitol. (1878); F. Meister, "Zur Ephem. belli Trniani von Dictys," Philologus (1879) : R. Barth. Gwido de Columna (Leipzig, 1877): A. Mussalia, "Sulle versione Italiane della Storia Troiana," Silm. d.k. Akad. Wien (1891), vol. Ixvii., and "Ucber d. span. Versionen" (ibid., 1871), vol. Ixix: A. Pey. Essai sur \(I f\) romans d'Eneas (1856). See also J.J. Jusserand, De Joscpho Exoniemsi (1877): E. Gorra, Testi imedst di sloria !rnjana (Turin, 1887): A. Grai, Roma nilla memoria a ne'le imaginazioni del medio evo (Turin, 1882); Le Roman de Troie. ed. L. Constans (Soc. d. anc. lextes (r. Paris, 1904); H. L. Ward. Calalogue of Romarices (1883), vol. i.; W. Greff, "DiemittelJlterlichen Bearbeitungen der Trojanersage," in E. Stengel's A usgaben und Abhondlungen aus dem Gebicie der romanischen Phin. dogie (Marburg, 1886): A. N. Hesselofsky. Mat. et recherches poup servir a thistave du romar el de la nowselle (Petersburg, 1889): R. Dernedde. Ueber dir den allfranzosischen Dichiern bekannien epischem Sloffe aus dem Alferitum (1887).

TROY, a city and the county-seas of Rensselaer county, New York, U.S.A., at the bead of tidcwater on the eastern bank of the Hudson river, oppositc the mouth of the Mohawk, about 6 m . N. of Aibany and about 148 m . N. of New York City. Pop. (1880), \(\$ 6.747 ;(1890), 60,956 ;(1900), 60,651\), of whom 14,384 were lorcign-born (7348 being Irish, 1706 German and 1498 English) and 400 were negrocs; (r910, census), 76,813 . Troy is scrved by the Boston \& Maine, the New York Central \& Hudson River and the Delawate \& Hudson railways, and by inter. urban electric lines connecting with Saratoga and Lake George on the north, Albany on the south and Schenectady and the citics of the populous Mohawk Valley on the west; it is at the head of rivet steamboat navigation \(n\) n the Hudson, and has water commubication by means of the Erie and Champlain canals with the Great Lakes and Canisda. The site is a level ohlong tract extending along the Hudson for 7 m . and reaching back a mile or so from the rivet to highlands which rise to a height of 400 ft ., with Mt Ida (240 ft . above tidewater) forming a picturesque lackground. The older part of the city and the principal business and manufacturing district occupics the low lands; the newer part, chiefly residential, is built upon the heights. The northern part of the cify was the village of Lansinghurg (pop, 1000, 12,505) until 1901, when with parts of the towas of Brunswick und North GreenLush it was annexed to

Troy. Oppoake Troy on the west bank of the Firdson, and connected with it by bridges, are Cohoes, Watervliet and Waterford. Induatrially and commercially they virtually form a part of Troy. Troy is the seat of Rensselaer Polytecinic Institute, founded in 1824 by Stephen van Rensselaer as a "school of theoretical and practicat science," incorporated in 1826, and reorganixed in 1849 as a general polytechnic institute. It is the oldest school of engineering in the country, and has always maintained a high rank of efficiency. The large gifts (about \(\$ 1,000,000\)) to the schood made by Mrs Rasself Sage in 1907 enabled it to add courtes in mechanical and electrical engineering to its course in civil engineering. The institute had 55 instructors and 650 students in 1910 . The Emma Willard School, founded as the Troy Famale. Seminary in 1821 by Mrs Emma Willand (1787-1870), is one of the oldest schools for women in the United States. Other educational institutions include Troy Academy (1834), a non-sectarian preparatory school; La Salle Institute (conducted hy the Brothers of the Christian Schools); St Joseph's Academy (Roman Catholic) and St Peter's Academy (Roman Catholic). Noteworthy baildings of a poblic and semi-public character include the post office, the puhlic library, containing in 191043,500 volumes, the Troy Savings Bank building, the city hall, the Rensselaer county court house, a Y.M.C.A. building and St Paul's Episcopal the Second Presbyterian and St Mary's (Roman Cathotic) charches. An area of 175 acres is comprised in the city's parks, the largest of which are Prospect Park and Beman Park. In Onixwood cemetery, 400 acres, are the grave of General George H. Thomas, and a monolithic shaft to the memory of General John Ellis Wool (\(1784-1869\)), who served with distinction in the War of 1812 and in the Mexiran War, and in the Civil War commanded for a time the Department of Virginia. In Washington Square there is a Soldiers' and Sailors' Monument, 93 ft. high. Altro Park, on an Island a short distance down the river, is a pleasure resort in summer.

Two rapid streams, Poesten Kill and Wymants Kin, flowing inlo the Kudson from the east, through deep revines, furnish good water-power, which, with that furaished by the state dam across the Hudson here, is utilised for manufacturing purposes. In 1905 the value of Troy's factory product was \(\$ 31,860,829\). Of this \(\$ 11,271,708\) was the value of collars and cuffs (\(89.5 \%\) of the value of the total American product), an industry which gave exployment to \(49.3 \%\) of the wage-earners in Troy; and paid \(42 \times \%\) of the wages. Closely allied with this industry was shirt-rnaking, with an output valued at \$4,263,61a Troy is the martet for a fertile agricuhtural region, and the pripcipad jobbing. centre for a harge district in north-eastern New York and eastern Massachusetts.
The site of Troy was part of the Van Rensselaer manor grant of 1629. In 1659 it was bought from the Indians, with the coment of the patroon, by Jan Barentsen Wemp, and several families settled here. In 1707 it pasted Into the hands of Derick van der Heyden, who laid out a large farm. During this early period it was known variously as Ferryhook, Ashley's Ferry and Van der Heyden's Ferry. In 1777 General Philip Schuyler established his headquarters on Van Schaick's Istand in the Mohawland Hudson, then the principal rendexvous of the army which later met Burgoyne at Saratoga. After the close of the war there was an influx of settless Irom Rhode Island, Conndeticut, New Hampshire and Vermont; a town was bid out ou the Van der Heyden farm, and in 1789 the name of Troy wasselected in town meeting; and in 2791 the town of Troy was formed from part of Remssednerwyck. The county-seat was extablished here in 1793, and Troy was incorporated as a vilage in 1794 and was chartered as a city in 1816. The first newspaper, The

\footnotetext{
\({ }^{1}\) Emma Hart was bom in Berlin, Connecticut, became a teacher in 1803. and in 1809 married Dr John Willard of Middlebury Vermont, where she oppened a boarding echool for girls in 1814 In 18 rg sbe wrote \(A\) Plan for Improoing Female Education, submitred to the governor of New York state; and in 1821 she removed to Troy. Her son took charge of the school in 1838 . She prepared many textbooks and wrote Journal and Letlers from France and Great Bridian (1833). See the biography (1873) by John Lord.
}

Farture's Oracle, began publication in 2797. In 1812 a steamboat line was established between Troy and Albany. Troy benefited financially by tho War of 1812 , during which contracts for army beef were'filed here. The opening of the Erie Canal in 1825 contributed greatly to Troy's commercial importance. During the Civil War army supplies, ammunition and cannon, and the armour-plate and parts of the machinery for the "Monitor" were made here. The first puddling works were opened in 1839, and Troy was long the centre of the New York iron and stcel industry; in 1865 the second Bessemer steel works in the United States were opened bere. Troy has three times been visited by severe conflagrations, that of Jone \(\mathbf{2 8 2 0}\) entailing a loss of about \(\$ 1,000,000\), that of August 1854 about the same, and that of May 1862, known as "the Great Fire," the destruction of over 500 buildings, and a property loss of some \(\$ 3,000,000\).

See Arthur J. Weise, Hittory of the Cily of Troy (Troy. 1876), and Troy's One Hundred Years (Troy, 1891).
TROY, a city and the county-seat of Miami county, Ohio, U.S.A., on the west bank of the Great Miami river, about 65 m . W. of Columbus. Pop. (1800), 4494 ; (1000). 5881 (234 foreignborn); (1910), 6122. Troy is served by the Cleveland, Cincinnati, Chicago \& St Louis and the Cincinnati, Hamiton \& Dayton railways, and by the Dayton \& Troy and the Springfield, Troy \& Piqua electric inter-urban lines. The Miami and Erie Canal, formerly important for traffic, is oow used only for power. The principal public buildings include the court house and the city hall, and there are a public library (boused in the city hall) and a children's home. Troy is situated in a good general farming region, of which tobacco is an important crop; and there are various manufactures. The municipality owns and operates the waterworks and electric-lighting plant. The first settlement was made in 1807, and Troy was first chartered as a city in 1890.

TROYES, a town of France, capital of the department of Aube, 104 m. E.S.E. of Paris on the Eastern railway to Belfort. Pop (1906), 51,228. The town is situated in the wide alluvial plain watered by the Seine, the main stream of which skirts it on the east. It is traversed by scveral small arms of the river, and the Canal de la Haute-Seine divides it into an upper town, on the left bank, and a lower town on the right bank. The streets are, for the most part, narrow and crooked. It is surrouaded by a belt of boulepards, outside which lie suburbs. The cburches of the town are numerous, and especially rich in stained glass of the Renaissance period, from the hands of Jean Soudain, Jean Macadré, Linard Gonthier and other artists.
St Pierre, the catheriral, was begun in 1208, and it was not until 1640 that the north tower of the facade was completed. With a height to the vaulting of only 98 ft. it is legs lofty than other important Gothic cathedrals of France. It consists of an apse with seven apse chapels, a choir with double aisles, on the right of which are the treasury and macristy, a transept without aisles, a meve with double aisles and side chapels and a vestibule. The west fagade belongs to the I6th century with the exception of the upper portion of the north tower; the south tower has never been compteted. Three portals, that in the centre surmounted by a fine flamboyant rove window, open into the vestibule. The stained glase of the interior dates mainly from the 15 th and 16 th centuries, The treasury contains some fine enamel work and lace. The church of St Unban, begun in 1262 at the expense of Pope Urban IV. a native of the town, is a charming apecimen of Gothic architecture, the lightnese and delicacy of its construction rivalioft that of churches built a century later. The glass windows, the profusion of which is the most remarkable feature of the church, date, for the most part, (rom the years 1265 to 1280 The church of La Madeleine, huilt at the beginning of the ruth century, and enlarged in the 16th, contains a rich rood-acreen by Ciovanni Gualdo (1508) and fine stained-plass windows of the 16 th century. The church of St Jean, though hidden among old houses, is one of the most picturesque in Troyes. The choir is a fine example of Renaimance architecture and the church contains a high altar of the 17th century, stained glam of the 16th century and many other works of art. St Nicholas is a building of the 16th century with a beautiful vaulted gallery in tha interior. The church of St Parmaltep of the rifh century and that of St Nizier, mainly of twe mate period, contain remarkable sculptures and paincingss St Remi (14th, 15th and 16th centuries) and St Martin-eds-Vignes (16th and ith centuries). the larter notable for its igth-century windows, are also of intercse. The ohd abbey of St Loup is occupled by 1
museum containing numerous collections. The Hotel Dieu of the 18th century is remarkable for the fine gilded iron railing of its courtyard. Most of the old houses of Troyes are of wood, but some of stone of the 16 th century are remarkable for their bcautiful and original architecture. Amongst the latter the hotels de Vauluisant, le Mauroy and de Marisy are specially interesting. The prefocture oceupies the buildings of the old abbey of Notre-Dame-aux-Nonnains; the Hostel-de-ville dates Irom the 17 th century; the savings bank, the theatre and the byece are modern buidings. A marble monument to the Sons of Aube commemorates the war of 1870-71.

Troyes is the seat of a bishop and a court of assize. Its public institutions include a tribunal of first instance, a eribunal of commerce, a council of trade arbitrators, a chamber of commerce and a branch of the Bank of France. A bycde, an ecclesiastical college, training colleges for male and female teachers, and a school of hosiery are its chief educational institutions. There are also several learned societies and a lange library. The dominant industry in Troyes is the manulacture of cotton, woollen and silk hosiery, which is exported to Spain, Italy, the United States and South America; printing and dyeing of fabrics, tanning, distilling, and the manufacture of looms and iron goods are among the other industries. The market gardens and nurseries of the neighbourhood are well known. There is trade in the wines of Burgundy and Champagne, in industral products, in snails and in the dressed pork prepared in the town.
History. - At the beginning of the Roman period Troyes (Augustobona) was the principal seltlement of the Tricassi, from whose name its own is derived. It owed its conversion to Christianity to Saints Savinian and Potentian, and in the frst half of the 4 th century its bishopric was created as a suffragan of Sens. St Loup, the most illustrious bishop of Troyes, occupied the episcopal seat from 426 to 479 . He is said to have persuaded Attila, chief of the Huns, to leave the town unpillaged, and is known to have exercised great influence in the Church of Gaul. The importance of the monastery of St Loup, which he founded, was overshadowed by that of the abbey of nunsknown as Notre-Dame-aux-Nonnains, which possessed large schools and cnjoyed great privileges in the town, in some points exercising authority even over the bishops themselves. In 892 and 808 Troyes suftered from the depredations of the Normans, who on the second aceasion reduced the town to ruins. In the early middle ages the bishops were supreme in Troyes, but in the roth century this supremacy was transferred to the counts of Troyes (see below), who from the is th century were known as the counts of Champagne. Under their rule the city attained great prosperity. Its fairs, which had already made it a prominent commercial centre, flourished under their patronage, while the canals constructed at their expense aided its industrial development. In the 12 th century both the counts and the ecclesiastics joined in the movement for the cnfranchiscment of their serfs, but it was not till 1230 and 1242 that Thibaut IV. granted charters to the inhabitants. A disastrous fire occurred in 1188; more disastrous still was the union of Champagne with the domains of the king of Erance in 1304 , since one of the first measures of Louis le IUtin was to Iorbid the Flemish merchants to attend the fairs, which from that time declined in importance. For a short lime (\(1419-1425\)), during the Ilundred Years' War, the town was the seat of the royal government, and in \(14: 0\) the signing of the Treaty of Troyes was followed by the marriage of Ifenry V. of England with Catherine, daughter of Charles VI., in the church of St Jean. In 1420 the town capitulated to Joan of Are. The next hundred years was a period of prosperity, marred by the destruction of half the lown by the fire of 1524 . In the \(16 i\) is century Protestantism made some progress in Troyes but never olizained a decided hold. In 1562, after a short occupation, the Calvinist troops were forced to relire, and on the new's of the massacre of St Bartholomew fifty Protestants were put to dialh. The revocation of the Edict of Nates in 1085 was a scicre blow to the commeroe of Troges, which was not revived by the re-establishment of the Treect fift in 1697 . The population fell from the beginning of the s6th century asy

See T. Boution, Histore ie I
[ollowing manner. Aleran, mentioned in 837, dicd before the 25 th of April 854. Odo (or Eudes) I. appears as count on the 25 th of April 854 , and seems to have been stripped of his dignitics in January 850. Raoul, or Rudolph, maternal uncle of King Charles the Bald, was count of Troyes in 863 and 864 , and died on the 6th of January 866. Odo I. seems to have cntered again into possession of the countship of Troyes after the death of Raoul, and died himself on the roth of August 871. Boso, afterwards king of Provence, received the countship in ward after the death of Odo I. A royal diploma was granted at his request, on the 2 gth of March 877 , to the abbey of Montier-laCelle in Troyes. Odo II., son of Odo 1., became count of Troyes on the 25 th of October 877. Robert I., brother of Odo II., was count from 879. He married Gisla, sister of kings Louis III, and Carloman, and was killed by the Northmen in 886 Alcaume, nephew of Robert 1., is mentioned in 803. Richard, son of the viscount of Sens Carnier, is styled count of Troyes in'a royal diploma of the toth of December 926. He was living in 931. Herbert 1., already count of Vermandois, succeeded Richard, and died in 943. Rubert Il., one of the five sons of Herbert of Vermandois, is called count of Troyes in an act of the 6th of August 959, and died in August 968. Herbert Il. the Old, younger brother of Robert II., succeeled him and died between 9 So and 983 . Herbert 111. the Young, nephew and successor of Herbert 11., died in 005 . Stephen I., son and successor of Herbert III., was alive in 1019 . His successor was his cousin, Odo II., count of Blois. From the tath century the counts of Troyes, whose domains increased remarkably, are commonly designated by the name of counts of Champagne.

See H. d'Arbois de Jubainville. Histoire des ducs et des comtes de Champagne (1859). vol. j.; F, Lot, Les Derniers Carosingiens, (1801), pp. 370-377: A. Longnon, Documents relafifs au comié de Chumpagre al de Brie (1904), ii. 9, note.
(A. La.)

TROYON, CONSTANT (1810-1865), French painter, was born on the 28 th of August 8810 at Sevtes, near Paris, where his father was connccted with the famous manulactory of china. Troyon was an animal painter of the first rank, and was closely associated with the artists who painted around Barbizon. The technical qualities of his methods of painting are most masterly; his drawing is excellent, and his composition always intercsting. It was only comparatively late in life that Troyon found his mefier, but when he realized his power of painting animals he produced a fairly large number of good pictures in a few years. Troyon entered the afrliers very young as a decorator, and until he was twenty he laboured assiduously at the minute details of porcelain ornamentation; and this kind of work lie mastered so thoroughly that it was many years before he overcame its limitations. By the time he reached twenty-one he was travelling the country as an artist, and painting landscapes so long as his Gnances lasted. Then when pressed for moncy he made friends with the first china manu. facturer he met and worked steadily at his old business of decorator until he had accumulated enough funds to permit him to start again on his wanderings.

Troyon was a favourite with Roqueplan, an artist of distinction eight years his senior, and he became one of his pupils after receising certain tuition frem a painter, now quile umknown, named Riocreux. Roqueplan introduced Troyon 10 Rousscau, Jules Dupré, and the other Barbizon painters, and in his pictures between 1840 and 1847 he seemed to endeavour to follow in their footsteps. But as a landscapist Troson would never have been recognized as a thorough master, although his work of the period is marked will much sincerity and met with a certain success. It may be pointed out, however, that in one or two pure landscapes of the end of his life he achieved qualities of the highest artistic kind; but this was after lengthy experience mainter, by which his talents had become thoroughly

Troyon went to the Netherlands, and at the llague Potter's famuus " Young Bull." From the studies of this picture, of Cuyp's sunny landscapes, and
brandi's noble manterpleces be soon evolvad a new method of painting, and it is only in works produced after this time that Troyon's true individuality is revealed. When be became conscious of his power as an animal panter he developed with ezpidity and success, until his works became recognized as masterpieces in Great Britain and America, as well as in all countries of the Continent. Succeas, however, came too late, for Troyon never quite believed in it himself, and even when be could command the market of several countries be still grumbled loudly at the way the world treated him. Yet be was decorated with the Legion of Hopour, and five times received medals at the Paris Salon, while Napoleon III. was one of his patrons; and it is certain be was at least as financially succesful as his Barbizon colleagues.

Troyon died, unmarried, at Paris on the 2 zst of February 1865, after a term of clouded intellect. All his famous pletures are of date between 1850 and 1864, his earlier work being of comparatively liule value. His mother, who survived him, instituted the Troyon prize for animal pictures at the Eoole des Beaux Arts. Troyon's work is tairly well known to the public through a number of large engravings from his pictures. In the Wallace Gallery in London are "Watering Catte" and "Cattle in Stormy Weathes"; in the Glasgow Corporation Gallery is a "Landscape with Catte"; the Louve contains his famous "Oxen at Work" and "Returning to the Farm": while the Metropolitan Museum of Art and other galleries in America contain fine examples of his pictures. His "Vallfe de Is Toucque, Normandy," is one of his greatest pictures; and at Christie's sale-room in 1902 the single figure of a cow in a landscape of but moderate quality fetched f7350. Emile van Marcke (1827-1891) was his beat-known pupil

See H. Dumesnil, Constant Troyon: Sowtornirs indimes (Paris, 1888): A. Hustin, "Troyon," L'Art, pp 77 and 85 (Paris, 1889): Albert Wolf. "Constant Troyon," La Caprtale de lart (Pari, 1886); D. C. Thomson, The Barbioon School of Painters (London, 1890); "Conatant Troyon," The Art Joumal (1893). p. 22. (D. C. T.)

TRUCE OF COD, an attempt of the Churcb in the middle ages to alleviate the evils of private warfare Throughout the gtb and roth centuries, as the life-benefices of the later Carolingian kings were gradually translormed into hereditary fefs, the insecurity of bife and property increased, for there was no central power to curb the warring local magnates. The two measures which were adopted hy the Church to remedy these conditions-the pax ecclesice or Det and tbe treuga or wese Dei-are usually both referred to as the Truce of God, bet they are distinct in character The latter was a development of the former

The pax ecclesiae is first heard of in the year 990 at three synods held in different parts of southern and central Franceat Cbarrour, Narboonc and Puy It enlisted the immediate upport of the regular clergy, particularly the vigorous congregation of Cluny, and of William \(V\) of Aquitaine, the most powerful lord of southern France, who urged its adoption at the Councils of Limoges (094) and Poitiers (909) The peace decrees of these various symods difered considerably in detail, but in general they were intended fully to protect non-combatants, they forbade, under pain of excommunication, every act of private warfare or violence against ecclesiastical buildings and their environs, and against certain persons, such as clerics, pilgrims, merchants, women and peasants, and against cattle and agricultural implements. With the opening of the 1 1th century, the pax ecclesiae spread over northern France and Bargundy, and diocesan leagues began to be organized for its maintenance. The bishop, or count, on whose lands the peace was violated was vested with judicial power, and wes directed, in case he was himself unable to execute sentence, to summon to his assistance the laymen and cven the clerics of the diocese, an of whom were required to take a solemn oath to obscrve and enforce the peace. At the Council of Bourges (1038), the archbishop decreed that every Christian fifteen years and over should take such an oath and enter the diocesan militia The idea that peace is a divine institution seems to
have given rise to a new name for the peace, the pax Dai, or peace of God

The treuga or treac Dei, the prohibition of every act of private wariare during certan days, goes back at least to the Synod of Elne, held in the Pyrenees in ro27, which suspended all warfare from noon on Saturday till prime on Monday. Like the pers ecclessoe it found ardent champions in the regular clergy, especially in Odilo (962-1049), the fifth abbot of Cluny, and soon spread over all France. It penctrated Piedmont and Lombardy in 1041 and Normandy in 1042. By this time the truce extended from the Wednesday evening to the Monday morning in every week and also, in most places, lasted during the scasons of Lent and Advent, the three great vigise and feasts of the Blessed Virgin, and those of the twelve aposiles and a few other saints. The treuga Dei was decreod for Flanders at the Synod of Therouanne (1063) and was instituted in southern Italy in ro89, probably through Norman influence. The bishop of Litge introduced it in Germany in 1082, and three years later a synod held at Mainz in the presence of the emperor Henry IV extended it to the whole empire. It does not appear to have secured a firm footing in England, although its general provisions were incorporated in the laws of the land (\(1130-1154\)). The popes took the direction of the matter into their own hands towards the end of the ith century as they realized the necessity of promoting peace among Christians in order to unite them successfully in the crusades against the Mahommedans, and the first decree of the Council of Clermont (to95), at which Urban II. preached the first crusade, proclaimed a weekly truce for all Christendom, adding a garantee of safety to all who might take refoge at a wayside cross or at the plough. The Truce of God was reaffirmed by many councils, such as that held at Reims by Calixtus LI. in 1119, and the Lateran councils of ti23, 1739 and 1179 . When the trouga Dai reached its mont extended form, scarcely one-fourth of the year remained for Gighting, and even then the older canons relating to the pax acclasios remsined in force. The means employed for its enforcement remained practically the same. apiritural penalties, such as excommumication, special eccesiastical tribunals, sworn leagues of peace, and assistance from the temporal power The Council of Clermont prescribed that the oath of adherence to the truce be taken every three years by all men above the age of tweive, whether noble, burgess, villein or serf The results of these peace efforts were perhaps surprisingly mediocre, but it must be borne in mind that not only was the military organization of the dioceses always very imperfect, but feudal society, so long as it retained political power, was inherently bostie to the principle and practice of privale peace. The Truce of God was most powerful in the rath century, but with the \(z_{3}\) th lits influence waned as the kings gradually gained control over the nobles and substituted the king's peace for that of the Church.
A few hishops, notahly Gerard of Cambrai (1013-105!), seem from the first to have opposed the peace laws of the Church as encroaching on royal autboriny, hut the lay rulers usually co-operated with the ecclesiastical suthorities in encouraging and maintaimug the Truce of God. In fact, the emperor Henry 11. and the French king Robert the Pious discuased the subject of universal peace under church auspices at Monzon in 1023. By the t2th century, however, the ecclesiastical measures had proved ineffectual in coping with private warfare, and secular rulers sought independently to diminish the number and atrocity of private wars within their own domains The provisions of the Truce of God were often incorporated bodily in municipal and district statutes such as the laws of Barcelona (1067) The emperor Henry IV. approved (rabs) the extension of the truce to the whole land, and in 1103 royal laws entirely prohibiting private warfare in the empire replaced the Truce of God. In France royalty acquired fittle by little a preponderant influence over leudalism and used its increased prestige to substitute for the Truce of God the peace of the atate Lovis VL., Lowis VII. and Pbilip Aucusers
gradually obtaned recognition not only from the petty lords of their own domain but from most of the magnates of the kingdom. Thanks to the moral support and matertal resources which it found in the ecclessastical lords of central and northern France, and to the growing popular desire for the suppression of teuds, royalty was able to support its pretension to the general government of the kingdom. Confirming what was doubtless an older custom, Philip Augustus decreed the quarantaine-le-roi, which suspended every act of reprisal for at least forty days; and in 1257 Louis IX. absolutcly forbade all private wars in the crown lands. Ry the beginning of the isth century the royal authority had sufficient force to ensure the maintenance of the Landesfroede. In England. where the Truce of God does not seem to have acquired a firm fouting, state law against private warfare obtanned practically from the time of the Norman conquest. At least from Henry I it became an axiom that the law of the king's court stood alove all other law and was the same for all.

See L. Huberti, Studien zup Rechtsgeschichte der Gottesfrieden und Landfruden, Bd. i. Due Friedens-Ordnungen in Frankreuch (Ansbach. 1892). A. Luchaire, "La Paix et la trêve de Dieu," in E. Lavissc's Histoire de France, II. 2, PD. 133-138 (Paris, 1901); E. Sémachon, La Paxe et la trive de Dres (and ed. 1860); E. Maver. Dentsche und franzōsische Verfassungsgeschichte (1899), vol. i ; J. Fehr, Der Goll:sfriede und die katholische Kirche des Mrutelatters (Augsburg. 1861); A. Kluckhohn, Geschichte des Gottesfriedens (Leipzig, 1857); K. J. von Hefele, Conciliengeschachite, and ed., vol. 4 ; Du Cange, Clossarium, s.y. Treuga. The principal French documents on the subject are published in Huberti's book, and those of Germany, Italy and Arles are edited by L. Weiland in the Monumenta Germantae hissorica, constitutiones i. 596 sqq.
(C. H. HA.)

TRUCK. (1) A name for barter, or commodities used in barter or trade. The word came into English Irom the French troq, mod. troc; troquer, to harter, is borrowed from Spanish trocar, for which several origins have been suggested, such as a Low Latin travicare, the supposed original of "traffic " (q.v.), or some latinized form of Greck rpónos, iurn; it may, on the other hand, be connected with the Greek tooxbs, wheci. "Truck," in this sense, is chiefly used now in the sense of the payment of the wages of workmen in kind, or in any other way than the unconditional payment of money, a practice known as the "truck system." Colloquially, "truck" is used in the general sense of "dealing," in such expressions as "to have no truck with anyone." The "truck system" has taken various forms. Sometimes the workman has heen paid witb " portion of that which he has helped to produce," whether he had need of it or not, but the more usual form was to give the workman the whole or part of his wages in the shape of commodities suited \(t 0\) his needs. There was also a practice of paying in money, but with an express or tacit understanding that the workman should resort for such goods as he required to shops or stores kept by his employer. The truck system led in many cases to grave abuses and was made illegal by the Truck Acts, under which wages must he paid in cursent coin of the realm, without any stipulations as to the manner in which the same shall be expended. (See Labour Legislation.) (2) From the Late Latin trochus, wheel, Greek tpoxds, we get "truck" in the sense of a wheeled vehicle, such as the hand-barrows used for carrying luggage at a railway station; and the word is used generally for all that portion of railway rollingstock which is intended for the carriage of goods (see Railways: Rolling-stock). The term is also used of a circular disk of wood at the top of a ship's mast, gencrally provided with sheaves for the signal halyards.

TRUCKLE, a verb meaning to submit servilely or fawningly to another's bidding, to yield in a weak, feeble or contemptible way. The origin is the "truckle bed," a small bed on wheels which could be pushed under a latge one. In early time servants or children slept in such beds, placed at the fogt al their masters' and parents' bed, but the name firs avpears as a university word, and was derived direct frows hatin trechles, a wheel or pulley-block, Greek ppoxds, whed

TRUEBA, ANTONIO DB (\(18: 0 \sim 8\)
where be was privately educated. In 8835 he was sent to learn business at Madnd, but commerce was not to his taste, and, after a long apprenticeship, he turned to journalism. In 185 the hit the popular taste with El Cid Campeador and Et Libro de los cantares, for the next cleven years he was absorbed hy journalistic work, the best of his contributions being issued under the titles of Cuentos populares (1862), Cuentos de color de rosa (1864): and Cuentos campesinos (\(\mathbf{2 8 6 5 \text {). The pleasant }}\) simplicity and idyllic sentimentalism of these collections delighted an uncritical public, and Trueba met the demand by supplying a series of stories conceived in the same ingenuous vein. In 1862 he was appointed archivist and chronider of the Biscay provinces, he was deprived of the former post in 1870 , but was remstated after the restoration. He died at Bubso on the soth of March \(\mathbf{5 8 8}\).
TRUFPLE (from Med. Fr. trufe, a variant of truff, generally taken to be for lafic, from Lat. laber, an esculent root, a tuber, cl. Ital tortufo, truffe, from Lat. torae tuber; another Ital. form cartufola gave Ger. Tartoffl, dissimilated to Kartoffl, potato), the name of several different species of subterranean fungi which are used as food. The species sold in English markets is Tuber cestivum; the commonest species of French markets is \(T\).melanosporum, and of Italian the garlic-scented \(T\) magnatum. Of the three, the English species is the least desirable, and the French is possibly the best. The truffle used for Perigord pie (pale de foie gros) is T. melanosporum, regarded by some as a dark variety of our Britush species, \(T\) brumale. When, however the stock of \(T\) melatosporum happens to be deficient, some manulacturers use inferior species, such as the worthless or dangerous Choeromyces meandriformis. Even the rank and offensive Scleroderma vulgare (one of the puffball series of fungi) is sometimes used for stuffing turkeys, sausages, \&c. Indeed, good truffies, and then only \(T\). aestinum, are seldom seen in English markets The taste of \(T\) melonosporam can be detected in Perigord pie of good quality. True and false truffles can easily be distinguished under the microscope
Tuber aesitivum, the English truffle, is roundish in shape, covered with coarse polygonal warts, black in colour outside and browoish and vcined with white winhin, its average size is about that of a small apple. It grows from July till autumn or winter, and prefers beech, oak and birch woods on argillaceous or calcartous soil, and has sometimes beetn observed in pine woods. It grows gregariousy, often in company with T. brumale and (in France and Italy) \(T\) melonosporum, and somctimes appears in French markets with these two speries as well as with T. mesenfcricum. The odour of \(T\) eeslivum is very strony and penctrating, it is gecicrally esteemed powerfully fragrant, and its taste is considered agreeable. The common Frenich truffle, T. melanosporum, is a winter species. It is a valuable article of commerce and is exported from France in great quantitics. The wubers are globose bright brown or black in colour, and rough with polygonal warts; the mature flesh is blackish grey, marbled within with white veins. It is gathered in autumn and winter in beech and caak woods, and is frequently seen in Italian markets The odour of T. melanosporum is very pleasant, especially when the lubers are young, then somewhat resembling that of the strawberry: with age the smell gets very protent, but is never considered really unpleasant. The common ltalian truffe, T. magnatum, is pallid ochreous or brownish buff in colour, smooth or minutely papillose, irregularly globose, and lobed: the interior is a very pale brownish liver colour veined with white. It grows towards the end of autumn in plantations of willows, poplars and oaks, on clayey soil. Somet imes it ofcurs in open culivaiod fields. The odour of the mature fungus is very potent, and is like strong garlic, onion or decaying shoese \(T\) bmamale, referred to above, grows in Britain. It is a winter tru he and is found chiefly under oaks and abele trees from whes Boand is io It is black

was born on the 24th of December \(882 q\) at Mpnit
© T. etstyum, of which it is regarded as a varfety and probably grows in Britain. Another edible species, \(T\) macrosporam, also grows in Britain, in clayey places under young beeches and oaks, on the borders of streams and roads, and sometimes in fields: more rarely it grows in plantations of willow and poplar it has a strong scent of onione ot garlic somewhat similar to \(T\) acstroum, but it is leat esteremed on account of its touthness and its small saze.

Teffran leonis, a famous iruffe of ltaly. Algeria. Sardinia, \&c. resembles externally a potato. It grows in March. April and May Some persons eat it in a raw state. sliced and dipped in oil or egg. It is not scented, and its taste is generally considered insipid or soapy. Madanotaster pariagatus, an ally of the puff-balls, and thercfore (like Saleroderma) nol a true trufle, is sometimes eaten in England and France. It has been, and possibly still is, occasiomally sohl in England under the name of "red truffe." it :s anal! firtcus brown specica with a strong aromatic and pleasant ocour of bitter slmonds. When the plant is caten saw the laste is swreet and sugary, but when cooked it is hardly agreeable. The odour belonging to many trumfes is so potent that ther places of growth can be radily detected by the odour exhaled from the ground. Squirrels, hogs and ot her anmals commonly dig up truffles and devour them, and pigs and doge have long been traned to point out the places vhere they grow. Pigs will always cat truffes, and dogs will do so occasionatly; it is therefore usual to give the trained pig or dog a small piece of checse or some little reward each time it is successful. Trufies are reproduced by apores, which serve the eame purpose as seeds in flowering plants; in true truffies the spores are borne in traneparent sacs (asci), from four to eight spores in each ascus. The asci are embedded in vast numbers in the lesh of the truffe.

Spores of the Chief European Truffles.
1. Tuber aestivent
2. T. brumale.
3. \(T\) melanosporum.
4. T. mesentertcum.
5. \(T\) magratum.
6. Choeronyces meandriformis.
7. Scleroderma vulgare

8, Mclanogaster variegatus.

In false truffles the spores are free and are borne on minute spicules or supports. The spores of the chief European truffles, true and false, ealarged five hundred diameters, are shown in the accompanying Ainstration. Many references to truftler occur in classical autbors. The truffle Elaphomyces mariegotus was till quite recent times used, under the name of Hart's nut or Lycoperdon nut, on account of its apposed aphrodisiac qualitics.

TRUJILD, or Troxillo, a seaport on the Atlantic coast of Honduras, in \(15^{\circ} 54^{\prime}\) N. and \(86^{\circ} 5^{\prime} \mathrm{W}, ~ P o p\). (igos), about 4000 . The harbour, an inket of the Bay of Honduras, is sheltered on the north by the promontory of Cape Honduras: it is deep and spacious, but insecure in westerly winds. Mahogray, dye-woods. sarsaparilla, cattle, bides and fruit are exported; grain, flour, hardware and rum are imported. Trujillo was founded in 1524, and became one of the most prosperous ports of the new wordd, and the headquarters of a Spanish esval squadron. During the ryth century it was frequently and successfully raided by huecaneers, and thus lost much of costmerce. Still more has in modern times been diverted Puerto Cortes and the Bay Islands.
YHIH10, or Truxillo, a city of northern Peru, the *. 3 . and capital of the department of Libertad, wif of Lima and is m. from the Pacific coast, of Lima and is m. from the Pacific coast,
\(79^{\circ} 9^{\prime} \mathrm{W}\) Pop. (1906, estimate), about arid, sandy plain (Mansiché. the coast from Paita south to the Mocbe or Chimu river, and to the celebrated Chimu Valley an an old Indian city commonly 3 together with extensive aqueducts Fppartly enelosed by an old adobe buildings are in great part also public institutions include a
university, two national colleges, one of which is fot girls, an episcopal seminary, a hospital and a theatre.

Trujillo was once an important commercial centre and the metropolis of notthern Peru, but the short railways running inland from various ports have taken away its commercial importance. The port of Salaverry (with which Trujillo is connected by rail) is about so m . south-east, where the national government has constructed a long iron pier. Rallways also extend northward to Ascope and eastward to Lareda, Galindo and Menocucho, and a short line runs from Roms, on the Ascope extension, to the port of Huanchaco. The only important manulactures of Trujillo are cigars and digarettes.
Trujillo was founded in 1535, by Francisco Pizarro, who gave tt the name of his native city in Spain. Its position on the road from Tumbez to Lima gave it considerable political and commercial importance, and some reflection of that colonial distinction still remains. It suffered litte in the War of ludependence, but was occupied and pluadered by the Chileans in 1882.
Of the ancient aboriginal city, or grote of towns; whose ruins and burial-places cover the plain on every side of Trujillo, comparatively ifttle is definitely known. The extent of these ruins, which cover an area 12 to 15 m . long by 5 to 6 m . wide, demonstrate that it was much the largest Indian city on the southern continent. The principal suins are 4 m . north of Trufillo, hut others lie more to the eastward and still others southward of the banks of the Moche. The great aqueduct, which brought water to the several large reservoits of the city, was 14 m . long and in some places in crossing the Chimu Valley it had an elevation of 60 ft

The name of Grand Chimu is usually given to the ruined city. this being the title applied to the chief of the people, who were called the Chimu, or Yuncas. They were a race wholly distinct from the Incas, by whom they were finally conquered. They spoke a different language and had developed an altogether different civilization, and it is not unreasonable to presume that they were related to some carlier race of southern Mexico. Specimens of skillully wrought ornaments of gold and silver. artistically made pottery, and finely woven fabrics of cotton and wool (alpaca), have been found in their huaces. or burial-places. Bronze was known to them, and from it tools and weapons were made. Their extensive irrigation worke show that they were painstaking agriculturists, and that they were successful ones may be assumed from the size of the population maintained in so arid a region. Since the Spanish conquest their hnocas have been opened and rifted, and many of the larger masses of ruins bave heen extensively mined in search of treasure. but enough stil! remains to impress upon the obscrver the magnitude of the city and the genius of the people who built it. Nolhing is known of their history or of their political institutions, but these remaine of their bandiwork bear eloquent testimony that they had reached a degree of development ia some respects higher even than that of the Incas.
See E. G Squier, Peru (New York, 1877): and Charles Wiener, Perow et Bolivie (Paris, 1882).

TRUMLLO, a town of Spain, in the province of Caceres; on a bill 25 m . east of Caceres, and on the river Tozo, a subtributary of the Tagus. Pop. (1900), 12,512. The sutrounding countty is rugged, but produces wheat, wine, oils and fruit, besides livestock of all sorts, and much phosphorite. There are valuable forests close to the town. In the oldest part of Trujillo are the remains of a castle said to be of Roman origin, but rebuilt by the Moors and restored in modern times. The Julia tower is also said to be Roman, like much of the fortifications. The Roman name for the town was Turgalium. The principal parish church, Santa Maria, is a fine Cothic structure of the 1 gth century. Trujillo was a town of importance in the middle ages. Pizarro, the conqueror of Peru, was born here about 1471 , and built a palace, which still stands, in the main square of the town.

TRUMBALL, SIR WILLIAM (1639-1716), English politician was a grandson of William Trumball (d. 1635), who was for sixteen ycars English resident at Brussels and afterwards 2 clerk of the privy council. Educated at St John's College. Oxford, young Trumball became a fellow of All Souls and settled down as a practising la wyer in Oxford and in London. He was made chancellor, of the diocese of Rochestel and was sent to Tangier on public business in 1683 , one of his companions
on this errand being the diarist Pepys. In 1684 Trumball Fas knighted hy Charles II. and in 685 he was sent as envoy to France, where he worked hard on behalf of the English Protestants there who were threatened by the Revocation of the Edict of Nantes. In 685 he became a member of Parliament, in 1687 he went as ambassador to Constantinople, and in 1694 he was made a lord of the treasury. From May 1695 until December 1697 he was a secretary of state under William 111 . He died on the 14th of December 1716. His son, Willam Trumball (1708-1760), had an only daughter, who became the wife of the Hon Martin Sandys. She was thus the ancestress of the later marquesses of Downshire.

Many of Trumball's letters are in the British Museum and in the Record Office, London. Trumball was on lriendly terms with Picrre Bayle and with Dryden. whom he advised to translate Virgil. He was also very intimate with Pope, whom he influenced in several ways, especially in urging him to make a translation of Homer.

TRUMBDLL, JAMES HAMMOND (1821-1897), American scholar, was bom in Stonington, Connecticut, on the 20 h of December 1821. He studied at Yale, but ill-health prevented his graduation. He was state librarian in \(1854-1855\), assistantsecretary of state of Connecticut in 1847-1852 and in 1858186t, and secretary of state \(\ln 186 t-1866\); and was a prominent member of the Connecticut Historical Society, of which he was president in 1863-1889, the National Academy of Science, to which he was elected in 1872, and of other learned sociecies. He died in Hartford on the 5th of August 1897. He wrote Historical Notes on some Provisions of the Connecticul Statutes (1860-1861) and The True Blue Laws of Connecticut (1876), and edited The Colonial Records of Connecticut (3 vols., \(1850^{-}\) 1859). He is belter known, however, as a student of the Indian dialects of New England.

He edited Roger Williams's Key to the Language of A merica (1866), and wrote The Compostion of Indian Geographical Names (1870), The Best Methods of Studying the Indian Languages (1871). Indian Names of Places in ... Connecticul wilh Interprelations (1881) and other works on similar subjects.

TRUHBULh, JOHN (1750-1831), American poet, was born In what is now Watertown, Connecticut, where his falher was a Congregational preacher, on the 24th of April 1750 . At the age of seven he passed his entrance examinations at Yale, but did not enter until 1763 ; he graduated in 1767 , studied law there, and in 1771-1773 was a tutor. In 1773 he was admitted to the bar, in 1773-1774 practised law in Boston, working in the lawoffice of John Adams, and after 1774 practised in New Haven. He was state attorney in 1789 , a member of the Connecticut Assembly in 1792 and 1800 , and a judge of the Superior Court in \(1801-18 \mathrm{I}\). The last six years of his life were spent in Detroit, Michigan, where he died on the roth of May 1831. While studying at Yale he had contributed in 1769-1770 ten essays, called "The Meddler," imitating The Spectator, to the Boston Chronicle, and in 1770 similar essays, signed "The Correspondent " to the Connecticut Journal and New Haven Post Boy. While a tutor he wrote his first satire in verse, The Progress of Dulness (1772-1773), an attack in three poems on educational methods of his time. His great poem, which ranks him with Philip Freneau and Francis Hopkinson as an American political satirist of the period of the War of Independence, was McFingal, of which the frst canto, "The Town-Meeting," appeared in 1776 (dated 1775). This canto, about 1500 lines, contains some verses from "Gage's Proclamation," published in the Conrecticut Courant for the 7 th and the 14 th of August 1775, it portrays a Scotch Loyalist, McFingal, and his Whig opponent, Honorius, evidently a portrait of John Adams. This first canto was divided into two, and with a third and a fourth canto was published in 1782. After the war Trumbull was a rigid Federalist. and with the "Hartford Wits" David Humphreys, Joel Barlow and Lemuel Hopkins, wrote the Anarchiad, a poem directed against the enemies of a firm cent ral government.
See the memoir in the Hartford edition of Trumbull's Poctical Works (2 vols. \({ }^{1820}\)); James Hammond Trumbull's The Origin of "Mc Fingal" (Morrisania, New York, 1868) : and the estimate in M.C. Tyler's Literary History of the A wenican Resolution (New York, 8897).

TRUZBULL, JOAN (\(1756-1843\)), American artist, was born at Lebanon, Connecucut, on the 6th of June 1756, the son of Jonathan Trumbull (\(1710-1785\)), governor of Connecticut. He graduated at Harvard in 1773, served in the War of Independence, rendering a particular service at Boston by sketching plans of the British works, and was appointed second aide-decamp to General Washungton and in June 1776 deputy adjutantgeneral to General Gates, but resigned from the army in 1777. In 1780 he went to London to study under Benjamin West, but his work had hardly begun when the news of the arrest and execution of Major Andre, who was deputy adjutant-general in the English army, suggested the arrest of Trumbull as having been an officer of similar rank in the Continental army; he was imprisoned for seven months. In 1784 he was again in London working under West, in whose studio he painted his "Battle of Bunker Hill" and "Death of Montgomery," both of which are now in the Yale School of Fine Arts. In 1785 Trumbull went to Paris, where he made portrait sketches of French officers for "The Surrender of Cornwallis," and began, with the assistance of Jefierson, "The Signing of the Declaration of Independence," well \(\cdot\) known from the engraving by Asher B. Durand. Tbese paintings, with "The Surrender of Burgoyne," and "The Resignation of Washington," were bought by the United States government and placed in the Capitol at Washington. Trumbull's "Sortie from Gibraltar " (i787), owned by the Boston Athenaeum, Is now in the Boston Museum of Fine Arts, and a series of historical paintings, the "Trumbull Gallery," by far the largest single collection of his works (more than 50 pictures), has been in the possession of Yale College since 1831. when Trumbull received from the college an annuity of \(\$ 1000\). His portraits aclude full lengths of General Washingion (1790) and George Clinton (1791), in the city-hall of New Yorkwhere there are also full lengths of Hamilon and of Jay; and portraits of John Adams (1797), Jonathan Trumbull, and Rufus King (1800); of Timothy Dwight and Stephen Van Renssclaer, both at Yale; of Alexander Hamilton (in the Metropolitan Museum of Art, New York City, and in the Boston Museum of Fine Arts, both taken from Ceracchi's bust); a portrait of himself painted in 1833 ; a full length of Washington, at Charleston, South Carolina; a full length of Washington in military costume (1792), now at Yale; and portraits of President and Mrs Washington (1794), in the National Museum at Washington. Trumbull's own portrait was painted by Stuart and by many others. In 1794 Trumbull acted as secretary \({ }^{10}\) John Jay in London during the negotiation of the treaty with Great Britain, and in 1796 he was appointed by the commissioners sent by the two countries the fifth commissioner to carry out the seventh article of the treaty. He was president of the American Academy of Fine Arts in 1816-1825. He died in New York on the roth of November 1843.

See his Attobiography (New York, 1841): J. F. Weir, John Trume bull. A bref Sketh of His Life, to which is added a Catalogue of kis Works (New York. tgo1) and John Durand, " John Trumbull." American Ant Review, vol. ii. ph. 2. pp. 181-193 (Eloston, 1881).

TRUMBULL, JONATHAN (\(1710-1785\)), American political leader, was born at Lebanon, Connecticut, on the 1 th of October 1710. He graduated at Harvard in 1727, and began the study of theology, but in 1731 engaged in business with his father. He next studied law, was elected to the Assembly in 1773, and held public office almost continuously afterward. He served for seven years in the Assemhly, being Speaker for three years, for seventeen years as county judge of Windham county, for twenty-two years (after 1740) as governor's assistant, for two years as deputy-governor (\(1767-1769\)), and for three years (\(1766-1769\)) as chuef justice of the colony. In 1769 he was elected governor and continued in office until his voluntary retirement in \(\mathbf{3 7 8 4}\). During the War of Independence he was a valued counsellor of Washington. The story that the term "Brother Jonathan," a sobriquet for tho United States, originated in Washington's familiar form of addressing him seems to be without any foundation. After the war Trumbull was a strong Federalist. He died is Lebanon on the 17 th of August 1785

His public papers have been printed in the Massachusetta Historical Society's Collections, 5th series, vols. ix-x. (Boston, 1885-1888). and 7th serics, vols. ii.-iifi (1902). See 1. W. Stuart, Life of Jonalhan Trumbul, sex. (Boston, 1859).

His son Jonitann (1740-1809) graduated at Harvard in 1759, served io the War of Independence as paymaster-general of the northern department in \(1775-1778\) and as a military secretary of Washington in \(1778-1783\), and was a member of the mational House of Representatives in 1789-1795, serving as Speaker in 5799-1793, and of the United States Senate in 17951706; be was lieutenant-governor of Connecticut in 1796-1798, and governor in 1798-1809. Another son, JOSEPM (1737-1778), was a member of the first Continental Congress (1774-1775), became commissary-general of stores of the Continental army in July 1775 and commissary-general of purchases in June 1777. resigned in August 1777, and from November 1777 to April \(177^{8}\) was commissioncr for the board of war. A grandson of the first Jonathan, Joseph (\(1782-1861\)), was a Whig representative in Congress in \(1834-1835\) and in 1839-1843, and was governor of Connecticut in 1849-1850.

TRUMBULL, LYMAN (1813 -1896), American juris! and political leader, was born at Colchester, Connecticut, on the 12th of October 1813 , and was a grandson of Benjamin Trumbull (\(1735-1820\)), a Congregational preacher and the author of a useful Complete History of Connerticut (2 vols., 1818). He laught in Ceorgia, studicd law, and was admitted to the bar in 1837. Removing to Beileville, Iltinois, in the same year, he was elected to the state House of Representatives as a Democrat in 1840 , and in 1841-1843 was secretary of state of Illinois. In 1848-1853 he was a justice of the state Supreme Court, and in \(1855-1873\) was a member of the United States Senate. Elected as an Anti-Nebraska Democrat, he naturally joined the Republicans, and when this party secured control in the Senate be was made chairman of the important judiciary committee, from which he reported the Thirteenth Amendment to the Constitution of the United Stales abolishing siavery. Throughout the Civil War he was a trusted counselior of the president. In the impeachment trial of President Andrew Johnson he was one of the seven Republicans who voted to acquit, and he afterwards returned to the Democratic party. After 8873 he practised law in Chicago, was the Democratic candidate for governor of Illinois in 1880 . became a Populist in 1804. and defended the railway strikers in Chicago in the same ycar. He died in Chicago on the 25 th of June 1896.
TRUEP (i) (\(\mathbf{O}\). Fr. trompe), originally the name of a musical instrument. of which " trumpet" is a diminutive; the term is now chiefly used in the sense of the sound of a trumpet, or a sound reserabling it, such 25 is made by an elephant it has been usually accepted that the Romanic forms (cf. Span. and Port. trompa) represent a corruption of Latin tuba, tube On the ocher hand a distinct imitative or echoic origin is sometimes assigned. (z) In the sense of a playing card belonging to the suit which beats all other cards of other suits for the period daring which its rank lasts, "trump" is a corruption of "triumph." The name was first used of a game of cards, also known as " ruff," which was the parent of the modern game of whist. There are traces in English of an carly confusion with a term meaning to deceive or trick, of. " trumpery," properly deceit, imposture, hence idle talk, gossip, now chicfly used as an adjective, worthless, trivial. This is an adaptation of French tromper, to deceive, which, according to the generally received explanation, meant "to play on the trumpet," se tromper de quelqu'm being equivalent to play with a person, hence to cheat.
TRUEPEI (Fr. trompetle, clairon: Ger. .Trompele, Klarina, Trummed, Ital, tromba, (rombetta, clarino), in music, a brass wind instrument with cup-shaped mouthpiece and a very characterBstic tone. It consists of a brass or silver cube with a narrow cylindrical bore except for the bell joint, forming from 1 to \(\frac{1}{4}\) of the whole length, which is conical and terminates in a bell of moderate diameter The tube of the trumpet is doubled round upoo itself to form a long irregular rectangle with rounded
corners. A tuning slide consisting of two \(U\)-shaped cylindrical tubes filling into each other is interpolated between the bell joint and the long cylindrical joint to which the mouthpiece is attached. The mouthpiece consists of a bemispherical cup with a rim across which the lips stretch. The shape of the cup, and more especially of the bottom, in which is pierced a hole communicating with the main bore, is of the greatest importance on account of its influence on the tone quality and on the production of the higher harmonics (see Mourupizce). The shallower and smaller the cup the more easily are the bigher harmonics produced; the sharper the angle at the bottom of the cup the more brilliant and incisive is the timbre, given, of course, the correct style of blowing. The diameter of the cup varies according to the pitch and to the lip-power of the player who chooses one to suit him. See Horn for the laws governing the acoustic properlics of brass tubes and the production of sound by means of the lips stretched like a vibrating membrane across the mouthpiece.

There are three principal kinds of trumpets: (1) the natural trumpet. mainly used in cavalry regiments, in which the length of the tube and pitch are varied by means of crooks: (2) the slide and double-slide trumpers, in which a chromatic compass is obtained, as in the trombone, by double cubes sliding upon one another without loss of air: (3) the valve trumpet, similar in its working to all other valve instruments. The

Fig. 1.-Military Trumpet in F (Besson). first and sceond of these alone give the true trumpet timbre; the tone of the valve trumpet approximates to that of the cornet, nevertheless, it is now almost universally used.
In the trumpet the notes of the harmonic scries from the 3 rd to the toth or 16 th upper partials are produced by the varied tension of the lips and pressure of breath called overblowing. The funda. mental and the second harmonic are rarely obtainable. and are therefore left out of consideration; the next octave from the 4th to the 8th harmonics contains only the 3rd, 5 th and minor 7th, and is therefore mainly suitable for fanfare higures based on the common chord. The diatonic octave is the highest and its upper notes are only reached by very sood players on trumpets of medium pitch. Examination of the scoring for the trumpet before any satisfactory means of bridging over the gaps in the compass had been found. shows how little the composers, and especially Bach, allowed them. selves to be daunted by the limited resourcee at their disposal. A curious phenomenon has been observed ' in connexion with the harmonic series of the trumpet, when the instrument is played by means of a special clarino mouthpiece (a shallow onc enabling the periormer to reach the higher barmonics), in which the passage at the bottom of the cup inaugurated by the sharp angle (known as the grain in French) is prolonged in cylindrical instead of conical bore for a distance of about 10 cm . (4 in .) right into the main tube. This peculiar construction of the mouthpiece, which might be considered insignificant, so upsets the acoustic properties of the tube that extra notes can be interpolated between the legitimate notes of the harmonic series thus:-

The black notes represent the extra notes. which in the next octave transform the diatonic into a chromatic scale.
This phenomenon may perhaps furnish an explanation of some peculiaritses in the scoring of Bach and other composers of his day, and also in accounts of certain performances on the trumpet which have read \({ }^{2}\) as fairy tales. It is probable that the clarino mouthpiece was one of the secrets of the gilds which has remained undiscovered till now.D. I Blaikley writes ': I had an opporunity yesterday of irying the trumpet mouthpiece as described by Mahillon with the 'grain' or 'throat.' as we would call it, extended for about 10 cm and terminating abruptly. With such a mouthpiece. used by itself without any trumpet, 1 could casily get
ootes from

glide ranging over that compass can be made. the pitch at any moment being determined by the lip-pressure, ratber than by the small arr-column. When such a distorted mouthpiece is fitted to a
'See V Mahillon. La Trompette, son histoire, sa théorie, sa construction (Brussets and London. 1907. pp. 29-30).
'Sce Fétis. Biographse unıerselle ders musiciens. "Fantini."
- Leller to the present writer. 6 th of February 1909.
trumpet, we have a resonator whose proper tones are disturbed and all the notes sodinded are capable of being much modified in pitch by the lips. For instance, we may regard the ' \(d\) ' as either No. 4 sharpened or No. 5 fattened, merely by lip-action, and other notes in the came way.

The compass of the three kinds of trumpets in real eounds is as follows:-
For the natural trumpet with crooks-

For the slide or double-slide trumpet with all chromatic semitones-

This instrument is a non-transposing one, the music beisg sounded as written.

For the valve trumpet-

The material of which the tube is made has nothing to do with the production of that brilliant quality of tone by which the trumpet is so easily distinguished from every other mouthpiece instrument the difference is partly due to the distinct form given to the basin of the mouthpiece, as stated above, but principally to the proportions of the column of air determined by the bore. The difference in timbre between trumpet and trombone is accounted for by the wider bore and differently shaped mouthpiece of the latter instrument.

Tonguing, both double and triple, is used with great effect on the trumpet: this device consists in the articulation with the tongue of the syllables te-ke or ti-ke repcated in rapid succession for groups of two or four notes and of te-ke-ti for triplets.

We have no precise information as to the form which the lituus, one of the ancestors of the modern trumpet, assumed during the middle ages, and it is practically unrepresented in the miniatures and other antiquities, though there is a miniature in the Bible, presented in 850 to Charles the Bald, which places the lituus in the hands of one of the companions of King David. We are not, however, warranted in concluding from this that the Etruscan instrument was in use in the gth century. The lituus nr cavailry trumpet of the Romans seems to have vanished with the fall of the Roman Empire, for although the name occasionally finds a place in Latin vocabularies, the instrument and name are both unrepresented in the development of musical instruments of western Europe: its successor, the cavalry trumpet of the 15th and succeeding centuries, was evolved from the straight busine, an instrument traced, by means of its name no less than by the delicate proportions of its tube and the shape of the bell, to the Roman buccina (q.v.). The straight busines, if we may judge from the presentments made by various artists, were not ali made with bores of the same calibre, some having the wider bore of the trombone, others that of the trumpet. They abound in the illuminated MSS. of the inth to the 14th centuries. The uses to which they are put, as the instruments of angels, of heralds, of trumpeters on horsehack and on foot, at court banquets and functions of state, form additional proof of their identity. Fra Angelico (d. 1455) painted angels with trumpets having cither. straight or zigzag tubes, the shortest being about 5 ft . long. The periect representation of the details, the exactness of the proportions, the natural pose of the angel players, suggest that the artist painted the instrument from real models.

The credit of having bent the tube of the trumpet in three parallel branches, thus creating its modern form, has usually been claimed for a Frenchman named Maurin (1498-1515). Byt the transformation was really made much earlier, prohably in the Low Countries or north Italy; in any case it had already been accomplished in the bas-reliefs of Luca della Robbia intended to ornament the organ chamber of the cathedral of Florence where a trumpet having the tube bent back as just described is very distinctly figured. From the beginning of the 16 th century we have numerous sources of information. Virdung \({ }^{2}\) cites three
\({ }^{1}\) In the Bibliothergue Nationale at Paris. reproduced in facsimile by Count Auguste de Bastard (Paris, 1883).
\({ }_{2}\) Musica getuische mnd aussgesogen (Basel, 1511).
kinds of mouthpiece instraments-the Peltrumed, the Clareda, aind the Thurner Horn; unfortunately be does not mentiop their distinctive characters, and it is impossible to make them out by examination of his engravings. Prohably the Felttrumet and the Clareta closely resembled each other; but the conspases of the former, destined for military signals, hardly went beyond the eighth proper tone, while the latter, reserved for high parts, was like the clarino (see below). The Thurner Hom nas probahly a kind of clarina or clarion used by watchmen on the towern. The Trummet and the Jiger Trommat are the only two mouthpiece instruments of the trumpet kind cited by Praetorius." The first was tuned in D at the chamber pitch or "Cammerton," but with the help of a shank it could he put in C, the equivalent of the "chorton" D, the two differing about a tone. Sometimes the Trummet was lowered to \(\mathbf{B}\) and even Bb. The Jiger Trommet, or "trompette de chasse," was composed of a tube bent several times in circles, like the posthorn, to make use of a comparison employod by Praetorius himself. His drawing does not make it clear whether the column of air was like that of the trumpet; there is therefore some doubt as to the true character of the instru: ment. The same author further cites a wooden trumpet (hoteter Tromenet), which is no other than the Swiss Alpenhorn or the Norwegian luur. The shape of the trumpet, as seen in the bas-reliefs of Luca della Robbia, was retained for more than three hundred years: the first alterations destined to revalutionize the whote technique of the instrument were made about the middle of the 18th century. Notwithstanding the imperfections of the trumpet during this long period, the performers upon it acquired an astonishing dexterity.
The usual scale of the typical trumpet, that in \(D\), is

Praetorius exceeds the limits of this compass in the higher range, for he says a good trumpeter could produce the subjoined notem. This opinion is shared by Bach. who, in a trumpet solo. which ends the cantata "Der Himmel lacht," wrote up to the twenticth harmonic. So considerable a compass could nct be reached by one.
 instrumentalist: the trumpet part had therefore to be divided and each division was designated by a special name. \({ }^{4}\) The part that was called principal went from the fifth to the tenth of these tones. The higher region, which had received the name of "clarino," was again divided into two parts: the first began at the eighth proper tone and mounted up towards the extreme high limit of the compass, according to the skill of the executant; the second, beginning at the sixth proper tone, rarely went beyond the twellth. Each of these parts was confided to a mpecial trampeter, who executed it by using a larger or a smaller mouthpiece. Some of the member of the barmonic scries also received special names; the fundamental or first proper note was called Flattergrob, the second Grobstimme, the third Favistimme, the fourth Millestimme.

Playing the clarino differed essentially from playing the military trumpet, which corresponded in compass to that called principal. Compelled to employ very small mouthpieces to facilitate the emission of very high sounds, clarino players could not fail to alter the timbre of the instrument, and instead of getting the brilliant and energetic quality of tone of the mean register they were anly able to produce more or less sonorous notes without power and splendour. Apart from this inconvenience, the clarino presented numerous deviations from just lntonation. Hence the players of that time failed to obviate the bad effects Inevitably resulting from the natural imperfection of the harmonic ecale of the trumpet in that extreme part of its compass; in the execution, for instance, of the works of Bach, where the trumpet should give sometimes \(\theta\) - and sometimes \(\rightarrow\) - the instrumentalist could
 only command the eleventh proper tone, which is peither these. Further, the thirteenth proper tone. for which is written, is really too flat, and but little can be done to remedy this defect, since it entirely depends upon the laws of resenance affecting columne of air.

\footnotetext{
\({ }^{2}\) Organographic (Wolfenbattel, 1619)
- Musicus abrabibactos oder det sick selbst informirameis Musicus (Eisel, Erfurt, 1736).
}

Since the abandonment of the clarimo (about the middle of the 181h century) our orchestras have been enriched with trumpets that permit the execution of the old clarino parts, not only with perfect justress of intonation, but with a quality of tone that is not deficient in character when compared with the mean register of the oid principal instrument. The introduction of the clarinet of the so-called little clarino, although it is a wood wind instrument played with a reed, is one of the causes whjch led to the abandonment of the older instrument and may explain the preference given by the composers of that epoch to the mean register of the trumpet. The clarino having disappeared before Mozart's day, he had to change the trumpet parts of Handel and Bach to allow of theif execution by the performers of his own time. It was now that crooks began to be frequently used. Trumpets were made in \(F\) instead of in \(D\), furnished with a series of shanks of increasing length for the tomalitics of E, Eb, D, Db, C, B, Bb, and sometimes even \(A\).

The first attempts to extend the limited resources of the instru. ment in its new employment arose out of Hampel's InzentionsHors, in which, instead of fixing the shanks between the mouthpiece and the upper extremity, they were adapted to the body of the instrument itself by a double slide. upon the two branches of which tubes were inserted bent in the form of a circle and gradually kengthened as required. This system was applied to the trumpet by Michael Woegel (born at Rastatt in 1748). Whose "invention trumpet" had a great success, notwithsianding the unavoidable imperfection of a too great disparity in guality of tone between the open and closed sounds. It is a curious fact that the sackbut or early tronibone was merely a trumpet with a slide, or a draw trumpet, and that it was known as such in England, Scotland. Spain. Holland and ltaly. Yet as soon as the powerful family of tenor and bass trombones had been created, the slide trumpet seems to have lost its identity and to have become merged in the alto trombone from which it differed mainly in the form of the bent tube. The slide trumpet appears to have been re-invented in the 18 hh cent ury according to Johann Ernst Altenburg, or as some

Fig 2-Modern Slide Trumpet F to \(\mathbf{C}\) (Besson)
writers put it, " the slide was adapted to it from the trombone." It was mentioned in 1700 by Kuhnau.' Any one wishing to be convinced of this re-incarnation may compare the modern slide. trumpet with the original slide-trumpet or alto sackbut in the Grimiani Breviary, a MS. of the 15th century, and with E. van der \(^{\text {a }}\) Stratten's reproduction' of an old engraving by Galle and Seradan from the Encomimm Nusires in which the forms are identical except that in the modern slide-trumpet the beH reaches the level of the U-shaped bottom of the slide.

Orien de Beoming Mastes)
Fig. 3-Slide Trumpet 16th ceatury.
The slide trumpet is still used in England in a somewhat modified form. The slide is a short one allowing of four positions in 1889 a trumpet was constructed by \(\mathrm{Mr} \mathbf{W}\) Wyatt with a double slide which gave the trumpet a complete chromatic compass. This imatrument. which has the true brilliant trumpet tone. requires delicate manipulation. for the shifts are necessarily very short About 1760 Koblbel. a Bohemian musician.' applied a key to the bogle. and soon afterwards the trumpet received a similar addition By opening this key. which is placed near the bell. the instrument wes raised a diatonic semitone, and by correcting errors of imtonation by the tension of the lips in the mouthpiece the following diatonic succession was obtained
 This invention was improved in 1801 by Wridinger " \({ }^{4} \mathrm{In} \mathrm{m}\) peter to the imperial court at Vienna, who increased the number of keys and thus made
\({ }^{3}\) Der musubalische Quocksalber, p. 83-
S Brit. Mus Facsimile. 61, p1 9
\({ }^{2}\) La Musique awt Pays-Bas, vi 252.
- Varsmeh eimer Ambiturg swy kerorsh.memsikalischen 7 rompeter. wod Pawter-Kwast, P. 12 (Halle, 1795).
-See Alle musitial. ZIg. (November 180n), p. I58: (January i8n3) \(\rho\) 245; and E. Hanslicks, Gesch. des Concovtevesens in Wien (i869). filig.

The trumpet chromatic throughout its scate.* The instrument shown in fig. 4 is in \(C\) : the keys are five in number, and as they open one alter another or in combination it is possible to connect the second proper tone with the third by chromatic steps, and thus produce the following suecession :-

The number of key's was applied to fist up the tiaps between the extreme sounds of the interval of a fifth: and a like result was arrived at more easily for the intervals of the fourth, the major third, \&c., furnished by the proper tones of 3,4. 5. \&ce. But, though the keyed trumpet was a notable improvernent on the invention trumpet. the sounds obtained by means of the lateral openings of the tube did not possess the qualitics "hich distinguish sounds caused by the resonance of the air-column vitirating in its entirety. But in 1815 Stblzel made a genuine chromatic trumpet by the invention of the Ventile or piston.7 Ihe natural-trumpet is now no longer employed except in cavalry regiments. It is usually in Eb. The hass trumpet in Eb, which is an octave lower, is sometimes, but rarely, used. Trumpets with pistons are generally conseructed in \(\mathfrak{F}\), with erooks in \(E\) and Eb . In Cermany trumpets in the ligh Bb with a crook in A are very often used in the orchestra. They are easier for cornet a piston players than the trumpet in F. A quick change irumpet in By with combined tuning and transposing slides, for
thanging into the key of \(A\), known as the "Proteano

Fic. 5.-Proteano Trumpet in Bb and A (Besson).
has been patented by Messrs Besson \& Co. The transposing slide always remains at the correct length, and change of the tuning slide does not necessitate readjustment of the former. This combination slide is fitted to the ordinary valve trumpet as well as to the trumpet with "enharmonic" valves. Mahilton constructed for the concerts of the Conservatoire at Brussels trumpets in the high D, an octave above the old trumpet in the same key. They permit the execution of the high trumpet parts of Handel and J. S. Bach. The bass trumpet with pistons used for Wagner's tetralogy is in Eb, in unison with the ordinary trumpet with crooks of \(D\) and C; but, when constructed so as to allow of the production of the second proper tone as written by this master, this instrument belongs rather to the tromboges than to the trumpets.
(V. M. ; K. S.)
trulapet, Speaking and Hearing. The speaking trumpet, though some instrument of the kind appears to have been in earlier use, is conneeted in its modern form with the name of Athanasius Kircher and that of Sir Samuel Morland. who in 1670 proposed to the Royal Society of London the question of

\footnotetext{
- Robert Eitner made a curious confusion between the keyed and valve trumpets (Kloppen- und Vewtil-Trompele). In an article entitiled Wor hat due Vendit Trompele erfunden? (Momutshefte fur Musikmisenschaft, p. 4:. Berlin. 188i) he deprives Stoliel of the credit of the invention of the valve in lavour of Weifinger, ridiculing the notion that the keyed and the vatve trumpets were not owe and the same thing. Following up the idea in his Tankunstler Lexahon, he leaves out Stolael's name and ascribes to Weidiager the invention of the valve, with a reference to his article.
\({ }^{7}\) For this ingenious mechanism, see Valve, also Cottiried Weber, Dber Vewfilhorm und Trompete mut Ventilen, Caecilia xwii. 73-104 (Mainz, 1835): and Alle wusikal. Zis xuiij. 411 (Leipzig. 1821): also A. Ung. "Verbesserung det Trompete und Ihnlicher Instrumente." ibid. (18 y 5). xviii 633 -
- For accounts of the carly use of the trumpet as a signalling and cavalry instrument in the British army, see Sir Roger Williams, A Brief Discompse of War, p. 9. \&c. (London, 15+o). Crose, Military Antiquities. ii. 4t: Sir S. D. Scott, The British Apmy. in. 389-400 (London. 1868); and H. G. Farmer, Meworrs of the Coyed Artillery
} Bend (London, 1904).
the best form for a speaking trumpet. Lambert, in the Berlin Memoirs for 1763 , seems to have been the first to give a theory of the action of this instrument, based on an altoget her imaginary analogy with the behaviour of light. In this theory, which is still commonly put forward, it is assumed that sound, like light, can be propagated in rays. This, however, is possible only when the aperture through which the wave-disturbance passes into free air is large compared with the wave-length. If the fusiform mouth of the speaking trumpet were half a mile or so in radius, Lambert's theory might give an approximation to the truth. But with trumpets whose aperture is only a foot in diameter at the most the problem is one of diffraction.

In the hearing trumpet, the disturhance is propagated along the converging tube much in the same way as the tide-wave is propagated up the estuary of a tidal river. In speaking and hearing trumpets alike all reverberation of the instrument should be avoided by making it thick and of the least elastic materials, and by coverimg it externally with cloth. (See Sound.)
TRUMPETER, or Trumper-Bird, the literal rendering in 1i47, by the anonymous English translator of De la Condamine's travels in South America (p. 87), of that writer's "Oiseau trompette " (Mim. de l'Acad. des Sciences. 1745, p. 473), a bird, which he says was called "Trompetero" by the Spaniards of Maynas on the upper Amazons, from the peculiar sound it utters. He added that it was the "Agami" of the inhabitants of Para and Cayenne, wherein he was not wholly accurate, since those

White-winged Trumpeter (Psofice Lewopera)
birds are spectifally distinct, though, as they are generically united, the statement may poss. But he was also wrong, as had been P. Bartere (Frivis eqmimasicle, p. 132) in 1 id1, in identifying the "Agami " with the "Macuragua " of Margrav, for that is a Tinamou (9.5); and both still more wrongly accounted for the arigin of the peculiar sound just mentioned, whereby Burrere was soon after led (Ornith Spoc Nowmepp. \(0: 6,3\)) to apply to the bird the ecencric and vulgar names of Psoptis and "Petteuse," the former of which, being unfortunately adopted by Linnacus, bus ever since been used, though wn 1766 and 1767 Pallas (Miscitimat, P. 6\%, and Spicitigin, iv. 6), and in aras Vosmacr (Desor. da Trampalie Amorietim. p. 5). showed that the notion it conveys is erroncous. Among English writers the name "Trumpeter" was carried on by Latham and others so as to be generally accepted, though an author may orcasiomally be found milling to resort to the eative "Agami." which is that almost alvays used by the Freach.
P. L. Sclater and O. Sulvia in their Namendano (A Ret) odmet 6 pocles of Trumpet-bida: (i) the Noigial Puphim erperase of

"Net mo be cingot will the "Herva Agami" of Bufion

the original "Oiscau trompette" of De la Condamire): (3) \(\boldsymbol{P}\). achroptera from the right bank of the Rio Negro; (4) P. lewcoptere from the right bank of the upper Amazons: (5) P. wiridis from the right bank of the Madeira : and (6) P. obscura from the right bank of the lower Amazons near Para. And they have remarked in the Zoological Proceedings (2867, p. 592) on the curious fact that the range of the several species appears to be separated by rivers, a statement confirmed by A. R. Wallace (Geogr. Distr. Animals, ii. 358); and in connexion therewith it may be observed that these birds have short wings and seldom fyy, but run, though with a peculiar gait, very quickly. A seventh species \(P\). cantalrix, from Bolivia, has since been indicated by W. Blasius (Journ. f. Ormilh., 1884. pp. 203-210), who has given a monographic summary of the whole group very worthy of artention. The chief distinctions between the species lie in colour and size. and it will be here enough to describe briefly the best known of them, P. crepilams. This is about the size of a large barndoor fowl; but its neck and legs are longer, so that it is a taller bird. The head and neck are clotted with short velvety feathers: the whole plumage is black, except that on the lower frons of the neck the feathers are tipped with golden green, changing according to the light into violet, and that a patch of dull rusiy brown extends across the middle of the back and wing-coverts, passing into ash-colour lower down, where they hang over and conceal the tail. The legs are bright pea-green The habits of this bird are very wonderful, and it is much to be wished that fuller accounts of them had appeared. The curious sound it utters, noticed by the earliest observers, has been already mentioned, and by them also was its singularly social disposition towards man described; but the information supplied to Bufion (Oiseaux, iv. 496-501) by Manoncour and De la Borde. which has been repeated in many works, is still the best we have of the curious way in which it becomes semi-domesticated by the Indians and colonisis and shows strong affection for its owners as well as for their living property-poultry or sheep-though in this reclaimed condition it seems never to brecel. Indeed nothing can be positively asserted as to its mode of nidification; but its eggs, according to C . E. Bartlett, are of a creamy white, rather round, and about the size of bantams'. C. Waterion in his Womderings (Second Journcy, chap, iii.) speaks of falling in with Hocks of 200 or 300 "Waracabas," as he called them. in Demserara, but added nothing to our knowledge of the species; while the contributions of Trasl (Mew. Wern. Sociefy, v. 523-532) and 25 Dr Hancock (Mog. Nof. History, and series vol. ii. pp. 490-492) as regards its habits only touch upon them in captivity.
To the trumpeters must undoubtedly be accorded the rank of a distinct family: Psopkidoe: but like so many other South-American birds they seem to be the less specialized descendants of an ancient generalized group-pertiaps the common ancestors of the Ra/lidae and Gruidae. The structure of the trachea, though different from that described in any Crane (q.o.), suggesis an catly form of the structure which in some of the Gruidae is so marvellously developed. lor in Psophia the windpipe runs down the breast and belly imsmediately under the skin to within about an inch of the anus. whence it returns in a similar way to the front of the sternum. and then enters the thorax. Analogous instances of this forma. tion occur in several other groups of birds pot at all allied to the Pseptividae.

TRUNK (Fr. tronc, Lat. trmens, cut off, maimed), properiy the main stem of a tree from which the branches spring, especially the stem when stripped of the branches; bence, in a transferred sense, the main part of a human or amimal body without the head, arms or legs. It is from this last sense the: the term "trunk-hose" is derived. These were part of the 'ypical male costume of the ath century, consisting of a pair of large pulfed and shashed over-hose, reaching from ube waist to the middle of the thigh. the legs clad in the long bose being thrust throagh them; the upper part of the body was covered by the jerkin or jacket reaching to the thigh Isee Costrue). The word "trink" as applied to the elongated proboscis of the clephant is due to a mistaken confusiom of French bromet, tramp, with "trunk" meaning the bollow stem of a tree. A somewhat obscure meaning of French boer, ie an almo-box. has given rise to the general ose of "truak" for 2 lorm of travealess' lupgage.
TRURO, THOKAS WILDE \(15 T\) Baxox (\(1: 8-1855\)), hord chascellor of Eagiand, was born in Loodot on the gth \(^{\text {th }}\) of Je'y
IIn cmanexica berexith may be mentioned the sinzular san? ins by Montagu (OTe Dre, Suift Art. "Grobbeak, Whre-wing ") on the authority of the theo Lind Siankj, afierwards prosident ed ith Zoulcical Society, of one ed these hards whict. Havige appareats.
 yand Om the acrasico of a paize hoonds re-nief thronel the
 mixe!

1782, being the second son of Thomas Wilde, an attorney. He was educated at St Paul's School and was admitted an attorney in 1805 . He subsequently entered the Inner Temple and was called to the bar in 1817, having practised for two years before as a special pleader. Retained for the defence of Queen Caroline in 1820 he distinguished himself by his crossexamination and laid the foundation of an extensive common Law practice. He first entered parliament in the Whig interest as member for Newark (\(1831-1832\) and \(1835-1841\)), afterwards representing Worcester (\(184 \mathrm{I}-1846\)). He was appointed solicitorgeneral in 1839, and became attorney-general in succession to Sir John (afterwards Baron) Campbell in 1841 . In 1846 he was appointed chief justice of the common pleas, an office he beld until 1850, when he became lord chancellor, and was created Baron Truro of Bowes, Middlesce. He held this latter office until the fall of the ministry in 18 sz . He died in London on the 1ith of November 1855. His son Charles (1816-1801) succeeded as and baron, hut on the death of his nephew the 3rd baron in 1899 the title became extinct.

Lord Truto was the uncle of James Plaisted Wilde, Bazon Penzance (1816-1899), who was appointed a baron of the court of exchequer in 1860 , and was judge of the court of probate and divorce from 1863 to 1872 . In 1875 be was appointed dean of the court of arches, retiring in 1899 . He was created a peer in 1869, bat died without issue, and the title became extinet.
TRURO, the chief town of Colchester county, Nova Scotia, on the Salmon river, near the head of Cobequid Bay, 61 m . from Halifax by rail. Pop. (1901), 5903. It is an important junction on the Intercolonial and Midiand railways, and the thriving centre of a lumbering and agricultural district. There are numerous local industries, such as engire and boiler works, carriage factory and milk-condensing factory. It also contains the county buildings and the provincial normal school. The Victoria (or Joseph Howe) Park in the vicinity is of great natural beauty.
TRURO, an episcopal city and municipal borough in the Truro parliamentary division of Cornwall, England, 11 m . N. of Falmouth, on the Great Western railway. Pop. (1901), 11,562. It lies in a shallow valley at the junction of the smali rivers Kenwyn and Ailen in Truro river, a branch creek of the great estuary of the Fal. It is built chiefly of granite, with broad streets, through the chief of which there flows a stream of water. The episcopal see was founded in 1876, covering the former archdeaconry of Cornwall in the diocese of Exeter; the area including the whole of the county of Cornwall, with a sreall portion of Devonshire. The cathedral church of St Mary was begun in 1880 from the designs of John Ioughborough Pearson, and is among the most important modern ecclesiastical buildings in England. The architect adopted the Early English style, making great use of the dog-tooth ornament. The form of the church is cruciform, hut it is made irregular by the incorporation, on the south side of the choir, oi the south aisie of the parish church, this portion retaining, by Act of Parliament of r887. all its legal parochial rights. The design of the cathedral includes a lofty central and two western towers with spires, and a rich west front and south parch; with a cloister court and octagonal chapter-house on the north. Among other noteworthy modern instltutions may be mentioned the theological library presented by Bishop Phillpotts in 1856 , housed in a Cothic building (1871). The grammar school possesses exhibitions to Exeter College, Oxford. Truro has considerable trade in connexion with the tin mines of the neighbourbood. There are tin-smelting works, potteries, and manufactures of boots, biscuics, jam and clothing. Small vessels can lie at the quays, though the harbour is dry at low water; but large vessels can approach within three miles of the city. The borough is under a mayor, 6 aldermen and 18 councillors. Area, 1127 acres.

At the time of the Domenday Survey Truro (Trueret, Treurok, Treveru) was a comparatively small manor held by Jovin of Count Robert of Mortain. Its municipal charter dates from

Richard Lucy the chief justiciar who held the demesne lands and under whom the free burgesses had apparently a grant of sake and soke, toll and team and infangenethef. Reginald earl of Cornwall, by an undated charter, added to theso privileges exemption from the juriadiction of the hundred and county courts and from toll throughout the county. Henry II. confirmed the grant of his uncle the said Reginald. In 1304 Truro was constituted a coinage town for tin. In 1378 the sherif reported that the town was so impoverished by pestilence, hostile invasions and intolerable payments made to the king's progenitors that it was almost uninhabited and wholly wasted. A similar complaint was preferred in 1401 in consequence of which the fifteenth and tenth amounting to fir was for the three years ensuing reduced to 503 . The charter of incorporation granted in \({ }^{5} 589\) provided for a mayor, recorder and steward and 2 council of twenty capital burgesses and four aldermen. Under it the mayor and hurgesses were to enjoy the liberties of infangenethef, utfangenethef, sake, soke, toll, team, thefbote, backberindthef and ordelf; also freedom from toll passage, pontage, murage, fletage, picage, anchorage, stallage, lastage and tollage of Horngeld throughout England exeept in London; they were, moreover, to be entitled in respect of their markets to pontage, keyage, \&c. The assize of bread and ale and wine and view of frankpledge were also granted and a court of piepowder was to regulate certain specified fairs. In 1835 the number of aldermen was increased to six. From 1295 to 1885 Truro enjoyed separate parliamentary representation, returning two members. The charter of 1589 provided that the burgesses ahould bave power by means of the common council to elect them. Such was the procedure from 1589 to 1832 when the burgesses recovered the privilege. Under the Redistribution of Seats Act of 1885 the representation of Truro was merged in the county. No fairs or markets are mentioned prior to 1589 when two markets, on Saturdays and Wednesdays, were provided, also three fairs. Both markets and two of the three fairs are held.
See Victorsa Counly History: Cornwall; Canon Donaldson. Bishopric of Truer (1902).

TRUSS (from O. Fr. trusser, trosser, torser, trousser, to pack, bind, gird up, Low Lat lariare, formed from dorius, twisted, torquere, to twist; cl. " torch " and " trousers," also Iroussean, a bride's outfit, literally a small pack or bundle), a pack or bunde, applied specifically to a quantity of hay or straw tied together in a bundle. A truss of straw contains 36 th , of old hay 56 tb , of new hay 60 m . A losd contains 36 trusses. The term is also used generally of a supporting frame or structure, especially in the construction of a roof or a bridge. It is thus used as the name of a surgical appliance, a belt with an elastic spring keeping in place a pad used as a support in cases of hernia (\(q . v\).).

TRUST CONPARY, the name given to a form of fiduciary corporation, originally adopted in the United States under state laws to accomplish financial objects not speciahy provided for under the national benking system. The function which gives a irust company its naroe is to execute trusts for individuals, estates and corporations. In the United States, however, these functions have been extended to include many of those of commercial banks receiving deposits payable on demand and subject to check. The relations bet ween trust companies and their depositors are based, however, upon different principles from those hetween the bank and its client (see Banks and Baniong). The larger trust companies prefer deposit accounts which, even when suhject to check, are not actively drawn upon. The fact that they pay interest on such deposis absolves them from the obligation to extend accommodation by way of loans, except apon collateral securlty. Hence out of the difference in their relations with depositors grows a difference in the character of their investments, which are usually in loans on stock exchange securities and not on commercial paper discounted. In New York they are prohibited from directly discounting commerclal paper, but not from buying it. The rate of interest paid on demand deposits is usually
\(2 \%\) for small accounts, and \(3 \%\) for large accounts; for time deposits it is sometimes more.

In the administration of estates for private individuals, the trust company has taken the place to a large extent of individual attorneys. The trust company has the advantage of corporate responsibility, which involves continuous life, and of proper offices, fire-proof sales, and special employees in each department devoting their time and attention exclusively to eheir spectial functions, Investments for estates are limited by law, like savings bank investments, to certain classes of securities, and a Irust company has little temptation to violate such haws, It is customary, moreover, for investments of trust funds to be made by authority of the board of directors, thus protecting the estate against the uncertainties of individual judgment.

The trusi company has found a special field in America as agent of railway and industrial corporations in the issue, transfer and exthange of securitics. For these purposes it has an organized system, tested by experience. more perfect in its operation and less expensive than each corporation could organize for itsclf separately. As trustee for the bondholders under a railway mortgage, for instance, it becomes the duty of the trust company, in case of default in payment of interest on the bonds, to take steps to foreclose the mortgage and protect the bondholders. Trust companies have sometimes been named as receivers of failed banks.

The big industrial combinations in America have contributed to the busincss of the trust companies as registrars or transfer agents for capital stock, agents for the issue of bonds and payment of intercer thereon, agents for underwriting and distributing new securitics. and depositories of securities and cash under plans of reorganization or while held in escrow. In the case of the reorganization of the tobacco companies, in the autumn of 1904, securties aggregating about \(\$ 600,000,000\) passed through the hands of the trust company charged with the work: and while this was the largest single operation of its kind, it is typical of many similar operations resulting from the activity in the creation of new companies in America which bring business to trust companies

The attractions offered by the trust company to the non-commercial depositor by the payment of interest on his deposit built up the deposit balances of trust companies rapidly after 1896. Their competition in this respect with national banks soon led to an effort to compel trust companies to keep cash reserves against their deposits. This demand was resisted for a while, but in 1903 a rule was made by the New York Clearing House requiring trust companics to keep certain reserves. The alternative was to withdraw from the Cloaring House, and this all but a few did. The New York legislature, however, at the session of 1906 . passed an act requiring trust companies in New York city to establish within fixed dates reserves of \(15 \%\) of their deposits, of which only \(5 \%\) was required to be currency, \(5 \%\) might be on deposit in another banking institution, and \(5 \%\) might be kept in certain clasess of bonds.
The experience of the panic of 1907 developed several weaknesses in the position of the trust companics, and in New York led a special commission appointed by Governor Hughes to recommend much stronger reserves. The fact that the trust companics relied upon the national banks to meer the heavy demands upon them for cusrency doubled the strain imposed on the national banks of New York city, and the isolation of the trust companics through their withdrawal from the Clearing House in 1903 made it dificult to bring about co-operation in support of those which were subjected to severe runs. Between the z2nd of August and the roth of December 1907 the deposits of the trust companies of New York declined by the sum of more than \(\$ 275.000,000\) while deposits in national banks increased about \$50,000,000.
The number, resources and activities of etrust companics have shown a rapid development. In New York the general law under which companies can be formed without a special act dates only from 1887, but several compantes ante-date this law. The following figures \({ }^{1}\) from reports made to the comptroller of the currency speak lor themselves:-

\footnotetext{
\({ }^{1}\) The table, it may be observed, represent ooly the number of companies reporting and not the number actually in existence. Kirkbride aod Sternet, for example, give the number of trust companies in the United States on the tst of January 1905 as 1427. or more than twice the number given here for 1905. On this point the comptroller of the Treasury is igos aid: "1n order to obtain this information [from institutions other than national hanks) the comptroller is necessarily dependent upon the courtesy of officers of differont states, and upon individuat banles io tetates the lasis of which states do not provide for oompilation of data of this character . Esch year enc or more clapes formerly without adequate provision for oheaining and compiligy reports of banks incorpolated beder their laws. have through logistative enactment, placed such

}

Trust Companiet of the Uniled Stuks.
\begin{tabular}{|c|c|c|c|}
\hline 3oth june & Number & Capital. & Individual Deproxits. \\
\hline & & * & \$ \\
\hline 1891 & 171 & 79,292,889 & 355,330,080 \\
\hline 1897 & 251 & 106,968,253 & 566,922,205 \\
\hline 1900 & 290 & 126,930,845 & 1,028,232,407 \\
\hline 1901 & 334 & 137.361.704 & 1,271,081.174 \\
\hline 1902 & 417 & 179,732.581 & 1.525 .887 .493 \\
\hline 1903 & 531 & 232,807.735 & \(1.589,398,796\) \\
\hline 1904 & 585 & 237.745 .488 & 1,600,322,325 \\
\hline 1905 & 683 & 243,133.622 & 1,980,856,737 \\
\hline 1906 & 742 & 268.384 .337 & 2,008,937.790 \\
\hline 1907 & 794 & 276,146,081 & 2,061,623,035 \\
\hline
\end{tabular}

Approximately half of the deposits in United States trust companics are in the state of New York, the number of such companies in New York about the 3oth of June 1907, being 88, with a capital of \(\$ 67,850,000\), and deposits of \(\$ 1,020,678,220\). The next bighest states in amount of deposits were Pennsylvania, with 328 companies. with capital of \(\$ 103.953 .067\) and deposits of \(\$ 382.397 .305\) : and Massachusetts, wish 46 companies, with capital of \(\$ 16,677,000\) and deposits of \(8179,278,436\).
See Kirkbride and Sterrett, The Modera Trast Compaty (New York. 1905).

TRUST and TRUSTRES, in the law of equity. In Roman and English law alike that legal relation between two or more persons implied in the word frust was of comparatively late growth. The trust of English law is probably based upon a combination of the Roman conceptions of usus and fideicos. missum. To usus is perhaps due the name as well as the idea of that right over property, co-ordinate with the right of the nominal owner, possessed by the person having the use. To fidcicommissum appears to be due the name as well as the idea of that confidence reposed in another which is the essence of the modern irust. Usus was in Roman law a personal servitude, or right of one person over the land of another, confined to his personal wants and without the right to the produce and profits which ususfrucfus carried. It has litile in common with the use of English law but the name and the conception of dual ownership. The fideicommissans is more important (see Rowan Law). By the legislation of Juslinian the law of legofa was praclically assimilated to that of fideicommissa. The only thing that distinguished the one from the other was the mode in which the gifi was made: if by words of direct bequest it was a legalum, if by precatory words, a fideicommissum. It may be noliced, as an illustration of the course afterwards taken by the law in England, that fidcicommissa in favour of the Church were so far favoured over others that if paid over by mistake they could not be recovered. In addition to wses and fodcicommissmm, the Roman division of ownership into quiritary and bonitary (to use words invented at a later lime) may perhaps to some extent have suggested the English division iato legal and equitable estate. The two kinds of ownership were amalgamated by Justinian. The gradual manner in which the beneficiary became subject to the burdens attaching to the property of which be enjoyed the benefit was a feature common to both the Roman and the English system.

Use in Eanly English Law.-The use or rrust \({ }^{\text { }}\) is gaid to have been the invention of ecclesiastics well acquainted with Roman law, the object being to escape the provisions of the laws against Mortmain by obtaining the conveyance of an estate to a friesd on the understanding that they should retain the usc, i.e. the actual profit and enjoyment of the extatc. Uses were soon extended to ot her purposcs. They were found valuable for the defeat of creditors, the avoiding of artainder and the charging of portions. A use had aloo the advantage of being free from the incidents of fcudal tenure: it could be alienated imber olas by secret conveyamct. and could be devised by will. In many cases the feoflec \({ }^{2}\) to uses, as he was called, of the person scised to the use of another, seems to have been specially

\footnotetext{
IUre seems to be an older word than Irust. Its first occurrence in statute law is in 7 Ric. 11. C. I2. in the form eeps. In Litthetom "confidence " is the word employed. The Statute of Uses meems to regard use, trust and confidence as synonymous. According to Bacon, it mas its permanency that distinguished the use from the trust.

Feoffment. thoush the usual, was not the only mode of consey. ance to u-cs. The preamble of the Siatute of Uses memions Gacs and rewowisit. and wiher asourances
}
chosen on account of his rank and station, which would enable him to defy the common law and protect the estate of his cestri que \(x x_{0}\) o or the person entitled to the beneficial enjoyment. The act of I Ric. II. C. 9 was directed ayainst the choice of such persons. This alienation of land in use was looked upon with great disfavour by the comroon law cours, in whose eyes the cestui que use was only a tenant at will. Possibly the ground of their refusal to recognize uses was that the assizes of the king is court could only be granted to persons who stood in a feudal relation to the king. The denial of the right followed the denial of the remedy. The use was on the ot her hand supported by the court of chancery, and exerution of the confidence reposed in the feoffec to usea was enforced by the court in virtue of the general jurisdiction which an a court of conacience it chaimed to exercise over breach of faith. Jurisdiction wat no doubt the more readily ansumed by ecclesiastical judges in lavour of a system by which the Church was generally the gainer. A double ownership of land thus gradually arose, the nominal and ostensiblo ownership- the only one acknowledged in the courts of comman law- and the bencticial ownership protected by the court of chancery. The reign of Henry V. to a great extent corresponds with that od Auguse us at Rome, as the point of time at which legal recognition was given to what had previously been binding only in honour. The means of bringing the fcofiee to uses before the court was the writ of subporna. said to have been invented by John de Waltham. bishop of Salisbury and master of the rolls in the reign of Richard II: By means of this writ the foffee to uses could be compelled to answer on oath the claim on his cestui que use. The doctrine of the court of chancery as to the execution of a use varied according ast there was transmutation of possession or not. In the former case it was unnecessary to prove consideration: in the latter, generally a case of bargain and sale, the court would not enforoe the use ualest it was executed in law-that is. unless there was a valuable consideration, even of the smallest amount. Where no consideration could ise proved or implied, the use resulted to the feafior. This theory ked to the insertion in deeds (especially in the lease of the lease and release period of conveyancing) of a nominal consideration, generally fee shillings. Lands either in possession, reversion or remainder could be granted in use. Most persons could be feofices to uses. The king and corporationa aggregate were, bowever, exceptions, and were entitied to hold the la nds discharged of the use. On the acceession of Riclard III., who from his position of authority bad been a favourite feoffoe, it was necessary to pass a apocial act (1 Ric. III. C. 5), vesting the lands of which he had been fooffee either in his co-foofees or, in the absence of co-feofecs. in the cestut que use. The practical convenience of uses was to obvious that it is said that by the reign of Henry VII. most of the iand in the kingdom was held in use. The freedom of uses from liability to forfeiture for treason must have led to their generai adoption during the Wars of the Roses.' The secrecy with which a use could be transferred. cantrary as it was to the publicity required for livery of Seisin (g.p.) at common law. ked to the interference of the legislature on several occasioos bet ween the reign of Richard II. and Henry VIII., the general tendency of the legistation being to make the cestui que use more and more subject to the burdens incident to the ownerluip of land. One of the most important statutes was the Statute of Mlortmain (15 Ric. Il, c. 5), forbidding evasion of the Statute De Refigiosis of Edward 1 . by means of fooffments to uses Onher acts enabled the cestui que use to transer the use without the concurrence of the fcoffec to uses (1 Ric. III. .e. 1). made a writ of formedou maintainable against him (1 Hen VII. c. 1), rendered his beir liable to wardship and relicf (4 Hen. VII. \(c\), 17). and his lands thible 20 execution (19 Hen. VII. c. 15). Al length in 1535 the (amous Stature of Uses (27 Hen. VIII. c. t0) was passed.? The preamble of the statute enumerates the mischiefs which it was considered that the univeral prevaicnce of uses had occasioned. among others that by fraudulent fcoffments, gines, recoverics and other like assurances to usess, confidences and trusts lords lost their feudal aids. men their tenancies by the curtesy, women their dower. manifest perjuries in trials were committed, the king lost the profst \(\alpha\) the lands of persons attaineed or enfcoffed to the use of aliens, and the king and lords their rights of year, day and wate, and of escheats of lelons' lands. To remedy this state of things it was enacted, inter alia, that. where any porson was seised of any hereditaments to the use, consdence or trust of any other person by any means, the person having such use. confidence or trust should be seised. deemed and adjudged in lawful seisin. estate and possession of such hereditaments. Full logal remedies were given to the cestui que use by the statute. He was enabled to distrain for 2 rent-charge. to have action, entry, condition. \&c. The effect of this enacturnt was to make the cestui que use the owner at law as well as in equity (as had been done once before under the excreptional circumstances which led to I Ric. III. c 5), provided that

\footnotetext{
2 The use, as in later times the entst, was, however, Iorfeited to the Crown on attainder of the feoffeo or trustee for treason.
: It was adopted in Ireland exactly a century later by 10 Car I. \(c_{1}\) (I .). The law of uses and trusts in Ircland is practically the ene as that in England, the main differences being in procedure rether than in substantive taw.
}
the use was one which before the statute would have been enforcerd by the court of chancery. For some time after the passing of the statute an equitable as distinct from a legal estate did not exist. But the somewhat narrow construction of the statute by the common law courts in Tyrrel's cass" (1557) enabled estates cognisable only in equity to be again created In that case it was held that 2 use upon a use could not be executed; therefore in a feoffment to \(A\) and his heirs to the use of \(B\) and his heirs to the use of \(C\) and his heirs only the first use was executed by the statute. The use of \(B\) bcing executed in him, that of \(C\) was not acknowledged by the common law judges; but equity regarded Cas beneficially entitied, and bis interest as an equitable estate held for him io trust, corresponding to that which B would have had before the statute. The position taken by the Court of Chancery in trusts may be compared with that taken in Martgage (\(\mathrm{g}, \mathrm{v}\),). The Judicature Act 1873, while not going as lar as the Statute of Unes and cont bining the legal and equitable estates, makes equitable rights cognisable in all courts. From the decision in Tyrrel's case dates the whole modern law of uses and trusts. In modern legal language use is restricted to the creation of legal eatate under the Stature of Uses, trust is confined to the equitable estate of the certui que trust or heneficiary.

Uses since 1535 .-The Statute of Uses is stith the basis of con veyancing. A grant in a deed is still, after the alterations in the law made by the Conveyancing Act 1881, made" "to and to the use of A." The statute does not, however, apply indiscriminately to all cases, as only certain uses are executed by it. It does not apply to leaseholds or copyholds, or to casce where the grantee to uses is anything more than a mere passive instrument. e.g. where there is any direction to him to sell the property. The seisin, 800 to be executed by the statute, must be in another than him who has the use, for where \(\mathbf{A}\) is seised to the use of \(\mathbf{A}\) it is a common law grant. The difference is important as far as regards the doctrine of Possession (g.v.). Constructive possession is given by a deed operating under the ctatute even before entry, but not by a common law grant. until actual receipt of rent by the grantee. The operation of the Statute of Uses was supplemented by the Statute of Inrolments and that of Wills (see Will). The Statute of Inrolments (27 Hen. VIII. e. 16) enacted that no bargain and sale should pass a ireehold unicea by deed Indented and enrolled within six montha after its date in one of the courts at Westminster or with the custom rotulorum of the county. As the atatute referred only to frecholds, a bargain and sale of a leasehold interest passed without enrolment. Conveyancers took adyantage of this omission (whether intentional or not) in the act, and the practical effect of it was to introduce a mode of secret alienation of real property, the lease and reksase. which was the general form of conveyance up to 1845. (See Covveyancing.) Thus the publicity of transler, which it was the specinl object of the Statute of Uses to effect, was almost at once defcated. In addition to the grant to ubes there were other moded of conveyance under the stat ute which are now obsolecte in practice viz:: the covenant to stand scised and the bargain and sale. Under the statute, as belore it, the use has been [ound a valuable means of limiting a remainder to the person creating the use and of making an estate take effect in derogation of a lormer estate by means od a shisting or apringing use. At common lave a freehold could not be made to commence in fufuro: but this end might be attaiped by a shifting use, euch as a grant (common in marriage sottlements) to A to the use of 8 in lee simple until a marriage. and after the cetebration of the marriage to other uses. An exa mple of a springing use would be a grant to \(A\) to such uses as \(B\) should appoint and in default of and until appointment to C in fee simple. The difficulty of deciding where the scisin ras during the suspersion of the use led to the invention of the old theory of scistilla juris, or continued possibility of seisin in the grantee to usea. This theory was abolished by 23 \& 24 Vict. C. 38, which enacted that all uses shuuld take effect by force of the estate and ecisin originally vested ia the persom scised to the uses. The mont frequent instances of a springing use are powers of appointment, ustal in wilis and settements. There has been much legislation on the subject of powers, the main effect of which has been fogive greater faciltives for their execution, release on abandonment, to aid their defective execution, and to abolish the old doctrine of iHmeory appointmeats.

Trusls.-A trust in English law is defined in Lewin's Low of Trusis, adopting Coke's definition of a use, as " a confidence reposed in some olber, not issuing out of the land, but as a thine collateral, annexed in privity to the estate of the land, and to the person touching the land, for which cestui que trust has no remedy but by subpoena in Chancery." The term trust or trust estate is also used to denote the beneficial interest of the cestui que trust. The term truiter is not used, as it is in Scotland, to denole the creator of the trust. A trust has some features in common with contract (g.a.); but the great difference between them is that a contract can only be enforced by a party or one in the position of a party to it, while a trust can be, and generally Dyer's Reports. 1553.
is, enforced by one not a party to lis creation. It has more resemhlance to fideicommissum. But the latter could only be created by a testamentary instrument, whilst a trust can be created either by will or inter vioos; nor was there any trace in Roman law of that permanent legal relation which is suggested by the pesition of trustee and cestui que trust. The heir, too, in Roman law was entitled, from A.D. 70 to the reign of Justinian, to one-fourth of a heredilas fideicommissaria as against the beneficiary, while the very essence of the trust is its gratuitous character. Trusts may be divided if more than one way, according to the ground taken as the basis of division. One division, and perhaps the oldest, as it rests on the authority of Bacon, is into simple and special, the first being where the trust is simply vested in a trustee and the nature of the trust left to construction of law, the second where there is an act to be performed by the trustce. Another division is into lawful and urlowful, and corresponds to Bacon's division into Intents or confidences and frauds, covins, or collusions. A third division is into public and private. A division often adopted in modern textbooks and recognized by parliament in the Trustee Act 1850, is into express, implicd and constructive. An express trust is determined hy the person creating it. It may be either execuled or execulory, the former where the limitations of the equitahle interest are complete and final, the latter where such limitations are intended to serve merely as minutes for perfecting the settlement at some future period, as in the case of marriage articles drawn up as a hasis of a marriage settlement to be in conformity with them. An implied trust is founded upon the intention of the person creating it; examples of it are a resulting trust, a precatory trust, and the trust held by the vendor on behali of the purchaser of an estate after contract and before conveyance. In this case the vendor is sometimes called a trustee sub modo and the purchaser a cestui que trust sub modo. A constructive trust is judicially created from a consideration of a person's conduct in order to satisfy the demands of justice, without reference to intention. The distinction between an implied and a constructive trust is not always very consistently maintained. Thus the position of a vendor towards a purchaser after contract is sometimes called a constructive trust. The present law governing trusts rests upon the doctrines of equity as altered by legislation. The law was consolidated by the Trustee Act 8893 and some subsequent amending statutes. Its great importance has led to its becoming one of the most highly developed departments of equity.
Who may be a Trustee or Cestui que Trust. -The modern trust is considerably more extensive in its operation than the ancient use. Thus the Crown and corporations aggregate can be trustees, and personalty can be held in trust. Provision is made by the Municipal Corporations Act 1882, [or the administration of charitable and special trusts by municipal corporations. There are certain persons who for obvious reasons, even if not legally disqualified, ought not to be appointed trustecs. Such are infants, lunatics, persons domiciled abroad, felons, bankrupts and cestais que trustent. The appointment of any such person, or the falling of any existing trustee into such a position, is generally ground for application to the coure for appointment of a new trustee in his place. Any one may be a cestui que trust except a corporation aggregate, which cannot be a cestui que trust of real estate without a licence from the Crown. For the Public Trustee, see below.

Creation and Extinclion of the Trust.-A trust may be created either by act of a party or by operation of law. Where a trust is created by act of a party, the creation at common law need not be in writing. The Statute of Frauds allered the common haw by enacting that all declarations or creations of trusts or confidences of any lands, tenements or hercditaments shall be manifested and proved by some writing, signed by the party who is by law enabled to declare such irust, or by his last will in writing, or else they shals to deciare such irust, of void and of none effect. Trusts arising or nethey sitiof Lec uiferly void and of none effect. Trusts anising on nety tigy by ampitation or construction of that the statute applies only to real extate and that son that a trust of personal chatiels may exili bo The declaration of
or by order of the court of chancery. But now by a so of the Trustee Act 1893. (superseding Lord St Leonards's Act of 1860 and the Conveyancing Act 1881), the surviving or comtinuing trustce or trustees, or the personal representative of the last surviving or continuing trustee, may nominate in writing a new trustee or new trustees. On such appointment the number of trustees may be increased. Existing trustces may by doed consent to the discharge of a trustee wishing to retirc. Trust property may be vested in new or continuing trustees by a simple declaration to that effect. Also a separate set of trustees may be appointed for any part of the property held on distinct trusts. Truses creared by operation of law are those which are the effect of the application of rules of equity. They include resulting and constructive trusts. A resulting trust is a species of implied trust, and consists of 80 much of the equitable interest as is undisposed of by the instrument creating the trust, which is said to result to the creatorand his representatives. An example is the purchase of an estate in the name of the purchaser and others, or of others only. Here the beneficial interest is the purchaser's. An example of a constructive trust is a renewal of a lease by a trustee in his own name, where the trustee is held to be constructively a trustee for those interested in the beneficial term. Besides being duly created, it is necessary for the validity of the trust that it should be a lawful one. An unlawful trust is one which contravenes the policy of the law in any respect. Examples of such trusts are trusts for a corporation without licence, for a perperuity, and for purposes subversive of morality, such as trusts for illegitimate children to be hereafter born. Superstitious uses also fall under this head. There are also certain trusts which are avoided by statute under particular circumstances, such as setticments in fraud ol creditors (sce Bankruptcy). The law cannot be evaded by attempting to constitute a secret trust for an unlawful purpose. If an estate be deviscd by words prima facic carrying the beneficial interest, with an understanding that the devisee will hold the estate in trust for such a purpose, he may be compelled to answer as to the secret trust, and on acknowledgment or proof of it there will be a resulting trust to the heir-at-law. In the case of an advowson suspected to be held for the benefit of a Roman Catholic patron, there is a special enactment to the same effect (see QuARe Impedit). The rules of equity in charitable trusts are less strict than those adopted in private trusts. Charitable trusts must be lawful, e.f. they must not contravene the Statutes of Mortmain; but a wider latitude of construction is allowed in order to carry out the intentions of the founder, and they will not be allowed to fail for want or uncertainty of objects to be benefited. The court, applying the doctrine of cy pres (\(q \cdot v\).), will, on failurc of the original ground of the charity, apply the funds as nearly as possible in the same manner. On this principle gifts originally made for purely charitable purposes have been extended to educational purposes. Further, trustecs of a charity may act by a majority, but ordinary trustees cannot by the act of a majority (unless specially empowered so to do) bind a dissenting minority or the trust property. A trust estate is subject as far as possible to the rules of law applicable to a legal estate of a corresponding nature, in pursuance of the maxim, "Equity follows the law."' Thus trust property is assets for payment of debes, may be taken in execution, passes to creditors in bankruptcy, and is subject to dower and cuntesy, to the fules agalnst perpetuities, and to the Statutes of Limitation. This assimilation of the legal and equitable estates has been produced partly by judicial decisions, partly by legislation. A trust is extinguished. as it is created, either by act of a party or by operation of law. An example of the former mode of extinction is a relcase by deed, the general means of discharge of a trustee when the purposes of the trust have been accomplished. Extinction by operation of law takes place when there is a cailure of the objects of the trust: e.g. If the cestui que trust die intestate without heirs or next of kin, the property, by the Intestates Estates Act 1884, escheats in the same manner as if it were a legal estate in corporeal hereditaments. Equitable interests in real estate abroad are as a rule subject to the lex loci rei sitae, and an English court has no jurisdiction to enforce a trust or settle a scheme for the administration of a charity in a foreign counary. An English coun has, however. jurisdiction to administer the trusts of a will as to the whole real and personal estate of a testator, even though only a very small pat of the estate, and that wholly personal, is in England. This was decided by the House of Londs in a well-known case in 1883 (Ewing v. Orr-Euing, L.R. 9 A. A.. 34).
Riges and Dutis

Righis and Duties of the Trussee. - The principal general properties of the office of trustec are these: (1) A trustee having once accepted the thete cannot afterwards renounce. (2) He cannot delegate it, bit the inconvenience which formerly attached to dealings with pyors-ad inst propery, in consequence parly of this rule. and banty of the liabinty of persons dealang with trustecs to see that Act (see Will). Except in the ctee que trust must be a definite pervon. for kerping up family tombs is by appointment of a new : where the instrument of
seceipt for the consideration money or other consideration, the deed being executed or the endorsed receipt being signed by the trustee; and a erustee is not chargeable with breach of trust by reason only of his having mado or concurred in making any such appointment; and the producing of any such deed by the solicitor is a sufficient authority to the person liable to pay for his paying to the solicitor without the solicitor producing any beparate or other direction or authority in that behalf from the trustee. (3) In the case of cotrastees the office must be exercised by all the trustees jointly. (4) On the death of one trustee there is survivorship: that is, the trust will pass to the survivors or eurvivor. (5) One trustee shall mor be liable for the acts of his co-trustee. (6) X trustee shall derive no personal benefit from the trusteeship. The office cannot be resounced or delegated, because it is one of personal confidence. It can, however, be resigned, and legislation has given a retiring trusee large powers of appointing a successor. The liability of one trustee for the acts or delaults of another of ten raises very difficult quertions. A difference is made between trustees and executors In executor is hiable for joining in a receipt ppo forma. as it is not necessary for him to do so, one executor having authority to act mikhout his co-executor; a trustee can show that he only joined for conformity, and that another received the money. The rule of equity by which a beneficiary who consented to a breach of trust was hable to indemnily the trustees to the extent of his interest has taken definite statutory shape in s. 45 of the Trustee Act 1893 (replacing s. 6 of the Trustee Act 1888), which enacts that when a trustee commits a breach of trust at the instigation or request, or with the consent in writing of a beneficiary, the High Coart may II it thinks fit, a nd not withatanding that the beneficiary is a married voman entivied for her separate use and restrained from anticipation, make such order as to the court seems just for impounding all or any part of the interest of the beneficiary in the trust estate by way of indemnity to the trustee. The rule that a trastee is not to benefit by his office is subject to some exceptions. He may do so if the instrument creating him trustee spocially allows him remuneration, as is itsually the case where a solicitor is appointed. The main duties of trusters are to place the trust property in a proper state of security. to keep it (if personalty) in sale custody, and to properly invest and distribute it. A trustee must he carelul not to place himself in a position where his interest might clash with bis duty. As a rule hecannot safcly purchase from his cestui que trust while the giduciary relation exists between them. Investments by trustees demand opecial notice. The Trustee Act 1893 has consolidated the law on ehis point, and provides, as it were. a code or charter of investment authorizing trustees, unless expressly forbidden by the instrument (\(\frac{1}{2}\) any) creating the trust, to invest trust funds in various modes, of which the more important are as follows: In any of the parliamentary stocks or public funds or government securities of the United Kingdom; on real or heritable securities in Great Britain or Ireland; 3 stock of the Bank of England or the Bank of Ireland; in India 3 \% stock and India \(3 \%\) stock; in any securitics, the interest of which is for the time being guaranteed by parliament; in consolidated stock created by the London County Council: in the debenture or rent-charge or guaranteed or preference stock of ary railway company in Great Britain or Ireland incorporated by special act of parliament, and having during each of the ten years last peast before the date of investment paid a dividend at the rate of not less than \(3 \%\) on its ordinary stock; in the debenture stock of any railway company in India, the interest on which is paid or guaranteed by the secretary of state in council of India: in the "B" annuitics of the Eastern Bengal, the East Indian and the Sind, Punjab and Delti railways; and also in delerred annuities-comprised in the register of holders of a nnuity Class D. and annuities comprised in the register of annuitants Class C of the East Indian Railway Company: in the stock of any railway company in India upon which 2 fized or minimum dividend in sterling is paid or guaranteed by the socretary of state in council of india, or upon the capital of which the interest is so guaranteed; in the debenturg or guaranteed or preference stock of any company in Great Britain or 1reland established for the supply of water for profit, and incorporated by special act of parliament or by royal charter, and having during each of the tee years last past before the date of investment paid a dividend of not lem than \(5 \%\) per annum on its ordinary stock: in nominal or isscribed stock issued, or to be issued, by the corporation of any municipal borough having, according to the retums of the last census prior to the date of investment, a population exceeding 50,000; or Gy amy cournty council under the authority of any act of parliament or provicional order: in any of the stocks, funds or securities for the cime being authorized for the investment of cash under the control or subject to the order of the High Court. Trustees may from time to time vary any such investments for others of an authorized nature. The statratory power to invest on real securities does not, of course, tuphoritec the purchave of realty; but by a. 5 of the Trustee Act 1893 a power to invest in real securities (in the absence of expreas provision to the contrary) authorizes investment on mortgage of leasehold property held for an unexpired term of not lesa than 200 years and pot abbject to a greater rent than one shilling a year, or to any right af redemption or condition of re-entry except for non-payment of sent.

The position of trustees in respect of what was frequently an undue personal responsibility for the administration of their trust has been much improved by 8.8 of the Trustec Act 1888 (not repealed by the Trustee Act 1893) and a. 3 of the Judicial Trustecs Act 1896. Sub-section (1) of the former enactment (with some omissions) runs as follows: " In any action or other proceeding against a trustee or any person claiming through hiñ, except where the claim is founded upon any fraud or fraudulent breach of trust to which the trustee was party or privy, or is to recover trust property, or the proceeds thereof still retained by the trustee, or previously received by the trustee and converted to his use, the following provisions shall apply: (a) All rights and privileges conferred by any statute of timitations shall be enjoyed in the like manner and to the like extent as if the trustee or person claiming through him had not been a trustee or person claiming through him. (b) If the action or other proceeding is brought to recover money or other property, and is one to which no existing statute of limitations applies the trustee or person claining through him shatl be entitied to the benefit of, and be at liberty to plead the lapse of time as a bar to such action or other proceeding in the like manner and to the like extent as if the claim had been against him in an action of debe for money had and received." The statutory period of limitation which trustees are thus permitted to plead is the six years fixed as the period of limitation for actions of debt by the Limitation Act 1623 It has been decided on the above section that in the case of a breach of trust consisting of an improper investment of the trust funds. time begins to run in favour of the trustee from the date of the investment. Sub-sectioa (3) of the Judicial Trustecs Act 1896 provides that "if it appears to the court that a trustee, whether appointed under that act or not, is or may be personally liable for any breach of trust, whether the transaction alleged to be a breach of trust occurred before or after the passing of that act, but has acted honcstly and reasonably, and ought fainly to be excused for the breach of trust and for omitting to obtain the directions of the court in the matter in which he committed such breach, then the court may relieve the trustee cither wholly or partly from personal liability for the same." Owing to the generally reduced rate of interest obtainable for money invested on trust securitics, the court has in several instances, and even as against delaulting trustees, charged them with interest at \(3 \%\) per annum ginstead of \(4 \%\) which was formerly the recognized rate) upon sums (ound due from them to the trust estate.

Under the old law trustees could not safely advance on mortgage more than two-thirds of the actual value of agricultural land or onehalf of the value of houses. This "two-thirds, rule" is now made statutory by s. 8 of the Trustee Act 1893. which enacts that "A truste lending money on the security of any property on which he can lawfully lend shall not be chargeable with breach of trust by reason only of the proportion borne by the amount of the loan to the value of the property at the time when the loan was made. provided that it appears to the court that in making the loan the trustee was acting upon a report as to the value of the property made by a person whom he reasonably believed to be an able practical surveyor or valuer instructed and employed independently of any owner of the property, whether such surveyor or valuer carried on business in the locality where the property is situate or elsewhere, and that the amount of the loan does not cexceed two equal third parts of the value of the property as stated in the report, and that the loan was made under the advice of the surveyor or valuer expressed in the report." The same section protects trustees for not investigating the lessor's title when lending on the leasehold security. and for taking a shorter title than they might be otherwise entitled to on the purchase or mortgage of any property, if they act with prudence and caution. By s. 9 (replacing a 5 of the Trustce Act 1888) trustees who commit a breach of trust by lending more than the proper amount on any property are excused from making good any more than the excess of the actual loan over the sum which they might have propery lent in the first instance.

Rights and Dulies of the Cestui gue Trust.-These may be to a great extent deduced from what has been already said as to the correlative duties and rights of the trustee. The cestui que trust has a general right to the due management of the trust property, to proper accounts and to enjoyment of the profits. He can as a rule only act with the concurrence of the trustec, unless he seeks a remedy against the trustee himself.

Judicial Trustecs.-The Judicial Trustees Act 1896, inaugurated a scmi-official system of trustechip which was new in England, but had been known in Scotland for upwards of 150 yeare. The general scope of the act is indicated by s. I (1), which runs as follows: ". Where application is made to the court by or on behalf of the person creating or intending to create a trust. or by or on behalf of a trustee or beneficiary, the court may, in its discretion, appoint a person (in this act called a judicial trustee) to be a trustee of that trust, either jointly with any other person or as sole trustee, and if sufficient cause is shown, in place of ail or any existing trustees." The act and the rules made under it (the Judicial Trustecs Rules 1897) provide that judicial trustecs shall be under the control and supervision of the court as officers thereof, and may be paid for their services out of the trust property. The trust accounts are to be
audited annually, and a report thereon made to the court, which has power to order inquiries into transactions connected with the adminustration of the crust. A judicial trustee may be required to give security, and in any case has to keep the trust account with a bank approved by the court, and deposit title-deeds and other documents of title in such custody as the court directs. Communications between judicial trustee and the court with reference to their duties are permutted to be made with little or no formality, and strict proof of facts may be waived in proper cases. The act may. in short, be described as an attempt to provide for an official check upon the administration of trusts, while avoiding the formalaty and expense incident to the procedure in an administration action.

Public Trustec.-A step further was taken by the Public Trustee Act 1906, which established the office of public trustee. By the act he is a corporation sole, with perpetual succession and anoffictal scal and may sue and be sued under his official title. He may, if he thinks fit, act in the administration of estates of small value; as custodian trustee, or as an ordinary trustee; he may be appointed a judicial irustec, or administrator of a convict's property. The law of trusts generally is applicable to him and he can act either alone or jointly with other persons. He has an absolute discretion as to whether he will accept or not any trust, but cannot decline acceptance on the ground anly of the small value of the trust property. He cannot accept any trust which involves the management or carrying on of a business, except in certain cases authorized under rules appended to the act. He cannot accept a trust under a deed of arrangement for the benefit of creditors, nor of an insolvent estate, nor one exclusively for religious or charitable purposes. His powers and duties are dealt with by the act under three headings: (I) In the admentisiration of small estates.-On the application of any person entitled to apply to the court (i.e. the High Court, and as respects trusts within its jurisdiction, the county coust) for an order for administration of any estate, the gross value of which is proved to the satisfaction of the public trustec to be less than \(£ 1000\), he may administer the estate, and must do so if the persons beneficially entited are persons of small means, unless he sees good reason for refusing. By declaration in writing signed and scalcd by bim the trust property other than stock vests in him, and the right to transfer or call for the transfer of any stock forming part of the estate, provided that he does not exercise the right of hamself transferring stock without the leave of the court; this general provision also does not apply to copyhold, in respect of which be has the same powers to convey them as if he had been appointed under s. 33 of the Irustee Act 1893. Power is given to the court to order, for reasons of economy, that an estate being administered by the court be administered by the public trustee. (2) As cuskodian trustee. The public truste, if he consents to act, may be appointed custadian trustee on an application to the court, or by the testator, settlor or other creator of any trust or by a person having power to appoint new trustees. When he is so appointed the trust property is transicrred to him as if he were the sole trustee, but the management of the trust property and any discretionary power remain vested in the other trustees. His relations with the managing trustees are further defined by the act. (3) As an ordinary trustee. - The public trustec may be appointed trustec, executor, \&c., of any will or settlement or instrument of any date either under his official title or other sufficient designation. In a will a sentence to the following effect would be sufficient," I pppoint the Public Trustee exccutor and trustee of this my will." Where the public trustee has been appointed a trustec of any trust, a co-trustee may retire from the trust under s. II of the Public Trustee Act 1893 notwithstanding that there are not more than two trusters, and without such consents \(3 s\) are required by that section. The consolidated fund of the United Kiagdom is liable to make good all sums requred to discharge any liability which the public trustee, if he were a private trustee, would be personally liable to discharge, except where neither the public sustee nor his officers has contributed to it, and which neither he nor any of his officers could by reasonable diligence have averted, A person aggrieved by any act or omission or decision of the public trustee in relation to any trust may apply to the coust, and the court may make suchorder in the matter as if sees fit. The act contains provisions for the investigation and audit of trust accounts, which may take place on the application of any trustee or beneficiary; if the parties do not agree upon a solicitor and public accountant for the purpose, they are appointed by the public trustee, who has entire diseretion over the source from which the expenses are to be fefrayed. The fees payable under the act are fixed by the Public Trustee (Fees) Order: they are of two kinds: Fecs on capital and fees on income. The ohject of the department is not to make a profit, but merely to pay expenses. Futl information at to machinery and procedure of the office and the requirements nuces; to obtan the services of the public trustee are ohtainable on applica. tion to the Public Trustee Office, Clem:

Scoiland.-The history of the law dititers cunsiderably fora that
regulated by statute. The policy of the English Statute of Frauds was no doubt intentionally imitated in the Act 1696 , c. 25 . enacting that no action of declarator of trust should be sustained as tn any deed of trust made for thereafter, except upon a declaration or back bond of trust la wiflly subscribed by the personalleged to be trustee and against whom or his heirs or assignees the declarator should be intended, or unless the same were referred to the oath of the party simplicter. The act does not apply to all cases, but only to those in which by the act of parties documents of title are in the name of a trustec, but the beneficial interest in another. The person creating the trust is called the truster, a term unknown in England. On the other hand the term cestua que trust is untenown in Scotland. The office of trustee is prima tacic gratuitous, as in England, it being considered to tall under the contract of mandate Some of the main diferences between English and Scottish law are these. There is no presumption in Scotland of a resulting trust in favour of a purchaser. A trust which lapses by the failure of a beneficiary goes to the Crown as ulthmus heres. The office of trustee is not a joint office, therefore there is no right of survivorship, and on the death of a trustee the survivors are incompetent to act, unless a certain number be declared or presumed to be a quorum. or the office be conferred on trustees and the accedors and survivors of them. . Sometimes the concurrence of one trustee is rendered absolutely necessary by his being named sine gua non. The Cours of Session may appoint new trustees, but generally appoints a judicial factor. There has been a considerable amount of legislation. chiefly in the direction of extending the powers of trustecs and of the cont in trust matters. Tbe powers of investraent given to trustees are much the same as those allowed in England.

Unuted States.-In Ncw York and many other States uses and trusts have been abolished (with certain exceptions), and ever estate, subject to those exceptions, is deemed a legal right cognis able in courts of law. Some of these exceptions are implied trusts and express crusts to sell land for the bencfit of creditors, to sell, mortgage or lease lands for the benefit of legatees, or for the purpose of satisfying any charge thereon, to receive the rents and profits of lands and apply them to the use of any person during the life of such person or any shorter term, or to receyve such rents and profits, and accumulate the same within the limits allowed by the law. Some states allow the creation of trusts (other than thove arising by implication or operation n! law) only by means of will or deed. Where the trust is of real estate, the deed nust generally be registered. Forms of deeds of trust are given in the Statutes of Virginia and other states. The English doctrine of cy pres is being adopted in many states. A public trustee as a corporation sole exists in some stancs. A trustece under American law is generally entitied to compensation for his services. Spendthrift trusts i.e. those under which the enjoyment of income bequeathed by will in such a way ns to prevent creditors of the bencficiary from reaching it before it gets into his hands, are generally supported (Nichols v Eafon. 91 United States Reports, 713). A "voting trust" is a concerted transfer of their shares in a corporation by a majority nif the shareholders to trustees to hold and vote on them for a specified period for the purpose of securing the adoption or continuance of a certaim line of corporate action. Any sharcholder may recede from such an arrangement and reclaim his stock.
Aurnorities. - The principal authority is Lewin's Law of Trusis; other treatises are those of Codefroi and Underhill. For American Law see Perry On Trusts. The principal authority on charitable trusts is Tudor. For the history may be consulted Bacon, Law Tracts; Reading, On the Statate of Uses; Gilbert. On Uses; Sanders, On Uses and Trusts: Spence, Equatable Jurisdiclion, i. 435; Digby. Hist. of the Law of Real Properity, chs. vi., vï.
TRUSTS, in Economics. The word "trusts," as used here, includes all those aggregations of capital engaged in productive industry that, by virtue of their industrial strength, have of are supposed to have some monopolistic power. Legal monopolies, as such, and natural monopolies are excluded, although it is trequently true that the trusts are aided by and sometimes control natural monopolies. Trusts are here considered to be identical with the so-called "capitalistic monopolies." As "trusts" started in America, the subject will be considered here first from the point of vicw of American experience.

Wbile it is probably true that crusts are a product of evolution, it is desirable to analyse and explain that conception in some detail if we are to understand their industrial significance. Competition. espocinly amors industries managed on a great
scalc, often mikes modorn bestiness unprofituble. Commertial of England, though perrhaps the now not very different from that Statute of Uses did not apply to any similar legisisation was equity were administered have existed from time
great mass of producers remained vigorously competing with one another, some making larger, others smaller profits, but all ascept a fow at the lower margin making at least a living. Under modern business conditions competitors are often, relam tively speaking, few in number, of substantially cqual ability, and controlling substantialif equal facilities for managing the bosiness economically. Consequently, in such circumstances, modern competition difiers greatly from that form which was familiar to the earlier economists. Among competitors of such great resources, the struggle may last loog after the business has become unprofitable to all before any will fail. Among competitors so nearly equal in strength, the entire industry may be very seriously injured by competition before enough are forced out to affect materially the severity of the competition.
The dictum of Stephenson, that "where combination is possible, competition is impossible," has a much wider application now than in the early days of railways. The modern facifities for the transportation of goods, for the rapid transmission of intelligence by fast mail, and especlally for the instintaneous exchange of information by the telegraph and telephone, have made it possible to manage easily a large business, however widely separated its dificrent plants or establishments may be. In the middle of the roth century or thereabouts, on account of the lack of these facilities, management of such institutions would often have been impossible. Many of the advantages of combinations are entirely dependent apon these modern facilities, and on that account these facditles may be said to be an oceasion, if not a cause, of the trusts.

If the product of an industry is of such a nature that its quality is substantially uniform and can be readily tested by Tookn-w purchasers, especially if the goods are such that offint codathites. they are ordinarily sold in large quantities, the competition between rival establishments must admost of necessity be a competition in price. Sugar refining, oll refining, the distilling of spirits, the manufacture of salt, are such industries. The standard quality is readily tested, and the manufacturer who can offer the standard product at the lowest price effects a salc. Industries manufacturing comparatively inexpensive articles for the retail trade, put them tp in packages which become well known to customers, and those industries whose goods are sold under brands or trade-marks, os in some other form so that they are familiar to buyers, afford an example of competition of an entirely different kind. When the reputation of a certain brand of goods of this nature becomes established, consumers make no further efforts to test its quality, and the retail price often becomes a customary price. If a manufacturer of such goods finds his trade injured by a rival, his most effective means of competition will often be, not a lowering of the price, but an increase of the outlay on advertising Soap, baking-powder, photographic cameras for geteral use, and of late years certain brands of coffee, patent medicine, and other drugs of similar nature, are examples of this class. Those industries in which the competition becomes a matter of cutting of prices can by combination remove rivals from the field, and then put prices up to a remunerative rate. Competitors In industries of the second class by combination can gave many of the costs of selling, and thus without any increase in the price of the product may save enough of the cost to make the business profitable.

Sonse of the advantages of comblnation over competition which mavelat so the or yinization of trusts mby be enumerated:-
6. The cove of gelling may be greatly beraened. As has been weinteg, mapecition in the case of industries of the second class ammed above leads to very expensive advertising in order to effect sales. An examination of the pages of thy of the American magaxines, with a thought as to the anymornt charged for the ure of these advertising pages \(v \rightarrow\) feed to as high as even four huadred dollars, or from \(\checkmark\) Pedpe for a single insertion in some of the magazines ereulation) will convince one of the cost of such tyentiong. The expense involved in making attracingw in atores or shops, and in calling the aitention
to popular wares by posters scattered about the
country and by legeads painted on rocks, on buildings aloags the lines of railways, \&c. are other common examples.
2. The salarios of commercial travellers, together with theis botel and travelling expenses, are of a similar nature. This competitive advertiaing in many cases does not increase to any noteworthy extent the consumption of the products in question, but morely attracts customers from one manufactures to another. Combination among establishments that do this costly advertising saves a large part of the expense without lemsening materiaily the quantity of groods sold.
3. If different masufacturing establishmeats, scattered throughout the country, are brought under one management. it will be possible for orders for goods to be received at one central office, and then to be distributed to the federated establishments, so that goods can be despatched to customers in each case from the nearese establishment. In this way freight expenses may be very greatly lessened, eross freights over the same territory being substantially eliminated. A single establishment supplying all of its customers would often be compelled to deliver much longer distances at greatly increased expense.
4. The entire profit of an establishment freguently depends upon the skill of the manager. When many different extiblichtmenta are organized into one. it is possible to select the most skilful manager of all and to put him in charge of the combination, thus securing in many cases, if the trast includes practically all of the establish. ments in the entire-industry, the ablest manager in the country for them all. It is of course true that an an establishment increaser in size, or as a combination increases the number of its branches, especially if they are widely scattered, it becomes impossible for the manager to give his personal supervision to the details of management of aach institution. An executive officer of the highest sloh, however, will so select his subordinates, to direct their work, and so inluse into them his own spirit, that, under carelul inspection, comparatively little will be lost from his inability to be presenc personally in each separate establishment. In the iarger combinaitons frequent reports, often daily, are made from cach concern, giving in detail the quantity of the output, the quality of the good, the exact cost of the different processes of manufacture; so that it is possible to compare continually each of them with all of the others; to detect the special weakness of each, and in this way to remedy any slight delects in any one establishment, and to bring all nearly up to the highest level of productive capacity.
5. Each busincss manager is likely to have some opecial excellence in his methods of managemem. One will be particularly skilfui in the sochnique of manufacturing; another in the organization of the business; a third in selling goods, and so on. By combining many establishments into one, it is possible so to distribute this managerial skill that each superintendent will be given the department lor which he is peculiarly fitted, and the whole establishment will thus get the benefit, not merely of the best executive ability at the head, but also of the best manaying skill at the head of each separate department. In many cases it is probable that as much is saved in this way as in any other.
6. Besides this distribution of skill of the managers, it is sometimes equally beneficial to distribute the various prodacts of the combination among the different plants. For example, in the manufacture of hoop and bar iron the products are turned out in great varieties of size, probably from seventy-five to a husdred. Wholesale dealers in tending their orders to the mills are likely to call for from ten to filty different kinds. If shese orders go to an establishment which has but one large mill, it may be necessary, in order to execute the order, to change the rolls in the mill several timen, causing thus a waste of power, of time and of energy. If several establishmen!s are combined, esch can be equipped for certain sizes. When, in these circomstances, a large order is received, to each establishment will be sent that part of the order which it is especially equipped to fulfit, and thos, without any changes of rolls or stoppage of machinery, the separate sizes can be made. The tame prisciple holds of course in nearty all lines of work, in some to 2 greater degree than in others; but in the rnanulacture of hoop and bar iron a sevis. from this source emounting to from a dollar to a dollar and a holl, or from 4s. to 6n, per ton is sometimes made.
7 The advantage of unilying in one establishment the manufacture of products somewhat alfied in nature appears also in selline goods. If customers can buy at of the rarious kinds of selated goods in one establishment, much of their time and energy will be saved. Some of the larger combinations, therefore, in order to make this saving for their customers and thus to be sure of retaining their orders, add to their plant facilities for making products which a smaller establishment could hardly manufacture. For example. the Distilling Company of America, which controls probably \(90 \%\) of the entire product of corn spirits, found it to ite advantage to add to its plant aeveral rye distilleries, and to purchase a number of the leading brands of whiskies for consumption as beverages. in order that shey might supply the needs along different tines of practically all dealers in spiris and whiskjes, in this way saving for themeives many customers who otherwise might have been lost
Q. The there sipe of an establishment and its ability to aupply at any time on short notice any order. however large, gives it also an advantage in retaining custom. A concera that conirols only
from 5 to \(10 \%\) of the entire output of a country in any special line of goods might at times find it impossible to supply goods promptly. Lafge customers who might thus be embarrassed are more ready to deal regularly, with an establishment controlling 75 to \(90 \%\) of the output, if they can in this way be sure of having their orders attended to promptly. It is stated that the American Sugar Refining Company on this account has been able to secure, with considerable regularity, one-sixteenth of a cent a pound more on its refined sugars than the independent refiners, the latter being frequenily compelled to cut their prices to that extent in order to make sales.
9. Owing to the fact that the introduction of goods inno new markets, especially into foreign markets, is a matler of time, ex. penditure of energy, and of money, the large establishment with great capital has in this particular also a decided advantage. The Standard Oil Company, and American Tobacco Company, and other similar establishments, have thus been able to open up new markets in Europe, in Japan, China and other portions of the Far East more readily by far than individual producers along those linet could have done This stimulus to the foreign trade acts also beneficially to the domestic trade, inasmuch as the exportation of part of the product tends to keep prices somewhat higher at home, and as the added demand for the raw material influences its price, thus creates a demand for labour along many lines.
10. The combination also frequently saves for its stockholders considerable sums from its wiser dealing with credits, and this in a way also that is bencficial to the entire business community. When competition is very severe among different establishments, the managers, in order to increase their sales, will not inirequently grant credit somewhat unwsely. The combination controlling a large part of the market is not so tempted, and moreover has the power to bring needed pressure to bear upon delinquent debtors more readily, so that losses from bad debts are much less frepuent

Besides the special savings that serve as reasons for the formation of combinations, certain special favours at times lead to their formation.
1. The protective tarif is most frequently cited as such a favour. By the protection which a protective duty gives against foreign competition, it doubtess often fumishes the occasion Speclel for the formation of trusts. If a large amount of capital Favours to is tempted into the industry through the profits pro-comsina- mised by the tariff, and therefore competition among toath. the various establishments becomes fierce. it is much easier for them to form a combination with the certainty of good profits, provided the domestic competition can be overcome, it they are certain that forcign competition also is to be excluded. On the other hand, it would hardly be right to speak of the tariff as in this case the direct cause. In other industrics not protected by the tariff the same force comperition leads to the formation of combinations. The tariff is simply an encouraging condition. The removal of the tariff would not destroy the combination unless it Iestroyed the indust ry at the same time; but, on the other hand, the removal of a protective tariff might very easily prevent the abuses of exorbitant prices which might be exacted by a combination prolected by the tariff.
2. It is doubtless true that combinations have a good many times been encouraged by special discriminating rases of freight granted by the railways or other transportation agencies. There is, of course, a certain economic advantage to the railways in having goods despatched in large quantitics by consigners who are able to supply their own cars. loading and unloading facilities, \&c. Raitways on that account often prefer to deal with large firms. and, other things being equal, are willing to give them some special rates. These concerns also are likely to have rather beter credit than the smalier ones, so that dealing with them ensures prompt pay and cheaper collection of accounts. The competition among the differens railways also for the freights which an important customer can furnish leads to cutting of the rates in their favour. These special rates, however, whether justified from the business point of view or not, are beyond any question from the social point of view, often a very grave injury. A manufacturer who receives these special favours can build up a business substantially monopolistic in its extent, whercas his rival of equal or even of greater ability. and equally skilful as a manulaciurer, would be ruined if he did not receive like rates. The injustice of such diacriminations and their evil effects on the community have been recognimed by legislatures and courts in America, and they are practically universally forbidden. It remains beyond question true that they are, notwithstanding, very frequently granted.

In recent years in the United States there can be little question that the formation of the great combinations has been much Promotlon encouraged by the opportunities, which promoters profits. The movement towards combination was so fully rccognized and the advantages in many cases so palpable, that a well-informed and skilful promoter was oficn able to persuade a large proportion of the manufacturers in some ssecial industry to combine. In preparing the plan for such combiastion, of
promoter has in many cases seen to it that he himsell first bought the properties which he could very shortly turn over to the comhination at high rates of profit; or else he has been able to persuade the new corporation to issue large amounts of stock, of which considerable proportions were given to him in return for his services. It has been true in many cases that these securities have been speculative in nature, but nevertheless the promoter has often reaped in this way large rewards. The possibility of this profit has douhtless stimulated his activity in urging the combinations.

Associated with the promoter in the organization of these com. binations have usually been bankers or other financiers who stood ready, for an amount of stock or other promised profit sufficiently large to compensate them for their risk to furnish to the combinations cash gufficient to start writer. the business and to provide other needed capital. Usually the form of underwriting employed has been this; A promoter engaged in the formation of a combination and needing a cettain fixod sum in cash, would make an arrangement with a bank to sell to it at a price agreed upon such portions of a named amount of stock as were not disposed of to ot her customers before a certain fixed date. For example, the bank might agree to furnish one million dollars in cash (200,000) in return for say four millions of stock (\(8800,0 c 0\)), or to purchase itself at a fixed price all the remainder of the \(\$ 4,000,000\) stock unsold at the date agreed upon, the bank itself to become the sales agent. In those circumstances the bank would naturally use its best enaleavour to sell the four millions of stock to other customers at the price agreed upon, say twenty-five dollars, or fs, per share. So far as it failed of disposing of the entire amount, it would take the remainder inself. For taking these risks, naturally the bank has almost invariably asked a very high commission, and not infrequently it has been aseerted that the managers of the banks have been given a special bonus for themselves privately, in addition to the rates of profits granted the bank.

These large amounts of stock that are paid to the promoter and the financier for the purpose of bringing about the organization of a large trust. lead, of course, to what is called overcapitalization. What the proper basis of capitalization zasamanal for a manulacturing industry should be, is a matter that cagan cannot perhaps casily be determined by a definite prin-
ciple which shall be applicable in every case. The laws that have been most strict on the subject attempt to limit the capitalization to the " actual cash value" of the business, by that being understood at times simply the cost of the plant itself with the running cash capital necded. On the other hand. most business men think that it is a wiser plan, and on the whole equally juse, to capitalize a business on the basis of its earning capaciry, regardless of what the plant may have cost. When, as has been frequently the case of late years, in addition to this cash value of the plant and the cash itself which may have been paid in, large sums of stock are issued also for properties which may be in themselves highly over-valued. and for the services of the promoter, the financier and others, we can wee that the capitalization must be far above what may ordinarily be considered a paying basis. On the other hand. if the element of monopoly enters into the business to any noteworthy extent, the prices of the product may be kept so high that fair dividends may be paid even on thishighcapitalization. That the tendency towards increasing the capital has been very strong there can be no question, and a penalty is apt to be paid for this somewhat reckless financiering. As soon as a slight depression in busincss comes, so that it is perfectly evident not merely that dividends cannot be paid on the common stock, but that in all probability both the delerred stock and the bonds, if any have been issued, will also have to go without interest, it may be necessary to reorganize many of these combinations and to start them anew on much lower capitalization.

When the person organizing the combination is himsclf an active business man, and has the intention of himaell directing the afairs of the combination, another \(r\) the element besides that of personal profit very fre. hodustren quently enters into the problem. Most strong Masager. men like to take responsibility and to be dominant in affairs. When, owing to the advantages of combination that have been enumerated above, the prospect of a virtual monopoly seems certain, provided duc skill in management is excrised, it is natural that the manager should wish to bring about the combination in order that be raey himsedf have the
satisfaction of being in substaatially aboolnte control of the satisfaction of being in substartially abolute control of the
entire industry in counery. or F

of many of the most successful and most skillully managed combinations.
1. The form of combination which has ordinarily been first adopted has been some kind of agreement with reference 7wemes to maintaining prices, or to paying wages, or to of conve dividing the territory for the distribution of the metere produch or similar questions. Experience has shown that, generally speaking, such agreements are not likely to be kept in good faith for a long period.
2. In order to make the combination more permanent in its mature, the form of the trust, technically so called, was adopted. Under this form of combination, the stockholders of the various constituent companies of the trust place their stock in the handa of a small board of trustees, giving to these trustees an irrevocable power of attorney to vote the stock as they see fit, or in accordance with specific instructions given at the beginaing. The tille to the stock itself remains in the original holder, with the right to sell or pledge or dispose of it as he sees fit, but without the power of recalling his right to vote. In return for this stock thus deposited with the trustecs, the trustees have ordimarily issued trust certificates, which are in themselves negotiable and take the place of the stock. Inasmuch as the holding of the voting power of the majority of the stock of each of the different constituent companies gave to the trustees absolute power of election of directors, and consequently the power of guiding harmoniously the affairs of all of the plant entering into the combination regardlest of the will of the stockhotders, the United States courts held that the corporations entering into such an agreement had gone beyond their powers, and that such \(a\) trost was illegal. Owing chiefly to these hostile decisions of the courts, this form of trust was abandoned, and new forms, which still, bowever, leave the power of unified direction in the hands of a few men, were adopted.
3. After the trusts were declared illegal, it was usual, when a combination was formed, to organize a new corporation which bought all of the properties of the constituent members of the truse. These constituent companies then dissalved, and the one great corporation owning all of the properties remained.
4. The form that now seems to be much in favour approaches in its general nature more closely to that of the original trust. Under this form a corporation is organized for the special parpose of buying and owning all, or a controlling share, of the stocks of each onc of the constituent companies. The separate companies are then managed technically independently, the dividends of the separate corporations are all paid to the parent corporation as the stockholder owning all of tbe stocks, and these dividends are the source of profits of the new corporation. The officers in this parent corporation, of course, vote the stocks of the separate companies, and thus absolut ely control.

From the savings which it is possible for the combinations to make, it would seem possible for them to pay higher rates Tis Truer of wages to those remaining in their employment than it was possible for the comstituent companies to do. In certain instances, especially when the combination has furst been made, wages have been increased. On the whole, however, it is probable that as yet the wagecariers have succeaded in getling an increase of viges in circumstances substantially similar to those under which their mazes would be increased by single corporations. An increase of wages comes only through pressure on their part. Under a properous condition of industry it is possible, without materially bowering profits, to increase the wages.

Coxtain classes of employes, especially superintendents and fromiteftat trevellers, are less needed by the combinations, and concequestly the tom man of wages paid to these classes by the colifation 'ibl lot thas that tormerly paid by the constituent totbre bud, ite number of employs of the average wage has, in Owing to the fact thet largely done away with, been possible for fewer
lower wages, to the
work than before the combination, so that not merely has the total expense been lessened, but aiso the average salary paid to those retained in the husiness.

In case of disputes arising between the combination and the operatives, the position of the combination is stronger than that of an individual corporation. It is possible to close one or two works where troubles have arisen, and to transfer orders to the other works witbout any material injury to the business, provided the closing of the one or two establishments is not for too long a period. Such instances have occurred. On the other hand, labour organizations are also rapidly increasing in strengtb, and their leaders are of the opinion that within a comparatively short time they will be so thoroughly organized in all of the chief industries that a strike can be instituted and supported not merely in one or two establishments, but throughout the entire industry. Whenever this condition of aflairs shall have been reached, the cmployes will be substantially on an equality with their employers in such cases of conflict, so that the advantage now resting with the combination will be largely removod. In certain industries this condition seems already to have been reached.

From the sources of savings that were enumerated before, it is evident that it would be possible for a combination either to increase the prices paid for raw materials, or to lower the prices of its finished products. Experience, how- Proes ever, seems to show beyond question that whenever the combinations are powerful enough to secure a monopolistic control it has usually been the policy to increase the prices above those which obtained during the period of competition preceding the formation of the combination. Inasmuch, however, as an attempt to increase prices to any great extent, so as to secure very high profits, would certainly result in tempting new capital into the field, it has been the general experience that prices have either been increased only comparatively littie after the comhination was formed, or else that competition entering the field has comparatively soon forced a lowering of prices to substantially the former competitive rates. It should be noted, however, that inasmuch as combinations have very frequently been formed only after a period of competition so fierce that practically all the competitors were running at a loss, it is hardly just to speak of a combination placing its prices above "competitive rates" unless one defines what is meant exactly hy that expression. Whenever they have put their prices above the competitive rates existing just before the combination, it may mean that they have put their prices back to rates that will allow medium profits instead of losses, and not above rates that would be normal in the case of small competitors.
It will have been noted from what has been said that the excellences of the combination consist largely in the savings that have already been enumerated. The evils are: (\(t\)) The losses to investors through the acts of the Leptectho promoters and financiers at the time of the organiza-
Lion of the combinations, and through the speculation in the stocks which is at times carried on by the directors of the combinations themselves. (2) The losses to the wage-earners from the power that sometimes exists of forcing wages rather lower than it would be possihle for a single corporation or manufacturer to do, and also from the discharge of certain classes of employes whose services are no longer needed, such as commercial traveliers. It should be remarked of the latter case, bowever, that the injury is a personal one to those men that are discharged, but that it results in a saving to the community, and, therefore, presumably to the wage-earning class as a whole in the long run. (3) A forther injury at times to the coosumer arises, as has been suggested, from the increase in price. Other evils come through the power that is sometimes exercised by combinations in the comuption of legislatures; in the control over industries of such a nature that it tends to destroy the spirit of individual activity and independence on the part of many persons who would otherwise enter husiness independently; and evils also come through the increased force of any improper or diahonourable husiness practices, since this added force for evil
is given to any combination by virtue of its greater influence in the community. It is not intended to convey the impression that managers of combinations are less moral than other husiness men, but merely that whenever they are dishonourable in their practices the influence reaches more widely.

The chief remedies for these evils enumerated would seem to be more rigid laws with reference to the methods of incorpora-
tion and to the responsibility of directors to stockholders and to the public. This can perhaps best be brought about through greater publicity in both of these directions, probably under the inspection of govemment officials. The other line of remedies would seem to be the removal oif special favours granted to these combinations either by the government or by railways or other bodics so situated that they can distribute favours to the larger combinations.
The movement towards consolidation of industries in the United States began to be noticcable soon after the Civil War

Trus
THerem
Tawer proportions, exceping in connection with the rail-
Towerd ways, until within the last twenty years of the Consollde. cor. solidations were made, the largest number during the years 1898-1900. From what has been said carlier, it is evident that certain classes of industries, especially those that require the investment of fixed capital to large amounts, are especially adapted for combination. Very little tendency towards consolidation is found in the farming industry. and, relatively speaking, little in industries that require the investment of but small capial. It is perhaps, however, not too much to say that in ncarly all lines of industry which from their nature are adapted for consolidation combinations more or less firm have been made during the last few ycars. It is probable that as time passes we shall bave many of these combinations reorganized, and that in many lines of industry there will be further consolidation of present combinations.

Experience has shown that when combinations are made in industries that from their nature do not seem well suited for consolidation, failure follows. In many individual instances corporation lawyers, who have had much practice in forming combinations, advise their clients in lines of business especially fitted for competition not to enter a comhination, but to remain independent, assuring them that an individual is able to compete in such lines of industry with any combination, however large. Such advice, of course, would not be given were the industry one which was well adapted for consolidation.

Greaf Britain.-The tendency towards consolidation bas been for several years very noticeable in Great Britain, although the form bas been rather that of a pool or ring than that European Experteson of a trust or of a single large corporation. In the coal and milling industries there bave been agreements; and, particularly in London and other distributing centres, these selling combinations have been able at times to control the market. This has also been true with reference to certain kinds of provisions, such as the bacon imported from Denmark.

Of late years there has been a marked tendency towards the formation of large corporations that huy up a very large proportion of competing manufacturing plant, and in this way secure at teast a temporary monopoly of the market. The Salt Union was formed along these lines, but this has not proved successful, owing probably to the fact that new sources of supply were discovered. The dycing industries in Bradford and in Yorkshire have been consolidated, so that in certain respects they have an absolute monopoly of the business, and in most directions of over \(90 \%\) of it. The calico printers, the fine cotton spinners, the thread manufacturess, the bleachers, and others connected with the cotton manufacturing industries in Great Britain, have nearly all been brought together into large corporations which control from \(90 \%\) upwards of the entife business. Similar combinations in cement. wall-paper, soap, tobacco and olber trades have been formed. Most of these large corporations have been in existence for such a short time that one cannot yet
judge accurately regarding their permanent success. Many of them seem to have been over-capitalized and their dividends have not always met shareholders' anticipations. There has been no active popular movement against consolidation in Eng. land, and the government has passed no laws opposed to it. Parliament, however, has passed stringent amendments to the Companies Acts, changes enforcing publicity regarding the organization of all limited liability companies and their methods of management. The amended law is expected to prevent most of the abuses of the combinations.

Germany.-Germany seems to be peculiarly the bome of combinations so far as Europe is concerned. In 1897 Liefmann, writing regarding combinations \(\ln\) Germany, was able to mention combinations which were international in their scope in fortyone different branches of industry. Of combinations that were confined to Germany alone he mentioned 345 , although many of them were in the same line of industry; for example, he found 8o combinations in different branches of the iron industry, 82 in the chemical industries, 38 in the textiles, and so on. Of that number he thought that definite information could be secured, but be was of the opinion that very many more of less importance existed, and had excluded from his reckoning all of those that were purely local, as for example those among the breweries in the different citics, as well as those among firms engaged merely in trade. The form of combination in Germany is ordinarily that merely of contracts among independent establishments (Cartels, Kartills) regulating the amount of output for each, and in certain cases also the prices. As in Austria and in France, a central seling bureau for all the members of the combination is irequently found. The most successful combinations have been those among the coal-miners in western Germany and the four or five in the leading branches of iron manufacture, also in western Germany. Others of somewhat similar rank have been organized, one, for example, in the sugar industry, which includes both refiners and producers, and another among the manufacturers of spirits. The former, following that among the Austrian sugar manufacturers, is somewhat peculiar in that the refiners guarantee to the producers of raw sugar a fixed price for their output so far as the sugar is intended for the bome market, the refiners expecting to recoup themselves from the consumers through the monopolistic power which they possess. The law does not seem to be hostile to these combinations. Contracts that are immoral in their nature are, of course, non-enforceable. But the courts bave, on the whole, not taken an attitude inimical to the larger comlinations, and the government seems at times to have been inclined to favour them. In one or two cases where the government is itself a producer, as of soda, it is a member of a combination. Indeed, a Prussian minister in a speech in the Landtag has expressed himself favourably regarding the coal and iron combinations. The facts soem to show that the coal combination, at any rate, has used its power of fixing prices in a conservative way, and it has at times held prices somewhat lower than they probably would have been had free competition existed in that industry. So long as the combinations are managed conservatively, and so long as the government is able to secure a careful supervision over them, it is not to be expected that there will be much hostility in Germany on the part of the government.

France.-The number of combinations in Frace is probahly much less than in Great Britain or Germany. In the penal code there has been a provision for many years againat guppopoly brought about hy unfair means, and in one or two rather proni. nent instances there seem to have beem owinfictions uniler this article. Cunsequently, the so far as they are intended
secret. There have
iron industries

secured monopolistic power has not been successfully attacked in the courts. For several years it has been supposed that a similar agreement existed among the sugar refiners. They themselves, however, acknowledge only an agreement regarding the amount of the output which shall be assigned to each, and deny any agreement as to prices. Of course an agreement regarding output would be likely to have a material effect upon prices. Somewhat similar combinations exist among the petroleum refiners, the porcelain makers, and some few others. The government has taken no active steps in the matter, hut popular opinion seems to be awakening somewhat.

Austric.-In Austria the development of combinations has been very marked. The most successful comhination, on the whole, as well as one of the earliest, has heen that of the iron isdustry. The sugar industry, however, including both refiners and producers of the raw sugar, and the petroleum industry, art also combinations of great power. The form of these combinations is ordinarily that of an agreement regarding both output and prices. In some instances a central selling bureau fixes the prices, in others the market is divided, while in others still other forms of agreements of many kinds which serve to secure a monopoly are found. The movement has spread very rapidly indeed, until, in the opinion of many writers in Austria, practically all hranches of industry, in which agreements for the lessening of competition will prove advantageous, are now largely controlled by combinations. The courts of Austria have, on the whole, shown themselves hostile to the movement. Contiacts for the division of the market, for the assignment of fixed proportions of the entire output to different establishments, the nxing of prices, \&c., are declared void and will not be enforced by the courts. This adverse action, however, does not seem to have affected very materially the tendency towards combination, although it has perhaps tended somewhat to encourage cie formation of large corporations which should purchase all of ibe separate plant in any one industry. This tendency, again, is checked by the fact that the corporation law requires publicity in business, and that the taxes are heavier on corporations than on private firms, both as regards the legal rate and the certainty of collection. A government commission has recommended recognition of the combinations by law and their careful superrisioa and regulation by government authority. (J. W. J.)

Braliogra Piy.-C. W. Baker, Monopolies and the People (1899): A. Berglund, The United States Steel Corporation (New York, 1907): G. L. Bolen, Plain Facts as to the Trusts and the Tariff (New lork, 1902) ; J. B. Clark, The Control of Trusts (New Yoric, 1901), The Problem of Monopoly (1go4): W. M. Collier, The Trush; what cast we do with them? what can they do for ws? (1900); W. W. Cook, The Componation Problem (1891); J. P. Davis, Corporations: a Siudy of the Origin and Daxdopment of Greal Business Combinations (Vew York, 1905); E. Dolleans, L'Accaparomewt (Paris, 1902); 1.R. Dos Passos. Commercial Trusts (New York, 1901); L. Duchesne, L'Anènewert due rćgine syndical a Verviers (Paris, 1908); T. Duimchea, Die Trusts wnd die Zukunft der Kullumenschhe if (Berlin, 1903); R. T. Ely. Monopolies and Trusts (New York, 1900); G. Fagniea, Corporations el Syndicats (Paris, 1go4); C. Genart, Les Sydicals industriels (Ghent, 1896); A. P. C. Grifin, A List of Books rdetiog to Trustr (Washington, 1goz) E. von Halle, Trusts in the Uni: Slates (New York, 1895); F. W. Hirst, Manopolies, Trasts and Kartells (Iq05) ; J. W. Jenks, The Trust Problem (New York, tgow: L. Lieiman, Die Unternehmerverbando (Leipzig, 1897); H. D. Lloyd, Wealih against Commonmealh (New York, 1894); D. 11. Macgregor, Industial Combination (igo6) ; H. W. Macrosty, The frat Monement in British Indusfry (igo7); F. Pierce, The Then end the Trusts (1907); W. Z. Ripley (editor). Trusts, Pools

823), Amarican naval officer,
 of indepen-- Dy his 's-
with British vesscls. When the independence of the United States was recognized he returned to trade with a high reputation as a seaman. He was the author of a treatise on longilude and latitude, of a "System of masting a 44 -gun frigate," and was an advocate for the foundation of a national navy. When the United States navy was reconstituted in 1798 he was one of the original corps of six captains. During the last years of the 18th and first of the 19th century American commerce was subject to much intolerable interference on the part of the French as well as of the British naval officers. It was against the frist that Truxtun rendered the services which have made him a prominent personage in the history of the United States navy. In Fehruary 1799 he was captain of the United States "Constellation" (36) and on the rgth of that month be captured the French " L'Insurgente" (36). In the following year, and while still in command of the " Constellation," he fought the French "Vengcance" (40), and drove her into Curacao. The crippled state of his own ship, which had lost her mainmast, prevented him from taking possession of the enemy. In 1802 he was to have sailed in command of the squadron sent against the Barbary pirates, but a difference having occurred between him and the navy department in regard to the appointment of a captain to his dagship, his remonstrance against the official decision of the authorities was treated as a resignation, which it was apparently not meant to be, and he was not employed any further. He died at Philadelphia on the 5th of May 1822 .

TRYON, DWIGHT WILLIAM (\(1849^{-}\)), American artist, was born at Hartford, Connecticut, on the 13th of August 1849. At the age of twenty-five he left his position as a clerk in a Hart ford publishing house to devote himself entirely to art, and two years afterwards went to Paris, where he became a pupil of the Ecole des Beaux Arts, under J. de la Chevreuse, Charles Daubigny and A. Guillemet. A skilful Landscape painter, New England provided his best suhjects. He first exhibited at the Salon in 1881, and in the same year retumed to the United States, setting first in New York City; in 1882-1886 be was director of the Hartford School of Art, and in 1886 became professor of art at Smith College. He became a member of the Society of American Artists (1882), a National Academician (1801), and a member of the American Water Color Society, He won numerous medals and prizes at important exhibitions, among his pictures being "Daybreak," "Moonlight" and "Early Spring. New England."

TRYON, SIR GEORGE (\(8832-1893\)), BIItish admiral, a younger son of Thomas Tryon, of Bulwick Park, Northamptonshire, was born on the 4th of January 1832. He entered the navy in 1848, on board Lord Dundonald's flagship on the North Armerican station; was subsequently in the "Vengeance" with Lord Edward Russell in the Black Sea; was landed for service with the naval brigade; and was made a lieutenant in November, but dated back to the 21st of October 1854. From 1855 to 1858 he was in the " Royal Albert" flagship of Sir Edmund Loyons; and from 1858 to 1860 in the royal yacht, which gave him his promotion to commander on the 25 th of October 1860 . From 186r to 1864 he was commander of the "Warrior," the first British sca-going ironclad; from 1864 to 1866 he commanded the "Surprise" gunvessel in the Mediterrancan; and was promoted to be captain on the 1 rth of April 1866 . In 1867 he was sent out as director of transports and store ships for the Ahyssinian expedition, a post which involved a great deal of hard work in a sweltering and unhealthy climate. He discharged his duties exceedingly well, but his health broke down, and he returned to England a helpless invalid. From 1871 to 1873 he was private secretary to Mr Goschen, then first lord of the admiralty and from 1874 to 1877 commanded the " Raleigh " in India with the Prince of Walcs. and later in the Mediterranean. In the years 18;8-188: he had command of the "Monarch," one of the Mediterranean fleet under Sir Geoffrey Hornby and Sir Beauchamp Seymour, afterwards Lord Alecster. He was subsequently for two years secretary of the admiraltv: and for three vears more. on his
he was made K.C.B.; afterwards he was for three years superintendent of reserves, in which capacity it fell to him to command one of the opposing feets during the aummer mancuvres, when he showed marked ability and originality of ideas. In 8889 he was promoted to be vice-admiral; and in August 189r was appointed to command the Mediterranean fleet, which under him-following the example of his old chief, Sir Geoffrey Hornby-became very distinctly an evolutionary and, in that sense, experimental squadron. Some of his methods were afterwards said to be dangerous; hut those which were most severely criticized do not appear to have had anything to do with the lamentable sccident which ended Tryon's career. On the 2 2nd of June 8893 , the fleet being then off Tripoli on the coast of Syria, in two columns, Tryon made the signal to invert the course, the ships turning inwards in succession. By a fatal error, the psychological cause of which has never been explained, he ignored the patent fact that the two columns were so near each other that the manceuvre, as ordered, must entail the most serious risk, if not certsinty, of collision. And, in fact, the two leading ships did come into collision, with the result that the "Victoria," Tryon's flagship, was cut open and sank in a few minutes. Tryon and 358 officers and men were drowned.

\section*{See the Lifc, by Rear-Admiral C. C. Penrose-FitzGerald.}

TRYON, THOIAS (\(\mathbf{2 6 3 4 - 1 7 0 3 \text {), English humanitarian, was }}\) born at Bilbury near Cirencester on the 6 th of September 1634 . He had but little schooling, spending his youth first in spinning and carding and then as a shepherd. In 1652 be went to London, apprenticed himself to a hatter, and accepted his master's Anabaptist principles until he read the works of Jacob Behmen. He now lived a very ascetic life, though he married and became a prosperous merchant. In 1682 he began to publish his views in support of vegetarianism and abstinence from alcohol and tobacco. He detested war, and in this and his mysticism resembled the early Quakers. He died on the 2rst of August 1703.

His beat known book, The Way to Hrallt (1691), which much impressed Benjamin Franklin, was a second edition of Healli's Grand Preserbative; or, The Women's Best Doctor (London. 1682). He wrote on many other subjects, ef. the education of childrem. the treatment of negro alaves, the way to save wealth, and dreams and visions. Some scanty autobiographical memoirs were published in 1705 .
1 TRYON, WILIAY (1729-1788), American colonial governor, was born at Norbury Park, Surrey, England, in 1729. In 1757, when he was a captain of the First Foot Guards, he married a London heiress with a dower of \(\mathbf{6} 30,000\). In 1764 he was appointed lieutenant-governor of North Carolina, upon Arthur Dobbs's death in 1765 became governor pro lem., and in December of the same year received his commission as governor. Like many other pre-Revolutionary officials in America, he has generally been pictured by American writers as a tyrant. In reality, however, he seems to have been tactiul and considerate, an efficient administrator, who in particular greatly improved the cotonial postal service, and to have become unpopular chiefly because, through his rigid adherence to duty, he obeyed the iostructions of his superiors and rigorously enforced the meagures of the British government. By refusing to allow meetings of the Assembly from the \(\mathbf{1 8 4 h}\) of May 1765 to the 3rd of November 1766, he prevented North Carolina from sending representatives to the Stamp Act Congress in 1765. To lighten the stamp tax he offered to pay the duty on all stamped paper on which he was entilled to fees. With the support of the law-ahiding element be suppressed the Regulator uprising in 1768-71, caused partly by the taxation imposed to defray the cost of the governor's fine mansion at New Bern (which Tryon had made the provincial capital), and executed seven or eight of the ringleaders, pardoning six others. From 1771 nominally until the 22nd of March 2780 he was governor of New York. While he was on a visit to Engiend the War of Independence broke out, and on the rgets of October 1775, several months after his return, he was compelled to seek refuge on the sloop of
war "Halifaz" in New York Harbour, but was restored to power when the British took possession of New York City in September 1776, though his actual authority did not extend beyond the British lines. In 1777, with the rank of majorgeneral, he became commander of a corps of Loyalists, and in \({ }^{1779}\) invaded Connecticut and burned Danbury, Fairfield and Norwalk. In 1780 he returned to England, and in 178 a was promoted to be lieutenant-general. He died in Londan on the 27 th of January 1788.
See Marshal D. Haywood, Governor William Tryos and his Administration in the Province of North Carolina (Raleigh. North Carolina, 1903).

TRYPAnosomes, or Haemoplagellates, minute Protozoan parasites, characterized by the possession of one or two flagella and an undulating membrane, and specially adapted for life in the hlood of a vertebrate. Of late years considerable progress has taken plece in our knowledge of these organisms, research upon them having been stimulated by the realization of their extreme importance in medical parasitology. Not only has the number of known forms been greatly multiplied, but the study of the biology and life-history of the parasites has been attended in some cases with remarkable and unexpected results.

Historical.-The first observation of a trypanosome is usually ascribed to Valentin (55), who in 1841 announced his discovery of certain amoeboid parasites in the blood of a trout. In the two or three years following several other observers recorded the occurrence of similar haematozoa in various fishes. The generic name of Trypanosoma was conferred by Gruby in 1843 upon the wellknown parasite of frogs. E. Ray Lankester (18) subsequently described this same form (under the name of Unduline ranerum)

(Procs Lackesta,)
Fig. \(1^{2}\) Unduline ranarum. Lankester, 1871. In B the nuclews is ahown.
and was the first to indicate the presence of a nucleus in the cell-body. To Mitrophanow (1883-1884) and Danilewsky (\(1885-1889\)) we owe the first serious attempts to study the comparative anatomy of these haematozos. Trypanosomes were first met with in cases of disease by Griffith Evans, who in 1880 found them in tbe hlood of horses suffering from surra in India. In 1894 (Sir) David Bruce discovered the celebrated South African parasite (\(T\). bruces) in cattle and horses haid low with nagana or the tsetse-fly disease; and this worker subsequenthy demonstrated, in a brilliant manner, the essential part played by the isetse-fy in transmitting tbe parasites. The credit for first recognizing 2 trypanosome in buman blood, and describing it as such, must undoubtedly be assigned to G. Nepveu (1898). Trypanosomes were nert seen in human blood

ITrypanophis, although lacking (so far as is known) a haemal habitat, is included here, since it is undoubtedty closely relared to Trypanoplasme.
'The illustrations in this article are from H. M. Woodock's "Trypanowomen." is the Quarkoly Journal of Micrascopical Sciamel
in Senegambia in rgor, in a European suffering from intermittent fever. Forde discovered the parasites, but was uncertain of their nature; be ahewed them to E. Dutton, who (iI) gave this form the name of Trypanosoma gambiense. A year later A. Castellani (6) found the organisms (most probably the same species) in the cerebro-spinal fluid of patients suffering from sleeping-sickness in Uganda; and it has since been conclusively proved by Sir David Bruce and D. Nabarro (4) that they are the true cause of that dreadful malady.
More important, from the standpoint of protoxoology, than these interesting medical discoveries have been the investigations by A. Laveran and F. Mesnil (\(20-34\)), L. Leger (30-35), S. Prowazek (47), F. Schaudinn (50) and others, upon numerous tolerated (i.e. non-pathogenic) forms; these researches supply, indeed, practically all the material facts on which to base an account of the Hzemoflagellates at the present day.

Trypanosomes are harboured hy members of all the chief classes of vertebrates with the exception of cyclosiomes. By far the greater number of hosts are furnished by acorreaces fashes, birds and mammals. Among batrechians the parasites have been found, up till now, only in frogs; and among reptiles their oceurrence has only been observed in one or two solitary instances (\(T\). damoxioe, fig. 3 J). Data with regard to the frequency with which endividual species occur, in any kind of host, are as yet somewhat scanty; in one or two cages the parasites are fairly common, T. levisi, for example, being met with in a considerable percentage of sewer-rats throughout the world.

In considering the occurrence of Trypanosomes in mammals, careful distinction must be drawin between natural or true hosts, which are tolerant of the parasites, and casual ones, which are unaccustomed and unadapted to them. A Trypanosome usually produces markedly harmful effects upon gaining an entry into animals which have never been, by their distribution, liable to its invasion previously. Such a state of affaiss is produced by the march of civilization into the " hinterlands" of the various colonies, when man, together with the numerous domesticated animals whicb accompany him, is brought into proximity to big game, \&c., and, what is equally important, into the zone of the particular blood-sucking insects which prey upon the same.
Very many of the common domestic mammals can be successfully infected (either thus accidentally or else on purpose) with different "pathogenic" Trypanosomes, to which they succumb more or less readily, but tbey cannot he regarded as the natural hosts of those Trypanosomes. In dealing with disease-causing forms, tbe more narrowly the original source of the parasite concerned is defined, the closer do we get to the true vertebrate host or hosts. In the case of the naganaparasite, various Antiopidae (e.g. the grau, bushbuck and koodoo) can certainly lay a strong claim to the honour. The capybara, again, is most prohably the native bost of \(T\). equinum of mal de caderas of borses in South America. Similarly with regard to the many other pathogenic Trypanosomes now known, there is undoubtedly, in each case, some indisenous wild animal tolerant of that particular form, which serves is a " latent source of supply " to strange mammals.
The tranamission of the parasites from one vertebrate individual to another is effected, in the great majority of cases, \({ }^{1}\)

\section*{7 Ther} Anporegt Abricalion by a blood-sucking invertebrate, and by this means aranets blooded vertebrates is, in all instances so far detera: in thenbed, an insect, generally a meraber of the Dipin the case of parasites of cold-blooded vertebrates the same rote is usually played by an icbtbyobdellid leecb (piscine Lorms), but posalbly, now and again, by an Ixodes (amphibian or reptilian forms).

Until lately it remained quite uncertain, however, whether the invertebrate merely conveys the Trypanosomes or whether
1 Trpperosome equiperdam, the cause of dourine in horses and ase, is apparently only conveyed by the act of coitus. This direct mode of tranmistion is most likely a eecondary acquirement.
it is a true alternate host, one i.e. in which definite stages of the parasite's life-cycle are undergone. Schaudinn (50), who investigated certain avian Trypanosomes, considered the latter view to be correct, and believed that the carrier-in this instance a gnat - is indeed the definitive host, ic. the one in which sexual conjugation occurs. Miny other workers have since studied the aubject and, so far as the parasites of fishes are concerned, there can be little doubt, thanks to the researches of E. Brumpt (5 a), L. Leger \((32,33\)) and others, that leeches are true alternate hosts for these forms, in which certain phases of the life-cycle are normally undergone.

We cannot write quite so confidently with regard to the relation of the various pathogenic Trypanosomes to Tsetseflies (Clossizac). In the first place experiment has shown that biting-fies, other in all probability than the true, natural hosts, may at times transmit the parasites-as it wereaccidentally, if, after foeding on an infected animal, they are allowed to hite a fresh one within a limited time. One very helpful factor in determining which is the principal carrier of any form is the coincidence of the zone of a particular insect with that of any disease. By this means it has been ascertained with practical certainty that, among the family of Tsetseflies (Closrinac) for instance, at least four species are the natural carriers of different Trypanosomes. Of these perhaps the best-known is \(G\). palpalis, of Equatorial Aírica, whose bite transmits the human parasite (\(T\). gambiense). Nevertheless, the fact, commented upon by several observers, that even here an tufocted fly is only tnfoctious for a comparatively short period suggests that this species of fly, at any rate, is not the tree alternate host in which the life-cycle of that particular Trypanosome is completed. However, indications furnished by Koch (\(16 a\)) point in this connerion to G. fusca. Lastly, before leaving this interesting and important subject, F. Stahlmann's work (540) on developmental phases of \(T\). brucii, the nagana parasite in G. fusca and G. tachinoides, does render it probable that the pathogenic forms also have true invertebrate hosts.

Schaudinn had fully described the relations of certain avian Trypanosomes to their invertebrate host, Culex piptens (females). The distribution of the perasites in the gnat is colosely mamed, connected with the process of digestion. The Try- mandean panosomes ultimately overrun practically all parts Hect of the body, sometimes not even the ove escaping. Thus true hereditary infection of a succeeting generation of gnats may be brought about. The life of the parasites while in the insect is characterised by an alternation of active periods, during which multiplication goes on, with resting-periods, when the Trypanosomes become attached to the epithelinal cells of the host. According to S. Prowazek (47), the behsviour of T. lewisi in a louse (Hocmatopinus) is, in its main features, similar.

On gaining an entry into the blood of a vertebrate the organisms pass rapidly into the general circulation, and are thus carried all over. Considering them first in a tolerant host, the tread of observation is to ahow that they are never aboundant, but on the contrary nuanlly somewhat scarce. One reason for this scarcity is to be sought in connexion with the fect that multiplicative stages are very rarely met witb, at any rate in the general circulation. The parasites are frequently more numerous in the spleen, bone-marrow, kidneys, \&c., than elsewhere, and it has been found that multiplication goes on rather more actively in the capillaries of these organs.

The Trypanosomes, in the active phase, are of course always free in the blood plasms (interglobular). In the majority of cases it is very uncertain whether they actually come into relation with the blood corpuscles or not. Schaudinn has stated, however, that Trypanowerpha becomes, in certain phases, attached to a red biood-corpuscle (ectoglobular), and, in others, penetrates inside one and eventually destroys it (endoglobular); while his other avian parasite, Trypanosoma siemanni, apparently draws up into itself the white corpuscle (leucocyte) to which it becomes attached. In addition. there are two or three
chervizions to hand which shete that piscine, amphibian and mammalian Trypanosomes may also become attached. Probably most forms pussess a resting, altached phase at some period or other, in the invertebrate, if not in the vertcbrate host.
Considering now the Trypanosomes in an unaccustomed, mammaiian host, they may either remain infrequent or rare (sometimes, indeed, being unnoticed until shorly before death), or, on the other hand, they may soon become numerous and go on inctasing (fig. 2), In the latter case the discase is acute

(Nier Dookis.)
Fig. 2.-Trypanosoma cquiperdum (of dourine), in the blood of a rat eight days after inoculation.
a, Farasites.
b, Blood-corpuscles. and rapidly fatal; in the former it is more chronic and lasts much longer, often several months. The main features of trypanosomosis, or illness caused by a Trypanosome, show a general agreement, whichever varicty is considered; one symptorn may be, of course, more marked than another in any particular case. Death is due either to weakness and emaciation (in chronic cases), or 10 blocking of the cercbral capillaries by the parasites (where these ate abundant), or to dis. organization of the nervous system (paraplegic and slecping. sickness cascs).
In post-mortem examination, the most obvious pathological lesion is hypertrophy of the spleen, which may be very pronounced; the lymphatic glands in the neck, inguinal region, \&c., are also often greatly swollen. These are undoubtedly the organs which react most strongly to the parasites, and their enlarged condition is to a great extent duc to their cnhanced activity in elaborating blood-corpuscles and leucocytes to cope with the enemy. Ingestion and dissolution of the Trypanosomes by phagocytes has frequently been observed; and it is probable also that the haematopoietic organs secrete some substance which exerts a harmful action on the parasites, and causes them to undergo involution and assume weird-looking " amocboid" and "plasmodial" forms.
A peculiar feature in the behaviour of the parasites, which is most probably caused by unfavourable biological conditions Agfomere in the host, is that known as agglomeration. The tha. process is readily brought about artificially by the addition of sera or chemical solutions to blood containing the parasites. Agglomeration consists in the grouping or union together of several Tripanosomes around a common centre; this leads to the formation of rosctte-like clusters, or even of large masses composed of several rasettes. The end by which the parasites join is typically; in the case of Trypunosoms, the non-flagellate (anterior) end. If a favourable change in the surtounding medium sets in, the Trypanosomes are able to undergo the reverse process, namely disagglomeration; the parasites liberate thernselves and the rosette is dissolved.
Trypanosomes vary greatly with regard to size; even in one and the same species this variation is of tea noticeable, cspectially under morphotog. different conditions of life. The common Tirspunosome Il potolorimm of frogs (fig. 4. A and B) is, taking it all in all. one of the largest farms so far described. Its length (inclusive of the flagellumi) varies from \(40-60\), while its greatest width (including the undulating-membrane) is from \(8-30 \mu\); in the very side individuals lreadth is gained more or less at the expense of fength. Conversely. T. gambiense, the human parasile (fig. 3 C). is one of the smallest lorms known, its average size being about \(21-23\) m by \(11-2\) ?
There is equally great divently in respect of lom. Typically, the body is elongnted apd spiadthehaped; it is usually more or less
carved or falciform (f) \(\mathrm{S}-\mathrm{D}\)) and rends to be slightly compressed curved or falcilorm (\(-3, \mathrm{~S}-\mathrm{D}\)), and rends to be slightly compresced
laterally. It may

the avian Tryparosomes, where perhaps, the extremes of form are to be met with. That one and the sume species may appear entirely different in different phases of the life-history is manifest on comparing, for instance, the chicf "forms" of Trypcnosomet

Fig. 3.-Representative Mammalian, Avian and Reptilian Trypanosomes, to illustrate the chied morphological characters.
A. Trypinosoma lewisi, after Bradt. and Dlimmer.

13, T. brucei, after Lav, and Mesnil.
C. T. gambiense (blood, T.fever), after Bruce and Nabarro.
D. T. equinum, after Lav. and Mesnil.
E. Trypanomorpha (Typpamasoma) norfuce, after Schaud.

E, Trypanosoma axium, after Lav. and Mesnit.
G. Hanna's Trypanosome from Indian pigeons.
H. T. zicmanmi, alter Schaud.

J, T. domonia, after Lav, and Mesnil.
C.g. Chromatoid grains; \(c\), vacuole; \(2 . s\), foid or striation.
siemanni described by Schsudinn. The asexual or indifferent type (fige. 3. H) is extremely thread-like, greanly resembling, in fact, a Spirochaete; on the other hand, both male and female individuals have the form of a very wide spindle.
In Trypanoplosma and Trypanophis there are two flagella, inserted into the body very close to the anterior end (fig. 4, F and C.). One flagellum is entirely free and directed formards; the other at once turns backwards and is atiached to the convex or dorsal side of the body for the greater part of its length. In all other Trypanosomes there is only one flagellum, which is invariably arzacherl to the body in the same manner as the posterior one of biflagellate forms. This flagellum, however, is most probably not to te considered homologous in all cases. (See Woodrock, lor, cit.)

In Trypanomorpha (fig. 3, E), which is in be derived from a Ilerpetomonadine type, the single, anterior flagellum of the ancestral parasite has been drawn hackwards along one side of the body and now oripinates in the posectior hall. Hence in this genus the end bearing the free part of the flagellum is the anterior one. The genus Trypunosoma, in which are included at present the great majorisy of Trpanosomes, is rather to be regarded as derived trom a Heteromastigine ancestor, such as Trypanopiesma, by the loss of the antcrior flagellum. Hence in this type the single flagellum represents the posteriorly-directed nme of Tryponoplasmu, and the end at which it becomes free is the hinder end. The point of arisin of the flagellum in Trypanosoma is usually near the anterior end. but may vary considerably (cl. figs.) : and its free portion mas; be very short or lacking-
Along the dowal side runs the characteristic finalike expansion of the borly, the undulating-membrane, which is the organells principally concermed in locomotion. This aluays begins at the place where the attached flagellum emerges from the body; and its ince edge is really constituted by the latter. which forms a flagellar border. The membrane is usualil more or less sinuous in ousline. and is sometimes thrown into hroad foids (fig. 3, F and J). Distally it thins away concurrently with the body:

The body appears to be in all cases naked. A differentiation of the peripheral cytoplasm in the form of an ectoplasmic layer has Mioute been described in one or twn instances, and it secms sirnoture probable that in most Trypanosomes there is such a the bodv generally. On the other hand, the undulating-membrane is langely if not entirely an ectoplasmic development. This is usually much clearer and more hyaline than the gencral cytoplasm. In many lorms decp-staining grains or granules, of a chromatoid nature and of varving size, are to be scen in the eytoplasm. In

Fig. 4.-Representative Amphibian and Piscine Trypanosomes.
A.B, Trypannsoma rotatorium, after Lav, and MesniL

C, T. inopinatum, aleer Serg.
D, T. karyozeukton, after Dute. and Todd
E, T. nelspruitense, after Lav, and Mesnil.
F,G. Trypanoplasma borreli (living and stained), after Lefer. H. T. eyprini, after Plehn.

Trypanosoma solece, after Lav. and Mesnil.
K. T. granulosum, after Lav. and Mesnil.

L, T. remaki, var. maqna, after Lav. and Mesnil.
\&. Clear zone or halo around kinetonucleus.
- Chain of chromatic rodets running from trophonucleus to kine:onucleus.
a.f. Anterior flagellum;
pf. Posterior flageclam:
1.s, Longitudinal striations nemes):
p. Cysophasmic vacurlo.
only is there an intimate correspondence in this respect between the two principal organcllae, but the flagellar apparstus itsc-ll is really of nuclear origin and remains closely connected with the kinefonucleus (cf. fig. 7). In most eases, however, little beyond the position and general appearance of the nuclei has been so far made known. The trophonucleus is usually situated somewhere about the middte of the body. The kinetonucleus is typically near the anterior end; but in a fow instances it lies more centrally (e.g. T. inopivatum, T. rotatorium. fer. \(4, \mathrm{~A}-\mathrm{C}\)) ; in Trypanomorpha it is in the posterior half of the body (fig. 3. E).

In certain forms the occurrence of prominent myo nemes or muscle-fibrillae has been described, and. moreover, a nuclear origin assigned to them also. In Trypanomorpha they are confined to the undulating-membrane (fig. 3. E), but in other cases-Tryjanosoma ziemianni, T. Vuiss, \(T_{\text {. bricci, and } T \text {. soleae-they are arranged }}\) laterally, hall running down each side of the body (fos 4. J). In Trypanoplasma borreli there is only a single inyoneme on cither side.
All Trypanosomes are capable of binary loncitudinal fission, and this appears to be the chief method of mutciplication. The division of the nuclear apparatus is the first to take place (fig. 5, A). The Mobtiplicae kinetonucleus more often leads the way. but Uoa.
sometimes either kinetonucleus of trophonucleus may do so indifferently: The duplication of the flagellum begins at its proximal end, that which is in relation with the kinctonucleus. Until recently the process has been considered as an actual longitudinal splitting of the flagellum, following upon the scparation of the two daughter-kinctonuclei. Both Schaudinn (in the case of Trypanomorpha) and Prowazek (in the ease of Trypanosoma lessisi and T. brucei), have found, however, that the new flage llum is developed quite independently and laid down alongside the old one. It is at present somewhat uncertain, therefore, in what esses actual splitting occurs. The same applies equaily to the formation of the undulatingermembrane. If the flagellar border splits, the memurane doubtiess divides also; but where the flagellum is a new formation the membrane will be too. The division of the cytoplasm in most forms is equal or sub-equal, and two approximat ely equal daughecr-Trypanosomes result (fig. 5, C). In some instances (r.g. T. equinsm, T. equiperdum) the longitudinal fission is apparemly multiple, three or even four descen. dants being produced simultancously.

(After Lav, and Stesnil.)
Fig. 5.-Stages in Binary Longitudinal Fission of Trypanosoma bruces
T. lewisi differs frum most Trypanosomes in that the creplasm divides in a very unequal manner (fig 6). The process is more comparable to budding. since the larger or parent-individual may produce. successively, more than one "daughter", moreover, the daughter-individuals may subdivide lefore separating, the whote family remainype of division it may be noted that the kinctonucleus In this type of division it may be noted that the kinctonucleus comes to ic at (i.e. nearer the flagehar end) Easily derivable from other side of it (i.e. nearer the flagenar end Easily derivabic from mentation. The chief difference is that in the latter no pareniindividual is distinguishable, a rosette of many equal daughterparasites being formed.

The small Trypanosomes resulting from rither of these modes of division differ from typical adults by their stumpy, pyriform shape, the position of the kinetonucleus near the flagellar end of the body. and the absence, during the first part of their youth. of an undulating-membrane. At this period they have, in fact, what may be termed a "pscudo-Iterpetomonadine " aspect. These yousi individuals can themselves multiply by equal binary fission, giviug
rise to little fusiform parsisites; with growth, these gradually assume the adult appearance.

Comprehensive researches (1905, seq.) have made it evident that Trypanosomes have a much more varied and complex develop-Develop- ment and life-history than was previously supposed. mentand This has now been found to be the case in widely-Lilie-cycle. differing parasites, occurring in widely-differeat hosts. The following examples have been investigated Trypanosoma lewisi (also, but much less completely, T. brucei), amons mammalian forms, described by Prowazek (47); T. ziemanni and Trypanomorpha noctuac, among avian parasites, described by Schaudisn (50): Trypanosoma inopinatum, among batrachian forms, described by A. Billet (1a and 2), T. barbatulae and Trypanoplasma varium, described by Léger (32 and 33), and T. borrefi, by

(A-E., after Lav, and Mesmil: F, alter Wasid and Senne
Fig. 6.-Unequal Division and "Budding "process in T. Iewisi. m, Parent-individual; d, Daughter-individual; \({ }^{\prime \prime}\), Daughter. individual dividing.
G. Keysselitz (16), from fishes; also several other piscine Trypanosomes have their development phases in lecches worked on by Brumpt (5a). In addition, a Trypanosome whose vertebrate host is yet unknown (\(T\). zrayi) has been studied in detail by Minchin (4ia).
It is impracticable here to consider fully all the various developmental phases and modifications of the life-cycle deseribed as occurring in the above parasites. In view, however, of the great interest excited by Schaudinn's work on avian parasites, as well as on account of the (ar-reaching importance of his conclusions to the study of the Haematozoa, a briel summary of his celebrated rescarch is necessary.

According to Schaudinn's account, he was dealing with two separate Trypanosome parasites of the Little Owl (Athene noctua), viz. Trypanomorpha (Trypanosome) noctuae and Trypanosome (Spirochaede) ziemanni. The latter organism, in certain phases. very closely rescmbles a Spirockaele. In the blood of the owl resting intracellular phases of both parasites alternate with active trypaniform ones; and, when in the former condition, Schaudinn considers that the parasices are identical with what have been formerly regarded as distinct Haemosporidia, Halteridsum and a Leucocytosoom respectively. In other words, he considers that these two Haemosporidian forms are really only phases in the life-history of particular Trypanosomes. To this tife-rycle belongs the formation of sexual individuals and their conjugation on arrival in the gnat (Culex); the process is described as agrecing in the main. in toth cases, with what has already been made known by MacCallum for anorther species of Hoflenitlum. The male gametes, it may be noted, are sid to posecia flie perential characters of a Trypanosome. The motile copula of edtatetormed in the gnat gives
 Stuhlmann (\(5+a\))
rise to one of three types of Trypanosome individual: indifierent. male or fertale. The development of an indifferent ookinete into an indifferent Trypanosome is shown in fig. 7, from which it will be seen that the cytological details are very complex. The indifferent parasites exhibit an alternation of resting, attached phases with active periods, during which they multiply actively and become very abundant in the insect. The male lorms, which are very small and the homologues of the microgametes developed in the blood, appear to die off soon. The female Trypanosomes, on the other hand, grow to a large size, laying up a store of reserve nutriment. They are very sluggish and do not divide. They are the most resistant to unfavourable conditions of environment, and are able, by a process of parthenogenesis, to give rise to ordinary. indifferent forms again, which can repopulate the gnat-
So far as regards the remarkable connexion bet ween Try panosomes and Hasemosporidia indicated by Schaudinn, this has met with a great deal of criticism on the part of Novy and McNeal among others, and it must be admitted that up to 1909 no de finite corroboration can be said to have been brought forward. Again, the spirochaetiform Trypanosomo (T. sumanni) described may have been really a true Spirochocte, i.e. a Bacterium. In short, it is quite passible Schaudinn did not sufficiently distinguish between the life-cycles of four distinct parasites of the Little Owi a Trypanosome, a Spipochaele, a Halleridium and a Leucocytozoom: though, on the other hand, this is by no means proved. However this may be, the research of subsequent workers-e. . Brumpt (53) Leger (32, 33), Keysselitz (t6), Prowazek (47), Minchin (41b) and others-has undoubtedly shown that much of Schaudinn's scheme of the life-history of a Trypanosome is well-founded. It is certain. for instance, that the three types of form which he discovered, viz. indifferent, male or female, can be recognized in many cases, often in the vertebrate, but always more sharply differentiated in the invertebrate. Moreover, it is very probable that conjugation occurs soon after the arrival of the parasites in their specific invernebrate host; and this act may perhaps give rise to an afagellar copula, which is gregariniform, and comparable to an ookinete. Different investigators, it may be noted, have described various

(After Schaudina)
Fig. 7.-Development of an Ookinte (of Ha'feridium) into an indifferent Trypanosome (Teypanomorpha).
A-D shows the formation of the two nuclear clements (trophonurleus and kinctonucleus) from the definitive nucleus (synkaryon) of the oukinete.

E-H shows the formation of the myonemes and the fagellar border (flagellum) of the undulating membranc, by means of a greatl; clongated nuclear-spindle.
l.che. Trophonuclear chromosome.
k.ch; Kinetonuclear do.

Centrosomic granule.
a.s. First axial spindle.
\(a . s^{3}, a, s^{3}\), Second and third do.
t. Trophonurleus

Kinetonucleus.
t.c. Trophonuclear centrosome.
m. Alyonemes.
f.b. Flagellar border of undu: lating-membrane (3rd axial spindle).
e. I Its proximal centrosome (its distal one vanishing as such).
ormplicated auclear chanase and diviaions underpone by Trypapocomes; these are cossidered, in many cases, to represent some kind of parthenogenesis.
\(\boldsymbol{A}\) very interesting modification of the life-cyele of a Trypenosome which muse be mentioned has been made known by Mischin, ia hin account of T. groyi, in a tsetee-ily (G. palpalif). Unlortunately the vertebrate hout of this form is not yet known. Certain individuals of a particular character form definite rounded cysts in the rectum of the fly; in this condition, the only sign of Trypancoorme structure is afforded by the two nuclei, which remalin eeparate. These cysts are doubtless for dispersal by way of the anus, and the vertebrate host is in all likelihood infected by the mouth and alimentary canal. This reveals a quite novel mode by which infection Fith a Trypanosome may be brought about: so far, however, T. grayi remains the only knows example.

As remarked in the section on morphology, the Trypanosomes clacemos as a whole are preferably regarded as including ane two entirely distinct groups, Monadina and Heteromastigia.

\section*{Sub-oider Monadina}

Family: Trypanomorphidae, Woodcock--Haemoflagellates derived Irom a uniflagellate. Herpetomonadine form, in which the point of insertion of the single (anterior) flagellum into the body bas travelled backwards from the anterior end for a greater or leas distance, the flagellum itself having become, concurrently, attached to the body for a portion of ite length by means of an undulatiog membrane.
Genus Trspanomerphla, Woodcock, 1906.-With the characters of the family. The oaly species yet known is the type species, T. noctmer (Celli and San Felice). SSyn. Trypanosoma in. (C. \& S.F.), Schaud. -Halleridivm in. (C. \& S.F.). See fige 3. E, 7. Vertebrate hoot, Alhene mocku, Little Owl; invertebrate bost, Colex pipiens.

There are in addition, other forms, which are paobably to be phoed is this family, but which are not yet sufficiently well known for their systematic position to be gettled. It is, for instance, quite likely that certain Herpetomonadine parasites described by Lefer (39.34) from varioue blood-suleking insects are really only stagen is the life of a Heemoflagellate. Some of these are placed by Leger in a newly dincovered genus, Cribidia.

\section*{Sub-odede Heteromastigiva}

Family: Trypanosomatidae, Doflein.-Flagellates, in the great majority of instances haemal parasites, derived from a biflagellate, Boda-like type, in which the ponteriorty-directed (trailiog) fagellum in always present and attached to the body by an undulatiag membrane, of which it constitutes the thickened edge. The other, the anterior flapellurn, may or may not perisist.
Genus Trypanoplasma, Lav. and Mesail, 1903.-The anterior fingellum is preaent. Both flagelle are inserted clove together, near the anterior end of the body. Two gub-groupe raty be diatirguished. In one, exermplified by T, borrali (fyg. 4. F and G) from the ruod and minnow, the anterior flagellum is well-developed, and the free parts of both are of about equal leagth. In the other, exemplifed by T. cypriwi (fig. 4. H) from casp, the anterior flagellura in much shorter than the free part of the poeterior one, and evidently cending to dismppear. Known invertebrate boets for different epecies are Hemiclepsis and Piscicola, ieeches.

Genus Trypanophis, Keyseelitz, 1904.-The body resembles that of Trypanoplasma in general appearance, but the locomotor apparatus does not a ppear to be to wel-developed, especially in T. grobbeni. The anterior fagellum is longer than the free part of the poterior ore. The species included are not, wo far ati is know, haemal parasites. f. grobbeti occurs in the coelenteric cenity of various Siptsocophora
An interesting form," Trypanoplasma" imbestinalis, which reexmbles both the above genera, occurs in the alimentary canal of Box boops. Probably this is not a haemal parasite, and lacke an Ahernate hoot.
Genus Trpanosoma, Gruby, 1843.- Principal synonyms: Undelina, Lank., 1871 ; Herpelomomas, Kent, 1880, only in part; Peramociovides, Grams, 1885 ; Haemalomonas, Mitrophan, 1883. .) There is mo anterior flagellum. The point of insertion of the attached (poaterior) Gagellum into the body, and, consequently, the commencement of the undulating membrane may be almost anythere in the anterior balf of the body, but is usually near the extemity.
Among the more important and better-known forma are the Collowing:-
Parantic in mammals: T. Inwisi (Kent), the well-known natural Trypanomome of rate (figa. 3, A, 6, A); T. brucii, Plim. and Bradf., the cauee of nagana among cattle, horses. \&e., in South Africa (Gis. 3- B) ; T. wanss; Steel, the cause of surra to horses in IndoBarmah: T. equiperdum, Dof., the cause of dourine in horses in Algeria and of er regions of the Mediterranean littoral; T. equinwm, Yoges, cansing mal de caderas or "hip-paraplegia" in South America (Eg. 3. D); T. theileri, Lav., a very farge form, the cause of

Falriekte or bilesickpes to cattle in the Transual, and \(T\), samp bremen, Dutton (syu. T. Meandense, Castellani, T. costellanit, Kruse), the cause of buman trypanomomosis in central Africa, which becomes deeping-rickness when the organisms penetrate into the cerebrompinal fuid (for 3, C).
Parasitic in birds: 1 , aviem (Danil., Lav. emend.), probably the form to which Danilewsky's original investigations related, parasitic in owis and (according to Novy and McNeal) also in other birds (fig. 3. F); T. jokostomi, Dutt. and Todd, a very spirochaetiform type, from little birds (Estrelda) in Senegambia; and Hanna's peculiar wide species from Indian birds, with a remarkably tapering anterior end (fg. 3, G). Lastly, there is \(T\); siemanni, Lav.; (byn. Spirocheete a (Lav., Schaud," Hocmamoeba " s., Lav, the "Leurocytozoon " of Danil. I, from various owls, and Culex papiens, whose Iffe-history has boen described by Scbaudinn (fig. 3. H). (As above mentioned, this form may not be a true Trypanosome.)
Only one reptilian form is well known. T. damomice, Lav. and Mesn., from a tortoise, Damonia reemesii (fig. 3. J). Parasitic in batrachia: T. roboterium, Mayer (syn. Amoeba r., Mayer, July 1843. T. sangminis, Gruby, November 1843, Undwlina ramarxm, Lank., 1871), the best-known perasite of (rogs, which exhibits remarkahle polymorphism (6g. 4; A and B); \(T\). mefa and \(T\). karyosenklon, Dutt. and Todd, even larger than T. r. (ig. 4, D), with peculiar cytological differentiation, may be only sub-species; \(T\). enopinafum, Sergent, and T. nelsprwilense, Lav., also from froga (ig. 4, C). Parasitic in fishes: T. remaki, Lav. and Mesnil, from pike, a relatively amall form (fig. 4, L): T. barbatuloe, Léger, from loach; T. granulosum, Lav. and Mesnil, a very long vermiform parasite, from eels (Gg; 4, K); T, soleae, Lay, and Mesnil, from soles, with a relatively smull hagellum (fig. 4, J); and T. scyihi and T. rajae, from thome Elnsmobranchs, both very large forma, deacribed by Lav. and Mesnil.

Undoubtedly closely allied to the Haemoflagellates, although no actual trypaniform phase has yet been observed, are the important parasites usually knomn as the "Leish-man-Donovan" bodies, without some consideration of which an scocunt of the Haemoflagellates would Doshmanbardly an acoount of the Haemotigelines would Dogevac found in cortain tropical fevers (ages are constantly Ereston. kala-azar) particularly prevalent throughout Indo-Burma, of which they are generally held to be the cause. They were discovered by W. Leishman in 1900, but before his first account of them (36) was published they were also seen quite indopendently by C. Donovan. Moreover, organisms very similar to these (morphologically, indeed, the two sorts appear scarcely distinguishable) are found in various sores or ulcers (e.g. Delhi boil, Oriental sore, "bouton d'Alep ") to which people in different parts of the East are liable. These were first described by J. H. Wright (58).
The chief distinction between the perasites in the two cases is in their habitat. In the one case they are entirely reatricted to the neighbourthood of the boil or ulcer, whereas in the other there is a general infection of the body, the organisms epreading to all parts and being met with in the ppleen, liver, bone-marrow, ac., and (rarely) in the peripheral circulation. The parasites are either free or intracellutiar. In the latter case they invade cells of a leucocytic or phagocytic character as a rule; Leishman's form is particularly abundant in large macrophageal cells originating from the vascular endothelium of the spleen (fig. 8, I. M).
The parasites themselves are very minute and usually ovoid or pyriform in shape (fig. 8, 3. a), the latter being, perhaps, the moot typical. The splenic type is somewhat smailer than Wright's parasite; the former, when pear-shaped, is from \(3 \frac{1}{2}\) to \(4 \mu\) in tength by \({ }^{1} \mid\) to \(2 \mu\) in width, the tatter being about \(4 \mu\) by \(3 \mu\) (fig. 8, Ill.). The body is probably not limited by any distinct membrane. The cytoplasm is finely granular and fairly unitorm in character. The most interesting point about the morphology is the fact that two chromatic bodies, of wery unequal sire, are almost invariably to be reoognized. The larger nuclear body, which conrcuponda to the trophonucleus of a Trypanosome, is usually round or oval; the cmaller one, representing a kinetonucleus, has the form either of a littie rod or of a round grain, and is generally scparate from the larger nucleus.
The parasites multiply in two way-(a) by hinary fisuion, and (b) by multiple division or eegmentation. The principal Wiges in the frat method are wel! known (fig. 8. 1. b): they offor strong resemblance to the process in Piroplasma. Multiple division has not yet been so satislactorily made out. It appears to conform more or less to the radial or rosette type of multiplication, enlarged rounded parasites, with a varying number of nuclei (up to about eight) uniformly arranged near the periphery, having been often noticed (fig. 8. I. c and IV.b). The details of the process are somewhat differently described, however, by different obwervern.
Laveran and Mesnil (27) gave the name Piropterma dommerai to
and this name in the slightly altered form of Dembea was in use until towards the close of the 19th century. By many Abyssinians the lake is called Tana, but the correct Ambaric form is Tsana.

See Nils and Abyssinia, and the authorities there cited. The British Blue Book, Egypi, No. 2, 1g04, contains a special report (with maps) upon Lake Tsana by Mr C. Dupuis, of the Eyyptian Irrigation Service. In the Boll. soc. geog. iinaluave for December 1908 Captain A. M. Tancredi gives the results (also with mapb) of an Italian expedition to the lake.
(W. E. G.ヶ F. R.C.)

TSAR, or Czar, the title commonly given both abroad and in Russia itself to the sovercign of Russia, whose official style is, bowever, "Emperor and Autocrat" (Imperator i Samoslastilyel). In its origin the word (sar seems to have connoted the same as imperator, being identical with the German Kaiser in its derivation from the Latin Caesar. In the old Slavonic Scriptures the Greek Bacideis is always translated \(/\) sar, and this title was also given to the Roman Emperor. The old Russian title for a sovereign was knyas, prince, or veliky knyas, grand prince. The title tsar was first adopted by the Slavonic peoples settled in the Balkan peninsula, who were in close touch with the Eastern emperor; thus it was used by the medieval Bulgarian kings. It penetrated into Russia as a result of the growing intercourse bet ween old Muscovy and Constantinople, notably of the marriage alliances contracted by Russian princes with the dynasty of Basil the Macedonian; and it was assumed by the Muscovite princes who revolted from the yoke of the Mongols. The other tsars were gradually ousted by those of Moscow, and the modern Russian emperors inherit their title of tsor from Ivan III. (1462-1505), or perhaps rather from his grandson Ivan IV. (\(\mathbf{1 5 3 3}^{-1584}\)) who was solemnly crowned tsar \(\ln 1547\).
Throughout, however, the title fsar was used, as it still is in popular parlance, indifferently of both emperors and kings, being regarded as the equivalent of the Slavonic krol or kral (Russ. koros, Magyar, kirdly), a king, which had been adopted from the name of Charlemagne (Germ. Karl, Lat. Carolus Magnus). This use being equivocal, Peter the Great, at the peace of Nystad (November 2, 1721). assumed the style of imperator, an exotic word intended to symbolize his imperial dignity as the equal of the western emperor. This new style was not, however, recognized by the powers until the time of Catherine 11., and then only on the express understanding that this recognition did not imply any precedency or superiority of the Russian emperor over other sovereigns. Henceforth, whatever popular usage might be, the title tsar was treated officially as the equivalent of that of king. Thus the Russian emperor is tasr (king) of Poland and of eeveral other parts of his dominions. Thus, too, the prince of Bulgaria, on asmming the royal style, took the titie of tsar of BuIparia.
The title " White Tsar, \({ }^{\text { }}\) applied to the Russian emperor and commonly quoted as though it had a poetic or mystic meaning. is a translation of a Mongol word meaning " independent " (cf. the leudal "blaach tenure," i.e. a tenure free from all obligation of personal service).
The wife of the tsar is tsaritsa. In former times the title Nsaresich (king's son) was borne by every son of a tsar: but the word has now fallen out of use. The heir to the throne is known 28 the tsesarevich or cesaresich (g.e.), i.e. son of Caesar. the other Imperial princes bearing the old Ruspian title of veliky knyas (grand dule; q.e.).
TSARIMBYM, a town of Russia, in the government of Saratov, situated on the right hank of the Volga, where it suddenly turns towards the southeast, 40 m . distant from the Don. Pop. (1900), 67,650. Tsaritsyn is the terminus of a railway which begins at Riga and, running south-eastwards, intersects all the main lines which radiate from Moscow to the south. It is also connected by rail with Kalach on the Don, where merchandise from the Sea of Azov is disembarked. Corn from middle Russia for Astrakhan is transferred from the railway to boats at Tsaritsyn; timber and wooden wares from the upper Volga are unloaded bere and sent by rail to Kalach; and fish, salt and fruits sent from Astrakhan by boat up the Volga are here unloaded and despatched by rail to the interior of Russia. The town has grown rapidly since the completion of the railway system, and has a large trade in petroleum from Baku. Tsaritsyn is also the centre of the trade in the mustard of Sarepta, Dubovka and the neighbourhood. The fisheries are important. The buildings of 1t- "wn include
a public library, and the church of St John (end of 16th century), a fine specimen of the architecture of its period. Hera are iron, machinery and brick works, tanneries, distilleries, and factories for jam, mustard and mead. Market gardening is an important industry.
A fort was erected here in the r6th century to prevent the incursions of the free Cossacks and runaway serfs who gathered on the lower Volga, as also the raids of the Kalmucks and Circassians. In 1606 Tsaritsyn took part in the rising in favour of the false Demetrius, and Stenka Razin took tbe town in 1670. The Kalmucks and Circassians of the Kubañ attacked it repeatedly in the 17 th century, so that it had to be fortified by a strong earthen and palisaded wall, traces of which are still visible.
TSARSKOYE SELD, a town of north Russia, in the government of St Petershurg, and an imperial residence, 15 m . by rail south of the capital. Pop. (1885), 15,000; (1897), 22.353. The town stands on the Duderhof Hills and conssts (1) of the town proper, surrounded by villages and a German colony, which are summer resorts for the inhabitants of St Petersburg; and (2) of the imperial parks and palaces. The former is built on a regular plan, and its houses nearly all stand in gardens. The cathedral of St Catherine is a miniature copy of that at Constantinople. The imperial parks and gardens cover 1680 acres; the chief of them is the "old" garden, containint the "old palace," built (1724) by Rastrelli and gorgeously decorated with mother-of-pearl, marbles, amber, lapis lazuli, silver and gold; the gallery of Cameron adorned with fine statues and entrance gates; numerous pavilions and kiosks; and a bronze statue (1900) of the poet Pushkin. A second palace, the Alexander, was built by Catherine II. in 1792, and bas in its park an historical museum and an arsenal.
When Peter the Great took possession of the mouth of the Neva, a Finnish village, Saari-mois, stood on the site now occupied by the town, and its Russified name Sarskeya was changed into Tsarskoye when Peter presented it to bis wifo Catherine. It was especially embellished by the tsarita Elizabeth. Under Catherine II., a town, Sophia, was built close by, but its inhabitants were transferred to Tsarskoye Selo under Alexander I. The railway connecting the town with St Petersburg was the first (1838) to be constructed in Russia.
TSCHAIKOVSKY, PETER ILICH (1840-1893), Russian composer, born at Votkinsk, in the province of Vyatka, on the 7th of May 1840, was the son of a mining engineer, who shortly after the boy's birth removed to St Petershurg to assume the duties of director of the Technological Institue there. While studying in the school of jurisprudence, and later, while holding office in the ministry of justice, Tschajkovsky picked up a smattering of musical knowledge sufficient to qualify him as an adept amateur performer. But the seriousness of his musical aspiration led him to enter the newly founded Conservatorium of St Petersburg under Zaremba, and he was induced by Anton Rubinstein, jts principal, to take up music as a profeasion. He therefore resigned bis post in the ministry of justice. On quitting the Conservatorium he was awarded a silver medal for his thesis, a cantata on Schiller's "Ode to Joy." In 1866 Tschankovsky became practically the first chief of the recently founded Moscow Conservatorium, since Serov, whom he succeeded, never took up his appointment. In Moscow Tschaikovsky met Ostrovskiy, who wrote for him his first operatic lihretio, The Vojevoda. After the Russian Musical Society had rejected a concert overture written at Rubinstein's suggestion, Tschaikovsky in 1866 was much occupied on his Winter Day Dreams, a symphonic poem, which proved a failure in St Petersburg but a success at Moscow. In 1867 he made an unsuccessful debut as conductor. Failure still dogged his steps, for in Jamuary 1869 his Vojczode disappeared off the boards after ten performances, and subsequently Tscharkovsky destroyed the score. The Romes and Juliet overture has been much altered since its production by the Russian Musical Socicty in 1870 , in which year the composer once more attempted unsuccesfully in operatic production,

St Petersburg rejecting his Undine. In 18 tr Trehaliovaky was busy on his cantata for the opening of the exhibition in celebration of the bicentenary of Peter the Great, his opera The Opricchonik, and a textbook of harmony, which latter was adopted by the Moscow Conservatorium authorities. At Moscow in 1873 his incidental music to the Snow Quetn falled, but some success came next year with the beautiful quartet in \(F\). During these years Tachaikovsky was musical critic for two journals, the Sowrmennaye Lietopis and the Russhy Vestmik. On the death of Serov he competed for the best setting of Polovsky's Wakuls the Smilh, and won the first two prizes. Yet on its production at St Petersburg in November 1876 this work gained only a smocds d"ertime. Since then it has been much nevised, and is now known as The Litlle Shoes. Meanwhile the Second Symphony and the Tempess fantasia had been heard, and the pianoforte concerto In B flat minor completed. This was first played by von Bulow in Boston, Massechusetts, somé time later, and was entirely revised and republished in 1889. At last something like success came to Techatiovaky with the production of The Oprisckwih, in which be had incorporated mesh of the best of The Vojevodo. The Third-or PolishSymphony, four sets of songs, the E-fiat quartet (dedicated to the memory of Lamb), the ballet "The Swan Lake," and the "Francesca da Rimini" fantasia, all belong to the period of the late 'seventies-the last being made up of operatic fragments. Trchaylovsky in 1877 first began to work on the opera of Eugew Omegis. With the production of this work at the Moscow Conservatorium In March 1879 real success first came to him. The story, by Pushkin, was a familiar one, and the muaic of Tuchaftovsky was not so extravagant in its dernands as had been the music of his earlier operas.

Meanwhile the more personal tide of the composer's career had been given a romantic touch by his acquaintance with his hifelong benefactress, Mme von Mock, and his deplorable fasco of a marriage. In 1876 he had aroused the interest of Nadezbda Fileretovna von Meck (283i-1894), the wife (left a widow in \(\mathbf{2 8 7 6}\)) of a wealthy railway engineer and contractor. She had a large fortune and she began by helping the composer financially in the shape of commissions for work, but in 1877 this took the more substantial shape of an annual allow. ance of \(f 600\). The romance of their association consisted in the fact that they never met, though they corresponded with one another continually. In 1890 Mme von Meck (who died two months after the composer, of progressive nervous decline), imagining herself-apparently a pure delusion-to be ruined, diacoatinued the allowance; and though Tschaikovsky was then to longer really in need of it, he failed to appreciate the pathological reason underlying Mme von Meck's condition of mind, and was deeply hurt. The wound remained unhealed, and the correspondence broken, though on his death-bed her mase was on his lips. Her connexion with his life was one of is dominating features. His marriage was only a brief and misguided incident. Tschaltovsky married Antonina Ivanovna Milyukova on the 6th of July 1877, but the marriage rapidly developed into a catasttophe, through no fault of bers but cinuply through his own abnormality of temperament; and it realked in separation In October. He had become taciturn to morosenesw, and finally quitted Moscow and his friends for St Petersburg. There be fell ill, and an attempt to commit micide by standing chin-high in the river in a frost (whereby be hoped to catch his death from erposure) was only frustrated by his brother's tender care.
With his brother, Tschatrovsizy went to Clerens to recuperate. He remaioed abroad for many months, moving reatlessly from one place to another. In 1878 he accepted (but later resigned) the post of director of the Russian musical department at the Paris Exhibition, completed his Fourth Symphony and the Italian Capriccio, and worked hard at his "18:2" overture, more songs, the second pianoforte concerto, and his "Liturgy of \(5 t\) Chrysostom," an Interesting contribution to the music of the Eastern Church. The work was confiscated for some time by the intendant of the imperial chapel, on the ground that it
had not received the imprimatur of his predeceseor Bortninnaky In due accordance with a ukaz of Alexander I. Bortnisnsky was dead, but his suocessor was obstinate. Finally the work was ased from destruction by an official order. Tschankovsky returaed only for a short time to Moscow. Thence he went to Paris. In 1879 he wrote his Maid of Orleans (produced in 1880) and his first suite for orcbestra. In 1881 died Nicholas Rubinstein-to whose memory Techankovsky dedicated the trio in A minor. During the next five years Tschadkovsky travelled, and worked at Manfred and Hamlet, the operas Maseppa and Charodolka, the Mozartian suite and the fine Fifth Symphony. During a great part of the time he lived in retirement at Klin, where his generosity to the poor made him beloved. His operas The Queen of Spades and the one-act Iolandhe were feeble by compacison with his earlier works; more effective, however, were the ballets Sleeping Beauly and Casse-moisetle. In 1893 Trehallovsky sketched his Sixth Symphony, now known as the Pathelic, a work that has done more for his fame in foreign lands than all the rest of his works. This was the year in which the composer conducted a work of his own at Cambridge on the occasion of his recelving the honorary degree of Doctor of Music. In the same year, on the 6th of November, he died from an attack of cholera at St Petersburg.
Tscharkovsky's work is unequal. In dramatic compositions be lacked point precisely as Anton Rubinstein lacked point. But in the Invention of broad, sweeping melody Tschalkovsky was far ahead of his compatriot. Among his songs and smaller pianoforte works, as in his symphonies and quartets, are passages of exquisite beauty. The best of Tscharlovsky's work is more distinctly Russian than that of most of his compatriots; it is not German music in disguise, as is so much of the music by Rubinstein and Glazounow, and it is not incoherently ferocious, Hike so much of the music by Balakirev.
See Mrs Rosa Newmareb's Tchaikopsky (1900) supplemented in 1906 by her condensed English edition of the Life end Letters, which appeared in Russian in 1901 in three volumes, edited by Modeste Tuchaikoviky, the composer's brocher.
TSCRUDI, or Schooy, the anme of one of the most distinguished families of the land of Glarus, Switzerland. It can be traced back as a peesant, not a noble, race to \(\mathbf{1 2 8 9}\), while after Glarus joined the Swiss Confederation in 1352 vanous members of the family held high political offices at homo, and were distinguished abroad as soldiers and in other ways.

In literature, its most eminent member was Giles or Aegidius Tschude (\(\mathbf{1 5 0 5}^{-1572 \text {), who, after having served his native land }}\) In various offices, in 1558 became the chief magistrate or landammawn, and in 1559 was ennobled by the emperor Ferdinand, to whom he had been sent as ambassador. Originally inclined to moderation, he became later in life more and more devoted to the cause of the counter-Reformation. It is, however, as the historian of the Swiss Confederation that he is best known; by incessant wanderings and unwearied researches amongst original documents he collected material for three great works, which therefore can never wholly lose their value, though his researches have been largely corrected by those of more recent students. In 1538 his book on Rhaetia, written in 2528, was published in Latin and in German-De prisce ac serc Alpina Rhaetia, or Die wrall wahrhaffig Alpisch Rhdilia. The historical reputation of Giles Tschudi has suffered very much owing to recent researches. His inventions as to the early history of the Swiss Confederation are described under Tell. His statements and documents relating to Roman times and the early history of Glarus and his own family bad long roused suspicion. Detailed examination of late years has proved beyond the shadow of a doubt that he not merely claimed to have copied Roman inscriptions that never existed, and amended others in a most arbitrary fashion, but that he deliberately forged a number of documents with a view to pushing back the origin of his family to the roth century, thus also entirely misrepresenting the carly history of Clarus, which is that of a democratic community, and not (as he pretended) that of a preserve of severai aristocratic families. Tschudi's historical credit is thus hopelessly ruined, and no

\section*{TSĒNG KUO-FAN-TSETSE-FLY}
document printed or historical statement made by him can henceforward be accepted without careful verification and examination. These discoveries have a painful interest and importance, since down to the latter part of the 19 th century Swiss historical writers had largely based their works on his investigations and manuscripts.
For a summary of these discoveries see G. v. Wyss in the Jahrbuch of the Historical Society of Clarus (8895), vol. xxx., in No. 1 (1894), of the Anzejger f. schweizerische Geschichte, and in his Geschichte d. Historiographie in d. Schweiz (1895), pp. 196, 201, 202. The original articles by Vogelin (Roman inscriptions) appeared in vols. xi., xiv. and xv. (t886-1890) of the Jahrbuch f. schzeizer Gesthichte, and that by Schulte (Glarus) in vol. xviii. (i893) of the same periodical. For the defence, see a weak pamphlet, Sikulle u. Tschudi (Coire, 1898), by P. C. v. Planta.

Tschudi's chief works were not published until long after his death. The Beschreibung Galliae Comatae appeared under Gallati's editorship in \(\mathbf{7 7 5 8}\), and is maioly devoted to a topographical, historical and ansiquarian description of ancient Helvetia and Rhaetia, the latter part being his early work on Rhaetia revised and greatly enlarged. This book was designed practically as an introduction to his magnum opus, the Chronsicon helveticum, part of which (Irom 1001 to 1470) was published by J. R. Iselin in two stately folios (\(1734-1736\)) ; the rest consists only of rough materials. There exist two rather antiquated biographies of Tschudi by 1. Fuchs (2 vols., St Gall. 1805) and C. Vogel (Zärich, 1856), but his extensive complete correspondence has not yet been printed.

Subjoined is a list of other prominent members of the family. Docmanc (\(1596-1654\)) was abbot of Muri and wrote a painstaking work, Origo et genealogia gloriosissimorum comilum de Habsburg (1651). JOSEPH, a Benedictine monk at Einsiedeln, wrote a useful history of his abbey (\(\mathrm{IS}_{23}\)). The family, which became divided in teligious matters at the Reformation, also includes several Protestant ministers: John Henzy (i670-1729), who wrote Besclarcibung des Lands Glarus (1714); John Thomas (\(1714-1788\)), who left behind him several eiaborate MSS. on the local history of Glarus; and John James (1722-1784), who compiled an elaborate family history from 900 to 1500 , and an account of other Glarus families. John Louis Baptist (d. 1784), who settled in Metz and conlributed to the Encyelopedie, and Frederice (1820-1886), the author of Das Thierleben der Alpenwell (\(188_{53}\)), were distinguished naturalists. Among the soldiers may be mentioned Christopher (1571-1629), a knight of Malta and an excellent linguist, who served in the French and Spanish armies; while the brothers Louss Leonard (\(1700-1779\)) and Joseph Antiony (\(1703-1770\)) were in the Neapolitan scrvice. Valentine (\(1499^{-1555}\)), the cousin of Giles, was, like the latter, a pupil of Zwingli, whom he afterwards succeeded as pastor of Giarus, and by his moderation gained so much influence that during the thirty years of his ministry his services wrre attended alike by Romanists and Protestants. The best-known member of the family in the roth century was Iwan (\(1816-1887\)), author of an excellent guide-book to Switzerland, which appeared first (1855) under the name of Schrocizerfuhrer, but is best known under the title (given in 1872 to an entirely recast edition) of Der Tourist in der Schweis.
(W. A. B. C.)

T8ENG KUO-FAN (\(1811-1872\)), Chinese statesman and general, wes born in 18 r 1 in the province of Hunan, where he took in sucression the three degrees of Chinese schoiarship. In 1843 he was appointed chief literary examiner in the province of Seechuen, and six years later was made junior vice-president of the board of rites. When holding the office of military examiner (t 8 5 1) he was compelled by the death of his mother to setire to his native district for the regulation mourning. At this time the Taiping rebels were overrunning Hunan in their conquering career, and had possessed themselves of the cities and strongholds on both shores of the Yangtse-kiang. By a special decree Tseng was ordered to assist the governor of the province in raising a volunteer force, and on hts own initiative he built a ficet of war junks, with which he attacked the rebels. In his first engagement he was detested, but, happily for him, his lieutenanis were more successful. They recovered the capital, Chang-sha, and destroyed the rebel fleet. Following up these victories of his subordinates, Teing recaptured Wuchang and Hapyang, near Harkow, and was rewt
by being appointed vice-president of the board of war, In 1853 other triumphs led to his being made a baturu (a Manchu order for rewarding military prowess), and to his being decorated with a yellow riding-jacket. Meanwhile, in his absence, the rebels retook Wuchang and burnt the protecting fleet. The tide quickly turned, however, and Tsang succeeded in clearing the country round the Poyang lake, and subsequently in ridding the province of Kiangsu of the enemy. His father died in 1857 , and after a brief mourning he was ordered to take supreme command in Cheh-kiang, and to co-operate with the governor of Fukien in the defence of tbat province. Subsequently the rebels were driven west wards, and Tsēng would have started in pursuit had he not been called on to clear the province of Ngan-hui of rebel bands. In 1860 he was appointed viceroy of the two Kiang provinces and Imperial war commissioner. At this time, and for some time previously, he had been fortunate in having the active support of Tso Tsung-t'ang, who at a later period recovered Kashgar for the emperor, and of Li Hung-Chang. Like all true leaders of men, he knew bow to reward good service, and when occasion offered he appointed the former to the governorsbip of Cheh-kiant and the latier to that of Kiangsu. In 2862 he was appointed assistant grand secretary of state. At this time the Imperial forces, assisted by the "Ever-victorious Army," had checked the progress of the rebellion, and Tseng was able to carry out a scheme which he had long formulated of besieging Nanking. the rebel headquarters. While Gordon, with the help of Li Hung-Chang, was ciearing the cities on the lower waters of the Yangtse-kiang, Tačng drew closer his besieging lines around the doomed city. In July 1864 the city fell into his hands, and he was rewarded with the rank and title of marquis and the right to wear the double-eyed peacock's feather. After the suppression of the Taipings the Nienfei rebellion, closely related to the former movement, broke out in Shantung, and Tseng was sent to quell it. Success did not, however, always attend him on this ca mpaign, and by Imperial order he was relieved of his command by Li Hung-Chang, who in the same way succeeded him in the viceroyalty of Chihli, where, after the massacre of Tientsin (1870), Tsing failed to carry out the wishes of his Imperial master. After this rebuff he retired to his viceroyalty at Nanking, where he died in 1872.
Tseng was a voluminous writer. His papers addressed to the throne and his literary disquisitions are held in high esteern by the scholars of China, who treasure as a memorial of a great and uncorrupt statesman the edition of his collected works in 156 books, which was cdited by Li Hung.Chang in 1876.
(R. K. D.)

TSETSE-FLY (Tsedse, an English rendering of the Bantu nsi-nsi, a fly), a name applied indiscriminately to any one of the eight species of Clossina, a genus of African blood-sucking Diptera (two-winged flies, see Diptera), of the family Muscidae. Tsetse-fies are of great economic and pathological importance as the disseminators of tselse-fily disease (nagana) and sleeping sickness. These maladies ane caused by minute uniceilula animal parasites (haemalozoa) of the genus Trypanasoma (see Taypanosomes); and recent investigations have shown that, under normal conditions, the particular species of Trypazosome concerned (\(T\). brucci, in the case of nagana, and \(T\), gambiense in that of slecping sickness) are introduced into the blood of susceptible animals or man only by the bile of one or otber of the species of tsetse. (See Parasitic Diseases). The names of the recognized species of tsetsc-fies are as follows: Glossine palpalis (see fig.); G. pollicera; G. morsilans; G. lachinoides; G. pallidipes; G. longipalpis; G. fusca; and G. Iongipennis. A ninth so-called species, described in 1905 from specimens from Angola, is not really distinct from \(G\). palpolis but appears to be identical with the sub-species G. palpolis wollmani.

In appearance tsetse are somewhat narrow bodied flics, with a prominenl proboscis, which projects horizontally in front of the head, and with the wings in the resting position clowed hat one over the other like the blades of a pair of scissors (see fig, B). The later characteristic affords an infalible means for the recognitios of these insects. since it at once serves 10 distinguish them from any blood-sucking flies with which they might otherwise be confused. The coforation of tectse-flies la sombre and inconspicuous; the brownish
or greyish-brown thorax usually exhlbits darker longitudinal merkings, and when the insect is at rest the abdomen or hinder hall of the body is entirely concealed by the brownish wingo. In come species the abdomen is of a paler colour and marked with sharply defned, dark brown bands. which are interrupted on the middle line. The length of the body, exciusive of the proboscis, which mesures about a lino to a line and a half, varies acoording to the precies from 6 or 8 millimetres in the cant of \(G\). tachiwetdes, to about is millimetres in that of C. fuste or longigennis: the clooed

As in thle asotwefies are most active during the warmer boure of the day, but they frequently bite at night, especially by moonlight. The bfood-sucking habit is common to both sexes, and the abdomen being capable of great expansion, is adapted for the periodical ingestion of an abundant lood-supply. The act of feeding, in which the prolloscis is buried in the skin of the victim nearly up to the bulb, is remarkably quick, and in thirty aeconds or less the abdomen of the fly, previously fint, becomes swollen out with blood iike a berry. Stuhlmann's experiments with \(G\). fusca show that the insect is able to ingest considerably more than fometimet more than twioe) ite own weight of biood, which would appear to be the only Iood, and must be drawn from the tissues of a victim. Specimens of C. fusca, even though fasting and kept for days in absolutely dry air, could never be induced to imbibe water, sugar-cane juice or extra vasated blood. The reproduction of tsetse-flies is highly remarkable; instend of iaying eges or being ovovivi parous the females deposit at intervals of about a fortnight or three wecks a single full-grown larva, which forth with buries itseif in the ground to a depth of several centimetres, and assumes the pupal state. The practical importance of this peculiar life-history is very great, since larvae thus protected cannot easily be destroyed. It is important to note that although sleeping sickness (of which the chicf foci are at present the Congo Free Scate and Upanda) has hitherto been aspociated with one particuiar species of Clossina, it has been shown experimentally both that other tsetse-flics are abie to transmit the parasite of the disease, and that G. palpalis can convey kindred parasited which are fatal to dormestic enimale Since. moreover, it is believed that at least five speciea of Glossing are carricrs of nagana, it may well be that all tsetse-flies can disseminate both nagana and sleeping sickness.
Tsili, Tchwi, Chr, or Ofr, a group of Negro peoples of the Gold Coast (q.u.). The chief of these are the Ashanti, Fanti, Akim and Aquapem. Their common language is the Tshi, from which they gain their family name.

TBU-SHIMA (" the island of the port "), an island belonging to Japan, situated about midway between Korea and the island of Iki, so that the two islands were used as places of call in former times by vessels plying between Japan and Korea. Tsu-shima lies about \(34^{\circ} 20^{\prime} \mathrm{N} ., 129^{\circ} 20^{\prime} \mathrm{E}\). The nearest point of the Koncan coast is 48 m . distant. It has an area of \(\mathbf{2 6 2} \mathrm{sq} . \mathrm{m}\). and a population of 39,000 . It is divided at the waist by a deep sound (Asaji-ura), and the soutbern section has two hills, Yatachi-yama and Shira-dake, 2130 ft . and 1680 ft . high respectively, while the northern section has Ibeshi-yama and Mi-take, whose heights are 1128 ft . and 1598 ft . The chief town is Izu-hara. The Mongol armada visited the island in the 13th century and committed great depredations. In 186n ari attempt was made by Russia to obtain a footing on the island. The name of the battle of Tsu-shima is given to the great naval engagement of the 27th and 28th of May 1905, in which the Russian fleet under Admiral Roshdeatvenaky was defeated by the Japanese ander Admiral Togo.

TUAI, a market town and episcopal city of Co. Galway, Ireland, 20 m . directly N.N.E. of Galway on the Limerick \& Sligo branch of the Great Southern \& Western raidway. Pop. (1901), 3012. An abhey was founded here towards the end of the sth century, and in the begianing of the 6th an episcopal see by St Jarlath. The Protestant archbishopric of Tuam was lowered to a bishopric on the dealh of Archbishop Power Le Poer Trench in \(\mathbf{1 8} 39\), and united with that of Killala and Achonry. It is, however, a Roman Cathotic arcbbishopric. The Protestant cathedral is also the parish church, and was to a greal extent rebuitt c. 186. from plans by Sir Thomas Deane. Only the chancel of the old church remains, but its red sandstone arch is a remaarkably fine example of Norman work; it dates from the middle of the 12th century. The modern Roman Catholic cathedral is Perpendicular in style and cruciform in plan. The interior is daborately decorated. The cross of Tuam, re-erected in modern times, bears inscriptions in memory of Turlogh O'Conor, king of Ireland, and O'Hoisin, successively (1128) abbot of St Jarlath's Ahbey and archbishop (1152) of Tuam, when the see was raised. St Jarlath's Roman Catholic college, usually called the New College, is a seminary founded in 1814 for the education of priests. To the west are the archbishop's palace and a convent of

Presentation nuns. The town has a considerable retail trade, and is a centre for the disposal of agricultural produce. Tuam received its first charter from James I. Before the union in 1800 it returned two members to the Irish Parliament.
TUAREG, or Tawarek (more properly Tawarik, the collective form of tarki, from Arabic terek, to give up), the name given to the western and central Saharan Berber peoples, in reference possibly to their abandonment of Christianity or their early home in Mauretania. They call themselves Imoshagh (" the noble people "), another form of Amazigh. They inhabit the desert from Tuat to Timbuktu and from Fezzan to Zinder. The Tuareg country covers about \(1,500,000\) sq. m., less than 3000 acres of which are cultivated. There are only some halfdozen commercial places in the whole Sahara to which the Tuareg resort. These are the centres from which the trade routes radiate, Wargla, Timbuktu, Ghat, Ghadames, Murzuk and Insalah.

Tbe Tuareg, at any rate the noble class, are regarded as among the purest of the Berber stocks, but with the adoption of Islam they have become largely Arabized in manners and customs, though the nomad Tuareg preserve in singular purity the Tamashek dialect of the Berber language. Their general colour is the reddish yellow of southern Europeans, the uncovered parts of the body being, however, darker through exposure. Their hair is long, black, and silky, beards black and thin; eyes black, sometimes blue; noses small; hands delicate, but bodies muscular. They are a tall people, the chiefs being especially noted for their powerful build. They dress generally in a black tunic (some tribes wear white), trousers girt with a woollen belt, and wear as turhan a cloth called litham, the end of which is drawn over the face, allowing nothing to be seen but the eyes and the tip of the nose. The purpose of this is to protect the throat and lungs from the sand. These cloths are dark blue or white: the former being worn most by the nobles, the latter by the common people. To this difference of colour is due the terms " black " and "white" Tuareg. The Tuareg seldom remove their masks or face-cloths. Even abroad they wear them, and have been seen so dressed in the streets of Paris. The Arabs call them "People of the Veil."
The Tuareg are divided into five main tribes or confederations of tribes: the Axgar (Asjer) about Ghat and Ghadames; the Kelui around Air: the Hoggar (Ahaggar) in the mountains of that name and in the centre of the Sahara; the A wellimiden in the desert north and east of Timbuktu; and the Arrer Ahnet, a recent offshoot of the Hoggars living in the Adrar'n Ahnet region north-west of the Hoggar massif. Owing to their nomadic life their political organization is not so democratic as that of other Berber peoples: chiefs and the members of the popular assembly are nominally elective; practically, however, the office of chie! is hereditary in a ruling family. On a chief's death the office goes, with the approval of the tribesmen, to the eldest son of his eldest sister, in no case to any of his sons. The Tuareg are nominally Mahommedans, and belong to the Malikite rection of the Sunnites. The Senussite sect, however, has many adberents, but more because of the Tuareg hatred of foreigners than from devoutnese. A very lew perform, by way of Tripoli, the pilgrimage to Mecca. They have not many mosques, and these are merely small stone enclosures a few feet high, with a niche at one end towards Mecca. There are a number of desert monasteries, huge camps pitched in a circle. Here the marabout lives surrounded by his followers, shifting the " monastery" as the requirements of his lacks compel. In these monasteries many Tuareg children receive their education.
Socially the Tuareg are divided into Give classes, viz.: Thapgaren or nobles: Marabouts or priests; Imghod or serfs; Irephenalen or cross-breeds; and the slaves. The nobles are all pure-blooded, and provide the tribal chiefs. They do no manual work, but almost live in the saddle, either convoying those caravans which have paid blackmail for sole passage, or making raids on trade-routes or even outlying Arab settlemento. Before the French occupation they sometimes penetrated into the very heart of Algeria and Tunisia. Among the Imghad serfom is hereditary, and whole tribes are vassals to the nobles. They cannot be sold or freed like slaves, though they may be inherited. Most of them have practical independence and act as "squires" to the nobles on their pillaging expeditions. The croso-breeds are the descendants of mixed marriages between the nobles and serfs. These follow their mother's status. The slaves are chiefly Sudanese negroes. They are well treated and are practically members of the Tuareg family, but the Tuareg never intermarry with sp an tuareg weapons are stralght two-edged sword prequare weapons are
to the left forearm by a leather ring, and a slender iron lance some 9 ft. long barbed for about a foot. On his night arm the Tuareg warrior wears a heavy stone to give increased weight to his lance and sword-play or to parry blows. Muskets are common, no noble or freedman being without one. Besides this the Tuareg carry leathern shielde In hunting, wooden missiles like boomeranga are used. Among the low-caste hill tribes of Hoggar bowe and arrows are the only weapons.
Little is known of the history of the Tuareg. The name is that given them by the Arabs. They are the descendants of those Berbers who were driven into the desert by the great Arab invasion of North Africa in the 1ith century. Ibn Khaldin in the 14 th century locates them to the south and west of Tunisia. They were constantly at war with the Arabs on the north, and the Negro peoples of the Sudan on the south. For their relations with the French. with whom they came into contact after the conquest of Algeria, see Sahara.
Authorifies.-H. Duveyrier, Les Tomaregs do Nord (Paris, 1864); Lieut. Hourst, The Explaration of the Niger (Eng trens., London, 1898), pp. 199-249; W. J. Harding King, A Search for the Masked Tuarces (London, igo3); M. Benhazera, Six Mois chez les Touareg du Ahaggar (Algiers. 1908): Lieut. C. Jean, Les Touareg du sud-est: l'Air, leur rble dans la palitique saharienme (Paris, 1909); E. Doutte, Magic et religion dans TAJrigue du nord (Algiers, 1909); "Essai de transcription méthodique des noms de lieux touareg "in Bull. soc. giog. d'Alger (1g08).

TUAT, a Berber word \({ }^{1}\) sometimes applied generally to all the oases in the western part of the Algerian Sahara, i.e. between \(3^{\circ} \mathrm{W}\). and \(2 \frac{1}{2}^{\circ}\) E. \(26^{\circ}\) and \(30^{\circ} \mathrm{N}\)., sometimes restricted to a particular group which borders the east side of Wad Mzaud between \(261^{\circ}\) and \(2 \frac{1}{2}^{\circ} \mathrm{N}\). According to the first usage Tuat includes the oases of Gurara in the north and Tidikelt in the south with the important centre of Insalah. The three groups a re spoken of collectively by the French as the Tuat archipelago. The district is comparatively fertile, being formed of recent alluvium extending along the base of the Tademait plateau (Cretaccous), and produces dates and some cereals and vegetables. The wadi Saura (known in its lower course as the Messaud), formed by the junction of the wadis Zusfana and Ghir, marks the north-westera boundary of the oases. After the winter rains in the Atlasit carries a considerable body of water in its upper course, but lower down its channel is choked by sand. Works were undertaken (1909) by the French to keep open the channel as it passes Tuat proper. At Gurara water is obtained from springs hrought to the surface hy the outcrop of impervious Devonian rocks. There is an extensive sebkha or salt lake at Gurara. The oases support a comparatively large population. The separate ksurs or hamlets, of which the district is said to contain over 300 , are in Tuat proper placed close together. The political centre of Tuat is the oasis of Timmi, which has some forty ksurs. All the ksurs are strongly fortified, the walls of the citadels being of immense thickness. The whole region has been formed into an administrative unit known as territoire des oasis sahariennes, and comprising a native commune subdivided into the annexes of Tuat, Gurara and Tidikelt. In 1906 the commune had a population of 134 Europeans and \(49,873^{4}\) natives, of whom 112 enjoyed municipal rights. There were four places with over 2000 inhabitants: Adrar (Timmi), 2686, and Zaniet-Kunta, 3090, in Tuat; Insalah, 2837, in Tidikelt; and Timimun, 2330, in Gurara. Nine other places had between 1000 and 2000 inhabitants. By race (excluding the troops) there were 19,654 Arabs, 5470 Berbers, 4374 negroes, 191 Jews (professing Islam) and 19,412 persons of mixed blood. The district is of importance as commanding the routes southwards to Timbuktu from both Morocco and Algeria, and it is thus a great centre of trade. The oases appear to have been inhabited from a very early period. According to tradition numbers of Jews migrated thither in the and century A.D. They were the predominant element in the oases when the conquests of Sidi Okba drove the Zenata south (7 th century). These Berbers occupied Tuat and, to a large extent, absorbed the Jewish population. The Arabs took possession of the oases in the rot h century and imposed Islam upon the people. Thereafter the region was governed by Zenata Berbers or by Arab chieftains. In the 14th
\({ }^{2}\) The etymology of the word is doubtiul; it is need in the aense of an Inhabited district-hence on oasis.
'By a clerical error the native population in the ceosus roturns is given as 60,497.
century the sultan of Morocco occupied the onses, which remained in political dependence upon Morocco. In the ifth century, however, the sovereignty of the sultan had become almost nominal and this state of quasi-independence continued. The treaty of 1845 between Morocco and France left the question of the possession of Tuat, Gurara and Tidikelt unsettled. After the murder in 1881 of the members of the Flatters mission-a French expedition sent into the Sahara-a measure concerted at Insalah, several of the Tuat headmen sought Moroccan protection, fearing the vengeance of France. A chief calling himself the Moroccan pasha established himsell at Timmi, but Alorocco took do active step to assert her sovereignty. In 1899 a Frencb scientific mission, under Colonel Flamand, was despatched to the oasis of Tidikelt. The French were attacked by the natives (Dec. 28 , 1899), whom they defeated, and the next day Insalah was occupied. This was the beginning of a serious campaiga in which the Freach suffered severe losses, but by March igot the whole of the fortifed places in the three oases had been captured. To cut of the oases from Morocco the town of Igli, 140 m north-west of Gurara, was also annexed by the French (April 5, r900) Igli (pop. 1057 in 1906) occupies an important position, being placed at the junction of the wadi Zusiana and the wadi Chir. The French were not, however, left in peaceable possession of their newly acquired territory. Altacks by the nomad tribes, Moroccan and others, were made on the line of communications, and during 1903 the French troops suffered serious losses. To punisb the tribes the town of Figig was bombarded by the French (June 8, 1903). On the and of September following a band of aomads attacked, at a place called El Mungar, the escort of a convoy going to Taghit. After maintaining the fight \(7 \frac{1}{2}\) hours the French were reinforced and their enemies drew off. Out of 115 combatants the French lost 38 killed and 47 wounded.
To consolidate their position the French authorities determined to connect the oases with the Algerian Sahara proper by carriage roads and railways. One road goes north-east to El Golea, 150 m . distant from Insalah; another north from Iglito a post called Beni Ounif, \(2 \frac{1}{2} \mathrm{~m}\). south of Figig, to whicb point the milway from Ain Selra, in the Oranese Sahara, was carried in 1903. The continuation of this railway 10 Igli was begun in the following year.
Major \(\mathcal{L}\). C. Laing visited the Tuat territory in 1825 on his way to Timbuktu, but his papers were lost. The next European to visit Tuat was Gerhand Rohlfs, who described his explorations and investigalions in Tagebuch seiner Reise durch Marokho nach Twal, 1804 (Gotha, 1865) and Reise durch Marokko. Exploration des Oasen mon Tafilet, Tual and Tidikell. (Bremen 1868). A. G. P. Martin's Les Oasis saharzenres (Algiers, 1908) gives an account of the history and economic condition of the oases. Consult also Commandant E Laquiere, Les Reconnaissances dx Cendral Serviere dans ker oasis sahapvennes (Paris, 1902). a valuable monograph by an officer Who took part in the operations in 1900-1901: EF. Gautier, Sahara algerien (Paris, 1908). and various contributions by G. B. M. Flamand in La Ctographic and A nnales ptographiques for 1900. Comples rendes (1902), Bull. gtog. hish \& descrippite (igo3), \& 8.
(F. R. С.)

TUBA, in music. The tubas-bombardon, helicon, euphosium (Fr. Inbo, sax-luba, bombardon; Ger. Twben, Tener-bass, Bembardon, Koxtrabassivbe, H diken, It al bessimba, bombardone) -are a family of vaived instruments of powerfui tone forming the temor and bass of the brass wind. In the orchestra these instruments are called tubas; in military bands cuphonium (tenor), bombardon and helicon (baes).
The modern tubas owe their existence to the invention of valves or pistors (Ger. Veutik) by two Prussians, Stolsel and Blamel, in 1815. The tubat are often confounded with the baritone and bass of the sachorms, being like them the outcome of the application of valves to the bagle family. There is, however, a radical difference in construction between the two types: given tbe ame length of tubing, the fundamental octave of the tubas is an octave fower than that of the saxhoms, the quality of tone being besides inmeasurably superior. This difference is entirely due to the proportions of the truncated cone of the bore and consequently of the colurnn of air within. By increasing the calibre of the bore in proportion to the lengtb of the tube it wes found that the iminmental note or first sound of the harmonic series was easily
obtained in a full rich quality, and by means of the valves, with this ane note as a basis, a valuable pedal octave is obtained, absent in the saxhorns. Prussis has not adopted these modifica. tions; the bass tubas with large calibre, which have long been introduced into the military bands of other countries and retained in that country, are founded on the original modet invented in

BBb Bombardon or Contrabass Tuba (Besson).
1835 by Wieprecht and Moritz, a specimen of which is preserved in the museum of the Brussels Conservatoirc. The name "bass tuha " was bestowed by Wieprecht upon his newly invented bass with valves, which had the narrow bote afterwards adopted by Sax for the saxhorns. The evolution of the modern tubas took place between 1835 and 1854 (see Valves).

The instruments termed Wagner tubas are not included among the foregoing. The Wagner tubas are realiy horns designed for Wagner in order to provide for the Nibelungen Ring a complete quartet having the horn timbre. The tenor tuba corresponds to the tenor horn, which it outwardly resembles, having its tube bent in rectangular outline and being played by means of a funnelshaped mouthpiece. The bore of the Wagner tenor and tenorbass tubas, in Bb and F, is slightly larger than in the horn, but much smaller than in the real tubas. The bell, funnel-shaped as in the German tubas, is held to the right of the performer, the valves being fingered by the left hand. There are four valves. lowering the pitch respectively \(i\) tone, \(\frac{1}{2}\) tone, 11 tone, 2 tones (or 21 tones). The harmonic series is the same for botb instruments. the notation heing as for the horn in C.
c.

B fat Tenor.
Real Sounds

N.B.-The black notes are difficult to obtain atrietly in tune as opea notes.

By means of the valves the compass is extended downwards an octave for each instrument. The timbre of the tenor tuba is only slightly more metallic and less noble than that of the French horn with valves. Many motives in the Ring are given out by the quartet of horns and Wagner tubas.
The modern tuba finds its prototype as well as the origin of the name in the Roman tuba (the Greek selpinx). definite information concerning which is given by Vegecius. \({ }^{1}\) Compared with the other military service instruments of the Romans. the buccina and cornu. the tuba was straight and was used to sound the charge and retreat. and to encourage and lead the soldiers during action; it was sounded at the changing of the guard, as the aignal to begin and leave off work, \&c. The tuba is represented. together with the buccina and cornu. on Trajan's column in the scenes described by Vegetius.

During the middle ages the fuba was as great a lavourite as the busipe (see Buccina and TelumPT), from which it may readily be distinguished by lis marked conical bore and absence of beil. It is recorded that King Frederick Barbarossa gave an order on the 14th of January 1240 in Arezzo for tour tubas of silver and lor slaves to be taught to play upon them:' During the middle ages the Latin word (ubs is variously translated, and seems to have puszed ithe compilers of vocabulariea, who often render it by trimba (Fr. trompe).
' De re militari, iii. 5 and ii. 7.
\({ }^{2}\) Dr Alwin Schultz, Hófisches Leben, i. 560, note 3.

TUBE (Lat. (uba), a pipe or hollow cylinder. Tubes play in important part in engineering and other works for the conveyance of liquids or gases, and are made of diverse materials and dimensions according to tie purpose for which they are intended, metal pipes being of the greatest consequence. According to the process of manulacture metal tubes may be divided into seamed and seamless. One of the carliest uses of seamed wrought-iron tubes was for gun-barrels, and formerly these were made by taking a strip of wrought iron, bending it so that the edges overlapped and then welding by hammering, with or without the aid of grooved swages. The development of gis lighting incrased the demand for tubes, and in 1824 James Russell introduced the butt-welded tube, in which the edges of the skelp are not made to overlap, but are brought into closest possible contact and the welding is effected in a double wage, having corresponding grooves of the diameter of the tube required; this method required no mandrel as did those previously in use. The following year saw another improvenent in making these pipes, when Cornelius Whitehouse effected t butt weld by drawing the bent skelp through a die. Stronger tubes are obtained by using grooved rollers instead of a die, the skelp being mounted on a mandrel. This is the method commonly adopted at the present day for making this class of tube. Seamed tubes, especially of copper and brass, are made by brazing or soldering the edges of the skelp. Another method is to bend the edges so that they interlock, the contact being perfected by rolling. Scamless tubes, which are stronger than those just described, are made by drawing a bloom of the metad perforated by an axial hole or provided with a core of some refractory material, or, in certain cases, by forcing the plastic metal by hydraulic pressure through an appropriate lic. The seamess sted tube industey is now of great dimen. sions owing to the development of steam engineering. Another type of scamless tube is the castion tube, usually of large diancter and employed for gas and wuter mains; these pipes tre made by casting.
TUBERCULOSIS. The word "tuherculosis," as now used, signities invasion of the body by the tuhercle bacillus, and is applied generally to all morbid conditions set up hy the presence of the active parasite. The name is derived from the "tubercies" or "littic lumps" which are formed in tissues invaded by the tracillus: these were observed and described long before their teal bature or causation was known. (For an account of the organisns, which was diswowed by Koch in \(1 \$ \$ 2\), see PaEasittic piseastis.) The bacillus ateacks every organ and tissue of the bowly, but some much more frequently than others. The commenest seats of tuberculous disease are the lungs, lymphatic cixnds. bones, scrous membranes, mucou nembranes, intestines and liver. Before the discovery of the bacillus its eficcts in d.lferent parts of the body received separate names and were classitiod as distinct diseases. For instance, tuberculosis of the lung the called "consamption" or "phithisis" of the bones and brapaatic glands "struma" or "scrofuls." of the tin "lupus." or the intestimal glands "labes mesenterica." surme of these aames are still retainct for convenience, but the diseases indicted by them are known to be really forms of iubercubsio. On the other band, there are "tuberckes" which are not caused by the tubercle batillus, but by some other soune of irritation incluting varivus parasitic organismas. some of whin closely srsemble the tobercle buillus. To these forms of discase, which ane not as vet well understood. the terta poendoruberculoris his beea givea. Lasty, the word "tubpiceles" is athis aopntimes appliad to mere lumpy crup-

 the structures Hence the "dectr."
recent views, the presence and multiplication of the bacillit excite by irritation the growth of epithelioid cells from the normal fixed cells of the tissue affected, and so form the tuhercle, which at first consists of a collection of these morbidly grown cells. In a typical tuhercle there is usually a very barge or "giant" cell in the centre, surrounded by smaller epithelioid cells, and outside these again a zone of leucocytes. The bacilli are scattered among the cells. In the earliest stages the tubercle is microscopic, but as several of them are formed close together they become visible to the naked eye and constitute the condition known as miliary tubercle, from their supposed resemblance to millet seeds. In the next stage the cells forming the tubercle undergo the degenerative change known as "caseation," which mercly means that they assume in the mass an appearance something like cheese. In point of fact, they die. This degeneration is believed to be directly eaused by a toxin produced by the bacilli. The further progress of the disease varies greatly, probably in accordance with the resisting power of the individual. In proportion as resistance is small and progress rapid the cheesy tubercles tend to soften and break down, forming abscesses that burst when superficial and leave ulcers, which in turn coalesce, causing extensive destruction of tissue. In proportion as progress is slow the breaking-down and destructive process is replaced by one in which the formation of fibrous tissue is the chief feature. It may be regarded as Nature's method of defence and repair. In tuberculosis of the lungs, for instance, we have at one end of the scale acute phthisis or "galloping consumption," in which a large part or even the whole of a lung is a mass of cascous tuhercle, or is honeycombed with large ragged cavities formed hy the rapid destruction of lung tissue. At the other end we have patches or knots of fibrous tissue wholly replacing the original tuberctes or enclosing what remains of them. Such old encapsuled tubercles may undergo calcareous degeneration. Between these extremes come conditions which partake of the nature of both in all degres, and exhibit a mixture of the destructive and the healing processes in the shape of cavities surrounded by fibrous tissue. Such intermediate conditions are far more common than either extreme; they occur in ordinary chronic phehisis. The eerm "fibroid phthisis " is applied to cases in which the process is very chronic but extensive, so that considerable cavities are formed with much fibrous tissuc, the contraction of which draws in and liattens the chest-wall. Tuberculosis commonly attacks one organ or part more than another, but it may take the form of an acute general fever, resembling typhoid in its clinical features. "Acute miliary tuberculosis" is a term generally used to indicale disseminated infection of some particular orgad -usually the lungs or one of the serous membranes-in which the disesse is so severe and rapid that the tubercles have not time to get beyond the miliasy state before death occurs Tuberculosis is exceedingly apt to spsead from its original seat and to invade osher organs. The confusing multiplicity of terms used in connexion with this disease is due to its ingmererable variations, and to altemptes to classify disemess according to their symptoms or amatomical appearances. Now that the cause is known, and it has become clemr that difiereat formo of disease are caused by variations in extent, contene and seat of attack, the whole subject has become greathy simplified. and many old terms migh be dropped with adrancage-

Tulocalonis in ate Lower A mimols.- Mowe creatures incinices worms and foshes, are experimentally susceptible to twierculosion and some contract it spontabeoudy. it may be called a didenge of civilimation. Dcmesticated animak are gere siss ceptible than wild ones, and the laster are mase fable io captivity that in the matural state Cuptive monkeys ior inatance, comroooly die of in, and of bitds the most smocepiotis ase farmyard fowls bet it is practicully untuove in auimets it the uild st the. In cart) coming chicty from the phine (Lisize
 ferod divened was only \(0.13 \mathrm{H}^{\circ} \mathrm{s}\) is 88.000 .009 Oi the domest:cated mizelk horses and sherp are kast, and antle trowt. afocted: pigs. dues and cacs occupy an ingerncilise p

The percentage of tuberculous animals recorded at the slaughterhouses of Berlin in 1892-1893 was as follows Cows and oxen, 15.1; swine, 1.55; calves, 0.11; sheep, 0.004. Similar records at Copenhagen in 1890-1893 give the following result: Cows and onen, 17.7; swine, 15.3 ; calves, 0.2 ; sheep, 0.0003 . The order of the animals is the same, and it is confirmed by other slaughterhouse statistics; hut the discrepancies between the figures indicate considerable variation in frequency, and only allow general conciusions to be drawn. A striking fact is the comparatively small amount of tubercle in calves. It shows, as Nocard has pointed out, that heredity cannot play an important part in the transmission of bovine tuberoulosis. The infrequency of the disease in aheep is attributed to the open-air life they lead, and no doubt that is an important factor. The more animals and persons are herded tagether and breathe the same air in a confined and covered space, the more prevalent is tuberculosis among them. Stefansky found the disease in \(5 \%\) of the rats caught in Odessa, and Lydia Rabinowitch obtained similar results in rats caught in Berlin. But there are evidently degrees of natural resistance also. Horses are more confined than cattle in the United Kingdom, yet they are far less affected; and on the other hand, cattle running free in the purest air may take the infection from others. Professor McEacham of Montreal states that be has seen tuberculosis prevalent in ranch cattle, few of which were ever under a roof, ranging on the foothills of the Rocky Mountains in Montana. In cows and monkeys the lungs are chiefly affected; in horses and pigs the intestine and abdominal organs.

The relation between human and animal tuberculosis has been much debated. The bacillus in man very closely resembles that found in other mammalia, and they were considered identical until Koch threw doubt on this view at the British Congress on Tuberculosis in 1 gor. The British government thereupon appointed a soyal commission to inquire into the relations of human and animal tuberculosis. The second interim report of the commission was issued in 1907, and the conclusions arrived at in it are: "That there seems to be no valid reason for doubting the opinion, never seriously doubted before 1goi, that human and bovine bacilli belong to the same family. On this view the answer to the question, Can the bovine bacillus affect man? is obviousily in the affirmative. The same answer must also be given to those who hold the theory that human and bovine tubercle bacilli are different in kind, since the ' bovine kind 'are readily to be found as the causal agents of many fatal cases of human tuberculosis." The commission also found that there is an essential unity not only In the nature of the morbid processes induced by human and bovine tubercle bacilli, but also in the morphological characteristics exhibited hy the tubercle bacilli which cause these processes. The sonclusions of the members of the Paris Congress on Truberculosis, held in 1905, are: "That human tuberculosis can be transferred to the bovine animal, and that what is termed the bacillus of bovine origin can be discovered in the human subject, and that there is a pocsibility that they may be varieties of one species."
The distribution of tubercuiosis is universal, and it is coincident with onetremena the existence of the human race in the habitable 0 the Arctic regions seems more due to the eparsity of population than to climatic effect. Indeed, it has been shown that climate has much less effect in its prevalence than has been formerly thought to be the case, the conclasion of Hirsch being that "the mean level of the temperature has no significance for the frequency or rarity of phethisis in any locality." The nature of the occupations and the density of population in any given ares tend to its increase or otherwise, and the comparative immunity enjoyed by
uncivilized races is due to their open-air life and to the saaitary advantages derived from the comparatively frequent changes of the sites of their camps and villages. Segregation of these races in fixed areas has shown an increased incidence of tuberculosis, and when living under civilized conditions they fail to exhibit any natural immunity. Altitude has an apparent influence on the frequency of phthisis, the rarity of the disease at bigh altitudes in Switzerland having been demonstrated, and a like protective influence is enjoyed by certain elevated distrists in Mexico, notwithstanding the insanitary conditions of the towns thereon. The protection afforded by the altitude is alleged to be due to the dryness of the at mosphere, its freedom from impurities and the increased solar radiation. While no race is exempt from tuberculosis, certain races afford a greater case incidence. E. Baldwin states that the mortality from consumption in recently immigrated races in the United States is mucb greater than in those of longer residence. It was found that among those whose mothers were of foreign birth the rate was-in Russians 71.8, Germans 167, Scottish 172.5, French 187.7 and Irish 339.6 , while in native-born Americans it was 152.8. The. well-known susceptibility of the Irish has been attributed to the moisture of the climate, under-feeding, and the residual inferiority of a population drained by the emigration of a large number of able-bodied adults. That there is some added factor is shown by the fact that the above mortality of 339 in those having Irish mothers, in 1901, was greater by \(31 \%\) than that of the Irish in Ireland at the same period. The Jews are said to show a relative immunity, but the matter requires further investigation. The factor which seemingly has the most constant influence on the mortality from tuberculosis is density of population. A high rate of mortality occurs in connexion with overcrowding and bad ventilation in cities, and it is proved that the death-rate from this disease is considerably lower in the country than in the towns. In addition, when wo consider that it does not occur in epidemics or at certain seasons, but is constantly active, it will easily be seen that no other disease is so destructive to the human race. At the Tuberculosis Congress, held in Paris in 1g05, it was stated by Kayserling that one-third of all deaths and one-half the sickness amongst adults in Germany was due to taberculosis.

In 1908 the mortality from all forms of tuberculosis in England and Wiles was, according to the registrar-general's returns, 56,080 , less by 3455 than the average of the previous five years, being equal to \(10.8 \%\) of the mortality from all causes, while in Ireland in \(190914 \%\) of the total mortality was assigned to it.
The following table gives the comparative mortality from
 estimated population of certain selected countries:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{Estimated Population in Years.} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Mortality from \\
Pulmonary Tuberculosis
\end{tabular}} \\
\hline & 1893. & 1900. & 1907. & 1892. & 1900. & 1907. \\
\hline England and Walcs & 29.760 .842 & 32,249,187 & 34,945.600 & 43.323 & 42.987 & 39,839 \\
\hline Ireland \({ }^{\text {German Empire }}\) & 4.633 .808
47.125 .446 & 4,468,501
52.624 .706 & 61,977.064 & 10.048
113.720
3 & 10,076
108,827 & 8,828
97.555 \\
\hline France . & 38,360,000 & 38.900.000 & 39,222,000 & 11.080 & +34.357 & 40.304 \\
\hline Norway & 2,010,000 & 2,211.300 & 2,305.700 & 3.358 & 4,249 \({ }^{\text {c }}\) & \\
\hline Italy & 30,665,662 & 32.346.366 & 33.776,087 & \(39.715^{\circ}\) & \(41.733^{\circ}\) & 41,968 \({ }^{4}\) \\
\hline Holland & \(4,645,660\)
\(6,195,355\) & 5.159 .347
\(\mathbf{6}, 693.548\)
\(\mathbf{3}\) & \(5.709,755\)
7.317 .561 & 8.906
10.491 & 8,451
9,117 & 7,403
7,377 \\
\hline Betgium
Switzerland & 6,195,355
\(3.002,263\) & 6,693.548
\(\mathbf{3}, 299.939\) & \(7.317,561\)
\(\mathbf{3 . 5 2 5 . 2 9 0}\) & 10.491
5.785 & 9,117
6,692 & 7,377
6,063 \\
\hline
\end{tabular}
- In ftaly the mortality given is for all forms of suberculosis.

We thus see there is a general tendency to decrease in the deathrate, with the possible exception of France and Norway. In England the decrease has been moet marked, having fallen irom 3457 per million living in \(1851-1860\) or \(156 \%\) of all deaths, to 1583 per million living, or a mortality of \(10.8 \%\) of the death.rate from all causes for all ages and sexen-
Death-ratr of Tuberculasis per suillion living in England and Woles.
\begin{tabular}{|lll|l|l|l|l|l|l|l|}
\hline & & 1860 & 1870 & 1880 & 1890 & 1900 & 1908 \\
\hline Males &. &. & 3300 & 3300 & 2900 & 2700 & 2200 & 3800 \\
Females &. &. & 3300 & 3000 & 2500 & 2100 & 1600 & 3350 \\
Both Sexes &. &. & 3300 & 3150 & 2700 & 2400 & 1900 & 1583 \\
\hline
\end{tabular}

In English counties containing populations of 100,000 or over the highest rates were-in 1908-London, 1806: Lancashire, 18.88; Northumberland. 1947: Carnarvonshire, 2025; and Carmarihenshire. 2328 per million living. Of the fifteen counties in England and Wales with the highest fuberculosis mortalities, no fewer than seven are Welsh. Cardiganshire, with 2270 for toth sexes, has a rate nearly double that of England.

According to the United States census of 1900 , the death-rite from tuberculosis in the area chosen for registration which embrased ten registration states, namely, Connecticut, Maine, District of Columbia, Massachusetts, Michigan, New Hampshire, New Jeryy. New. York, Rhode Island and Vermont, and 153 registration cites outside these states, was:-
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c}
Number of Deaths from \\
Tuberculosis.
\end{tabular} & Death-rate per 100,000. \\
\hline 1890 & 48.236 & 245.4 \\
1900 & 54.898 & 190.5 \\
\hline
\end{tabular}

The returns of the mortality stalistics of the United States for the year 1908 cover an area of 17 states, the district of Columbia and 74 registration cities. representing an aggregate population of \(45,028,767\), or \(51 \cdot 8 \%\) of the total estimated population of the United States.

Mortality from Tuberculosis in the Uniled Slates in given areas.
\begin{tabular}{|c|c|c|c|}
\hline Arnual Average. 190t-1905. & Tubereulosis (all forms). 6.835 s & \[
\begin{gathered}
\text { Pulposary } \\
\text { Phthyix } \\
5 \$, 451 \text {. }
\end{gathered}
\] & Number Tuberculosis tall Cormisl per t00,000 of the population, 203 !. \\
\hline 1904 & 66,797 & 58,763 & 201.6 \\
\hline 1905 & 65.352 & \(56.77{ }^{\circ}\) & \(193 \cdot 6\) \\
\hline 1906 & 75,512 & 65.341 & \(184 \cdot 2\) \\
\hline 1907 & 176,650 & 66,374 & 183.6 \\
\hline 1908 & 78,289 & 67.376 & 173.9 \\
\hline
\end{tabular}

In the United States tuberculosis of the lungs forms from 86 to \(87 \%\) of all cases. The death-rate, as we see, is steadily decreasing. It is, however, difficult to estimate the ravages of the disease in that country owing to the fact that rather less than hall the United Stases is still unprovided with an adequate system of registration.

The following was the death-rate from tuberculosis (all forms) per 100,000 of the population of the chief cities of the United States during 1908:-
by phthisis at ages under 5 years, more liable at the age of \(5-20\), and ayain less luable at subsequent ages." These observations, it must be noted, refer only to consumption. The comparative immunity of the very young does nol extend to all forms of tuberculous disease. On the contrary, cuberculosis of the bowels and mesenteric glands (iabes mesenterica), tuberculous peritonitis and tubercuiots meningitis are pre-eminently diseases of childhood. The tables at foot of page show in detail the relative incidence of pulmonary phthisis at different ages, and the steady diminution of the disease in England and Wales since 1850 .
Occupation has a marked influence on the prevalence of pulmonary tuberculosis. The comparative mortaliy figures for various occupations are taken from the supplement to the registrar-general's 6sth annual Report, and show the incidence of pulmonary phthisis, agriculturists being taken at 100 for purposes of comparison.

\section*{Occupied Males: England and Wales.}

\section*{Highest.}

Tin miner
Copper miner
Scissors maker
File maker
General shopkeeper
Brush maker
Furrier
Printer
Chimney sweep
Hatter

The high incidence in the first group will be eeen chiefly to affect those occupations where there is dust (scissors and file makers and furriers). The high mortality amongst general shopkeepers can only be ascribed to continuous indoor occupation. Coal miners enjoy an unexplained immunity.
Dr Von Körösy has tabulated the result of seventeen years' observation in Budapest, which is an excessively tuberculous town. His figures include both males and females above fifteen years of age, and extend to 106,944 deaths. The field of observation is evidenily very different from those which furnished the statistics already given. His resulis are: (1) Males-printers 606, butiers 520, shoemakers 494, dyers 493, millers 492, joiners 485 , tinkers and locksmiths 484, masons 467, tabourers 433, tailors 418 , bakers 398, drivers 370, servants \(\mathbf{3 6 0}\), carpenters 339, officials 336 , butchers 333: Innkeepers 272, merchants 253, lawyers 205, physicians 118. capitalists 106; (2) Females-servants 353, day labourera (? char-women) 333, washerwomen 314, gardeners 269, capitalists 42. The inmates of lunatic asylums. who are classed among the

New Urleans
Sacramento, California
\(298 \cdot 3\)
Washington
294.3

Baltimore \(264^{\circ} 0\)

Jersey City \(249 \cdot 9\)

New York
Philadelphia
Saratoga Springs, New York
\(241 \cdot 1\)

Indianapolis
Boston, Massachuset ts
St Louis
Chicago
Kansas City
Cleveland, Ohio
Pittsburg, Pennsylvania
Detroit
St Paut, Minnesota
The recurns in the United States show high rate of mortality from tuberculosis amongst the coloured poplistion. the negro being particularly susceptible to pulmonary phthisis; the death-rate from this cause is nearly double that amongst whites.

Age and Sex.-The most complete information under this heading is derived from the English records. "In boih sexes," says Dr Tatham, "the real liability to phthisis begins somewhere between the fifteenth and the twentierh year. Among males it attains its maximum at age 4.5-55, when it reaches 3173 per million living. Among females if attains its maximum (2096) at age 35.45 . In both sexes the rate rapidly decline after the attainment of its maximum. practically the incidence of palmosab phethisis is upon the ages from of children being comparativel cording to recent

England and Wales
Tuberculous Phthisis.-Mortality in several Periads, 1857-18gu.
Annual Rale per Million Living.
Males.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Period,} & \multicolumn{11}{|c|}{Ages.} \\
\hline & All Ages. & \[
\begin{aligned}
& \text { Uncher } \\
& 5 \\
& \text { Years. }
\end{aligned}
\] & 5 & \(10-\) & \(15-\) & 20- & 25 & 35- & 45 & \(55-\) & 65 - \\
\hline 1851-1860 & 2579 & 1329 & 525 & 763 & 2399 & 4053 & 4031 & 4004 & 3830 & 3331 & 2389 \\
\hline 186t-1870 & 2467 & 990 & 431 & 605 & 2190 & 3883 & 4094 & 4166 & 3861 & 3297 & 2024 \\
\hline 1871-1880 & 2209 & 783 & 340 & 481 & 1675 & 3092 & 3699 & 4120 & 3860 & 3195 & 1924 \\
\hline 1881-1885 & 1927 & 584 & 274 & 372 & 1381 & 2467 & 3246 & 3726 & 3567 & 2937 & 1800 \\
\hline 1886-1890 & 1781 & 521 & 234 & 318 & 1212 & 2222 & 2842 & 3436 & 3446 & 2904 & 1845 \\
\hline 1891-1895 & 1634 & 467 & 197 & 260 & 1075 & 2026 & 2548 & 3268 & 3205 & 2686 & t572 \\
\hline 1895-1899 & 1521 & 403 & 140 & 195 & 908 & 1841 & 2341 & 3110 & 3173 & 2627 & 1530 \\
\hline 1900-1904 & 1479 & 366 & 149 & 182 & 799 & 1643 & 2147 & 2811 & 3130 & 3560 & t 309 \\
\hline 1003-1907 & 1385 & 359 & 138 & 163 & 74.3 & 1472 & 2022 & 2573 & 2945 & 2498 & 1316 \\
\hline 1908 & 1310 & 205 & 134 & 161 & 676 & 1858 & 2114 & 1964 & 2000 & 1830 & 1061 \\
\hline
\end{tabular}

Females.

"unoceupiod," suffer excessively from tubercle. According to Dr Mott, pathologist to the London County Council, tuberculous lesions are lound in more than one-third of the bodies of inmates examined post mortem. The majority contract the disease in the asylums.

Medical opinion has undergone a great change with regard to the influence of heredity. The frequent occurrence of consumption among members of the same family used to be explained by assuming the existence of a tuberculous "diathesis" or inherent lisbility to consumption which "ran in families" and was handed down from one generation to another. As the real nature of the disease was not understood. the inherited diat thesis was regarded as a sort of latent or potential consumption which might develop at any time and could hardly be avoided. The children of consumptive parents had the "sceds" of the disease in them, and werc thought to be doomed with more or less certainty. Great importance was therefore attached to beredity as a factor in the incidence of tuberculosis. The discovery that it is caused by a specific parasitic infection placed the question in a different light, and led to a more careful examination of the facts, which has resulted in a general and increasing tendency to minimize or deny the influence of heredity. At the Berlin Congress on Tuberculosis in 1899 Virchow pronounced his disbelief in the theory on pathological grounds. "I dispute this heredity absolutely," he said. "For a course of years I have been pointing out that if we examinc the bodies of infants newly born, who have had no life apart from the mother, we find no tuberculosis in them. I am convinced that what looked like tuberculosis in the newly born was none of it tuberculosis. In my opinion there is no authenticated case of tubercle having been found in a dissected newly-born infant." Observations on animals similarly tend to disprove the existence of congenital tuberculosis (Nocard). The theory that the germs may remain latent in the ofspring of tuberculous parents (Baumgarten) is unsupported by evidence. The occurrence of disease in such offspring is ascribed to infection by the parents, and this view is confirmed by the fact that the incidence in consumptive families is greater on iemale children, who are more constantly exposed to bome infection, than on the male (Squire). The statistical evidence, so far as it goes, points in the same direction. It is even denied that the children of consumptives are specially predisposed.
Recognition of the communicability of tuberculosis has directed attention to the influence of conditions in which people live massed together in close proximity. The pre-

Arasity \(e\) Prontan contin valence of the disease in large centres of population has already been noted, and the influence of aggregation is no doubt considerable; but it does not always hold good. The distribution in England and Wales does not correspond with density of population, and some purely rural districts have a very high mortality. Broadly, however, the rural counties have a low mortality, and those containing large urban populations a high one. In France in the department of the Oise, in purely industrial villages, the mortality from pulmonary phithisis is from 56 to 61 per 10,000; in a village in which part of the population worked in the fielda and part in factories the mortality was 46 per 10,000 ; and in purely agricultural villages it ranged from o to 10 per 30,00a
The following table is taken from the Supplement to the RegistrarGeneraris 65th Report for England and Wales:-
discaces in relation to overcrowding, the same authority found that "while associated with overcrowding is a tendency of the population to die from disease generally, this tendency is especially manifested in the case of phthisis, and is not manifested in the case of every disease."

Other Conditions.-Poverty, insufficient food and insanitary dwellings are always more or less associated with overcrowding and it is difficult to distinguish the relative influence of these factors. An analysis of 553 deaths in Edinhurgh according to rentals in 1899 gave these results: under fio, 230; from foo to £20, 190; above \(£ 20,106\) (Littlejohn); but the corresponding population is not stated. An investigation of selected houses in Manchester gave some interesting results (Coates). The houses were divided into three classes: (1) infected and dirty; (2) infected but clean; (3) dirty but not infected; infected meaning occupied by a tuberculous person. Dust was taken from all parts of the rooms and submitted to bacteriological tests. The conclusions may be summarized thus: The effects of overcrowding were not apparent; a large cubic space was found to be of little avail if the ventilation was bad; the beneficial effects of light and fresh air were markedly shown even in the dirtiest houses; ordinary cleanliness was found not sufficient to prevent accumulation of infectious material in rooms occupied by a consumptive; no tuberculous dust was found in dirty houses in which there was no consumption. The upehot is to emphasize the importance of light and air, and to minimize that of mere dirt. This is quite in keeping with earlier investigations, and particularly those of Dr Tatham on back-toback houses. Darkness and stuffiness are the friends of the tubercle bacillus.

So much has the question of cleanliness, and of housing in a sanitary district, to do with the prevalence of the disease, that the following table taken from the Report of the Registrar-General for Ireland for the year 1909 shows the marked class incidence in all forms of tuberculosis.

Distribution of Tuberculosis Mortality by Clastes in Ireland, rgog.
\begin{tabular}{|c|c|c|c|}
\hline & AB forman of & Pulmonary & Other forms of
Tubecrai \\
\hline Professional and independent class & 1.41 & 0.64 & 0.77 \\
\hline Muder class, civil cervice and & 1.82 & \(1 \cdot 30\) & 0.52 \\
\hline Large traders, busincss mana- & 1.59 & & \\
\hline Cherks \({ }^{\text {cone }}\) & 2.92 & 2.33 & 0.59 \\
\hline \begin{tabular}{c}
Honsehodders in \(\begin{array}{c}\text { and-clats } \\
\text { hocalities }\end{array}\) \\
\hline
\end{tabular} & \(2 \cdot 52\) & 1-85 & 0.67 \\
\hline Artisans. \({ }^{\text {Pety }}\) & \(2 \cdot 94\) & 2.23 & 0.71 \\
\hline traders & 3.85 & 3.00 & 0.85 \\
\hline Domestic servants Coach and car drivers, and & \(2 \cdot 38\) & 1.04 & 0.27 \\
\hline & 4.24
4.83 & 3.06
2.88 & \[
\begin{aligned}
& 1.58 \\
& 1.05
\end{aligned}
\] \\
\hline
\end{tabular}

In relation to the last two chases the effect of exposure and also of alcohotic excess must be added to overcrowding and privation. The low rate noticeabte for domestic servants must be ascribed to the better food and housing they enjoy while in situations. In Hamburg the mortality was 10.7 per 10:000 in those whose income rose above 3500 marks, \(39 \cdot 3\) where the income was 900 to 1200 marks, and 60 per 10,000 where the income fell below that figure.

It is now generally accepted that tubercle bacilli may enter the body by various paths. At the International Congress on Tuberculosis held in Vienna in 1907 Weichselbaum summerized the channels of infection in pulmonary tuberculosis as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{All occuipied Males.} & \multicolumn{2}{|l|}{Occupied Males (London).} & \multicolumn{2}{|l|}{Occupied Males
(industrial districts).} & \multicolumn{2}{|l|}{Occupied Males (agricultural districts).} \\
\hline & 1900-1902. & 1890-1892. & 1900-1902. & 1890-1892. & 1900-1902. & 1890-1892. & 1900-1902. & 1890-1892. \\
\hline All Catues . Tuberculoü Phthisis. & \[
\begin{aligned}
& 800 \\
& 500
\end{aligned}
\] & \[
\begin{aligned}
& 119 \\
& 122
\end{aligned}
\] & \[
\begin{array}{r}
119 \\
156 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 143 \\
& 183 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 121 \\
& 115
\end{aligned}
\] & \[
\begin{array}{r}
156 \\
147 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 72 \\
& 71 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 86 \\
& 90
\end{aligned}
\] \\
\hline
\end{tabular}

It rill be noted that the rate in the agricultural districts is low companed so the industrial districts or purely urban district chosen. There is obviously a close relation between density of population and tbe prevalence of phthisis. Comparing phthisis with other
(1) By inbalation directly into the broachioles and pulmonary alveoli, or by way of the bronchial glands through the blood and lymph channels into the lung. (2) Through the mucons
membrane of the nose, mouth or tonsils into the neighbouring lymphatic glands, and thence through the blood or lymph into the lungs. (3) By ingestion of tubercle bacilli
path of tafectlom into the lower part of the gastro-intestinal tract
in the food; thence the bacilli may pass through the lining membrane, infect the neighbouring glands and pass by the blood or lymph stream to the lungs. (4) By penetration of other mucous membranes (such as the conjunctival or urogenital) or through the skin. (5) Possible, though very rare, placental infection.
Tubercle bacilli may not produce any anatomical lesion at the point of centrance, or they may remain latent for a very long time; and it has been experimentally proved that they may pass through mucous membranes and leave no trace of their progress. As reported to the Royal Commission, the introduction of bacilli into the alimentary canal is not necessarily followed by the development of tuberculosis. The writings of Von Behring have led to renewed attention being paid to intestinal infection, particularly through the milk supply. Von Bebring suggests that the bacillus itself may become modified in the human body.
Measures for the prevention of tuberculosis may be divided into two classes: (1) general; (2) special. Great attention has been paid to the latter since the infectious nature of the disease was established. The former Proveratom, include all means by which the conditions of life are improved among the mass of the people. The most lmportant of these are probably housing and food supply. The reduction of the dlsease recorded in England is attributed to the great changes which have gradually taken place in such conditions since, say, 1850. Wages have been raised, food cbeapened, housing improved, protection afforded in dangerous trades, air spaces provided, locomotion increased, the ground and the atmosphere have been cleaned and dried by sanitary means. In addition to these general measures is the provision of consumption hospitals, which act by segregating a certain amount of disease. Yet all these things, beneficial as they may be, do not wholly account for the reduction, for, if the records can be trusted, it was in progress hefore they had madeany way or had cven been begun. This observation, coupled with the apparently general tendency to diminution among civilized races, suggests the operation of some larger agency. The theory of acquired resistance, which has been already mentioned, would explain the diminution; and it is also in keeping with other facts, such as the great susceptibility of savage races, which have not been long exposed to tuberculosis, and the results of lahoratory experiments in artificial immunity. The point is of great importance, and descrves careful attention; for if the theory be correct, the special measures for preventing tuberculosis, which are occupying so much altention, may eventually have unexpected results. Their general aim is the avoidance of infection, and they include (1) the provision of special institu-tions-hospitals, sanatoria and dispensaries; (2) the prevention of spitting; (3) the notification of consumption; (4) the administrative control of tuberculosis in animals; (5) the dissemination of popular knowledge concerning the nature of the disease.

The greatest stress is laid upon the prevention of spitting, because the germs are contained in the sputum of consumplive persons, and are scattered broadcast by expectoration. The sputum quickly dries, and the bacilli are blown about with the dust. There is no question that infection is so conveyed. The Manchester scientific experiments, mentioned above, are only one series out of many which prove the infectivity of dust in the proximity of consumptive pertans, and they are confirmed by actual experience. Soverat cenis tre secorded of healthy persons having e antwated the digroe alter gecupying rooms in

Britain, and far more common both there and in the United States than on the continent of Europe. Prohibition of spitting under a statutory penalty is attended with certain difficulties. as it is obviously impossible to make any distinction between tuberculous and other persons; but it has been applied in New York and elsewhere in America, and some local authorities in Great Britain have adopted by-laws to check the practice Another means of controlling dangerous sputa is more practi cable, and probably more effective, namely, the use of pocket spittoons by consumptive petsons. Converient patterns are available, and their use should always be insisted on, both in public and in private. The most effective way of destroying the sputa is hy burning. For this purpose spittoons of papier mache and of turf have been successfully used in the Vienna hospitals (Schrötter). When glass spittoons are used the contents can be sterilized by disinfectants and passed down the drain.

Notification is of great service as an aid to practical measures of prevention. It has been applied to that purpose with good results in several cities and states in America, and in some towns in Great Britain. New York has made the most systematic use of it. Voluntary notification was adopted there in 1894 , and in 1897 it was made compulsory. The measures linked with it are the sanitary supervision of infected houses, the education of the people and the provision of hospitals. In England, Manchester has led the way. Voluntary notification was adopted there in 1899: it was at first limited to public institutions, but in 1900 private practitioners were invited to notify their cases, and they heartily responded. In Sheffeld notification was made compulsory by a local act in 1904 for a limited period, and was found so valuable that the period was extended in 19ro. The objects aimed at are to visit homes and instruct the household, to arrange and provide disinfection, to obtain information bearing on the modes of infection, to secure bacteriological examination of sputum, and to collect information to serve as a basis of hospital provision. Disinfection is carried out by stripping off paper, previously soaked with a solution of chlorinated lime (\(3 \frac{1}{2} \mathrm{oz}\). to the gallon), and washing the bare walls, ceiling, floor and everything washable with the same solution. This is found effective even in very dirty houscs. In clean ones, where the patients have not been in the habit of spitting about the rooms, it is sufficient to rub the walls with bread-crumh and wash the rest with soap and water. Clothing. bedding. \&c., are disinfected hy steam. The advantages of these sanitary measures are obvious. Notification is no less important as a step towards the most advantageous use of hospitals and sanatoria by enabling a proper selection of patients to be made. It is compulsory throughout Norway, and is being adopted elscwhere, chiefly in the voluntary form. In 1908 the Prevention of Tuberculosis (Ireland) Act was passed, which conferred on local authorities the right to make notification compulsory in their districts, and provided that certain sections of the Public Health (Ircland) Act 1878 and the Infec tious Diseases Prevention Act 1890 should apply to tuberculnsis. By this act also the county councils were enabled to establish hospitals and dispensaries for the treatment of tuberculosis and were empowered to borrow moncy or levy a poor rate for the erection of sanatotia for the freatment of persons from their respective counties sufiering from the disease
The prevalence of tuberculosis in cattle is of importance from the point of view of prevention of the probability that abdominal tuberculosis, which is a very fatal form of the disease in young children, and has not diminished in prevalence like other forms, is caused by the ingestion of tuberculous milk. Whether it be so or not, it is obviously desirable that both meat and millk should not be tuberculous, if it can be prevented without undue interference with commercial interests. Preventive measures may be divided into two classes. They may deal merely with the sale of meat and milk, or they may aim at the suppression of bovine tuberculosis llogetber. The former is a comparatively easy matter, and may be summed up in the words "efficient inspectiou." The latter is probably impracticable. It practicable,

It would be excessively costly, for in many herds one half the animals or even more are believed to be tuberculous, though not necessarily the sources of tuberculous food. Uniess the danger is proved to be very much greater than there is any reason to suppose, "stamping out" may be put aside. Efficient inspection involves the administrative contral of slaughterhouses, cowsheds and dairies. The powers and regulations under this head vary much in different countries; but it would be useless to discuss them at length until the scientific question is setuled, for if the reality of the danger remains doubtful, oppressive restrictions, such as the compulsory slaughter of tuberculous cows, will not have the support of public opinion. Whatever measures may be taken for the public protection, individuals can readily protect themselves from the most seribus danger by boiling milk; and unless the source is beyond suspicion, parents are recommended, in the present state of knowledge, so to treat the milk given to young children.

A great deal has been done in most countries for the disscmination of popular knowledge by forming societies, holding conferences and meetings, issuing cheap literature, and so forth. It is an important item in the general campaign against tuberculosis, because popular intelligence and support are the most powerful levers for setting all other forces in motion. In Ireland, where an attempt had been made to deal with the question by arousing the interest of all classes, tuberculosis exhibitions have been held in nearly every county, together -ith lectures and demonstrations organized by the Women's National Health Association, and an organized attempt was made in the autumn of 1910 in England, by a great educational campaign, to compel the publle to realize the nature of the disease and the proper precautions against it.

The improved outlook in regard to the arrest or so-called "cure" of tuberculosis is mainly derived from the improved ongeath methods of diagnosis, thus enabling treatment to and Truencemt be undertaken at an earlier and therefore more favourable stage of the disease. The physical signs in early stages of the lung affection are often vague and inconclusive. A means of diagnosis has therefore been sought in the use of tuberculin. The methods are three: (I) The subcutaneous injection method of Koch; (2) the cutaneous method of Von Pirquet, (3) the conjunctival method of WolffEisner and Calmette. The first method depended on the reaction occurring after an injection of "old tuberculin." It is unsuitable in febrile conditions, and has now been relegated to the ireatment of cattle, where it has proved invaluable. In Von Pirquet's method a drop of old tuberculin diluted with sodium chloride is placed on a spot which has been locally searifed. The prescnce of tuberculosis is demonstrated by a bocal reaction in which a hyperaemic papule forms, surrounded by a bright red zone. Reaction occurs in tuberculosis of the bones of joints and skin. Von Pirquet in 1000 cases obtained a reaction in \(88 \%\) of the tuberculous, and \(10 \%\) of those dinically poo-tuberculous. In the latter there may have been latent cases of tuberculosis. In the conjunctival or opthalmo-reaction of Calmette and Wolf-Eisner the instillation of a drop of a cilute solution of tuberculin into the conjunctiva is followed in the tuberculous subject by conjunctivitis. The reaction generally appears in from 3 to 12 hours, but may be delayed to 48. In a series of cases observed by Audeoud a positive reaction was oblained in \(95 \%\) of 26 r obviously tuberculous cases and in \(8.3 \%\) of 303 cases which presented no clinical symptoms. Very advanced cases fail to react to any of these tests, as do general miliary tuberculosis and tuberculous meningitis As well as the three methods mentioned above the occurtence of a "negative phase" in the phagocytic power of the leucocytes following an injection of Noch's tuberculin T.R. may be said to be diagnostic of tuberculosis. Another valuable aid in diagnosis is that of the X-rays. By their help a pulmonary lesion may be demonstrated long before the physical signs can be obtained by ordinary examination.

To discuss at all fully the treatment of the various forms of tuberculosis or even of consumption alone would be quite
beyond the scope of this artide. It must suffice to mention the more recent points. The open-air treatment of consumption has naturally attracted much attention. Neither the curability of this disease nor the advantages of fresh air are new things. Nature's metbod of spontaneous healing, explained above, has long been recogrized and understood. There are, indeed, few diseases involving definite lesions which exhibit a more marked tendency to spontaneous arrest. Every case, except the most acute, bears signs of Nature's effort in this direction; and complete success is not at all uncommon, even under the ordinary conditions of life. Perhaps it was not always so: the ominous character popularly attributed to consumption may once have been justified, and the power of resistance, as we see it now, may be the result of acquired immunity or of the gradual elimination of the susceptible. However this may be, the natural tendency to cure is undoubtedly much assisted by the modern system of treatment, which makes pure air its first consideration. The principle was known to Sydenham, who obscrved the benefit derived by consumptives from horse exercise in the open air; and about 1830 George Boddington proposed the regular treatment of patients on the lines now generally recognized. The method has been most systematically developed in Germany by the provision of special sanatoria, where patients can virtually live in the open air. The example has been followed in other countrics to a certain extent, and a good many of these establishments have been provided in Great Britain and elsewhere; but they are, for the most part, of a private character for the reception of paying patients. Germany has extended these advantages to the working classes on a large scale. This has been accomplished by the united efforts of friendly and philanthropic societies, local authorities, and the state; but the most striking feature is the part played by the state insurance institutes, which are the outcome of the acts of 1889 and 1899 , providing for the compulsory insurance of workpeople against sickness and old age. The sanatoria have been erected as a miftter of business, in order to keep insured members off the pension list, and they are supported by the sick clubs affilinted to the institutes. They number forty-five, and can give threc months' treatment to 20,000 paticnts in the year. The dinical and economic results are said to be very encouraging. In about \(70 \%\) of the cases the disease has beed so far arrested as to enable the patients to return to work.

In England, where more than 14 millions of the population belong to friendly societies, it is estimated that the sick pay of consumptive members costs three times as much as the average sick pay to members dying of other causes. An effort has been made by the National Association for the Establishment and Maintenance of Sauatoria for Workers Suffering from Tuberculosis to establish such sanatoria, together with training for suitable work during convalescence, the gradual resumption of wage-earning being resumed while In touch with the medical authorities.

The important features of the sanatorium treatment are life in the open air, independently of weather, in a healthy situgion, rest and abundance of food. The last has been carried to rather extravagant lengths in some institutions, where the patients are stuffed with food whether they want it or not. The sanatorium movement on the German model is rapidly extending in all countries. For those who are able to do so advantage may be taken of the combined sanatorium and sun treatment. Ia certain high altitudes in Switzerland, which are favoured by a large amount of sunshine and a small percentage of moisture, much benefit has been derived from the exposure of the unclothed body to the sun's rays. The power of the sun in high altitudes is so great that the treatment can be continued even when the snow is on the ground. Not only is the sun-treatment applicable to pulmonary tuberculosis, but also to the tuberculosis of joints, even in advanced cases. The treatment has to a great extent replaced surgical procedure in tuberculosis of joints. but it requires to be persevered in over a considerable period of time. It should be remembered that the benefits of fresh air are not confined to sanatoria. If the superstitious
dread of the outer air, particularly at night, could be abolished in ordinary life, more would be done for public health than by the most costly devices for eluding microbes. Not only consumption, but the other respiratory diseases, which are equally destructive, are chiefly fomented by the universal practice of breathing vitiated air in stuffy and overheated rooms. The cases most suitable for the treatment are those in an early stage. Other special institutions for dealing with consumption are hospitals, in which England is far in advance of other countries, and dispensaries; the latter find much favour in France and Belgium.

In Great Britain the pioneer work as regards the establishment of tuberculosis dispensaries was the establishment of the Victoria Dispensary for Consumption in Edinburgh in 1887, where the procedure is similar to that in Dr Calmette's dispensarics in France. In connexion with the dispensary home visits are made, patients suitable to sanatoria selected, advanced cases drafted to hospitals, bacteriological examinations made, cases notified under the voluntary system, and the familics of patients instructed. There is an urgent need for the multiplication of such dispensaries throughout the United Kingdom. The recent act providing for the medical inspection of schools bas done much to sort out cases of tuberculosis occurring in children, and to provide them with suitable treatment and prevent them from becoming foci for the dissemination of the disease. In Germany special open-air schools, termed forestschools, are provided for children suffering from the discase, and an effort is being made in England to provide similar schools.

Of specific remedies it must suffice to say that a great many substances have been tried, chiefly by injection and inhalation, and good results have been claimed for some of them. The most noteworthy is the treatment by tuberculin, first introduced by Koch in 1800, which, having sunk into use as a diagnostic reagent for cattle, reccived a new lease of life owing to the valuable work done by Sir Almroth Wright on opsonins. The tuberculins most in use are Koch's "old" tuberculin T.O., consisting of a glycerin broth culture of the tubercle bacilli, and Koch's T.R. tuberculin, consisting of a saline solution of the triturated dead tubercle bacilli which has been centrifuged. This latter is much in use, the dosage being carefully checked by the estimation of the tuberculo-opsonic index. The injections are usually unsuitable to very advanced cases. Marmorek's serum, the serum of horses into which the fillered young cultures of tubercle bacilli have been injected, and in which a tuberculo-toxin has been set free, has proved very successful. Behring's Tulase is a tuberculin preparation formed by a process of treating tubercle bacilli with chloral, and Béreneck's tuberculin consists of a filtered bouillon culture treated with orthophosphoric acid. The variety of cases to which these ireatments are suitable can only be estimated from a careful consideration of cach onits own merits.
In the treatment of tuberculous lesions, the surgeon also plays his part. Tuberculosis is specially prone to attack the spongy bone-tissue, joints, skin (lupus) and lymphatic glandsespecially those of the neck. Recognizing the infective nature of the disease, and knowing that from one focus the germs may be taken by the blood-stream to other parts of the body, and so cause a gencral tuberculosis, the surgeon is anxious, by removing the primary lesion, to cut short the disease and promote immediate and permanent convalescence. Thus, in the early stage of tuberculous discase of the glands of the neck, for titaness these measures may render excellent service. disease has got a firm hold, nothing than glands by surgical operation is likely 80 results of this modern treatment of shin and of the lymphatic glands firs not only has the infected ti., but the resulting scars h would bave been One rarely sbowing how
work out their own cure. A few years ago, however, such conditions were by no means unusual.
Bialiography.- "Tuberculosis," in Allbult and Rolleston's System of Medicine (1g09): A. Ransome, Milroy Lectures: "Tuberculosis," in Osler's Modern Medicine (1907); Second Interim Report of the Royal Commission on Tuberculosis (1907); Report, by C. Theodore Williams and H . Timbre! Bulstrode, of the International Congress on Tuberculosis held at Paris in 1905: Alexander Foulerton, Milroy Lectures (1910): Sir Thomas Oliver, Diseases of Occupation; Arthur Newsholme, The Prevention of Tuberculosis (1908); Douglas Powall, "Lecture on the Prevention of Consumption," Journ. San. Inst. (Aug. 1904); Calmette and Guérin, " Origine intestinale de la tuberculose pulmonaire," Annales de l'instilut Paslewr, vol. xix. No. 10; D. Muller, "Milk as a source of infection in Tuberculosis," Journ. Compar. Pahth. and Therapcutics, vol. xix.
(H. L. H.)

TUBEROSB. The cultivated tuberose (Polianthes tuderosa) is a plant allied to the Mexican agaves, and is a native of the same country. The tuberous root-stock sends up a stem 3 ft. in height, with numerous Ianceolate leaves and terrainal racemes of waxy white funnel-shaped very fragrant fowers. Each flower is about \(1 \frac{1}{2}\) in. long, with a long tube and a six-parted limb. The stamens are six in number, emerging from the upper part of the tube, and bear lincar anthers. The ovary is threecelled, and the ovoid fruit is crowned by the persistent flower. The plant is largely grown in the United States and at the Cape of Good Hope for export 10 England, as it is found that imported bulls succeed better than those grown in the United Kingdom. The double-llowered form is that principally grown. Cultivated plants require a rich soil, considerable heat, and, at first, abundance of water.
TUBINGEN, a town of Germany, in the kingdom of Wirttemberg, picturesquely situated on the hilly and well-wooded banks of the Neckar, at its junction with the Ammer and Steinlach, 22 m . south of Stultgart by road and 43 m . by rail. Pop. (1905), 16,809 . The older town is irregularly built and unattractive, but the newer suburbs are handsome. The most conspicuous building is the old ducal castle of Hohentübingen, built in \(1507-1535\) on a hill overlooking the town, and now containing the university library of 460,000 volumes, the observatory, the chemical laboratory, \&r. Among the other chicf buildings are the quaint old Stiftskirche (1469-1483), a Gothic building containing the tombs of the rulers of Wurttemberg, the new aulo and numerous institutes of the university, all of which are modern, and the town-hall dating from 1435 and restored in 1872. The university possesses a very important library. A monument was erected in 1873 to the poet Johann Ludwig Uhland (\(1 ; 87-1862\)), who was born and is buried here, and another, in 1881, to the poet Johann Christian Friedrich Hölderlin (\(7770-1843\)). Tübingen's chief claim to attention lies in its famous university, founded in 1477 by Duke Eberhard of Würtiemberg. Melandtithon was a lecturer here (5 5r2-1si8). The university adopted the reformed faith in 1534, and in 1537 a Protestant theological seminary, a residential college-the so-called Stift-was incorporated with it. In 1817 a Roman Catholic theological faculty was added, with a seminary called the Komeike, and there are now also faculties of law, medicine, philosophy, political economy and natural science. The leading faculty has long been that of theolcgy, and an advanced school of theological criticism, the founder and chief liglt of which was F. C. Baur, is known as the Tubingen school. The university was attended in 1908 by 1891 students and had a teaching staff of over 100 . The commercial and manufacturing industries of the town are slight. Printing, book-selling, the manufacture of surgical and scientifie instruments, chemicals, gloves and vinegar, and the cultivation of hops, Iruit and vires are among the leading occupations of the inhabitants. The rountry in tlie neighbourhood of Tibingen le very sttractive; one of the most interesting points is the former te very stlractive; one of the most interesting points is the former \(y\) of Beb
chnteau. mioned as a strong fortress in 1078 , and w3si munts palatinc. In \(134^{2}\) it was purchased' Nitritembing, whose descendants afierwards Wule. The treaty of Tubingen is the bame
given in German history to an arrangement made in \(15: 4\) between Duke Ulrich and his subjects, by which the latter scquired various rights and privieges on condition of relieving the former of his debts. The town was captured by the Swabian League in \(\mathbf{2 5 1 9}\), by Turenne in \(\mathbf{1 6 4 7}\), and again in \(\mathbf{1 6 8 8}\) hy the French, who destroyed the walk.
See Eifert, Geschichte nad Beschreibung der Slad! and Uninersilat Twbingen (Tübingen, 1849); Maier, Dre Musenstadt Tübingen (Tübingen, 1904); Tibingen und stine Umgebung (Tabingen, 1887-1889).

TUBUAI, or Austral Islands, an archipelago in the south「acific Ocean, between \(21^{\circ} 49^{\circ}\) and \(27^{\circ} 41^{\prime}\) S., \(144^{\circ} 22^{\prime}\) and \(154^{\circ}\) 51' W., to the south of the Society Lslands, with a total land area of 110 sq. m ., belonging to France. They form a curved broken chain from north-west to south-cast which includes four principal islands: Tuhuai (area 40 sq. m.), Vavitao or Ravaivai, Rurutu or Oheteroa, Rapa or Oparo, and Rimitara, with Maretiri or the Bass Islands, and other islets. Tubuai, Vavitao and Rapa are volcanic and reach considerable elevations (2100 ft . in Rapa). The islands are well watered and fertile, producing coco-nut palms, arrowroot and bananas; but they lie too far south for the bread fruit to flourish. The natives belong to the Polynesian rece; they were once much more numerous than now, the present population not exceeding 2000. A Tahitian dialect is spoken in the western islands; in Rapa, however, which with the Bass Islands lies detached from the rest, to the south, the language is akin to that of the Rarotongans in the Cook Islands. There are remarkable ancient stone platforms and walls, massively built, on the summits of some of the peaks in Rapa, they resemble the terraces in Easter Lsland (Rapanui), which is believed to have been peopled from Rapa. The scattered islands of the Tubuai archipelago were discovered at different times. Captain Cook visited Rurutu in 1769 and Tubuai in 1777; Rapa was discovered by George Vancouver in 1791. Vavitao perhaps in 1772 ho the Spaniards who attempted to colonize Tabriti, and certainjy hy Captain Broughton in 1791. The islands never attracted much attention from Europeans, and the French protection and subsequent annexation were carried out spasmodically between the middle of the 1 th century and 188 ..
TUCKER, ABRAEAM (1705-1 774), English moralist, was bom is London, of a Somerset family, on the and of September 1705, 300 of a wealthy city merchant. His parents dying during his infancy, he was brought up by his uncle, Sir Isaac Tillard. In 1721 he entered Merton College, Oxford, as a gentleman commoner, and studied philosophy, mathematics, French, Italian and music. He afterwards studied law at the Inner Temple, but was never called to the bar. In 1727 he bought Betcbworth Caste, near Dorking, where be passed the remainder of his life. He took no part in politics, and wrote a pamphlet, "The Country Centeman's Advice to his Son on the Subject of Party Clubs" (175s), cautioning young men against its snares. In 1736 Tucker married Dorothy, the daughter of Edward Barker of East Betchworth, cursitor baron of the exchequer. On her death in 1754, he occupied himself in collecting together all the letters that mad passed bet ween them, which, we are told, he transcribed twice over under the tille of "The Picture of Artless Love." From this time onward he occupied himsclf with the composition of lis chief wark, The Light of Nafure Pursued, of which in 1763 he pablished a specimen under the title of "Froe Will." The strictures of a critic in the Monthly Review of July 1763 drew from him a pamphet called \(M\) an in Quest of Himself, by Cwothbert Comenact (reprinted in Parr's Metophysical Tracts, 1837), "a delence of the individuality of the human mind or self." In 375 the first four volumes of his work were published under the peeudoaym "Edward Search." The remaining three volumes sppeared poathumously. His eyesight failed him cocapletely in 1771 , but he contrived an ingenious apparatus which enabled him to write so legibly that the result could easily be transcribed by his danghter. In this way he completed the later volumes, rhich were ready for publication when he died on the 20th of November 1774.
His work embraces ia its scope many paychological and more tericuly metaphysical discussions, but it is chiefly in connexion with ethics that Tucker's speculations are remembered. In some impor.
bant points he anticipates the utilitarianism afternards ayatematized by Paley, who exprestes in the amplest terms his obligations to his predecessor. "Every man"s own satisiaction" Tucker holds to be the ultimate end of action; and satislaction or pleasure is one and the same in tind, however much it may vary in degree. This univerul motive is further connected, as by Paley, through the will of God, with the "geperal good, the root where out all our rules of conduct and sentiments of honour are to branch."
The Light of Nature was republished with a biographical sketch by Tucker's grandson, Sir H. P. St Join Mildmay (igos), 7 vols. (other editions 1844. 1836, ax.), and an abridged edition by W . Hazlitt appeared in 1807 . See James Mackintosh, Disseriation on the Progress of Ehical Philosophy (Edinburgh, 1832); and specially Sir Leslie Stephen, English Thought in the 187 il Century, iii. 119-2 30 .

TUCRERA, CHARLOTTE MARIA (1821-1893), English author, who wrote under the pseudonym "A.L.O.E." (a Lady of England), was born near Barnet. Middlesex, on the 8th of May 282 t , the daughter of Henry St George Tucker (\(1771-1851\)), a distinguished official of the East India Company. From 1852 till her death she wrote many stories for children, most of them allegories with an obvious moral, and devoted the proceeds to charity. In 1875 she left England for India to engage in missionary work, and died at Amritsar on the and of December 1893.

TUCKER, JOSIAH (1712-1799), English economist and divine, the son of a small Welsh farmer, was born at Laugharne, Carmarthenshire, in 1712 . He was educated at St John's College, Oxford, and became successively a curate and rector in Bristol. This led him to take considerable interest in politics and trade, and during the greater portion of a long life he poured out a succession of pamphlets on these matters. He was appointed dean of Gloucester in 1758 . He died on the 4 th of November 1799, and was buried in Gloucester Cathedral. His Important Questions on Commerce (1755) was translated into French by Turgot.

TUCEON (possibly from Piman styuk-son, "dark or brown spring," pronounced Tooson), a city and the county-seat of Pima county, Arizona, U.S.A., on the Santa Cruz river, in the S.E. part of the state, about 130 m . S.E. of Phoenix. Pop. (1880), 7007; (1890), 5150 (1900), 7531 (2352 foreign-born, chiefly from Mexico); (1910), 13.193. It is served by the Southern Pacific and the Twin Buttes railways, the latter connecting with the mines of the Twin Buttes district, about 27 m . south by east, and with the Randolph lines in Mexico. The city lies about 2360 ft . above the sea in a hroad valley sheltered by mountains \(5000-9000 \mathrm{ft}\). high. Its climate, characteristic of southern Arizona, attracts many invalids and winter visitors. Tucson is the seat of the university of Arizona (1891 ; non-sectarian, coeducational), which is organized under the Morrill Acts; in 1900 it had 40 instructors and 201 students. At Tucson also are a desert botanical laboratory (owning a tract of some 1000 acres about 1 m . west of the city) established hy the Carnegic Institution of Washington, St Joseph's Academy (Roman Catholic); a Roman Catholic cathedral, the Tucson Mission (Presbyterian), a boarding school for Indians, the San Xavier Mission for Indians (Roman Catholic) and a Carnegie library. In 1900 Tucson became the see of a Roman Catholic bishop. The surrounding country is arid and unproductive except where irrigated; hut the soil is very rich, and Tucson is the centre of one of the oldest farming and ranching districts of the state. The Southern Pacific railway has division headquarters and repair shops here.

Tucson is first heard of in history in 1699 , conjecturally, as an Indian rancheria or settlement; and in 1763 certainly as a visita, in that year temporarily abandoned, of the Jesuit mission of San Xavier del Bac, founded between 1720 and \(1732,9 \mathrm{~m}\). south of what is now Tucson; in 1776 it was made 2 presidio (San Augustin del Tugison), or military outpost, and although a few Spaniards may possibly bave lived there before, the foundation of Tucson as a Spanish town dates from this time. It was never after abandoned during the Indian wars. In 1848 it had 760 inhabitants. The abandonment by the Mexicans in 1848 of the mission towns of Tamacacori (a pisifa of Guevavi, a mission founded in the first third of the r8th century) and the presjidio at Tubac (established before 1752) increased its importance. Tucson lay within the territory acquired by the United States by the Gadsden Purchase in 1853; it was occupied by the United States in 1856. Fort Lowell, 7 m . north-east of the city, was built as a protection
blacix glassy scuria which, after consolidation, weather to a red soft rock known as palagonite; tuffs of this kind occur in lceland and Sicily. In the Lipari Isiands and Hungary there are acid (rhyolitic) tuffs, of pale grey or yellow colour, largely composed of lumps and fragments of pumice. Over a large portion of the sca bottom the beds of tine mud contain small, water-worn, rounded pebbles of very spongy volcanic glass; these have been floated from the shore or cast out by submarine volcanoes, and may bave travelled for hundreds of miles before sinking; it has been proved by experiment that some kinds of pumice will float on sea-water for more than a year. The decp sea-deposit known as the " red clay " is largely of volcanic origin and miglt be suitably described as a " submarine tuff-bed."

For petrographical purposes tuffs are generally classified according to the mature of the volcanic rock of which they consist; this is the same as the accompanying lavas if any of these were emitred during an eruption, and if these is a change in the kind of lava which is poured out, the tuffs also indicate this equally clearly. Rhyolite tuff contain pumiceous, glassy fragments and small scoriae with quartz, alkali felspar, biotite, \&c. In Iceland, Lipari, Hungary, Nevada. New Zealand, reeent tuffs of this kind oceur. The broken pumice is clear and isotropic, and when the particles are very smatl
they have often crescentic, sickle-shaped, or biconcave outlines, they have often crescentic. siced by the shattering of a vesicular glass; this is sometimes described is ash-structure. In the ancient rocks of Wales, Charnwood, the Pentland Hills, \&c., similar tuffs are known, but in all cases they are greatly changed by slicification (which has filled them with opal, chaicedony and quartz) and by devitrification. The frequent presence of rounded corroded quartz crystals, such as occur in rhyolitic lavas, helps to demonstrate their real nature. Trachyte tuffs contain little or no quartz but much orthoclase and oligoclase felspar with often biotite, augite and hornblende. In weathering they often change to soft red or yellow clay-stones," rich in kaolin with secondary quartz. Recent trachyte luffs are lound on the Rhine (ai Siebengeburge), in Ischia, near Naples, Hungary, \&e. Andesitic tuffs are exceedingly common. They oceur along the whole chain of the Cordilleras and Andes, in the West Indies, New Zealand, Japan, \&c. In the Lake Cistrict, North Wales, Lorne, the Pentland Hitls, the Cheviots and many other districts of Britain, ancient rocks of exactly similar nature are abundant. In colour they are red or brown; their sconae fragments are of all sizes from huge blocks down to minute granular dust. The cavities are filled up with many secondary minerals, such as calcite, chlorite, quartz, epidote, chalcedony: but in microscopic sections the nature of the original lava can nearly always be made out from the shapes and properties of the little crystals which occur in the decomposed glassy base. Even in the smallest details these ancient tuffs have a complete resemblance to the modern ash beds of Cotopaxi, Krakatoa and Mont Pelée. Basaltic tuffs are also of wide spread occurrence both in districts where volcanoes are now active and in lands where eruptions have long since ended. In the British Isles they are found in Skye, Mull. Antrim and other places, where there are Tertiary volcanic rocks; in Scotland, Derbyshire, Ireland among the carboniferous strata; and among the still older rocks of the lake district, southern uplands of Scotland and Wales. They are black, dark green or red in colour; vary greatly in coarseness, some being full of round spongy bombsa foot or more in diameter, and, being often submarine, may contain shale, sandstone, grit and other sedimentary material, and are occasionally fossiliferous. Recent basaltic tuffs are found in Iceland, the Faeroes, Jan Mayen. Sicily, Vesuvius, Sandwich Isknds, Samoa, \&c. When weathered they are filled with caicite, chlorite, serpentine and, especially where the tavas contain nepheline or leucite, are ofen rich in zoolites, such as anakite, prehnite, natrolite. scotecite, chabazite, heulandite, \&c. Ulira-basic tuffs are by no means frequent; thelr characteristic is the abundance of olivine or setpentine and the scareity or absence of felspar. In this class the peridotite. breccias of kimberlites of the diamond-fields of South Alrica may perhaps be placed (see Dunond). The principal rock is a dark bluish green serpentine (blue-ground) which when thoroughly oxidized and weathered becomes a iriable brown or yellow mass (the "' yellow-ground "). Besides olivine and augite (chrome diopside) there occur crystals of hypersthene, brown mica, garnet (Cape ruby), magnetite, ilmenite and kyanite, toget her with (rystalline blocks of garnet, augite and olivine (which some petrographers have calied eclogites). Many lumps of shale are embedded in the brectia, and some have supposed that the diamonds are due to the utira-basic magma dissolving carthon, which subsequently erystal. lized as the rock cooled down. Many of the critals are broken, and as the rock fragments also are angular, rather than rounded, the kimberlite is more properly an ulera-basic breccia than ofuf.
In course of time other changes than weathering may overtake ruff deposits. Sometimes they are involved in folding and bernme cheared and cleaved. I in Cumberland are finc the tufs are slaty and \(c\)
regions green beds or green schises occur, which consise of quarte, hornblende, chlorite or biotite, iron oxides, felspar, \& c ., and are probably recrystallized or metamorphosed tuffs. They often accompany masses of epidiorite and hornblende-schists which are the corresponding lavas and sills. Some chlorite-schists also are probably altered beds of volcanic tuff. The "Schalsteins". of Devon and Germany include many cleaved and partly recrystallized ash beds, some of which still retain their fragmental structure though their lapilli are flattened and drawn out. Their steam cavities are usually filled with calcite, but sometimes with quarti. The more completely altered forms of these rocks are platy, green chloritic schist 5 ; in these, however, structures indicating their original volcanic nalure only sparingly occur. These are intermediate stages between cleaved tufts and crystalline schists.
Tuffs are not of much importance in an economic sense. The peperino, much used at Rome and Naples as a building stone, is a trachyte tuff. Puzzuolana also is a decomposed tuff, but of basic character, originally obtained near Naples and used as a cement, but this name is now applied to a number of substances not alway of identical character. In the Eifel a trachytic, pumiceous tuff called trass (q.v.) has been extensively worked ast a hydraulic mortar.
(J. S. F.)

TUGELA ("Startling'), a river of southeast Africa, the largest in Natal. It drains, with its tributaries, an area of about \(8000 \mathrm{sq} . \mathrm{m}\). The river valley is some 190 m , in length, the river, which has an exceediagly sinuous course is fully 300 m . long. It riscs, at an altitude of nearly \(11,000 \mathrm{ft}\). in the Drakensherg mountains on the eastern face of the Mont aux Sources, down which it leaps in a nearly perpendicular fall of 1800 ft .

The river, which starts its race to the ocean with a north-east course, soon bends more dircelly east, and, with many windings north and south, maintains this general direction across the tableland of north Natal until its junction with the Buffalo river, when it turns soush. On its northern bank in its upper course are the heights of Spion Kop and Vaal Kranz, and on its southern bank, 56 m . cast in a direct line Irom its source, is the village of Colenso, all three places being the scene of ineffectual attempts (Dec. \({ }^{3899}\) Feb. 1900) by the British (roops under General Sir Redvers Bulfer to dislodge the Boers who blocked the road to Ladysmith. Below Colenso are more waterfalis, and above the river is Pieter's Hill, the storming of which by the British, on the 27th of February 1900 at length led to the relief of Ladysmith. Six miles lower down the Tugela receives the Klip, which rises in the Drakensberg near Vas Reenen's Pass and flows by Ladysmith. Another northern tributary is the Sunday's river, which rises in the Biggarsberg. From the south the river is increased by several affuents, the chief being the Mooi (Beautiful) river. The Tugela-Mooi confluence is 44 m . south-east of Colenso at the base of the Biggarsberg. Seven miles larther down the Tugeia joins the Buflalo river, the united stream retaining, however, the name Tugela. The Buffalo has its origin in the Drakensberg near Majuba Hill and flows south with, also, a general trend to east. In its course, which is very winding, it receives numerous tributarics, one of them being the Ingogo, a small stream whose name recalls the fight on its banks on the 8th of February 1881, between British and Boers. The chief affluents are the Ingagani (from the south-west) and the Blood (from the north-east), the last-named so called after the defeat of the Zulu king Dingaan, on the 86 th of December 1838, by the Boers under Andries Pretorius, when the river ran red with the blood of the Zulus Eighteen miles in a direct line below the Blood con fluence is Rorke's Drift, or lord across the river, and some 12 m south-cast of the drift is the hill of Isandhwana, both places rendered famous in the Zulu War of 1878-79. The junction with the Tugela is 30 m . in a direct line, farther south, the Buffalo river in that distance passing through a wooded and hilly region.

Below the confluence of the two streams the Tugela fows southeast in a deep channed between lofty cliffs, or through wild, stone. strewn valleys until is reaches the narrow coast belt. Its mouth is nearly closed hy a sand bar, formed by the action of the ocean. The Tugtla is thus useless for navigation. About 6 m . above the mouth are two forts. Pearson and Tenedos, buill by the British in 1879, during the war with the Zulus, 10 guard the passage of the river. Generally lordable in the winter monshs, the Tugela is after the heavy rins of summer, a derp and rapid river. It is crossed, some
5 m . above the forts, by a railway bridge-the longest bridge In m. above the Corts by a railway britge- the longest bridge Bufala, thar sercam and subsequently the Tugela form the boundary between Nazal and Zululand.
TUGGURT, 1 town in the Wadi Ghir, Algerian Sahara, 127 m . TUGGURT, a cown in the ivadi Ghir, Algerian Sahara, 127 m .
S. of Biskra. Tuggerf, which has a D0 ulation (1906) of 2073 ,

Some 12 m .south-west at the desert end of the Wadi Ghir is the agcis and town of Temacin (pop. 2120), one of the chief centres of the Mussulman fraternity of Tidianes.

TOG-OF-WAR, a contest between two teams composed of one or more persons, each team striving to pull the other in its own direction by means of a rope held by the hands alone. Some rules allow the "anchor-men," who bold the ends of the rope, to fasten it to their persons. A ribbon or bandkerchief is tied round the middle of the rope, and others at a distance, usually. of one yard on each side of it. That team loses which allows itself to be pulled more than one yard from its original position. The British atmy teams are usually composed of ten men each, but the number varies in different parts of the world. The rules of the modern Olympic Games recognize teams of five. When a tug-of-war takes place out of doors the men, or at least the "anchors," are allowed to dig holes in the ground for their feet: when indoors cleats are bolted to the floor as braces.

TUOUPGABAO, a town and the capital of the province of Cagayan, Luzon, Philippine Islands, on the Grande de Cagayan River, about 60 m . from its mouth Pop. (1903)، 16,105. Many of Tuguegarao's buildings-government, religious, business and residential-are of stone or brick. There are a Dominican college for boys, a convent school for girls, and good public schools, including a high school. The river is navigable to Tuguegarao for vessels of light draught; the Cagay an Valley is the great tobaccoproducing region of the Philippines; and Tuguegarao is an important shipping point for tobacco. Local business is largely in the hands of Chinese merchants: Spanish and German companies control the exportation of tohacco. The town was settled in 2774, and the old church and bell tower are still standing. The bocal dialects are Cagayan, and, of less importance, Ilocano and Tagalog.
TUKE, the name of an English family, several generations of which were celebrated for their efforts in the cause of philanthropy.

Wrucive Tuxe (1732-1822) was born at York on the 24th of March \(\mathbf{8 7 3 2}\). His name is connected with the humane treatment of the insane, for whose care he projected in 1792 the Retreat at York, which became famous as an institution in which a bold attempt was made to manage lunatics without the excessive retraints then regarded as esential. The asylum was entirely under the management of the Society of Friends. Its success lod to more stringent legislation in the interests of the insane.

His mon Henay Tukg (1755-1814) co-operated with his fatber in the reforms at the York Retreat. He was the author of everal moral and theological treatises which bave been translated into German and French.

Heary's son Sayuel Tuxe (\(1784-1857\)), born at York on the 3 3st of July 1784 , greatly advanced the cause of the ametioration of the condition of the insane, and devoted himself largely to the York Retreat, the methods of treatment pursued in which be made more widely known by his Descriplion of the Relreat near Ferk, Icc. (York, 1813). He also published Prectical Hinis en the Construction and Ecomomy of Pauper Lwnatic Asshums (i81 g). He died at York on the \(14 \mathrm{th}^{\mathrm{h}}\) of October 1857.

Samuel's son Janes Hace Tuke (1819-1896) was born at Yort on the 13th of September 18ig. He was educated at the Friends'school there, and after working for a time in his father's whifale tea husiness, hecame in 1852 a partner In the banking finof Sharples and Co., and went to live at Hitchin in HertfordYh. Ror eighteen years he was treasurer of the Friends' Foreign Anporiation, and for eight years chairman of the Aquttral Education Board. But he is chiefly rememjes philanthropic work in Ireland, which was in a and result of a visit to Connaught in 1847 , and mint distresa which he there witnesced. In 1880 , W. W. E. Forster, he spent two months in the ributing relief which bad been privately In Engiand. Letters descriptive of the Were published in The Times, and in his and its Remedies (1880), he pointed out due to economic rather than political
difficulties, and advocated state-aided land purchase, peasant proprietorship, light railways, government help for the fishing and local industries, and family emigration for the poorest peasants. From 1882 to 1884 he worked continuously in Ireland superintending the emigration of poor families to the United States and the Colonics. The failure of the potato crop in Ireland in 1885 again called forth Tuke's energy, and on the invitation of the government, aided hy public subscription, he purchased and distrihuted seed potatoes in order to avert a famine. To his reports of this distribution and his letters to The Times, which were reprinted under the title The Comdition of Donegal (1889), were due in a great measure the bill passed for the construction of light railways in 1889 and the Irish Land Act which established the Congested Districts Board in 1891. He died on the 13 th of January 1896.
See Report of the Select Committee of the House of Commont (18151816): Dr Conolly, Treatment of the Insane without Mechanical Restrambs (1856): Dr Hack Tulee, Chapters in the History of the Insane in the British Istes (1882).

Danizt. Hace Tuxe (r827-1895), younger brother of James Hack Tuke, was born at York on the 19th of April 1827. In 1845 he entered the office of a solicitor at Bradford, but in 1847 began work at the York Retreat. Entering St Bartbolomew's Hospital in London in 1850 , he becane a member of the Royal College of Surgeons in 1852, and graduated M.D. at Heidelberg in 1853. In i858, in collaboration with J. C. Bucknill, he published a Manual of Psychological Medicine, which was for many years regarded as a staodard work on lunacy. In 1853 be visited a number of foreign asylums. and later returning to York he became visiting physician to the York Retreat and the York Dispensary, lecturing also to the Yort School of Medicine on mental diseases. In 1859 ill heahth obliged him to give up bis work, and for the next fourteen years be lived at Falmouth. In 1875 he settled in London as a specialist in mental diseases. In 1880 he became joint editor of the Journal of Montal Science. He died on the 5th of March 189 s .

Among his works werc Illustrations of the Inftuence of the Mind on the Body (1872); Insanily in Ancient and Modern Life (1878); History of the Insone in the Brieish Inles (1882); Slecproalhing and Hypnotism (1884); Past and Present Provision for the Insame Poor in Yorkshire (1889); Dictionary of Prychological Medicine (1892).

TUKULOR (Tuculers), the name, by some said to be the French tout-coulewr, for the negro half-castes of Senegal, who are principally of Fula-Wolof descent. By otbers the word is identified with Tacurol, an old name of the country, which took the form of Tacurores in the Portuguese writers of the 16th century. The Tukulor are setuled chielly in the Damga, Futa, Toro and Dimar districts of Senegal, and are remarkable for their fanaticism as Mabommedans. An intelligent, energetic and fierce people, they offered strenuous opposition to the conquest of their country hy the French in the latter half of the igth century.

TULA, a government of central Russia, bounded by the governments of Moscow on the N., Ryazali on the E., Tambov and Orel on the S., and Kaluge on the W. Area, 11,950 sq. m.; pop. (1906 estimate), \(1,662,600\). It is intersected from S.W. to N.E. by a gently undulating plateau, 950 to 1020 ft . in altitude, which separater the drainage area of the Oka from that of the Don.

The government is divided into twelve districts the chief towns of which are Tula, Bogoroditsk, Alexin, Byelev, Epifan, Efremov, Kashira, Krapivna, Novosil, Odoyev, Chern and Venev. Only \(2.4 \%\) of the aggregate area is considered as unavailable for cultiva. tion, the remainder being distributed as follows: peasants, \(481 \%\); nobility, \(321 \%\); other private landowners, \(11 \%\); crown, towns, \&c. \(2 \%\). Agriculture ia the chief occupation. Petty trades and domestic indugtries (e.g. the making of tes-urns, brass wares, harmoniums, \&cc.) have always flouriebed. The principal factory establishments are machinery works, hardware factorics, flour-milla, eugar works and distilleries. Coal is extracted, as also pyrites and iron ore. Metallurgy is a growing industry.

Before the Slav immigration the territory of Tula was inhabited hy Mordvinians in the north and hy Meshcheryaks in the south. The Slavs who occupied the Ots were soon compelled to pay tribute to the Rhazars. Subsequentiy the territory on the Oka belonged to the principality of Chernigov. In the 14th century part fell under the rule of Ryazan and

Moscow, while the rest was under Lithuanian dominion till the 15 th century.
TULA, a town of Russia, capital of the government of the same name, 120 m . by rail S . of Moscow, in the broad but low, marshy and unhealthy valley of the Upa. Pop. (1882), 63,500, (r901), \(t 09,352\). It is an old town of Old Russia, but its growth began only towards the end of the 88 th century after the manufacture of arms had commenced. The chief branch of industry is the making of nfles, next in importance comes the manufacture of samosars (tea-urns). Tula is an episcopal see of the Orthodox Greek Church. The public buildings include two cathedrals and an industrial museum.

The town is first mentioned in 1447, but its former site seems to have been higher up the Tulitsa. Its wooden fort was replaced in 1514-1521 by a stone kreml, or citadel, which still exists. Tsar Boris Godunov founded a gun factory bere in 1595, and in 1632 a Dutchman, Winius, established an tron foundry. Tsar Michael Alexis and Peter the Great, especially the last-named, took great interest in the gun factories, and large establishments were built in 1705 and 1714 -

TULCEA, or TULTcha, the capital of the department of Tujeea, Kumania, on the right hank of the Danube, 42 m . from its mouth at Sulina. Pop (1900), 18,800 ; including many Russians, Turks, Greeks and Jews. There is no railway within 20 m ., and the surrounding country is barren and desolate. The principal commerce is in fish and grain. Wool is also exported to France, and hides to Turkey. Sheep-farming is carried on among the mountains.
TULIP (\(T_{m l i p a}\)), a genus of bulbous herbs belonging to the Liliaceae. The species are found wild along the northern shores of the Mediterranean, in the Levant, Armenia, Caucasus, Northern Africa, Persia, and sporadically across North and Central Asia to Japan. The cup-shaped flowers have six regular segments in two rows, as many free stamens, and a three-celled ovary with 2 sessile stigma, which ripens into a leathery many-seeded capsule. The species are numerous, and are distinguisbed one from another by the scales of the bulb being woolly or smooth on the inner surface, by the character of the fower-stalks, by the filaments being hairy or otherwise, and by other characters. Owing to the great beauty of the flowers they have been favourites in European gardens for two or three centuries, and have been crossed and recrossed till it has become almost impossible to refer the plants to their original types. The early flowering "Van Thol " tulips, the segments of which are mostly scarlet with yellow edges, are derived from \(T\). suavcolens, a native of the Caspian region. T. Gesneriana, a native of Armenia and central Russia, is the origin of some of the later flowering varieties. \(T\). pubescens, which is probably a bybrid between the two species just named, is the source of some of the early flowering kinds known as Pottebakker, \&c. T. oculus-solis and T. Clusiana are lovely species, natives of southern Europe, and \(T\). silvestris, with elegant yellow flowers, is a doubtful native of England. More recently, owing to the exertions of Russian naturalists, a large number of new species have been discovered in Turkestan, and Introduced into Europe. Sorac of these are very beautiful, and render it probable that by intercrossing with the older species still further difficulties will be presented in the way of identification. These difficulties are further enhanced by the fact that, quite apart from any cross-breeding, the plants, when subjected to cultivation, vary so greatly in the course of two or three years from the original species from which they are directly descended that their parent age is scarcely recognizable. This innate power of variation has enabled the florist to obtain, and ultimately to "fix," so many remarkable varieties. At the present day tulips of all kinds are much more extensively grown than at any previous period. Not only are millions of bulbs cultivated in Holland for export every year, but thousands are now also grown for the same purpose in the Channel Islands, more particulariy In Guernsey. Of late years tulips have become very popular in America, and an extensive trade is now done between the USA, and Furope. The enormous prices once given for rait varieties of tulip bulbs no longer obtain, though, even now, two and three guineas are asked for special bulte If raust,
ever, be remembered that the "tulipomania" of the rith century was really a form of gambling, in which admiration oi the flower and interest in its culture were very secondary matters. Tulips were introduced into the Low Countries in the 16Lh century from Constantinople and the Levant

The forists' varieties of tulips, which have sprung from Tulipa Gesneriana, are arranged in separate classes named bizarres, bybloemens and roses, according to their colour and marking. Tulips are readily raised from sceds, and the seedlings when they first flower (aiter about 7 years cultivation) are of one colourthat is, they are self-coloured. Judged by the florists' rules, they are either good or bad in form, and pure or stained (wbite or yellow) at the base, the badly formed and stained flowers are thrown away, while the good and pure are grown on, these being known as " breeder " tulips. The breeder bulbs and their offsets may grow on for years producing only self-coloured flowers, but after a time, which is varied and indefinite; some of the progeny " break," that is, produce flowers with the variegation which is so much prized. The flower is then said to be "rectified "; it is a bizarre when it has a yellow ground marked with purple or red, a byblocmen when it has a white ground marked with violet or purple, or a rose when it has a white ground marked with rose colour. One of the most important of the properties of a finc florists' tulip is that the cup should form, when expanded, from half to a third of a hollow ball, the six divisions of the perianth being broad at the ends, and smooth at the edges, so that the divisions may scarcely show on indenture. Another is that the ground colour should be clear and distinct, whether white or yellow. The least stain at the base of the flower, technically called the " botiom," would render a tulip comparatively valueless. What are called " feathered " flowers are those which have an even close feathering, forming an unbrokea edging of colour all round, " flamed" flowers being those which have a beam or bold mark down the centre, not reaching to the bottom of the cup.

Tulips flourish in any good garden soil that has been deeply dug or trenched and manured the previous season. To secure perfect drainage and greater warmth a fair quantity of sand or grit should be present. Fresh manure should be avoided, but the remains from an old hot-bed or mushroom bed may be incorparated. The best time to plant is in September and October. the bulls being buried about 6 in . deep and the same distance apart. The best effects are produced in formal beds by planting the same variety in each to secure the plants being of the same height and in flower simul taneously. In mixed fower borders, mixed varieties may be planted. After planting the space between the rows of tulips may be planted with such plants as forget-me-nots, walliowers, silenes. violas, double white arabis, polyanthuses, \&c., to obtain beautiful colour combinations in opring.

Propagation.-Tulips are usually increased by offsets, which most varietles produce in fairly large numbers. These are taken off and sown in drills, like seed. They are usually strong enough to flower the third year from this sowing. Some varieties produce ofiscts sparingly and must be increased by seed-a slow and uncerrain method. New varicties are raised from seed. (The colour variation in the flowers of seedilings is discussed above.) Seeds are sown in boxes or cold frames, in light sandy soil, and the young plants ant allowed to remain undisturbed until the second year. They are then lifted and treated like offsets, being sown thinly in beds out of doors. They usually flower in about the seventh year. The soil in which tulips are propagated should be sandy, free working and thoroughly drained. A warm sheltered position is a mecessity.

Cullivation Ont of Doors.- Planting is best efected during September, October and early November. It is usual thoroughly to dig and manure the ground in preparation. Holes 6 to 8 in aparr and 5 in . deep are then made with a dibber. Somet tmes a little foose earth or sand is put in to the depth of about 18 ine, and the bulbs laid singly thereon, the hoies being doued ly the siitsec and the whole raked over. Valuable raked over. Valuable
with a trowel, a litele sa
Unicta secd fs r
are the most convenient. The tops should be covered with itin. of soil, and about half an inch left for water. The soil ahould be a fight and fairly rich compost, comprising about 2 parts loam, 1 part decayed manure or horse droppiage that have been thorougthly sweetened, I part leaf mould and half a part of aand. Pot firmily. and plunge the pots in several inches of ashes out of doors, to protect the bulbe from froat. As soon as growth commences at the top and a fair amount of roots are formed they may be introduced into gentle heat. in batches according to the need and the amount of stock available. For market a alightiy different method is adopted. The bulbs are placed in long shallow boxes, plunged in soil or asbes in the open air, and are later Introduced as required into heat in semi-darkness, and are afterwards transferred to benchee in the lorcing houses where they flower. Bulbs which have been forced are of po further value for that particular purpose. If planted in borders and shrubberies, however, they will coutinue to bear fairly good blossoms in the open air for several scasonit

Varieties.-The following varieties are among the most useful for bedding and pot culture.

Zarly Single Flowering Kinds:-
\begin{tabular}{|c|c|c|}
\hline Name. & Colour. & Height. \\
\hline Duc van Thol & Various & 6 in. \\
\hline Ademisio & Rose Carmine & 7. \\
\hline Artie & Dark Scarlet & 8. \\
\hline Becchus: \({ }^{\text {Belle Alliance }}\) & Dark Crimson & \(7 \%\) \\
\hline Canary Bird & Yellow - & 10.12 \\
\hline Chrychora & Yellow & 9. \\
\hline Cokeage Maid . & Piak and White & 12. \\
\hline Duchen de Parma Gold Finch & Orange Crimoon & 10 \\
\hline Joout van Vondei & Crimeon, flaked White & 12 \\
\hline Keisers Kroon & Scarlet and Yellow, superb flower. & \\
\hline La Reine & White (when lorced) and Pink. & 9 \\
\hline Lac van Rhijn & Rosy Violet. & \% - \\
\hline Ophir dor
Portebalker & Golden Yellow, White, Yellow vars. & 8. \\
\hline Protebakker \({ }^{\text {Primeen }}\) & Scathet, White, Yellow vars.
Primrose. & 12 \\
\hline Proserrife, & Roy Carmine, muperb flower & 9 \\
\hline Rose Gris de lin & White and Pink. . . . & \\
\hline Thomas Moore & Terra-cotta & 9 \\
\hline White Hawk
Yellow Prince & Pure White & \({ }^{10} 8\). \\
\hline
\end{tabular}

Early Double Flowering Rimds:-
\begin{tabular}{|c|c|c|}
\hline Name. & Colour. & Height. \\
\hline Duc ran Thol & Red. edzod Yellow & 6 in. \\
\hline Alba Maxima & Pure White - . . & 9 , \\
\hline Couronne d'Or & Yellow and Orange. & 9. \\
\hline Cloria Solie & Orange Crimsoan. & 9. \\
\hline Laperator rubrorum & Crimson Scar & \(9:\) \\
\hline Leonardo da Vinci & Pure White Crimson and Goid. . & 8 \%." \\
\hline Toummeal & Scarlet and Yeiiow & 8 \\
\hline
\end{tabular}

\section*{Ent Singte Ficuering Kinds:-}

3 These are tall-growing hardy kinds, suitable for herbaceous tonders where they can be keft undiaturted. With them may be mociated what are now popularly known as "Darwin " sulpps; "Miful boag-termmed kinds with self colours, and the "Cottage";
 - Hifous green and yeliow striped \(T\) otridinora. The flowers -rtravery and drooping. petals brightly coloured. the edges unched and waved.

TULIP-TRER, Liriodendron adipifora (Nat. Ord. Magnoliaceac), a North American tree of great beauty, with peculiarly four-lobed, truncate leaves and solitary tulip-like sweet-scented flowers, varicgated with green, yellow and orange. It is hardy in England, but while young it requires protection from cold, cutiling winds. In habit it resembles a amewhat stiff-growing plape tree, and becomes fully as large. It does not flourish in the atmosphere of towns. It thrives best in deep sandy loam, and is propagated by seeds.

TULL, JETHRO (1674-1741), English agricultural writer and, farmer, was born at Basildon, Berkshire, in-1674, probably in March. He entered St John's College, Oxford, in 1691, and was called to the bar at Gray's Inn in 1699 but never practised. In that year he married and began farming on his father's land at Howberry, near Wallingiord, and here about 170 he invented and perfected his machine drill and began experiments in his new system of sowing in drills or rows sufficiently wide apart to allow for tillage by plough and hoe during almost the whole period of growth. In 1709 he moved to a farm near Hungerford and from 1711 to 1714 travelled in France and Italy, making careful observations of the methods of agriculture in those countries which aided and confirmed his theories as to the true use of manure. and the importance of "pulverizing " the soil. He did not publish any account of his agricultural experiments or theories until i 731, when his Horse-hocing Husbandry appeared. This was followed by The Horse-hocing Husbandry, or an Essay on the Principles of Tillage and Vegelation, by J. T., in 1733 . He was attacked in the agricultural periodical The Practical Husbandman and Farmer and accused of plagiarizing from such earlier writers as Sir A.
 1638) and John Worlidge (f, 2669-1698). Tull answered in various smaller works forming additions to his main work. He died on the \(215 t\) of February 1241.

Many editions of his Hopse-kocing Frusbasdry were published mubsequently, and in \(\mathbf{1 8 3 2}\) William Cobbett edited it. It was tranelated into French, notably by H. L. Duhamel Dumonceau (1700-1782), the naturalist and agriculturalist, in 1753-1757 (see AGRICULTURE).
TULLAMORB, 2 market town and the county town of King's County, Ireland, on tbe Grand Canal and a hranch of the Great Southern \& Western railway, by which it is 58 m. W. by S. of Dublin. Pop. (1901), 4639 . The town is the seat of the county assizen, has a court house and other county buildings, and is governed by an urban district council. There is considerable trade in agricultural produce, and brewing and distilling are carried on. Charleville park is a fine demesne, and there are several small ruined castles in the neighbourtood, notably Shragh Castle, dating from 1 ge8.

TULLE, a town of central France, capital of the department of Corrèze, 58 m . S.S.E. of Limoges by rail. Pop. (1906), of the town, 11,741: of the commune, 17,245. The town extends along the narrow valley of the Correxe, fits streets bere and there ascending the hill-slopes on either side by means of stairways. Tulle is the seat of a bishop. Of its zath-century cathedral, once attached to an abbey, only the porch and mave remain, the choir and transept having been destroyed in 1793, but there is a tower of the 13th ceatury with a fiase stone storple of the 14 th century. The seighbouring cloister (asth and inth century) has been restored. The abbot'a house (igth century) has 2 carved doorway and well-preserved windows. Other curious old bouses are to be seen in the vicinity of the cathedral. The prefecture of Tulle is a sumptuous building of 1869 surrounded by gardens The town has tribunats of firat instance and of commerce, a lycte for boys, training colleges for both sexes, a chamber of commerce and a braach of the Bank of France. Its principal induastry is the manufacture of small-arms, eakablished in 1690 , and now carried on by the state under the direction of the artillery authorities. At its busiest times the factory has employed 3000 hands. The well-known cascades of Gimet lormed by the Montane are near Tulle.
Tulle (\(T\) mida) owed its importance in the middle ages to the abbey of St Martin, founded in the 7 th or 8 th century. The
abbacy was raised to the rank of bishopric in 1317. The town was taken by the English in 1346 and was subsequently ravaged by the Black Death. It was again conguered by the Enghish in 1369 ; but, when the inhabitants succeeded in freeing themselves, they were exempted from all imposts by Charles \(V\). The Protestants tried in vain to seize Tulle in 1577, but were successful in 1585
TULLE, a term restricted in England to a finc bobbin-net of silk, used for veils, scarves, millinery purposes, and trimmings of ladies' dresses, 2c. The French used the word to mean all machine-made lace the basis of which is the intertwisted network made on the bobbin-net machine. The word is derived from the town of Tulle in Fran
TULLOCH, JOHN (1823-1886), Scottish theologian, was born at Bridge of Earn, Perthshire, in 1823, and received his university education at St Andrews and Edinburgh. In 1875 he became minister of St Paul's, Dundee, and in 1849 of Ket tins, in Strathmore, where he remained for six years. In 1854 he was appointed principal of St Mary's College, St Andrews. The appointment was immediately followed by the appearance of his Burnet prize essay on Theism. At St Andrews, where he held also the post of professor of systematic theology and apologetics, his work as a teacher was distinguished liy several features which at that time were new. He lectured on comparative religion and ercated doctrine historically, as being ritt a fixed product but a growth. From the first be secured the attachment and admiration of his students. In 1862 be was a prointed one of the clerks of the General Assembly, and from that time forward he took is leading part in the councils of the Church of Scolland. In 1878 he was chosen moderator of the Assembly. He did much to widen the national church. Two positions on wbich he repeatedly insisted have taken a firm hold-first, that it is of the essence of a church to be comprehensive of various views and tendencies, and that a gational church es ecially should scek to represent all the elements of the life of the nation; secondly, that subscription to a creed can bind no one to all its details, but only to the sum and substance, or the spirit, of the symbol. For three years before his death he was convener of the church interests committee of the Church of Scotland, which had to deal with a great agitation for lisestablishment. He was also deeply interested in the reorgarization of education in Scotland, both in school and university, a acted as one of the temporary board which settled the primary school system under the Education Act of 1872. He died at 7urquay on the 13 th of February 1886.

Tulloch's best-known works are collections of biographical sketches of the leaders of great 1 iovements in church history, such
as the Reformation and Pruitanimm. His most important book, Rational Theology and Christian the Cambridge Ptatonists and ott er lea in the 17 th century are similarly treated In the 17th century are similarly treated. He delivered the second serien of the Croall lectures, on the Doctrine of Sin, which were afterwards published. He also fulished a small work, The Chrass of the Cospels and the Christ of Hiviry, in which the views of Rcnan on the gospel history were dealt with; a monograph on Pascal for Blackwood's Fortign Classics se ies; and a litele work, Begirning Life, eddressed to young men, wtiten at an earlier period.

See the Lifs by Mrs Oliphant.
TULLUS ROSTILUS, third ligendary king of Rome (\(672-\) 640 B.C.). His successful was with Alba, Fidenae and Veii sbadow forth the earlier conquats of Latian territory and the first extension of the Roman do nain beyond the walls of Rome. It was during bis reign that the combat between the Horatii and Curiatii, the representative of Rumse and Alba, took place. He is said to have been struck tad by lighening as the punishment of his pride.

Tullus Hostilius is simply tle duplicate of Romulus. Both are brought up among shepheris, carry on war against Fidenae and Veii; double the number citizens, organize the army, and disappear from earth in a storm. As Romulus and Numa represent the Ramnes and Titis, so, in order to complete the list of the four traditional elermints of the nation, Tullus was made the representative of the l.uceres, and Ancus the founder of the Plebs. The distinctive event of this reign is the destruc-
tion of Alba, which may be regarded as an historical fact. But when and by whon it was destroyed is uncertain-probably at a later date, by the Latins, and not by the Romans, who would have regarded as impious the destruction of their traditional mother-country.
See Livy i. 22-31; Dion. Halic, iii. 1-35; Ciccro, de Republica, ii. 17. For a critical examination of the story sce Schwegler, Röm ssche Geschichte, hk. xii.; Sir G. Cornewall Lewis, Credibilily of early Roman History, ch. \(11 ;\) W. Thne. Hist. of Rome, vol. i.: E. Pais, Storia di Roma, vol. i, (1898); O. Gilbert, Geschechte und Topographie dcr Stadt Rom im Allertum, ï. (i885); G.F. Schömann. "De Tullo Hostilio rege romano" in his opusculo, i. 18-49; also Rome: Ancient Ilistory.
TULSA, a city (and co-extensive township) and the countyseat of Tulsa county, Oklahoma, U.S.A., on the Arkansas river, about 110 m . N.E. of Guthric. Pop. (1900), 1390; (190;), 7298 (638 negroes); (1910) 18,182 . Tulsa is served by the Atchison, Topeka \& Santa Fé, the St Louis \& San Francisco, the Midland Valley, the Missouri, Kansas \& Texas, and the Arkansas Valley \& Western railways. The city is situated on the old boundary line between Indian Territory and Oklahoma Territory; Where the boundaries of the Cherokee, Creck and Osage nations intersected. It is on an elevation from the rolling prairie, which commands a fine view over the valley of the Arkansas. Tulsa is the seat of Henry Kendall College (Presbyterian, 1894), removed hither from Muskogec in 1907; it was named in honour of Henry Kendall (1815-1892), who from 186y until his death was secretary of the board of Home Missions of the Presbyterian Church. The city is a crading centre for a rich oil, gas and coal region and a grain, cotton and live-stock-country. Natural gas is used for manufacturing purposes; among the manufactures are glass and cotton-seed oil products. Tulsa was founded in 1887, was first chartered as a city in 1902, and in r908 adopted a commission form of government.

TULSI DĀS (1532-1623), the greatest and most famous of llindi poets, was a Sarwariyā Brahman, born, according to tradition, in A.D. 1532 , during the reign of Humayyn, most probably at Rajaxpur in the Bánda District suath of the Jumne. His father's name was Atma Ram Sukal Dubè; that of his mother is said to have been HulasI. A legend relates that, having been born under an unlucky conjunction of the stars, he was abandoned in infancy by his parents, and was adopted by a wandering sidhü or ascetic, with whom He visited many holy places in the length and breadth of India; and the story is in part supported by passages in his poems. He studied, apparently after having rejoined his family, at Sükarkhēt, a place generally identified with Soron in the Eith district of the United Provinces, but more probably the same as Varāhakshētra \({ }^{1}\) on the Gogra River, 30 m . W. ol Ajödhyă (Ayödhyă). He married in his father's tifetime, and begat as son. His wile's name was Ratnâwali, daughter of Dinabandhu Päthak, and his son's Tarak. The latere died at an early age, and Tulsi's wife, who was devoted to the worship of Rama, left her husband and returned to ber fat her's house to occupy herself with religion. Tulst Das followed her, and endeavoured to induce her to return to him, but in vain; she reproached bim (in verses which have been preserved) wilh want of faith in Ryma, and so moved bim that he renounced the world, and entered upon an ascetie life, much of which was spent in wandering as a preacher of the necessity of a loving faith in Rama. He frrst made Ajodhya (the capital of Rama and near the modern Fyziluad) his headquarters, frequently visiting dis tant places of pilgrimage in different parts of India, During his residence at Ajodhya the Lord Rams is said to heve appeared to him in a dream, and to have comroanded bies to
Rumãyana in the language used by the coangea peen
began this work in the year 857 , and lab finithed at began this work in the year 857 , and
book (Aramya-kand) navas at \(\mathrm{Ajoj}_{\mathrm{d}}^{\mathrm{d}} \mathrm{by}\), 10 migrate to e ares, where

In \(\mathbf{6 6 2 3}\), during the reign of the emperor Jahangir, at the great age of 9 .
The period of his greatest activity as an author synchronized with the latter hall of the reign of Akbar (\(1556-\mathrm{s} 605\)), and the first portion of that of Jabangir, his dated works being as follows: commencement of the Rdmayan, 1574; Rdm-salsal, 1584; Parbafl-mangal, 1586; Rämagyd, 1598; Kabitua Ramdyan, between \(16{ }^{6} 2\) and 1614. A deed of arbitration in his band, dated 1612, relating to the settlement of a dispute between the sons of a land-owner named Todar, who possessed some villages adjacent to Benares, has been preserved, and is reproduced in facsimile in Dr Grierson's Modern Vernacular Literature of Hindustan, p. sr. Todar (who was not, as formerly supposed, Akbar's finance minister, the celebrated Raja Fodar Mall) was his attached friend, and a beautiful and pathetic poem \({ }^{1}\) by Tulst on his death is extant. He is said to have been resorted to, as a venerated teacher, by Mahäraja Mañ Singh of Jaipur (d. 1688), his brother Jagat Singh, and other poweriul princes; and it appears to be certain that his great fame and influence as a religious leader, which remain pre-eminent to this day, were fully established during his lifetime.

\begin{abstract}
 deeds \({ }^{\text {" }}\) is perthaps better known among Hindus in upper India than the Bible among the rustic population in England. Its verses are everywhere, in this region, popular proverbs; an apt quatation/rom them by a stranger has an immediate effect in producing interest and confidence in the hearers. As with the Bible and Shakespeare, bis phrases have passed into the common speech, and are used by every one (even in U'rdü) without being conscious of their origin. Not orly are his sayings proverbial: his doctrine actually forms the most powerfu! religious influence in present-day Hinduism; and, though he founded no school and was never known as a guru of master, but professed himself the humble follower of his teacher. Narhari-Düs. \({ }^{2}\) from whom as a boy in Sükar-khett he heard the tale of Kama's doings, he is everywhere accepted as an inspired and authoritative guide in religion and conduct of life.
The poem is a rehandling of the great theme of VIlmiki, but is in mo sense a translation of the Sanskrit epic. The succession of events bof coursegenerally the same, but the treatment is entirely different. The episodes infroduced in the course of the story are for the most part dissimilar. Wherever Valmiki has condensed, Tulsi Dass has expanded, and wherever the elder poet has lingered longest, there his sucecsor has hastened on most rapidly: It consists of seven books, of which the first two, entitled "Clildlyood " (Bul-kded) and "Ayoudhya " (Ayddhyd-kupd), make up more than hall the work. The eerond book is that most admired. The tale tells of King Dasarath's court, the birth and boyhood of Räma and his brethren, kis marriage with Sita, daughter of Janak king of Bidëha, his volun. bary exile, the result of Kaikēyi's guile and Dasarath's rosh vow, the dwelling together of Rama and Siti in the great central Indian forest, her abduction by Rāvan, the expedition to Lankia and the overthrow of the ravisher, and the life at Ajodhy号 after the return
\end{abstract} of the reunited pair. It is written in pure Baiswäri or Eastern Hindi, in stanzas called chaupaits, broken by döhds or couplets, with an occasional sörafhä and chhand-the latter a hurrying metre of many rhymes and alliterations. Dr Grierson well describes its movement Avork of art, it has lor European readers prolixities and epoodes which grate against occifental castes, but no one can read it ia the original without being impressed by it as utie work of a great flomen Ies sty'le varies with each subject. There is the decp fthos of the scenc in which is described Kima's farewell to hus hother; the rugsed language depicting the horrors of the batelefrorberating from phrase to phrase; and, as occasion requires, a W-Ferberating from phrase to phrase; and, as occasion requares, a
from nat ure herself, and not from the traditions of the schools.
chrecters, too, live and move with all the dignity of an heroic uhn is ieal beind with a well defined personality; Rama, all our sympathies: his impetuous and the tender, constant. Bharat: Sith, the ; Rivan, destined to failure, and

in the poet's own
birthplace. One irs before the poet's
from Ramannand,
focla (see ar ácle
death, and carefully corrected, it is alleged by Tulsi Drs himself, in at Ajodhy at Malitibid in the Lucknow district, but has not so far as known, been seen by a European. Other ancient MSS. are to be found at, Benares, and the malerials for a correct text of the Ramayan are thus available. Good editions have been published by the Khadea Bilds press at Bankipur (with a valuable life of the poet by Baijnath Das), and by the Nafari Pracharimi Sabha at Allahabad (igoz). The ordinary balitr copies of the poem, repeatedly reproduced by lithography, teem with interpolations and variations from the poets language. An excellent translation of the whole into English was made by the late Mr F. S. Growse, of the Indian Civil Service (5th edition, Cawnpore, 1891).

Besides the "Lake of Roma's deeds," Tulsi Das was the author of five longer and six shorter works, most of them dealing sith the theme of REma, his doings, and devotion to him. The former are (1) the D8hébofl, consisting of 573 miscellaneous dohd and sorathe verses; of this there is a duplicate in the Rdm-salsat, an arrangement of seven centuries of verses, the great majority of which occur also in the Dohdbali and in other works of Tulsi; (2) the Kabifla Ramiyem or Kabilldbali, which is a history of RIma in the kabilla, ghanalkshari, chhoppas and samaiyd metres: like the Rim-charil. mdras, it is divided into seven konds or cantoa, and is devoted to setting forth the majestic side of Rama's character; (3) the GLS Ramayan, or Guaball, also in seven kands, aiming at the flustrajion of the tender aspect of the Lord's life; the metres are adapted for singing: (4) the Krishndradi or Kriskna pidibaft, a collection of 68 congs in honour of Krishna, in the Kanauji dialect: the authenticity, of this is doubtful; and (5) the Binay Pattrika, of "Book of petitions, a series ol hymns and prayers of which the first 43 are addressed to the lower gods, forming Rama's court and attendants, and the remainder, Nom 44 to 279 ; to Rtma himself. Of the amaller comb positions the most interesting is the Vairdgye Sandipant, or "Kindling of continence," a poem describing the nature and greatness of a holy man, and the true peace to which he attains. This work has been translated by Dr Grierson in the Indian Andiquary, xxil. 198-201.

Tulsi's doctrine is derived from Rrmanuja through Remanand. like the former, he believes in a supreme personal God, posessing all gracious qualities (saguna), not in the quality-less (nirgura) neuter impersonal Brakman of Sankarachnrya; this Lord Himeelf once took the human form, and became incarnate, for che bleasing of mankind, as Rima. The body is therefore to be honoured, not despised. The Lord is to be approached by failh (bhakti)-dis interested devotion and surrender of self in perfect love, and all actions are to be purified of self-interest in conteraplation of Him. "Show love te all creatures, and thou wilt be happy; for when thou lovest all things, thou lovest the Lord, for He is all in all. \({ }^{\text {" }}\) The soul is from the Lord, and is subraitted in this fife to the bondage of works (karma); "Mankind, in their obstinacy, keep binding themselves in the net of actions, and though they know and hear of the blis of thowe who have faith in the Lord, they attempt not the only means of release. Works are a spider's thread, up and down which she continually travels, and which is never broken; so works lead a soul downwards to the Earth, and upwards to the Lord." The bliss to which the soul attains, by the extinction of desire, in the supreme home, is not abeorption in the Jord, but union with Him in abiding individuality. This is emancipation (mukf) from the burthen of birth and rebirth, and the highest happiness. \({ }^{8}\)

Tulsi, as a Smopla Vaishnava and a Brahman, venerates the whole Hindu pantheon, and is especially careful to give Siva or Mahideva, the special deity of the Brahmans, his due, and to point out that there is no inconsistency between devotion to Rama and attachment to Siva (Ramayar, Lankakdrd, Dohd 3). But the practical end of all his writings is to inculcate bhaka addressed to
 chain of births and deaths-a zalvation which is as free and open to men of the lowest caste as to Brahmass.

The best account of Tulsi Das and his works is contained in the papers contributed by Dr Grierson to vol. xxil. of the Indian Anfi. gmary (1893). In Mr Growse's translation of the Ram-Charih Manas will be found the text and translation of the passages in the \(B\) hohtia: mala of Nabhiji and its commentary, which are the main original authority for the traditions relating to the poet. Nabhaji had himsell met Tulsi Das; but the stanza in praise of the poet gives no facts relating to his life; these are stated in the akd or gloss of Priys Das, who wrote in A.D. 1712, and much of the material is legendary and untrustworthy. Unfortunately, the biography of the poet, called Gotcuint-chariira, by Bénimadhab Das, who was a personal follower and constant companion of the Master, and died in 1642, has disappeared, and no copy of it is known to exist. In the introduction to the edition of the Ramdyen by the Ndgari Pracherimi Sabhd all the known facts of Tulsi's life are brought together and critically discussed. For an cxposition of his religious position,

\footnotetext{
'The summary given above is condensed from the translation by Dr Grierson, at pp. 229-236 of the Indian Amifuary, vol. xait., of the fifth sarga of the Safsai, in which work Tulsi unfolds his syitem of doctrine.
}
and this place in the popular religion of northern Indis, see Dr Criesmon's paper in the Journal of the Roysh Asiatic Society. July \({ }^{1903}\) pp. 447-466.
(C.J.L)

TULU, or Tuluva, a language of the Dravidian family, found chiefly in the South Kanara district of Madras. It hes noliterature, nor has it been adopted for official use even where it is spoken by the majority of the population. In 1901 the total number of speakers of Tulu exceeded half a million.
TUMBLER, that which "tumhles," i.c. falis or rolls over or down. The O. Eng. tumbiare, of which Mid. Eng. tumblere is a frequentative form, appears also in Du, tuimelen, Ger, tommeln, to stagger, tumble about; Fr. lomber, to fall, is Teutonic in origin. As applied to a person, "tumbler" is anotber word for an acrobat; one who shows his agility by turning somersaults, standing on his head, walking or dancing on his hands, 8 cc . It is interesting to note that Herodias' daughter Snlome is described as a tambestere in Harl. MS., 1701, I. 8, queted by Halliwell (Dict. of Arckaic Words), and in the margin of Wycliffe's Bible (Matt. xiv. 6) tamblide is given as a variant of daunside (danced). Similarly, in early pictures of her dancing before Herod, she is represented sometimes as standing on her head. The common drinking-glass knowin as a "tumbier," which now is the name given to a plain cylindrical glass without a stem or foot, was originally a glass with a rounded or pointed base, which could only stand on being emptied and inverted (see Drinking Vessels, Plate I., fg. 3)
TUMBLE-WEED, a botadical term for a plant which breaks loose when dry, and is blown about, scattering its seed by the way.
TUMKUR, or Toomkoor, a town and district of suthern India, in the west of Mysore state. The town has a st ition on the Madras \& Southern Mahratta railway, 43 m . N. 1 l . Erom Bangalore. The area of the district is \(4159 \mathrm{sq} . \mathrm{m}\). It consists chiefly of eievated land intersected by river valleys. A range of hills rising to nearly 4000 feet crosses it from north ito south, forming the waterparting between the systems of the Krishina and the Cauvery. The priacipal streams are the Jayamangala and the Shimsha. The mineral wealth of Tumkur is considerable; iron is obtained in large quantities from the bill-sides; and excellent building-stone is quarried. The slopes: of the Devaray-durga hills, a tract of \(18 \mathrm{sq} . \mathrm{m}\)., are clothed wit forests, in which large game abounds, including tigers, leopan is, bears and wild hog. The climate of Tumkur is equable and healthy; the annual rainfall averages 30 in.
The population in 1901 was 679,162 , showing an in rease of \(87 \%\) in the decade. The cultivated products consist chichy of millets, rice; pulses and oil seeds. The chief industries are the making of coarse cotton cloths, woollen blankets and repes.
TUMMEL, a river of Perthshire, Scotland. Dischareing from Loch Rannoch, it flows castward to a point near the lialls of Tummel, where it bends to the S.E., a direction which it raintains until it falls into the Tay, just below Logierait, after a wurse of 58 m . from its source in Stob Ghabhar (3565 ft .). Its only considerable aflluent is the Garry, 24 m . long, an inspetuous river which issues from Loch Garry (\(2 \frac{1}{2} \mathrm{~m}\). long, \(\frac{1}{8} \mathrm{~m}\) : vide, and 1334 ft . above the sea). About midway in its course tice Tummel expands into Loch Tummel (\(2 \frac{2}{8} \mathrm{~m}\). long, \(\frac{1}{2} \mathrm{~m}\), wids 128 (t. deep, and 500 (t. above the sea). between which and the confluence with the Garry occur the Pass and Falls of the liummel, which are rather in the nature of rapids, the descent altoget her amounting to 15 ft . The scenery througbout this reac is most picturesque, culminaling at the point above the eastern citremity of the loch, known as Queen Victoria's View. The ch places of interest on the river are Kinloch Rannoch; Dunaiastair, a rocky hill in well-wooded grounds, the embellishment of which was largely due to Alexander Robertson of Struan (\(16,0-1749\)), the Jacobite and poet, from whom the spot takes :is name (" the stronghold of Alexander "); Foss; Faskal! House (beautifully situated on the left bank); Pitlochry; ar: 1 Ballinluig.

TOMOUR (Lat. tumor, a swelling), a term applied, from the earliest period of medical literature, to any swelling of which
the nature and origin were unknown. Thus used in its most literal sense, the word is of purely clinical derivation and has no pathological significance of any kind. Consequently a very heterogeneous collection of swellings have been described as tumours, including such diverse conditions as an a bscess, a tubercular gland, the enlarged spleen of malaria or a cancer. With the progress of hacteriology and the improved technique of histology it has been found possible, however, to separate these various " swellings" into certain groups: (1) Infammatory or Infective Tumows; (2) Tumours due to Hypertrophy; (3) Cysts; (4) Spontoncous Tumowrs, or Tumours proper. The tendency of modern convention is to restrict the usc of the term "tumour" to the last group, but for the sake of completeness it is necessary to touch briefly on the distinguishing features of the first three groups.
1. Inflammatory or Infective Tumours. -These have certain characteristics which separate them sharply from other classes of tumour. In the first place all of them are due to the irritative action of some micro-organism (see PathologV). Inflammation due tu microbial action always follows a typical course. First. a number of wandering cells derived from the blood, the lymph or the connective tissues make their way to the site of irritation, and thus produce the red, painful swelling with which every one is familiar. A struggle now ensues between these rells and the invading bacteria; if the victory rests with the former, the inllammation gradually subsides. and the swelling disappears in course of time. But if the bacıeria gain the upper hand a number of the cells are kitled, undergo liquefaction and are converted into pus, so that an abscess results. Thus an inflammatory swelling may be solid or fluid according to the severity of the irritant. The common inflammatory bacteriastaphylococcus and streptococcus-cause suppuration in the majority of cases, but there are a few organisms such as streptothrix, spirochacta pallida, and in nany instances the tubercle bacillus, which set up an inflammation of an extremely chronic type, rarely progressing to the formation of pus, but leading rather to the development of a hard, solid mass of very slow growth, that may persist for months or even years.

To the naked cye these solid inflammatory swellings may closely simulate the spontancous tumours with which they have been often confused, but a microscopical examination will correct the mistake in nearly every case. For the minute structure of the infective tumours, whatever their situation, is almost identical; they consist merely of an irregular collection of inflammatory cells; and this of itsel! is sufficient to mark them of quite distinctly from the group of tumours proper, which, as will presently be seen, vary sidely in structure according to the tissue from which they spring, and show a resemblance to the parent type at once characteristic and peculiar. To this statement there is one exception, for a form of malignant tumour. known as a sarcoma, may bear a very deceptive likeness to an inflammatury swelling.
2. Hypertrophic Tumours.- A tissue or organ is said to be hypertrophied when it is increased in size but remains normal in struct ure. The most familiar example is the hyperırophy of the skeletal muscles that follow's increased use, or the hypertrophy of the heart muscle which heips to compensate the laulty action of the valves. But neither of these constitutes a hypertrophic zumour. For an instance of this we must turn to the enlargement of the spleen that occurs in malaria and certain forms of anaemia, of the thyroid gland in goilre, and of the lymphatic giands in Hodgkin's disease. In each of these conditions there is merely an increase of apparently normal tissue. and from a microscopical examination of the hypertrophied organ it would be impossible so say that it was other than healthy.

The enlargement of the spleen and of the thyroid in these cases are overshadowed by certain changes in the blood and in the nervous sysiem which constitute a distinct disease: but in Hodgkin's disease there are no specific symptoms apart from the swelling of the glands, and it has been suggested that this may be due cither to the action of some micro-onganism which has hitherto escaped detection, or to a widely diffused growth of a sarcomatous type. If the former supposition be correct these glandular swellings must be classed with the infective tumours: if the latter they should be reganded as spontaneous tumours. There is, at present, no agreepent an this point, and they have, therefore, been described here as hy trophic tumours.
3. Cysfs.- A cyst may be defined as a collstion of flujd wat rounded by a wall or capisule. The mature of the fuif varies. ing to the site and origin ul the cyst ; the cyst-wall is waul of a tough pre-existing wall is tenely
wall is tencely ser
easily be mistals

The number a:
mentioned here
meationed
are eftes kypum
the weuin'sextl
4. Sportancous Tumowrs, or Twmours Proper (synonyws: Neoplasm, New Grothk). The following definition of a spontaneous tumour suggested by Ziegler is perhaps the most satislactory: "A neoplasm or tumour is a 0 cw formation of tissuc. which is atypical in struct ure, serves no useful purpose to the whole economy, and the growth of which has no typical termination." In this definition the words " new formation of tissuc " exclude the cystic swellings; the attribute "atypical in structure "" excludes hypertrophies; and the final clause " the growth of which has no typical termination" excludes all swellings of an inflammatory nature which progress, however slowly, towards either suppuration or resolution and renovery.

These tumours arise by the exaggerated and abnormal proliferation of a single cell, or a group of cells. They increase in size solely by the multiplication of their own cells, and the only contribution whith the surrounding tissues make to the progress is the formation of a" troma "or supporting frameworlc of fibrous tissue; and cven that is wanting in many cases. Inasmuch as the newly-formed cells of the tumour take on the likeness of the parent from which they are sprung, it follows that the minute structure of such a tumour, whatever its situation, will be more or less exact copy of that of the tissue whence it originated. A tumour growing from the skin will therefore imitate the cell-structure of the notmal skin; the resemblance of a breast tumour to the healthy breast is often so close as to malce it a hard task to distinguish the onc from the other: whilst the similarity of bony and cartilaginous tumours to true bone and cartilage is evident to all.

This imitation of the parent type by the spontaneous tumours is one of their most remarkable characteristics, and provides a reliable criterion by which they may be separated from the inflammatory new growths, which are all built up on the same general plan. Consequently it is almost always possible to determine the origin of a tumour from an examination of its histological appearances; and conversely we know that an epithelial tumour will never spring from a connective tissue nor a connective tissue tumour from an epithelium.

Another outstanding feature of the neoplastic tumours is that they lead an entirely independent existence subject to none of the restraints to which the normal cell must needs submit. These normal cells are, indeed, possessed of certain limited powers of multiplication, by which they are enabled to replace the slight loss of tissue which the wear and tear of life perpetually entails; or, again. they can on occasion make good a greater loss of substance, as in the healing of an ulcer, or the regeneration of a skin wound. But these powers are confined within certain well-marked bounds, which may not be transgressed. Contrast with this the !umour eell, emancipated from all controll and owning to no restraint. It is true that the simple tumours often remain stationary after attaining a certain size, but the general tendency of all tumours is towards persistent and unlimited growth, and the cancer cell continucs its carcer unchecked by everything save death.

The spontaneous tumours are seen in every tissue and organ of the body, though in some they are relatively infrequent. Nor are they confined to man, for they have been lound throughout the vertebrate kingdom. It is often stated that a higher state of civilization has inflicted on European races a greater susceptibility to tumour formation. As to this, reliable evidence is hard to obtain, but such a statement would seem to be only partially true, and the apparent immunity of certain native races is to some extent due to Lacic of sufficient observations.

It is usual to separate these tumours into two groups: the Nommalignant, Innocent or Bexign, and the Malignant or Cancerous. Of these two groups the latter are the more familiar and have attracted wuch more attention and study than the former, on account of the danger to hife which they involve, but in point of numbers they are greatly outweighed by the first group. Two or more nonmalignant tumours, of the same or different varieties, are often lound in the same individual; but with the cancers this is a rare occurrence, and such growths are usually single.

The now-nalignamt tumours are usually rounded in shape. In mise they vary enormously; a fibroid tumour may be as small as a pea; Z latty tumour may weigh forty pounds Often they cease growing after altaining a certain size, but there are very many, escreptions to this, and it is scldom possible to predict the subsequent course of une of thesc growths. They possess, however, four concourse of une of these grouths. They possess, however, four connant characterisics by which they may be distinguished from the If is not an "infiltrating'" is way into lhe surrounding armay becalled expana thin but uswally capsule "" of the slight inflamma. among the a prutest on
agerous to and even
death, when situated in some sensitive or delicate ortan. For instance, a small tumour may canse intense pain by pressing on a nerve, or dropsical swelling of a limb by obstructing a vein, or death from suffocation by blocking the larynx. Nevertheless it remains true that any evil effects are due not to the nature of the tumour, but to its situation, whereas a cancer causes death whatever its position.
3. These tumours never reproduce themselves in distant parts of the body. More than one may be present in the same individutl, but each arises independently, and the widespread dissemination so typical of a cancerous growth is never seen.
4. An innocent growth never recurs after operation. The boundaries of the growth are so well defined that complete removal is usually easy, and the operation is a simple and satisfactory proceeding.

Malignant Timomes, or Cancers.-There are two varieties of malignant tumour: the Sorcowato, arising from the connective tissurs; the Carcinomata, arising from epithelial tissues. It is customary to describe them both as cancers. The main leatures of these tumours are as.follows:-
I. The Infiltrating Noture of a Molignant Twmour.-A cancer follows a course very different from that of an innocent tumour. Its growth has no appointed termination, but continues with unabated vigour until death ; moreover, it is more rapid than that of the innocent tumours, and so does not permit of the formation of a capsule by the reighbouring tissues. In consequence such a tumour shows no well-defined boundary, but from its margin fine tendrils of cancer cells make their way in all directions into the surrounding parts, which gradually become more and more involved in the process. Thus a cancer of the breast will attack both the skin covering it and the underlying muscle and bone; a cancer of the intestine will eat its way into the liver, spleen and kidney, until these organs become to a great extent replaced by cancer cells, and can no longer perform their proper functions.
2. Formation of Secondary Growths, or Metastases. - In addition to this spread of growth by direct extension, a nother characteristic of malignant tumours is a tendency to dissemination, that is, to reproduce themselves in various parts of the body far remnved from the original site; so that it is not nnusual to find alter death that a cancer of the breast has given rise to secondary, or metastasic, deposits in the lymphatic glands, the lungs, the ribs and other bones, the brain and the abdominal organs. These secondary deposits are due to the cumour cells making their way through the walls of the small lymph and blood vessels and becoming detached by the force of the circulation, by which they are carried to some distant part of the body, there to continue their career of uncontrolled growth.

The sarcomata and carcinomata differ somewhat aserds the path of dissemination. The former are vascular tumours, well supplied with blood-vessels; consequently dissemination usually occurs by way of the blood-stream rather than by the lymphatic circulation, and the commonest site for the secondary deposits of sarcoma is the lung. The carcinomata are less vascular, and the tendency of the growth is to invade the small lymph channels, so that the first signs of metastases are to be looked for in the lymphatic glands; at a later date these deposits may be spread throughout the body, particularly in the liver and other abdominal organs, the lungs and the bones.

The formation of metastases is of the utmost importance from a clinical paint of view, as the success of an operation depends on the removal of all the secondary deposits as well as of the original growth. For instance, a few months after the first appearance of a cancer of the breast the axillary lymph glands will be found to be hard and enlarged. This means that some of the cells of the primary growth have been carried in the lymph stream to these glands, and have begun to grow there; consequently any operation for the removal of the cancer of the breast must include the removal of these glands. If the breast tumour only be taken away the growth will continue unchecked in the glands. It is a matter of great difficulty to detcrmine by the naked eye or the touch whether a gland is infected or not. In many cases where there is no evident enlargement the microscope will show the presence of cancer cells; and a certain opinion can only be given after a microscopical examination.
In operations for cancer of the breast or tongue the modern practice is to regard the lymphatic glands of the axilla or neck respectively as infected in every case, however early it be, and to remove them accordingly. In other parts of the body where the glands are inaccessible, the only solution of the difficulty is to urge the removal of the tumour at the earliest possible moment, before lymphatic infection has had time to occur.

The Irequency and rapidity of metastasis formation varies greatly. As a general rule cancer of the breast is more liable than other forms of growth to be followed by widespread secondary deposits. On the other hand, in cases of cancer of the skin secondary infection is usualty confined to the neighbouring lymphatic glands, and seldom occurs in anv of the internal orgons.
3. Termination of Malipnan! Twmours.-In one or two well authenticated cases malignant tumour has disappeared of its
own accord without any treatment, and a natural cure may be said to have occurred. But these form such an infinitesimal proportion of the whole that they do not affect the general truth of the statement that the universal tendency of a malignant tumour is to cause death.

Although the separation of the new growths into two groups is supported by certain lairly definite characteristics, both clinical and histological, yet it seems likely that the difference between them is one of degree rather than of kind. There is every reason to believe that the same perverted impulse may give rise either to an innocent or a cancerous growth, the issue depending in part on the intensity of the impulse, and in part on the resisting powers of the tissues in which the incipient tumour cells lic. Such a hypothesis is supported by the analogy of the microbial infections, where the final outcnme of life or death depends no less on the defensive mechanism of the individual than on the virulence of the infecting organism. Again, it is beyond doubt that oocasionally a tumour, which for years has been void of the least taint of malignancy, may become converted into an active cancer. Moreover, certain tumours seem to lie on the border line, for example, rodent ulcers and cancers of the parotid gland. These are malignant in that they are undoubtedly infiltrating tumours, they are innocent in that they never form metastatic deposits. Therefore it seems that malignancy or the reverse is not to be regarded as an absolute and constant attribute of any particular tumour or class of tumours, but rather as an expression of the balance struck in the conflict between the opposing lorces of the tumour and its host.

Histology of Twmowrs.-On examining a microscopical preparation of an epithelial tumour it is found to be built up of two distinct elements. There are the epithelial cells, which form the essential part of the tumour; there is a network of fibrous connective-tissue cells, which acts as a supporting framework to the epithelial clements, and is known as the stroma of the tumour. This twofold structure is seen in all the epithelial tumours, both non-malignant and malignant, and in the case of the latter it is a general rule that the greater the proportion of epithelial to connective-tissue elements the faster will the tumour grow. On the other hand in the connectivetissue tumours (with the exception of the sarcomata) this compound structure is absent and there is only one type of cell present; thus a fatty tumour consists merely of fat cells; a bony tumour of bone cells, and so on.

To understand clearly the differences and likenesses that obtain between the malignant and the non-malignant new growths it is necessary to compare the histology of the two groups.

Figs. I \(\sigma\), ib represent an innocent tumour (adenoma) of the breast. Figs. 2a, \(2 b\) a cancer (spheroidal-celled carcinoma) of the breast. Fig. 3 an innocent tumour (papilloma) of the skin. Fig. 4 a cancer of the skin.

Fig. Ia.-Diagram to show the relations of an innocent tumour (adenoma) of the breast.
a, Tumour; b, normai breast tissue; \(c\), underlying muscular tissue.

Fig. 1b.-Microwcopical appearances of an adenoma of the breast. (Drawn (rom an aciual specimen.)

\section*{a. Tumour cells; b. Gbrous connective tisoue.}

In the adenoma the individual cells bear the closest resemblance \(t 0\) the glandular cells of the normal breast from which they are derived. In addition they tend to follow the normal very closely in their arrangement, so that at times it is
connective tissue is almost non-existent and the cells are exsentially of an embryanic type. These differences between the innocent and the malignant cell bear out the well-established physiological rule that the less the functional development of a cell or tissue the greater its power of growth. The primitive impulse is growth. which gives place at a later stage to the development of fuation.

Fs. 4-Malignant tumour (epithelioma, squamous-celled carcinoma) of the skin. The cells of the epidermis have proliferated both outwardly and inwardly and have invaded and replaced the undcrlying tissues. An ulcer has been formed on the nurface by the necrosis of the supericial cells. (Semidiagrammatic.)

In theory it is always possible to distinguish with certainty between an innocent tumour and a cancer by means of the microscope. In practice this is, unfortunately, not the case. There are some tumours whose histological appearances seem to be on the borderline between the two conditions, and often these are the very cases in which the clinical features give no direct clue to their nature. In such circumstances it is only by taking into consideration every detail, both clinical and pathological, that an opinion can be formuated, and even then it remains to some extent a matter of guesswrork.

The Camsation of Tymours.-An enormous number of suggestions as to the causation of tumours have been put forward from time to time. Many of these were at the outset quite untenable, and reference can only be made here to the more important.

First in point of time came Virchow's hypothesis that tumours arise as the direct result of irritation or injury. Many examples of uch a sequence of events are familiar to everybody. A cancer of she lip or tongue will often follow the irritation of a clay pipe or a asged tooth; a tumour of the breast is of ten attributed to al blow. 3ut. on the other hand, there must be innumerable instances in which such a cause of irritation has not been followed by a tumour: and it is necessary to discount the natural anxicty of mankind to seek a cause for every unexplained occurrence, so that a slight injury which under ordinary circumstances would be forgotten is branded as the undoubted cause of any tumour that may subsequently make is appearance. As a complete explanation Virchow's hypothesis is insufficient, but it is quite probable that irritation may have an accessory or predisposing influence in tumour formation, and that it may be enough finally to upset the balance of a group of cells. which for some other reason were already hovering on the brink of abnormal growth.
There is one peculiar form or irritation that demands special ttention, that is exposure to the \(\mathbf{X}\) rays. It is beyond doube that exposure to these rays will cause cancerous ulceration of the skin; though what is the constituent of the rays that produces this effect is not known. Fortunately the danger can be obviated by the use of rubber gloves.

Cohnherm's Hypothesis of Embryowic Remmants.-According to Cohnheim more cells are produced in embryonic life than are required for the development of the body, and a remnant is left unappropriated. Owiag to their embryonic nature, these cells possess an eraggerated power of proliferation, and if at a later period of life his thould be roused into activity by some mechanical or other form of stimulus, their rate of growth will out strip that of the adult celfs and a tumour will develop. As with Virchow's so with Cohaheim's hypothesis. It is at best only a partial explanation which may be applicable to a small proportion of tumours; and it could never account for X-ray cancer, or the inoculability of mouse cancer.

The Parasific hypothesis is still a matter of keen debate. In nome degree cancer with its localized primary growth and widespread weondary deposits resembles certain infective diveases of microbial origin, such as pyaemia, where from a small primary site of infection the bacteria become disseminated throughout the body. From this analogy is watargued that tumour formation was due to the activity
of some parasite. But if the mode of diesemination of a cancer and of a micro-organism be carefully examined this analogy is found to be false. When a micro-organism lodges in a gland or other part of the body, by its irritative action it stimulates the cells of that gland to increased activity, and any swelling that occurs is produced by the proliferation of those celfs. But when a group of cancer-celis is deposited in a glard the subsequent growih arises entirely from the multiplication of those cancer-cells, and the gland cells take no part whatever in its formation.
A very large number of organisms both animal and vegetable have been described as occurring in tumours: and some of these have been cultivated on artificial media out side the body; hut to none of them can any direct causal relationship with cancer be attributed. Onc of the best authenticated, a small coccus, known as Micrococcus neoformans can certainly be cultivated from many tumours malignant and innocent, and it has been suggested that it may be responsible for the si:ght inflammatory changes that occur in the neighbourhood of most new, growths. The final and critical test of the connexion of an organism with some diseased condition is the production of a similar condition in animals by inoculation of that organism, and this experiment has signally failed with all the suggested cancer parasites. Another very cogent argument against the infective hypothesis is the fact that although tumours of identical structure are found throughout the vertebrate kingdom, it has never yet been lound possible artificially to transmit these tumours from one species to another. If they were of an infective nature it is almost inconceivable that the gap between two allied species should be such an insuperable bar to transmission.

Quite recently Borrel of the Pasteur Institute has stated that certain animal parasites from the skin are often to be found buried in the cell masses of cancers of the skin and breast, and he thinks that these parasites may be the carricrs of some as yet unknown cancer virus, just as the mosquito is the carrier of malaria.

Ribbert has euggested that tumour formation may be due to "alteration of tissue tension." In his opinion the various cells of the body are normally held in atate of equilibrium by some condition of mutual interdependence amongst themselves. Should this equilibriurn be disturbed some of these cells may escape from the controlling influence usually exercised upon them by their neighbours, and become endowed with greatly enhanced powers of growth.

Adami considers that every cell possesses two distinct properties, a property of function and a propcrty of growth, and he regards these as incompatible, that is to say. a cell cannot at the same time be carrying out a specific function and also undergoing active growth. He believes that on occasion some of these cells may abandon their "habit of work" and assume a "habit of growth," and this will lead to the development of a tumour.
Neither of the two latter explanations brings us very much nearer the solution of the question-they merely place the unknown factor one step farther back; but they serve to emphasize the biological aspect of the problem. At the present time the general weight of evidence seems to favour the idea that tumour formation is due to some intrinsic cause, whereby the normal processes of growth are disturbed, rather than to any extrinsic cause such as microbial infection. Therefore it is from a careful study of the laws of growth. and from research directed alons broad biological lines that the best results are to be looked for in the future.

Classification of Spontancous Twowns,-So Iitlle is known as to the nature of these tumours that a eatisfactory classification on a scientific basis is not yet within reach. The following is merely suggested as convenient:-

\section*{1.-Connective-fisruc \(T\) menewrs.}

\section*{Irnocent.}

Malignant.
Lipoma (fatty tumour)
Fibroma (fibrous tumour).
Sarcoma.
Myoma (muscular tumour)
Endothelioma.
Oteoma (bony tumour)

Chondroma (cartilaginous tumour)
Odoatoma (tumour in connexion with reeth)
Myxoma (mucoid tumour).
Neuroma (tumour in connexion with nerves)
Glioma (neuroglial tumour).
Endothelioma (endothelial tumour).
Angioma (tumour composed of blood vessels)

\section*{11.-Epithelial Tumours.}
Inwocent.
Papilloma.
Ademoma.
Carcinownt.
Rodent Uler.
I. Connective-fissue Thmours. -Lipoma (fig. 5).-Of the connec-tive-tissue group the fatty tumours are the most common. They often arise from the layer of fat beneath the skin, and a usual site for these subcutaneous lipomata is the back of the trunk. though at times they are found on the limbs and elsewhere. They
\({ }^{1}\) Figs. 5, 6, 7, 8, 9, 14, 55 and 17 have been redrawn from Bland Sutton's Twmowr, by permision: figs. to, 11, 12 and 13 are from Rote \& Carless. Surfery, by permission.
are soft, painless swellings, sometimes of great kize; though usually single, as many as a dozen may be present in the same individual. tijomata are also found in the abdominal cavity, growing from the sulyeritoneal layer of fat.

Fig. 5.-Lipona of the paim.
What is known as a difuse lipoma (fif. 6) consists of a generalized vergrowth of the sutcurancous fat of the neck, and this may be so extensive as to obliterate the outline of the jaw.

Fic. 6.-Diffuse lipuma of the neck.
Fils,ious (fise. \%).-Cl eumours containing fibrous tissee. by far tion tarot imporant are the fibroids on the uterus. A tetter mame
 for these rumours would the Fibromymata, as they always contain a varying propurtion of muscie Gbres. They originate in the wall of the urerus, but generally cavec so project either insernally isto the cavity of the uterus or externally into the peritoncal cavity: and often their sole connction with the uterine wall is a stalt or pecticle formed from the capmete of the turnour. Fitromy yomata of the vterus are most cumpo mon from 151045 years of age: in girls umder so they are alrasu unknowe. They say artaia a grest sine and aro often thliok. They sean to be equally coromosa is maxiod and mamarried
Fanc \%-UNervi io mional mocion showns interptitial as in matis aper Nive every Gbruil is alow for of daver or discom. hivi fiot ane anowrive of
rise to severe symptoms, and that in many different ways. First, they may cause hacmorrhage prolonged over years so that the health is entirely ruined. Secondly, they may become inflamed and septic, and lead to severe blood-poisoning. Next, for some unknown reason, a fibroid tends to prevent conception, whilst, should pregnancy occur, labour is greatly impeded. Finally, it seems to be establishod that a fibroid may occasionally become converted into a sarcoma.
Examples of pure fibrous tissuc tumours are the small multiple growths of the subcutancous tissue, known as Poinful subculaneous nodule, and the irregular outgrowth from the gum known as Epulis.
A Myoma is composed of unstriped muscle fibres. It is a rare tumour sometimes found in the oesophagus, stomach and bladder.
Osteoma (fig. 8). - Bony tumours nut infrequently arise from the bones of the head or face. They grow very slowly, and are so haril

Fig. 8.-Osteonal of the left frontal sinus (saten from below).
that surgical removal may be very difficult. They also occur as irregular outgrouths from tbe bones of the limbs, and are then known as Exustoses (fig. 9). A common Eite for thesc is the inner and lower cod of the femur, at the point of attachment of the adductor muscle. and suik a tumour seems to originate from an ossincation of the tendon of this muscle.
 produced br the ossification of the rendon of the adductor magnas

Chombows (feg. 10). -Cartilaginous tumburs are often found in children and joung people groving from the booes of she limbis is the acigblbourbuod of the joinst They are frequently muluiple, esperially ia the lunds and fecs. These rumours frow sholy and are quite painless Sbould remoral be necestang, it is usually an casy mutter.

ON-Tha-Several variecies of chis ismour bave been described arising is roencmion with the teeth and due to delaved or faulty developosal. They may caue great defivmity of the jaw.
A ygame is compored of hase, phlatinous coopective lissue similar to that found ian the ymivical cand Sucue rasal polypi sem to be of this eature, but srue mivionstais tumours are rare It is bovever. mot encommen for a pibruald of a seroma to le convarted by dyemoracion isto mymeutow-like tixsue-
 hoors as a Puotometo (for 11) is often found ia ise course of a etine This is lioned tha licaliod overgrow it of tbe fibruus ched the porve troth

supporting tissue of the brain and epinal cord. Consequently shomata are only found in these two structures.

Endothelioma.-Of late years a small class of tumour has been described as originating apparently from the endotheliam lining the tesser blood and lymph channels. Many of the recorded examples have been conrected with the mouth, the tongue, the palate or the parotid gland.: Some of these tumours are quite innocent, others are typically malignant.
An Angroma consists of a meshwork of blood-vessels bound together by a small amount of lat and Gbrous tissue. Two varicties are described: (a) The simple naerus, or port-wine stain, scarcely deserves to be calied a tumour. It appears as a reddish-blue discolouration of the akin due to over growth and dilatation of the under. fying blood-vessels. This condition is most commonly found on the face or scalp, and may be of congenital origin (b) In the ypertrophy is on a larger scale, and
Fig. 11.-Pseudo-neurnma: Gbrous sumour growing from nerve sheath, and causing the fibres to be stretched over it.
throughout the body. The myelaid sarcoma, or mydone (fg. 14), is composed of very large cells like those of bone-marrow from which it is probably derived. It is only found in the interior of bones. chiefly in those of the arm and leg. The degree of malignancy is low. dissemination never occurs, and recurrence after operation is rare.

Fic. 14.-Lower end of a femur in longitudinal mection, chowing a myeloma.
II.--Epihhtio! Tumours.

Papilloma.-The faroiliar example of a papilloms is the simple wart, which is formed by a prolifcration of the aquamous epithelium of the skin (fig. 3). It seems probable that some warts are of an infective nature, for instances of direct contagion are not uncommon. Occasionally warts are pigmented, and are then liabte to be she ecat of a melanotic marcoma, Papillomata are also found in the bladder (fig. 15), as long delicate filaments growing from the bladder wall. These consist of a connectivetissue core covered by a thin layer of epithelium.

Adenoma. - (Figs. 16 and 16). The glandular turnours are of very common occurrence in the brcast. the ovary and the intestinal canal. The structure of an adenoma of the breast has already been described (vide supra), and the structure of other adenomata is on the same general plan. The main features of an innocent glandular tumour are: (a) the presence of a rounded, painlest swelling with a well-defined margin; (b) the swelling is freely movable in the surrounding tissues, and if it lies close bencath the skin it is not attached thereto; (c) there is no enlargement of the neighbouring lymphatic glands.

Carcimama. - The following varieties of carcinoma are described :-
i. Squamous-cell carcinoma (fig. 4), arising [rom those parts of the body covered by squamous epirhelium, namely the skin. whe mouth. the pharynx, the upper part of the oesophagus and the bladder.
ii. Spheroidal-cell carcinowa (figs. 2e. and 2b), arising from spheroidal epithelium. as in the breast, the pylorus, the pancreas, the kidney and the prostrate.
iii. Codumpar-celi carcinoma (fiss. 16 and 17), arising from columnaf epithelium, as in the intestine.

The general histology of these tumours corresponds to that of a spheroidal-cell carcinoma already described (vide smprd), the only variation between the three groups be.ing in the shape of the cella The clinical characteristics of a carcinoma, whatever its situation. are: (a) the presence of a swelling which has no well defined margin, but fades away into the surrounding tissues to which it is Exed: (b) when the tumour lies near the skin (c.5. a carcinoms
of the breast) it becomes fixed to this at an early date; (c) the eumour is painful and tender, the degree of pain varies widely,

(Redramo from Ziegler's Pohholegical Anatonsy, by permistion of Macminian \& Co.) Fig. 16.-Section through advancing margin of colun:sar; cancer of stomach.

Fig. 17.- Cancer of the sigmoid fiexure of the colon.
and in the early stages there may be none; (d) the neighbouring lymphatic glands soon become enlarged and tender, showing that they are the seat of metastatic deposits; (e) in squamous carcinoma of the skin, ulceration speedily occurs.
Kodent Ulcer.-This shows itself as a slowly progressing ulceration of the skin, and is especially common on the face near the eye or ear. The condition is one of purely local malignancy, and dissemination does not occur. It is believed to be a carcinoma of the sebaceous glands of the skin.
(L. C.")

TUMULOS, a Latin word meaning a heap or mound, also used in classical writings in the secondary sense of a grave. In Roman epitaphs we meet with the formula tumulum faciendum curavit, meaning the grave and its monument; and on the inscribed monumental stones placed over the early Christian graves of Gaul and Britain the phrase in hoc tumulo jacel expresses the same idea. But among archaeologists the word is usually restricted in its technical modern application to a scpulchral mound of greater or less magnitude. The mound may be of earth, or of stones with a covering of earth, or may be entirely composed of stones. In the latter case, if the tumulus of stones covers a megalithic cist or a sepulchral chamber with a passage leading into it from the outside, it is often called a dolmen. (See Stone Monuments, Barrow and Cairn.) The custom of constructing sepulchral tumuli was widely prevalent throughout the prehistoric ages and is referred to in the early literature of various races as a fitting commemoration of the illustrious dead. Prehistoric tumuli are found abundantly in almost all pats of Europe atid Asia from Britain to Jaban. They octur with frequency also in northern Africa, and in many parts of North and South America the aboriginal populations have practised similar customs. Sepulchral tumuli, however, vary so much in shape and size that the external appearance is no criterion of age or origin. In North America, especially in the Wisconsin region, there are numerous mounds made in shapes resembling the figures of animals, birds or even human forms. These have not been often found to be sepulchral, but they are associated with sepulchral mounds of the of" in some of which are as much as 300 ft . in diamer
sabt.

Perhaps the largest tumulus on record is the tomb of Alyattes, king of Lydia, situated near Sardis, constructed in his own lifetime, before 560 . b.c. It is a huge mound, 1180 ft in diameter and 200 ft . high. In south-eastern Europe, and especially in southern Russia, the sepulchral tumuli are very numerous and often of great size, reaching occasionally to 400 ft . in circumference and over 100 ft . in height. These are mostly of the period of the Greek colonies of the Tauric Chersonese, dating from about the sth century b.c. to about the and century A.D., and their contents bear striking testimony to the wealth and culture of the people who reared them.
Aut hoxrties.-DuncanMcPherson, M.D., Antiquities of Kertchand Researches in the Cimmerian Bosphorus (London, 1857); CyrusThomas, "Burial Mounds of the Northern Sections of the United States," Fifth Annual Report of the Bureau of Elhnology to the Smillisonian Institution (Washington, 1887): Kondakoff, 1olstoi and Reinach, Antiquilés de la Russie méridionale (Paris, 1891).
U. AN.)

TUN, a town in the province of Khorasan, Persia, situated about 150 m . S. of Nishapur in \(34^{\circ} \mathrm{N} ., 58^{\circ} 7^{\prime}\) E., at an elevation of 1200 ft . The town, which has a population of 7000 , is surrounded by a wall, 20 ft . in height, raised on a high rampart of mud. It has three gates, handsome bazaars, good caravanserais and numerous large gardens and fields producing opium, tobacco and cotton. Some silk is also grown.

TUNBRIDGE WELLS, a municipal borough and inland watering-place of England, chiefly in the Tonbridge parliamentary division of Kent, but extending into the eastern division of Sussex, \(34 \frac{1}{2} \pi\). S.E. by S. of London hy the South Eastern 8 Chatham railway, served also by a branch of the London Brighton \& South Coast line Pop. (1891), 29,296; (1901), 33,373. It owes its poptlarity to its chalybeate spring and its beautiful situation in a hilly wooded district. The wells are situated hy the Parade (or Pantiles), a walk associated with lashion since the time of their discovery. It was paved with pantiles in the reign of Queen Anne. Reading and assembly rooms adjoin the pump-room. The town is built in a picturesquely irregular manner, and a large part of it consists of districts called "parks" occupied hy vill3s and mansions. On Rusthall Common about a mile from the town is the curiously shaped mass of sandstone known as the Toad Rock, and a mile and a half south-west is the striking group called the Hiph Rocks. The Tunbridge Wells sanatorium is situated in grounds sixty acres in extent. Five miles south-east of Tunhridge Weils is Bayham Ahbey, founded in 1200, where ruins of a church, a gateway, and dependent buildings adjoin the modern Tudor mansion. Three miles south, in Sussex, the village of Frant stands on a hill which is perhaps the finest of the many view-points in this district, commanding a wide prospect over some of the richest woodland scenery in England. The vicinity of Tunhridge Wells is largely residential. To the north lies the urban district of Southborouch (pop. 6977). There is a large trade in Tunbridge ware, which includes work-tables, boxes, toys, \&c., made of hard woods, such as beech, sycamore, holly, and cherry, and inlaid with mosaic. Tunbridge Wells was incorporated in 1889, and is governed by a mayor, 8 aldermen and 24 councillors. Area, 3991 acres.
The town owes its rise to the discovery of the medicinal springs by Dudley, Lord North, in 1606. Henrietta Maria, wife of Charles I., retired to drink the waters at Tunbridge Wells after the birth of her eldest son Charlcs. Soon after the Restoration it was visited by Charles II. and Catherine of Braganza. It was a favourite residence of the princess Anne previous to her accession to the throne, and from that time became one of the chief resorts of London fashionable society. In this respect it reached its height in the second half of the 18 th century, and is specially associated with Colley Cibber, Samuel Johnson, Cumberland the dramatist, David Garrick, Samuel Richardson, Sir Joshua Reynolds, Beau Nash, Miss Chudleigh and Mrs Thrale. The Tunbridge Wells of that period is sketched with mueh graphic humour in Thackeray's Virginions.

TUNDRA (a Russian word, signifying a marshy plain), in physical geography. the nome applied to the treeless and often marshy plains which border the arctic coasts of Europe, Asia
and North America. The Russian tundra, apart from the arctic conditions of climate and lora, may be compared with the steppes farther soutb.

TUMGABHADRA, a river of southern India, the chief tributary of the Kistna. It is formed by the junction of two streams, the Tunga and the Bhadra, which both rise in Mysore in the Western Gbats. The united river for nearly all its course forms the boundary between Madras and the dominions of the nizam of Hyderabad. On its right bank stood the capital of the ancient Hindu dynasty of Vijayanagar, now a wilderness of ruins. From of old its waters have been utilized for irrigation. Near its confluence with the Kistna it supplies the KurnoolCuddapah Canal. A project has been recently under consideration to dam the river higher up, and there construct an artificial lake that would have an area of 160 sq . m ., the cost of this scheme being roughly estimated at nearly \(\{6,000,000\).
TONG-CHOW, a sub-prefectural city in Chih-li, the metropolitan province of China, on the banks of the Peibo in \(39^{\circ} 54^{\circ} \mathrm{N}\). \(816^{\circ} 4 t^{\prime} \mathrm{E}, 82 \mathrm{~m}\). E. of Peking. Its population is estimated at about 50,000 .
T'ung-Chow maris the highest point at which the Peiho is navigable, and here merchandise for Peking is transferred to 2 canal. The city, which is faced on its eastern side hy the river, and on its other three sides is surrounded by populous suburbs, is upwards of 3 m . in circumference. The walls are about 45 ft . in height and about 24 ft . wide at the top. They are being allowed to fall invo decay. Two main thoroughfares connect the north and south gates and the east and west gates. The place derives its importance from the fact that it is the port of Peking. Like most Chinese cities, T'ung-Chow has appeared in history under various names. By the founder of the Han dynasty (200 b.c.) it was called Lu-Hien; with the rise of the T'ang dynasty (618 A.D.) its name was changed to Hoan-Chow; and at the beginning of the ath century, with the advent of the Kin dynasty 10 power, Hilan-Chow became T'ung-Chow. It was at T"ang-Chow that Sir Harry Parkes, Sir Henry Loch and their escort were treacherously taken prisoners by the Chinese when they were sent forward by Lord Eigin to negotiate terms of peace after the troubles of 1860 . During the Boxer outhreak in 1900 T'ung-Chow was occupied by the allied armies, and a light railway connecting the city with Peking was constructed by German military engineers.
TUNOSTEN [symbol W , atomic weight \(184.0(0=16)\)], a metallic chemical element found in the minerals wolfram, an iron and manganese tangstate, scheelite, a calcium tungstate, stolzite, a lead tungstate, and in some rarer minerals. Its presence in scheelite was detected by Scheele and Bergman in 178 I , and in \({ }^{17} 7_{3}\) Juan, Jose and d'Elhuyar showed the same substance occarred in wolfram; they also obtained the metal. Tungsten may be prepared from wolfram by heating the powdered ore with sodium carbonate, extracting the sodium carbonate with water, filtering and adding an acid to precipitate tungstic acid, \(\mathrm{H}_{2} \mathrm{WO}_{4}\) This is washed and dried and the oxide so obtained reduced to the metal by heating with carbon to a high temperature (Hadield, Journ. Iron and Steed Insh., 1903, ii. 38). On a mall scale it is obtained by reducing the trioxide in a current of hydrogen, or the chloride by sodium vapour, or the oxide with carbon in the electric furnace; in the last case the product is porous and can be welded like iron. In the form of a powder, it is obtained by reducing the oxide with zinc and extracting with soda, or by dissolving out the manganese from its alloys with tungsten. The metal may be used uncombined, but large quantities of ferrotungsten are made in the electric furnace; other aloys are prepared by acting on a mixture of the oxides with ahuminium. Tungsten bas been applied in the manufacture of Glament electric lamps. The metal has a crystalline structure, and melts at about \(2800^{\circ}\). The powdered metal burns at a red beat to form the trioxide; it is very slowly attacked by moist sir. It combines with fluorine with incandescence at ordinary temperatures, and with chlorine at \(250-300^{\circ}\); carbon, silicon, and boron, when heated with it in the electric furisce, give crytals harder than the ruby. It is soluble in a mixture of nitric
and bydrofuoric acids, and the powdered metal, in aqua regia, but slowly attecked by sulphuric, hydrochloric and bydrofluoric acids separately; it is also solable in boiling potash solution, giving a tunstate and hydrogen.

Twngsten dioxide, \(\mathrm{WO}_{4}\), formed on reducing the trioxide by hydrogen at a red heat or a mixture of the trioxide and hydrochloric acid with zinc, or by decomposing the tetrachloride with water. is a brown strongly pyrophorie powder, which must be cooled in hydrogen before being brought into contact with air. It is slightly soluble in hydrochloric and sulphuric acids, giving purple solutions. It dissolves in potash, giving potassium tungstate and hydrogen. and is readily oxidized to the trioxide.

Tanssten Irioxide, WO, occurs in nature as wolframinc, a yellow mineral found in Cumberland, Limoges, Connecticut and in North Carolina. It is prepared as shown above, or by other methorls. It is a canary-yellow powder, which becomes a dark orange on heating: the original colour is regained on cooling. On exposure to light it assumes a greenish tinge. A crystalline form was obtained by Debray as olive-green prisms by igniting a mixture of sodium tungstate and cartonate in a current of hydrochloric acid gas, and by Nordenskjold by heating hydrated tungstic acid with borax. Partial reduction of tungsten trioxide gives blue or purple-red products which are intermediate in composition between the dioxide and trioxide. Tungsten trioxide forms two acids. tungslic acid, \(\mathrm{H}_{2} \mathrm{WO}_{4}\) and metatungstic acid, \(\mathrm{H}_{2} \mathrm{~W}_{4} \mathrm{O}_{3}\); it also glves origin to geveral series of salts, to which the acids corresponding are unknown. Thus we have salts of the following types \(\mathrm{M}_{2} \mathrm{O}\left(\mathrm{WO}_{3}\right)_{m}\) where \(n=1,2,3,4,5,6,7,8\), and also \(\left(M_{2} O\right)_{n}\left(W_{O}\right)_{\text {a }}\), where \(\mathrm{m}_{1}{ }^{n-2}, \mathbf{3} ; 3,7 ; 4,3\); 5 , 12: M standing for a monovalent metal. The \(\left(\mathrm{M}_{2} \mathrm{O} \mathrm{j}_{3}\left(\mathrm{WO}_{3}\right)_{12}\right.\) or \(\mathrm{X}_{10} \mathrm{~W}_{21} \mathrm{O}_{\mathrm{al}}\) sales are called paratungstates. Tyngstic acid, \(\mathrm{H}_{2} \mathrm{WO}_{4}\) is obtained as \(\mathrm{H}_{3} \mathrm{WO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\) by precipitating a tungstate with cold acid; this substance has a hitter taste and its aqueous solution reddens litmus. By using hot acid the yellow anhydrous tungstic acid is precipitated, which is insoluble in water and in all acids except hydmfluoric. It may be obtained in a fioceulent form by exposing the hexachloride to moist air. Metatungstic acid, \(\mathrm{H}_{3} \mathrm{~W}_{4} \mathrm{O}_{1}-7 \mathrm{H}_{2} \mathrm{O}_{4}\) is obtained by decomposing the barium salt with sulphuric acid or the lead salt with hydrochloric acld. It forms yellow octahedra, which become anhydrous at \(100^{\circ}\). and are converted into the trioxide on ignition. It is readily soluble in water, and on boiling the aqueous solution a white hydrate is first deposited which after a time is converted into the trioxide. Graham obtained a colloidal tungstic acid by dialysing a dilute solution of sodium tungstate and its equivalent of hydrochloric acid; on concentrating in a vacuum a gummy product is obtained, which still remains soluble after heating to 200 , but it is converted into the trioxide on heating to redness. When moistened it becomes adhesive. The solution has a bitter taste and doea not gelatinize, even under the influence of boiling acids.

Of the salts, the normal tungstatea are insoluble in water with the exception of the alkaline tungstates; they are usually amorphous, but some can be obtained in the crystalline form. The metatungstates of the alkalis are obtainod by boiling normal tungstates with tungstic acid until the addition of hydrochloric acid to the filtrate gives no precipitate. The most important tungstate is the so-callod tungstate of soda, which is sodium paratungstate, \(\mathrm{Na}_{1} \mathrm{~W}_{12} \mathrm{O}_{\mathrm{a}} \cdot 28 \mathrm{H}_{3} \mathrm{O}\). This salt is obtained by roasting wollram with sodium carbonate, lixiviating, neutralizing the boiling filtrate with hydrochloric acid and crystallizing at ordinary temperatures. The salt forms large monoclinic prisms; molecules containing 25 and \(21 \mathrm{H}_{2} \mathrm{O}\) separate from solutions crystallized at higher tempera. tures. The salt is used as a mordant in dyeing and calico printing. and also for making textiles non-infinmmable. Several other sodium tungstates are known, as well as potassium and ammonium tungstates. Many salts also occur in the mineral kingdom: for example, acheelite is \(\mathrm{CaWO}_{4}\) stolzite is \(\mathrm{PbWO}_{4}\) farberite is \(\mathrm{FeWO}_{4}\) wolfram is (\(\mathrm{Fe}, \mathrm{Mn}\)) WO 4 whilst habnerite is MnWO 4
By partial reduction of the tungstates under certain conditions producta are obtained which are insoluble in acids and alkalis and present a bronze-like appearance which earned for them the name of tungsten bronzes. The codium compound was first obtained by Wohler on reducing sodium tungstate with hydrogen; coal-gas, zine, iron or tin also effect the reduction. It forms golden cubes which are unattacked by alkalis or by any acid except hydrofluoric. It appears to be a mixture of which the components vary with the materials and methods used in its production (Phisipp. Ber., 1882. 15 . \(p\). 499). A hlue bronze, \(\mathrm{Na}_{2} \mathrm{~W}_{1} \mathrm{O}_{15}\), forming dark blue cubes with a red reflex, is obtained by electrolysing fused sodium paratungstate: a purple-red variety, Na, \(\mathrm{W}_{3} \mathrm{O}_{3}\), and a reddish yellow form result when sodium carbonate and sodjum tungstate are heated respectively with tungsten trioxide and tinfoil. Similar potassium tungsten bronves are known.
Tungstic acid closely resembles molybdic acid in combining with phosphoric, arsenious, arsenic, boric, vanadic and silicic acids to form highiy complex acids of which a great many salts exist. Of the phosphotungstic acids the most important is phosphoduodecitungstic acid. \(H_{2} \mathrm{PW}_{17} \mathrm{O}_{\mathrm{a}} \cdot n \mathrm{H}_{2} \mathrm{O}\), obtained in quadratic pyramids by crymeliting mixed solutions of orthophosphoric and
metatumgric acids. Two sodium salts, viz. \(\mathrm{Na}_{3} \mathrm{HPW}_{10} \mathrm{O}_{\mathrm{ar}} \cdot \mathrm{nH}_{3} \mathrm{O}\) and \(\mathrm{Na}_{4} \mathrm{PW}_{10} \mathrm{O}_{\mathrm{w}} \mathrm{NH}_{3} \mathrm{O}_{\text {, }}\), are obctined by beating sodium hydrogen phosphate with a tungstate. The most important silicotungstic acids are silicodecicungstic acid \(\mathrm{H}_{3} \mathrm{~W}_{1} \mathrm{SiO}_{20} \cdot 3 \mathrm{H}_{2} \mathrm{O}\), tungstosilicic acid, \(\mathrm{H}_{3} W_{1} \mathrm{SiO}_{\mathrm{a}} \cdot 20 \mathrm{H}_{2} \mathrm{O}\), and silicoduodecitungstic or silicotungstic acid, \(\mathrm{H}_{3} \mathrm{~W}_{1} \mathrm{SiO}_{a} \cdot 29 \mathrm{H}_{2} \mathrm{O}\). On boiling gelatinous silica with anmonium polytungstate and evaporating with the occasional addition of ammonia, ammonium silicodecitungstate is obtained as short rhombic prisms. On adding silver nitrate and decomposing the precipitated silver salt witth hydrochloric acid, a solution is obazined which on evaporation in a vacuum gives the free acid as a glassy mass. If this be dissoived in water and the solution concentrated, some silicic acid separates and the Gilrate deposits triclinic prisms of tungstosilitic acid. Silicotungstic acid is obtained as quadratic pyramids from its mereurous salt which is prepared from mercurous nitrate and the salt lormed on boiling gelatinous silicic acid with a polytungstate of an alkali metal.
Pertungstac Acid, HWO4-The sodium salt, \(\mathrm{NaWO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\), is oltained by evaporating in a vacuum the product of boiling a solution of sodium paratungstate with hydrogen peroxide. Its solution liberates chlorine from hydrochloric acid and iodine from potassium iodide.
IIalogen Compounds.-Although the trioxide is soluble in hydrofuoric acid, evaporation of the solution leads to the recovery of the oxide unchanged. A double salt of the oxyfluoride. viz. \({ }_{2} \mathrm{KF}\) - \(\mathrm{WO}_{3} \mathrm{~F}_{2} \cdot \mathrm{H}_{3} \mathrm{O}\), is obtained as crystalline scales by dissolving normal potassium tungstate in hydrofluoric acid and adding potassium hydroxide till a permanent precipitate is just formed. Other oxyfluorides are known. The hexafluoride, \(\mathrm{WF}_{4}\) is a very active gaseous compound, which attacks glass and metals, obtained from tungsten hexachloride and hydrofuoric acid (Ruff and Eisner. Ber., 1905,38 , p. 742). Oxyfuorides of the formulae WOF, and \(\mathrm{WO}_{\mathrm{F}} \mathrm{F}_{3}\) are also known. Tungsten forms four chlorides. viz. \(\mathrm{WCl}_{2}, \mathrm{WCl}_{1}, \mathrm{WCl}_{2}, \mathrm{WCl}_{4}\). The dichloride, \(\mathrm{WCl}_{2}\), is an amorphous grey powder obtained by reducing the hexachloride at a high temperature in hydrogen, or, better, by heating the letrachloride in a current of carbon dioxide. It changes on exposure to air and dissolves sliphtly in water to give a brown solution, the insoluble portion gradually being converted into an oxide with evolution of hydrogen. The tetrachloride, \(\mathrm{WCl}_{4}\), is obtained by partial reduction of the higher chlorides with hydrogen; a mixture of the pentaand hexa-chloride is distilled in a stream of hydrogen or carbon dioxide, and the pentachloride which volatilizes returned to the flask several times. This gives the tetrachloride as a greyish. brown crystalline powder. It is very hygroscopic and with cold water gives the oxide and hydrochloric acid. On heating it gives the di-and penta-chlorides. At a high temperature hydrogen reduces it to the metal partly in the form of a black pyrophoric powder. The pentachloride, WCl \({ }_{\text {as }}\) is obtained as a product in the preparation of the tetrachloride. It forms black lustrous crystals, or when quickly condensed, a dark green crystalline powder. It melts at \(24^{8^{\circ}}\) and boils at \(275.6^{\circ}\); the vapour density corresponds to the above formula. It is more hygroscopic than the tetrachloride; and when treated with much water the bulk is at once decomposed into the blue oxide and hydrochloric acid, but an olive-green solution is also produced. The hexachloride, WCl \({ }_{s}\), is obtained by heating the metal in a current of dry chborine in the absence of oxygen or moisture, otherwise some oxychloride is formed; a sublimate of dark violet crystals appear at first, but as the hexachloride increases in quantity it collects as a very dark red liquid. When perfectly pure, the hexachloride is stable even in moist air, bul the presence of an oxychloride brings about energetic decomposition; similarly water has no action on the pure compound, but a trace of the oxychloride occasions sudden decomposition into a greenish oxide and hydrochloric acid. It melts at \(275^{\circ}\) and boils at \(346.7^{\circ}\) (759.5 mm). Vapour density determinations indicate that dissociation occurs when the vapour is heated above the boiling point.
Several oxychlorides are known. The monoxychloride, WOCl 4 , is obtained as red acicular crystals by heating the oxide or diaxychloride in a current of the vapour of the hexachloride, or from the trioxide and phosphorus pentachloride. It melts at \(210-4{ }^{\circ}\) and troils at 227:5 forming a red vapour. Moist air brings about the immediate formation of a yellowish crust of tungstic acid. The dioxychloride. WO, \(\mathrm{Cl}_{2}\), is obtained as a light lemon-ycilow sublimate on passing chlorine over the brown oxide. It is unaffected by moist air or cold water, and even when boiled with water the decomposition is incomplete. Tungsten combines directly with bromine to give, when the bromine is in excess, the penta-and not a hexabromide. This substance forms crystals resembiing iodine, which melt at \(276^{\circ}\) and boil at \(333^{\circ}\). It slowly evolves bromine on standing, and is at once decomposed by water into the blue oxide and hydrobromic acid. The dibromide. WBrs, is a non-volatile bluishblack powder obtained by reducink the pentabromido with hydrogen. By passing bromine vapour over red-hot tuagstfp dioxide a mixture of WO, \(\mathrm{Br}_{2}\) and WOBr, is obtained, from, \({ }^{2}\), removed by gently heating when it, if: forms light sed crystals offt

a red
forms brownish-black aeedies, wich mett at \(277^{\circ}\) and boil at 327 '5; it is decornponed by water. The di-iodide is obrained as green metalic acales on passing iodine over red-hot tungsten.
Tungstem desulphude, WS 2 , is obtained as soft black acicular crystals by the action of sulphur, sulphuretted hydrogen or carbon bisulphide on tungsten. The trisulphide, WS., is obtained by dissolving the trioxide in ammonium sulphide or by passing sulphurected bydrogen into a solution of a tungstate and precipitating by an acid in both cases. When dry it is a black mass which yieds a liver-coloured powder. It is sparingly soluble in cold water, but is easily dissolved by potassium carbonate or ammonia. By dissolving it in a hydrosulphide a sulphotungstate is produced: these salis can also be obrained by passing sulphuretted hydrogen into a solution of a tungstate.

A maride, \(\mathrm{W}_{2} \mathrm{~N}_{\mathrm{s}}\) is obtained as a black powder by acting with ammonia on the oxytetrachloride or hexachloride; it is insoluble in sodium hydroxide, nitric and dilute sulphuric acids; ofrong sulphuric acid, however, gives ammonia and tungstic acids. Ammonia does not react with tungsten or the dioxide, but with trioxide at a red heat a substance of the formula W.H.NyO is obtained. which is insoluble in acids and alkalis and on ignition decomposes, evolving nitrogen, hydrogen and ammonia. Phosphorus combincs girectly with the metal to form \(\mathrm{W}_{3} \mathrm{P}_{4}\); another phosphide, \(\mathrm{W}_{\mathbf{2}} \mathrm{P}\). results on igniting a mixture of phosphorus pentoxede and tungsten trioxide.
The atomic weight has been determined by many investigators; the chief methods employed being the analysis and synthesis of the trioxide and the a nalysis of the hexachloride. The former was employed by Pennington and Smith and Desi (Zerk. amorg. Chem., \(1895,8, \mathrm{pp} .198,2 \mathrm{~s}\)) who obtained the value 183.42 .

TUNGUSES, 2 widespread Asiatic people, forming a main branch of the Mongol division of the Mongol-Tatar family. They are the Twig.hu of the Chinese, probably a corrupt form of tonki or donki, that is, " men " or "people." The Russian form Tungus, wrangly supposed to mean " lake people,"' appears to occur first in the Dutch writer Massa (1612); but the race has been knawn to the Russians ever since they reached the Yenisei. The Tungus domain, covering many hundred thousand square miles in central and east Siberia and in the Amur basin, stretches from the Yenisei east wards to the Pacific, where it occupies most of the seaboard bet ween Korea and Ka menatia. It also reaches the Arctic Ocean at two points, in the Nisovaya tundra, west of the Khatanga River, and in a comparatively small enclosure in the Yana basin over against the Lyakhov (New Siberia) Archipelago. But the Tunguses proper are chiefly centred in the region watered by the three large eastern tributaries of the Yenisei, which from them take their pames of the Upper, Middle' or Stony, and Lower Tunguska. Here the Tunguses are known to the Samoyedes by the name of Aiyd or " younger brothers," implying a comparatively recent immigration (confirmed by other indications) from the Amur basin, which appears to be the original home both of the Tunguses and of the closcly allied Manchus. Tbe Amur is still mainly a Tungus river almost from its source to its mouth: the Oroches (Orochus), Daurians, Birars, Golds, Manegrs, Sanagirs, Ngatkons, Nigidals, and some other aboriginal tribes scattcred along the main stream and its affluents-the Shilka, Sungari and Usuri-are all of Tungus stock and speech. On the Pacific the chief subdivisions of the race are the Lamuts, or "sea people," grouped in small isolated hunting communities round the west coast of the Sea of Okhotsk, and farther south the Tazi between the Amur delta and Korea. The whole race, exclusive of Manchus, numbers probably litule more than 50,000 , of whom some 10,000 are in the Amur basin, the rest in Siberia.

The Tunpus type is essentially Mongolic, being characterized by broad fiat features. small nose. wide mouth, thin lipe, small black and somewhat oblique eyes, black lank hair. dark olive or bronee complexion, low stature, averaging not more than 5 ft .4 in.: they are distinguished from other Mongolic peoples hy the square thape of the skull and the wim, wiry, well-proportioned figure. This description applies more especially to the Funguska tribes, who may be regarded as typical Tunguscs, and who, unlike most other Mongols, betray no tendency to obesity. They are classed by the Russians, according to their various pursuits, as Reindeer. Horse, Cattle. Dog. Steppe and Forest Tungusen, A lew have beceme settled agriculturists; but the great bulk of the race are still essentially forest hunters, using the reindeer both as mounts and as pack animals. Nearly all lead nomad lives in pursuit of lur-bearing animals, whose skins they supply to Russian and Yakut traders in exchange for provisions, cfothing and other necessariea
of life. The picturesque and even elegant national costume shows in ity ornamentation and general style decided Japanese influence, due no doubt to long-continued intercourse with that nation at come period previous to the spread of the race from the Amur valley to Siberia. Many of the Tungus tribes have been baptized, and are, therefore, reckoned as "Greek Christians "; but Russian orthodoxy has aot penetrated lar below the surface, and most of them are still at heart Shamanists and naturc-worshippers, wecretly keeping the teeth and claws of wild animals as idols or amulets, and observing Christian rites only under compulsion. But, whether Christians or pagans, all alikeare distinguished above other Asiatics, perhaps above all ot her peoples, for their truly noble moral qualities. All observers describe them as "cheerful under the most depressing circomstances, persevering, open-hearted, trustworthy, modest yet self-reliant, a feariess race of hunters, born amidsr the gloom of their dense pine forests, exposed from the cradle to every danger from wild beasts, cold and hunger. Want and hardships of every kind they endure with surprising fortitude, and nothing can induce them to take service under the Russians or quit their solitary woodlands" (Keanc s A sia, p. 479). Their numbers are seadily decreasing owing to the ravages of small-pox. scarlet fever, and especially famine, their most dreaded enemy. Their domain is also being continually encroached upon by the aggressive Yakuts from the north and east, and from the south by the Slave, now settled in compact bodies in the province of Irkutsk about the upper course of the Yeniwi. It is remarkable that, while the Russians of ten show a seadency to beconve assimilated to the Yakuts, the most vigorous and expansive of all the Siberian peoples. the Tunguses everywhere yicld before the advance of their more civllized neighbours or become absorbed in the surrounding Slav communities. In the Amur valley the same fate is overtaking the kindred tribes, who are disappearing before the great waves of Chinese migration from the south and Russian encroachments both from the east and vese
See L. Adam, Grammaire de La langue doungouse (Paris, 1874); C. Hikkisch, Die Tungusen (St Peterabur, 1879); L. Schrenck, Cleisen mid Forschungex int A wimplande (St Patersburg, 1881-1891); Mainov, Niekoborya danmyia (Irkuttk, 1898).
TUTIC (0. Eng. tunice, tunical, taken, before the Norman conquest, directly from Lat. tunica, of which the origin is uaknown), properly the name given in Latin to the principal undergarment of men and women, answering to the chiton (\(x\) (tis) of the Grecks, and covered by the outer garment, the polla (Gr. i \(\mu\) ariov), in the case of women, and by the peculiar Roman garment, the loge, in the case of men. The male tunica dificred from the xuriw in usually having short sleeves (see further Costure: \(\$\) Ancient Greek and Roman). The term, more often in the form "tunide" (Lat. dim. tunicula), is applied, in ecclesiastical usage, to a vestment worn over the alb by the sub-deacon in the celebration of the Mass. In general current usage it is used of any loose short garment, girt at the waist and reaching Irom the neck to some distance above the knee. It is thus the name of the fatigue coat of a soldier of the British army. There are numerous uses of "tunic " or " tunica " in anatomy, roology and botany in the sense of a covering or integument.

TUNICATA. This group of marine animals was formerly regarded as constituting, along with the Polyzon and the Brachiopoda, the invertebrate class Molluscoidea. It is now known to be a degenerate branch of the Chordata, and to be wore nearly related to the Vertehrata than to any group of the Invertebrats. The Tunicata are found in all seas, from the fitoral zone down to abyssal depths. They occur either fixed or free, solitary, aggregated or in colonics. The fixed forms are the "simple" and "compound " Ascidians. The colonies are produced by budding and the members are conveniently known as Ascidioztoids. Some Tunicata andergo alternation of generation, and most of them show a retrograde metamorphosis in their life-history.

\section*{History!}

More than two thousand years ago Aristotle gave a short account of a simple Ascidian under the name of Tethyum. Schlosser and Elis, in a paper on Botryllus. published in the Philosophical Tranweturns of the Royal Society for 1756. first brought the compound Axidians inio notice; but it was not until the commencement of the 19 th century, as a result of the careful anatomical investigations of C. Cuvier (1) upon the simple Ascidians and of J. C. Savigny (2) upon the compound, that the close relationship betwera these two
' Only the more important works can be mentioned here. For a more detaked account of the history of the group and a (ull bibliography see (17) and (35) in the list of works at the end of this article.
groups of the Tunicata was conclusively demonstrated. Lamarck (3) in \(\mathbf{1 8 1 6}\) instituted the class Tunicata, which be placed between the Radiara and the Vermes in his system of classification. The Tunicata included at that time, besides the cimple and the compound Ascidians, the pelagic forms Pyosome, which had been first made known by F. Peran in 1804 , and Salpa, described by P. Farskst in 1779 -
A. v. Chamisso, in 1819. made the important discovery that Salpa in its life-history passea through the geries of changes which were affer wards more fully described by J. J. S. Steenstrup in \(t 842\) as "altcrnation of generations"; and a few years later Kuhl and Vas Hasselt's investigations upon the same animal resulted in the discovery of the alternation in the directions in which the wave of contraction passes along the heart and in which the blood circulates through the body. It has since beed found that this obeervation hoide good for all groups of the Tunicata. In 1826 H . MirneEdwards and Audouin made a meries of observations on Iiving compound Ascidians and amongst other discoveries they found the free-swimming tailed larva, and traced its development into the young Astudian.
In 1845 Cay! Schmidt (6) first announced the presence in the test of some Ascidians of "t tunicine," a substance very similar to cellulose, and in the followiag year Lowig a nd A. v. Kolliker (7) confirmed the disoovery and made some additional observations upon this substance and upon the structure of the test in general. T. H. Huxkey (8). in an important eeries of papers published in the Tramsactions of the Royal and Liamean Socicties of London from 185 t onwards, discusted the structure embryology and affinities of the pelagic Tunicates Pyrosoma, Salpa, Dodiolum and Appendiculiria. These important forms were also investigated about the same time by C. Gegeabaur, C Vogt, H. Mülier, A. Krohn and F. S. Leuckart. The most important epoch in the history of the Tunicata is the date of the publication of A. Kowalevsky's celebrated memoir upon the development of a simple Ascidian (g). The tailed larva had been previously investigated; but its minute structure had not been sufficiently examined, and the meaning of what was known of it had not been understood. It was reverved for Kowalevsky in 1866 to demonstrate the striking similarity in structure and in development between the larval Ascidian and the vertebrate embryo. He showed that the relations between the nervous system, the notochord and the alimentary canal are the game in the two forms, and have been brought about by a very similar course of embryonic development. This discovery ceariy indicated that the Tunicata are clowely allied to Amphioxes and the Vertebrata, and that the tailed larva reprecents the primitive or asceatral form from which the adult Ascidian has been evolved by degeneration, and this led naturally to the view usually accepued at the present day, that the group is a degenerate side-branch (roma the bower end of the phylum Chordata, which inciudes the Tunicata (Urochorda), Balanoplossus, \&c. (Hemichorda). Amphioxns (Cephalochorda) and the Vertebrata. Kowalevsky's great discovery has since been confirmed and extended to all other groupe of the Tunicate by C. v. Kupfer (12), A. Giard (13 and 15), and others.
In 1872 H . Fol (14) added largely to the knowledge of the Appendicularididae, and Gard (15) to that of the compound Ascidians. The most important additions which have been made to the latter since have been those described by Von Drasche (16) from the Adriatic and those discovered by the "Challenger" and other expeditions (t). The atructure and the systematic arrangement of the simple Accidiana have been mainly divcusved of recent years by J. Alder and A. Hancock (18), C. Helier (19), H. de Lacaze-Duthiers (20), M. Traustedt (21), L Roule, R. Hartmeyer, C. P. Sluiter. W. Michacloea and W. A. Herdman (17,22). In 1874 Ussoff (23) investigated the minute structure of the nervous cystem and of the underlyimg giand (first discovered by Hancock), and showed that the duct communicates with the front of the branchial sac or pharynx by an aperture in the dorsal (or "olfactory") tubercle. In 1880 C. Julin (34) drew attention to the similarity in structure and relations between this gland and the kypophysis cerebri of the vertebrate brain, and insisted upon their homology. M. M. Metcalf has since added to our knowledge of these structures. The Thaliacea have of late years been the subject of several very important memois. The researches of F. Todaro. W. K. Brooks (25). W. Salensky (26), \(\mathbf{O}\). Seeliger. Korotneff and others have elucidated the embryology, the gemmation and the life-history of the Salpidae; and K. Grobben, Barrois (27), and more eapecially Uljanin (28), have elaborately worked out the structure and the details of the complicated lifehistory of the Doliolidae. Finally, we owe to the successive memoirs of J. Hjort, O. Seeliger, W. E. Ritter, E. van Beneden, C. Julin, C. P. Sluiter. R. Hartmeyer and others the description of many new forms and much information as to the development and life-history of the group.

The new forms described from Puget Sound and Alaska have drawn renewed attention to the similarity of the fauna in that region of the North Pacific and the Canma of north-west Eumpe. There is probably a common circumpolar Tunicate tauna which sends extensions downwards in both Atlantic and Pacific. As the result of the careful quantitative work of the German Plankton expedifion. A. Borgert thinks that the temperature of the water has more to do with both the horizontal and the vertical distribution of pelagic

Tuncata in the sca than any other factor. It is probable that the oceasional phenomenal swarms of Ddiolum which have been met with in summer in the North At'antic are a result of the curious lifehistory which, in favourable circumstances, allows a smafl number of budding forms to produce from the numerous minute tuds an enormous number of the next generation. The great increase in the number of species known from nearly all seas during the last twelve or fifteen years of the tgth century enables us now to form a truer estimate of the geographical distribution of the group than was possible when the "Challenger" collections were described, and shows that the Tunicata at least give no support to the "bi-polar theory" of the distribution of animals.

\section*{Anatomy}

As a type of the Tunicata. Ascisia mentula, one of the larger specits of the simple Ascidians, maby be taken. This species is found in most of the

\section*{Exteras!} Charncters. European scus, in shal. irregularly ovate form, of a dill grey colour, and is attached to some forcign object by one end (Gg. 1). The opposite end of the body has a terminal opening surrounded by eight rounded lobes. This is the mouth or branchial aperture, and it indicates the anterior end of the animal. About half-way back from the anscrior end is the atrial or cloacal aperture. surrounded by six lobes and placed upon the dorsall edge. When the Ascidian is living and undisturbed, water is being constantly drawn in through the branchial aperture and passed out through the atrial. If coloured particles be placed in the water near the apertures, they are seen to be sucked into the body' through the branchial aperture. and after a short lime some of © them are ejected with considerable force through the atrial aperture. The current of water passing in is for respiratory purposes, and it also conveys food into the animal. The atrial current is mainly the water which has been used in respiration, but it also contains all excretions from the body, and at times the ova and spermatozos or the embryos.
The outer grey part of the body: which is attached at or near its The Tean posterior end and penctrated bv the iwo apertures, is the "test." This is a firm gelatinous cuticular tecretion upon the outer surface of the ectoderm, which is a Layer of flat cells Although at first produced is a cuticle. the tesi soon becomes organized by the migration into it of cells derived from the mesurterm. A. Kowalevshy has shown that celis of the meseni hy-me of the lania make their way through

Fic. z.-Dugran atic mection of part of Miastle and Test of an Ascidina, showits the formation of a vesed and the strvctate of
\(=\)
the cetuderm to the exterior during the metamorphosis and become the first cells of the young test. Some of the cells in the adult cest may, however, be ectodermal in origin (sce fig. 2). These test cells may remain as rounded or fusiform or stellate cells embedded in the gelatinous matrix, to which they are constantly adding by secretions on their surlaces; or they may develop vacuoles which become larger and fuse so that each cell has an ovate clear cavity (a bladder cell), surrounded by a delicate film of protoplasm with the nucleus still visible at one point: or they may form pigment granules in the protoplasm; or, lastly, they may deposit cartonate of lime, so that one or several of them together produce a calcareous spicule in the test. Only the unmodified test celis and the bladder cells are found in Ascidio mentula (fig. 3).

(Froca The Cambridge Natural Rivider, vol. vii, "Esibes. Acc." By permibsion of
Fig. 3--Section through the surface layer of Test of Ascidia mentide.
d. Bladder cells; \(\boldsymbol{c}_{\mathrm{o}}\) test cell; th, terminal knobs of vessels; 5. vessels of test.

Calcarenus spicules are found chicfly in the Didemnidac amongst compound Ascidians; but piemented cells may occur in the test of almos! all groups of Tunicata. The matrix in which these structures are cmbedded is usually clear and apparenily homogeneous: but in some cases it becomes finely fibrillated, especially in the family Cynthidere. It is this matrix which costains tunicine. At one point on the left side near the posterior end a tube enters the test. and then splits up into a number of branches, which extend in all directions and finally terminate in rounded enlargements or bulbs, siruated chiclly in the outer hayer of the rest. These tubes are known as the "vessels" of the test, and they contain blood. Each vessel is bounded by a layer of ectoderm cells lined by connective lissue (fig. 4. B), and is divided into two tubes by a septum of connective tissuc. The septum docs not extend into the terminal bulh. and consequently the two tubes communicate at their ends (fig. 1. A). The vessels are formed by an outgrowth of a blood sinus (derived originally from the blastocoele of the embryo) from the body wall (mantle) into the test. the wall of the sinus being formed by connective tissue and pushing out a covering of ectoderm in fromt of it (fig. \(2, s^{\prime}\)). The test is

Fig. +
A. A vessel from the test.
B. Diagrammatic transverse sec. tion of a vessel
ce, Ectoderm.
ct, Connective tissue.
s. \(3^{\prime}\). The two tubes.
: Septum.
if, Terminal bulb. turned inwards at the tranchial and atrial apertures to line two funnel-tike tubes-the branchial siphon leading to the branchial sac. and the atrial siphon leading to the atrial or peribranchial cavity:

Tbe body wall, inside the test and tbe ectoderm. is formed of a layer (the somatic layer of mesoderm) of connective tissue, enciosing muscle fibres blood sinuses, and nerves. This laser the mantle) has very much the shape of the test outside it, tut at the teo apertures it is drawn out to form the branchial and atrial siphons (Gg. 5). In the valls of these siphons Mande. the muscle fibres form powerful circular bands, the bey wien sphincter muscics. Throughout the rest of the mantle Eover Bot the lunds of muscle fibres form a rude irregular net. Caveine. work. They are numerous on the right side of the body, and almost totally absent on the left. The muscles are all formed of wery long fusiform non-striped fibres. The coanective tissue of the mantle is chiefly a clear celatinous matris containing cells of warious shapes: it is erequently pigmented, giving brilliant red of Jellow coluurs to the body, and is penetrated by numerous lacunae, in a bich the bloud dows Inside the mantle in all purts of the tody, exnept along the ventral edge. there is a cavity-the atrial or peritranchial cavir)- Which opens to the exterior by the atrial aperture. This avity is fined by a layer of cells derived orizionally from the ectoderm

\footnotetext{
AAccurding to E. van Beneden and Julin (30) only the outer wall of the aunom is lined with epiblast, the inper wall being derived from the Mypoblast of the primitise branchiat ac.
}
and directly continuous with that layer through the atrial

Fig. 5.-Diagrammatic dissection of \(A\). mendula to show the anatomy.
af, Atrial aperture.
br. Branchial aperture.
e, Anus.
brs. Branchial sac.
d4. Dorsal lamina.
df. Dorsal tubercle.
end. Endostyle.
h, Heart.
I. Intestine.

2n. Mantle.
\%g. Nerve ganglion.
©, Oesophagus
ss. Oesophageal aperture.
ov, Ovary.
phe, Peribranchial cavity.
\%. Rectum.
st. Stomacb.
8. Test.
th, Tentacles.
od. Vas defcrens. externally and internally by ectodermal cells,

There is no true body cavity or coclom in the mesoderm; and yet the Tunicata are Coelomata in their structure and affinities, although it is very doubtful whether the enterocoele which has been described in the development is really found. In any case the coelorn if formed is afterwrards suppressed, and in the adult is only represented by the pericardium and its derivatives and the small cavitics of the renal and reproductive organs.
The branchial aperture (mouth) leads into the bran. Branchlat chia! siphon Sncand (buccal cavity or Neighbons stomoda eum), manorgams and this opens end of a veryto the ancerio hranchial sac) which extends nearly to the posterior end of the body (see figs. 5 and 6). This branchial sac is an enlarged and modified pharynx, and is therefore properly a part of the alimentary canal. The oesophagus opens from it far back on thedorsaledge (see below). The wall of the branchial sac is pierced by a large number of vertical slito-the stig-mata-placed in numerous transverse rows (secondary or subdivided gill-slits). These slits place the branchial sac in communication with the peribranchial or atrial cavity, which lies outside it (fig. 6). Between the stigmata the wall of the branchal sac is traversed by blood-vessels. which are arranged in three regularseries (fig. 7) -(i) the transverse vessels, which run horizontally round the wall

 verintan \& Co., Led.
Frc.6.-Semi-diagrammatictransversesection of Ascidio,passingthrough the atrial aperture, seen from anterior surface, left side uppermost.
\begin{tabular}{|c|c|c|c|}
\hline A & Atrial aperture. & \(m b\), & \\
\hline ath, & Atrial lobe. & Ob, & Ovary. \\
\hline Brs, & Branchial sac. & \(p\) br, & Peribranchial cavity. \\
\hline cl & Cloaca. & \(r\), & Rectum. \\
\hline cons. & Connective. & ren, & Renal vesicles. \\
\hline c \({ }^{\text {ds. }}\) & Dorsal blood-sinus. & 52. & Stigmata. \\
\hline d. & Dorsal lamina. & sph. & Atrial sphincter. \\
\hline exid & Endostyle. & \(t\) & Test. \\
\hline , & Genital ducts. & tr. & Transverse vessel. \\
\hline 170. & Intestine. & \(t y\) & Typhlosoie. \\
\hline \% & Interstigmatic vessel. & obls, & Ventral blood-anus. \\
\hline
\end{tabular}
and open at their dorsal and ventral ends into large longo tudinal vessels, the dormal and ventral sinuses; (2) the fine longitudinal veatels, which run vertically between adjacent trangverse vessels and open into them, and which bound the stigmata; and (3) the internal longitudinal bars, which ran vertically in

Frc. 7.-A, Part of branchial sac of Ascidse from incide. B, Transverse section of same.

(\(A\) and \(B\) are drawn to different scales.)
plane internal to that of the transverse and fine longitudinal vessels. These bars communicate with the transverse versels ly short side branches where they cross, and at these points are Molonged into the lumen of the sac in the form of hollow papiliae. The edpes of the stigmata are rimhly set with cilis, which drive the water from the branchial sac into the peribranchial cavity, and 00 ause the currents that flow in through the branchial aperture and ut through the atrial.
Along ita ventral edge the wall of the branchial anc is continuous externally with the mantle (fig. 6). while internally it is thickened to form two parallel longitudinal folds bounding a Eodortyth. roove, the "endostyle" or ventral furrow (Gigs. 5. contions 1,8 , tnd.) corresponding to the hypopharyngeal grqoved
ind the median part of the thyroid gand of Vertebrata. The and the median part of the chyrots ghand of Vertebrata. The bottom, where they bear very long cilia, and on parts of the sidea of the furrow so as to form projecting glandular pads (fig. 8, of.). It is senerally supposed that this organ a fland for the proeecretion which is spread round the edgea of the branchial sac and eatches the food particles in the passing current of water. It has, however, been pointed out that there are comparatively few gland cells in the epithelium of the endostyle, and that it is possible that this furrow is merely a ciliated path along which the mucous secretion (produced in part by the bands; por., peribranchial cavity; se. subreural gland) is etigma; 刃. \({ }^{\circ}\), ventral vessel.
conveyed posteriorly
long the ventral edge of the branchial sac. Thereare sensory bipolar cells in the lateral walls of the endostyle. At its anterior end the edges of the endostyle become continuous with the ioft and left halves of the posterior of two circular Arptotarge ciliated ridges-the peripharyngeal bands-which nin seef Bards. parallel to one another round the front of the branchial sac. The dorsal ends of the posterior peripharyngeal band bend posteriorly (enclosing the epibranchial groove), and then join to Doral) form the anterior end of a fold which runs along the Lemhen. dorsal edge of the branchial sac as tar as the ceso phageal aperture. This fold is the dormal lamina (iggs. 5, 6, dl).
canal by its side walls growing up, arching over, and coalescing in the median dorsal line (fig. I3, D). This union of the lamimae dorsales to form the neura canal commences at the posterior end behind the blastopore and gradually extends forwards. Consequently the blastopore comes to open into the posterior end of the neural canal (fig. 13, D), while the anterior end of that cavity remains

(Ater Kowilevily.)
Fig. 13.-Stages in the Embryology of a Simple Ascidian.
A to \(F\), Longitudinal vertical sections of embryos, alt placed with the dorsal surface uppermost and the anterior end at the right.
A. Early blastula stage, during segmeotation.
B. Early gastrula stage.
C. Stage after gastrula, showing commencement of notochord.

D', Later stage, showing formation of notochord and of neural canal.

E, Embryo showing body and tail and completely formed ncural canal.
F. Larva just hatclied ; end of tail cut off.

C, Transverse section of tail of larva.
alp. Ndhering papillac of harva, ncr, Neurenteric canal.
of, Epiblastic (atrial) involution. oc, Ocular organ of larva.
an, Auditory organ of Larva. g, Gelatinous investrnent of ar. Arcienteron.
bc. Blastocoele.
bp. Blastopore.
ch. Notochord.
ep. Epiblast.
by. Hypoblast.
m, Muscle cells of tail.
mes, Mesenteron.
\(m c\), Mesoderm cells.
mv, Cerebral vesicle at anterior end of neural canal.
ne, Neural canal.
open to the exterior. In this way the archenteron communicates indirectly with the extcrior. The short canal leading from the neural canal to the archenteron is known as the neurenteric canal (Gg. 13, D, nec). Previous to this stage some of the hypoblast cells at the front edge of the blastopore and forming part of the dorsal wall of the archenteron (fig. I \(3, C\), ch) have become separated off. and then arranged to form an elongated band, two cells wide, underlying the posterior half of the neural canal (Gig, 13, D, E, ch). This is the origin of the notochord. Outgrowths from the sides of the archenteron give rise to laterally placed masses of cells, which are the origin of the mesoljlast. These masses slow no trace of metameric segmentation. The cavities (reproductive and renal vesicles) which are formed later in the mesublast represent the coelom. Conequently the body cavity of the Tunicata is a modified form of enterocoele. The anterior part of the embryo, in front of the notochard, now becomes enlarged to form the trunk, while the posterior part elongates to form the tail (fig. 13. E). In the trunk the anterior part of the archenteron dilates to form the mesenteron, the greater part of which becomes the branchial sac; at the same time the anterint part of the neural canal enlarzes to form the cerebral vesicle, and the opening to the exterior at the front end of the canal now cloces. In the sail part of the embryo the neural canal remains as a narrow tube, while the remains of the wall of the

converted into lateral muscle bands (fig. 13, G) and a ventral cond of cells, which eventually breaks up to form blood corpuacles As the tail grows longer, it becomes bent round the tronk of the embryo inside the egg-membrane. About this period the epiblast cells begin to form the test as a cuticular deposit upon their outer surface. The test is at first devoid of cells and forms a delicate gelatinous investment, but it shortly afterwards becomes cellular by the migration into it of test cells formed by proliferatioa from the epiblast. \({ }^{\text {a }}\)
The embryo is hatched about two or three days after fertilization, in the form of a tadpole-like larva, which swims actively through the sea by vibrating its long tail. The anterior end of the body is provided with three adhering papillae (fig. 13 , Larval F, adp.) in the form of epiblastic thickenings. In the
free-swimming tailed larva the nervous system, formed from the free-swimming tailed larva the nervous system, formed from the
walla of the neural canal, becomes considerably differentiated. The anterior part of the cerebral vesicle remains thin-walled (fig. I3, F), and two unpaired sense-organs develop from its wall and project into the cavity. These are a dorsally and posteriorly placed optic organ, provided with retina, pigment layer, lens and cornca, and a ventrally placed auditory organ, consisting of a large spherical partially pigmented otolith, attached by delicate hair-like processes to the summit of a hollow crista acoustica (fig. 13, F, au). The posterior part of the cerebral vesicle thickens to form a aolid ganglionic mass traversed by a narrow central canal: this becomes the ganglion of the adult Ascidian. The wall of the neural canal behind the cerebral vesicle becomes differentiated into an anterior thicker region, placed in the posterior part of the trunk and having a superficial layer of nerve fibres, and a posterior narrower part which traverses the tail, lying on the dorsal surface of the notochord, and gives ofi several pairs of nerves to the muscles of the tail. Just in front of the anterior end of the nervous system a dorsal involutioa of the epiblast brcaks through into the upturned anterior end of the mesenteron and thus forms the month opening. Along the ventral edge of the mesenteroa, which becomes the branchial sac, the endostyle is formed as a narrow groove with thickened side walls. It probably corresponds to the median portion nf the thyroid body of Vertebrata. A curved outgrowth from the posterior end of the mesenteron forms the alimea. tary canal (oesophagus, stomach and intestine), which at first ends blindly. An anus is formed later by the intestine opening into the left of two lateral epiblastic involutions (the atria). which rapidly become larger and fuse dorsally to form the peribranchinal cavity. Outgrowths from the wall of the branchial sac meet these epiblastic involutions and fuse with them to give rise to the first formed pair of stigmata, which thus come to open into the peribranchial cavity; and these alone correspond to the gill clefts of Amphioxus and the Vertcbrata.

Pic. 14-Sketches of Aecidian Larvae.
A, Arcidis; S, Styela; M, Anurelha; C, Compound Ascidian.
Fig. 14 shows a few chatacteristic lorms of Ascidian "tadpoles," or free-swimming larvae. A and S are typical simple Ascidians; M is the aberrant tailless form found in some Molguidae; and \(C\) is the larva of a typical compound Ascidian.

After a short frec-swimming existence the fully developed tailed larva fixes itself by its anterior adhering papillae to some foreign object, and then underpoes a remarkable series of retrogressive changes, which convert it into the adult phesamorAscidian. The tail atrophies, until nothing is left but Aduk form some fatty cells in the posterior part of the trunk. The Adull Form. adhering papillae disappear and are replaced functionally by a growth of the test over seighbouring objects. The nervous system with its sense organs atrophies until it is reduced to the single smal! ganglion, placed on the dorsal edge of the pharynx, and a slight netve cord running for some distance posteriorly (van Beneden and Julin). Changes in the shape of the body and a further growth and differentiation of the branchial sac, peribranchial cavity and othet organs now produce gradually the structure found in the adult Ascidian.

The most important points in connexioa with this process of development and metamorphosis are the following: (i) In the
\({ }^{1}\) Some of the frst test cells are also probably derived from the epithelium of the egg follicle.

Ascidian embryo all the more important organs (e.p notochord, neural canal, archenteron) are formed in essentially the same manner as they are in Amphioxus and other Chordata. (2) The free-swimming tailed larva possesses the essential characters of the

(From The Cembritge Netural Bistery, val vìi. "Fishen, \&e." By permission of Mactillan \& Co., Led.)
Fig. 15--Metamorphosis of an Ascidian (modified from Kowalevsky and others).
A, Free-swimming tailed larva. B. The metamorphosis-larva attached. C, Tail and nervous system of laria degenerating. D. Further degeneration and metanorphosis of larva into E., the young fixed Ascidian.
af, Atrial invagination.
ch. Notochord.
hy, Hypoblast cells.
m. Mouth.
mes, Mescnteron.
me, Neural canal.
c Intestine.
no, Neural vesicle with sensc-organs. .

Chordata, inasmuch as it has a longitudinal skeletal axis (the notochord) separating a dorsally placed nervous system (che neural canal) from a ventral alimentary canal (the archenteron); and therefore during this period of its life-history the animal belongs to the Chordata. (3) The Chordate larva is more highly organized than the adult Aseidian, and therefore the changes by which the latter is produced from the former may be regarded as a process of degeneration (3;). The important conclusion drawn from all this is that the Tunicata are the degenerate descendants of a group of primitive Chordata (see below).

\section*{Classiftcation and Characters of Groups Order 1.-Larvacea}

Free-swimming pelagie forms provided with a large locomotory appendage (the tail), in which there is a skeietal axis (the urochord). A relatively large test (the "house ") is formed with characters great rapidity as a secretion from the ectoderm; it is of Lervoces. merely a temporary structure, which is cast off and replaced by another. The branchial sac is simply an enlarged pharynx with two ventral ciliated openings (stigmata) leadin to the exterior. There is no separate peribranchial cavity. The nervous system consists of a large dorsally placed ganglion and a long nerve cord, which stretches backwards over the alimentary canal to reach the tail, along which it runs on the left side of the urochord. The anus opens ventrally on the surface of the body in front of the stigmata. No reproduction by gemmation or metamorphosis is known in the ife-history.
This is one of the most interesting groups (fig. 16) of the Tunicata, as it Structure of hows more com- Appendicupletely than any of laria. the rest the char-
acters of the original ancestral forms. It has undergone little or no degeneration. and consequently corresponds more nearly to the tailedlarial condition than to the adult forms of the other groups. The order includes a single family, the Appendiculariidae, all the members of which are minute and freeswimming. They occur on the surface of the sea

lit. 17.-Oikoplewra äphocerca in "House," seen from right sitle. magnified. The arrows indicate the course of the water.
\(x\), Lateral reticulated parts of "House.
in must parts of the world. They possess the power to form with great rapidity an enormously large investing gelatinous layer (fig. 11), which corresponds to the test of other groups. This was first described by von Mertens and by him named "Haus." It is oniy luosely attached to the body and is frequently thrown off soon after its formation and again reformeri. H. Lohmann has made a careful study of the mode of formation of this "house" from certain large ectoderm cells, the "oikoplasts," and he considers that it probably fulfils the following functions: Ins complicated apparatus of passages with partial septa form a fincly perforated network, through which a relatively large volume of water is strained so as to entrap microscopie food particles; it helpes in locomotion by its hydrostatie effect, and it is also a protection to the anima!, which may escape from enernies by throwing off the house, which is many times its own size. The tail in the Appendiculariidac is attached to the ventral surface of the borly (fig. 18), and usually points more or less anteriorly. The supposed traces of vertebration in the muscle bands and the nerve cord are probably artifacts, and do not indicate true metameric segmentation Near the base of the tail there is a distinct elongated ganglion (fig. 18, \(n g^{\prime}\)). The anterior (cerebral) ganglion has connected with it an otocyst, a pigment spot, and a tubular process opening into the branchial sac and representing the dorsal cubercle and associated parts of an ordinary Ascidian. The branchial aperture or mouth leads into the branchial sac or pharynx. There are no tentacles. The endostyle is short. There is no dorsal lamina, and the peripharvnpeal bands run dorsally and pesteriorly. The wall of the franchial sac has only two ciliated apertures (fig. 19). They are homologous with the primary stigmata of the typical Ascidians and the gill chefts of verteliates. They
far tuck on the ventral surfuce. one on each side of the midalle line, and lead into short lumsel-shufued lubes which open on the surface of the body behind the anus (fg. 18, ad). Theric tubes correspond to the right and left atrial involutions

Fig. s8.-Semi-diagrammatic view of Appendicularia from the right.
a, Amus.
\(\stackrel{a}{a}\)
app. Tail
br, Branchial aperture
brs, Branchial sac.
df, Dorsal tubercle.
end. Lindostyle.
h. Heart.
i, Intestine.
\(m_{1}\) Muscle band of tail.
\(\boldsymbol{n}^{*}\). Nerve cord in body
\(\boldsymbol{*}\). Nerve cord in the tail.
ol,
Oesoplagus.
which, in an ordinary Ascidian, fuse to form the peribranchial
cavity. The heart, according to Lankester, is formed of two
cells, which are placed at the opposite ends and connected by
delicate contractile protoplasmic fibrils. The large ovary and testis
are placed at the posterior end of the body. The remainder of the
atructural details can be made out from figs. 18 and 19.

Fic. t9.-Transverse Section of Oiknpleura; anterior part of body and taif.
AB, Atrial passage.
b.s. Blood sinus.
br.s, Branchial sac (pharynx).
er, Ectoderm.
in, Endoderm
\%. Nerve.
n.ch. Notachord.
R. Rectum.
sg. Stigma.

The tamily Appendicularidae comprises amnngat others the following gencra: Oikopleura (Mertens). and Appendicularia (Charn.), in both of which the body is short and compact and the tail relatively long, while the endustyle is straight: Megalocerchs (Chun) containing \(M\), abyssorum, a huge deep-sea form from the Mediterrancan (30 mm . long) ; Fritillaria (Quoy and Gaimard), in which the body is long and composed of anteriur and posterior regions, the tail relatively short, the endostyle recurved, and an ectodermal hood is fornied over the front of the body: and Kowalerskia (Fol), a remarkable form described by Fot (st), in which the heart and endostyic are said to be stuent, while the branchial sac is provided with four rows of ciliated tooth-like processes.

\section*{Order 11. -Timliacea}

Free-swimming pelagie forms which may be cither simple or compound, and the adult of which is never provided with a tail or a notochord. The test is permanent and may be cither well developed or very slight. The musculature of thallscea. the mantle is in the form of more or less complete circular bands. by the contraction of which locomotion is effectex. The branchial sac has either two large or many small apertures, leading to a single: peribranchial cavity, into which the anus opens. Blastogenesis takes place from a ventral endostylar stolon. Alternation of generations occurs in the life-history, and may be complicated by polymorphism. The Thaliacea comprises two groups Cyclomyaria and Hemimyaria.

\section*{Sub-order 1.-Cyclomyaria.}

Free-swimming pelagic forms which exhibit alternation of genera. tions in their life-history but never form permanent colonies. The body is cask-shaped, with the Urinchial and atrial apertures at the opposite ends. The test is more or less well Charactern developed. The mantle has its musculature in the form of Cyclo of circular bands surrounding the body: The branchial ayarla sac is fairly large, occupying the anterior half or more of the body, Stigmata are usually, present in its posterior part only. The peribranchial cavity is mainly postcrior to the branchial sac. The alimentary canal is placed ventrally close to the posterior end of the branchial sac. Hermaphrodite reproductive organs are placed ventrally near the intestine.
This group forms one family, the Doliolidae, including three genera, Doliolum (Quoy and Gaimard), Dolchimia (Korotneff) and Anchinia (C. Vogi).
Doliolum, of which about a dozen species are known from various seas, has it cask-shaped body, usually froms to 2 cm . in length. The terminal branchial and atrial apertures (fig. 20) are lobed and the lobes are provided with sense organs. Siructure of The test is very slightly developed and cuntains no

Doliolums.
cells. The mantle has cight or nine circutar muscie bands surrounding the body: The most anterior and posterior of these form the branchial and atrial sphincters. The wide branchial and atrial apertures lead into large branchial and peribranchial cavi. ties, separated lyy the posterior wall of the branchial sac, which is pierced by stigmata; consequently there is a free passage for the water through the body along its long axis, and the a nimal swims by contracting its ring-like muscile bands, so as to force ou the contained water posteriorly. Stigmata may also be found on the lateral walls of the branchial sac, and in that case thereare corresponding anteriorly directed diverticula of the peribranchial cavity. There is a distinct endostyle on the ventral edge of the branchial sac and a peripharyn. geal band surrounding its anterior end, but there is no representative of the dorsal lamina on its dorsal edge. The oesophaguk commences rather on the ventral edge of the posterior end of the branchial sac, and runs backwards to open into the stomach, which is followed

F1G. 20.-Doliolum densiculatum, sexual generation, from the left side. Lettering as for 6ig. 18.
\(m^{2} \longrightarrow m^{2}\), Musck bands.
por. Peribranchial cavits
ng. Nerve ganglion.
all, Atrial lobes.
sg. Stigmata.
sgl, Subneura! gland.
bri, Branchians.
by a curved intestine opening into the peribranchial cavity. The alimentary canal as a whole is to the right of the middle line. The bermaphrodite reproductive organs are to the left of the middle line alongwide the alimentary canal. They open into the peribranchial cavity. The ovary is nearly spherical, while the testis is elongated, and may be continued anteriorily for a long distance. The beart is placed in the middle line ventrally, between the poeterior end of the endoxyle and the oesophageal aperture- The nerve gangion lies about the middle of the dorsal edge of the body, and gives of many nerves Under it is placed the subneural gland, the duct of which runs forward and opens into the anterior end of the branchial sac by a simple aperture, surrounded by the spirally twisted doral end of the peripharyngeal band (fig. 20., df).
The ova of the sexual generation produce tailed larvae; these develop into forms known as "nurses," which are asexual, and are

Dovolopareter characterized by the possession of nine muscle bands, an auditory sac on the left side of the body, a ventrallyplaced stolon near the heart, upon which buds are produced and a dorsal outyrowth near the posterior end of the body The nurse after producing the buds becomes a degenerate form with very wide muscle bands. The buds give rise eventually to the sexual generation, which is polymorphic, baving three distinct forms, in two of which the reproductive organs remain undeveloped. The buds while still very young migrate lrom their place of origin on the atolon, divide by fission, and become attached to the dorsal outgrowth of the body of the nurse, where they develop. The three forms produced are as follows. (1) Nutritive forms (trophozooids), which semain permanently attached to the nurse and serve to provide is with food; they have the body elongated dorso-ventrally, and the nusculature is very slightly developed. (2) Foster lorms (phorozooids). which, like the preceding, do not become sexually mature, but, tunlike them, are set lree as cask-shaped bodies with eight muscle bands and a ventral outgrowth, which is formed of the stalk by which the body was formerly united to the nurse. On this outgrowth the (3) forms (gonozooids) which become sexually mature are attached while still young buds, and after the foster forms are set free these reproductive forms gradually attain their complete development and are eventually set free and lose all trace of their cotanexion with the foster forms. They resemble the foster forms in having a cask-shaped body with eight muscle bands, but differ in having no outgrowth or process, and in having the reproductive organs fully developed.

Amehinia, of which only one species is known, A. rubra, from the Mediterranean, has the sexual forms permanently attached to Amoltale portions of the dorsal outgrowth from the body of the The test is well developed and contains branched cells. The musmatare is not so well developed as in Doliolum. There are two circular bands at the anterior end and two at the postcrior, and two on the middle of the body. The stigmata are confined to the obliquely placed posterior end of the branchial sac. The alimentary canal forms a U-shaped curve. The reproductive organs are placed on the right side of the body. The life-history is still imperfectly known. As in the case of Doliolum the sexual generation is poly. morphic, and has three forms, two of which remain in a rudimentary condition so far as the reproductive organs are concerned. In Anchimia, however, the three forms do not occur together on one stolon or outgrowth, but are produced successively, the reproductive forms of the sexual generation being independent of the "foster forms " (see Barrois. 27).

\section*{Sub-order 2.-Hemimyaria.}

Free-swimming pelagic forms which exhibit alternation of generations in their fife-history and in the sexual condition form colonies.

\section*{Charetert © Aftrib Byarta} The body is more or less fusiform, with the long axis antero-posterior, and the branchial and atrial apertures nearly terminal. The test is well developed. The musculature of the mantle is in the form of a series of transversely-running bands, which do not form complete independent ringe as in the Cyclomyaria. These transverse muscles are probably to be regarded as branchial and atrial sphincters which have spread over the body. The branchial and peribranchial cavities form a concinuous space in the interior of the body, opening externally by the branchial and atrial apertures, and traversed obliquely from the dorsal and anterior end to the ventral and posterior by a long narrow vascular band, which represents the dorsal lamina, the dorsal blood-vessel, and the neighbouring part of the dorsal edge of the branchial asc of an ordinary Ascidian The alimentary canal is placed ventrally. It may either be stretched out (ortho-enteric) so as to extend for some distance anteriorly, oras is more usual-be concentrated (caryo-enteric) to form along with the reproductive organa a rounded opaque mass near the posterior end of the body known as the visccral mass or " nucleus." The embryonic development is direct, no tailed larva being formed.

This sub-order contains one family, the Salpidae, including the single sateina genus Salpo (Forskil), which, however, may be divided S. pinmele, in which the alimentary canal is stretched out along the
' For further details see Uljanin (28) and Neumann, Dolinlwm, in Deutorh. Tief-See Exped. (Jena, 1905).
ventral surface of the body, and (2) those, buch as S. fusiformis (6g. 21. A), in which the alimentary canal forms a compact globular mass. the "aucleus," near the posterior cnd of the body. About fifteen species

FiG. 21.-Salpa runcinere-furiformit.
A, Aggregated form: cm, Embryo; gem; Gemmiparous stolon; m, Mantle: visc. Visceral mass (nucleus). B, Solitary form: 1-9, Muscle bands. Lettering as before.
altogether are known; they are all pelagic forms and are found in nearly all seas Each species occurs in two forms-the solitary asextual (proles solifaria) and the
aggregated sexual (proles gretgris) which are usually quite unhike one anotber. The solitary form (fog. 21, B) gives rise by internal germmation to a complex tubular stolon, which contains processes from all the more important organs of the parent body and which becomes segmented into a series of buds or embryos. As the stolon ciongates, the embryoe near the free end which have become advanced in their development are set free in groups, which remain attached together by processes of the test, each enclosing a diverticulum from the mantle 60 as to form "chains" (fyg- 22). Each member of the chain is a Salpa of the sexual or aggregated form, and when mature may-either still attached to its neighbours or separated from them (fig. 21, A) -produce one or several embryos, which develop into the

Fig. 22.-Posterior part of solitary form of Salpa demo-cralico-mucronata, showing a chain of embryos nearly ready to be set free.
gem, Young aggregated Salpee forming the chain. solitary Salpa. Thus the two forms
st, Stolon.
s. Muan
\(m\). Muscle band of the mantle. alternate regulariy.

The more important points in the structure of a typical Salpa are shown in fig. 23. The branchial and atrial apertures are at opposite ends of the body, and cach leads into a lange cavity the branchial and peribranchial saish communication at the sides of the obliquely-running setme communication at "he sides of the obliquely-running closely to the surface of the mantle. The muscle bands of the mantle do not completely encircle the body. They are present

F1G. 23-Semi-diagrammatic representation of Salpa from left side. Lettering as before.

dorsally and laterally. but the majority do not reach the ventral surface. In many cases neighbouring bands join in the median dorsal line (fig. 2i). The anterior end of the dorsal lantrina is protonged to form a prominent tentacular orpan, the langwet, projecting into the branchial sac. The nerve ganglion (which represents the panglion of the Ascidian along with the subnewral gland), donal lamina, peripharyngeal bands and endostyle, are placed in their
usual nomitions; but in place of any distinct subneural gland there are two lateral neural glandular masses first described by Metcall These have no connexion with the ciliated funnel, but open by lateral duct into the branchial cavity. Median and lateral eyes are also found in consexion with the gangtion. The large spaces at the sides of the dormal lamina (often called the gill or branchia of Salpa). by means of which the cavity of the branchial sac is placed in free com munication with the peribranchial cavity, are to the regarded as gigantic stigmata formed by the nuppression of the lateral walls of the branchial sac. Fig. 23 reprements an aggregated or sexual Salpo which was once a member of a chain, since it shows a testis and a develophng embryo. The ova falways few in number, usually only oue) appear at a very early period in the developing chain Salpo while it is still a part of the gemmipurous stolon in the body of the molitary Sulpo. This gave rime to the view put forward by Brooks (25), that the ovary really belonga to the solitary Salpa, which is therefore a femate producing a series of males by asexual gemmation and deposting in each of these an ovum, which will afterwards, when fertilized, develop in the body of the made into a solitary or female Salpm. Thla flea would of course entirely destroy the view that diolpos is an exainple of alternation of generations. The sexual or clain Solpa, although really bermaphrodite, is always protogynous: i.e. the fermule elements or ova are produced at an earlier period than the rate organ or tentis. This prevents self-fertilization. The ovum is fertilized by the apermatozua of an older Salpa beDerelopment fonging to another chain, and the cmbryo is far of sefpe. advanerd in its edevelopnent before the esstis is formed. Follieular cells, known as kalymmocytes, migrate into the ovum and for a time play an important part in moulding the flevelopment and nourishing the blastomeres. At an early period ill its development a part of the enbryo becomes separated off. nhont with a part of the wall of the cavity in which it hes, 10 form the "pharenta," in which the embryonic and the maternal blood utreame circulate in elose proximity for actually coatesce during one perixd) and mo allow of the pasage of nutriment to the developing enbryo. At a monewhat later ntage a number of cells placed at the posterior end of the body alongsite the future nuclets beconie filted up with oiloglohules to form a mass of nutrient noxecrial-the clacoDhat - which in used up later on in the development. Many suggestime have lern made as to the homology of the chacoblast. The most probathe is that it is the dixppparing rudinuent of the tait fomut in the harval condition of most Ascidians.

\section*{Addendum.}

The family Octacnemidae includes the single semarkable genus thathemus. foutnd cturing the "Challenger" expedition, and first Otm no dencriterl thy soocley (su). It is now known in bath a - Man molisary and an absrigated form, and was regarded by Ilertman as a dexp-sea representative of the pelagic Sibpidac, poseility fixel: or, betier, as rehated to the primitive fixed fowms from which silphlac have leen derived. Mctcalf, however, has shown that the agsregated torm of \(U\), putogowiensis, which he has deserileyt. is more nearly rolated to the Clavelinidice amongst Asciliacta. The lexly is sumewhat diserid. with its margin prohugent fo form eight laproing prenewes (fig. 2f), on to which the ныask lumls of the numete are vontinned. The alimentany canal

there is an aggregated form (fig. 24, B) consssting ol individuals united by a stolon composed of test and body-walls.

Oqder III.-Ascidiacea
Fixed or free-swimming simple or compound Ascidians which in the adule are never provided with a tail and have no trace of a notochord. The free-swirming forms are colonies, the simple Ascidians being always ixed. The test is permanent and well developel as a rule it incrases with the aged individual. The branchial sac is large and well developed walls are perforated by numerous efits (stigmata) opening into the peribranchial cavity, which communicates with the exterior by the atria! aperture. Many of the forms reproduce by gemination. and in most of them the sexually-produced embryo develope into a tailed larva.

The Ascidiacea includes three group-the aimple Ascidians, the compound Ascidians and the free-swimming colonal Pyoosoma.

\section*{Sub-Order 1.-A scidiae simplices.}

Fixed Ascidians which are solitary and very rarely reproduce by gemmation; if colonies are formed, the members are not buried in a common investing mass, but each has a distinct test of its own. No strict line of demarcation can be drawn
simplo between the simple and the compound Ascidians, and Aacideases. one of the families of the former group, the Clavelinidae (the social Ascidians), forms a transition from the typical simple forms, which never reproduce by gemmation, to the compound forms, which always do. The Ascidiae Simplices may be divided into the following families:-

Famify I., Clavelinidoe.-Simple Ascidians which reproduce by gemmation to form small colonies in which each ascidiozooid has: distinct test. but all are connected by a common blood system, and by prolongations of "epicardiac tubes" (rom the branchial sacs Buds formed on stolons which are vascular outgrowths from the posterior end of the body, containing prolongations from the ectoderm, mesoderm and endoderm of the ascidiozooid. Branchial sac not folded; internal Tongirudinal bars usually absent: stigmata straight; tentacles simple. This family contains, amongst others the following three yenera: Ecteinascidia (Hendman), with internal longitudinal bars in branchial sac; Claselina (Savigny), with intestine extending behind branchial sac; and Perophora (Wiegmann), with intestine alongside branchial sac.

Family II., Ascidiidac.-Solitary fixed Ascidians with gehtinous test; branchial aperture usually eight-lobed, atrial aperture usually six-lobed. Branchial sac not folded: internal longitudinal bars usually present ; stigmata straight or curved; tentaclea simple. This famity is divided into three sections:-

Sub-family 1, Hypodytkime.-Branchial sac mith mo internal longitudinal bars One genus, Hypabythaus (Moseley).

Sub-fomily 2, A scidinae.-Stigmata straight. Many genern, of which the following are the more important: Ciona (Fleming) dorsal languets present; Ascidia (Linnaeus, =Phallxsia, Savigry), dorsal lamina present (see figs it to 10); Rhodososma (Ehrenbery). anterior part of test modificd to form operculum: Abyssacidia (Herdman), intestine on right side of branchial sac.

Smb-jamhly 3 . Corellinal-Stigmata curved. Three chid genera: Cordla (Alder and Hancock), test gelatinous, body sessile: Corymasridia (Herdman), test gelatinous body pedumculared; Chdyosoma (Brod. and Sow.), test modified into horny plates

Fonily III.. Cyuthiidoe.- Solitary fixed Ascidians vesully with leathery test; branchisl and atrial apertures borh forr-tobed. Branchiol sac longitudinally fodded (fg. 26): stigmata straighe: tentackes simple or componad. This lamily is divided iato three sections:-
 of bracithal sac (fig. 26. S) tentackes simple. The more important fencra are: Sfychs (Macleay), stigmata normal, and Defhymerns (Herdman), stigmata ibsent or modifed.

A. Entine bud, maidral ime
- Atrisi aperture
- Brapotal apertiare. pid Pobuecte.

Sub-family 2. Cyuskinae.-More than eight folds in branchial me (Gig. 26. (): tentacles compound; body esssile. The chief genus is \(C\) mihic (Savigny), with a large number of species.
Sub-family 3. Bodenimae.- More than eight folds in branchial mer; tentacles compound; body pedunculated (6g. 25. A). The chief genera are: Bolcenia (Savigny) branchial aperture lour-lobed, ceirmata normal; and Culeolws (Herdman), branchial aperture with less than four lobes, stigmata absent or modified (fig. 25. B). This last is a deep-sca genus discovered by the "Challenger" expedition (see 17):
Family \(I V\)., iodevlidae.-Solitary Ascidians, sometimes not fixed: branchial aperture six-lobed. atrial four-lobed. Test usually incrusted with sand. Branchial sac longitudinally folded; stigmata more or less curved. usually arranged in spirals; tentackes compound. The chief genera are: Molpula (Forbes), with distinct folds in the branchial sac, and Ewegra (Ald, and Hanc.), with ne distinct folds, but mercly broed internal longitudinal bars in the branchial sac. In some of the Molgulidae (genus Anurella, Lacaze-Duthiers, 20) the embryo (fig. 14. M) does not become converted into a tailed turva, the development being direct, without metamorphosis The embryo when hatched assumes gradually the adult structure, and never shows the leatures characteristic of larval Ascidians, such as the urochord and the median sense-organs. Bourne has described an aberrant Molgulid, Oligotrema. from the Loyalty Islands, with a reduced branchial sac and enlarged pinnate muscular branchial iobes, apparently used for catching lood!

Fic. 26.-Diagrams showing Transverse Sections of Typical Branchial Secs.
A. Uniolded type. S, Siyela, with four folds on each side. C. Cyuthia, with eight folds on one side and seven on the other. D.L., Dorsal Lamina ; End, endestyle ; I, II, Éc., folds.

Fig 27.-Types of Stomach amongst Compound Ascidlana. 9. Plann. F, Folded. A. Areolated.
i. Intertine;
\(\boldsymbol{x}\), oesophagus; st, stomach.
Figs. 26 and 27 illustrate come details of structure of branchial sac and of stomach in various simple and compound Ascidians. which are made use of in classification, and in the definitions of genera and lerger groupa.

Sub-Order 2.-A scidice Compositac.
Fixed Accidians which reproduce by gemmation, wo as to form colonies in which the ascidiozooids are buried in a common investcongened ing mass and have no separate tests. This is probably Anctines a mornewhat artificial assemblage formed of two or Anthare three groups of Ascidians which produce colonics in which the ascidiozooids are so intimately united that they possess a common test or investing mass. This is the only character which distinguishes them !rom the Clavelinidae, but the property of reproducing by grmmation separates them from the rest of the Ascidiae Simplices. The Ascidiae Compositae may be divided into seven lamities, which fall into two well-marked groups: (1) the Chalarosomata, including the first five families, with extended body, divided in to two or three regions, a nd more nearly related to the Clavelinidae; and (2) the Pectosomata, includirg the Botryllidae and Polystyelidac. with a compact body, not divided into regions, and evidently related to the Cynthiidae amongst simple Ascidians.

Family 1., Distomidoe.-Ascidiozooida divided into two regions,
thorax and abdomen; testes numerous; vas deferens not spirally eoited. The chief genera are: Distoma (Gaertner); Distaplio (Della Valle); Colella (Herdman), forming a pedunculated colony (see fig. 28, A) in which the ascidiozooids develop incubatory pouches. connected with the peribranchial cavity, in which the embryos undergo their development (17); and Chondrostachys (Macdoaald).
Family. II., Coelocormsdce.-Colony not fixed, having a large axial cavity with a terminal aperture. Branchial apertures give lobed. This includes one species, Coclocormus huxleyi (Herdman), which is, in some respects, a transition form between the ordinary compound Ascidians (e.g. Distomidae) and the Ascidiae Luciae (Pyosoma).
Family III., Didemnidae.-Colony usually thin and incrusting test containing stellate calcareous spicules. Testis single, large;

(After Fierdman, "Clullawe" Refort.)
Fic. 28.-Colonies of Ascidiae Compositae. (Natural size.)
A. Colella guayi. B, Leplochinwm. meglectum. C, Pharyngodictyon mirabile.
D. Botrollus, showing arrangement of ascidiozooids in circular bystems, each of which has a central common cloaca.
vas deferens spirally coiled. The chief genera are-Didemnxm (Savigny), in which the colony is thick and fleshy and there are only three rows of stigmata on each side of the branchial sac: and Leptoclinkm (Mitne-Edwards), in which the colony is thin and incrusting (fig. 28, B) and there are four rows of stigmata on each side of the branchial sac.

Family IV., Diplosomidac.-Test reduced in amount, rarely containing spicules. Vas deferens not spirally coiled. In Diplosoma (Macdonald), the most important genus, the larva is gemmiparous.

Fawily V., Polyclinidae.-Ascidiozooids divided into three regions-thorax, abdomen and post-abdomen. Testes numerous; vas deferens not spirally coiled. The chief genera are: Pherymfodictyon (Herdinan), with stigmata absent or modified, containing one species, Ph. mirabile (fig. 28, C), the only compound Ascidian known from a depth of 1000 fathoms: Polyclimem (Savigny), with \(a\) smooth-walled stomach; A plidium (Savigny), with the stomach wall longitudinally folded (kg. 27): and Amaroucimm (MilneEdwards), in which the ascidiozooid has a long post-abdomen and a large atrial languet.

Family VI.. Botryllidoe.-Ascidiozooids having the intestine and reproductive organs alongside the branchial sac. Dorsal lamina present: internal longitudinal bars present in branchial sac. The chief genera are: Botryllus (Gaertn. and Pall.), with simple stellate systems (fig. 28. D), and Botrylloides(Milne-Ed wards), with elongated or ramified systems. It is well known that in the family Botryllidae, amongat compound Ascidians, the ectodermal vesels containing

(Alter Pizoa.)
Fic. 29.-Young Colony of Botrinus, showing Buds and Ampullase a. Ampuilac; B2 B3, B4, Successive generations of buds; e, Stomach; \(i\), Inteskine; \(\quad\) pp, Veieds of the text.
blow, which ramify through the common zest and serve co connect the visitular systems of the various members of the colony, have numerous haree ovaie ditatations, the ampulae, upon their terminal twigs (tig: z). Variuus functuns have been asitgned to these ampullae in the pust, and Barcerult has shown that in addition to acting as storage reservoirs iur thous, organs for the sectection of test miztrix, and accessory ongans of reppirztion, they are also organs for blood propulsion. The ampullae execute co-ordinated pulations, the coordination being due to variations in the blood-pressure. It sas actually found that the ampullae could kwp up the circulation for suate time in a portion of a colony independently of the hearts of the ascidiorocids All the bearts in a cislons of Botryitus coutract simultanowust; and in the same direction. The reversal of the circulativa may be regarded as due to the engorgement of the ampullac in the superficial purts of the colony: These when disteneled overcome the resistance of the beart's action, and cause it to stop and thom reverse.

Feredy Vlf.. Pofysfyefitin.-Ascitionooids not grouped in swstems Branchial and airal apertures four-lubed Brarchial sac naly be lolled: internul longitudinal bars present. The chief genery دre: Thytacizan (Curus). vith ascidiozuciuls projectirg above general sufface of colony: Goodsina (Cunainghami, with asiutijzooids completely irobedded in investing mass; and Cinwiovcormus (Herdunan). with astidiwnoids united in little groups which are connected by spuluns several of the species show transitions between the other Pulystydilue and the Styelinae amongst simple Ascidians.

Gemsmustit cad Grondly of Colonies.-A number of new observations bave bew made in recent jeara upoa the bedding of coaspound Accilinns, some of which are sery pusaling and coneradictory ta their results Metschaikof. Kowalevsty, Gurd, Hjort, Pizon, Sediger, Ritter, van Benedea and Julin have all in turn added to our knowledice of the detzils of developponen and life-history, of the various prucesses of gemmatioa and of the formation of colonies It is impossible as yer so reconcile all the coaficting \(2 c c o u n t s\), but the following poincs at least seem pretty clear.

Cemmatiou may be very differeat in its detains in closely related compound Ascidians, There are, however, two main types of buiding, to one or ather of which mast of the described meihods eay be refered There is tirst the "stolonial" or "epicandiac " type. sect in the Chalarosomata, npically in Disromidie and Polyclinidre, and comparable with the gemmasion in Cuvelinitae, Prosomithe and Thulizces ourside shis group Secoodly; there is the "parictal" or "periuranchial "pype, seen in the Pectoso mata, typically in the Borryllidae. The remarkable process of femmatson seen in the families Didemaidae aod Diplosomithe may probably be regarded as a modification of the stolonial type. The double embryo in the Diplosomidae is probably to be interpreted is preocoious budtitig (rather than as embroaic fassion), due to acceleration in developtnest (tachyrenesis). The ty pe of budding, and even details suct as the bergith of the stolux, have much to do with differcoses in the rature and appearsoce of the colonies produced. The seutor, wink bas a mall continwous pi:h the tody-vall of the purecte contaiss an ersludermal eiement in the form of the surcalled "epicartium," and aloo a privomation of the ovary, or at least a string of migrating germ-cetic, to that the reprodurtive elcments are abo humad on Sill, is is clear from rouat rejearches

Fice \(3 a\)-lioung bats of Befryyy unctioned to nhow elve exparacion of the brendital (\(n\)) Gue the parimadiol (\(\sigma\)) cavicies.
ct. Dresel cile.
4. Cerm ceis

and attempts so explain budding in Ascidians as a pruects of regeneration, by which the organs of the parent or thetr germ-layen give rise to the corresponding organs in the bud, have signally falkd. Fizs 29 and 30 show the buds in the Botryllidae, atter Pizon. -ho has followed day by day' the changes of grouth in younay cotwries of Boernllidae, tracing the rise of successive generations of tudi and the degeneration of thear parents. The buds are parietal arising from the walls of the peribranchial cavities (fig. 29), ard at an early period they acquire the structure shown in fis-30, where there are iwo vesicles underguing further subdivision and diferentiz. tion, but invesisgitors still duer as to shether the inner. Etict gives rise to the branchial sac and alimentary canal, is not produced along with the outer from the ectuderm of the parent

A remarkable case of polymurphism has been found by M. Caullery in the buds of the compours. Ascidian Colella. Some of che buds have an abundant store of reserve materials in theis outer layer of cills, while others are without this supply.
 Hin former are placed deeply in the stalk, develop sholy. and probably scrve to regenerate the oolony shen the head purtion has beca removed or has died down In these cases where the cctoderm has caben on the function Formention of storing the rescrie materual it is lound chat asl the ercometes organs of the bud are formed from the cells of the endodermic sesicle. The first asciutiozooid of the colony produced by the railed lana does not form sexual reproductive organs, but reproduces by gemmation so as to make a colony. Thus there is alternation of generations in the lifehiston: In the most completely formed coivenes (e. \& Botrifius) the ascidiozooids are arranged in grocfs (s) stems of cuenobii), and in each system are placed with their atrial apdrtures townds one anorher, and all cummunikating virh a cormmon choucal cavity vibich opens to the extarwo in the centre of the system (fg. 28, D).

\section*{Sub-Order 3.-Axidiä Lrcive.}

Freeswimming pelugic colunies having the form of a hollww efliader closed at one end. The ascitwavoits furmung the coluny are embedded in the common rest in such a munner that the braschisl

Lacine. apersutes open on the curer surface and the alrid apertites on the inser surfice next to the central cavity of the colong: The acitioacovids are produced bs gem marion from a ruchmentary Lanta (ohe cyathozooid) developed sextilly.
This sub-orier indudes a single faraily, the P) rosomiduc. contisining ooe mell-marlod
 (Pcirua), with half a dosen species. They
are found sermming near the citrface of the won, chielly in :r Mrat Lasitudes, and are briliansly pos phorescent. A fully developedf yp :somas colony may be frech an imih or two to upwards of twe've feet ia leagth. The shape of the culory is seen in fig- 31. It tapers stighty cowards ite closed exis. Wich ts rounded The ofening \(5: t^{4}-\) cpposite end io retsun : \(:=\) en che preseres of \(a\) merobstauls prolongasiva of the cormmon rest (5-31, 8). The bearchial aper. tures of the accitiomooids are pliced upose short papillue projection from de geceral surface, aod most of the ascitionouds have bang coascal procespes of the test projection outcands beyuod their beanchin

Fice 3r-Prowna ibraers. apertarts (figs 31. 32 and 33) Thes on a ingle byer ai anococin coling an all the lety developed ascibouccids are placed rich du- antero-ponterior aves hif rifbe angles to the farfare and conmusicare by pisix atrial apertures vith the centual canity dithe colony (fy, 32) Thes formil sorfaces are tarned pornels slat epez end ef the colony: The more impurtut poine

 basis ruane mod ite walis loak back mo the lare bainchial

bande, and the endostyie are placed in the usual positions. On each side of the asterior end of the branchial sac, clooe to the peripharymeal bands, is a mass of rounded gland cells which are the source of the phosphorescence. The alimentary canal is placed

Fic. 32.-Part of a Longitudinal Section through wall of Pyrosoma, showing arrangement of ascidiozooids, magnified.
at. Atrial apertures.
cus, Embryos in variousstages.
br. Branchial aperturea
b. Test.
asc. Young ascidiozooid of a future \(t\). \(p\). Processes of test. colony produced by budding or.s. Branchial sac. from cy, cyathozooid. \(\quad y . a s\), Young ascidiozooid.
nosteriorly to the branchial sac, and the anus opens into a large peribranchial (or atrial) cavity, of which only the median posterior part is shown (\(p, b r\).) in Gg. 33. The reproductive ongans are developed in a diverticulum of the peribranchial cavity, and consist of a lobed testis and a single ovum at a time. The development takes place in a part of the peribranchial cavity (fig. 32, cm). The segmentation Developanos is meroblastic, and an elongated embryo is formed on of Proe- the surface of a mass of yoik. The embryo, after the uns formation of an alimentary cavity, a tubutar nervous system, and a pair of laterally placed atrial tubes, divides into an anterior and a posterior part. The anterior part then segments imto four pieces, which afterwards develop into the first ascidtozooids of the colony, while the posterior part remains in a rudimentary condition, as the "cyathozooid "; it eventually atrophies. As the lour ascidiozooids increase in size, they grow round the cyathozooid and toon encircle it (fig. 32, asc and cy). The cyathozooid absorbe the nourishing yolk upon which it lica, and distributes it

Fic. 33-Mature Ascidiozooid of Pyrosoma, from left side. Lettering as before
can, Cellular mase, the seat of phosphorescence.
c.m', Posterior cellular mass.
es. Cemmiparons stolon.

\section*{m.b. Muscle band.}
n. \(\beta\), Subneural giand.
prg, Pigment spot on ganglion.
i.p, Procese of test.
to the ascidiozooids by means of a heart and system of viesels which have been meanwhile formed. When the cyathozooid atrophies and is absorbed, its original atrial aperture remains and deepens to become the central cavity of the young colony, which now consists of four ascidiozooids placed in a ring, around where the cyathozooid was, and enveloped in a common test. The colony gradually increases by the formation of buds from these four original ascidiozooids.

\section*{Phylogeny}

The accompanying diagram (fig. 34) shows graphically the probable origin and course of evolution of the various groups of Tumicata, and therefore exhibits their relations to one another much more correctly than any system of linear Payboray classification can do. The ancestral Proto-Tunicata are bere regarded \({ }^{2}\) as an offshoot from the Proto-Chordate-the common

Fic. 34
ancestort of the Tunicata (Urochorda), A mphioxus (Cephalochorda) and the Vertebrata. The ancestral Tunicata were probably free. swimming forms, not very unlike the existing Appendiculariidac, and are represented in the life-history of nearly alf sections of the Tunioata by the tailed larval stage. The Larvacea are the first offshoot fror the ancestral forms which gave rise to the two Hies of descendants, the Proto-Thaliacea and the Proto-Ascidiacea. The Proto-Thaliacea then split into the ancestors of the existing Cyclomyaria and Hemimyaria. The Proto-Ascidiacea gave up their pelagic mode of life and became fixed. This ancestral process is repeated at the prement day when the free-swimming larva of the simple and compound Ascidians becomes attached. The ProtoAscidiacea, after the change, are probably most nearly represented by the existing genus Clazelina. They have given rise directly or indirectly to the various groups of simple and compound Ascidians and the Pyrosomidae. These groups form two lines, which appew to have diverged close to the position of the family Clavelinidae. The one line leads to the more typical compound Aacidinns, and includes the Polyclinidae, Distomidae, Didemnidae, Diplosomidae, Coelocormidae, and finally the Ascidiae Luciae or Salpiformes. The second line gave rise to the simple Ascidinss, and to the Botrylidae and Polystyelidac, which are, therefore, not clouely allied to the other compound Ascidians. The later Proto-Ascidiacea were probably colonial forms, and gemmation was retained by the Clavelinidae and by the typical compound Ascidians (Distomidae, 8c.) derived from them. The power of forming colonies by budding was lost, however, by the primitive simple Ascidians, and must, therefore, have been resained independently by the ancestral forms of the Botryllidae and the Polystyelidae. If this is a correct interpretation of the course of evolution of the Tunicata, we arrive at the following important conclusions. (i) The Tunicata, as a whole, form a degenerate branch of the Proto-Chordata: (2) the Aecidint Luciae (Pyrosoma) are much more closely related to the typical compound Ascidians than to the other pelagic Tunicata, viz, the Larvacea and the Thaliacea; and (3) the Ascidiae Compositae form a polyphyletic group, the sections of which have arisen at eeveral distinct points from the ancestral simple Ascidians.

Bialiog Pa Phy.-(I) Cuvier," Mém. s. les Ascidies," \&c., in Mém. d. Mus. it 10 (Paris, 1815); (2) Savigny Memoires sur les animazx sams Fertheres, pt. ii. fasc. 1. (Paris, 1816); (3) Lamarck, Hist. nat. d. anim. sans werlibres (ist ed., Paris, 18:5-1823); (4) O. F. Maller, Zool danica, (i806), vol. iv.i (5) Milne-Edwards, ".. Obeerv. a les Ascidies Composées," \&c., in M Mm. Acad. Sci, vol. xviii. (Paris, 1842); (6) Schridt. Zur vergl. Physiol. d. twirbellos. Thiere (Brunswick, 1845): (7) Lowig and Kolliker, "De la Compos, \&ic., d. Envel. d. Twn." In Anm. Sc Nat.; 1846 (Zool.), 3rd series. vol. v.i. (8) Huxley; Phal Trans. (1851): (9) Kowralevsky, "Entwickel. d. cinf. Ascid." in Mem, St Petersb, Acad. Sc. (1866), 7 th series, vol. \(x_{0}\); (10) J. P. van Eeneden, " Rech, \& i'Embryoiog., \&c., d. Asc. Simp." in MRn. acad. roy. betg (1847), vol. xx: (11) Krohn, in Wiegmann and

\footnotetext{
\({ }^{1}\) By Dohrn and others their point of origin is placed considerably farther up on the stem of the Chordata, thus causing the Tunicata to be regarded as very degenerate Vertebrata (see 31).
}

Mulier's Archiv (1852); (12) Kupfer, Arch. f. miky. Anat. (1869, 1872): (13) Giard "Etude d. trav. embryglog. d. Twи., \&c.," in Arch. eool. experr. (1872), vol. i.: (14) Fol, "Etudes sür les appendiculaires du detroit de Messine," in Mcm. soc. phys. hist. nal. Cencre, vol. xxi.; (15) Giard, " Recherches 8. I. Asc. Comp.," in Arch. 2ood. exptr. (1872), vol. i.; (16) Von Drasche, Die Synascidien der Buchl von Rovigno (Vienna, 1883); (17) Herdman, "Report upon the Tunicata of the 'Challenger Expedition," pt. i. in Zool. "Chall." Exp. (1882), vol. vi.; pt. it. in Zool. "Chall." Exp. (1886), vol. xiv.; pr. iii. in Zool. "Chall." Exp. (1889), vol. xxvii.; (18) Alder and Hancock, in Amn. Mag. Nai. Hasl. (1863, 1870); (19) Heller. "Untersuch. u. d. Tunic. d. Adriat. Meeres," "in Denkschr. d. k. Akad. Wiss. (1875-1877); (20) Lacaze-Duthiers, "Asc. simp. d. cotes d. 1. Manche, \({ }^{\text {in }}\) Arch. wool. exper. (1874, 1877); (21) Traustedt, in Vidensk. medd, waturh. For. (Copenhagen, 188i-1884); (22) Herdman, "Notes on British Tunicata, \&c.," In Journ. Linn. Soc. Zool. (1880), yol. xv. \({ }^{(23)}\)) Ussoff, in Proc. imp. soc. nat. hist. (Moscow, 1876), vol. xviii.; (24) Julin, "Recli. s. l'org. d. asc. simp.," in Arck. d. bial. (1881), vol. ii. (25) Brooks, "Development of Salpa." in Bull. Mus. Comp. Zool. iii. 291 (Harvard); (26) Salensky, Zischr. f. wiss. Zool. (1877): (27) Barrois, Journ. d. lanat. el phys. (1885), vol. xxi.: (28) Uljanin, fauna, Ec., d. Golfes pon Neopel (1884), vol. x. (29) Moseley. "On Deep-sea Ascid," in Trans. Linn. Soc. (1876). 2nd scries, vol. i.; (30) E. van Beneden and Julin. "Morph. d. Tuniciers," in Arch. d. B1ol. (1886), vol. vi.; (31) Dohrn," Studien zur Urgesch. der Wirbelth." in Millh. zool. Slat. Neapel: (32) Herdman,"Revised Classification," Journ. Linn. Soc (1891), vol. xxiii.; (33) Herdman, Descriptive Catalogue of Auslyalion Tunicata (1899); (34) Brooks, The Genus Salpa (1893); (35) Seeliger, Bronn's Thier-Reich Twnicala.
(W. A. HE.)

TUNICLE (Lat. Imicella), a liturgical vestment of the Christian church, proper to subdeacons. It is practically the same vestment as the dalmatic (q.o.)
TUNING FORK, a small bar of cast steel with tolerably defined edges, bent into a fork with two prongs, with a handle of the same metal extending from the bend of the fork and serving as a sound-post to transmit the vibrations to any resonance board or body convenient for reinforcing the sound. The fork is set in vibration by striking one of the prongs against a hard substance, or pressing the prongs together if they are light ones, or if heavy drawing a bow across. The tuning fork was invented by John Shore, royal trumpeter in 171t, sergeant trumpeter at the entry of George 1. in 1714, and lutanist to the Chapel Royal in 1715 . It is used for determining musical pitch (see Pirch), and also in certain physical experiments (see Sound).
TUNIS, capital of Tunisia, the largest city in North Africa outside Egypt, in \(36^{\circ} 48^{\prime} \mathrm{N}\)., \(10^{\circ} 12^{\prime} \mathrm{E}\). Tunis is situated on an isthmus between two salt lakes, the marshy Sebkha-elSejumi to the south-west, and the shallow el-Bahira (little sea), or Lake ol Tunis, to the north-east. An artificially deepened channel through the Bahira into the Gulf of Tunis has converted the city into a seaport (see below). North-west and south-west the city is commanded by hills, on which are forts, that on Sidj bel Hassan to the south dating from the mildle ages. The city. which was lormerly strongly fortified, is built in the shape of an amphitheatre, with the kasbah, or citadel, at its highest point. The old town (Medina), the walls of which have in great part distppeared, lies between two suburbs, the Ribat-elSowike on the north and the Ribat Bab-el-Jezira on the south. These suhurbs were also surrounded by a wall, now pulked down, leaving the gates of the city isolated. An outer wall, however, encloses the Medins and its suburbs. Beyond the Bab-el-Bahar (sea-gate), now called Porte de France, on the level ground by the Bahira, is the marine town, or Quartier Franc, built since the French occupation in 188t. No attempt has been made by the French to modernize the ancient city.

Th Emropan Qwarter.-From the landing stage a short street leads into the broad Avenue Jules Ferry or de la Alarine running east to west and ending in the Place de la Residence, on the north side of which is the Roman Catholic calhedral and on the south side the palace of the Freoch resident general, with a large garden. The main thoroughfare is continued westwards by the Avenue de France, which leads to the Porte de France. Beyond the gate is the small Place de la Bourse. in which is the British consulate. Fron, the Porte efectric trams run to the harbour and abo in a circle roand the native city. -From the Mace te la Risilenice crue "wa north
and south. The northern road, the Rue de Rome, led to the Gare du Nord, the station for Carthage, Goletta and La Marsa. This line was replaced in 1908 by an electric tramway built along the northern bank of the canal connecting Tunis and Goletta. The southern road, the Rue-es-Sadihia, leads to the Gare du Sud, the station for Susa, Kairawan, \&c., and also for Algiers. The Avenue Jules Ferry is intersected by a north-to south street running in a straight line pver two miles. The northern section is called the Avenue de Paris; the southern Avenue de Carthage. By these avenues, served by electric trams, access is gained to the suburbs of the city. In the Avenue de France or Avenuc Jules Ferry are the chief hotels and cafes, the casino-theatre, the principal banks and the finest shops. In the Rue d'Italic, running south from the Avenue de France, are the post office, market buildings, and French Protestant church. There is an English church in the Rue d'Espagne. Behind the cathedral is a disused cemetery with a chapel, where the Christian slaves are supposed to have worshipped. The coffins in the vaults have been removed to the Chapel of St Louis at Carthage. Among them was that of M. de Lesseps, French consul-general (d. 1832), father of the maker of the Suez Canal. Next to the cemetery is the ofd Greek church. North of the Avenue de France is a district, inhabited chicfly by Maltese, which has obtained the name of Malta-es-Segheira (Little Malta).

The Native Town.-To the visitor from Europe the attraction of Tunis hes in the native city, where, in the Rue al- Jezira. along which runs clectric trams, he can see hundreds of camels in the morning bearing charcoal to market; where he may witness the motley life of the bazaars, or, by the Bab-Jedid, watch the snake-charmers and listen to the Moorish storytellers. Christians are forbidden to enter the mosques. From various points the traveller can look over the city, with its great citadel, its many minarets and its flat-topped houses. Many of the dwellings of the richer residents are adorned with areades, the marble columns of which were taken from the ruins of Carthage. The Porte de France is the threshold of the ancient city. Two narrow streets climb the hill towards the citadel. That to the right, the Rue de la Kasbah, opens into a small square (Suk-el-Islam or Place de la Kasbah), on the left of which is the Dar-l-Bey (palace of the bey), while beyond it rise the walls of the citadel. That to the left leads to the chief mosque of the city, the Jaman-al-Zeituna (mosque of the Olive Tree), founded in A.D. 698. It has many domes and a spacious cloister, and its central court can be seen from the neighbouring streets. Atlached to the mosque is a college altended by several hundreds of Moslem youths. The Dar-l-Bey contains numerous rooms beautifully decorated in the Moorish style of the 18 ih century; and the judgment hall has a domed roof adorned with the delicate arabesque plaster-work known as Nuksh hadida. The kasbah, which forms the western side of the Suk-el-Islam, includes within the circuit of its walls a mosque built about A.D. :132 by Abu Zakariya the Hafsite. Of the ancient kasbsh nothing but the walls remain, the old buildings having been demolished to male way for barracks for the French troops. Besides being a fortress the kasbah formerly contained a palace of the beys, barracks for janissaries and bagnios for the Christian slaves. When in July 1535 the Spaniards under Charies V. altacked Tunis, the Christians in the kasbah, said to number 10,000, rose against their keepers and helped to secure the victory of the emperor. The Spaniards during their occupancy of Tunis strengthened the kasbah and built an aqueduct to supply it with water. Immediately north of the kasbah are the huildings of the Sadiki College, and north of the colkege is the Palnis de Justice, a building completed in 1901. It stapds bet ween the line of the ancient wall and the enceinte. Its walls are decorated with faience taken from an ancient Tunisian palace. Nartb-east of the Palais de Justice, which like the Saditi College is buik in the Moorish style, rises the great dome, surrounded by smaller cupolas, of the largest mosque in the city, that named after Sidi Mahrex, a renowned saint of the 5th century of the Mabommedan era, whose tomb makes it a
anactuary for debtors. Eest of the mosque, which dates from the 17 th century, and just without the inner city walls, here demofished, is the Protestant cemetery of St George, used during the 17 th, 18 th and the greater part of the \(19 t h\) centuries. Here are huried several British consuls. Here also was the grave of John Howard Payne, author of "Home, Sweet Home" and consul for the United States, who died at Tunis in 1852 . In 1883 the body was disinterred and removed to America, hut a monument has been placed on the spot similar to that erected over the new tomb at Washington.
The Basaars.-The native city to the north of the Rue de la Kasbah includes the Jewish quarter and the synagoguc. The Jewa of Tunis adopt a special costume, the women wearing gaily coloured vests and close-fitting white trousers. Beyond the jewish quarter, in the Ribat-el-Soweika, is the Place el Halfa-Ouine, a favourite rendeavous of the poorer Moslem population, wherein are many native cales. South of the Rue de la Kasbah in the bazaar quarter. Here the streets are very narrow and tortuous, some being vaulted and many covered in with planking. They are known as suks (markets), and each suk is devoted to one particular trade. Beyond paving the streets the French have made no alteration in the suks, which retain their original character unimpaired. The shops consist of small cubes. open in the front, in which the trader squats cross-legged amidst his wares. The principal suks are el-Attarin (market of the perfumers), cl-Farashin (carpets and cloths), el-Serajin (saddlery) and el-Birka (jewelry). The suk el-Birka was formerly the slave market. Near by are the greentiled domes and walls enriched with rose-coloured marbles of the mausoleum of the beys.
Public Institutions, \& \(t\).-TTunis is furnished with well-equipped hospitals and a large asylum for aged people kept by the Little Sisters of the Poor. The principal educatinnal establishments, besides that of the mosque of the Olive Tree, are the Sadiki College, lounded in 1875. Cor free instruction in Arabic and European subjects, the Lycfe Carnot in the Avenue de Paris, formerly the College of St Charics (founded by Cardinal Lavigerie), open to Christians and Moslems alike, and the normal school, founded in 1884 by the reigning bey, for the training of teachers in the French language and European ideas. The Dames de Sion have a large establishment for the teaching of small children of both sexes, and there is a secondary school for girls. All the schools are well attended. About a mile and a hall north of the centre of the European quarter, on the slopes of a hill rising 270 ft ., is the Pare dy Beivedere covering some 240 acres and commanding extensive views. Water is supplied to the city, with its numerous fountains, from Jebel Zaghwan (vide infra) by the Roman aqueduct repaired, at a cost of hali a million sterling, by the bey Mahommed al-Sadik (d. 1882).

The Port-The canal which traverses the shallow Bahira, and conaects Tunis with the Mediterranean, is nearly seven miles long. By means of breakwaters it is continued beyond the coast-line and is at its mouth 328 ft . wide. It has a uniform depth of 213 ft ., but its width within the lake is reduced to 98 ft . In the centre. however, the canal is widened to 147 ft. to ollow vessels to pass. There is a harbour at the entrance (see Goletin). That at the Tunis end of the canal is 1312 ft . long by 984 ft . broad, and is of the same depthes the canal. The canal was begun in 1885 and was opened to navigation in June 1893. An additional basin, southeast of the main harbour, was opened in 1905 and is used for the exportation of phosphates. Of the shlps using the hartour more thap haff are French, and one-third Italian, British vessels coming next. British goods, however, are largely carried in French bottoms, and nexit to France the United Kingdom and Malta take most of the trade of the port. The exports are chielly phosphates and other minerals, cereals, olive oil. cattle, hides, sponges and wax The imports are cotton goods, flour, hardware, coal, sugar, tea, cofice, ace. The figures of trade and shipping are included in those of the trade of the regency (see TUnisiA), of which Tunis and Goletta take about a third.

Population.-The population of the city at the census of 1906 was returned at 227,519 . The "natives"-Arabs, Berbers, "Moors," Turks and negroes-were extimated at 100,000, Tunirian Jews at \(50 \% 00\), French 18,000 , Italians 52,000 , Maltese 6000 , Greeks 500 and Levantines 1000 . The Fremch language is predominant in the European quarter.
Environs: The Bardo Patace, Zagkwaw, Scc.-The environs of Tunis are picturesque and afford many beautiful views, the finest being from the hill on the aoutheeast, crowned by a French fort. and from the Belvedtre already mentioned. About a mile and a quarter from the Bab Bu Saadun, the north-west gate of the city, is the ancient palace called the-Bardo, remarkable for the "lion court." a terrace to which accest is gained by a fight of steps guarded by marble lions and for some apartments in the Moorish style. The frest of these apartments, containing beautiful arabesque
plaster work, lonmed the old Harem, and are now part of the Muste Alaoui, which occupies a considerable portion of the Bardo. In this muscum M. Paul Gauckier, the director of the department of art and antiquities in the Tunisian government, has formed a magnificcnt collection of Carthaginian and Roman antiquities. especially Roman mosaics. In the Musée Arabe, which occupies nn adjacent small palace built about 1830, are treasures illustrative of the Arab-Berber or Saracenic art of Tunisia.

South-east of the city, along the valley of the Wadi Melain, are hundreds of large stane arches, magnificent remains of the Roman aqueduct from Zaghwan to Carthage. At Zaghwan (38 m . by rail from Tunis). over the spot whence the spring which supplies the aqueduct issues from the hill, are the ruins of a beautiful Temple of the Waters. The spring is now diverted direct into the aqueduct and is not visible at the surface. Between Zaghwan and Tunis, and accessible by the same railway, is Wadna, the Roman Uthina. where, besides numerous other ruins, are the fairly preserved arches of a large amphitheatre. The ruins of Carthage (q.s.) ic a few miles north of Goletta.
History.-Tunis is probably of greater antiquity than Carthage, of which city however it became a dependency, being repcatedly mentioned in the history of the Punic Wars. Strabo speaks of its hot baths and quarries. The importance of Tunis dates from the Arab conquest, when, as Carthage sank, Tunis took its place commercially and politically. It became the usual port for those going from the sacred city of Kairawan to Spain, and was one of the residences of the Aghlabite dynasty (\(800-909\)). In the roth century it suffered severoly, being repeatedly pillaged in the wars of the Fatimite caliphs A1-Qaim and Abu Tahir lsmaid el Mansur with the Sunnite leader Abu Yazid and the Zenata Berbers.

For its later fortunes, see Tunisia, of which regency, since the accession of the Hafsites, Tunis has been the capital

TUMISIA (Regency of Tunis), a country of North Africa, under the protection of France, bounded N. by the Mediterranean, W. by Algeria, E. by Tripoli and S. by the Sahara. Tunisia reaches farther north than any other part of Alrica, Ras-al-Abiadh (Cape Blanc)' being in \(37^{\circ} 30^{\prime} \mathrm{N}\). On the south the boundary of the Tunisian Sahara is undetermined, but it may be roughly placed at \(31^{\circ} \mathrm{N}\). This would give, therefore, a greatest length of something like 440 m . The country lies between \(11^{\circ} 40^{\prime} \mathrm{E}\). and \(7^{\circ} 35^{\circ} \mathrm{E}\). The average length is about 300 m ., and the average breadth 150 m .; consequently the area may be estimated at \(50,000 \mathrm{sq}\). m. (For map, see Alciria)

Physical Features.-Geographically upeaking, Tunisla is merely the eastem prolongation of the Mauretanian projection of northern Africa, of that strip of mountainous, fertile and fairly well-watered country north of the Sahara desert, which in its flora and its fauna, and to some extent in its human race, belongs rather to Europe than to Africa. Tunisia is divided into the lollowing four fairly distinct regions:-
I. On the north and north-west the Aures mountains of Algeria are prolonged into Tunisia, and constitute the mountainous region of the north. which lies between the Majerda river and the sea, and also includes the vicinity of the city of Tunis and the peninsula - of the Dakhelat el Mawin, which terminates in Ras Addar (Cape Bon). This first divisinn is called by the French "the Majerda Mountains." It includes within its limits the once famous district of the "Kroumirs," a tribe whose oceasional thelts of cartle across the frontier gave the French an excuse to iovade Tunisia in 188I. The highest point which the mountains attain in this division of Tonisia is about 4125 ft ., near Ain Draham in Kroumiria. The country, however, about Bizerta is very mountainous, though the summits do not attain a greater altitude than about 3000 ft. The district between Bizerta and the Gulf of Tunis is a most attractive country, resembling greatly the mountainous regions of South Wales. It is well watered by streams more or less perennial. The principal river, the Majerda, is formed by the junction of the Wad Malleg and the Wad Kkallad. It and its

\section*{It is possible that Ratben-Sekka, a littic to the west of Cape} Blanc, may be actually the moct northerty point.
\({ }^{2}\) The Fresch seem systematically unable to master certain sounds foreign to their own language, or sounds which they suppose to te forcign. Thus the "w, though constantly represented in French by "ou," is continually changed by them into " \(v\) " when they transcribe foreign languages, just as the Greek \(x\) and the German and Scottish "ch "is almost invariably rendered by the French in Algeria and Tunis as "kr.". Add to this the insertion of vowel sounds where they are lacking in the Arabic and you derive from the real word Khwir the modern French term of Kroumir. In tike manner sebkio, a zalt lake, is constantly written by the French as sebliva.
tributaries rise in the Majerda and Aures mountains. Flowing north-east the Majerda forms an extensive plain in its lower course. reaching the sea near the nuins of Utica. Vegetation is abundant and recalls that of the more fertile districts of southern Spain and of ltaly. On the higher mountains the flora has a very English character, though the actual species of plants may not be the sama
2. The central plateau region, stretching between the Majerda valley and the mountains of Galse. The average elevation of this country is about 2000 ft . The climate, therefore, in parts is exceedingly cold and bleak in winter, and as it is very wind-swept and parched in summer by the terrible qibli or "sirocco" it is much less attractive in appearance than the favoured region on the northern littoral. Although it is almost always covered with some kind of vegetation, trees are relatively rare. A few of the higher mountains have the Aleppo pine and the juniper; elscwhere only an infrequent wild terebinth is to be seen. In these two regions the date palm is never met with growing naturally wild. Its presence is always due to its having been planted by man at some time or another, and therefore it is never seea far from human habitations. These central uplands of Tunisia in an uncultivated state are covered with alfa or esparto grass; but they also grow considerable amounts of cereals-wheat in the north, barley in the south. The range of the Saharan Atlas of Algeria divides (roughly speaking) into two at the Tunisian frontier. One branch extends nuthwards up this frontier and northeastwards across the central Tunisian table-land, and the other continues south-east wards between Galsa and the salt lakes of the Jerid. The greatest altitudes of the whole of Tunisia are attained on this central table-land, where Mt Sidi Ali bu Musin ascends to about 5700 ft . About 30 m . south of the city of Tunis is the picturesque mountain of Zaghwan, approximately 4000 ft. in altitude, and from whose perenniat springs comes the water-supply of Tunis to-day as it did ln the time of the Carthaginians and Romans. North-cast of Zaghwan, and nearer Tunis, is the Jebet Rewass, or Mouatain of Lead, the height of which is just under 4000 ft .
3. The Sahel. This well-known Arab term for coast-belt (which in the plural form reappears as the familiar "Swahili" of Zanzibar) is applied to a third division of Tunisia, viz. the littoral region stretching from the Gulf of Hammamet to the south of Sfax it is a region warying from 30 to 60 m . in breadth, fairly well watered and fertile. In a less marked way this fertile coast region is continued southwards in an ever-narrowing belt to the Tripolitan frontier. This region is relatively fat, in some districts slightly marshy, but the water oozing from the soit is often brackish, and in places large shallow salt lakes are formed. Quite close to the sea, all along the coast from Hammamet to Slax, there are great fertility and much cultivation; but a little distance inland the country has a rather wild and desolate aspect, though it is nowhere a desert until the latitude of Sfax has been paseed.
4. The Tunisian Sahara. This occupies the whole of the southern division of Tunisia, but although desert predominates, it is by no means all desert. At the south-eastern extremity of Tunisia there is a elump of mountainous country, the wind-and-water-worn fragmenta of an ancient plateau, wioh for convenience may be atyled the Matmata table-land. Here altitudes of over 3000 It. are reached in places, and in all the upper parts of this table-land there is cairly ahundant vegetation, grass and herbage with low junipers. but with no pine trees. Fairly high mountaios (in places verging on 4000 (t.) are found between Gafsa and the salt lakes of the Jerid.

These salt lakes are a very curious leature. They stretch with only two short breaks in a line from the Mediterrancan at the Gulf of Gabes to the Algerian fronticr, which they penetrate for a considerable distance. They are called by the French (with their usual inaccuracy of pronunciation and spelling) "chotts "; the word should really be the Arabic shat, an Arab term for a broad canal, an estuary or lake. These shats however are, strictly speaking, not lakes at all at the present day. They are smooth depremed areas (ia the case of the largest, the Shat el Jerid, lying a few feet below the level of the Mediterranean), which for more than half the year are expanses of dried mud covered with a thick incrustation of white or grey salt. This salt covering gives them Tho suman at a distance the appearance of big shects of water. During the winter, however, when the effect of the rare winter rains is felt, there may actually be 3 or 4 ft. of water in these chats, which by liquefying the mud makes them perfectly impessabie. Otherwisc, for about seven months of the year they can be crossed on foot or on horseback. It would meem probable that at one time these shata (at any rite the Shat el jerid) were an iniet of the Mediterrancan, whieh by the elevation of a narrow atrip of land on the Gulf of Gabes has been cut of from them. It is, however, a region of past volcanic activity, and these salt depressions may be due to that cause. Man is probably the principal agent at the present day in causing these ahats to be without water. All round these salt lakes there are numerous aprings, gushing from the sandy hillocks. Almost all these springs are at a very hat temperature, ofton at boiling point. Some of them are charged with salt, others are perfectly fresh and sweet, though boiling hot. So abundant is
their volume that in several places they form actual ever-fiowing rivers. Only for the intervention of man these rivers would at at times find their way into the adjoining depressions, which they would maintain as lakes of water. But for a long period past the freshwater streams (which predominate) have been used for irrigation to such a degree that very little of the precious water is allowed to run to waste into the lake basinn; so that these latter receive only a few salt streams, which deposit on their surface the salt they contain and then evaporate. This abundant supply of fresh warm water maintains uases of extraordinary luxuriance in a coantry where rain falls very rarely. Perennial streams of the description referred to are found between the Algerian frontier and Gabes on the coast. The town at Gabes itself is on the fringe of a splendid oasis, which is maintained by the water of an everrunning stream emptying itself into the sea at Gabes after a course of not more than 20 m .
All this region round the shats has been called the "Jerid" from the time of the Arab occupation. "Jerid " means in Arahic a "palm frond" and inferentially "a palm grove." The fame of this Belad-el-Jerid, or "Country of the The Jerth Date Palms," was so exaggerated during the \(17^{\text {th }}\) and 18 th centuries that the European geographers extended the designation from this small area in the south of Tunisin to cover much of inner Africa. With this country of Jerid may be included the island of Jerba, which lies close to the coast of Tunisia in the Gulf of Gabes. The present writer believes that the date palm was really indigenous to this district of the Jerid, as it is to countries of similar description in southern Morocco, southem Algeria, parts of the Tripolitaine, Egypt, Mesopotamia, southern Persia and north-western India; but that north of the latitude of the Jerid the date did not grow naturally in Mauretania, just as it was foreign to all parts of Europe, in which, as in true North Africa, its presence is due to the hand of man. To some extent it may be said that true North Africa lies to the north of the Jerid country, which, besides its Saharan, Arabian and Persian affinities, has a touch about it of real Africa, soine such touch as may be observed in the valley of the Jordan. In the oases of the Jerid are found several species of tropical African mammals and two or three of Senegalese birds and the vegetation seems to have as much affinity with tropical Africa as with Europe. In fact, the country between the Matmata highlands and the strait separating Jerba from the mainland is singularly African in the character and aspect of its finra. To the south of the Jerid the country is mainly desert-vast unexplored tracts of shifting sand, with rare oases. Nevertheless, aft this southern district of Tunisia bears evidence of once having been subject to a heavy rainfall, which scooped out deep valleys in the original table-land, and has justified the present existence of immense watercourscs-watercourses which are still, near their origin, favoured with a little water.
Hot and mineral springs may be almost said to constitute one of the speciaities of Tunisia. They offered a singular attraction to the Romans, and their presence in remote parts of the country no doubt was often the principal cause of Roman mboral settlement. Even at the present day their value is Spertest much appreciated by the natives, who continue to bat he in the ruined Roman baths. The principal mineral springs of medizinal value are those of Korbus and Hammam Lif (of remarkible efficacy in rheumatic and syphilitic affections and certain skin discases). of the Jerid and Gafsa, of El Hamma, near Gabes, and of various sites in the Kroumir country.

Climate. - The rainfali in the first geographical division is pretty constant, and may reach a yearty average of about 22 in . Over the sccond and third divisions the rainfall is less constant, and its yearly average may not exceed 17 in . The mean annual tempera ture at Soss is \(75^{\circ} \mathrm{F}\)., the mean of the winter or rainy season \(60^{\circ}\) and of the hot scason \(97^{\circ}\). At Tunis the temperature rarely exceeds \(90^{\circ}\), except with a wind from the Sahara. The prevailing winds from May to September are east and northeast and during the rest of the year north-west and east. A rainy scason of abour two mont hs usually begins in January: the spring season of verdure is over in May; summer ends in October with the lirst rains. Violent winds are common at both equinoxes. In the Tunisian Sabara rain is most uncertain. Occasionally two or three years may pasa without any rainfall: then may come floods after a heavy downfall of a few weeks. Perhaps if an average could be struck it would amount to 9 or 10 in . per annum.
(Geolog.-The greater part of Tunisia is composed of sandstones. marls and loosely stratified deposits beionging to the Pliocene and Quaternary periods. The oldest strata, consisting of gypsiferoue marls, are referred to the Muschelkalk and show an alternation of lagoon with marine conditions The Lias and Oolite formations are well represeoted, bat the Sequanian and Kimmeridgian subdivisions are absent. Lower Cretaceous rocks, consisting of thick limestoses, shaies and marls, occur in Central Tunikia. The fosais show many notabic affinities with thome in the Lower Cretaceous of the Pyrenees. Limestones and marls represent the stagen Cenomanian to Upper Senonian. The fossils of the Cenomanian have affinities with those in the Cenomadian of Spain. Egyph. Madagascar, Morambique and India. The Semonian comiots of a
central lacies with Micraster peini; a menicional lacies with Osyec: and a northern facies developed roind Turisia, with large forms of Inoceramus and echinoids. Phosphatic deposits are well developed among the Lower Eocene rocks. The Middle Eocene iis characterized by the presence of Ostrea bogharensis and the Upper Eocene by highly fossiliferous sandstones and marts. The Oligocene and Miocene formations are present, but the Upper Miocene is confined to the coast. Quaternary deposits cover much of the desert regions!

Minerals.-Coal has been discovered in the Khmir (" Kroumir ") country, but the principal mines at present worked in Tunisia are those of copper, tead and zinc. Zine is chiefly found in the form of calamine. Iron is worked in the Kef district. Valuable deposits \(d\) phosphates are present, chiefly in the south-west of Tunisia, in the district of Gafsa. Marble is lound in the valley of the Majerda (at Shemtu), at Jebel Ust (about 35 m . south of Tunis), and at Jebel Dissa, near Gabes. The marbles of Shemtu are the finest pink Numidian marbles, which were much esteemed by the Carthasinians and Romans. It has boen sought to work again the ancient quarries of Shemtu, but it was found that the marble had been apoilt by ferruginous and calcareous veins.
Mora.-The flora of Tunisia is very nearly identical with that of Algeria, though it offers a few species either peculiar to itself or not found in the last-named country. On the whole its character is less Saharan than that of parts of Algeria. for the influences of the desert do not penctrate so lar north in Tunisia as they do in Algeria. There are very few patches of real forest outside the Khmir country, though it is probable that in the time of the Romans the land was a good deal more covered wilh trees than at the present day. Some authorities, however, dispute this, in a measure, by saying that it was not naturally forested, and that the trees growing represented orchards of olives or other fruit trees planted by the Romans or romanized Berbers. But in the Majerda Mountains there are dense primeval forsts lingering to the present day, and conssting chiefy of the cork oak (Quercus ruber), and two other species of oak (Quercus mirbeckis and Q. kermes), the pistachio or terchinth tree, the sumach (Rhus pentaphila), and other species of Rkus which are widely spread. In the mountains of Khmiria and the central plateau there are also the alder, the poplar, the Alcppo pine, the caroub, the tamarisk. the maple, the netic-tree. several millows and junipers. The jujube-tree (Zizyphus) is found at various places along the eastern littoral. The retama sbrub is met with in sandy districts, especialiy in the Sahara, but also right up to the north of Tunisia. The wild olive, the wild cherry, two species of wild plums, the myrte, the ivy, arbutus, and two species of hally are found in the mountains of Khmiria, at various sites at high elevation near Tunis and Bizerta, and along the mourtainous bell of the south-west which forms the frontier region between Tunisia and Alperia. The prosent writer, riding up to these fronier mountains from the thoroughly Saharan country round Gafsa. found himself surrounded by a flora very reminiscent of Switzerland or England. On the other hand, the flora of the shat region, of the southeastern lititoral, and of the Kerkena istands opposite, Srax. is thoroughly Saharan. with a dash, as it were, in places of an Alrican element. The date palm grows wild. as has been already related, in Jerba. The only other species of palm found wild in Tunisia is the Chamacrops humilis, or dwarf palm. which is found on the mountains of the forth at no very great altitude. The wild flowers of the north of Tunisia are so exiremely beautiful during the months of February, March and April as to constitute a diatinct attraction in themsefves. \({ }^{\text {a }}\)
\({ }^{1}\) See L. Pervinquière, L'Elude géolopique de la Tunisie centrale (Paris, 1903): G. Rolland, "Carte geologique du littoral nord de la Tunisie. Bull. soc. pfot. de la France (is88), vol. xvii.; H. H. johnston, "A Journey through the Tunisian Sahara," Ceog. Journ. (1808), vol. xi.; Carle peologique de la rigence de Tumis, \(1: 800,000\) with optes (Tunis, 1892).
iList of Plants commonly met with in northern Tunisia:-
Adonis microcarpa, DC.
Nieclla da mascena, L
Pumaria spicata. L.
Cistres hatimifolises, L.
Silene rubello, L .
Oualis remua, Thunb.
Geranixm tuberosym, L Nufba syloestris, L.
Treragonolobus purpurews, Moencb. Retama ralam, Webb.
Pcdia cornucopice, Gaertn.
Fidichryuve Sloechas, DC.
Critamea (Seridia), sp.
Orarpermam Dalechampi, Desf. Scorromera alexandriaa, Boiss. Stackys bivia, L.
Stachys, sp. not identified. Anagallis collina, Schousb. Compatinles aricalor, L.
Selonamolhus lavafus, DC.

Lyciмт єинорескм, L .
Solanum sodomorum, L Celsia cretica. L.
Linaria, sp. allied to L. reflexa, Desf.
Linaria triphylla, Le var. Orobanche, sp.
Trixago apula. Stev.

\section*{Cynomorivm rocinewm.} Plantago albicans, L Euphorbia serrata, L. Ophrys fusec, Link. Orchis popitionacea, L. Romulea bulbocodium. Sebast. and Mauri.
Gladiolus byaantinus, Mill. Ornithogalum umbeldaturs, L Allinm roseum, 1 A sphodelus fistulosus, L. Muscari comasum, Mill.

Fauna-The fauna of Tunisia at the present day is much imspoverished as regards mammals, birds and reptiles. In 1880 the present writer saw lions killed in the north-west of Tunisia, but by 1902 the lion was regarded as practically extinct in the regency, though occasional rumours of bis appearance come from the Khmir Mountains and near Feriana. Leopards of large size are still found in the north.west of central Tunisia. The cheetah lingers in the extreme south of the Jerid; so also does the caracal lynx. The pardipe lynx is found fairly abundantly in the west of Tunisia in the mountains and forest. The striped hyena is scattered over the country sparsely. The genet and the common jackial are fairly abundant. The common ichneumon is rare. The zorila, another purely African species, is found in the sorth of Tunisia. The Barbary otter is present in the Majerds and in some of the salt lakes. The Tunisian hedgehog is peculiar to that country and to Algeria. There is a second species (Erizaceus deserti) which is common to all North Africa. In the south of Tunisia, especially about the shats, the elephant-shrew (Macroscelides) is found, an animal of purely African affinities. Tunisia does not appear to possess the Barbary ape, which is found in Algeria and Morocco. Natives of Morocco and of the Sahara oases occasionally bring with them young baboons which they assert are obtained in various Sahara countries to the south and south-west of Tunisia. These baboons appear to belong to the Nubian species, but they cannot be considered indigenous to any part of Tumisia. The porcupine and a large Octodont rodent (Clenodeclylus), the jerboa (two species). the hare, and various other rodents are met with in Tunisia. The wild boar inhabits the country, in spite of much persecution at the hands of "chasseurs." The forested regions sbelter the handsome Barbary red deer, which is peculiar to this region and the adjoining districte of Algeria. In the extreme south. in the Sahara desert, the addax antelope is still lound. The hartebeest appears now to be quite extinct; so also is the leucoryx, though formerly these two antelopes were found right up to the centre of Tunisia, as was also the ostrich, now entirely absent from the country. In the marshy lake near Mater (north Tunisia), round the mountain island of Jebel Ashkel, is a berd of over 50 buffaloes; these are said to resemble the domestic (Indian) buffialo of the Levant and Italy, and to have thsir origin in a gift of domestic buffaloes from a former king of Naples to a bey or dey of Tunis. Others again assert the buffaloes to have been there from time immemorial; in which case it is very desirable that a specimen should be submitted for examination. IAn allied form with gigantic horns is found foskil in Algeria.] They are the private property of the bey, who very properly preserves them. Far down in the Sahara, to the south of Tunisia, the Arabs report the existence of a wild ass, apparently identical with that of Nubia. Roman mosaics show representations not only of this ass. but of the oryx, hartebeest, and perhaps of the addax. The doreas gazelle is still common in the south of Tunisia; but perhaps the mont interesting ruminant is the magnificent udad, or Barbary sheep, which is found in the sterile mountainöus regions of south Tunisia. The birds have been ably illustrated by Mr Whitaker in the Ibis magazine of the British Ornithological Unicn. They are, as a rule, common to the south Mediterranean region. A beautiful fittle bird almost peculiar to the south of Tunisia and the adjoining regions of Algeria, is a species of bunting (Fringilla), called by the Arabs bu-habibi.' This little hird, which is about the size of the linnet, has the head and back silvery blue. and the rest of the plumage chocolate red-brown. It is of the most engaging tameness, being forturately protected by popular sentiment from injury. It inhabits the Jerid, and ex. tends thence across the Algerian Irontier. Among reptiles the Egyptian cobra seems to be indigenous in the south, where also is lound the dreaded horned viper. Some nine or ten other species of snakes are present, together with an abundance of lizards, including the Varamus, and most species of Medirerranean tortoisea are represented. The coasts are very rich in fish, and the tunny Gisheries of the north are one of the principal sources from which the worid's supply of tunny is derived.
Inhobilants.- The natives ol Tunisia at the present day belong mainly to two stocks, which may be roughly classified as the Berber (q.v.) and the Arab (q.v.), about two-thirds being of Berber and the remaining third of Arab descent. But the Berbers of to-day are little more than an incomplete fusion of some four earlier and once independent stocks. These four divisions taken in the order of their assumed priority of invasion or habitation are: (1) the "Neanderthal" type, which is found in the districts of the shats and the adjoining Matmata table-land in tbe south, and in the "Krounir" country of the

Echium sericesm, Vaht.

\section*{Echivm maritimym, Willd.}

Arum italicum, Mill. Anchuse ivalica, Retz.
To this list should also be added the common wild tulip. the Italian cyclamen, the common scartet poppy. the fennel, wild carrut and many variet ies of thistle, some of gorgeous colouring.
" "Father of my friend."
north-west; \({ }^{1}\) (2) ordinary Berbers, dolichocephalous, and of brown complexion, found over the greater part of Tunisia, especially in the east and south centre; (3) the short-headed Berbers, found in part of the Matmata country, part of the Sahara, the island of Jerba, the Cape Bon Peninsula, and the vicinity of Susa, Kairwan, and Stax; (4) Berbers of a blond type, that is to say, with a tendency to brown or yellow moustaches, brown beard and head hair, and grey eyes. These are met with in the west and north-west of Tunisia, and in one patch on the coast of the Cape Bon Peninsula, near Nabeul.
The Arabs of more or less unmixed descent are purely nomads. They are met with in a long strip of country south of the Majerda, hetween the Algerian frontier and the sea-coast north of Susa; also inland, to the south-west of Susa, and near Kef; also in another long strip between the vicinity of Sfax on the north and the Jerid on the south. They are descended from the second Arab invasion which began in the inth century (see Hislory). The extreme south of Tunis is ranged over by Berber Tawareq \({ }^{2}\) or Tamasheq. Berber dialects are still spoken in Tunisia in the island of Jerha, in the Matmata country, and in the Tunisian Suhara. Elsewhere to a remarkable degree the Arabic language has extinguished the Berber tongue, though no doubt in vulgar Tunisian a good many Berber words remain. Short vocabularies of the Berber spoken in the Tunisian Sahara have been published by Sir H. H. Johnston in the Gcog. Joarn. (1898), vol. xi., and by Mr G. B. Michell in the Journ. African Soc. (1903). The Berbers are organized in tribes with purely democratic government and laws of their own, which are not those of the Koran.

On the north-eastern littoral of Tunisia the population is very mixed. The inhabitants of the Cape Bon Peninsula show evident signs of Greek blood arising from Greek invasions, which began in prebistoric times and finished with the downfall of the Byzantine Empire in North Africa. The presence of the Romans, and the constant introduction of the Italians, first as slaves, and quite recently as colonists, has-also added an Italian element to the north Tunisian population. But from the fact that the bulk of the Tunisian population belongs to the Iberian section of the Berbers, and to this being no doubt the fundamental slock of most Italian peoples, the intermixture of the Italianized Berber with his African brother has nol much affected the physique of the people, though it may have slightly tinged their mental characteristics.

The Phoenicians have left no marked trace of their presence; but inasmuch as they were prohably of nearly the same race as the Arabs, it would not be easy to distinguish the two types. Arab and Berber have mingled to some extent, though no considerable fusion of the two elements has taken place. In fact, it is thought by some French students of the country that the Arab element will probably be eliminated from Tunisia, as it is the most unsettied. It is considered that these nomads will be gently pushed back towards the Sahara, leaving cultivable Tunisia to the settled Berber stock, a stock fundamentally one with the peoples of Mediterrancan Europe.

The inhabitants of the coast towns belong, in large part, to the class generally known as "Moors." The pure Turks and the Kuluglis (sons of Turkish fathers by Moorish women or slave girls) are no longer numerous. Among the "Moors" the descendants of the Andalusian refugees form an exclusive and aristocratic class.

The present population of Tunisia numbers approximately 2,000,000, and consists of:-
\[
\begin{aligned}
& \text { Berbers, more or less of pure race, way } . \quad . \quad . \quad 620,000 \\
& \text { Arabs, } \\
& \text { Mixed Arab" and Bërber peoplés, say". } \\
& \hline
\end{aligned}
\]

In this Matmata country are the celebrated Troglodytes, pieople living in caves and underground dwellings now, much as they did in the days when the early Greek geographers alluded to them. See "A Journey in the Tunisian Sehara," by Sir H. H. Johnston, in the Ceog. Joxpr. (June 1898).
"Tawareq (Tuarep) is the Arab designation of the Libyan or Desert Berbera. It is the plural form of Targi, "a raider. The Tawareq call themsefves by eome variant of the root MasheqTamasheq, Jmoshagh, \&c.
" Moors" (chiefly the population of the principal cities, of mixed Roman, Berber, Spanish, Moor and Christian races), siy

110,000
Sudanese negroes and natives of Morocco, Tripoli and Turkey, say

40,000
Jews (mostly natives of Tunis, indeed, some descended from families settled at Carthage before the destruction of Jcrusalem)

68,000
Europeans (Christians)'
163,000
Towns.-Besides the capital. Tunis, the chiel towns of Tunisia are Sfax, Susa and Kairwan. Thege places are noticed enparately, as arc also Goletta (formerly the port of Tunis), Bizerta (a naval port and arsenal), Kef, Porto Farina, and the ruins at Carthage and Sbeitla (Sufetula). Other towns of Tunisia are, on the east coast, Nabeul, pop. about 5000, the ancient Neapolis, noted for the mildness of its climate and ite pottery ma nufactures; Hammamet with 3700 inhabitants: Monastir (the Ruspina of the Romans), a walled town with 5600 inhabitants and a trade in cereals and oils; Mahdiya or Mahdia (\(9 . v, i\) in ancient chronicles called the city of Africa and sometimes the capital of the country) with 8500 inhabitants, the fallen city of the Fatimites, which since the French occupation has risen from its ruins, and has a new harbour (the ancient Colion or harbour, of Phoenician origin, cut out of the rock is nearly dry but in excellent preservation); and Gabes (Tacape of the Romans, Qabis of the Arabs) on the Syrtis, a group of emall villages, with an aggregate population of 16,000 , the port of the Shat country and a depôt of the esparto trade. The chief town of the Majerda basin is Beja (pop. 5000), the ancient Vaga, an important corn market. The principal mosque at Beja was originally a Christian basilica, and is still dedicated to Sidna Aissa (our Lord Jesus). Gafsa, in the south of Tunisia, is a most interesting old Roman town, with hot springs. It is in railway communication with Slax. West of Galsa are immense beds of phosphates. Almost all the towns of Tunisia were originally Roman or romanized Berber setuements; consequently the remains of Roman buildings form a large part of the material of which their existing structures are composed.

Anciquities and Art-The principal Roman and other ruins in the regency are the aqueducts near the capital (Tunis) and the temple at Zaghwan, described under Tubis city; the great reservoir near Carthage (q.o.); the amphitheatre at EI Jem (see Susa); the temples and other ruins of Sbeila (q.t.); the ruins of Dugga, near Tebursuk, in the north-west of the regency (the amphitheatre of Dugga, the ancient Thugga, is a magnificent spectacle); the baths, amphitheatre and temples of Feriana (the ancient Thelepte); the whole route between Ferians (which is in the south of Tunisia, 33 m . north-west of Gaisa) and Tebessa in Algeria is strevn on both sides with Roman ruins; the oid houses and other ruins at and near Thala; the baths and other ruins of Gaisa; the baths at Tuzer, El Hamma and Gabes. There is an interesting Phoenician hurial-ground near Mahdia. There are Roman ruins, scarcely known, in the vicinity of Beja and the country of the Mogods (the district behind Cape Serrat). In short, Tunisia is as much strewn with Roman remains as is Italy itself.

Saracenic art has perhaps not attained here the high degree it reached in western Algeria, Spain and Egypt; still it presents much that is beautilul to see and worthy to be studied. One of the most ancient, as it is one of the loveliest fragments, strange to say, is found at Tuzer, in the Jerid, the mahrab of a ruined mosque.4 There are some very beautiful doorways to mosques and otber specimens of Moorish art at Gabes. Examples of this art found at Tunis and Kairwan have been noticed under those headings. But the visible remains of Saracenic art in Tunis and its vicinity are of relatively recent date, the few mosques which might offer earlier examples not being open to inspection by Christians. It may be noted, however, as a general condition that the native towns and villages of Tunisia, where they have not been spoiled by the shocking tastelessness of Mediterrancan Europe, are exceedingly picturesque, and offer exceptional attractions to the painter.

Industries.-Agriculture is the principal industry. Oats, wheat and barley are the chief crops in the north. In the central region

\footnotetext{
\({ }^{2}\) Of recent introduction for the most part, consisting (census of 1906) of 81,156 Italians, 34,610 French. 10.330 Maltese. about 1000 Greeks and the remainder British, German, Austrian, \&c. The French army of occupation (20.360 men) is not included in these figures.
Since this was written the mahrab in question has been removed to Paris.
}
the olive is largely cultivated, in the south the date-palm. Viticolterre is also of importance; almonds, aranges, lemons, ace. are also grown for export. The alfa and cork industries employ large numbers of persons, as do also the sardine, anchovy and tunny fisheries. The fisheries are in the hands of ltalians; Maltese and Greeks. There are large herde of cattle and hocks of sheep and goats. About 60,000 acres are cultivated by French immigrants and about 15,000 acres by Italians.
Among native industries may be mentioned the spinning and weaving of wool for clothing, carpet-weaving. the manufacture of pottery, alippers and matting, saddle-making and leather emLroidery. Silk-weaving, formerly important, is declining.
In 1907 the number of mines working wan 32. The export of phosphates rose from 445,000 tons in 1904 to \(1,267,000\) tons in 1908. The export of coal in that year was 74,000 tons, and copper ore 937 tons (vide supra, \(\{\) Mincrals).

Commerice.-The commerce of Tunisia has thriven under the French protectorate, having risen from an annual total of about G1,700,000 in 1881 to \(68,687,000\) ia 1908. British trade with Tunisia has nearly tripled since the establishment of the French Frotectorate. It itood at over froo,000 in annual value during the year 1898. In 1908 the total trade with Great Britain and Malta amounted to 6914000 . In the same year the imports from France exceeded \(\{2,750,000\) and the exports to France \(\{1,685,000\). From Algeria the imports were 6656,000 ; to Algeria the exports were (185,000. The principal exports are olive oil, wheat, eaparto grasa, barley, sponges, dates, fish (especially tunny), hides, horses, wool, phosphates, copper, zinc and lead. The imports consist mainly of European manulactured goods (especially British cotton), machinery, lour, alcohol, sugar, timber, coal and petroleum. About hall the shipping trade is in the hands of the French; in 1908 , of the total tonnage of ships entered, 4,155,000, French vessels represented \(1,905,000\) tons, Italian vesecls \(1,422,000\) tons and British vessels 299,000 tous.

Communications.-The French have made since 1882 about 2000 m . of good roads. The first railway built (1871-1872) was that between Goletta and Tunis. This line, with the extensions to la Marma and Bardo, is 31 m . in length. It was constructed by an English company, which in 1880 sold it to an Italian company, despite the keen competition of French rivals (see Hislory, below). The conversion of Tunis into a scaport (1893) destroyed the importance of this line, which was then wold to the French Bone-Guelma Company (Bone-Guelma et Prolongements), which owns the majority of the railways in Tunisia.

The sscond railway connects the capital with the frontier of Algerin, where, at Suf Ahras, it joins the main line to Constantine, Algiers, \&e. This line wres built by the Bone-Guelma Company. The concession was obtained in 1877 , and the line, 191 ma . long, was finished in 1880 . A brasch line (8 m .) connected Beja with chis railway, and another (in m.) ran from Tunis to HammanelEnf, a lavourite seaside resort of the Tunisians.
For the next twelve years there was a pause in railway construction followed by the opening, in 189a, of the line between Suss and Moknine (30 ra) Then came the continuation of the line from Haraman-l-Ent to Hammamet and along the Sahel to Susa (93 m), and the building of a line from Susa to Kairwan, 31 m . (the lastnamed line superseded a horse-tramway bult by the French army darint the campaign of 1881). A branch line to Bizerta (431 m . .) from Jedeida on the main Algeria-Tunie line was also built as well as oue from Tunis to Zaghwan (44 m .). A short line, branching from the Tuais-Zaghwan line, was carried south-west to Pont du Fahs These with a few short branch lines were built between 1892 and \(t 900\) by the Boae-Guelma Company. In 1906 was opened a continvation of the line from Pont du. Fahs to Kel and thence southmest to Kalaat-es-Senam, a place midway between Kef and Tebessa, the centre of the Mgerian phosphate region. A branch from the Kef line runs to the phosphate mincs of Ralaa-Jerda.

Another railmay (conngleted by 1900) nums from Stax, along the oceax to Mahres, thence Inhand to Galsa and the phosphate mines of Metalvi. This line, 151 m . long, was for some years isolated from the general Tunisian system. The total milcage of the Tunisian railways, was computed to be 1060 m . by the finishing of the SusaSfax, Gabes-Telcema lines in 1909. Extensions of the railway mystem are contemplated to Gabes and, beyond, to the Tripolitan frontier. In the pouth communication is maintained chiefly by camel. caravans.

Pasts ond Tedegraphs.-The whole of Tunisia is covered with a metwork of zelegraph lines (2500 m .), and there are telephones working in moot of the lane towns. The telegraph system penetrates to the farthest French post in the Sahara, in connected with the Turkish system on the Tripolitan frontier and with Algeria, and by cable with Sicily, Malta, Sardinia and Marseiles. There is in efficient poit office service, with aboot 400 post offices.

Finamce.-The principal bank is the Banque de Tunisie. The crinage formerly, was the caroub and piastre (the latter worth aboat \(6 d\).), but in 1991 the French reformed the coinage, substituting the franc as a unit, and having the money minted at Paris. The values of the ocinage are pieces of 5 and 10 centimes in broase, of so centimea, 1 franc and 2 francs in silver, of 10 france and 20 francs in gold. The inscriptions are in French and Arabic.
xXVII 7 *

The public debt was consolidated in 1884 into a total of \(\mathbf{5 5 . 7 0 2 , 0 0 0}\) guaranteed by France, and bearing \(4 \%\) intereat. In 1888 it was converted into \(a\) loan paying \(3 \frac{1}{2} \%\) interest, and in 1892 another conversion reduced the rate of interest to \(3 \%\) In 1902 a new loan of \(\{1,800,000\) was issued at \(3 \%\). At the beginning of 1907 the total Tunisian debt was \(\{9,287,260\); in that year the government was authorized to contract another loan of \(45,000,000\) at \(3 \%\) (\(\{3,000,000\) being guaranteed by France) for rallways, roads and colonization. The weights and measures are those of France. The revenue for the year 1900 was \(\{1,456.640\), and the expenditure was fit452,597. In 1910 reccipts and expenditure balanced at about \(\{1,888,000\) each. The principai sounces of revenue are direct taxation, stamp and deeth duties, customs, port and lighthouse dues, octroi and tithes, tobacco, salt and gunpowder monopoiics, postal and telegraph receipts, and revenue from the state domain (lands, fisheries, forests, mines). The civil list paid to the Bey of Tunis amounts to 836,000 per annum, and the endowment of the princes and princestes of the beylical family to f3I,200 a year more.

Administration,-From a native's point of view Tunisia still appears to be governed by the Bey of Tunis, his Arab ministers and his Arab officials, the French only exercising an indirect-though a very real-coptrol over the indigenous population (Mahommedans and (ews). But all Christians and foreigners are directly governed by the French, and the native administration is supervised by a staff of thirteen French contrcleurs and their French and Tunisian subordinates. Seven of the departments of state have Frenchmen at their head, the other two, Tunimians: thus.the larger proportion of the Bey's ministers are Frepch. France is directly represented in Tunisia by a minister resident-general, and by an assistant resident. The Freach resident-general is the vittual viceroy of Tunisia, and is minister for foreign affairs. Besides Mussuman (native) schools there were in the regency, in 1906 , 158 public achools, 5 lyceres and colleges and 21 private schools. At these schools were 22,000 pupile (13,000 boys), all save 3500 Mussulnans being Europeans or Jews.
Hisfory.-The history of Tunisia begins for us with the establishment of the Phoenician colonies (see Proenicia and Carthuge). The Punic settlers semitized the coast, but left the Berbers of the interior almost untouched. The Romans entered into the heritage of the Carthaginians and the vassal kings of Numidia, and Punic speech and civilization me gave way to Latin, a change which from the time Provimen of of Cacsar was helped on by Italian colonization; to "Alrke"" this region the Romans gave the name of "Africa," apparently a latinizing of the Berber term " Ifriqa," " Ifrigia" (in modern Arabic, Ifrigiyah).
Rich in corn, in herds, and in later times also in oil, and possessing valuable fisheries, mines and quarries, the province of Africa, of which Tunisia was the most important part, attained under the empire a prosperity to which Roman remains in all parts of the country still bear witness. Carthage was the second city of the Latin part of the empire, "after Rome the husiest and perhaps the most corrupt city of the West, and the chicf centre of Latin culture and letters." In the early history of Latin Christianity Africa holds a more important place than Italy. It was here that Christian Latin literature took its rise, and to this province belong the names of Tertullian and Cyprian, of Arnohius and Lactantius, above all of Augustine. Lost to Rome by the invasion of the Vandals, who took Carthage in 439, the province was recovered by Belisarius a century later (533-34), and remained Roman till the Arab invasions of 648-69. The conqueror, 'Oqba-bin-Nafa, founded the city of Kairwan (673) which was the residence of the governors of "Ifriqiyah" under the Omayyads and thereafter the capital of the Aghlahite princes, the conquerors of Sicily, who ruled in mercly nominal dependence on the Abbasids.

The Latin clement in Africa and the Christlan faith almoat disappeared in a single generation; \({ }^{1}\) the Berbers of the
[1 The North African Church was not utterly swept away by the Moslem conquest, though its numbers at that time were very greatiy diminished, and therealter fell gradually to vanishing point, partly by emigration to Europe. Its episcopate in the 1oth century still numbered thirty members, but in 1076 the Church could not provide three bishops to consecrate a new member of the episcopate, and lor that purpose Gregory VII. named two bishope to act with the archbishop of Carthage. In the \(13^{\text {th }}\) century the native episcopate had disappeared. Abd ul-Mumio, the Almohade conqueror of Tunisia, compelled many of the native Christians to cmbrace Islam, but when Tunis was captured by Charles V. in 1535, there were still found in the city native Christians: the last remunants of the
mountains, whe had never been latinized and never really christianized, accepted Islam without difficulty, but showed

Arab Con-
grestatad
Berber
Dyastice their stubborn nationality, not enly in the character of their Mahommedanism, which has always been mixed up with the worship of living as well as dead saints (marabouts) and other peculiarities, hut also in political movements. The empire of the Fatimites (q.o.) rested on Berber support, and from that time forth till the advent of the Turks the dynasties of Nortb Africa were really native, even when they claimed descent from some illustrious Arab stock. When the seat of the Fatimite Empire was removed to Egypt, the ZIrites, a house of the Sanhaja Berbers, ruled as their lieutenants at Mahdia, and about 1050 Mo'inz the ZIrite, in connexion with a religious movement against the Shi'ites, transferred his very nominal allegiance to the Abbasid caliphs. The Fatimites in revenge let loose upon Africa about A.D. 1045 a vast horde of Beduins from Upper Egypt (Beni Hilal and Solaim), the ancestors of the modern nomads of Barbary. All North Africa was ravaged by the invaders, who, though unahle to found an empire or overthrow the scttied goverament in the towns, forced the agricultural Berbers into the mountains, and, retaining from generation to generation their lawless and predatory habits, made order and prosperity almost impossible in the open parts of the country until its effective occupations by the French. The Zirite dynasty was finally extinguished by Roger I. of Sicily, who cook Mahdia in 1148 and estahlished his authority over all the Tunisian coast. Even Moslem historians speak favourably of the Norman rule in Africa; but it was brought to an early end hy the Almohade caliph Abd ul-Mumin, who took Mahdia in 1160 .

The Almohade Empire soon began to decay, and in 1336 Ahu Zakarlya, prince of Tunis, was able to proclaim himself independent and found a dynasty, which subsisted

\section*{The}

Manillat. till the advent of the Turks. The Hafsites (so called from Aba Hafs, the ancestor of Aba Zakarlya, a Berber chieftain who had been one of the intimate disciples of the Almohade mahdi) assumed the titie of Prince of the Faithful, a dignity which was acknowledged even at Mecca, when in the days of Mostansir, the second Hafsite, the fall of Bagdad left Islam without a titular head. In its best days the empire of the Hafsites extended from Tlernest to Tripoli, and they received homage from the Merinids of Fez ; they held their own against repeated Frankish invasions, of which the most notahle were that whith cost St Louis of France his life (12;0), and that of the duse of Bourbon (1300), when English troops took part in the unsuccessful siege of Mahdia. They adorned Tunis with mosques. schools and other institutions, favoured letters, and in gencral appear to have risen above the usual level of Moslem sovereigns. But their rule was troubled by continual wars and insurrections; the support of the Beduin Arabs was imperfectly secured by pensions, which formed a heavy burden on the finances of the state: \({ }^{2}\) and in later times the dynasty was weakened by tamily dissensions. Leo Africanus, wrihing early in the 16th century, gives a favourable picture of the "great city" of Tunis, which had a flourishing manufacture of fine cloth, a prosperous colony of Cbristian traders, and, including the suburbs, nine or ten thousand hearths; but he speaks also of the decay of once flourishing provincial towns, and especially of agriculture, the
ance powerful Church. Traces of Christianity remained among the Kabyles till after the conquest of Granada (1493), when the indux et Andaluain Moors from Spain completed the conversion

greater part of the open country lying waste for fear of the Arab marauders. Taxation was heavy, and the revenue very considerable: Don Juan of Austria, in a report to Philip II., states that the land revenue alone under the last Hafsite was 375,935 ducats, but of this a great part went in tribute to the Arabs.

The conquest of Algiers by the Turks gave a dangerous neighbour to Tunisia, and after the death of Mohammed the Hafsite in 1525 a disputed succession supplied Khair-ad-Din Barbarossa with a pretert for occupying the

Twathl city in the name of the sultan of Constantinople.

Conquast. Al-Hasan, the son of Diahommed, sought help from the emperor, and was restored in 1535 as a Spanish vassal, by a force which Charles V. commanded in person, while Andrea Doria was admiral of the fleet. But the conquest was far from complete, and was never consolidated. The Spaniards remained at Goletta and made it a strong fortress, they also occupied the island of Jerba and some points on the south-east coast; hut the interior was a prey to anarchy and civil war, until in 1570 'Ali-Pashn of Algicrs utterly defeated Hamid, the son and suecessor of Hasan, and occupicd Tunis. In 1573 the Turks again retreated on the approach of Don Juan, who had dreams of making himself king of Tunis; but this success was not followed up, and in the next year Sultan Selim II. sent a strong expedition which drove the Spaniards from Tunis and Goletta, and reduced the country to a Turkish province. Nevertheless the Spanish occupation left a decp impression on the coast of Tunis, and not a few Spanish words passed into Tunisian Arabic. After the Turkish conquest, the civil administration was placed under a pasha; but in a few years a military revolution transferred the supreme power to a Dey elected by the janisearies, who formed the army of occupation. The government of the Deys lasted till 1705, but was soon narrowed or overshadowed by the authority of the Beys, whose proper function was to manage the tribes and

R-2 Begs collect tribute. From 163 I to 1702 the office of Bey was hereditary in the descendants of Murad, a Corsican renegade, and their rivalry with the Deys and internal dissensions kept the country in constant disorder. Ihrahim, the last of the Deys (1702-1705), destroyed the house of Murad, and absorbed the beyship in his own office; but, when be fell in buttle with the Algerians, Hussein b. 'All, the son of a Cretan renegade, was proclaimed sovereign by the troops under the title of "Bey," and, being a prince of energy and ability, was able to establish the hereditary sovereignty, which has lasted without change of dynasty to the present time: \({ }^{\text {: }}\)

Frequent wars with Algiers form the chief incidents in the internal history of Tunisia under the Beys. Under Deys and Beys alike Tunisia was essentially a pirate state. Occasionally acts of chastisement, of which the bombardment of Porto Farina hy Blake in 1655 was the most notable, and repeated treaties, extorted by European powers, checked from time to time, but did not put an end to, the habitual piracies, on which indeed the public revenue of Tunis was mainly dependent. The powers were generally less concerned for the captives than for the acquisition of trading privileges, and the Beys took advantage of the commercial rivalry of England and France to play off the one power against the other. The release of all Christian slaves was not effected till after the bombardment of Algiers; and the definite abandonment of piracy may be dated from the presentation to the Bey in 1819 of a collective note of the powers assemhled at Aix-la-Chapelle. The goverament had not elasticity enough to adapt itself to so profound a change in its ancient traditions; the finances became more and more hopelessly embarrassed, in spite of ruinous taration; and antempts at European innovations in the court and army made matters ooly worse, so long as do attempt was made to improve

Muhammad VI. es Sadok, the ragning Bey at the time of the French occupation, died in October 1882, and was succeeded by his brother Ali IV. This prince reigned until sgoz, the ilione then passing to his son Muhammad Vil. el Hadi. who died in 1906 tien his cousin Minhammad VIII. en Nass (b. I855) becane Bey.
the intermal condition of the corintry. In the third quarter of the rgth century not more than a tenth part of the fertile land was under cultivation, and the yearly charge on the public debt exceeded the wholo annual revenua. In these circumstances only the rivalry of the European powers that had inlexests in Tunisie protracted from yoar to year the inevituble revolution. The French begmn to regard the dominions of the Bey as a nalural adjunct to Algeria, hut after the Crimenn War Turkish rights over the regency of Tunis were revived. After the Franco-German War the embarrassed Bey turned towards Great Britain for advice, and a British protectorate-suggested by the proximity of Malta-was not an impossibility under the remarkable infuence of the ceiebrated Sir Richard Wood, British diplomatic agent at the court of Tunis from 1855 to 2879. The railways, lighthouses, gas and waterworks and other concemsions and industries were placed in British hands. But in 1878, at the Congress of Berin, Lord Salishury ygreed to allow France a "free hand" in Tunisia in return for French acquiescence in the British lease of Cyprus.
After 1862, however, the kingdom of Italy began to take a deep interest in the future of Tunisia. When the country acupeane went bankrupt in 1869 , 2 triple control was estabyp cioce lishod over Tunisian Ginances, with British, French prock. and Italian "controflers." In 1880 the Italians bought the British railway from Tunis to Goletta. This and other actions excited the French to act on the secret understanding effected with the British foreign minister at the Berlin Congress. In 1881 a French force crossed the Algerian frontier under pretext of chastising the independent Khmir or Kroumir tribes on the north-east of the regency, and, quickly dropping the mask, advanced on the capital and compelled the Bey to accept the French protectorate. The actual conquest of the country was not effected without a serious struggle with Moslem fanaticism, especially at Sfax; hut all Tunisia was hreught completely under French jurisdiction and administration, supported by military posts at every important point. In 8883 the new situation under the French protectorate was recognized by the British government withdrawing its consular jurisdiction in favour of the French courts, and in 1885 it ceased to be represented by a diplomatic official. The other powers followed suit, except Italy, which did not recognize the full consequences of the French protectorate until 2896. In 1884 a thorough reform of the government and administration of the country was begun under the direction of a succession of eminent French residents-general. In 1897 Great Britain surrendered her commercial treaty with Tunisia and agreed (sybject to a speciat temporary privilege regarding cotton goods) to allow her commerce and all other relations with Tunisia to be subjected to the same conditions as those affecting all such relations between Brituin and France.
The French protectorate over Tunisie, basod on the treaty rigned by the Bey at Bardo on the 12 th of May 188ı and contocturas firmed by the treaty of la Marsm (June 8, 1883), was Hin Twarkey. not recognized by Turkey, which claimod the regency as part of the Ottoman dominions. The protests of the Porte were ignored by the French, and in 1892 Turkey so far recognized the actual situation as to determine the TunisiaTripoli frontier as fart south as Gbadaness. South of that point the Saharan frontiers of Algeria, Tunisia and Tripoli remained undefined. Working eastmard from Tunisia and Algeria the French occupied several polnts to which Turkey mid claim. Thus the oasis of Janet, S.S.W. of Rhat, was eccupied in s906. The action of Prance led to counter-action by Turkey and to various frontier incidents. Janet whes recocupied by Ottoman troope in the sumprace of 1910, but in delerence to French protests the troops were withdrawn pending the delimitation of the frontier. At the sume time Turkey moincmined the claim that Tunisians were Ottoman subjects.
Fombier troubles had however litte effiect on the remainder of the protectorate. In 1904-1905 there were famines and some eative disconstant to the south of Tunisia; but in general the cometry has proepered amacingly under the Freach protec-
torate. The native dynasty has been strengthened rather than weakened, and Tunisia may be pointed out as the best and wisest example of French administration over an alien land and race. Though on a smaller scale it is worthy to be set as a pendant to the British work in Egypt.

Bibliogra rity.-Of Arabic wources accessible to translations the geographical works of Ya'kubi (Descriptio al Mapribi, by De Goeje. Leiden, 1860), Al-Balari (Descr. de IVAfrique septambriomale, by De Slane, Paris, 1859: Arabic text, ibid 1857) and Idrisi (Descr. de Fifrique, \&C, by Dozy and De Goeje, Leiden, 1866) belong to the 10th. 11 th and 2 2th centuries respectively; the history of Ibn Khaldun (Hist. des Berbbres, by De Slane, 4 vols., Algiers, 1852-1856) includes the earlier Hafsites, that of Al-Kairawain (Hist. de TAfrique, by Pelissier and Remusat, Paris, 2845, in Expl. scient. de l'Algefie, vol. vii.: Arabic text. Tunis, 1286 A.H.) deals especially with Tunisia and gocs down to 168s. Especially valuable and lucid are the following works: Ernest Mercier, Histoire de l'Afriqua seplentrionale (Berberie) (3 vols., Paris, 1891). and IIistoire de l'thablissement des. Arabes dans I'Afrique seplentrionale selon les auteurs arabes (Paris, 1875); Stanley Lane Poole, The Barbary Corsairs ("Story oi the Nations Series," London, 1890). deals in part with the history of Tunisia. Other worics which should be studied are: Dr Thos Shaw's Trupeds (1757): Leo Africanus's description of Africa in Ramusio and in Purchas's Pifgrins: Rousscau, Annales tuntsiennes (Algiers, 1864); the late Sir R. Lambert Playfair, In the Footsteps of Bruce (London, 1887); A. M. Broadley, Twnis, Past and Present (Edinburgh, 1882): Guerin, Voyage archiologique (Paris, 186a); D'Hériseon, Mission archtologique en Tunisic (Paris, 1884); E. D. Schoenfield, Aus dew Staater der Barbaresken (Berlin, 1go2); Sir Harry Johnston. The Colonization of Africa (Cambridge, 1gos): Gaston Loth, La Tumisie at lavare du protectoral fransais (Paris. 1907); Professor Arthur Girault, Principes de colowisation at de ligislation coloniale, vol. iil. (3rd ed. Paris, 1008). Lists of all the rulers of Tunisia will be fouad in A. M. H. J. Stokvis, Manuel d'histoire, vol. i. (Leiden, 1898). The geography of I unisia was first treated scientifically by E. Pelissier in the 36 th volume of his Explor, scient. de 1 Algerse (Paris, 3833); and by C. Tispot, Explop, scienl. de la Tunisie: GEog. comparie de la province romaine d'Afrique (2 vols, Paris, 3884 -1888); also in Murray's Handbook, by Sir R. L. Playfair (1887). The works of Canon Tristram on the Sahara describe southern Tunisia in the sixties of the r9th century. Two important articles on Tunisia appeared in Nos. 22 and 23 of the Rerwe getnérale des sciences (Paria, Nov. 30 and Dee. 35, 1896). Still more valrable is Lo Tunisie frangaise, in two vulumes, a government publication (Paris, 1896). An article on the Twnisian Sakara, the Tunisian Cave-Durellers and Berber Lamgwages, \&e., by Sit H. H. Johnston, was published in the Geog. Jourm. for June 3898 . Other artickes by the same author appcared in the Graptic during the years 1899, 1900 and 1902. An interesting dissertation on the question of the Berber race is given in Professor A. H. Kcane's Man, Past and Present. Numerous other works in English and French have been published on Tunisia from the tourist's point of view; the best of these is by Dougla Sladen, Carthage and Twnis (2 vole, 1908). Gaston Eloissier. \(L^{\prime}\) Afrique romaine (1895). is a picturesque but somewhat super. ficial aperçu of the principal Roman ruins. Flaubert's Salammbo ought always to be read by those who visit Carthage and Tunisia. It was mainly written at La Marsa, near Carthage. See also H. S. Ashbee, Bibliography of Tumisia (London, 1889).
(H. H. J.)

TUNNEL (Fr. tommel, later tommean, a diminutive from Low Lat. Sowna, (zmma, a tun, cask), a more or less horizontal undapground passage made without removing the top soil. In former times any long tube-like pasage, bowever constoucted. was called a tunntl. At the present day the word is sometimed popularty applied to an underground pasage constructed by trenching down from the surface to build the arching and them refilling with the top soil; but a passage so constructed, although indistinguishable from a tunnel when completed, is more correctly termed a "covered way," and the operations "cnuing" and "covering," instead of tunnelling. Mating a amall tundel, afterwards to be converted into a larger one, is called "driving a heading," and in mining operations small tunnels ate termed "galleries," " driftways" and "adits." If the underground passage is vertical it is a shaft; il the shaft is begun at the surface the operations are known as "sinking"; and in is called a "rising" if worked upwards from a previoushy constructed heading or gadlery.

Tumeelling has been effected by natwral forcea to a far greator extent than by man. In limestone districts immanerable swallow-holes, or shafts, have been sunk by the rain water following joints and dissolving the rock, and from the botsona of these shafts tumnols have been escavated to the sides of
hills in a manner strictly analogous to the ordinary method of executing a tungel by sinking shafts at intervals and driving headings therefrom. Many rivers find thus a course underground. In Asia Minor one of the tivers on the route of the Mersina railway extension pierces a hill by means of a natural tunnel, whilst a little south at Seleucia another river flows through a tunnel, 20 ft . wide and 23 ft . high, cut 1600 years ago through rock so hard that the chisel marks are still discernible. The Mammoth Cave of Kentucky and the Peak caves of Derhyshire are examples of natural tunnelling. Mincral springs hring up vast quantities of matter in solution. It has been estimated that the Old Well Spring at Bath has discharged since the beginning of the 1gth century solids equivalent to the excavation of a 6 ft . by 3 ft . heading 9 m . long; and yet the water is perfectly clear and the daily flow is only the 8 soth part of that pumped out of the great railway tunnel under the Severn. Tunnclling is also carried on to an enormous extent by the action of the sea. Where the Atlantic rollers hreak on the west coast of Ireland, or on the scaboard of the western Highlands of Scotland, numberless caves and tunnels have been formed in the cliffs, beside which artificial tunnelling operations appear insignificant. The most gigantic suhaqueous demolition hitherto carried out hy man was the blowing up in 1885 of Flood Rock, a mass about 9 acres in extent, near Long Island Sound, New York. To effect this gigantic work by a single iustantancous blast a shaft was sunk 64 ft . below sea-level, from the bottom of which 4 m . of tunnels or galleries were driven so as to completely honeycomh the rock. The roof rock ranged from to ft. to 24 ft . in thickness, and was supperted by 467 pillars 15 ft . square; 13,286 holes, averaging 9 ft . in length and 3 ins . in diameter, were drilled in the pillars and roof. About 80,000 cub. yds. of rock were excavated in the galleries and 275,000 remained to be blasted away. The holes were charged with ino tons of "rackarock," a more powerful explosive than gunpowder, which was fired by electricity, when the sea was lifted 100 ft . over the whole area of the rock. Where natural forces effect analogous results, the holes are bored and the headings driven by the chemical and michanical action of the rain and sea, and the explosive force is ohtained by the expansive action of air locked up in the fissures of the rock and compressed to many tons per square foot by impact from the waves. Artificial hreakwaters have often been thus tunnelled into by the sea, the compressed air hlowing out the blocks and the waves carrying away the déhris.

With so many examples of natural caves and tunnels in existence it is not to be wondered at that tunnelling was one of the earliest works undertaken hy man, first for dwellings and tombs, then for quarrying and mining, and finally for water-supply, drainage, and other requirements of civilization. A Theban king on ascending the throne began at once to drive the tunnel which was to form his final resting-place, and persevered with the work until death. The tomb of Mincptah at Thebes was driven at a slope for a distance of 350 ft . into the hill, when a shaft was sunk and the tunnel projected a farther length of about 300 ft ., and enlarged into a chamber for the sarcophagus. Tunnelling on a large scale was also carried on at the rock temples of Nubia and of India, and the architectural features of the entrances to some of these temples might be studied with advantage by the designers of modern tunnel fronts. Flinders Petric has traced the method of underground quarrying followed by the Egyptians opposite the Pyramids. Parallel galleries about 20 ft . square were driven into the rock and cross galleries cut, so that a hall 30010400 ft . wide was formed, with a roof suppoited by rows of pillars 20 fl , sy wate ind 20 ft . apart. Blocks of stnne were remored by the worlime cutting grooves all round them, and, where the atat required for use, but merely bad to he retwred gallery, the grooves were wide enough for a s.in. in. Where granite, diorite as the work was done by the corundum, or othes lexing a core of rol
drill. As instances of ancient tunnels through soft ground and requiring masonry arching, reference may be made to the vaulted drain under the south-east palace of Nimrod and to the brick arched tunnel, 12 ft . high and 15 ft . wide, under the Euphrates. In Algeria, Switzerland, and wherever the Romans went, remains of tunnels for roads, drains and water-supply are found. Pliny refers to the tunnel constructed for the drainage of Lake Fucino as the greatest puhlic work of the time. It was by far the longest tunnel in the world, being more than \(3 \frac{1}{2} \mathrm{~m}\). in length, and was driven under Monte Salviano, which necessitated shafts no less than 400 ft . in depth. Forty shafts and a number of "cuniculi," or inclined galleries, were sunk, and the excavated material was drawn up in copper pails, of about ten gallons capacity, by windlasses. The tunnel was designed to he 10 ft . high by 6 ft . wide, hut its actual cross. section varied. It is stated that 30,000 labourers were occupied eleven years in its construction. With modern appliances such a tunnel could be driven from the two ends without intermediatc shafts in cleven months.

No practical advance was made on the tunnelling methods of the Romans until gunpowder came into use. Old engravings of mining operations early in the ryth century show that excavation was still accomplished by pickaxes or hammer and chisel, and that wood fires were lighted at the ends of the headings to split and solten the rock in advance (see fig. i).

(From Agricola's De ro metatica, Basel, 16 ar.)
Fig. I-Method of mining, 1621.
Crude methods of ventilation hy shaking cloths in the beadings and hy placing inclined hoards at the top of the shafts are also on record. In 1766 a tunnel 9 ft . wide, 12 ft . high and 2880 yds. long was hegun on the Grand Trunk Canal, England, and completed cleven years later; and this was followed by many others. On the introduction of railways tunnelling became one of the ordinary incidents of a contractor's work; probably upwards of 4000 railway tunnels have been executed.

Tunnelling under Rivers and Harbours.-In 1825 Marc Isambard Brunel began, and in 1843 completed, the Thames tunnel between Rotherhithe and Wapping now used by the East London railway. He employed i peculiar "shield," made of timber, in several independent sections. Part of the ground penetrated was almost liquid mud, and the cost of the tumnel peathert fr100 per lineal gard. In 18 is he took out a patent bofengelling proeser, thich included a shield, and which (rom 21 a wirnouding wall. His shield fore-
in small space as soon as the segments are bolted together, and they cem be caulked water-tight.

In 8830 Lord Cochrane (afterwards woth earl of Dundomald) patented the use of compressed afr for shaft-sinking and tuneelling in water-bearing strata. Water under any pressure can be kept out of a subaqueous chamber or tupnel by sufficient pir of a greater pressure, and men can breathe and work cherein-for a time-up to a pressure exceeding four atmospheres. The shield and cast-iron lining invented by Brunel, and the comptessed air of Cochrane, have with the aid of later inventors largely removed the difficulties of subaqueous tunnelling. Cochrane's process was used for the foundation of bridge piers, \&c., comparatively early, but neither of these devices was emplqyed for tunnelling until balf a century after their invention. Two important subaqueous tunnels in the construction of which neither of these valuable aids was adopted are the Scvern and the Mersey tunnels.

The Severs tunnel (fig. 16). \(4 \frac{1}{2} \mathrm{~m}\). in length for a double line of tuilway. begun in 1873 and Gnished in 1886, Hawkshaw, Son, Hzyter \& Richardson being the engineers and T. A. Walker the contractor, is macle almost wholly in the Trias and Coal Measure formations, but for a short distance at its eastern end passes through gravel. At the lowest part the depth is 60 It. at low water and 100 lt . at high water, and the thickness of sandstone over the brickwork is 45 ft . Under a depression in the bed of the river on the English - ide there in a cover ol only 30 ft . of marl. Much water was met with throughout. In 1879 the works were flooded for months by a land spring on the Welsh side of the river, and on another occasion from a hole in the river bed at the Salmon Pool. This hole was subsequently filled with clay and the works completed bencath. Two prediminary headings were driven across the river to test the ground.
* Break-ups " were made at intervals of two to five chains and the arahing was carried on at each of these points. All parts of the excavation were timbered, and the greatest amount excavated in anyy one week was 6000 cub. \(y\) ds. The total amount of water raised at all the pumping stations is aboue \(27,000,000\) gallons in twenty-lour hours

The leagth of the Mersey tunnel (fig. 15) between Liverpool and Birkeahead between the pumping shafts on each side of the siver is one mile. From each a drainage beading was driven through the mandatone with a rising gradient towards the centre of the river. This heading was partly bored out by a Beaumont machine to a diameter of 7 ft . 4 in. and at a rate attaining occasionally 65 lineal yds. per week. All of the tunnel excavation, amounting to 320,000 cub. yde, was got out by hand labour, since heavy blasting would have shaken the rock. The minimum cover between the top of the arch and the bed of the river is 30 ft . Pumping machinery is provided for \(\mathbf{2 7 , 0 0 0 , 0 0 0}\) gallons per day. whicb is miore than double the usual quantity of water. Mesers Brunlees \& Fox were the eqgineers, and Meerrs Waddell the contractors for the works, which were opeped in 1886, about aix years after the beginning of operations.

In 1869 P. W. Barlow and J. H. Greathead buile the Tower foot-way under the Thames, using for the first time a cast-iron lining and a shield which embodied the main features of Brunel's design. Barlow had patented a shield in 1864, and A. E. Beach one in 1868. The latter was used in a short masonry tunnel under Broadmay, Now York City, at that time. In 1874 Greathead designed and built a shield, to be used in connexion with compressed air, for a proposed Woolvich tunnel under the Thames, but it was never used. Compressed air was first used in tunnel work by Hersent, at Antwerp, in 1879, in a epall drift with a cast-iron lining.
ITm the same year compressed air was used for the first time feny important tunnel by D. C. Haskin in the famous first Eredson River tunnel, New York City. This was to be of tivo tubes, each having internal dimensions of about 16 ft . Wide by 18 ft . high. The excavation as fast as made was lined gith thin steel plates, and inside of these with brick. In Thae 2880 the northerly tube had reached 360 ft . from the Woboken shaft, but a portion near the latter, not of full size, tas being enlarged. Just after a change of shifts the compressed (M) blew a hole through the soft silt in the roof at this spot, and the water entering drowned the twenty men who were working therein. From time to time money was raised and the work edvanced. Between 1888 and 1891 the northerly tunnel was extended 9000 ft . to about three-fourtha of the way across, awth British capital and largely under the direction of British Minoer-Sir Benjamin Baker and E. W. Moir. Compreseed
air and a shield were used, and the tuminet wath were made of bolted segments of cast iron. The money being exhausted, the tunnel was allowed to fill with water, and it so remained for ten years. Both tubes were completed in 1908.

The use of compressed air in the Hudson tunnel, and of annular shields and cast-iron lined tunnel in constructing the City \& South London railway (1886 to 1890) by Greathead, became widely known and greatly influenced subaqueous and soft-ground tunnelling thereafter. The pair of tunnels for this railway from near the Monument to Stockwell, from 10 ft .2 in . to 10 ft .6 in . interior diameter, were constructed mostly in clay and without the use of compressed air, except for a comparatively short distance through water-bearing gravel. In this gravel a timber heading was made, through whicb the shield was pushed. The reported total cost was [840,000. Among the tunnels constructed after the City \& South London work was well advanced, lined with cast-iron segments, and constructed by means of annular shiclds and the use of compressed air; were tbe St Clair (Joseph Hobson, engineer) from Sarnis to Port Hurod, 1889-1890, through clay, and for a short distance through water-bearing gravel, 6000 ft ., 18 ft . internal diameter; and the notable Blackwall tunnel under the Thames (Sir Alexander Binnie, engineer, and S. Pearson \& Sons, contractors), through clay and 400 ft . of watersaturated gravel, 1892-1897, about 3116 ft . long, 24 ft .3 in. in ioternal diameter. The shield, 19 ft . 6 in . long, contained a bulkhead with movable shutters, as forestadowed in Baker's proposed shield (fig. 2). Numerons tunnels of small diameter have been similarly constructed under the Thames and Clyde for electric and cable ways, several for sewers in Melbourne, and two under the Seine at Paris for sewer siphons.

The Rotherhithe tunnel, under the Thames, for a roadway, with a length of 4863 ft . between portals, of which about 1400 ft . are directly under the river, has the largest crosssection of any subaqueons tube of this

Fic. 2.-B. Baker's pneumatic shieli. type in the world (see fig. 3). It was begun in 1904 and finished in 1908, Maurice Fitzmaurice beinig the engineer of design and construction, and Price \& Reeves the contractors. It penctrates sandy and shelly clay overlying a seam of limestone, bencath which are pebbles and loamy sand. A preliminary tannel for exploration, 12 ft . in diameter, was driven across the river, the top being within 2 ft . of the following main tunnel. The top of the main tunnel excavation in the middle of the river was only 7 ft . from the bed of the Thames, and a temporary blanket of filled earth, usually allowed in similar cases, was prohibited owing to the close proximity of the docks. The maximum progress in one day was 12.5 ft ., and the average in six days 10.4 ft . The airi compressors were together capable of supplying \(1,000,000\) cub. ft . of air per hour.

Some tunnels of marted importance of this type-to be operated solely with electric cars-have been built under the East and Hudson rivers at New York. Two tubes of 15 ft . interior diameter and 4150 ft . long penetrate gneiss and gravel directly under the East River between the Battery and Brooklyn. They were begun in 1902, with Wm. B. Parsons and Gearge S. Rice as engineers, and were finished in December 1907, under the direction of D. L. Hough of the

Rotherhithe. Thonies itube

St Clair Rives. t wir

East Eratun Tunnel unde: Hasbout. Itutic.

River Scixe, Paris itub

New York Tunnel Company. They carry subway trains. In noe of the blow-outs of compressed air a workman was blown through the gravel soof into the river above. He lived until the next day. Two other tubes of the same size built also through gneiss and gravel between 1905 and 1907 by the Degnon Contracting Company, with R. A. Sheiler as the contractors' engineer, go from 4 2nd Street to Long Island City.

Four much larger tubes (see fig. 3) built in 1go4 to 1909, for the Pennsylvania railroad, with Alfred Noble as chief engineer, S. Pearson \& Son as contractors, and E. W. Moir as general manager, cross from 3 and and 33 rd Streets to Long Island. The maximum average progress per day (one heading) for the best month's work was: rock, 4 . 1 ft .; rock and earth, 3.8 ft .; earth, with full sand face, 12.8 ft . The best methods of preventing blow-outs were found to consist of employing clay blankets (sornctimes 25 ft . thick) on the river bed, which could be carried up to 20 ft. depth of water, and of filling the pores of the sand and gravel with blue lias lime or cement grout. Themaximum is pressure was 38 tb per sq. in. In the case of sand face with poor leaky coter the usua! practice was to make the air pressure equal to that of water from the surface down to about a quarter the distance below the top of the shield. The average amount of free air supplied per man per hour was approximately 2300 cub. ft . On the Hudson river side two tubes of the same size as those in the East River are for the Pennsylvania trains to New Jersey. Two tubes from Morton Street to New Jersey, begma by Haskin, already referred to, are for subway trains, and \(s 0\) are the most southerly of all on the Hudson side, viz. the two from Cortlandt Street to under the Pennsylvanis station in Jetsey City.

The two tubes from Morton Street were completed under the direction of Charles M. Jacobs, who was also chief engineer of the four other Hudson River tubes. The contractors for the Hudson tubes for the Pennsylvania road were the O'Rourke Contracting Company. Skilful treatment was required to overcome the difficulties on the New York side of the Hudson in all the tubes where the face excavation was partly in rock and partly in soft earch. Most of their length, bowever, was throagh silt, and in this the tunaelling was the easiest and most rapid that has ever been carried out in subaqueous work, so lineal ft. per day being sometimes accomplished. A large proportion of the silt which under ordinary processes would be taken into the tunnel through the shield, carried to the shore and got rid of by expensive methods, was by the latter process merely displaced as the shield with nearly ar quite closed diaphragm was pushed ahead.

The East Boston tunnel, the first important example of a shield-buity momolithic concrete arch, from the Boston Subway to East Boston, is 1.4 m . long, 3400 ft . being under the harbover. One mile was excavated by tunnelling with roof shields about 29 ft . wide, tbrough clay containing pockets of sand and graviel. The enginetr was H. A. Carton, and the contractors the Boston Tunnel Construction Company and Patrick McGovern.
Sowe 25 m . of waterworks brick-lined tunnels have been built since 1864, mostly in clay, under the Great Lakes, without the ese of shields, though in the later ones compressed air was milized A large portion of the latest Cleveland turnel, 9 It. ineerior diameter, was built at the rate of 17 ft . per day at a cont of about \(\$ 18\) per ft . During this work three explosions of inflampable gase occurred, in which nineteen men were tilled and others were tujured. Later a fire at the shaft in the hite caused the death of ten men. Work was thereafter completed winder the engineentrg direction of G. H. Benzenberg. Lecerredious accidents, principally explosions of marsh gas, occurred in many of the priber tunnels. In one case (at Milwakee under Bemamemberg) drif material was penetrated, with large boaldert ond coarse and fine gravel, and without with the lakelay fitiling, spparently in direct communication mas 42 it per aq. in come. At times the necessary air pressure sindapmeores sq. In. thas De it IIaynets mode by sinking Tubes, Coissons, Ere.-In
tedious and difficult wort of the Thames tunnel, proponed to make tunnels under water by sinking large tubes on a previously prepared bed and connecting them together. Since then many inventors have proposed similar schemes. In 1866 Belgrand sank twin plate-iron pipes, I metre diameter and 156 metres long, under the Seine at Paris for a sewer siphon, and there have since been numerous examples of sunk cast-ison subaqueous water-pipes. It is believed that the first tunnel of this class, large enough for men to move upright in, was by H. A. Carson, assisted by W. Blanchard and F. D. Smith, in 1893-1894, in the outer portion of Boston harbour, for the metropolitan sewer outlet. The later tubes were about 9 ft . exterior diameter, in sections each 52 ft . long, weighing about \(210,000 \mathrm{Ib}\), made of brick and concrete, with a skin of wood and water-tight bulk. heads at each end. A trench was dredged in the harbour bed and saddles were accurately placed to support the tubes. The latter, made in cradles above water alongside a wharf, were lowered by long vertical screws moved by steam power, and were towed 1 to \(\$ \mathrm{~m}\). to their final positions. After sufficient water had been admitted they were lowered to their saddles by travelling shears on temporary piles. The temporary joints between consecutive sections were made by rubber gaskets between flanges which were bolted toget her by divers. The later operations were backfilling the trench over the pipes, and in each section pumping out the water, removing its bulkhcads, and making good the masonry between consecutive bulkbeads, this masonry being inside the flanges. This work, about 1500 ft . in length, was done without contractors, by labourers and formen under the immediste control of the engineers, and was found perfectly tight, straight and sound.
The double-track milroad tunnel at Detrait, made in 19061909, under the direction of an advisory board consisting of W. J. Wilgus (chairman), H. A. Carson and W. S. Kinnear (the last-namod being chief engineer), is \(1 \frac{1}{2} \mathrm{~m}\). long, with a portion directly under the river of \(\frac{1}{2} \mathrm{~m}\). The method used under the river (proposed by Wilgus) is an important variation on the Boston scheme. A trench was dredged with a depth equal to the thickness of the tunnel below the river bed and about 70 ft . below the river suriace, and grillages were accurately placed in it to support the ends of thin steel tube-forms, inside of which concrete was to be moulded and outside of which deposited. These tubes, each about 23 ft . in diameter and 262.5 ft . long, were in pairs (one tube for each track), and were connected sidewise-and surrouaded by thin eteel diaphragms 12 ft . apart. Planking, to limit the concrete, was secured outside the diaphragms (see fig. 3). The forses mare made tight, bulkheaded at their ends, floated into place, sunk by admitting water, set on tbe grillages, and the ends of successive pairs connected together by bolts, through rubber gaskets and flanges. The succeeding pair of tubes was not lowered until concrete had been deposited through the river around the tubes of the preceding pair. The following steps were to remove the water from one pair of tubes, mould inside a lining of concrete 20 in. thick, remove the contiguous bulkbeads, and repeat again and again the processes described until the subaqueous tunnel was complete.
The New York Rapid Transit tunnel under Hariem river, built 1904-1905, has two tubes, each about is It. diameter and 400 ft . long, with a surrounding shell of cast iron itself surrounded by concrete. The outside width of concrete is about 33 ft . Its \(t o p\) is 28 ft . below high water and about 3 ft . below the bed of the rivet. D. D. McBean, the sub-coniractor, dredged a trench in the river to within 7 or 8 ft . of the required depth. He then enclosed a space of the width of the tunnel from shore to mid-stream with 12 -in. sheet piling, which was evenly cut off some 2 ft above the determined outside top of the tunnel. On top of this piling he sank and tightly fitied a flat temporary roof of timber 3 ft . thick in sections, and covered this with aboat 5 ft . of dredged mud. Water was expelled from this subuqueous chamber by compressed air, afler which the remaining earth was easily taken out, and the iron and concrete
tunnel walls were then built in the chamber. For the remaining part of the river the foregoing process was varied by cutting off the sheet piling at mid-height of the tunnel and making the upper half of the tunnel, which was huitt above and lowered in sections through the water, serve as the roof of the chamber in which the lower half of the tunnel was built.
The tunnels of the Métropolitain railway of Paris (F. Bienvente, engineer-in-chief) under the two arms of the Scine, between Place Cbatelêt and Place Saint Michel, were made by means of compressed-air caissons sunk beneath the river hed,
were next made by the aid of temporary small caissons sunk through about 26 ft . of earth under the river. The tops of the side walls were made even with the end walls. A steel rectangular coffer-dam (figs. 5 and 6) was sunk to rest with rubber or clay joint on these surrounding walls. The coffer-dam had shaft's reaching above the surface of the water, so that the earth core was easily taken out (after removing the water) in free ait. The adjacent chambers under the caissons were then connected together. Threc caissons, of a total length of 396 ft ., were used under the larger arm, and two, of an aggtegate length

Mountain Tunnels for Railways.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Tunnel. & Location. & Length. (miles) & Internal Width and Height. & Material penctrated. & Average progress per day \(=24 \mathrm{hrs}\). lin. yds.). & Approximale cost per lin. yd. \\
\hline Mont Cenis (t tunnel). & Modane, France and Bardonecchia, Italy. & 798 & \(26 \mathrm{ft} .3 \mathrm{in} . \times 24 \mathrm{ft}\). 7 in . (horseshoc). & Gramitic & 257 & \[
\frac{f 26}{}
\] \\
\hline St Gotthard (t tunnci) & Göschenen and Airolo in Switzerland. & 93 & 26 ff. 3 in. \(\times 24\) ft 7 in. (horseshoc). & Gramilic & 257
606 & 143 \\
\hline Arlberg (1 tunnel) & Innsbruck and Bludenz in Tirol. & \(6 \cdot 36\) & 25 ft . 3 in. wide & & 9.07 & 108 \\
\hline Simplon (2 tunnels) & Brigue, Switzerland and Iselle, Italy. & \(12 \cdot 3\) & \(16 \mathrm{ft} .5 \mathrm{in} . \times 19 \mathrm{ft}\). 6 in . each (min.). & \begin{tabular}{l}
Gneiss, mica schist, \\
limestone and disintegrated mica schist rock.
\end{tabular} & 11.6 & 148 \\
\hline
\end{tabular}
L. Chagnaud being the contractor. They wate buill of plates of sheet steel and masonry, with temporary steel diaphragms in the ends, filled with concrete, making a cross wall with a level top about even with the outside top of the tunnel and about 2 ft . below the bottom of the Seine. The caissons were sunk on the line of the tunnel so that adjacent ends (and the walls just described) were nearly 5 ft . apart with-at that stage -a core of earth between them. Side walls joining the end walls and thus enclosing the earth core on four sides (fig. 4)

\section*{(From Extimetrind Ness, New York)}

Fig. 4.-Perspective showing manner of enclosing spare between tunnel caissons for the Méropolitain under the Seine at Paris.
of 132 ft ., under the smaller arm of the Seine. The cost of the tunnel was 7000 francs per lineal metre.

William Sooy Smith published in Chicago, in 887\%, a description of a scheme for building a tunnel under the Detrult river by sinking caissons end to end, each caisson to be secured to the adjoining one by tongued and grooved guides, and a nearly water-tight connexion between the two to be made by means of an annular inflated hose.

Tunntling through Mounfains.-Where a great thickness of rock overlics a tunnel through a mountain, it may be necessary to do the work wholly from the two ends without intermediate shafts. The problem largely resolves itself into devising the most expeditious way of excavating and removing the rock. Experience has led to great advances in speed and coonomy, as may be secn from examples in the above table.
In 1857 the first blast was fired in connexion with the Mont Cenis works; in 1 S61 machine drilling was introduced; and in 1871 the tunnel was opened for traffic. With the exception of about 300 yds. the tunnel is lined throughout with brick or stonc. During the first four ycars of hand labour the average progress was not more than 9 in. per day on each side of the Alps; but with compressed air rock-drills the rate towards the end was five times greater.

10. 1872 the St Gothard tunnel was begun, and in 1881 the first locomotive ranthrough it. Mechanical drills were used from the beginning. Tunnelling was carried on by driving in advance a top beading about 8 ft . square, then enlarging this sideways, and finally sinking the excavation to invert level (see figs. 7 and 8). Air for working the rock-drills was compressed to seven atmospheres by turbines of about 2000 horse-power.

The driving of the Arlberg tunnel was begun in 1880 and the work was completed in little more than three years. The mainheading was driven along the bot:orn of the
tunoel and shafls were opened up 25 to 70 yds. apart, from which smaller beadings were driven right and left. The tunnel was colarged to its full section at different points simultaneously in lengths of 8 yds, the exca vation of each occupying about twenty days, and the masonry fourteen days. Ferroux percussion air-drills and Brandt rotary hydraulic drills were used, the performance of the latter being especially satisfactory. Atter each blast a fine spray of water was injected, which assisted the ventilation

FiGs. 7 and 8. - Method of excavation in St Gotthard Tunnel.
materially. In the St Gothard tunnel the discharge of the air-drills was relied on for ventilation. In the Arlberg tunnel over 8000 cab . ft. of air per minute were thrown in by ventilators. To keep pace with the miners, 900 tons of excavated material had to be removed, and 350 tons of masonry introduced, daily at each end of the tunnel, which necessitated the transit of 450 wagons. The cost per lineal yard varied according to the thickness of masonry lining and the distance from the mouth of the tunnel. For the first thousand yards from the entrance the prices per lineal yard were fis \(_{1} 8\) s. for the lower heading; \(6_{7}\) iss. For the upper one; \(\mathfrak{E}_{3} \mathrm{a}\) tos. for the unlined tunnel; 45 for the tunnel with a thin lining of masonry: and \(\{124\) ss. with a lining 3 ft . thick at the arch, 4 ft . at the sides, and \(a \mathrm{ft} .8 \mathrm{in}\). at the invert.

The Simplon tunnel was begun in 1808 and completed in roos. It is over \(30 \%\) longer than the St Gotthard, and the greatest depth below the surface is 7005 ft . A novel method was introduced in the shape of two paralled bores (56 ft . apart, conpected at intervals of 660 ft . by oblique galleries), which greally facilitated ventilation, and resulted in increased economy aod rapidity of construction, while ensuring the health of the nen. One of these galleries was made large enough for a singleract riitroad, and the second is to be enlarged and similarly used. The death-rate in the Simplon cunnel was decreased as compared with the St Gotthard from 800 in eight years to 60 in seven years. Had one wide tunnel been made instead of two narrow ones, it would have been difficult to maintain its integrity; even with the narrow cross-secticn employed the floor was forced up at points in the solid rock from the greas weight above, and bad to be secured by building heavy inverts of masonry. Temperatures were reduced to \(89^{\circ} \mathrm{F}\). by spraying devices, although the rock temperatures ranged from \(129^{\circ}\) to \(130^{\circ} \mathrm{F}\). At one point 4374 yds , from the portal of Iselle the "Great Spring" of cold water was struck; it yielded 10,564 gallons per minute at 600 ib pressure per sq. In., and reduced the temperature to \(55.4^{\circ} \mathrm{F}\)., the lowest point recorded. A spring of hot water was met on the Italian side which discharged into the tunnel 1600 gallons per minute with a temperature of \(113^{\circ} \mathrm{F}\). The maximum flow of cold water was 17,081 gallons per minute, and of hot water 4330 gallons per minute. These springs often necessilated a temporary abandonmert of the work. Water power from the Rhone at the Swiss and from the Diveria at the Ifalian end provided the power for operating all plant during the construction af most of the work. Among the able engineers connected with this work must be mentioned Alfred Brandt, a man of remarkable energy and ability, whose drilss were used with much success. He died early in the work, of injuries recerived from falling rock.
A group of tunnels- the Tauern, Byrengraben, Wocheiner and Boartick-was undertaken by the Austrian goverament in
connexion with new Alpine railroads to increase the commercial territory tributary to the seaport of Tricste, which at one time was greater than Hamburg. The principal tunnel of this group is under the main body of the Tauern mountain. The bottom dritts met on the 21st of July 1907. The difficulties resulted mostly from mountain débris and springs. There are four minor tunnels between Schwarzach, St Veit, and the north portal of the Tauern, and nincteen between the south portal and the south slupe at Mollbrücken.

The electric railuay from the Eiger glacier to near the summit of the Jungfrau includes a tunnel \(1 \frac{1}{3} \mathrm{~m}\). long, 3.6 metres wide and 38 metres high, with a midway station, from which a large part of northern Switzerland can be seen. From the Jungfrau terminus, at an elevation of 13.428 ft . the summit, 242 ft . higher, will be reached by an elevator.

The Hoosac tunned was the first prominent tumnel in America. It was begun in 1855 and finished in 1876 , after many interruptions. It was memorable for the original use in America of air-drills and nitroglycerin. The Pennsylvania railroad tunnels crossing New York City under 3 and and 3 zrd Streets are of unusual size. Owing to the close proximity of large buildings and wher structures special methods were adopted for mining the rock to Iessen the vibrations by explosions. At 33 rd Strect and 4 th Avenue the tunnels pass directly under two of the Rapid Transit system, above which there is another belonging to the Metropolitan Traction Company, so that there are three tunnels at different levels under the strect.
Among other rock tunnels may be mentioned the Albula, through a granite ridge of the Rhaetian Alps, for a single-track narrow-gauge railroad, 3.6 m . Iong; tunnels on the Midland railway, near Totley in Derbyshire, over 3.5 m . long, largely in shale, and at Cowburn, over 2 m . long, in shale and harder rock, each 27 ft . wide and 20.5 ft . hight inside; the Suram, on the Trans-Caucasus railway, for double track, 2.47 m . long, through soft rock; the tail-race tunnel for the Niagara Falls Water Power Company, \(1: 3 \mathrm{~m}\). Iong, 19 ft . wide and 2! ft . high. through argillaceous shale and limestone, costing about \(\$ 1,250,000\); the "Tequixquiac outlet to the drainage system for the city of Mexico, costing \(\$ 6,760,000\); the Cascade, Washingtun, part of the Great Northern railroad system, saving \(9 . \mathrm{m}\). in distance; and the Gunnison, irrigating 147,000 acres in Colorado.

Tunnclling in Towns.-Where tunnels have to be carried through soft soil in proximity to valuable buildings special precautions have to be taken to avoid settement. A successful example of such work is the tunnel driven in 886 for the Great Northern Railway Company under the Metropolitan Cattle

Fig. 9.-F'aris Métropolitain Tunnct, longitudinal borizoneal saction.

Market, London. This was done by the crown-bar method, the bars being built in with solid brickwork. The subsidence in the ground was from 1 to about \(3 \frac{1}{2} \mathrm{in}\). Several buildings were tunnelled under without any structural damage.

London has now some 90 m . of tunnels for railways, mostly operated by electric traction. Most of those which have been constructed since 1890 have been tunnelled by the use of cylindrical shields and walls of cast iron. Shields about 23 ft . in diameter wore used in constructing the stations on the Central London railway, and one 32 ft .4 in . in diameter and only 9 ft . 3 in. long was used Cor a short distance on the Clapham extension of the City and South London railway.
general, the upper half of the tunnel was executed first (figs. 9 and ro) and the lower part completed by underpinning.

Figs. 11, 12 and 13 illustrate a case of tunnelling near important buildings in Boston in 1996 , with a roof shield \(29 \mathrm{ft}\).4 in, in external diameter. The vertical sidewalls were first made in small drifts, the roof-shield running on top of these, and the coge was taken out later and the invert or floor of the tunnel put in last. Each hydraulic press of the shield reacted against a small continuous cast-iron rod imbedded in the brick arch. In some large sewerage tunnels in Cbicago the shields were pushed from a wall of oak planks, 8 in . thick, surrounding the brick walls of the sewer.

Fig. 10.-Paris Métropolitain Tunncl, iongitudinal vertical section.

Paris has an elaborate plan for underground railways some 50 m . in length, a considerable number of which have been constructed since 1898 under the engineering direction of \(F\). Bienvenue. Instead of using completely cylindrical shields and cast-iron walls, as in London, roof-shields (boucliers de podte) were employed for the construction of the upper half of the tunnel, and masorry walls were adopted throughout. In

Ventilation of Twneds.-The simplest method for ventilating a railway tunnel is to have numerous wide openings to daylight at frequent intervals. If these are the full width of the tunnel, at least 20 ft . in length, and not farther apart than 200 yds., it can be naturally ventilated. Such arrangements are, however, frequently impracticable, and then recourse must be had to mechanical means.

Fic. 12.--Boston Subway, third phase.

Fic. 13.-Boston Subway, longitudinal vertical section through shield.

The first application of mechanical or fan ventilation to railway tannels was made in the Lime Street tunnel of the London and North-Western railway at Liverpool, which has since been replaced by an open cutting. At a later date lans were applied to the Severn and Merney tunnels.
The principle ordinarily acted upon, where mechanical ventilation has been adopted, is to exhaust the vitiated air at a pcint midway between the portals of a tunnel, by means of a shaft with which is
 the case of the tumnel under the river Nersey (big. 14) such a shaft could not be provided. owing to the river being overhead. but a ventilating heading was driven from the middle of the river (at which
point entry into the tunnel was effected) to each ahore where a fan 40 ft . in diameter was placed. In this way the vitiated air is drawn from the lowest point of the railway, while fresh air fows in at the stations on each side to replenish the paralal vacuum. as indicated by arrows in the scompanying longitudinal section of the tunnel. The principle was that fresh air should coter at each station and "sphtit" each way into the tunnel, and that thus the atmosphere on the station platforms should be maintained in a condition of
nurity.
the fans in the Mersey tuncl are somewhat similar to the well. known Guibat fans, wids the exccption of an important alteration in the shutter. With the Guibal shutter. the top of the opering

Fis. 14-Longitudinal Section of the Merwey Tuanel, showing Mechod of Ventilation.
into the chimney from the fan has a line parallel to that of the fan shaft and of the fan-blades, and, as a consequence, as each blade passes this shutter, the stoppage of the discharge of the air is instantaneous, and the suaden change of the pressure of the air on the face of the blade whilst discharging and the reversal of the pressure due to the vacuum inside the fan-casing, cause the vibration hitherto inseparable from this type of ventiator. As an illustration of the effect of the pulsatory action of the Guibal shutters the following figures may be given: a fan having ten arms and running, say, sixty revolutions per minutc, and working twenty-four hours per day gives \((t 0 \times 60 \times 60 \times 2,4=) 864,000\) blows per day transmitted from the tip of the fan-vanes to the fan-shaft; the shaft is thus in a constant state of tremor, and sooner or later reaches its elastic limit, and the consequent injury to the general structure of the fan is obvious. This difficulty is avoided by cutting a \(\Lambda\)-shaped opening in the shutter, thus gradually decreasing the aperture and allowing the air to pass into the chimney in a continuous stream instead of intermittently. The action of this regulating shutter increases the durability and efficiency of the fans in an important degree. In towns like Liverpool and Birkenhead any pulsatory action would be readily felt by the inhabitants, but with the above arrangement it is difficult to detect any sound whatever, even when standing close to the buildings containing the fans. The admission of the air on both sides is found in practice to conduce to smooth running and t? the reduction of the side-thrust which occurs when the ait is admitted on one side only. The fans are five in number: two are 40 ft in diameter by 12 It. wide, and two 30 ft . in diameter by roft. wide, one of each size being erected at Liverpool and at Birkenhead respectively. In addition, there is a bigh-speed fan 16 ft . in diameter in Liverpool which throws 300,000 cub. It.

The following table gives the result of experiments made with the ventilaing lans of the Mersey railway:-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fas at & & & & & & & \\
\hline \multicolumn{8}{|l|}{Harnilton Sireet,
Birkénhead} \\
\hline \multicolumn{8}{|l|}{Shore Road, 0 , 42 , 3} \\
\hline Birkenhead & 40 & 12 & 45 & \(4{ }^{\text {\% }}\) & 2.50 & \(32888^{1}\) & 134,685 \\
\hline \multicolumn{8}{|l|}{James Street.} \\
\hline James Street. & 40 & 12 & 45 & 72 & 2.45 & 2465 & 178,880 \\
\hline Liverpool. & 30 & \multirow[t]{3}{*}{10} & \multirow[t]{2}{*}{60} & 60 & \(2 \cdot 30\) & 2062 & 123.720 \\
\hline \multirow[t]{2}{*}{Bold Street. Liverpool} & \multirow[t]{2}{*}{\(16^{\circ}\)} & & & - & - & - & 300,000 \\
\hline & & & & & & Total & 951,420 \\
\hline
\end{tabular}

The central point of the Severn tunnel (fig. 15) lies toward the Monmouthshire bank of the river, and ventilation is effected from that point by means of one fan placed on the surface at Sudbrooke. Monmouth, at the top of a shaft which is connected with a horizontal

> Fig. 15. -Section of Severn Tunnel (Fox).
heading leading to the centre. This fan, which is 40 ft . in diameter by 12 ft . in width, removes fromi the tunnel some \(400,000 \mathrm{cub} . \mathrm{ft}\). per minute, and draws in an equivalent volume of iresh air from the two ends.

About \(\mathbf{t 8 9 6}\) an excellent system was introduced by Signor Saccando. the well-known Italian engincer, which to a great extent has minimized the difficulty of ventitating long tunnels under mountain-ranges where shafts are not avajtable. This system, which is not applicable to tunnels in which underground stations exist, is illustraied in lig. 16. which represents its application to the single-line tunnel through the Apennines at Pracchia. This tunnel is ore of fiftyiwo singte-line tunnels, with a gradient of in 40 , on the main line leetween Florence and Bologna, builk by Thomas Brascey. There is a great deal of traffic which tias to be worked by heavy locomotives. Before the installation of a ventilating system under any condition of wind the state of this tumel, about \(3000 y \mathrm{~d}\). in length, was bad:

In the case of this circular drift-way a velocity of 4000 ft . per minute was subsequen
Quick-runuiog fan.

Lut when the wind was blowing in at the lower end at the same time that a heavy goods or passenger train was ascending the gradient the condition of affairs became almost insupportable. The engines, working with the regulators full open, of ten emitted large quantities of both smoke and steam, which travelled concurrently with the rrain. The goods trains had two engines, one in front and another at the rear, and when, from the humidity in the tunnel, due to the

(Frow the Proc. Inst. Cív. Eng.)
Fig. 16.-Diagram illustrating the Saccardo System for Ventilating Tunnels.
steam, the wheels slippod and possibly the train stopped, the state of the air was indescribable. A heavy train with two ongines, conveying a royal party and their suite, arrived on one occasion at the upper exit of the tunnel with both enginemen and both firemen insensible; and on another occasion, when a heavy passenger train came to a stop in the tunnel, all the occupants were seriously affected.

In applying the Saccardo system, the tunnel was extended for 15 or 20 ft, by a structure either of timber or brickwork, the inside line of which represented the line of maximum consiruction, and this was allowed to project for about 3 ft . jnso the tunntl. The space between this line and the exterior constituted the chamber into which air was blown by means of a fan. Considering the length of tunnel it might at first be thought there would be some tendency for the air to return through the open mouth. but nothing of the kind happened. The whole of the air blown by the fan, 164,000 cub. ft. per minute, was augmented by the induced current yielding 46,000 cub. it. per minute, making a total of 210,000 cub. It.; and this volume was blown down the gradient against the ascending train, so as to free the driver and men in charge of the train from the products of combustion at the carliest possible moment. Prior to the installation of this system the drivers and fremen had to be clothed in thick woollen garments, pulled on over their ordinary clothes, and wrapped round and round the neck and over the head; but in spite of all these precautions they sometimes arrived at the. upper end of the tunnel in a statc of insensibility. The fan, however. immensely improved the condition of the air, which is now pure and fresh.

In the case of the St Gothard tunnel, which is 91 m. in length and 26 ft . wide with a sectional area of 603 sq . ft., the Saccardo system was installed in 1899 with most benchial resules. The railway is doubleotracked and worked by steam locomotives, the cars leing fighted by gas. The ventilating plant is situated at Guschenen at the north end of the turnel and consists of two large rans operated by water power. The quantity of air passed into the narrow mouth of the tunnel is 413,000 cub. ft. per minute at a velocity of 686 ft. , this velocity being much reduced as the fut section of the tunnel is reached. A sample of the air taken from a carriage contained \(10 \cdot 19\) parts of carbonic acid gas per 10,000 volumes.

In the Simplon tunnel, where electricity is the motive power, mechanical ventilation is installed. A steel sliding door is arranged at each entrance to be raised and lowened by clectric power. Alter the entrance of a train the door is lowered and fresh air forced into the zunnel at considerable pressure from the same end by fans.

The introduction of electric traction thas simplified the problem of ventilating intra-urban railways laid in tunnels at a greater of less distance Lelow the surface, since the absence of smoke and products of combustion from coal and coke renders necessary only such a quantity of air as is required by the passengers and staff. For supplying air to the shallow tunnels which form the under. ground portions of the Merropolitan and District railways in London. open staircases. blow-holes and sections of uncovered track ate relied on. When the lines were worked by steam Iocomotives they afforded notorious examples of bad ventilation, the proportion of
earbonic acid amounting to from is or 20 to 60,70 and even 89 parts in \(\mathbf{1 0 , 0 0 0}\). But since the adoption ol electricity ss the motive power the atmosphere of the tunnels has much improved, and two samples taken from the cars in 1905 gave \(11-27\) and 4407 parts of carbonic acid in \(\mathbf{1 0 , 0 0 0}\).

When deep level "tube" railways were first constructed in Londoa, it was supposed that adequate ventilation would be obtained through the lift-shafts and staircases at the stations, with the aid of the scouring action of the trains which, being of nearly the same cross-section as the tunnel, would. it was supposed, drive the air in front of them out by the openings at the stations they were approaching, while drawiag fresh air in behind them at the stations they had left. This expectation, however, was disappointed, and it was found necessary to employ mechanical means. On the Central London railway, which runs Irom the Rank of England to Shepherd's Bush, a distance of 6 m , the ventilating plant installed in 1902 consists of a \(300 \mathrm{~h} . \mathrm{p}\). electrically driven fan, which is placed at Shepherd's Bush and draws in fresh air from the Bank end of the line and at other intermediate points. The fan is 5 ft . wide and 20 ft . in diameter, and makes 145 revolutions a minute, its capacity being 100,000 cub. It. a minute. It is opcrated from it to 4 a.m., and the openings at all the intermediate stations being closed it draws fresh arr in at the Bank station. The tunncl is thus cleared out about 2? times each night and the air is left in the same condition as it is cutside. The fan is also worked during the day from 11 a.m. to 5 p.ra.. the intermediate doors being open; in this way the atmoeptere is improved for about half the length of the line and the cars are cleared out as they arrive at Shepherd's Bush. Samples of the air in the tunnel taken when the fan was not running contained 707 parts of carbonic acid in 10,000. while the air of a full car contained 107 parts. The outside air at the same time contained 44 parts. A series of tests made for the London County Council in 1902 showed that the air of the cars contained a minimum of 960 parts and a maximum of 14.7 parts. In some of the later tube railways in London-such as the Baker Strect and Waierloo, and the Charing Cross and Hampstead lines-electrically driven exhaust feas are provided at about hall-mile intervals; these each extract 18 , 500 cub. t . of air per minute from the tunnels, and discharge it from the tops of the station roofs, fresh air being conveyed to the points of suction in the tunnels.

The Boston system of electrically operated subways and tumnels in ventilated by electric fans capable of completely changing the air in each seetion about every fifteen minutes. Air admitted at portals and stations is withdrawn midway between stations. In the case of the East Boston tunnel, the air leaving the tunnel under the middle of the harbour is carried to the shore through longitudinal ducts (6g. 3) and is there expelled through fan-chambers.

In che wutherly 5 m . of the New York Rapid Transit railway, which runs in a lour-track tunnel of rectangular section, having an area of 650 sq . ft, and buitt as close as possibic to the surface of the streets, ventilation by natural means through the open staircases at the stations is mainly relicd upon, with satisfactory results a regards the proportions of carbonic acid found in the air. But When intensely hot weather prevails in New York the tunnel air is sometimes \(5^{\circ}\) hntter still, due to the conversion of electrical energy into heat. This condition is aggravated by the fine diffusion through che air of oit from the motors, dust from the ballast and particles of metal ground of by the bralce shoes, ac.

Volume of Air Required for Ventilation. -The consumption of col by a locomotive during the passage through a tunnef having been ascertained, and 29 cub . ft . of poisonous gas being allowed lor eech pourd of coal consumed, the volume of tresh air required to maimain the atmosphere of the tunnel at a atandard of purity of 20 parts of carbon dioxide in 10,000 parts of air is ascertained as follows: The number of pounds of fuel consumed per mile, multiplied by 29, multiplied by 500, and divided by the interval in minutes between the trains. will give the volume of air in cubic feet which must be introduced into the tunnel per minute. As an illuseration, ascume that the tunact is a mile in length, that the consumption of fuel is 32 B per mile, and that one train passet through the tunnel every five minutes in each direction: then the volmeme of air required per minute will be
\[
\frac{32 \mathrm{ib} \times 29 \mathrm{cub} . \text { It. } \times 500}{2 \frac{1}{2} \text { minutes. }}=185,600 \text { cub. ft, }
\]

Corrosion of Rails in Tunnels.- Careful tests made in the Box and Severn tunnets of the Great Western railway, to ascertain if possible the loss that takes place in the weight of rails owing to the presence of corrosive gases, gave the following results:-

Box Tunnel (1 m .66 chains in length). Percendage of Wear per annum.

Down line, gradient falling \(I\) in \(100-\) Az east mouth
lb per yard

2f chains from east mouth 48 chains from east mouth 1 m .8 chains from east mouth At west mouth.

Up linc. gradient rising I in too-
At east mouth
1 m .8 chains from east mouth \(0600=0.575\)

I m. 28 chains from east mouth
At west mouth.
\(1.300=1.380\)
- \(1520=1310\)

\section*{Severen Tunnel (4 m. 281 chains in leagth).}

Percentage of Wear per annum.
Down line, outside and quite clear of tunnel, Bristol end, gradient lalling 1 in 100
Up line, outside and quite clear of tuanel,
Newport end, gradient lalling 1 in 90
At Bristol mouth, gradient falling is in 100
33 chains from Bristol mouth, gradient falling 1 in 100
bb per yard
\(3 \mathrm{~m} .75!\) chains fram Bristol mouth, gradient rising 1 in 90
\(1900=1630\)
At Newport mouth
\(0.310=0.270\)
Down and up line under main-shaft level' . \(3200=2750\)
It will he seen that the maximum wear and corrosion together reached the extraordinary weight of \(2 \frac{1}{2} \mathrm{lb}\) per yard of rail per yeara very serion amount chat involved great expendilure The wear oceurred over the whole of the rail, but the top, over which the engine and train paseed, wore at a greater rate, presumably on account of the surface bcing kept bright and the gases being able to act on it. The Great Western Company tried the experiment in the Scvern tunnel \(\alpha\) boxing up the rails, so that the ballast apgroached their surface within I in. or I 13 in. It was found, however, that-in the case, at any rate, of the limestone ballastthe cure was almost worse than the disease, the result being a maximum wear of \(2 \frac{1}{2} \mathrm{~b}\) and an average wear of just under 2 ib per yard of rail per year. The average on the open line would be about 075 it in the same time.

Soe Proc. Inst Cio. Eng-; aloo works on tunnelling by Drinker. Simms, Staufter and Prelini, and on tunpet shields, \&c, by Copperthwaite.
(H. A. C.)

TUNFEL VAOLT, the term in architecture given to the semicircular or elliptical vault over underground paseages, in contradistinction to the wagon or barrel vault of edifices above ground.

TUNNT (Thuinus thymnus), one of the largest fishes of the family of mackerels, belongs to the genus of which the bonita (Th. pelamys) and the albacores (Th. albacora, Th. alalonga, \&c.) are equally well-known members. From the latter the tunny is distinguished by its much shorter pectoral fins, which reach backwards only to, or nearly to, the end of the first dorsal fin. It possesses nine short finlets behind the dorsal, and eight behind the anal fin. Its colour is dark bluish above, and greyish, tinged and spotted with silvery, below. The tunny is a pelagic 6ish, but periodically approaches the shore, wandering in large shoals, within well-ascertained areas along the coast. It not infrequently appears in small companies or singly in the English Channel and in the German Ocean, probably in pursuit

of the shoals of pilchards and herrings on which it feeds. The regularity of its appearance on certain parts of the coasts of the Mediterranean has led to the establishment of a systematic fishery, which has been carried on from the time of the Pboenicians to the present day. Immense numbers of tunnies were caught on the Spanish coast and in the Sca of Marmora, where, however, this industry has much declined. The Sardinian tunnics were considered to be of superior excellence. The greatest number is now caught on the north const of Sicily, the fisheries of this island supplying most of the preserved tunny which is exported to other parts of the world. In ancient times the fish were preserved in salt, and that coming from Sardinis, which was specially esteemed by the Romans, was known as

Salsamentum sardicurs. At present preference is given to tunny preserved in oil. Many of the Gishes, especially the smaller ones, are consumed fresh. The tunny occurs also in the Pacific and is much sought for by anglers on the coast of southern California, where tuna-fishing has become a fashionable sport; but several other species seem to take its place in the Indo-Pacific ocean. It is one of the largest fishes, attaining to a length of ten ft. and to a weight of more than a thousand pounds.

In connexion witb the extrenely active life of these fishes allusion should be made to the fact, first ascertained in 1839 by John (brother of Sir Humphry) Davy, that the temperature of the blood of a tunny may be considerably higher than that of the surrounding water, a discovery which disposed of the timehonoured division of vertebrate animals into warm-blooded and cold-blooded.

The variations and movements of the tunny and albacores were studied with special care by King Carlos of Portugal, who published in 1899 a large illustrated memoir entitled A Pesca do atums no Algaroe in 8808 (Lisbon). This memoir is accompanied by excellent figures of the different species of Thxnnms and charts of their distribution in the Atlantic.

TUNSTALL (or Tonstall), CUTHBERT (1474-1559), English prelate, was an illegitimate son of Thomas Tunstall of Thurland Castle, Lancashire, his legitimate half-brother, Brian Tunstall, being killed at Flodden in 1513 . Cuthbert seems to have studied at Oxford, at Cambridge and at Padua, and he became a distinguished scholar, winning favourahle comment from Erasmus. Having held several livings in quick succession, he became chancellor to William Warham, archluishop of Canterbury, in 1511, and he was soon employed on diplomatic business by Henry VIII. and Wolsey, being sent to Brussels in 1515 and to Cologne in 1519 , while he was at Worms during the famous Diet of 1521 . In 1516 he had been made master of the rolls; in 1521 he became dean of Salisbury, in 1522 bishop of London, and in 1523 keeper of the privy seal. For Henry VIII. he negotiated with Charles V. after his victory at Pavia in 1525 and he helped to arrange the Peace of Cambrai in 1529 . In 1530 he succeeded Wolsey as bishop of Durham. Tunstall's religious views now gave some anxiety. He adhered firmly to the traditional teaching of the Cburch, hut after some slight hesitation he accepted Henry as its head and publicly defended this position. In 1537 the bishop was appointed president of the new council of the north, but although he was often engaged in treating with the Scots he found time to take part in other public business and to attend paria. ment, where in 1539 he participeted in the discussion on the bill of six articles. Although he disliked the religious policy pursued by the advisers of Edward VI. and voted against the first act of uniformity in 1549 , be continued to diseharge his public duties without molestation until after the fall of the protector Somerset; then in May 1551, he was placed in custody. A biil charging him witb treason was introduced, but the House of Commons refused to pass it; he was, however, deprived of his bishopric in October 1552. On the accession of Mary in 1553 be was released and was again bishop of Durham, but during this reign he showed no animus against the Protestants. When Elizabeth came to the throne he refused to take the oath of supremacy, and he would not help to consecrate Matthew Parker as archbishop of Canterbury. He was arrested, and was still a prisoner at Lambeth when he died on the r8th of November

Among Tunstall's writings are De perilake corporis et sanguinis domini nostri Jesia Christi in eucharistia (1554); and De arte supputandi libri qualluor (1522). The bishup's correspondence as president of the council of the north is in the British Museum.

TONSTALL, a market town of Staffordshire, England, on the northern outskirs of the Potteries district, included in the parliamentary borough of Newcastle-under-Lyme, 4 m . N.W. from Stoke-upon-Trent by the North Staffordshire railway. Pup. of urban district (1901), 19,492 . The town is of modern growth. The Victoria Institute (\(\mathbf{8 8 0}\)) includes a library and schools of art and science. The neighbourhood is full of collierics, ironworks and potteries. Kidsgrove, Chatterley and Talk-0'-1h. hill are large neighbouring vilages; the mines at the last-named
were the scene of a terrible explosion in 1866, by which nearly 2 bundred lives were lost. There are hrict and tile works in Tunstall. The town is included in the large parish of Wolstanton, and in the borough of Stoke-on-Trent (q.s.) under the " Potteries Federation " scheme (1008).
TUPIS (Comrades), a tribe and stock of South American Indians of Brazit. They call all other peoples Tapuyas (foreigners). Their original home is believed to have been on the Amazon, and from its mouth they spread far southwards along the Brazilian coast. When hard pressed hy the Portuguese they retreated to the Andes. Martius gives the Tupi nation a wide range, from the Allantic to tbe Andes, and from Paraguay to the Amazon. Of this stock are the Omaguas, Cocomas and other Peruvian tribes. Latham makes the Tupis members of the Guarani stock. The " Lingoa Geral" or trade language between Portuguese and Amazon Indians is a corruption of the Tupi tongue.
TUPPER, SIR CHARLES, Bart. (1821-), British colonial statesman, son of the Rev. Charles Tupper, D.D., was born at Amherst, Nova Scotia, on the and of July 1821, and was educated at Horton Academy. He afterwards st udied for the medical profession at Edinburgh University, where he received the diplomas of M.D. and L.R.C.S. In 1855 he was returned to the Nova Scotia Assembly for Cumberland county. In 1862 he was appointed, by act of parliament, governor of Dalhousie College, Halifax; and from 1867 till 1870 he was president of the Canadian Medical Association. Mr Tupper was a member of the executive council and provincial secretary of Nove Scotia from 1857 to 1860, and from 1863 to 1867 . He became prime minister of Nova Scotia in \(\mathbf{1 8 6}_{4}\), and held that office until the Union Act came into force on the ist of July 1807, when bis government retired. He was a delegate to Great Britain on public business from the Nova Scotia government in 1858 and 1865, and from the Dominion government in March 1868. Mr Tupper was leader of the delegation from Nove Scotia to the Union conierence at Charlottetown in 1864, and to that of Quebec during the same year; and to the final colonial conference in London, which assembled to complete the terms of union, in 1866-1867. On that occasion he received a patent of rank and precedence from Queen Victoria as an executive councillor of Nova Scotia. He was sworn a member of the privy council of Canada, June 1870, and was president of that body from that date until the ist of July 1872, when he was appointed minister of inland revenue. This office he held until Fehruary 1873, when he became minister of customs under Sir John Macdonald, resigning with the mimistry at the close of \(\mathbf{1 8 7 3}\). On Sir John's return to power in 1878, Mr Tupper became minister of public works, and in the following year minister of railways and canals. At this time he was made K.C.M.G. Mr Tupper was the author of the Public Schools Act of Nova Scotia, and had been largely. instrumental in moulding the Dominion Confederation Bill and other important measures. Sir Charies represented the county of Cumberland, Nova Scotia, for thirty-two years in successionfirst in the Nova Scotia Assembly, and subsequently in the Dominion parliament until 1884, when he resigned his seat on being appointed high commissioner for Canada in London. Shortly before the Canadian Federal elections of February 1887 , Sir Charles re-entered the Conservative cahinet as finance minister. By his efforts the Canadian Pacific railway was enabled to loat a loan of \(\$ 30,000,000\), on the strength of which the line was finished scveral years before the expiration of the contract time. He retigned the office of finance minister in May 1888, when he was tappointed high commissioner for the Dominion of Canada in London. Sir Charles wes designated ope of the British plenipotentiar es to the Fisheries Convention at Washington in 1887, the resilt of which conference was the signing of a treaty in February t 88 (rejected by the U.S. Senate) for the settlement of the matter in dispute between Canada and the United States in connexion with the Atlantic fisheries. He was created a baronct in Scptember 1888. When the Dominion cabinet, under Sir Mackenzie Bowell, was reconstituted in January 1896 Sir Churtes Turpar accepted office, and in the following April be
succeeded Bowell in the premiership. On both patriotic and commercial grounds he urged the adoption of a preferential tarif with Great Britain and the sister colonics. At the general election in the ensuing June the Conservatives were severely defeated, and Sir Charies Tupper and his colleagues resigned, Sir Wilfid Laurier becoming premier. The Conservative party now gradually became more and more disorganized, anu at the next general election, in November Igoo, they were again defeated. Sir Charles Tupper, who had long been the Conservative leader, sustained in his own constituency of Cape Breton his first defeat in forty years.
TUPPER, MaRTIN PARQUHAR (1810-1889), English writer, the author of Proverbial Philosophy, was born in London on the \(17^{\text {th }}\) of July \(\mathbf{1 8} \mathrm{io}\). He was the son of Martin Tupper, a doctor, who came of an old Huguenot family. He was educated at Charterhouse and at Christ Chnrch, Oxford, where be gained a prize for a theological cssay, Gladstone being second to him. He was called to the bar at Lincoln's Inn, but never practised. He began a long career of authorship in 1832 with Sacra Poesis, and in 1838 he published Geraldine, and other Poems, and for fifty years was fertile in producing both verse and prose; but his name is indissolubly connected with his long series of didactic moralisings in blank verse, the Proverbial Philosophy (1838-1867), which for about twenty-five years enjoyed an extraordinary popularity that has ever since been the cause of persistent satire. The first part was, however, a comparative failure, and N. P. Willis, the American author, took it to be a forgotten work of the 17 th century. The commonplace character of Tupper's refections is indubitahle, and his blank versc is only prose cut up into suitable lengths; but the Proverbial Philosophy was full of a perfectly genuine moral and religious fecling, and contained many apt and striking expressions. By these qualities it appealed to a large and uncritical section of the public. A senial, warm-hearted man, Tupper's humane instincts prompted him to espouse many reforming movements; be was an early supporter of the Volunteer movement, and did much to promote good relations with America. He was also a mechanical inventor in a small way. In 8886 he published My Life as an Author; and on the 29th of November 1889 he died at Albury, Surres.
TURBAK, the name of a particular form of head-dress worn by men of Mahommedan races. The earlier forms of the word in English are turbant, turband, and tolibant or tulipant, the latter showing that vatiant of the original which survives in the name of the flower, the tulip. All these forms represent the Frenct adaptation of the Turkish tulbend, a vulgatism for dulbend, from Persian dulband, a sash or scarf wound round the head. The Moslem turban is essentially a scarf of silk, fine linen, cotton or other material folded round the head, sometimes, as in Egypt, round the tarbush or close-filting felt cap; sometimes, as in Aighanistan, round a conical cap; or, as among certain races in India, round the skull-cap or kulldh. Races, professions, degrees of rank, and the like vary in the style of turban worn; distinctions being made in size, methods of folding, and colour and the like (see Indin: Costume). At the end of the 88 th and beginning of the igth century, a species of headdress somewhat resembling the truc turban in outward form was worn by ladies of western nations, chielly for use indoors.
TURBERVILLE (or TURBERVILE), GeDRGE (1540?-1610?), English poet, second son of Nicholas Turberville of Whitchurch, Dorset, belonged to an old Dorsetshire family, the D'Urbervilles of Mr Thomas Hardy's novel, Tess. He became a scholar of Winchester College in 1554, and in 1562 was made a fellow of New College, Oxford. In 1562 he began to study law in London, and gained a reputation, according to Anthony a Wood, as a poet and man of affairs. He accompanied Thornas Randolph in a special mission to Moscow to the court of Ivan the Terrible in 1568 . Of his Poems describing the Places and Manners of the Cowniry and People of Russia (1568) mentioned by Wood, only three metrical letters describing his adventures survive, and these were reprinted in Hakluyt's Voyages (1589). His Epilaphs, Epiproms, Somes and Soncls appeared "newly corrected with additions " in 1567. In the same year he published translations
of the Ficoscall Episties of Ovid, and of the Eglogs of Mantuan (Gianbattista Spagnuoli, called Mantuanus), and in 1568 A Plaine Poth to Perfect Vertue from Dominicus Mancinus. The Book of Falconry or Hawking and the Noble Ant of Veneric (printed together in 1575) may botb be assigned to Turberville. The title page of his Trogical Tates (1587), which are translations from Boccaccio and Bandello, says that the book was written at the time of the author's troubles. What these were is unknown, but Wood says he was living and in high esteem in 1594. He probably died before 16 ra . He is a disciple of Wyat and Surrey, whose matter be sometimes appropriated. Much of his verse is sing-song enough, but be disarms criticism by his humble estimate of his \(u\) wn powers.

His Epilaphs \&c. were reprinted in Alexander Chalmers's English Poets (1810), and by J. P. Collier in 1867.

TUREET I HADDARI, a district of the proviace of Khorasan in Persia, bounded N. by Meshed, E. by Bakharz, S. by Khaf and W. by Turshia. It has a population of about 30,000 , composed chiefly of members of the Turki Karai tribe and Beluchis. The Karais were settled here by Timur in the \(14^{\text {th }}\) century and now provide a battalion of infantry and 150 cavalrymen to the army. The district contains about 150 villages and hamlets, most of them situated in its more fertile eastern part, and pays a yearly revenue of \(\{14,000\). Much silk was formerly produced, now very litile, but there are large crops of grain.

Turbet i Hadara, the capital of the district, is 76 m . nearly S. of Meshed, in \(35^{\circ} 17^{\prime} \mathrm{N} ., 59^{\circ} \mathrm{II} \mathbf{I}^{\prime} \mathrm{E}\), at an elevation of 4100 ft . The town is picturesquely situated on the bank of a deep and wide ravine in the midst of lofty hills, and surrounded by clusters of villages. Its population amounts to 8000 souls. There is a wrell-stocked bazaír and a number of Russian traders have established themselves here since 1903, when the place was connected with Meshed on one side and with Seistan on the other side by a telegraph line which, nominally Persian, is worked and maintained by a Russian staff. A British consul has resided bere since 2905 , and there is alsoa post office.

The place was formerly known as Zavah and derives its present name from the turbet or tomb of a holy man named Kutb ed din Haidar, the founder of the ascetic sect of dervishes known as the Hadaris He died c. \(123{ }^{\circ}\) and is buried in a large domed building a sbort distance outside the town.

TURBINB (Lat. wurbo, a whirlwind, a whirling motion or object, e top), in engineering, a machine which applies tbe energy of a jet of water or steam to produce the rotation of a shaft. It consists essentially of a wheel or chamber provided with a number of blades or vanes upon which the fluid jet impinges; the impelled fluid causes the blades to rotate and also the shaft to which tbey are attached. Water turbines are treated under Hyopaulics, and steam turbines under Stram Engine.

TURBOT \({ }^{1}\) (Rhombus maximus or Psetta maxima), one of the largest and most valuahle of the flat-fishes or Pleuromectidac. Tbe furbot, which rarely exceeds a length of two feet, has great width of body, and is scaleless, but is covered with conical bony tubercles. The eyes are on the left side of the body, the lower being sightly in advance of the upper; tbe mouth is large and armed with teeth of uniformby minute size. The turbot is found all round the coasts of Europe (except in the ext reme north), preferring a flat sandy bottom with from 10 to 50 fathoms of water. The broad banks off the Dutch coast are a favourite resort. It is a voracious fish, and feeds on other fish, crustaceans and molluscs. It seems to constantly change its abode, wandering northward during the summer, and going into deeper water in the cold season. The egzs of the turbot, like those of the majority of flat-fishes, are pelagie and huoyant. They are small and very numerous, varying from five to ten millions in fish of 18 to 2 It weight. The young fish are symmetrical and swim

1 The word "turbot" is of great antiquiry, perhaps of Celtic origin: it is preserved in French in the sarme lorm as in English. and is composed of \(t\) wo words, of which the second is identical with the "hut " in halibut and with the German "Butte", which signifies flat-fish. The German name for the turbot is "Steinbutte."
vertically like the young of other Pleuronectids, but they reach a much larger size before metamorphosis than species of other senera, specimens from in. to 1 in in length being frequently taken swimming at the surface of the water and not completely converted into the adult condition. Specimens one year old are from 3 to 4 it in. long, some perhaps larger. About 1860 it was estimated that the Dutch supplied turbot to the London market to the value of 880,000 a year. In 1900 the total weight of turbot landed on English and Welsh coasts for the year was according to the Board of. Trade returns \(60,715 \mathrm{cwt}\). valued at [252,680. The turbot is also common, though not abundant, in the Mediterranean, and is replaced in the Black Sea by an allied species with much larger bony tubercles (\(R k\). mocoticus). Both species grow to a large size, being usually sold at from 5 to 10 ib ; but the common turbot is stated to attain to a weight of 30 lb .

TUREEN, a deep dish or bowl, round or oval in shape, and with a cover, made to serve soup at tahle. The word is a corruption of the more correct " terrine," an earthenware vessel (Med. Lat. serrintws, made of earth, terra). The corruption is due to misspelling in carly cookery-books, and an absurd story that the name arose from Marshal Turenne once drinking his soup from his helmet was invented to account for it.
TURENNE HENRI DB LA TOUR D'AUVERGNE VICOYTE dE (\(1611-1675\)), marshal of France, second son of Henri, duke of Bouillon and sovereign prince of Sedan, by his second wife Elizabeth, daughter of William the Silent, prince of Orange, was hom at Sedain on the ith of September 16ir. He was educated in the doctrines of the Reformed religion and received the usual training of a young noble of the time, but physical infirmity, and particularly an impediment of speech (which be never lost), hampered his progress, though he showed a marked partiatity for history and geography, and especial admiration of the exploits of Alexander the Great and Cacsar. After his father's death in 1623, he devoled himself to bodily exercises and in a great measure overcame his natural weakness. At the age of fourtcen he went to learn war in the camp of his uncle, Maurice of Nassau, and began his military career (as a private soldier in that prince's bodyguard) in the Dutch War of Independence. Frederick Henry of Nassau, who surceeded his brother Maurice in 16:5, gave Turenne a captaincy in 1626 . The young officer took his part in the sigge wariare of the period, and won special commendation from his uncle, who was one of the foremost commanders of the time, for his still and courage at the celebrated siege of Hertogenbosch (Bois-le-Duc) in 1619 . In 1630 Turenne left Holland and entered the service of France. This step wis dictated not only by the prospect of mititary advancement but also by his mother's desire to show the loyalty of the Bouilon dominions to the French crown. Cardinal Rictrelieu at once made him colonel of an infantry regiment. He still continued to serve at frequent intervals with the prince of Orange, who was the ally of Frasce. and his first serious service under the French flag was at the sigge of La Motte in Lorraine by Marshal de la Force (1634). Where his brilliant courage at the assault won him immediate prornotion to the rank of marickel de camp (equivalent to the modera grade of major-general). In 1635 Turenne served under Cardinal de la Valette in Lorraine and on the Rhine. The sigge of Naine was raised but the French army had to fall bact on Meta from want of provisions is The retreat Tureane messured swords with the famous
 by his courage and skil. The morganied army took the fodd apain in 26,36 and captured Suverce (Zake:a), at the sterming of which phare Turenee was seriousty woanded. In 1637 be took purt in the caspaign of Plabikers obd nes present at the capture of Landrecios (Uuly 26) and in the heter part of 1008 , wider Dulte Detelard of Surewiciaic (\(1608-16 ; 0\)).
 en the 17th 4 spoe of ibe ad Rictrien
next employed him in the Italian campaign of 1639-40 under "Cadet la Perle," Henri de Lorraine, count of Harcourt (i6011666). On the 19th of November 1639 be fought in the famous rearguard action called the battle of the "Route de Quiers," and during the winter revictualled the citadel of Turin, beld by the French against the forces of Prince Thomas of Savoy. In 1640 Harcourt saved Casale and besieged Prince Thomas's forces in Turin, which were besieging in their turn another French force in the citadel. The latter held out, while Prince Thomas was forced to surrender on the 17th of September 1640, a fourth army which was investing Harcourt's lines being at the same time forced to retire. The favourable result of these complicated operations was largely due to Turenne, who had by now become a lieutenant-general. He himsell commanded during the campaign of 1641 and took Coni (Cunco), Ceva and Mondovi. In 1642 he was second in command of the French troops which conquered Roussillon. At this time the conspiracy of Cinq Mars (see France: History) in which Turenne's elder brother, the duke of Bouillon, was implicated, was discovered.

The earlier career of Turenne was markedly influenced by the relations of the principality of Sedan to the French crown. sometimes it was necessary to advance the soldier to conciliate the ducal lamily, at others the machinations of the latter against Richelieu or Mazarin prevented the king's advisers from giving their full confidence to their general in the field. Moreover his steady adherence to the Protestant religion was a further element of difficulty in Turenne's relations with the ministers. Cardinal Richelieu nevertheless entrusted him with the command in Italy in 1643 under Prisce Thomas (who had changed sides in the quarrel). Turenne took 'Trino in a few weeks, but was recalled to France towards the end of the year. He was made a marshal of France (December 19) and was soon sent to Alsace to reorganize the "Army of Weimar "-the remnant of Duke Bernhard of Saxe-Weimar's troops-which had just been severely defeated at Tūttlingen (November \(24^{-25}, 1643\)). He was at this time thirty-two years of age and had served under four famous commanders. The methodical prince of Orange, the fiery Bernhard, the soldierly Cardinal de la Valette and the stubborn and astute Harcourt had each contributed much to the completeness of Turenne's training, and he took the feld in 1644 prepared by genius and education for the responsihilities of high command.
The work of reorganization over, Marshal Turenne began the campaign in June by crossing the Rhine at Breisach, but was almost instantly joined by an army under the duc d'Enghien (afterwards the great Condé), wbo, as a prince of the royal brouse, took the chief command of the united armies of "France" and "Neimar." The four tamous campaigns which followed brought to an end the Thiry Years' Wiar (g.z.). The chief event of the first of these was the desperately-fought battle of Freiburg against Count 3lercy's Bavarians (August 3. 5 and 9,164), after which Phiipoburg was successfully besicged. Before the capitulation Engtien witturew and keft Turenne in command. The marshal opened the campuiga of 1645 with a strong forward movement, but was surprised and defeated by Mercy at Mergentbeim (Marienthal) on the and of May. Enghien was again sent to the front with the anmy of France and Turence's army tras greathy increased by tbe arrival of a Sredish force and a contiagent from Hesse-Cassel. The Swedes soon depurted, but Engtien was at the head of 50,000 men when be met the Bavarians in a batik even more stubboridy contested than Freiberg. Merry was killed and his army decisively beaten at ADerkeim pear Nisulingen (Augose 3. 1645).

Illbealth forced Enstim to reitire soon afterwands, and Turende was for the thind time left in comonand of the French army. He tas agian criortuite gai-ist the brger forces of the imperisisis bet the ar-isiga exjed with a ghesm of saccess in tis castive of Trier (Tives). In the following yrar (1640) be adsibed mive decided socresses and. by sepuratiog the Asiraxs fiva the Eivitios, compelied the
slector of Bavaria to make peace (sigined March 14, 1647). In 1647 he proposed to attack the thus weakened army of the emperor, but was ordered into Flanders instead. Not only was the opportunity thus lost but a serious mutiny broke out ariongst the Weimar troops, whose pay was many months in arrear. The marshal's tact and firmness were never more severely tried nor more conspicuously displayed than in his treatment of the disaffected regiments, among whom in the end he succeeded in restoring order with little hloodshed. He then marched into Luxemburg, but was soon recalled to the Rhine, for in 1648 Bavaria had returned to her Austrian alfiance and was again in arms. Turenne and his Swedish allies made a hrilliant campaign, which was decided by the action of Zusmarshausen (May 17), Bavaria being subsequently wasted with fire and sword until a second and more secure pacification was ohtained. This devastation, for which many modem writers have blamed Turenne, was not 2 more harsh measure than was permilled by the spirit of the times and the circumstances of the case.
The peace of Westphalis (1648) was no peace for France, which was soon involved in the civil war of the Fronde (see France: History). Fcw of Turenne's actions have been more sharply criticized than his adhesion to the party of revolt. The army of Weimar refused to follow its leader and he had to flee into the Spanish Netherlands, where he remained until the treaty of Rucil put an end to the first war of the Fronde. The second war began with the arrest of Condé and others (January \(\mathbf{1 6 5 0}\)), amongst whom Turenne was to have been included; but he escaped in time and with the duchesse de Longueville held Stenay for the cause of the "Princes" Conde, his brother Conti, and his brother-in-law the duc de Longueville. Love for the duchess seems to have ruled Turcnne's action, both in the first war, and, now, in seeking Spanish aid for the princes. In this war Turenne sustained one of his lew reverses at Rethel (December 15, 1650); but the second confict ended in the early months of the following year with the collapse of the court party and the release of the prinees.
Turenne became reconciled and returned to Paris in May, but the trouble soon revived and before long Conde again raised the standard of revolt in the south of France. In this, the third war of the Fronde, Turenne and Condé were opposed to each other, the marshal commanding the royal armies, the prince that of the Frondeurs and their Spanish allies. Turenne displayed the personal bravery of a young soidier at Jargeau (March 28, 1652), the skill and wariness of a veteran general at Gien (April 7), and he practically croshed the civil war in the battle of the Faubourg St Denis (July 2) and the reoccipation of Patis (October 21). Condé and the Spaniards, however, still remained to be dealt with, and the long drawn out campaigns of the "Spanish Fronde" gave ample scope for the display of scientific generaship on the part of both the famous captains. In 1653 the advantage was with Turenne, who captured Rethel, St Menchould and Muson, while Conde's sole prize was Rocroy. The short campaign of 1654 was again to the advantage of the French; on the asth of July the Spanish were defeated at Arras. In 1655 more ground was gained, bat in 1656 Turenne was defealed at Valenciennes in the same way as he had beaten Condé at Arras. The war was eventually concluded in 1657 by Turenne's victory at the Dunes near Dunkirk, in which a corps of English velerans sent by Cromwell played a notable part (Jure 3-14); a victory which, followed by another succesisful campaign in 1658 , led to the peace of the Pyrenees in 1659.
On the death of Cardinal Mazarin in 266 r Louis XIV. took the reins of government into his own hands and one of his first acts was to appoint Turenne "marshal-general of the camps and armies of the king." He bad offered to revive the office of constable of France (suppressed in 1627) in Turenne's favour if the marshal would become a Roman Catholic. Turenne declined. Born of Calvinist parents and educated a Protestant, be had refused to marry one of Richelieu's nieces in 1639 and subsequently rejected a similar proposal of Mazarin.

He had later married a daughter of the Protestant Marshal de la Force, to whom he was deeply attached. But he sincerely deplored the division of the Christian church into two hostile camps. He had always distrusted the influence of many dissident and uncontrolled sects; the history of Independency in the English army and people made a deep impression on his mind, and the same fear of indiscipline which drove the English Presbyterians into royalism drew Turenne more and more towards the Roman Catholic Church. How closely both he and his wife studied such evidence as was availahle is shown by their correspondence, and, in the end, two years after her death, he was prevailed upon hy the eloquence of Bossuet and the persuasions of his nephew, the ahbé de Bouillon, to give in his adhesion to the Orthodox faith (October 1668). In 1667 he had returned to the more congenial air of the "Camps and Armies of the King," directing, nominally under Louis XIV., the famous " Promenade militaire" in which the French overran the Spanish Netherlands. Soon afterwards Conde, now reconciled with the king, rivalled Turenne's success by the rapid conquest of Franche Comte, which hrought to an end the War of Devolution in February 1668.
In Louis XIV.'s Dutch War of 1672 (see Dutch Wars) Turenne was with the army commanded hy the king which overran Holland up to the gates of Amsterdam. The terms offered by Louis to the prince of Orange were such as to arouse a more bitter resistance. The dikes were opened and the country round Amsterdam flooded. This heroic measure completely checked Turenne, whom the king had left in command. Europe was aroused to action by the news of this event, and the war spread to Germany. Turenne fought a successful war of manocuvre on the middle Rhine while Condé covered Alsace. In January 1673 Turenne assumed the offensive, penetrated far into Germany, and forced the Great Elector of Brandenhurg to make peace; later in the year, however, he was completely outmanocuvred by the famous imperial general Montecucculi, who evaded his opponent, joined the Dutch and took the important place of Bonn. In June 1674, however, Turense won the battle of Sinzheim, which made him master of the Palatinate. Under orders from Paris the French wasted the country far and wide, and this devastation bas usually been considered the gravest blot on Turenne's fame, though it is difficult to say that it was more unjustifiable than other similar incidents in medieval and even in modern war. In the autumn the allies again advanced, and though Turenne was again outmanocuvred, his failure on this occasion was due to the action of the neutral city of Strasshurg in permitting the enemy to cross the Rhine by the hridge at that place. The, battle of Enzheim followed; this was a tactical victory, but hardly affected the situation, and, at the beginning of December,' the alies were still in Alsace. The old marshal now made the most daring campaign of his career. A swift and secret march in mid-winter from one end of the Vosges to the other took the allies by surprise. Sharply following up his first successes, Turenne drove the enemy to Turkheim, and there inflicted upon them a beavy defeat (January 5 , 267 s). In a few weeks he had completely recovered Alsace. In the summer campaign he was once more opposed to Montecucculi, and after the highest display of "strategic chess-moves" by both commanders, Turenne finally compelled his opponent to offer hattle at a disadvantage at Sasshach. Here, on the 27 th of July 1675, he was killed by almost the first shot fired. The news of his death was received with universal sorrow. Tureme's mosa eloquent countrymen wrote his eloges, and Montecucculi himself exclamed: "Il est mort aujourd'bui un homme qui faisait bonneur a l'bomme." His body was taken to St Denis and buried with the kings of France. Even the extreme revolutionists of \(\mathbf{1 7 9 3}\) respected it, and, when the bones of the sovereigns were thrown to the winds, the remains of Turenne were preserved at the Jardin des Plantes until the aznd of September 8800, when they were remeved by order of Napoleon te the church of the Invalides at Paris, where they still rest.

Turenne was one of the great captains whose campaigns Napolcon recommended all soldiers to "read and re-read." His lame as a general was the highest in Europe at a period when war was studied more critically than ever before, for his military character epitomized the art of war of his time (Prince de Ligne). Strategic caution and logistic accuracy, combined with brillinnt dash in small combats and constancy under all circumstances of success or failure may perhaps be considered the salient points of Turenne's genius for war. Greal battles he avoided. "Few sieges and many combats" was his own maxim. And, unlixe his great rival Cnadé, who was as brilliant in his first battle as in his last, Turenne improved day by day. Napoleon said of him that his genius grew bolder as it grew older, and a modern author, the duc d'Aumale (II istoire des princes de la maison de Conde), takes the same view when he says: "Pour le connaitre il faut le suivre jusqu'à Sulz. bach. Chez lui chaque jour marque un progrès." In his personal character Turenne was little more than a simple and honourable soldier, endowed with much lact, but in the world of politics and intellect almost helpless in the hands of a skilful intriguer or casuist. His morals, if not beyond reproach, were at least more austere than those prevalent in the age in which he lived. He was essentially a commander of regular armies. His life was spent with the troops; he knew how to win their affection; he tempered a severe discipline with rare generosity, and his men loved him as a comrade no less than they admired him as a commander. Thus, though Conde's genius was far more versatile, it is Turenne whose career best represents the art of war in the rith century, For the small, costly, and highly trained regular armics, and the dynastic warfare of the age of Louis XIV., Turenne was the ideal army leader.

The most notable of the numerous portraits of Turenne are those of P. de Champagne at Versailles, and of Senin (dated 167o) in the Jones collection at South Kensington. London. Of the older memoirs of Turenne the most important are those of "Du Buisson," La Vie du vicomie de Twrowne-the anthor is apparently Gatien de Sandraz de Courtilz (Paris, the Hague, and Cologne, 1688-I695); Abbé Raguenet, Histờre du vicomte de Turenve (Paris, 1741) and especially Ramsay, Histoire dHenry de la Tour d"Aworgne, vicomte de Turentre (Paris, 1735), the second volume of which contains the marshal's memoirs of \(1643-1658\). These memoirs, of which the Prince de Ligne wrote that "ce ne sont pas de conseils, ce sont des ordres . . 'faites' \({ }^{\text {. }}\) ' allez,' \&c."-were written in 1665. but were first published (Mimoires sur la guerre, tirts des originamx, \&c.) in 1738, reprinted in Michaud, Memoires swr l'histoise de France, 3rd series, vol. Hi., and Liskenne and Sauvan's Bibliotheque kistorique at militaire, vol. iv. (Paris, 1846). A manuscript Maximes de M. ds Turenne (1644) exists in the Staff Archives at Vienna, and of other documentary collections may be mentioned Crimoard, Collections de lethres el mémoires troutes dans la portefewille de M. de 1 wrenme (Paris, 1782): Recueil de lettres Ecrites an vicomite de Turenne gar Low is XIV. el ses minisises, \&c. (Paris, 1779); Coprespondance inddile de Turenne arec Le Tellier al Lowvois, ed. Barthelemy (Paris, 1874). See also the Obserndions on the Wars of Marshal Turcnne, dictated by Napoleon at St Helena (1813); Puysesur. La Guerre per priacipes at regles (Paris, 1748); Précis in Bubiolhqque inlernotionale d'kish. milit. (Brussels, 1883); Duruy, Hisloire de Turenme (Paris, 1880); Roy, Turenne, sa vie el les institutions militaires de son temps (Paris, 1884) ; Hardy de Perini, Turenne et Conds (Paris, 1907); Neuber, Turenne als Kriegstheoretiker und Feldhery (Vienna, 1869); Sir E. Cust, Rives of ahe Warriors of the 17th Century (London, 1867); T. O. Cockayne, Life of M. de Turenre (lounded on Ramsay's worl; London, 1853): C. B. Malleson, Turenne. Marshal Twerenne, by "the author of the Life of Sir Kenelm Digby" (Londion, 1907), is a valuable work by a clvilian, and is based in the main on Rampay's work, the memoiry of Cardinal de Retz, James, duke of York, Sec., and on Napoleon's commentaries. A remarkable parallel between Turenne and Conde, in Saint.Evremont's Aloge of the latter, will be found in Carrion-Nisas, Essei swr l'histoire sentral de l'art inilikaine, ii. 83 (Paris, 184).
(C.E.A.)

TURE, the top or surface of earth when covered with grass, forming a coherent mass of mould or soil in which the roots of grasses and other plants are embedded. This is capable of being cut out in solid mat-like blocks, known hy the same name. Similarly "peat" (\(q .0\).) when cut in pieces for fucl or other purposes is also styled "1 turf." The term is apphied widety to any stretch or sward of trimmed grass-land, and 4
\&onymy, to horse-racing and all connected with it,
from the owning and running of race-horses to betting. The word "turf" is common to Teutonic languages, cf. Du. ierf. Ger. Torf, Dan. törs, \&ic. It has been connected with Skt. darbha, grass, so called from being matted or twisted together, darbh, to wind. The Teutonic word was adapted in Med. Lat, as turbs (cf. Fr. tourbe, Ital. torba), whence was formed turbaria, turbary, the right of digging and cutting turf in common with the owner of the land. (See Comyons.)

TURGAI, a province of Russian Central Asia, formerly a part of the Kirghiz steppe, and now included in the governorgeneralship of the Steppes, bounded by the province of Uralsk and the governments of Orenburg and Tobolsk on the W. and N., by Akmolinsk on the E., and by Syr-darya and the Sea of Aral on the \(S\). This territory, which has an area of \(176,219 \mathrm{sq} . \mathrm{m}\).-ncarly as large as that of Caucasia and Transcaucasia taken together-belongs to the Aral-Caspian depression. It has, however, the Mugojar Hilis on its westerm border and includes a part of the southern Urals; and from Akmolinsk it is separated by a range of hills which run between the two largest rivers of the Kirghiz steppe-the Turgai and the Sary-su. In the north it includes the low belt of undulating land which stretches north-east from the Mugojar Hills ind separates the rivers belonging to the Aral basin from those which flow towards the Arctic Ocean, and beyond this range it embraces the upper Tobol. The remainder is steppe land, sloping gently towards the Sea of Aral.

The Mugojar Hills consist of an undulating plateau nearly 1000 ft in altitude, built up of Permian and Cretaceous deposits and deeply trenched by rivers. They are not the independent chain which our maps represent them to be: they merely continue the Urals towardis the south, and are compected with the Ust-Urt plateau by a range of hills which was formerly an island of the Aral-Caspian Sea. Their northern extremity joins the undulating plateau (400 to 600 ft .), built up of sandstones and marls, which separates the tributaries of the Tobol from those of the river Ural, and falls by - range of steep crags-probably an old shore-line of the Aral basintowards tbe steppes. The steppe land of Turgai is only some 300 ft . above the sea-level, and is dotted with lakes, of which the Chalkar-teniz, which receives the Turgai and its tributary the Irgiz, is the largest. The Turgai was, at a recent epoch, a large river flowing into the Sea of Aral and receiving an extensive system of tributarics, which are now loot in the angds belore joining it. Remains of aquatic plants buried in the soil of the steppe, and shells of Myifus and Cardim, both still found in the Sea of Aral, show that duning the Glacial period this region was overflowed by the waters of the Arai-Caspian Sen

The climate of Turgai is exceedingly dry and continental. Orsk a town of Orenburg, on its north-western border, has a January as cold as that of the west coast of Novaya Zemlya (\(-4^{\circ}\) F. , while in July it is as hot as July in Morocoo (73 \({ }^{\circ}\)); the corresponding figures for Irgiz, in the centre of the province, are \(7^{\circ}\) and \(77^{\circ}\). At Irgit and Orsk the annual rainfall is somewhat under 10 in . and 12 in . respectively (3 in. in summer). The west'winds are parched before they reach the Turgai steppes, and the noth-east winds, which in winter bring cold, dry snows from Siberia, raise in summer formidable clouds of sand. A climate so dry is of course incompatibie with a vigorous forest growth. There is some timber on the southern Urals, the Mugojar Hills and the water-parting of the Tobol; elsewhere trees are rare. Shrubs only, such as the wild cherry (Cerassus chameccerasws) and the dwarf alnond (Amygdalws mana) grow on the hilly slopes, while the rich blackearth soil of the steppe is chiefly clothed with feather grase (Slipa penrata), the well-known ornament of the south Ruscian steppes. In spring the grass vegetation is luxuriant, and geese and crancs are attracted in vast numbers from the heart of the eteppe by the Gelde of the Kirghiz. The jerboa (Dipes jaculus) and the marmot (Spermophilas rwfescens) are charncteristic of the launa; another species of marmot (Arclomys tobac) and the steppe fox (Canis corsac) are common; and the saiga antelope of Central Asla is occasionally met with. Farther south the black earth disappeart and with it the feather grass, ite place being takex by its coagener, Slipa capillata. Trees disappear, and among the bushes along the banks of the rivers willows and the pseudo-acacia or Siberian pea tree (Caragana microphyla) are most prevalent. In the middle parts of the province the clayey soil is completely clothed with wormwood (Arimisia fragrams and A. menogita), with a few grassy plants on the banks of the rivers and lakes (Lasiagrastis splendens, Alhagi comedoram and A. Lirghisormm, Obiona prortulecoides, Hadimoderdrum argentesm); while large areas consist of shifting eands, saline clays clothed with various Salsolaceae, and the desiccated beds of old lakes. Such hakes as still exist,
'See P. S. Nazarov, in "Recherches zoologiques dans les steppes des Kirghives," in Ball. soc. des matmr. de Moscow (1896), No. 4 -
movithatanding the rapid desiceation now going on, are gurrounded by chichets of reedo-the retreat of wild boars. Turgai is thus the borderland bot ween the gora of Europe and that of Central Asia.
The populition was estimated in 1906 at \(\$ 11,800\), composed mainly of Kirghis, though Russians have immigrated in large mambers. The province is divided into four districts, the chief towns of which are Turgai, the capital; Ak-tyubinsk in the district of Dletsk; Irgis and Kustanaisk in the Nikolayevsk district, a prairie town which has grown with greal rapidity. Acricalture is mainly carried on by the Russian settiers in the Nikolayeval distict, where the crops do not suffer so much fiven droughts as they do elsewhere. But the Kirghiz have also begun to cultivate the soil. and in 1900 there were in all 612,300 acres under ceretels.

The principal crops are rye, wheat, oats, barley and potatoes. Livestock breeding is the leading occupation of the Kirghiz. Camels are bred and kept by the nomads both for their own personal use and for the transport ol goods between Bothara, Khiva and Russian Turkeatan. Considerable quantities of cattle and various animal prodocts are exported to Orenburg, Orsk and Troitsk, and to UstUink and Zverinogolovgk, where large fairs are held. The Kirghiz of the southern parts migrate in winter to the better sheltered parts of the province of Syr-darya, while in the summer some 30.000 libithas (felt tents) of nomads come from the neighbouring provinces to grase their catile on the grassy steppes of Turgai. Salt is obtained from the lekes There are a few oil-works, tanneries and flour-mills, and the Kirghiz are active in the making of carpets and lelt goods. Education is a little more advanced than in the ot her steppe prorinces; the system of " migratory achools" has been introduced for the Kirghiz.
See Y. Tallerov, The Twrgai Province (1896), in Ruagian (P. A. K.; J. T. Be.)
turgor, anns ROBERT Jacques, Baron de Laune (1727-1781), French statesman and economist, was born in Paris on the 10th of May 1727. He was the youngest son of Michel Elienne Turgol, "provost of the merchants" of Paris, and Madeleine Francoise Martineau, and came of an old Norman family. He was educated for the Cburch, and at the Sorbonne, to which he was admitted in 1749 (being then styled abbé de Brucourt), be delivered two remarkabie Latin dissertations, On the Benefits which the Christian Religion has conferred on Mankind, and \(O n\) the Historicol Progress of the Human Mind. The first aign we have of his interest in economics is a letter (749) on paper money, written to his fellow student the abbe de Cice, nefuting the abbe Terrasson's defence of Law's system. He was fond of verse-making, and tried to introduce into French verse the rules of Latin prosody, his translation of the fourth book of the Acweid into classical bexameters being greeted by Voltaire as "t he only prose translation in which he had found say enthusiasm." In 1750 he decided not to take holy orders, siving as his reason, according to Dupont de Nemours, "that he could not bear to wear a mask all his life." In 1752 he became substum, and later consciller in the parlement of Paris, and in 1753 maftre des requiles. In 2754 he was a member of the charabre royale which sat during an exile of the parlement; in 3755 and \(175^{6}\) be accompanied Cournay, then intendant of commerce, in his tours of inspection in the provinces, and in 1760 , while travelling in the east of France and Switzerland, visited Voltaire, who became one of his chief friends and supporters In Paris be frequented the salons, especially thote of Maxe Graffigny-whose niere, Mile de Ligniville (" Minette "), afterwards Mme Helvetius and his lifelong friend, he is aupponed at one time to have wished to marry-Mme Geoffrin, Mme du Deffand, Mile de Lespinasse and the duchesse denville. It was during this period that he met the leaders of the "physiocratic" school, Quesnay and Cournay, and with them Dopoat de Nemours, the abbe Morellet and ather ecomemites. All this time he was studying various hranches of science, and languages both ancient and modern. In 1753 be translated the Qmestions sur ba comsterce from the English of Joatas Tucker, and wrote his Lettre sur la toltrance, and a pamphlet, Le Conciliatemr, in support of religious talerance. Between 1755 and 1756 be composed various articles for the Encychopdic, and between 1757 and 1760 an article on Valews a momenties, probably for the Dictionnaire dn commerce of the abbe Morrilet. In I759 appeared his Eloge de Cournay.

In August 1761 Turgot was appointed intendant of the gentralite of Limoges, which included some of the poorest and most over-taxed parts of France; here be remained for 13 years. He was already deeply imbued with the theories of Quesnay and Gournay (see Physiocratic School), and set to work to apply them as far as possible in his province. His first plan was to continue the work, already initiated by his predecessor Toumy, of making a fresh survey of the land (cadastre), in order to arrive at a juster assessment of the taille; be also obtained a large reduction in the contribution of the province. He published his Avis sur l'assietle al la repartition de la laille (17621770), and as president of the Socicte d'agriculture de Limoges offered prizes for essays on the principles of taxation. Quesnay and Mirabeau had advocaled a proportional tax (impst de quolite), but Turgot a distributive tax Yimpot de repartition). Another reform was the substitution for the cornec of a tax ir money levied on the whole province, the construction of road: being handed over to contractors, by which means Turgot was able to leave his province with a good system of roads, while distributing more justly the expense of their construction. In 1769 he wrote his Memoire sur les prets a interta, on the occasion of a scandalous financial crisis at Angouleme, the peculiar interest of which is that in it the question of lending money at interest was for the first time treated scientifically, and not mercly from the ecclesiastical point of view. Among other works written during Turgot's intendancy were the Memoire sur les mines et carrieres, and the Memoire sup la marque des fers, in which he protested against state regulation and interference and advocated free competition. At the same time be did much to encourage agriculture and local industries, among others establishing the manufacture of porcelain. During the famine of 1770-1771 be enforced on landowners "the obligation of relieving the poor" and especially the metayers dependent upon them, and organized in every province ateliers and bureaux de charitt for providing work for the able-bodied and relief for the infirm, while at the same time he condemned indiscriminate charity. It may be noted that Turgot always made the curfs the agents of his charities and reforms when possible. It was in \(\mathbf{1 7 7 0}\) that he wrote bis famous Lettres sur la liberte du commerce des grains, addressed to the comp-troller-general, the abbé Terray. Three of these letters have disappeared, having been scnt to Louis XVI. by Turgot at a later date and never recovered, but those remaining demonstrate that free trade in corn is to the interest of landowner, farmer and consumer alike, and in too forcible terms demand the removal of all restrictions.
Turgot's best known work. Refiexions sur la formation et la distribution des richesses, was written early in the period of his inten. dancy for the bencfit of two young Chinese students. Writeen in 1766, it appeared in \(\mathbf{1 7 6 0}\) - 7770 in Dupont's journal, the Epthenérides da cilorew, and was publiched eparately in 1776. Dupont, how. ever, made various alterations in the text. in order to bring it more into accordance with Quesnay's doct rines, which led to a coolness betwen him and Turgot (see G. Schelfe, in Journal des tconomistes, July 1888). A more correct text is that published by L. Robinesu (" Tursor." in Petile bibliotheque beomomique, 1889), and is followed by Proiessor W. . Ashley in his translation (Economic Classics. New York, 4898), but the original MS. has never been found.

After tracing the origin of comenerce, Turgot develops Quesnay's theory that the land is the only source of wealeh, and divides society into three classes, the productive or agricultural, the salaried (stipendice) or artisan class, and the land-owning class (classe disponible). After discussing the evolution of the different systems of cultivation, the nature of exchange and barter, money. and the functions of capital, he seets lorth the theory of the imptr unique. i.e. that only the prodwit net of the land should be taxed. In addition he demanded the complete freedom of commerce and industry.'

\footnotetext{
\({ }^{1}\) For the controversy as to how far Adam Smith (g.p.) was influenced by Turgot, see S. Feilbogen. Smith wnd Twrgot (189z); alto E. Cannan's Introduction to Smith's Lextures on fustice, Ac. (Clarendon Press, 1896): and H. Higgs's review of the later in the Ecenomic Journal. Dec. 1896. The question may still be considered an open one. See also Neymarck, i. 332, footnote, for the Frencb authorities. Condorcet's statement that Turgot corresponded with Smith is disproved by a letter of Smith to the duc de la Rochefoucauld, published in the Economic Journal (March t8q6). p. 165. in which be mys. "But tho' I had the bappiness of his acquaintance
}

Turgot owed his appointment to the ministry to Maurcpas, the " Mentor " of Louis XVI., to whom he was warmly recommended by the abbe Very, a mutual friend. His appointment as minister of the marine on the 20 th of July 1774 met with general approval, and was hailed with enthusiasm by the philosophes. A month later he was appointed comptrollergeneral (August 24). His first act was to suhmit to the king a statement of his guiding principles: "No bankruptcy, no increase of taxation, no borrowing." Turgot's policy, in face of the desperate financial position, was to enforce the most rigid economy in all departments. All departmental expenses were to be submitted for the approval of the comptrollergeneral, a number of sinecures were suppressed, the holders of them being compensated, and the abuse of the "acquits au comptant " was attacked, while Turgot appealed personally to the king against the lavish giving of places and pensions. He also contemplated a thorough-going reform of the ferme centrale, but contented himself, as a beginning, with imposing certain conditions on the leases as they were renewed-such as a more efficient personnel, and the abolition for the future of the abuse of the croupes (the name given to a class of pensions), a reform which Terray bad shirked on finding how many persons in high places were interested in them, and annulling certain leases, such as those of the manufacture of gunpowder and the administration of the messageries, the former of which was handed over to a company with the scientist Lavoisier as one of its advisers, and the latter superseded by a quicker and more comfortable service of diligences which werc nicknamed " turgotines." He also prepared a regular budget. Turgot's measures succeeded in considerably reducing the deficit, and raised the national credit to such an extent that in 1776, just belore his fall, he was able to negotiate a loan with some Dutch bankers at \(4 \%\); but the deficit was still so large as to prevent him from attempting at once to realize his favourite scheme of substituting for indirect taxation a single tax on land. He suppressed, however, a number of octrois and minor duties, \({ }^{1}\) and opposed, on grounds of economy, the participation of France in the War of American Independence, though without success.

Turgot at once set to work to establish free trade in corn, hut his edict, which was signed on the \(13^{\text {th }}\) of September 1774, met with strong opposition even in the conseil \(d u\) roi. A striking feature was the preamble, setting forth the doctrines on which the edict was based, which won the praise of the philosophes and the ridicule of the wits; this Turgot rewrote three times, it is said, in order to make it "so clear that any village judge could explain it to the peasants." The opposition to the edict was strong. Turgot was hated hy those who had been interested in the speculations in corn under the regime of the abbe Terray -among whom were included some of the princes of the blood. Moreover, the commerce des bles had been a favourite topic of the salons for some years past, and the witty Galiani, the opponent of the physiocrats, had a large following. The opposition was now continued by Linguet and Necker, who in 1775 published bis treatise Sur la Legislation et le commerce des grains. But Turgot's worst enemy was the poor harvest of 1774, which led to a sligbt rise in the price of bread in the winter and early spring of \(1774^{-1775}\). In April disturbances arose at Dijon, and early in May took place those extraordinary bread-riots known as the "guerre des farines," which may be looked upon as a first sample of the Revolution, so carefully were they organized. Turgot showed great firmness and decision in repressing the riots, and was loyally supported by the king throughout. His position was strengthened hy the entry of Malesherbes into the ministry (July 1775).

All this time Turgot had been preparing his famous "Six Edicts," which were finally presented to the conseil \(d x\) roi (Jan. 1776). Of the six edicts four were of minor importance, and, I flattered myself, even of his friendship and esteem, I never had that of his correspondence," but there is no doubt that Adam Smithet Torgor in Paris. and it is generally admitted that The Find \(\mathbf{Y}\) Mation ower a good deal to Furgot.
terocome of Tursot's financial adminiatration. see \(\mathbf{C h}\). epocant of Tursoric
but the \(t\) wo which met with violent opposition were, firstly, the edict suppressing the corstes, and secondly, that suppressing the jurardes and muitrises, the privileged trade corporations. In the preamble to the former Turgot boldly announced as his object the abolition of privilege, and the subjection of all three orders to taxation; the clergy were afterwards excepted, at the request of Maurepas. In the preamble to the edict on the jurandes he laid down as a principle the right of every man to work without restriction. He obtained the registration of the edirts by the lit de justice of the 12 th of March, but hy that time be had nearly everybody against him. His attacks on privilege had won him the hatred of the nobies and the parlements, bis attempted reforms in the royal household that of the court, his free trade legislation that of the "financiers," his views on tolerance and his agitation for the suppression of the phrase offensive to Protestants in the king's coronation oath that of the ciergy, and his edict on the jurandes that of the rich bourgeoisie of Paris and others, such as the prince de Conti, whose interests were involved. The queen disliked him for opposing the grant of favours to her protéges, and he had offended Mme de Polignac in a similar manner (sce Marquis de Ségur, Au Couchant de la monarckie, P. 305306).

All might' yet have gone well if Turgot could have retained the confidence of the king, but the king could not fail to sce that Turgot had not the support of the other ministers. Even his friend Malesherbes thought he was too rash, and was, morcover, himself discouraged and wished to resign. The alienation of Maurepas was also increasing. Whether through jealousy of tbe ascendancy which Turgot had acquired over the king, or through the natural incompatibility of their characters, be was already inclined to take sides against Turgot, and the reconciliation bet ween him and the queen, which took place about this time, meant tbat he was henceforth the tool of the Polignac clique and the Choiseul party. Aboit this time, too, appeared a pampblet, Le Songe de M. Maurepas, generally ascribed to the comte de Provence (Louis XVIII.), containing a bitter caricature of Turgot.

Before relating the circumstances of Turgot's fall we may hriefly resume his views on the administrative system. With the physiocrats, he believed in an enlightened absolutism, and looked to the king to carry tbrough all reforms. As to the parlements, he opposed all interference on their part in legislation, considering that they had no competency outside the sphere of justice. He recognized the danger of the recall of the old pardement. hut was unable effectively to oppose it, since he had been associated with the dismissal of Mauptoo and Terray, and seems to have underestimated its power. He was opposed to the summoning of the states-general advocated by Malesherbes (May 6, 1775), possibly on the ground that the two privileged orders would have too much power in them. His own plan is to be found in his Hemoire sar les municipaliles, which was submitted informally to the king. In Turgot's proposed system landed proprietors alone were to form the electorate, no distinction being made between the three orders; the members of the town and country manicipalites were to elect representatives for the district musicipalites, which in turn would elect to the provincial municipalites, and the latter to a grande municipalitt, which should have no legislative powers, but should concern itself entirely with the administration of taxation. With this was to be combined a whole system of education, relief of the poor, stc. Louis XVI. recoiled from this as being too great a leap in the dart, and such a fundamental difference of opinion between king and minister was bound to lead to a breach sooner or later. Turgot's only choice, however, was between "tinkering " at the existing system in detail and a complete revolution, and his attack on privilege, which might have been carried through by a popular minister and a strong king, was bound to form part of any effective scheme of reform.

\footnotetext{
\({ }^{2}\) Turgot was opposed to all labour associations of employers or employed, in accordance with his beliel in free comproition.
}

The immediate cause of Turgot's fall is uncertain. Some speak of a plot, of forged letters containing attacks on the queen shown to the king as Turgot's, of a series of notes on Turgot's budget prepared, it is said, by Necker, and shown to the king to prove his incapacity. Others attribute it to the queen, and there is no doubt that she hated Turgot for supporting Vergennes in demanding the recall of the comte de Guines, the ambassador in London, whose cause she had ardently espoused at the prompting of the Choiscul clique. Others attribute it to an intrigue of Maurepas. On the resignation of Malesherbes (April 1776), whom Turgot wished to replace by the abbé Véry, Maurepas proposed to the king as his successor a nonentity named Amelot. Turgot, on hearing of this, wrote an indignant letter to the king, in which he reproached him for refusing to see him, pointed out in strong terms the dangers of a weak ministry and a weak king, and complained bitterly of Maurepas's irresolution and subjection to court intrigues; this letter the king, though asked to treat it as confidential, is said to have shown to Maurepas, whose dislike for Turgot it still further embittered. With all these enemies, Turgot's fall was certain, but he wished to stay in office Iong enough to finish his project for the reform of the royal household before resigning. This, however, be was not allowed to do, but on the rath of May was ordered to send in his resignation, He at once retired to Ia Roche-Guyon, the chateau of the duchesse d'Enville, returning shortly to Paris, where he spent the rest of his life in scientific and literary studies, being made vice-president of the Académie des Inscriptions et Belles. lettres in 1777 . He died on the 28th of March 178 I .

In character Turgot was simple, honourable and upright, with a passion for justice and truth. He was an idealist, his enemies would say a doctrinaire, and certainly the terms "natural rights," "natural law." 8c., frequently occur in his mriting. His friends speak of his charm and gaiety in intimate intercourse, but among strangers he was silent and awkwird, and produced the impression of being reserved and disdainful. On one point both friends and enemies agree, and that is his brusquerie and his want of tact in the management of men; Orcken points out with some reason the "schoolmasterish" tone of his letters, even to the king. As a statesman he has been very variously estimated, but it is generally agreed that a large number of the reforms and ideas of the Revolution were due to him; the ideas did not as a rule originate with him, but it was he who first gave them prominence. As to his position as an economist, opinion is also divided. Oncken, to take the ertreme of condemnation, looks upon him as a bad physiocrat and a confused thinker, while Leon Say considers that he was the founder of modern political economy, and that "though hefailed in the 18 th century he triumphed in the roth."

Brbliography.-G. Schelle, Turgot (Paris, 1909); and Marquis de Stgur. Am Couchant de la monarchie (Paris, 1910), contain much that is based on recent research. The principal older biographies are those of Dupont de Nemours (1782 , enlarged in his edition of Turgot's Works. \(1807-1811\)), and Condorcet (1786): the best modern ones are those of A. Neymarck (Paris, 1885), Leon Say (Paris, 1887); and W. W. Stephens (London, 1895). See generally Oncken, Geschichte der Nationalobonomie, vol. in. ch. 1; Эchelle, Dupont de Nemowirs al'cole physiocratique (1888); Henry Higgs, The Pkysiocrats (1897); R. P. Shepherd, Turgot and the Six Edicts (1903), in Columbia Univ. Scudies, vol. xviii. No. 2.

TURGUENIBV, IVAN (1818-1883), Russian novelist, the descendant of an old Russian family, was born at Orel, in the government of the same name, in 1818. His fatber, the colonel of a cavalry regiment, died when our anthor was sixteen years of age, leaving two sons, Nicholas and Ivan, who were brought up under the care of their mother, the heiress of the Litvinovs, a lady who owned large estates and many serfs. Ivan studied for a year at the university of Mowcow, then at St Petersburg, and was finally sent in 1843 to Berlin. His edrecation at home had been conducted by German and French tutors, and was altogether foreign, his zoother only speaking Ruasian to her servants, as became a great lady of the old school. For his first acquaintance with the literature of his country the future novelist was in-
debted to a serf of the family, who used to read to him verses from the Rossiad of Kberastov, a once celebrated poet of the eighteenth century. Turgueniev's early attempts in literature, consisting of poems and tribing sketches, may be passed over here; they were not without indications of genius, and were favourably spoken of by Bielinski, then the leading Russian critic, for whom Turgueniev ever cherished a warm regard. Our author first made a name by his striking sketches "The Papers of a Sportsman" (Zapiski Okhotnika), in which the miserable condition of the peasants was described with startling realism. The work appeared in a collected form in 1852. It was read by all classes, including the emperor himself, and it undoubtedly hurried on the great work of emancipation. Turgueniev had always sympathized with the mushiks; he had of ten been witness of the cruelties of his mother, a narrow-minded and vindictive woman. In some interesting papers recently contributed to the "European Messenger" (Viestrik evropy) by a lady brought up in the bousebold of Mme Turgueniev, sad details are given illustrative of her character. Thus the dumb porter of gigantic stature, drawn with such power in Muma, one of our author's iater sketches, was a real person. We are, moreover, told of his mother that she could never understand how it was that her son became an author, and thought that he had degraded himself. How could a Turgueniev submit himself to be criticized?
The next production of the novelist was " A Nest of Nobles" (Drorianskoe gricedo), a singularly pathetic story, which greatly increased his reputation. This appeared in 1859, and was followed the next year by "On the Eve" (Nokanuxge)-a tale which contains one of his most beautiful female characters, Helen. In 1862 was published "Fathers and Children" (Otsi i Dieti), in which the author admirably described the nihilistic doctrines then beginning to spread in Russia. According to some writers be invented the word nihilism. In 1867 appeared "Smoke" (DIm), and in 1877 bis last work of any length, "Virgin Soil" (Nor). Besides his longer stories, many shorter ones were produced, some of great beauty and full of subtle psychological analysis, such as Rudin, "The Diary of a Useless Man" (Dnernik lishnago chelooicka), and others. These were afterwards collected into three volumes. The last works of the great novelist were "Poctry in Prose" and "Clara Milich," which appeared in the " European Messenger."
Turgueniev, during the latter part of his life, did not reside much in Russia; he lived either at Baden Baden or Paris, and chiefly with the family of the celebrated singer Viardot Garcin, to the members of which he was much attached. He occasionally visited England, and in 1879 the degree of D.C.L. was conferred upon him by the university of Oxford. He died at Bougival, near Paris, on the 4 th of September 1883.

Unquestionably Turgueniev may be considered one of the great novelists, worthy to be manked with Thackeray, Dickens and George Eliot; with the genius of the last of these he has many affinities. His studies of human nature are profound, and be has the wide sympathies which are essential to genius of the highest order. A melancholy, almost pessimist, feeling pervades his writings, a morbid self-analysis which seems natural to the Slavonic mind. The closing chapter of "A Nest of Nobles" is one of the saddest and at the same time truest pages in the whole range of existing novels.

The writings of Turgueniev have been made familiar to persons unacquainted with Russian by French translations. Tbere are many rersions in English, among which we may mentiop the translation of the "Nest of Nobles" under the name of " Lisa," by Ralston, and "Virgin Soil," by Ashton Dilke. There is also a complete and excellent translation by Mrs Garnett.
(W. R. M.)

TURI, a Pathan tribe on the Kohat border of the North-West Frontier Province of India. The Turis inhabit the Kurram valley, which adjoins the western end of the Miranzai valley and number nearly 12,000 . Though now speaking Pushtu and ranking as Pathans, they are by origin a Turki tribe, of the Shiah sect, who subjected the Bangash Aighans some time early in the
eighteenth century. They are strong, hardy, and courageous, and make tirst-rate horsemen. Their early dealings with the British government were inclined to turbulence, and they were concerned in the Miranzai expeditions of 1851 and 1855 (see Miranzal). But the only expedition specially sent against thern was the Kurram expedition of 1856 (see Kurrans). Since then they have settled down and engaged in trade. During the Second Aighan War they supplied Sir Frederick Roberts with guides and provisions. In 1892 they voluntarily accepted British adroinistration, and they now furnish a large part of the tribal militia in the Kurram Valley.
TURIN, a city of Piednont, Italy, capital of the province of Turin, formerly of the kingdom of Sardinia until 1860, and of Italy till the removal of the seat of government to Florence in 1865. Pop. (1906), 277,121 (town), 361,720 (commune), with a garrison of 8500 , the town being the headquarters of the I. army corps. The area of the city is 4855 acres, and its octroi circle measures nearly 9 m . Its geographical position is excellent; buit upon alluvial soil 784 ft . above sea-level at a short distance from the Alps, it stands upon the river Po, which here runs from south to north just above the confluence of the Dora Riparia. The streets and avenues, almost all of which are straight, cut each other at right angles, forming blocks of houses, bere as clsewhere called "islands." As viewed from the east the city stands out boldly against the Alps. Taken as a whole it is modern in aspect, but its regularity of form is in reality derived from the ancient Roman town of Augusta Taurinorum, which formed its nucleus. The mean temperature at Turin (18711900) is \(53^{\circ} \mathrm{F}\). (winter \(35^{\circ}\), summer \(71^{\circ}\)), with an average maximum of \(90^{\circ}\), and an average minimum of \(17^{\circ}\). Mists are frequent in the winter mornings, and to a less degree in autumn. Snow talis on an average only on seven days per annum. The rainfall a verages 34 in

The cathedral of St John the Baptist is a cruciform Renaissance building dating from \(\mathbf{x}^{492-1498 \text {, by the Florentine Meo da }}\) Caprina. The site was first occupied by a church crected, it is said, by the Lombard duke Agilulf (7th eentury). Behind the high altar of the cathedral (from which it is scparated by a glass screen) is the chapel of the Sudario or Sindone, huilt (t657-1694) by Guarini as a royal burial-place. The "sudario" from which it takes its name is asserted to be the shroud in which Joseph of Arimathea wrapped the body of Jesus. La Beata Vergine della Consolata, another of Guarini's works, has a tower which originally belonged to the church of St Andrew, founded by the monk Bruning in \(\mathrm{rot}_{4}\), and attracts attention by Viacenzo Vela's beautiful kneeling statues of Queen Maria Teresa and Queen Maria Adelaide, as well as by the image of the Madonna, which has the credit of having warded off the cholera in 1835 . Other churches of some note are San Filippo Neri (1672-1772), the dome of which fell in just as it was approaching completion under the hands of Guarini and was restored hy Juvara, and La Gran Madre de Dio, erected to commemorate the return of the royal family in 1814. Of the sceular buildings the more interesting are the Palazzo Madama, first erected by Williano of Montferrat at the close of the \(13^{\text {th }}\) century on the Roman east gate of the town, remains of the towers of which were incorporated in it, and owing its name to the widow of Charles Emmanuel II., wbo added the west façade and the handsome douhle flight of steps from Juvara's designs; and the extensive royal palace begun in the rith century. Many of the palaces have fine pillared court yards of the baroque period, some of which are the work of Guarini. For the Porta Palatina and other remains of the ancient The citadel, crected in 1565 , has been almost There is practically nothing of the RenaisThe Castello del Valentino is he French style of the middle of the 16 th rsity, founded in 1400 by Lodovico di of jurisprudeace, medicine and surgery, hy, and the mathematical, physical and number of students is about 2500 . The erected in 1713 by the Genoese architect
for the medical and scientific departments, have been erected. The original building contains the valuable library (now national), many of the treasures of which were destroyed by fire in 1906, and a collection of Roman antiquities. The academy of sciences was founded in \(\mathbf{1 7 5 7}\). It occupies a building erected in \(\mathbf{2 8 7}\) by Guarini as a Jesuit college. The musetum of antiquities and the picture gallery, of which it has the custody, are botb of bigh interest-the former for the local antiquities of Piedmont and Sardinia (notably from Industria) and for the Egyptian treasures collected by Donati and Drovetti, and the Latter for its Van Dycks and pictures by north Italian masters. There is a museum of zoology and mineralogy in Palazzo Carignano (another of Guarini's buildings), and the royal palace contains the royal armoury (a fine collection made by Charles Albert in 1833) and the royal library with its rich manuscript collection and its 20,000 drawings, among which are sketches hy Raphael, Michelangelo, and Leonardo da Vinci. The civic museum has a great variety of artistic and literary curiosities, among them a remarkable collection of autographs and the Lombard missal (1490).

There are many modem public monuments-considerably more than in other ltalian towns-and some of them are fine. The Mole Antonelliana, built by Alssandro Antonelli. is the most important example of modern architecture in Turin. It belonge to the municpality, and is used for the Risorgimento Museum. It is the highest brick edifice in Europe, its summit being 510 ft . above ground. 1 lt is a square edifice with a large dome and lofty spire, the dome being raised upon a ball with three galeries, one above the other, 80 that from the Bloor to the top of the dome is over 300 ft .

Among the hoopitale is that called by the name of its fourder, Cottolengo, a vast institution providing for more than 5000 persons: there are also the Ospedale Maggiore di San Giovanni, the Ospedale Mauriziano, and many other hospitals for special diseasen, as well as asylums and charitable institutions of all kinds.
The industries comprise metallurgy, machise-making, chemicaln silk and cotton weaving, tanning and leather-working. The manufacture of motor-cars has become of great importance, and Turin is the chief seat of the industry in Italy, searly 5000 workmen being employed. Chooolate, liqueurs and vermouth are also made here. The application of electricity is widely developed on account of the proximity of Alpine valleys rich in torrents. The supply of drinking water is furnished by three aqueducts.
The opening of the St Gothard tunnel exercised a prejudicial inluence upon the traffic of the networt of raibrays of which Torim is the centre, and Milas, owing to its nearness both to this and to the Simplon, has become the most important railway centre of Italy. Turin has, bowever, the advantage of being the pearest to the Mont Cenis, while the completion of the line through Cuneo over the Col di Tenda affords direct communication with the French Riviera. Main lines run also from Turin toVercelli and thence to Novara and Milan (the direct route), to Casale Monferrato, to Alewandria (and thence to Piacenza or Grenoa), to Genoa via Asti and Acqui. to Brd and Savona, and branch hines to Lanzo, Torre Pellice, Aoata, Rivoli, Rivarolo, Anc, and steam tramwaye in variove directions.

For administrative purposes the ciry is divided into two municipal police sections and into seven government districts or mandamembi. The military organization is proportionate in importance to the strategical position of Turin near the French frontier. There is a military arsenal with laboratories, a military academy for artilkery and engineer officers, a war school, and a military hospital.

Among the surroundings of Turin the Hill of Superga (2300 ft . above the sea) merits gpecial mention. Victor Amadeua 11 . erected there a votive basilica in memory of the tiberation of Turia from the French in 1706. Kiag Charles Albert and other kings and princee of the Savoy dynasty are buried io the crypt. Not far from Turin are also the castles of Moncalieni. Stupinigi, Rivoli, Racconigi, Agle, Venaria. and the ancient monastery of the Sagra di San Michele (753 metres above sea-level), famous for its view of the Alpe as far is the beginning of the Lombard plain.

Turin was always a place of importance and military strength in spite of numerous vicissitudes, till at length it was made the chief town of Piedmont by Amadeus, first duke of Savoy. Under Emmanuel Philibert it became the usual residence of the docal family, and in igis the hishopric was raised to metropolitan rank by Loo X. Between 1536 and 1563 Turin was occupied by the French, and in 1630 it lost 8000 of its citizems by the plague. The French were masters once more from 1640 to 1706 , and again from 1708 till 1814, when Piedmont was restored to the bouse of Savoy. From 1860 to 1865 Turin was the capital of Italy.

The ancient Augwsta Taxcinervem was a city of Gallia Cisalpina, the chief town of the Taurini. The natural advantages of its site and its position with relation to the pass over the Alpia

Cotion (Mont Genèvre; ree Cotrit Rxcnow) made it importiant in early times, though it cannot have been very strongly fortified, inasmuch as Hannibal, after crossing the Alps in 218 b.c., was able to take it after a three days' siege. It became a colony either under the triumvirs or under Augustus, and it was then no doubt that it was fortified. It was partly burned down in A.D. 69, but continued to be prosperous, as may be gathered from the remains of its fortifications and from the many inscriptions which have been discovered there. The Roman town formed a rectangle 2526 ft . by 2330 ; the line of the walls, which were 21 ft . high, 7 ft . thick at ground level and 3 ft . at the top, is well known, inasmuch as they were standing till about 1600 ; and the north gate, the Porta Palatina, still exists; it has a double opening, and two orders of arches above, and is flanked by two sixteen-sided brick towers. The east gate, similar in character, still exists in part within the Palazzo Madame. The north-west corner tower is aiso in part preserved, and traces of other parts of the enceinte have been found. The interior of the town was divided by seven streets from east to west and eight from north to south into 72 insuloe; and the ancient pavement and the drains below it are frequently found under the streets of the central portion of the modern town, indicating that they follow the ancient lines (see especially Notisie degli Scavi, 1902, p. 277). In the great extensions which the city has undergone since 1600 , the old rectangular arrangement has been followed. Remains of a theatre have been discovered beneath the Palazzo Vecchio, demolished in 1899 (A. Taramelli, in Notisie degli Scari, 1900, p. 3).

See C. Promia, Storia dell antica Torino (Turin, 1869); A. d'Andrade, Relasiona dell ufficio reqionate per La consernazione dee mesumami del Piomonte a dedia Liguria, 7 req. (Turin, 1899).
(T. As.)

TJRKESTAN, a mame conventionally employed to designate the regions of Central Asia which lie between Siberia on the N . and Tibet, India and Afghanistan on the S., the western limit being the Caspian Sea and the castern Mongolia and the Desert of Cobi. Etymologically the term is intended to indicate the regions inhabited by Turkish races. How far this name was appropriate in the past need not be considered here; at present the regions called Turkestan not only contain races which do not belong to the Turk family, but it excludes races which do, e.g. the Turks of the Ottoman Empire. Nevertheless the term, in its dual application of West Turkestan and East or Chinese Turkestan, has long been establisbed, and in default of any better designations cannot very well be dispensed with.

\section*{I. -West Tueqestan}

West Turkestan is very nearly, though not quite, coincident with the territories which Russia possesses and controls in Asis, Siberia excepted. Thus it includes (2) the governor-generalship of Turkestan, emhracing the provinces of Ferghana, Samarkand, Semiryechensk, and Syr-darya; the provinces of Akmolinsk and Semipalatinsk, and sometimes that of Turgai belonging to the yovernor-generalship of the Steppes; the Transcaspian region; and the semi-independent states of Bokhara and Khiva. Its total area amounts approximately to \(1,290,000 \mathrm{sq}\). m .
Physical Geogrephy-Physically this region is divided into two shapply contrasted parts, the mountainous a and highland country in the cas and the flat steppes and deserts in the west and north. The former are sufficiently deecribed under the heading Tun-Shar. It will be enough to say bere that the mountainous region belongs to the great orographical laage which runs from south-west to northeax along the porth-westem margin of the great plateau of Central Asin. Hence it consits (1) partly of ranges, mostly snow-capped, Which stretch from south-west to northe east, and which in several casee corminate \(c x\) \&chelow on the verge of the desert, and (2) partly of rapges which aribe away frona the above at various angles, but in a prodomiaantly norrtb-wextern direction. The letter, including such ranges \(2 s\) the Chingix-taul, Chu-IL Mouatains, Kandyk-tau and Khan-tay the Ferghnaa range, the Kara- au and the Nura-tau, are poologically of liter origin than the great border rapges of the TianShan proper, ef. Trams Aki, Alai, Kobzhat-zau, Alerander range,
 Als-inu. The Terteratai Mountaing, will harther moth, are often clanefoud as belonging to the Alai aywerm. Generally ippaking,
altitudes as hlgh as \(\mathbf{2 3 , 0 0 0} \mathrm{ft}\). are attained by individual peaks, such as Mt Kaufmann and Khan-tengri. Most of the loftier summits are capped with perpetual snow, and on some of them, c.g. Khantengri (Mushketov, Semenov, Inylchik) and the Kok-su Mountains (Fedchenko, Shurovaky), south of Peak Knufmann, there are welldeveloped glaciers. Neariy all these border ranges rise abruptly and to great heights from the plains on the north or north-west, but have a much shorter and easier descent on the south or southeast. Hence the passes lic at great altitudes, ranging from about 9000 to 14.000 It. On the other hand the fact of the ranges radiating outwards towards the west, and the further fact that they are in more than one place penetrated hy deep depressions (c.g. Dzungaria, Kulja, Issyk-kul, Ferghana) for a considerahle distance towards the east, greatly facilitate access to the loftier plateau lands of Central Asia, and have from time immemorial been the highways of human intercourse between East and West.

Like the highlands of Siberia, those of Turkestan are fringed by a girdle of plains, having an altitude of 1000 to 1500 ft., and these again are skirted by an imruense lowland area reaching Lewlom only 400,300 and 150 ft above sea-level, or even Price. sinking below the level of the ocean. Some geographers Prales divide them into two sections- the higher plaina of the Balkash (the
Ala-kul and Balkash drainage areas) and the Aral-Caspian depres-Ala-kut and Balkash drainage areas) and the Aral-Caspian depref-
sion, which occupies nearly two-thirds of the whole and has been ably described by 1. V. Mushketov under the appropriate name of Turanian basin-the Kara-tau Mountains, between the Chu and the Syr-darya rivers, being considered as the dividing line between the two. The Balkash plains, more than 1000 ft . above the sea, and covered with clay, with a girdle of loess at their foot, are well drained by the lli and other feeders of Lake Balkash and support the numerous flocks and herds of the Kirghiz. To the south-west the clayey soil becomes saline. There is the Famine steppe (Bek-pak-dala), while in the Ak-kum steppe, which surrounds Lake Karakul, large areas consist of nothing but sands, partly shifting. The plaiss and lowlands of the Turanian basin are subdivided by a line drawn from north-cast to south-west along a slight range of hills running from the sources of the lshim towards the south-east corner of the Caspian (Bujnurd and Elburz edge of Khorasan). This low range, which most probably separated the lowlands of the AralCaspian region (submerged during the Post-Pliocene period) from the bigher plains which had crnerged by the end of the Tertiary period, now divides the Transcaspian steppes from the somewhat different higher plains. In the Turanian basin the contrast betweed desert and oasis is much stronger than in the Balkash region. Fertile soil, or rather will which can be rendered fertile by irrigation, is limited to a narrow terrace of loess along the foot of the mountains, and is surrounded by barren deserts. Even where the loess stretches out over terraces at some distance from the mountains, as in the gouth-east of the Transcaspian region, it can be cultivated only when irrigated. Two rivers only-the Syr and the Amu-succeed is getting across the desert and reaching the Sea of Aral. But their Tormer tributaries no longer run their full course: the glacier-fed Zarafishan dries up amid the gardens of Bokhara soon after emerging from the highlands; and the fejeñ and the Murghab lose themselves in the recesees of the Kara-kum desert. The only tributaries which the Amu retaina are those whose whole course is within the highlands. In the north such formerly important tributaries of the Syr-darya as the Chu, with its sub-tributary the Sary-su, now dry up some hundreds of miles before reaching the main stream.
The whole area is now undergoing geological changes on a vast scale. Rivers have changed their courses, and lakes their outlines. Far away from their present shores the geologist finds indubitable signs of the recent presence of lakes in the Deskeacioa. shells they have left amid the sands. Traces of former nyers and channels, which were the main arteries of prosperous regions within the period of written history, have now disappeared. Of the highly developed civilizations which grew up and flourished in Bactria, Bokhara and Samarkand the last survivals are now undergoing rapid obliteration with the simultaneous desiccation of the rivers and lakes. The great "Blue Sea " of Central Asia the Sea of Aral, which at a recent epoch (Post-Glacial) extended south-west as har as Sary-kamysh, and the shellis of which are found north and east of its present chores 50 to 200 ft . above its present level (157 ft . above the ocean. and 248 above the Caspian). now occupies but a small portion of its former extent. It fills a shallow depression which is drying up with astonishing rapidity. so that the process of desiccation can be shown on surveys separated by intervals of only ten years; large parts of it, like Aibughir Gull, have dried up since the Rustians took postession of its shores. The whole countr; is dotted over with lakes, which are rapidly disappearing under the bot winds of the deserts
Gedocy. Like the highlands of eastern Asia, those of Turkestan are mostly built up on Pre-Cambrian gueisses and metarnorphic slates, resting upon granites, syenites, old orthoclase porphyriet, and the like. These upheavals date from the remotest geological ages: and since the Primary epoch a triangular continent baving its
\({ }^{1}\) R. Pumpelly and others, Explorations in Turkestan (Washington, 1gos). contains references to the geological literature to the date of publication.
apex tumed towards the northeast, as Africa and America have theirs pointing wuthward, rose in the middle of what now con stitutes Asia. It is only in the outer foldings of the highlands that Palneozoic fossilifcrous deporits are found-Silurian, Devonian, Carboniferous and Permo-Carboniferous. Within that period the priscipal valleys were excavated, and their lower parts have theen filled up subsequently with Jurassic, Cretaceous and Tertiary deposits. One of the most striking instances of this is the very thick Cretaceous and Tertiary deposits which cover the bottom of the valley of the Vakhsh (right tributary of the Amu) and are continued for about 300 m . to the north-east, as far as the Alat valley-
probably along the edge of the Pamir plateau. The deposits of the probably along the edge of the Pamir plateau. The deposits of the While upheavals having a north-eastern strike continued to take plave after the Cartooniferous epoch, \({ }^{1}\) another serics of upheavals, having a north-western strike, and oceasioned by the expansion of
dialuses, dolerites, melaphyres and andesites, occurred later, subsequently at least to the close of the Tertiary period, if not also before it, dislocating former chains and raising rocks to the highest levels by the addition of new upheavals ta the oliter ones. Through: out the Triassic and Jurassic periods ncarly all Turkestan remained a contiment indented by gulfs and lagoons of the south European Triassic and Jurassic sea. Immense fresh-water lakes, in which were depusited layers of plants (now yielding caill. filled up the depressions of the country: Cretaccous and Tertiany deposits occur extensively along the edge of the highlands. 'pper and Middle Crefaceous, containing phosphates, gypsum, maphtha, sul-
phur and alum, attain thichnesses of 2000 and 5000 ft . in Hissar. Representatives of all the Tertiary formations are met with in Turkestan; tut while in the highlands the strata are eoast-deposits, they assume an upen sea character in the lowlands, and their nich
fossil fauma furnishes evidence of the gradual shallowing of that sea. until at last. after the Sammathian period, it became a closed Meditertancan. During the Fost-Pliucene period this sea broke up into several parts, united by narrow straits. The connexion of Laki Balkash with the Sca of Aral can hardly be doubted; but :hin portion of the great sea was the first to be divided. While the Sea of Aral remained in conncxion with the Caspian, the desiccaaion of
the lalke Balkash basin, and its break-up inso smaller separate basins, mere already going on. The Quatemary epoch is sepresented by vast moraitic deposits in the valleys of the Tian-shan. About Khan-Tengri glaciers descended to a kevel of 6800 ft . abote the sea, \({ }^{2}\) and discharged into the wide open valley or syris. It most probable that. when allowance has been made for the oblite tion of glacial markings, and the region has been better explored will appear that the Elaciation of Turkestan was on a scale selfesp as deposits which it is difficult to separate sharply. frosel the later Tertiary, cover the whoke of the area. They comtain shally of molluss now inhabiting she Sea of Aral, and in their perrus:aphical
fearures are exactly like thoee of the lower Volg. The limits of the Fost-Pliocene Aral-Caspan wall have not yet been fulty tobeed. It estended some 200 m . north and more than 90 m . east of the present Aral shores. A narrow strait coanected it with Lale rented it from spreading noreh-westeind, and a marroer channel connected it along the U'zboi rith the Caspian, which seat a broad fulf to the ent, bread up to the Volza and as compected sy the Manych with the Dlack Sen besion. Great interest, geologir and mirturical, thas attuclies to the recent changes undergooe t.y this bacin. Saoe the thaory of geological catrochyms was asemioned. nee data lave beet dotained in the Atracse of the exrth ercepted, the rates malification aftur the close of the Glacinf period, al: isogh ofil very slom, vas faster than had loeen shppoed from the eviutnce
 ares foredul than thooe whis reant frum the earthquatre inat

 5utysmivitucavo 4064

is \(108^{\circ}\). To the south of Khojeat the winter beocones more clement. Absence of rain is the distinctive feature of the climate. Alchough it rains and snows heavily on the mountaing, anly in in. of rain and snow fall throughout the year at Tashkent, at the base of the highlands; and the steppes of the lower Amu have less. \(A\) few chowers are all that fall from the almost invariably cooudless aky above the Transcaspian steppes.

Fawnc.-Tbe fauma of Turkestan belongs to the mo-geographical domain of northern Asia, and is only differentiated by the presence of species which have disappeared from the peripheral parts of the Old World and now find a refuge in the remotest negions of the uninhabired plateas. From the Pabacorctic region it is distinguished by the presence of Himalayan apecies. The distinctive animal of the Pamir plateau is the magnificent Ovis poli (conjectured to be the ancestor of the common sheep). In the atpine tracts of the Tian-chan, on the border of the Pamir, their borns and skulls are frequently met with, but there the phace of the specien is now taken by Owis kardini. The wild horse, which occurred in Poland a few centuries ago, wian discovered by Preahevalsky in the highlands of Drungaria. The wild camel inhabits the tonely plateaus south of the Ala-shan. The other mammats of Turkestan ane mosty those which are met with ehewhere in north Asia. The Himalayan bear (Ursus isabollinus) has its bome on the Pamir, and the smaller Lexconyx up to the highest levels on the Tianshan. Antelopes, Lepas lehmanni. Lagomys ratiles, various species of Arricolce, and the Himalayan long tailed marmot (Arctowns casdahas), the most characteristic inhabitant of the alpinie meadows, are the omly mammals of the Panir proper. In the alpine region are found the badger (Meles laxus), the ermine (Puteriks erminest) and six other Mustelidac, the wild dog (Cawis alprinss), the common and the black-ared fox (C. medanotis), while the corsec for (C. corsoc) is met with ooly on the plaiss. Two apecies of lymy, the cbeetah (Felis jubale). F. manill, and \(F\). irbis, must be added to the above. The tiger is met with only oa the lower Amu-darya, except when it wanders to the alpise region in pursuit of the maral deer (Cerous maral). The jaclal is characteristic of the afeppes; it banishes the solves and foxes. Hares are represented by several species, Lapas lehmarni being the poost characteristic. Both whe common and the long tailed marmot (A. Matbocinas and A. candatas) Live at the foot of the mountains, as well as four species of Spermeptides, three of voles two of the mouse and three of the hamster. The Yeriones (four species) and the jertoa (fye species) are onty met witt in the steppe region. Of ruminants, beside the sheep (0 , poti.
 mom rigaci) (ormerty lrowne oaly in the Himalayas, the Chinese antelope (Antioper subgenarosa) and the sima antclope in the steppes, the Siberian iber and another coat. the yak, the rebu or Indian ox the common ol, the carmet and the dromedary. The rikd boar is common in the reed thickets along the rivers and lakes where it stays during the rinter. migratios to the bigh
lands in summer. Ibe boderiog and porcupine are common in the lands in summer. The bederiog and porcupine are common in the phins
No fewer than 385 species of avilauma are recorded, mase of them being middle-Exapopean and Medismranoan. A buge number were formerty known ooly in the Himalayas or in Perian, thike othen have their ongin in East Asia. The commonest are mostly European acquaintances The insect facnm is truly muhtitudinoves. Among the Lepidoperen of the Pamir there is an interestine mixture of Tiam-shan with Himalayza species G. E. Grum-Grshimailo found on the Parir the butterty; Caises ansies. a species changicterintic of Labradur and Lapland: like the aloine plants stich bear witnes to a Glacial period Bora is the Hi-mizias, this hotterty is a survival of the Glacial period favas of the Panair." Or so species of mollusca found in Turkestan quite aop half are peculizer to the recion.

Fisere.- As a strole the fore of Turtestan is ndentical wich that of Central Asin, which was formeity cor:tiver try seobotanists as har
 a separate regon sobdivided into two-qthe Cemel Acian proper and that of the Gohi. It has its own hationg morwitiontandieg the number of species it has in commen wizh Siberia and soutb-east Russi oo the con hand and with :be Kimaluras on the octher, and this havitus is due to the dropess of the ci: nate and the consequent changes viderpore 3 , the sol. Tinands the end of the Glacial perced the Tian-shan Mivirt ains had a thre ren. Hise thut of morthern Gaucasio corahinisic the charactenctios of the fiome of the Europpenn Alps and the dora of the Aisai, wtive the praities had a flome very much :ike that of the serct Russin stepres. Doriag the Stome Age rbe harian ishationns bund in fients of sumie. whize beach and apple rees. Est the grat.al derination of the cearetry respited

\footnotetext{

 deal with meporste divenve of the s namit and ingetable kingdom

}

in the immigration from the Central Asian plateas of auch apecies as could adape themselves to the dry climate and soil, in the dis appearance of European and Altaic species from alf the more arid parts of the region, in the survival ol steppe species, and in the adaptation of many of the existing species to the needs of an arid and extreme climate and a saline soil. 1 The Pamir vegetation and that of the Aral-Caspian steppes constitute two types with numberiess intermediate gradations.
There is no arboreal vegetation on the Pamir, except a few willows and tamarisks along the rivers. Mountain and valley alike are carpeted with soft grass, various species of Festuca predominating. In the immediate vicinity of water the sedge (Carex physoides) grows, and sporadic patches of Allium. To these may be added a lew Ranunculaceae, some Myosotis, the common Taraxacum, one species of Chamomilla, and a few Leguminosae. In the north and wert the Stipe of the Russian steppes supersedes Festuca and affords splendid pasture for the herds of the Kara-Kirghiz. In the gorges and on the better-watered slopes of the mounains the herbaceous vegetation becomes luxuriant. Besides the above-named there are many other Gramineac, such as Lasiagrostis splendens, the whole seas of Scabiosce. Eremurus, 6 to 7 ft . in height, Corms thickets along vith Scorodosma foetida. The northern slopes of the Alai chain are ticher in trees. Up to \(12,000 \mathrm{ft}\). full grown specimens occur of the archa or juniper (Juniperus pseudo-Sabina), characteristic of the whole northern slopes of the Turkestan highlands, the poplar, spruces, cedars, a very few birches (B. Sogdicma), and a copious undergrowth of shrubs familiar in European gardens, such as Rhododendron cirysanthum, Sorbus aucuparia (rowan), Berberis heleropada (berberry), Lonicara Tatarica (honeysuckic) and Cratorgus (hawthorn). Farther east and north comes the Turkestan pine (Picea Shrewiiand), while at lower levels there grow willows, black and white poplars, tamarisk, Celtis, as well as Elaeagnus (wild olive), Hippophae thamnoides (sallowthom), Rubus fructicosus (blackberry), Primess spinosa (blackthorn) and P.A Rmeniaca (apricot). The charncteristic poplar, Populus diversifolia, and the dwarf Acer Lobeliivery different from the European maple-also occur.

The above applics to most of the highlands of the Tian-shan. The drier southern slopes are quite devoid of arboreal vegetation. Oot the porthern slopes, at the higher levels, Juniperus pseudo-Sabina is the ouly tree that grows on the mountains, and luxuriant meadow grasees cover the syrts. Lewer down, at 7500 to 8000 ft . the conifcrous pooce begins, characterized by the Picea Schrenkiana. Of course the juniper and a few other deciduous trees also occur. The richest zone e that which comes next, extending downwards to 5000 and 4500 ft. There woods of birch, several species of poplar, the maple (Acer Semenorii), and thick underwoods spread over the mountain slopes. Orchards of apple and apricot surround the villages. The meadows are dothed with a rich vegetation-numberless Paeoniace, Scabiosac, Convolvalacese, Campanulae, Eremurus, Umbelliferae, Galliwm, Rosaciae, Allhece, Glycyrrhizoc, Scorodosma foetila a nd Gramineae. But as soon as the soil loses its fertile humus it produces only a few Phlomis, Alhagi camelorum, Psammae, Salsolaceae, Artemisice, Pogansm and some poppies and Chamomillac, but only ln the apring. The invading steppe plants appear everywhere in patches in the Turkestan meadows.

The "culture " or " apricot " zone is followed by the prairic belt, in which black-earth plants (Slipa and the like) struggle for exiscence againet invading Central Asian forms. And then come the lowlends and deserts with their moving sandy barkkons, shors and anyws (see Tramscasfian Region). Two species of poplar (\(P\). Erinose and P. diseraifolia), Elace gnus angustifolia, the ash, and a few willows grow along the rivers. Large areas are wholly destitute \(\alpha\) vegetation, and after crossing 100 m . of such a desert the traveller will occationally come upon a forest of seksamu (A nabasis A mmodenarow). Contorted stems, sometimes of considerable thickness, very hand, and covered with a grey cracked bark, rise out of the sand beariog green plumes with sanall greyish leavea and pink fruit. Somelimes the tree is a mere knot peeping above the sand with a deafi of thin brancbes. In spring, however, the steppe assumes quife another aspect, being clothed, except where the sands are shiting, with an aboundance of vegetation. Persian species penctrateinto Bokhara and the region of the upper Amu.

Vegetable Producta.-As already stated the climate of Turkestan varies conniderably from north to south. In Akmolinsk and Semiryechensk moot of the kinds of corn which characterise Middle Ruscia are grown. South of the Chu and the Syr-darya gandening is a conaiderable industry; and, although rye and wheat continue tn be the chief cropa the cultivation of the apple, and especially of the apricos, aequired importance. Attempts are also made to cultivate the vire. The inhabitants of the neighbourhood of Tashkent and Samaricand, an well as those of the much more northern bat better stritered Kulja casis, add the cultivation of the almond, pomegramare and hat. Vines are grown and cotton planted in those givericts. Finally, about Khojent and in Ferghana, where the climate ion milder still, the vine and the pistachio tree cover the hills, while egriculture and horticulture have reached a high degree of perfec-
\({ }^{1}\) See Kramov's researches in Imecsio of Russ. Geog. Soc. (1887). vol. exsiii
tion. Successful attempts are being made to grow the ten-plant in the Transcaspian region. Large aumbers of oleaginous plants are cultivated, such as sunflower.

Agriculture.-The arable land, being limited to the irrigated terraces of loess, occupies little more than \(2 \%\) of the whole area of West Turkestan. The remainder is divided between pasture land (less than \(44 \%\)) and desert (\(54 \%\)). Owing to a very equitable distribution of irtigation water in accordance with Moslem lawi agriculture and gardening have reached a high stage of development in the oases. Altogether close upon \(4,000,000\) acres are irrigated, and the crops are usually taken every year. Wheat, barley, millet, pease, lentils, rice, sorghum, lucerne and cotton are the chief agricultural products. Carrots, melons, vegetable marrows, cucumbers and onions are extensively grown. Rye and oats are cultivated at Kazalinsk and Kopal. Corn is exported. Owing to the irrigation, total failure of cropa and consequent famines are unknown, uniess among the Kirghiz shepherds. The kitchen girdens of the Mabommedans are, as a rule, admirably kept. Potatoes are grown only by the Russians. The cultivation of cotton is extending rapidly-from 1300 acres in 1883 to 531,000 acres in 1002, of which 402,000 acres were in Ferghana. Sericulture, a growing industry, is chiefly carried on in Ferghana, whence silk cocoons are an important item of export, the output having doubled between 1892 and 1903 (3869 tons). Livestock breeding is extensively pursued. The flocks of sheep on the Kirghis steppe are so large that the proprietors themselves do not know their exact numbers.

Minerals.-The mineral wealth of Turkestan is considerable. Traces of auriferous sands have been discovered at many places, but the percentage of gold is too poor to make the working remunerative. Silver, lead and iron ores oceur in several localities; but the want of fuel is an obstacle to their exploitation. The vast coal-beds of Kulja and some inferior oncs in Samarkand are not acrioudy worked. The petroleum wells of Ferghana and the beds of graphite about Zairamnor are neglected. There are abundant depoaits of gypsum, alum, bolin, marble and similar materiala. Asphalt is obtained in Ferghana. Notwithstanding the galt spring of Ferghana and Syr-darya, the salt lakes of the region, and the rock-salt strata of toe Alexander Mountaing, salt is imported.

Industry and Trade-Turkestan has no manufacturing industry carried on by means of machinery, except diatillerios and establishments for dressing raw cotton. These last have greatly increased in number; over a score are driven by steam and about a hundred by water. But there is a great variety of artisan work, such as copper and brass, paper, knives (at Bolchara), silver Giligree, shoes, caps (at Samarkand and Andijan) and carpets; but most of these have been for some time declining and now stand at a rather low level. Trade is very actively carried on. Tashkent and Bokhara are the chief commercial centres, the principal articles of export to Russia, via Orenburg and Semipalatinsk, being raw cotton and silk, cattle and their products, while manufactured wares are imported in return. There is also an import and export trade to and from Urumchi and China, via Kulja and Ak-su.

Population.-Turkestan has been the theatre of 50 many migrations and conquests that its present population could not fail to be very mixed. Both Aryans and Mongols have their representatives there, the former settled for the most part, the latter chicily nomad. The Ural-Altaians are numerically the predominant clement, and consist of Turkomans, Kirghir, Uzbegs and Sarts. The Turkomans inhabit chiefly the Transcaspian region. They number less than a quarter of a million. The Kara-Kalpaks (" Black Bonnets') number about r04,000. They are supposed to be recent immigrants to Syr-darya, having come from the former Bulgarian Empire on the middle Volga. Their language and habits are the same as those of the Kirghiz; but for the last century and a half they have had some acquaintance with agrculture. Tbeir pacific temper exposed them to the raids of the Kirghiz, who compelled them first to setile in Dzun. garia, then to move their dwellings several times, and utimately (in 1742) to recognize the sovereignty of Russia. Even since that time they have been driven by the persecution of their old enemics to cross the Aral-Caspian steppes and seek refuge ncar Astrakhan. The real masters of the steppes and highlands of Turkestan are the Kirghix, of whom there are two branches-the Kazak (Cossack) Kirghiz, who number about \(3,787,000\), and the Kara (Black) Kirghiz or Burut, who number nearly 202,000. The Uzbegs, who plajed a predominant political part in Turkestan before the Russian conquest, are of Turko-Tatar origin and speak a pure Jagatai (Turkish) dialect; but they are mixed to a great extent with Persians, Kirghiz and Mongols. They are subdivided into clans, and lead a semi-nomadic life, preserving most of the attractive features of their Turkish congeners-especially their bonesty and independeace. They number some 7a6,500 in

Obshechesto po contrulnoy A siya, 1803-8805 (St Petersburg, 1807. \&c.); V. I. Roborovsky, Trudy Tibetskoi Ekspeditsiy, 8880-1800; K. Bogdanovich. Godeguchaskiya Isledonaniya o. Vastochnom furkestame and Trudy Tibutskoy Ekspedisıy, 1889-1800 (St Petersburg, 1891-1892); V. A. Obruchev. Centralnayz Asiya, Savernty Kuai i Nas-schem., 1802-1804 (2 vols., St Petersburg, 1899-190r); A. N. Kuropatkin, Kashgaria (Eng. trans., London, 1883); and P'. W. Church. Chumese Turkestan with Caravan and Rifie (London, 1901). For the archaeological discoverics, see the books of Sven Hedin already quoted; M. A. Stein, The Sand-buried Cities of Kholan (Landon, 1903), and Geographical Journal (London, July and Sept., 1gog); and D. A. Klements and W. Radlov, Nachrichten uber die von der k. Akademie der Wissenschaflen su St Pelersburg int Jahre 1808 austeristelem Expedision (St Petersburg. \({ }^{1899}\)). Consult also books cited under Than-shan, Lop-nor, Gom and Kuen-lun. (J.T. Be.; P.A. K.)
TURKEstan, or Farret, a town of Russian Turkestan, in the province of Syr-darya, on the railway from Oreaburg to Tashkent, from which it lies 165 m . to the N.N.W. Pop. (1897), 11,502. It lies on the rigbt bank of the Syt-darye river, 10 m . from it, at an altitude of 833 ft . It has a very old mosque of the saint Hasret-Yassavi, which attracts many pilgrims. It is an important depot for hides, wool and other produce of cattlebreeding. The lown was captured by the Russians in i864.

TURKEY. The Turkish or Ottoman Empire comprises Turkey in Europe, Turkey in Asia, and the vilayets of Tripoli and Barca, or Bengazi, in North Africa; and in addition to those provinces under immediate Turkish rule, it embraces also certain tributary states and certain others under foreign administration. Turkey in Europe, occupying the central portion of the Balkan Peninsula, lies between \(38^{\circ} 46^{\circ}\) and \(42^{\circ} 50^{\prime} \mathrm{N}\). and \(19^{\circ} 20^{\prime}\) and \(99^{\circ} 10^{\circ} \mathrm{E}\). It is bounded on the N.W. hy Montcnegro and Bosnia, on the N. by Servia and Bulgaria, on the E. hy the Black Sea and the Bosporus, on the S. Ly the Sea of Marmora, the Dardanelles, the Aegean Sea and Greece, and on the W. by the Ionian and Adriatic Seas. Turkey in Asia, fronting Turkey in Europe to the southeast, and lying between \(28^{\circ}\) and \(41^{\circ} \mathrm{N}\). and \(25^{\circ}\) and \(48^{\circ}\) E., is bounded on the N. by the Black Sea, on the N.W. by the Bosporus, the Sea of Marmora and the Dardanclies, on the W. by the Acgean Sea, on the E. by I'ersia and Transcaucasia, and on the 5. by Arabia and the Mediterranean. So far as geographical description is concerned, the separate articles on Ast, Minor, Albania, Armenia, and other areas nentioned belowconstit uting the Turkish Empire-may be consulted. (For maps of Asiatic Turkey, sec Arabia; Armenia; Asla Minor. I'alestine; Syela.)

The possewsiuns of the sultan in Europe now consist of strip of teritury stretching continuously across the Balkan f'eninsula from the Boxporus to the Adriatic (\(29^{\circ} 10^{\prime}\) to \(19^{\circ} 20^{\prime}\) E.), and lying in the cast mainly between \(40^{\circ}\) and \(42^{\circ}\) and in the west betwees A9 and \(43^{\circ} \mathrm{N}\). it comesponded roughly 10 ancient Thrace. Mace Jonia with Chakidice. Epirus and a large part of 1llyria, constituting the present administrative divisions of Stambul (Constantinople inclutiog a small strip of the opposite Asiatic coast), Edime (Adria nople), Salunica with Kossovo (Macedunia), lannina (parts Epirus and Thessaly), Shbodra (Scutari or upper Albanta). these must be adsed the Turkish ishands in the Aevean usualh reckoned to Europe, that is, Thasus Sumothrace. Imbros and, the extrene south. Crete or Candia. In Dexember 1893, however Crete was granted practical independence, under the protection of Cireat Britain, Firance, italy and Rusia (sce Cretw), and it suzerainty of the sultan is purely sominal.

Astaif Tuskey. - The mainstay of the Orioman dymasty is the Asiatic portion of the empine, where the Alahonmmedan religion is absolutely pretominant, and where the nat urally vievrous and robus Turki race forns in dsia Minor a compact mass of many millions far outrumbering \(2 n y\) other single ethnical clerment and probab squalling all anken collectivels: Here also, with the unimportam excention of the islande of Samos and Cyprus and the somewhas: privileged district of Letwanon, all the Turkish possessions constitute vilayets directly contrulled by the l'orte. They cumprise the gev staphically distinct regions of the Anatolian plateau (Asix Minor) the Armenian and Kurdish highlands, the Mesopotamian lowland the billy and party mountainous territony of Syria and Patcstioe and the const 4 nds of west and northeast Arabis. Asiatic Turkey is couserminous on the east with Rustia and Prt weat is enclowes on the wext, north and pur of Arbia. Tomande Eypt the flon
the south-west by the Red Sea, and in the south-east by the Persian Guth.
Turkey's Arabian possessions comprise, besides El-Hasa on the Peminn Gulf, the low-lying, hor and insalubrions Teharna and the wouth-western highlands (vilayets of Hejaz and Yemen) stretching continuously along the east side of the Red Sea, and including the two holy cities of Mecca and Medina.

Afrcan Terruories.- Turkey in Alrica has gradually been reduced to Tripoli and Barce. Egypt. though nominaly under Turkish suzeranty, has formed a practically independent priscipality since 1841, and has heen de facto under British protection since 1881.

Population.-The total population of the Turkish Empire in 1910, including Egypt and other regions nominally under the sultan's suzerainty, was \(36,323,539\), a veraging 25 to the aquare mile; in the provinces directly under Turkish government, 25,926,000.

The following towas have over 50,000 inhabitants each: Constantinople, 1,150,000; Smyrna. 250,000; Bagdad, 145.000; Damascus, 145,000; Aleppo, 122,000; Beirut, 118,000; Adranogle, 81,000; Brusa. 76,000; Jerumalern, 56,000; Cacsarea Mazaca (Kaiearich). 72,000; Kerbela, 65,000; Moosatir, 53,000; Mosul/61,000; Mecea, 60,000; Homs, 60,000; Sana, 58,000; Uria, 55,000; and Marash. 52,000.

Race and Religion-Exact statistics are not available as regards either race or religion. The Osmanlis or Turks (q.s.) are supposed to number some 10 millions, of whom \(1 \frac{1}{2}\) million belon to Turkey in Europe. Of the Semitic races the Arabs-over whom, however, the Turkish rule is littic more than nominatnumber some 7 millions, and in addition to about 300,000 Jews there is a large number ol Syrians. Of the Aryan races the Slave -Serbs, Bulgarians, Pomaks and Cossacks-and the Greeks predominate, the other representatives being chiefiy Albanians and Kurds. The proportion borne to one another by the different religions, as estimated in 1910, is: \(50 \%\) Mussulman, \(41 \%\) Orthodox, \(6 \%\) Catholic, \(3 \%\) all others (Jews, Druses, Nestorians, \&c.). In the European provinces about two-thirds of the popuiation are Christian and one-third Mabommedan. Full and lairly accurate statistics are available for a considerable portion of Asiatic Turkey. Out of a population of \(13,241,000\) (1896) in Armenia, Kurdistan and Asia Minor, 10,030,000 were returned as Mahommedans, \(1,144,000\) as Armenians, \(1,818,000\) as other Christians, and 249,000 as Jews. There are also about 300,000 Druses and about 200,000 Gipsies. The non-Mussulman population is divided into millets, or religious communities, which are allowed the Iree exercise of their religion and the control of their own monasteries, schools and hospitals. The communities now recognized are the Latin (or Catholic). Greek (or Orthodox), Armenian Catholic, Amenian Gregorians, Syrian, and United Chaldee, Maronite, Protestant and Jewish. The table on the following page, for which the writer is jadebted to the kindness of Carolidi Effendi, formerly professor of history in the university of Athens, and in 1910 deputy for Smyrna in the Turkish parliament, shows the various races of tbe Ottoman Empire, the regions which they inhabit, and the religions which they profess.

Administration.-Until the revolution of 1go8, with a very short interval at the beginning of the reign (1876) of the deposed sultan Abd-ul-Hamid, the government of Turkey had been essentially a theocratic absolute monarchy. It was subject to the direct personal control of the sultan, who was himself a temporal autocrat, which be now is not, and the most generally recognized caliph, that is, "successor," of the Prophet, and consequently the. spiritual head of by far the greater portion of the Moskem world-as he still is. Owing principally to the fact that the system of the caliph Omar came to be treated as an immutable dograa which was clearly not intended by its originator, and to the peculiar relations which developed therefrom between the Mussulman Turkish conquerors and the peoples (principally Christian) whirh fell under their sway, mo such thing as an Ottoman mation has ever been created It has been a juxtaposition of separate and generally hostile peoples in territorics bound under one ruke hy the military sray of a dominant race. Various endeavours have been made since the time of Selina III. (\(17 \mathrm{SO}_{\mathrm{o}} \mathrm{i} \mathrm{SO}_{7}\)), who iniciated therm. to break down the barriers to the formation of a bowogeneous nation. The most earnest and

\begin{tabular}{|c|c|c|}
\hline Races. & Regions inhabited orvilayets. & Religions. \\
\hline Abanians & lannina. Scutan of Altania, Kossovo, Monastir & Mussulman, Orthodox, Catholic \\
\hline Bulgarians & Salonica, Kossovo, Monastir & Orıhodox (\\
\hline & Kossovo & Orihodox \\
\hline Grec & Constantinople, Adrianople, Salonica, Monastir, Ros- & Orthodox and partly Greco \\
\hline & sovo. Janina. Archipelago, & catholic \\
\hline & (Hutavendighiar, Aidin, & \\
\hline & Konia, Angora, Kastamuni, & \\
\hline & Trebizond. Sivas, Adanis & \\
\hline & of & \\
\hline \multirow[t]{2}{*}{Kutzo- 17 lachs (See Macedonia)} & Monasior, Ia & Orthodox \\
\hline & & \\
\hline \multirow[t]{6}{*}{Turle} & The whole of European Tur- & Mussulman \\
\hline & key, Vilayets of Asia Minor. & \\
\hline & (Bitlis, Van, Mamuret-utAziz. part of Mosul and cer- & \\
\hline & tain islands of Vilayel of the & \\
\hline & Archipelago. of Cyprus. & \\
\hline & & \\
\hline Lusen & Trelazond and ihroughout the whole of Eastern Asia & Mussult \\
\hline Kurds & Alinor & \\
\hline \multirow[b]{2}{*}{Circasrians} & Mlosul & \\
\hline & Spread over the whole of Asia & Mussulman \\
\hline \multirow[t]{3}{*}{Avchar} & Adara, Angora, Siva & \\
\hline & Adara,Alcppo,Syria.Bagdad. & \\
\hline & Sanjak of Jerusalem, Hejaz, & \\
\hline \multirow[t]{6}{*}{Armenians} & Cons:aminople and spread & \\
\hline & over the other Vilayets of Turkey in Europe: also & Catholic \\
\hline & Sivas. Angora, Trebizond. & \\
\hline & Adana, Erzerum, Bitlis. & \\
\hline & Manturet-ul-Aziz, Mosul. & \\
\hline & Spread ithough Turkey in & Jew \\
\hline & Europe and \(\lambda\) sia, and large- & \\
\hline & ly congregated in the San- & \\
\hline & pak of Jerusalem, and in the Vilayels of Bagdad. Mosul. & \\
\hline & Syria, Beirut. . & \\
\hline Samaritans & Only in the Sanjak of Nap- & Samaritan Jew \\
\hline \multirow[t]{2}{*}{Cipsies} & Spread ihronghout the whole & Mussulman \\
\hline & & Munsan \\
\hline \multirow[t]{6}{*}{Chaldreans or Nevturians. speaking partly Sypochaldaic and partly Arabic (Syrochaldaic in their chusches)} & Bagdad, Mosul and partly & Nestorian \\
\hline & Aleppo, Beirut and Mamu-ret-il-Aziz & Claristian \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline Irelchites, or Syrian Greoo- & & dox \\
\hline Catholics & & \\
\hline (r,reek in lecl & & \\
\hline ing. speaking & & \\
\hline \multirow[t]{2}{*}{} & Reirut. Syria, Aleppo. & \\
\hline & Mlamuret-ul-Aziz & and Jacobi \\
\hline \multirow[t]{2}{*}{speaking Ara. bic and partly Syrian (Syrian in their churches)} & & \\
\hline & & \\
\hline \multirow[t]{4}{*}{Monites (speak. ing Arabic and in their chirches Syrian)} & Mi lelunon, Reirut & onophysite \\
\hline & & (Calholic \\
\hline & & monothelite \\
\hline & \multirow[t]{3}{*}{Alt lebanon, Sanjak of Hauran Basra} & Druse \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Dreses \\
Merdailes or Ben-i-Yahya
\end{tabular}} & & Sabacan: or of \\
\hline & & \\
\hline & & Pen-i-Ya \\
\hline & & whomthey re. \\
\hline & & gard as their \\
\hline \multirow[t]{2}{*}{Yezrites.} & Mosul, Bagdad, Basta & Yezzite (Mahom- \\
\hline & & medan sect) \\
\hline
\end{tabular}
important of these attempts under Abd-ul-Mejid (1839-1861) proved, however, for various reasons abortive. So also did the Midhat Constitution " promulgated by Abd-ul-Hamid almost immediately after his accession to the throne, owing largely to the reactionary spirit at that time of the 'Ulcma and of the sultan's inmediate adviscrs, but almost, if not quite, in equal measure to the scornful reception of the Constitution by the European powers. The 'Ulema form a poweriul corporation, whose head, the Sheik-ul-Islam, ranks as a state functionary almost co-cqual with the grand vizier. Until quite recent times the conservative and fonatical spirit of the 'Ulema had been one of the greatest obstacles to progress and reform in a political system in which spiritual and temporal functions were intimately interwoven. Of late years, however, there has been a gradual assimilation of broader views by the leaders of Islam in Turkey, at any rate at Constantinople, and the revolution of 1908 , and its affirmation in the spring of 1909 , took place not only with their approval. but with their active assistance. The theoretical absolutism of the sultan had, indeed, always been tempered not only by traditional usage, local privilege, the juridical and spiritual precepts of the Koran and the Sunnet, and their 'Ulema interpreters, and the privy council, hut for nearly a century by the direct or indirect pressure of the European powers, and during the reigns of Abd-ul-Aziz and of Abd-ul-Hamid by the growing force of public opinion. The ent husiastic spirit of reform which beralded the accession of the latter sultan never altogether died out, and from about the last decade of the roth century has been rapidly and effectively growing in force and in method. The members and sympathizers of the party of reform who styled themselves " Young Turks," working largely from the European centres and from the different points in the Turkish Empire to which the sultan had exiled them for the purpose of repression-their relentless persecution by the sultan thus proving to be his own undoing-spread a powerful propaganda throughout the Turkish Empire against the old regime, in the face of that persecution and of the open and characteristic scepticism, and indeed of the hostile action, of some of the European powers. This movement came to a head in the revolution of 1908. In July of that year the sultan Abd-ul-Hamid capitulated to the Young Tuiks and icstored by Iradé (July 24) the constitution which he had granted in December 1876 and suspended on the 14 th of February 1878.
A reactionary movement started in April 1909 was prompily suppressed by the Young Turks through the military occupation of Constantinople by Shevket Pasha and the dethronement of Abd-ul-Hamid, who was succeeded by his younger hrother Reshad Elfendi under the title of Mahommed V. A Dew constitution, dillering from that of Abd-ul-Hamid only in some matters of detail, was promulgated by imperial Irade of the 5th of August 1909 .
In temporal matters the sulfan is a constitutional monarch, advised by a cabinet formed of executive ministers who are the heads of the various departments of state, and who are responsible to the elected Turkish parliament. All Turkish subjects, of hatever race or religion, have equal juridical and political rights and obligations, and all discrimination 35 to military service has leen abolished. The sultan remains the spiritual head of Islam, and Islam is the state religion, but it has no other distinctive or theocratic character. The grand vizier (sadr-azam), who is timminated by the sultan, presides ex officie over the privy councia (utejliss-i-hhass), which, besides the Sheikh-ul-Islam, comprises the ministers of home and foreign affairs, war, finance, marine, cimmerce and public works, justice, public instruction and pious foundations " (evkof), with the grand master of ordnance and the president of the council of state.
For administ rative purposes the immediate possessions of the sultan are divided into vilayets (frovinces), which are again subdivided into sanjaks or mutessarifliks (arrondissements). these into kazas (cantons), and the kazas into nahiés (parishes or communes). A vali or governor-general. nominated by the sultan. stands at the bead of the vilayet, and on him are directly dependent the kaimakams, mutassarifs, deftardars and otber alministrators of the minor divisions. AL these officish unite
in their own persons the judicial and execulive functions, under the "Law of the Vilayets," which made its appearance in 1861, and purported, and was really intended by ils framers, to confer on the provinces a large measure of self-government, in which both Mussulmans and non-Mussulmans should take part. It really, however, had the effect of centralizing the whole power of the country more absolutcly than ever in the sultan's hands, since the Valis were wholly in his undisputed power, while the ex officio official members of the local councils secured a perpetual Mussulman majority. Under such a system, and the legal protection enjoyed through it by Ottoman functionaries against evil consequences of their own misdeeds, corruption was rife throughout the empire. Foreigners setted in the country are specially protected from exactions hy the so-called Capitulations (q.e.), in virtue of which they are exempt from the jurisdiction of the local courts and amenahle for trial to tribunals presided over by their respective consuls. Cases between foreigners of different nationalities are heard in the court of the defendant, and bet ween foreigners and Turkish subjects in the local courts, at which a consular dragoman attends to see that the trial is conducted according to law. (See further, as regards Turkish administra. tion, the account given under History below, regarding the reforms instituted under the sultan Abd-ul-Mejid in 8839.)

Education.-The schools are of two classes: (1) public, under the immediale direction of the state; and (2) private, conducted cither by individuals or by the religious communities with the permission of the government, the religious tenets of the non-Mussulman population being thus fully respected. State education is of three degress: primary, secondary and superior. Primary education is gratuitous and obligatory, and superior education is. gratuitous or supported by bursaries. For primary education there are three grades of schools: (1) infant schools, of which there is one in every, village: (2) primary schools in the larger villages: (3) superior primary schools. Secondary education is supplied by the grammar school, of which there is one in the capital of every vilayet. For superior education there is (1) the university of Constantinople, with its Iour faculties of letters, science, law and medicine; and (a) special schools, including (a) the normal school for training teachers. (b) the civil imperial school, (c) the school of the fine arts and (d) the imperial schools of medieine.

Public instruction is much more widely diffused shroughout the empire than is commonly supposed. This is due partly to the Christian communitics, notably the Maronites and others in Syria, the Anatolian and Rumelian Greeks, and the Armenians of the eastern province and of Constantinople. Under the reformed constitution (Aug. 5, 1909) educalion is free, and measures have been taken largely to extend and to co-ordinate lhe education of all "Ottomans," without prejudice to the religious educational rights of the various religious communities. Primary education is obliga. tory, Among the Christians, especially the Amenians, the tory Among the Chris Syrians of Beirut, it has long embraced a considerable range of subjects, such as classical Greek, Armenian and Syriac, as well as modern French. Italian and English, modern history, geography and medicine. Large sums are ireely contributed for the establishment and support of good schools, and the cause of national cducation is seldom forgotten in the legacies of patriotic Anatolian Greeks. Much educational work has also been done by American colleges, especially in the northem provinces of Asia Minor, in conjunction with Robert College (Constantinople).

Army.-In virtue of the enactments of May 1880, of November 1886, of February 1888 and of December 1903 . militiry service had been obligatory on all Mussulmans, Christians having been excluded but under obligation of paying a " military exoneration tax " of [Tso lor 135 males between the ages of 15 and 75 . Under the new regme this system, which had greatly cramped the military strength and efficiency of the Ortoman Empire, has been chaneed, and all "Ortomans "t are now subject to milisary service. Under certain conditions, however, and on payment of a certain exoneration tax, exemptioo may still be purchased. The revision ol the whole military system was undertaken in tgio, especially ts refards

four in the case of cavalry and artillery; six and five respectively in the reserve (ikhtiat); Landwehr (redif) nine years; territorial (wustahfiz) two years. In case of supreme necessity all males up to 70 years of age can be called upon to join the colourn. There are certain recognized rights to exemption from military service, such as some court oflicials, state officials, students in normal schools, medicine and law colleges, \&c. The redifs form the principal part of the army in time of war, and are divided into two classes: Class I. comprises all men in the service who have complated their time with the nizam. In peace-time it is composed of weale cadres. on which falls the duty of guarding magazines and stores, and of carrying through musketry instruction and drill of the rank and file of the ikhtiat and the redif. Class /I. was first established in 1898 under the name of ilaueh, and became "redif, class 11." in 1go3. This class is distributed in very weak cadres in time of pence. In time of war it is completed. by all troops not serving with the nizam, the redif class 1 . or the mustahfix. As the organization procceded, and stronger cadres were formed, the redif class 11. would become completely absorbed in class 1. The mustahfiz have no cadres in peace-time.

The army is divided into seven army-corps (ordus), each under the command of a ficid marshal, and the two independent commands of Tripoti (Africa) and the Hejaz. The headquarters of the ordus are I.. Constantinople; 11.. Adruanople; 111., Salonica; IV., Erzerum: V., Damascus; V1., Bagdad; VII., Yemen; 15th division, Tripoli; I6th division, Hejaz. Only the first six a rmy corps have, however their proper establishment: the seventh ordu and the commands of Tripoli and the Hejaz ha ve only garrison iroops, and are fed by drafta from the first six ordus. Each ordu territory, from 1. to V1., is composed of 8 redif brigade districts of 2 regimental districts of 4 battalion districts apicce, cach ordu thus counting 64 battafion districts. The total sirength of the Otioman army in 1904 e2s returned at \(\mathbf{1}, 795,350\) men all toid, made up as follows: (1) Nctive (4 years' service) 230.408 (called), reserve (ikhtiat) \(25!.511\) (called), total \(481,919:(2)\) nizam (class I., completely trained) 237,026 (called): (3) redif (class It, not completely trained). from 21-29 years old, 585,846 ; from \(30-38\) years old, 391.563: total 977.409 (uncalled); (4) mastahfiz, trained 53.715 (called), untrained 40,286 (uncalled), total 94.001.

The strength of the different arms is given as follows:-
Infantry.-79 nizam inlamtry regiments 1 to 80 (4 is missing). each regiment consisting of four battalions of four companies apiece. Allowing for certain battalions unformed, there are altogether 309 nizam battalions; 20 separate chasseur battalions, of four companies each: 4 special chasseur battalions stationed on the Bulgarian Ironticr-total, 333 battalions in the first line. There are 96 infantry battalions of redif elass 1 .; each regiment composed of 4 battalions-total 384 battalions. (In Igo4 the 4 th battalion of the 94 th regiment, and regimenes 95 and 96 had not yet been formed, but, it was stated, had by 1910 been made good.) The projected strength of redif class 11. was 172 regiments of 4 battalions eachtotal, 688 battalions. At the end of 3904 the organization of this class was stated as completed in Turkey in Europe at 40 battalions with a total of 160 regiments: how far the ongenization had progressed in 1910 in Asiatic Turkey was nol known.

The following table shows the war strength of battalions, and the total war strength of the infantry arms-

The sroops are armed principally with Mauser repeating rifies (models 1887 and 3890) of which there are \(1,120,000\) issued and in store; there are also \(\$ 10,000\) Martini-Henry rifles in reservie.

Cavalry.-Cavalry of the Guard: I regiment "Ertogrul" or 5 squadrons, 2 regiments of hussers of 5 squadrons cach. and 2 regiment of lancers of 5 squadrons. Nizam Cavalry: 38 regiments of 5 squadrons each, or 190 squadrons in all.

Redif Cavalry. -12 regiments of 4 squadrons each, or 48 squadrons in all, atiached to the first three ordus. It was firther proposed to appoint one regiment of redif eavalry to each redif division. On war looting the strength of a squadron of cavalry is 6 offecer:. 100 men, 80 horses (Ertogrul- 140 men, 135 borses). The nizan cavalty is incorporated with the first six ordus. one cavalry divisina of 3 brigades of 2 regiments each being appointed to each ordu. The redif cavalry is not organized with large units, and in time of war would be employed as divisional troops. The total war strengith ol the cavalry is 54 regiments (210 squadrons); 1580 officers, 26,800 men. 21,900 horses The cavalry is armed with repeating castases (the N.C.O.'s with repeating revolvers) and swords.

Arfillery. -From ancient times the artillery has formed an
altogether independent commasd in the Turkieh arny. The grand master of ordoance is co-equal with the rainitter of war, and his department is classed ceparately in the budzet; the artillery establisiments, parts of the infantry and of the technical corps, and even hospitala are placed under his direct orders. The artillery is divided into (a) feld artillery, horse artillery, mountain artillery and bowitzer megiments; (b) fortress artillery; (c) artillery depots. All artillery troope are nizam: there is no second line. On principle an ardu would have with it 30 batteries of field artillery, 3 batteries of borse artillery and 3 batteries of mountain artillery, or in all 36 batteries with 216 guns, all batteries being 6 guns strong. But the unequal strength of the ordus and political and other reasons have prevented this organization from being carried durt.
On war-footing each field battery has 4 officers, 100-120 N.C. officers and men, 100-125 horses and draught animals, 3-9 ammunition wagons; cach horse battery, 4 officers, 120 N.C. officers and men, 100 homes dic, 3 ammunition wagons; each mountaia battery, 3 officers, 100 N.C officers and men, 87 horsea, 2tc.; each howitzer battery, 4 officers, 120 N.C. officers and men, 100 horscs, \& 2 ., 3 ammunition wagons
In 1904 the total strength of the artillery was given as 198 field batreries (i188 guns), 18 horsc batteries (io8 guns), 40 mountain batteries (240 guns) and 12 bowitzer batteries (72 gung): total 268 batteries (1608 guns). The guns are of various Krupp types. The ammunition train counts 1254 wagons. On a war-footing the streagth of the artillery troops is 1032 officers and 29,380 men.
Tecknical Troops. -These are formed into battalions of pioneers, railway troops, telegraph troops, sappers and miners, Acc.; in all in battalions (55 companies) numbering 245 officers and 10.470 men. Other non-combatant troops, fuch as milltary train, medical corps, ac, are undergoing reorganization. (For the history of the Turkish asmy, see AnMT, \% 98.)
Navy.-The Turkish sea-power. already decayed owing to a variety of caupes (tor the effect of the revolt of the Greek isfanders wee Greiri Inderendence, War of), was shatered by the catastrophe of Sinope (1853). Abd-ul-Axiz, however, with the aid of British naval officers, succeeded in creating an imposing fleet of ironclads constructed in English and French yards. Sultan Abd-ulHamid, on the other hand, pursued a settled policy of reducing the fleet to impotency, owing to his fear that it might turn against him as it had turned against Abd-ul-Aziz. He added, it is true, a few torpedo boats and destroyers, but he promptly had them dismantled on arrival at Constantinople. These now refitted, a cruiser ordered from Cramp's shipyard (America) and another Irom W. G., Armatrong, Whitworth \& Co.. and the batileship "Mescudjyeh" (9100 tons displacement) reconstructed by the firm of Ansaldo (Genoa) in 1902, and re-armed by Vickers, Sons \& Maxim, formed the only really effective war-ships at the cisposal of Turkey in 1910, although a few, armoured ships in addition migbt utill serve for coast defence at a pinch, and a few more for training ships. Taking all into account, the available strength of the fleet might be put at 7 armour-clad ships, of which the "MessuGiych "ras one, the six others varying in displacement (rom 2400 to 6400 tons; two cruisers (unarmoured) of 3800 tons displacement ; come 18 gunboats; 12 destroyers, 16 first-class torpedo boats and 6 second-class torpedo boats. There were also two Nordenfeldt tabmarine boats of doubtful efficiency.
Up to 1908 the permonnel was found by yearly drafts of two to three thousand men from army recruits designated by the minister of War; the term of eervice was 12 years, of which 5 were in the first line, 3 is the reserve, 4 in the coastguard. The peace cadres (including 2 battalions of marines and 4 battalions of mechanics) were supposed to comprise 12,500 men on peace-footing, to be increased on declaration of war to 37,000; but these cadres were mainly os paper.
Under the " aew regime" the Turkish government dipplayed commeadable emergy in reconstructing and reorganizing the seapower of the erapire. New construction to an amount of \(£ \mathbf{T} 5.000,000\), repayable over ten years at the rate of 5 T 500,000 a year by mational subscription guaranteed by the government, had by 1910 been voted by perliament. The programme of construction which this initial expenditure was to cover was fixed at two battleships of about 16,000 tons displacement, one armoured cruiser of about 12,000 tons displacement, sorme few auxiliary vessels (destroyers and cunboats), aod a soating dock to lift about 17,000 tons. The main armaneent of the battieshipe was to be three pairs of 12 -in. guns in three terrets, and three pairs of \(9 \cdot 2-\mathrm{in}\) in three turrets. The secondary armament was to be eixteen 4 -in. Q.F. guns, and a few ompller guns (boat and field). The armoured cruiger was to carry four pairs of 9 -2-in. guns in four turrets as main armament, and fourteen 4 -in. OF: gunc, and a few boat and field guns ns necondary armament. Britial naval offioers were engnged for training the perwonnel, and to ascist in the rearganization of the fleet.

Conemenications.-A considerable hindrance to the development of the empire's resources has been the lack of an adequate system of conmmunications; but although it in still deficient in good roads, much has beea done of late years to develop railways, extend canals and impcove river communicationa. From 1250 in 1885, of which 903 were in Europe and 347 in Ania, the mileage nf railways had increased to some 440 in \(\mathbf{3 9 0 9}\) rof which 1377 are in Europe, is10 in Aria Minor, 418 in Syria and 835 fall to the share of the Hejaz railway.
including the Ed-Dera-Haifa branch. The construction of thia last line is one of the most rectharkable achievements of the reign of Abd-ul-Hamid. It may be aaid to be an absolutely autocthonous enterprise, po recourse having been had to foreign capital to find the means requisite for construction and equipment, which were provided by meanas of a "national subecription"-not entirely voluntaryand from other sources which, although the financial methods were not strictly orthodox, were strictly Turkish. The line was designed, surveyed and constructed by Turkish engineers-employing Ottoman navvies and labourers-in a highly efficient and economical manner, the average cost per mile having been 53230 , alt hough considerable engineering difficulties had to be overcome, especially in the construction of the Haifa branch. The fine, stations, sheds and stores ars all solidly built, and the rolling stock is sufficient and of the best quality (see further under Finance, below).

Production and Industries. - The Ottoman Empire is renowned for its productiveness, but enterprise and skill in utilizing its capabilities are still greatly lacking. For the introduction of improvements something, however, was done by the creation in 1892 of a special ministry of agriculture, to which is attached the department of mines and forests, formeriy under the minister of finance. Since the year named an agricultural bank has been established, which advances money on loan to the peasants on easy terms. Schools of agriculture have heen opened in the chicf towns of the vilayets, and in conncxion with those schools, and elsewhere throughout the cmpire, model farms have been instituted, where veterinary instruction can also be obtained.
To prevent the gradual destruction of the forests hy unskilful management and depredations, schools of forestry have been founded, and means have heen taken for regulating the cutting of wood and for replanting districts that have been partially denuded. About 21 millions of acres are under wood, of which over 3 millions are in European Turkey.
Wheat, maize, oats, barley and rye are the chief agricultural products. The culture of cotton is making rapid progress, immigrants who recrive a grant of land being obliged to devote one-fourth of it to corton culture. Tobacco is grown all over the empire, the most important market for it being Smyrna. Opium is mainly grown in Anatolia. All the more common fruit-trees flourish in most districts. In Palestine and elsewhere there is a large orange trade, and Bacra, ia Turkish Arabia, has the largest export of dates in the world. The vine is largely cultivated both in Europe and Asia, and much Turkish wine is exported to France and litaly for mixing purposes. The chief centres of export are Adrianople (more than half), Constantinople and Smyrna. the others being Brusa, Beirut, Ismid, Mytilene and Salonica. Under the auspices of the Ottornan public debt administration silk culture is also carried on with much success, especially in the vilayets of Brusa and Ismid. In 1888 a school of sericulture was founded by the public debt administratina for the rearing of silkworms according to the Pasteur reethod. The production of salt is also under the direction of the pablic debt administration. About a fourth of the salt produced is exported to foreign corntries, and of this about three-fourths goes to British India. Since 1885 great attention has been paid to the sponge fisheries of Tripoli, the annual value of which is about \([30,000\) With its extensive ea-coast. and its numerous bays and inlets, Turkey has many excelieat fishing-grounds, and the industry, the value of which is estimated at over \(£ 200,000\) a year, could be greatly developed. Its general progress may be seen in the increase of the fishery revenue-derived from duties, permits, acc-of the public debt administration. Among other important productions of the Ottorman Empire are srsame, coleseed, castor oil, flax, hemp. aniseed. mohair, saffron, olive oil, gums, scammony and liquorice. Attar of roses is produced in large quantities both in European and Asiatic Turkey, and to aid in furthering the industry numerous rove plants are distributed gratuitously. The empire is rich in minerals, includiog gold, silver, lead, copper, iron, coal. mercury, borax, emery, xinc; nnd only capital is needed for successful exploitation. The silver, lead and copper mines are mainly worked bv British eapital. The more special industries of Turkey are tanning, and the manufacture of muslin, velvet, silk, carpets and omamental wea pons.
Shipping and Commerce.-The figures obrainahle with respect to shipping are a pproximate, the statistical data not being altoget her complete. In 1890-1891 the number of steamers that entered and cleared Turkish ports was 38,601 , and of sailing vessels 140,726 , the total tonnage of both classes of vessels being 30.509,861. In 1897-1898 the number of steamers was 39.680 of \(32,446,320\) tons, the number of sailing vessels being 134,059 of \(2,207,137\) tons, thus giving a total tonnage of 34.653 .457 . In \(1 g 04-1905\) the number of stearaers was 49.235 of \(44.180,000\) tons, and of zailing veselts 133,706, with a tonnage of \(2,506,000\) tons, the total tonnage being thus \(46,686,000\) tons. In 1909 the total tonnage was \(43,060.515\). About a third of the tonnage belongs to British vessels. The number of ateamshipa belonging to Turkey in 1899-1900 was 177 of 55,933 tons, as
compared with 87 of 46,498 tons in 1897-1898, the number of sailing vessels in the same years being respectively 2205 of 141,055 tons and 1342 of 252.947 tons. The following tables show the total value of exports and imports arranged according to countries of origin or destination for 1905-1906 and 1908-1909; the same information for the year t905-1906 with respect to the principal ports of the empire, and the tonnage of vessels cleared thereat during the year \(1908-\) 1909; and the value of the principal articles imported and exported for the year 1905-1906.

Volue of Principal Articles Imporicd and Exported for the year \(1005-1000\).
\begin{tabular}{|c|c|c|}
\hline Nature of Goods. & Imports. & Exports. \\
\hline Barley . & £ & \[
\frac{\mathcal{L}}{658.462}
\] \\
\hline Rice & 944.950 & - \\
\hline Opium & - & 639.630 \\
\hline American Cluth & 1.404 .803 & \\
\hline Grapes & - & 2,065,642 \\
\hline Figs \({ }^{\text {c }}\) & - & 791,473 \\
\hline Cotton & 二 & 449.628 \\
\hline Crude Iron and Iron Bars & \$32,091 & 548.442 \\
\hline Sheepskins and Groatskins & & 528,282 \\
\hline Carpets, \&c. & 506,353 & 478.991 \\
\hline Flour & 995,165 & - \\
\hline Cotton Thread : & t.28\%.243 & - \\
\hline French Beans, Chick Peas and Beans & - & 508.441 \\
\hline Cashmere Cloth & 561,246 & \\
\hline Coffee Madipollam & 830,325 & \\
\hline Madapolam & 916.715 & 486,037 \\
\hline Wool & - & 439.066 \\
\hline Woollen Fatrics & 785.622 & \\
\hline Esgs & & 441.282 \\
\hline Cotton Print (Calico). & 2,014,968 & - \\
\hline Tiftik (Silk-waste). & - & 801.755 \\
\hline Cocoons . & - & 970.169 \\
\hline Petrolcum & 909.735 & - \\
\hline Sugar & 2,263.928 & - \\
\hline
\end{tabular}

Value of Goods Imporved inlo, and Exporled from, fogelher towth Number and Tonnage of l'esse's cleared at, Principal Porls of Twpkish Empire.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Port.} & \multicolumn{2}{|l|}{Value of the Coods imported into, or exported irom, Turkey. during the year 1905-1906.} & \multicolumn{2}{|l|}{Table indicating the number of Vessels. (Stearnships and SailBoats), and Tonnage. cleared at the follow. ing ports of the Otzoman Empire, in the year 1908-1909.} \\
\hline & Imports. & Exports, & Number of Vesscls & Tonnage. \\
\hline & \(\stackrel{£}{£}_{8,470,095}\) & \[
{ }_{1,381,+32}^{£}
\] & & 16,214.947 \\
\hline Deperadencies of Constantinople & & & 17.192 & 16,214.94, \\
\hline Smyrna. & 673.699
3.724 .525 & 2.453 .758
\(5.722,273\) & 5,888 & 2,989,863 \\
\hline Beirut & 3.568 .437 & 1,578.691 & 3.076 & 1.740 .312 \\
\hline Salonica & 3.111.957 & 1,650.552 & 2,962 & 1.151.273 \\
\hline Prevesa & 358,586 & 259.585 & - & - \\
\hline Yernen & 603.731 & 259.553 & - & \\
\hline Jidda & 801,927 & 26,154 & & \\
\hline Adrianople & 587,653 & 585.810 & - & - \\
\hline Bagdad . & \(1.510,430\) & 777,402 & \(\overline{685}\) & 6-6.137 \\
\hline Alexandretta & 1,669,231 & 887.326 & 685 & 6,6,137 \\
\hline Tripoli in Airica & 565.331 & 328,16.4 & 575 & 376,214 \\
\hline Trehizond & 1,507,771 & 1,083.515 & 1,389 & 776,698 \\
\hline Scutari, Albania. & 257.397
103.280 & 135.850 & & \\
\hline Erzerum . . .
Basra. & 103.280 & 96.405 & - & - \\
\hline Kavala & - & - & 1,410 & 283.256 \\
\hline Samsun & - & -- & 1,064 & 976,803 \\
\hline Tripoli in Syria & - & - & 1.306 & 919,222 \\
\hline Jaffa - - & - & & 1,241 & t,210,261 \\
\hline Chios. & - & - & 2.732 & 915.880 \\
\hline Aivali. & & & 1.489 & 124,804 \\
\hline Dedcagatch & & & 404 & 50,469 \\
\hline Total & 27.514.05\% & 1,256,470 & & \\
\hline
\end{tabular}

Value of the Goods Imported from or Exponted to Principgl Countries during the years so05-1000 cnd 1008-1000.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Country of Origin or Destination.} & \multicolumn{4}{|c|}{Imports from} & \multicolumn{4}{|c|}{Exports to} \\
\hline & \multicolumn{2}{|l|}{1905-1906} & \multicolumn{2}{|c|}{1908-1909} & \multicolumn{2}{|c|}{1905-1906} & \multicolumn{2}{|c|}{1908-1909} \\
\hline & Amount & \% & Amount & \(\%\) & Amount & \% & Amosit & \% \\
\hline England . & \({ }_{9,641,938}^{\text {¢ }}\) & \(35 \cdot 05\) & \[
\underset{8,256.793}{£}
\] & 29.96 & \(\stackrel{f}{5}\) & \(32 \cdot 18\) & \(\stackrel{f}{4.506,344}\) & 27.86 \\
\hline Germany & 1,162,538 & 35.22 & 1,697.957 & 29.96
6.16 & 51552,703
\(1,076,029\) & 32.18
6.24 & 1,508,344 & 27.83
6.23 \\
\hline Austria-IIungary & 5,715.914 & 20.77 & 3.574 .724 & 12.96 & 1.874 .827 & 10.87 & 2,173,45.3 & 13-4.3 \\
\hline Italy . . . & 2,145,-89 & \(7 \cdot 79\) & 2,150,064 & 7-79 & 872,64! & 5.06 & 883.358 & 5.45 \\
\hline Spain & 6118 & & 15.588 & 0.06 & 21,827 & 0.13 & 17.332 & \(0 \cdot 10\) \\
\hline Persia & 6.43 .641 & \(2 \cdot 34\) & 485.887 & 1-7 & 57.443 & \(0 \cdot 33\) & 82.530 & 0.51 \\
\hline Suitzerland - & 63.324 & 0.23 & 105,026 & -. 39 & 640 & - & 3.056 & 0.02 \\
\hline United States & 252,247 & 0.92 & 360.446 & 1.30 & 437,684 & \(2 \cdot 50\) & 616.951 & 3.81 \\
\hline Belgium . & 805,0.40 & \(3 \cdot 15\) & 762,543 & \(2 \cdot 76\) & 427.998 & 2.48 & 152.517 & 0.94 \\
\hline Denmark. & 33 & & & - & 201 & - & & - \\
\hline Russia & 1.596,631 & 5.80 & 2,187,863 & 7.94 & 520.916 & 3.02 & 504.209 & \(3 \cdot 13\) \\
\hline Rumania. & 697.631 & \(2 \cdot 54\) & 1,107,120 & 401 & 350,876 & 2.03 & 336,663 & \(2 \cdot 08\) \\
\hline Japan & 1.821 & & 2,374 & 0.01 & 214 & - & & \\
\hline Servia & 89.329 & 0. 3.3 & 441.050 & -1.60 & 172.220 & 0.09 & 8,602 & 0-5.3 \\
\hline Holland & 524.116 & 1.91 & \$55.972 & - 2.01 & 509.688 & 2.96 & 720,489 & 1.36 \\
\hline France . & 2.341.086 & 8.51 & 2,956,643 & +10.72 & 4,220,006 & 24.46 & 3,187.376 & \(19 \cdot 72\) \\
\hline Montenegro. & 2.928 & 0.01 & 6,633 & 0.02 & 2.4.686 & 0.15 & 20.228 & 0.12 \\
\hline Greece & 492.037 & 1-79 & , 347,287 & 1. 26 & 476.829 & 2.76 & 383.484 & \(2 \cdot 37\) \\
\hline Egypt & 812.466 & \(2 \cdot 96\) & 1,019.953 & 3.0 & - & - & 1.453-274 & 8.98 \\
\hline Bulgaria. & 409.727 & 1.49 & 1,188,981 & 4-31 & 663,139 & \(3 \cdot 64\) & 498.45 & \(3-09\) \\
\hline Samos: & 1.210 & & 181.965 & 0.66 & - & - & 10,319 & 0.08 \\
\hline Tunis Other Countrics & 54.495 & 0.19 & 47.524
119.738 & 0.1\% & - & - & 2.363 & 0.01 \\
\hline Other Countries & & & 119.738 & \(0 \cdot 44\) & - & - & 27.833 & 0.17 \\
\hline & 27.514.052 & 100.00 & \{27.572.135 & \(100 \cdot 00\) & £17.255.467 & 100-00 & 16,174.627 & \(100 \cdot 00\) \\
\hline
\end{tabular}

The revenues produced by the customs duties for the five years 1905-1906 to 1909-1910 are as follows:-
\begin{tabular}{|c|c|c|c|}
\hline Y'car. & Export Duties. & Impart Duties. & Total. \\
\hline 1909-1906 & \[
\underset{160.037}{£_{1}}
\] & \[
{ }_{1,928,957}^{L}
\] & \[
\frac{£}{3.088 .004}
\] \\
\hline \[
1906-1907
\] & 351,677 & 2.260 .382 & 2,412,059 \\
\hline 1907-8903 & 143.210 & 2,704.47 & +.877.557 \\
\hline 1908-1909 & 143.378 & \(3.13 \times 54\) & 3.281 .912 \\
\hline 1909-1980 & 862.252 & 3.5.3.605 & 3,695,657 \\
\hline
\end{tabular}

Finance
Preliminary Skelch. From the outset of their history the Osmanli Turks adapted to their own needs most of the political, economic and administrative institutions which existed before them. Primarily their system was based on the great principles enunciated by the immediate successors of the Prophct, especiaily by Omar, involving the ahsolute distinction between, and impartiality of treatment of, the Mussulman conquesors and the

As Dedesgatch is gaining, and will gradualls gain, importanee, it has been included in this table.
races which they conquered; and from this point of view a careful study of the financial history of Turkey will afford most valuable insight into the Eastern Question.

In remard for the brilliant wervices rendered him by Ertoghrul (the father of Osman) and by Osman himself, Ale-ud-din, the last of the Seljut aultans, conferped certain provinces in fef upon these two great warrions. They in their turn distributed the lands so acquired among their cons and principal emirs on otrictly leudal principles, the feudatory lands being styled siamed and limer, a systemitong continued by their successors in regard to the territories which they conquered. The conquered peoples fell into an inferior case, made to work for, and to pay for the subsiotence of, their conquerors, \(B\) under the Arab domination: the principal taxes eracted from them were the khoraj, a tax of indeferminate amount upon realty, based on the value of lands owned by unbe-Hevers- (in contradistinstion to the tithe [dshid which was a taz of fixed a mount upon lands owned by believers)-and levied in payment of the privilege of gaining means of existence in a Musaulman country, and the jizief, a compulsory payment, or poil-tax, to which believers were not aubjected, in lieu of military service. The conquerors were feudatories of the reigning prince or suitan, and thelr payments consisted principally in providing fighting forces to make up the armies of the prince. The khara, the jizisé, and the whole leudal system disappeared in thenry, although its spirit, and indeed in some respects its practice, stilil exists in lact, during the reforming period initiated by Sultan Selim III., culminating in the Tanximat-i-Khairiye (1839) of Abd-ul-Mejid, and the Hatt-iHemayun issued by the came sultan (1856). The administration of the state revenues was managed by a government department known as the Beit-ul-Mal or Maliye, terms generally employed throughout Islamic countries since the commencement of Islam. But the entire financial authority resided in the suitan as keeper, by right, of the fortune of his subjects. The public revenues were pemed under three principal denominations: (1) the public treasury: (2) the rearve, into which was paid any surpius of revenues over expenses from the treasury; (3) the private fortune (civil list) of the prince. Expenditure, as under the Seljuk eultans, was defrayed partly in cach, partiy in "assiguations" (hapoll).

The Oamanli aulzans, as also the Mamelukes and the Seljuks, mere accustomed to give lavgesse to their military forces on their acoesion to the throne, or on special occasions of rejoicing, a lay of the year, or the birthday of the Prophet (mentid). Largesse Fes especially given on the field of victory a ad was, moreover, berally distributed to stife sedition and mutiny among the troops, the numerical strength of which was continually increased as the empire ealarped its bordera. This vicious system, grafted as it was Pon an ineficient administration, and added to the weight of a eatinually depreciated currency, debased both by illadvised Bacal measures and by public cupidity, formed one of the principal enases of the financial enbarrassmente which ascoiied the treasury mith ever increasing fonce in the latter part of the 1 gih and during the 17th and I8th centuries. Tbe Turkiah historian, Kuechi Bey, attributes the origin of the decline of the empire to the reign of Suleiman the Magnlicent (\(1520-1566\)), when the conversion of many amirije lands into walufs was effected, and the system of farming ove revenues first introduced. Impoverished by theae different casees, as well as by prodigal extravagance in interior expenditure, by shamelest venality among the ruling classes, and by continual vars, of which the cost, whether they were successful or not, was enormons, the pubtic treasury wra frequently empty. So long as te reserve was available it mas drawn upon to supply the void; but Then that aloo was exhauted recourse was had to expedients, ach an the borrowing, or rather seixure, of the oaky revenucs (1622) atd the sale of crown properties; then ensued a period of barefaced confacation, until, to restore public confidence in some measare, mate budgets were published at intervals, viz, the partial budget of Aimy.Ali (in 1018 or A.D. 1609), the budget of Ali Aga (in 1064 . © 1653) and that of Eyubi Effendi (in 1071, or 1660). At this time (\(1657-1681\)) the brilliant administration of the two Kuprilis rescored temporary order to Ottoman finance. The bodget of Eycubi Effendi is particularty interesting as giving the petatement of revesue and expenditure for an average year, whereas the budect ©Aiay-Alt was a budget of expenditure ouly, and even in this "pect the budget of Eyubi Effendi is far more detailed and plete. The budget of Ali Aga is almost identical with that Eyubi Efrendi, and in worthy of epecial note for the conclusions ach accompanied it, and which akhough drawn up aso years apo. meribed with etriking sccuracy some of the very ille (rom which
, tish finance was suffering throughout the reign of Abd-ul-Hamid. cy part from unimportant modifications, the form of the budpet III., thive remained unchanged until the onganic reforma of Selim onaly from the year 1178 (1862), when Fuad Pasha attached a regular bedget to his report on the financial situation of the empire. Since Aat time there bad been no further change worth noting until the "ntrerime" mas established in 1908. Although the publication The bedget had coly taken place at very irregular intervals, it The abodge oberved that the published budgets were by no means
accurate. From the thme of Eyubi Effendi until the eid of the grond wizierate of Ibrahim Putha (\({ }^{1730}\)), the empire experiesced periodical relief from enceseive financial distress under the series of remarkable grand viziers who directed the affairs of state during that time. but the reoovery was not permanent. Ortoman arm met with almont systematic revernes; both the ordinary and the reserve treasuries were depleted; a proposel to contract a foreign boen (1783) came to nothing, and the public debf (dxywn-i-kmmeniye) whs created by the capitaliztion of certain revenues in the form of intereat beariag bonds (sehims) iswaed to Ottoman subjects againat money lent by them to the thate (1785). Then came forced hoans and debased currency (\(\mathbf{1 7} 78\)), producing, still more acute distrese until, in 1791, at the clome of the two years' war with Rutsie, in which the disaster which attended Ottoman arms may be largely ascribed to the penury of the Ottoman trcasury, Selim 111., the first of the "reforming sultans," attempted, with but little practical success, to introduce radical reforma into the a dministrative organization of his empire. These endeavours were continued with scarcely betier result by each of the succeeding zuitans up to the time of the Crimean War, and during the whole of the period the financial embarmasment of the empire was extreme. Pertial relief was sought in the continual issue of debased eurrency (beshilik, altilik and sheir subdivisions), of which the excess of nominal vaive over'intrinsic value ranged between 33 and \(97 \%\) and finally paper money (kaim) Which was first issued in 1839 , benring an interest of \(8 \%\), reduced in 1842 to \(6 \%\), wuch interest being paid on notes of 500 piastres, bat not on notes of 20 or 10 piastres, which were isaced simultanecusly. Finally, usage of paper money was reatricted to the capiral only, and in 1842 this partial reform of the paper currency was followed by a reform of the metalicic currency, in the shape of an issoue of gold, silver and copper currency of good value. The gold coins issued were \(500,250,100,50\), and 25 piastrea in value, the weight of the 100-plastre piece (Turkish pound), 7.216 srammes, 9161 fine The silver coias were of \(20,10,5,2,1\) and 1 piastre in value, the 20 -piastre piece weighing 24.055 grammes, 830 fine. The copper money was in pieces of a nominal value of \(40,20,10,5\) and I paras, 40 paras being equal to 1 piastre. In 1851 further attempts were made to withdraw the paper money from circulation, but these were internupted by the Crimean War, and the government was, on the contrary, obliged to issue notes of 20 and 10 piastrea. Finally, at the outbreale of the Crimean War Turkey was assisted by her allies to raise a loan of \(\{3,000,000\) in London, guaranteed by Great Britain and France; in 1855 an organic law was issued regulating the budget, and in the same ycar a second guaranteed loan of \(\{5,000,000\) was contracted in Great Britaia. Ia 1857 an interior loan of 150,000 purses in bonds (eshom-i-mumiasi), repayable in tbree years and bearing \(8 \%\) interest, was raised; the term of repayiment was, bowever, prolonged indefinitely. In the same year another eeries of bonds (hasint tahrili), bearing \(6 \%\) interest, and repayable in 1861 , was issued; in 1861 the term of reimbursement was prolonged until 1875. In 1858 a third loan was contracted in Great Britain for f5.000,000, and thereafter foreign loans followed fast on one another in 1860, 1862, 1863. 1864, 1865, 1869, 1872, 1873 and 1875, not to mention the two Exyptian tribute loans raised on Egyptiaa credic in 1871 and 1877 . In 1859 the settlement of patace debts gave rise to the issue of \(1,000,000\) purses of new interior bonds (esham-i.jedidf) spread over a period of three years, repayable in twenty-four years, and bearing interest at \(6 \%\). Further \(6 \%\) bonds, repayable in ten years, and styled serguis, were issued in the same year. Secing the rapid increase of the financial burdens of the state, a commission of experts, British. French and Austrian, was charged (1860) with setting the affairs in order, and with their assistance Fuad Pasha drew up the budget accompanying his celebrated report to the sultan in 1862. Meanmhile kaint was being ingued in great quantities (about 60,000 purses a month) and fell to a discount (becember 1861) of \(75 \%\). In 1862 further sehims were issued, and these and the loan of 1862 (\(88,000,000\)) were devoted to the withdrawal of the haime. Later, however; the koime was again issued in very harge amounts, and the years aucceeding 1872 up to the Russian War (1877) presented a scarcely interrupted course of extravagance and financial disorder, the result of which is described below.

The Budget was supposed to be drawn up according to an excellent set of regulations manctioned by imperial decree, dated the Gth of July 1290 (1875), of which the first article absolutely prohibited the increase, by the smallest sum, of any of the expenses, or the abandonment of the least iota of the revenues fixed by the budget. Under there regulations the revenues were divided into two categories, viz. the direct and the indirect. The first category included the "imposts" properly so called, the fixed contributions (redeanmess fixes) to be paid by the "privileged provinces," and the military exoneratioa tax In the secoad were comprised tithes, mine-royalties, forcsti and domains, "ustoms, sheep-lax, tobacco, sait, spirits, stampe and "various" The expenses were aloo divided into two categories -(1) "Periodic and fixed" expenditure, which admitted of neither reduction nor delay; and (2) the credits aliowed to the various departments of state, which might be increased or diminished according to circumstances. The expenditure of the fant category was made up of the ervice of foreign loans, of the general debe. of the dotations replacing siavel and timaral' (military fiefs) and of fixed contributions such as nakufs. In the second categrery, were
included the imperial civil list, the departments of the Sheikh-ulIslamat and of religious establishments, the ministries of the interior, war, finance, public instruction, foreign affairs, marine, commerce (including mines and forests), and public works, and, finally, of the grand master of ordnance. For every province (vilayel) a complete budget of receipts and expenditure was drawn up by its defierdar (keeper of accounts) under the supervision of the vali (governar); this budget was forwarded to the minister of finance, while each state and ministry of department received communication of the items appertaining to it. Each ministry and department then sent in a detailed budget to the Sublime Porte before the end of November of each year. (The Turkish financial year is from the 1 st of March to the 28th of February o.s.). The Sublime Porte forwarded these budgets, with its own added thereto, to the minister of finance. who thereupon drew up a general budget of receipts and expenses and addressed it to the Sublime Porte before the 15th of December. This was summarily considered by the council of ministers. and then referred to the budget commission, which was to be composed not only of State functionaries, but of private persons worthy of confidence, and well versed in financial matters, and which was invested with the fullest powers of investigation and inquiry. The report drawn up by the commission on the resulis of its labours was submitted to the Council of Ministers, which then finally drew up a general summary of the definitive budget and submitted it by mazbata (memorandum) for the imperial sanction. When this sanction had been accorded the budget was to be published. The remaining regulations set forth the manner in which extra-budgetary and extraotdinary expenses were to he dealt with, and the manner in which the rectified budget, showing the actual revenues and expenditure as proved at the close of the year was to be drawn up with the assistance of the state accounts department (ditenn-i-mouhossebäs). This rectified budget, accompanied by an explanatory memorandum, was examined by the budget commission and the Council of Ministers, and submitted inr the imperial sanction, after receiving which it was ordered that both be published. Special instructions and regulations determined the latitude left to each department in the distribution of the credits acconded to it among its various heads of expenditure, the degree of responsibility of the functionaries within each departraent and the relations regarding finance and accounts between each department and its dependencies. These regulations provide carefully and well for all contingencies, but unfortunately they were only very partially carried out. It mas indeed be said that it was only the precisionary lbudget (anglicé, the estimates) that received any approximately proper care an the lines laid down, while the rule that both the estimates and the definite budget (at the close of cach year) should be published was almost wholly bonoured in the breach; untal 1909, when the Constitution had been reestablished the budget had only twice been published, in 1880 and 1897, since the regulations were put into force. Not only were the budgets not published, but no ligures whatever were allowed to transpire in regard to the true pusition of the Turkish treasury-which laid the accuracy of even the limited number of budgets published open to suspicion.

All this has now been changed, and the above regulations are conscientiously carred out with the differences in procedure necessary for compliance with constitutional methods, and with the suhmission of the Budget to the houses of parliament. The Budget is now published in full detail and that for the year 1326 (1gto-191t), with the explanatory memorandum which prefaces it, is an admirable work, mercilessly exposing the financial short. comings and sins of the previous system, or rather want of system, while unshrinkingly facing the difficulties which the present government has inberited. The account thus presented to us of what the previous confusion was, underlines and attests the summary exposition of it given in the last edition of this work It was there stated that, on the most favourahle estimate, the normal deficit of the Turkish treasury was \(£\) T \(2,725,000\), (upwards of [T,1,700,000 below the truth as now declared) and the following obscrvations were appended:-

This budget represents the normal situation of Otoman finance; it does not ially with the budget published in 1897, which was propared wish a special object in view, and was obviously full of inaceuricies, nor indeed does it agree with figures which could be officiully wheained from the Porte. It is, however, compied from the best sources of information, and it exaggerates norbing. The formidable deficit is met principally in there wave. (1) By leaving the salasies of state ufficizls and the army unpuid. in miny. parts of the empire the soldiere rarely regeive more than eight montes pay in the year, althousth in Coostanationplos sha amears art mot sol lapes

public and from individuals. By financial expedients of this kind payments were effected by the treasury in fifteen years (1881-1896) amounting to \(\mathbb{T}\) TII, 666,000 or at the rate of nearly \(\{T 800,000\) per annum. (3) By anticipating the revenues of future years. This is the method so frankly condernned by Ali Aga, as was seen above, in 1653. Delegations (harale) are granted on the provincial treasuries for one or two years in advance, sometimes for a series of years, in order to pay pressing debts too heavy to be met in a single payment. No better description of the financial distreas and disorder of the empire can be given than that set forth in the official report of the budget commission of 1888. "It has hitherto been considered necessary owing to financial embarrassment, to commence financial years with unbalanced hudgets. Later, without taking into consideration the effective amounts in cash at the disposal of the vilayete, considerable sums were drawn upon thern, by means of havales, out of proportion to their capacity. For these reasons, during the last two or three months of the financial year, the vilayets have not a para to remit to the central administration, and it has been considered imperatively necessary to draw on the revenues of the following year. Thus, especially during the last two years, urgent extraordinary expenses have been perforce partially covered by the proceeds of the ordinary revenues. the revenues of 1303 (1887) were already considerably anticipated in the course of 1302 (1886). The former year naturally felt the effect of this, and the tithes which should have been encashed in the last months of the year were discounted and spent several months in advance. Moreover, in order to meet to some extent the deficit arising as well from the accumulation of arrears of state departments since 1300 (1884) as, to a large degree, from gross deficiencies due to the neglect of the civil officials of the government to encash the revenues-to meet. further, the needs of the central administration, and above all, the urgent military expenses of the empire, and to provide a guarantee for bankers and merchants in business relations with the government and the treasury, part of the revenues of 1304 were perforce spent in 1303." This commission proved the deficit of the year to be ET \(4,370,000\). It set out also at length the very defective and disorderly condition of the state accounts. During the finance ministry of Agop Pasha (1889 to 1894) a good deal was done to set mattera in order, but most of the ground then gained has since been lost.'

To this may be added a short extract from the Explanatory Preface to the Finance Bill for the year 1910-19rs. After pointing out the immense difficulties which he bad had to encounter owing to the absence of any regular accounts, and above all of any of "those statistics which constitute the soul, indeed the very life of a public administration," and that it was therefore impossible for him to pretend that be had been able to free bimself altogether from the effects of the past, the minister continues; "every time we have endeavoured to have recourse to the previous elements of appreciation, we found ourselves faced by the chaos which characterized former years. We have sometimes ascertained things so strange that we cannot forbear expressing our astonishment at the idea that a great power such as ours could maintain itself under such conditions." M. Ch. Laurent, the financial adviser to the Turkish government, stated in a lecture on Turkish Finance, delivered in Paris on the 2and of April igia that the Ministry of Finance has now been largely reorganized. Officials, he says, with grand titles and no responsible duties have been abolished, and departments with responsible chiefs created. The agents of the finance ministry, instead of being mere clerts, are now employed in " the assessment and collection of taxes, the control of expeaditure, the preparation and execution of the budget, the estimates of the necessary cash required at difierent points of the empire-all that, in fine, constitutes the real financial administration of a great empire." Laurent points out that direct taxes furnish \(54 \%\) of the revenues of the empire, that agriculture is accordingly very heavily taxed, and that the tax on realty is both excessive and unfairly administered. The summary history given above of the origin of the system of taxation prevailing in Turkey explains how this came about. Reform of this system, and, further, very necessary reforms of the methods of collection of the wines and spirits revenue (which is protection turned upside down, the home-growers being far more beavily taxed than importers), and of the customs (in which almost every possible administrative sin was exemplified), were also undertaken Three bille moreover, were presented to parliament, the Girst resulating Public Accountancy, the second regulating the Central Aicoumts Department, and the third the service of the Treasury. By this last the centralization of receipts and
expeaditure and the mavement of Atsods in the provinces were to be confided to the Imperial Ottoman Bank, which extended and perfected its own organization for the purpose.

Paesing now to the examination of the budget, it should be oberved that the method of estimating the revenues-a matter of great dificuity owing to the previous want of methot is deacribed by Laurent as follows: "For every natare of receipts the total effective collections for the five last known years were set out, the averages were taken of these and the incroasc or decrease of the yearly average of those same years was worked out and added to or deducted from the fagure previoualy obtained. The only exception made to this rule was in the case of revenues showing a yearly increase, such as Pose Office revenue, tobacco, salt, for which were taken the figures of 1323 (1907) increased by a certain average." The expenditure wes arrived at in the manner previously described-and when the eneral budget came to be made up the severest pruming was found aecessary, the original demands of the various ministrits and departments having resulted in a deficit of upwards of \(£ T 9,000,000\). It is thought better bere, for the saka of clearness, to reeserve obscrvations on revemues specialify assigned to the international administration of the Ottoman Public Debt, and on the expenditure of that administration. and to deal with that subject ecparately, while, however, iocluding the total figures of both in the genetal figures in order to teproduce exactily the totals shown in the budpet of the empire. The principal iterns of revenuc and expenditure are as foliows, the Gyres being taken from the published budget above-mentioned.

Resernue. Direet Taxess. The tax on realty (verghi) is estimated to yield fT2,599, za . Duties on profession (bemettil) consist (a) of a fowed duty leviable at rates deciared in a schedule forming part of the special law (Dec. 8, 1907) regufating the tax, and (b) of a proportional duty at the rate of \(3 \%\) on the value of buiddings occupied by companies or individuals in the prosecution of their business; of \(3 \%\) on maries (subject to certain deductions) of employta of such companies and individuals; and on government contractors and Eevenue farmers, at the rate of \(3 \%\) of \(10 \%\) of the value of contracts Athed and of revenues farmed. The lave is defective and unfair in zas incidence, and it is not appicable to foreigners. The government gromised in 1910 to remedy the law with the assent of the Great Powers, and, if successful in its negotiations, to present an amended Imw. The duties are entimated to produce \(\mathcal{C T} 39\) 3, 19 ; other profes
 tion tax " in levied on male Ottoman subjects between the ages of 15 and 75 to the amount of \(E T\) so for \(t 35\) persons-certain exceptions mich as priests religious orders, \&cc., are allowed. The estimated sevense from this source is \(£ T \mathrm{~T}\), 289,612. "Prestations " are payments in lieu of services (apart from military service) to the state, gech as maintenance of highways, \&ec.-in effect, purchase of exoneration from fonced labour. These dutics vary in different parts of the empire: in the vilayets of Constantinople. Bagdad and Adrianople, tiod in the sanjaks of Bigha and Tchatalja the day'swork is calculated tit 5 piastres (abnut ind.); in the vilayets of Aleppo, Trebizond, Angora, Lannina, Konia, Sivas and Kastamuni at 4 piastres (about 9.): and in most other parts of the empire at 3 piastres (abput 7 d .). These taxes were fonncrly levied either in cash or in kind: it has now Seen decided to levy them in cash only, although tbis change was expected to cause some arrears. Allowing for these, the estimated revenue is \(£\) T553.938. The "tax on sheep, camels, buffaloes and mps" (aghnam, meaning literally "shcep," but for taxing purposes te ot her animals are included under the same mame, formed origi. Thy part of the "tithe." It was transformed long since into a fixed amount per head of the animals taxed, which amount varies accor1ing to the region in which the tax is levied, the highest tarif being the sanjak of Jerusalem (71 piastres) and the lowest in the Yemen E pizstre). The estimated receipts are, from sheep ETI \(_{1} 790,720\), Itom camels and buffaloes fTr44; 520 , iand from hogs \(f\) T8890, or topecher \(f \mathrm{~T}_{1} 814,152\). "Tithes" are the direct descendant of the Rnapaj already alluded to above. It should here be noted that, From the fiscal point of view, the reformsinstituted at the commencement of the 19th century may be summarized thus. In. permanent semaneration of certain services to be rendered to the state, the movereign assigned to civil or military functionaries territorial tetions for the purpose, and with the power, of collecting land taxes teposed by Massulman and Imperial law, iee. the kharaj or tithe, and transfer and succession duties. The tithes were origianliy based on timetenth of the agricultural produce of the country, but this Propormimatioa," butt really, under financing pressure, to \(12 \%\) and a a gin " 8900 for military" equipments" (Tejhinzti-i'Askeriyeh) by a等 20.000 per annum. was specially affocted to a loan, known as the ITo,000 per anhum, was specially affccted to a loan, known as the -uet butwean the goverament and the Deutache Bank (Aprii 17,

It shoold be noted that the clastification of the revenures inclurded Mpectively under the "direct "and" indifrect" categories has now been quite properly changed, the sheep-tax, tithes, mining, noyalties and forest royaltien heing comprised under " direct taxes"; stamps and registration duties are placed in a special category, and salt and teheog under " monopolies."
1905). The estimated recetpte from the "Trime" (including tobscco and silk, both hypothecated to the Public Debt Administration) are ET6,731,10\%. The remaining taxes under the category "direct" are the forest-dues (generally speaking \(15 \%\) of the value of wood cut, estimated to produce fTI 30,094 ; the mining dues (being a fixed duty of 10 piastres per \(10,000 \mathrm{sq}\). metres of the super ficial aros covering the mine, and a proportional duty varying from \(1 \%\) to \(20 \%\) of the grome value of metal contained in the ore, acconding to the kind of metal and the meethod of extraction of the ore),
 taxes " (inclusive of tobacco and silk tithes) are thus estimated to amount to fTi3.725,892.

Section Il. of the budget is composed entirely of revenues from stamp-dutier. Of these, commercial stamps are among the revenues apecifically hypothecated to the Public Debt Administration, [\(T_{4} 60,079\); the others, consisting of legal stamps of various kinds, refistration and transfer-duties, \&c., are estimated to produce f1653. 373 forming a combined total of \(\mathrm{CTI}_{1,113,452}\).

Under Section III. fall the "indirect contributions" an now reclassified. The first revenue specified among these in the budget is that accruing from the wine and spirit duties, which is agaia among those assigned to the Public Debt, ET283.079. Licenses for sule of Tumbetki, a variety of Perrian tobacco used for the marghilh, \(£\) T2n46. By far the most important " indirect " revenue is that produced by the customs, consisting of import, export and cransit duties, and various unspecified receipts. Under the old commercial treaties which lapeed about 1890 -but which have been maintained "provisionaliy " in force until one or other of the great powers consents to set a term to the negotiation of fresh treaties-an ad ralorcm duty of \(8 \%\) was imposed on all articles imported into the Turkish empire. In I905 firancial resources had to be found for the special administration of the three European vilayets as insisted upon by the powers, and to this end the Porte initiated negotiations with the latter to increase the import duties by \(2 \%\) As is usual in Turkey, this opportunity was seized for the demand of redress of grievancea by such powers as considered they had any, and the negotiations were protracted until July 1907, when France finaliy gave in her adbesion. Since then the import duties have been coliceted at the rate of if \(\%\) ad valorem snder the supervision of the Public Debe Administration, the bondholders having certa in righth, under the decree of Muharem, described below, over any increave of revenue arising from modifice tion of the commercial treaties. By the provisions of the "Annex Decree," also described below, three-quarters of the additional revenue is assigned to the Turkish government, and one-quarter to the Public Debt Administration to awell the sinking fund. Fresh negotiations were also undertaken to increase the importduties by a furtber \(4 \%\) in order to balance the deficit shown in the budget. In the year 1910-1911 the import dutien were estimated to produce \(£ T 3,980,395\), the transit duties \(£ T 20,275\) and the export duties (\(1 \%\) ad oalortm, which it was hoped the government might soon afford to abolish), \(£ T 168,993\)-total customs revenue, \(\{14,217,752\). The remaining " indirect contributions" are port and lighthouse dues, ET 148,426. Sanitary taxes. ET20,519. and fisberies and sporting licenses affected to the service of the public debt, (Ti 53,990. The revenues figuring under "indirect contributions "thus reach a total of \(£\) T \(4,825,812\).

Momopolies form Section IV. of the budget, and include in the first place the salt revenue (\(£ T \mathrm{~T}, 227,750\)), which is assigned to the Public Debt Administration, and tobacco revenues of which the larger part, ETB65,737, is assigned to the same administration, the total (including share of Tumbeki profit) producing ET965.754; the remaining monopolies are: fixer payment from the Tumbeki Company, £T40,000; explosives, \(\mathrm{T}^{2} 106,323\); вeignorage (Mint), £T10,466: and posts and telegraphs, \(\mathrm{E}^{2} 912,129\). The "Alonopolies" thus rendar a total revenue of ET \(3,262,424\)
Section V. includes receipts from commercial and industrial undertakings belonging to the state Thesc are the Hejaz railway ET152,000; the Dolme-Bagexhe gas-works, ET59, izo; technical school. TT8536; the Tigris and Euphraten steamshipe, XT62,513; and mines (Heracloa coal and other), ETizo,710; forming a combined total of \(£ \mathrm{~T}_{4} 02,889\).

Section VI. is compowed of receipts from " State Domains " of which a large proportion was formerly included in the civil list. Under the deposed sultan the Civil List Administration had encroached in every direction not only on the revenues properly wocruing to the state, but upon private and upon state property in most parts of the empire. Thus it is explained in the preface to the budget that the revenues "proceeding from the deposed sultan" are not classed together under one heading, but that they have been apportioned to the various sections under which they should fall whether taxes on house property or property not built upon, tirhes, aghnam, foresta, mines, cadastre, aport, military equiperent, private domains of the state various reecipts, proceeds of alkes, rents "-a truly compreheasive list which by no meent set a limit to the private resounces of Abd-ul. Hamid I1., who looked upon the customs also as a conveniont reserve on which be could, and did. draw when his privy purse was short of money. Apart from the sources of revenue apecified above. of which the aroounf: actually transferred from the civil list are not stated, in estimated to produce ET513,65t. In the proviote
had been a apecial heading, "Proceeds of Domains transierred from the Civil List," estimated to produce (TT 620,233 . which may have been intended to include all the yarious receipts above enumera ted.

Section VII., formed of the tributes of dependencies of which the two princinal are the Egyptian, CT765,000, and that of Cyprus. ET 102,590 (assigned to the public, debr) comprises a total revenue of ET871,316. Finally, various receipts of which the principal separately specified are government share of railway receipts (Oriental railways, and Smyrna-Cassaba railway). ET201.710, and " eubscriptions for the Hejaz railway, ET264,600, form Section VIII.

The total revenues of the empire are thus estimated to produce \(£ T 25,848,332\), and seeing the careful and moderate manner in which the estimates have been framed, this may be looked upon rather as a minimum than a maximum. The minister of finance stated in his budget speech to parliament, delivered on the 23 rd of April rgro, that the revenues for the year 1909-19ra, which had been estimated to produce \(£ \mathrm{~T}_{25,000,000 \text {, had as a matter of }}\) fact produced \(£[26.500,000\).

Expenditure. Minisfry of Finance.-The first item of expenditure sbown in the budget is the service of the public debt, amounting to £T8,288,394. The Public Debt Administration plays so considerable a part in the finances of the Ottoman Empire, and its history is of such importance that a special section of this article will be devoted to it below. Under the budgetary heading "Public Debt " is included, as it -should be, all expenditure in connexion not only with the public debt proper, but also with advances from banks and others, railway guarantees, an account of which will also be found below, and all capitalized liabilities, as far as known, contracted by the state.

It is explained in the preface to the budget that one of the abuses of the previous regime had been to obtain advances from credit establishments at high rates of interest varying from \(7 \%\) to \(9 \%\). when it was found impossible to issue a public loan. The rates oo these advances have now bein generally reduced to \(6 \%\) with the exception of that on the advances irom the lighthouse administra. tion, which refused to ailow any reduction below \(7 \%\) In the years 1908-1909 the advances were reduced by CT688,000, in addition to repayments allowed for in the budget, and the credit agroed for the year 1909-1910 is \(\{T 663.000\), as compared with \(£ T 1,160,000\) for the previous year. In tho year sgio-191t the outstanding advances were to be so far paid off that the crodits to be opened under this head would be atill further reduced by fT 500,000 .

The civil list basbeen reduced to the definite amount of \(£ T 443,880\), which, without the consent of parliament, cannot be increased. The sultan receives an annual allocation for himself and household of \(£ T 240.000\), the crown prince one of \(£ T 24,000\), and a sum of Tis 3,000 is assigned to the Imperial princes and the sultanas. The deposed sultan was allowed fT12,000 a year, and a similar amount was set aside to provide dowrics for two sultanas who were just about to be raarried. The debts of the former are stated in the prelace to the budget to be very laree, and as payments are effected fresh creditors present themselves with undeniable vouchers in their hands, causing much emharrassment to the minister of Ginance: no figures, however, are given. The Finance Bill provides that these debts are to be paid out of supplementary credits.
Under the reformed constitution every senator is entried to a suiary of ftioo per month, any remuneration which he may receive from the government for other services to be deducted from the senatorial allowance which, however, it may of course exceed. Deputies are allowed (T, joo for each session of parliament, and ET50 per month in addition should the sestion exceed its legal duration. They are furtber allowed travelling expenses from and to their constituencics oa the basis of rules governing journeys of functionaries receiving a monaly salary of ITso. The amount reserved in the budger for these purposes is \(\{\) I 181,871 .

The ministry of fanance absorbs ET2,989,600. In this are included the expenses of the administration of both the central and provincial depariments of the finance ministry, the mint. charitable allowances, expenses and presents in connexion with the holy cities (CT121,4to), pension funds of state officials (\(T \mathbf{T} 628,0 j 8\)), administrative allowasce made to the agricultural bank (ST225:300) and various other eapenses. Various administrative feforms were in hand in 1910-1911, by which it was expected considerably to reduce the credits demanded by the linance ministry-spectaliy those in connesion with the boly citict. Specialattention wascalled by the miniser to the fact that she system of contributions of oticials to the pention funds thas been modified, the deduction from salaries being mow \(10 \%\) inutead of \(5 \%\) and the cemaributions to the fund being nude as to thothint U, the topuug, and twothinds by the

treasury, ET2,989,600; central accounta department, ET17,124; forming an aggregate of \(\{T 11,920,869\).
Indirect contributions, or more familiarly "customs," are allowed a credit of fTs12,670. The minister of finance points out the immense importance of the thurough reorganization of the customs administration. The gervices of a first-rate English expert (Mr R. F. Crawford) were obtained, and much has been done at Constantinople, but the provincial customs offices are still lamentably defective. These were immediately to be taken in hand, and considerable sums are being voted for repairs of existing customs buildings and the construction of new buildings. The reforms already accomplished have resulted in a marked increase in the customs revenues.
Posts and telegraphs, which absorbed a credit of \(\int\) T 782.839 in 1910-1911, have also long been in urgent need of extension and better administration. An additional credit of (T 90,000 was grapted, as compared with the previous year, and increased expenditure was foreshadowed for the future: on the other hand, it was confidently expected that the post office receipts would increase in far more rapid ratio than the expenditure.
The ministry of the interior was estimated to require \(\{T 1,157,2\) yo. Thia sum covered "immigration expenses," i.e. aesistance given in seteling Mussulmans immigrating from provinces detached from the Ottoman Empire. There can be no doubt that this expenditure is remunerative, since many rich regions of Asia Minor have long suffered from want of population.

Military expenditure, including the three departments of war, is as fnllows: the army (excluding artillery). £T8,280,452; ordnanoe, \(£ T 356,439\); and gendarmeric, (T1, \(694,77^{8}\). As regards the first of these, it is curious to observe that the budget decree of 1880 stringently limitod the peace streagth of the Ottoman army to \(\mathbf{8 0 0 . 0 0 0}\) men, "including officers and generals." in order to put a stop to the rapidly increasing military expenditure; but this was mercly the expression of a prous wish, at a time when European fimancial good will was indispensable, that expenditure might be kept down. No real attempt has ever been made to observe the decree, and indeed observance has been impossibie seeing the dangers which never cease to menace the empire. To some extent the real level of military expenditurehas been masked by the separation of certain payments into "extraordinary" expendirure, a course which, it it understood, has not been followed in the budgets of the "t DCW réginee," and which will not be revived. "It ahould however, be remarked that out of an "extraordinary" budget, which will be mentioned below, sums of £T 709,305 and of \(£ T 27,827\) were allocated to the ministry of war and the ordnance department respertively in 1909 . It is not expected that military expenditure can be much reduced, execpt in the direction of supply contracts, which have boea the cause in the past of iniquitous waste of means.
The official budget shows a credit for admiralty expenditure of ET1,000,327, which is apparently less than that for the previous year by some \(£ T 220,000\). This, however, is not a real decrease, salaries of functionaries not on the active list having been removed to the region of supplementary crediss, as are those of civil departments. As a matter of fact, the marine budgets of the two years are almotat identical. The vote of \(£ T 500,000\) a year for sen ycars for the reconstruction of the Ortoman navy by "national subscription," as already mentoned, was not included in the official budget, no was there any allusion to it in the prefatory memorandum. The minister of finance did, however, allude to it in his budget apeech, (April 23. 2910), and stated that four destroyers purchased is Germany had becn paid for from the national subscription only withnut touching the ordinary state revenues. It should be added that the Greck War (1897) revcaled to the sultan the decrepit state into which the Ottoman navy had fallen, and considerable "extraordinary" expenditure-much of which was wasted-has been incurred since (and including) 1902 to put the least out-ol-date warshipe into a eerviceable condition.
The ministry of commence and of public works absorbed /T883.861 a reduction of some \&Ti80,000 on the previuus year. The governe ment acknowledges the unavoidable necessity of greanly exieading and improving the internal communications of the countr; but cannot see its way to doing so satisfactorily out of the ordinary resources of the country. This question was being seriously studicd. and it was hoped that a comprehensive schense would be presenicd cre long. The. Hejaz railway figures in the budget for \(£\) § 350,180 , and it is explained that this will not only cover working expenses, but also the final completion of the line.

Floating Debr.-This is really an accretion of undetermined lisbilities which has been indefinitely, and probably ahernately. advancing and receding for a great number of years, and which do previous minister of finance, or Turkish government, had the courage to face. Now and then it has been dealt with piecemeal, when some particular class of creditors has become too pressing. but it is more than prohable that the piece got rid of has bees more or less rapidly replaced by fresh liabilitics oocasioned by budgetary deficits, or by the more accumulation of interest an debts allowed to tun on.

Is March 1897 the floneligg debt wase caiculated by a financial enthority in the Formighty Reciew to amount to upwards of ET55.000,000, which might be compressed to (T25,000,000 since a large proportion was certainly composed of salaries in arrear and other items of a imilar kind which the government would never, uoder any circumatances, make good. Laurent telis us that the present governument having found it aboolutely imposaible to arrive at even an approximate estimate of this "oceult debt," recourse was hed, in order to fix it, to the creditors themselves, and a short act of partiament was passed doclaring aill debts prescribed which should eot be claimed by a fixed date. In consequence of this 560,000 chims were received, and a first examination showed that the aggregete amount reached by these claims was not less than ST13,000,000. Considering the dilatnry methods of Orientals, even when they are craditors, it is doubtful whether this cum adequately covers the whole of the claims outsianding, and is may be found difficatt, even for a parliament, to refuse claims which should equitably be admitted and which may be preferred later. High authority in Canstantimople port the true amount of the floating debt in 1910-1911 at tre mount previously extimated, viz. IT 25000,000 . No provision \(^{2}\) was then made in the budget to meet these liabilities, nor did the minister in his prefatory memorandura make any allusion to them; 3 his budget speech, hnwever, he announced that a scheme for doaling with zhem would be presented with the budget for 1911-1912. Under the heading "Floating Debt" "la tbe budget lor 1910-1911 are placed the advances before deacribed.

No other items in the budget call for special remark, but in order that the information given may be complete, each head of expenditure is shown separately below, and the budget for \(1910-\) rgir, as first placed before the Turkish parliament, presents the sollowing picture. Irom which it may be observed that the public debt absorbs \(26 \%\) of the revenuc, war service \(38 \%\) and civil ervices \(36 \%\).

\section*{Expendilure.}

Public debt
Civil list
Leginative corps
Fimance
Accounts (central)
Centorns
Poets and telegraphs
Cadastre
Craced vixierate
Conacil of state
Isterior
Public security
Foreto afluirs
Var
Grdeapce:
Geodarmeric
rarine
Seikh-w-Islamát
nibic inaruction
Forests, mines and
egriculture
phblic worke and

Total
Tifle deficit was increased, by the action of pariament, to ET9,678000. Almost immediately after the budget was drawn up a chopge of government took place, and hargely owing to this fact the perliamentary bewiget comathission introduced various medifications on the expenditure side of the account, which increseed the estimated defcit to the account just mextioned.' The priocipal increase is der so the war departments, acconding to the budget speech of the minser of fanance (April 23. 1910), elthough he feates that some

\footnotetext{
On the 251 h of June 3910 the chamber finally passed the budset (cor s910-1911 The figures were at follow:-
Ordioary exprenditure, [T32,997,000: extrwordinery expenditure, TT1,696,000; reqeaue [T \(26,015,000\), leaving a deficit of \(£ 79,678,000\), Ehuct was brought up to over [Tto.500,000 by special credirs for the pension fund, the payment of debis incurred by Abd--H.Hamid and indemnities in officials. On the other hand, the minister of finance reckoned that the revenue would probably show as increase of \([T 1.500,000\), while about \(£ T 2,000,000\) of expenditure woukd remain undistursed, which, with a reserve of \(£ T 2,000,000\) from 1909 would reduce the deficit to roughly [T \(5,000,000\) -
}
lacrease is apparent in all depertmenta. The setnal figeres of the increase are not, however, given. Exaggerated imporance must not be attributed to the swollen deficit. The demands of the various departments of sate had been much eat down, and according to the minister of Ginance's own seatement much of the reduction was merely una voidable expenditure deferred; the fact that some of this experditure, which had been jealously scruvinizod, wat to be underkiken at once, meant that demands on future years would be relatively reduced. A loan of \(17,040,000\) was arranged with a German grow headed by the Deutsche Bank. This ioan followed upon one of [T4,700,000 in 1908, and anotber of \(\mathbb{1} 7,000,000\) in 1909 (of which the eervice is provided by the revenues asagned to the Russian War indemnities aroounting to IT350,000 per annum, of which payment has been deferred for forty years), the year 1909 having ahown a realized deficit of about that amount-a condition of affais which would appear alarming were it not that the Turkish Empire was pausing through absolutely abnormal times, and was attempting to convert the unstable morate of disorder, ineptitude and corruption left by the previous system into a solid foundation for good and orderly constitutional govermment. With the two previous loans above mentiomed, IT \(5.500,000\) capital Liabilities were paid off, the work of peorganization had made considerable progrese, and [T2,000,000 remained in hand at the beginning of 1910-1911 to continue it. As before stated reorganization was quickly followed by a marked increase of revenue, and it seemsd probable that the forecast of the minioter of finance that within a comparatively short time that increase would amount to [T5.000,000 was not excessive. Negotiations were undertalesen to increase the customs import dution by a further additional \(4 \%\). This measure would produce about ETr,250,000 per annum.

Further expenditure was voted in the course of 1909, to be met by an extraordinary budget. On the receipts side of this budget were comprised the Austrian indemnity for the annexation of Bosnia and Herregovina (\(T 2,500,000\)), cash and securities belonging \(t 0\) the deposed sultan (ET \(1,600,000\)), sale of nid guns (5 T 300,000), sale of lands asd other property recovered from civil list encroachments (T T908,000), and finally the unexpected balance of the proceeds of the 1908 loan (\(\mathrm{ET}_{5} 5,000\)), the whole forming an aggregate total of fT5.963,000. It was intended to assign tn the war department IT 3,804.918, to the grand master of crdnance \(\mathbb{T} 358,108\), to the admiralty IT93,912, and to the ministry of finance IT \(2,443.202\) for the payment of the war indemnities in Thespaly and other urgent liabilities, the estimated aggregate extraordinary expenditure thut amounting to [T6,700,440. Some of the assets above mentioned proved, however, not to be easily realizable. Ready buyers were not found for the etate lands, a and the sale of the ex-sultan's securities was ditputed by the German Reichsbank with which they were deposited, while the government did pot consider it good poticy to sell the Anatolian railway shares, which it seized at Yildiz, so that only \(\lceil\) T 450,000 were encashed by the ministry of finance from these sources. Of the sums really received the ministry of finance expended some \(\{T 3.000,000\), in paymeat of the Greek indomnity, is repaymeit of fT1,000,000 of advances to the treaulury and by assigning the credit voted to the ordnance department, and it was stated that these payments exhausted the extraondinary resources so far as it has been possible to realize them.
Collection of Taxas.-The Ottoman Empire possemes a very complete syatam of local self-government within certain limits. Every village or town district has a kind of maynr (mukhfar) appointed by election and approved, by the official provincial authorities, and a "council of ancients" whose members are elected directly. The taxes are collected by means of tbe mmkhtars, termed for this porpose kaba-i-mal (recriver of treasure), and under the supervision of gemdarmes specially named, termed lahsildar (collectors). The official authorities provide lists of all the taxes to be collected to the lahsildars, who hand them, against formal reccipt, to the kabs-1-mals. The latter are bound to pay in to the local authorities all wamb
 if under 1500 piastres; sums of 1500 piastres and over are paid in at once. The lahsildars check the accounts of the kabz-r-mals, and. if they discover peculation, send them at once to be dealt with by the chief official authorities of the casa (department); all the electors of a mukhar are, ipto facho, joint sureties for him. If the tax-payer doclines to pay his due, he is brought before the proper authorities by the tchsildar; if he persists in his relusal, all his goods, except those indispensable for his dwelling and the pursuit of his irade, are sold by auction, without recourse to a judgment by tribunal. If be has no goods which may be seized, he may be summarily imprisoned for a term not exceeding gi days: two imprisonments lor the same debt are not permited. The mifitary exemption tax is not collected as above, burt by the splititual chrefs of the various religious communities. None of the above regulations apply to Constantinople, where no military exemption tax is imposed, and where separate official regulations for the collection of taxes are in force. The system of farming out the revenues is admitted, and is almost nvariably followed in the case of the tithes. When this is done, the revenues to be farmed are put up to public auction and sold to the highest bidder, provided he can prove himself amply solyemt and produce sufficient sureties. Elaborate regulationst
from the farmers, who, on the other hand, are entitled to full official assistance to enforce their rightis,

A ssessment of Taxes,-For the purposes of assessment the taxes may be divided roughly into two classes: (1) variable taxes; (2) nonvariable taxes. Under the first head would be included proportional taxes dependent upon the value of the property taxed; under the second, taxes whose amount does not depend upon that value. The first class contains such revenues as the embok werghi-5i (duty on realty), 'oshär (tithes), temellí (professional tax), \&c. In all such cases the taxable valucs are fixce by a commission of experts, sometimes chosen by the tax-payers themselves, sometimes by the official authorities; in all cases both tax-payers and authorities are represented on the commissions, whose decisions may be appealed against. in last resort, to the council of state at Constantinople, whose decision is final. Revenues composing the second class such as the tapas (registration tax) do not vary, unless by special decree, and the assessment is automatic.

The systems, both of assessment and collection, were equitable and far from oppressive in theory. In practice they left almost everything to be desired. The officials, already too numerous and underpaid, frequently, as has been stated above, found such pay as they had far in arrear. They were therefore naturally open to bribery and corruption, with the rcsult that while the rich often got of almost scot free, the poor were unduly taxed, and often cruelly oppressed by the tax collectors and farmers of revenue. In all departments there ensued, thus, an alarming leakage of revenue, amounting, it was credibly estimated, to quite, \(40 \%\). The new government energetically proceeded to remedy this state of affairs,

International Administration of the Olloman Debt.-In consequence of the piling up of the exterior public debt as described above, it amounted after the issue of "general debt" in 1875 to \(£\) T \(190,750,000\), and swallowed up annually upwards of \(£ T 10,000,000\), or nearly half the scvenue of the empire as it was tben constituted. The revolt of various disaflected provinces brought matters to a climax; in September 1875 one-half of the service of the interest was suspended, paper certificates known as "Ramazans" (since they were issued in the Arabic month of that name) being issued for that half in lieu of cash, and in the following March it was suspended altogether. After the war with Russia, in order to obtain credit from the Imperial Ottoman Bank and local financlers, who refused any further accommodation unless their previous and further advances were amply secured, revenues known as the "six jndirect contributions" were handed over to a committee of local bankers (by decree of Nov. 22, 1879), to be administered and collected directly by them. Tbese "six indirect contributions" were the revenues from tobacco, salt, wines and spirits, stamps (com. mercial), certain specified fisheries, and the silk tithe in specified provinces. Two years later, partly in view of the recommendations of the Congress of Berlip, partly to overcome insuperable difficulties in obtaining any kind of credit, the sultan authorized the Sublime Porte to issue an invitation to the various bondholders' committees in Europe to send delegates to Constantiaople for the purpose of negotiating a resumption of payments. These" committees" were the "Council of Foreign Bondholders" for Great Britain, the Imperial Ottoman Bank and its "group" for France, Herr S. Bleichröder for Berlin, the Credit-Anstalt and its "group" lor Austria-Hungary, and the Chamber of Commerce and of Arts of Rome for Italy. The Dutch bondholders placed their interests in the hands of the British council. Russia declined to countenance the negotiations in any way. Delegates from the various committees asscmbled in Constantinople in the early summer of 1881. The commission formed by them in conjunction with the delegates of the Sublime Porte is more generally known as the "Valfrey-Bourke commission," from the leading parts played by the Right Hoa. R. Bourke (Lord Connemara), the British delegate, and M. Valfrey, the French delegate. The outcome of the negotiations was the issue of an imperial decree, known as the "Decree of Muharsem," owing to its bearing the date (Turkish style) of the 28th of Muhar. rcm (Dec.20) 1881. By this decree the outstanding capital of the exterior debt, to which were added the Ramazan certificates above mentioned, and all interest fallen due, making a grand total of \(\left\{252,800,000\right.\), was scalcd down 20 fro6 \(43^{2}, 234\)
 I\% was to be paid, the rate of interest to be amenawa bor quarters
debt permitted. For purposes of slinking fund the old loans were combined into four groups: \({ }^{1}\) group \(i\). containing the 1858 and 1862 loans, with a reduced nominal capital of \(£\) T7,902,259; group ii. the \(1860,1863,1864\) and 1872 loans, with a reduced nominal capital of \(f\) Tri, 265,153 ; group iii. the 1865,1869 and 1873 loans, with a reduced nominal capital of \(£\) T33,915,762, and group iv. the "general debt," of which the last issue was in 1875 , with a reduced nominal capital of \(£\) T \(48,365,236\), and the " lottery bonds" (railway loan), with a reduced nominal capital of
 As security for the service of the new reduced debt it was provided that an international council should be formed, composed of one delegate each from the bondholders of the United Kingdom, France, Germany, Austria-Hungary, Italy and Turkey, and one representing the "priority bondholders," a term which will be explained later. On this council the Turkish government has the right of naming an imperial commissioner with "consul. tative voice," i.e. no voting power, but the right to express his opinion on the proceedings of the council, who would make all reports he considered necessary to his government. The government was empowered also to name controllers to whom all the accounts of the administration should be open for inspection on demand. In all other respects the council, provided that it kept within the limits of the laws the administration of which was entrusted to it, was to be entirely independent of the Ottoman government, free to appoint and dismiss its own officials from highest to lowest, and to carry on its administration on such lines as it thought best. Proposals made by the council for the modification and improvement of the existing laws and regulations which concerned it were to recelve an answer from the government within six months; this provision has remained a dead letter. Any difference between the government aad the council, if not possible of adjustment, was to be settled by arbitration.

To this council, with these extended powers, was handed over the absolute administration, collection and control of the "six indirect contributions" above enumerated, for the benefit of the bondholders, and In addition, it was to encash for the same purpose bills on the customs, to be drawn half-yearly in its favour by the minister of finance, announting annually to \(£\) T 180,000 , representing the tax on Tumbeki (CT50,000) and the surplus revenue of Cyprus (CTI 30,000); and the Eastern Rumelian annuity, originally fixed at [T245,000, but gradually reduced by force of circumstances, until after frequent suspensions of payment it reached in 1897 tbe level of £T114,000, and has, since the declaration of Bolgarian independence, been definitely stopped. In order to assist the young Lingdom of Bulgaria, which could only with great difficulty and with much damage to its resources have found meansto indemnily Turkey for thris serious breach of treaty engagements, the Russian government intervened, and proposed as compensation to the Turkish government the deferment for forty years of the anfual payment (\(\mathrm{T}^{2} 350,000\)) of the 1877 war indemnity. This proposal was accepted by the Turkish government, which undertook to continue the an nual payment of \(\subset\) Tiri,000 to the public debt administration until the extinction of the debt. The public debt council consented with good grace, although the minister of finance, by omitting to consult that council during the progress of negotiations, lost sight of the fact that a sum of \(\{187,823\) was due to the public debt administration on account of arrears of the Eastern Rumelian annuity up to Decernber 188 , and that a further sum of \(\{1430,741\) was due by the Bulgarian to the Turkish government itself in compensation for the Rustchuk-Varna railway under the Treaty of Berlin. As pointed out by Sir Adam Block, the representative of the British and Dutch bondholders, in his report for 1908-1909, the above arrangernent would have been prejudicial to the bondholders had the public debt not been "unified" (as described below) since, however, as a result of thai unification, the ceded revenues now produced a sum more than sufficient for the service of the debt, it was only the surplus of revenue reverting to the government which was affected. There were further handed over, Under the Muharrem decree, to the public debt councii, the tribute of Bulgaria, the amount of which has never even been fuxed. bul as compensation for which the tobacco tithe up to a yearly amount of CT100,000 was ceded to the council in the same conditions as the "six indirect contributions "; the proportional shares (gencrally known as the "contributive
\({ }^{2}\) For simplicity's sake. the lottery bonds having a special treatment different from that of the rest of the loans, these groups, when the new bonds of the reduced debt were exchanged against the ofd bonds of the oricinal loans, became "series" thus: Series A. group i.; geries B, group is ; serics C. group ili.; series D. group iv, and lottery bonds.
parte") of the Ottomsn public debt to be borne by Bulgaria, Servia. Greece and Montenegro, which acconding to the Troaty of Berlin were to be adjudged by the representatives of the Great Powers az Constantinople, one of whom (the Russian) never succeeded in obtaining his instructions, and whict therefore have never been fixed: and, finally, the excess of revenue resulting from a revision of the commercial treaties. The ceded revenues, exclusive of the "contributive parts" "nd the excess from commercial treaties, were eximated by Bourke. In his report to the bondholders on the decree of Muharrem, at \{1,812,562 (TT1.993,818). A substnntial reductlon bowever, had to be made in lavour of the \(3 \%\) "priority bonds,:" Which were bonds issued to the local banks before mentioned in antislaction of their claims, and formed an annual first charge of ET 590,000 on the whole of the revenues ceded to the bondholders; the capital amount of the "priority bonds" was [T8,169,986, which was to be extinguished by 1906. Four-fif ths of the net product of the revenues, after deduction of the first charge of \(£\) T 590,000 , was to be applied to the serviee of the interest on the new reduced debt, and provided that the lour-ffiths were sufficicnt to allow the dissribution of \(1 \%\) interese, one-fith was to be devoted to sinking fund; but this latter fifth was to be reduced, if neressary, by an amount sufficient to rumintain the rate of interest at \(1 \%\). The interest on bonds amortized was to be added to the funds available for sinking fuad. The sinking fund was to work as follows: First \(\frac{\%}{} \%\) on the whole reduced capital was to be applied to group i.; it there were any curplus this was to be applied to group ii., until that also received the wome full \(\} \%\) and so on for group iii, and group iv., until the wnole inking fund amounted to \(1 \%\) on the reduced capital. It was to be applied by redemption at the best price possible on the market until that price stood at \(£ T 66666\), when, if the rate of interest served were i\% \({ }^{t}\) was to proceed by drawings; if che interest were anything more than \(1 \%\) and less than \(3 \%\) the limit of price for redemption Wrat to be raised to CT 75 ; if tho interest were between \(3 \%\) and \(4 \%\) incluaive, the limit was to be raised to par. Any surplus of reverue beyond that nocessary to provide 4\% interest and \(1 \%\) sinking luad was to be handed over to the government. The lottery bomde recosive a special treatment both in regard to intercest and cintring fund: full information as to the intricate arrangements made for these bonds will be found in the decree of Muharrere and the pobbiviend reports of the council of administration of the Oitoman pubtic debe. In 1890 the sinking fund was increased by the convercion of the "priority loan "into \(24 \%\) loan and the extension of the cerm of its redemplion for is yeare in this manner as annuity
 as "extriordinary sinking fund" to series \(A\) and /T 49.500 per annuri esch to meriea B, C and D; the fottery bonds were originally extluded from tbis arrangement, and special compensation wat arianted to thess later. Each serics receives the benefit of the intercst on boods belonging to it amortised by this special a annuity. Thus, in the financial yoar 1900-1908 the total amount of the fund had riven from ET I 59.500 to ET231,500.
The arrangement set forth in and sanctioned by the decree of Muhartem on the whole worked admirably. Gradually, however. it became apparent that it would be desirable to give Turkish state mecuritice, of which those governed by the decree of Mluharrem formed the priocipal part, a better standing in European financial markets then was possible for bonds bearing so low a rate of interest: to obliterate thus, as far as possible. the effects of the past bankruptcy: and, further, to give the Turkish government a joint interest with the boodholders in the progress of the ceded revenucs. The French bondholders, who hold by far the largest proportion of Turkish wocurities took the principal initiative in this matter, and, after prouracted negrotiations with the Turkish government and the ofher ayodicates of bondhoiders, they succecded, in 2993. in obtaining she following modifications of the original decree of Muharrem.
Series B. C and D (series A having already been completedy noleemed by the action of the sinking lund) were replaced by the creation of new \(4 \%\) bonds to 2 nommal amount of \(\left\{\Gamma_{32,738,772 \text {, }}\right.\) rith a sinking fund of \(0.45 \%\) per ammum, bcaring identical riglits and privileges, and ranking immediately after, the priority bonds. The rates at which the series were respectively exchenged against the pew unifeed bonds were 1200 series B againat \(£ 70\) unifed, \(E 100\) cries C agninst An \(^{2}\) unifod and \(£ 100\) serus \(C\) against \(\ell 37\), 108 . mified Bonds of the okd series not presented for exchanyc wit hin - period of fifteen years are prescribed. The amortization is to proceed by purchase when the unifed bonds are below par, and When as or above par, by drawings. Coupons and drawn bonds not presented within six and fifteen years respectively of uheir ave decen of payment are prescribed. Intercst on amorized bonds soes to stell the sinking fund. When the net product of the ceded revences emounts to \(/ T 2,157,375\), the eurplus is divisible as to \(73 \% .60\) the Turkish government and \(25 \%\) to the public debt phe prionety bonds vanuitd become extinct; but thesc bonds having evoce bem repaid (us mentioned below) by a further issue of unifing -nden etive variation lapuen The above \(25 \%\) is to be employed - Wiplonad rinkthg fund for the unififed debe and botery bonds. was created of which the aucleus was the sum aircady standing
to the credit of the "Reserve fund for increasing the rate of in tcrest " (\(£ 51,113,865\)). plus \&T 300,000 at least in cash by the iseue of sufficient unified bonds to produce that amount and the sum of ITI50,000 to be paid by the government to the public debt at the rate of \(\mathrm{ET} 15,000\) per annum. It should be added that the cotal issue was made sufficient to reserve also ETI,460,000 lor expenses, after taking into account fio0,000 in cash paid by the government to the pullic debtadministration out of the said issue. The reserve lund was created primarily to make good any deficiency in the revenues below the amount required to pay the interest duc. II such drafts upon tbe reserve fund becorne necessary they are to be made good in the following years out of the surplua above mentioned. The reserve fund is increased by the interest it may earn, but when the capital amount of the fund reaches CT2,000,000 the interest eamed is merged in the general receipts of the public debt administration. As soon as the unified debt is reduced to \(\mathbb{1} 16,000,000\) the reserve fund is to be reduced to \(\mathrm{ETI}, 000,000\), the surplus over tbis last amount being paid 20 the government. The unified bonds and coupons ane exempt from all Turkish taxation existing or to come. Further special stipulations regarding the Turkish tot tery bonds were made, but these are, as before, omitted. They will be lound ia art. \(x\). of the "Annex-Decrec" of September 1-14, 1903, which gave the modifications to the Muharrern decree here described force of law. Finally the Imperial Ottoman government reserved to itself the rigbt of paying off the whole unified debt at par at any moment and all the dispositions of the decree of Muharrem not modified by the now "Annex-Decrec" were formally confirmed and maintained. In 1906 a further modification took place in the shape of "the final and complete repayment of the priority bonds by the additional issue of \(19.537,000\) of unifed bonds for the purpose, taken firm by the Ottoman bank at 86 . The rate at which the exchange was effected was par with a cash bonus of \(6 \%\). The previous annuity required for the service of these bonds having been 1 T430,500, and the additional charge for the service of the unified debt as a result of the operation being \(£ T\) 424.396, whilo the government received \(£ \mathbf{T t , 2 7 2 , 6 0 0}\) in cash for its own purposes, there yas a slight immediate advantage to be found in it : as, how. ever, the priority debt would have been completcly extinguished in 1932, the financial wisdom of the change is not apparent.

The ceded revenues administered directly by the public debt council have shown remarkable expansion, and may be fairly looked upon as exemplifying what would occur in the gencral revenues of the empire when good and honest administration and regular payment of officials finally took the place of the carelessoess, corruption and irregularity which existed up to the change of regime. The council has not limited its duties to the collection of the revenues placed under its administration, but has taken pains to develop commercially the revenues capable of such development. A large and remunerative export trade in salt to India is now established, whereas formerly not one grain found its way there; the first steps in this direction were taken in 1892 when works were begun to place the great rock-salt salines of Salif, on the coast of the Red Sen, on a commercial footing. The gross receipts from this export trade amounted in the year \(1908-1909\) to \(£\) T 99,564 , ind the profits approximately to \(£ T_{12, \infty}\), in spite of the contest between Liverpool and Spanish salt merchants on the Calcutta market, which led to a heavy culting of prices. Pains, moreover, have been taken by the public debt council to develop the sale of salt within the empire. These efforts have been rewarded by the increase of the salt revenue from \(£ T 635,000\) in 1881-1882, the year preceding the estahlishment of the council, to \(\mathrm{X}_{1,075,880}\) in 1907 -1908. Again, in the carly years of the administration (1885), the Pasteur system of selection of silk-worms' eggs for the rearing of silkworms was introduced, and an "Institute of Sericulture" on modern lines was erected (\(\mathbf{2 8 8 8}\)) at Brusa for gratuitous instruction in sill-rearing to students from all parts of the empire. Up to the end of \(1907-1908\), 919 students had received the diploma of the institute, and 465 silk-growers in addition had passed through the course of instruction. These men, returning to their various districts, impart to others the instruction they have received, and thus spread through the regions adapted to sericulture the proper methods of selection and rearing. As a result some \(60,000,000\) mulberry trees were planted in Turkey during \(1800-1910\), involving the plantation of about 130,000 acres, and new magnoneries and spinning factories sprang up in every direction; while the revenue (silk tithe) increased in the regions administered by the council from \(\mathrm{fT}_{17,000}\) in 188:-8882 to
£Tr25,000 in 1006-r007, the value of the silk crop in those regions having thus advanced by over ETr.000,000. But the regions not under its administration bencfited at least equally by the methods above described. Thus the total value of the silk tithe in Turkey increased in the period named from about \(£ T_{20,000}\) to \(£ \mathrm{~T}_{27} 6,500\), and the total annual value of the crop from about \(£ T 200,000\) to \(£ T_{2,765,000 \text {, or by nearly } 2\}}\) millions pounds sterling.

Table A gives the produce of the revenues in 1881-1882, the last year of the administration of the "Galata Bankers," the average product of the first, second, third, fourth and fifth quinquennial periods since the public council was established, and of the year 1007-1903.

Table B shows the total indebtedness of the Ottoman Empire, exclusive of tribute loans.

Tubacca Regie.-From the beginning of the year 1884 the tobacco revenuc has been worked as a monopoly by a company formed under Onoman law, styled " La Régie Imperriale Cointérescée des Talace Ottomans." This company has the absolute monopoly of the manit faclure and of the purchase and site of tobacco throughout the Ottuman Empire, with the exception of the Lebanon and Crete, but exportation rentains free. It is bound to purchase all tobacco not exported at prices to be agreed between is self and the cultivators; if no agreement can be arrived at, whe price is fixed by experts. It is olliged also to form entrepots for the storage of the crops at reasonable distances from each other, and, on certain conditions, to grant advances to culuvators to aid trem in raising the leaf. The cultivators, on the other hand, may not plant tobacco without permits from the régie, although the power of refusing a permit, except to known smugglers or persons of notoriously bad conduct, seems to be doubefulf nor may they sell to any purchasce, unless for export, except to the rigic, while they are bound to deposir the whole of the tobacco crops which they raise in any one year in the entrepots of the régic before the nonth of August of the year following.

Table A.-Showing Retenues ceded to Olloman Public Debt Administralion at Vorious Periods 10 1907-1908.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ilcads of Revenue. & List year of Gatata Bankers, \(188 t-t 88_{2}\) & Averaze far Firse tive lisary of Council of Public Dete. 185:-83, 1886-87 & Average for Scound twe I'cars of Countil of Pulaic [etes, \(1807-88,8801-91\) & \begin{tabular}{l}
Average for Thind live Icars of Cunaril of Aublic [eth. \\

\end{tabular} & Average for Founh Fise Years of Council of Public Ixets 1307-08, 1908-2. & Average for Thith Five licars of Council of Pultic Dets. 100:-3. 1906-7 & 1007-8. \\
\hline & Cr & LT & £T & ¢T & <T & ¢T & \& \(T\) \\
\hline Six Cndirect & 881.563 & 822.633 & 755,489 & \(788,3^{8} 4\) & 725,641 & 815.923 & 809.352 \\
\hline Salt & 634.936 & 651.057 & 702,150 & 755.978 & 86t, 4 O6 & 988.417 & 1,123.886 \\
\hline Stamps & 129.833 & 1.46,822 & 185.930 & 212.815 & 221.856 & 321,193 & 366.255 \\
\hline Spirits & 177,163 & 198.356 & 229,059 & 258,848 & 269.482 & 273.803 & 283.301 \\
\hline Fisheries Silk & 26,064 & 34,356 & 44.307 & 44,337 & 47,294 & 5.1032 & 69.549 \\
\hline Extra Budgetary Recuipts \(\dagger\) & 17.118 & 24.145 & 39.398 & 56.393 & 69,012
2,797 & 98,731
25,757 & 131,238 \\
\hline Total of Sik Indirect Contributions & 1,866,677 & 1.937.369 & 1,951, 333 & 2,116,755 & 2,197,488 & 2.575.946 & 2,873.561 \\
\hline Tobacco Tithe . & not collected & 72.340 & 81,866 & 104,688 & 99.276 & 172,473 & 210,068 \\
\hline Eastern Rumclian Annuity & ., & 150,040 & \(t \geq 6,688\) & 129,222 & 88,682 & 159,6:8 & 114.020 \\
\hline Excess of Cyprus Revenucs & " & 130,000 & 113.557 & 102,596 & 102.576 & 102,596 & 102.596 \\
\hline Tax on Tumbecki & " & 50,000 & 50,000 & 50,000 & 50,000 & 50,000 & 50,000 \\
\hline Total Gross Revenuc & 1,866,677 & 2,339,749 & 2.328.444 & 2,503.261 & 2,538,042 & 3.060,643 & 3.350,245\% \\
\hline Expenses & 378.789 & 388.000 & 392.403 & 346,143 & 418,537 & 522,798 & 572.850 \\
\hline Total Net Revenue & 1,487,888 & 1,951.749 & 1,936,041 & 2,157.118 & 2.119 .505 & 2, 53-, 8+5 & 2,777,395 \\
\hline
\end{tabular}
- Exclusive of \(\mathbb{2}\) 50,000 representing the recrocession of the reftish (Egyptian tax, abolished in \(\mathbf{8 9 5}\)) to the regie.
\(\dagger\) Up to 1902 -i903 the extra-budgetary receipts and fines had been carried to account of the respective revenues concerned; alter that date thay were placed under a special heading; After \(1905-1906\) extra-budgetary receipts relating to expenditure previously effected have been deducted from "Ceneral Expenses.
\(\ddagger\) The \(3 \%\) customs surtax is not included in this zable. It came into force on the 13th of July 1907, and produced during the remainder of the financial year \(£ T 544,987 \mathrm{i} 25 \%\) of this revenuc is ceded to the public debt; the remainder reverts to the government.

Table B.-Pasilion of the OHoman Publec Debl on the rat of March 1320 (March 14, 1910).
\begin{tabular}{|c|c|c|c|c|}
\hline Designation of Loans. & Nominal Capital issued. & Annuities. & Numinal Capital redeemed at Ist March 13:6(1910) & \begin{tabular}{l}
NominalCapital in circulation on Ist \\
March 1326(1910)
\end{tabular} \\
\hline & \(1 \mathbf{T}\)
\(42,275,772\)
\(15,632.548\)
4.999 .500
\(3.272,720\)
\(2,640.000\)
\(2.376,000\)
4.752000
\(2,750,000\)
2.640 .000
\(5.306,664\)
\(4.711,124\) & \begin{tabular}{l}
(T \\
1.887.375 \\
270,000 \\
249.975 \\
180,000 \\
118,800 \\
97,120 \\
200,000 \\
123.750 \\
118,800
238,800 \\
212,000
\end{tabular} & \(\notin T, 10\)
\(2,34,010\)
3.599 .592
\(1,509,200\)
289,300
105,424
15.642
8,426
57.090
83.556
123,420 & \(\{T\)
\(39.930,762\)
\(12,032,956\)
\(3,490,300\)
2.983 .420
\(2,534.576\)
\(2.360,358\)
4.743 .574
\(2,692,910\)
2.556 .444
5.183 .244
4.711 .124 \\
\hline & \begin{tabular}{l}
91,356,328 \\
1,010,010 \\
1, Wra,000 \\
8temiogo \\
8Fanyoco \\
9/20.5 54 \\
7.menver
\end{tabular} & \[
\begin{array}{r}
3.696,620 \\
50.000 \\
76.560 \\
300,000 \\
16.8 .869 \\
308,696 \\
36,174 \\
350,000 \\
\hline
\end{array}
\] & \begin{tabular}{l}
8,136,660 \\
239.800 \\
136,202 \\
367.180 \\
1,303,280 \\
777.700 \\
852.808
\end{tabular} & \(83.219,668\)
760.210
\(1,623.798\)
\(8,232.840\)
4.196 .720
\(60,370.912\)
\(8,180,766\)
7.000 .004 \\
\hline & 110.0.is & 5,401,909 & 11,813.630 & \(119,384.918\) \\
\hline
\end{tabular}
and may not move any sobacoo from the place where they cultivate it without the rexie's express authority. In order to facilitate sapervision, a minimum ares of one-hall of a deиниm (a deunum = about one-fourth of an acre) is fixed for ground upon which tobacco may be cultivated; in the suburban districts of Constantinople and sorne other towns, and in enchosures surrounded by walls and attached to dwelling-houses, it is altogether prohibited. For its privileges the tégie has to pay a rent of \(\mathrm{KT}_{750,000 \text { per anaum to the }}\) government (assigned to Bondholders), "even if it has no revenues at all." and alter the payment of a dividend of \(8 \%\) to its shareholders, and certain other deductions, it has to share profits with the government and the bondholders according to a atiding scale agreed upon between the three parties. - The regie did badly during the first four years of its existence, owing principally to two causes: (1) iss ineffectual power to deal with contraband ta which the syatem described above leaves the door wide open; (2) the admission dother than Turkish robaccos into Egygt, which deprived it at once of about \(\mathrm{ET} 100,000\) per annum. So great were its losses that in the year 1887-1888 it was obliged to write them of by reducing its capital from \(\{2,000,000\) to \(\{1,600,000\). At the same time it was granced an extension of penal powers, and the losses on reflich (duty oa tobacco exported to Egypt) were to be partially borne by the pablic debt administration. Things went better with it from that time until 1894-1895. when, owing to internal troubles in the empire. and the consequent fear of creating worse disorders, by the strict eaforcement of the monopoly, the government withdrew most of its support, and contraband enormously increased. The following table shows the movement of the revenue of the regie from the year 1857-1888 to 1908-1909 inclusive:-
\begin{tabular}{|c|c|c|c|}
\hline Average for
5 years. & Gross receipts from all sources. & Total expenses, including.fixed charges. & \[
\begin{array}{c|}
\text { Net } \\
\text { revenue. }
\end{array}
\] \\
\hline & \(f T\) & ET & ET \\
\hline 1887-1892 & 1,924,264 & 1.735.896 & 188,368 \\
\hline 1892-1897 & 2,330.786 & 2,033,190
1
1,808646 & \({ }^{*} 293.896\) \\
\hline 1897-8907 & 2,098,537 & 1,898,646 & \({ }^{-199,891}\) \\
\hline 2902-1907 & 2,511,921 & 2,104,739 & 407,182 \\
\hline \begin{tabular}{l}
Year 1907-8 \\
n 1908-9
\end{tabular} & \[
\begin{aligned}
& 2,660,895 \\
& 2.597 .909
\end{aligned}
\] & \[
\begin{aligned}
& 2,146,864 \\
& 2,167,795
\end{aligned}
\] & \[
\begin{aligned}
& 514,031 \\
& 430,114
\end{aligned}
\] \\
\hline
\end{tabular}
- There was a heavy fall in the receipts in the four years 1895-1896 to 1898-1899 inclusive. The climax was reached in 1897-1898 when the tet revenue amounted to only \(\mathbf{6} 6.975\) as compared with ET152,000 in 1894-1895, and it did not revert to its previous level Eatil 1900-1903. This was the result of the Armenian massacres, Ihe whoteale emigration of Armenians of all classes, the aecompanyiag profound political unrest throughout the country, and the great ettension of contrabend which ensued from it.
Negotiations wero initiated in rgto for the prolongation of the efncescion of the tobacco monopoly, which reaches its term in 1/85:
Restroy Gwarantets,-Up to 8888 the only railways existing The Turkish Empire (exclusive of Egypt) were, in Europe, the Constantinopte-Adrianople. Philippopolis line and the SalonicaMit roviza line (finished in 1872); and in Asia Minor, the SmyrnaAdin (completed in 1866), the Smyrna-Cassaba (completed in r(66). the Constantinople-Ismid (completed in 1872), the MersinaAdane (completed in r886). The want of railways in Asia Minor nes urgently felt, hut no capitalists were willing to risk their money in Turkish railmays without a substanting guarantee, and aguarantee of the Turkish government alone was not considered enbentisl enough. In 1888 it was proposed by the public deht edministration to undertake the collection of specified revenues to be set aside for the provision of railmay guarantees, the principle to be followed being, generally, that such revenues couid consist of the tithes of the districts through which the ? "wrays would pass, and that the public debt should hand over A puaranteed railway companies the amounte of their guarantees troce transmitting to the inperial government any of the procends of the revenue 50 collected. The government adopted this yeposal, and laid down as a principle that it would guarantee \& gross receipts per kilometre of guaranteed railways, such fors recefpts to be settied for each railway on its own merits. cansiderable competition ensued for the rallway concessions mader this system. The first granted was for the extension of Ite Constantinople-Ismid railway to Angora to a group of German Find British capitalists in 1888 . The Germans having bought out the British rights, this concession becume a purely German
affair, although a certain proportion of the capital was found in London. Siace that time various other concessions have been granted to French and German financial groups, principally the Imperial Ottoman Bank group of Paris and the Deutsche Bank group of Berlin.

The systems of guarantee above described are clearly faulty, since theoretically the railway company which ran no trains at all would, up to the limit of its guarantee, make the largest profits. The concessionnaire companics have, however, wisely taken the view that it is bet ter to depend upon their own revenues than upon any government guarantee, and have done their best to develop the working value of the lines in their charge. The economic effect of the railways upon the districts through which they run is apparent from the comparative values of the tithes in the regions traversed by the Anatolian railway in 1889 and 1898 in which years it so happened that prices were almost at exactly the same level, and again in 1908-1909, when they were only slightly higher. Thus in 1889 they produced \(£ \mathrm{~T}_{145,378 \text {, in } 1898}\) fT28 5.470, and in 1908-1900 ET281,919.

A different system, still more uneconomic than the kilometric guarantee pure and simple, was adopted in the case of the Bagdad railway. In January 1902 the German group holding the Anatolian railway concession was granted a further concession for extending that railway from Konia, then its terminus, through the Taurus range and by way of the Euphrates, Nisibin, Mosul, the Tigris, Bagdad, Kerbela and Nejef to Basra, thus establishing railway communication between the Bosporus and the Persian Gulf. The total length, including branches to Adana, Orfa (the ancient Edessa) and other places was to exceed 1550 m. ; the kilometric guarantee granted was 15,500 francs (f620). It should be noted that this concession was substituted for one negotiated hy the same group, and projected to pass through Diarbekr. This raised strong objections on the part of Russia, and led to the Black Sea Basin agreement reserving to Russia the sole right to construct railways in the northern portion of Asia Minor. The Anatolian railway company, apparently unahle to handle the concession above described, initiated fresh negotia tions which resulted in the Bagdad railway convention (Marck 5, 1903). This convention caused much excitement and irritation in Great Britain, owing to the encroachment of German influence sanctioned by it on territories hordering the Persian Gulf, hitherto considered to fall solely within the sphere of Britisk influence. Atterapts were made by the German group, assisted by their government, to secure the participation of both Britain and Fragce in the concession. These were successful in France, the Imperial Ottoman Bank group agreeing to undertake \(30 \%\) of the finance without, however, any countenance from the French government-the " Glarus Syndicate " being formed for apportioning interests. The British government seemed, at one time, rather to favour a British participation, but when the terms of the convention were published, the strongest ohjection was taken to the constitution of the board of directors which established German control in perpetuity, while it was evident from the general tenor of the convention that a political bias informed the whole; in the end public feeling ran so high that any British participation became impossible.
The financial advantages, however, granted by the Turkish government were singularly favourable to the concessionnaires and onerous to itself. The kilometric guarantee of \(\mathbf{1 5 , 5 0 0}\) francy (6620) was split into two parts, 4500 francs (1,180) being granted as the fixed working expenses of the line, all receipts in excess of which amount were to be credited to the Turkish povernment in reduction of the remaining 11,000 francs (\(\mathcal{L}, 40\)) which took the lorm of an annuity to be capiralized as a \(4 \%\) state loan redeemable in 99 years, that being the period fixed for the duration of the conces sion. The fine was to be constructed in sections of 200 kilometres (125 m .) each, and as the complete plans and drawings of each were presented at the times and in the order specified in the convention, the government was to deliver to the concestionnaires government securities representing the capitalization of the annuity accruing to that section. The capital sum per section was fixed, in round figures, at \(54.000,000\) francs (\(\{2,160.000\)). subject to adjustment when the section was completed and its actual length definitely measured up. A minimum net price of \(81 \frac{1}{2} \%\) was fixed for the realization of these securities on the marlset. The bonds are secured
on the surplus of the revenues amigned to the guarantee of the Anatolian railway collected by the Public Debt Administration, on the excess revenue, after certain deductions, accruing to the government under the " Annex-Decree to the Decree of Muharrem" above described, on the sheep tax of the vilayets of Koniah, Adana and Aleppo, and on the railway itself. The first series (\(54,000,000\) francs or \((2,160,000)\), was duly handed over to the concessionaires in 1903, and was loated in Berlin at \(86.4 \%\) realizing, the sum of (1,868,000. The division of the line into equal sections of 200 kilometres apiece produced at once a somewhat ridiculous result. The little town of Eregli, wome 190 kilometres distant from Konia, presented the only excusable locality for the terminus of the first section, and even that place is 90 kilometres distant from Karaman, the last town of any importance for some hundreds of miles on the way to the Euphrates valley, the country between the two towns being desolate and sparsely inhabited. But the Bagdad Railway Company \({ }^{1}\) (the share capital of which is \(\{600,000\) half paid up), naturally anxious to carn the whole of the capitalized subvention completed the construction of the entire 200 kilometres. The line was thus continued to a station taking ifs name from Bulgurlu, a small straggling village four miles away, between which and Eregli there is not a single halitation. But even this did not quite complete the distance, and the line was carricd on for siill another kilometre and there stopped, "with its pair of rails gauntly projecting from the permanent way" (Fraser, The Short Cmi to India, 1909). The outside cost of construction of the first section, which lies entirely in the plains of Konia, is estimated to have been f625,000; the company retained. therefore, a proftt of at lenst 11 millions sterling on this first part of the enterprise. In the second section the Taurus range is reached, after which the construction becomes much more difficult and costly. On the and of June 1908 a fresh convention was signed between the government and the Bagdad Railway Company providing, on the same financial basis, for the extension of the line from Bulgurlu to Helif and of the conetruction of a branch from Tel-Habesh to Aleppo, covering a total aggregate length of approximately \(8 \neq\) kilometres. The principle of equal sections of 200 kilometres was thus sct on one side. The payments to the company, were to be made in two lump sums forming "series 2 and 3 " of the "Imperial Ottoman Bagdad railway loan," series 2 amounting to \(\{4,320,000\), which was delivered to the company on the signature of the contract, and series 3 to 44,760,000. The Bagdad railway musi for much time be a beavy
\begin{tabular}{|c|c|c|}
\hline Designation of Main Lines. & Length in Miles(including branch lines). & Armount Kilometric Guarmiter. \\
\hline \multirow[t]{2}{*}{Turkey in Europe:Oriental Railways \({ }^{2}\) Salonica-Monastir . Salonica-Constantinuple Total European Turkey} & \[
\begin{aligned}
& 815 \\
& 137 \\
& 317
\end{aligned}
\] & \[
\begin{aligned}
& f_{1}^{f} \\
& \text { Nil } \\
& 5720
\end{aligned}
\] \\
\hline & 1269 & \\
\hline \multirow[t]{2}{*}{Turkey in Asia :Hamidie Railway of the Hejaz' Anatolian Railway: Bagdad Railway (KoniaBulgurlu section)'} & 932
635 & \[
\operatorname{Varies}_{\substack{\text { Nil. } \\ \text { Irom } \\ \mathbf{E} 600 .}}
\] \\
\hline & 124 & 6600: Annuity f440 Working Expenses frico. \\
\hline \begin{tabular}{l}
Mudania-Brusa \\
Smyrna-Aidin \\
Smyrna-Cassaba
\end{tabular} & \[
\begin{array}{r}
26 \\
320 \\
322
\end{array}
\] & \\
\hline & & Burnabat and Manisa.Soma branches the government guarnatees \(\{92,400\) as half the annual receipts. For the Alashehr-Karahissar extension, there is a kilometric guarantee of 6755 . \\
\hline Damascus-Hama Mersina-Adana \({ }^{*}\) Jaffa-Jerusalem & \[
\begin{array}{r}
361 \\
42 \\
54
\end{array}
\] & \\
\hline Total Asiatic Turkey & 2816 & \\
\hline Grand Total & 4085 & \\
\hline
\end{tabular}

Results of igns according to the Nationality of the Capital.

-an additional indication, if any were needed, of the thriftlesaness of the latter in the matter. Moreover. the Anatolian railway receives. under the original Bagdad railway convention (1) an annuity of \(f 14,000\) per annum for thirty years as compensation for strengthening ita permanent way sufficiently to permit of the running of express trains, and (2) a second annuity of \(£ 14,000\) in perpetuity to compensate it for running express trains-this to begin as soon as the main Bagdad line reaches Aleppo.

It was stated in the preface to the budget of 1910 that the government would grant no more railway concessions carrying guarantees. The amount inscribed for railway guarantees in the budget of 1910 was \(£ 746,790\). The tables on p. 440 show the respective lengths of the various Ottoman railways open and worked at the end of 1008 and the amount of kilometric guarantees which they carried-and the lengths, \&c., of railways worked by the various companies according to the nationality of the concessionaire groups.
1 Banks.-At the close of the Crimean Wara British bank was opened in 1856 at Constantinople under the name of the Ottoman Bank, with a capital of \(£ 500,000\) fully paid up. In 4863 this was merged in an Anglo-French bank, under a concession from the Turkish government, as a state bank under the name of the Imperial Oumas Bank, with a capital of \(\{2,700,000\), increased in 1865 to E4.050,000 and in 1875 to \(\{10,000,000\), one-half of which is paid up. The original concession to the year 1893 was in 1875 extended to 1913, and in 1895 to 1925. The bank acts as banker to the fovernment, for which it has a fixed annual commission, and it is obliged to make a permanent statutory advance to the government of ETi,000,000, against the deposit by the goverament of marketable securitics bearing interest at a rate agreed upon. The bank has the exclusive privilcye of issuing bank-notes payable in gold. its central office is in Constantipople, and it is managed by a director-general and advisory committce appointed by committees in London and Paris.

The Nalional Bank of Turkey (a limited Ottoman Company) is a purcly British concern with a capital of \(11,000,000\), founded by imperial Grman of the IIth of April 1909 . under the auspices of Sir Ernest Cassel. It is understood that it was originated at the unofficial instigation of both the British and Ottoman governments, with the idea of forming a channel for the more generous investment of Eritish capital in Turkey under the new regime, so that British Gnancial ipterests might play a more inportant part in the Ottoman Empire than has been the case since the state bankruptcy of 1876. Thls bank brought out the Constantinople municipa! loan of 1909 ((1.000,000). Other banks doing business in Constantinople are the Deufsche Bank, the Deulsche-Ortent Bank, the Cradit Lyonwais, the Wiener Bank-Verein, the Russian Bank for Commerce and Indistry, the Bank of Mifylene, the Bank of Salonica and the Bank of Ahbens.

Monetary Syslem.-The monctary system presents a spectacle of perplexing confusion, which is a remnant of the complete chaos which prevailed before the reforms initiated in 1844 by Sultan Abd-ul-Mcjid. The basis of the system adopted was the double atandard with a fixed relation of \(\mathbf{1}\) to \(\mathbf{5 5} 09\), and free coinage. The unit waid the piastre (\(=2\) id.), norninally subdivided into 40 paras The gold pound (18s. 2d.) was equivalent to 100 piasires; the gold pieces struck were [T5. ETI. ETI and ETt; the standard is 0.9161 hine, and the weight 7.216 grammes. The silver coinage consisted of the meivide (weight 24 -os5 grammes, 0.830 fine), equivalent to 20 piastres, and its subdivisions 10, 5, 2, I, and \& piastre pieces, The altilik, besblik and metallik currencies struck, the frst and in the reign of Mahmud only, were not included in the reform; these were debased currencies bearing a nominal value, the altilik of 6 , and \(1 \$\) piastres, the beshlik of 5 and 2i piastres, the metalik of \(I\), and 1 piastres; they represented the last degree of an agelong monetary depreciation, the original piastre having bad a value of about 50.7 d. , which bad fallen to 2 ld . The heavy depreciation
of siver causing large losses to the government, free comage was fan siver causing large losses to the government, free connage was reduced by decree to 19 piastres (105.26 plastres thus \(=£ 11\)), while这 the same year the debased currencies were reduced, altilik, the 6 piactre piece to 5 piastres, the 3 -piastre piece to 21 piastres, le If-piastre pisce to 13 piastre; beahilk, the 5 -piastre picce to 2t piastres, the 21-piastre piece to 14 -piastre; metallik, the 1 -piastre We to \(\frac{1}{2}\) piastre, the \(\frac{1}{\text { I }}\) piastre piece to \(\&\) piastre, the \(\frac{1}{2}\)-piastre piece The zilver, at mejidie staudard, contained in the debased The copper coinage (\(113,000,000\) piastres) and the paper Ocaime (1,600,00,000 plastres) referred to in the above
ere withdrawn in 1880 by repudiation. The 20 -pinstre ounteray, in spite of the further enormous depreciation sso, has acaroely varied in the Constantinople always remained at a discount of about \(3 \%\) and 109 piastres to the pound) under government
of the coins in that market are very evenly balanced. The parity thus working out at 102.60, gold continued to be held away from the treasury, and in 1909 the government decided to accept the Turkish pound at the last named rate. The fractional mejidie coins (\(5,{ }^{2}\) and \(r\) piastres) are quoted at a separate rate in the market, usually at a premium over the 20 -piastre piece. In the last twelve years of the Igth century the altilik currency was almost entirely withdrawn, and rephoced by fractional mejidie; a large proportion of the beshlik has also been withdrawn, but the metallik has not been touched. These debased currencies are usually at a premium over gold owing to the extreme scarcity of fractional coinage. The standard of the altilik is about o.440 fine, that of the beshlik is o-185 to 0.225 fine. that of the metallik is 0.170 fine. Foreign gold coins, especially the pound sterling (par value 110 piastres) and the French 20-franc picce (par value \(87 \frac{1}{7}\) piastres) have free currency. Throughout Arnbia and in Tripoli (Africa) the principal money used is the silver Maria Theresa dollar tariffed by the Ottoman government at 12 piastres. The Indian rupee and the Persian kran are widely circulated through Mcsopotamia; in Basra transactions are counted in krans, taking as a fuxed exchange fTr \(=34 \cdot 15\) krans. The general monetary confusion is greatly intensified by the fact that the piastre unit varies for almost cvery province; thus, while the pound at Constantinople is counted at 108 piastres silver, it is at about 127 piastres for one kind of transaction and 180 for another in Smyrna, 135 piastres at Adrianople, 140 at Jerusalem, and so forth, accounts being kept in "abusive piastres" which exist no longer. In some towns, e.f. Adrianople, small change is often supplemented by cardboard tickets, metal discs, \&c, put into circutation by private establishments or individuals of good credit.

A commission the successor of many) was instituted at the ministry of finance in 1910, to draw up proposals for setting this confusion in order. In his 1910 budget spoech the minister of finance, Javid Bey, demanded authority to create a new aluminium coinage of 5. 10,20 and 40 para pieces, of which he would issue, in the course of three vears, a nominal amount of \(£ T 1,000,000\) to those provinces in which there was a great scarcity of small coins. The amounts of Turkish gold. silver and debased coinage in circulation are approximately \(£\) 1 \(16,500,000\), in gold, \(£ T 8,700,000\) (\(9+0,000,000\) piastres at 108) in silver melidics and fractions, and \(200,000,000\) piastres in beshilik and metallik.

Tenure of Properly.-Real property is held in one of four various Ways; either mulk, emirije, vakuf or khaliyè. (1) Mfulk is the absolute property of its owner, and can be disposed of by him as he wills without restrictions, save those enumerated lower down (Gereral Dispositions) as peneral for all the four classes Mulk property is koverned chiclly by the Sheri (sacred lawi). A duty of to per mille on its estimated value has to be paid on transfer by sale, donation or testament; 5 per mille on transfer by inheritance; and a registration duty on expenses of transfer. (2) Emirije is practically ", public domains." The state may grant land of this category to private persons on payment by the fatter of the value of the proprietary right-the tithes, ground-rent (should there be private buildings upon it), and the land-taxIt is administered by imperial functionaries called araxi-mèmuru; it is with the consent of the latter only that the proprietary righta can be sold. These rights are of simple possession, but they are transmissihle in certain degrees to the heirs of the possessor. Emiriye cannot be mortgaged, but can be given as security for deht on condition that it be restored when the debt has been repaid. The creditor may demand the arazi-memuru to proceed to a forced sale, but the arazi-mimuru is not obliged to comply with that demand; no forced sale may take place after the decease of the debtor. Emiriyz is not transmissible by wlll, but may be transferred by donation, which returns to the donor should he outlive the bencficiary. Should a proprietor of emiriye plant trees or vines, or erect buildings upon it, with the consent of the state, they are considered as mulk; an annual tax representing the value of the tithes on the portions of cmiriye thus utilized is levied. The emiriye then becomes mulk, with certain restrictions as to transfer dues. A transfer duty of \(5 \%\) on the estimated value of emiriye is paid on transmission by Eale, inheritance or donation, of \(2 \frac{1}{3} \%\) on the amount of the debt in case of mortgage or release from mortgage, and of \(10 \%\) on expenses of registration. A different scale is established for emiriyc with moukata (rent paid for emiriye with mulk property established upon it). (3) Vokuf is "all property dedicated to God, of which the revenue is consecrated to His poor "; or "property of which the usufruct, such as tithe, taxes and rents, is attributed to a work of charity and of puhlic interest." When once a property has been registered as vakaf it can never be withdrawn. There are two classes of vokuf: (a) Land so declared cither directly by the sovereign or in virtue of imperial authority; (b) Lands transformed by their proprictors from mulk into vokuf. The laws and repulations concerning pokuf are too intricate to be described; generally it may be said that they form a great obstruction to dealing with a large proportion of the most valuable property in Turkey, and therefore to the prosperity of the country. The mokufs are administered by a special ministerial nasare(i), whose property, on behalf of the statit

\(=\) hood. They were crossing the Euphrates, not far from the castle of Jaber, when the drowning of their leader by accident threw confusion into their ranks. Those who had not yet crossed the iver refused, in face of this omen, to follow their brethren; the little band, numbering 400 warriors (according to others, consisting of 2000 horsemen) decided to remain under Ertoghrul, son of the drowned leader. Ertoghrul first camped at Jessin,
Brymin 230-1208. cast of Erserum; a second appeal to Ala-ud-din was more successful-the numbers of the immigrants had become too insignificant for their presence to be a source of danger. The lands of Karaja Dagh, near Angora, were assigned to the new aetters, who found there good pasturage and winter quarters. The hetp afforded by Ertoghrul to the Seljukian monarch on a critical accasion led to the addition of Sugut to his fief, with which he was now formally invested. Here Ertoghrul died in 1288 at the age of ninety, being succeeded in the leadership of the tribe by his son Osman. When, exClaman is, \(428-122 x\) hausted by the onslaughts of Ghazan Mahmud Khan, ruler of Tabriz, and one of Jenghiz Khan's lieutenants, the Seljukian Empire was at the point of dissolution, most of its feudatory vassals helped rather than bindered its downfall in the hope of retaining their fiefs as independent sovereigos. But Osman remained firm in his allegiance, and by repeated victories over the Greeks revived the drooping glocies of his suzerain. His earliest conquest was Karaja Hissar (1295), where first the name of Osman was substituted for that \(\boldsymbol{O}\) the sultan in the weekly prayer. In that year Ala-ud-din Kaikobad II. conferred on him the proprietorship of the lands he had thus conquered by the sword, and presented him at the same time with the horse-tail, drum and banner which constituted the insignia of independent command. Osman continued his victorions career against the Grecks, and by his valour and also through allying himself with Keussé Mik hal, lord of Harman Kaya, became master of Ainegeul, Bilejik and Yar Hissar. His marriage wih Mal Khatun, the daughter of the learned sheith Edbali, has been surrounded by poetical legend; he married his son Orkhan to the beautiful Greek Nilofer, daughter of the lord of Yar Hisear, whom.he carried off from her destined hridegroom on her marringe-day; the fruits of this union were Suleiman Pasha and Marad. In 1300 the Seljukian Empire crumbled a way, and anany small states arose on its ruins. It was only after the death of his protector and benefactor Sultan Ala-ud-din II. that Osman dectared his independence, and accordingly the Turkish historian dates the foundation of the Ottoman Empire from this event. Osman reigned as independent monarch until 1326. He pursued bis conquests against the Greeks, and established good government throughout his dominions, which at the time of his death inctuded the valleys of the Sakaria and Adranos, extending southwards to Kutaiah and northwards to the Sea of Marmora. lefirmity had compelled him towards the end of his life to depute the chief command to his younger son Orkhan, by whom in 1326 the conquest of Bruss was at last effected after a long siege.
Orkhan's military prowess secured for him the succession, to the exclusion of his elder brother Ala-ud-din, who became orthac, his grand vizier. At that time a number of Laso-15s). principalities had replaced the Seljukian state. Though Yahsba Bey, grandson of Mahommed Karaman Oghlu, had declared himself the successor of the Seljukian sultans, the princes of Aidin, Sarukhan, Menteshe, Kermaian, Hamid, Tekke and Karassi declined to recognize his authority, and considered themselves independent, each in his own dominions. Their example was followed by the Kizil Ahmedil Emir Stems-ed-din, whose family was afterwards known as the bouse of Isfendiar in Kastamuni. The rest of the country mas aplit up among Turcoman tribes, such as the Zulfikar in Marash and the Al-i-Ramazen in Adana. At his accession Otkhan was practically on the same looting with these, and avoided weakening bimself in the struggle for the Seljukian inheritance, preferring at first to consolidate his forces at Brusa. There be continued to wrest from the Grceks the lands which theis fectle arms were no longer able to defend. He took Aidos,

Nicomedis, Hintle, and, after a siege, Nicaca; Tarakli and Gemlik fell to his arms, and soon the whole of the shore of the Marmora up to Kartal was conquered, and the Byzantines retained on the continent of Asia Minor only Ala Shehr and Biga. These acquisitions were made between 1328 and 1338 ; in the latter year Orkhan achieved his first conquest from Mussulman hands by the capture of Karassi, the pretert being the quarrel for the succession on the death of the prince, Ajlan Bey.
At this period the state of the Byzantine Empire was such as to render its powers of resistance insignificant; indeed the lengtb of time during which it beld out against the Turks is to be attributed rather to the lack of efficacious means at the disposal of its assailnnts than to any qualities possessed by its defenders. In Constantinople itself sedition and profigacy were rampant, the emperons were the tools of faction and cared but little for the interests of their subjects, whose lot was one of hopelens misery and depravity. On the death of the cmperor Andronicus III. in 134I he was succeeded by Jobn Palacologus, a minor; and Cantacuzenus, the mayor of the palace, appealed to Orkhan for assistance to supplant him, giving in marriage to the Ottoman prince his daughter Theodora. Orkhan lent the desired aid; his son Suleiman Pasha, governor of Karassi, crossed into Europe, crushed Cantacuzenus's enemies, and penetrated as far as the Balkans, returning laden with spoil. Thus the Turks learnt the country of the Greeks and their weakness In 1355 Suleiman crossed over from Aldinjik and captured the fortress of Gallipoli, which was at once converted into a Turkish stronghold; from this base Bulair, Malgara, Ipsala and Rodosto were added to the Turkish possessions. Suleiman Pasha was killed by a fall from his horse near Bulair in 1358; the news so affected his father Orkhan as to cause his death two months later. The institution of the Janissaries (\(7 . v\).) holds a prominent place among the most remarkable events of Orkhan's reign, which was notable for the encouragement of learning and the foundation of schook, the building of roads and other works of public utility.

Orkhan was succeeded by his son Murad. After capturing Angora from a horde of Turkomans encamped there who were attacking his dominions, at first with some success, in 136r Murad prepared for a campaign in Europe. Martef, At that time the Greek emperor's rule was confined to the shares of the Marmora, the Archipelago and Thrace. Salonica, Thessaly, Athens and the Morea were under independent Greek princes. The Bulgarians, Bosnians and Servians had at different periods invaded and conquered the tersitories inhabited by them; the Albanians, original natives of their land, were governed by princes of their own. When, on the dcath of Cantacuzenus, Jobn Palaeologus remained sale occupant of the imperial throne, Murad declared war against him and conquered the country right up to Adrianople; the capture of this city, the second capital of the emperors, was announced in official letters to the various Mussulman rulers by Murad. Three years later, in 1364 , Philippopolis fell to Lala Shahin, the Turkish commander in Europe. The states beyond the Balkan now began to dread the advance of the Turks; at the instigation of the pope an allied army of 60,000 Serbs, Hungarians, Walachians and Moldavians attacked Lala Shahin. Murad, who had returned to Brusa, crossed over to Biga, and sent on Haji llbeyi with 10,000 men; these fell by night on the Servians and utterly routed them at a place still known as the "Servians' coffer." In 1367 Murad made Adrianople his capital and enriched it with various new buildings. He contipued to extend his territories in the north and west ; the king of Servia and the rulers of Kiustendil, Nicopolis and Silistria agreed to pay tribute to the conquering Turk. Lala Shahin Pasha was appointed feudal lord of the dist rict of Philippopolis, and Timar Tash Pasha became beylerbey of Rumelia; Monastir, Perlept, and parts of Bosnia and Herzegovina were next taken, ond the ling of Servia consented to furnish to Murad a fixed contingent
 Murad's son Yilderim Bayezid married \({ }^{n}\)
daughter of the prince of Kermian, who brought him in dowry Kutaiah and its sir dependent provinces. In the same year Bey Shehr and other portions of the Hamid principality were acquired by purchase from their ruler Hussein Bey, as the Karamanian princes were beginning to cast covetous eyes on them; but the Karamanians were unwilling to resign their claims to be heirs of the Seljukian sultans, and not until the reign of Mabommed II. were they finally suppressed. Ali Bey, the prince at this time, took advantage of Murad's absence in Europe to declare war against him; hut the Ottoman ruler returning crushed him at the battie of Konia. Meanwhile the king of Bosniz, acting in collusion with the Raramanian prince, attacked and utterly defeated Timur Tash Pasha, who lost 15,000 out of an army of 20,000 men. The princes and kings who had consented to pay trihute were by this success encouraged to rebel, and the Servian troops who had taken part in the battle of Konia became insubordinate. Indignant at the severity with which they were punshed, Lazarus, king of Servia, joined the rebel princes. Murad thereupon returned to Europe with a large force, and sent Chendereli Zade Ali Pasha northwards; the fortresses of Shumla, Pravadi, Trnovo, Nicopolis and Silistria were taken by him; Sisman III., rebel king of Bulgaria, was punished and Bulgaria once more subjugated. Ali Pasha then joined his master at Kossovo. Here Lazarus, king of Servia, had collected an army of 100,000 Serbs, Hungarians, Moldavians, Walachians and others On the 27th of August 1389 the greatest of the battles of Kossovo was fought. A lightning charge of Yilderim Bayezid's dispelled the confidence of the enemy, scaltering death and dismay in their ranks. The king of Servia was killed and his army cut to pieces, though the Turks numbered but 40,000 and had all the disadvantage of the position. After the battle, while Murad was reviewing his victorious troops on the field, he was assassinated by Milosh Kabilovich, a Servian who was allowed to apprasch him on the plea of submission.
Murad maintained a show of friendly relations with the emperor John Palaeologas, while capturing his cities. A reyiew held by him in 1387 at Yeni Shehr was attended by the emperor, who, moreover, gave one of his daughters in marriage to Murad and the other two to his sons Bayezid and Yakub Chelebi. These princes were viceroys of Kermian and Karassi respectively; the youngest son, Sauji Bey, governed at Brusa during his father's absence. Led away by evil counsellors, Sauji Bey plotted with Andronicus, son of the emperor, to dethrone their respective fathers. The attempt was foiled; Andronicus was blinded by his father's orders and Sauji was put to death (1387).

After being prodaimed on the fich of Kossevo, Bayuld's first ca:* wis is order the execution of tha brother Y'uadb Chelebi, and so to preclude any repetition oi Baveridl.. Sauji's plot. The young priace Andronicus, whe had not been completely blinded, sent secretly to Bayezid and offered him 30,000 ducats to dethrone his father John Palacologus and make him emperor. Bayezid consented; later on John Palacologus ofiered an equivalens sum and, since he engaged to furnish an auxiliary force of 12,000 men into the bargain, Bayezid replaced him on the throne. By the aid of thesc auxilianies the fort of Sha shethr was captured (1392), Manuel Palacologus, son of the emperor, being allowed, in common with many other princes, the , ptvilege of serving th the Turkish army, then the best organised and
 Supalhad and Kamian were annexed to laycaid's dominions
 Ahicull, pily of Kistomunt, who perswaded the Nalachians
 pow mansolidated hs
Kaisarieh. Sivas and Jenstist Khan's ?

On the death of John Palseologus in 1391 his son Manuel, whe was serving in the Turkish army, fed, without asking leave, to Constantinople, and assumed the imperial dignity. Bayezid determined to punish this insubordination: Constantinople was besieged and an army marched into Macedonia, capturing Salonica and Larissa (1395). The siege of the capital was, however, unsuccessful; the pope and the king of Hungary were able to create a diversion by rousing the Christian rulers to a sense of their danger. An army of crusaders marched upon the Turkish borders; believing Bayezid to be engaged in the siege of Constantinople, they crossed the Danabe without precaution and invested Nicopolis. While the fortress held out with dificulty Bayezid fell upon the besiegers like a thunderbolt. The first onslaught of the Knights of the Cross did indeed rout the weak irregular placed in the van of the Turkish army, hut their mad pursuit was checked hy the steady ranks of the Janissaries, by whom they were completely defeated (1396). King Sigismund of Hungary barely escaped in a fishing boat; bis army was cut to pieces to a man; among the prisoners taken was Jean Sans Peur, brother of the king of France. To the usual letter announcing the victory the caliph in Egypt replied saluting Bayezid with the title of "Sultan of the lands of Rum."

After the victory of Nicopolis the siege of Constantinople was resumed, and the tower of Anatoli Hissar, on the Asiatic side of the Bosporus, was now built. However, by sending heavy bribes to Bayezid and his vizier, and by offering to build a mosque and a Mussulman quarter, and to allow Bayerid to be named in the weekly prayer, Manuel succeeded in inducing Bayezid to raise the siege. The mosque was destroyed later on and the Mussulman settlers driven out. Between 1397 and 1399 Bayezid overran Thessaly, while in Asia his lieutenant Timur Tash was extending his conquests. Meanwhile Timur (Tamerlane) had started from Samarkand on his victorious career. With incredible rapidity his bosts spread and plundered from Bagdad to Moscow. After devastating Georgia in 140 s be marched against the Turks. Some of the dispossassed princes of Asia Minor had repaired to Timur and begged him to reinstate them; accordingly Timur sent to Bayerid to request that this might be done. The tone of the demand offended Bayezid, who rejected it in terms equally sharp. As a result Timur's countiess hordes attacked and took Sivas, plundering tbe town and massacring its inhabitants. Then, to avenge an insult sustained from the ruler of Egjpt, Timur marched southwards and devastzted Syria, thence turning to Bagdad, which shared tbe same fate. He then retraced his steps to the northwest. Bayezid had taken advantage of his absence to defeat the ruler of Eringan, a protege of Timur. All attempts to arrange a truce between the two intractable conquerors were in vain. They met in the neighbouthood of Angora. Timur's army is said to bave numbered 200,000, Bayead's force to have amounted to about half that figure, mostly seasoned veterans. The sultan's five sons were with the army, as well as all his generals; 7000 Servian auxiliaries under Stephen, son of Lazarus, took part in the battle (\(\mathbf{1 4 0 2 \text {). Prodigies of valour }}\) on the part of Bayerid's troops could not make up for the defection of the newly-absorbed kevies from Aidin, Sarukhan and Menteshe who went over to their former princes in Timur's camp. The rout of the Turkish army was complete. Bayezid, with many of his generals, was taken prisoner. Though treated with some delerence by his captor, who even promised to reinslate him. Bayezid's proud spirit could not endure his fall. and be died eight months later at Ak Shehr.

After the disaster of Angora, from which it seeroed impossible that tbe Ottoman fortunes could ever recover, the princes fled each with as many troops as be could induce to follow him, being bolly pursaed by Timur's armies. regene. Only Mussa ras captured. Timar reached Brusa, teu-rilk and there lisid trands on the treasure of Bayexid; one after another the aties of the Turiss were seised and plundered by the Tatars. Meanwhile Timur sent betters after the fugitive sons of Bayexid promising to confer on them their father's dominioos, and protesting that bis altact had been due mercly
to the insulting tome odopted towards him by Bayerid and to the entreaties of the disposessed princes of Asia Minor. Most of the latter were reinstated, with the object of reducing the Turlish power. Timur did not cross into Europe, and contented himself with accepting some trifing presents from the Greek emperor. After capturing Smyma he returned to Semarkand (r405). Some years of strife followed between the zons of Bayexid, in which three of them foll; Musst, seizing Adrinnople, laid siege to Constantinople, and Manucd Palacologas, the emperor, appeaied for aid to Mabommed, the other son, who had established himuself at Brusa.

In 1483 Mabommed defeated Mussa, and thus remained sole beir to Beyexd's throne; in seven or eight years he succeeded manew- In regaining all the teritories over which his father mod Li, had ruled, whereas Timur's empire fell to pieces s13-142, at the death of its founder. Two years after his aceession Mahommed overcame a rebellion of the prince of Raramania and recaptared his stronghold Konia (1416), and then, turning northwards, forced Mircea, voivode of Walachia, who in the disprate as to the succession had supported Prince Mussa, to pey tribute. The Turkish dominions in Asia Minor were extended, Amasia, Samsun and Janik being captured, and an insurrection of dervishes was quelled. In 1428 the saltan died. His services in the regeneration of the Turkish power can hardly be over-estimated; all agree in recognixing his great qualities and the charm of his character; even Timur is said to have atmised him so much as to offer him his daughter in marriage. The hoosour was declined, and Mahommed took a bride from the house of Zulfikar. Amid the cares of state he found time for works of public utility and for the sapport of literature and art; he is credited with having sent the first embassy to a Cristian power, after the Venetian expedition to Gallipoli in 1416, and the Ottoman navy is frrst heard of in his reign.

At the time of Mahommed's death his eldest son Murad was at Amasia; and, as the troops had lately shown signs of insubordination, it was deemed advisable to conceal the news Herratisf. of the sultan's death and to send a part of the army reli-151. acroes to Asfa. The men, however, refused to march without secing their sultan, and the singular expedient was resorted to of propping up the dead monarch's body in a dark room and conctaling behind it an attendant who raised the hands and moved the head of the corpse as the troopa marched pest. Sbortly after Murad's accession the emperor Manuel, haviag applied in vain for the renewral of the annual subsidy paid aim by the late sultan for retainlog in safe custody Mustafia, an alleged son of Bayexid, released the pretender. Adherents focted to him, and for a whole year Murad was engaged in suppressing his attempts to usurp the throne.

At last the amnies of suitan and pretender met at Ulubad (Lopedien) on the Rhyndacus in Asia Minor; Mustafa's troope fied at the first onset; Lampeacus, where the pretender took refuge, was captured with the aid of the Genoese galleys under Adorno. Mustafs, who had crossed the strait and fled northvards, was taken, brought to Adrianople, and hanged from a tower of the serad (1422). Murad now haid siege to Constantimople to avenge himself on the emperor, and on the 24 th of Angust the desperate valour of the defenders succeeded in drivirg back an assault led by a bend of fanatical dervishea. The eige was raised, however, not owing to the bravery of the defence, bat because the appearance of anotber pretender, is the person of Murad's thirteen-year-ald brother Mustafa, under the protection of the revolted princes of Karamania and Kermian, cilled the sultan to Asfa. Mustafa, delivered up by treachery, -as hanged (1424); but Murad remained in Acia, reatoring order in the provinces, while his lieutenants contimued the war against the Greeks, Albanians and Walachians. By the treaty signed on the 22 ad of February 1424, shortly before his denth, the emperor Manuel II., in order to save the remnant of his empire, agreed to the payment of a heavy annual tribute and to surrender all the towns on the Black Sea, except Selymbria and Derkos, nd those an the river Strymon. Peace was also made at the anc time with the despot of Servia and the voivode of

Walachin, on the basis of the payment of tribute. By 1426 the princes of Kermian and Karamania had submitted on honourable terms; and Murad was soon free to continue his conquests in Europe. Of these the most conspicuous was that of Salonica. Garrisoned only by 1500 Venetians, the city was carried by storm (March 1, 1428); the merciful precedent set by Mahommed I. was not followed, the greater part of the inhabitants being massacred or sold into slavery, and the principal churches converted into mosques.

The capture of Salonica had been preceded by renewed troubles with Servia and Hangary, peace being concluded with both in 1428. But these treaties, each of which marked a (resh Turkish advance, were short-lived. The story of the next few years is but a dismal record of aggression and of reprisals leading to fresh aggression. In 1432 the Turkish troops plundered in Hangary as far as Temesvár and Hermannstadt, while in Servia Semendria was captured and Belgrade invested. In Transylvania, bowever, the common peril evoked by the Turkish incursion and a simultaneous rising of the Vlach peasantry had knit together the jarring interests of Magyars, Saxons and Speklers, a union which, under the national hero, the voivode Janos Hunyadi (q.a.), was destined for a while to turn the tido of war. In 1442 Hunytid drove the Turks from Hermannstadt and, at the head of an army of Hungarians, Poles, Servians, Walachians and German cruseders, succeeded in the ensuing year in expelling them from Semendria, penetrating as far as the Balkans, where be inflicted heavy losses on the Turkish geperal. Meanwhile, again confronted by a rebellion of the prince of Kacamania, Murad had crossed into Asia and reduced bim to submission, granting him honourable terms, in view of the urgency of the peril in Europe. On the 12 th of July 1444 a ten years' peace was signed with Hungary, whereby Walachia was placed under the surerainty of that country; and, wearied by constant warfare \%and afficted by the death of his eldest son, Prince Ala-id-din, Murad abdicated in favour of his son Mahommed, then only fourteen years of age, and retired to Magnesia (1444). The pope urged the king of Hungary to take advantage of this favourable opportunity by breaking the truce solemnly agreed upon, and nineteen days after it had been concluded a conlition was formed against the Turks; a large army headed by Ladislaus I., king of Hungary, Hunyedi, voivode of Walachia, and Cardinal Cesarini crossed the Danube and reached Varna, where they hoped to be joined by the Greek emperor. In this emergency Marad was implored to return to the throne; to a second appeal be gave way, and crosxing over with his Asiatic army from Anatoli Hissar he hastened to Varna. The battle was holly contested; but, in spite of the prowess of Hunyadi, the rout of the Christians was complete; the king of Hungary and Cardinal Cesarini were among the killed. Murad is said to have abdicated a second time, and to have been again recalled to power owing to a revolt of the Janisearies. In 1446 Corinth, Patras and the north of the Morea were added to the Turkish dominions. The latter years of Murad's reign were troubled by the successful resistance offered to his arms in Albania hy Scanderbeg (q.p.). In 1448 Hunyadi, now governor of Hungary, collected the largest army yet mustered by the Hupgarians against the Torks, but he was defeeted on the famous field of Kossovo and with difficulty eacaped, while most of the chivalry of Hungary fell. Litule more than two yoars later Murad died at Adrianople, being succeeded by his son Mahommed.

After suppressing a fresh revolt of the prince of Karamania, the new sultan gave himself up entirely to the realization of the long-cherished project of the conquest of Con- Matorerstantinople. Ht began hy huilding on the European mod it. the side of the Boaporus the fort known as Rumeii Coaqueror, Hissar, opposite that built by his grandfather Bay.
exid. Tradition avers that but forty days were needed for the completion of the work, six thousand men being employed night and day; guns and troops were hurriedly put in, and all navigation of the Bosporus was stopped. After completing his preparations. which incuded the casting of a monster cannon amd the manufacture of ebormons engines of assault, Mahoramed
began the siege in 1453. Constantine Palaeologus, the last occupant of the imperial throne, took every measure that the courage of despair could devise for the defence of the doomed city; but his appeal to the pope for the aid of Western Christendom was frustrated through the bigoted, anti-Catholic spirit of the Greeks. The defenders were displrited and torn by sedltion and dissensions, and the emperor could rely on little more than 8000 fighting men, while the assailants, 200,000 strong, were animated by the wildest fanatical real. The siege had lasted fifty-three days when, on the 20th of May 1453, a tremendous assault was successful; the desperate efforts of the Greeks were unavailing, Constantine himself falling among the foremost defenders of the breach. The sultan triumphantly entered the palace of the emperors, and the next Friday's prayer was celebrated in the church of St Sofia (see Roman Eipptre, later).

After some days' stay in Constantinople, during which he granted wide privileges to the Greeks and to their patriarch, the sultan proceeded northwards and entirely subdued the southern parts of Servia. A siege of Belgrade was unsuccessful, owing to the timely succour afforded by Hunyadi (1456). Two years later internal dissensions in Servin brought about the conquest of the whole country by the Turks, only Belgrade remaining in the hands of the Hungarians. The independent princes of Asia Minor were now completely subjugated and their territories finally absorbed into the Turkish dominions; Walachia was next reduced to the state of a tributary province. Venice having adopted a hostile attitude since Turkey's conquests in the Morea, greater attention was devoted to the fleet; Mytilene was captured and the entrance to the straits fortified. The conquest of Bosnia, rendered necessary by the war with Venice, was next completed, in spite of the reverses inflicted on the Turks by the Hungarian king Matthias Corvinus, the son of Janos Hunyadi. The Turks continued to press the Venetians by land and sea; Albania, which under Scanderberg had for twenty-five years resisted the Ottoman arms, was overrun; and Venice was forced to agree to a treaty by which she ceded to Turkey Scutari and Krola, and consented to pay an indemnity of 100,000 ducats (Jan. 25, 1478). The Crimea was next conquered and bestowed as a tributary province on the Tatar khan Mengli Girai. Mahommed now endeavoured to strike a blow at Rhodes, the stronghold of the Knights of St John, preparatory to carrying out his long-cherished plan of conquering Italy. A powerful naval expedition was fitted out, but failed, an armistice and treaty of commerce being signed with the grand master, Pierre d'Aubusson (1479). But a land attack on southern Italy at the same time was successiul, Otranto being captured and held for a time by the Turks. In 148 i the sultan was believed to be projecting a campaign against the Circassian rulers of Syria and Egypt, when he died at Gebze. He is said to have been of a merry and even jocular disposition, to have afforded a generous patronage to learning, and, strange to say for a sultan, to have been master of six languages.
Mahommed II. was the organizer of the fabric of Ottoman administration in the form which it retained practically unchanged until the reforms of Mahmud II. and Abd-ul-Mejid. He raised the regular forces of the country to a total exceeding 100,000 ; the pay of the Janissaries was by him increased, and their ranks were brought up to an effective of upwards of 12,000 . He estahlished the system whereby the lands conquered by the arms of his troops were divided into the different classes of fiefs, or else assigned to the maintenance of mosques, collegen, schools and charitable institutions, or converted into common and pasturage lands. Many educational and benevolent foundations were endowed by him, and it is to Mahommed II. that the organization of the ulems, or legist and ecolesiastical class, is due.

Upon Bayezid II. succeeding to his father a serious revolt of the troops took place, which led to the institution of the regular payment of an accession donative to the Barazifh. Janissaries. At the outset of the reign Baycrid's P4SJ-1512. brother, Prince Jem, made a serious attempt to claim the throne; the was defeated, and eventually took
refuge with the knights of Rhodes, whom Bayezid bribed to keep him in safe custody. The unfortunate prince wis led from one European stronghold to another, and, after thirteen years' wandering, died at Naples in 1494 (see Bayezid II.). Freed from the danger of his brother's attacks, the sultan gave himself up to devotion, leaving to his ministers the condurt of affairs in peace and war. But, though of an unambitious and peace-loving temper, the very conditions of his empire made wat inevitable. Even when peace was nominally in existence, war in its most horrible forms was actually being waged. On the northern frontier border raids on a large scale were frequent. Thus, in 1492 the Turks made incarsions into Carinthia as far as Laibach, and into Styria as far as Cilli, committing unspeakable atrocities; in 1493 they overran both Styria and Crostia. The Hungarians retaliated in kind, burning and harrying as far as Semendria, torturing and murdering, and carrying off the saleable inhabitants as slaves. In 1494 a crushing victory of the emperor Maximilian drove the Turks out of Styriz, which they did not venture again to invade during his reign. In 1496 the temporary armistice between the Poles and Turks, renewed in 1493, came to an end, and John Albert, king of Poland, seized the occasion to invade Moldavia. The efforts of Ladishaus of Hungary to mediate were vain, and the years 1497 and 1498 were marked by a terrible devastation of Poland by the Ott omans; only the bitter winter, which is said to have killed 40,000 Turks, prevented the devastation from being more complete. By the peace concluded in 1500 the sultan's dominions were again extended. Meanwhile, in June 1499, war had again broken out with Venice, mainly owing to the intervention of the pope and emperor, who, with Milan, Florence and Naples, urged the sulean to crush the republic. On the 28th of July the Turks gained over the Venetians at Sapienza their first great victory at sea; and this was followed by the capture of Lepanto, at which Bayezid was present, and by the conquest of the Morea and most of the islands of the archipelago. By the peace signed on the 24th of December 1502, however, the status quo was practically restored, the sultan contenting himself with receiving Santa Maura in exchange for Cephalonia.

Meanwhile in Asia also the Ottoman Empire had been consolidated and extended; but from 1501 onwards the ambitious designs of the youthfut Shah Ismail in Persia grew more and more threatening to its security; and though Bayezid, intent on peace, winked at his violations of Ottoman territory and exchanged friendly embassies with him, a breach was sooner or later inevitahle. This danger, together with the growing insubordination of the aged sultan's sons, caused his ministers to urge him to abdicate in favour of Selim, the younger but more valiant. This prince pushed his audacity so far as to altack his father's troops, but the action merely increased his popularity with the Janismaries, and Bayczid, after a reign of thirtyone years, was obliged to abdicate in favour of his forceful younger son; a lew days later he died. This reign saw the end of the Mussulman rule in Spain, Turkey's naval power not being yet sufficient to afford aid to her co-religionists. It also saw the first intercourse between a Russian tsar and an Ottoman sultan, Ivan III. exchanging in 1492 friendly messages with Bayezid through the Tatar khan Mengli Girai; the first Russian ambassador appeared at Constantinople three years later.

When he had ruthlessly quelied the resistance offered to his accession by his brothers, who both fell in the struggle for the throne, Selim undertook his campaign in Persia having first extirpeted the Shia heresy, the prevalent

Solnmi. sect of Persia, in his dominions, where it threatened to extend. After to ardupos march and in spite of the mutinous behaviour of his troops, Selim, crushed the Persians at Chaldiran (1515) and became master of the whole of Kurdistan, He next turned agaiok the Mameluke rulers of Egypt, crushed them, and entering Caiso as conqueror (1517), ohtained from the lase of the Abbasid caliphes. \({ }^{1}\) Motawaktil, the title of caliph (q.v.)

\footnotetext{
' After the fall of the caliphs of Bagdad (1258), descendants of the Abhasids took refuge in Cairo and enjoyed a pwely titular authority under the protection of the Egyptian rulers.
}
for himself and his successors (see Egypt: Iftutory; Mahommedare Period). The sultan also acquired from him the sacred banner ad other relics of the founder of Inlam, which have since been preserved in the Seraglio at Constantiropic. Egypt, Syria and the Hejas, the former empire of the Mamelutes, were added to the Ottoman dominions. Towards the end of Selim's reign the religious revolt of a certain Jellal, whe collected zo0,000 adherents, was the cause of much trouble; but he was eventually rohted and his force dispersed near Tokat. While preparing an expedition against Rhodes to avenge the repulse sustajned forty ycars before by Mahommed II., the sultan died at OrashKeui, near Adrianople, at the spot where he had attacked his father's troops. His reign of eight years had almost doubled the extent of the Tarkish dominions.

He was succeeded by his son Suleiman "the Magnificent," in whose long and eventful reign Turkey attained the bighest point of her slory. Sehim's Asiatic conquests had

Smblepantis 420-1546 left his successor free to enter upon a campaign in Europe, after the suppression of a revolt of the governor of Damascua, who had thought to take advantage of the new sultan's accession to restore the independent rule of the Circassian chiefs. In 1521 war was declared against the king of Hungary on the pretext that he had sent no congratulations on Suteiman's accession. Belgrade was besieged and captured, a conquest which Mahommed II. had faifed to efiect. In the mext year an expedition was undertaken against Rhodes, the capt ure of which had becone doubly important since the acquisition of Egypt. The siege, which was finally conducted by the saltan in person, was successful after six months' duration; the forts of Cos and Budrum were theo taken. The European war was now renewed; in 1526 the sultan, marching from Belsrade, crosed the Danube and took Peterwardein and Esseg; on the field of Mabkes be encountered and defented the Hungarians under king Louls 11., who was killed with the fower of the Hungarian chivalry (see Huncary: History). Budapest hereupon fell to the Turks, who appointed John ZApolya Eing of Hengary (1528). But the crown of Hungary was chimed by the archduke Ferdinend, brother of the emperor Charles V., as being king Louis's brothet-intlaw. This brought Turkey into collision with the great emperor. Mforeover, Francis L. of France, who bad just been defeated by Cherles, sent to the sultan ambessadors and messages dwelling on the danger of allowing Charles's power to become too great, and imploring the assis. tance of Suleiman as the only means of preserving the balance of power in Europe. Meanwhile Perdinand's troops captured Budapest, driving out 76polya, whe at once appealed to Suleiman for aid. Suleiman docided against Charles, and marched north (1 529). ZApolya joined the Turks at Mohics, and a jaint attack was made on Budapest. Alter five days' siege the Austrians were driven out, and Zapolya was reinstated on the throne of Hungary. The Turks then marched on Vienna, which was bomberded and closely invested, but 80 valiant was the resistance offered that after three weeks the siege was abandoned (Oct. 14, 1529). Seleimen now prepared for a campaign in Germany and sought to measure himself agatnst Chartes, who, howrever, withdrew from his approach, and litule was done save to ravage Styria and Slavonia. In 1533 a truce wes arranged, Hungary being divided between ZApotye and Ferdinand.

During the Hungarian campaign the Shia sectaries had been encouraged to revolt, and the Persians had overrun Azerbitian and recaptured Tabriz. Suleiman, therefore, turned his arms against them, reaching Bagdad in 1534 , and capturing the whole of Armenia. The naval exploits of Khair-ed-din Pasha (see Baemarossa) are among the glories of the reign, and led to hostilities with Venice. After capturing Algiers, an atlack by this famous admiral on Tunis was repulsed with the aid of Spain, but in the Mediterranean he maintained a hotly. contested struggle with Charles's admiral. Andrea Doria. Venice was in alliance with Charles, and her possessions vere consequently attacked by Turkey by land and by an, many ialands, inciuding Syra and Tinos, falling before

Barbirose's masolts. Corfu was besieged, but unsuccessfally. At Prevean Barbarossa defeated the papal and Venetian fleets under Doria. In 1540 the fort of Castelanovo, the strongest point on the Dalmatian coast, was taken by the Venetians and recaptured by Barbarossa. Peace was then made on the terms that Turkey should retain her conquests and Venice should pay an indempity of 300,000 ducats. Friendly relations had subsisted between Suleiman and Ferdinand during the expedition to Persia; but on the death of Zapolys in 1539 Ferdinand claimed Hungary and besieged Budapest with a large force. Suleiman determined to support the claims of Zapolya's infant son, John Sigismund, and in 154 r set out in person. At the end of Angust he appeared before Budapest, the siege of which had already been raised by the defeat of the Austrians; the infant John Sigismund was carried into the sulean's camp, and the queen-mother, Isabells, was peremptorily ordered to evacuate the royal palace, though the sultan gave her a diplorna in which he swore only 10 retain Budapest during the minority of her son. On the and of September Suleiman entered the city, and to the ambassadors of Ferdinand, who came to offer a yeariy sum if the sultan would recognize his claim to Hungary, he replied that be had taken possession of it by the sword and would aegotiate only after the sursender of Gran, Tata, Visegrid and Sxekesfehervar. The war now continued vigorously by sea and land. The great expedition of the emperor Cbaries V. against Algiers ended in failure, his fleet being destroyed by a sudden storm (Oct. 3r, 154t); and his diplomatic efforts to wean Barbaross from his allegiance to the sultan fared no better. In 1542 a formal alliance was concluded between Suleiman and Francis I.; the Ottoman fleet was placed at the disposal of the king of France, and in August 1543 , the Turks under Barbarossa, and the French under the duke of Enghien, laid sicge to Nice. The town surrendered; but the citadel held out until, on the 8th of September, it was relieved by Andrea Doria. Meanwhile on hand Suleiman had taken full advantage of the European situation to tighten his grip on Hungary. The attempt of the imperialists, urder Joachim of Brandenburg, 10 retake Budapest (September 1542), failed ignominiously; and in the following year Suleiman in person conducted a campaign which led to the conquest of Siklos, Gran, Stékesfcherveir and Visegrad (1544). Everywhere the churches were turned into mosques; and the greater part of Hungary, divided into twelve sunjaks, became definitively a Turkish province. A truce, on the basis of ali possidelis, gigned at Adria. nople on the 19th of June 5547 for five years, bet ween the sultan, the emperor aad Ferdinand I. king of Hungary, recognized the Turkish conquests in Hungary; while, for the portion left to him, Ferdinand consented to pay an annual tribute of 30,000 ducats. John Sigismund was recognized as independent prince of Transylvania and of sirteen adjacent Hungarian counties, Queen Isabella to act as regent during his minority.

Sulciman was now free to resume operations against Persia. In the spring of 1548 he set out on his eleventh campaign, which ended in the capture of Errerum (August 16) and the conquest of Armenia and Georgia. But the Persian War dragged on, with varying fortune, for years, till after Suleiman had ravaged Persia it was concluded by the treaty-the first between shah and sultan-signed at Amasia on the 29th of May \({ }^{1} 555\).

Meanwhile the war in Hungary had been resumed. Neither side had been careful to observe the terms of the treaty of 2547 ; the Turkish pashas in Hungary had raided Ferdinand's dominions, while Ferdinand had been negotisting with Frater Gef̈rgy (ee Martinuzz) with a view to frceing Transylvania from the Ottoman suzerainty. When the sultan discovered that Martinuzzi, who was all-powerful in Transylvania, had aetually arranged to hand over the country to Ferdinand, he threw the Austrian ambassador into prison, and in September 155 sent an army, 80,000 strong, under Mahommed Sokolli over the Danube. Several forts, and the important town of Lippa on the Marosch, fell at once, and siege was laid to Ternesvar. This was raised after two months, and Martinusxi took
advantage of the retirement of the Turks to raise an army and recapture Lippa. Before the surrender of the city, however, he was murdered by Ferdinand's orders on strong suspicion of treachery. The campaign of 1552 was disastrous for the Austrians; the Turks, under the command of Ahmed Pasha, defeated them at Szegedin and captured in turn Vessprém, Temesvár, Szolnok and other places. Their victorious career was only checked, in October, by the raising of the siege of Erlau. In the spring of 1553 the victories of the Persians called for the sultan's presence in the East; a truce for six months was now concluded between the envoys of Ferdinand and the pasha of Budapest, and Austrian ambassadors were sent to Constantinople to arrange a peace. But the negotiations dragged on without result; the war continued with hideous barbarities on both sides; and it was not until the rst of June 1562 that it was concluded by the treaty signed at Prague by Ferdinand, now emperor. Suleiman kept the possessions he had won by the sword, Temesvar, Szolnok, Tata and other places in Hungary; Transylvania was assigned to John Sigismund, the Habshurg claim to interference being categorically denied; Ferdinand bound himself to pay, not only the annual tribute of 30,000 ducats, but all the arrears that had meanwhile accumulated. Even this treaty, however, was but an apparent settlement. A year passed before the Latin and Turkish texts of the treaty were barmonized; and meanwhile irregular fighting continued on all the borders. In 1564 Ferdinand died, and was succeeded by Maximilian II. The new emperor attacked Tolaj, which was in Turkish possession; the tribute had been allowed again to fall into arrears; and to all this was added that Mahommed Sokolli, the new grand vizier (1565), pressed for new war to wipe out the disgrace of the failure of the Ottoman attack on Malta (May-September 1565). In May 1566 the war broke out, Suleiman, now seventy-two years old, again leading his army in person. In August he laid siege to Sxigetvár with 100,000 men; but on the 5 th of September, while preparations were being made for a final assault, the sultan died. His death was, bowever, kept secret, and on the 8th the fiortress fell.
The reign of Sulciman the Magnificent marked the zenith of the Ottoman power. At the time of his death the Turkish Empire extended from near the frontiers of Germany to the frontiers of Persia. The Black Sea was practically a Turkish luke, only the Circassians on the east coast retaining their independence; and as a result of the wars with Persia the whole Euphrates valley, with Bagdad, had fallen into the sultan's power, now established on the Persian Gulf. The Venetians had been driven from the Morea and the islands of the Archipelago; and, except a strip of the Dalmatian coast and the litle mountain state of Montenegro, the whole of the Balkan peninsula was in Turkish hands. In the Mediterrancan, Crete and Malta yet survived as outposts of Christendom; but the northerm coasts of Africa from Egypt to Morocco acknowledged the supremacy of the sultan, whose sea power in the Mediterrancan had become a factor to be reckoned with in European politics, threatening not only the islands, but the very heart of Christendom, Italy itself, and capabic-as the alliance with France against Charles \(V\). had alown-of being thrown with decitive wight into the balance of European rivalries.
The power of the Otomans at sca was maintainted during this period by a series of sotable captains, such as Khair-cd-din
 haal been brought up
had been brought
Sinan as capudan-pi galleys of Andrea off Tripolỉ
the Otoman sea service. Alter spending some time as a Genoese galley-slave, he turned corsair and became the terror of the Mediterranean coasts. He seized Mahdia, a strong post on a tongue of land about 43 m . south o! Susa in Tunisia, and made this the centre of his piracies till, during his aibsence raiding the Spanish coasts, it was bombarded and destroyed by an expedition sent hy Charies V. (September 10, 1550). Torgud was now summoned to Constantinople to answer for piracies committed on the friendly galleys of Venice; but he sailed instead to Morocco, and there for two years defied the sultan's authority. But Suleiman, who needed the aid of the corsairs against Malta, pardoned him, and be was given the command of the expedition against Tripoli, which be captured. He now turned against Corsica, captured Bastia (August 1553) and on his return to Constantinople, laden with booty and slaves, chastised the insurgent Albanians. He was rewarded by Suleiman with the governorship of Tripoli, which he held till his death. He was killed during the unsuccessful attack on Malta, which he commanded (\(\mathbf{1 5 6 5}\)). Sali Reis, also by bitth a Christian of Asia Minor, was likewise successful as a corsair; he distinguished himself especially at the capture of Tunis, and succeeded Hassan Barharossa as beylerbey of Algiers.
Other captains carried the Turkish arms down the Arabian and Persian gulfs far out into the Indian Ocean. Of these the most remarkable was Piri Reis, nephew of Kamil Reis, the famous corsair who, under Bayezid II., had swept the Aegean and Mediterranean. Piri sailed into the Persian Gulf, sook Muscat, and laid siege to Ormuz. But the approach of the Portuguese fleet put him to fifght; some of his vessels were wrecked; and on his return by way of Egypt he was arrested at Cairo and executed. He had compiled a- sca-atlas (the Bahrijc) of the Aegean and Mediterranean seas, every nook and cranny of which he had explored, with an account of the currents, soundings, landing-places, inlets and harbours.
Another literary seaman of this period was Sidi Ali, celebrated under his poetic pseudonym of Katibi (or Katibi Rumi, to distinguish him from the Persian poet of the same name). He was no more successful than Piri or his successor Murad in fighting the elements ard the Portugucse in the Persian Gulf; but he was happier in his fate. Driven, with the remnant of his ships, into the Indian Ocean, he landed with fifty companions on the coast of India and travelled back to Turkey by way of Sind, Baluchistan, Khorassan and Persia. He wrote an account of this three years' journey, for which he was rewarded by Suleiman with an office and a pension. He was the author also of a matbematical work on the usc of the astrolabe and of a book (Muhit, "the occan ") on the navigation of the Indian scas.
At the close of Sulciman's reign the Turkish army numbered nearly 200,000 men, including the Janissaries, whose total he almost doubled, raising them to 20,000 . He improved the laws and institutions established by Reformsor his predecessors and adapted them to the require-
ments of the age; to him are due important modifications in the feudal system, aimed at maintaining the fiefs in a really effiective condition. The codes of law were by him revised and improved, and he was the first sultan to enter into relations with foreign states. In r 534 Jean de La Forét, a knight of St John of Jerusalem, came to Constantinople as first permanent French ambassador to the Porte, and in February \({ }^{5} 535\) were signed the first Capitulations (q.o.) with France.
A short sketch of the administration and state of the country al this sime masy find place here. Surcessively fransferred from Bruas Adrianople and thence to Constantinople, the seat mment was at frot little more than the camp conqueror. Afier the conquest of the imperial sullans legan 10 adopt the pomp and splendour ern sovercigns, and largety copied the spzem, Ollomia Poblly da the rots
Cealury. lo hand, of the Byzantinc emperors. Affairs of state were at discussed al the imperial divan. where the great dignilatics ovened at appointed hours. Until Ihe reign of Mahommed Weror the sulan presided in person: but ar rough Anatolian

was thought that in future it would be more consonant with the imperial dignity for the sovereign to remain concealed behind a grating where, unseen, he could hear all that was maid. Towards the middle of Suleiman's reign even this practice was abandoned, and the sultans henceforth attended the divans only on the distribution of pay to the troopa or the reception of a foreinn ambassador, which occations were usually made to coincide. The divan accompanied the sultan on military expeditions.
As establighed by Mahommed II., the officials of the state were divided into four clasees: (1) administrative; (2) ecclesiastical; (3) secretarial and (4) military. The administration of kasas, or cantons, was usually entrusted to the cadis and the holders of the more important fiets; the sanjaks. or departments, were ruled by clui beys or mir-i-livas (colonels or brigadiers), pashas with one horsetail: the vilayeds, or provinces, by beglerteys or mir-i-mirans (lord of londs). pashas with two horse-tails: these were all originally military officers, who, in addition to their administrative functions, were charged with the duty of mustering and commanding the feudal levies in war time. Above them were the beylerbeys of Anatolia and Rumelia, who served under the orders of the commander-in-chief. The title of vizier was borne by six or seven persons simultaneousiy; the grand vizier was the chief of these and exercised supreme authority, being invested with the sultan's signet. He often commanded an army in person, and was then given the title of serdar-i-etrem (generaliseimo); one of the subordinate viziers remained behiad as katmmakam, or locum tencnas. The dutics of the other viziers were limited to attending the divan; they were called kubbe or cupola viziers from the fact that the council met under a cupola; they were pashas with three horse-tails, and were attended by large retimues, having generally achieved distinction as beylerbeys. These officers were usually chosen from among the more promising of the youths selected by the dershurme, or system of fonced levy Lor manning the ranks of the Janissarics: hence so many of the utatesmen of Turkey were of non-Mussulman origln. Besides these members of the secretarial class, such as sishanjis and defterdars, as well as regular army officers, and occasionally members of the eccieriastical class, or ulema, riee to the rank of vizier.
The highest dignitaries of the ecclesiastical class wore at first the kn-askers, or military judges, of Eurupe and Asia; later the office of Sheikh-ul-Islam was created as the supreme authority in matters relating to the Church and the sacred law. Promotion was regular, but was ohtainable only by entering at an carly age one of the medressas or colleges; the student, after passing through the suecessive degrees of danishmend, mulazim and muderris, became first a molla, then a judge, rising to the higher ranks as fortune and opportunity offered. In the time of Bayezid II. the post of nakib-w-esistef, or registrar of the sherifs, or descendants of the Prophet, was created.
The socretanal class consisted of six categories: the nisharjis, the deflerdars, the reis, the defter emini, the shakk-i-soni (or acconit class) defterders and the shakk-i-salis (or third class) defterdars. The first named were charged with the duty of revising and duly executing the docisions of the divan respecting the assignment of lands to warriors and the apportioning of conquered territories. They were men of grcat culture, and many historians. poets and writeris belong to this class. The deflerdar was practically the minister of finance. The reis, was the eecretary-general of the divan, and in more modern times became minister for foreign affairs. The defter emini kept the registers for the nishanji, whose place be took on emergency, the others, acted as secretaries and cherles.
The military class was divided into two categories: (\(t\)) the regular paid troops who were quartered in barracke and were knowin as slaves of the palace"; (2) the feudal levies who received no pay and were called upon to serve only in war-time. The Janissaries (q,).) belonged to the first category. The rigid regulations for dinission to their rankswere soon relaxed: at the clowe of the Persian war in 1590 their total amounted to 50,000 . The regular troops comprised also armourers (jebeji), from 6000 to 8000 men, and six quadrons of cavalry: these were recruited in the same way as the Janistarice, and their numbers were raised by Murad Ill. to 20,000. There were also boshamjis, of foreat-guards, numbering about \(\$ 000\), besides local troops in distant and frontier provinces, and about 30,000 akinjis, or light troops, in Europe, who carried out forays in the enemies' country.
The finfs were not hereditary, and were held dinectly from the sultan. On the conquest of a country the lands were apportionod by the mishanjis, who first computed the tithe revenue of each village, its population, woods, pasturage, \&ie.; and divided it into the three claspes of fiefs' (khas, ziamel and timar), or into ockif (pious endownents) or pasturage. Any estate with a revenue exceeding roo,000 aspres was a khas, and was conferred on a prince or on a high dignitary as long as he held his post ; for each 5000 aspres of revenue one armed warrior had to be lurnished in war. Fiels with a revenuc of from 30,000 to 100,000 aspres were called ziamets and were conferred on simpilar termp on inferior oficers, usually lor life or during good behaviour. Fiefs with a revenue of from 3000 to 20,000 aspres, were timarn, furnishing one armed warrior for every 3000 aspres' evenue; the grant of a fef was conditional on obligalory residence. The peasantis owning the land remained undisturbed in their
proprietornhip, paying to their feudal lord the tithe, as well as the fixed dutics on transer, \&cc. Abuses in the system first began in the time of Khosrev Pasha, Suleiman's grand vizier.

The governors of the more distant provinces enjoyed a considerable amount of independence, which in the case of the Barbary states was more or less complete; these entered into treaties with foreign powers, and by their piratical outrages frequently caused the Porte considerable embarrassment. The skerif of the Hejat, Abu 'l-berekat, made submission to Sultan Selm 1. After the subjugation of the Yemen, the absorption of the holy places was also attempted, and in Sulciman's reign judges were appointed thither from Constantinople. But it was found politic to continue the office of the grand sherif of Mecca in the aberifian family.
The princes of the Crimea were invested with many of the prenogatives of independence, e.s. that of colning money; the ruler of Itansylvania was allowed to retain the royal litle, nor were Turkish troops quartered-in the country. The Danubian principalities were also ruled by native princes until the Phanariote period (see Phanariotes).
On the 27th of February 1568, two ycars after the accession of Suleiman's son Selim, peace was concluded with Austria on the basis of the former terms, the emperor Maximilian having sent ambassadors to congratulate

Sefly 14., 1666-1574. the new saltan on his accession. A disastrous attack on Astrakhan, with the object of carrying out Sokolli's plan for uniting the Don and the Volga, first brought the Turks into collision with the Russians. Expeditions against the Yemen and Cyprus were successful, but the loss of Cyprus, accompanied as it was by the barbarous murder of the Venetinn commander, Marco Antonio Bragadino, by the seraskier pasha Mustafa's orders, in violation of the terms of the capitalation of Famagusta (August 1571), roused the bitter resentment of the Venetians, previously incensed by Turkish raids on Crete. Already, on the 25 th of May, had been concluded the holy league between the pope, Venice and Spain for a new crusade against the infidel, in spite of the cfforts of France to prevent the adhesion of the republic. Preparations were hurried on and at the end of September the great allicd fleet, under Don John of. Austria, sailed into the archipelago. On the 7 th of October was fought the naval battle of Lepanto, which broke for ever the tradition of the invincibility of the Turks at sea. The immediate results of the battle were not, however, as decisive as night have been expected. In June 1572 a fresh Ottoman ficet of 250 sail took the sea; and the jealousy of the allies and the incompetence of their commanders made any repetition of their former victory impossible. After a serics of indecisive engagements Venice broke from the league and, under the mediation of France, concluded a treaty with the Porte practically on the basis of uti possidetis (March 7, 1573). With Spain the war continued, and on the \(24^{\text {th }}\) of August 1574 Tunis-which bad been taken by Don John of Austria in 1572-was recaptured by the Turks, who from this new hase proceeded, under Sinan Pasha and Kilij Ali, to ravage Sicily. In the same year Sclim II. died. Known in history as the "Sot," he had allowed his able grand vizier Mahommed Sokolli to rule the country.

The character of Murad III., who succeeded his father Selim II. at the age of twenty-eight, was not calculated to arrest the progress of decay within the Otoman Empire.
He was a weakling, swayed by his favourites in the harem, especially by his Venctian wife Safié; and,

Marad 71. 1574-1585: though he kept Sokolli in oftice, he was suspicious of the too powerful vizier, whose wise influence he allowed his minions to undermine. Thus eminent servants of the state such as Mustafa Pasha, Sokolli's nephew-who for twelve years had ruled the sanjak of Budapest with conspicuous enlightenaient and success-were dicposed or erecuted to make way for the nominees of the harem. In even weightier matters the opinion of the grand vizier was slighted. Thus it was against bis advice that, at the beginning of 1575 , advantage was taken of the disorders arising on the death of Shah Tahmasp of Persia to altack
\({ }^{2}\) It was ten years before a formal truce was signed with Spain (1584); two hundred years passed before the signature of a definitive treaty of peace and commerce (Sept. 14, 1782).
that country. The war lasted for twelve years, whicb Tiflis, Shirvan and Daghestan were taken; Shah Abbas established himself on the Persia and in 1500 mase quests in Georgia, Aucrbaxijãn and Shirvan. But this shortsighted policy is criticized by Turkisb historians, who censure Murad III. for thus weakening the neighbouring Mussulman states such as Persia and Daghestan, thereby facilitating Russia's future expansion at their cost. Sokolli's assassination, on the 11th of October 1578 , had meanwhile thrown the country into disorder. There was now no authority left to hold in check the corrupt influences of the harem. The avenues to power were througb bribery and yet more unspeakable patbs; the fiefs which formed the basis of the feudal array were bestowed on favourites' favourites, or sold to the highest bidder, and the sultan himself shared in the corrupt plunder. At last that final expedient of weak governments, the debasing of the coinage, led to a crisis. In 1589 mutinies of troops took place all over the empire, and in the two following years there were several risings of the Janissaries at Constantinople, the pretext being cverywhere that the soldiers were being robbed of their pay. At this juncture a fresh crisis in the relations with Austria arose. The peace concluded in 1568 and thrice renewed (in 1573, 1576 and 1584) had not prevented the continuance of raids and forays, from either side of the fronticr, that at times assumed the dimensions of regular campaigns. The climax came in 1593. All through the preceding year Hassan "Tilli," beylerbey of Bosnia, had raided in Croatia, taking border fortresses and driving off the inhabitants into slavery. In June 1593 , with an army of 30,000 men, he laid siege to Sissek; the Austrian and Huagarian levies hurried to its relief; and on the 2 and the Turks were routed with immense slaughter on the banks of the Kulpa, Hassan himself, with many other beys and two of the imperial princes, being among the slain. Though not yet formally declared, the "long war" was now in full progress. In August, Sinan Pasha, the grand viziernow eighty years of age-took command of the troops for the Hungarian War and left Constantinople, dragging with him the Austrian ambassador in chains. The capture of Veszprem and of Ranb (1594) and the failure of the archduke Mathies to take Gran seemed to promise another rapid victory of the Ottoman arms; but Sinan was ill-supported from Constantinople, the situation was complicated by the tevolt of Walachia and Moldavia, and the war was destined to last, with varying fortunes, for fourteen years. On the 16th of January 1595 Murad III. died.
In spite of the internal corruption whicb, under Murad III., heralded the decay of the empire, the prestige of the Otcomans in Europe was maintained duting his reign. Even the emperor had to be content to be treated by the sultan as an inferior and tributary prince; while France bad to suffer, with no more than an idle protest, the insult of the conversion of Catholic churches at Constantinople into mosques. In spite of frequent causes of friction, good relations were maintained with Venice, through the influence of the sultana Safié, and the capitulations witb the republic of St Mark were renewed in 1589. Those with France were also renewed (July 6, 1581); and capitulations were signed for the first time with the grand duke of Tuscany (1578) and with England (15 SO). \({ }^{1}\) In the following year permanent diplomatic relations were established by England with the Porte by the despatch of William Harebone as ambassador, Queen Elizabeth urging as ber special claim to the sultan's friendship their common mission 10 fight "idolators." The new sultan, Mahommed IIL. Murad's son, succeeded , the throne at a momeng w riverses in Hungeryand

Hatom.
medili.
pibrimage to Mecta, In order to destroy the Janissaries and reform the country. They therelore rose and dethroned him, \(s 00 \mathrm{n}\) afterwards putting him to death. For a lew months Mustafa was replaced on the throne; when he abdicated in

\section*{Mustafas an2-r(2) 0}
martirce
cav-MA
favour of bis nephew Murad IV. Turkey seemed to be at the point of dissolution. Profiting by the matiny of the army, the Persians invaded Turkey, capturing Bagdad; at Constantinople and in the provinces alike anarchy was everywhere prevalent This continued until the new sultan had acquired age and experience; hut, nine years after his accession, be succeassully coushed the military rebels, and thereafter ruled with a severity amounting to bloodthirsty cruelty. In 1638 he marched in person against the Persians and succeeded in recapturing Bagdad. Peace was made in 1639, leaving the Turco-Persian frontier practically as it now stands. In the next year the sultan died at the age of thirty-one, being succeeded by his brother Ibrahim. In his reign the Cossacks were driven from Asov and the expedition against Crete was begun, the immediate

Maylus
20-f648 cause being the plunder of a Turkish vessel by Maltese corssirs who took their capture to Crete. War was therefore declared against Venice, to whom Crete belonged (1644), and contintued in the island for twent \(y\)-five years.
The anarchy and misgovernment of Turkey now reached such a pitcb that Ibrahim was dethroned and murdered, and Manom0 his son Mahommed IV. was proclaimed in his accoris. stead. For the first eight years of bis reign successive grand vixiers were unable to restore order to the country. In \(165^{6}\) Mahommed Kuprili (q.v.) became grand vizier, and by dint of firmness and resolution repaired the falling lortunes of the country. The fiet was restored, and recaptured Lemnos and other islands which bad passed into the bands of the Venctians; the revolts caused by Kuprili's severity were put down, and tranquillity was reestablished in Transylvania. After \(\mathrm{fve}^{\text {y }}\) years' tenure of office the grand vizier died and was succeeded by his son, Ahmed Kuprili. In 1663 the disturbances which had broken out again in Transylvania led to war with Austria. Ahmed Kuprili attacked the Austrians, at first with success, but was routed by Montecuculi at the ballte of St Gotthard Abbcy and eventually consented to the trealy of Vasvar (Aug. 10, 1664), by which a twenty years' truce was agreed upon; Transylvania was evacuated by both partics, but remained tributary to Turkey. The Kuprilis, both father and son, had by their haughty and uncompromising demeanour done much to alienate the old-standing friendship with France, and at the battle of St Gotthard 6000 French, under Coligny, fought on the Austrian side. The result was that the Turks in retaliation deprived the Catholics, always under the protection of France, of some of their privileges in conncxion with the holy places, which were now granted to the Orthodox Church. Meanwhile the Cretan campaign continued, and bere also France lent her aid to the Venetians; this assistance could not, however, prevent the capture of Candia in 1669; on the sth ol September of that year Morosini, the Venctian commander, signed a treaty of peace with the Turks by which, after twenty-five years' warfare, they were placed in possession of the fortress of Candia, and with it of the effective rule over the whole island, Venice retaining only the fortresses of Suida, Grabusa and Spinalonga, and the islets along the coast.

Dissensions among the Cossacks led to the recognition by Turkey of Doroshenko, the hetman of the Sari Kamish, as ruler of the Ukraine; the Zaporog Cossacks, his antagonists, applied for aid to Russia. However, Michacl Wiesnowiecki, king of Poland, considering the Ukraine as under his protection, souphs to intervene, with the result that Turkey declared war ageinat him (I 672). The Turks captured Kamenets. Lemberg and Lublin. Hereupon the Poles sued for peace, and a treaty was signed at Buczacs (Oct. 18, 1672) whercby Podolia was ceded to Turkey, the Ukraine was left to the Cossacks, and Poland agreed to pay to Turkey an annual tribute of 22,000
sequins. But John Sobieski, who succeeded shortly afterwarda to the throne of Poland, refused to abide by the terms of this treaty; the war was renewed and continued for four years, when the treaty of Buczacs was reaffirmed at Zuravno by both partics, the tribute clause alone being abrogated (Oct. 26, 1676). A lew days hater Ahmed Kupriii died.

Dorosheako now deserted the Turkish alliance for the Russian; in consequence an expedition was sent into the Ukraine which was both costly and useless. In 1678 the Turks succeeded in taking Cehrin, but their losses were very beavy, and on the sth of January \(\mathrm{r}^{681}\) a treaty was signed at Radzyn whereby the territory in dispute was colded to Russia. A revolt of the Hungarian Protestants, in consequence of the persecuting policy of the bouse of Habsburg, now led to a renewal of the war betwoen Turkey and Austrin, due in part to the overweening amhition of Kuprili's successor, Kara Mustafa, who desired to immortalize his tenure of office by some great exploit, and who cherisbed dreams of founding for himself a western Moslem Empire. The war is blamed by Turkish historians as unjustifiable and untimely, the country peeding reform. A vast Turkich army marched to the walls of Vienna and clooedy beleaguered the imperial city, from which the emperor and his court fed. All hope seemed lost, when by a brillisnt feat of arms John Sobfeski, king of Poland, drove away the besiegers in bopeless confusion and saved the cause of Christianity, 1683. This was the signal for a general coalition against Turkey; Venice, Poland and the pope allied themselves with the Austrians; Russia, Tuscany and Malta joined in the attack. Turkey now sought for a rapprochement with France, and endeavoured to bring about her intervention in return for concessions as regards the boly places. But the French had just before bombarded Algiers and Tripoli, even menacing Chios (Scio), where some pirates had put in witb French captives; and the mediation of France was not very actively exercised. One after another the Hungarian lorts were captured by the Austrians; the Venetians were equally successful in Greece and the Morea; the Russians pressed on the Crimea, and Sobieski besicged Kamenets. The troops now mutinied and deposed the sultan, placing his brother Suleiman on the throne. But the disorder in the army and the administration continued, and the advance of the Austrians and the Venetians met with little. opposition. In this emergency Mustafa Kuprili (g.0.) was appointed grand vizier (1689). surnaen \(n\). His prudent measures at once reestablished some degree of order in the army and the fleet, while he sought by 2. wise tolerance to improve the position and conciliate the sympathies of the non-Moslem subject races. At first eminently successful, he drove the Austrians across the Danube, recapturing Nish, Vidin, Semendria and Belgrade; repulses were also inficted on the Venetians and the Russians. In the course of the campaign the sultan died, being succeeded by his brother Ahmed. The successes of the Turks were not maintained, the Austrians inficting on them a crushing defeat at Slankamen, where Mustafa Kuprili was killed, and driving them from Hungary. After four years of disaster Ahmed died; he was succeeded by his nephew

Ahmed flop 1697-16人6 Mustala. The tide of success now tumed again in favour of the Turks, who recaptured Karansebes and Lippa, and at Lugos exterminated by the weight of overwhelming numbers an Austrian force under Field-marshal Count Friedrich von Veterani (\(\mathbf{1 6 3 0 - 1 6 9 5 \text {), the hero of many }}\) victories over the Turks, who was killed in the battle. Elsewhere, too, the Otoman arms were victorious; in February the Venetians suffered a double deleat in the roadstead of Chios, and the island fell into the hands of the Turks. But Prince Eugenc's genius restored the Austrian fortunes, and the Turks were utterly routed at Zenta on the Theiss, losing more than 15,000 men (1697). Russia. driven from Azov in I 695 , succecded in capturing it in the !ollowing year; Venice continued to press the Turks; in this condition of affairs Huseein Kupribi (q.r.) was called to office; England and Holland urged Turkey to
make peace, and after long negotiations a series of treaties were concluded in January 1699 at Karlowitz, that with Poland being signed on the 16th and those with Austria and Venice on the \(26 t \mathrm{~h}\). The main provisions of these were, that Turkey retained the Banat, while Austria kept Transylvania; Poland restored the places captured in Moldavia, but retained Kamenets, Podoliz and the Ukraine; Venice restored her conquests north of Corinth, but kept those in the Morea and Dalmatia. On the 4th, Russia concluded a two years' armistice, but remained in possession of Azov, which was formally ceded to ber by the definitive treaty of peace signed at Constantinople on the r3th of June 1700. The peace of Karlowitz marks the definitive termination of Turkey's power of offence in Eutope. Apart from the heavy losses which it imposed on her, it constitutes a fresh departure in her history, as putting an end to her splendid isolation and rendering her dependent on the changes of European politics. It is noteworthy also as being the first occasion on which representatives of the mediating powers took part in the peace negotiations. The grand vizier's efforts to take advantage of the peace to introduce order in the country were unavailing; be was driven from office, and disorders ensued which led to the sultan's abdication.

The troubles were not eaded by the accession of Ahmed III., and many high dignitaries of state were sacrificed to the law-

Ahared ill. lessness and insubordination of the Janissaries. 170 s .1735. Meanwhile Turkey found herself again involved with. Russia. After the defeat of Charles XII. of Sweden at Poltava, this monarch took refuge in Turkey, and was allowed to reside at Bender. The Russians pursued him into Turkish territory; which led to a Turkish declaration of; war (1710). The Turks succeeded in surrounding Peter the Great near the Pruth, and his army was menaced with total destruction, when the Turkish commander, the grand vizier Baltaji Mahommed Pasha, was induced by the presents and entreaties of the empress Catherine to sign the preliminary treaty of tbe Pruth (July 21, 1711), granting terms of peace far more favourable than were justified by the situation of the Russians. These were: the cession to Turkey of Azov with all its guns and munitions, the razing of all the forts recently built on the frontier by Russia, the renunciation by the tsar of all claim to interfere with the Tatars under the dominion of the Crimea or Poland, or to maintain a representative at Constantinople, and Russia's consent to Charles's return to Sweden. \({ }^{1}\) It was long, however, before the latter relieved Turkey of his presence. During the campaign Peter had entered into alliance with the hospodars of Moldavia and Walachia, respectively Demetrius Cantemir and Constantine Brancovano, from whom he had received material assistance. These were naturally dismissed after the defeat of the Russians; the former made good his escape to Russia, the latter was executed. The sultan determined henceforth to appoint Greeks to the principalities as more likely to be subservient to his will than the natives hitherto appointed. This system was continued until the Greck insurrection of 182 I .
Russla having thus lost all the advantage gained by the peace of Karlowita, Venice was next taken in hand, she having invaded the Bosnian frontier and incited the Montenegrins to revclt, besides capturing Turkish ships in the Mediterranean. These acts were held to be infractions of the treaty, and war was declared (1715). The result was the stamping out of the insurrection in Montenegro and the capture of the whole of the Morea. The fleet also took Tinos and Cerigo, as well as the three forts still remaining to the Venetians in Crete. Turkey's action, and the preparations being made for the siege of Corfu, now brought about the intervention of Austria. Charles VI., weary of the war for the Spanisb succession, had shortly before concluded the peace of Rastadt (1715) and was anxious that Venice should not be too hardly pressed. He therefore urged Turkey to give up to Venice certain places in Dalmatia as a

1 The definitive treaty was signed at Constantinople on the 16 th of April 1712 (renewed Jupe 5, 1713).
compensation for the loss of the Morea. The Porte was at first disposed to comply, but the party of resistance finally prevailed. War was declared against Austria (1716); the fleet sailed for Corfu and the army crossed the Save from Belgrade to Serolin. Near Peterwardein a great battle was fought, in which the Austrians completely routed the Turks; pursuing their advantage they took Temesvàr and overran the Banat; in 1717 they captured Belgrade, the Turks retreating to Adrianople. England and Holland now urged their mediation, and after negotiations the treaty of Passarowitz (Pozharevats in Servia) was signed (July 2x, 1718); Venice ceded the Morea to Turkey but kept the strongholds she had occupied in Albania and Dalmatia; Belgrade, Temesvàr and Walachia as far as the Olt were retained by Austria.

Meanwhile relations with Russia continued strained. The peace of 1712 had been concluded only for a term of years, and the neglect of the tsar to carry out its provisions had all but led to a fresh outbreak of hostilitics when the intervention of the other powers led in 1713 to the rencwal of the treaty; and in November 1720 it was superseded by a treaty of "perpetual peace," signed at Constantinople. But, though the questions at issuc between Russia and Turkey in Poland and the nothera littoral of the Black Sea were thus for the time settled, the aggressive designs of Russia in the Caucasus and in Persia soon caused a renewal of anxiety at Constantinople. Again war all but broke oat; hut, through the intervention of France, a treaty of partition was signed at Constantinople on the 23 rd of June 1724, whercby the shores of the Caspian from the junction of the Kur and the Arras (Araxes) northwards should belong to Russia, while the western provinces of Persia should fall to the share of Turkey. These provinces had not yet been conquered by Turkey; and, when a part of them had been taken, a treaty was concluded with the Afghan Ashraf Shah, who had risen to supreme power in Persia, by which Turkey should retain them on condition of recognizing him as shah (Oct. 23, 1727). But Nadir Kuli Khan came forward as the champion of Shah Tahmasp II., the rightful ruler, and drove the Turks from these provinces, capturing Tabriz. This news caused consternation at Constantinople; the inevitable revolt of the Janissaries followed, headed this time by one Patrona Khalil, and the sultan was forced to abdicate in favour of his nephew Mahmud. With difficulty the rebellion was suppressed; in 1733 the war with Persia was resumed, and after three years of fighting Nadir Matumed succeeded in 1736 in inducing Turkey to recognize him as shah of Persia and to restore the territory captured since the reign of Murad IV.

Russia's designs on Poland now brought about war. On the death of Augustus II., king of Poland (1733), France had put forward as candidate Stanislaus Leszczynski, War of Louis XV.'s iather-in-law, Austria and Russia Polste supported Augustus III., elector of Saxony, and Sercemente the empress Anne marched an army into Poland and compelled the election of her candidatc, though Russia bad bound herself by the treaty of 1711 and again by that of 1720 to abstain from all interference with Ioland. France thereupon declared war against Russia and her ally Austria, and her envoy, the marquis de Villencuve, urged Turkey to join by representing the danger of allowing Russian influence to extend. Turkey had cause of complaint against Russia for refusing to allow the Crimean troops to march through Daghestan during the Persian campaign, and on the 28th of May 1736, war was declared, in spite of the efforts of England and Holland. The Russians had not waited for the formal declaration of war; and on the very day that this was notified by the hanging out of the horse-tails before the Seraglio at Constantinople a Russian army under Marshal Munnich stormed the ancient wall that guarded the isthmus of the Crimea. While Munnich conducted a systematic devastation of the peninsula, force were detached under his lieutenants Leontiev and Lascy to attack Kinburn (Kibburun) and Azov. Both these places fell: and in July of the folliowing year MUnnich captured Ochakov.

Meanwhile the western sea-powers had made earnest efforts to restore peace, and in August 1737 the plenipotentiaries of the combatant powers met at Niomirov to arrange terms under their mediation. But Austria, which had made a great show of secouding their efforts, now hegan to unmask her real dims, which were to take advantage of Turkey's embarrasements to push her own claims in the principalities and the Balkan Peninsula. To the refusal of the sultan's representatives to concede any of her demands, Austria replied by revealing the existence of an alliance with Russia, which she threatened to make actively offensive if her terms were refused. In November the conferences broke up; in the spring of the following year Austrian divisions advanced simultancously into Bosnia, Servia and Walachia; and in July the main army, under the prince of Lorraine, crossed the frontier and captured Nish. In spite of this initial success, however, the campaign proved disastrous to the Austrians; and France, which had meanwhile come to terms with the emperor, endeavoured to mediate a peace in conjunction with Sweden and Holland. But the Otomans, though the negotiations continued throughout 1738, were in no hurry to come to terms; for the tide of war had turned against both Austrians and Russians; Ochakov and Kinburn. were recaptured; and the victorious Turks crossed the Danube and penetrated far into the Banat. Not till the middle of 1739 mould they consent to negotiate seriously for peace. The conferences were opened at the close of July in the camp of the grand vizier, who was pressing Belgrade hard and demanded the surrender of the city as a sine qua non. This was conceded; on the ist of September, under the mediation of the French ambassador Villeneuve, the preliminaries were signed; on the sth the grand vizier made his formal entrance into the city, where on the 18th the defnitive treaties with Austria and Russia were signed. By the former Austria gave up Belgrade and the places on the right bank of the Save and the Danube which she had gained hy the treaty of Passarowitz, together with the Austrian portions of Walachia. The treaty with Russia provided that Azov should be razed and its territory devastated to form a barrier, Russia having the right to erect a new fortress at Cherkask, an island in the Don, near Azov, and Turkey to build one on the border of Kuban near Azov. But Taganrog was not to be refortified, and Russia was to have no war-ships on the sea of Azov or the Black Sea. The Kabardias, great and little, were to remain independent, to scrve as a barrier between the two empires. By the 12th article the Ottoman government agreed "amicably to discuss " the question of recognizing the tsar's claim to the imperial citle, and by the rith admitted his right to send to Constantinople representatives of whatever rank be might judge fitting (Noradounghian, Recucil, i. 258).

Scarcely two ycars after the signature of the treaty of Belgrade sinister rumours reached Constantinople from Persist, where Nadir Shah, on his return from India, was planning an attack on Mesopotamia. The war, which broke out in 1743, was waged with varying fortunes, and the peace by which it was concluded on the 5th of Septemher 1746, beyond stipulating for a few privileges for Persian pilgrims to the holy places, altered nothing in the settlement arranged ten years before with Murad IV. In the war of the Austrian Succession, which followed the accession of Maria Theresa to the Habsburg throne, Tarkey, in spite of the urgency of France, would take no share; and she maintained the same attitude in the disorders in Persia following the death of Nadir Shab.

In 1754 the Sultan Mahmud died. He was succeeded by Onaman, his brother Osman, whose three years' reign mbtirnt. was marked by no political event of special importance. Osman III. was succeeded by his cousin Mustafa. At the outset of his reign negotiations mertena int, 7TVTITS. were actively pursued for the conclusion of a between Franco and Austria contracted in 1756; of friese resulted in the signature of Capitulations, or a treaty of frieodship and commerce (March 23, 1761). The attitude
of 'the northern 'powers, however, and especially of Russia; towards Poland was beginning to excite the sultan's liveliest suspicions; and these the accession, in 1762, of the masterful Catherine II. to the Russian throne was not calculated to allay In 1763, Catherine took advantage of the death of Augustus III. of Poland to force her favourite, Stanislaus Poniatowski, on to the vecant throne. From the committee of patriots at Warsaw complaints and warmings were carried to Constantinople; and the cession of Podolia was offered as the price of a Turkish attack on Russia. The sultan, though inclined to take up the cause of the Polish dissidents, was slow to move, and contented himself for a while with protests and threats. But the aggressive policy of Russia in the direction of the Caspian and.Black Seas became more and more evident; complaints reached the Porte of a violation of the neutrality of Kabardia, of a seditious propaganda in Moldavia by Russian monks and of Russian aid given to the malcontents in Servia and Montenegro. Added to all this wat the news of the continual Russian military aggressions in Poland, against which the Catholic confederation of Bar continued to appeal for aid. At last, on the 6th of October 1768, on the refusal of the Russian minister to give guarantees for the withdrawal of the Russian troops from Poland and the abandonment of Russia's claim to interfere with the liberties of the republic, war was dectared and the Russian representative fas imprisoned in the Seven Towers.

The war that followed marks an epoch in the decay of the Ottoman Empire and in the expansion of Russia. When, in the spring of 1769 , the first serious campaign was opened by a simultaneous attack by three Russian armies on the principalities, the Crimea and the buffer state of Kabardia, the Turks, in spite of ample warning, were unprepared. They were hampered, moreover, by an insurrection in the Morea, where a Russian expedition under Orlov had stirred up the Mainotes, and by risings in Syria and Egypt. It was not, however, till September that the fall of Khotin in Bessarabia marked the first serious Russian success. The following year was more fatal. In May the Ottoman fleet was attacked and destroyed off Cheshme, and the Russian war-ships threatened to pass the Dardanelles. In June Romanzov's victory at Kartal made him master of the principalities, and by November the fortresses of Izmail and Kilia, guarding the passage of the, Danube, and those of Akkerman and Bender on the Dniester bad fallen into the hands of the Ryssians. The campaign of 1771, which opened with a gieam of success in the capture of Giurgevo, proved yet more disastrous to the Turks, the Russians passing the Danube and completing the conquest of the Crimea. Prussia and Austria now offered their mediation; and in June conferences were opened at Focsbani, which led to no result. In the following year a conference, from which the Austrian and Prussian representatives were excluded, was opened at Bucharest (November 1772). In February 1773 the Russian plenipotentiary delivered bis ultimatum, of which the most important demands were the cession of Kerch, Yenikale and Kinburn, the free navigation of the Black Sea-and Archlpelago for Russian trading and war vessels, and the recognition of the tsar's right to protect the Orthodox subjects of the sultan. These conditions were submitted to Constantinople, and rejected after a stormy debate in the divan. The conference of Bucharest now broke up, and the war continued. The successful defence of Varna and Silistria seemed to justify the stubbornness of the Porte.

On the 24th of December 1773 Mustafa III. died, and was succeeded by his brother Abd-ul-Hamid I., a weakling, from whose character nothing could be expected to Abd-utretrieve the now desperate fortunes of the war. Mamil. The exhaustion of the treasury was evidenced by 1772-1\% the absence of the usual donative to the troops; and the demoralization in both army and court made further resistance uscless. At the beginning of July the Russians, under Kamenskly, were before Shumla; and a few days later the grand vixier and his army, their communications with the
capital severed, were surrounded in the fortress. Negotiatuons for peace were now opened and on the axst of July -chosen by the Russian plenipotentiary as the anniversary of the humiliating convention of the Pruth-the treaty of Kuchuk Kainarji was signed. Its terms were the most onerous as yet imposed on the Ottoman sultans. The Tatars Tracty of from the frontier of Poland to the shores of the Kactits Caspian, including those of the Crimea and Kuban, Kaleang were declared independent under their own khan of the race of Jenghiz, saving only the religious rights of the sultan as caliph of Islam. Russia, bowever, retained the fortresses of Kerch, Yenikale and Kinburn, with the desert country between the Bug and the Dnieper, while Ochakov was left to the Turks. Bessarabia, with the fortresses of Alkerman, Immail and Kilia, was restored to Turkey. Maldavia and Walachia were likewise restored, bul under conditions which practically raised them to the position of semi-independent principalities under Russian protection (ast zvi.). Azov and its district were annexed to Russia, and the two Kabardias were transferred subject to the consent of the khan of the Crimea: Russia undertook to evacuate Mingrelia and Georgia. The recognition of the imperial title (padishoh) was at last conceded to the Russian tsars.
Commerce and uavigation in the Black Sea and the Mediterranean were free to both countries. Turkey was to pay a war indemnity of 15,000 purses, the Russian fleet was to withdraw and the islands captured by it to be restored. By article vii: of the treaty the Sublime Porte undertook "to protect the Christian religion and its churches" and conceded to the ministers of Russia the specific right to " make representations in favour of the new church " which, under article riv. of the same treaty, the Russian government was empowered to build, in addition to the embassy chapel " in the street named Bey Oglu." This article is of great historical importance as forming the basis of the later claim of Russia to possess by treaty the right to protect the Orthodox subjects of the Porte. \({ }^{1}\) Poland, the original cause of the war, was not even mentioned in the treaty, having been partitioned in 1772 .

After yielding to these hard conditions, Turkey took advantage of her respite to strengthen the frontier defences and to put down the rebellions in Syria and Egypt; some effort was also expended on the hopeless task of reforming the Janissaries. It was not long before Russia showed that it was not the independeace but the absorption of the Crimes which she desired. In 1779 a rupture on this account was only averted through the mediation of the Freach ambassador, coupled with the fact that Turkey was in no condition to enter upon hostilities, owing to the outbreak of plague in her army. The Porte, unabie to resist, was obliged to consent to the convention of Ainali Kavak (March 10, 1779) whereby the Russian partisan, Shahin Girai, was recognized as khan of the Crimea, the admission of Russian vessels to navigate Turkish waters was reaffirmed and Russia's right of intervention in the affairs of the Danubian principalities was formally recognized. Five years later Potemkin induced the chiefs of the Crimea and Kubat to houd a matheg at which the shatation of their
country to Russia was declared, Turkey giving her consent by a convention, signed at Constantinople, on the 8 th of January 1784, by which the stipulations as to the liberty of the Tatars contained in the treaty of Kuchuk Kainarji and the convention of Ainali Kavak were abrogated. In 1786 Catherine made a triumphal progress through the Crimea in company with her ally, Joseph 11., who had succeeded to the imperial throne on the death of his mother. These eveats and the friction caused by mutual complaints of infringements of the treaty stirred up public opinion in Turkey, and the British ambassador lent his support to the war party. In 1788 war was declatoli, but Turkey's preparations were inadequate and the monent wis ill-chosen. now that Russia and Austria were in alliaise, a fact of which Turkey becane aware only when the horne-
isee G. F. de Martens. Recmil des traiks, ist series, vol. if. p. 280 , also Noradounghia, Recwid, p. 319.
tails were planted for the campaign The Tuirks drove back the Austrians from Mehadia snd overras the Banat (1789); but in Moldavia Romanzov whe successful and captured Jassy and Khotin. After a long siege Ochakov fell to Potemkin, and all its inhabitants were massacred. This news affected the sultan so deeply as to cause bis death.
Selim, the late sultan's nephew, who succeeded, made strenuous preparations for continuing the war, but his generals were incompetent and his army mutinous; expeditions for the relief of Bender and Akkerman

Sellis m. failed, Belgrade was taken by the Austrians,
Immail was captured by Suvorov, and the fall of Anapa completed the series of Turkey's disasters. Sultan Selim was anxious to restore his country's prestige by a victory before making peace, but the condition of his troops rendered this hope unavailing; while Prussia, though on the 31st of Januery 1790 she had signed an offensive treaty with Turkey, \({ }^{2}\) gave her no help during the war. Accordingly a treaty was signed with Russia at Jassy (Jan. 9, 1792) by which the Crimea and Ochatov were left to Russia, the Dniester was made the frontier in Europe, and the Asiatic frontier remained unchanged. Joseph II. had died, and his successor, Leopold II., was averse from the Russian alliance. Through the mediation of England, Holland and Prussia, Turkey and Austria concluded on the 4th of August 1791 the treaty of Sistova, by which Belgrade and the other conquests made by Austria were restored.
The conclusion of peace was welcomed by Selim as the opportunity for carrying out reforms, of which he thoroughly realized the necessity in every hranch of the administration, and especially in the army, to whose defects the disasters of the state were due. Accordingly it was decided to form troops known as nisam-i-jedid, affiliated to the Janissaries so as to disarm the jealousy of the latter, properly drilled and wearing a dislinctive uniform. The fleet was reorganized, military schools were established, and skilled instructors were obtained from Europe. These reforms excited much opposition, which was at first unheeded. Meanwhile Turkey came into conflict with France. Throughout all the viciksitudes of the Revolution the relations between the two states had mew remained unimpaired, and Turkey had been one of the first countries to recognize the republic. Bonaparte's sudden occupation of Egypt (1798) came therefore as a complete surprise. Thisexpedition was in reality directed against English rule in India. Nelson's destruction of the French fleet at the batule of the Nile disconcerted Bonaparte's plans; he hoped to pursuc his designs through Syria, and laid siege to Acre, which, however, successfully held out. Turkey now joined Great Britain and Russia against France: \({ }^{2}\) The Russian and Turkish fleets attacked and took the Ionian Islands, which had become French by the treaty of Campo Formio, and certain towns, hitherto unconquered, on the Albanian coast. An expeditionary force was also sent against Bonaparte, now practically blockaded in Egypt. This was routed and driven into the sea at Abukir (July 15, 1799). For the subsequent operations in Egypt, which ended in its evacuation by the French after the Briush victory at Alezandria, see Egyrt: Hislory.
Meanwhile in Turkey disorder prevailed in almost every province of the empire, and the local governors in many places becarce entirely independent, oppressing the people under their rule and often driving them to revolt. This was notably the case in Servis, where the temporary domination of Austria, to which the treaty of Sistova (1791) put an end, had had the effect of awakening the national spirit of the people. But no armed manifestation of revolt had taken place until the lawless and savage conduct of the Janissaries, who had made themselves masters of the country, assisted by the notorious governor of Vidin, Pasvan Oglu,

\footnotetext{
'Text in Martens, Recweil, and series, vol. iv. p. 466.
\({ }^{3}\) The treaty of alliance with Russia mas signed on the 23rd of December 1798 , that with Greas Britain on the 5th of January 1799.
}
and his band of ouslans, drove the peacelal rayas to rebel. The insurgents chose as their captain ome George Petrovich, nickpamed Kara Geargi (i.e. Black George), and under his able leadership succeeded in capturing Belgrade and in breaking the power of the Janissaries. The Porte abo sent an army agoinst Pasyan Oglu, but after reducing him to submission reinatated him in his government. A serious outbreak took place at Adrianople in 8804 , where 20,000 of the new troops had been sent, oettensibly to put down the revolt in Servia, but really to try to bring about the reform of the European provinces. So strong was the opposition that the troops were recalled, and the anti-reform party was, greatly strengthened. The Wahhabi movement in Nejd now began to assume serious proportions. These religious sectaries attacked and phundered all Musculmans not conforming to their peculiar tenets; they overran Kerbela and the Hejaz, sacking the holy cities and closing the pilgrim routes. Only in the reign of Mahmud II. were they pat down (eee Wariabis).

In 1802, by a treaty of peace signed at Paris on the 25th of June, France resumed her former terms of friendship with Compance Turkey. Russia, desirous of deriving some return covernal for the support which she had given the sultan Pimele during his rupture witb the French, induced the Porte to address to ber a note in which the right of intervention in the affairs of the principalities, conferred on ber by the treaty of Rainarji and reaffirmed in the convention of Airall Kavak, was converted into a specific stipulation that the hospodars should be appointed in future for seven years and chould not be dismissed witbout the concurrence of the Russian ambassador at Constantinople. In pursuance of this agrecment Constantine Ypsilanti was appointed to Walachis and Alctander Muruzi to Moldavia-both devoted to Russian interests. Their intrigues in favour of the Greek and other revolutionary movements induced the Porte to dismiss them in 1806 , contrary to the arrangement of 1802 . Russia and England bereupon used threatening language, and Turkey-replaced the hospodars. But war was nevertheless declared on the 27th of December 1806, and Russiz occupied the principalities. The British ambassador sought by every means in his power to induce Turkey to give way to Russia, going so far as to guarantee the withdrawal of tbe Russian troops from Moldo-Walachia if the Porte remained at peace, and threatening that if Turkey persisted in ber opposition England would join with Russia against her. But France's influence, backed by the strong personality of her ambassador, General Sebastiani, was sufficient to enable the suitan to withstand these arguments, and the British ambassador broke off relations and withdrew to the fieet at Tenedos (February 1807). Helped by a strong south wind, the British war-ships passed up the straits and anchored of the Seven Towers. An ultimatum was presented ordering Turkey within twenty-four hours to dismiss the French ambassador, hand over the Turkish fleet, and make peace with Russia. With Sebastinin's encouragement the Porte resisted these demands; in one day a thousand guns were ranged along both sides of the Bosporus; and after a stay of ten days the Britisb fleet was ordered to leave, and was considerably damaged by the fire oi the forts while passing down.
Meanwhile the sultan's whole eflorts were directed towards the reform of the country; the newly-instituted militia was arowe in every respect \(a\) success; it grew in numhers, cyater setme and hopes were entertained that it would gain popularity. But the Janissaries and the corrupt officials were fundamentally opposed to the scheme, and the conservatives joined with them against such reforms of European origin. The rulers of the provinces shared these views; the consequence was disquiet and confusion throughout the empire. At this difficult moment the army was obliged to march to the Danube, leaving the government in the hands of men hostile to reform. In 1807 the garrisons of the Black Sea forts at the entrance of the straits rose in rebellion, headed by one Kabakji Mustafa, and killed their officers. The sultan sought to appease them by pacific means, but the movement
sperad to the Janisaries, who insisted upon the abolition of the new troops. But even tbis concession did not satisly them; they dethroned Selim and proclaimed his nephew MustafaThe new sultan was obliged to abolish all the reforms, and during practically the whole of his AlutacerV. fourteen months' reign the Janissaries were in rebellion, even while facing the Russians. All officers who were partisans of tbe reforms were obliged to take refuge in flight; and Turkey's position would have been desperate burfor the conclusion of the peace of Tilsit (July 7, 1807) bet reen Russia and France, to which Turkey also became a parsy. The arary hereupon retired to Adrianople, and the powerful pasha. of Rustchuk, Mustafa Balrakdar, who had distinguished himself by his resistance to the Russians, and who thoroughly shared Selim's desire for reform, was now induced by the many officers who held similer views to march on Constantinople to restore Selim to the throne. But he arrived too late; Selim had already been killed; the woworthy Mustafa was put to death, and Mahmud, the sole aurvivor of the house of Osman, became sultan. Mustafa Balrakdar, who Mmenment \(h_{0}\) was now raised to the dignity of grand vizier, suc-
ceeded in inspiring the Janissaries with a wholesome respect, dae to their dread of the 10,000 irregulars known as kirjalis by whom he was accompanied. The remnants of the abolisbed new troops were collected and formed into regiments affilisted to the Janissaries under the name of seymen-i-jedid; the dignitaries of state were called upon to take an oath of fidelity and loyalty. The feast of Ramazan bereupon occurring, the grand vizier nnwisely allowed his own troops to disperse. Taking advantage of this opportunity, the Janissaries rose by night and besieged the house of the grand vizicr, who eventually blew himself up in the arsenal. Fighting became general and extended to the fleet, which bombarded the capital. The Janissaries slaughtered all the "new troops" whom they met, and finally extorted an ammesty from the terrified government.

After the peace of Tisit an armistice had been agreed upon witb Russia (Aug. 24, 1807). Turkey was at this time the only neutral state in Europe; it was of vital im- procty of portance that she should not be absorbed into the sucharsst Napoleonic system, as in that case Russia would Tromeste have been exposed to a simuitaneous attack from servia.
France, Austria, Turkey and Persia Accordingly, though France made every attempt to induce Turkey to adopt her side, the young Stratford Canning succeeded in causing the resumption of the peace negotiations at Bucharest, hroten off through Russia's terms being considered too onerous, and followed by the capture of Izmail and Bender. The British diplomatist secured his first triumph in the signature of the treaty of Bucharest (May 28, 1812) whereby Khotim, Bender, Kilia and Akkerman were left to Russia; the frontier was fixed at the Pruth; the Asiatic boundary was slightly modified. The treaties as to the principalities were renewed; and though Servia was restored to the direct rule of Turkey it was stipulated that clemency was to be observed in the Porte's dealings with the country, which was given the power of regulating its own affairs.
The vagueness of these latter provisions at once gave rise to disputes, and in 1813 the Turkish troops occupied tbe country. The new pasha of Belgrade appointed one Milosh Obrenovich headman of his own district, but a few years later Milosh raised a successful revolt, drove out tbe Turks, and re-established Servian semi-independence. Karageonge, who had fled to Austria in 1812, was induced to return, but Milosh caused him to be murdered, and in \(\mathbf{1 8 1 7}\) was by a popular vote named hereditary prince of Servia.
The affairs of Servia, however, were not the only question left unsettled by the treaty of Bucharest. In the conrse of the war witb Persia Ruesia had received permission from the Ottoman government to use, for a limited time, the easy road from the Black Sea to Tiflis by way of the valley of the Rion (Phasis) for the transport of troops and supplies, and this permission had been several times rencwed. Wishing to make
this important privilege permanent, Russia by secret articles of the Treaty of Bucharest had secured the cession of this district, in return for an undertaking to destroy the forts of Kilia and Izmail on the Danube. But the sultan refused to ratify these articles, and tho relations between Russia and Turkey were therefore determined by the patent treaty only, which positively stipulated for the evacuation by the Russians of every spot occupied by them on Turkish soil in Asia. When the Russians showed no signs of withdrawing from the valley of the Rion, the sultan threatened to renew the war, the sole result of which was to reveal the determination of the tsar not to be butlied into concessions." The dispute, at 'first of little importance, developed in seriousness during the nert year or two, owing to the avowed intention of Russia, which by conquest or treaties with independent chiefs had acquired all the high land between the Caspian and the Black Sea, to take possession of the low lands along the coast, between Anapa and Poti, of which the sultan claimed the sovereignty.

Such was the situation when the question of a European guarantee of Turkey was raised at the Congress of Vienna In view of the multiple dangers to which the OttoCoogrest of man Empire was exposed, both from without and from within, and of the serious consequences to the world's peace which would result from its break-up, there was a strong feeling among the powers in favour of such a guarantee, and even the emperor Alexander was willing to agree to it in principle. But nothing could be done until the Porte should have come to terms with Russia as to the Treaty of Bucharest; for, as the British ambassador, Sir Robert Liston, was instructed to point out to the Ottoman government, "it is impossible to guarantee the possession of a territory of which the limits are not determined." With the consent of the tsar, it was proposed to submit the questions at issue to the decision of Great Britain, France and Austria; and the Porte was informed that, in the event of its acoepling this arrangement, the powers would at once proceed to guarantee the integrity of the Ottoman Empire. But the sultan couid not bend his pride to suffer foreign intervention in a matter that touched his honour, and the return of Napoleon from Elba threw the Eastern Question into the baciground. The Ottoman Empire thus remained outside the European concert; Russia maintained her claim to a special right of isolated intervention in its affairs; and the renewal of war between Russia and Turkey was only postponed by the preoccupation of Alexander with his dream of the "Confederation of Europe." *

Meanwhile, within the Ottoman Empire there was every sign of a rapidly approaching disintegration. In Egypt Mehemet Eype. Ali had succeeded in establishing himself as quasiindependent ruler of the country. By his action during Napoleon Bonaparte's invasion, and later when the British fleet after leaving Constantinople in 1807 proceeded to Egypt, he had to some extent acquired the goodwill of the Turkish government. In 1811 be was called upon by the Porte to put down the Wahhābi insurgents (see Arabia, vol, ii. p. 268), his success in this matter, and especially in the recovery of the boly cities, adding greatly to his prestige.
1 Sultan Mahmud now devoted himsalf to hreaking the overgrown power of the local govemors, which had for many years practically annihilated that of the central authority. Their extortions impoverished the whole country, yet the abolition of the system might perlaps have heen carried out more gradually and with greater precaution, and Turkey more than once felt the want of their aid, questionable as its value often was. Thus Greck Ali (q.o.), Pasha of Iannina, the most famous of Revolt. these, though insubordinate and inclined to intrigue with foreign powers in the hope of making himself indepen. dent. had used his influence to keep the Grecks quiet; and it was only after his power had been broken in \(183 t\) that the agitation of the Herieris isund in widesprasd dapgerous revolt. The first hope of emancipation from the Turkish yoke
had beea founded by the Grecke og Ruesene Creet, who had planged the expulsion
caused the inscription " Fetrus 1., Kusso-Graecorum Monarche " to be placed beneath his portrait engraved at Amsterdam. Catherine II. following in his footsteps, spired to found a Greek empire, the throne of which was to be occupied by her nephew, Constantine, specially so baptized, and brought up by Greek nurses (see Constantine Pavlovica). During the war of 1770 the Greeks had risen in an abortive rebellion, promptly crushed by the Turks. But the idea of liberation continued to grow, and about 1780 the Society of Friends
 fervent patriot and poet, Constantinos Rhigas (q.v.). The secret organization, temporarily checked by Rhigas's arrest and execution in 1798, was revived at Odessa in 1814; it extended throughout Turkey, and in 1820 the insurrection took shape, a favourable opportunity being afforded by the outbreak of hostilities betwren Ali Pasha and the Porte. (See Greers Independence, War or.)
- On the 6th of March 1821 Prince Alezander Ypsilanti, son of the hospodar Constantine, and a general in the Russian service, crossed the Pruth, proclaiming the revolt of the Greeks against the sultan and the intention to restore the Greek Empire of the East. But in the principalities, where the Vlach peasants regarded the Phanariots as worse oppressors than the Turks, the movement had little chance of success; it was doomed from the moment that the emperor Alexander disevowed Ypsilanti's claim to his support (see Alexander I.), After some initial successes the Greeks were finally routed at the battle of Dragashani (June 19,1821). It was far otherwise with the insurrection which broke out at the beginning of April in the Mores. The Mussulman population of the Morea, taken unawares, was practically exterminated during the fury of the first few days; and, most falal of all, the defection of the Greeks of the islands crippled the Ottoman navy by depriving it of its only effective sailors. The barbarous reprisals into which Sultan Mahmud allowed himself to be cartied away only accentuated the difficulty of the situation. The execution of the patriarch Gregorios, as technically responsible for the revolt, was an outrage to all Christendom; and it led at once to a breach of diplomatic relations with Russia.

To prevent this breach developing into war was now the chief study of the chanceries Public opinion throughout Europe was violently excited in favour of the Greeks; and this Philhellenic sentiment was shared even by some of the statesmen who most strenuously deprecated any interference in their favour. For at the outset Metternich was not alone in maintaining that the war should be allowed to burn itself out " heyond the pale of civilization." The mutual slaughter of harbarians in the Levant seemed, even to George Canning, a lesser evil than a renewed Armageddon in Europe; and all the resources of diplomacy were set in motion to heal the rupture between Turkey and Russia. In spite of the emperor Alexander's engagements to the Grand Alliance and the ideal of Europenn peace, this was no casy matter; for the murder of the patriarch was hut the culmination of a whole series of grievances accumulated since the Treaty of Bucharest. Moreover, the Porte was thrown into a suspicious mood by the contrast between the fricndly language of the western powers and the active sympathy of the western peoples for the Greeks, who were supported by volunteers and money drawn from all Europe. But, though the sultan remained stubborn, the emperor Alexander, who since the Cetgress of Laibach had been wholly under Metternich's influence, resistel the clamour of his people for war, and dismissed his Crecr inister Capo d'Istria (g.v.). The Congress of Verona (2822) pissed without any serious developments in the Eastern Question.

The stubiorn persistence of the Grecks, bowever, dashed Metternich's hope that the question would soon settle iself. and produced a state of affairs in the Levant which necessitated some action. In the instructions drawn up, shortly before his death. for his guidance at Vicrona, Castlereagh had stated the possibility of the nocessity for recopnizing the Greeks as belligerents if the war continued. The atrophy of the Ottoman
sea-powes had left the anchipelago at the mercy of the Greek war-hrigs; pirecy fourished; and it became essential in the interests of the commerce of all nations to make some power responsible for the policing of the narrow seas. On the 2sth of March 2823 accordingly, Canning announced the recognition by Great Britain of the belligerent character of the Greeks.

This roused the emperor Alexander to action, since it seemed as though Great Britain was aiming at ousting Russian influence in the Levant. He suggested a joint intervention of the powers; but the conference, which met at St Petersharg in April 1824, came to nothing, since Turkey and the Greeks alike refused to be bound hy its decisions, and Canning would not bear of coercion being applied to either. The sole outcome of the conference was the offer in March 1825 of the joint mediation of Austria and Russia, which the Porte rejected.

Meanwhile Mahmud, realizing the impossihility of crushing the Greek revolt unaided, had bent his pride to ask the help of Mehemet Ali, who was to receive as his reward Crete, the Morea and the pashaliks of Syria and Damascus. The Egyptian fleet and disciplined army were now thrown into the scale; and from the moment when Ibrahim Pasha landed at Modon (Feb. 24, 1825), the fate of the Greeks seemed sealed. The Mores was quickly overrin; in April 1826 Missolonghi fell, after a beroic defence; in June 1827 Athens was once more in the hands of the Turks Crowds of Greek captives were being sent as slaves to Cairo; and, should the powers not intervene, there was every prospect of Greece being depopulated and coloaired with Mussulman negroes and fellahin.

At the close of 1825 an isolzted intervention of Russia had seemed probable. A great army was assemhled in the south of Ruscia, and the emperor Alexander bad gone to place himself at its head when he died (Dec 22, 1825). It was to prevent such an intervention that Canning seized the opportunity of the accession of Nicholas I. to send tbe duke of Wellington to St Petersburg in order to concert joint measures. The result was the protocol of St Petersburg of the 4th of April 1826, by which Great Britain was empowered to offer to the Ottoman government a settlement of the Greek question based on the estahlishment of Greece as a vassal and tributary state. Should the Porte refuse, the two powers were to take the earliest opportunity, either separately or in common, of estahlishing a reconciliation on the basis of the protocol.
Russia, meanwhile, had seized the occasion to send to Constantinople an ultimatum demanding satisfaction for ber own particular grievances; the Porte resented the intrusion of new carrentondemands before the others had been dealt with, Aftarnan and hurried on preparations for war. The reform Ahyerneth o of the army, however, involved the destruction of the Janissaries (q.0.), and though their massacre on the 15 th of Juse left the sultan free to carry out his views with regard to the army, it left him too weak to resist the Russian demands. On the 7th of October, accordingly, these were conceded by the Convention of Akkerman. Its terms were: the confirmation of the Treaty of Bucharest and the opening of the navigation of the Black Sea to the Russian flag; a stipulation that the hospodars of Walachia and Moldavia should be elected by the hoyars for seven years, their dection being conirmed by the Porte which, however, had no power to dismiss them without the concurrence of the Russian ambassador at Constantinople; finally, Servia's autonomy was recognized, and, seve in the fortresses, no Mussulman might reside there.

The Greek question was however, not yet settled. Months passed without any action being taken under the protocol Acrearad of the 4th of April; and Russia suspected Great Atab treverase Britain of merely using the protocol to prevent her own isolated intervention. The situation was however materially altered by the end of Augast 8826; for the Greeks, driven to desperation, had formally irvited the mediation of England, thereby removing Canning's pbjection to an unasked intervention. He now invited the co-operation of Russiz in sepresentations to the Porte on
the basis of the protocol, and, in the event of its refusal to come to terms, suggested certain measures of cocrcion. The tsar consented, and proposed that the coercion should take the form of a pacific blockade of the Morea, so as to force Ihrahim, by cutting off his supplies, to evacuate the country. To this Great Britain agreed in principle; for Canning clearly saw the need for yielding on the question of a joint intervention, if the isolated intervention of Russia were to be prevented. In the conference of the five powers of the Grand Alliance opened at London in the early summer of 1827 , however, a divergence of views at once became apparent. Austria and Prussia protested against any coercion of the Porte" to serve revolutionary ends" and, failing to carry their views, withdrew from the conference. France thereupon proposed to convert the protocol of the 4th of April into a treaty; Russia and Great Britain igreed; and on the 6th of July the Treaty of London was signed by the three powers.

By the patent articles of the treaty the powers agreed to secure the autonomy of Greece tunder the suzerainty of the sultan, but without any breach of friendly relations with Turkey. By additional secret articles it was agreed that, in the event of the Porte not accepting the offered mediation, consuls should be established in Greece, and an armistice proposed to both belligerents and enforced by all the means that should " suggest themselves to the prudence " of the high contracting powers In general it was allowed that these means should be the "pacific blockade" proposed hy. the tsar. Instructions to this effect were sent to the admirals commanding in the Levant.
The armistice, accepted by the Greeks, was refused by Ibrahim, pending instructions from Constantinople, though he consented to keep his ships in the harhour of Navarino. The Greeks, having put themselves in the right with the powers, were free to continue the war; and the destruction of a Turkish flotilla off Salona on the 23rd of Septernber followed. Ibrahim, taking this as a breach of the convention, set sail from Navarino northwards, but was turned back by Sir Edward Codrington, the British admiral. Then, the Russian and French squadrons having joined, it was determined to put further pressure on the Egyptian commander, and the allied fleets, on the morning of the 2oth of October, stood into the bay of Navarino. A chance scuffle led to a battle, and by the evening the Turkish and Egyptian fleets had ceased to exist (see Navasmeno, Battiz or).
The effect on the passionate sultan of this "unparalleled outrage on a friendly power in time of peace " is easy to imagine. In spite of the weak efforts of the British government to palliate the significance of this " untoward incident," Turkey hroke off diplomatic relations with the three powers concerned, and on the soth of December Mahmud, giving full vent to his rage issued a hath-isherif denouncing the cruelty and perfidy of the Christian powers, declating the convention of Akkerman null and void, and summoning the faithful to a holy war. The struggle that followed was, however, destined once more to be a duel between Russia and Turkey. Great Britain, when Canning was no loager at the helm of state, had reverted to the traditional policy of preserving Ottoman integrity at all costs; the invitation of the tsar to sccept the logical consequences of Navarino was refused; and Russia was left to settle her account with Turkey.

The war that followed proved once more the wonderful resisting power of the Turks. In spite of the confusion due to the destruction of the Janisaries and army reforms as yet hardly begun, it cost the tzar two bardly fought campaigns before the audacious strategy of General Diebitsch enabled him to dictate the terms of the treety of Adrianople (Sep. 14, 1829). Meanwhile the other powers had taken advantage of the reverses of the Rustian arms to discount the effect of their uhimate victory by attempting to settle the Greek question. In July 1828 France had been commissioned to oust Ibrahim from the Motea; and though by a convention, concluded on the gth of

August by Codrington with Mehemet Ali, the principle of evacuation by the Egyptinn troops had already been settled before the arrival of the French expedition, the Morea remained for the time in French occupation. On the 16th of November a protocol of the London conference placed the Morea, with the neighbouring islands and the Cyclades, under the guarantee of the powers; and on the 22nd of March 1829 another protocol extended the frontier thus guaranteed to the line Arta-Volo and included the island of Euboea. According to this instrument Greece was to be erected into a tributary state, but autonomous, and governed by an hereditary prince chosen by the powers.
The Treaty of Adrianople, by which the Danubian principalities were erected into practically independent states, the treaty rights of Russia in the navigation of the Bosporus
Croek tade and Dardaneiles confirmed, and the districts of Anapa and Poti in Asia ceded to the tsar, inciuded also a settlement of the Greek question on the terms of the protocol of the and of March. This fact, which threatened to give to Russia the whole prestige of the emancipation of Greece, spurred the other powers to further concessions. The acceptance of the principle of complete independence, once more warmly advocated by Metternich, seemed now essential if Greece was not to become, like the principalities, a mere dependency of Russia. On the 3rd of February 1830 was signed a protocol embodying the priaciple of an independent Greece under Leopold of Coburg as "sovereign prince." This was ultimately expanded, after the fall of the Wellington ministry, into the Treaty of London of the 7 th of May 1832, by which Greece was made an independent kingdom under the Bavarian prince Otto. (See Gpezce: History.)

Before the final settlement of the Greek question a fresh crisis had arisen in the affairs of Turkey. Her lessened prestige syrie. had already received a severe blow from the bombardment and capture of Algiera by the Erench in 1830, and her position was further embarrassed by revolts in Bosnia and Albania, when news reached Constantinople that Mehemet \(\mathrm{Ali}^{2}\) had invaded Syria (Nov. 1, 1831), nominally in order to \(\mathrm{y}^{\text {asish }}\) lis enemy Abdullah, pasha of Acre, really in order to tule by force of arms the pashaliks of Syria and Damascus promised as a reward for his services in Greece. An account of the coilapso of the Turkish power before Mehemet \(\mathbf{A l i}\), and of the complicated diplomatic developments that followed, is given in the article Meremet All. Here it must suffice to say that the recognition of Mehemet Ali's claims, forced on the sultan by France and Great Britain, was followed in 1833 by the signature of the Treaty of Unkiar Skelessi, which seemed to place Turkey wholly in the power of Russia, after which Sultan Mahmud concentrated his energies on creating a force strong enough to crush his rehellious vassal.

At last, in \(\mathbf{1 8} 39\), his eagerness would no longer be restrained, and without consulting his ministers, and in spite of tbe warnings of all the powers, he determined to renew the wat. On the arst of April the Ottoman army, which had been massed under Hafiz Pasha at Bir on the Euphrates, crossed the stream, by the sultan's orders, and advanced on Damascus. On the 23 rd of June it was attacked hy Ibrahim at Nezib and annihilated. As for Mahmud, the news of the disaster reached Constantinople when he was unconscious and dying. Early on the 1st ol July he was dead, and his son Abd-ul-Mejid, a lad of eighteen, reigned in his stead (see Marmud Il.).

The Eastern Question had now suddenly once more entered an acute phase. The news of Nezih was immediately followed Aos-ub. by that of the treason of Ahmed Pasha, the Ottoman mone admiral, who, on the plea that the sultan's coun-185-180t. sellors were sold to Russia, had sailed to Alexandria and handed over the flect to Mehemet Ali. Wiih an inexperienced boy on the throne, diviled and une
in the divan, and the defences of house of Osman seemed doomed and
about to dissolve into its
prevented from tring the Treaty of Unkiar Stelessi for her own purposes, it was essential that the powers should concert measures to deal with the situation. The story of the diplomatic negotiations that followed is told elsewhere (see Mehimet Alu). Here it may suffice to say that the desire of the emperor Nicholas to break the entente between Great Britain and France led him to waive his special claims under the Treaty of Unkiar Skelessi, and that in the ultimate concert by which the question was settied France, which throughout supported Mehemet All, had no part. The intervention of the powers, based on the convention of London of the rgth of July 1840, led to the withdrawal of Ibrahim from Syria, and the establishment by the firman of the igth of February 8841 of Mehemet Ali as hereditary pasha of Egypt under conditions intended to safeguard the sovereign rights of the Ottoman sultan. On the roth of July the four signatory powers of the convention of London signed a protocol recording the closure of the incident (protocole de clotwre), and on the rith France united with them in signing another protocol (prolocole des detroiss) by which the powers engaged to respect the principle prociaimed by the sultan as to the closing of the Dardanellet to foreiga warships.

The severe crisis through which the Ottoman Empire had passed accentuated the need for strengthening it by a drastic reform of its system. For such an experiment, Reform though hampered by continual insurrections within Rolky ta and troubles without, Mahmud had done some- Turary. thing to pave the way. The destruction of the

Tbe
Tanzimish Janissaries and the suppression of the quasi-independent power of the derebeys had removed the worst disturbing elements; the government had been centralized; a series of enactments had endeavoured to secure economy in the administration, to curb the ahuses of official power, and ensure the impartiality of justice; and the sultan had even expressed his personal belief in the principle of the equality of all, Mussulman and non-Mussulman, before the law. It was therefore no sudden revolution when, on the 15 th of November 1839 Abd-ul-Mejid signalized his accession by promulgating the Tanzimat, or Hatti. Sherff of Gulhane, a decree abolishing the arbitraty and unlimited power hitherto exercised by the state and its officials, laying down the doctrine of the perfect equality of all Ottoman subjects of whatever race or creed, and providing for the regular, orderly and legal government of the country and the security of life, property and honour for all its inhabitants. Yet the feelings of dismay and even ridicule with which this proclamation was received by the Mussulmans in many parts of the country show how great a change it instituted, and how strong was the opposition which it encountered among the ruling race. The non-Mussulman subjects of the sultan had indeed early been reduced to such a condition of servitude that the idea of their being placed on a footing of equality with their Mussulman rulers seemed unthinkable. Preserved merely as taxpayers necessary to supply the fuads for the maintenance of the dominant and military class, according to a foreign observer in 1571, they had been so degraded and oppressed that they dared not look a Turk in the face. Their only value was from a fiscal point of view, and in times of fanaticism or when antiforeign sentiment ran bigh even this was held of little account, so that more than once they very nearly became the victims of a general and state-ordered massacre. Thus Sultan Ibeahim was dissuaded from such a step in 10.94 only by the refusal of the Sheikh-ul-Islam to sanction the proceeding. The bumane and tolerant measures provided for in the "nizam-i-jedid," or and toterant measures provided for in the "nizam-i-jedid," or
new regulations for the better treetment of the Christians enacted new regulations for the better treyement of the Christians enacted did for a time

The reforme inctoduced by Sultan Mahraud and by the Tandnilt necossitated the remodeling of nearly all the departments mandeng of state. Towards the end of Mahmnd II.'s reign citie
 ministries had been inslituted, and a council of the ministers had been established, presided over by the grand vizier. In 1837 the "council of the Sublime Porte" and the "supreme council of legat affairs" were ectablisbed: the latter was the tribunal to which were rdered all compleints against officials or chinos pending betreen the state and private individuals; the council of the Sublime Porte was in 1839 transferred to the ministry of commerce; the supreme council of legal affairs after undergoing rajious modifications was in 1868 absorbed in the council of sate. In 1837 a "council of public works" was instituted converied ten years later into a separate mindstry. In 1835 the "ministry of administration" was formed; two years later it title was changed to ministry of the interior. Regulations precribing the duties of the local governors and officiak of all ranks were drawn up only in 2865 and \(\mathbf{2 8 7 0}\), but since Mahmud's lime their functions were exclusively civil and administrative. A regalar bierarchical order was claborted for the official dames, both civil and military, whereby the rank of each person me clearly defined.
The military reorganization dates from the destruction of the Jenissaries (Uune 15, 1826). On that day Aga Hussein Pasha whe appointed "Seraskier (commandant) of the victorious Mabommedan troops "; at first only two divisions were established, quartered respectively at Constantinople and Scutari In 1833 the reserves were instisuted, and three years later reserve commandants were appointed in six principal provinces. In 1843 the corps d'armide of Constantinople, Rumelia, Anatolia and Arabia were formed, and a millitary council was appointed. In 1847 a recruiting law was promulgated, reducing the period of service (until then unlimited in point of time), to five years. Military schools were founded. For the reorganization carried out from ygos to sgro see section Army, above.
After the Greek revolution the gystem of manning the navy from the Christian natives of the archipelago and the Mediterratean littoral was abandoned, and recruits for the navy are \(10 \%\) selected under the ordinary lew. A neval school and a modern factory and arsemal were establisbed. The direction of the police, formerly left to the Janissuries, was formed into a ministry, and a body of gendirmeric was instituted. For the finanrial reforma en the section Fincuct, sbove.
minisery of putuic intruction was evelulished in \(585 \%\) unt: the reign of Selim III. (when a few military sehools were establisherl edecation. the only whools had been the colleges of the Ulema an edecation. such preparatory schools as had been founded by privat. munificence. In 1838 the council of education had been createn and several secondary state schoois were lounded. In t860 the equlations for public education were promulgated; schools wert rerywhere opened, and in 1882 a portion of the receipts Irom certai rikufs were appropriated to their maintenance. As all the prepala fory achools founded by the state were for Mussulman childre' only (the various Christian communities maintaining their ow echoali), idedi or secombary schools were established in 1884 Te 1he instruction of children of all confessions, In 5868 the Imperi.: Lycet of Calata Serai was founded: mast of the later gencratio of ownily reccived their education there. Special state schooll of modicine, arts, science, crafis, \&c., have been created successivel od in 1 got aniversity was founded. Educational afiairs in the provinge are now superintended by special officials.
Mrter the promulgation of the reforms, the judicial duties of the Imperial Divan, which with other functions nlso exercised thos of a kind of supreme court of appeal. Were transfert to the Sheikh-ul-Islam. The codification of the cis soon became neeesangy, was effected by the promula Mfeder, of civil code. Commerclal and crimin.: odes of procedure, were drawn up, largely on the Napolion. The rules regulating the Llema wurt dges was founded, and the Sheikh-ul.Islasi of revising all judgrments. In 1865 th unded.
Kuttah, to whom the superinterdence ed, received the designation of minisht Tuskey had originally maintaine: abroad, and appointel such ost: as e-g. the signature of a truat \(y\) as c-g. the signature of a triaty !
first sultan who entered into regulav relations with forciga powers, and employed permanent ambassadors; the practice was discontinued at the time of the Greek revolution and the consequent rupture with the powers. Later, during the Egyptian negotiations, a mbassadors wert accredited to London, Paris and Vienni. Sultan Abd-ul-Aziz's journey to Europe and the return visits paid by foreign princes strengthened Turkey's relations with foreign states.

The ministry of the Eviaf or pious foundations wav established in 1897 and extended ten years later. Such foundations had been created from the earliest times, and the execution of the testator's wishes was generally left to his descendants, under the supervision of some high official designated in the act of endowment. In case of failure in the line of succession an administrator was appointed by the exate. But many such foundations fell into disorder, and the ministry was created to exercise the requisite supervision.

Though the provisions of the Tanximit were not fully observed, they aforded convincing proof that reform was entirely practicable in Turkey. Reforms were effected in every direction; the finances and the srmy were

Persitis of Rutorme. reorganized, military instructors being procured from
Europe; the adoninistration was gradually centralized, and good relations were cultivated with the powers, the only serious international controversy arising in 1848-1849 over the refusal by Turkey, with the support of England, to surtender the Hungarian and Polish insurgents who had taken refoge within ber borders. It cannot indeed be said that complete tranquillity prevailed throughout the country meanwhile; disturbances in the principalities and in the Lebanon gave serious trouble, while in 184z the unsettled state of the Turco-Pernian frontier nearly led to war. By the mediation of England and Russin the Treaty of Erzerum was signed (1847) and a frontier commission was appointed. But as the frontier was not definitely demarcated the door was left epen for controversies which have occurred frequently up to the present day.

Turkey's progress in the path of reform was viewed with some uneasisess in Russia, the cardinal principle of whose policy since 1829 had been to maintain ber own pmantase influence at Constantinople by keeping the Oto- Powly ente man government weak. In favour of this view rese the traditional policy of Peter the Great and Catherine II. had been deliberately given up, and by the secret convention signed at Manchengraltz on the 88 th of September 1833 the emperor Nicholas had agreed with his brother sovereigns of the revived "Holy Alliance" to maintain the integrity of Turkey, where Russian influence seemed to have been rendered supreme and permanent by the Treaty of Unkiar Skelessi The crisis which ended in 5841, however, materially altered the situation from the Russian point of view. By his concert with the other powers in the affair of Mehemet Ali, the tsat had abdicated his claim to a unique influence at Constantinople. and he began to revive the ides of ending the Ottoman rule in Europe, an idea which be had only unwillingly abandoned in 1829 in response to the unanimous opinion of his advisers. In r844 he took advantage of his visit to England to propose to British ministers a plan of partition, under which Great Britain was to receive Egypt and Crete, Constantinople was to be erected into a free city, and the Balkan states were to become autonomous under Russian protection. This proposal, as might have been cxpected, only served to rouse suspicions as to Russia's plans; it was politely rejected, and the whole Eastern Question slumbered, intil, early in 1850 , it was awakened by an incident trivial enough in itsels, but pregnant with future trouble: a quarrel of Catholic and Orthodox monks about the holy places in Palestine.

By the Capitulations signed on the 28th of May 1740 on behalf of Sultan Mahmud I. and Louis XV. "emperor of France," not only French pilgrims to Jerusalem, but all members of "Christian and hostile nations" visiting the Ottoman Empire, had been placed under the prolection of the French flag, and by a special article the Frank, i.e. Roman Catholic, ecclesiastics had been guaranteed certain rights in the holy places. These stipulations of the treaty, which were in effect a confirmation of the firman granted in 1620 by Murad IV. to Louis XIII., had fallen ino oblivion
during the age of Voltaire and the turmoil of the Revolution; and meanwhile, every advance of Russia had been marked by further encroachments of the Orthodox clergy in Palestine on the ancient rights of their Latin rivals. The quarrels of these monks might have been left to the contempt they deserved, had not Napoleon III. scen in the situation an opportunity at once for conciliating the clericals in France and for humiliating Russia, which had given to his title but an equivocal recognition. His ambassador, accordingly, handed in at Constantinople a formal demand for the restitution of the Catholiss in all their property and rights. The Ottoman government, secking to gain time, proposed a " mixed commission " of inquiry; and to this France agreed, on condition that no documents later than 1740 should be admitted as evidence. To this suggestion, which would have excluded the Treaty of Kuchuk Kainarji, the emperor Nicholas replied by a haughty demand that nothing should be altered in the stotus quo. It was now clear that no less an issue was involved than a contest between France and Russia for paramount influence in the East, a contest into which Great Britain would inevitably be dragged The British government did its best to help the Porte to evolve a compromise on the questions immediately at issue, and in March 1852 a firman was issued, which to Protestants and Mahommedars might well seem to have embodied a reasonable settement. Concessions were made to one side and the other and the question of the right of "protection" was solved by the Turkish gevernment itself undertaking tbe duty. But neither Napoleon nor Nicholas desired a settement. The French emperor wanted a war for dynastic reasons, the tsar because he conccived his honour to be involved, and because he judged the moment opportune for expelling the infidel from Europe. France, he helieved, would never come single-handed to the assistance of Turkey; Austria would be bound at least to benevolent neutrality by "gratitude" for the aid given in 1849; the king of Prussia would sympathize with a Cbristian crusade; Great Britain, where under the influence of John Bright and Richard Cobden the "peace at any price" spirit seemed to be in the ascendant, would never intervene. Nicholas even hoped for the active sympathy of Britain. Lord Aberdeen made no secret of his dislike for the Turks, and apenly expressed his disbelief in the reality of their reforms; and in January 1853 the tsar, in conversation with Sir Hamilton Seymour, the British ambassador at St Petersburg, spoke of the Ottoman Empire as "the Sick Man," and renewed the proposals for a partition made in 2844.

Early in 1853 the Russian army was mobilized, and Prince Menshilov, a bluf soldier devoted to the interests of Orthodoxy and tsardom, was sent to present the emperor's ultimatum at Constantinople. He demanded the recognition of the stalus guo in the holy places, and of the tsar's right, under the Treaty of Kuchuk Kainarji, to the protectorate of all Orthodox Christians in the Ottoman dominions. The Porte, in alarm, turned to Great Britain for advice and assistance. Lord Stratford de Redcliffe, who reached his post at Constantinople shortly after the arrival of Menshikov, at once grasped the essential facts of the situation. The question of the holy places was insignificant in itself-it might be settled if France were granted molitical compensation elsewhere; that of the protectorate claimed by Russia over the Christians involved the integrity of the sultan's sovereignty. With great address he succeeded in persuading Menshikov to present the two demands separately. On the z2nd of April the French, Russian and British ministers came to an agrecment on the question of the holy places; with the result that, when the question of protectorate was raised, Menslikov found himself opposed by the ambassadors of all tine other powers. On the 5 th of May, nevertheless, in ohedience to his peremptory instructions, he presented his ultimatum to the Ottoman government, which, backed now by all the other powers, rejected it. On the 22nd Menshikov ind the whole of the Russian diplomatic staff left Constantinople; and it was announced that, at the end of the month, the isar's troops would cnter the Danubian principalities. Op
the 2 2nd of June the Russian army, under Prince Gorchakov, crossed the Pruth, not-as was explained in a circular to the powers-for the purpose of attacking Turkey, but solely to obtain the material guarantees for the enjoyment of the privileges conferred upon her by the existing treaties. The news of this aggression roused intense excitement in England; but the British government still exerted itself to maintain peace. In August a conference of the four powers assembled at Vienna, but the settlement they proposed, which practically conceded everything demanded by Russia except the claim to the protectorate, though accepted by the tsar, was rejected by the Porte, now fallen into a mood of stubborn resentment at the Russian invasion. At the beginning of October Turkey formally declared war; on the 22nd the French and British fleets passed the Dardanelles. Lord Aberdeen still hoped to secure peace, and the Russian government was informed that no casus belli would arise so long as Russia abstained from passing the Danube or attacking a Black Sea port. To the emperor Nicholas this was tantamount to a declaration of war; and in effect it was so. On the 30th of November the Russian fleet attacked and destroyed a Turkish squadron in the harbour of Sinope; on the 3rd of January the combined French and British fleets entered the Black Sea, commissioned to "invite" the Russians to return to their harbours.

The emperor Nicholas had been singularly misled as to the state of public opinion in Europe. The news of the affair of Sinope, rather wanton slaughter than a battle, crtmeas raised excitement in England to fever beat; while War. the excellent bearing and consistent successes of the Turkish troops during the first months of the campaign on land excited the admiration of all Europe. The belief in the rejuvenation of Turkey seemed to be justified; and when, on the 27th of March 1854, Great Britain and France declared war on Russia, the action of the governments was supported by an overwhelming public opinion. As regards Austria, too, the emperor Nicholas was no less mistaken. If she maintained neutrality, it was due to no impulse of gratitude, and it was far from "benevolent. As the Russians withdrew from the Danubian principalitics Austrian troops occupied them, and by a convention with the Porte the Austrian government undertook to resist by arms any attempt of the Russians to return. So far as the extreme claims of the tsar were concerned, neither Austria nor Prussia was willing to concede them, and both had joined with France and Great Britain in presenting, on the 12th of December 1853, an identical note at St Petersburg, drawn up at the Conference of Vienna, reaffirming the principles of the treaty of 1841 s . Save for the beaevolent neutrality of Prussia, therefore, which enabied her to obtain supplies from the north, Russia was pitted singhhanded against a coalition of Turkey, Great Britain and France, to which Sardinia was added later.

The events of the war that followed are told elsewhere (see Crimean War). The main operations were confined to the Crimea, where the allied troops landed on the 14th of September 884 , and they were not concluded, in spite of the terrible exhaustion of Russia, till in December 1855 the threatened active intervention of Austria forced the empcror Alexander II. to come to terms. These terms were ultimately embodied in the Treaty of Paris of the 3 oth of March 1856. Its provisions, held by some to be so unduly favourable to Russia as to justify the question whether she had not been victorious in the war, were as follows: Russia abandoned all pretensions to exercise a protectorate ent the Christians in Turkey, or to an exclusive right of intertuenere in the Danubian principalities, to which \(B\) the navigation of the Danube was m
was closed to warships
countries; the Asiatic
unchanged; T
all the
large measare of local antonomy for the Chriskian communities. It was stipulated that Turkey's promises of relorm gave no power the right of interference on behalf of the Christians.
The Treaty of Paris was regarded as opening a new era in the progress of Turkey. Admitted on equal terms to the European

\section*{The Mever} Era. family of nations, the Ottoman government had given a solemn guarantee of its intention to make the long-promised reforms a reality. But it soon became apparent that the time was scarcely come for liberal measures; and fanatical outbreaks at Jidda (1858) and in Syria (1860) gave proof that the various sections of the population were not yet prepared to act together in harmony. The Syrian disturbances brought about a French occupation, which Fuad Pasha, ably seconded by Ahmed Velyk Effendi, the Turkish ambassador in Paris, contrived to restrict, and to terminate as soon as possible. The immediate local result was the institution, by a riglement, signed at Constantinople on the 6th of September 1864, of autonomy for the Lebanon under a Christian governor appointed by the powers with the concurrence of the Porte, an arrangement which has worked satisfactorily until the present day In 1859 the Danubian principalities, deliberately left separate by the Congress of Paris, carried out their long-cherished design of union by electing Prince Cuza both in Moldavia and in Walachia, a contingency which the powers had not taken into account, and to which in the end they gave a grudging assent (see Rumania).
On the 25 th of June 186 I Sultan Abd-ul-Mejid died, being succeeded by his brotber Abd-ul-Aziz. The new sultan's reign abom-Axt, marked, if not the beginning, at least the high tide Absy-ds7a of that course of improvident and unrestrained expenditure, facilitated by the enthusiasm created in Europe by Turkey's admission to the ranks of the powers which loosened for ber the purse-strings of the foreign investor. The viccroy of Egypt, Ismail Pasha, followed his suzerain's example in this respect, and was lavish in his bribes to his imperial overlord to obtain the extension of his own privileges and the establishment in Egypt of succession from lather to son; these concessions were granted to him by the firmans of the 27th of May 1866 and the 8 th of June 1867 , in the latter of which the viceroy is addressed for the first time \(25^{\text {" khedive." Abd-ul-Aziz is said to have yiclded the more }}\) readily as heing desirous of bringing about a similar alteration in the succession in Turkey, in lavour of his own eldest son, Prince Yussuf Izz-ed-din; public opinion was, however, opposed to so sweeping a change, and the succession to the throne in Turkey still goes to the eldest surviving member of the house of Osman. Though the foreign relations of Turkey remained untroubled, disturbances in Servia, Montenegro and Crete continued throughout the "sixties." Servia had long resented the occupation of her fortresses by Turkish troops; frequent collisions arising from this source resulted in June \({ }_{1} 862\) in the bombardment of Belgrade; some slight concessions were then made to Servia, but it was not until 1867 that, through the mediation of England and other powers, she succeeded in obtaining the withdrawal of tbe Turkish garrisons. The Cretan active support given to the movement by Greece brought about a rupture of relations between that country and Turkey. The revolt was suppressed, the Turko-Greek conflict was settled by a confercnce of the powers in Paris, and Crete received a charter of Local self-government which for a time pacified the island. \({ }^{3}\) Abd-ul-Aziz had visited the Paris Exhibition of 1867 and had In 3869 the visit was retumed by many e opening of the Suez. Eugenie. An importmention is the grant uting the BulChurch from
diplomatic
Suale Papers.
the juriadiction of the Greek patriarch of Constantinople. This concession, given under strong pressure from Russia, aroused the deepest resentment of the Greeks, and was the principal factor in the awakening of the Bulgarian national spirit which subsequent events have done so much to develop. Russian influence at Constantinople had been gradually increasing, and towards the end of 1870 the tsar took advantage of the temporary disabling of France to declare himself no louger bound by those clauses of the Treaty of Paris which restricted Russia's liberty of possessing warships on the Black Sca. An international conference convoked in London early in i871 laid down the principle that treaty engagements were binding. and then proceeded to abrogate this particular engagement. Russia and Turkey thus regained full liberty as regards their naval forces and armaments in the Euxine; the passage of the straits remained interdicted to ships of war.

A reform not unwortby of notice was effected by the law promulgated on the 18 h h of June 1867 whereby foreigners were for the first time allowed to hold landed property throughout the Ottoman Empire (save in the Hejaz) on condition of their being assimilated to Ottoman subjects, i.e. divested of their right to the protection of their own authorities in every respect concerning such property.

Meanwhile in Turkey national bankruptcy was brought within measurable distance by the sultan's extravagance and the incompetence of his ministers; it was staved off only by loans contracted almost annually to pay the interest on their predecessors. External infuences and latent fanaticism were active; a scrious insurrection broke out in Bosnia and Herzegovina in 1875, and the efforts to quell it almost exhausted Turkey's resources; the example spread to Bulgaria, where abortive outbreaks in September 1875 and May 1876 led to those crucl measures of repression which were known as "the Bulgarian atrocities," \({ }^{2}\) Mussulman public feeling was inflamed, and an attempt at Salonica to induce a Christian girl who had emhraced Islam to return to her faith caused the murder of two foreign consuls by a fanatical mob. The finances of Turkey now collapsed, and the inevitable bankruptcy was declared, whereby more than through any other cause she lost such opposiltan sympathies as she possessed in western Europe. ©/Apa-mTurkey's distress was Russia's opportunity; the Astr. sultan fell entirely under the influence of General Ignatiev, the tsar's ambassador, and it became evident that the country was hastening to its dissolution. A conspiracy to bring a bout a change was hereupon formed by certain prominent statesmen, whose leaders were Midhat Pasha, Mehemed Rushdi Pasha and Mahmud Damad Pasha, the husband of a princess of the blood, sister to Prince Murad. These succeeded in gaining over the Sheikh-ul-Islam, and in obtaining from him a fotoc for the deposition of Abd-ul-Aziz.

In virtue of this judgment of the supreme legal authority, and with the aid of the fleet, Abd-ul-Axiz was deposed, being shortly afterwards found dead, apparently by his own hand. Murad V. reigned in his stead. But the cbange of sultans brought no relief to the trouhled state: Servia and Montenegro declared war, and in less than three months it had become evident that Murad was incapable of governing.

Murad's brother Abd-ul-Hamid was accordingly proclaimed sultan on the 31st of August 1876. The diplomacy of Europe had been searching in vain since the autumn accessios of 1875 for the means of inducing Turkey to institute efality eflective administrative reforms and to grant to momem, its European proviaces that autonomy which now \({ }^{1876}\) appeared essential. But the new sultan was a! averse from accepting any of the formulae proposed as were his prodecessors: Servia and Montenegro were with great difficulty pacified, but it was plain that Russia, whose Slavonic and Orthodox sympathies bad been strongly aroused, would soon begin bostilities herself. Turkey now made a show of going even beyond the demands formulated by Europe, and the international conference which met at Constantinople during

\footnotetext{
- See Mr Baring's reports in Parl. Papers (1878). Ivxi.
}
the last days of 8876 was startled by the salvo of artillery which heralded the promulgation of a liberal constitution, not for the European provinces only, hut for the whole empire, and the institution of a Turkish parliament. The decisions of the conference, moderate though they were, in the end requiring mercly the nomination of an international commission to investigate the state of the European provinces of Turkey, and the appointment by the sultan, with the approval of the pusse- powers, of governors-general for five years, were Turksh rejected hy the Porte. The statesmen of Europe War. still continued their efforts to avert a conflict, hut to no purpose. On the 24th of April 1877 Russia declared war and her troops crossed the Turkish frontiers. Hostilities were conducted both in Europe and Asia for nearly a year. Rumania joined the Russians, and in Europe no effective opposition was encountered hy the invaders until the assaults on Plevna and the Shipka Pass, where the valiant reststance of the Turks won for them the admiration of Europe. By November the defence of the Turks in Asia Minor had entircly collapsed. Plevna surrendered on the gth of December 1877 after a heroic struggle under Osman Pasha. Thereafter the Russians advanced practically unchecked (see Russo-Turkish Wars). An armistice and preliminaries of peace were signed on the 3 Ist of January 1878 at Adrianople, and a definitive treaty was concluded at

\section*{Treaty of} San Stefano on the 3rd of March 1878 . Its terms Sraty of Sastefano. were: the creation of an autonomeus tributary principality of Bulgaria extending from the Black Sea to the Aegean; the recognition hy Turkey of the independence of Rumania, Servia and Montenegro, with incroased territories; the payment of a war indemnity; the introduction of reforms in Bosnia and Herzegovina; the cession to Russia of Bessarabia and the Dobruja; the opening of the passage of the straits at all times to the merchant vessels of neutral states; and the razing of the fortresses on the Danube.

Great Britain had throughout the war preserved strict neutrality, hut, while making it clear from the outset that she could not assist Turkey, had been prepared for emergencies. Turkey's severity in repressing the Bulgarian insurrection had raised up in England a storm of public opinion against her, of which the Liberal opposition had taken the fullest advantage; moreover the suspension of payments on the Ottoman debt had dealt Turkey's popularity a hlow from which it had never recovered. But upon the approach of the Russians to Constantinople the British reserves were called out and the fleet was despatched to the Bosporus. Accordingly, and as her line of retreat might be threatened by Austria, Russia consented to a revision of the Treaty of San Stefano at a congress to be held at Berlin. Coagremor Before the meeting of this congress, which assembled

Berlla,
1878. on the \(13^{\text {th }}\) of June 1878 , the powers principally the modificat 0 tion concluded with Turkey on the 4 th of June 1878 England had undertaken to defend the Asiatic dominions of the sultan by force of arms, provided that his majesty carried out all the necessary reforms, to be agreed upon later, and assigned to England the island of Cyprus, which was however to be restored if Turkey fulfilled her engagements as to reforms and if Russia gave back to her Kars, Ardahan and Batum. On the i3th of July 1878 the Treat y of Berlin was signed: the Great Bulgaria of the San Stefano Treaty was diminished to an autonomous province north of the Balkans, the south-eastern portion, no longer extending to the Aegean, was formed into a self-governing tributary province styled Eastern Rumelia; Turkey abandoned all pretension to suzerainty over Montenegro; Servia and Rumania received their independence (but the last named was made to cede Bessarabia to Russia, receiving instead the Dobruja); the Asiatic frontier was readjusted, Kars, Ardahan and Batum becoming Russian. It was further provided that Bulgaria should pay to Turkey an annual tribute, and should moreover (as well as the other Balkan states receiving accessions of territory at Turkey's expense) bear a portion of the Ottoman debt. The sums payable by the different countries were to be fixed
by the powers; but no effect has so far been given to this reasonable stipulation, which may now be looked upon as null and void. Turkey undertook to pay to Russia a war indemnity of \(300,000,000\) roubles, and the status of the straits remained unchanged. Measures of reform in Armenia were also provided for; as also the convocation of an international commission for drawing up a reform scheme for the European provinces left to Turkey. The organic law for Crete was to be carried out, and special laws enacted for o:her parts of Turkey. Bosnia and Herzegovina were handed over to the administration of Austria; Montenegro and Greece received accessions of territory to which only strong pressure coupled with a naval demonstration induced Turkey to consent three years later.

Peace once restored, some attempt was made hy Turkey in the direction of complying with her engagements to institute reform. Financial and military advisers were procured from Germany. English officers were engaged to reform the gendarmerie, and judicial inspectors of foreign nationality were to travel through the country to redress ahuses. It was not long before the unsubstantial character of all these undertakings became apparent, the parliament was dissolved, the constitution was suspended and its author exiled. Egyptian aflairs next threatened complications. In May 1879 the misgovernment of Ismail Pasha and the resulting financial crisis rendered the deposition of the khedive inevitable; in order to anticipate the action of England and France, who would otherwise have expelled the erring viceroy, the sultan deposed him himself; the succession devolved upon his son Mahommed Tew ik Pasha. (For the subsequent history of the Egyptian question see Egypr History.) The revolt of Arabi Pasha ETopenn in 1881 broke up the Anglo-French condominium in Qeeztom. Egypt and led to outrages at Alexandria followed by a bombardment on the ith of July 1882. The occupation of the country by Great Britain gradually took a more permanent form, and though negotiations were more than once entered into with Turkey with a view to its termination, these either proved abortive or were rendered so (as e.g. the Drummond-Wolff convention of \(1887^{6}\)) by the action of other powers. The AngloFrench agreement of 1904 left England in undisputed mastery.
The financial straits of Turkey after the war became so acute that the sultan was compelled to consent to a measure of foreign control over the finances of the country, Patedone the administration of the public debt being established in December 1881. (See Fizunce, above.)
In 1885 the practically hloodless revolution of Philippopolis on the 18th of Scptember united Bulgaria and Eastern Rumelia, severed by the Treaty of Berlin. A conference held at Constantinople sanctioned the union on terms which were rendered acceptable to the sultan, but Said Pasha, who had assisted the sultan in centralizing at Yildiz Kiosk the administration of the country, and who had become grand vizier, was a strong adherent of the palicy of armed intervention hy Turkey, and the consequence was his fall from office. His successor in the grand vizierate, Kiamil Pasha, was soon called upon to deal with Armenian unrest, consequent on the non-execution of the reforms provided for in the Treaty of Berlin and the Cyprus Convention, which first found vent about 8800 . But Kiamil l'asha was nol subservient enough to his imperial master's will, and his place was taken by a military man, Jevad Pasha, from whom no independence of action was to be apprehended.

It is from this period that the German ascendancy in Cosstantinople is noticeable. Railway concessions were given to Germans over the heads of British applicants already German in possession of lines from which they were expro- Achiky to priated, thus affording the nucleus of the Bagdad Turter. railway (of which Germany obtained the cu ber 1899). (See Bagdad, vol tii,
From 1890 Crete was frequen the Christian communities chafe under the atte
Christmas 1
entered upon a serions phase. The Kurds, the constent oppressors of that people, had received official recognition
and almost cornplete immunity from the control
Aracalar Treatoles of the civil law by being formed into yeomanry frontier-guard known as the Hamidian cavalry. The troubles arising from this cause and from greater energy in the collection of taxes led the Armenians in outlying and mountainous districts to rise against the authorities. The repression of these revolts in the Sassun district in the autumn of 1894 was effected under circumstances of great severity by Turkish troops and Kurdish irregulars. A commission composed of British, French and Russian offcials held an inquiry into the events which had occurred, and early in 1895 England, France and Russia entered actively into negotiations with a view in the institution of reforms. The scheme propounded by the three powers encountered great objections from the Porte, but under pressure was accepted in October 1895. Its acceptance was however the signal for a series of massacres in almost every town of importance throughout Asia Minor, which there is but too strong evidence for suspecting were comwitted with the congivance of the authorities, and in which spwands of soc,000 persons are computed to have perished. In 1896 Lond Salisbury induced the nther powers to unite in urging the execution of the reforms, but no agreement could be come to for the use of coercion, and Europe could but look on and protest. Chadges of ministry at Constantinople were powerless to bring about an improvement, and early in 1806 Cretan affairs became \(s 0\) serious as to call for the intervention of the powers. In September yet another Cretan charter of self-government was promulgated. Shortly before, a revolutionary attack by an Armenian band on the Ottoman bank at Constantinople brought about a general massacre of Armenians in the capital (where a widespread revolutionary organization undoubtedly existed), in which at least 3000 victims fell, and the persecution of Armenians became the order of the day.

The neglect of the Porte to carry out all the stipulations of the Cretan arrangement of 5896 led to a renewal of the disturbances, and Greece began to take steps for the invasion of Onpez Wia the island; in February 1897 Colonel Vassos sailed from the Piraeus with an armed force, intending to proclaim the annexation of Crete to Greece, and Greek troops were massed on the Thessalian frontier. Diplomacy busied itself with fruitless attempts to avert hostilities; on the 17 th of April 1897 war was declared by Turkey. The resistance offered by Greece was feeble in the extreme: Europe was obliged to intervene, and Turkey gained a rectification of frontier and a war indemnity of \(\{4,000,000\), besides the curtailment by the treaty eventually signed of many privileges hitherto enjoyed by Hellemic subjects in Turkey. But Europe was determined that the Cretan question should be definitely settled, at least for a period of some years, and, after an outbreak at Candia, in which the lives of British troops were sacrificed, the four powers (Germany and Austria having withdrawn from the concert) who had taken over the island en depst handed it over in October 1898 to Prince George of Greece as high commissionet (see Cerete: History).

Crete being thus removed from the scope of her action, Turkey foand ample occupation in the almost constant turbulence of the Yemen, of Albania and of Macedomia. After Erocter is 1892 the revolts, frequently renewed, of the so-called imatm of suak, neceatoicd the despatch of large and eostly expeditions to Arsbia, in which thousands of Turkish troops have fallen in guerrilla warfare or through the inhospitalle dimute; in Albania dinturbutce became almost endemic,
encroachments on the hinteriaind of Aden brought about a dangerous state of tension between Great Britain and Turkey, which had its parallel in 1906 in similar trespasses dapadoe by the Outoman authorities on the Egyptian land with Framo frontier near Akaba. In both cases Turkey eventually and Brink. yielded; a similar question arose in 1906 with France over the boundaries of the Arrican possessions of the two countries.

But Macedonia was Turkey's chief source of anxiety. That country, left by the Treaty of Berlin with its status unaltered, was in a continued condition of disturbance. The Christian population, who in common with their Mussul-Macedonle man fellow subjects suffered from the defective methods of government of their rulers, had at least before them the example of their brethren-Greeks, Bulgarians or Servians-dwelling in independent kingdoms under Christian governments on the other side of the frontier. The hope of eventual emancipation was stimulated by sedulous propagandists from each of these countries; from time to time armed bands of insurgents were manned and equipped in the small neighbouring states, with or without the co-operation of the governments. So long as Stambolov, the energetic Bulgarian statesman, was alive he suoceeded in keeping the Bulgarian element quiet, and the peace of the country was less liable to disturbance. But for some years the three rivals in Macedonia, to which a fourth, the Rumanian element, must be added, were in constant strife (see Maceponu). A serious Bulgarian insurrection in Macedonia in the antumn of 1903 induced Austria and Russia to combine in formulating the Murasteg reform programme, tardily consented to by Turkey, by which Austrian and Russian civil agents were appointed to exercise a certain degree of control and supervision over the three vilayets of Salonica, Monastir and Kossovo. It was also arranged that foreign officers should be named to reorganize the gendarmerie. An Itatian officer, General De Giorgis, was appointed to the chief command in the reorgenization, and the three vilayets were apportioned among the great powers into districts, in each of which was appointed a staff officer with a number of subordinate officers of his nationality under his orders. The work of reorganization was efficiently carried out, and the gendarmerie school at Salonica, under British supervision, showed excellent results. But the achievements of the two civil agents were less noteworthy; and in rgos it was agreed that, in view of the financial necessities of the provinces, the other great powers should each appoint delegates to a financial commission with extensive powers of control in fiscal matters. The Porte opposed the project, and an international naval demonstration and the occupation of Mytilene by the powers became necessary before Turkey gave way in December 1905. Even so it proved impossible to fulfil the Murasteg programme, though the attempt was prolonged until xgo8. The Austro-Russian entente had then come to an end; and after a meeting between King Edward VII. and the trar Nicholas II. at Reval, a new scherac of reforms was announced, under the name of the "Reval pro* gramme." The enforcement of these reforms, however, was postponed sine die owing to the revolution which transiormed the Ottoman Empire into a constitutional state; and the powers, anticipating an improvement in the administration of Macedonia by the new government, withdrew their military officers in the summer of 1908.

The Young Turkish party had long been preparing for the overthrow ct the old regime. Their central organization was in Faris and heir objects were known throughout Europe, bu: except at Yildix Kiosk their power was The Youre almost everwhere underrated. The Porte strove
by every nuans at its disposal to thwart their activity; but elsewhere the \(y\) were regarded as a body of academic enthusiasts, more noisy han dangerous, who devoted their scanty funds to the publication of seditious matter in Paris or Geneva, and sought to achieve the impossible by importing western institutions into a country fie asly to be ruled by the sheriat and the sword. Such mas the of tion held even by experienced diplomatists and by lit was strengthened by the fact that the Young

Turks had deliberately abstained from violent action. They had, in fact, learned from events in Russia and Poland that sporadic outhreaks on 4 small scale would inevitahly discredit their cause, and that a successful revolution would require the support of the army. To gain this, an extensive propaganda was carried on by secret agents, many of whom were officers. At the beginning of 1908 a favourable opportunity for action arrived. The Ottoman troops in Arabia were mutinous and unpaid; the Albanians, long the mainstay of Turkisb military power in the west, had been irritated by unpopular taxes and by the repressive edicts which deprived them of schools and a printing-press; foreign interference in Crete and Macedonia was resented by patriotic Moslems througbout the empire. In these circumstances the headquarters of the Young Turks were transferred from Paris to Salonica, where a central body, known as the committee of union and progress, was established (1908) to organize the revolution. Most of its members were military officers, prominent among them being Majors Enver Bey and Niazi Bcy, who directed the propaganda in Albania and Macedonia. By midsummer the Albanian leaders and the greater part of the Turkish army in Europe had sworn fidelity to the constitution.

On the 25th of May an insurrection broke out in Samos, owing to a dispute between the Samian Assembly and Kopassis Effendi, "prince," or governor of the island. After the port of Vathy had been bombarded by Ottoman war-ships the revolt was easily crushed.

This affair however was of little more than local importance, and the Young Turks were not directly concerned in it. They The Revole struck their irst blow on the a2nd of July roos, of rove. when Niazi Bey and his troops raised the standard of Joas. of revolt at Resna, a town on the road from Monastir to Ochrida. On the 23 rd the committee of union and progress, under the presidency of Enver Bey, proclaimed the constitution in Salonica, while the second and third army corps threatened to march on Constantinople if the sultan refused to obey the proclamation. On the 24th the sultan yielded, and issued an irded, restoring the constitution of 1876, and ordering the clection of a chamber of deputies. Various other reforms, notably the abolition of the spy, system and the censorship, were announced soon afterwards. Some of the more unpopular officials associated with the old régime were assassinated, among them Fehim Pasha, the former head of the espionage department, who had been exiled to Brusa in 1907 at the request of the British and German ambassadors. Otherwise the revolution was effected almost without bloodshed; for a time the insurgent bands disappeared in Macedonia, and the rival "nationalities" -Greek, Albanian, Turk, Armenian, Servian, Bulgarian and Jew-worked harmoniously together for the furtherance of common constitutional aims. On the 6th of August Kiamil Pasha, an advanced Liberal, became grand vizier, and a new cahinet was formed, including a Greek, Prince Mavrocordato, an Armenian, Noradounghian, and the Sheikh-ul-Islam.

The success of the Young Turks created a serious situation for the statesmen of Austria-Hungary and Bulgaria. A regencrated Ottoman Empire might in time be strong enough Bosalasad rated Ottoman Empire might in time be strong enough
Bryarta. temand the evacuation of Bosnia and Herregovina, over Bulgaria which the sultan had exercised since 1878 . Accordingly, at the beginning of October 1g08, the emperor Francis Joseph informed the powers signatory to the treaty of Berlin that the annexation of Bosnia and Herzegovina to the Dual Monarchy had become necessary, and this decision was formally announced in an imperial rescript dated the 7 th of October. The independence of Bulgaria was proclaimed on the sth. The Ottoman government protested to the powers, but it wisely limited its demands to a claim for compensation. AustriaHungary had from the first undertaken to withdraw its garrisons from the sanjak of Novibazar-an important concession; after prolonged negotiations and a boycott of all Austrian goods exported to Turkey, it also agreed to pay \(£ 2,200,000\) as compensation for the Turkish crown lands seired in Bosnia
and Herzegovina. This arrangement was sanctioned by the Ottoman parliament, which assented to the annezation on the 6th of April 1909 and recognized the independence of Bulgaria on the 19th of April, the Russian government having enabled Bulgaria to pay the indemnity claimed by Turkey on account of the Eastern Rumelian tribute and railways (see Bungaria: Hisfory). On the 3rd of February 1910 the Porte accepted a Bulgarian proposal for a mixed commission to delimit disputed sections of the Turco-Bulgarian frontier, and in March King Ferdinand visited Constantinople.

Meanwhile the Young Turks were confronted with many difficulties within the empire. After the first fervour of enthusiasm had subsided the Christian nationalities 7he Rein Macedonia resumed their old attitude of mutual marman in jealousy, the insurgent bands began to reappear, Provereen and the government was in 1909-1910 forced to undertake the disarmament of the whole civil population of the three vilayets. In Albania serious discontent, resulting in an insurrection (May-September 1909), was caused by the political rivalry between Greeks and Albanians and the unwillingaess of the Moslem tribesmen to pay taxes or to keep the peace with their neighbours, the Macedonian Serbs. In Asia Minor the Kurdish troops under Ibrahim Pasha revolted, and, although they were defeated with the loss of their commander, the Kurds continued to attack indiscriminately the Turks, Nestorians and Armenians; disturbances also broke out among the other reactionary Moslems of this region, culminating in a massacre of the Armenians at Adana. In Arabia Ratib Pasha, the Turkish commander-in-chief, joined the enemies of the new regime; he was defeated and captured in the autumn of 1908, but in the following year frequent raids upon the Hejaz railway were made by Bedouin tribesmen, while a Mahdist rebellion broke out and was crushed in Yemen.

More serious than any of these local disturbances was the counter-tevolution in Constantinople itself, which began with the revolt of Kiamil Pasha, the grand vizier, against 7he cor the authority of the committee of union and pro-atanthent gress. Kiamil Pasha was forced to resign (Feb. 14, Coastre 1909) and was succeeded by Hilmi Pasha, ex-high rovalution. commissioner of Macedonia. Strife then arose between the committee and the Liberal Union, a body which mainly represented the Christian electorate, and on the 5th of April Hassan Fehmi Effendi, who edited the Scrbesti, the official organ of the union, was assassinated. He was an Albanian, and his fellow countrymen in the Constantinople garrison at once made common cause with the opponents of the committee. Mutinous troops seized the parliament house and the telegraph offices; the grand vizier resigned and was succecded by Tewfit Pasha (April 14); and delegates were sent by the Liberal Union, the assocjation of Ulema and other bodies to discuss terms with the committec. But Abd-ul-Hamid had issued a free pardon to the mutineers, and the committee had now decided that the new regime would never be secure while the sovereign favoured reaction. They refused to treat with the delegates, and despatched 25,000 men under Mabmud Shevket to Constantinople.

The senate and chamber met at San Stefano, and, sitting jointly as a National Assembly, issued a proclamation in favour of the committee and its army (April 22, 1909), by whicb Constantinople was mow invested. Part of the garrison remained loyal to the sultan, but after five hours of severe fighting Shevket Pasha was able to occupy the capital (April 25). The National Assembly met in secret session two days later, voted unanimously for the deposition of Abd-ul-Hamid II., and chose his younger hrother Mahommed Reshad Effendi (b. Nov. 3, 1844) as his successor, with the style of Mahommed. V. Abd-ul-Hamid II. was removed to Salonica on the 28 th , and on the roth of May the new sultan was formally invested with the sword of Osman. Hilmi Pashas again became grand vizier, but resigned on the 28th of December 1909, when be was succeeded by Hakki Bey. On the sth of August 1909 the new constitution described above was
promulgated by imperial áade; parliament was prorogued for three months on the 27th, and during the recess the committee of union and progress met at Salonica and modified its own rales (Oct. 23), ceasing thenceforward to be a secret association. This was regarded \(2 s\) an expression of confidence in the reformed parliament, which had laid the foundation of the important financial and administrative reforms already described. On the \(13^{t h}\) of September 1009 the Macedonian international commission of finance met for the last time; fits members were reappointed to a higher finance board for the whole empire, under the presidency of Djavid Bey. Ch. Laurent had already been nominated financial adviser to the empire (Sept. 16, 1908), whike Si: William Willcocks became head of the irrigation department; the reorganization of the army was entrusted to the German General von der Goltz, that of the navy to Admiral Sir Douglas Gamble (resigned Feb. r, 19rb).

The evacuation of Crete by the four protecting powers was followed is 1009 by renewed agitation. Turkey was willing croter to concede the fullest local autonotny, but not to Rovce and abandon its sovereign rights over the island. In July 1909, however, the Greek fing was hoisted in Canca and Candis, and it was only lowered again after the war-ships of the protecting powers had been reipforced and had landed an international force. The Cretan administrative committee swore allegiance to the king of the Hellenes in August, and again, after a change of government, at the end of December 1909. This situation had already given rise to prolonged negotiations between Greece and Turkey. It also contributed towards the conclusion of an entente between Torkey and Rumania in the summer of 1910 . Both of these powers were interested in preventing any possible accession of tertitery to the Bulgarian Kingdom; and Rumania (q.s.) had for many years been a formidable opponent of Hellenism among the Macedonian Vachs. Greece and Crete were thus confronted with what was in effect a defensive alliance between Turkey and Rumania. The Cretans had insisted upon their demand for union with Greece and had elected three representatives to sit in the Greek national assembly. Had this act been ratified by the government at Athers, a war between Greece and the Ottoman Empire could hardly have been avoided; but a royal rescript was issued by the king of the Hellenes on the 3oth of Septermber 1910, declaring vacant the three seats to which the Cretan representatives had been elected; the immediate danger was thus 2 verted.

Bialiography.-(I) Gemeral Historical Works: The monumental Geastichte des Osmenischen Reiches. by J. von Hamamer Purgstall (ist ed. in vols, Vienna, 1827-1835: and ed., 4 vols., Pcst. 1840: French irans, by J. J. Hellert. 18 vols., Paris. \(1835-1843\)). is still the standard work until the cooclusion of the treaty of Kuchuk Kai'narji (1744). at which date it stope. Founded upon it are Sir E.S. Credby's Histery of the Otloman Twrks (London, 1878) and S. Lane-Poole's Turkey in the "Story of the Nations Scrics " (London. 1888): Sutherland Menzics's Twirey, Old and New (2 vols, 1880) is derived chiefly from French sources and is less accurate and unbiased. An excellent and impartial bistory in Turkish is the Tarith-i-dedesio-asmamic. by Abdurrahman Shcref (Constantinople. A.H. 2315-13r8 -A.D. 1897-1900). The Balhems, by W. Miller (London, 1899), in the "Story of the Nations Scries" deats with Turbey's relations with the Balkan states. Halil Cancm: Les Sullans enomaser (2 vols, Paris, 1902) contains much that is inceresting, if not always entirety trustworthy.
2. Womographs: Much information on modern Turkish history and politics will be found in the works dealing primarily with topograpliy. finance, law and defence, which bave boen cited above. See also S. Lane-Poole. Life of Lord Stratford de Redclife (a vols, Londoo. 1888): A. Vandal, Mhmeires dw menquis de Nointed (French' ambassador at Constantinople from 1670 to 1678): E. Engelhardt. La Turquie at he Tansimat (Paris, 1882): E. Driaule. La Quession rorient dep pris ses orifines jusqu'd nos joms (Paris, 1898): \(V\). Berard, La Turquie at IHelldmisme (Paris. 1897); idem. Le Smben. CIslem at Les Puissances (Parie, 1907); idem, Lo Révoliution aurque (1909).
3. Oficial Publications"and Collections of Treadies: Sir E. Hertskt's Trmaties Regulating the Trade, Scc, between Great Brilain and Twrkey (London, 1875) presents a aummary of all the principal freaties between Turkey and other states; see also Cabriel Effendi Norzdounghian. Recweil \(\overline{\text { Cactes }}\) internationaux de rempire ottoman. 130-1789. \& i. (Parie. 1897). Much valuable information is to
be obenined from parliamentary papers. These are too numerous for detailed mention. but the following periods may be cited as the most interesting: 1833-1841 (Egyptian question); 1849-1859 (Crimesn War and the events by which it was preceded and followed); 1868-1869 (Cretan insurrection); 1875+188! (Bosnian and Herzegovinian insurrection, Russo-Turkish War, Berlin treaty and subse quewt events) ; 1885-1887 (union of Eastern Rumelia with Bulgaria): 1899-1890 (Cretan distarbances); 1892-1899 (Armenian and Cretan affairs); 1902-1907 (Macedonia); 1900-1910 (revolution and reform). Some analysis of the umpablished documents in the record office, for the period 1815-1841, by W. Alison Phill:ps, will be found in the bibliggraphics to che vi. and xvii. of vol. x . of the Cambridst Medere Bistory.
(X.)

\section*{Literolure.}

In all literary matters the Ottoman Turks have shown themselves a singularly uninventive people, the two great schools, the old and the ncw, into which we may divide their literature, being closely modelled, the one after the classics of Persia, the other after those of modern Europe, and more especially of France. The old or Persian school flourished from the foundation of the empire down to about 1830 , and still continues to drag on a feeble existence, though it is now out of fashion and cultivated by none of the leading men of letters. These belong to the new or European school, which, in spite of the bitter opposition of the partisans of Ihe old Oricntal system, has succeeded, partly though its own inherent superiority and partly through the talents and courage of its supporters, in expelling its rival from the position of undisputed authority which it had occupied for upwards of five hundred years. For the present purpose it will be convenient to divide the old school into three periods, which may be termed respectively the pre-classical, the classical and the post-classical. Of these the first extends from the carly days of the empire to the accession of Suleiman I., \(1301-1520\) (\(700-926\)); the second from that event to the accession of Mahmud I., 1520-:730 (926-1143); and the third from that date to the accession of 'Abd-ul-'AzIz, 1730-1861 (1143-1277).

Tbe works of the old school in all its periods are entirely Persian in tone, sentiment and form. We find in them the same beauties and the same defects that we observe in the production of the Iranian authors. The formal clegance and Oeneral conventional grace, alike of thought and of expression, Character of so charocteristic of Persian classical literature pervadi outomaa the works of the best Ottoman writers, and they are. Lnersture. likewiee imbued, though in a less degree, with that spirit of mysticiem which runs through so much of the poetry of Iran. But the Ottomans did not stop here: in their romantic poems they chose as subjecte the favourite themes of their Persian masters, such as Leyli and Mejnün, Khusrev and Shiria. Yüsul and Zuleykha, and so on; they constandy allude to Persian heroes whose stories occur in the Shdi-Ndma and other storebouses of Iranian legendary lore; and they wrote their poems in Persian metres and in Persian forms. The mesnevi, the kasida and the ghazel-all of them, so far at least as the Ottomans are concerned. Persian-were the favourite verse-forms of the old poets. A mesnevi is a poem written in rhyming couplets, and is usually narrative in subject. The kasida and the ghazel are both monorhythmic; the first as a rule celebrates the praises of some great man, while the second discourses of the joys and woes of love. Why Pcrsian rather than Arabian or any other literat ure became the model of Octoman writers is explained by the early history of tbe race (see Turks). Some two centuries before the arrival of the Turks in Asia Minor the Seljüks, then a mere borde of savages, had overrun Persia, where they setiled and adopted the civilization of the people they had aubducd. Thus Persian became the language of their court and goverament, and when hy-aod-by they pushed their conquests into Asia Minor, and founded there the Seljük Empire of Rüm, they carried with them their Persian culture, and diffused it amoag the peopies newly brought under their sway. It was the deacendants of those Pcruiarized Seljuks whom the early Ottomans found nuling in Asia Minor on their arrival there. What had happened to the Seljüks two centurics before happened to the Ottomans now : the less civilized race adopted the culture of the more civilised; and, as the Seljük Empire fell to picces and the Ottoman came gradually to occupy its place, the sons of men who had called themselves Seljuks began thenceforth to look upon thernselves as Ottomans. Hence the vast majurity of the people whom we are accustomed to think of as Ottomans are so only by adoption. being really the demendants of Seljulks or Seljukiah subjects, who had derived from Persia whatever they posseseed of civilization or of literary taste. An extraordinary love of precedent. the result apparently of conscious want of original power, was cufficient to keep their writers loyal to their early guide for centuries, till
at length the allegiance, though not the fashion of it, has been changed in our own days, and Paris has replaced Shiraz as the shrine towards which the Ottoman echolar turns. While conspicuously lacking in creative genjus, the Ottomans have always showa themselves possessed of receptive and assimilative powers to a remarkable degree, the result being that the number of their writers both in prose and verse is enormous. Of course ondy a few of the most prominent, either through the intrinsic merit of their work or through the influence they have had on that of their contemporaries, can be mentioned in a brief review like the present. It ought to be premised that the postry of the old school is greatly superior to the prose.

Ottoman literature may be said to open with a few mystic lines. the work of Sultán Veled, son of Maulañ Jelăl-ud-Din, the author Pros of the great Persian poem the Mathnawi. Sultan Veled ctarateal Portert flourished during the reign of "Osmin I., though he did not reside in the territory under the rule of that prince. Another mystic poet of chis early time was -Ashit Pasha, who left a long poem in rhyming couplets, which is called, inappropriately enough, his Dedr. The nocturnal expedition across the Hellespont by which Suleimin, the son of Orkhan, won Galipoli and therewith a foothold in Europe for his race, was shared in and celebrated in verse by a Turkish noble or chicftain named Ghāzi Fäzil. Sheikhi of Kermiyăn, a conternporary of Mabommed I. and Murảd II., wrote a lengthy and still exteemed mesnevi on the ancient Persian romance of Khusrev and Shirin; and about the same time Yaziji-oghlu gave to the word a long versified history of the Prophet, the Muhammediya. The writers mentioned above are the most important previous to the capture of Constantinople; but there is little literat ure of real merit prior to that event. The most notable prose work of this period is an old collection of stories, the History of the Forty Vezirs, said to have been compiled by a certain Sheikh-zäda and dedicated to Muräd II. A few yearsafter Constantinople passed into the hands of the Ottomans, some ghazels, the work of the contemporary Tatar prince, Mir 'Ali Shir, who under the mom de prume of Nevayi wrote much that shows true talent and poetic feuling, found their way to the Ottoman capital, where they were seen and copied by Abmed Pasha, one of the viziers of Mabommed II. The poems of this statesman, though possessing little merit of their own, being for the most part translations from Nevãyi, form one of the landmarks in the history of Ottoman literalure. They aet the (ashion of ghasel-writing; and their appearance was the signal for a more regular cultivation of poctry and a greater attention to literary style and to refinement of language. In Sinån Pasha (d. 1430), another minister of Malyommed the Conqueror, Ottornan prose found its first exponent of ability; be left a religious treatige entitled Tasarrwidt (Supplications), which, notwithstanding a too lavish employment of the resources of Persian rhetoric, is as remarkable for its clear and lucid style as for the beauty of many of the thoughtsit contains. The most noteworthy writersof the Conqueror's reign are, after Abmed and Sinan, the two yric poets Nejati and Zati, whose verses show a considerable improvement upon those of Abmed Pasha, the romantic poets Jemali and Hamdi, and the poetesses Zeyneb and Mihri. Like most of his house, Mahommed II. was fond of poetry and patronized men of letters. He himeelf tried versification, and some of his lines which have come dowa to us appear quite equal to the average work of his contemporaries. Twenty-ome out of the thirty-four sovereigns who have occupied the throne of Osmin have left verses, and among these Selim I. stands out, not merely as the greatest ruler, warrior and statemnan, bat also as the most gifted and most original poet. His work is unhappily for the greater part in the Persian Language; the excellence of what he has done in Turkish makes us regret that he did 80 little. The most prominent man of letters under Selim I. was the legist Kemil Pasha-zida, frequently called Ibn-Kemsl, who distinguished himself in both prose and verse. He left a romantic poem on the loves of Yasuf and Zuleykha, and a work entitled Nipdristim, which is modelied both in style and mattor on the Gulistin of Sa'di. His contemporary, Mesihi. whoee beautiful verses on spring are perhaps better known in Europe thas any other Turkish poem, deserves a passing mention.

With the accession of Selfm's con, Saleiman I., the classical period begins. Hitherto all Ontoman writing, even the most highly Claseles finished, had been somewhat rude a nd ancouth; but now a marked improvernent becomes visible alike in the manner and the matter, and authors of grentef ability begin to make their appearance. Fuztli (d. 1563), one of the four great poets of the old achool, seems to have been a native of Bagdad
or its neighbourhood, and probably became an Ottoman subject when Suleiman took possession of the old capital of the caliphn. His language, which is very pecullar, seems to be a sort of mixture of the Ottomsn and Azerbaijan dialcets of Turkish, and was most probably that of the Persian Turks of those days. Fuzult showed far more originality than any of his predecescors: for, although his work is naturally Persian in form and in ereneral character, it is far from being a mese echo from Shirtz or Isfahzan. He struck out a new for his inspitation to no previous 44 In intense and passionate ardour now of the mont remarkable as well
few even among Turtish poets are onore ertificial than be, few meens to write with greater earnestness and sincerity. His influence upon his successors has scarcely been as far-reaching as might have been expected-a circumstance which is perhaps in come measure owing to the unfaniliar dialect in which be wrote. Besides kis Divion be lelt a beautiful memacvi on the story of Leyli and Mejnun, as well as some prose works little inferior to his poetry. Bisi (d. 1599) of Constantinople, though far from rivalling his contemporary Fuzili, wrote much good poetry, including one piece of great exceflence. an elegy on Suleimin I. The Ottomans have as a rule been particularly successful with elegies; this one by Bxai has never been surpassed. Rühi, LEmit. Nevi, the janissary Yahya Beg, the mufti Ebd-Su'üd and Selim II. all won deserved distinction as poets. During the reign of Ahmed I. arose the second of the great poet of the old Ottoman school, Nefi of Erzerim, who owes his pre eminence to the brilliance of his \&asidas. But Nefi could revile as well as praise, and such was the bitterness of some of his satires that certain infuential personages who came under his lash induced Murad IV. to permit his execurion. Nef i, who, like Fuzuli, iormed a style of his own, had many to imitate him, of whom Sabri Shikir a contemporary, was the moat successful. Na'li, Jevri and Fetim need not detain us; but Nabis (d. 1712), who flourished under Ibra him and Mabommed IV., calls for a little more attention. This prolific aut hor copied, and \(s o\) imported into Ottoman literature, a didactic style of ghazel-writing which was then being introduced ia Persit by the poet \(\$ x^{\prime}\) ib; but so clomely did the pupil follow in the footstep of his master that it is not always easy to know that his lines are intended to be Turkish. A number of pocits, of whom Seyyid Vehbi. Raghib Pasha, Rahmi of the Crimea, Kelim and Simi are the moes notable, took Nibi for their model. Of these, Sami is remarkable for the art with which he constructed bis ghazels. Among the writers of this time who did not copy Nâbi are Sabit, Rasikh and Thlib. cach of whom endeavoured, with no great success, to open up a new path for himself. We now reach the reign of Abmed III., during which flourished Nodim, the greatest of all the poets of the old shool Little appears to be known about his hife further than that he resided at Constantinople and was alive in the year 1727 (A.H. 1140). Nedim stands quite alone: he copied no one, and no one has attempted to copy him. There is in his poetry a joyousness and sprightincom which at once distinguish it from the work of any other Turkish author. His ghavels, which are written with great clegance and Ginish, contain many graceful and original ideas, and the words he makes use of are always chosen with a view to harmony and cadence. His kasidas are almost equal to his ghazels; for, while they rival thow of Nef'i in brilliancy, they surpass them in beauty of diction, and are not so artificial and dependent on lantastic and lar fetched conceits. The classical period comes to an erd with Nedim its brightest time is that which Galls between the rise of Nefiand the death of Neditn, or, more roughly, that exterding from the accession of Abroed I. 1603 (1012), to the deposition of Abmed III. 1730 (1143).

We will now glance at the prose writers of this period. Under the name of Humdyün Nämg (Imperiai Book) 'Alı Chelebi made a highly esteemet translation of the well-inown Persian classic \(A\) nowr-i Syheyb, dedicating it to Sulciman I. Sa'd-ud-Din (d. 1599), the preceptor of Murzd Ill., wrote a valuahle history of the empire from the earliest times to the death of Selim I. This work, the Tajj.mt-Tentrikh (Crown of Chronicles), is reckoned, on account of its ormaze yet clear style, one of the masterpieces of the old school, and forms the furst of an unbrokea series of annals which are written, especially the Latey among thern, with great minuteness and detail. Of Sad-ud-Din't successors in the office of imperial historiographer the most remark able for literary power is Na'ims. His work, which extends from 1591 (1000) to 1659 (1070). contrasts strongly with that of the earlier historian, being written with great directness and lucidity. combined with much vigour and picturesqucness. Evliya. who died doring ihe reign of Mahommed IV., is noted for the record which he has leit of his travels in different countrics. About this time Tash-köpro zida began and Ayax-ullāh continued a celcbrated biggra phy of the legists and sheikhs who had flourished under the Ottoman monarchs. Haji Khalfía, frequently termed Kätib Chelebi, was one of the mort (amous men of letters whom Turicey has produced. He died in 1658 (1068), having written a great number of learned works on history, biography, chronology, geography and other subjects. The Persianizing tendency of this school reached its highest point in the productions of Veys, who left a Life of the Prophet, and of Nergist a miscellaneous writer of prose and verse. Such is the intentional obecurity in many of the compositions of these two authors that every sentence becomes a puszle, over which even a scholarly Outoman must pwase before he can be sure he has found its true meaning The furst printing-press in Turkey was established by an Hungarian Who had assumed the name of Ibrahim, and in 3728 (1141) appeared the first book printed in that country; it was Vankuli's Turkish translation of Jevheri's Arabic dictionary.
Coming now to the post-classical period, we Gind among poets worthy of mention Beligh, Nevres, Hishmet and Sunbuli-zads Vehbl, each of whom wrote in a style peculiar to himself. Three poets of note-Pertev, Neshet and Sheikh Ghsilib-flourished under Selim III. The bart-named is the fourth great poet of the old
 called, is an allegorical romance full of tenderness and imaginative Pob power. Cristib:s styte is as original as that of Fuzult

\section*{ctereted} Nefi or Netim. The most distinguiahed prose uriters of this period are perhapa Rashid, the imperial historioPuten trapher, 'Akim, who translated into Turkish two great
lexicons, the Arabic KAms and the Persian Burkdn \(i\) \&ifi, and Kani, the only humorous writer of merit belonging to the old achool.

When we reach the reign of Mabmad II., the great transition period of Ortoman history, duriag which the civilization of the Trasabien Weat began to struggle in earnest with that of the East, Purten Turkind the change. which was coming, over all things preparing the way for the appearance of the wew the rest, and chier poete of the tramaition are Fazil Bey. Wilqif, notable for his not altopether unhappy attempt to write verses in the apoken language of the capital. 'Izert Molla, Pertev Pasha, 'Akir Pasha, and the poetesses Fitnet and Leyli. In the works of all of these, although te occacionally discern a hint of the new style, the old Persian manner is atill sapreme.

More intimate retations with western Europe and a pretty general st udy of the French language and literature, together with moner the steady progress of the reforming tendency fairly secrean started under Mahmod II., resulted in the birth of the mew or modern school, whose objects are truth and simpficity. In the political writings of Reshid and "Akif Pashas we have the first clear note of change; but the man to whom more than to any other the new departure owes its success is Shinast Effendi, who employed it (1850) for poetry as well as for prose. The European style, on its imlroduction, encountered the most violent opposition, but now it alone is used by living anthors of repute. If any of these does write a pamphtet in the old manner, it is merely as a towr de force, or to prove to some faithful but clamorous partisan of the Persian style that It is not, as the supposes, lack of ability which causcs the modern author to adopt the simpler and more natural fashion of the West. The whote tone, sentiment and form of Ottoman literature have been revolutionized by the new school: varieties of poetry hitherto unknown have been adopted from Europe; an altogether new branch of literature, the drama, has arisen; while the sciences are now treated and seriously studied after the system of the West. Among writers of this school who have won distinction are Ziya Pasha, Jevdet Pasha, the statesman and bistorian, Ekrem Bey, the author of a beautiful series of miscellaneous poems, Zemzema, Famid Bey, who holds the first place among Ottoman dramatists, and Kemal Bey (d. 18ph), the leader of the modern school and one of the most illustrious men of letters whom his country has produced. He wrote with conspicuous soccess in almost every branch of literature-history, romance, ethics, poetry and the drama; and his influence on the Young Turk party of later days was profound. (For the Turkish Innguage see Toiss.)
(E. J. W. G.)

The magnum opus in English on Turkish poctry is E. J W. Cibb's History of Ottoman Poetry (5 vols., 1900-8, vol. v. ed. E. G. Browne)
TUAESY, an abbreviation for Turkey-Cock or Turkey-Hen as the case may be, a well-known large domestic gallinaceous bird. How it came by this name has long been a matter of discussion, for it is certain that this valuable animal was introduced to Europe from the New World, and in its introduction had nothing to do with Turkey or with Turks, even in the old and extended sense in which that term was applied to all Mahommedans. But it is almost as unquestionable that the name was originally applied to the bird which we know as the guinea-fowl (\(q\).v.), and there is no doubt that some authors in the t6th and 17 th centurjes curiously confounded these two species. As both birds became more common and better known, the distinction was gradually perceived, and the name "turkey" became restricted to that from the New World-poesibly because of its repeated call-noteto be nyllathed turk, wurk, twh, whereby it may be almost said to have named itelf (cl. Notes and Queries, 6th series, vol. iii. pp. 23. 369). But even Linnseus could not clear himsell of the confusion, and unhappily misapplied the name Mcleagris, undeniably beloaging to the grines-fowl, as the generic term for what we now know the turkey, adding thereto as its specific designation the mord gallopaso, taken from the Gallapad of C. Gesner.
who, though mot whoily free from error, was less mistaken than some of his conteraporaries and even successors. \({ }^{1}\)

The turkey, so far as we know, was first described by Oviedo in his Sumario de la zalural historia de las Indias' (cap. xxxvi.), said to have been published in 1527. He, not unnaturally, includes both curassows and turkeys in one category, calling both " Pavos" (peafowls): but he carefully distinguishes between them, pointing out among other things that the latter make a wheel (hacen la rueds) of their tail, though this was nox so grand or so beautiful as that of the Spenish "Pavo," and be gives a faithful though short description of the turkey. The chief point of interest in bis account is that he speaks of the species having been already taken from New Spain (Mexico) to the islands and to Castilla del Oro (Darien), where it bred in a domestic state among the Christian Much labour has been given by various naturalists to ascertain the date of its introduction en Europe, to which we can at present only make an approximate attempt;' but after all that has been written It is plain that evidence concurs to show that the bird was established in Europe by \(1530-\) a very short time to have elapsed since it became known to the Spaniards, which could harily have been before 1518, when Mexico was discovered. The possibility that it had been brought to England by Cabot or some of tris successors eariier in the century is not to he overtooked, and reasons will preseatly he assigred for supposing that one of the breeds of English turlceys may have had a northern origin: \({ }^{4}\) but the oftenquated distich first given in Baker's Chronicle (p. 298), asserting that turkeys came into England in the same year-and that year by repuration 1524-as carps, pickerels and other commodities, is Wholly untrustworthy, for we know that both these fiabes lived in the country long before, if indeed they were not indigenous to it. The earliest documentary evidence of its existence in England is a "constitution "sce forth by Cranmer in 1541 , which Hearne first printed (Leland's Colfectanea, and ed., vol. vi. p. 38). This names "Turkcy-cocke "as one of the " greater fowles "of which an ecclesiastic was to have "but one in a disbe", and its associntion with the crace and swan precludes the likelihood \(\alpha\) any confusion with the guinea.fow. Moreover the comparatively low price of the two turkeys and four turkey-chicks served at a least of the serjeants-at-law in 1555 (Dugdale, Orgives, p. 135) points to their having become by that time abumdant, and indeed by 1573 Tusser bear witness to the part they had already begun to play in "Christmas husbandlie fare" In 1555 both sexes were characteristically figured by Belon (0 ;smaxx, p. 249), as was the eock by Gemper in the same year, and these are the earliest representations of the-bird known to exist.

As a denizen of the poultry-yard there are at least two distinct breeds, though crosses between them are much commoner than purely-bred examples of either (see Pouliny). That known as the Norfolk breed is the smalier of the two, and is said to be the loss bardy. Its plumage is black. The chicks also are black, with occasionally white patches on the bexd. The other breed, called the Cambridge, is much more variegated in colour, and sore parts of the plumage have a bright metallic gloss, while the chicks aro generally motlled with brownish grey. This has been much crossed with the American Bronze, the largest of all, which has the beautiful metallic plumage of the wild bird, with the
\({ }^{1}\) The French Coq and Poude d'Iade (whence Dindow) involve no contradiction, looking to the general idea of what India then was One of the earliest German names for the bird, Kalekutlisch Hïn (whence the Scandinavian Kalkon), must have arisen through some mistale at present inexplicable: but this does not reler, as is senerally supposed, to Cakutta, but to Calicut on the Malabar coast (d. Nokes am Gmeries, 6th series, vol. x. p. 185).
\({ }^{3}\) Purchas (Pilerimes. iii. 995) in 1625 quoted both (rom this and from the same author's Hystoria genceal, said to have been published a few years later.

The bibliography of the turkey is so large that there is here no room to name the various works that might be cited. Recent research has failed to add anything of importance to what has been said. on this point by Bufton (Oiseaux, ii. 132-162). Pennant (Arctic Zoology, pp. 291-300) - an admirable summary-and Broderip (Zoological Recreations. pp. 120-137)-not that all their statements can be wholly accepted. Barrington's esayy (Miscellanies, pp. 127151), to prove that the bird was known before the discovery of America and was transported thither. is an ingenious piece of special pleading which bis friend Peanant did bim the real kindnces of ignoring.
'In 1672 Josselin (New England's Rarities, P. 9) spenks of the eetelers bringing up "great sore of the wild kind " of turkeys. "which remain about their houses as tame as ours in England.: The bird was evidently plentiful down to the very seaboard of Massarhusetts, and it is not likely to have been domesticaied by the Indian tribes there, as, according to llernander, it seems to have been by the Mexicans. It was probably casy to take alive, and, as we know, capable of enduring the voyage to England.

Mexican form of which it quite agrees in colour. White, pied and buff turkeys are also often seen, and if care be taken they are commonly found to "breed true." Occasionally turkeys, the cocks especially, occur with a top-knot of feathers, and one of them was figured by Albin in 1738 . It has been suggested witb some appearance of probability that the Norfolk hreed may be descended from the nortbern form, Meleagris gallopapo or americana, while the Cambridge hreed may spring from the southern form, the M. mexicana of Gould (Proc. Zaol. Sociely, 1856, p. 61), which indeed it very much resembles, especially in having its tailcoverts and quills tipped with white or light ochreous-points that recent North American ornithologists rely upon as distinctive of this form. If this supposition be true, there would be reason to belicve in the double introduction of the bird into England at least, as already hinted, but positive information is almost wholly wanting.' The northern form of wild turkey, whose habits have been described in much detail by all the chief writers on Nortb Amcrican hirds, is now extinct in the settled parts of Canada and the eastern states of the Union, where it was once so numerous; and in Mexico the southern form, wbich would seem to have been never ahundant since the conquest, has been for many years rare. Farther to the south, on the borders of Guatemala and British Honduras, there exists a perfectly distinct species, \(M\). ocellota, whose plumage almost vies witb that of a peacock in splendour, while the bare skin which covers the head is of a deep hluc studded with orange caruncles (Proc. Zool. Society, 186r, pl, xl.).

The genus Meleagris is considered to enter into the family Phasianidae, in which it lorms a subfamily Meleagrinae, peculiar to North and Central America. The fossil remains of three species have been described by Professor Marsh-one from the Miocene of Colorado. Bnd two, one much zaller and the other smaller than the existing species, from the post-Pliocene of New Jersey. Both the last had propartionally long and slender legs-
(A. N.)

TURKI, strictly speaking an Arabic or Persian adjective formed from Turk, used by European writers in two rather diferent senses. (1) It is applied to tribes or languages which are Turkish as opposed to Aryan, Semitic, \&c. (2) It is used as the special designation of the tribes and languages of Kashgaria and Eastern Turkestan. (See Turks.)

TURKOMAN, a name applied to certain Turkish tribes still nomad or only recently settled in Transcaspia and northern Atghanistan and Persia. (See Turis.)

TURKS AND CAICOS ISLANDS, a group in the British West Indies. They belong geographically to the Bahamas and lie het ween \(21^{\circ}\) and \(22^{\circ} \mathrm{N}\). and \(71^{\circ}\) and \(72^{\circ} 37^{\circ} \mathrm{W}\). They are of coral and sand formation, their combined area being 169 sq. m. The Turks Islands, taking their name from a species of cactus hwing the appearance of a turhaned head, are nine in number, hut Grand Turk (\(10 \mathrm{sq} . \mathrm{m}\).) and Salt Cay (\(5 \frac{1}{2} \mathrm{sq} . \mathrm{m}\).) are the only two of any size. The town of Grand Turk, on the west of the island of that name, is the seat of government and a port of registry. Salt Cay has a good harbour.
Tbe Caicos Islands lie to the north-west of Turks Islands and are seven in number. Cock burn Harbour on South Caicos, 22 m . From Crand Touls, fa the priocipal sectlemen: and a pon of tat y. The climate, though somewhat relaniag, is beakhy, but there is a scarcity of drinking water, the average annual rainfall being only \(2 z^{\prime} \mathrm{in}\). The mean temperature is \(82^{\circ} \mathrm{F}\)., hut owing to the sea breezes the climate is never oppressive. Salt raking is the staple industry. Sisal hemp is grown, sponges are found in some quantinies off the coast and there are four sponge-curing factories on the Caicos Islands. Pink pearls are occasionally found. The exports, chiefly to the United States, include salt, sponges and sisal hemp. Grand Turk is in cable communication with Bermuda and with Kingston, Jamaica, some 420 m . Io the S.W.

The ishands were uninhabited when, about 3678 , the Bermudians begas to visit them to rake the salt lound in the ponds. These
sists became annual and permment setllements were made. Ir. \({ }_{\mathrm{I}}^{\mathrm{r}}\).
r7 Io the Britisb were erpelled by the Spaniards, bat they returned and the salt trade (largely with the American colonies) continued to be carried on by the Bermudians despite attacks by Spaniards and French, and counter-claims to the islands by the British authorities at the Bahamas, who about 1765 made good their claim. In 1799 the islands were given representation in the Bahamas Assembly, and they remained part of that colony until 1848, when on the petition of the inhabitants they were made a separate colony under the supervision of the governor of Jamaica. This arrangement proving financially hurdensome the islands were in 1873 definitely annexed to Jamaica. They are governed by a commissioner assisted hy a nominated legislative board. The census of 1901 showed a total population of 5287 , of whom 342 were whites, the rest being negroes or mulattoes; 5751 of the inhabitants lived in Grand Turk Island.
See J. N. Bellin, Description géographique des debouquements an nord de St Dominigke (1768): the Jamaica Handbook (Londan, yearly) and Sir C. P. Lucas, Historical Geography of the British Colonies, vol. it. (2nd ed., Oxford, 1905).
TURKS. The words "Turk" and " Turkish" are used in three senses, political, linguistic and ethnological. Politically, Turk means a Mahommedan suhject of the sultan of Turkey. In the East at any rate it is not employed in speaking of Christians, and its application to Arabs, Albanians, Kurds, \&c., living in Turkey, thougb not unusual, is hardly correct. The linguistic use of the name, by which it designates a well-marked division of the Ural-Altaic languages and their speakers, is the most satisfactory. The languages in question are easily identified and defined (sce below), and there can be little doubt that they were spoken by the vast majority of the people called Turks since the 6th century of the Cbristian era. Ethnographically, the use of the word presents difficulties, for it is not easy to differentiate the Turks by physique or customs from allied tribes such as the Finno-Ugrians, Mongolians and Manchus. The Bashkirs, who are probahly of Finno-Ugrian stock, speak a Turkish language, and the Magyars, who speak a Ugrian language, have many Turkish characteristics. At the present day tbere is no diffculty in making a practical distinction between Turks and Mongols. The former speak Turkish languages, are Noslems by religion, live almost entircly in the western half of Asia and fall within the Arabic, and to some extent the European, sphere of influence; the latter speak Mongolian languages, are Buddhists by religion, live in the castern half of Asia and fall within the sphere of Chinese influence. Yet both Turkish and Mongol traditions represent the two nations as descended from two brotbers: Jenghiz Khan, the founder of the Mongol power, must have had large numbers of Turks in his armies, for the chicf traces left in Europe of the Mongol invasions are the settlements of Turkish-speaking Tatars in Russia; and the name of his son, Jagatai, is commonly used for a Turkish dialect and khanate in the regions of the Oxus. In Central Asia the distinctions between tribes, nations and races are unusually fluid: we are dealing with predatory nomads for ever fighting with one another or with the settled populations round them. The conquerors enslaved the men and married the women of the conquered. a successful leader attracted round his standard men of different tribes and languages. The corps of janissaries instituted by the Turks in Europe is no doabt an illustration of what happened during many centuries in Asia. The Turks after taking Constantinople claimed from tbe Christian population a certain number of male children, who were brought up as Turkish soldiers with few ties or principles except obedience to their officers. There was thus a large class, of Turtish speech and Turkish habits, who had absolutely no Turkish blood in their veins. In addition to this, intermarriage has taken place to so large an extent that the modern Turks are almost entirely European in physique. Similarly, no doabe, among the hordes of Central Asia the youths of conquered tribes were absorbed and assimilated by the conquerors and lost their original language. Such transformations were facilitated by the fact that there was no great difference in the manners and customs of these iribes. They were all nomadic, mostly horsemen, and rapacious. As they settled down frome tiene
to time they borrowed a good deal from their more civilized neighbours, hut their natural manner of life was simple and untrammelled. The Turkish-speaking tribes were apparently the most mobile and adventurous. Starting from the confines of China they reached India, Algeria and the walls of Vienne. They probably formed a large contingent in the hordes of Jenghiz and of the Huns, and perhaps the Petchenegs, Avars and Comans all belonged to tbis group. In comparison with them the Mongol and Manchu-speaking tribes, though conquerors in the East on no mean scale, seem stationary and Inactive, while the Finno-Ugrians are nomad hunters rather than warriors. To the honour of the Turks it must be said that, bad as is their administration when judged by European standards and especially when apphied to Europeans, the empires of the Seljuks, Osmanlis and Moguls which they founded rise far above the ordinary standard of ephemeral Oriental dynasties.
The effect of Turkish invasions has been in the main destructive, but they have also played a considerable part in transporting both idcas and commoditics from one end of the old world to the other. The achievement hy which they are best known-the transplantation of Mahommedanism on to European soil-is a remarkable, though not successful, feat of this kind. But they are also largely responsible for the introduction of Mabommedanism into India, for carrying Nestorian Cbristianity and Persian Gre-worship into China, and for the ovetland intercourse between China and India which fostered if it did not introduce Chinese Buddhism. They exported Chinese silk to Byzantium, and the most ancient Buddhist temple in Japan contains Persian objects - hich must have been brought across Asia by their caravans.

Divisions.-At the present day the name Turk is applied primarily to the people who have conquered Constantinople and the regions known as Turkey, but the following may be classed as Turk ish in the sense of belonging to the same group linguistically and to some extent racially:-
1. The Yokuts are a Siberian tribe who inhabit the country mear the banks of the middle and lower Lena, including Yakutsk and Verkhoyansk on the Yana. Their language is purely Turkish, though differing considerably from the more western Turkish idioms, but they have largely intermingled with the Tunguses. They are said to he industrious and skilful alike as artisans, traders and agriculturists. They are nominal Christians, but preserve much of their old nature worship.
2. Tater (g.v.) or Tarlar is a popular name which in its most correct sense is applied to Turkish-speaking Moslems in Russia, who number over three millions and are mostly remnants of the Mongol invasion which took place in the I3th century. But it is also extended rather loosely to various tribes in Siberia and elsewhere who speak Mongolian, Finnish or other languages.
The following classes of Tatars speak Turkish languages: (a) The Kazan Tatars, numbering perhaps a miltion. Their centre is in the eovernment of Kazan, but they extend down both banks of the Voles as far as the government of Saratov. (b) The Astrakhan Tatars, numbering only about 10,000 . (c) The Basbkirs, whose headquarters are in the government of Ufa. They appear to be a tribe of Finnish origin who have adopted a Turkish language. (d) The Tatars of the Crimea, sometimes called the Krim or Nogai Tatars, who occupied the Crimea in the 13th century and had a considerable empire from the 15th to the 17 th century. There are also Nogai Tatars in the Caucasus and Kuban country. (c) There are considerable bodics of Tatars in Rumania and Bulgaria, who appear to be Nogais who have emigrated from the Crimea, Besaratia and other parts of Russia. (f) The Tacars of the Caucasus meen to be for the most part Azerbaijan Turks mingled with Armenian, Georgian, Lesgbian and other blood. But the name is often loosely applied to any Mahommedan Caucasian tribe.
3. Kirghis (g.v.), nomadic tribes amounting to about three million souls who are found chiefly in Asiatic Russia. They fall into two chief divisions. (a) The Kazaks, who inhabit the norther and eastern parts of the Aral-Caspian basin, including the government of Orenburg. They do not call themselves Kirghir, and apparently the name has been given them by the Russians in order not to confuse them with the Cossacks. (b) The KaraKirghiz, who are the less numerous division, live in Dzungaria, in the Altai, about Lakes Balkash and Issyk-kul, and extend couthwards to the Pamirs and the sources of the Oxus. Some
of them inhabit Chinese territory. Both divisions live chiefly on the produce of their herds. Their chief drink is koumiss, or fermented mare's milk.
4. The Kaza-Kalpaks (q.v.) or Black-caps, who inhabit the south-eastern shores of the sea of Aral, are sometimes classed with the Kirghiz, but seem to be a separate branch of the Turki stock. They are a feeble race, apparently in process of exilnction, and now number only about 50,000.
5. Usbeg is a political and not an ethnological denomination. It is derived from Uzbeg Khan of the Golden Horde (\(1312-1340\)), and was subsequently used at the heginning of the i6th century to designate the adherents of Shaibani Khan. Finally it was employed as the name of the ruling tribes in the Central Asian thanates (much like Osmanli in Turkey), in opposition to Kirghiz and Sarts, as well as to non-Turkish tribes. The Uzbegs are accordingly a mixed race, but the elements of which they are composed are mostly Turkish. Their numbers have been estimated at about two millions. They are mostly agriculturists or dwellers in cities, not nomads.
6. Sars is the name commonly given to the Turkish-speaking urban population of the Central Asian khanates. It is opposed to Tajik, which denotes the agricultural, Iranian-speaking population, but both words are used very looscly and have come to mean little more than town and country people. Sart and Uzbeg are also opposed in the meanings of common people and aristocracy, but many Sarts claim Uzbec descent. The word is hardly suitable for scientific use, but is employed by Russian writers as the name of the Turkisb language spoken in Bokhara, Samarkand and Ferghana.
7. The various Turkisb tribes found on the eastern slopes of the Tian Shan, in Kashgar, Yarkand, Khotan, \&c., are the descendants of the ancient Uighurs or Ouighours. These people were probably the most castern branch of the Turks who remained behind when the first west ward movements were made, but subsequently moved westward themsclves. They ruled in Kashgaria from the 10th to the \(12 t \mathrm{~h}\) ccaturics, and, like other branches of the Turks, adopted Mahommedanism. They continued, however, to use a variety of the Syriac alphabet introduced by Nestorian missionaries, and a book, the Kudotku Bilik, composed in their language about ro6s, is extant. The Taranchis, an agricultural tribe of the Ili basin, secm also to belong to this group. The Turkish spoken in Kasbgaria, \&c., is often distinguished as Turki.
8. Mogul, Moghul or Mughol, appears to be the same word as Mongol, but is commonly restricted to the tribes who invaded northern India from Ferghana in 1526 under Baber (or Babar) and established the Mahommedan Empire of Delhi Memoirs written hy Baber in Jagatai Turkish are cxtant.
9. The Koibals and Karagasses of the upper Yenisei are perhaps of Finnish stock, but they speak languages akin to the Kashgarian Turki. They are sometimes called Tatars.
10. Turkoman or Turkman is the name usually given to the nomadic tribes who inhabit the country between the Caspian and the Oxus. They appear to be a branch of the. Westerd Turks and not esscntially diferent from the Osmanlis or Azer. baijanis, except that until the Russian occupation of Merv they remained in the condition of predatory borse-riding nomads, much feared by their neighbours as " man-stealing Turks."

They are divided into many tribes, of which the principal are (a) The Chaudors in the vorth-western part of the Ust. Urt and near the Kara-boghaz Gulf. (b) The Yomuls or Yamuds extending from Khiva across the Ust-Unt and along the shore of the Caspian to Persia. (c) The Goklans or Coklens setiled in the Persian province of Astarabad. They are said to be the most civilized and friendiy of all the Turkomans. (d) The Tckkes, who were the most important tribe when the Russians conquered Transcaspia. They are first heard of in the peninsula of Mangishlak, but were driven out by the Kalmuiks in 1718, and subsequently. occupied the Alchal and Merv cases. The Russians inficted a crushing defeat on them at Geok-Tcpe in 1881 . (e) The Sakars inhahit the left bank of the Oxus near Charjui. (O The Sariks are found in the neighbourhood of Panjdeh and Yulatan. (g) The Sators. an old and important tribe, suffered much in the course of fights with the Tehkes and in 1857 migrated to Zarabad in Persian territory near the Harirud. (\(k\)) The Ersaris are now chiefly found
near Khoja Salih. They were once a very important tribe on the upper Oxus. (i) The Ali-clis live near Andkhui.

1t. The Turkish nomads scattered over Persian territory are often known by the name of Azerbaijamis or Adharbaijanis, though this name is strictly applicahle ouly to the inhabitants of the province of Azerbaijan (\(q, v\).), of which Tabriz is the capital. They are the descendants of various bodies of Turks who have wandered into Persia at various limes, but more particularly of the Ghuzz tribes (the Oü5or of the Grecks) who invaded it during the Seljuk period. They are also known as Ilat or Iliyazt, meaning tribes, and each tribe has its own chieftain or llkhani appointed by the shah.

Among the tribes are (1) The Kajars, who dwelt in Transcaucasia uniil Abbas the Great (\(\mathbf{1 5 8 5}\)-1628) forced a portion of them to settle near Astarabad. The present dynasty of Persian Shahs comes from this tribe. (2) The A/shars or Awshars are a very numerous tribe in the province of Azerbaijan. Another division of them is found in the Anti-taurus. (3) The Shekakis and Shah-seten. The latter is a polizical name which has become hereditary. " those who love the shah," \({ }^{\text {i.e. partisans of the Safawl dynasty (}} \mathbf{1 4 9 9 -}\) 1736), and of the Shinte faith. (4) The Karakoyunlu living near the town of Khoi. In the south of Persia are found (5) the Abulwerdis, (6) the Kara-Ggztü, (7) the Baharls, (8) the /namlw and (9) the Kashkai. These last perhaps include the Khalaches or Khalaj who were already setted near Herat before the arrival of the Seljuks, and from whom sprang the Indian dynasty known as Khatji (1290-1320).
12. The Turks now inhahiting the Turkish Empire fall into various categories and have entered it at various times.
a. The Osmanlis or Ottomans. This word is toosely used to mean any Mahommedan subject of the sultan, though even then it is not generally extended to Arahs and Albanians. Used more strictly it means the clan of Osman and their descendants as opposed to Seljuks and other Turls. The name is genealogical rather than ethnic; for though the exploits of the Osmanlis have given them an importance in modern history far exceeding that of all the other tribes, they are not distinguished from them in language or customs. According to tradition the clan came from Khorasan, supported the Seljuks and received in return the fief of Eskishehr. In the r4th century they took Brusa from the Byzantine Empire and established a klngdom there which withstood the shock of Timur's invasion (1402). In 1453 they captured Constantinople. Until recently Turkish Mahommedans always employed the words Osmanli and Osmanlija to describe themselves and their language, and avoided the expressions Turk and Turkche as signifying semi-civilized tribes, but in the last twenty years tbe older words have again come into use as national designations.
b. There must be many Turks in the Ottoman dominions who have no claim to be called Osmanlis in the strict sense. Byzantine authors mention a colony of 30,000 Turks on the river Vardar in Macedonia as carly as the gth century, and many Turks in Europe are still called Koniots or Konariots and claim to be descendants of the Seljuks. After the defcat of the cmperor Romanus at Manzikert (107t) Turkomans and Turks of every description poured Into Asla Minor. The Tatars of the Dobrudja also seem to be an ancient settlement.
c. The Kizil-Bash, or red-heads, who are found in the plains of Asia Minor about Angora, Tokat and Karahissar, differ somewhat from the surrounding Turkish population in both physique and customs. They appear to be immigrants from Persian tertitory, where some of them still remain. They are industrious agriculturists and their women enjoy unusual freedom. They call the mselves Eski-Turk or old Turik and have a secret religion in which Shite tenets seem to with older pagan (or possibly Christian) of
d. In various parts of western an 1
records no certain conelunion is possible. Such are the Huns Ephthalites, Avars, Bulgars, Khazars, Comans and Petchenega The name Hun is perhaps identical with the Chincse Hiung-nu or with the Turkish word for ten, on or un, meaning the ten tribes. Of the Avars really nothing is known: they were an extremely barbarous people who made no settlements and disappeared as suddenly as they came. They have been ideatified with the Jwen-Jwen of the Chinese. The name of the Khazars has a Turkish sound: they were a relatively civilized people and had a kingdom in the neigh. bourhood of Astrakithan and the north Caspian which lasted for several centuries. The original Bulgarians were cettainly not Slaws though they acquired a Slavonic language, but it is more probable that they were Finno-Ugrians than Turks. The Petchenegs, also called Marswance or Margwasirac in Greek and Bisseni in Latim, are said to have been driven into Europe from the lower Ural by the Ghuzz (0 OHas) al the end of the gth ceniury, and wandered about the northern frontiers of the Byzantine Empire for about 300 years. Perhaps some of them setited in Hungary and Bulgaris. They were. like the Avars, very barbarous and were probably Turks for Anna Comnena says they spoke a he same language as the Comans. This dialcet is known by the so-called Codex Cumanicus. Coman or Kuman is a name given ly Europeans to the tribes who occupied Moldavia and the adjacent regions in the middle ages. Rubruquis speaks of the Coman Kipchaks, and it is probatle that the Comans were a hybrid Turkish tribe.

History.-The invasions and conquests of the later Turkish dynasties form an important part of the history of the world and are treated in such articles as Tureey; Seljoxs; Tmutr; Moguls. Here it is proposed to sketch the earlier wanderings and agglomerations (for they can hardly be called kingdoms) of Turkish tribes in eastern and central Asia. Much new information on this subject has been made accessible in the last twenty years by the discovery near the river Orkhon, to the south of Lake Baikal, of Turkish inscriptions dating from the 8th century A.D., and by the publication of materials furnished by Chinese writers. But authoritics are still not entircly agreed as to the chronology of the events recorded or the identity of the names which appear in Turkish, Greek and Chinese forms, so that the following summary is for many periods tentative.

From 1400 B.c. onwards, but especially about 200 B.c., Chincse history contains notices of warlike nomads called Hiung-nu or Hsiung-nu, who were a danger to the empire. Their political power hroke up in the early centuries of this era before the advance of the Sien-pi and Tobas, who appear to have been Tunguses, and from whom arose the Wei dynasty of nort hern China. In A.D. 433 a Hiung-nu clan called Asena or A-sbib-na, disliking the rule of the Wei, moved eastwards and sought the protection of a people called Jeu-Jen or Jwen-Jwen, who were also a kind of Hiung-nu. They are the Gcougen of Gibbon and others, and their Identity with the Avars has been affirmed and disputed with equal confidence. The Asens served the Jwen.Jwen as workers in iron and lived not far from the modern city of ShanTan in Kan-suh. In this neighbourbood was a hill called from its shape Turku, Durka or T'u chuteh, meaning helmet, and this is said be to the origin of the national name which has become so celebrated. The name Tu-Kiue (Tou-Kiue) or Turk is first used by the Chinese in recording the events of A.D. 545, and the follow. ing years, when the Turks, or descendants of the Asena, revolted against the Jwen-Jwen. These latter were crushed and disappear from history, at least under that name. The victorious Turks advanced actoss their territory, came into collision with the Hephthalics or Ephthalites, whom they defeated, and are heard of on the Oxus about A.D. 56 . The period \(546-582\) marks the first britliant epoch of early Turkish history. The tribes were not divided and made the most astonishing advance under Tumen (whio took the title of Ili-Khan), his brother Itsami or She-ti-mi (perhaps the Stembis of Greek writers), his son Moken and \(15 t \mathrm{~m}^{2}\) 's son Tardu or Ta-t'eu. Though fifty years before ouly a servile clan in China, they sent an embassy in 567 to particularly the plains of Cilicis, as called hy the Turks Yisulh of 0 near Suryma. They art a and a fine physique
they do not ap,
Kizil Bath, they Romath emperor Justin II., as related hy Meaander
(C. Jomer: Fragm. hist. gracc., vol. tv.). The object of (C. arower: Fragm. hist. gracc., vol. iv.). The object of With the West, and to co-operate with the Greels Fersians, hecause the latter wished to make the ath the only ouslet for the silk trade, and with that hanper the communications of the Turks with Western may have

Silkiboulos or Diziboulos, corresponding to the Sinjibu of Arab chroniclers and perhaps representing Sin-jabgu in old Turkish, the latter part being a title. He has been identifed with Istami. Justin sent as envoy to him in relurn a certain Zemark, who visited the khan at Ektel or Ektag (? Ak-dagh), and several subsequent embassies were exchanged. In 598 the than Tardu wrote to the amperor Maurice, and in \(620-28\) the Turks sssisted Heraclius in his campaigns against Persia. Meanwhile the Turks had themselves split into two divisions with separate princes. A tendency towards division, very natural in so boose and extemded a community, had been visible for some time, and the rupture was precipitated in 582 by the jealousy of Ta-lo-pien or Dalobian, who was angry at not being chosen khan. For a century and a half or so we bear of two khanates: tbe sorthern Turks, living near Lake Baikal and the southern tributarics of the Yenisei, and the western \({ }^{1}\) Turke, who appear to have had two headquarters, one near Urumchi and one near Aulicata, north of Tashkent. But their conquests, or at least their successiul raids, extended very much farther to tbe west and south. In 630 the Chinese pilgrim Yaan Chwang (Hsuian Tsang) was well received by their khan, T'ung-she-ho, who exercised some kind of authority from Turfan to Merv. The Chinese followed a consistent policy of spreading dissension among these dangerous tribes and of supporting the factions which were weak or distant against those who were strong or near. Accordingly they were friendly to the western Turks until they had conquered the northern Turks This western branch lasted until about 750 as a political name. From about 550 till 650 they were independent, and, as mentioned, allies of the cast Roman Empire against the Persians. But abour 690 the politics of the Nearer East were transformed by the conquests of the Arabs following on the preaching of Mahomet. After subduing Persia in 639 they spread to Transoxiari. At the same time dissension prevailed among the western Turks themselves: the five tribes called Nu-she-pi, who lived west of Issyk-kul, quartelled with the five tribes called Tu-lu living to the east of it. The Chinese fomented the quarrel, and in 659 were able to declare that they annexed the whole territory of the western Turks, including at least Dzungaria, Tashkent, Ferghena, Bokhara, Khulm, Badakshan, Ghazni, Bamian, Udyana, Wakhan and Karateghin. But it would seem that neither the Turkish occupation nor the Chinese annexation of most of these countries was effective. From 650 to 750 the possession of them was disputed not only by the Tarks and Chinese but by the Tibetans in the east and the Arabs in the west. In the west, the campaigns of Qotaiba b. Moslim or Kutaiba (705-14) completed the Mahommedan conquest of Transoxiana (see Calpphate, sect. B 8 6). In the east the really effective power seems to have been exercised by a new Turkish tribe called Turgash, wbo had capitals at Tokmak and in III .
For the history of the northern Turks our only authorities are the Orkhan inscriptions and Chinese writers. The halfcentury following on the division was prosperous for the nothern as well as for the western Turks, and they menaced China; bot in 630 the Chincse conquered them. This is the Chinese servitude mentloned in the inscriptions. In 682 Rutluk (also called Elteres. which seems to he a title) re-established a Turkish state on the Orkhon. He was suceeeded by his brother Kapagan (or Me-Chuo), who subducd the Turgish. or perhaps merely drove them southwards, early in the 8th century, and was succeeded by Bilga Kagan of the inscriptions.
This northem khanate was destroyed by a coalition of the Karluk. Uighur and Basmal in 744. These peoples. like the Turgash, appear to have been Turklsh; for though Turk was originally the name of the clan whose destinies in its northern and western branches have just been sketched, yet there is no objection to the usage by which it is extended to the descendants

1 No better mame seems forthcoming. but western Turks is a moct inconvenient designation because it is also used (and equally corroctly) to signify the Osmanlis and Seljuks asopposed to the Turks of Tranioxiana and Kashgar.
of similar clans with similar customs and as far as is known similar languages. A succession of these pressed forwards from the east. When first beard of, the Karluk inhabited the country on the Irtysh and the Urungu, and subsequently occupied Teles and Tokmak. The Uighurs belonged to the group of tribes known as Tadds or T'ie-je and established themselves at Balksaghun (also known by the forms Kara-Batghasun, KaraBalgassun and Balagasun: see Knuakoruy). This hrings us to the middle of the 8th century. For the neat two hundred years the Turkish element in Central Asia, though it must have been numerous, does not cut any figure in history, which is filled with the chronicles of Arab and Persian dynasties (see Calpphate; Saxianids), but in the roth century we begin to hear of it again. Turkish adventurers founded the dynasty of Ghaznevids at Ghazni, and there was a Uighur kingdom in the east comprising Kashgar and Khotan. Boghra Khan, the ruler of this kingdom, was converted to Islam at the end of the soth century, and it continued under various branches of Uighurs until 1120 . An interesting memorial of this period is the book Kudatkw Bitik (see below). More important politically is the rise of the Seljuks. They were the princely family of the Kabaks, who were a section of the group of tribes called Ghuzz (Oghuz, Obses), and are heard of in Transoxiana about 985. Their chieftains Toghrul and Chakir drove the Ghaznevids to India and established thenselves as protectors of the Abhasid caliph, who formally ceded his temporal power to them. (For the bistory of the dynasty see Saljuks.) Alp Arslan, the son of Chakir, defeated the Byzantincs at Manzikert (1071), and prepared the way for the Ottoman conquests. His son Malik Shah ruled over nearly all the modern Turkey in Asia, and as far as the frontiers of Chins. On his death in 1092 his empire broke up into several pieces. Konia became the capital of the sultanate of Asia Minor and various Seljuk dynasties established themselves in Kerman, Irak and Syria. A new Turkish power was founded by the khans of Khiva, who are known as the Khwarizm-shabs. They were originally vassals of the Seljuks, with the title of tasdar or ewer-bearer, but became independent and conquered Khorasan and Irak. They had, however, to contend with yet another new arrival from the east, the KaraKitais. Thesc also were probabty Turks, and were pushed westwards from China by the Kins. They conquered Kashgar, Khotan, Yarkand and later Transoxiana, pushing the Ghuzz tribes before them into Persia and Afghanistan. Their prince bore the title of gur-khan, and the Khwarizm shahs did homage to him till 1208, when they unsuccessfully revalted. But all these squabbling principalities were swept away in 1719 by the extraordinary wave of invasion which surged across Asia to Europe under Jenghiz Khan (q.s.). After the death of Jenghiz hls conquests were divided, and Transoxiana, Kashgar, Badakshan, Balkh and Ghazni were given to his second son Chagatat or Jagatai. Jenghiz and his family must have been Mongols, but the name Jagatai passed to the population and language of the countries about the Oxas. It does not appear that they ever ceased to be Turkish in speech and customs. The hordes of Jenghiz must heve comprised a considerable Turkish element; the Mongols had no inclination to setule in cities, and Jagatai himself lived near Kulja in the extreme enst of his dominions. Though the cities in western Central Asia suffered severely the people were not Mongolized, and Mahommedan learning even flourished. But otherwise the whole history of the Jagatai khanate, which lasted from 1234 to 3370, is a confused record of dissensions with frequent intervals of anarchy. In ty21 it split into two khanates, Transoxiana and Dzungaria, and in 1370 collapsed before Timur. This great conqueror (1333-1404), who like Jenghiz had an extraordinary power of collecting and leading the hordes of Central Asia, was a native of the district of Samarkand and a Turk iy descent. He conquered successively Dzungaria (1370), Persia and tbe Caucasus (1390), the Ripchaks on the Volga (1395), and Northern India (1398). He then invaded Syria and Asia Minor, where be defeated but did not annihilate the Osmaniis. The house of Timur did not retain his mose distalat conquests, but they ruled at

Samarkand until 1499 with the usual struggles between different branches of the family. Their possessions included, at least from time to time, the northern parts of Afghanistan and Persia, as well as Transoxiana and Turkestan. They were one of the most enlightened and cultivated of Turkish dynastics. They beautified the cities of Central Asia and were patrons of literature. The literary languages were as a rule Arabic or Persian; Turkish was used more rarely and chiefly for poetry.

The Timurids were overthrown and succeeded by the Shaibani dynasty, a branch of the house of Juji, Jenghiz Khan's cldest son, to whom his father had assigned dominions in the region north of the kingdom of Jagatai. About 1465 a number of this clan migrated into the Jagatai khanate. They were given tertitory on the Chu River and were known as Uzbegs. About 1500 their chief, Mahommed Shaihani or Shahi Beg, made himself master of Transoxiana and founded the Uzbeg power. The chief opponent of the Uzbegs in their early days was Baber, who represented the house of Timur in the fifth generation, but he ultimately led his armies in another direction and invaded India (1526), where he founded the Mogul Empire, a far more important state than the principalities of the Oxus. The Shaibanis continued to rule in these latter till 1583 , and were followed by the houses of Astrakhan and Mangit; but it is not necessary to continue here the complicated cbronicles of these dynasties.

The Osmanlis, or house of Osman, the founders of the present Turkish Empire, apprar to have been a clan similar to the carly Seljuks or the present Turkomans of Transcaspia, who migrated into Asia Minor from Khorasan and made the neighbourhood of Brusa their headquarters. Their conspicuous position in history is mainly due to the fact that they attained pre-minence very late and in districts very near Europe. Except for the invasion of Timur they did not suffer from the attacks of other Turks and they were able to concentrate their strength on the conquest of the decrepit Byzantine Empire.
Customs, Cividization, Redigion, ect. The Turk are imitative rather than original, and, in all their branches, have assimilated to sonte extent the nearest civilization whenever they have settled down. Up to the 7 th century their only culture consisted of some scraps of Chinese and Indian civilization. Subsequently both the eastern and western states which they founded adopted PersoArabic civilization and Mahommedanism. The Osmanlis have also Leen affected by Byzantine and west European infuences.
Chinese historians and the Turkish inscriptions of the Orkhon and Yenisci give us a good deal of information respecting the carlicr condition of these tribes We are told that the Hiung.nu tived on horseback and moved about from place to place in search of fresh pasture. They possessed horses, catele and sheep and also camels. They bad no towns or villages and no agriculture and they never stayed long in one camp. but doring their halts a special picce of land was assigned to each tribe and each tent. They were ignorant of writing. The chiddren were taught to ride and shoot, and the adults were expert archers. Their food was flesh and milk and their clothing the skins of animals. They were polygamous and a son married his deceased father's wives, except his own mother. It is expressly stated that old people were despised and neglected, hut this barbarous trait disappeared from the manners of the later Turks.
Of the Turks in the 6 th century the Chinese writers give a rather nore flattering account. They had numerous grades of rank, and when their khan was invested with the supreme power he was carried in a carpet. When troops were levied or taxes collected, the required a mount was carved on a piece of wood marked with a golden arrow as a sign of authority. Their punishments were severc. Marriage was by arrangenient with the parents, not capture. The dead were kept for some time after death and the mourncrs gashedt their faces. They saerificed to heaven and to the epirits of their ancestors. Their a musemenss included singing antiphonally, plas sinh dice and drinking koumiss tiil they were drank. They had a writien alphabet (dorived (rom India or Syria) and a duodenary cocto it if to designated by the names of animals
for glory which animate these compositions are very noticeable and also the implied abligation of the rulers to see to the prosperity of the people. The existence of the tombs and of inscriptions in Chinese characters as well as in an alphabet of Aramaic origin, and the mention of gold, silver, silk and precious objects show that the builders had looted, so to speak, a certain amount of fragmentary civilization from their neighbours. The chief deity is Heaven or Tangri (still used in Osmanli Turkish as the equivalent of Allah), who gives the kingdon to the kagans and cares for the name and reputation of the Turkish people. There are also spirits of the earth and waters All this is very like the earliest Chinese religion. Funcral cercmonies were evidently claborate and the cycle of years named after animals was used for chronology.

The Chinese pilgrim Husan Tsang was entertained by She-hu (perhaps a title), kagan of the Western Turks, near Tokmak abous A.D. 630 . He left an account of the barbaric splendour of his reception and alludes to the number of horses, the gold embroidery of the kagan's tent, the silk robes of his retinue, and the use of wine and music. He says the Turks were fire-worshippers and would not sit on wooden seats.
ls is probable that before they were converted to Islam the Turke practised in a desultory manner Buddhism, fire-worship and Nestorian Christianity, though they never wholly accepted any of them. An interesting trace of Buddhism remains in the names Shaman and Shamanism. It would appear that the Indian word Sramana or Samana was applied to the wizards and exorcizers of the older Turkish superstition. Recent investigations have discovered the existence of a considerable Buddhist civilization at Khotan, but at the time when it flourished it would appear that the mass of the population was of Iranian affinities and that the Turkish elemen was small.

The Kudatku Bilik (about to65) gives a picture of life in Eastern Turkestan after the conversion to Islam, but still showing many traces of Chinese influence. But after this period nearly all the Turks (except a few obscure tribes like the Yakuts) adopted the Perso-Arabic civilization. Some however, such as the Kirghiz, Turkomans and Yürûks of Asia Minor, have not yet abandoned the nomadic lifc. The Turks seem to be everywhere characterized by their innate sense of discipline and their submissiveness to their owa authorities; councils or assemblies have rarely assumed importance among them; sovereigns and even dynasties (except the house of Osman) have often been removed by violence, but the despotic form of government has never faited to sccure obedience. But equally important, as explaining their military successes, is the fact, noticed alike by ancient Chinese historians and modern European oflicers that the ordinary Turkish soldier has in military mattera an unusual resourcefulness and power of initiative which. without impairing discipline, renders him independent of his officers.
Lamguage. - The Turkish or Tatar-Turkish languages belong to the Ural-Altaic family. Both nominal and verbal forms are built up solely hy the addition of suffixes, and the law of vowel harmony is strictly observed. Hard and soft vowels cannot occur in the same word, and there is a tendency to assimilate the vowels of the suffix to those of the root; thus pederiniz, your father, but dostunuz, your friend. From the Mongol-Manchu languages the Turkish group is distinguished by its much more developed system of inflexion, particularly in the verbs, hy its free use of pronominal suffixes, and hy its more thoroughly agglutinative character. The stem with its suffixes forms a single compound word, whereas in Mongol the suffixes often seem quasi-independent. In all these features Turkish resembles the Finno-Ugric languages, but it diverges from them in having a much simpler system of cases and different phonetics, in the absence of many peculiarities such as the incorporation of the pronominal object in the verb, and in the devclopment of some special forms, such as the expression of negation by inserting a suffix after the verbal root (uardim, I wrote, yarmadim, I did not write). The grammatical forms are more agglutinative and less inflexional than in Finnish; though they are single words, the root does nut change and the elements can be easily separated, which is not always the case in Finnish. Compare the Turkish gyordüniz, "you saw," from the root \(8 y 8 \bar{r}\), with the equivalent Finnish redte from adke. The f doalotyoch the root and suffixes is much more thorough are given of the Kerkur or Kirghivant an the These were perhapp che onceurgus of thit M,
in carts with high whesh : thy in carts with high wheels: they
ciplined people, but capable the
In the Orkhon inscripti in ilf
somewhat more civilized ling?
itself which tallies with
are mentioned. occupation. ing to teet are cataful
general similarity, and the verbin: Buriat, which difers from other Mongol languages, exhibits a development parallel to Turkish.
The want of resemblance in vocabulary between the three classes of languages is remarkable. The numerals, for instance, in Turkish, Mongol and Finno-Ugric are entirely different, and considerable changes have to be assumed before the identity of words can be proved. A comparison of Turtish words with Mongol equivalents makes it probable that the former are in many instances contractions: thus dagh, mountain, yob, rosd, correspond to the Mongol dabaga, yabudal and perhaps represent an earlier tagagh and yavol. The best-known Turkish languages, particularly Oamanll, have borrowed an enormous number of Arabic and Persian words which diaguise the characters of the native vocabulary and to some extentaffect the grammar.

Compared with the Finno-Ugric group, the Turkish languages are remarkably uniform. Indeed, allowing for the lapee of time and the importation of foreign words, it is hardly an exaggeration to say that from the Lena to Constantinople, from the Orkhon iiscriptions till now, we have merely one language in different dialects. The native vocabulary and grammar remain substantially the same. The linguistic type is evidently strongly individual and persistent, and its separation from Mongol, \&tc., is probably very ancient.

Radlov divides the Turkish languages or dialects into four groupe, according to their phonetic system. (1) Eastern: Altai, Earaba, Lebed, Tuba, Abakan, Kuarik, Soyon, Karagasa and Uighur. (2) Western: Kirghiz, Bashkir, Irtysh and Volga dialects. (3) Central Asiatic: Jagatai, Taranji, \&e. (4) Southern: Turkmani, Aserbaijani, Krimmi, Anadoli and Osmanli. But this classification does not meem entirely matisfactory. As one passes across Asia from the Yakuts, through Kashgar, Turkestan and Azerbaijan to Constantimople, the pronunciation of the Turkinh languages bocomes decidedly mofter, the suffixe become more intimately united with the words to which they are appended (approaching though not attainiog the unity of Finnish inflexions), and the verbal forms grow more numerous and more complicated. Thus in the cast we find mim, mi, za as zufixes for the genitive, accusative and dative, and mas for that of the first permonal pronoun (e.g. durmaz, 1 stand or 1 am) corresponding to -im, \(-i,-a\) and -im in Osmanli, which have clearly assumed the \(^{\text {a }}\) character of inseparable terminations more completely than the older forms. Osmanli possceses more copious verbal forms than the other dialects, some of which (auch as the future in -ajah) seem to be recent formations. On the other hand, the dialecte of Turkestan use in apeaking though not in writing, forms which indicate a process of composition followed by contraction, more remarkable than any change which has taken place in the west. For instance, oopti, a contraction of bolup irdi, la said to be currently used in Khokand for "has become." Yalkut (which can still be best atudied in Bohtlingkis excellent grammar of 1851) is tbe dialect. Which is most distinct from the others, but does not appear always to preserve the oldest forms. Thus it has lost the gentive, which is replaced by a pronominal periphragis (eg. drits bas-a, horse boed-his, i.e. horse's bead), and has verbal forms like bisabin, I cut, bispappim, I do pot cut. apparently standing for bisarbim, bispabioin. The degative culfix is \(p\) not ma. The resemblance between the Turkish dialects In increased by the fact that they are nearly all written in a somewhat artificial and standardized form which imperfectly representis the rariety eristing in converational apeech.
Several alphabets have been employed to write Turkish. (1) Arabic charactert are everywhere used by Mahommedan Turks, alroset without exception; yet this alphabet is extremely ill suited to mpresent Turkish sounds. It cannoe distingoish the hand and soft wowein, so that odde, "he was is written th the same way as cifls, "he died." In some cases the consonants indicate the characper of the vowels which are to be supplied atter them, hard consonants being followed by hard vowels and soft by soft. Thus the word wole with the letters haf, re, he is pronounced as dare, but that pelele with hef, re, he as kerrf. Further the orthography of ten follows an antiquated proaunciation and tbe letters have many counds. Thue the single letter kef can be used to express \(k, k y, k, k y, y, z, z\) and a. The result is that pure Turkish words written in Arabic fetrers are often hardly intelligible even to Turks and it is usual to employ Arabic synonyins as much as ponsibic becauce there is no doube as to how they should be read. Camanli documents are outen lizike more than a string of Arabic words with Turkish terminations-
2. The Uighurs and Eattern Turks used in the middle ages a short alphabet of Courteen letters derived from a Syriac source and probably introduced among them by Nestorian missionaries; mimilar cfaracters may sloo have been employed by Manichaeans. The Lopgol and Manchu alphabets represent further variations of this witfor. Though very like the modern Nestorian, it is in some perpects more nearly allied to the Eatrangelo and Syro-Palestinian toplebers of the Gh and 7th centurion. The mont important
document in this alphabet is a MS. preserved at Vienna of the Kudathu Bilik, "The Blessed or Portunate Knowledge," a poern composed at Kashgar about 1065. A colophon states that the MS. was written at Herat in 1465, and that it is a copy of one written in 1085. Iascriptions in a dimilar alphabet have also been found in Chin2
3. The most interesting forms of Turkish writing are those used on the inscriptions found in Siberia near the Yenisei and Orkhon rivers. For some time it has been known that stones bearing inscriptions as well as roughly carved figures and hunting scenes were to be found on the upper waters of the Yenisei, particularly near it tributary the Abakan in the district of Minusinsk. They are greatly venerated by the Soyotes inhabiting the region. They were first discovered by Mesmerschmidt in 1722, and wome of them were repre mented in the plates of Strahlenberg'a Das mord, med סslliche Theil pon Ewropo und A sia (1730). They were generally attributed to Scythians or Chudes. The knowledge of them did not much advance until the revearches of Castrin (1847) and the Finnish Society of Archaeology, which in 1889 published the text of thirty-two chiefly from the Uibat. Uluken, Atynkul and Tea. Even more intoresting are the monuments discovered in 1889 and known as the Orkhon or Kosho-Teaidan inscriptions, as they were found in Mongolia to the south of Lake Baikal, between the river Orkhon and Lake Kosho-T midam. The most important are a mortuary inacription in Turkich and Chivese, bearing a date corresponding to 733, in hooour of Kui-tegin, and another recounting the exploits of Bilga Kagan. A third inscription at Kara-Balgassun probably dates from 800-805. The inscriptions were deciphered and translated by Thomsen and Radlov, and Donner examined the origin of the alphatet. He came to the conclusion that the Yenisei alphabet is rather older than that of the Orkhon inscriptions, and that both are derived from the Aramaic alphabet and most nearly allied to the variety of it used on tbe coins of the Assacid dynasty. In the zrd century A.D. a section of the Kirghiz, who aubsequently moved northwarde, were in West Sogdiana and in touch with the Yue-Chi, who had been for some time in contact with Persia. The old Turkish characters bear a superficial resemblance to runes; the Yenisei letters have the simplest shapes, those of Kara-Balgassun the most complicated. But they are mostly traccable to Aramaic prototypes and have no comexion with Scandinavia. The vowels are generally omitted, even at the beginning of words, and, as in the modern Turkish method of using the Arabic alphabet, their quality is often indicated by the consonants, many of which have two forms, one used with soft the other with hard vowels. Thus bar and bar are differentiated not by the vowels but by the consonants employed to write them.
4. Turkish-6peaking Armenians and Greeles often write it in their own alphabete. Turkish newspapers printed in Armenian characters are published in Constantinople, and Greek characters are similarly employed in reveral parts of Asia Minor

Bibliographr: (a).-General works on the history and ethnography of the Turlos: Deguignes, Histoire des IIuns; Vambery, Das Twithewalk (Leiprig, 1885), Urspruse der Magyaren (Leiprip 1882). and several other publications; Radlov, Aus Sibirien LLeipzig, 1884): W. Grigoriev, Zemlewjedjenie K. Rittera Wostorschni \({ }_{i}\) Rilaiski Turheslam; Neumann, Die Volker des sfidlichem Russland (Leipzig, 1847). We may add the historians of the MongolsD'Ohston, Howorth and others-the numerous journals of travellers amongst Turkish peoples, and several articles in the Rusrische Rerne: Journ. Rayal Aszatic Soc.; Revue orientate pour tes tisodes Oural. allaiques, and other Oriental periodicals; Slorine and Rose Hoars of Asia (1899); Cahun, Turcs et Mongols (Paris, 1896); E. H. Parker, A Tkousand Years of the Tartars (1895), and numerous articles, especially in the Asiatic Quarterly by the same author on Chinese accounts of these tribes; Chavannes, Les Tow-kiue accidemown (St Petersburg, 1903).
6. For the study of Turkisf dialects the subjoined books may be used. (1) Osmandi: the grammars, dictionaries and chrestomathies of Wells (1880), A. Wahrmund (i884) and Redhouse (1890). (2) Uighur: the works of Kiaproth; Abel Rémusat, Recherches sur Les langues telares (Paris. 1820); Vambery, Vigurische Sprachmonmmente und dos Kudatlon Bilit (lansbruck, 1870), and a newer edition hy W. Radlov (St Petersburg, 1900). (3) Jagalai: the dictionary of Pavet de Courteile and Vambery, Jagataische Sprochstudiem (Leipzis, 1867). (4) Eastern Turki: Shav's grammar and vocabulary (Jourm. Roy, As. Sac, of Bengal, 1877). (5) Tatar dialec(s: the grammars of Kasimbeg-Żenker (Leipzig, 1848), Ilminski (Kazan, 1869) and Radlov (Leiprig, 1882); Dictionary of Trojamski (Kaman, 1833) ; the chrestomathies of Beresine (Kaman, 1857). Terentiev and specially Radov, Proben der Valksideratur der Lüfkischen Slämme Sūd-Sibirions (Si Petersburg, 1872). (6) Yakuti: B6htlingk, Die Sprache der Jahuter (St Petersburg, 1851) ; Radlov, Yalufische Sproche in ihrem Verhdlemiss sm den Turkspachem (1908). (7) Ingeriptions; Societt finlandaise d'archeologie, Inscriptions de I'Idrisei and everal worka by 0 . Donner, W. Radlov and V. Thomsen -especially Thomser, Inscriptions de rOrkhon dechifries (Helsingfors. 1896); Donner. Sup Toripine de ralphabet isre (Helsingfors); Radlov, Die alheürkische Inschrifter der Mongolei (St Peterbing. 1897); Marquardt. Chronologie der alh-(ürkisthen Inshhriften (1888).

TURLE, JAMES (1802-1882), English orgawist and cormposer, was born at Taunton, Somerset, and started as a choir boy at Wells Cathedral. In 1817 he became a pupil in London of the organist at Westminster Ahhey, and after acting as deputy for some years he succeeded to this post himself in 1831 and held it till his death. He and Sir John Goss, the organist at St Paul's, had been fellow-pupils in London as boys. Turle was a great organist in his day, and composed a good deal of church music which is still well known. His son Heary Frederic Turle (1835 1883) was editor of Notes and Querics.

TURMERIC (from Fr. terre mérile, turmeric, Lat. terra merita, deserved, i.e. excellent earh; Skeat suggests that it is a barbarous corruption, perhaps of Arahic karkam, kurkum, saffron or curcuma), the tuberous root of Curcame longa, L., an herbaccous perennial plant belonging to the natural order Zingiberaceae. It is a native of southern Asia, being cultivated on a large scale both on the mainland and in the islands of the Indian Ocean. Turmeric has been used from a remote period both as a condiment and as a dyestuff, and to a more limited extent as a medicine (now obsolete). In Europe it is employed chiefly as a dye, also as an ingredient in curry powder and as a chemical test for alkalies. The root is prepared by cleaning it and drying it in an oven. There are several varicties (Madras, Bengal, Gopalpur, Java, China and Cochin turmeric), differing chielly in size and colour and to a slight degree in flavour. Some of these consist cxclusively of the ovate central tubers, known as "bulbs," or "round turmeric," and others of the somewhat cylindrical lateral tubers, which are distinguished in trade as "fingers," or "long turmeric." Both are hard and tough, but break with a short resinous or waxy fracture, which varics in tint from an orange hrown to a deep reddish brown. The colour is due to curcumin, \(\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{O}_{7}\), of which the drug contains about \(0.3 \%\). When pure it forms yellow crystals having a vanilla odour and exhibiting a fine bluc colour in reflected light. It is soluhle in alcohol, in chloroform and in alkaline solutions, hut only sparingly in water. Paper tinged with a tincture of turmeric exhibits on the addition of an alkali a reddish brown tint, which becomes violet on drying. This peculiarity was pointed out hy H. A. Voget in 1815, and since that date turmeric has been utilized as a chemical test for detecting alkalinity. It is of no therapeutic value. In Sierra Leone a kind of turmeric is ohtained from a species of Canna.
TURNEBUS, ADRIANUS [Adrien TUrnebe] (i512-1565), French classical scholar, was born at Les Andelys in Normandy. At the age of twelve he was sent to Paris to study, and attracted great notice hy his remarkable ahilitics. After having held the post of professor of belles-lettres in the university of Toulouse, in 1547 he returned to Paris as professor (or royal reader) of Greek at the College Royal. In 1552 he was entrusted with the printing of the Greek books at the royal press, in which he was assisted by his friend, Guillaume Morel (q.r.). He died of consumption on the 12th of June 1565. His works chicfly consist of philological dissertations, commentaries (on Aeschylus, Sophocles, Theophrastus, Philo and portions of Cicero), and translations of Greek authors into Latin and French. His son, Etienne, puhlished his complete works, in three volumes (Strassburg, 1600), and his son Adrien his Adversaria, containing explanations and emendations of numerous passages in classical

See Oratio funebris by Léger du Chesne (Leodegarius a prefixed to the Strassburg edition: L. Clement, De Adrian pracfationibus et pocmatis (1899); J. E. Sandys, Hitery Scholarship (1908) iii.
TURNER, CHARLES (\(1773-1857\)), Knglidh engraver, was born at Woodstock in \(\mathbf{1 7 7 3}\). He enterud the schools of the Reyal Academy in 1795; and, ensrav: Bartolozzi, he was employed by Alderman Boytell. 1 I_ . plates, however, are in menutint, \(p\) met) J.M.W. Turner's "Wreck" studiorum, Reypolds's Racburn's best Lord Newton, Dr Han John Robinson, and Dr

Shee and Owen. He was an admirabie engraver, large, hroad and masterly in touch; and he reproduced with great fidelity the characteristics of the various painters whose works he translated into black and white. In 1828 he was elected an associate of the Royal Academy. He died on the ist of August 1857.
TURNBR, SIR JAMES (\(1615-1686\)), Scottish soldier and military writer, was educated with a view to his entering the Church, hut early showed his preference for the profession of arms by enlisting in the Swedish army, then the most famous trainingschool in Europe. He saw considerable service in the Thisty Years' War, and in 1640 returned to Scotland as a captain. It was not long before he secured employment, and as a major he accompanied the Scottish army in its invasion of England in the same year, successfully avoiding the imposition of the "Covenant" as a test. With Lord Sinclair's regiment Major Turner served in Ulster, and subsequently, after failing to join Miontrose's army, accompanied the Scottish army until Naseby practically ended the Civil War. Turner was often with Charles I during his detention at Leslie's headquarters, and continually urged him to escape. Up to this time he had served against the king, but always with some repugnance, and he welcomed the opportunity when in 1648 the cause of the king and the interests of the Scottish nation for the moment coincided. In the disastrous campaign which followed Turner was at Hamilton's headquarters, and it was owing to the neglect of his advice that the rout of Preston took place. Taken in the final surrender at Uttoxeter, he spent some time in captivity, hut in 1649 was released and sent abroad. He was unable for want of means to reach Montrose in time to join in the final venture of the noblest of the Royalist commanders, but he landed in Scotiand on the day before Dunbar, and in the grave crisis that followed was a welcome ally. As a colonel and adjutant-general of foot he was with Charles II. at Worcester. In that battle he was captured, but regained his liberty, and after many adventures escaped to the Continent, where for some years be was engaged in various Royalist intrigues, conspiracies and attempted insurrections. At the Restoration he was knighted, and in 1662 he became a major in the Royal Guards. Four ycars later, as a district commander in Scotland, he was called upon to deal severely with Covenanter disturhances. Though not, it appears, unjust, his dragooning methods eventually led to his being deprived of his command. The rest of his life was spent in retirement. A pension was granted to him by James II. in 1685 . In 1683 he had published his Pallas armala, Military Essayes of the Ancient Grecian, Roman and Modern Art of War, one of the most valuahic authorities for the history of military sciences.

TURNER, JOSEPH MALLORD WILLAM (1775-1851), English painter, was born in London on the 23rd of Apsil 1775 His father, William Turner, a native of Devonshire, kept a barber's shop at 26 Maiden Lane, in the parish of St Paul's, Covent Garden. Of the painter's mother, Mary Marshall or Turner, little is known; she is said to have been a person oi ungovernable temper and towards the end of her life became insane. Apparently the home in which Turner spent his childhood was not a happy one, and this may account for much that was unsociable and ecoentric in his character. The earliest known drawiog hymer, a view of Margate Church, dates from bis ninth yras. K wat de ahoit th time that he was sent to his lint school ae Nivw Brentfortt of education, as the term is

His father taught him to read, and this and a fevr mor hes at New Brentford and afterwards at. Margate were all the thatilng be ever had; he nevy \(=1040\) ghentive tongue, nor was he able in after life this lack of juity seem to
and from Hardwick, an arehitect. He also attended Paul Sandby's drawing school in St Martin's Lane.. Part of his time was employed in making drawings at home, which he exhibited for sale in his father's shop window, two or three shillings being the usual price. He coloured prints for engravers, washed in backgrounds for architects, went out sketching with Girtin, and made dravings in the evenings for Dr Munro "for half a crown and his sapper." When pitied in after iife for the miscellaneous character of his early work, his reply was "Welll and what could be better practice?" In 3789 Turper became a stodent of the Royal Academy. He also worked for a sbort time in the house of Sir Joshua Reynolds, with the idea, apparently, of becoming a portrait painter; but, the death of Reynolds occurring shortly afterwarde, this intention was abandoned. In 1790 Turner's name appears for the first time in the catalogue of the Royal Academy, the title of his solitary contribution being " View of the Archbishop's Palace, Lambeth." About 1792 be received a commission from Walker, the engraver, to make dra wings for his Copper-Plate Magaxine, and this topographical work took him to many interesting places. The natural vigour of his constitution enabled him to cover inuch of the ground on foot. He could walk from 20 to 25 m . a day with case, his baggage at the end of a stick, making notes and memoranda as he went. He rose early, worked hard ali day, wasted no time over his simple meak, and his homely way of living made him easily contented with such rude accommodation as he chanced to find on the road. A year or two after he accepted a similar commiasion to make drawings for the Pocket Magazine, and before his twentieth year he had travelled over many parts of England and Wales None of these magazine drawings is remarkahle for originality of treatment or lor artistic feeling.

Up to this time Turner had worked in the back room above his father's sbop. His love of secretiveness and solitude had already begun to show itsell. An architect who often employed him to put in backgrounds to his drawings says, "he would never suffer me to see him draw, but concealed all that he did in his bedroom." On another occasion, a visitor entering unannounced, Turner instantly covered up his drawings, and, in reply to the intimation, " I've come to see the drawings for-," the answer was, "You shan't see 'em, and mind that next time you come through the shop, and not up the back way." Probably the increase in the number of his engagements induced Turner about this time to set up a studio for himself in Hand Court, not far from his Sather's shop, and there he continued to work till he wes elected an associate of the Koyal Acadenly (1799).
Until \(1_{1 / 92}\) Turner's practice had been almost exclusively confined to water colours, and his early works show how much he was indebted to some of his contemporaries. There are few of any note whose style he did not copy or adopt. His first exhibited oil picture appeared in the Academy in 1703. In 17941795 Canterbury Cathedral, Malvern Abbey, Tint:m Abbey, Lincoln and Peterborough Cathedrals, Shrewsbury, and King's College Chapel, Cambridge, were among the subject oxhibited, and during the next four years he contributed no less than thirtymine works to the Academy. In the catalogue of 1198 he first begen to add poctic quotations to the titles of his fictures; one of the very first of these-a passage from Milton's \(I\) 'rodise Lost -is in some respects curiously prophetic of one of the future characteristics of his art:-

Ye mists and exhalations qhat now rise
From hill or stearning lake, dusly or grey
Till the sun paints your fleery skirts with gold,
In honour of the world's great author rise \({ }^{\text {on }}\)
This and several other quotations in the following years show mlnd was now occupied with something more than graphical element of landscape, Millon's Paradise n's Seasons being laid under frequent contricriptions of sunrise, sunset, twilight or thunderpert's first visit to Yorkshire took place in 1797. It \(\varepsilon\) braced his powers and possibly fielped to change othe painter. Until then his work had shown very fse in the highersense of the term: le was little instaking and eolerably accurate topographer; but
even under these conditions he had begon to ettract the notice of his brother artists and of the critics. England was, at the time, at a low point both in literature and art. Among the artists De Loutherboarg and Morland were almost the only men of note left. Hogarth, Wilson, Gainsborough and Reynolds had passed away. Beechey, Bourgeois, Garvey, Farington-names wellnigh forgotten now-were the Academicians who painted landscape. The only formidable rivals Turner had to contend with were De Loutherbourg and Girtin, and after the death of the latter in 1802 he was left undisputed master of the field.

It is not, therefore, surprising that the exhibition of hls works in 1798 was followed by his election to the associateship of the Royal Academy. That he should have attained to this position before completing his iwenty-fourth year says much for the wisdom and discemment of that body, which further showed its recognition of his talent by electing him an Academician four years later. Turner owed much to the Academy. Ruskin says, "It taught him nothing." Possibly it had little to teach that he hid not already been able to leam for himself; at all events it was quick to see his genius and to confer its honovrs, and Turner, naturally generous and grateful, never forgot this. He enjoyed the dignity of Academician for nearly half a cent ury, and during nearly the whole of that period he took an active share in the direction of the Academy's affairs. His speeches are described as " confused, tedious, obscure, and extremely difficult to follow "; but at council meetings he was ever anxious to allay anger and bitter controversy. His opinions on art were always listened to with respect; but on matters of business it was often difficult to know what he meant. His friend Chantrey used to say, "He has great thoughts, if only he coujd express them." When appointed professor of perspective to the Royal Academy in 1808, this painful lack of expression stood greatly in the way of bis usefulness. Ruskin says," The zealous care with which Turner endeavoured to do bis duty is proved by a series of large drawings, exquisitely tinted, and often completely coloured, all by his own hand, of the most difficult perspective subjects, illustrating not only directions of lime, but effects of light, with a care and completion which would put the work of any ordinary teacher to utter shame." In teaching be would neither waste time nor spare it With his election to the associateship of the Academy in 1799 Turner's early struggles may be considered to have ended. He had emancipated himself from hack work, had given up making topographical drawings of castles and abbeys for the engravers-drawings in which mere local fidelity was the principal object-and had taken to composing as he drew. Local facts had become of secondary importance compared with effects of light' and colour. He had reached manhood, and with it he abandoned topographical fidelity and began to paint his dreams, the visionary faculty- the true foundation of his art-asserting itself, nature being used to supply suggestions and materials.

His pictureb of \(1797^{-1} 799\) had shown that be was a painter of no ordinary power, one having much of the poet in him, and able to give expression to the mystery; beauty and inexhaustible falliress of nature. His work at this period is described by Ruskin as "stern is manner, reserved, quiet, grave in colour, forreful in hand."

Tumer's visit to Yorkshire in 1797 was followed a year or two later by a second, and it was on this occasion that he made the acquaintance, which afterwards ripened into a long and staunch friendship, of Fawkes of Famley Hall. From 1803 till 1820 Turner was a frequent visitor at Farnley. The large number of his drawings still preserved there-English, Swiss, German and Italian, the studies of rooms, outhouses, porches, gateways, of birds shot while be was there, and of ald places in the neighbourhood-prove the frequency of his visits and his affection for the plact and for its bospitable master. A caricature, made by Fawtes, and "thought by old friends to be very like," shows Turner as "a little fewish. nosed man, in an ill-cut brown tall-coat, striped waistcoat, and enormous frilled shirt, with feet and hands notabiy snall, sketching on a small piece of paper, held down almost level with his waist." It is evident from all the accornts
given that Turner's personal appearance was not of a kind to command much attention or respect. This may have pained his sensitive nature, and led him to seek refuge in the solitude of bis painting room. Had he been inclined be had abundant opportunity for social and friendly intercourse with bis fcilow men, but he gradually came to live more and more in a state of mental isolation. Turner could never make up his mind to visit Farnley again after his old friend's death, and his voice would falter when he spoke of the shores of the Wharie.

Turner visited Scotland in 1800 , and in I80I or 1802 be made bis first tour on the Continent. In the following year, of the seven pictures he exhibited, six were of foreign subjects, among them "Bonneville," "The Festival upon the Opening of the Vintage of Maton," and the well-snown "Calais Rier" in the National Gallery. The last-named picture, although heavily painted and somewhat opaque in colour. is magnificently composed and full of energy.

In 1802, the year in which Turner became a Royal Academician, he took his father, who still carried on the barber business in Maiden Lane, to live with bim. The old man lived in his son's bouse for nearly thirty years, making himself useful in various ways. It is said that be used to prepare and strain his son's canvases and varnish them when finished, which may explain a saying of Turner's that "his father used to begin and finish his pictures for him." He also attended to the gallery in Queen Anne Street, showed in visitors, and took care of the dinner, if he did not himself cook it. Turncr was never the same man after his father's death in 1830, living a life of almost complete isolation.

In 1804 Turner made a second tour on the Continent, and in the following year painted the "Shipwreck" and "Fishing Boats in a Squall " (in the Ellesmere collection), seemingly in direct rivalry of Vandervelde, in 1806 the " Goddess of Discord in the Garden of the Hesperides" (in rivalry of Poussin), and in 8807 the "Sun rising through Vapour " (in rivalry of Claude). \({ }^{1}\) The last two are notable works, especially the "Sun." In after years it was one of the works he left to the nation, on the special condition of its being hung beside the Claudes in the National Gallery. In this same year (r 807) Turner commenced his most serfous rivalry. Possibly it arose out of a desire to break down Claude worship-the then prevailing fashion-and to show the public that there was a living artist not unworthy of taking rank beside him. That the Liber studioram was suggested by the Libcr reritotis of Claude, and was intended as a direct challenge to that master, is beyond doubt. There is, however, a certain degree of unfairness to Claude in the way in which the challenge was given. Claude made drawings in brown of his pictures as they left the easel, not for publication, but merely to serve as private memoranda. Turner's Liber drawings had no such purpose, but were intended as a direct appeal to the public to judge hetwcen the two artists. The first of the Liber drawings was made in the autumn of 1806, the others at intervals till about 1815 . They are of the same size as the plates and carefully finished in sepia. He left over fifty of these to the National Gallery. The issue of the Liber began in 1807 and continued at irregular intervals till 1819 , when it stopped at the fourteenth number. Turner had resolved to manage the publishing business himself, but in this be was not very successful. He soon quarrelled with his engraver, F. C. Lewis, on the ground that he had raised his charges from five guineas a plate to eight. He then employed Charles Turner, who agreed to do fifty plates at the latter sum, but, after finishing twenty, he too wished to raise his price, and, as a matter of course, this led to another quarrel. Reynolds, Dunkarton, Lupton, Say, Dawe and olly? engravers were afterwards employed-Turner himself etahing
and mezzotinting some of the plates. Each part of the Liber contained five plates, the subjects, divided into "historical," "pastoral," "marine," \&c., embracing the whole range of landscape art. Seventy-one plates in all were published (including one as a gift of the artist to his subscribers); ten other platesmore or less completed-intended for the fifteenth and sixteenth numbers were never published, the work being stopped for want of encouragement. Absence of metbod and business habits may account for this. Turner is said to have got up the numbers in his own house with the help of a female servant. The plates, which cost the subscribers only five shillings apiece, were so littie estecmed that in the early quarter of the ng th century they were sometimes used for lighting fires. So much has fashion, or public taste, changed since then that a fine proof of a single plate has sold for \(£_{2210}\). The merit of the plates is unequal; some-for example, " Solway Moss," " Inverary Piér," " Hind Head Hill," " Ben Arthur," "Rizpah," "Junction of the Severn and Wye" and "Peat Bog"-are of great beauty, while a few are comparatively tame and uninteresting. Among the unpublished plates "Stonehenge at Daybreak," " The Stork and Aqueduct," " The Via Mala," "Crowhurst," and "Moonlight off the Needles" take a high place. The Liber shows strong traces of the in lluence of Cozens and Girtin, and, as a matter of course, of Claude. In most of the designs the predominant feeling is serious; in not a few, gloomy. or even tragic. A good deal has heen written about Turner's intention, and the "lessons" of the Liber studiorum. Probably his only intention in the beginning was to show what he could do. to display his art, to rival Claude, perhaps to educate public taste, and at the same time make money. If lessons were intended they might have heen better conveyed by words. "Silent always with a bitter silence, disdaining to tell his meaning "--such is Ruskin'3 explanation; but surely Turner bad Little reason for either silence or contempt because the public failed to see in landscape art the means of teaching it great moral lessons. The plates of the Liber contain an almost complete epitome of Turner's art. It is supposed that his original intention bad been that the Liker should consist of one hundred plates, and drawings for that number exist, but there was no public demand for them. Already in this work are seen strong indications of one of his most remarkable charac-teristics-a knowledge of the principles of structure in natural objects; mountains and rocks are drawn, not with topographical accuracy, but with what appears like an intuitive fecling for geological formation; and trees have also the same expreesion of life and growth in the drawing of stems and branches. This instinctive feeling in Turner for the principles of organic structure is treated of at considerable length in the four th volume of Modern Painlers, and Turner is there contrasted with Claude, Poussin, and some of the Dutch masters, greatly to their disadvantage.
After 1797 Turner was little concerned with mere topographical facts: bis pictures might be like the places represented or not; much depended on the mental impression produced by the scene. He preferred to deal with the spirit, rather than with the local details of places. A curious example of the reasonableness accompanying his exercise of the imaginative faculty is to be found in his creations of creatures he had never seen, as, for example, the dragon \({ }^{2}\) in the "Garden of the Hesperides "and the python in the "Apollo," exhibited in 181 I . Both these monsters are inagined with such vividness and reality, and the sense of power and movement is so completely expressed, that the spectator never once thinks of them as otherwise than representations of actual facts in natural hatery. Is neels but a litue comparison to

1 This spinit of rivalry showed itself early in his eal
by pitting himself against his conlemporanes, and his powers were more fully developed, masters, notably Vanderveldc and Claude. he kept up a constant rivalry with artiste il continuing his study of mature, and, while of the ancicnts, was accunulating thas in after years he was to use to such
and unearis kind. A pood illustration of this may be seen at Famley Hall in a drawing of a "Man-of-War taking in Stores." Some one, who had never seen a first-rate, expresecd a wish to know what it looked like. Turner took a blank shect of paper one morning after breakfact, outhined the ship, and finished the drawing in three hours, young Fawices, as son of the house, itting beside him from the firat stroke to the last. The size of this don wing is about 16 in . by 11 inf Ruskin thos describes it:-
"The bull of a finstrate occuples neariy onc half of the picture to the right, her bows toward the eppectator, soen in sharp perspective from stem to stern, with all ber port-holes, guns, anchors and lower rigging elaborately detailed, two other ships of the line in the middle distance drawn with equal precision. a noble breety rea, full of delicate drawing in its waves, atore ship beneath the bull of the laryer vesol and averal otber boate, and a complicated cloudy sky. all drawn from memory, down to the smallest, rope, in a drawing. room of a mansion in the middle of Yorkshire.'
About the year 1811 Turner paid his first visit to Devonshire, the county to which his family belonged, and a curious glimpse of his simple manner of life is given by Redding, who accompanied him on some of his excursions. On one occasion tbey spent a night together in a small road-side inn, Turner having a great desire to see the country around at sunrise.
"Turner was content with bread and cheese and beer, tolerably good, lor dianer and supper in one. In the little sandod room we conversed by the light of an attenuated candle and some aid from the moon until nearly midnight, when Turner laid his head upon the table and was soon fast asteep. Three or four hours' rest was thus obtained, and we went out as eoon as the sun was up to explore the surrounding neighbourhood. It was in that early mokning Turner made a sketch of the picture "Crossing the Brook.'" In another excursion to Borough 1sland, "the moraing was squally and the rea rolled boisterously into the Sound. Off Stakes Point it became stocmy; our Dutch boat rode beavely over the furmows. Two of the party were ill. Twrner was all the while quict, watching the troubled ccene- Bolt Head, to seaward, against which the waves broke with fury, seemed to absorb his entire notice, and he ccarcely spoke a syllable. While the fish were getting ready Turner monnted nearly to the higheat point of the istand rock, and ssemed writing rather than drowing. The wind was alsnost too violent for either purpose."

This and similar incidents show how carelcss of comfort Turner was, and how devoted to his art. The tumult and disconnfort by which he was surrounded could not distract his powers of observation; and some thirty years later there is still evidence of the same kind. In the catalogue of the exhibition of 1842 one of his pictures bears the following title, " Snow-Storm: steam-boat off a harbour's mouth making signals in shallow water, and going by the lead. The author was in that storm the night the "Ariel ' left Harwich."

From 9813 till 1826, in addition to his Harley Street residence, Turner had a country bouse at Twickenham. He kept a boat on the river, also a pony and gig, in which he used to drive about the nelghbouring country on sketching expeditions. The pony, for which Turner had a great love, appears in his well-known "Frosty Moraing "in the Natioual Gallery. He appears to have had a great affection for avimals, and one Instance of his tenderness of heart is given by one who of ten foined him in the amusement of fishing, of which Tumer was very fond. "I was often with him when fishing at Petworth, and also on the banks of che Thames. His success as an angler was great, although with the worst tackle in the world. Every fish he caught he ander to ane, and appealed to me to decide whether the size Hen to keep it for the table or to return it to the river; ingrite often almost touching, and he always gave tbe ? \({ }^{2}\). \({ }^{2}\) ter the benefit of the doubt.".
* * mer oommenced the series of dravinge, forty in ACrite's Southern Coart. This work was not , The price he at firt received for these. facb, afterwards mised to \(£ \mathbf{1 3}\), 2s. 6d.
\({ }^{2 \prime \prime}\) appeared in the Academy of 1815 . It
tespical example of Turners art at this Etransition from his earlier style to that Thepresents a plece of Devonshire scenery,
hemar. On the left is a group of tall pine-
trees, besutifully designed and drawn with great skill asd knowledge of structure; in the foreground a couple of children, with a dog carrying a bundle in its mouth across the brook; and beyond, a vast expanse of richly-wooded country, with glimpses of a winding river, an old bridge, a mill, and other buildings, and, in tbe far distance, the ses. Both in design and execution this work is founded upon Claude. Some critics consider it one of Turner's greatest works; but this is open to question. It can hardly be called a work in full colour: it is limited to greys and quiet greens for the earth and pale blues for tbe sky. It is a sober but very admirable picture, full of diffused daylight, and in tbe painting of its distance better than any master who had preceded him. The fascination of the remote, afterwards so distinctive an clement in Turner's pictures, shows itself here. Perhape nothing tests the powers or tries the skill of the landscape painter more severely than the representation of distant effects. They come and go so rapidly, are often in a high key of light and colour, and so full of mystery and delicacy, that anything approaching to real imitation is impossihle. Only the most retentive memory and the most sensitive and tender fecting will avail. These qualitics Tumer posoessed to a remarkable degree, and as his powers matured there was an everincreasing tendency in his art to desert the foreground, where things were definite and clear, in order to dream in the infinite suggestiveness and space of distances. "Dido Building Carthage" also belongs to this period. It hangs beside the Claudes in the National Gallery. It pertains to the old erroneous school of historical painting. Towering masses of Claudesque architecture piled up on either side, porticoes, vestibules, and stone pincs, with the cun in a yellow sky, represent the Carthage of Turner's imagination. With all its fauls it is still the finest work of the class be ever painted. Carthage and its fate had a strange fascination for him. It is said that he regarded it as a moral example to England in its agricultural decline, Its increase of taxury, and its blindness to the insatiable ambition of a powerful rival. He retumed again to tbis theme in 1817, when he exhlbited his "Dectine of the Carthoginian Empire: Hostages Leaving Carthage for Rome"-a pict ure which Ruskin describes as "litue more than an accumulation of academy student's outlines coloured brown."
In 1818 Turner was in Scotiand making drawings for the Prosincial Antiquilies, for which Sir Walter Scott supplied the letterpress, and in \(\mathbf{8 1 9}\) he visited Italy for the first time. One of the results of this visit was a great change in his style, and from this time his works became remarkable for their colour. Hitherto he had painted in browns, greys and blues, using red and yellow sparingly. He had gradually been advencing from the sober grey colouring of Vandervelde and Ruysdael to the mellow and richer tones of Claude. His works now begin to show a heightened scale of colour, gradually increasing in richness and splendour and reaching its culminating point in such works as the "Ulysses," "Childe Haroid's Pilgrimage," "The Golden Bough." and "The Fighting Temeraire." Al tbese works beiong to the middle period of Turner's art (\(1820-1839\)), when his powers were entirely developed and entirely unabated. Much of his mest beautiful work at this period is to be found in his water-colour drawings: those executed for Whitaker's History of Richmondshire (1819-1821), for Cooke's Sonthern Coast (1814-1826), for The Rivers of England (1824), for England and Wales (1829-1838), Protincial Antiguilies (1826), Rogers's Ilaly (1830), Scott's Works (1834), and The Rivers of Fronce (1833-1835) are in many instances of the greatest beauty. Of the Richmondshire drawings Ruskin says, "The foliage is rich and marvellous in composition, the rock and bill drawing insupernble, the skies exquisite in complex form."

But perhaps one of the greatest services Tumer rendered to the art of England was the education of a whole school of

\footnotetext{
i" Crossing the Brook" was a great favourite with Turner. It was painted lor a patron. who. dissatisfied with it. left it on the painter's hands. The price asked (\(£ 500\)) seems 10 have been part of phe obiection. Turner subsequently refused an offer of fr600 for it.
}
engravers. His best qualities as a teacher came from the union of strength and delicacy in his work; subtle and delicate tonality was almost a new element for the engraver to deal with, but with Turner's teaching and careful supervision his engravers by degrees mastered it more or less successfully, and something like a new development of the art of engraving was the result. No better proof can be found of the immense advance made than by comparing the work of the landscape engravers of the preTurnerian period with the work of Miller, Goodall, Willmore, Cooke, Wallis, Lupton, C. Turner, Brandard, Cousen, and others who worked under his guidance. The art of steel engraving reached its highest development in England at this time. Rogers's Italy (1830) and his Poems (1834) contain perhaps the most beautiful and delicate of the many engravings executed after Turner's drawings. They are vignettes, \({ }^{1}\) a form of art which Turner understood better than any artist ever did before-perhaps, we might add, since. "The Alps at Daybreak," "Columbus Discovering Land," and "Datur Hora Quieti" may be given as examples of the finest.
In 1828 Turner paid a second visit to Italy, this time of considerable duration, on the way visiting Nimes, Avignon, Marseilles, Genoa, Spezzia and Siena, and in the following year he exhibited the "Ulysses Deriding Polyphemus," now in the National Gallery. It marks the beginning of the central and best period of Turner's power. This work is so well known that description is hardly needed. The galley of Ulysses occupies the centre of the picture; the oars are being thrust out and the sailors flocking up the masts to unfurl sail, while Ulysses waves the blazing olive tree in defiance of the giant, whose huge form is seen high on the cliffs above; and the shadowy horses of Phocbus are traced in the slanting rays of the rising sun. The impression this picture leaves is one of great power and splendour. The painting throughout is magnificent, especially in the sky. Leslic speaks of it as "a poem of matchless splendour and beauty." From this period onward till about 1840 Turner's life was one of unceasing activity. Nothing is more astonishing than his prodigious fertility; be rose carly, worked from morning till uight, entirely absorbed in his art, and gradually became more and more solitary and isolated. Between 1829 and 1839 he sent lifty-five pictures to the Royal Academy, painted many others on private commission, made over four huodred drawings for engravers, besides thousands of studies and sketches from nature. His industry accounts for the immense quantity of work he left behind him. There is not the slightest evidence to show that it arose from a desire to make money, which he never cared for in compatison with his art. He has been accused, perhaps not without some cause, of avarice and meanness in his busincss dealings, and many stories are told to his discredit. But in private be often did generous things, although owing to his reserved disposition his virtues were known only to a few. His faults on the other hand-thanks to the malice, or jealousy, of one or two individuals-were freely talked about and, as a matter of course, greatly exaggerated. " Kcep it, and send your children to school and to church," were the words with which he declined repayment of a considerable loan to a poor drawing-master's widow. On another occasion, when interrupted in his work, he roughly chid and dismissed the applicant, a poor woman; bue she had hardly left his door before he followed her and slipped a \(£ 5\) note into her hand. His temants in Harley Street were in arrears for years, but he would never allow his lawyer to distrain; and if further proof of his generosity werc needed his great scheme for beltering the condition of the unfortunate in his own profession should suffice. On one occasion he is known to have taken dowa a picture of his own from the walls of the Academy to make ruom lor that of own from the wall

The first of Turner's Venetian pirtures (" Bridge of Sighs, Ducal Palace and Custom House, Venice, Canaletti Painting '") appeared in the Academy in 1333 . Compared with the sober, prosaic work of Canaletti. Turner's pictures of Venice appear like poetic dreams. Splendour of colour and carelessness of form generally characterize them. Venice appeared to him " a city of rose and white, rising out of an emerald sea against a sky of sapphire blue." Many of these Venetian pictures belong to his later manner, and some of them, "The State Procession bearing Giovanni Bellini's Pictures to the Church of the Redecmer " (exhibited in the Royal Academy, 1841)," The Sun of Venice Going to Sea " (1843), "Approach to Venice " \((1844)\), and "Venice, Evening, Going to the Ball" \(\left(18_{45}\right)\), to his latest. As Turner grew older his love of hrilliant colour and light became more and more a characteristic. In trying to obtain these qualities he gradually fell into an unsound method of work, teeating oil as if it had been water-colour, using both indiscriminately on the same canvas, utterly regardless of the result. Many of his finest pictures are already in a runed state, mere wrecks of what they once were.
"The Fighting Téméraire Tugged to her Last Berth to be Broken Up" was exbibited in the Academy of 1839 . By many it is considered one of his finest works. Turner had all his life been half a sailor at heart: he loved the sea, and shipping, and sailors and their ways; many of his best pictures are sea pieces; and the old ships of Collingwood and Nelson were dear to him. Hence the pathotic feeling he throws around "The Fighting Témeraire." The old three-decker, looking ghostly and wan in the evening light, is slowly towed along by a black, fiery litule steam tug-a contrast suggesting the passing away of the old order of things and the advent of the new; and behind the sun sets red in a thick bank of smoke or mist. "The Slave Ship," another important sea picture, was exhibited in the following year, and in \(18_{42}\) " Peace: Burial at Sea," commemorative of Wilkie.

Turner had now reached his sixty-seventh year, but no very marked traces of declining power are to be seen in his work Many of the water-colour drawings belonging to this period are of great beauty, and, although a year or two later his other powers began to fail, his faculty for colour remained unimpaired almost to the ead. He paid his last visit to the Continent in 1843, wandering about from one place to another, and avoiding his own countrymen, an old and solitary man. At his bouse in Queen Anne Street they weire often ignorant of his whereabouts for months, as he seldom took the trouble to write to any onc. Two years later (1845) his health gave way and with it both mind and sight began to fail. The works of his declining period exercised the wit of the critics. Turner felt these attacks keenly. He was naturally kind-hearted and acutely sensitive to censure. "A man may be weak in his age," he once remarked, "but you should not tell him so."

After 1845 all the pictures shown hy Turner belong to the period of decay-mere ghosts and shadows of what once had been. In 1850 he exhibited for tbe last time. He had given up attending the meetings of the Academicians; none of his friends had seen him for months; and even his old housekeeper bad no idea of his whereabouts. Turner's mind had evidently given way for some time, and with that love of secrecy which in later years had grown into a passion he had gone away to hide himself in a comer of Londun. He bad settled as a lodger in a small house in Chelsca, overlooking the river. kept by his old Margate landlady, Mrs Booth. To the children in the neighbourhood he was known as "Admiral Booth." His short, sailor-like figure may account for the idea that he was an impoverished old naval officer. Ife had been ill for some weeks, and nl Gpeen Anne Strect housekeeper at last

I"Of aH the artists who ever lived I think it is Tuiner when ry:-anethe vignette most exsuisitely, and, if it were smonntrern to a wish he had particular reason for this, I shoutds. particular reason fas nothing harsh or rigid in lif melted into each other tenderly sense of gradation was the (Hamerton).
bequetathed to the nation, onicondition that they were exhibited Io rooms of their own, and that these rooms were to be called "Turser's Gallery." The will and its codicils were so confused that after years of litigation, duzing which a large part of the money was wasted in legal expenses, it was found impossihle to decide what Turner really wanted. A compromise was effected in which the wishes of everybody, save those of the testator, were consulted, his next-of-kin, whom he did not mean to get a single farthing, inberiting the bulk of his property. The nation got all the pictures and drawings, and the Royal Academy \(\{20,000\).

If Turner had died early his reputation as an artist would have been very different from what it ultimately became. He would not have been recognized as a colourist. It was only after the year 1820 that colour began to assert itself strongly in his work. He painted for many a year in greys and greens and browns, ment steadily through "the subdued golden chord," and painted yellow mists and suns rising through vapour; but as time went on that was no longer enough, and be tried to paint the sun in his strength and the full glories of sunshine The means at the painter's disposal are, however, limited, and Turner, in his efforts after brilliancy, began to indulge in reckless experiments in colour. He could not endure even the slightest restraints which technical limitations impose, but went on trying to paint the unpaintable. As a water-colour painter Turner stands pre-eminent; he is unquestionably the greatest master in that branch of art that ever lived. If his work is compared with that of Barrete, or Varley; or Cozens, or Sandby, or any of the earlier masters, so great is Turner's superiority that the art in his hands seems to be litted altogether into a higher region.

In 1843 a champion, in the person of John Ruskin, arose to defend Turner against the unjust and ignorant attacks of the press, and what at first was intended as a "short pamphlet, reprobating the manner and style of these critics," grev into the Give volumes of Modern Painters. Ruskin employed all his cloquence and his great critical faculty to prove how inmeasurably superior Turner was to all who had ever gone before, hardly restricting his supremacy to landscape art, and placing him among the "seven supreme colourists of the world."
Like most men of note, Turner had his enemies and detractors, and it is to be regretted that so many of the stories they set in circulation against his moral character should have been repeated by one of his biographers, who candidly admits having "spared none of his faults," and excuses himself for so doing by "what he hopes" is his "undeviating love of truth." The immense quantity of work accomplished by Turner during his lifetime, work full of the utmost delicacy and refinement, proves the singulariy fine condition of his nervous system, and is perhaps the best answer that can be given to the charge of being excessively addicted to sensual gratification. In his declining years he ponaibly had recourse to stimulants to help his failing powers, ben it hy mo means follows that he went habituaily to excess ia their use. He never lost an opportunity of doing a kindness, and under a rough and cold exterior there was more goed and worth hidden than the worid imagined. "During the mea years I knew him," says Ruskin, "years in which he nembing most from the evil-speaking of the world. I - head bim say one depreciating word of any living man mert: I never saw him book an unkind or blameíul Ereat -rinere meadeavour at mitigation, a blameful word spoken tuCA no man, but Turner, whom I have ever known Pthis," Twice during his earlier days there are leading to the belief that he had the hope of on both occasions it ended in disappointment, father died was cheerless and solitary.
teit gives a clear and consistent history of the tharacterized by refined thought and critical lutte book by W. Coamo Monkhouse may also
be noticed. Books upon Turner continue to appear, although it is scarcely to be expected that they can add to the facts already known about him. Turner and Raskin an exposition of the work of Turner from the writings of Ruskin. edited with a biographical note on Turner by Frederick Wedmore, in two volumes, with ninety-one illustrations, was published by George Allen in 1900 . Perhaps the most important recent work upon his art is Sir Walter Armstrong's Turner (1901), which deals at considerable length with the events of bis life, and with his pictures in oil and his drawings in water-colour. It also gives so far as poisible a list of his oil pictures, and for the first time a pretty full list of his water colours, although the great painter's works in both media are so numerous that it would be impossible to say that either is complete. Sce also J. M. W. Turner, by W. L. Wyllie, A.R.A. (1905). The great authority on the Liber Siudiorum is W. G. Rawlinson (Turner's Liber Siudiorwm, and ed. 1906).
(G. Re.)

TURNEBE, MAT (\(1800-1831\)), the negro leader of a slave insurrection in Virginia, known as the "Southampton Insurrection." was born In Southampton county, Virginia, in 1800. From his childhood be claimed to see visions and hear voices, and he became a Baptist preacher of great influence among the negroes. In 1828 he confided to a few companions that a voice from heaven had announced that "the last shall be first." which was interpreted to mean that the slaves should control. An insurrection was planned, and a solar eclipse in February 1831 and peculiar atmospheric conditions on the \(13^{\text {th }}\) of August were accepted as the signal for beginning the work. On the night of the \(215 t\) of August 183 r , with seven companions, he entered the home of his master, Joseph Travis, and murdered the Inmates. After securing guns, horses and liquor they visited other houses, sparing no one. Recruits were added, in some cases by compulsion, until the band numbered about sixty. About noon on the a2nd they were scattered by a small force of whites, hastily gathered. Troops, marines and militia were hurried to the scene, and the negroes were hunted down. In all thirteen men, elghteen women, and twenty-four children had been butchered. After hiding for several weeks Nat was captured on the 30 th of October and was tried and hanged, having made, meanwhile, a full confession. Nineteen of his associates were hanged and twelve were sent out of the state. The insurrection, which was altributed to the teachings of the abolitionists, bed to the enactment of stricter slave codes.

See S. B. Weeks, " Slave Insurrections in Virginia," in Magaxime of A merican History, vol. xxxi. (New York. 1891), and W. S. Drewry, The Soulhiompton fisurrection (Washington, 1900).

TURNER, SHARON (1768-1847), English historian, was born in Pentonville, London, on the 84th of September 1768 . His parents came from Yorkshise. He was educated at a private school kept by Dr Davis in Pentonville, and was articled to a solicitor in the Temple in 1783, and when his master died in 1789 be continued the business. He remained in business at first in the Temple, and later in Red Lion Square till 1829, when failing health compelled him to retire. He settled for a time at Winchmore Hill, but afterwards returned to London, and died in his son's house on the 13th of February 1847. In carly boyhood he had been attracted by a translation of the "Death Song of Ragnar Lodbrok," and was led by this boyish interest to make a study of early English history in Anglo-Saxon and Icelandic sources. He devoled all the time he could spare from his business to the study of Anglo-Saxon documents in the British Museum. The material was abundant and had hitherto been neglected. When the first volume of his History of England from the carliest times to the Norman Congmest appeared in 1799 , it was at once recognized as a work of equal novelty and value. The fourth volume appeared in 1805 . He also published a continuation (History of England dwring the Middle Ages). a Modern History of Englond, a Socred History of the World, and a volume on Richard 1II. (1845), and be was the author of pamphets on the copyright laws (1813).

His son. Sydney Turner (1814-1879), educated at Trinity College. Cambridge, took orders, was known as a strong partisan of reformatory schools, and died rector of Hempstesd in Glourestershire.

TURNER, WILLAA (d. 1568), English divine, botanist and physician, was born at Morpeth in Nortbumberiand, and was
educated at Pembroke Hall, Cambridge, where he was elected junior fellow in 1530 . He learnt Greck from Nicholas Ridley, and, hearing Hugh Latimer preach, threw in his lot with the new faith. In \(\mathbf{I} 538\) be puhlished his Libellus de re herbaria, and in 1540 set out to preach in different places. For doing this without a licence he suffered imprisonment, and on his release travelled in Holland, Germany, Italy and Switzerland, aiways increasing his knowledge of botany and medicine, collecting plants, and writing books on religion which were so popular in England that they were forbidden by proclamation in July 1546. On the accession of Edward VI. he became chaplain and physician to the duke of Somerset and in 1550 prebendary of York. In November 1550 he was made dean of Wells, but in 1553 was dep ived, and during Queen Mary's reign lived at various places in Germany, mostly along the Rhine. Returning to England in 155 he regained his deanery, and did all he could to disparage episcopacy and ceremonial, and to bring the Anglican Church into conformity with the Reformed Churches of Germany and Swizzerland. On the complaint of his hishop, Gilbert Berkeley, he was suspended for Nonconformity in.1564. He passed his last days in Crutched Friars, London, and died on the 7th of July 1568 . Turner was a sound and keen hotanist, and introduced lucerne into England. He was a racy writer, a man of undoubsed learning, and a vigorous controversialist.

TURNHOUT, a town of Belgium, in the province of Antwerp, 26 m . N.E. of that city. Pol. (1904), 22,162, It carries on an active industry in cloth and other manufacturcs. There is a breeding establishment for llecehes. The hotel de ville was formerly a palace of the dukes of Brabant. Two miles west of Turnhout is the curious penal or reformatory colony of Merxplas (pop. in 1904, 2827). The system of this establishment is to allow certain alproved prisoners to follow their usual occupations within a defined area. The persons detained have complate liberty of movement, subject to the iwo conditions that they are under the supervision of guardians and are not allowed to cross the boundaries of the settlement. They also wear a distinct dress, and each prisoner bears a number.

TURNIP, Brassica campesiris, var. Rapo. a hardy bicnnial, found in cornfelds in various parts of England. It has been cultivated from a remote period for its fleshy roots. The tender growing tops are also used in spring as a green vegotable. The so-called "root" is formed by the thickening of the primary root of the seedling together with the base of the young stem (hypocotyl) immediately above it. The great mass of the " root" consists of soft " wood" developed internally by the cambium layer and composed mainly of thin-walled, unlignified, wood-parenchyma. The stem remains short during the first year, the leaves forming a rosette-like bunch at the top of the "bulb"; they are grass-green and hear rough hairs. In the second season the bud in the centre of the rosette forms a strong erect branched stem bearing somewhat glaucous smooth leaves. The stem and branches end in corymbose racemes of small, bright yellow flowers, which are succeeded by smooth, elongated, short-beaked pods.

The varieties of tumip are classified according to their shape as (t) long varieties, with a root three or more times as long as hroad; (2) tankard or spindle-shaped varieties, with a root about twice as long as broad; (3) round or globe varieties with an almost spherical root; (4) flat varietics with a root broader than long; there are also many internediate forms. Turnips are also grouped according to the colyur of the upper part of the root which comes above ground, and according to the colour of the flesh, which is white or yellow. The yellow-fleshed varictics, many of which are probably hybrids between the turnip and swede, are more robust, of slower growth and superior feeding value to the white-fleshed turnips, and are less injured by frost. The swede-turnip, Brassica can:pestris, var. Napo-brassica, differs from the turnip proper in having the first foliage-lean 5 glaucous, not grass-green. in colour, and the later leavess and glaucous; the root bears a distinct ncele with leaf-scars, the flesh is yellow or reddish-orange, firm
nutritious, and the roots keep much better during winter. The flowers are larger and buff-ycllow or pale orange in colour and the seeds are usually larger and darker than in the turnip.

Turnips should be grown in a rich Iriable sandy loam, such as will produce medium-sized roots without much aid from the manure heap, and are better flavoured if grown in fresh soil. In light dry soils well decomposed hotbed or larmyard manure is the best that can be used, but in soils containing an excess of organic matter, bone dust, superphosphate of lime, wood-ashes or guano, mixed with light soil, and laid in the drills before sowing the seed, are beneficial by stimulating the young plants to get quickly into rough leaf, and thus to grow out of reach of the so-called turnip lly or turnip fica (Phyllotrela). To get rid of this pest, it has been found beneficial to dust the plants with quicklime, and also to draw over the young plants nets smeared with some sticky substance like treacle. by which large numbers will be caught and destroyed. It has been also recommended as a palliative to sow thick in order to allow for a percentage of loss from this and other causes, but this is inadvisable, as overcrowding is apt to render the plants weak. As a preventive, gas-lime may be scattered over the surface after the seed has been sown. Lime is also effective against the discase known as "finger and toe " (q.s.).

The first sowing should be made on a warm border, with the protection of a frame or matted hoops, in January or February; the second on a well-sheltered border in March. after which a sowing once a month will generally suffice. In May and June the plot should be in a cool moderately shaded position, lest the plants should suffer from drought. The principal autumn and winter sowings. which are the most important, should be made about the end of Junc in the northern districts, and in the beginning of July in warmer districts; a small sowing may be made at the end of August to come in before the spring-sown crops are ready. If the weather is showery at the time of sowing, the seed specdily germinates, and the young plants should be kept growing quickly by watering with rain or pond water and by surface stirrings. The drills for the carliest sorts need not be more than 15 in . apart, and the plants nay be left moderately thick in the row: the late crops should have at least 2 ft . betwcen the rows, and be thinned to 12 in . in the row, a free circulation of air aboot them being very important in winter. As a provision against prolonged periods of severe weather it has been recommended to lay the finest roots in rows, covering them well wish soil, and leaving intact the whole of the foliage. The very latest sown crops of half-grown roots will prolong the supply until the earliest spring-sown crops ate fit for use.
TURNPIKE, a pike or pointed bar or stake which turns of revolves, hence the name given to a form of barrier consisting of three or more horizontal bars, with one end sharpened, revolving on a pivot. Such barriers wereased across roads, and, when tolls were exacted from passengers along highways to raise the money for the upkeep of the roads, the name, though not the form, was given both to the toll-gates set up at different places where the tolls were collected, and to the highways repaired under the system (see Highway).
A "turnstile," consisting of a vertical post with projecting, revolving arms, is another form of barrier, placed by the side of a gate across a road, or across a path to prevent the passage of all except foot passengers, or at the entrance to any building, park or other place as a means of controlling the admission of people, of collecting admission money and the like.
TURNSTONE, the name long given \({ }^{1}\) to a shore-bird, from its habit of turning over with its bill such stones as it can \(\mathbf{t o}\) seek its food in the small crustaceans or other animals lurhing beneath them. It is the Tringa interpres \({ }^{2}\) of Linnacus and Strepsilas interpres of most later writers, and is remarkable as being perimps the most cosmopolitan of birds; for, though properly belonging to the northern hemisphere, there is scarcely a sea-cosst in the world on which it may not occur; it has been obtained from Spitzbergen to the Strait of Magellan and from Point Barrow to the Cape of Good Hope and New Zealand-examples froms hemisphere being, however, almost plumage that shows, if not immatur plumage that shows, if not immad
reproduction. It also, thooght io
to the margins of inland nivers and lakes; but it is very rarely seen except near water, and salt water for preference.

The turnstone is about as big as an ordinary snipe; but, compared with most of its allies of the group Limicolae, to which it belongs, its form is somewhat beavy, and its legs are short. Still it is brisk in its movements, and its variegated plumage makes it a pleasing bird. Seen in front, its white face, striped with black, and broad hlack gorget attract attention as it sits, often motionless, on the rocks; while in fight the white of the lower part of the back and white band across the wingsare no less conspicuous even at a distance. A nearer view will reveal the rich chestnut of the mantle and upper wing-coverts, and the combination of colours thus exhibited suggests the term "tor-toise-shell " often applied to it-the quill-feathers being mostly of a dark brown and its lower parts pure white. The deeper tints are, however, peculiar to the nuptial plumage, or are only to be faintly traced at other times, so that in winter the adults-and the young always-have a much plainer appearance, ashy-grey and white being almost the only hues observable. From the fact that turnstones may be met with at almost any season in various parts of the world, aod especially on islands as the Canaries, Azores, and many of those in the British seas, it has been inferred that these birds may breed in such places. In some cases this may prove to be true, but in most evidence to that effect is wanting. In America the breeding-range of this species has not been defined. In Europe there is good reason to suppose that it includes Shetland; but it is on the north-western coast of the Continent, from Jutland to the extreme north of Norway, that the greatest number are reared. The oest, contrary to the habits of most Limicolae, is generally placed under a ledge of rock which shelters the hird Irom observation, \({ }^{1}\) and therein are laid four eggs, of a light olive-green, closely hlotched with hrown, a nd hardly to be mistaken for those of any other bird. A second species of tarmstone is admitted by some authors and denied by others. This is the \(S\). melanocephalus of the Pacific coast of North America, which is on the average larger than \(S\). interpres, and never exhibits any of the chestnut colouring.
Though the genus Sirepsilas seems to be rightly piaced a mong the Charad riidac (eee Ploven), it occupies a momewhat a bnormal position aroong them, and in the form of is short pointed beak and its variegated coloration has hardly any very near relative. (A. N.)
TURND MAGURELE, the capital of the department of Teleorman, Rumania; 21 m. N.E. of the conlluence of the Olt and Danube, at the terminus of a branch railway. Pop. (1900), 8668. A ferry plies across the Danube to the Bulgarian fortress of Nicopolis. Large quantities of grain are shipped in lighters to Braila. There are some vestiges of a Roman bridge across the Danube, built (c. AD. 330) by Constantine the Creat.
TUBMO SEVBRIN, the capital of the department of Mehediatzi, Rumania, on the main Walachian railway, and on the left trak of the river Danube, below the Iron Gates cataracts. Pop. (1900), 18,628. It is a modern commercial town, having a school of arts and crafts, several churches, and large government yards for the building of river steamers, lighters and tug boats. There is a considerable trade in livestock, preserved meat, petroleum and cereals. The town, which was originally called Drobetae by the Romans, took its later name of Turris Severi, or the "Tower of Severus," from a tower which stood on a small hill surrounded by a deep fosse. This was built to commemorate a victory over die Quidi and Marcomanni, hy the Roman cmperor Severus Near Turnu Severin are the remains of the celebridge, the largest in the Roman Empire, built in architect Apollodorus of Damascus. The river broad at this spot. The bridge was composed of pillars, several of which are
adapted through the lerabinthind, uc, rasina, puentos), the oleo-resins y from some coniferstween the sives and the iird seem to require some
such as Pinus sylvestris-and from the terebinth tree, Pistacia ercbindhus, L. It was to the product of the latter, now known as Chian turpentine, that the term was first applied. The terebinth tree and its resin were well known and bighly prized from the carliest times. The tree is a native of the islands and shores of the Mediterranean, passing eastwerd into Central Asia; but the resinous erudation found in commerce is collected in the island of Chios. Chian turpentine is a tenacious semi-fluid transparent body. yelluw to dull hrown in coiour, vith an agrecable resinous odour and little taste. On exposure to the air it becomes dry, hard and brittle. In their natural characters, turpentines are soft solids or semi-fluid bodies, consisting of resins dissolved in turpentine oil, the chief constituent of which is pinene. They are largely used in the arts, being separated by distillation into rosin or colophony (see Rosin), and oil or spirit of turpentine.

Crude or common lurpentime is the commercial name which embraces the oleo-resin yielded by several coniferous trees, both European and American. The principal European product, sometimes distinguished as Bordeaux turpentine, is obtained from the cluster pine, Pinus Pinaster, in the Landes department of France. Crude turpentine is further yiekled by the Scotch fir, P. sybesifis. throughout northern Europe. and by the Corsican pine, \(P\). Laricio, in Austria and Corsica. In the United States the turpentineyielding pines are the swamp pine, \(P\). australis, and the loblolly. P. Teedo, both inhabiting North and South Carolina, Georgio and Alabama. Venice lurpenime is yiolded by the lareh iree, larux europaea, from which it is collected principally in Tirol. Strassburg imepentine is obtained from the bark of the silver fir: but it is collected only in snall quantities. Less known turpentines are obtained from the mountain pine, \(P\). \(P\) snrilio. the stone pine, P. Combra, the Aleppo pine, P. halepensis, \&c. The so-called Canada balsam, from Abies balsamea, is also a true turpentine.

Oid of Txppentine. or Twrps, as a commercial product is obtained Irom afl or any of these obeo-resine, but on a Large scaie only from crude or common turpentine. The essential oil is rectified by redistillation with water and alkaline carbonates, and the water which the oil carries over with it is removed by a further distillation over calcium chloride. Oil of turpentine is a colourless tiquid of oily consistence, with a strong characteristic odour and a hot disagreeable taste. It begins to boil at about \(155^{\circ} \mathrm{C}\)., and its specific gravity is bet ween 0.860 and 0.880 . It rotates the plane of polarized light both to right and left in varying degrees according to its sources, the American product being dextrorotatory and the French laevorotatory. It is almost insoluble in water, is miscible with absolune alcohol and ether, and dissolves sulphur, phosphorus, resins and caoutchouc. On exposure to the air it dries to a solid resin, and abeorbing oxygen gives off ozone- a reaction uțilized in the disinfoctant called "Sanitas." Agitated with successive quantities of sulphuric acid and distilled in a curtent of steam, it yields terebene, a mixture of dipentere and terpinene mainly, which is used in medicine. Chemically, of of turpentine is a more or lesa complex mixture of hydrocarbons generically named terpenes (q.v.). Ofl of turpentine is largely used in the preparation of varnishes and as a medium by painters in their "flat " colours
Pharmacology and Theropendics.-Oil of turpentine (Oleum terebinthinec) is administered internally as an anthelmintic to kill tapeworm. Applied externally it possesses. in higher degree than any of its fellows. the properties of the volatile oils It acts as a rubefacient, an irritant and a counter-irritant. It is also an antiseptic and. in small quantities, a feeble anaesthetic. It is absorbed by the unbroken skin. The drug is largely employed as a counter. irritant, the pharmacopocial liniments being very useful applications Such conditions as myalgia, bronchitis, "chronic rheumatism '" and pleurisy are often relieved by its use. It may also be employed as a parasiticide in ringworm and similar conditions.

In large doses oil of turpentine causes purging and may induce much haemorrhage from the bowel; it should be combined with some trustworthy aperient, such as castor oil, when given as an anthelmintic. It is readily absorbed unchanged and has a marked contractile action upon the bood veswels. This gives it the rare and valuable property of a renote haemostatic, erroneously supposed to be posecssed by so many usoless drugas. It must not be used to check haeroorrhage from the kidncys (haematuria) owing to its irritant action on those organs, but in haemoptysis (haemorrhage from the lungs) it is often an invaluable remedy. In large doses it has a depressant action on the nervous system, leading even to coma and total abolition of refiex action. The drug is encreted partly by the bronchi-which it tende to disinfect-and partly in the urine, which it causes to smell of viofets. Glycuronic acid also appears in the urine. A small portion of the drug is removed by the skin, in which it may give rise to an erythematous rash. It must not be given to the subjects of Bright's disease.

Perhaps the mrost valuable of all the medicinal applications of turpentine, and one which is rarely. if ever. mentioned in theraptutic texibooks-owing to the fart that gynaecology has been so ex. tremely specialized-is in inoperable cancer of the uterus. Quite
\(90 \%\) of these cases are seen too late for operation, and nearly all recur alter operation. The exhausting pain, the serious haemorrhages, and the abdominal septicity associated with a repulsive odour and the absorption of toxic products, which are the chief and uttimately fatal symptoms of that disease. are all directly combated by the administration of oil of turpentinc. So beneficial is the action that for years there prevailed the unfortunately erroneous belicf that Chian turpentine is actually curative in this condition. But it undoubtedly prolones life, lessens suffering, and by checking the growth of bacteria upon the cancer reduces the fetid odour and the symptoms of septic intoxication.

Old turpentine and French oil of turpentine are antidotes to phosphorus, forming turpentine-phomphoric acid, which is inert.
TURPIH (d. c. 800), archbishop of Reims, was for many years regarded as the author of the legendary Historic de vita Caroli Magni a Rolandi, and appears as one of the tweive peers in a number of the chamsons de geste. He is probably identical with Tilpin, archbishop of Reims in the 8th century, who is alluded to by Hincmar, his third successor in the see. According to Flodoard, Charles Martel drove Rigobert, archbishop of Reims, from his office and replaced him by a warrior clert named Milo, afterwards bishop of Trier. The same writer represents Milo as discharging a mission among the Vascones, or Basques, the very people to whom authentic history has ascribed the great disaster which befell the army of Charlemagne at Roncesvalles. It is thus possihle that the warlize legends which have gathered around the name of Turpin are due to some confusion of his identity with that of his martial predecessor. Flodoard says that Tilpin was originally a monk at St Denis, and Hincmar tells bow after his appoint ment to Reims he occupied bimself in securing the restoration of the rights and properties of his church, the revenues and prestige of which bad been impaired under Milo's rule. Tilpin was elected archbishop between 752 and 768, probably in 753; he died, if the evidence of a diploma alluded to by Mabillon may be trusted, in 794, although it has been stated that this event took place on the and of September 800 . Hincma r , who composed bis epitaph, makes him bishop for over forty years, and from this it is evident that he was elected abeut 753, and Flodoard says that he died in the forty-seventh year of his archbishopric. Tilpin was present at the Council of Rome in 769 , and at the request of Charlemagne Pope Adrian I. sent him the pallium and confirmed the rights of his church.

The Historia Coroli Magni was declared autbentic in \(1: 22\) by Pope Calixtus 11 . It is, however. entirely legendary, being rather the cryscallization of earlier Roland legends than the source of later ones, and its popularity seems to dale from the latter part of the 12 th century. Gaston Paris, who made a special study of the Historif, considers that the first five chapters were written by a monk of Compostella in the \(\mathbf{\text { tith century and the remainder by a monk of }}\) Vienne between 1109 and \(t 119\). The popularity of the work is atcested by the fact that there are at least five French translations of the Historia dating from the t 3 th century and one into Latin verse of about the same time. According to August Potthast there are atrout fifty manuscripts of the story in existence. The Historia was first printed in 1566 at Frankfort: perhaps the best edition is the one edited by F. Castets as Tmpini hisloria Kerdi magni ed Ruholands (Paris 1880). It has beer Iranslated many times into French and also into Germin. Danish and English. The English translation is by T. Rodd and is in the History of Charlet the Great and Orlindo, oscribed to Tw pin (London. 1813). See G. Paris. De psemdo-Twrpino (Paris. 1865), and Hasfoire poticue de Charlemegre, new. ed. by \(P\). Aleyer (1905); and V. Friedel. "Etudes compostellanes" in Qia Mercention (Liverpool. 1899).
TORPM, FRANCOIS HEDRI (\(1700-1790\)), French man of letters, was born at Caen. He was first a professor at the university of his native town, then went to seek his fortudes in Paris, where be made some stir in phelosophical circles, and especially
 vice of the bookselfers. He trasslated, or rather adapied from the English, Edward WT Montague's Hiswirt dm gomarmemern des ansicurres repmNigucs (\(1: 60\)), and wrote a continuation of Father

 is an interesting but faulty adapration of the observations of a vicar-apostolic who had lived for a beos time in that coumty. and who accused Tu yin of having tolsmperected his ideas. His and who accused 7
the biographies of generals, ministers, and eminent offogrs of the law (s vols., 1777-1790), in which, however, as ha Harpe said, be showed himself to be "ni Plutarque ai Erancais." He also wrote an \(H\) ishoire des hommes publuc: lires \(d\) an liers that (1789).

TURPIN, RICHARD [DICX] (1706-1739), English robber, was born in 1706 at Hempstead, near Safiron Waiden, Essex, where his father kept an alchouse. He was appreaticed to a butcher, but, having been detected at cattle.stealing, joined a nototions gang of deer-stealers and smugglers in Essex. This gang also made a practice of robbing farmhouses, terrorizing the women in the absence of their husbands and brothers, and Turpin took the lead in this class of outrage. On the gang being broken up Turpin went into partnership with Tom King, a well-known bighwayman. To avoid arrest be finally left Essex for Lincolnshire and Yorkshire, where he set up under an assumed oame as a horse dealer. He was convicted at York assizes of horse-stealing and hanged on the 7th of April 1739. Harrison Ainsworth, in his romance Rookroood, gives a spirited account of a wonderful ride by Dick Turpin on his mare, Black Bess, from London to York, and it is in this connexion that Turpin's name has been generally remembered. But as far as Turpin is cuacerned the incident is pure fiction. A somewhat similar story was told about a certain John Nevison, known as " Nicks." a well-known highwayman in the time of Charles II., who to establish an alibi rode from Gad's Hill to York (some 190 m) in about is hours. Both stories are possibly only different versions of an old north road myth.

TURQUOISE a mineral much used as an ornamental stone for the sake of its blue or bluish-green colour. It is genervily held that the name indicates its source as a stone from Turkey, the finest kinds having cone from Persia by way of Turkey, whence it was called by the Venetians who imported it \(\mathrm{Imarchesa}^{\text {, and by the }}\) French turquoise. The old form turkis, used by Tennyson, agrees with the German Tirkis. Some autborities have suggested that the word may be a corruption of the Persian name of the stone pirsuei. Turquoise is a crypto-crystalline mineral, occurring in small reciform nodules or as an incrustation, or in thin seams and diseminated grains. Its mode of occurrence suggests its formation by deposition from solution, and indeed it is sometimes found in stalactitic masses. The typical colour is a delicate skyblue, but the blue passes by every transition intogreen. In some cases the cotour deteriorates as the stone becomesdry, and may be seriously affected by exposure to sunlight; whikt with age there is often a tendency to become green, as seen in examples of ancient turquoise. The mineral is always opaque in mass, but generally translucent in thin splinters. Turquoise takes a fair polish, but the lustre is teeble, and inclines to be wary; the hardness is nearly 6 , the specific gravity bet ween 2.6 and 2.8 .

Much discussion has arisen as to the chemical composition of turquoise. It is commonly regarded as a hydrows alaminium phosphate having the composition \({ }_{2} \mathrm{~A}, \mathrm{O}_{4} \mathrm{P}, \mathrm{O}_{3} \cdot{ }_{5} \mathrm{H}_{3} \mathrm{O}\) or rather Al:HPO_(OH)4. coloured with a variahle proportion of a copper phosphate, or perhaps partly with an iron phosphate. Professor S. L. Penfield. however, has been hed by careful analysis of turquoise from Nevada to propose the general formula: \(\left[\mathrm{Al}(\mathrm{OH})_{2} \mathrm{Fe}(\mathrm{OH}), \mathrm{Cu}(\mathrm{OH}), \mathrm{H}, \mathrm{PO}\right.\). Hence turquoise may be regarded chemically as derived from orthophosphoric acid by replacement of the hydrogen by the univalent radicies \(\mathrm{Al}(\mathrm{OH})_{\text {s }}\) Sc. An ingenious counterfit of turquoise has been lormed by compressing a precipitate of cuprìerous aluminium phosphate.

Turquoise is usually cut as an ormamental stone in circular or elliptical form, with a low coaver surface. In the East, where it is used not only for personal orament but for the decoration of dagger-handles, horselfrappings, Acc., the pieces are nol unusuality of irregular shape; and when worm as amolets the turquoise is often engraved with Oriental inscriptions, generally passages from the Kortn, the incised characters being gith or inlaid filth gold wire. The turquoise has always been associzted with curious superstitions, ithe most comanon being the notion that it changes colour mith variations in the state of the owner's healeh or cren in sympathy with his afections. It is commonly held to be a "lucky stone."

In Pertia, where the finemt turquoise is found, the mines have beem worked for at least eight centuries. The workings have beea described by General Houtum Schindler, an Austrian, who was at one time in charge of the mines. The principal locality is north-west of the village of Madan, on the couthern slopes of Mt Ali-Miraia, a peak near Nishapur, in the province of Khorasan. Here the turquoise occurs in narrow seams in a brecciated trachyteporphyry. II is found also in some other localities in Persia and in Turkestan. Jean Baptiste Tavernier (\(1605-168\)) states that the best turquoise, reserved for the sole use of the shah, was obtained from the Vieile Roche, while inferior atones were got from the Nouvelle Roclie. These terms atill survive, for turquoise of fine colour is sometimes said in trade to be from the "ord rock," and that of pale tint or of onstable colours is described as from the "new rock." The latter is sometimes not true Oriental turquoise, but the material called "bone-turquoise" or odontotite, and known also as "occidental tumquoise." This is merely loasil bone or ivary coloured by iran phosphate (vivianite) or perhaps stained in some cases by cupriterous solutions, and is readily distinguished from true turquoise by showing organic atructure under the microecope. Bone-turquoise occurs in Europe; and it may be noted that mineral turquoise also is known from certain localities in Saxony and Silesia, but the quantity is very limited and the quality poor, so that it has no commercial importance. Chrysocolla has been sometimes mistaken in various parts of the world for turquoise.
In 1849 turguoise was found by Major C. Macdonald in Wadi Maghara and WadiSidreh in the Sinaitic Peninsula ; and a large series of the specimens was shown in the Great Exhibition of 185 t . According to H . Baverman, who described the locality geologically, the turquoise occurs in a red sandstone, in the form of embedded noduks and as an incrustation lining the joint-faces. The turquoise was worked for some time by Macdonald, and many years afterwards, workinge were resumed on a systematic sale by an English company. but without great success. Relics of extensive ancrent mining operations for turquoise show that the rock was at one time worked with flint implemeats. The locality was examined by Protesor Flinders Petrie in 1905.
In ancient Mexiso much use was made of turquoisc as an inlay for mosaic work, with obsidian, malachite, shell and irun pyrites. Such work is illustrated by fine specimens in the ethnograplical gallery of the Britich Museum and elsewhere. Relies of exrenaive worlings are found in the mountains of Los Cerillos near Santa Fé in New Mexico, where mining lor turquorse is now actively carried on. One of the bills in which old workings occur has been called Mt Chalchihuitt, since it is believed that the curquoise was known by the name chalchihuitl, which in some places was applied also to jade. Another of the Cerillos hills in which workings have been opened up is called Turquoise Hill. The matrix at Los Cerillos is described by D. W. Johnson as an altered angite-andesite, in which the turquoise occurs in thin veins and in small nodules in patches of kaolin. It appears probable that the alumina of the turquoise was derived from the alteration of felopar, and the phosphorus from apatire in the rock, whilst the copper was brought up by heated vapours which altered the andesite. Turquoise is found also at Turquoise Mountain. Cochise county, Arizona, and at Mineral Park, Mohave coonty, in the same state; it occurs in the Columbus district, wouthern Nevada : in Fresuo counsy, California; and near Idaho, Clay county, Alabana. Mexican turquoise is known from the gtate of Zacatecas. Turquoise was discovered in 1894 near Bodalla, in New South Wales; and it has also been found in Victoria.
Turquoise is sometimes termed by mineralogists callaite, since in is betieved to be the callowis of Pliny-a sone which he describes as resembling lapis lazuli, but paler, and in colour more like the shal. low sen. The callaina of Pliny was a pale grten stone from beyond Indiz. Whilst his collaica was a kind of turbid callaina. The name callainite was suggested by Profesoor J. D. Dana for a bright green mineral which was lound in the form of beads, with stone hatehets, in ancient graves, near Mane-er. H'roek (Rock of the Fairy), mear Locmaniaquer in Brittany, and which A. Damour sought to identify with Pliny's callais. The mineral in question ceems to be idemical with vanscite, a hydrous alu minium phosphate azmed by A. Breithaupt, a nd occurring as a beautilul green amorphous mineral, sometimes polished as an ornamental stone; fine examoles occur in Utah. Somewhat allied to turquoise is the blue mineral called lazulite (to be distinguished from lazurite. see Lapis LazULI), which has the formula (Fe, ifg \() \mathrm{Al}_{4}(\mathrm{OH})(\mathrm{PO}\)). and has occasionally been used as an ornamental stone.
(F. W. R. \({ }^{\circ}\))

TURAET (from O. Fr. courethe, diminutive of towr, tower, mod. Fr. tourclle), a small tower, especially at the angles of larger buildings. sometimes overhanging and buitt on corbels, when it is often called a "bartizan " (\(q .0\)), and sometimes rising, from the ground.

TURRETIM, of TURRETIN, the name of three Swiss divines.
Benoft Tuexetin (\(1588-1631\)), the son of Francesco Turretini, a native of Lucca, who settled in Geneva in 1570. was born at Zarich on the oth of November \(: 588\). He was ordained a pastor in Geneva in 1612 , and became professor of theology in 1618 .

In 1630 he represented the Genevan Charch at the national synod of Alais, when the decrees of the synod of Dort were introduced into France; and in 162: he was sent on a successful mission to the states-gencral of Ifolland, and to the authorities of the Hanseatic towns, with reference to the defence of Geneva against the threatened attacks of the duke of Savoy. He published in 1618 1630 (3 vols.) a defence of the Genevan translation of the Bible, Eine Verteidigung der senfer Bibelübersetznng (Defense de la fiddite des traductions de la Bible faites a Gentoc), against P. Cotton's Genève plagiaire. He died on the 4 th of March 1631.
François Turretin (1623-1687), son of the preceding, was born at Geneva on the 17 th of October 1623. After studying theology in Geneva, Leiden and France, he became pastor of the Italian cengregation in Geneva in 1647; after a briel pastorate at Lyons he again returned to Geneva as prolessor of theology in 1653, having modestly declined a professorship of philosophy in 1650. He was one of the most influential supporters of the Formula Consensus Helpetica, drawn up chiefly hy Johann Heinrich Heidegger (\(1633^{-1608}\)), in 1675, and of the particular type of Calvinistic theology which that symbol embodied, and an opponent of the theology of Moses Amyraut and the school of Saumur. His Instimtio thealagicae dencticae (3 vols., Geneve 1680-1683) has passed through frequent editions, the last reprint having been made in Edinburgh in 1847-1848. He was also the author of volumes entitled De satisfactione Christi disputationes (Geneva, 1666) and De necessaria secessione nostra ab ecelesia romane (Geneva, 1687). He died on the 38 th of September 1687.

Jean Alphonse Turretin (i671-1737), son of the preceding, was bom at Ceneva on the 13th of August 167x. He studied theology at Geneva under L. Tronchin, and after travelling in Holland, England and France was received into the "Vénerable Compagnie des Pasteurs' of Geneva in 1693. Here be became pastor of the It alian congregation, and in a 697 professor of church history, and later (1705) of theology. During the next forty years of his life he enjoyed great infuence in Geneva as the advocate of a more liberal theology than had prevailed under the preceding gencration, and it was largely through his instrumentality that the rule obliging ministers to subscribe to the Formula Consentus Helvelica was abolished in 1706 , and the Consensus Itself renounced in 1725 . He also wrote and laboured for the promotion of union between the Reformed and Lutheran Churches, his most important work in this connexion being Nubes lestium poo moderato et pacifico de rebes theologicis judicio, et instituenda inter Protestantes concordia (Geneva, 1720). Besides this he wrote Cagitationes ed dissertationes theologicae, on the principles of natural and reveated religion (2 vols., Geneva, 1737; in French. Traile de la otrite de la rdigion chretionne) and commentaries on Thessalonians and Romans. He died on the ist of May 1737.

See E. de Bude. Frangois el J. Alphonse Turrelini (2 vols., 1880). and Lellies inediles a Jron Alphowse Twrretint (3 vols., 1887-t888): F. Turretini. Nohce brogrophoque tur Bénedict Turretini (1871): C. Borgeaud, Histoure de liunipersite de Cenève (1900).

TURRIPF. a municipal and police burgh of Aberdeenshire, Scolland. Pop. (1901), 2273. It lics near the Deveron, 381 m . N.W. of Aberdeen by the Great North of Scotland railway, via Inveramsay. In the choir of the ancient church, now in ruins, is a fresco painting of St Ninian. On the 24th of May 1639 the national struggle for civil and religious liberiy was inaugurated in the county with the skirmish known as the Trot of Turrifl. Some 4 m . south are the remains of the castle of Towie Barclay, the seat of the old family of the Barclays.

TURRIS HBISONIS (mod. Porto Torres, g.v.), an ancient seaport town of Sardinia, situated at the north-western extremity of the island, and connected with Carales by two roads, which diverged at Othoca, one (the more important) keeping inland and the other following the west coast. It was probably of purely Roman origin, founded apparently by Julius Cacsar, as it bears the title Colonia Julia; and in Pliny's time it was the only colony in the island. It is noteworthy that it apparently betonged to one of the urban tribes the Collina; Puteoli, which belonged to the Palatina is \(y\). \(*\) nher
exception to the rule that manicipia and colowiace were not enrolled in the urban tribes. A Roman bridge of seven arches, somewhat restored in modern times, the ruins of a temple (now known as It Palazzo del Re Barbaro), which an inscription found there shows to have been restored (a.D. 247-249) by the praffectus of the province, together with the basilica, an aqueduct, various huildings (S. Valero Usni in Notisie degli scavi (1882), 121, A. Taramelli, ibid. (1904), 145) and some rock tombs, still exist.

The inscriptions from Turris Libisonis are given by Th. Mommsen in Corp. inser. lat. x. 826; V. Deasi in Notixie degli scavi (1898), 260 A. Taramelli, ibid. (1904), 141. One of them (C.I.L. No. 7954) mentions the construction of a fountain basin, another the construc tion of a quay (rope ispriuana): substructions may still be seen under water when the sea is clear.
(T. As.)

TURSHIZ, a district of the province of Khorasan in Persia, lying E. of the great salt desert. It has a population of nearly 20,000 and pays a yearly revenue of about \(\$ 7000\). It produces and exports wool, cot ton, silk and much dried fruit, of the latter particularly raisins and AlO Bukhara, "Bokhara prunes." The chiel place and capital of the district is Sultanabad, generally called Turshiz, like the district, situated 225 m . south-east hy east from Shahrud and 100 m . south-west from Meshed, in \(35^{\circ} 10^{\prime} \mathrm{N} .58^{\circ} 34^{\prime}\) E., at an elevation of 2200 ft . It is aurrounded by a dilapidated wall and hes a population of about 8000 .

TUBTON, an urban district in the Westhoughton parlia mentery division of Lancashire, Englend, \(4 \mathrm{~m} . \mathrm{N}\). of Bolton, on the Laocashire \& Yorkshire railway. Pop. (1901), 12,355 . Its modern growth is the result af the development of the cotton trade in its various branches; and there are large stone quarries in the vicinity. There remains in the township a curious building naroed Turton Tower, dating principally from the 166 h century, and containing some fine contemporary wood wort.

TUSCALOOSA, a city and the county-sent of Tuscaloosa county, Alabama, U.S.A., in the west -central part of the state, on the Black Warrior river, about 55 m. S.W. of Birmingham and about 100 m. N.W. of Montgomery. Pop. (1900), s094; (local census, 1003), 7140 (35Si negroes); (1910 U.S. census), 8407. It is served by the Alabama Great Southern and the Mobike \& Otio railways. The Black Warrior river, formerly not navigable beyond Tuscaloosa, has been improved by the United States guvemment, and there are three locks in or mear the city. Tuscaloosa lies between the foolhills of the Appalachians to ithe northeast and the tow alluvisl valley of the Black Warrior. It has many odd-fashioned residences and gardens and a fine Federal building. It is the seal of the oniversity of Alabams; of the Alabama Central Femate Colkege (Baptist. issis). which eccupies the ofd state capitol: of the Tuscaloust Female Colfige (Methodist Episcopal. South. ISso); at Stillman Insutute (Presbyterian, isjo: orisinally the Tuscaloosa Institute for the Education of Coboured Ninisters; asmed in booour of its fouader, Dr Charkes A. Stillman. in ASoi): and of Alabama Bryce Hospital for the Insane (iSol). The university of Alabume was founded by an ect of the state kexishature of tis.a. the Inited States goverament beving doasted sti.ais acres of putlic lands for this purpose in the preceting yrar, in IE, 1 the university whs opened at Iuxiatuisa, iben ibe state capial On the ith of April i865 all ite bunitapes of tbe universuty, errept the cobservatory. Tere buroed by a boly af Fenkial cavalry, and the university was - hied iberrather until isoo. in isid the linited Siates guvemurat gave amiber to.aiso acres of pebbic lands in resitution, and ma 100; the state legshature appropriated tenc.000 for wert twintapg The university is a part of the publec shool system of the selite. and is governed by a boand of thastecs, ccosiasting ow the governor and the superibiendent of ecturation of the state of tro mocobers from the conpresional district io wifich the monersily is sitmated and of oet member froen each of the oulver overressionl districts if the sidie Ite waiverity iedales. Urenkes a cologe and a gratimie sibool drpanments of engiment ing. Luw. medcioe (lew:eriy ite Mectical Colloge of Alhbum

and a summer school for teachers, and in \(\mathbf{r g o 8 - 9}\) had 60 instructors and 887 students. In the city there are several manufacturing establishments, principally cotton and lumber mills; and in the immediate vicinity there are important coal, coke and iron interests-there is a large iron furnace, pipe foundry and coking plant at Holt, about 4 m . north-east of the city.

Tuscaloosa derives its name from an Indian chief, who, after a desperate battle with De Soto at Mauvilla (the site of which is not definitely known) in \(\mathbf{1 5 4 0}\), is said to have hanged himself in order to escape capture, and is commemorated by a granite monolith in the Court House Square; the name is said to mean "black warrior." Tbe first settlement of whites was made in 1815. The city was chartered in 1819, and in 1826-1846 it was the capital of Alabama.
TUSCAHA (mod. Toscanella, g.v.), an ancient town of Etruria, about 15 m . N.E. of Tarquinii. ft is hardly mentioned in ancient literature; it was a station on the road from Blera to Saturnia, a prolongation of the Via Clodia. On the hill of \(\mathbf{S}\). Pietro are remains of walling of the Roman period. A number of Etruscan tombs were found by the Campanari brothers in the ath century, and their valuahle contents are in various European museums.

TUSCANY (Toscana), a territorial division of Italy, consisting of the western part of the centre of the peninsula, bounded N.W hy Liguria and Emilia, E. by the Marches and Umbria, S.E. by the province of Rome and W. by the Mediterranean. It consists of eight provinces, Arezzo, Firenze (Florence), Grosseto, Livorno (Leghorn), Lucca, Massa-Carrara, Pisa and Siena, and has an area of 9304 sq. m . Pop. (1001), 2.566.741. The chief railway centre is Florence, whence radiate lines to Bologna (for Milan and the noth), Faenza, Lucca, Pisa and Leghom, and Arezzo for Rame. Siena stands on a branch leaving the Florence. Pisa line at Empoli and running through the centre of Tuscany to Chiusi, where it joins the Florence-Rome railway. The line from Rome to Genoa runs along the coast throughout the entire length of Tuscany, and at Montepescali throws off a branch joining the Empoli-Chiusi line at Aaciano, and at Follonica another to Massa Marittima.

Except towards the coast and around Lucca, Florence and Arez20, where the beds of prehistoric lakes form plains, the country is hilly, being intersected with sab-Apennipe spors. The mose fertile country in Tuscany is in the valley of the Arno, where the plains and slopes of the hills are highly cultivated. In strong contrast with this is the cosst phin known as the Mareman, 8 go sq. m . in extent, where malaria has beea prevalent since the depopulation of the coantry in the middle ages. Here in the firs half of the toth century the grand duke Leopold II. of Tuscany began an elaborate system of drainage, which was gradually extended until it covered nearly the whote of the district. The greater part of ithe Naremma now affords pasture to large berds of borses and talf. wild catte, but on the driet parts corn is grown. the people coming down from the tills to sow and to reap. The hill country just inland, especially near Volierra, has poor soil. largety chayer, and subject to landslips. but is rich in minerak But for the Maremma. Tuscany is one of the mosi favoured refinas of Italy. The climate is temperate, and the rainfall not excessive. The Apenaines shetter it from the cold porth winds and the prevailing vinds in the west. blewins in from the Tyrrterian Sel, are warm and tumut, thaugh Fhrente is wiJer 2:1 mare E:njy than Rome in the mater and boxter in sumaner, oming to its being shut in someg the meciatans Wheat. maine. ries (especially the red mine which takes ibe anme of Chisnti from the district SSW of Florencel. Live an tobacca-chestacis and Bowers are the chinet prodaits of Tuscasy. Muies sheep and catle are berd. ad beesmas is produred in large quastitics. But the real wrath of Tusiary bes ia its E:ixrak Irvo. mercury. beracic ach. copper. sin, herite, stateary mentis, alabester did Sizmene earth are all howat in cuasuicrable quantities, thice
 d Lurcal are well tavea so mealit revors The - Tesiagy ore emootingty varied and carsied at
wih great activity. There are universitios at Piss and Siema. Viaregio and Leghorn are much frequentod for sea-bathing, wile the latler is a promperous port.
The main art centres of Tuscany are Florence, Pisa and Siena, the headquarters of the chief schools of painting and sculpture from the 13 th century onwards. While the former city, bowever, bore as promineat a part as any in Italy in the Renaisance, the art of Pisa ceased, owing to the political decline of the city, \(t 0\) make any advance at a comparatively early period, its importance being in ecclesiastical architecture in the 1 ath, and in sculpture in the 13 th century. Siena, too, never accepted the Remaissance to the full, and its art retained an individual character without making much progress.

The language of Tuscany is remarkable for its purity of idiom, and its adoption by Dante and Petrarch probably led to its becoming the literary language of Italy. (See Italun Lancuace, vol. giv. p. 895.)
See E. Repetti, Disionario seografico fisico slorico della Toscame \((6\) vols. Florence, 1834-1846). See also \(\mathcal{E}\). Dennis. Cilies and Cemeweries of Elrmica (2 vots., London, 1883). On medieval and Renaisunce architecture and art there are innumerable works. Among thowe on archilecture may be mentioned the great work of H . von Geymatler and A. Widmann, Dis Archilektur der Renaissance is Toscama
(T. As)

Ristory.-Etruria (q.v.) was finally ansexed to Rome in 351 s.c., and constituted the seventh of the eleven regions into which Italy was, for administrative purposes, divided hy Augustus. Under Constantine it was united into one province with Umbria, an arrangement which subsisted until a least 400, as the Notitia speaks of a "consularis Tusciae et Umbriae." In Ammianus Marcellinus there is implied a distinction between "Tuscia suburbicaria" and "Tuscia annonaria," the latter being that portion which lies to the north of the Arno. Alter the fall of the Western empire Tuscia, with other provinces of Italy, came sucecssively under the sway of Herulians, Ostrogoths, and Greek and Lombard dukes. Under the last-named, "Tuscia Langobardorum," comprising the districts of Viterbo, Corneto and Bolsena, was distinguished from "Tuscia Regni," which lay more to the north. Under Charlemagne the name of Tuscia or Toscana became restricted to the latter only. One ol the earliest of the Frankish marquises was Boniface, either first or second of that name. who about 828 fought with success apainst the Saracens in Africa. Adalbert 1., who succeeded him, in 878 espoused the cause of Carloman as against his brother Louis III. of France, and suffered excommunication and Imprisonment in consequence. Adalbert II. (the Rich), who married the ambitious Bertha, daughter of Lothair, king of Lorraine, took a prominent part in the politics of his day. A subsequent marquis, Hugo (the Great), became also duke of Spoleto is 98 . The male line of marquises ended with Boniface If. (oe LLI)., who was murdered in 1052. His widow, Beatrice, in 1055 married Godirey, duke of Lorraine, and governed the coantry till her death in 1076, when she was succeeded by Matidda (9.s.), her only child by her first husband. Matilde died in 1114 rithout issue, bequeathing all her extensive possessions to the Church. The consequent struggle between the popes, who chimed the inheritance, and the empesors, who maintained that the countess had no right to dispose of imperial ficfs, enabled the principal cities of Tuscany gradually to assert their independence. The most important of these Tuscan republics were Forence, Pisa, Siena, Arezzo, Pistoia and Lucca.

The Rdurn of the Medici-After the surrender of Florence to the Imperialists in August 1530 the Medici power was reeatablished by the emperor Charles V. and Pope Clement VLI., although certain out ward forms of republicanism were preserved, and Alessandro de' Medici was made duke of Florence, the dignity to be bereditary in the family. In the reign of Cosimo III. Siens was annexed (1550); the tithe of grand duke of Tuscany wis conierred on that ruler In 1567 by Pope Plus V. and recognited in the person of Francis I. by the emperor Maximilian IL in i576. Under a series of degenerate Medici the history of Tuscany is certainly not a splendid record, and few evenis of ineportance occurred save courl scandals. The people became
more and more impoverished and degraded, a new and shoddy nobility was created and granted wide privileges, and art and letters declined. Giovan Gastone was the last Medicean grand duke; being childiess, it was agreed by the treaty-of Vienna that at his death Tuscany should be given to Francis, duke of Lorraine, husband of the archduchess Maria Theress, afterwards empress. In 1737 Giovan Gastone died, \({ }^{2}\) and Francis II., after taking possession of the grand duchy, appointed a regency under the prince of Craon and departed for Austria never to return. Tuscany was goverced by a series of foreign regents and was a prey to adventurers from Lorraine and elsewhere; although the administration was not wholly inefficient and introduced some useful reforms, the people were ground by taxes to pay for the apenage of Francis in Vienna and for Austrian wars, and reduced to a state of great poverty. Francis, who had been clected emperor in 1745, died in 176s, and was succeeded on the throne of the grand duchy by his younger son, Leopold 1 .

Leopold resided in Tuscany and proved one of the most capable and remarkable of the reforming princes of the 18th century. He substituted Tuscans for foreigners in government rno offices, introduced a system of free trade in food- mofermag stuffs (at the suggestion of the Siencse Sallustio Lonotr it. Bandini), promoted agriculture, and reclaimed wide areas of marshland to intensive cultivation. He reorgenized taxation on a basis of equality for all citizens, thereby abolishing one of the most vexatious privileges of the nobility, reformed the administration of justice and local governmeat, suppressed torture and capital punishment, and substituted a citizen miditia for the standing army. His reforms in church matters made a great slit at the time, for he curbed the power of the clergy, suppressed some religious houses, reduced the mortmain and rejected papal interference. With the aid of Scipione de' Ricci, bishop of Pistoia, he even attempted to remove abuses, reform church discipline and purify religious worship; but Ricci's action was condemned by Rome. Ricci was forced to resign, and the whole movement came to nothing. (See Pistola, Synod of.) The grand duke also contemplated granting a form of constitution, but his Teutonic rigidity was not popular and many of his reforms were ahead of the times and not appreciated by the people. At the death of his brother, Joseph II., in 1790 , Leopold became emperor, and repaired to Vienna. After a hrief regency he appointed his second son, Ferdinand IIL., who had been born and brought up in Tuscany, grand duke.

During the French revolutionary wars Ferdinand tried to maintain. neutrality so as to avoid foreign invasions, but in 1700 . French force antered Florence and was weicomed by a small number of republicans. The Tme Prownh grand duke was forced to fly, the " tree of liberty" was set up, and a provisional government on French lines established. But the great mass of the people were horrified at the irreligious character of the new regime, and a counterrevolution, fomented by Pope Pius VII., the grand ducalists and the ciergy, broke out at Arezzo. Bands of armed peasants marched through the country to the cry of "Viva Maria!" and expelled the French, not without committing many atrocitics. With the assistance of the Austrians, who put an end to disorder, Fborence was occupied and the grand ducalists established a government in the name of Ferdinand. But after Napoleon Bonaparte's victory at Marengo the French returned in great force, dispersed the bands, and re-entered Florence (October 1800). They too committed atrocities and sacked the churches, but they were more warinly welcomed than before by the people, who had experienced Austro-Aretine rule. Joachim Murat (afterwards king of Naples) set up a provisional government. and by the peace of Lunéville Tuscany was made a part of the Spaaish dominions and erected into the kingdom of Etrutia under Louis, duke of Parme (1801). The new king died in 1803, leaving an infant son, Charles Louis, under the regency of his widow, Marie Louise of Spain. Marie Louise ruled with
\({ }^{1}\) The history of Tuscany from 1530 to 1737 mesiven in grealer detail under Medici.
reactionary and clerical tendencies until 1807, when the emperor Napoleon obliged Charles IV. of Spain to cede Tuscany to him, compensating Charles Louis in Portugal.

From 1807 to 1809 , when Napoleon's sister, Elisa Baciocchi, was made grand duchess, Tuscany was ruled by a French administrator-general; the French codes were introduced, and Tuscany became a French department. French ideas had gained some adherents among the Tuscans, but to the majority the new institutions, although they produced much progress, were distasteful as subversive of cherished traditions. After Napoleon's defeats in 1814 Murat seceded from the emperor and occupied Tuscany, which he afterwards handed over to Austria, and in September Ferdinand III. returned, warmly welcomed by nearly everybody, for French rule had proved oppressive, especially on account of the heavy taxes and the drain of conscription. At the Congress of Vienna he was formally reinstated with certain additions of territory and the reversion of Lucca. On Napoleon's escape from Elba Murat turned against the Austrians, and Ferdinand had again to leave Florence temporatily; but he returned after Waterloo, and reigned until his death in \(\mathbf{8} 824\).
The restoration in Tuscany was unaccompanied by the excesses which characterized it elsewhere, and much of the French legisla-

The tion was retained, Ferdinand was succeeded by his Restoration. son, Lcopold II., who continued his father's policy of benevolent but somewhat enervating despotism, which produced marked effects on the Tuscan character. In 1847 Lucca was incorporated in the grand duchy. When the politica! excitement consequent on the election of Pius LX. spread to Tuscany, Leopold made one concessioa after another, and in February 1848 granted the constitution. A Tuscan contingent took part in the Piedmontese campaign against Austria, but the increase of revolutionary agitation in Tuscany, culminating in the proclamation of the republic (Feb.9, r840), led to Leopold's departure for Gaeta to confer with the pope and the king of Naples. Disorder continuing and a large part of the population being still loyal to him, he was invited to return, and he did so, but accepted the protection of an Austrian army, by which act he forfeited his popularity (July 8849). In 1852 he formally abrogated the constitution, and threc years later the Austrians departed. When in 8859 a sccond war between liedmont and Austria became imminent, the revolutionary agitation, never completely quelled, broke out once more. There was a division of opinion bet ween the moderates, who lavoured a constitutional Tuscany under Leopold, but forming part of an Italian federation, and the popular party, who aimed at the expulsion of the house of Lorraine and the unity of Italy under Victor Emmanuel. At last a compromise was arrived at and the grand duke was requested to abdicate in favour of his son, grant a constitution, and take part in the war against Austria. Leopold having rejected these demands, the Florentines rose as one man and obliged him to quit Tuscany (April 27, 1859). A provisional government, led by Ubaldino Beruzzi and afterwards by Bettino Ricasoli, was established. It declared war against Austria and then handed over its nuthority to Loncompagni, the Sardinian royal commissionct (May 9). A fow weeks later a French force under Prince Napoleon landed in Tuscany to threaten Austria's flank, but in the meanwhile the emperor Napoleon made peace with Austria and agreed to the restoration of Leopold and other Italian princes. Victor Emmanuel was obliged to recall the royal commissioners, but together with Cavour he secretly encouraged the provisional governments to resist the return of the despots, and the constituent assemblics of Tuscany, Romagna and the duchics voted for annexation to Sardinia. A Central Italian military league and a customs union were formed, and Cavour having overcome Napoleon's opposition by ceding Nice and Savoy, the king accepted the annexations ant appointed his kinsman, Prince Carignano, viceroy of Central Italy with Ricasoli as governor-general (March 22, 1880). Unton wht The Sardinian parliament which met in April conthe lustian tained deputies from Central Italy, and after the k/agdom. occupation of the Neapolitan provinces and Sicily

1865, in consequence of the Pranco-Italian convention of September 8804, the capital was transterred from Turin to Florence, where it remained until it was removed to Rome in 1871.

Since the union with Haly, Tuscany has ceased to constitute a separate palitical entity, although the people still preserve definite regional characteristics. It has increased in weallh and education, and owing to a good system of land senure the peasantry are among the most prosperous in Italy.
Bialiograpity. - A. won Reumont, Geschiche Toseanas (2 vols., Gotha, \(1876-1877\)): Zobi, Sluria cinile della Tascana (Florence, 1850): E. Robiony, Cli ullimi dei Medici (Florence. 190s); C. Tivaroni, Sioria critica del risorgimento taliano (9 vols., Turin. i888, \&e.); M. Bartolommei. Gioli, \(1 l\) Rrodzimento toscano el'asione popdare (Florence. 1905). See also undet Florence; Medict; Firdinand III.; Lefold il.; Bartolonmei; Ricasoli, \&c.
(L. V. \({ }^{\circ}\))
tuscarora, a tribe of North American Indians of Iroquoian stock. Their lormer range was on the Neuse river, North Carolina. Here in 8700 they lived in fifteen villages and were estimated at 6000 . In \(1 ;\) it, as a protest against the encroachments on their territory, they declared war on the white settlers. After two years they were defeated and fied north to the Iroquois, in whose famous league they became the sixth nation, setting on the territory of the Oncida Indians, in New York state. In the War of American Independence some of the tribe fought for the English and some against them. The remnant of them is divided between rescrvations in Canada and New York, and numbers about 700 .
TUSCULUA, an ancient city of Latium, situated in a commanding position on the north edge of the outer crater ring of the Alban volcano, il m. N.E. of the modern Frascati. The highess point is 2198 ft . above sea-level. It has a very extensive view of the Campagna, with Rome lying 15 m . distant to the north.west. Rome was approached by the via Latina (from which a branch road ascended to Tusculum, white the main road passed through the valley to the south of it), or by the Via Tusculam (though the antiquity of the latter road is doubriut).
According to tradition, the city was founded by Telegonus. the son of Ulysses and Circe. When Tarquinius Superbus was expelled from Rome his cause was espoused by the chief of Tusculum, Octavius Mamilius, who took a leading part in the formation of the Latin Leaguc, composed of the thitty principal cities of Latium, handed together against Rome. Mamilius commanded the Latin army at the battle of Lake Regillus (497 B.c.), but was killed, and the predominance of Rome among the Latin cities was practically established. According to some accounts Tusculum hecame from that time an ally of Rome, and on that account frequently incurred the hostility of the other Latin cities. In 381 b.c., after an expression of complete submission to Rome, the people of Tusculum received the Roman franchise, but without the vole, and thencoforth the city continued to hold the rank of a manixipium. Orher accounts, however, speak of Tusculum as often allied with Rome's enemies -last of all with the Samnites in 323 日.c. Several of the chiel Roman familics were of Tusculan cisigin, e.g. the gentes Mamilia, Fulvia, Fontcia, Juventia and Porcia; to the last-named the ceiebrated Catos belonged. The town council kept the name of senate, but the title of dictator gave place to that of aedite. Notwithstanding this, and the fict that a special college of Roman equitcs was formed to take charge of the cults of the gods at Tusculum, and especially of the Dioscuri, the citizens resident there were neither numerous nor men of distinction. The villas of the ncighbourhood bad indeed acquired greater importance than the not easily accussible town itself. and by the end of the Republic, and stili more during the imperial period, the territory of Tusculum was one of the favourite places of residence of the wealthy Romans. The number and extent of the remains almost defy description, and can only be made clear by a map. Even in the time of Ciero we hear of eightern owners of villas there. Much of the territory (includting Cicero's villa), but not the town itself, which lies far too high, was supplied with water by the Aqua Crabra. (m the hill of Tusculum itself are remains of a small theatre (excavated in \(\mathbf{1 8} \mathbf{9 9}\)), with a
reservoir behind it, and an amphitheatre. Both betong probably to the imperial period, and so does a very large villa (the substructures of which are preserved), by some attributed, but wrongly, to Cicero, by others to Tiberius, near the latter. Between the amphitheatre and the theatre is the site of the Forum, of which nothing is now visible, and to the south on a projecting spur were tombs of the Roman period. There are also many remains of houses and villas. The citadel-which stood on the highest point an abrupt rock-was approached only on one side, that towards the city, and even here by a steep ascent of 150 ft . Upon it remains of the medieval castle, which stood here entil itgr, alone are visible. The city walls, of which some remains still exist below the theatre, are built of blocks of the native "lapis Albanos" or peperino. They probably belong to the republican period. Below them is a well-house, with a rool formed of a pointed arch-generally held to go back to a somewhat remote antiquity, but hardly with sufficient reason.

The most interesting associations of the city are those conpected with Cicero, whose favourite residence and retreat for study and literary work was at, or rather near, Tusculum. It Fas bere that he composed his celehrated Tusculan Disputations and other philosophical works. Much has been witten on the position of his villa, but its true site still remains doubtful. The theory, which places it at or near Grotta Ferrata, some distance farther to the west, has most evidence to support it. Although Cicero (Pro Sesfio, 43) speaks of his own house as being insignificant in size compared to that of his neighbour Gabinius, yel we gather from other notices in various parts of his works that it was a considerable building. It comprised two gymnasia (Dir. i. 5), with covered particus for exercise and philosophical discussion (Tusc. Disp. it. 3). One of these, which stood on higher ground, was called "the Lyceum," and contained a tibrary (Dis. ii. 3); the other, on a lower site, shaded by rows of trees, was called "the Academy." The main building con. tained a covered porticus, or cloister, with apsidal recesses (exedrae) containing seats (see Ad Fam. vii. 23). It also had bathrooms (Ad Fam. xiv. 20), and contained a number of works of art, botb pictures and statues in bronze and marble (Ep. ad AtI. i. \(\mathbf{1}, \mathbf{8}, 9,10\)). The central atrium appears to have been small, es Cicero speaks of it as an alriolum (1d Quint. Fr. iii. 1). The cost of this and the other house which he built at Pompeii led to his being burdened with debt (Ep. ad Alt. Ii. 1). Nothing nów exists which can be asserted to be part of Cicero's villa with any degree of certainty. During the imperial period little is recorded about Tusculum; but soon after the transference of the seat of empire to Constantinople it became a very important stronghold. and for some centuries its counts occupied a leading position in Rome and were specially influential in the selection of the popes. During the 12 th eentury there were constant struggles between Rome and Tusculum, and towards the close of the century (1101) the Romans, supported by the German emperor, gained the upper hand, and the walls of Tusculum, logether with the whole city, were destroyed.
see L. Canina. Descr. detr antico Tuseulo (Rome, 1841); A. Nibby. Dimberni di Roma, iii. 293 (and ed. Rome. 1841): H. Desiau in Corp. izscript. lai. pp 252 sq9. (Berlin, ieat): F. Grossi-Gondi, 4 Fuscalamo ndir ein classca (Rome. 1907): T. Ashbs in Papers of the British School at Rome, iv. 5 (London, 19c7, 1909)) (T As. 1
TOSEECEE, a town and county-scat ol Macon county, Alabama, U.S.A., in the east part of the state, about 40 m . E. of Dontgomery. Pop (1900) 21;0; (1910) 2803. It is served by the Tuskegce railway, which connectis it with Chehaw, 5 m . distant, on the Western railway of Aliabama. The city manulactures cotton sced. Tuskegee is chicfly known for its educa. tional institutions-the Tuskegee Normal and Industriai Institute and the Alabama Conference Femaic College (Atcthodist Episcopal Church, South; opened 1856). The former was founded in 1880 by an act of the state legislature as the Tuskegee Slate Normai School, and was opened in July \({ }^{1881}\) by Booker T. Wasbington for the purpose of giving an industrial education to negroes; in 1893 it was incorporated under its present name. In 1890 the national Congress granted to the school 25.000 acres of mineraJ lands, of which 20,000 acres, valued at \(\$ 200,000\),
were unsold in 1009. Andrew Carnegie gave 8600,000 to the institute in 1903, and the institute has a Carnegie library (1902), with about 15.000 volumes in 1909 . In 1900 the endowment was about \(\$ 1,389,600\), and the school property was valued at about \(\$ 1,117,660\). It had in 1909 a property of 2345 acres (of which 1000 were farm lands, 1145 pasture and wood lands, and 200 school campus), and 100 buildings, many of brick, and nearly all designed and constructed, even to the making of the bricks, by the teachers and students. The state of Alabama appropriated \(\$ 2000\) for teachers' salaries in 1880 , increased the appropriation to \(\$ 3000\) in 1884 , and for many years gave \(\$ 4500\) annually; the school receives \(\$ 10,000\) annually from the Jihn F. Stater Fund, and the same sum from the General Education Board. The institute comprises an academic department (in which all students are enrolled) with a seven years' course, the Phelps Hall bible training school (:892), with a three years' course, and departments of mechanical industrics, industries for girls, and agriculture. The department of agriculture has an experiment station, established by the state in 1896 , in which importantexperiments in cotton breeding have been carried on. There are a larm, a large truck garden, an orchard, and a hakery and canning factory. Forty different industries are taught. Cocking schools and night schools a re carried on by the institute in the town of Tuskegee. In 1908-1909 the enrolment was 1494 students, of whom about one-quarter were nomen, and there were 167 teachers, all negroes. Tuition in the institute is free; board and living cost \(\$ 8.50\) a month; day studemts are allowed to "work-out" \(\$ 1.50-\$ 3.00\) a month of this amount, and night students may thus pay all their expenses. At Tuskegee under the auspices of the institute are held the annual negro conferences (begun in 189 t) and monthly farmers' institutes (begun in 1897); and short courses in agriculture (begun in 1904) are conducted. Farmers' institutes are held throughout the South by teachers of the school. In 1905 the institute took up the work of rural school extension. A model negro viliage (South Greenwood) has been buiit west of the institute grounds on land bought by the institute in coor. Affiliated with the institute and having its headquarters in Tuskegee is the National Negro Business Leaguc (1000). The success of the Institute is due primarily to its founder and principal, Booker T. Washing. ton, and to the efficient board of trustecs, which has included such men as Robert C. Ogden and Seth Low. Tuskegee was settled about 1800 .
See Booker T. Washington. Working With the Mands (New York, 1904): and Thrasher, Twskegee, Its Story and lis Work (Boston. 1900).

TUSSADD, MARTE (\(1760-1850\)), founder of "Madame Tussaud's Exhibition" of wax figures in London, was born in Berne in 1760 , the daughter of Joseph Grosholiz (d. 1760), an army officer. Her uncle, a doctor of Beme, John Christopher Curtius, had attracted the attention of the prince de Conti by his beautiful anatomical wax models, and had been induced to move to Paris, abandun his profession, and practise wax modelling as a fine art. His house became the resort of many of the talented men of the day, and here he brought his niece at the age of six, and taught her to model in wax. She became such an adept that she early modeiled many of the great people of France, and was finally sent for to stay at the palace at V'ersailles to instruct the sister of Louis XV1.. Ame Elizabeth, in the popular craze. It was from Curtius's exhibition that the mob obtained the busts of Necker and the duke of Orleans that were carried by the procession when on the 12 th of July 1789 the first blood of the French Revolution was slied. During the terrible days that followed Marie Grosholiz was called upon to model the heads of many of the prominent leaders and victims of the Revolution, and was herself for three months a prisoner, having fallen under the suspicion of the committee of public salety. In 1704 she married a Frenchman named Tussaud, from whom she was separated in 1800 . Het uncle having died in the former year, after some diffeulty twencured permission from Napoleon to lave France, to London the nucleus of her collection
in the Palais Royal, and the idea of her "Chamber of Horrors" from Curtius's Caverne des Grands Voleurs, in the Boulevard du Temple. Her wax figures were successfully shown in the Strand on the site of the Lyceum theatre, and through the provinces, and finally the exhibition was established in permanent London quarters in Baker Sireet in 1833 . Here Mme Tussaud died on tbe roth of April 1850. She was succeeded by her son Francis Tussaud, he by his son Joseph, and he again by his son John Theodore Tussaud (b. 1859). The exhibition was moved in 1884 to a large building in Marylebone Road.

TUSSER, THOMAS (c. 1524-1580), English poet. son of William and Isabella Tusser, was born at Rivenhall, Essex, about 1524. At a very carly age he became a chorister in the collegiate chapel of the castle of Wallingiord, Berkshire. He appears to have been pressed for scrvice in the King's Chapel, the choristers of which were usually afterwards plared by the king in one of the royal foundations at Oxford or Cambridge. But Tusser entered the choir of St Paul's Cathedral, and from there went to Eton College. He has left a quaint account of his privations at Wallingford, and of the severities of Nicholas Udal at Eton. He was elected to King's College, Cambridge, in 1543. A date which has fixed the earliest limit of bis birthyear, as he would have been ineligible at nineteen. From King's College he moved to Trinity Hall, and on leaving Cambridge went to coutt in the service of William, ist Baron Paget of Beaudesart, as a musician. After ten years of life at court, he married and settled as a Carmer at Cattiwade, Suffolk, near the river Stour, where he wrote bis Huadreth Good Pointes of Husbadrie (\(1557,156 \mathrm{x}, 1562\), \&c.). He never remained long in one place. For his wile's health he removed to Ipswich. After her death he marsied again, and farmed for some time at West Dereham. He then became a singing man in Norwich Cathedral, where be found a good patron in the dean, John Salisbury. After another experiment in farming at Fairsted, Essex, he removed to London, whence he was driven by the plaguc of \({ }^{1572-1573}\) to find refuge at Trinity Hall, being matriculated as a servant of the college in 1573 . At the time of his death he was in possession of a small estate at Chesterton, Cambridgeshire, and his will proves tbat he was not, as has sometimes been stated, in poverty of any kind, but had in some neasure the thrift he preached. Thomas Fuller says he "traded at large in oxen, sheep, dairies, grain of all kinds, to no profit"; that he "spread his bread with all sorts of butter, yet none would stick thereon."' He died on the 3rd of May 1580. An erroneous inscription at Manningtree, Essex, asserts that be was sixty-five years old.

The Hundreth Good Paintes was enlarged to A Hundretk good pointes of hasbandry, lately maried unto a hundreth good poyntes of huscifery . . . the first exiant edition of which. "newly corrected and amplified, " is dated 5570 . In 1573 appeared Fite hundreth pointes of good hasbandry. . (nepriated 1577, \(1580.1585,1586,1590, \& \mathrm{c}\).) The numerous editions of this book, which contained a metrical autobiogtaphy, prove that the homely and practical wisdom of Tusser's verse was appreciated. He gives directions of what is to be done in the farm in even' month of the year, and minute instruc. tions for the regulation of domestic aftairs in general. The later editions include A dialonue of wyeyge and etryeympe (1562). Modero editions are by William Mavos (1812), by H. N. W. (1848). and by W. Payne and Sidney J. Herrage Jor the English Diatect Society (18;8).

TUTBURY, a town in the Burton pariamentary division of Stafiordshire, England, 41 m . N.WV. of Button-upon-Trent, picturesquely situated oa the ziver Dove, a western tributany of the Trent, wbich forms the county boundary with Derbyshire. Pop. (scos), 3971. The station of the Great Northern and North Staflordshire milways is in Derbyshire. The fine church of St Mary has a nave of rich Norman work with a remarkable western doorway; there are Early English additions, and the apsidal chancel is a modera imatation of that style. There are ruins of a large castle stanting that thate the tritier: these include a gateway of sth-conters whet intingtheted in Caroline times, a wall enclosing the \(k\) (toul portions of dwelling rooms

The early history of Tutbury (Tateberie, Stulesbury, Tullebiri, Tudbwry) is very obscure. It is said to have been a seat of the Mercian kings. After the Conquest it was granted to Hugh d'Avranches, who appears to have built the first castle there. At tbe time of the Domesday Survey the castle was held by Henry de Ferrers, and "in the borough round it were 42 men living by their merchandize alone." Tutbury was the centre of an honour in Norman times, but the town remained small and unimportant, the castle and town continuing in the hands of the Ferrers until 1 266, when, owing to Robert de Ferrers's participation in the barons' revolt, they were forfeited to the Crown and granted to Edmund Crouchback, earl of Lancaster. They are still part of the duchy of Lancaster. Tutbury Castle was partially tebuilt by John of Gaunt, whose wife, Constance of Castile, kept her court there. Later it was, for a time, the prison of Mary Queen of Scots. Duting the Civil War it was held for the king but surrendered to the parliamentary forces (1646), and was reduced to ruins by order of parliament (1647). Richard LI. granted to tbe inhabitants of Tutbury two fairs, to be held respectively on St Katharine's day and the feast of the Invention of the Cross; the fair on the I 5th of August was famous until the end of the 18 th century for its bull coursing, said to have been originally intioduced by John of Gaunt.
In 1831 a large treasure of English silver coins of the 13 th and 14 th centuries was discovered in the bed of the river, and a series was placed in the British Museum. This treasure was believed to have been lost by Thomas, the rebellious earl of Lancaster, who was driven from Tutbury Castie hy Edward 11. in 1322.
See Mosley. History of Caslle, Priory and Town of Tubury (1832); Victoria County History: Staford.
TUTICORIN, a seaport of British India in the Tinneveily district of Madras. Pop. (Igan), 28,048, It is the southern terminus of the South Indian railway, 443 m . S.W. of Madras city. In connexion with this railway a daily steamer runs to Colombo, 149 m . distant by sea. Tuticorin is an old town, long in possession of the Dutch, and has a large Roman Catholic population. It used to be famous for its pearl fisheries, which extended from Cape Comorin to the Pamban Channel between India and Ceylon; but owing to the deepening of the Pamban Channel in 1895 these banks no longer produce the pearl oysters in such remunerative quantities, though conch shells are still found and exported to Bengal. As a set-off to this, Tuticorin has advanced greatly as a port since the opening of the railway in 1875, though it has only an open roadstead, where vessels must anchor two and a half miles from the shore; it is the second port in Madras and the sixth in all India. The exports are chiefly rice and livestock to Ceylon, cotton, tea, coffee and spices. There are factories for ginning and pressing cotton and a cotion mill.

TUTOR (Lat. Jutor, guardian, ineri, to watch over, proteet), properly a legal term, borrowed from Roman law, for a guardian of an infant (see Rowan Law and Infant). Apart from this usage, which survives particularly in Scots law, the word is chiefly current in an educational sense of a teacher or instructor. It is thus specifically applied so a fellow of a college at a university with particular functions, connected especially with the supervision of the undergraduate members of the college. These functions difier in various universities. Thus, at Oxford. a fellow, who is also a tutor, besides lecturing, or taking his share of the general teaching of the college, has the supervision and responsibifity for a certain number of the undergraduates during their period of residence; at Cambridge the futor has not necessarily any teaching functions to perform, but is more cancerned with the economic and social welfare of the pupils assigned to his care. In American universities the term is apalied to a teacher who is subordinate to a prollong, his appointment being for a year or a terco of years. TUTELaNe Rar, a idwu of Germany, in tbe kingdom of Wortos the lelt bunk of she Danube, which is here crossed
figs 37 ma . by rail N.E. of Schaflhausen, and at the
junction of lines 20 Stutigart and Ulm. Pop. (1gos), \(14,627\). The town is overlooked by the ruins of the castle of Honberg, which was destroyed during the Thirty Years' War, and has an Evangelical and a Roman Catholic church, soveral schools, and a monument to Max Schneckenburger (1819-1849), the author of Die Wacht am Rhein. Its chief manufactures are shoes, cutlery, surgical instruments and woollen goods, and it has a trade in fruit and grain.
Tuttlingen is a very ancient place, and is chiefly memorable for the victory gained here on the 24th of November 2643 by the Austrians and Bavarians over the French. It was almost totally destroyed by firt in 1803. It has belonged to Wirttemberg since 1404 .

TUXPDOO, a town of Orange county, New York, U.S.A. obout 40 m . N.N.W. of New York City, near the New Jersey sate line. Pop. (2890), 1678; (1900), 2a77; (1905), 2865; (1910), 2858. Tuxedo is served by the Evie mailway. About If m . west of the railway station is Tuxedo Lake, which with \(\mathbf{1 3 , 0 0 0}\) acres of surrounding country was taken for debt in 1814 by the elder Pierre Lorillard, who built a shooting-box here and sold wood from the land. The second Pierre Lorillerd (1833 -1901) formed the Tuxedo Park Association for the development of the tract, and on the 18t of June 1886 the Tusedo Club and Tuxedo Park were opened; here there has prown up a remarkahle collection of private establishments for the enjoyment of country life by certain wealthy families, who form a social club to whom the privileges are restricted. The area covers a variety of wild and cultivated scenery, and is beautifully laid out and utilized; there are golf links, a tennis and racket club, and game preserves, with excellent trout and bass fushing in the lake.

TUY, a city of north-western Spain, in the province of Pontevedra, on the right bank of the river Mifo (Portuguese Minho), opposite Valenga do Minho, which stands on the left bant in Portuguese territory. Pop. (1900), 11, I13. Tuy is the southern terminus of the railways to Santiago de Compostela and Cormana; Valenga do Minho is the northern terminus of the Portuguese railway to Oporto. Near Tuy rises the Monte San Cristobal, whose far-spreading spurs constitute the ferile and picturesque Vega del Ora. To the east is the river Louro, a right-hand tributary of the Mifo abounding in salmon, trout, lamprey, eels and other fishes; and beyond the Louro, on the riiway to Corunns, are the bot mineral springs of San Martin de Caldelas. Tuy is a clean and pleasant city with well-built bouses, regular streets and many gardens. The cathedral, founded in the sath century, but largely restored between the Igth and 1 gth , is of a massive and fortress-like architecture. Les half-ruined cloister and roble eastern facade date from the 1ath century. There are severad large convents and ancient parish churches, an old episcopal palace, hospitals, good schools, a theatre, and a very handsome bridge over the Mifo built in 1885. The induatries of Tuy include tanning, brewing, the distillation of spinits and the manufacture of soap. The city has also a brisk agricultural trade.

Dering part of the 7th century Tuy was the Visigothic capital. If wis taken from the Moors by Alphonso VII. In the iath contury. As a frontier fortress it played an important part in the wass between Portugal and Castile. I

TVBR, a government of central Russia, on the upper Votga, bounded by the governments of Pskov and Novgorod on the W. and N. respectively, Yaroslavl and Vladimir on the E. and Moscow and Smolensk on the S. It has an area of 24,967 aq. m . Lying on the southern slope of the Valdai plateau, and intersected by deep valleys, it has the aspect of a hilly region, bat is in reality a plateau 800 to 1000 ft . in altitude. Its highest parts are in the west, where the Volga, Southern Dvina and Mres sise in marshes and lakes. The plateau is built up chiefly of Carboniferous limestones, Lower and Upper, urderiain by Devoitian and Silurian deposits, which crop oat only in the dervodations of the lower valleys. The whole is covered by a thick sheet of boulder-clay, the bottom-moraine of the Scan-dieavo-Russian ice-sheet, and by subwequent Lacustrine
deponits. A number of tew or eskers occur on the slopes of the platasa. Ochre, baick, and pottery clays, as also limestone for building, are obtained, and there are chalybeate springs. The soil, which is clayey for the most part, is not ferrile as a rule.
Nearly the whole of Tver is drnined by the upper Volga and its tributariea, several of which (Vazura, Dubna, Seetra, Ivertela and the tributaries of the Mologa) are navigable. The Vyshnevolotsk gystem of canals connects the Volga (navigable some 60 m . from ifs source) with the Baltic, and the Tikhvin system connects the Mologa with Lake Ladogs. The Msta, which flows into Lake Ilmefi, and its tributary the Tona drain Tver in the north-west, and the Southera Dvina rises in Ostashkoy. This petwork of rivers highly favours navigation: corn, linseed, opirits, flax, hemp, timber, metals and manufactured wares to the annual value of \(11.500,000\) are shipped from, or brought to. the river ports of the government. Lakes, ponds and marabes are numerous in the weat and north-west, Lake Seliger-near the source of the Volga-and Lake Mztino being the most important. The lorests-coniferous in the north and deciduous in the south-are rapidty disappearing, but still cover \(32 \%\) of the surface. The climate is continental: the average yearly temperature at Tver (\(41^{\circ}+5 \mathrm{~F}\).) is the zame as that of Orel and fambov (Jan. \(11^{\circ}\), July \(67^{\circ}\)).
The population was estimated in rg06 as \(2,053,000\), almost entirely Great Russian, but including about 117,700 Kanelians. The government is divided into twelve districts, the chief towns of which are Tver, Byezhetak, Kalyazin, Kachin, Korsheva, Ostashkov, Rxhev, Staritsa, Torzhok, Vesyegonsk, Vyshniy Volochok and Zubtsov. Nearly \(2,000,000\) acres are under cereals. The principal crops are rye, wheat, oats, barley and potatoes. The sowing of grass is spreading, owing to the eforts of the semstoas or local councils, and improved machinery is being introduced. Livestock breeding is also important, and dairy produce is exported. Manufactures have grown rapidly. Cotton-mills, flour-mills, tanneries, sugar-refineries, iron-foundries and distileries ane the chief establishments. The government of Tver is aloo the seat of important vilage industries, of which a semarkable variety is carried on, nearly every district and even every village having its own speciality. The principal of these are weaving, lece-making, boat-building, and the making of boots, saddlery, coasse pottery, sacks, nets, wooden wares, nails, locks, other hardware and agricultural implements and felt goods.

TVBR, a town of Russia, capital of the govermment of the same name, 104 m . hy rail N.W. of Moscow, on both banks of the Volga (here crossed by a foating bridge) at its confluence with the Tvertsa. The low right bank is protected from inundations by a dam. Pop. (1885), 39,280; (1900), 45,644 Tves is an archiepiscopal see of. the Orthodax Greek Church. The oldest church dates from 1564, and the cathedral from 1689. A public garden occupies the site of the former fortress. The city possesses a sood archacological museum, housed in a formes imperial paince. The industries have developed greatly, especially those in cotton, the chiel works being cotton and flour mills, but there are also machinery works, glass works, sawmills, tanneries, railway carringe works and a steamer-building wharf. Among the domestic industries are nail-making and the manufacture of hosiery for export to Moscow and St Petersburg. The traffic of the town is considerable, Tver being an intermediate place for the trade of both capitals with the governonents of the upper Volga.

Tver dates its origin from in80, when a fort was erected at the mouth of the Tvertse to protect the Suzdal principality against Novgorod. . In the \(13^{\text {th }}\) century it became the capital of an independent principality, and remained so until the end of the isth century. Michael, prince of Tver, was killed (1318) fighting against the Tatars, as also was Alexander his son. It long remained an open question whether Moscow or Tver would ultimately gain the supremacy in Great Ruscia, and it was only with the help of the Tatars that the princes of the former eventually succeeded in breaking down the independence of Tver. In 1486, when the city was almost entirely burned down by the Muscovites, the son of Ivan. M. hecame prince of Tver; the final annerition to Moscay"
later. In 1570 Tver bad to endoroz
difficult to understand, the vengeance of Ivan the Terrible, who ordered the massacre of 90,000 inhabitants of the principality. In 1600-1612 the city was plundered both by the followers of the second false Demetrius and by the Poles.

TWAIN, MARK, the nom de plume of Saiute Lanchorne Clemens (1835-1910), American author, who was born on the 3oth of November 1885, at Florida, Missouri. His father was a country merchant from Tennessee, who moved soon after his son's birth to Hannibal, Missouri, a little town on the Mississippi. When the boy was only twelve his father died, and thereafter he had to get his education as best he couid. Of actual schooling he had little. He learned how to set type, and as a journeyman printer he wandered widely, going even as far east as New York. At seventeen be went back to the Mississippi, determined to become a pilot on a riversteamboat. In his Life on the Mississippi he has recorded graphically his experiences while "learning the river." But in 186! the war broke out, and the pilot's occupation was gone. After a brief period of uncertainty the young man started West with his brother, who had been appointed lieutenantgovernor of Nevada. He went to the mines for a season, and there be began to write in the local newspapers, adopting the pen name of "Mark Twain," from a call used in taking soundings on the Mississippi steamboats. He drifted in time to San Francisco, and it was a newspaper of that city which in 1867 supplied the meney for him to join a party going on a chartered steamboat to the Mediterranean ports. The letters which he wrote during this voyage were gathered in 1869 into a volume, The Innocents Abrood, and the book immediately won a wide and enduring popularity. This popularity was of service to him when be appeared on the platform with a lectureor rather with an apparently informal talk, rich in admirably delivered anecdote. He edited a daily newspaper in Buffalo for a fow months, and in \(187^{\circ}\) he married Miss Olivia L. Langdon (d. 1904), removing a year later to Hartford, where he established his home. Rougking It was published in 1872, and in 1874 be collaborated with Charles Dudiey Wamer in The Gilded Age, from which he made a play, acted many hundred times with John T. Raymond as "Colonel Sellers." In 1875 he published The Adventures of Tom Sowyer, the sequel to which, Huckleberry Finn, did not appear until 1884 . The result of a second visit to Europe was bumorously recorded in A Tramp Abroad (I880), followed in 1882 by a more or less historical romance, The Prince and the Panper; and a year later came Life on the Mississippi. The Adsembures of Huchleberry Fins, the next of his books, was published (in 1884) by a New Yori firm in which the author was chief partner. This firm prospered for a while, and issued in \(\mathbf{7 8 8} 9\) Mark Twain's own comic romance, A Conrecticut Yankee at King Arthur's Court, and in 1892 a less successful novel, The A marican Claimant. But after a severe struggle the publishing house failed, leaving the author charged with its very heavy debts. After this disaster he issued a third Mississippi Valley novel, The Tragedy of Pudd'nhead Wilsom, in 1894, and in 1806 another historical romance, Personal Recolfectious of Joan of Arc, wherein the maid is treated with the utmost sympathy and reverence. He went on a tour round the world, partly to make money by lecturing and partly to get material for another book of travels, published in 1897, and called in America Following the Equator, and in England More Trampo Abraad From time to time he had collected into valumes his scattered sketches; of these the first, The Celedrated Jwouping Prog of Celewres County, appeared in 1867, and the latest, The Mas that Corrupled Hadleyburg, in 1900 To be recorded also is a volume of essays and literary criticisms, \(\boldsymbol{H}\) or To Tell a Seory (z897). A complete edition of his works was published in : wenty-two volumes in \(\mathbf{1 8 0 9 - 1 9 0 0}\) by the Amcrican Publishing Company of Hartiord. And in this last year, having paid off all the debts of his old firm, he netumed to America. By the time he died his books had brought him a considerable fortune. In later years be publighed a few tninor volumos of fiction, and a arries
of severe and also anusing criticisms of Christian Science (pub)
lished as a book in r907), and in 1906 be began an autobiography in the North American Review. He had a great reception in England in 1907, when he went over to receive from Oxford the degree of Doctor of Literature. He died at Redding, Connecticut, on the rist of April 1910. Of his four daughters only one, who married the Russian pianist Gabriowitch, survived him. Mark Twain was an outstanding figure for many years as a popular American personality in the world of letters. He is commonly considered as a humorist, and no doubt he is a humorist of a remarkable comic force and of a refreshing fertility. But the books in which his humour is broadly displayed, the travels and the sketches, are not really so significant of his power as the three novels of the Mississippi, Tom Sawyer, Hackleberry Finn and Pudd'nhead Wilson, whercin we have preserved a vanished civilization, peopled with typical figures, and presented with inezorable veracity. There is no lack of humour in them, and there is never a hint of affectation in the writing; indeed, the author, doing spontancously the work nearest to his hand, was very likely unconscious that he was making a contribution to history. But such \(H\) wekleberry Finn is, beyond all question; it is a story of very varied interest, now comic, now almost tragic, frequently poetic, unfailingly truthful, although not always sustained at its bighest level. And in these three works of fiction there are not only humour and pathos, character and truth, there is also the largeness of outlook on life such as we find only in the works of the masters. Bencath his fun-making we can discern a man who is fundamentally serious, and whose ethical standards are ever lofty. Like Cervantes at times, Mark Twain reveals a depth of melancholy beneath his playful humour, and like Molière always, he has a deep scorn and a burning detestation of all sorts of sham and pretence, a scorching hatred of humbug and hypocrisy. Like Cervantes and like Molière, he is always sincere and direct.
After Mark Twain's death, his intimate friend, W. D. Howells, published in 1910 a series of personal recollections in Happer's Magasume.
(B. M.)

TW1.sD, a river in the south of Scotland. It rises in the south-west corner of Peeblesshire, not far from the Devil's Beef Tub (in Dumfriesshire) in the hill country in which the Clyde and Annan also rise. The stream flowing from Tweed's Wall, about 1500 ft . above the sea, is generally regarded as its source, though its origin has been traced to other streams at a still higher elevation. For the first 36 m . of its course the stream intersects the shire of Peebles in a north-easterty direction, and, shortly before the county town is reached, receives Lync Water on the left and Manor Water on the right. The valley now widens, and the river, bending cowards the south-east, passes Innerleithen, where it receives the Leithen (left) and the Quair (right). It then crosses Selkinkshire and, having received the Ettrick (reinforced by the Yarnow) on the right, flows northward past Abbotsford, forming for about 2 m . the boundary between the counties of Selkirk and Roxhurgh. After receiving the Gala on the left, the Tweed croses the north-western comer of Roxburghshire past Medrose and, after being joined by the Leader on the left, winds past Dryburgh Abbey round the south-western corner of Berwickshire. The remainder of its course is in a north-eesterty direction through Roxburghashire past Rebo, where it receives the Teviot on the right, and then between the counties of Berwick and Northumberiand, past Coldstream, to the town of Berwick, where it eaters the North Sea. On the left it receives Eden Water at Edenmouth and Leet Water at Coldstream, and the Till from Northmmerland between Coldstream and Notham Castle. The last 2 m . of its course before reaching Berwick are is England. The Tweed is 97 m long and drains an area of \(13: 0\) sq. m. Its bed is pebbly and sandy, and notwithstanding discolorations from mannfactures, the stream, owing to is tear and spartling appearance, still metits the epithet of the "silver Tweed." The ther, bowever. has no estuary, al traffic is chiefty confined
mavigetion is carriod on by barges. The Tweed is one of the best salmon streams in Scotland. From the time of Kenneth the Grim (d. 1005) to that of James VI. (1600) the Tweed uplands were the favourite hunting ground of the Soots monarchs, and, at a later date, the Covenanters found refuge in the recesses of the hills and on the banks of Talla Water, an early right-hand affluent. Close to Stobo Castle is Stobo Kirk, the mother-church of the district, founded by St Keatigern and probably the oldest ecclesiastical building in Tweeddale, a mirture of Saxon, Norman and modern Gothic.
See Sir Thomas Dick Lauder. Scotish Rivers (1874); Prolessor jobs Veitch, The Race Troced (1884): Rev. W. S. Crockett, The Sook Coundery (z892).
twaspdalse marquesses or. Join Hay, and Eadx and 157 Marouzss or Tweidonle (\(1626-1697\)), was the eddest son of John, 8th Lord Hay of Yester (c. 1590-2654), created earl of Tweeddale in 1646, who was the grandson of William Lord Hay of Yester (d. 1576), one of the partisans of Mary Queen of Scots, and thus a descendant of Jobn Hay of Yester (Haddingtonshire) who was created a lord of the Scottish pardiament in 1488 and died about 1500 . Before succeeding to the peerage in 1654 the second earl fought for Charles 1 . daring the Civil War, hut he soon transferred his allegiance, and ras in the Scoltish ranke at Marston Moor. Changing sides again, he was with the royalists at Preston; but he was a member of Cromwell's pariament in 1656, and was imprisoned just after the restoration of Charles II. He was soon, however, in the king's iavour, and in 1663 was appointed president of the Soottish council, and in 1664 an extriondinary lord of seavion. In Scollend be sought to mitigate the harshness shown by the English government to the Covenanters, and for this attitude be was dismissed from his offices in 1674; but he regrined an official position in 1680 and held it during the reign of James II. A supporter of William of Orange, he was made lord high chancellor of Scotland in 1692, and two years bater was created marquess of Tweeddale and carl of Gifford. He favoured the scherne for the expedition to Darien, and as lord bigh commissioner during William's absence be formally assented to the act establishing the trading company in 1695 ; for this action he was dismissed from office when the king returned to England in 1696. He died on the nith of August 1607.

His son Johis, and Marquess of Tweedoaly (1645-1713), -ias prominent in Scottish politics during the stormy period which preceded the union with England. After acting for a time with the national party be became the leader of the sprodrone rolante, a band of men who at first took up an independent attitude on the question, but afterwards supported uhe union. For 2 very short time he was lord chancellor of Scortand, and be was one of the first of the Scottish represenuntive peers. He died on the 20th of April 1713. His eldest son. Chizles (c. 1670-1755), became 3rd marquess; a younger 200. Lord Jorn Hay (d. 1706), commanded the famous regiment od dragcons, afterwards called the Scots Greys, at the battle of Ramillies and elsewhere.
- Jobin, 4 is Marquess or Tweedoale (c. 1695-1762), eldest jon of the 3rd marquess, was chief secretary of state for Scothod from 1742 to 1746 and extraordinary lord of session from 1721 until his death. In six parliaments he was a representative peer for Scotland; he was for a time keeper of the Ejug's sigoet, and in 176 I he was made lord-justice-general. He died on the gth of December 1762. Fis brother, Lord Crarles Hay (d. 1760), was the soldier who displayed great coolness when suddenly brought face to face with some French troops at Fortenoy, requesting the enomy, so Voltaire's atcount runs, to fire first.
- The favily of the ath marquess became extiact when Gromot, ithe 5th marques, died on the 4 th of October 1770; and Gsomar, a son of the 3 rd marquess, succeeded to the title. When he died unnuaried on the 16 h of November 1787 the marquesamse pasmed to a kinsman, Groxar (1733-1804), a dencendeat of the and marquesa, who became pth marquese.

Geomer, 8ti Marquess of Twemonie (1787-1876), son of the preceding, succeeded in August 180y. He fought in the Peninsular War, being wounded at the battles of Busaco and Vittoria, and then in America; and he attained the rank of a field marahal in 1875 . From 1842 to 1848 he was governor and contmander-in-chief of Madras, but his later life was mainly spent at Yeater, where he showed a very practical interest in agriculture. He died on the 1oth of October 1876. His son, Artaur (1824-1878), who became gth marquess, was an ornithologist of repute and a soldier who served in India and the Crimea. His ornithological works were published privately in 1881 by his nephew, Captain R. E. W. Ramsay, with a memoir by Dr W. H. Russell. His successor was his brother, Willum Momincu (b. 1826), who, after sitting in the House of Commons for thirtoen years, was made a peer of the United Kingdom as Baroa Tweeddale in 188 t .
TWBEZEBR, a small instrument like a pair of tongs, used for picking up minute objects, extracting thoms or splinters from the fesh, \&c. Etymologically a "tweezer" is an instrument contained in a "tweeze" or a small case containing several instrumeats, " tweeze "being a plural form of "twee," an adaptation of French etwi, a sheath-case or box to put things in. Why one perticular instrument out of the case should be called "tweezers" is aot certain; Skeat suggests a possible connexion of ideas with the obsolete "twich," "twitch" (Ger. swicken, to nip, fasten, Eng. "tweak"), or reference may be made to the M1. Eng. twisd or hwissed, a pair of objects (/wi, two).

The derivation of the French Exi (O . Fr. estwy) is doubtful. Cognate forms are Span. estuche, Port. estojo, lual astucrio formerly sfuccio or stucchio. all with the same meaning of a small case for instruments such as scissors, knife, \&c. Skeat supports Diez in his connexion with the modern German dialect Stauche, cuff, that part of the sleeve where such small objects were carried. Others connect the word with Lat. simdimen, place where one studics, hence a piace where objects of otudy are carried, a somewhat far-fetched pense development.

TWIVE TABLes, the tables of wood on which was engraved or painted the earliest codification of the Roman law. Originally ten in number, two others were afterwards added, contalining sapplemental matter, and the whale code was termed the Lax XII. Tabularum (Law of the Twelve Tables). (See Romar Law and Rone.)

TWIMTY-FOUR PARGAMAS THB, a district of British India, in the presidency division of Bengal, with an area of \(4844 \mathrm{sq} . \mathrm{m}\). It occupies part of the Gangetic delta, east of the Hugi, surrounding (but not induding) the city of Calcutta. It also includes the greater part of the almost uninhabited Sundarbans (q.o.). The administrative headquarters are at Alipur, a southern suburt of Calcutta. The country cotsists for the most part of a vast alluvial plain, and is everywhere watered by numerous branches of the Ganges. In 1901 the popalation was \(2,078,359\), showing an increase of \(10 \%\) in the decade. Rise is the staple crop, followed by jute, paines and .agegarcane. The district is traversed by three raitways, two of which terminate at the ports of Diamond Harbour and Port Canning, bot numerous river channels are still the chief means of communication. Apart from the suburbs of Cakcotta, there is hardly a singie real town. But round Calcutta all the manufectures of a great city are to be found, princtpally jute mills and jute presses, cotton mills and paper mills, and aho government factocies for rifies and ammunition.

The Twenty-four Parganas form the tract of which the somainderi or landlord rights were granted to the East Indis Company after the battle of Plassey, white the revenue arising therefrom was conferred upon Clive, upoa whoue death it reverted to the company.

TWick:whin, an urban distriet in the Brentford parlia? mentary division of Middlesex, England, 12 m . W.S.W. of St Prul's Cathedral, London, on the river: (1801), 16,027 ; (1901), 20,991. Its situ, \(\quad\), and it has grown into en extensive residentio
of the church of St Mary was rebuilt itr
in 1753, hut the Perpendicular tower remains. Among men of eminence huried here are Alexander Pope and Sir Godírey Kneller. The Thames in this neighbourhood forms a long deep reach in favour with fishermen, and Eel Pie Island is a resort of boating parties. There are many fine houses in the vicinity, more than one possessing historical associations. Strawberry Hill, the residence of Horace Walpole, was built to his taste in a medley of Gothic styles. Mfarble Hill was erected by George \(I\). for the countess of Suffolk, and Pope, Swift and Gay took part in its equipment. Orleans House was the residence in 1800 of Louis Philippe, then duke of Orleans, and this family again acquired it in 1852 , when it was occupied hy the duke of Aumale. Several eminent French refugees resided at this period in the neighbourhood. In 1700 the young duke of Gloucester, son of Queen Anne, died here. York House was given to. Lord Clarendon by Charles II., was probably the occasional residence of James II. when duke of York, and in 8864 was occupied by the comte de Paris, nephew of the duke of Aumale. Twickenham House was the residence of Sir John Hawkins, author of the History of Music, and Twickenham Park House, no longer standing, that of Lord Chancellor Bacon. Pope's Villa was replaced hy another building after his death, but the tunnel which connected his garden and bouse beneath a road, and was ornamented by bim as a grotto, remains. Other eminent residents were Turner, who occupied Sandycombe Lodge, and painted many of his famous works here, Henry Fielding the novelist, and Tennyson. Kneller Hall, the house built by Kneller (1711), was converted into a training college for masters of workhouse schools in 1847, and in 1856 became the Royal Military School of Music.

Twickenham at the Domesday survey was included in Isleworth. Anciently it was called Twittenham or Twicanham, and the first form, or a variation of it, is used by both Pope and Walpole. The manor was given in 941 by King Edmund to the monks of Christ Church, Canterhury, from whom it had been previously taken, hut it was again alienated, for it was restored to the same monks by Edred in 948. In the reign of Henry VIII, it came into the possession of the Crown, and by Charles I. was assigned to Henrietta Maria as part of her jointure. It was sold during the Protectorate, hut after the Restoration the queen mother resumed possession of it. In 1670 it was settled for life on Catherine of Braganza, queen of Charles II. It remains in possession of the Crown, but since the death of Catherine has been let on leases. The old manor house, now demolished, was Catherine's residence; and had been, according to tradition, the place of the retirement of Catherine of Aragon after her divorce from Henry VIII.
TWILIGHT, formerly known as Crepusculum (a Latin word meaning dusky or obscurc), properly the interval during which the atmosphere is illuminated after the setting of the sun. The analogous phenomenon in the morning, i.e. the interval between the first appearance of light and the rising of the sun, is known as the dawn. These phenomena are due to the light of the sun after refraction by the atmosphere being reflected to the observer hy the clouds, dust, and other adventitious matter present in the atmosphere. Even in the early infancy of astronomy, the duration of twilight was associated with the position of the sun below the horizon, and measurements were made to determine the maximum vertical depression of the sun which admitted the phenomena. This was found hy Alhazen, Tycho Brahe and others, to he about \(18^{\circ}\), and although other observers obtained somewhat different values, yet this value is now generally admitted. The duration of twilight is therefore measured by the time in which the sun traverses an arc of \(18^{\circ}\) of vertical depression, ard primarily depends on the latitude of the observer and the declination of the sun. It is subject to several minor variations, occasioned by the variable amount of dust, clouds, \&c. suspended in the aif: and also on the temperature, which alters the ultilute of the refecting paricles; thus at the same plece of \(t\) ei, whe same dist, the morning twilight or dawn is punesabtighthetier thas the everaing twilight.

The duration and possibility of twilight may be geometrically exhibited as follows: Let \(O\) be the position of the observer (6g. 1); Z, the zenith; P, the pole of the heavens; ADB, the plane of the horizon: EDF, the path of the sun. Let the circles ADB' and \(F D E\) intersect in the points \(D\) and \(\mathrm{D}_{1}\); then these points correspond to the sising and setting of the sun. Now twilight prevails from sunrise or sunset until the sun is depressed through \(18^{\circ}\); hence if we draw arcs ZC and \(\mathrm{ZC}_{1}\) equal to \(108^{\circ}\), and terminating on the circle FDE at C and \(C_{1}\), then the arcs \(D C\) and \(D_{1} C_{1}\) represcat the distance traversed by the sun during

Fig. 1. the twilight. Also it may be observed that \(\mathrm{C}_{1} \mathrm{EC}\) represents the path of the sun during the night, and DFD during the day. The arc CD is readily determined by spherical trigonometry. For, join CP by an arc of a great circle; then in the triangle 2PC we know 2P (the colatitude of 0); PC (the sun's polar distance) and ZC (\(=108^{\circ}\) by construction). Hence the angle 2PC. the sun's hour angle, may be found; this gives the time before of alter noon when the sun passes \(C\). The times of sunrise and sunset being known, then the ares DC and \(\mathrm{D}_{1} \mathrm{C}_{\mathbf{1}}\) (and the duration of dawn and twilight) are determined.
So far we have considered the case when the sun does attain a depression of \(18^{\circ}\), but it is cqually possible for this depression not to be attained. To investigate this, take ZG equal to \(108^{\circ}\). Now if \(G\) lies beyond \(B\) and \(E\) (the maximum depression of the sun), \(E\) being also below B, then the sun will rise and set, but never descend so low as to occasion true night, and the entire interval between sunrise and sunset will be twilight.
If E be not below B but above it, the sun will never descend below the horizon, and will neither rise nor set, and we are presented with the phenomenon known as the midnight sun. Since \(\mathrm{PE}=\boldsymbol{o n}^{*}\) - sun's declination, and PG = Jatitude of observer \(+18^{\circ}\), then it follows that for there to be no night the latitude of the observer together with the declination of the sun must lie between \(90^{\circ}\) and \(72^{\circ}\).
The maximum declination of the sun is about \(23^{\circ} 30^{\circ}\), and hence in latitude \(48^{\circ} 30^{\prime}\) there will be one day without a true night; in higher latitudes there will be an increasing number of such days: and in lower latitudes none. In England there is no real night from about the 22nd of May till the 22nd of July.

The phenomenon known as the affer-glow, or second twilight, has been referred to a second reflection of the solar rays in the atmosphere.

TWILL (connected with "two"), a woven cloth in which the passage of the weft is arranged, not in regular surcession as in plain weaving, hut over one thread and under two or more according to the kind of twill. This gives a succession of diagonal lincs to the cloth, and though in the normal type of twill this diagonal traverses from selvage to selvage at an angle of \(45^{\circ}\), considerable varialions may be made. Twills may be stout and serviceable cloths, though, theoretically, it would seem that the strain of wear on the threads that compose the cloth is necessarily irregular. The twill or diagonal may run either from left to right or vice versa. Twills are made in most kinds of cloths-silk, woollen, cotton, \&c.

TWINING, THOMAS (1735-1804), English classical scholar. was born at Twickenham on the 8th of January 1734-1735. The son of Daniel Twining, tea merchant of London, be was originally intended for a commercial life, hut his distaste for it and his fondness for study decided his father to send him to the university. He enlered Sidney Sussex College, Cambridge (fellow, 1760), took orders, and after his marriage in 1764 spent the remainder of his life at Fordham (Essex) and Colchester. where he died on the 6 th of August 1804 . His reputation as a classical scholar was established by his translation, with notes. of Aristotle's Poetics (1789). Twining was also an accomplisbed musician, and assisted Charles Burney in his History of Mmsic.
Selections from his correspondence will be found in Recreations and Studies of a Country Clergyman of the Eighteenth Cenlury (1882) and Selections from Papers of The Twining Family (1887), edited by his grand-nephew (Richard Twining); see also Gentleman's Magasine, lxxiv. 490, and J. E. Sandys, Hisiory of Classical Scholapship, vol. iii. (1008).

TWISS, HORACE (\(1787-5849\)), English writer and politician, was born at Bath, being the spn of Francis Twiss (1760-1827), a Shakespearian scholar who married Mrs Siddons's sister, Fanny Kemble, and whose hrother Richard (1747-1821) made a mame as a writer of travels. Horace Twiss had a pretty wit, and an a young man wrote light articles for the papers; and,
saing to the bar, he ohtained a considerable practice and beeame 1 K.C. in 1827 . In 1820 he was elected to parliament, where, with some interruptions, he sat till 1841, holding the office of under-secretary for war and the colonies in 1828-183a. In 1844 be was appointed vice-chancellor of the duchy of Lancaster, a well-paid post which enabled him to enjoy his popularity in London society. For some years be wrote for The Times, in which be first compiled the parliamentary summary, and his daughter married first Francis Bacon (d. 1840) and then J. T. Delane, both of them editors of that paper. He was the author of the Life (1844) of Lord Eldon, and other volumes. He died suddenly in London on the 4 lh of Miay 1849.

TWISS. SIR TRAVBRS (1809-1897), English jurist, eldest son of the Rev. Robert Twiss, was born in London on the 1gth of March 1809. At University College, Oxford, he obtained 2 first-class in matoematics and a second in classics in 1830 , and was elected a fellow of his college, of which he was afterwards successively bursar, de an and tutor. During his comnexion with Oxford be was, inter alio, a public examiner in classics and mathematics, Drummond professor of political economy (1842), and regius professor of civil law (1855). After he had forfeited his lellowship by marriage, be was elected to an honorary fellowship of University College. He published while at Oxforv's an epiloms of Niebuhr's History of Rome, an annotated edition of Livy and other works, but his studies mainly lay in the direction of political economy, law, chiefly international law, and international politics. In 1840 he was called to the bar at Lincoln's Inn, and became an advocate at Doctors' Commons. In the ecclesiastical courts he enjoyed a large practice, and filled many of the appointments incidental thereto, such as commissary-general of the city and diocese of Canterbury (1849), vicar-gencral to the archbishop (1852) and chancellor of the diocese of London (1858). He was prolessor of international law at King's College, London (1852-1855). In 1858, when the Probate and Divorce Acts of 1857 came into force, and the ecclesiastical jurisdiction of Doctors' Commons bad passed away, Twiss, like many other leading advocates of Doctors' Commons, became a Q.C., and in the same year be was also elected a bencher of his Inn. His successful career continued in the civil courts, and in addition to his large practice be was appointed in 1862 advocatc-general to tbe admiralty, and in 1867 queen's advocate-general. In 1867 he was also tnighted. He served during his legal carecr upon a great namber of royal commissions, such as the Maynooth commission in 1854 , and others dealing with marriage law, neutrality, maturalization and allegiance. His reputation abroad led to his being invited by the king of the Belgians in 1884 to draw ap the canstitution of the Congo Free State. In 1871 Twiss becaspe involved in an unpleasant scandal, occasioned by allegations against the ante-nuptial conduct of his wife, whom be had married in 1862; and he threw up all his appointments and lived in retirement in London until his death on the 14 th of Jannary 1897, devoting himself to the study of international her and kindred topics. Among his more notable publications of this period were The Law of Nations in Peace and The Las of Nadions in War, two works by which his reputation ts a jurist will chiefly endure.
THYSDET, SIR ROGER (1597-1672), English antiquary and royalist pamphleteer, belonging to an ancient Kentish family. His mother, Anne, was the daughter of Sir Moule Finch, and his facher, Sir William Twysden, was a courtier and scholer who shared in come of the voyages against the Spaniards in the reign of Queen Elizabeth and was well known it the court of King James I. He was one of the first baronets. Roger Twriden was educated at St Paul's School, London, and then at Emmanuel College, Cambridge. He entered Gray's Inn on the and of February 1623. He succeeded to the baropetcy on his father's death in 1629. For some years be remained on his estate at Roydon, East Peckham, largely cogeaged in building and planting, but also in studying antiquities and the law of the constitution. The king's attempts to govern without a parlimenent, and the vexatious interference of his
\(\times \times v 119\)
lawyers and clergy with the freedom of all classes of men, offended Sir Roger as they did most other country gentlemen. He showed his determination to stand on his rights by refusing to pay ship money, but, probably because the advisers of the Crown were frightened by the unpopularity of the impost, was nol molested. He was chosen member of pariament for Kent in the Short Parliament of 1640, bat was not elected to the Long Parliament. In common with most men of his class Sir Roger applauded the early measures of the parliament to restrict the king's prerogative, and then became alarmed when it went on to assail the Church. The altainder of Lord Strafiord frightened him as a tyrannical use of power. He became in fact a very typical example of the men who formed the strength of the ling's party when the sword was at last drawn. He considered himself too old to serve in the field, and therefore he did not join the king at Oxford. But he took the most prominent part in preparing the Kentish petition of March 1642 and in subsequent demonstrations on behalf of Charles. He incurred the wrath of the parlisment, was arrested on the Ist of April 1642, but was soon let out on bail, and on his promise to keep quiet. But his respect for legality would not let him rest, and he was soon in trouble again for another demonstration known as "The Instruction to Mr Augustine Skinner." For this he was again arrested and for a time confined in a public-house, called "The Two Tohacco Pipes," near Charing Cross, London. He was released with a distinct intimation that he would be well advised not to go back to Roydan Hall, but to keep out of temptation in Landon. He took the advice and applied himself to reading. One plan for going abroad was given up, but at last he endeavoured to escape in disguise, was detected, and brought back to London. He was now subjected to all the vexations inflicted on Royalist partisans of good property, sequestrations of his rents, fines for " malignancy," and confinement in the Tower, where be consoled himself with his books. At last he compounded in 1650 and went home, where he lived quielly till the Restoration, when he resumed his position as magistrate. He died on the 27th of June 1672. He published The Commons' Liberly (London, 1648), demonstrating that finings and imprisonings by parliament were illegal; Historiae anglicamae scriptores deccm (London, 1652), a work encouraged by Cromwell; and Historical Vindication of the Church of England (London, 1657).

TYBURN, a small left-bank tributary of the river Thames, England, now having its course entirely within London and below ground. The name, which also occurs as Aye-bourne, is of obscure derivation, though sometimes stated to signily Twy-burn, i.e. (the junction of) two burns or streams. The Tyburn rose at Hampstead and ran south, crossing Regent's Park, striking the head of the modern ornamental water there. Its course is marked by the windings of Marylebone Lane, the dip in Piccadily where that thoroughtare borders the Green Park and at times by a line of mist across the park itsclf. It joined the Thames at Westminster (q.o.). But the name is more famous in its application to the Middlesex gallows, also called Tyburn Tree and Deadly Never Green, and also 2t an early period, the Elms, through confusion with the place of execution of that dame at Smithficld. The Tyburn gallows stood not far from the modern Marble Arch. Connaught Square is said by several authorities to have been the exact site, but it appears that so long as the gallows was a permanent structure it stood at the junction of the present Edgware and Bayswater roads. The site, however, may bave varied, for Tyburn was a place of execution as early as the end of the 12th century. In 1759, moreover, a movable gallows supcrseded the permanent erection. On some occasions its two uprights and cross-beam are said to have actually spanned Edgware Road. Round the gibbet were erected open galleries, the seats in which were let at high prices. Among those executed bere were Perkin Warbeck (1449), the Holy Maid of Kent and coniederates (i535), Haughton, last prior to-1mecharterhouse (1535), John Felion, murderer of Villie;
ingham (1628), Jack Sheppard (1724), Eap

In 1661 the skeletons of Cromwell, Ireton and other repicides were hung upon the gallows. The last execution took place in 1783, the scene being thereafter transferred to Newgate. The Tyburn Tioket was a certificate given to a prosecutor of a felon on conviction, the first assignee of which was exempted by 2 statute of William III. from all parisk and ward duties within the district. The hangman's halter was colloquially known in the 16th century as the Tyburn Tippet.
See A. Marks, Tyburn Tres, its History and Ammals (London, 1908).

TYDEUs, in Greek legend, son of Oeneus, king of Calydon, and Periboea. Having slain his uncle (or other relatives) be fled for refuge to Argos, where Adrastus received him hospitably and purified him from the guilt of blood. Tydeus took part in the expedition of the "Seven against Thebes," in which, although small of stature, he greatly distinguished himself. In the desperate battle under the walls of the city, he was severely wounded by Melanippus, but managed to slay his adversary. Athena, who held Tydeus in special favour, hastened to the field of battle, to heal him of his wound and bestow immortality upon him. But the sight of Tydeus, cleaving open the skull of his dead enemy and sucking out his brains, so disgusted her that she left him to his fate. Tydeus married Delpyle, the daughter of Adrastus, by whom he had a son, the famous Diomedes, frequently called Tydides.

Homer, Iliod, xiv. 114-132; Apoliodorus iij. 6, 8; Schol. on Pindar, Nemen, x. 12.
TYLDESLEY with SHAKERLEY, an urban district in the Leigh parliamentary division of Lancashire, England, 11 m . W.N.W. from Manchester by the London \& North Western sailway. Pop. (1901), 14,843. The town is of modern growth and depends upon its cotton mills and the large collieries in the neighbourhood.

TYLER, JOHN (\(1790-1862\)), tenth president of the United States, was born at Greenway, Charles City county, Virginia, on the 29th of March 1790 . He was the second son of John Tyler (\(1747-1813\)), governor of Virginia in 1808-1811 and United States district judge in 1812-1813. The family was of English descent, but the claim of relationship to the famous Wat Tyler, though always stoutly maintained hy President Tyler, cannot be substantiated. John Tyler the younger entered the grammarschool of the College of William and Mary, at Williamsburg, In 1802, and graduated in 1807. Two years later he was admitted to the bar. His public life began in 1811, when he was elected a member of the Virginia House of Delegates. Here he served for five years, being chosen also in 1815 a member of the council of state. In 1813 he raised a company for the defence of Richmond against the British, serving subsequently in minor operations elsewhere. From December 1816 to March 1821 he was a member of the national House of Representatives. A Republican in politics, and a firm believer in the doctrines of strict construction and state sovereignty which Thomas Jefferson had been principally.instrumental in formulating, he opposed consistently the demand for internal improvements and increased tarif duties, and declined to follow Henry Clay in the proposed recognition of tbe independence of the Spanish colonies in South America and in the Missouri Compromise legislation. For the conduct of Jackson in Florida, in the summary execution of Arbuthnot and Ambrister, he had only strong condemnation. He declined a re-clection to the House in 1821. In 1823-18:5 he was again a member of the Virginia House of Delegates, and in \(18: 5\) 1827 Was governor of the state. In 1827 he was elected to the United States Senate to succeed John Randolph. In 1820 1830 he also served as a member of the Virginia constitutional consention. His career as senator was marked by a degree of independence which at times made his party position uncertain, notwithstanding the fact that his political ideas continued to be those of a thoroughgoing strict constructionist. Believ. ing protective tariff duties to be unconstitutionel, against the "tariff of abominations" in \(\mathbf{1 8 2}_{2}\) " the tariff of 1832 , since the latter mezgri
duties, showed no abandonment of the protective principle. The compromise tariff of 1833, made necessary by the hostile attitude of South Carolina, owed its inception largely to him, but be voted against the "force bill," an act for enforcing the collection of duties, being the only senator whose vole was so recorded. His hostility to a high tariff policy, however, did not prevent him from condemning the South Carolina ordinance of nullification; and in the presidential election of 1832 be supported Andrew Jackson, to whose political principles and methods, as to those of his advisers, he was invincibly opposed, as the " least objectionable" of the various candidates. The vigorous course of the president towards South Carolina, however, led him, after 1833, to act more and more with the opposition which presently became the Whig party; but be was never at heart a Whig, at least as Whig principles came Later to be defined, and his place is with the Democrats of the Calboun school. He sought to incorporate in a new code for the District of Columbia, in \(18 \mathbf{3}^{2}\), a prohibition of the slave trade in the district, at the same time opposing the abolition of slavery there without the consent of Maryland and Virginia, which had originally ceded the district to the United States. In the controversy over the removal of the government deposits from the Bank of the United States he sided with the bank, and voted for Clay's resolution censuring Jackson for his course in the matter. In 1833 he was again elected to the Senate, notwithstanding the criticism of his indepiendent attitude and the wide approval of Jackson's policy in regard to the bank. In the election of 1836 he was supported as a candidate for the vice-presidency by the friends of Hugh L . White of Tennessee, the Democratic candidate opposed to Martin Van Buren, and received 47 votes, none of them from Virginia. When the legislature of Virginia voted instructions to its senators to support Senator Thomas H. Benton's resolution expunging from the journal of the Senate the resolution of censure, Tyler, though admitting the right of instruction, could not conscientiously obey the mandate, and on the zgth of Fehruary 1836 he resigned his seat. He was by thiş time reckoned a Whig, and his refusal to favour tbe Van Buren administration lent colour to that view. In 1838 he became once more a member of the Virginia House of Delegates, and in the same year was chosen president of the Virginia Colonization Society, of which he had long been a vice-president. In 1830 he made an unsuccessful contest for the United States senatorship. In December of that year the Whigs, relying upon his record in Congress as a sufficient declaration of political faith, nominated him for vice-president on the ticket with William Henry Harrison, expecting that the nomination would win support for the party in the South. Harrison and Tyler each received 234 electoral votes and were elected. On tbe 4th of April 1841, one month after the inauguration, Harrison died, and Tyler became president. The detailed discussion of the events of his administration, \(188_{4} \mathrm{I}-18 \mathrm{~S}_{4}\), belongs to the history of the United States (see United States; History). He retained Harrison's cabinet until his veto of the bill for a" ifiscal corporation" led to the resignation of all the members except Daniel Webster, who was bringing to a close the negotiations with Lord Ashburton for the settlement of the north-eastern houndary dispute; and he not only opposed the recognition of the spoils system in appointments and removals, hut kept at their posts some of the ablest of the ministers abroad. He stood, however, as it were, midway between the two great parties, without the leadership or sipport of either; Van Buren. whose influence in the practical orking of politics was still great, refused to recognize him \(a=1\) Democrat, and the Whigs repudiated him as a Whig; while with Clay leading the majonity in Congress, harmony hetween lit body and the executive was from the first impossible. The annexation of Teras. achieved just before the close of his administration, seemed to commend him for a second tern on that issue, and in May 8848 he was renominated by a convention of Democrats, irre-
to meet the opposition of Van Buren, who had failed to secure the nomination in the regular Democratic convention, and of James K. Polk, the regular Democratic nominee. Tyler sccepted the Baltimore nomination, but on the roth of August withdrew from the contest. From this time until the eve of the Civil War be held no public office, but his opinions on political questions continued to be sought, and he was much in dernand as a speaker on public occasions. In December 1860, when South Carolina adopted its ordinance of secession, Tyler, though sympathizing with the state, took firm ground against disunion and exerted himself in behalf of peace. The legislature of Virginia appointed him a commissioner to confer with President Buchanan and arrange, if possible, for the maintenance of the status quo in the matter of Fort Sumter, in Charleston harbour; but his efforts were unavailing. He did dot abate his activity, however, and the Peace Congreas which assembled at Washington on the 4th of February 1861, pursuant to a resciution of the Virginia legislature, and over which be presided, was largely the result of his labours. The constitutional amendment proposed by the conference, however, did not meet with his approbation, and his action in signing and transmitting the resolution to Congress was merely formal. On the 13th of February, while absent in Washington on this mission, be was elected to the Virginia convention at Richmond, and took his seat on the rst of March. In the conven. tion he advocated immediate secession as the only proper course under the circumstances. He continued to serve as a member of the convention until it adjourned in December, in the meantime acting as one of the commissioners to negotiate a temporary union between Virginia and the Confederate Siates of America. He was also a member of the provisional Conlederate Congress from May 1861, when the capital of the Confederacy was removed from Montgomery, Alabama, to Richmond. He was elected a member of the House of Representatives of the permanent Congress, but died on the 18th of January 1862, in Richmond, belore that body assembled.
President Tyler was twice married, first in 1813 to Miss Letitia Christian (1790-1842), and second in 1844 to Miss Julia Gardiner (1820-1889). His son, Lyon Gabdiner Tiler (b. 1853), graduated at the university of Virginia in 1875, and practised law at Richmond, Virginia, from 1882 to 1888 , when be became president of the College of William and Mary. Among his publications, besides Lellers and Times of the Tylers, are Parties and Patronage in the Uniled States (i800); Cradle of the Republic (1900); Englend in America (1900) in the "Ancrican Nation" series, and Williamsburg, the Old Colonial Capital (1908).
The principal authority for the life of Tyler, aside from speeches, cmep and other documents, is Lyon G. Tyler, Letters and Times of the fiters (3 vols., Richmond, Va., 1884-1896). (W. Mac D. \({ }^{\circ}\))
TYLER HOSES COIT (\(1835-1900\)), American author, was bora in Griswold, Connecticut, on the and of August 1835 . At an early age he removed with his parents to Detroit, Michigan. He entered the university of Mishigan in 1853, but in the pert year went to Yale College, from which he graduated AB. in 1857, and received the degree of A.M. in 1863. He qudied for the Congregational ministry at the Yale Divinity School (\(\mathbf{1 8}_{51}\) - 1858) and at the Andover Theological Seminary (iscs-1859), and held a pastorate at Owego, New York, in 1859-1860 and at Poughkeepsie in 3860-1862. Owing to illwahh. bowever, and a change in his theological beliefs, he jeft the ministry. He became interested in physical training, asd for some time (partly in England) wrote and lectured on the subject, besides other journalistic work. He became profescor of English language and literature in the university of Michigan in 1867, and held that position until 1881 , except is 1873 -1874 when be was literary editor of the Chrislion Unim; from 1881 until his death on the 28th of December to00 at Ithaca, New York. he was professor of American history at Cormell University. In 188; he was ordained deacon in the Protestant Episcopal Church and in 1883 priest, but he never underook parochial work. Most important among
his works are his valuable and orizinal History of American Literature during the Colonial Time, 1607-1765 (a vols., 18;8; revised in 3897), and Literary History of the Americass Revolwtion, 1763-1783 (2 vols., 1897). Supplementary to these two is his Three MCn of Letters (1895), containing biographical and critical chapters on George Berkeley, Timotby Dwight and Joel Barlow. In addition he published The Brawneille Papers (1869), a series of essays on physical culture; a revision of Henry Morley's Manual of English Literalure (1879); In Memoriam: Edgar Kelsey Apgar (1886), privately printed; Palrich Henry (8887), an excellent biography, in the "American Statesmen" series; and Glimpses of England; Secial, Polilical, Literary (\(\mathbf{1 8 9 8}\)), a selection from his sketches written while abroad.
See "Mones Coit Tyler," by Professor William P. Trent, in The Formm (Aus. 1901), and an article by Profesoor Ceorge L. Burr, in the Annmal Report of the American Historical Association for 1901 (vol.i.).
TYLER, WAT for Walter] (d. 338i), English rebel, a man of obscure origin, was a native either of Kent or of Essex. Nothing definite is known of him previous to the outbreak of the peasant revolt in 1381, but Froissart says he had served as a soidier in the French War, and a Kentishman in the retinue of Richard II. professed to identify him as a notorious rogue and robber of Kent. The name Tyier, or Teghler, is a trade designation and not a sumame. The discontent nf the rural labourers and of the poorer class of craftsmen in the towns, caused by the economic distress that followed the Black Death and the enactment of the Statute of Labourers in 1351, was brought to a head by the imposition of a poll tax in 1379 and again in 138i, and at the end of May in the latter year riots broke out at Brentwood in Essex; on the 4 th of June similar violence occurred at Dartford; and on the oth a mob scveral thousands strong seized the castle of Rochester and marched up the Medway to Maidstone. Here they chose Wat Tyler to be their leadrr, and in the next few days the rising spread over Kent, where much pillage and damage to property occurred. On the roth Tyler seized Canterbury, sacked the palace of Archbishop Sudbury, the chancellor, and beheaded three citizens-as "traitors." Next day he led his followers, strengthened by many Kentish recruits, on the road to London, being joined at Maidstone by John Ball (q.v.), whom the mob had liberated from the archbishop's prison. Reaching Blackheath on the \(12 t h\), the insurgents burnt the prisons in Southwark and pillaged the archbishop's palace at Lambeth, while another body of rebels from Essex encamped at Mile End. King Richard II. was at the Tower, but neither the king's councillors nor the municipal authorities had taken any measures to cope with the rising. The drawbridge of London Bridge having been lowered by treachery, Tyier and his followers crossed the Thames; and being joined hy thousands of London apprentices, artisans and criminals, they sacked and burnt John of Gaunt's splendid palace of the Savoy, the official residence of the treasurer, Sir Robert Hales, and the prisons of Newgate and the Fleet. On the \(14^{\text {th }}\) Richard II., a boy of fourteen, undertook the perilous enterprise of riding out to confer with the rebels beyond the city wall. At Mile End the king met Wat Tyler; a lengthy and tumultuous conference, during which several persons werc slain, took place, in which Tyler demanded the immediate abolition of serfdom and all feudal services, and the removal of all restrictions on frcedom of labour and trade, as well as a general amnesty for the insurgents. Richard had no choice hut to concede these demands, and charters were immediately drawn up to give effect to them. White this was in progress Tyler with a small band of followers returned to the Tower, which they entered, and dragged forth Archbishop Sudbury and Sir Robert Hales from the chapel and murdered them on Tower Hill. During the following night and day London was given over to plunder and slaughter, the \(\boldsymbol{y}^{\text {j }}\) chiefly Flemish merchants, lawyers and persir of John of Gaunt, duke of Lancaster. Meanf
of property began to organize themselves for the restoration of order. On the esth of June, Richard, after confession and receiving the Sacrament, rode to Smithtield for a further conference with the rebels. Close to St Bartholomew's Church he met Wat Tyler, who advanced from the ranks of the insurgents and shook the king's hand, bidding him be of good cheer. Tyler then formulated a number of fresh demands, including the confiscation of ecciesiastical estates and the institution of social equality. Richard replied that the popular desire should be satisfied "saving the regalities of the Crown." Tyler thereupon grew insolent, and in the altercation that ensued the rebel leader was killed by the mayor, Sir William Walworth (q.v.), and John Standsick, one of the king's squires. The rebels now handled their bows in a menacing fashion, but at the critical moment the young king with great presence of mind and courage spurred his horse into the open, crying, "Sirs, will you shoot your king? I will be your chief and captain, you shall have from me all that you seck." Richard then led the mob to a neighbouring meadow, where he kept ther in parley till Walworth, who had returned within the eity to summon the loyal citizens to the king's aid, returned with a sufficient following to overawe and disperse the rebels. With the death of Wat Tyler the rising in London and the home counties quickly subsided, though in East Anglia it flickered a short time longer under the leadership of John Wraw and Geoffrey Litster until suppressed by the enetgy of Henry Despenser, bishop of Norwich. About 110 persons were executed for the rebellion in Kent and Essex, including John Ball, and Jack Straw, Tyler's chicf lieutenant. \({ }^{1}\) The enfranchisement of villeins granted by Richard at the Mile End conference was revoked by parliament in 1332 , and no permanent results were obtained for the peasants by Wat Tyler's revolt.

Biblingrapilv. - The best original account of the rebellion of Wat Tyler is the "Anonimal Chronicle of St Mary's. York," primed by G. MI. Trevelyan in wie Erg. Mist. Rep. (1898). See also Thomas Walsingham, Chronicon Anglige (Rolls series, 18;4): Froissart. Chronicles (edited by G. C. Macaulay. London. 1895); André Réville, Le Souľvement des trapuillers d'Angleterre en sjos (Paris, 1898): C. Oman, The Great Rewolt of 1381 (Oxford, 1906), and The Poltitical History of England, vol. iv. (ed. by W. Ilunt and R. L. Poole, London, 1906).
(R. J. M.)

TYLER, a city and the county-seat of Smith county, Texas, U.S.A., about 115 m . E. by S. of Dallas. Pop. (1800), 6908; (1900), 8060 , of whom 2693 were negroes; (1910 census), 10,400 . Tyler is served by the International \& Great Northern and the St Louis South-Western railways. It is the seat of the Tyter Commercial College, of the East Texas Conscrvatory of Music and of two institutions for negroes-Texas College (1895; Colored Methodist Episcopal) and the East Texas Normal and Industrial Academy (Baptist, 1905). The principal public buildings include the city hall, the county court-house, a Catnegie library and the post office and Federal Courts buildingSessions of tbe United States Circuit and District Courts, and of a state district court, as well as of the county court, are held Th ryler. Tyler is situated in a prosperous agricultural region, *hi has varions nlavidrures. The St Louis South-Western सatroy mitatalia foratil offices and machine-shops here. and thrymer at Pr.itent John Tyler, was settled of Tachaod
and isobrister, bootaly in ati-ence to the a re-clectitu ie thaflat (the lect), the scientific a member of the Viage tc mam. 1827 was governor of the wh Whatd the United States Senate to 1830 he also served as a nember convention. His career as senator of independence which at times made his \(p\) : tain, notwithstanding the fact thap bi
to be those of a thoroughgoing strict
ing pmotective tariff duties to be anman
against the "tariff of abominatio
the tariff of 8832 , since
being differentiated froin the long, horizontal and spatulate incisors; in form they are sub-ereet and paisted. The crowns of the mulars belong to the crescentic or selenodont type, and are tall-crowned or hypsotont; but one or more of the amerior premolars is usually detached from the scries, and of simple pointed form. The hinder part of the body is much contracted, and the femur long and verically placed, so that the knee-joint is lower in position, and the thigh altogether more detached from the abdomen than in most mammals. The limbs are long, but with only two digits (the third and fourth) developed on each, no traces of any of the others being present. The trapezoid and magnum of the carpus, and the cuboid and navicular of the tarsus are distinct. The two camnon-bones of each limb are confluent for the greater part of their Jength, though scparaled for a considerable distance at the lower end. Their lower articular surfaces, instead of being pulley-like, with deep ridges and grooves, as in other Artiodactyla, are simple, rounded and smooth. The first phalanges are expanded at their lower ends, and the wicle. depressed middle phalanges embedded in a broad cutaneous pad, forming the sole of the foot, on which the animal rests in walking instead of on the hoofs. The terminal phalanges are small and nodular, not flattened on their imaer or opposed surfaces, and net complenely encased in hoofs, but bearing nails on their upper surface only. The neck is long and curved, and its vertebrae are remarkable for the position of the canal for the transmission of the vertebral artery, which does not perforate the transverse process, but passes obliquely through the anterior part of the pedicle of the arch. There are no horns or antlers. Thourh thesc animals ruminate, the stomach differs considerably in the details of its construction from that of the Pecora. The interior of the rumen or paunch has no tags or villi on its surface, and there is no distinct psaliterium or ntanyplies. Both first and second comparments are remarkable for the presence of a number of pouches or cells in their walls, with muscular partitions, and a sphincter-like arrangement of their orifices. by which thes can be shut off from the rest of the cavily. and into which the fuid portion only of the contents of the stomach is allowed to enter. The placenta is diffuse, not cotyledunary. Finally, the Tylopoda differ not only from other ungulates, but from all other mammals, in the fact that the red corpuscles of the blood instead of belng circular in outline, are oval as in the inferior vertebrateclasses.

Camels-Of the two existing generic representatives of the Camelidac (as the famils in which they are both included is named) the Old World camels (Camelus) are characterized by their great bodily size, and the presence of one or two feshy humps, which diminish or increase in size according to the physical condition of the animals themselves. There is a total of 34 teeth. arranged as i. \(1,6 . \mid\). \(p, m\). |. Of these the first upper premolar is a simple rooth placed close lehind the premaxilla and separated by a lone gap from the two other teeth of the same series; while the lower incisors, of which the outermost is the largest, are directed parzially forwards. The skull is elongated, with an overhanging occiput. complete bony rims to the orbits, and the premaxillae separated from the arched and rather long nasals. The vertebrae are \(C\). D. 12. L. 7. S. 4 and Ca, 13 to 15. The ears are short and rounded the toes of the broad feet very imperfectly separated; the tait i well developed, with a terminall tuft; and the straight hair is not woully.
Llamas. - Athough the name llama properly applies only to one of the donesticated breeds, zoologically it is taken to include aff the South American representatives of the Camelidae, which form the genus Lama. In this sense, llamas are characterized as follows The dentition in the adult is \(i\). \(\frac{1 . e}{}\). \(\{, p, 1, m\).\(\} ; total 32\). In the upper jaw there is a compressed, sharp-pointed, tusk-like inciscr near the hind edge of the premaxilla, followed in the male at leas: by a moderate-sized, pointed, curved canine in the anterior part of the maxilla. The isolated canine-like premolar which follows in the camels is not present. The teeth of the cheek-series which are in contact with each other consist of two small premolars (the firs almost rudimentary) and three broad molars, constructed generaily like those of Camelus. In the lower jaw the three incisors are long spatulate and horizontal, with the ouler one the smallest. Niea io the laticr is a curved, sub-erect canine, followed after an interval by an isolated minute and often deciduous simple conical premolar. then a contiquous series of one premolar and three molars, which differ from those of rerent species of Cameles in having a emal accescory columin at the amterior outer edge. The skutl generally resembles that of Camelus, the relatively larger brain-cavity and orbits and less developed cranial sidpes being due to its smalle size. The nasul bones are shorter and broader, and are joined by
 ars rather long and poineod. No bump. Feet marrow, the toe
deposits of various parts of Rumoia, Rumania, and Siberia, and oxhers from the Lower Pliocene of northern India; the molar teeth d these latter presenting the additional column relerred to above as distinguishing those of the llamas from those of modern camels. In addition to these Dr M. Schloceer has dercribed remsins of a larse cand like animal from China, with apparently generalized affinities. for which the name of Paracamelys is proposed. Mme Pavlow d Noscow, has brought to notice a fossil camel-skull of great interest, which was collected in the district Alexandrie. of the govern meki of Kherson. Rusaia. Unfortunately, the precise ape of the lomation from which it was obtained is unknown, but it is coninderd probable that it datea from the Later Tertiary. Alhough it has the deciduous dentition. Mme Pavlow considers herself jestifed in referring the Kherson skull to the genus Procamelus previously known only from the Lower Pliocene or Uppet Miocene stata of North America, a nd differing from modern cantels, anmong outher features, by the retention of a fuller series of premolar teeth. Part of the cannon-bone of a camel from another district in Russia is provisionally assigned to the same species. Possibly this Russian cand (Procomed at herronemsis), as it is called, may form the comecting link between the typical Procamedns of North America and the lossil camel (Comelus sivoleasis) of the Siwalik Hills of lates. Be this as it may. the identification of a North American type of camel from the Tertiary strata of eastern Europe Corms amother connecting link between the extinct faunss of the northern tale of the Old World and North America, and thus tends to show that the clain of America to be the exclusive birthplace of many Od World types may have to be reconsidered.
Remains of camels (C. thomass) have also been (ound in the Tumecene strata of Oran and Ouen Seguen, in Algeria: and certif remains from the lsle of Samoe have been asaigned to the ame genus, although the reicrence requires contarmation. The Aretian Pleistocene camel was doubtless the direct ancestor of the living Alrican species, which it serves to connect with the Inct C. stalensis.
Ia North America, apart from certain still older and more primitive mammals, with teeth of the tubercular type, the earliest kana form which can definitely be included in the camel-series is Prolopss, of the Uinta or Upper Eocenc. In this creature, Ehin was not larger than a European hare, there was the full mater of 44 teeth, which formed a regular eeries, without any long 4ha and with the canines but fitile taller than the incisars, while binder cheek-teeth, although of the crescentic type, wert -ctowned. In both jaws the anterior front-teeth were of a cutting and eomprested type. Unfortunately, the skull is incomplete, ad the reat of the skeleton very imperfectly known; but suficient fite former remains to show that the socket of the eye was open belind, and of the latter to indicate that in the hind-foot, at any 5me the uper bones of the two functional toes had not coalesced manamobone. The lateral hind-toes (that is to say the second and Chth of the typical meries) had, however, become rudimentary: ciranh it is probable that the corresponding digits of the forewinere functional, so that this foot was four toed. In old -ithuals the boncs of the forearm (radius and ulna) became wategether about hall-way down, although they remained Ge arove. On the other hand it appears that the smaller bone of Cin (fibula) was welded to the larger one (tibia), and that its portion had disappeared. Nothing is known of the neck It is, of course, evident that there must have been an Thorm in which all the feet were four-toed, and the booes of -

Veree higher in the series, viz. in the Oligocene, we meet with in which a distinct increase in bodily size is noticeFatso in the relative length of the two bones which unite Thigher types to form the cannon-bone. Moreover. the of the hinder cheek-teeth are taller, and more distinctly both leet are two-toed, the ulna and radius are lased. Thula is represented only by its lower part. In the vertethe neck the distinctive cameloid characters had already Hir appearance. On the other hand, the skull was short Pis-bibe, showing none of the characteristic features of
- Aiver Miocene occurs Protomeryx or Gomphotherium. in Fre is a considerable increase in the matter of bodily size. inetacarpal and metararsal bones (or those which unite in Iforms 60 constitute the cannon-bones) being double the the correspondinatelements in Protylopus. These bones, Yeparate, have their adjacent surfaces more closely a pplied - cate in the: tofr! white in this and the earlier genera \(\therefore 1\) Whate that the foot was of the normal
It macket of the eye is surrounded by EMpance that the lower canine is either chitatermost incisors. or that its crown - Mo In Protadabis of the Middle - ifend porned. the first and mecond pairs :fys the limbs and feet are short and * No Upper Miocene we come to a ich is entitled 10 be regarded as
mecacarpals and metatarsala have partially tunited to form cannon. bones, the skull has acsumed the elongated lorm characteristic of modern camels, with the losa of the first and second pairs of upper incisors, and the developroent of gapa In front of and behind each of the next three eecth, that is to sty. the third incipor, the canine and the first cheek-toorh. The approzimately contemporaneous Pliauchemsa makes another step by the lose of the second lower cheek rooth. Both these genera have the roe-bones of the irregular nodular form distinctive of modern camels, to that we may salely infer that the leet themselven had ascumed the cushiontype.

In one species of Procomedus the mefacarpais and metataraals conlesced into capon-bones late in life; but when we come to the Picistocene Camelops such union took place at an early stage of existence, and was thoroughly cornglece In the living member of the group it occurs before birth. The species of Camelops were probably fully as large as llamas, and come, at any rate, resembled thesc animals as regards the number of teeth. the facisor: being reduced to one upper and three lower pairs, and the checkteeth to four or give in the upper and lour in the lower jaw ; the cotal number of teeth thus being 28 or 30 in place of the 44 of Poebrotherium. The sole difference between Camelops and Llama seems to consist in certain structural details of the lower cheek-tceth. An allied extinct genus (Eschotizs) is also distinguished by certain features in the dentition.

Apart Irom Procamelus the foregoing genera are exclusively North American. A lower jaw from the Pleistocene depusits of that continent has, however, been referred to the OId World Camelus.

In addition to the above there is an extmordinary North American Miocene girafte-necked camel (Alticamelus), a creature of the size of a giraffe, with similarly elongated neck and limbs, and evidently adapted for browsing on trees. The feet and number of reeth were generally similar to thoee of Procamedes. Unlike the girafie, the length of the limbs is due to the elongation of their upper segments, and that of the neck to the lengthening of only the hinder vertebrac.

In caverns and superficial deposits of South America oceur remains of extinct species more or less closely related to modern Ilamas; but previous to the Upper Pliocene the group is unlanown in South Amcrice, which it reached from the north.

All the foregoing genera are included in the sub-family Ca melidae. Parallel to this is, however, the North American family Leptomery. chidae (Hypertragulidae), as represented by Leptomeryx, Comelo. merye and Leptoreadom, which presents remaricable rewemblances, especially in the type genus, to the Tragulina (see Cugvzotain): camel-like features being. however, apparent in the two genera last mentloned. Generzlized fcatures are also displayed by the Oligocene 7Iypisadus, which in its short skull and large orbirs presents a curious a pproaimation to the Arrican dik-dik antelopes of the genus Madoqua (see ANTELOPR). Again, the remarkable horned North American Oligocene genus Protoceras, while displaying resemblances to Leptomeryx and Leplorcodon, presents also points of similarity to the Tragulina and Pecora (g.t.).
The North American genus Oreadon typifies a eecond ramily included by Professor W. B. Scott in the Tylopoda and generally known as the Oreodontidae. As Orcodon is, however, antedated by Merycoidodon. the latter name is properly entisled to stand, in which case the family should be called Agriochoeridae. It is not easy to point out the characten in which the lamily epproximates to the Camelidae, and only its 及eneral characteristics can be indicated. The family ranges in North America from the Upper Eocene to the Lower Miocene, but Orcodon (or Merycoidodon). which is typifed by an animal of the size of a sheep. is Olizocene. In the Oreodontiase or typical section of the family, which includes several genera nearly allied to Oreodon, the skull is shorter and higher than in the camels, with a swollen brain-case, a preorbital glandpit, the condyle of the lower jaw transversely clongated. the tympanic bulla hollow. and the orbit surrounded by bone. The dentirion comprises the typical 44 teeth, of which the molars are short-crowned, with [our crescenicic cusps on chose of the upper jaw (selenodont type). The most characteristic dental feature is, however, the assumption of Ihe form and function of a canine by the first lower premolar: the lower camine being incisor.like. The tail is very long: and the leet have five functional toes, with complete but short metecarpals or metatarsals. In the Miocene Agriochoerss, which typifies a second sub-family (Agriochoerinae). there is no gland-pit in the skull. of which the orbit is open behind: while the upper incisors are wanting in the adult and the terminal toe-bones are claw-like rather than of the hoofed type. The molars are lest completely selenodont than in the type genus. It is noteworthy that a molar from the Tertiary of India bas been referted to Agriochocrus, a determination which if correct probably indicates the occurrence of Oreodonts in the unknown Tertiary deposits of Central Asia. It may be added that in the Oreodontidae the vertebral artery pierces the transverse procesmes of the cervical vertebrae in the normal manner.

The earliest representatives of the Tylopoda aceod Scott is the Middle Eocene genus Homacodon, t,

Camelidee and Oreodontidae, with resemblences to the European Oligocene genus Dichobune (ree Artiodactyla). Homacodom was an animal of the aize of a rabbit, with five toes (of which only five were functional to each foon) and 44 teeth, of which the molars are tuherculated (bunodont), with six columns on thooe of the upper jaw; the premolars being of a cutting type. It should be added that this generalized animal is not unfrequently chased among the ancestral pigs, but its cameline affinities are strongly emphusized by Profespor Scott.

Litisiatuar.-W. B. Scott, "On the Osteology of Poebrotherium," Journal of Morphology (1891). vol. V.i "' The Osteology of Protoceras" (1895), ibid., vol. xi.; 'I. L. Wortman," On the Onteology of Agriochoerus." Bull. Amer. Musrum (i895), vol, vii.; "The Extinct Camelidae of North America (1898). ibid., vol. x.: W. D. Matehew، "The Skull of Hypisodus (1901), ibid., vol. xvi.
(R. L. \({ }^{\circ}\))

TYLOR EDWARD BURNETT (1832-), English anthropologist, was born at Camberwell, London, on the and of October 1832, the son of Joseph Tylor, a brassfounder. Allred Tylor, the geologist, was an elder brother. His parents were members of the Society of Friends, at one of whose schools, at Grove House, Tottenham, be was educated. In 1848 he entered his father's manufactory in London, but at about the age of twenty he was threatened with consumption and forced to abandon business. During \(1855-1856\) he travelled in the United States of America to recruit his health. Proceeding in 1856 to Cuba, he met Henry Christy the ethnologist, with whom he visited Mexico. Tylor's association with Christy greatly stimulated his awakening interest in anthropology, and his visit to Mexico, with its rich prehistoric remains, led him to make a aystematic study of the science. While on a visit to Cannes he wrote a record of his observations, entitled Anohnac: or, Mexico and the Mexicans, Anciell and Mortern, which was published in 1861 . In 1865 appeared Researches imio the Eevly History of Mankind, which made Tylor's reputa. tion. It showed great research, original insight, and much constructive power in the formation of systematic views. The chapters on early myths and their geographical distribution are especially valuable. The work reached a third edition in 1878. This book was followed in 1671 by the more elaborate Primitive Culture: Researches into the Davelopment of Mythology, Philosopky, Religion, Language, Art and Custom, which at once became the standard gencral treatise on anthropology. Tylor's treatment of animism (chs.xi--xvii.) was particularly elaborate, and he first determined the limits of that province of anthropology intending it to include " the general doctrine of souls, and other spititual beings." In 188: Tylor published a smaller and more popular handbook on Anthropology. His work had already met with recognition. In 1871 he was elected F.R.S., and in 1875 received the honorary degree of D.C.L. from the university of Oxford. He was appointed keeper of the University Museum at Oxford in 1883, and reader in anthropology in 1884 . In 1888 he was appointed first Gifford lecturer at Aberdeen University, and delivered a two years' course on "Natural Religion." In \(\mathbf{8} 86\) he became first professor of anthropology at Oxford. At the end of 1907 the Clarendon Press published a volume of Anthropological Essays, to which various representative scholars of a younger generation in the same field had contributed, the essays being dedicated and presented to Tylor as a mark of honour; and this collection includes not only a bibliography of his publications by Miss Freire-Marreco, but also an appreciation of Tylor's life-work by Andrew lang.
TYMPANON, or TMipanum (Gr. tipravov, from ritray, to strike), a name applied by the Romans to both kettledrum and tambourine, in the case of the latter sometimes qualified by loxe. The tympanum lexe, generally included among the tympana, described as being like a sieve, was the tambourine used in the rites of Bacchus and Cybele. Pliny doubtless described half pearls having one side round and the other flat, as tymparia, on account of their resemblance to the tympanum or kettledrum, which, in its primitive form, innocent of screws or mechanism for tightening the head, exactly resembled the half pearl. During the middle ages the tyinpanum was generally a tambourine, the kettedrum being known as nacaire.

In architecture the term tympanum is given to the triangular space enclosed between the horizontal cornice of the entablature and the sloping cornice of the pediment. Though sometimes left plain, in tbe most celebrated Greek temples it was filled with sculpture of the highest standard ever attained. In Romanesque and Gothic wort the term is applied to the space above the lintel or architrave of a door and the discharging arch over it, which was also enriched either with geometrical patterns or in later work with groups of figures; those in continental work are usually arranged in tiers. The upper portion of a gable when enclosed with a horizontal string-course, is also termed 2 tympanum.

TYNDALS (or Tindale), Willial (c. 1492- 5 536), translator of the New Testament and Pentateuch (see Bible, Enclish), was born on the Welsh border, probably in Gloucestershire, some time between 1490 and 1495 . In Easter term 1510 he went to Oxford, where Fore says he was entered of Magclalen Hall. He took his M.A. degree in 1515 and removed to Cambridge, where Erasmus had helped to establish a reputation for Greek and theology. Ordained to the priesthood, probably towards the close of 152t, he entered the household of Sir John Walsh, Old Sodbury, Gloucestershire, as chaplain and domestic tutor. Here he lived for two years, using his leisure in preaching in the villages and at Bristol, conduct which brought him into collision with the backward clergy of the district, and led to his being summoned before the chancellor of Worcester (William of Malvern) as a suspected heretic; but he was allowed to depart without receiving censure or giving any undertaking. But the persecution of the clergy led him to seek an antidote for what he regarded as the corruption of tbe Church, and he resolved to translate the New Testament into the vernacular. In this he hoped to get help from Cutbbert Tunstall, bishop of London, and so "with the good will of bis master" he left Gloucester in the summer of 1523 . Tunstall disappointed him, so he got employment as a preacher at St Dunstan's-in. the-West, and worked at his tranalation, living as chaplain in the house of Humphrey Monmouth, an alderman, and lorming a firm friendship with John Frith; but finding publication impossible in England, he sailed for Hamburg in May 1524. After visiting Luther at Wittenberg, he settled with his amanuensis William Roy in Cologne, where he had made some progress in priating a 410 edition of his New Testament, when the work was discovered by John Cochlacus, dean at Frankfurt, wbn not only got the senate of Cologne to interdict further printing, hut warned Henry VIII. and Wolsey to watch the English ports. Tyndale and Roy escaped with their sheets to Worms, where the 8vo edition was completed in 1526. Copies were smuggled into England but were suppressed by the bishops, and William Warham, archbishop of Canterbury, even bought up copies on the Continent to destroy them. Attempts were made to seize Tyndale at Worms, but he found refuge at Marburg with Philip, landgrave of Hesse. There he probably met Patrick Hamilton, and was joined by John Frith. About this time he changed his views on the Eucharist and swung clean over from transubstantiation to the advanced Zwinglian position. His Parable of the Wicked Mammon (1528), Obedience of a Christen Man (1528), in which the two grest principles of the English Reformation are set out, viz. the authority of Scripture in the Church and the supremacy of the king in the state, and Practyse of Prelates (1530), a strong indictment of the Roman Church and also of Henry VIII.'s divorce proceedings, were ali printed at Marburg. In 1529 on his way to Hamburg he was wrecked on the Dutch coast. and lost his newly completed translation of Deuteronomy. Later in the year he went to Antwerp where he conducted his share of the classic controversy with Sir Thomas More. Alter Henry VIII.'s change of attitude towards Rome, Stephen Vaughan, the English envoy to the Netherlands, suggested Tyndale's return, but the reformer feared ecclesiastical hostility and declined. Henry then demanded his surrender from the emperor as one who was spreading sedition in England, and Tyndale left Antwerp for two years, returning in 1533 and
besying himself with revising his translations. In May 1535 he was betrayed by Henry Phillips, to whom he had shown much kindness, as a professing student of the new faith. The imperial officers imprisoned him at Vilvorde Castle, the state prison, 6 m . from Brussels, where in spite of the great efiorts of the English merchants and the appeal of Thomas Cromwell to Archbishop Carandolet, president of the council, and to the governor of the castle, he was tried for heresy and condemned. On the 6 th of October 1536 he was strangled at the stake and his body afterwards hurnt. Though long an exile from his native land, Tyndale was one of the greatest forces of the English Reformation. His writings show sound acholarship and high literary power, while they helped to shape the thought of the Puritan party in England. His translation of the Bible was so sure and happy that it formed the basis of subsequent renderings. especially that of the authorized version of 1611 . Besides the New Testament, the Pentateuch and Jonah, it is believed that he finished in prison the section of the Old Testament extending from Joshua to Chronicles.
Beside the works already named Tyndale wrote A Prologwe on the Epistle to the Romans (1526), An Exposition of the Isl Epistle of Jow (I531). An Exposition of Mauhewo - \(\boldsymbol{i}\) ii. (1532), a treatise on the sacraments (1533), and possibly another (no longer extant) on matrimony (1529).
The works of Tyndale were first published along with those of John Frith (g.v.) and Robert Barnee, "three worthy martyrs and principal teachers of the Church of England," by John Day. in 1573. (folio). A new edition of the works of Tyndale and Frith. by H. Russell. was published af London (1828-1831). Mis Doclrinal Ireatises and Introductions to Different Portions of the Holy Scriptmpe were published by the Parker Society in 1848 . For biography. me Foxe's Acts and Monuments: R. Demaus. William Tyndale (London, 1871); also the Introduction to Mombert's eritical reprint of Tyndale's Pentateuch (New York, 1884), where a bibliography fagen.
TYNDALL JOHN (\(1820-1893\)), British natural philosopher, was borm in Co. Carlow, Ireland, on the 2nd of August 1820, his father being the son of a small landowner in poor circumstances, but a man of more than ordinary ability. With Darwin and Huxley his name is inseparably connected with the battle which began in the middle of the rith century for making the new standpoint of modern science part of the accepted philosophy in general life. For many years, indeed, he came to represent to ordinery Englishmen the typical or ideal protessor of physics. His strong, picturesque mode of seizing and expressing things gave him an immense living influence both in speech and writing, and disseminated a popular knowledge of physical science such as had not previously existed. But besides being a true educator, and perhaps the greatest popular teacher of natural philosophy in his generation, he was an carnest and original observer and explorer of nature.

Tyndall was to a large extent a sell-made man; he had no early advantages, but with indomitable earnest ness devoled himself to study, to which he was stimulated by the writings of Carlyle. He passed from a national school in Co. Carlow to a minor post (1839) in the Irish ordnance survey, thence (1842) to the English survey, attending mechanies' institute lectures at Preston in Lancashire. He then became for a time (1844) a railway engineer, and in 1847 a teacher at Queenwood College. Hants. Thence with much spirit, and in lace of many difficulties, he betook himself, with his colleague Edward Frankland, to the university of Marburg (\(1848-1851\)), where, by intense application, he obtained his doctorate in two years. His inaugural dissertation was an essay on screw-surfaces.

Tyndall's first original work in physical science was in his experiments with regard to magnetism and diamagnetic polarity, on which he was chiefly occupied from 1850 to 1855 . While he was still lecturing on natural philosophy at Queenwood College. his magnetic investigations made him known in the higher circles of the scientific world, and through the initiative of Sir E. Sabine, treasurer of the Royal Societ y, he was elected F.R.S. in June 1852 . In 1850 he had made Faraday's acquaintance, and shortly before the Ipswich mecting of the British Association in \(18 \mathrm{~g}_{1}\) be began a lasting firiendship with T. H. Huxley.

The two young men stood for chairs of physics and natural history respectively, first at Toronto, next at Sydney, but they were in each case unsuccessful. On the inth of Fehruary 1853, however, Tyndall gave, by invitation, a Friday evening lecture (on "The Influence of Material Aggregation upon the Manifestations of Force ") at the Royal Institution, and his public reputation was at once estahlished. In the following May he was chosen professor of natural philosophy at the Royal Institution, a post which exactly suited his striking gifts and made him a colleague of Faraday, whom in 1866 he succeeded as scientific adviser to the Trinity House and Board of Trade, and in 1867 as superintendent of the Royal Institution. His reverent attachment to Faraday is beautifully manifested in his memorial volume called Faroday as a Discoverer (1868).

The more original contributions which Tyndall made to science are dealt with elsewhere, in the articles concerned with the various subjects (see Heat, \&ac.). But his inquiries into glacier motion were notable alike for his association with Switzerland and for prolonged controversy with other men of science on the subject. In 4854 , after the meeting of the British Association in Liverpool, a memorable visit occurred to the Penrhyn slate quarries, where the question of slaty cleavage arose in his mind, and ultimately led him, with Huxley, to Switzerland to study the phenomena of glaciers. Here the mountains scized him, and he became a constant visitor and one of the most intrepid and most resolute of explorers; among other feats of climbing he was the first to ascend the Weisshorn (1861). The strong, vigorous, healthfulness and enjoyment which permeate the record of his Alpine work are magnificent. and traces of his influence remain in Switzerland to this day. The problem of the flow of glaciers occupied his attention for years, and his views brought him into acute conflict with others, particularly J. D. Forbes and James Thomson. Every one knew that glaciers moved, but the questions were how they moved, for what reason and by what mechanism. Some thought they slid like solids; others that they flowed like liquids; others that they crawled by alternate expansion and contraction, or by alternate freezing and melting; others, again, that they broke and mended. Thus there arose a chaos of controversy, illuminated by definite measurements and observations. Tyndall's own summary of the course of research on the subject was as follows:-

The idea of semi-fluid motion belongs entirely to Rendu: the proof of the quicker central flow belongs in part to kendu, but almost wholly to Agassiz and Forbes; the proof of the retardation of the bed belongs to Forbes alone; while the discovery of the lacus of the point of maximum motion belonge, I suppose, to me.

But while Forbes asserted that ice was viscous, Tyndall denied it, and insisted, as the result of his observations, on the flow being due to fracture and regelation. All agreed that ice fowed as if it were a viscous fluid; and of this apparent viscosity James Thomson offered an independent explanation by the application of pure thermodynamical theory, which Tyndall considered inefficient to account for the facts he observed. It is unnecessary here to rake among the ashes of this prolonged dispute, but it may be noted that Helmholt2, who, in his lecture on "Ice and Glaciers," adopted Thomson's theory, afterwards added in an appendix that he had come to the conclusion that Tyndall had "assigned the essential and principal cause of glacier motion in referring it to fracture and regelation" (1865).

Tyndall's investigations of the transparency and opacity of gases and vapours for radiant heat, which occupied him during many years (\(1850-1871\)), are frequently considered his chief scientific work. But his activities were essentially manysided. He definitely established the absorptive power of clear aqueous vapour-a point of great meteorological significance. He made brilliant experiments elucidating the blue of the sky. and discovered the precipitation of organic vapours by means of light. He called attention to curious phenomena occurring in the track of a luminous beam. He examined the opacity of the air for sound in connexion with lighthouse and siren work,
and be finally clinched the proof of what had been already substantially demonstrated by several otheos, viz. that germ-Iree air did not initiate putrefaction, and that accordingly " spontaneous generation " as ordinarily understood was a chimera (1875-1876). One practical outcome of these researches is the method now always adopted of sterilizing by a succession of gentle warmings, sufficient to kill the developed micro-organisms, instead of by one fierce heating attempling to altack the more refractory undeveloped germs of the same. This method of intermittent sterilization originated with Tyndall, and it was an im. portant contribution to biological science and industrial practice.
For the substantial publication of these researches reference must be made to the Transactions of the Royal Socicty; but an account of many of them was incorporated in his best-known books, namely, the farnous Heat as a Mode of Motion (1863; and later editions to 1880), the first popular exposition of the mechanical theory of heat, which in 1862 bad not reached the textbooks; The Forms of Water, \&cc. (1872); Lectures on Light (1873); Floating Matter in the Air (1881); On Sound (1867; revised 1875, 1883, 1893). The original memoirs themselves on radiant heat and on magnetism were collected and issued as two large volumes under the following titles: Diamagnetism and Magne-crystallic Action (1870); Contributions to Molecular Physics in the Domain of Radiant Heal (1872).

It was on the whole the personality, however, rather than the discoverer, that was greatest in Tyndall. In the pursuit of pure science for its own sake, undisturbed by sordid considerations, be shone as a beacen light to younger men-an exemplar of simple tastes, robust nature and lofty aspirations. His elevation above the common run of men was conspicuous in his treatment of the moncy which came to him in connexion with bis successful lecturing tour in America (1872-1873). It amounted to several thousands of pounds, but he would touch none of it; he placed it in the hands of trustees for the benefit of American science-an act of lavishness which bespeaks a nohle nature. Though not so prominent as Huxley in detailed controversy over theological problems, he played an important part in educating the public mind in the altitude which the development of natural philosophy entailed towards dogma and religious authority. His famous Belfast address (1874), delivered as president of the British Association, made a great stir among those who were then busy with the supposed conflict between science and religion; and in his occasional writingsFragments of Science, as he called them, " for unscientific people" -he touched on current conceptions of prayer, miracles, \&c., with characteristic straightforwardness and vigour.

As 2 public speaker he bad an inborn 1 rish readiness and vehemence of expression; and, though a thorough Liberal, he split from Mr Gladstone on Irish bome rule, and took an active part in politics in opposing it.

In 1876 Tyndall married Louisa, daughter of Lord Claud Hamilton. He built in 1877 a cottage on Bel Alp above the Rhône valley, and in 188 s a house on Hindhead, near Haslemere. At the latter place he spent most of his later years; his health was, however, no longer as vigorous as his brain, and he suffered frequently from sleeplessness. On the 4 th of December 1893; having been accidentally given an overdose of chloral, he died at Hindhead.

TYNDARIS, an ancient city on the northern coast of Sicily, about 13 m . W.S.W. of Mylae (mod. Milazzo) and 5 m . E. of the modern town of Patti. It was founded by Dionysius the Elder in 395 B.c., who settled there 600 Peloponnesian Messenians on a site cut out of the territory of Abacaenum (m . north of the modern Tripi). It was thus almost the last Greek city founded in Sicily. It was one of the carliest allies of Timoleon. In the First I'unic Wiar it was dependent on Carthage, but cxpelled the garriscn in 254 B.C. and joined the Romans, under whom it seems to have Rourished. Cicero calls it "nobilissima civitat ' though it seems to have suffered especially under Verres. It was one of the points occupied by Sextus Pompeius, but was later on laken by Agrippa, who used it as a base of operations. Auguc s probably made it a colonio. Pliny fr hat half of it sas swallowed up
by the sea, though he does not give the date of this event (Hisf. nat. ii. 206). It was probably, however, due to 2 lault in the limestone rock of which it is composed, and the action of the sea. The site is a remarkahly fine one, and it is surprisiug that it was not occupied sooner. It is an isolated hill (920 ft .) with projecting spurs, rising abruptly on the seaward side, and connected by a comparatively narrow isthmus with the lower ground inland. It thus commands a magnificent view, including even the summit of Etna, while opposite to it on the north are the Lipari Islands. Considerable remains of the city walls, built of rectangular blocks of stone, exist on the south side; on the west their foundations are traceable. Remains of several towers may be seen, and the site of the main gate, which was in a recess on the south (the land) side, is clearly traceable, the walls defending it on each side being well preserved. Outside it are several tombs of the Roman period. The walls follow the upper edge of the platcau, and do not seem to have included the spurs to seaward. Their remains indicate that it was the north and north-east portion of the city that fell. This fact renders it doubtful whether the church of the Madonna di Tindari, at the east extremity, marks the site of the acropolis. Along parts of the north side, where the line of the wall should run, is a line of débris, wbich may belong to a reconstruction after the catastrophe described by Pliny. Within the walls are considerable remains of a building generaliy known (though not correctly) as the gymnasium, constructed of masonry, with three narrow halls, each about goft. long, the central hall being 21 ft . wide, the other two 14 ft . Below it to the north are remains of a building with several mosaic pavements, and to the west is a small theatre, the internal diameter of which is 212 ft ., and the length of the stage 80 ft . There are traces of many other buildings within the city area, including a considerable number of underground cisterns An important collection of objects found on the site is preserved in the Villa della Scala (\(1 \frac{1}{2} \mathrm{~m}\). to the west), belonging to Baron Sciacca, the owner of the site itself.

Sce R. V. Scaffidi, Tyndars (Palermop 1895). (T. As.)
TYNE, a river in the northeast of England, flowing eastward to the North Sea, formed of two main branches, the North Tyne and South Tyne. The North Tyne rises in the Cheviot Hills. at their south-western extremity, near the Scottish border. The valley soon becomes beautifully wooded. At - Bellingham it receives the Rede, whose wild valley, Redesdale, was one of the chicf localities of border warlare, and contains the site of the battle of Otterburn (1388). The South Tyne rises in the south-eastern extremity of Cumberland, below Cross Fell in the Pennine Chain, and flows north past Alston as far as the small town of Haltwhistle, where it turns east. The valley reccives from the south the picturesque Allendale, in which the lead mines were formerly important. The two branches of the Tyne join at Warden, a litle above the town of Hexham, with its great abbey, and the united stream continues past Corbridge, where a Roman road crossed it, in a beautiful sylvan valley. The united course from the junction to the sea is abcut 30 ma . The length from the source of the North Tyae is 80 m ., and the drainage area is \(1130 \mathrm{sq} . \mathrm{m}\). In its last 15 m . the Tync, bere the boundary between Northumberland and Durham, is one of the most important commercial waterways in England. Sea-going vessels can navigate up to Blaydon, and collieries and large manufacturing towns line the banks-Newburn, Newcastle-upon-Tyne, Wallsend and North Shields on the Northumberland side; Gateshead, Jarrow and South Shiclds on the Durham side, with many lesser centres, forming continuous lines of factories and shipbuilding yards. The growth of the great shipbuilding and engineering companies, now amalgamated, of which the Armstrong firm at Elswick is the most famous, necessitated the dredging of the river to as to form a deep waterway. At high-water spring tides there are 40 It . of water at Shields Harbour at the mouth, and 31 at Newcastle, 8 m . up river. Dangerous rocks outside the mouth have been partially removed and the remainder protected, and the Tyne forms a very safe harbour of reluge.

TMELEOTPR, a municipal, county and parliamentary borough of Northumberland, Engiand, including the townships of Chirton, Cullercoats, North Shields, Preston and Tynemouth. Pop. (1891), 46,588; (1901), 51,366. North Shields, Tynemouth and Cullercoats are successive stations on a branch of the NorthEastern railway. Tynemouth lies on the north bank of the Tyne, on a picturesque promontory, 81 m . E. of Newcastle. North Shields (4.r.) adjoins it on the W.; Chirton is to the W. again, and Preston to the N. of North Shields, while Cullercoats is on the codst \(1_{4}^{1} \mathrm{~m}\). N.N.W. of Tynemouth. Tynemouth is the principal watering.place on this part of the coast, and here and at Cullercoats are numerous private residences. On the point of the promontory there is a small battery called the Spanish battery, and near it is a monument to Lord Collingwood. Wit hin the grounds, to which the gateway of the old castle gives entrance, are the ruins of the ancient priory of St Mary and St Oswinthe principal remains being those of the church, which was a magnificent example of Early English work engrafted upon Norman. The priory and castle serve as the headquarters of the Tyne Submarine Engineers. The municipal buildings are in North Shields, which is also an important seaport. The coast is rocky and dangerous, but a fine pier protects the harbour (see North Shielos). The munieipal borough is under a mayor, 6 aldermen and 18 councillors. Area, 4372 acres.
Tynemouth is supposed to have been a Roman station, from the discovery of Roman remains there, but its early history centres round the priory, supposed to have been lounded by Edwin, king of Northumbria, between 619 and 633, and rebuilt by king Oswaid in 634. In 651 it became famous as the burialplace of Oswin, king of Deira, afterwards patron saint of the priory. After the conquest Malcolm, king of Scolland, and Edwatd his son, who had been defcated and killed at Alnwick, were buried there. Earl Waltheof gave Tynemouth to the monks of Jafrow, and it became a cell to the church of Durham, but later, owing to a quarrel with the bishop, Robert de Mowbray granted it to the abbey of St Albans in Hertlordshire. The priory was probably lortified in Saxon times, and was strengthened by Robert de Mowbray so that it was able to sustain a siege of two months by William Rufus. After the Dissolution the fortifications were repaired by Henry VIII. In 1642 it was garrisoned for the king by the earl oif Newcastle, but surrendered to parliament in 1644. It was converted into barracks at the end of the 18 th century. Owing to their close proximity to Newcastle and to the ascendancy which the burgesses of that town had gained over the river Tyne, Tynemouth and North Shields did not become important until the 19th century; the privileges which they held before.that time are contained in charters to the prior and convent, and include freedom from toll, \&c., granted by King John in 1203-1204. In 1292 there were disputes between the citizens of Newcastie and the prior, who had buift a quay at Nerth Shields, but was obliged by act of parliament to destroy it. Edward IV. in 1463 confirmed the previous charters of the monks, and at the same time gave them and their tenants licence to buy necessaries from ships in the "port and river of Tyne," and to had ships with coal and salt "without hindrance from the men of Newcastle." After the Napoleonic wars the trade of North Shields rapidly increased. The borough was incorporated in 1849. and has returned one member to partiament since 1832. In 1279 the prior claimed a market at Tynemouth, but was not allowed to hold \(i t\) : and in \(\$ 304\) a fair, which had been granted to him in the preceding year, was withdrawn on the petition of the burgesses of Newcastle. A market and two lairs on the last Friday in April and the first Friday in November were established in 1802 by the duke of Northumberland. In the 17 th century the chief industries were the salt and coal trades. The former, which has entirely dusappeared, was the more important, and in 1635 the salt-makers of North and South Shields received an incorporation charter.

See Victoria Cownty History, Northumberland: W: S. Gibson, The History of the Monastery founded at Tynemouth in the Diocese of Durimam (\(1846-1847\)).

TYPUWRITER, a writing machine which produces characters resembling those of ordinary letterpress; the term is also applied to the operator who works such machines.

In 1714 a British patent was granted to Henry Mill, who claimed that he had brought his invention to perfection at great pains and expense, for "An Artificial Machine or Method for the Impressing or Transeribing Letters, Singly or Progressively one after another as in Writing, whereby all Writing whatever may be Engrossed in Paper or Parchment so Neat and Exact as not to be distinguished from Print "; but beyond the title the patent gives no indication of the nature or construction of the machine. In America a patent for a "typographer" was obtained by William A. Burt in r829, but the records of it were destroyed by a fire at Washington in 1836. The "typographic machine or pen" patented by X. Progrin, of Marseilles, in 1833, was on the type-bar principle, and at the York meetling of the British Association in \(\mathbf{1 8 4 4}\) a Mr littledale showed an apparatus for the use of the blind, by which the impression of a type selected from a series tontained in a slide could be embossed on a sheet of paper. In the "chirographer," for which American patents were granted to Charles Thurber in 1843 and 1845 , a horizontal wheel carried in its periphery a series of rods each bearing a letter, the wheel bcing rotated till the required type was over the printing point. The Great Exhibition of 18 g : contained a machine patented by Pierre Foucauth, of Paris, in 1849, in which a series of rods with type at their ends rould be pushed down to emboss paper at the printing point to which they were arranged radiaily; and there was in addition the " typograph" of William Hughes, which was also intended lor embossing, though it was subsequently modified to give an impression through carbon paper. Between 1847 and 1856 Alifed E. Beach in America, and between 1855 and 1860 Sir Charles Wheatstone in England, constructed several typewriters, and in 1857 Dr S. W. Francis, of New York, made one with a pianoforte keyboard and type bars arranged in a circle. In 1866 John Pratt, an American living in London, patented a machine having 36 types mounted in three rows on a type wheel, the rotation of which brought the required character opposite the printing point, when the paper with a carbon sheet intervening was pressed against it by a hammer worked by the keys. Two years later an American patent was taken out by C. L. Sholes and C. Glidden, and in 1875 , after effectung various improvements. they finally placed the manufacture of their machines in the hands of Messrs E. Remington \& Sons, gunmakers, of llion, New York. The Remington machines worked on the type-bar principle, but at first each of the 44 bars carried only a single character, so that the writing was in capitals only. But in 1878 type-bars with two types were introduced, so that a machine with 40 keys, two being change-case keys, could print 76 characters, wit h both capital and small letters.

The great majority of modern typewriters are worked from a keyboard; the few that are not, known as index machines, will be disregarded here, for although they are much less expensive in first cost than the others, they scarcely come into competition as practical instruments, on account of their slowness. Keyboard machincs fall inco two classes, according as the types which make the impressions are (a) carried at the end of levers or type-bars which strike the paper when the keys are depressed, or (b) are arranged round the circumference of a wherl, or segment, which is rotated by the action of the keys until the corresponding type is brought opposite the printing point. The former of these arrangements is the more common. Another point of difference is in the inking device; in some cases, the type is inked by means of an ink-pad before being brought down on the paper to make the impression, but more frequently an inked ribbon is drawn along by the action of the machine between tbe type-face and the paper. Sometimes this ribbon is inked in two colours, enabling the operator, by bringing the appropriate portion opposite the type-face, to write, say, in black and red at will. A third basis of classification may be found in the arrangement of the keyboard. In some machines there is one key for each character, in others each tey does duty
for two or more characters. For example, in the former class there is one key for the capital A and another for the small a, the keys being arranged in two banks corresponding to the upper and lower cases of a printer's type-case; in the latter, one key is capable of striking both the small and the capital tetter, and it does one or other according as a subsidiary key is or is not brought into simultaneous use with it. In type-bar machines designed on this plan, each bar carries two or more letters (ct. lig. 1). This form of keyboard is also applied to type-wheel machines.

Though there are numberless differences in detail, all typewriters, apart from the index machines, bear a general resem-

Fig. 1.-Type-bar of Oliver Machine.
times put forward as a recommendation of extraordin importance; doubtless the novice who is learning the keyboard unds a natural satisfaction in being able to see at a glance that

Fic. 2.-Type-bars of Bar-Lock Machine. he has struck the key he was aiming at, but to the practised operator it is not a matter of great moment whet her the writing is always in view or whether it is only to be seen by moving the carriage, for he should as little need to test the accuracy of his performance by constant inspection as the piano-player needs to look at the notes to discover whether he has struck the right ones. The one important desidcratum, without which no typewriter can produce work of satisfactory appearance, is accuracy of alignment. For the attainment of this the use of type-bars has given wide scope to the ingenuity of inventors, who have been confronted with the problem of making a system of levers at once strong, rigid and light, and of supporting them on bearings which are steady and adjustable for wear in conditions where space is much restricted.
In the Oliver cnachime the cype-bar is of the form shown in fig. I, co secure stiff ness and a double bearing. In the Bar-Lock, the zype' bars are artanged three in one hanger, so that each has a bearing
three times as wide as would be possible in the same space if each had a hanger to itself (fig. 2): in addition the wear of the pivots can be taken up by the screws seen on the right of the bearings, and as a further precaution each type-bar is locked at the printing point by falling between a pair of conical pins, which eenire it exactly in the required place. In the Yost and the Empire the type-bars pass through guides. The centre guide of the former is shown at \(G\) in fig. 3. the type being just about to strike the paper. Pressure on one of the keys works the lever and pushes up the connecting-rod \(C\), when the type leaves
 the inkopad \(P\) and passes through the puide, which is slighty bevelled so as to guide it exactly to the printang point. In the Smith Prenier the shafts upon which the type-

Fig. 4.-Type-bar Bearings, Smith Premier.
bars swing are mounted tangentially on the ring (fig. 4), so that long supporting bearings are obtained, while the shortness of the eype-bars themselves renders it possible to make them very stif. The rocking-shaft mechanism (fing. 5), by which the power is transmitted from the keys to the type-bars. admits of cach key having the same keverage and tends to uniformity of touch. This last quality is also aimed at by interposing an intermediate parallel bar between the key levers and the typebar, as in the New Century Caligraph. In the Densmore the friction of the movements is minimized by the employment of ball bearings for the lype-bar
pivots. Electrical type. pivots. Electrical typewriters, in which the depression of a key does not work a typebar directly, but merely closes a circuit that energizes an electro-

magnet, have been sug- Fig. 5.-Rocking-shaft Mechauism of gested as a means of

FiG. 5.-Rocking-shaft Mechauism of abtaining uniformity of obtaining uniformity of r . Key with stem.
tnuch combined with ease . Connecting-rod
and rapidity, but have 3 . 2. Rocking shaft. not ras yide displaced the A and B. Cong-rod. 4. Type-bar. not as yet displaced the A ant
ordinary machines to any extent.
One special form of typewriter, the Elliots. Fisher, is designed to write in a book such as a ledger. One leal is clamped between the platen and an open frame which holds the paper smoothly: The operative parts slide on this frame, and move up and down the page so as to space the lines properly, the keyboard, with the typebars. ribbon, \&e, travelling siep by stcp across the page. An adding device may be combined with this machine.

TYPHOID PTVER. Typhoid or enteric' (Gr. Erepov, the intestine) is a specife infectious fever characterized mainly by its insidious onset, by a peculiar course of the temperature. by marked abdominal symptoms occurring in connexion with a specific lesion of the bowels, by an eruption upon the skin, by its uncertain duration, and by a liability to redapses. This fever has received various natmes, such as gastric fever, abdominal typhus, infintile remittent fever, slow lever, nervous lever, pythogenic lever," \&ce. The name of "lyphoid" was given by Louis in \(\mathbf{2 8 2 9}\), as a derivative from typhus. Until a comparatively recent period typhoid was not distinguished from typhas. For, although it had been noticed that the course of the disense and its morbid anatomy were diflerent from those of ordinary cases of typhus, it was believed that they merely represented a variety of that malady. The distinction bet ween the two diseases appears to have been first accurately made in 1836 by Messrs Gerhard and Pennock. of Philadelphia, and valuahke work was done hy other American dortors, particularly Elisha Bartiett (1842). The difficence between typhus and typhoid was still more fully demonstrated by Dr A. P. Stewart of Glasgow (afterwards of London). Finally. all doube upon the subject was removed by the carelul clinical and pathological observations made by Sir William Jenner at the London lever bospital (\(1849-1851\)).

The more important phenomena of typhoid fever will be better understood by a brief relerence to the principal pathological changes which take plare during the disease. These relate for the most part to the intestines, in which the mortid procestes are highly characteristic, both as to their nature and their localizy. The changes (to be presently specified) are evidently the result of the action of the contagium on the system, and they begin to show themselves from the very commencement of the fever, passing through various stages during its continuance. The portion of the bowes in which they occur moot abundantly is the lower part of the small intexine (ileum), where the " solitary glands" and" Peyer's paiches" on the roucous surface of the canal become affected by diveased action of a definite and progressive character, which stands in distinct relation to the symptoms exhibised by the patient in the course of the fever. (1) There glands. which in healih are comparativedy indistinct, become in the commencement of the fever enlarged and prominent by infleration due to inflammalory action in their substance. and consequent cell proliferation. This change usually affects a lagre extent of the ileum, but is more marked in the lower portion near the ileo-cesecal value. It is generally hedd that this is the condicion of the parts during the first eight or ten days of ithe fever. (2) These enlarged glands next undergo a process of toughing. the infammatory products being cast of either in fragments or en masse. This usually takes plare in the second week of she fever. (3) Ukers are thus formed varying in size according to the gland massess which have atcughed away. They may be few or many ia number, and they exhibit certain characteristic appearances. They are frequently, but not always, oblong in shape. rith their long axis in that of the bowel. and they have somewhat thin and raged edges. They may extend through the thicknese of the intestine to the peritoneal coat and in their progrese erode bood-vemels or perforate the bo wel. This stage of ulceration exists from the second week onwards during the remaining period of the lever. and cren into the stage of convalescence. (t) in moat instances these alcers heal by cicatrization, leaving. however, no contraction of the calibre of the bowel. This stage of healing occupiet a considerable time. since the process does not advance at an equal rale in the case of all the ulcers, some of which have been larer in forming than others. Even when convalescence has

\footnotetext{
The word "enteric" has been subatituted for "typhoid" by the Royal Colkge of Phyaicians in the nomenclature of diseases authorized by them, and the change was offcicilly adopted by all depariments of the British government. Its advantages are doubtfuf. and it has been generally ignoreal by those foreign countricz which used the word "yphoid." "Enterie" is preterable in that it cannor be conlounder with " typhus "and bears same relation to the nature of the affection, the characteristic lenture of which is a specificinflammalion of the small intestine: but it is not suff. ciennly distinctive. There are. in truth. several enteric levers. and the apporopriation of a term having a keneral meaning to one of them is inconvenient. Thus it is found neressary to revert to the dixrarded "typhoil." which has no real meaning in itself. but it convenient as a distinctive lalxel. when speaking of the cause of the disease or some of its gympioms. We have the "yphoid bacillus." typhoid stools.'." 'yphoid spots'." 'typhoid ukers." \&c. The word "enseric" cannot well be applied to these thimgs. because of its reneral meaning. Consequently both worde have to be used, which is awkward and confurine
}
been apparently completed, some unbmaled ukers may yet remain and prove, particularly in connexioa with errors in diet, a cause of relapee of soune of the symptoms, and even of still more serious or fatal consequences. The mesenteric plands external to, but in functional relation with, the intestine. become enlarged during the progrese of the fever, but usually subside after recovery.

Besides these change, which are well recognized, others more or leas important are often present. Amoag these may be mentioned marked atrophy. shinaing and moltness of the coats of the intestines, even after the ulcers have beated-a condition which may not improbably be the cause of that long-continued impairment of the function of the bewels so often complained of by persons who have passed through an attack of typhoid lever. Other changes common to most levers are also to be observed, such as softening of the muscular tiseues generaliy, and particularly of the heart. and evidences of complications affecting chest or other organs, which not infrequentiy arise. The swelled leg of fever sometimes follows syphoid, as does also periostal inflammation.

The symptoms characterizing the onset of typhoid tever atse very much less marked than those of most other cevers. The most marked of the early symptoms are headiche. lassitude and discomfort, toget her with sleeplemenems and leverishness, particularly at night; this last symptom is that by which the disease is most readily detected in ite early stages. The peculiar course of the temperature ia also one of the most importans diagnostic evidence of this fever. During the first week it has a morning raage of moderate febrile rise, but in the evening there is a marked ascent, with a fall again towarde morning, earh morning and evening. however, showing respectively a higher point than that of the pre vious day, until about the eighth day, when in an average case the highest point is stained. This varies according to the severity of the attack: but it is no unusual thing to register to4 \({ }^{\circ}\) or \(105^{\circ}\) F in the evening and \(103^{\circ}\) or \(104^{\circ}\) in the morning. During the second week the daily range of temperature is comparatively small, a slight morming remission being all that is observed. In the third week the same condition continuee more or less; but frequently a slight tendency to lowering may be discerned. particularly in the morming temperature, and the lebrile action gradually diet down as a rule between the twenty-first and the twenty-eighth days, although it is lable to recur in the form of a relapee. Although the patient may. during the earlier days of the lever, be able to move about, he feels languid and uneasy; and usualty before the first week is over he has to take to bed. He is restleas, hot and un comiortable. paricularly as the day advances, and his cheeks show a red flush, especially in the evening or afier taking food. The aspect, however. is different from the oppressed, stupid look which is present in syphus. The pulse in an ordinary case, although more rapid than normal, is not accelerated to an extemt corresponding to the heisht of the temperature, and is. at least in the earlier staget of the fever, rarely above 100 . In severe and protracted cases where there is evidence of extensive intestinal ulceration. the pulse becomes rapid and weak, with a dicrotic character indicative of cardiac feebleness. The tongue has at first a thin, whitish fur and is red at the tip, edges and ceniral line. It tends, however, to become dry. brown or glazed looking. and fissured transversely. while sondes may be present about the lips and teeth. There is much thirst and in wome cases vomiting. Splenic and bepatic enlargement may be made out. From an early period in the direase absominal symptoms show themselves and are frequently of highly diagnosic significance. The abdomen is somewhat distended or tumid, and pain accompanying some gurgling sounds may be elicited on light pressure abour the lower part of the right side close to the proin-the region corresponding to that portion of the intestine in which the morbid changes already referred to are progressing Diarrhoea is a frequent but by no means constant symptom. When present it may be slight in amount, or, on the other hand. extremety profuse, and it corresponds, as a rule. to the severity of the intestinal ukeration. The discharges are highly characteriatic. being of light yellow colour resembling pea soup in appearance. Should intestinal haemorrhage occur, as is not infrequenily the case during some stace of the lever. they may be dark brown or componed entirely of blood. The urine is scanty and highcoloured. About the beginming, or dariag the course of the secoad week of the fever, an eruption frequently makes its appearance on the skin. It consists of isolated spots, oval or round in shape, of a pale pink or rose colour, and of about one to one and a han lines in diameter. They ore seen ebiefly upon the abdomen. chest and back, and they come ous in crops, which coatimue for lour or five days and then fade away. At frre they are slightly elevated. and disappear on pressure. In some cases they are very few in number, and their presence is made out with difficulty: but in ot hers they are numerous and sometimes show themselves upon the limbs as well as upon the body. They do not appear to have anv relation to the meverity of the attack, and in every considerable proporion of cases (particularly ia children) they are entirely absent. Besides this eruption there are not infrequenily numerows very laint blurish paliches or blotches about haf an inch in diameter. chiefly upon the body and thighs. When present the rose coloured spots continue to come out in eropt till nemily the end of the lever, and they may reappear should a relapse
subsequently occur. These various symptoms persist ihroughout the third week, usually, however, increasing in intensity. The panient becomes prostrate and emaciated; the tonguc is dry and brown, the pulse quickened and reeble, and the abdominal symptoms more marked; while nervous disturbance is exhibited in delirium, in tremors and jerkings of the muscles (subswins tendinum), in drowsiness, and occasionally in "coma vigil." In severe cases the exhaustion reaches an extreme degree, alchough even in such instances the condition is not to be regarded as hopeless In favourable cases a change for the better may be anticipated between the twenty-first and twenty-eighth days, more usually the latter. It does not, however, take place as in typhus by a well-marked crisis, but rather by what is termed a "lysis" or gradual subsidence of the febrile symptoms, especially noticeable in the daily decline of both morning and evening temperature, the lessening of diarrhoea. and improvement in pulso, tongue. \&c. Convalescence proceeds slowly and is apt to be interrupted by relapses. Should such relapses repeat themselves, the case may be protracted for two or three months, but this is comparatively rare.

Death in typhoid fever utually takes place from one or other of the following causcs. (1) Exhaustion, in the second or third weeks, or later. Sometimes sinking is sudden, partaking of some of the characters of a collapse. (2) Haemorrhage from the intestines The evidence of this is exhibined not only in the evacutions, but in the sudden fall of temperature and rise in pulse-rate, rogether with great pallor, faintness and rapid sinking. Sometimes haemorrhage, to a dangeroue and even fatal extent, takes place from the nose. (3) Perforation of an incestinal uicer. This gives rise, as a rule, to sudden and intense abdominal pain, together with vomiting and signs of collapse, viz a rapid flickering pulse, cold clammy skin. and the marked fall of temperature. Symptoms of peritonitis quickly supervene and add to the patient's distress. Death usually takes place within 24 hours. Occasionally peritonilis, apart from perforation, is the cause of death. (4) Occasionally, but rarely, hyperpyrexia (excessive (ever). (5) Complications, such as pulmonary or cerebral inflammation, bedsores, \&c.

Certain sequclae are cometimes observed. the most important being the swelled leg, periostitis affeciing long bones, gemeral illhealth and anaemia, with digestive difficulties, often lasing fot a long time. and sometimes issuing in pulmonary tuberculosis. Occasionally, after severe cases, menal weakness is noticed, but it is usually of comparatively short duration.
No disease has been more thoroughly studied in recent years than typhoid fever. The chicf points requiring notice are (1) causation and spread, (2) prevalence, (3) treatment, (4) prevention.

Causation.-The cause is the bacillus typhosms, discovered by Eberth in 1880 (see Parasitic Diseases). This organism multiplies in the body of a person suffering from the discase, and is thrown off in tbe discharges. It enters hy being swallowed and is conveyed into the intestine, where sets up the characteristic inflammation. It is found in the spleen, the mesenteric glands, the bile and the liver, not infrequently also in the bone marrow, and sometimes in the heart, lungs and kidneys, as well as in the faeces and the urine. It has also, though more rarely, been found in the blood. The illness is therefore regarded as a general toxaemia with special local lesions. The relation of the bacillus to the other numerous hacteria infesting the intestinal canal. some of which are undoubtediy capable of assuming a pathogenic character, has not been determined; but its natural history, outside the body, has been investigated with more positive results than that of any other micro-organism, though much still remains obscure. Certain conclusions may be stated on good evidence, hut it is to be understood that they are all more or less tentative. (1) In crude sewage the bacillus does not multiply, hut dies out in a few days. (2) In partly sterilized sewage (i.e. heated to \(65^{\circ}\) C.) it does not multiply, but dies out with a rapidity which varies directily with the number of other organisms present-the more organisms the quicker it dies. (3) It is said not to be found in sewer air, though Sir Charles Cameron, from a serics of recent experiments, elaims to have proved the contrary. (4) In ordinary water containing other organisms it dies in about a fortnight. (5) In sterilized water it lives for about a month. (6) In ordinary soil moistened hy rain it has lived for 67 days, in sewage-polluted soil for at least 53 days, in soil completely dried to dust for 25 days, and in sterilized soil for upwards of 400 days. (7) Exposed to direct sunlight it dies in from four to eight hours. (8) It is killed hy a temperature of \(58^{\circ} \mathrm{C}\)., but not by freezing or drying. (9) It multiplies at
any temperature between \(10^{\circ} \mathrm{C}\). and \(46^{\circ} \mathrm{C}\)., but most rapidly bet ween \(35^{\circ} \mathrm{C}\) and \(42^{\circ} \mathrm{C}\). These conclusions, which are derived from experiment, are to a considerable extent in agreement with certain observations on the behaviour of the disease on a large scale.

The susceptibility of individuals to the typhoid batillus varies greatly. Some persons appear to be quite immune. The most susceptible age is adolescence and early adult life: the greatest incidence, both among males and females, is between the ages of 15 and 35 . The aged rarely contract it. Men suffer considerably more than women, and they carry the period of narked susceptibility to a later age. Predisposing causes are believed to be debility, depression, the inhalation of sewer air by those unaccustomed to it, and anything tending to " lower the vitality," whatever that convenient phrase may mean. According to the latest theories, it prohably means in this connexion a chemical change in the blood which diminishes its bactericidal power. The lower animals appear to be free from typhoid in nature; hut it has heen imparted to rabbits and other laboratory animals. There is no evidence that it is infectious in the sense in which small-pox and scarlet fever are infectious; and persons in attendance on the sick do not often contract it when sufficient care is taken. The recognition of these facts has led to a gencral tendency to underrate contegion, ditect and indirect, from the sick to the healthy as a factor in the dissemination of typhoid fever; hut it must be remembered that the sick, from whose persons the germs of the disease are discharged, are always an immediate source of danger to those about them. Such personal infection may become a very important means of dissemination. There is evidence that this is the case with armies in the feeld, e.g. the conclusions of the commission appointed to inquire into the origin and spread of enteric fever in the military encampments of the United States in the Cuban campaign of 1898 . Out of 1608 cases most thoroughly investigated, more than half were found to be due tn direct and indirect infection in and from the tents (Childs: Sanitary Congress, Manchester, 1902). A similar hut perhaps less direct mode of infection was shown to account for a large number of cases under more ordinary conditions of life in the remarkahle outbreak at Maidstone in 1897, which was also suhjected to very thorough investigation. It was.undoubtedly caused in the first instance hy contaminated water, hut 280 cases occurred after this cause had ceased to operate, and these were attributed to secondary iniection, either direct or indirect, from the sick. A good deal of evidence to the same effect by medical officers of health in England has been collected by Dr Goodall, who has also pointed out that the attendants on typhoid patients in hospital are much more frequently attacked than is commonly supposed (Trans. Epidem. Soc. vol. xix.).
Recent discoveries as to the part played in the dissemination of typhoid fever by what are termed "typhoid carriers" have thrown light upon the subject of personal infection. The subject was first investigated by German hygienisis in 1907, and it was found that a considerable number of persons who have recovered from typhoid fever continue to excrete typhoid bacilli in their faeces and urine (typhoid bacilluria). They found that alter six weeks \(4 \%\) to \(5 \%\) of typhoid patients were still excreting bacilli; \(23 \%\) of 65 typhoid patients at Boston City Hospital showed typhoid bacilli in their excretions ten days before their discharge. The liability of a patient to continue this excretion bears a direct relation to the severity of his illness, and it is probable that the hacilli multiply in the gall bladder, from which they are discharged into the intestine with the hile. The condition in a small number of persons may persist indefinitely. In ion cases investigated, Kayser cound three still excreting bacilli two years after the illness, and George Deanc has recorded a case in which bacilli continued to be excreted 29 years alterwards.

Many outhreaks have in recent times been traced to typhoid carriers, one of the first being the Strassburg outhreak. The owner of a bakebouse had had typhoid fever ten years
previously, and it was noticed that every fresh employe entering her service developed the disease. She prepared the meals of the men. On her exclusion from the kitchen the cases ceased. In Brentry reformatory, near Bristol, an outbreak numbering 28 cases was traced to a woman employed as cook and dairymaid who had had typhoid fever six years previously. Before entering the reformatory she had been cook to an institution for boarded-out girls, and during ber year's residence there 25 cases had occurred. A case is reported by Huggenberger of Zürich (Lancef, October 1908) in which a woman carrier is said to have infected a series of cases lasting over 31 years, including her husband, son, daughter-in-law, and no less than nine different servants. Numerous cases of contamination of milk supplies by a "carrier " have been investigated, and in outbreaks traced to dairies it is wise to submit the hlood of all employes to the agglutination test. A persistently high opsonic index to typhoid bacilli is notahle among "carriers." Not only do persons who have had tyhpoid fever harbour bacilli, but also persons who come in contact with cases of the disease and who have no definite history of illness themselves.
The other means of dissemination are polluted soil, food and drink, particularly milk and water. The precise mode in which polluted soil acts is not understood. The result of experiments mentioned above shows that the bacillus lives and muliplies in such soil, and epidemiohogical investigation has repeatedly proved that typhoid persists in localities where the ground is polluted by the leakage of sewage or by the failure to get rid of excrementitious matter. In some instances, no doubr, drinking water thus becomes contaminated and conveys the germs, but there appeare to be some other lactor al work, for the disease occurs under the condilions mentioned where the drinking water is free from suspicion. Exhalation is not regarded as a channel of communication. The researcbes of Majors Firth and Horrocks prove that dust, fies and clothing may convey the germs. Another way in which food becomes the medium of conveyance is by the contamination of oysters and other shellfish with sewage containing typhoid bacilli. This has been abundantly proved by investigations in Great Britain. America and France. Uncooked vegetables, such as lettuces and celery, may convey the disease in a similar way. The most familiar and important medium, however, is water. It may operate directly as drinking water or indirectly by contaminating vessels used for holding other liquids, such as milk cans. Typhoid caused by milk or cream has generally been traced to the use of polluted water for washing out the cans, or possibly adulterating their contents. There in obviously no reason why this chain of causation should not hold good of other articics of lood and drink. Outbrcaks have been traced to ginger-beer and ice-creams. Water sources become contaminated directly by the inflow of drains or the deposit of excretal matter; indirectly. and more frequently, by the leakage of ecwage into wells or by heavy rains which wash sewage matter and night-soil from ditches and the surface of the land into springs and watereourses. Water may further be contaminated in the mains by leakage, in domestic cisterns, and in supply pipea by suction. There is some reason to believe that the bacilii may multiply rapidly in water containing suitable courishment in the absence of large numbers of their natural foes.

Preaslence.-Typhoid fever is more or less endemic and liable to epidemic outbreaks all over the world. It is more prevalent in temperate than in tropical climates. The following comperative death-rates show its relative prevalence in certain countries in 1890: Italy, 658; Austria, 470; U.S.A. 462; Prussia, 204; England, 179. It has undergone marked and progressive diminution in many countries coincidently with improved sanitation p particularly in regard to drainage and \(^{\text {ind }}\) water-supply. Table I. gives annual death-rates in England and Wales after 1869, when typhoid was registered separately from typhus and "simple" fever.

London shows less improvement than Great Brituin as a whoke, bet it started with superior sanitary conditions, and chough the reduction has not been maintained in the last recorded quinquennium, the mortality is still much below the mean. The disease is more prevalent in Paris, but the diminution effected has beed far greater in the time, the average annual mortality per million having fallen from 1430 in 1882 and 581 in 1883-1888 to 293 in \(\mathbf{1 8 8 9 - 1 8 9 4}\) and 172 in \(1895-1900\). Onher recorded instances of diminution are Bertin, Hamburg, Munich, Copenhagen, the Netberlands, Buenos Aires (from 1060 per million in 1890 to 140 in 1899). In all these and

Table 1.-Ammal Mortelity from Enteric Famp par Million Porsous living-Endand and Wales.
\begin{tabular}{|c|c|c|c|}
\hline Year. & Mortality. & Year. & Mortality. \\
\hline 1869 & 390 & 1889 & 176 \\
1870 & 388 & 1890 & 179 \\
1871 & 371 & 1891 & 166 \\
1872 & 377 & 1892 & 137 \\
1873 & 376 & 1893 & 229 \\
1874 & 374 & 1894 & 159 \\
1875 & 371 & 1895 & 175 \\
1878 & 309 & 1896 & 166 \\
1877 & 279 & 1897 & 156 \\
1876 & 306 & 1898 & 182 \\
1879 & 231 & 1899 & 199 \\
1880 & 261 & 1900 & 160 \\
1881 & 212 & 1901 & 173 \\
1882 & 229 & 1902 & 126 \\
1883 & 228 & 1903 & 100 \\
1884 & 236 & 1904 & 93 \\
1885 & 175 & 1905 & 89 \\
1886 & 184 & 1906 & 92 \\
1887 & 185 & 1907 & 67 \\
1888 & 172 & 1908 & 75 \\
\hline
\end{tabular}

The diminution is nore clearly ahown if quinquencial pertioda are taken, as in Table II.

Table II.-Average Annual Mortality per Million in England and Wales, and in London.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 1881-75 & 1176-80 & \(1881+{ }_{5} \mid\) & 1885-00| & 1891-9s & 1800-1900. & 100t-05 \\
\hline \begin{tabular}{l}
England and Wales. \\
London .
\end{tabular} & 354
256 & \[
\begin{array}{r}
278 \\
234
\end{array}
\] & \[
218
\] & \[
\begin{array}{r}
180 \\
150
\end{array}
\] & 176
136 & \({ }_{178}{ }^{4} 88\) & 1126 \\
\hline
\end{tabular}
other cases the improvement is attributed either to drainage or water-supply, or both. The case of Munich is so instructive that it deserves special mention. For many years typhoid was excessively prevalent in that city. The prevalence was continuous, but aggravated by large epidemic waves, extending over several years. These gradually decreased in magnitude, and ceased towards the end of 8880 . Since then the prevalence has still further diminished, the average annual mortality per million having fallen from 2024 in \(1851-1860,1478\) in 1861-1870 and 1167 in 1871-1880 to 160 in 1881-1890 and 5 : in 1891-1900.

It has been forcibly argued by Dr Childs (Trans. Epidem. Sac. vol. xvi.) that drinking water bad little, if anything, to do with the prevalence of the disease, and that its gradual reduction was due to purification of the woil by improved drainage systems and the abolition of slaughter-bouses. The epidemic waves were found by von Pettenkoler to be asecciated with the rise and fall of the subsoil water; when the water fell the fever rose, and vice versa. He did not, bowever, consider that the subsoil water exercised any influence itacli; he merely regarded it as an index to certain conditions of moisture which exercised a favourable or unfavourable influence on the development of the divease. His theory, which bas been much misundertood, is to some extent corroborated by some facts observed in Great Britain. One is the seasonal prevalence of typhoid, which in England is an autumnal discase. The minimum occurs in May or June; in August a marked rise begins, which cootinues throughout the autumn and reaches a maximum in November, after which an abrupt fall sets in. These facts are in keeping with Pettenkofer's theory, for the subsoil water reaches its maximum height at the end of spring and falls throughout the Hummer and a great part of the autumn. The coincidence is further emphasized by the fact that in dry years, when the subsoil water sinks lower than usual, typhoid is more prevalent, and in wet years the contrary. A glance at the mortality table for England given above will show that the progressive improvement recorded down to 1890 was suddenly interrupted in 1893 , when the rate rose abruply from 137 to 229. That was an extraordinsrily dry and hot year, and it was followed by a succession of dry and bot years. culminating in 1899, with two exceptions-1894 and 1897. In both the typhoid rate fell again, but in all the others it rose. One explanation has been sugsested by Mir Matthew Adams of Maidstone. He points out that organic matter deposited on or in the ground pases in mormal years gradually through severa! layers of soil, and undergoce a process of destruction or purification before neeching the underground water; but in hot summers the ground becomes baked and cracked, and there is no such percolation when rain comes everything is swept suddenly away without any purification, and finds its way into the soureas of drinking water.

Whether this be so or not, there is no doubt that dangerous material does collect during the summer and is swept into watercourses by the autumnal rains. Perhaps this is eufficient to account for the seasonal prevalence and the annual variations noted. There is, however, a great deal of typhoid which has no connexion with water-supply. Numerous cases of persistent prevalence have been investigated by the medical officers of the local government board, in which drinking water has been exonerated and the mischief attributed to standing pollution of the soil-for instance. Mold, Middlesbrough, Southend, Swinton and Pendlcbury, ac. In such places the chronic prevalence is apt to swell at times to more epidemic proportions, as at Munich: and possibly the condition of the ground may be the cause. An examination of the relative incidence of typhoid in the counties of England and Wales (Bulstrode) goes to show that its prevalence, broadly regarded, is not capricious. The areas of maximum and minimum incidence remained practically the same throughout the twenty years 1871-1890, though there was everywhere a large diminution. This fact suggests the reflection that standing conditions are more important factors than those accidental occurrences which attract public attention by causing sudden and explosive outbreaks. When these are on a small scale they may be due to milk; on a large scalc they are alway waterborne and caused by sudden concamination of a public supply. The classical example is Maidstone. That outbreak began towards the end of August 1897, and within six weeks some 1500 persons were attacked. The total number of cases was 1847. With 132 deaths, in a population of about 34,000 . With the exception of 280 cases of secondary infection, which lingered on till the following January, they all occurred before the 18 th of October, and the disease subsided almost an rapidly as it arose. A mass of evidence of different kinds left no possibility of doubt that accidental contamination of a water-supply was the cause. Perhaps the most etriking point was that Maidstone is supplied with water from three difterent sources, known as Cossington, Boarlcy and Farleigh, and out of \(\mathbf{6 8 t}\) cases the respective incidence in these areas was Cossington 29, Boarlcy 69. Farleigh 1583. Another great example of waterborne typhoid is rurnished by Philadelphia, where 14,082 cases occurred in 1898-1899.

Treaiment.-Improved knowledge of the nalure and causation of typhoid fever has not led to the suecessiful introduction of a specific treatment; nor have means been found to cut short the illness, though its fatality has been reduced. It still goes through the classical stages, which broadly coincide with first second and third weeks. Attempts have been made to deal directly with the toxins produced hy the hacilli, on the hypothesis that they are formed in the intestinal canal, by the use of internal disinfectants, such as mercury, iodine, carbolic acid, salol, \&c., and these agents are sometimes beneficial; but the treatment remains essentially symptomatic, and follows the principles that were recognized before the discovery of the bocillus typhosus. One of the most important improvements is the regular use of sponging or hathing for the reduction of temperature. It has even been developed into a continuous bath, in which the patient is kept in water throughout the illness. Since the recent development of serum-therapy various serums have been tried in the treatment of typhoid fever, and successful reports are given of the anti-endotoxic serum devised by Dr Allen Macladyen, while Professor Chantemesse, in the statistics of serum treatment at the Bastion Hospital, Paris, states that from July 1901 to July 1907 he so treated 1000 ceses, 43 proving falal, a mortality of \(4.3 \%\). During the same period, 5621 cases were treated in fourteen ol her Paris hospitals, with g60 deaths, a mortality of \(r 7 \%\). Chantemesse's serum was employed by Professor Brunon at Rouen in 100 cases with tbree deaths, and Dr Josias of Paris in 200 cases with cight deaths in typhoid fever occurring in young children. The scrum is taken from a borse which has received over a long period injections of an emulsion of the bacillus typhosus or a soluble toxin. Sir Almroth Wright bas suggested the use of an eutogenous vaccine in this as in other parasitic diseases, opsonic control being exercised.

The fatality of typhoid lever varien greatly. Age exercisen a marked infuence, the fatalisy rising steadity after the period 5 to 10 years. The importance of careful and intelligent nursing is undoubtedly great, but there is a tendency, encouraged by some nurses, on the part of the public to overestimate that lactor and to think that nothing more is needed. This is a grave mistake. No disease requires more vigilant atiention or greater medical experience. The following table shows quinquennial Ggures for the London Metropolitan Asylums Board hospitals.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Netropolitan Asylums Board Hospitals.} & County of London. \\
\hline & Admissions. & Deaths. & Ratio per cent. of deaths 10 admissions. & Mean annual mortality per 1000 living. \\
\hline 1874-1878 & 1878 & 379 & 20 & 0.25 \\
\hline 1879-1883 & 2049 & 381 & 19 & 0. 23 \\
\hline 1884-1888 & 1937 & 314 & 16 & 0.17 \\
\hline 1889-1893 & 2517 & 415 & 16 & 0.13 \\
\hline 1894-1898 & 3328 & 578 & 17 & \(0 \cdot 13\) \\
\hline 1899-1903 & 6779 & 1023 & 15 & 0. 13 \\
\hline 1904-1908 & 3084 & 457 & 15 & 0.05 \\
\hline
\end{tabular}

Prevention.-II house drainage were always perfectly carried out, sewage satisfactorily disposed of, water-supply efficiently protected or treated, patients segregated, and the typhoid material excreted by them and typhoid "carriers" effectually annibilated-if, in short, scientific cleanliness were completely attained, the disease would disappear, or be at least excessively rare. In some communities much has been done in the ditections indicated; but in many others the lessons of experience are ignored, and even in the best practice lags behind theory. This is mainly due to apathy and reluctance to spend money, but there are certain real difficullies which stand in the way. To discuss them fully would involve a lengthy consideration of drainage, water-supply and other matters, which would be out of place here; but some points must be noted. The most important is undoubtedly water-supply. The substitution of public water supplies for shallow wells and small streams liable to pollution is one of the greatest factors in the diminution of typhoid and other water-borne diseases; but it may give rise to danger on a far larger scale, for a whole community may be poisoned at one blow when such a supply becomes contaminated. Unfortunatcly, it is extremely dificult to prevent contamination with certainty in a populous country. Theoretically, water may be pure at its source, and may be distributed in that condition. Such is water derived from deep wells and springs, or gathered from uncultivated and uninhabited uplands. In the one case it has undergone natural filtration in the ground; in the other, it escapes all risk of pollution. Thesc waters are generally pure, but the condition cannot be relied on. A tramp or a shepherd may pollute the most remote gathering.ground unless it be fenced in; decp wells may be similarly fouled by workmen, and sewage may find its way into them from the surface or through fissures. In an outbreak of enteritis and typhoid fever at Leavesden Asylum, investigated by Dr A. Shadiwell in 1899 , the source of mischici was traced to contamination of the well, which was 250 ft . deep in the chalk. The contamination did not take place from the surface, but from some underground source, and there were groundscorroborated by subsequent observation-for believing that it occurred at irregular intervals, and was probably coanected with the level of the deep underground water. At the same time the similar well of a neighbouring poor-hnw school was found to be dangerously polluted, and it was ascertained that two ochers in the same locality had been condemned and closed in the past. The deep chalk in that neighbourhood was clearly unsafe, and this was thought to be due to the practice of digging holes called "dumb wells," hut in reality cess-pits, as much as 40 ft . deep, in the chalk for the reception of sewage. The same practice is common in all inhabited localities on a chall forma. tion, as it is an ext remely convenient way of disposing of sewage. which percolates away and renders it unnecessary to empty the cess-pit. Several similar cases of deep well pollution have been recorded, notably those of Houghton-le-Spring in 188 g and Worthing in 3893 . To secure purity, therefore, and prevent liability to outhreaks of typhoid and ol her intestinal diseases. all gathering-grounds should be fenced in, and water, even from deep wells, should be regularly examined, both chemically and bacterioscopically, in order that any change in composition may be detected. In the water-supplies of great populations such examination shouid be made daily. Further, all supplies which
are not above sosplicion should be filtered through mad or sterilized by boiling. The latter can be carried out by simple means in the case of individual domestic water, and attempts have been made to apply it by meana of mechanical apparatus to supplies on a larger scale. It is not, bowever, applicable to the water-supply of large towns, because of the liability of such apparatus to get out of order. Send filtration is at present the best mode of dealing witb these supplies. There is no purer water than that which has beee properly treated by subsidence and sand filtration, even when it is taken from an impure source. So far as the prevention of typhoid and other water-borne disease is concerned, it is certainly saler than the unfiltered water which is taken from so-called pure sources. It cannot be a mere coincidence that London, Hamburg, Berlin and ot her towns using well-filtered but originally impure river water should be generally freer from water-borne disease than many large towns drawing their supply from purer sources but neglecting to filter it, such as Manchester, Glasgow and the American cities. Table III., prepared by Mr Caink, engineer to the city of Worcester, illustrates this fact, which has atso been noted by Professor Saltet of Amsterdam as bolding good at the Netherlands.
type and severity of the Mneas. Becteriological science has here come to the asaistance of the clinical physician with what is called the Widal or serum reaction, which has a great diagnoatic value when carefully performed. Professor Chantemesce has also introduced a cutaneous reaction similar to von Pirquet's reaction in tuberculoais. But obviounly these remedies can only be applied to persons in the position of patients; it is of no use in the case of thove who do not proclaim themselves ill, but go about their businese When ufficring from the disease. Such "ambulatory" cases have long been recognized as an important factor in spreading the disease. Many of the most memorable epidemics have probably been caused by them, and it is difficule to sec how they can be guarded againat. The "typhoid-carrier," however, when dincovered should we inter. dicted from the preparation of lood and should undergo a course of treatment with in view to lesening their excretion of typhoid bacilli.
The prevention of typhoid among armies in the field is a problem of special dificulty, not in principle but because of the conditions. The water is generally polluted, and soldiers are too thirsty to wait while it is boiled or filtered, even if the means are at hand. The sanitary arrangements are such as to ensure the saturation of the ground with excreta; flies and dust abound; personal cleanliness is impossible, and men feed and sleep together in the closest proximity. No doubt a great deal might be done by efficient sanitary organization, which

Table III. - Occurrences of Typhoid according to Sources of Walep-SupNy.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Source of Water.} & \multirow[t]{2}{*}{Town.} & \multicolumn{9}{|c|}{Annual Typhoid Case-rate per 100,000.} \\
\hline & & 1892. & 1893. & 1894. & 1895. & 1896. & 1897. & 1898. & 1899. & 1900. \\
\hline Deep wells in Red Sandstone & W Wolverhampion & 109 & 184 & 109 & 146 & 159 & 117 & 524 & 224 & 237 \\
\hline & \ Birkenhead . & 157 & 207 & 185 & J65 & 138 & 126 & 211 & 330 & 145 \\
\hline Deep wells in Chalk & Southampton. & 145 & 159 & 109 & 83 & 78 & 64 & 153 & 171 & 109 \\
\hline & (Liverpool .. & 152 & 275 & 267 & 190 & 168 & 160 & 129 & 149 & 115 \\
\hline Upland surface water & \(\{\) Manchester & 120 & 120 & 90 & 96 & 92 & 90 & 118 & 78 & \(7^{8}\) \\
\hline & Plymouth London & 126
65 & 63
84 & 47 & 32
81 & 31 & 49 & 46 & 49 & 120 \\
\hline Rivers (fitered) & \(\left\{\begin{array}{l}\text { London } \text { Reading }\end{array}\right.\) & 65
30 & 84
35 & 77 & 81 & 71
30 & 70 & 66 & ; 98 & 95 \\
\hline Rume (literd) & (Worcester . . & 155 & 145 & 110 & 36 & 43 & 45 & 32 & 50 & 26 \\
\hline Average of 219 towns . & \(\bigcirc\) & 88 & 142 & 103 & 115 & 102 & 100 & 115 & 127 & 116 \\
\hline
\end{tabular}

The amount of typhoid is dependent on other factors besides the water-supply. but the close connexion between the two and the influence of filtration are well attested by the experience of Worcester, where the great reduction recorded since 1894 coincided wish new and improved faltration. The weak point about sand Gileration is that it is apt 10 be imperfectly performed when the filters are frozen or newly cleaned. or when the process is too rapid. Filtration through porcelain is an efficient purifier, but it is not applicable to supplies on a large scale. and is liable to break down through clogging of the filters. Other portabie fitiers are regarded as useless or worse. The best emergency treatment for suspected drinking water is boiling. Contamination of water in the mains is due to bad laying, and ought never to occur; that of supply pipes can be prevented by a constant service, and of domestic Girers by providing them with covers.
Next to water-supply, and hardly less important, is drainage. The drying and cleansing of the soll by good houschold drainage and sewerage is essential to the prevention of typhoid. Cess-pits. leaking drains and privies, especially when there is only one to everal housea, as in many industrial towns, are powerful allies of this diseave. The drainage of all old houses is defective and dangerous. The ground about them is commonly honeycombed wih cest-pits and saturated with sewage. The only way to discover and remedy such defects is to lay them bare with the pickaxe and shovel. Soil-pipes should always be trapped and ventilated. In short, no disease requires for its prevention more careful attention to bouse sanitation. The paving of yards and other spaces is alsp desirable in towns, on account of the liabatity of the unprotected soil to harbour moisture and 6ith.

Oiker modes by which the divease is spread-auch as shellifish. milk and uncooked vegerables-suggest their own remedy. The dissemination by dust and flies is less cacily prevented. All that can be done is to segregate the sick and promptly destroy all da ngeroos matters proceeding from them. It should be remembered that the urine may be an even greater source of danger than the faeces. The same observation applies to the prevention of infection from person to person. There is no doubt that sufficient care is often ansing. even in hospitals, in handling patients' soiled linen and dorlues, and in dealing promptly and effectually with their excreta. For the effectual segregation and treatment of persons suffering from typhoid prompt recognition is necereary; and chis, unfortunately, is a matter of much difficulty on account of variation is the
has hitherto been lacking, and by educating the men. Dr Leigh Canney in root suggested a scheme for dealing systematically with the water-supply of an army. Extraordinary results were obtained by the Japanese army medical department in the Russo-Japanesc War of 1904-5 in the prevention of typhoid fever, which up to that period was responsible for the largest mortality of any disease affecting armies in the field. Handbooks on the avoidance of cholera, plague and typhoid fever were issued to the troops. Boiled water in quantities was provided for the soldiers, each battalion having its boiling outfit. Even foreign attaches and correspondents were requested to observe the regulations on this point. With this there was a systematic advance testing of wells, the wells being labelled "fit for drinking" or "for washing purposes only." It being impossible to suppress the presence of flies on food, care was taken to cover all latrines and cover and disinfect excreta, so that infection from fies was reduced to a minimum. Food was transferred from sterilized caldrons into sterilized lacquer boxes and served on sterilized plates. A crematory was attached to base hospitals, where all nightsoil, garbage and waste was burnt daily. Owing to these precautions the incidence of infectious disease, notably typhoid lever, was reduced to a figure unparalleled in any previous war, only \(3.51 \%\) of the total sickness being due to infectious disease. Taking the number of men at the front in April 1905 to have been 599,617 , the entire deaths from infectious and contagious diseases amounted to \(1.24 \%\) of the entire army in the field.

In a table furniched by the Japanese war office at a still later date we note the small percentage of typhoid fever.

Percentage of patients in entire Army Corps at a certain date:-
Wounds received in action 45.53

Other wounds and injuriea \begin{tabular}{l}
3.71 \\
\(\mathbf{1} .61\) \\
\hline
\end{tabular}
Typhoid fever
1.61

Dyentery 1.95

All other disences : : : : : . \(47 \cdot 20\)

In the statistics of Ceneral Oku's army, calculated to be at least 75,000 strung, Major-General Mori, chief medical ofticer, reports the Iyphoid cases to be 66 only between the dates of October 190. and April t905. Of this asmy 2142 were invalided home or died. 133 only being cases of typhoid fever.

The sickness incidence in the First Army under General Kurok; was as follows during the lirst six months of the campaign:-
\begin{tabular}{|c|c|c|}
\hline Months & Sickness: all Diseases, & Typhoid Fever. \\
\hline March & 3829 & 3 \\
\hline April & 3545 & 1 \\
\hline May & 3154 & 9 \\
\hline June & 4824 - 40411 & 9 \\
\hline July & 5565 - & \[
4
\] \\
\hline August & 6006 & 9 \\
\hline
\end{tabular}

The figures are interesting when we consider that during the South African War of 1899 -1902 no fewer than 31,000 men were invalided bome to England on account of typhoid lever.

One other point requires mention in connexion with prevention, namely, protective inoculation. This is performed with an anti-toxic substance prepared from dead cultures of bacilli, and has been tried on a fairly large scale, particularly on the British army in India and South Africa. Sir W. B. Leishman, writing on the results of anti-typhoid inoculations in the army (Journ. of R.A.M.C., February 1909), gives the total number of men inoculated up to the ist of June 1908 as 5473, amongst whom 21 cases (3.8 per 1000) with 2 deaths occurred. The number non-inoculated, 6610 men, had an incidence of 187 cases (28.3 per 1000) with 26 deaths. The case mortality of the inoculated was \(9.5 \%\), of the non-inoculated \(13.8 \%\). Several regiments however were not exposed to enteric fever. If these be excluded the incidence in the inoculated is 6.6 per 1000 against 39.5 per 1000 in the non-inoculated. Lord Kitchener, speaking at Middlesex Hospital in October 1g1o, bore emphatic testimony to the value of inoculation coupled with improved sanitary methods on the bealth of the army in India, declaring his belief that enteric would before long join cholera in total banishment from the barracks.

TYPHON (Typhaon, Typhoeds), in Greek mythology, youngest son of Gaca and Tartarus. He is described as a grisly monster with a hundred dragons' heads, who was conquered and cast into Tartarus by Zcus. In other accounts, he is confined in the land of the Arimi in Cilicia (\(1 \mathrm{liad}, \mathrm{ii} .783\)) or under Eina (Aeschylus, P.V. 370) or in other volcanic regions, where he is the cause of cruptions. Typhon is thus the personification of volcanic forces. Amongst his children by Echidna are Cerberus, the Lernaean hydra, and the Chimaera. He is also the father of dangerous winds (typhoons), and by later writers is identified with the Egyptian Seth.

See Eduard Meyer, Set-Typhon (1875), and M. Mayer, Die Giganten und Titanen (1887): Preller-Robert, Griechische M ythologie (1894). pp. 63-66; O. Gruppe, Griechische Mythologie, ii. 845. 1333. according to whom Typhon, the " snake-footed" earth-spirit, is the god of the destructive wind, perhaps originally of the sirocco. but early taken by the Phoenicians to denote the north wind, in which sense it was prohably used by the Greeks of the 5 th century in nautical language; and also in Philologus, ii. n.f. (1889), where he endeavours to prove the identity of Typhon with the Phoenician Zephon (Baalzephon, translated in Gesenius's Thesaurus by " locus Typhonis " or "Typhoni saar"), signifying " darkness." " the north wind," and perhaps " snake"; A. von Mess, "Der Typhonmythus bei Pindar und Aeschylus," in Rheim. Mus. Ivi. (1901), 167.

TYPHOON (probably from the Arabic and Hindustani lufan, a tempest, which is perhaps derived from Typhon, \(q, v\). : the Chinese t'ai fung, strong wind, is not used in application to typhoons), the name given to a heavy cyclonic storm in the seas fringing the eastern coast of Asia from Japan to the Philippine Islands. Typhoons generally occur in a series during the months of August, September and October, the season when the belt of equatorial calms in the Pacific Ocean reaches its most northerly extension.

TYPRUS FEVER (from Gr. rôpos, smoke or mist, in allusion to the stupor of the disease), an acute infectious disease of highly contagious nature, lasting for about fourteen days, and characterized mainly by great prostration of strength,
severe nervous symptoms, and peculiar eruption on the skinIt has received numerous other names, such as pestilential, putrid, jail, hospital fever, exanthematic typhus, \&c. It appears to have been known for many centuries as a destructive malady, frequenty appearing in epidemic form, in all countries in Europe, under the conditions to be afterwards referred to. The best accounts of the disease are those given by old English writers, who marrate its ravages in towns and describe many "black assizes," in which it was communicated by prisoners brought into court to the judges, jurymen, court officisls, \&c., with fatal effect. Typhus fever would seem to have been observed in almost all parts of the world; but it has most frequently prevailed in temperate or cold climates.

The conditions concerned in its production include both the predisposing and the exciting. Of the former the most powerful are those influences which lower the bealth of a community, especially overcrowding and poverty. Hence this fever is most frequently found to affect the poor of large cities and towas, or to appear where large numbers of persons are living crowded together in unfavourahle hygienic conditions, as has often been seen in prisons, workhouses, \&c. Armies in the field are also liable to suffer from this disease; for instance, during the Crimean War it caused an enormous mortality among the French troops. Recently, however, an important change of view of the connexion of typhus fever has arisen. Professor Matthew Hay (Journal of Public Heallh, Septemher 1907) attributes the spread of typhus fever to fleas. His observations are based on the epidemic in Aberdeen. He sums up his conclusions in the following manner: (1) Every case in hospital examined by Professor Hay and his assistants was flea bitten, and those of the siaff who complained of flea bites were attacked. Care was exercised to distinguish between flea bites and petechine. (2) Where a patient was apparently free from bites it was fcund he had been in contact with verminous families. (3) The disease did not spread in clean houses with clean inhabi. tants, even when a typhus patient remained in the dwelling daring his entire illness. (4) All nurses or wards-maids who were attacked were in contact with the patients when they were first admitted. No nurse, wards-mald or doctor who had been in close contact with the cases when cleaned contracted the disease. (5) An amhulance driver who complained of being pestered by fleas contracted typhus fever, but when the ambulance staff were adequately protected from fleas no other cases developed.

Typhus is now regarded as certainly due to the action of some specific micro-organism (see Parasitic Diseases), hut the bacteriology is still imperfect. In r8gi Jaroslav Hleva, of Prague, found in the blood of 20 out of 33 cases of typhus 2 well-defined organism which he termed the strepto-bacillus. Lewaschew in 1892 found in the blood and spleen of typhus patients small round highly refractive actively-moving bodies lying between the corpuscles. Sometimes these bodies were flagellate. Dubicfi and Bruhi also found a diplococcus in the blood which they named the diplococcus exanthematicus.

The course of typhus lever is characterized by certain wellmarked stages. 1. The stage of incubation, or the period elapsing between the reception ol the fever poison into the system and the manifeslation of the special evidence of the direase, is believed to vary from week to ten days. During this time, beyond feelings of langoor, no particular symptoms are exhibied.
2. The ingasion of the lever is in general well marked and severe. in the form of a distinct rigor, or of feelings of chitliness lasting for hours, and a sense of illness and prostration, together with headache of a distressing character and sleeplessness. Feverish symptoms soon appear and the temperature of the body rises to a considerable height \(\left(103^{\circ} \rightarrow 105^{\circ} \mathrm{F}.\right)\), 21 which it continues with litıle daily variation until about the period of the crisis. It is, however, of importance to observe certain points connected with the temperalure during the progress of this fever. Thus about the eeventh day the acme of the lever heat has been reached, and a slight subsidence (\(I^{\circ}\) or less) of the temperature takes place in (avourable cases, and no further subsequent rise beyond this lowered level occurs: When it is otherwise, the case often proves a severe one. Again. when the lever has advanced towards the end of the second week. slight falls of temperature are ofien observed, prior to the extensive descent which marks the attainment of the crisis. The pulse in
typhus (ever is rapid (100-1 20 or more) and at first full, but later on leeble. Its condition as indicating the strength of the heart's action is watched with anxiety. The tonguc, at first coated with a white lur, soon becomes brown and dry, while sordes (dried mucus, \&e.) accumulate upon the teeth; the appetite is gone; and intense thirst prevails. The bowels are as a rule conatipated, and the urine is diminished in amount and high coloured. The phyaician may make out distinct enlargement of the spleen.
3. The third stage is characterized by the appearance of the eruption, which generally shows itsell about the fourth or fifth day or later, and consists of dark red (mulberry-coloured) spots or blotchen varying in size from mere points to three or four lines in diameter, very slightly elevated above the skin. at first disappearing on pressure, but tending to become both darker in hue and more permanent. They appear chiefly on the abdomen, sides, back and limbs, and occasionally on the lace. Besides this charac. meristic typhus rash, there is usually a general faint mottling all over the surlace. The typhus rash is rarely absent and is a very important diagrostic of the disease. In the more severe and fatal forms of the lever the rash has all through a very dark colour. and slight subcutaneous haemorrhages (petechiac) are to be seeo in abundance. After the appearance of the eruption the patient's condition seems to be easicr. so lar as regards the headache and discomfort which marked the outset of the symptoms: but this is also to be ascribed to the tendency to pass into the typhous stupor which supervenes about this time, and becomes more marked throughout the course of the second week. On the examination of the blood a marked leucocytosis is present. This is considered to be diagnostic in doubtful cases when the rash is badly marked. The patient now lies on his back, with a dull dusky countenance, an apathetic or stupid expression, and contricted pupils. All the febrile symptoms already mentioned are fully developed, and dclirium, usually of a low muttering kind. but sometimes wild and maniacal (dcliriom fcrox), is present both by night and day. The peculiar condition to which the term "coma vigit " is applied, in which the patient, though quite unconscious, lies with eyes widely open, is regarded. especially if persisting for any lengith of time, as an unfavourable omen. Throughout the second week the symptoms continue unabated; but there is in addition great weakness, the pulse becoming very feeble, the breathing shallow and rapid, and often ccompanied with bronchial sounds.
4. A crisis or favourable change takes place about the end of the second or beginning of the third week (on an average the 14 th day), and is marked by a more or less abrupe fall of the temperature and of the pulse, together with slight perspiration, a diacharge of loaded urine, the return of moist ure to the tongue, and by a change in the patient's look, which shows signs of returning intelligence. Although the sense of weakness is extreme, convalescence is in eneral steady and comparatively rapid

Typhus fever may, however. prove latas during any stage of its progress and in the early convalescence, either from sudden failure of the heart's action-a condition which is specially apt to arisefrom the supervention of some nervous symptoms, such as meningitis or of deepening coma, or from some other complication, such as bronchitis. Furcher, a fatal resull sometimes fakes place before the crisis from sheer exhaustion, particularly in the case of those whowe physical or nervous energies have been lowered by hard work. inadequate nourishment and sleep. or internperance

Occasionally troublesome sequelae remain for a greater or less length of time. Among these may be mentioned mental weakness or irritability, occasionally some form of paralysis, an inflamed coodition of the lymphatic vessels of one leg the swelled leg of lever), prolonged weakness and ill health, \&rc. Gradual improve. ment, however, may be confidentiy anticipated and even ultimately noovery.
The mortality from typhus lever is estimated by Charles Murehison (18j0-1879) and others as averaging about is\% of the cates, but it varies much according to the severiy of type (particularty in epidemics). the previous health and habis of the individual, and very specially the age-the proportion of deaths being in strik. ing relation to the advance of life. Thus, while in childten under Cfteen the death-rate is only \(5 \%\) in persons over fifty it is about \(6 \%\)

The treatment of typhus fever inciudes the prophylactic measures of attention to the sanitation of the more densely populated porTreeraeats tions of towns. Where typhus has broken out in a lever houpital and the thorough disinfection and cleansing of the infected houses are to be recommended. Where, however. a single case of accidentally eaught typhus occurs in a member of a family inhabiting a well-aired house, the chance of it being communicated to otbers in the dwelling is small: nevertheless every precaution in the way of isolation and disinfection should the taken.

The treatment of a typhos palient is conducted upon the same eeneral prisciples as in typhnid. Complete inolation should be maintained throughout the illness, and due artention given to the ventilation and cleansing of the sick chamber Open-air treatment when practicahle greatly reduces the temperature. The main element in the treatment of this lever is good nursing, aod especialiy
the regular adminiot ration of nutriment, of which the bete form \(h\) milk, although light plain soup may also be given. The food should be administered at stated intervals, not. as a rule, oftener than once in one and a half or two hours, and it will frequently be necessary to rouse the patient from his stupor for this purpose. Sometimes it is impossible to administer food by the mouth, in which case recourse must be had to nutrient enemata. Alcoholic stimulants are not oftem required, except in the case of clderly and weakly persons who have become greatly exhuasted by the attack and are threatening to collapes. When the pulse shows unsteadiness and undue rapidity, and the first sound of the heart is but indistinctly heard by the stethoscope, the prompt administration of stimulants for which the best lorm is pure spirit) will of ten succeed in averting danger. Should their use appear to increase the restlessness or delirium they should be discontinued and the diffusible (ammoniacal or ethereal) (orms tried instend.

Maoy other symptoms demand special treatment. The headache may be mitigated by removing the hair and applying cold to the head. The slecplessness, with or without delinum, may be combated by quietness, by a moderetely darkened room (alihough a distinction between day and night should be made as regards the amount of admitted light), and by soothing and gentle dealing on the part of the nurse. Opiate and sedative medicines in any form, although recommended by many high authorities, must be given with great caution, as their use is often attended with danger in this fever, where coma is apt to supervene. When resorted to, probably the safest form is a combination of the bromide of potassium or ammonium with a guarded amount of chloral. Alarming effects sometimes follow the administ ration of opium. Occasionally the deep stupor calls for remedies to rouse the patient, and these may be employed in the form of mustard or cantharides to the surface (calves of legs, nape of neck, over region of heart. \&c.), of the cold affusion, or of enemata containing turpentine. The height of the temperature may be a serious symptom, and antigyretic remedies appear to have but a slight influence over it as compared to that which they possexs in typhoid fever, acute theumatism, \&c. Hugo Wilhelm von Ziemssen (1829-1902) btrongly recommends baths in hypergyrexia, the temperature of the bath being gradually reduced by the addition of ice. Cold sponging of the biands and leet and exposed parts, or cold to the head, may often considerably lower the temperature. Throughout the progress of a case the condition of the bladder requires special attention. owing to the patient's drowsiness, and the regular use of the catheter becomes, as a rule, secessary with the advance of the symptoms.

TYPOGRAPHY (i.e. writing by types) is the general term for the art of printing movable (cast-metal) types on paper, vellum, \&c. It is distinct from writing, and also from wood-engraving or xylography, which is the art of culting figures, letters, words, \&c., on blocks of wood and taking impressions from such blocks by means of ink, or any other fluid coloured substance, on paper or vellum.

\section*{1.- History of Typoceaphy}

Although the art of writing and that of block-printing both differ widely from printing with movable metal types, yet this last process has apparently been such a gradual transition from block-printing, \({ }^{1}\) and block-printing in its turn such a mstural outcome of the many trials that were probably made to produce pictures, books, \&c., in some more expeditious manner than could be done with handwriting, that a cursory glance at these two processes will not seem out of place, especially as a discussion on the origin and progress of typography could hardly he understood without knowing the state of the literary development at the time that printing appeared.

The art of printing, ie. of impressing (by means of certain forms and colours) figures, pictures, letters, words, lines, whole pages. \&c., on other objects, as also the furat art of cngraving. which is inseparably connected Atteapas at with printing, existed long before the 1 th cen- Priatiag. tury. Not 10 go back to remoter essays, there is reason to suppose that medieval kings and princes (among others William

I We do not deal here with copperplate engraving (chalcograply). nor with the question, raised by some authors. whether this art preceded that of wood engraving (xylography). or vice versa. The earliest known date of the former is t446 on the small enkravings of "the Passion" in the Berlin Royal Print Room. whereas the earliest known date of wood engraving is t 418 (on the Brussel, Mary engraving). Bosh arts were naturally dependent upon MlSs. for the forms of their letiers, but as to the question of transiition from the art of writing to that of typography. xylography alone can be rega rded as the intenvening and connecting link bet ween those two arts, and there are good reasons for assuming that the inventor of printing with movable typer was a xylographer (see below).
the Conqueror) had their monograms cut on blocks of wood or metal in order to impress them on their charters. Such imoressions from stamps are found instead of seals on charters of the 1 gth century. Manuscripts, even of the 12 th century, show initials which, on account of their uniformity, are believed to have been impressed by means of stamps or dies. \({ }^{1}\) Before the invention of printing, say about 1436, bookbinders are known to have impressed names or legends or other inscriptions on their bindings in two ways: (1) by means of single, insulated letters engraved reversely downwards into a stamp of brass, whereby the letters appeared en relief on the leather or parchment of the binding; (2) by letters engraved reversely en relief on the brass stamp, whereby the letters sank into the binding. For this reason the term impressor, applied afterwards to the "printer," was, in the first instance, applied to the binder, whereas ligator was the proper word for him (see F. Falk, Der Stempeldruck, in "Festschrift," 1900, p. 73 sq9.; Zedler, Gutenberg-Forschungen, 1got, p. 6). But the idea of "multiplying" representations from one engraved plate or block or stamp, or other form, was unk nown to the ancients, whereas it is predominant in what we call the art of blockprinting, and especially in that of typography, in which the same types can be used again and again.

Block-printing and printing with movable types seen to have been practised in China and Japan long belore they were known in East Asimto Europe. It is sid that in the year 175 the text of Part Acmation the Chinese classics was cut upon tablets, and that supposed to be still in existence. Printing from wooden blocks can be traced as far back as the 6th century, when the lounder of the Suy dynasty is eaid to have had the remains of the classical books engraved on wood. though it was not until the loth century that printed books became common. In Japan the earlieat example of block-printing dates from the period \(764-770\), when the empress Shiyau-toku, in pursuance of a vow, had a million small wooden toy pagodas made for distribution among the Buddhist temples and monasteries, each of which was to contain a dhdran! out of the Buddhist Scriptures, entitied "Vimala nirbhasa Satra," printed on a slip of paper about 18 in. in length and 2 in. in width, which was rolled up and deposited in the body of the pagoda under the spire. In a journal of the period, under the year 987 , the expression " printed book "(suri-hof) is applicd to a copy of the Buddhist canon brought back from China by a Buddhist priest. This must have been a Chinese edition; but the use of the term implies that printed books were alrcady known in Japan. It is said that the Chinese printed with movable types (of clay) Irom the middle of the tith century. The authorities of the British Museum exhibit as the earliest Instance of Korean books prinzed with movable types a work printed in 1337. To the Korcans is attributed the invention of copper zypes in the beginning of the 1 sth century; and an inspection of books bearing dates of that period eeems to show that they used such types, evea If they did not inveat them. \({ }^{2}\)

From such evidence as we have, it would seem that Europe is not indebted to the Chinese or Japanese for the art of blockprinting, nor for that of printing with movable types.

In Europe, as late as the second half of the 14 th century, every book and every public and private document was ms. poobed written by hand; all figures and pictures, even the pen or painted with a brush. In the 13 th century there already existed a kind of book trade. The organization of universities as well as that of large ecclesiastical establishments was at that time incomplete, especially in Italy, France and Germany, without a staff of scribes and transcribers (scriplorcs), illuminators, lenders, sellers and cuslodians of books (stationarii librornm, librarit), and pergamenarii, i.e. persons who prepared and sold the vellum or parchment required for books and documents. The books supplied were for the most part theological, legal and educational, and are calculated to have amounted to above one hundred different works. As no book or document was approved unless it had some omamented and illuminated
\({ }^{1}\) Passavant, Le Peintre-Graveur, i. 18 (Leipzig. \(1860-1864\)); John Jackson, Wood Engraving (London, 1839); Bruno Bucher, Gesch. der lechn. Kunste, I. p. 362 meq.
\({ }^{2}\) See Ern. Satow. "On the Early History of Printing in Japan," in Trans. A siat. Soc. of Japan, x. \(4^{8 \text { seq. ; and Stan. Julien." Documents }}\) sur l'art d'imprimer," de., in fourn. A sial., \(4^{-1}\) ser., vol. ix. p. 505.
initials or capital letters, there was no want of illuminators. The workmen scribes and transcribers were, perhaps without exception, calligraphers, and the illuminators for the most part artists. Beautifully written and richly illuminated manuscripts on vellum became objects of luxury which were treasured by princes and people of distinction. Burgundy of the 15 th century, with its rich literature, its wealthy towns, its love for art and its school of painting, was in this respect the centre of Europe, and the libraries of its dukes at Brussels, Bruges, Antwerp, Ghent, \&c., contained more than three thousand beautifully illuminated MSS.
In speaking of the writing of the manuscripts of the asth and preceding centuries it is essential to distinguish in each country between at least four different classes of writing, two of which must be again subdivided into two classes.
I. The book hand, that is, the ordinary writing of theological. legal and devotional books, used by the official transcribers of the universities and churches, who had received a more or less learned education. and consequestly wrote or transcribed books with a certain pretence of understanding them and of being able to write with greater rapidity than the ordinary calligrapher. Hence they produced two kinds of writing: (a) the current or cursine book hand, of which several illustrations are given In Wilh. Schum Exempla Codicum A mplon. Enfurtensium: the volumes of the (London)Palacogr. Society, \&c. Quite fistinct from this current writing, and much clearer and more distninct, is (b) the mpright or set book hand, which was employed not only by writers who worked for universities and churches, but also by persons who may be presumed to have worked in large cities and commercial towns for schools and the people in general without university connexion. (2) In the church kand (Gothic or black letter) were prodeced transcripts of the Bible. missals, paalters and other works intended for use in churehes and private places of worship and devotion. This writing we may agin subdivide into two classes: (a) the ornamental or calligraphic writing, tound exclusively in books intended for use in churches or for the private use of wealthy and distinguished persons, and (b) the ordinary ypright or set church hand employed for less ornamental and lese expensive books. (3) The letuer hand may be said to be intermediate between the set literary book hand and the set literary church hand, and to differ but little Irom either. It was employed in all public documents of the nature of a letter. (4) The court or charter hasd was used for charters, titie-deeds, papal bulls, \&ce. \({ }^{\text {a }}\)

These different kinds of writing served again, in the first instance, as models for cutting the inscriptions and explanatory texts that were intended to illustrate and explain the figures in blockbooks, and afterwards as models for the types usied in the printing of books and documents.

Dypold Láber (Lauber), a teacher and transcriber at Hagenay ia Germany, is known to have carried on a busy trade in tmanuscripts about the time of the invention of printing. His prospectuses 'in handwriting of the middle of the 15 th century announce that whatever books people wish to have. large, or small, " geistlich oder weltlich, hilbsch gemolt," are all to be found at Dypold Lauber's

18050
Coneros Boaks the scribe. He had in stock Gesta Romonorum. mis den Viguron gemolt; poetical works (Parcival, Trislan, Freida pli); romances of chivalry (Der Wilfarn Ritler; Von eime Getruen Ritter der sim aipen Hertze Eab umb einer schonen Frowen willen; Der Ritler walder dem Zuber); biblical and lesendary works (A Rsmod Buble; A Psalker. Latin and German; Episteln und Eocngedien durch das Jor; Vito Christy; Das gantue Passional, wintertrid wnd summerteil ; devotional books (Bellial; Der Selen Trost: Der Rosenkrants; Die aehn Gebol mil Glosen ; Small Betle-Bücher); and books for the people (Gule bewehore Artsnien-Bücher; Gemolte Loss-Bucher. i.e. fortune-telling books; Schachtsabel (emoll). The lower educational books consisted for the most part of the Abecedaria, containing the alphabet, the Lord's Prayer, the creed, and one or two prayers; the Domatus. a short Latin grammar extracted Irom the work of Aelius Donatus, a Roman grammarian of the 4th century, and distinctiy mentioned in a school ordinance of Bautren of 1418; the Dociranale, a Latin frammar in konime verse, compiled by Alexander Gallus (or De Villa Dei), a minorite of Brittany of the 13 th century; the Summula Lagica of Petrus Hispanue (arterwards Pope John XXI.), used in the teaching of logic and dialectics; and Dionysius Cato's Disticka de Moribes, and its supplement called Facelus, with tbe Floretus of St Bernard, uned in the teaching of morals. As helpe to the clergy in educating the lower clasees, and as a means of assisting and promoting private devotion, there were picture books mocompanied with an ealy exples. atory text. lor the most part representitions of the mystic relation

\footnotetext{
\({ }^{3}\) See further Palaeography.
- An original copy of one of them is in the British Museum (Addit. MS. 28752)
}
between the Old and New Testaments (typology). Among these books the Bibiog pumperum' stands first. It represents pictorially the life and passion of Christ, and there exist MSS. of it as early as the 1 3th century, in some cases beautilully illuminated. \({ }^{2}\) A richly illeminated MS. of it, executed in the Netherlands \(C\). 1400 , is in the British Museum (press-mark, King's 5), and also Iragments of one of the \(14^{\text {ih }}\) century (press-mark, 31,303). A remodelling and development of this work is the famous Specw/um humanae salvafiomis, of which we shall speak when dealing with the blockbooks and early printed books. It was written in shymed prose before 1324. and represents, in forty-five chapters, the Bible history of the fall and redemption of mankind interwoven with Mariolatry and legend. Of this work alone more than 200 MSS. illuminated or wilhout piclures, gre known to exist in various libraries of Europe. The National and Arsenal Libraries in Paris each possess one written some time after 1324; the British Museum has sixteen MSS. of it (eleven of which are illuminated) of the 14th and isth centuries, written in the Netherlands, Germany, France and England, one (press-mark. 16.578) bearing the distinct date 1379 and another (press-mark, Egerton, 878) that of 3436. A mork of a similar nature is the A pocalypsis, of which at least two recensions with illustrations may be pointed out. One gives the text as we know it, with or without commentary, for which cf. Brit. Mus. 17.333 (French), 18.633 (French, but written in England). Reg. 2 D. xish. and 22.493 (French)-all four early 14 th century. Another is more a short history or biography of St John, but the illustrations follow those of the former work very closely; cf. Brit. Mus. \(\mathbf{1 9 . 8 9 6}\) (isth centurs, German). It is this last recension which agrees with the blockbook to be mentioned hereafter. Other devotional works are the Ars Moriendi. the Antichrist and other works which will be mentioncd below among the blockbooks.

Black-printing of Kyfograpby.-When all this writ. ing, tanscribing, illustrating, \&c., had reached their period of greatest development, the art of printing from wooden blocks (block-printing, xylography) on silk, cloth, vellum, paper, \&c. made its appearance in Europe. This art was already a great advance on mriting, in that it enabled any one with a fevt simple tools to multiply impressions from any block of wood with text or pictures engraved on it, and 30 produce a number of single (paper) leaves or sheets with text or pictures printed on them in almost the same time that a scribe produced a single copy of them.

It seems to have been practised, so far as we have evidence, on cloth, vellum and other stufts as early as the 12 th century (Weigel, Anfonge, i. 10); and on paper as far back as the second half of the 14 th century; while it began to be largely employed in the early part of the 15 th all over Germany. Flanders and Fiolland in the production of (1) separate leaves (called bricfs, from breae, scriptum), containing either a picture (print, pronl, shortened from the Fr. cmpriors, empreinie, and already used by Chaucer, C.T, 6186, six-text, D. 6a4, printe, prente, preente, and in other early English documents; also called in colloquial Cerman Helge, Helghin, or Halge), or a piece of tert, or both together; and of (3) whole shcets (two leaves), a number of which, arranged like the MSS. in quires or gatherings, formed What are called "blockbooks." sometimes consisting of half picture and balf text, or wholly of text, or altogether of picture.

The earliest dated woodeut that we know of is the Mary engraving. dicovered at Malines, and now preserved in the Bruscels Royal Library. It hears the date meccexviii. Some authors have asserted that an I has been ecratched out bet ween the fourth \(c\) and the \(x\); that, therefore. the date is 1468 . But there is no ground for such an assertion (cf. H . Hymans, L'Eslampe de \&\&\&t. Brussels, 1903). A slightly modified reproduction of it, on a reduced scale. which could hardly be placed latet than 1460, is preserved in the St Gall Lihrary. The mext date is 1423 found on the St Christopher, preserved in the John Rylands Library (Spencer collection) at Manchester. In the third place comes the woodeut of 1437 preserved in the Imperial Library at Vienna, which was diccovered in 1779 in the monastery of St Blaise in the Black Forest. and represents the martyrdom of St Sebastian, with fourteen lines of text. The date, however, is waid by some to refer to concession of indulgences A woodrut, preserved in the ame library in Vienna, which represents St Nicolas de Tolentino, has the date

\footnotetext{
1 This title is applied to at least three works: (1) the wellknown blockbook, of which we speak below. (2) a treatise" in qua de vitis et virutibus agitur." and (3) a work in thyme ty Alexander Gallus.
- See Laib and Schmarz, Bibia paupermm (Zurich. 1867).
}
1440. but written in by hand; as the saint was canonized in that year it may refer to that event. Another in the Weigel collection, representing the bearing of the cross, St Dorothea and St Alexis, has the date 1443 , also written in by hand, though the woodeut is considered to belong to that period. These are the only known woodengravings with dates ranging from 1418101443 . But there exist a good many woodcuts which. from the styite of the engraving, are presumed to be of an carlicr date, and to have treen prinied partly in the 14 th and partly in the first hall of the \(15 t h\) century. J. D. Passavant (Le Peintre-Gpabewr, \(1860-1864\), i. 27 seq.) enumerates iwenty-seven of them, all of German origin and preserved in various Libraries in Cermany: 154 are recorded in the Collectio Weigeliana (vol. tos 1866), and W. L. Schreiber (La Geapure swe bois, vols, i. and ii., 1891 and 1892) enumerates over 2000 of them. some of which may be ascribed to the Netherlands, exx.g. (I) representing the Virgin Mary, with Flemish inscriptions in the museum in Berlin; (2) repreeenting the Virgin Mary (see above) in the library at Brussels; (3) representing St Anthony and St Sebastian, in the Weigel collection (now in the Brit. Mus.) ; (4) a St Ifubert and St Eustatius, in the royal library at Brussels; (5) representing the Child Jesus, in the library at Berlin: (6) the Mass of St Gregory, with indulgence, in the Weigel collection (ef. 1, 195), now at Nuremberg.

In these blocks, as in wood-engraving now, the lines to be printed were in relief. The block, afier the picture or the text had been engraved upon it, was first thoroughly wetted with a thin, watery, pale brown material, much resembling distemper; then a sheet of damp paper was laid upon it, and the back of the paper was carelully rubbed with some kind of dabber or burnisher, usually called a frotlon, till an impression from the ridges of the carved block had been transferred to the paper. In this fashion a leal or sheet could only be printed on one side (anopisthographic): and in some copies of blockbooks we find the sides of the leaves on which there is no printing pasted together, 80 as to give the work the appearance of an ordinary hook. Any one wanting to tet up as a printer of briefs of books needed no apparatus but a set of woodblocks and a rubber. We know only three blockbooks which do not possess this characteristic, as the Legend of St Sernatius in the royal library of Brussels, which may be called a xylo-chirograph (see below), in which the pictures occur on both sides of the paper (with some lines of text wrillen underneath), but apparently impressed by hand from blocks without any rubbing, there being no traces of any indentures either on the rectos or the versos: Das Zeitglocklins in the Bamberg Library (cl. Falkenstcin, p. 49): Das peistlich und weflluch Rom, in the John Rylands Library (Spencer collection) and at Gotha (cf. Falkenstein, p. 46); but these belong to the end of the isth century, and therefore to a later period than the ordinary blockbooks.

Formerly it was the general opinion that playing cards had been the first products of xylography: but the earliest that have Leen preserved are done by hand, while the printed cards date (rom the \(15^{\text {th }}\) ceniury, therefore from a period in which woodcuis were already ured for other purposes. Some of the wood engra wings and blockbooks are supposed to have been printed in monasteries In a necrology of the Franciscan monastery a : Nördlingen, which comes down to the beginning of the tsth century, this eniry occurs: "Vll. Id. Augusti, obiit Frater h. Luger. Laycus. optimus incisor hignorum"; and on some of the engravings we find the arms of certain monasteries, which may. however, merely mean that they were printed for, not in, those monasteries. The registert of Ulm mention several woodengravers (formschneider)-in 1398 a certain Ulrich; in 1441 Heinrich Peter von Erolzheim. Joerg, and another Heinrich: in 1442 Ulrich and Lienhart; in 1447 Claus (Nicolas). Stofiel (Christopher) and Johann; in 1455 Wilhelm: in 1461 Meister Ulrich, \&c. In a repister of taxes of Nordlingen we find from 4428 to 1452 a certain Wilhelm Kegeler mentioned as brieffrücker; in 1453 his widow is called all brieftrwickerin; and in 146: his brother Wilhelm is registered for the same craft. At Mainz there was a printer. Henne Cruse, in 1440 At Nurembery we find in \(\mathbf{1 4 4 9}\) Hans (Spoerer?), a formschncider. while his son Junghans exercised the same indust in from 4472 to 1490. Hans von Fiedersbeim printed at Frankfort in 3459 : Lienhant Wolf, pricfdrucker, is mentioned in the registers of Regensburg of 1463: Peter Schott at Strassburg in 1464 . A certain George Glockendon esercised the same trade at Nuremberg till 1474, when he died and was succeeded by a son and afterwards by a grandson. Ia Flanders a Jan de Printere was established at Antwerp in 1417 and printers and wood engravers (houtc bildsmyers) worked there in 1442 (Primicges of the Corporation of St Lake at Antwerp). At Bruges priwlers and beldemalers (makers or engravers of images) were enumerated in \(\mathbf{t} 454\) among the members of the fraternity of St John the Evangelist. The printers of playing cards seem to have constitoted a separate clasa.

All these enaries show that long hefore the middle of the isth century there were men who exercised the art of wood-engraving and printing as a trade or craft. It seems also certain that wealthy persons and religious institutions were wonl 10 possess sels of blocks. and. when occasion arose, printed a set of shects for presentation to a friend. or in the case of monasteries for ate to the pasing pilyrim. A printer of briefs or blockbooks had no noed to serve an appreaticeship:
any neat handed man could print for himself. We learn from the inventory of the posseasions of Jean de Hinaberg, bishop of Liege (14:9-1455), and his sister, a nun in the convent of Bethany. near Mechlin, that they possessed "unum instrumentum ad imprimendas acripturas et ymagines, " and " novem printe lignee ad imprimendas ymagines cum quatuordecim aliis lapideis printis." These entries would seem to indicate that people purchased engraved blocks of wood or of stone from the wood-cutter rather than books from a printer.
Concuriently with these single woodcuts, with or without written or xylographic text, arose a class of books, in some XyNo athergepile. of which written texts were added to pictures written first, and woodcuts pested or printed in paces reserved for them. These books, combining woodengraving with handwriting, are now in technical language called sylo-chirographs (wood-handwritten books); they may also be called semi-blockbooks, and form an intervening stage between the manuscript book and the blockbook (xylograph) entirely printed from wooden blocks. They tend to show that xylography, after having been for some time confined to the production and multiplication of insulated pictures, was gradually applied to the printing of whole serics of illustrations, to be added to written texts, or to have written texts added to them. It is not possible to assign definite dates to these xylo-chirographs; they could hardly be placed after, but may, for ought we know, be contemporaries of the blockbooks. We know nine of them; the years 1440 (which occurs in No. 5) and 1463 (found in No. 9) marking, for the present, the period within which they can be placed.
(1) Bikia Pauperzm, in the lleidelberg University Library, German Work, MS., Latin text added to engravings (cf. Schreiber, Mfonueh, iv. 90, c. 1460: photogr. pl, xlv.): (2) Antichrisfus, one part of which is in the Paris Bibl. St Gen. (see Bernard, Orig. de l'impr. i. 102). another at Vienna, Alb. Bibl.; Bavarian work, N1S, Cerman text Jesw Christi, 48 leaves, in the Vienna Hofbibliothek. German work. the woodcuts printed on the versos, Latin prayers written on the rectos (Schreiber iv. \(321, c\). 4450 , pl. Ixxxx.): (4) Sepfem plamelac,
seven xylographically printed plates in 1 he Berlin K. K. Library, seven \(x\);lographically printed plates in the Berlin \(K\). K. Library, Corman work, with German explanatory text wring the engravings (Schreiber iv. \(417, c\). 1470 , pl. cxi.): (5) Pomerimm spisifuale, by Henricus de Pomerio (or Henri Vanden Bugaert), in the Brussels Royal Library, bearing the date \(144^{\circ}\) in two places: its twelve engravings secm to have onginally been pullished as a blockbook, without any text (see below): \({ }^{1}\) in this copy they are cut up, pasted on olher (contemporary) leaves of paper, and a Latin MS. commentary added to them (see Alvin, Dormwemts icowogr.: Schreiber iv. 317, pl. Ixiv.: Conway, Notes on the Exercilimom smger Pufer Noster: Holirop, Mon. typ. p. 9). Some bibliographers unreasonably contend that the engravings cannot be carlier than \(6.14 \%\), and that the year \(\$ 440\) is the date of the cripinal, now lost, which the transcriber of this copy inadvertenely repeated. (6) Ever cilium smper Paler Noster (ascribed for good reasons 10 the samie Henri Vanden Bogaert): imperfect copy (8 leaves) in the Paris National Library (Invent. D. 1581): woodcuts printed on the recto of each leaf, and an explanatory text (io Flemsth) writien underneath them (Schreiber iv. 245, pl. Ixxxvii; Conway, l. e.) (7) the same Eaverritimm, with the same cleven engravings that were issued, some time before, as a complete blockbook (nee below), a cony of which is preserved in the public library at Mons, in which the engravings are cut up and (after the Flemish verses of the block. book had been cut away) pasied, with their versos, on the versos of other contemporary leaves, wilh an explanatory (Latin) Iext written oa the recto of the leaf next to each engraving (Schreiber iv. 247, pl. Ixxwiii.; Conway, \& c: (\$) a MS. of the Specuium Hwomat saholiomis, with the written date 1461 (Munish Hof.-u. Staatabibl. cod. Lat. 21543), in which the 193 illustratmons, usually found in the MSS, of the Speculmm, have been impressed from small wrooden blocks in the spaces reserved for thera in the MS. (9) another MS of a Cerman version of the Spactw wow in the same Munich library (Cod. Ger. 8126), with the wrilten date 8463 , in which the 192 woodcul illustrations, impreseed in No. 8, are again impressed in the spaces reserved for thera.

Of blockbooks of probahle Cerman origin the following are
\(\qquad\) Johusenis encrgedisixe rimsça
 raprianeris." in Bua. Acal

Sanct Johans).-Of thls work sis or eeven editions are ald to exist, each containing 48 (the and and 3rd edition 50) illustrations, on as many anopisthographic leaves, which seem to have been divided into three quires of eight sheets each The first edition alone is without signatures. Cf. S. L. of ownem Sotheby, The Blockbooks, i. 1. A copy of the sth edition ortele (according to W. L. Schreiber, Manuel, iv. 168), 48 leaves, is in the Cambridge University Library. A copyof the suppoeed 4theditionin the British Museum (C. 9, c. 1), and one of the 6rh edition (1B. 14); also a single leal (with signature H) of the sth edition (1B. 16).
2. Ars moriendi.-Although the origin of this work must be ascribed to the Netherlands, some authons think that there are early German editions, among others that spoken of below as the and Dutch edition. Certainly German is the edition of Hans Sporer of Nuremberg (1473), in the publiclibrary at Zwickau, and a fragment of leal 18, in the British Museum (IB. 20) ; anotherby Ludwie zu Uim, in the Paris National Library, and the one described in Callectio Waigel. (II. 16), where also other, but opisthographic, editions are described (see Sotheby 1. 70; Schreiber iv. 253). A copy of one of these in the British Museum (1A. 24). A copy of an edition printed in a press and ascribed to Augaburg, in the British Museum (1B. 23).
3. Ars memorandi quatuor enangelia; zo leaves, folio, printed on one side, 35 leaves being ketterpress and 15 plates (Sotheby ii 2 i Schreiber iv. 135). Copy in the British Muneum (IB. i7):
4. Salpe Regina, bears the name of its engraver, Lienhart can Regenspurck; 16 leaves; 2 leaves (signature \(a\)) are wanting in the only copy known of it, which was in the Weigel collection (ii. 103) and is now In the British Museum (IB. 1); Schreiber iv. \(3^{81}\).
5. Vila ef Passio Christi (German): 32 leaves, amall \(8 v o\). Two copies in the Paris Library (Sotheby ii. 143; Schreiber iv. 320, who describes other issues in German and Italion).
6. The Ten Commandments for Unlearned People (Die Zehn Bots für die ungelernic Leul). - Ten leaves in the library at Heidelberg bound up with MS. No. 438; see Joh. Gefficken. Biddercatechiswers (Leipzig. 1855), 4to; Sotheby ii. 160; W. L. Schreiber iv. 234
7. The Passion of our Lord; 16 leaves in the Weiped callection (Sorheby ii. 141 ; Schreiber iv. 320), now in the British Museum (1A. 25).
8. The Andichrist (Der Enndchrist); 26 leaves, mall folio (Sotheby fi. 38 ; Weigel ii. 111 ; Schreiber iv. 217). Copies in the Manchester Rylands Library (Spencer collection); Coll. Weig. No. 264, leaf 6 and the upper halt of 7 now in the British Museum, where aloo a fragment of leaf 28 is preserved; four copies at Munich
9. The Fifleen Signs of the Last Jedgment; 12 engravings, usualty bound up with the engravings of The Antickrist (Sotheby ii. 42: Schreiber iv. 217). Copics as of No. 8. An edizion was also published at Nuremberg in 1472 by Jung hannss Priffmaler (copy at Gotha).
10. Symbolum A postolicum ; small 4 to, 7 leaves printed on one side only, containing 12 woodcuts. Cf. Sotheby ii. 148; also Schreiber iv. 239, who describes three editions: (\(t\)) at Vienal ; (2) at Heidelberg: (3) with German inscriptions, at Munich
11. The Legend of \(\$ f\) Meinrad; \(4^{8}\) leaves. Copies in the libraries at Munich and Einsiedeln (Sotheby ii. 150 ; Schreiber iv. 385).
12. The Achl Schalhheiken, of which 8 leaves were in the Weigel collection (i. I12: Sotheby ii. 154).
13. The Fable of the Sick Lion; 12 leaves. Copies in the Berlia Museum, and in the Heidelberg Library (No. 438). Cf. Sophety ii. 159, pl. lxxxvi. : Schreiber iv. 444.

14 Defonsorimm Imerolatae Virgonilatis b. Mariee Vipqiais: 16 leaves, folio, with the initials of the printer \(F\) (riedrich) \(\mathbf{W}\) (althem) and the date 1470 on the first leal (Schreiber iv. 368 ; Sorheby ii. 63). Copics in the British Museum (IB. 2); two at Paris: three at Munich: one at Berlin; another at Stuttgart.
15. The same work, 27 leaves hrge folio, 1471, wihh the imprint *- Johannes eysenhüı impreseor (ar Regensburg) Anno ab incarnaczia dnice \(M^{-}\)quadringentesimo septuagesimo \(j^{7}\) (cf. Sotheby ii. \(7^{3}\); Schreiber iv. 374). Copies in the British Museum (IC. 4) at Berfin, Gotha. Manchester.
16. The Dance of Death (Dance Macabre: der Docere Derras): 27 leaves; two editions; one in the library at Heidelberg: anotber at Munich (c. Schreiber iv. 432 ; Sotheby ii. 156).
17. Dis Knaust Ciromantia of Dr Johan Harlicb (Sotheby ini. 84 ; Schreiber iv. 428). Ten leaves of the edition of Jorg Schap of of Augsburg C .1478 in the British Museum (1B. 8)
18. Der Beichlspieged or Confessionale; 8 engravings (Socheby ii. 145; Schreiber iv. 252). Copy in the royal library (Mus Meerma) at the Hague
19. Excricitimm suppr Peler Noster, oaly one lenf (the firat) prezerved at Kremsmunster, of a German edition (Schreiber iv. 247). For two xylo-chirographic iswues of this Neeherlandish worts, above, and below for a xylograptic edition.
20. Biblia Paxpermm. German text; copy in the Brisish Maseum (IB. 3): and a copy of another edition (fo leave) with the device of Hans Spoerer, and the date \(14: 1\) (IC. 5).
21. The Apastes' Cread: 7 leaves, folio. Copy at Wolfenbattel
22. The Credo, in German; 12 leaves, 410 . Copy in the Munich Royal Library.
 cbeet. plano, in the British Museum (IC. 30). It may have originated in the Netherlanda
Blockbooks of Netherlandish ongn are:-
1. A pocalypsis S. Johannis.-Copy in the Haarlem 'Town Library. A copy of the 3nd (?) edition, of 50 leaves, in the British Museum orntuer (IC. 40), the leaves \(3^{6}\) and 38 having been supplied from factict another copy. Leal 21 of another copy In the same arters library.
2. Biblia Panperum; 40 folio leaves (each bearing a signature: \(a\) to v; .a. to .v.). As many as seven editions have been distinguished by Sotheby (i. 43), Holtrop (Mon, typ. p. 3), and ten by Schreiber (iv. 1), who likewise mentions a Latin edrtion of 50 Seaves, besidea the two editions with German texts of 1470 and 147 . The British Museum Catalogue of isth-century books enumerates copies or fragmente of copies of seven editions.
3. Speculman humanae saboutionis.-Of this work a blockbook must have existed, of which only 10 sheets (\(=20\) leavet) with moodcuts and rexts, besides 12 imolated woodcuts (used in 1483). have come down to us. We speak of it at length below when dealing with the typographic editions known of this work.
4. Ars moriemdi; 24 leaves, mall folio, 13 containing text, in plates. See above (German) No. 2; Sotheby i. 69; Holtrop, p. 8; Schreiber iv. 253. who enumerates thirteen editions, some of which are German. \({ }^{1}\) The theory, started a few years ago, that the engravinge of this blockbook are imitations of the aketches by the manter E. S. (wee M. Lehrs, Der Kmistler der Ars moriendi, 1890 ; L. H. Cust. The Master E. S., 1898) is wholly inadmissible. Copy in the British Museum (IB. 18), and an imperfect one in the Hearem Town Library.
5. A copy of another edition of 24 leaves in the British Museum (IK. 1g).
6. Canticxm Conticorum; Historia sen Providentia B. Virginis Yerioe ex Cantico Canticorum; I6 leaves in folio, two editions (Sotheby i. 77; Holtrop. p. 6: Schreiber iv. 151). Copies in the Haarlem Town Library (wanting the leaves 3. 4, 7, 11, 13, 15, 16); the Britich Museum (IB. 46), which poswesses also a copy of another dition (IC. 47).
7. Liber Rugum, seu Hitroria Dovidis; 20 leaves. folio (Sotheby I 120\%; Schreber iv. 146). Some consider this to be a German work
8. Exencitiam swap Pater Noster, by Henricus de Pomerio or Henry Vanden Bogaert; 10 leaves, small folio (Sotheby ii. 137; Holtrop p. 10; Conway, Notes on the Exercitium, 1887; Schreiber iv. 245). For other editions see the two preceding sections.
9. Pomerium Spirixuale, by the same author as No. 8; 12 leaves, having 12 woodcuts. This blockbook is now only known from a xylo-chirographic issue with the MS. date 1440 (sce above), preserved in the Brussels Royal Library. See Conway, Notes on the Exarcilism.
10. Templationes Demonis kemplantis hominem de seplem pectatis mortalibus; a single large folio leal printed on one side (Sotheby i. 122"; Schreiber ii. 249), One copy in the British Museum (IC. 29), another in the Wolfenbottel Library.
11. Vita Christi, or The Life and Passion of Christ; 36 cuta, originally printed in a press on six anopisthographic leaves, in 8 vo . Copy in the Erlangen Library (Campbell. Annales, 746).
12. Bistoria Sametas Crucis: a fragment of one leal (with signature e), formery \(y\) in the Weigel Collection (ii. 92), but now in the museum at Nuremberg; it seems to be only a prool-sheet.
13. Alphabet (grotesque) in figurea (Holtrop P. II \(;\) Sotheby i. 122: Schreiber ii. 324-327). -There is one copy in the British Museum and another in the Basel Library, the latter having the date 1464 engraved on the letter \(A\), which is mutilated in the Museum copy. A similar alphabet preserved at Dresden seems to be a copy made in Germany.

14 Donarus (Aelius) de acto partibus orationis. Leaf 6 of an edition c. 1500 of 16 leaves in the British Museum (IA. 48). For other xylographic editions of this work cl. Holtrop, Nom, typ.

Besides the works of Sotheby. Holtrop, Weigel, Schreiber, Lehrs, Cust, ace., quoted above, consult Sir W. M. Conway, The Woodextlers of the Netherlands in the 15ih Century (Cambridge. 1884); Heinecken, fdite stratole (Leipzig. 1771); J. Ph. Berjeau's Farsimiles of the Biblia Pouperwen, Conficum Caniscorum, Speculum (Landon, 1859186i), and idern. Catal. Illwstrt des litres xylogr. (Londan, 1865); Dodgron. Caf. of Early German and Flemist Woodeuls in ihe Brii. Mus.

Earts Primtint with movabio Metal Types,-When the art of writing, and that of printing from wooden blocks (rylography), and all the subsidiary arts of illuminating. monerem decorating and hinding manuscripts, books, pictures, the., were at their greatest height, and had long passed out of the exclusive hands of the monasteries into the hands

Heinecken enumerates six editions, of which one has German fnscriptions. See also an article by Guichard, in Bull. du Bilwiophile (Paria, 1841).
of students and artisans, the art of printing with movable cast-metal types (typography) was invented. As to when, where and by whom this invention came about, a dispute has been waged for more than four hundred years. It will be seen below that we must attribute it, as in our former edition, to Lourens Janszoon Coster, of Haariem, and not to Johan Gutenberg, of Mainz.

In saying this, we are aware that in the year 1900 (exactly four hundred years after the Cologne Chronicle had puhlicly started the dispute by saying that Gutenberg had improved but not insented the art) Germany enthu- The Cletari siastically celebrated the supposed sooth anniversary
of his birthday. The speeches delivered on that occasion, after making faint allusions to the doubts and opposition of former times, all declared that, after the rediscovery of the Helmasperger document of 1455, which could not be found in 1880 (Hessela, Gulenberg, pp-99-101), it was impossible for any unbiased person to dispute Gutenberg's claims to the honour of the invention any longer.

In the same year a Gutenberg Museum was erected at Mainz to be a repatitory for anything connected with Gutenbery and printing; also a Society (Gubenberg-Gesellschaft) founded with the view of publishing any book that related, however remotely, to Gutenberg and his invention to which the whole civilized wurld Wras invited to subscribe, as its object was to bonour the genius who had conferred such an inestimable boon on mankind by his invention. As a first result, a "Festachrift" was published containing an historical introduction by Professor Hartwig ; and articles on the first steps to typography (Schreiber); *lamy)-prining before Gutenberg and the Psalters of 1457, 1459. acc. (Falk): 15 th-century printing in France (Labande); German printers in Spain and Portugal (Hąbler); German printers in Italy (Marzi); the coloured initials in Fust and Schoefter's Pealter (Wallau); the Turkkalendar for 1455 (Wyss); the earliest spread of typosraphy (Veike): also an elabmrate pedigree of the family G3nsfeisch (Schenk zu Schweinsberg), and an equally full account (by Schorbach) of all the documents related to Gutenberg. This "Festschrift" was followad by publications of the "Gutenberg Society ": I. (1902) Dio olleste Gubenberg type (Zedter); II. (1903) Dre Donat- wind Kalendar type (Schwenke); III. (1904) Das Mainser Fragment som Wellgericht (Schroder, Zedler, Wallau); IV. ('وo5) Das Mainzer Catholicon (Zedler); V., VI.: VII: (1908) Das Masmer Frogment wom Wellgericht (Schrodder); Die Ba type im Schdforschen Missake Mogunf. son 1403 (Zedier); Die Missabdrucke P. Schofers und seines Sohmes Jokamn (Tronier); Zu den Buicheranseigen Peter Schoffers (Velke).

We admit the great value of these learned and painstaking publications, and those who have the time and patience to study the mass of material here brought together in a somewhat bewildering fashion, will find their knowledge enriched on various subjects connected with early printing, but no proofs that Gutenberg invented it. It is clear from these books that their suthors firmly believed from the outset that Gutenberg invented printing, and printed nearly every book that appeared or can be placed before his death in 1468 . Under this impression they always speak of him as the "great master," the "great genius," \&c., and represent him, not as inventing printing by sccident, but as conceiving, somewhere about 1436 or earlier, the idea of inventing it, and meditating from that moment over the problems which he had to solve. Consequently, our authors read a good deal between the lines of their documents, which we fail to find there, and in this way the texts of the documents always show somehow that "the great master" is making or has already made his invention. For instance, the Strassburg lawsuit of \(143^{6-1439}\) is to them an unimpeachable proof that Gutenberg was secretly working there at printing and trying to solve his problems; when he is paying there, during the same time, a considerable sum in duties for large quantities of wine, we are told that be was then in good circumstances; but when he borrows money in 1442, 1448, 1450 and \(145^{2}\), and is summonsed in 1455 for not repaying the two last loans, and prosecuted in 1457 for not paying the interest due on his first debt, it is all owing to his difficultics in working out the problems of his invention, though the documents themselves never allude to any "invention" and may be interpreted in quite a different way.

W'e proceed to examine the documents. The earliest mention and description of the new art is perhaps that in the Donotus isured
by Peter Schoefter at Mainz before 1456, which, according to its colophon, was finished "Arte nova imprimendi seu caracterizandi

\section*{Bartleat}

Defferhean
APritury (Irom character = letter) abequecalami exaratione. it was formed by an "W ine Mans Paalter of 1457 that ac caracterizand abeque calami ull caratione ac caracterizand abeque calami ula exaratione. The colophon of the Cotholicon of 1460 tays that the book was printed non calami, stili, aut pennac sufragio, sed mire patronarum formarumque concordia, proporcione, ae modulo." In 1462 Albrecht Pfister ays that he had " gedrucket "the Fowr Histories. Fust and Schoeffer say of the Liber Sextus Decretalium, published in 1465 ; that it was completed "non atramento (" atramento communi" in the Justinianus of 1468 and 1472), plumali canna neque aerea, sed artíficiosa quadam adinventione imprimendi eu caracterizandi," which phrase they alightly varied in Cicero's Officie, issued in the same year: " non atramento, plumali canna neque aerea, ted arte quadam perpulera." The edition of St Jerome's Epislles of 1470 is said to have been completed by an " art impressoria," the Decrelum Gratiani of 1472 by an "ars quaedam ingenioa imprimendi" the Dyologus of \(147^{8}\) by an "ars magistra." We find further-"" ars sancta " or " divina," " nova ars scribendi," " novum exacribendi genus prope divinum," "eculptoria archetyporum ars" "t ars mirifica formandi." "ars excusoria," "nova imprimendi ratio," "ars prespurac," "chalcotypa ars?" "chalcographia" (1472 and later), "chalcographia excusoria impreseoriaque," "]ibraria impressio." "empryntynge " (Caxton, 1482). "prenterei" (Schoefler, 1492). "truckery" (igo5), "impression des livre" ". (1498), and "prenten."
The early printers called themselves, or were called by others, " librorum prothocaragmatici" (Gramm. Rhythm.; 1468), "impresPrimass. "chalcographus." (1473; Hain 13036), "'magister artis impresoriae," "boeckprinter". (1473 ind during the " 16 th center artis find therg till frequently eilled "chalcotypus" and "chalcographus.

The types were at first designated more by negative than positive expressions. In 1468 they were called "caragma," later on "carTreess acter" or "character" "archetipac notae" (1473: Triear Hain 13036). "sculptoria archetyporum ars," "chalcotypa ars," "formae," "artificiosisaimac imprimendorum librorum formae." We soon hear also of the process and material by which they were produced. The Grammatice of I468, published by Schoeffer, says that it was "cast " (sum fusus tibellus). In 1.471 "aeneat formulae" are spoken of; and Bernardus Cenninus and his con testify that they had printed the Virgil " expressis ante calibe caracteribus et deinde fusis literis " (with letters first cut into steel and then cast); In 1473 Friedrich Creusner at Nuremberg states that he had "cut" (eculpsit) the work of Diogenes (Hain 6192). Johan Zciner of Ulm saye in \(\mathbf{1 4 7 4}\) that he had perfected a book, not with the pen, but with letters of metal (stagneis caracteribus). In 1474 loh. Ph. de Lignamine speaks of "metallicae formae." In 1476 Husner of Strassburg represents the Nider as being printed with
" letters cut of metal (litteris sculptis artificiali certe conatu ex aere)." Nicolas Jenson printed in 1480 with letters "cut and cast" (aculptis ac conlfatis).

The word fypoeraphus seems to occur for the first time in 1488, in the preface of P. Stephanus Dulcinius Scalae to the Astronomicon

\section*{Word}
" 7ypoo
"rephy." of Manilius, printed in that year at Milan by Antonsus 2arotus: \({ }^{1}\) in 1498 Erasmus uben it in a letter (dated Feb. 13) to Christianus, a Lubeck merchant \(\mathbf{i}^{2}\) and in 1517 Johan Schoeftcr applies the word to bimself in the colophon of the Aeneas Sylvius published by him. But of the use of the word typographia no earlier instance is known than \(\mathbf{1 5} \mathbf{5 0}\), in which year Cerardus Noviomagus (\(=\) Geldenhaurius) in his Lucubrativnicula de Betaporum Insula (pref. to Niool. Buscoducenais, dated 1520) says: " inventa Germanorum . . borabarda videlicet, typographia pyxis chartaque nautica "; and Johan Schott, a printer of Straissburg in the Geogr. Piolem. published by him, describes his, grandiather, Johan Mentelin, as "primus typosraphiae inventor" Gerardus, it may be added, borrowed the whole passage from Pet. Montanus (li. I Adag. published on. 1504), who has chalcographia instead of typographia. Mecrman indeed speaks of a use of the word typographia (or at least of typographus) earlier than \(\mathbf{1 5 2 0}\), and refers to the preface of Bernardinus Veronensis in the edition of Tibullus, Catullus and Propertius published at Venice in 1493 by Symon Bevilaqua, "at least," Meerman adds, "as it (the preface) is read in the Annol. typogr. of Maittaire, i. 560 , and ed. \({ }^{\text {in }}\) But on page 560 Maittaire quotes the first two lines of Bernardinus's preface (till dicit) and then adds: "Graecis characteribus destitutus, typographus necesse habuit hiat us in commentario hic illic relin were," which is evidently Maittaire's own remark, not that of Berna rsinus. The present writer at least has been unable to find such a 3 isssage in the Tibullus.

When we, for the moment, leave out of sight the question as to when, where, and by whom the art was invente:, and

\footnotetext{
\({ }^{1}\) Maittaire, Annales Typogr. i. sos, note 1.
1 Opp. iii col. 24
Orige. Typogy. i. 32, note ch.
}
take our stand on well-authenticated dates in such printed documents as have been preserved, we find that the first printed date, 1454, occurs in two different editions of the same letter of indulgence issued in that ycar by Pope Nicholas \(V\). in behalf of the kingdom of Cyprus.

These two editions bear no printer's name, nor the place of printing, but are distinguished respectively as the 31 -line and the 30 -line Indulgence. The one with 31 lines claims priority, from a chronological point of view, over the one with Nkholeav. 30 lines, because one of the sold copies that has been ordufacace preserved was issued at Erfurt on the 22nd of October of I454. 1454 (in the possession of Herr Ernst Fischer at Weinheim, Centrald. 1909, p. 30); a second (in the Hanover Archives: Veroffenil. 11. tab. i. at Fritalar on the 12th of November 1454: a third (in the Mus. Meerman, at the Hague) at Erfurt on the I5th of November \(1454,8 \mathrm{c}\)-, whereas of the 30 -line Indulgence the earliest sold copy that has as yet come down to us was issued at Cologne on the 274 of February 1455, though it has the printed date mocccliui., which was altered with the pen to mocccliiiij. In the 31 -line Induigence occur (a) a large church type used for the headings and commencing words of the absolutions, for the first word in the document and for the Christian name of the pope's legate; (b) a smaller text or brief type for the text; (c) a large initial \(V\) and two large initials \(M\), which slightly differ from each other. : In the 30-Ine Indulgence occur (a) a large church type, used as in the 31 -line Indulgence; (b) a smaller text or brief type for the text; (c) a large initial U, and two large initials \(M\) differing from each ot her

These two different editions are usually regarded as having been printed at Mainz; and, in the absence of any evidence to the contrary; we assume that such really was the fact. But we must
at the same time conclude that about October 1454 Mies there were at least two rival printers at work there: Prtertay (1) the printer of the 31 -line Indulgence, who may have been Johan Gutenberg, perhaps subsiduzed by Johan Fust: (2) the printer of the 30 -line Indulgence, who was no doubt Peter (Schoeffer) de Gernssheym, as this Indulgence is connected with one of 1489 printed by him. Four wrillen copies of this 1454 Indulgence are known to exist which respectively bear the dates: Frankiurt Ioth April 1454 (in the possession of Herr Lais, Wiesbaden); Frank furt, 1 ith April 1454 (Frankfurt Archsves); 11th July 1454 (place unknown; Darmstadt archives): Lübeck, 6th October 1454. As their dates precede by a few weeks only the carliest known date (Oct. 22, 1454) on a printed copy, they mark, perhaps, the exact time when printing made its appearance at Mainz, in an already advanced state of perfection.

Basing ourselves on the above Indulgences with their printed date, and four different types, we subjoin two lists of the books which the German bibliographers of the present day regard as having all been printed by Johan Gutenberg at Mainz, in the types or "developments" of them, employed for these Indulgences. They are arranged in two columns (A and B) according to types, but without regard to strict or supposed chronology. For further details of. Hessels, Gutenberg (i882), p. 150 sqq.; Schwenke, Berlim Festschr. (and in the Verofferell. of the Mainz Gutenberg-Gesellsch.); Zedler (Gidenberg-Forsch and in the Veroffcrul.), \&c.

Types: 1 (arge chusch type also called the 36 -line Bible type) and II (smaller brief type), used by an unknown printer, not Later than October 1454

31-line Indulgence; three different issues (\(A, B, C\)), with the printed year mccccluiu, and one issue (D) with the printed year meccelv. All printed on vellum. Of issues A and B no sold copies have yet come to light; but three unsold copies of each are preserved at Brunswick, Wollenbuttel and Hanover (Culemann coll.). Of issue C ten sold copies are known to exist in vanous libraries with dates ranging frum the a2nd of October 1454 to April 1455, besides three unumed copies, Of issue D ten sold ifepies
with dates from the 7 th i/ March \(B 45\) to the 30 th of \(A\)

Types. Ill (large church type, somewhat smaller than Type I, also called the 42 -line Buble type) and IV (a smaller brief type) used by Peter Schoefier de Crernssheym (1454-1455). 2. 30-line Indulgence: one issue (A) with the printed year mocceliili, and two ussues (B.C with the printed quinto. All prented no selturs. Or issue A only one copy has treen discovered (now in the Ryland
Spencer Library). which Spencer Library). which
alCologneon thea 1455, the printed

Type I continued; for type
II. (of which no further trace is 11. (of which no f
found) see below.
ii. Poern on the "Weltge richt." Fragment of one leal (paper), discovered at Mainz about 1892. preserved in the Gutenberg Muscum at Mainz; presumed to have been printed c. \(1443^{-1444}\)
iii. Donalus, 27 lines. Fragments of 4 vellum leaves (4,5 . 8.9) recently discovered in the Heiligenstadt libran, and now preserved in the Berlin Royal Library.
iv. Donatus, 27 lines. Two rubricated vellum leaves (5 and 10) of an edition of 14 leaves: usuatly called the Donolus of 1451. preserved in the Paris National Library.
v. Donatus, 27 (?) lines. Two strips of vellum leaves, containing the remains of 3 lines and about 30 mutilated letters, discovered in the Heiligenstadt Library, and now in the Berlin Royal Library.
vi. Astronomical Kalendar. said to be for the year 1448, therefore supposed \(t 0\) have been printed at the end of \(1: 47\). Fragments of two large vellum rubricated sheets, printed on one side, discovered in 1901 in the binding of a MS . belonging to the monastery of Schünau, near Mainz, now preserved in the Wiesbaden Landesbibliothek.
vii. Donatms of 18 leaves, 26 lines, on vellum; of which 2 rubricated sheets (4 leaves, 8,2 . 9. 10) are preserved in the Berlin Royal Library; probably issued between 1447 and 1450 (Cen trabl. xxii 65 sqq.).
viii. Manung widder die DurErn. An almanac for January 1455, in 410,5 paper leaves, 20 and 21 uneven lines. A unique copy: discovered at Augsburg, now in the Munich Hol Library.
ix. A Cerman translation of the bull of Pope Calixtus III., dated XII. Kal Julä (=Jun. 20) 4436 Fourteen rubricated leaves 4to, in the Kalendar type, except that two of the capital E's belong to the \(B^{3}\) type (13b and If blank). preeerved in the Berlin Royal Library: not to be ascribed to P. Schoeffer (Cemtralbl xxvii. 63).
\(x\) Conjunctiones et opposi. slowes solis et lunae (now called by German bibliographers Lexuer-Kalendar). A calendar for 1457, a braadside paper shect, printed on one side, of which the upper half of the only copy known, discovered it Mainz, is in the Paris Librars:
xi Der Cisionus (not Cislaxi Der Cisionus (not Cisla-
pmeper atheek, 36 lines, printed on

Type III continued (till about
457; of Type IV no further trace is found).
ii. Donctus, of 35 lines, folio, printed, according to the colophon, "per Petrum de Gernssheym. in urbe Moguntina cum suis capitalibus.
iii. Bible of 42 lines (also called Mazarine Bible and referred to below as \(B^{\circ}\)), printed belore the 15 th of August \$456, as the binder of the paper copy in the Paris Library states that he finished its rubrication on that day, Two volumes folio, 641 leavesin 2 columns of 42 lineseach. though in somecopies thecolumns of pp. ito 9 contain 40 lines only. while the 1 oth page has 2 columns of 41 lines each, thedifference in the number of Ines making no difference in the space which they occupy. For other copies see Hessels, Gulenberg. p. 170 ; Dziatzo, Beitr. zur Gukenberg frage (Berlin, 1889); Schwenke, Fesfschr., who has drawn up a Iist of alt the copies known to be still in existence. The copy known as the Klemm copy. which was bought by the Saxon Government in 1886 , and presented to the " Deutsches Buchgewerbemuscum"" at "Lciprig, has the year "1453" written in small Arabic numerals of Isth-century form at the bottom of the last leaf of the
second volume. But this date is highly suspicious, for Kiemm, who must have known its importance and high value, never mentioned it, though he described his copy three times, in 1883 and 1884
iv. Donalus of 33 lines. Vellum fragment at Oxford, without printed initials.
v. Donalus of 33 lines. Vellum fragment at Paris, without printed initrals; also three rubricated leaves \((5,6\) and 8\()\) in the Bertin Royal Library (Centrabbl. xuvii. 68).
vi. Donalus of 33 lines. Leaf 1 (defective) on vellum, mentioned in Ludw. Rosenthal's Cat. 105, No. 3, and purchased by the Berlin Royal Library, which has also acquired the feaves 1 and 11 (Centrallol. xovil. 69.). The large Psalker intials are used for the initials of chapters.
vii. Donatus of 33 lines. Leaf I (vellum) discovered in the Berlin Royal Library.
vii. Donatus of 33 (?) lines. Small fragment, discovered in the library at Giessen, of a vellum leaf, which Schwenke thinks may be the loth of an edition which differs from Schoeffer's 35 line edition, and also fro the Paris 33-line
in the Bodleian Library and two small fragments discovered in the library at Herligenstadt.
xiji. Donasus, 27 lunes, which Schwenke calculates to have consisted of 14 vellum leaves, of which the leaves 6 to 9 are now in the Berlin Royal Library.
xiv. Donatus, 27 lines. Three strips of a rubricated vellum leaf 5 discovered in the Karlsruhe Hol-Biblothek.
xv. Donalus. 27 lines. One rubricated vellum leal (6), in the Kalendor type in the Berlin Library (Centralbl. xxvii. 62)
xvi. Donatus. 27. 28 or 30 (?) lines. Fragments of two vellum leaves of an edition of 12 (?) leaves discovered in the binding ol a book (printed at Milan in 1476) which formerly belonged to the Episcopal Library at Salaburg, and is now in the Munich Hof-Bibliothek.
xvii Donalus, 27 (or 30?) lines Vellum fragments of an edition of 12 (?) leaves in the Britush Museum (C. 18. e. I No. 5). Leaves \(t\) and 2 are in the Bodician Library, and leal 8 in the Mainz Town Library.
xviii. Donalus, 27 lines. Fragment of a vellum leaf (3?) discovered in the binding of a MS. in the Munich Hol-Bibliothek.
xix. Donafus, 27 lines. Two vellum fragments of the leaves \(6+9\), the upper part of which is preserved in the Bodleian Library (Auct. 2 Qinfra I so No. 6). the lower part in the Bamberg Royal Library (VI, F 1).
xox. Doratus, 28 (?) lines. One defective vellum leaf, showing 25 lines, formerly in the possession of Jacq. Rosenthal (Incum. byp. ii. No. 21 54), afterwards in the Amherst collection (Handlist No. 5). Another leal in the Mainz Gutenberg Museum.
xxi. Bible of 36 lines (referred to everywhere as B"), 2 vols., folio, 882 leaves, with 2 columns of 36 lines each on a page. Some bibliographers, assuming that Pfister printed it, call it the Pister Bible. A paper copy of it is in the Paris Library, and aiso a separate copy of the last leaf, which bears the MS. date 146I. Other copies are preserved in the Rylands-Spencer Library, in the British Museum, at Jena, Leiprig, Antwerp, \&e. (Hesscis, Gutenberg. p. 160 : Bernard, Origine, ї. 3I).
The above eight types and the books printed with them (besides a few others printed by Albrecht Pister at Bamberg) are the only ones that bear, more or less closely, on the question regarding the introduction, or possible invention, of pranting at Mainz.

Till recently the church type I, of the 31 -line Indulgence, had always been regarded as identical with that of \(B^{*}\), and the church type 3, of the 30 -line Induigence, with that of \(B\) as. But, as the capital P of Induigence seems not to occur in \(B^{B}\), and on examination minute differences show themselves in other respects, identity between the two types cannot be accepted. The use of the bried type 2 of Indulgence \({ }^{1}\) seems to have been limited to printing this one document, as its great resemblance to the type employed at Eltville, in 1472 for printing a Vocabularius ex quo, and Thomas Aquinas Suwma de arficulis fidei, amounts not to identity. Nor has any so that the four types used for the two Indulgences were, perhaps, specially manufactured for them and discarded afterwards or melted down for other typea
dii. Cantica ad Malutinas: only known from one vellum leaf (the first) in the Pars Libzary, considered to be the remains of a Psaltcrium. for the printing of which Humery may have furnished (!) the type (Schwenke Untersuch. p. 72 seq.). Judging from the leal preserved, the work corresponds in every respect to the 42 -line Bible, having double columas 42 lines. \&c.

Type V.-The "first stage" of Type VII., supposed by Otto Hupp (Ein Missale Spec.) and others to have served for print. ing (1) a Missale speciale, in the possession of Ludw. Rosenthal at Munich: (2) a Missale abbrevialum discovered in 1900 in the Benedict Church of St Paul in the Lavantthale.
Type V1.-The lange type for the Psalter of 1457.

Type V1I.-The small type for the same Psalter (** second stage" of Type V). Types VI and VII vere also used for the "Canon Missae *" of 1458, a copy of which is preserved in the Bodlcian Libraty.

Type VIII used for (1) Joannis de Balbis Catholicon of 1460. Large folio, 373 leaves, with two columns of 66 lines each on a pagc; (2) Matth. de Cracovia, Tractaius racionis, 22 leaves with 30 lines to the page, 4to; (3) and (4) Thomas de Aquino, Summe de arlaculis fidei, two 4 to editions, one of 13 leaves with 34 lines to the page; the second of 12 leaves with 36 lines to the page, (5) an Indul. gence of 1461 of 15 lines (sce Hessels, Guterberg, p. 171 sqq.).

Hence thert is nothing to connect these two broadsides with any locality or any printing-office, except that one of the initial \(M\) of the Indulgence \({ }^{20}\) re-occurs as the initial M of the second absolution of a 33 -line Indulgence of 1489, which was unquestionably printed by Peter Schoeffer at Mainz, for " Raymundus Peyraudi archidiaconus Alniensis in ecclesia Xanton," who iscued it at the order of Pope Innocent VIII., ' pro tuicione orthodoxe fidei contra Turchos. For this reason types 3 and 4 and the books printed with them, including \(B^{a}\), must all be ascribed to him, all the more as he printed, with the type of \(\mathrm{B}^{\boldsymbol{*}}\), the 35 -line Donatus, which bears his name in the colophon. As Schoeffer, in the colophon of this Donatus (ii) which bears his name, says that it was printed " curn suis capitalibus," and as these capitals gradually disappear after 1459 and the type of the 42 -line Bible is no longer found aiter 1456 . we must presume that some of the twelve incunabula mentioned above (in col. B) were printed by Peter Schoeffer alone before he entered (in 1457) into partnership with Johan Fust (see Heseels, Gutenberg, p. 166 seq .).

During the last two decades, however, the two types (3 and 4) and most of the books mentioned above in column B. uncluding \(\mathrm{B}^{\text {a2 }}\), together with the two types (1 and 2), and several of the books in column A, including \(B^{3}\), have been attributed by German bibliogriphers to Gutenberg. This singular proceeding is chiefly owing to the late Dr Dziatako's treatises (Beibäge zur Guicnbergfrage. 18S9: Gutenberg's frīheste Druckerpraxis, 1890), on Gutenberg's supposed work as a printer. This authar, noticing that the two types nif \(B^{3}\) and \(B^{a}\). their signs of contractinn, marks of punctuation, \&e., though differing in size, closely resemble each other in form, concluded that they were manufactured in one and the same office, by one and the same printer, that is, Gutenberg. He thought his conclusion confirmed by the two Bibles being printed on the same kind of paper showing the same watermarks, and arranged in quires in the same way, and divided off into parts at the same place. Finally, from a misprint in \(B^{4}\) being rectificd in the Stutigart copy of \(B^{\text {m }}\) by a cancel (Druckerpraxis, p. 95), he concluded. (C) that \(\mathrm{B}^{\boldsymbol{*}}\) was a reprint of \(\mathrm{B}^{4}\) : that the latter was printed by Gutenberg during his partnership (1450-1455) with Fust, who supplied the money and the material, while he himself superintended the manufacture of the type, instructed the compositnr and printer, and therefore was its printer; and that the type came afterwards into Schoeffer's possession; (b) as B* was Gutenberg's first work, and had been begun in \(1450, \mathrm{~B}^{2}\), a reprint of it, could not be dated before this year; but as its type already existed in 1454 (in the Indulgence \({ }^{21}\)), Gutenberg, foresecing his quarrcls with Fust, must have been preparing it since [453, and have printed with it, first, some Dowaluses, the Indulgence \({ }^{11}\). \&c... and finally \(B^{*}\), with the technical and financial assistance of Albrecht Pfister who, shortly before 1458, acquired its type and printing-material (see further, Hessels, "A Bibliogr. Tour," in The Library, July 1908) Dr Dziaizko, noticing also a "resemblance" between the types and the workmanship of the two indulgences, attributed both these broadsides likewise to Gutenberg

His conclusions, and the method of rescarch by which be reached them, the German bibliographers of the present day have adopted and amplified into a bibliographical and typographical "system," which professes to examine minutely the form and size of every letter, capital or small; the combined letters like do and de cast on one type; the signs of contraction above, or by the side of or through certain letters, the marks of punctuation, the habits and workmanship of the printer, the arrangement of the quires, the paper and its water-marks, \&xc.

The " system" divides the Gothic or Church types with which \(B^{*}\) and \(B^{\text {at }}\) and the other books mentioned above are printed into "ehuef " and "by-forms," (Haupt- und Nebenformen). The tops and bottoms of the former are ornamented with minute protruding tags, angles and points, while the "by-lorms" miss most of these ornaments, their limbs being straight on the lelt or nght. so as to be easily joined to the protruding tags, angles and points of the "chicf forms," whenever the two come together For instance, if a w or a t follows an \(e\), the " by-lorm" of \(w\) with straipht limbs was to be used, while the \(t\) was to be without its crossbar protruding on the left.

The bibliographers who deal with the incunabula enumerated above, in accordance with this "system," regard the books in which they find these chief and by-forms used in thent proper places as the earlicst, and thercfore as the products of Gutenberg's " creative genjus and skill," while they ascribe the books which bear evidence of the misuse of those forms to other printers, but their types to him. But this is an uncertain guide, as by errors in the distribution of the types after the printing of the first or second pages this misuse may already occur in the third and further pages of a book. . In this way, however, the
"system" armanges the books enumerated above in the following approximately chronological order:-

1443-1444. "First phase " of the Gutenberg type (- the Donates type). The numbers il., iii., iv. (with the suspicious date 1451) and \(v\). 1447 (end of) till 1457(?). "Second phase" of the same type (- the Kalendar type). The numbers vi. to xiv.

1450-1453. B \({ }^{4}\) presumed to have been finished in or before 1433. taking this year, written in the Klemm copy, as genuine.
1453. "Third phase " of Gutenberg's type, B" (xviii., of which the earliest known date is 1461).
1454. The two Indulgences with their types (1,\(3 ; 2,4\)).
1457. The two Psalter types.
1461. I462 till (?). Pfister, who is said to have acquired the type of \(\mathrm{B}^{3}\) from Gutenberg, is known to have issued a book with the date 14 February 1461, and another with the year 1462 . Hence, Schwenke says that the 36 -line Bible type, which he regarde as a "continuation" of the bonatws and the Kalcnder types, had a life of nearly 20 years (Veroffanll. ii. 1). Type \(v\). is thought to be Gutenberg's earliest (before 1443!) by the few who regard the
"Missale speciale " and the "Mismale abbreviatum "as his work.
The " Donalus type" is so called from the Paris Domalus, on one of whose leaves the year 1451 is written. Zedler, somewhat unreasonably, considers this date to be a forgery of Proíessor Bodmann. though he is knnwn to have forged other Gutenberg documents This type is regarded as the same as that of the Asfronomical Kalendar. but in an earlier, more imperfect stage. As this Kalendar calculates the ephemerides of the sun, moon and stars, either for the year 1429 or for 1448 or 1467, it is presumed to have been printed for 1448, that is at the end of 1447 , and as its type lonks new and almost periect, the Paris Domalus is placed considerably. earlier because its type looks old. The poem on the "Weltgericht (No. ii.) is said to show all the forms of the Donatus type, but as its workmanship looks primitive, it is dated back to \(1443-1444\) The Heiligenstadt Donalus (No iii.) is placed after the "Wettgericht" (ii.), but belore the Paris Donatus (iv.) and the other Heiligenstade Domatus (v.)

Some German bibliographers do not leel sure that Gutenberg manulactured types \(v_{-1}\) vi. and vii.. though they have no doubt as to the remaining. Others are of opinion that Pfister prinicd some of the books in the type of \(B^{\boldsymbol{n}}\); Schwenke thinks this Bible could not have been begun before 1457, but all agree that every book in the above lists must have been printed either by Gotenbers himself, ot in his office, or with his type, or under his superintendence.

Though the church type I cannot be said to be identical with that of \(B^{3}\), and no further trace of the brief type 2 has been found, we see no reason for separating lndulgencen from Mainz printing. And assuming that it was printed there, its printer may have been Johan Gutenberg, wbo was at Mainz in 1454.

A peculiarity of the above-mentioned "system" is that it ascribes two types, so defferent in size, shape and form, as those of \(B^{44}\) and \(B^{4}\), to one and the same printer, merely because they "resemble" each other. This shows that the "system" takes no account of the fact that the inventor of pninting, and all the early printers who came after him, in manufacturing their types necessarily imitated the forms of the written characters of their time. Hence if two printers simultaneously erected their presses in one town, their types, though cut and cast independently, were apt to resemble each other, as appears from various examples. The printers of \(\mathrm{B}^{\boldsymbol{2}}\) and \(\mathrm{B}^{\boldsymbol{*}}\) are no exception to this rule; they each took a MS. as their model, and the types which they produced are simply imitations of the Gothic or Church hand, which, from its first beginnings in the roth century, if not earlier, can clearly be traced down to, and reached its greatest development in, the I 5 th century.'

The written characters of all ages and countries rescmble and yet differ from each other in various respects, and as their resemblances and differences are closely reproduced by the metal printing types of every country, we are able to ascribe MSS. as well as mecunabula to. definte countries, some manuscripts even to "schools, "a fow even to definte scribes. But when two types duffer in size and form, however slightly, and there is no evidence that they belonged to one and the same printer, some of their characterstic: may justify us in ascribing both to the came country or town, but nci to the same printer. It is, moreover, not safe to iscribe incunabula to one and the same printer on account of therr similarity of the guires and divisions into volumes, their paper or water-marks (which Dziatzko observed in the two Bibles), as these particu. lars are nothing but a continuance of the MSS

1 The Cambridge University Library possesses two folio volumes (preas-mark Dd. 7. 1, 2), the writing of which, ascribed in the catalogue to 1490 , resembles the types of \(B^{2}\) with all its chief and by-forms so much, that at first sight they might be mistaken for copies of this Bible.

Nor is his evidence for maying that \(B^{* 1}\) is a reprint of \(B^{-1}\) conclusive. The typer of \(B^{*}\) and \(B^{\oplus}\) may be ascribed to Germany, but as both are used for the printing of a Bihle and editions of Dowatss, it is improbable that the printer of \(\mathrm{Ba}^{\mathrm{a}}\) and one eet of Domaiuses should mansiacture, about the same time, another type for another Bible and another set of Dotatuses. We have shown above that \(B\) must, on bibliographical grounds, be atcribed to Peter Schoeffer at Mainz, and as be used its type for a book which actually bears his name, all the other books in the same type must be ascribed to him. It follows that \(B^{* 1}\) and every other book in column A must be ascigned to some other printer or printers.

Type v. is a Church type and reambles thowe of \(\mathrm{B}^{3}\) and \(\mathrm{B}^{4}\). but it can have nothing to do with Gutenberg or the invention of printing, as it is not earlier than \(1480-1490\). Types vi. and vii., which are nothing but imitations of the written Palters of the time, are employed for a work, the colophon of which distinctly mentions Fust and Schocffer as the printers; hence they cannot be ctaimed for Gutenberg. Of the Colholicon type we speak below. Therefore the books numbered i. to xxi. in column A of the above lit are the only ones about which there can be any doubt or dinewtion.

Here we encounter another peculiarily of the above-mentioned " system," which treats the three different types detected in these twenty-one works not as different, but as "phases" or " developments" of one and the same type, while the differences between them, and the absence or presence of certain forms of letters, are taken as guides for approximately dating the books, and for subdividing the type, hitherto known as the 36-line Bible or Gutenberg type, into three or more varieties. For instance, Schwenke (Centralbl., tgo8, p. 74) explains that "the types \(b, c, i, s, t\) enable us to distinguisb the earliest from the later elements in the Donatus type; the "Weltgericht' shows, at least of i and \(s\), the old forms still unmixed. But in the Paris Donafus, the new forms appear by the side of the old forms, though the latter are already to a great extent supersedech. The new (Heiligenstadt) Donatus comes between these two works; it has chiefly the old \(b\), which begins to a grest extent to be absent in the Paris Donatus."

As we cannot regard types which differ in form as " developments" of one type, we must deal with three types in columa A \(_{\text {, }}\) that is (i) the so-called Domatus type; (2) the Kialendar type; (3) the 36 -line Bible type, hesides the two employed for the Indulgence \({ }^{3 n}\). Gutenberg's career, and the straightened circumstances in which he appears to have lived, so far as they are lnown to us, make it difficult to ascribe them all to him.

More than thirty documents have come to light which enable us to trace Johan Gutenberg from 1420 to 1468 . Dr Carl Schorbach has published nearly all their texts, with elaborate explanations, in the Pestschrift sum 500 jahr. Geburtstage non \(J\). Guterberg (suppl. to Centralbl. f. Biblioth., 1900, p. 163 sqq.), and they are further explained by Hessels (Gulenberg, was he the Inacutor of Printing ? 1886; idem, The so-called Guienberg Docwments, 1911).

At least six of them are knowa to be forgeries, among them the relics" of a printing-press with the date "1441" which were socidentally (1) discovered in 1856 in the "Hol zum Jungen' which had always been suppoeed to have been Gutenberg's first printing. office at Mainx, but which we now know not to have been the case. Assuming that the Gutenberg mentioned in the remaining documents is no other than Henne (\(=\) Hans or Johan) Genefleischcalled Gutenberg from his mother (whoec maiden name was Elsa Wyrich) having lived in the "Hol zum Gutenberg" at Mainz, where he is supposed to have been born about 1400 -he appears to have lived at Strassburg from 1436 (?) till the 12th of March 1444, in easy and somewhat luxurious circumstances, at least during the first three years, as he was then paying duties for large quantities of wine (about 1924 liter). But this prosperity does not seem to have continued, for on the 17 th of November 1442 he borrowed 80 pounds Strassburg denarii (\(=\) about 4800 marks) from the Strassburg St Thomas Chapter, a Straboburg citizen, Martin Brechter, being his aurety. From the 12 th of March 1444 till the 17th of October 1448 there is no trace of him, but on the latter day he again borrowed, this time at Mainz, igo gold guilders. Both these loans he never redeemed, nor is it known whether he ever paid any intereat on his Mainz loan. But the account books of the Thomas Chapter, still preserved in the Strassburg Public Archives, show that the interest of 4 . pounds per annum on his loen of 1442 was regularly paid, by hisn or his surety, till 1457 . The interest due in the latter year was also paid, but difficultics appear to have occurred before the Chapter received it, as there is ato itern in their account book for \(1457-14 \mathrm{~s}^{8}\) of two shillings for
expemes, incurred by them for arreating Cutenberg and his arrety. In and after 1458 no further payments were made; the Chapter had recourse to law, and made various efforts to arrest the defaulters but in vain; and in 1474, six years after Gutenberg's death, the debt i no longer recorded in the Chapter's accounts. He can be traced at Mainz from 1450 (when be borrowed money from Furt) till the 21st of June 1457. When he is witness at the conveyance of property in Bodenheim near Mains. After this date we hear no more of him until the \(t\) th of January 1465 , when the archbishop of Mainz appointed him as his servant and courtier for life on account of the "grateful and willing service which he had rendered to himseh and to his Stift, and will and may render in future. " The nature of thie "service" is not stated. It has always been supposed that he was then residing at Eltville, the residence of the archbishop, and that he died there about or before the 26th of February 1468 , on which day Dr Kunr. Humery roceived from the archbishop some "printing apparatus which belonged to him, and which he had lent to Gutenberg." But recent researches seem to have shown that Gutenberg remained at Mainz till his death, and was buried there.
Apart from the six forgeries, about which there is no dispute, Bockenheimer, a Mainx magistrate, explains (Gubenberf Feiep. Maipz, 1900) as forgeries also (1) the document of the 14 th of March 1434. which represents Gutenbery as having at Strassburg arrested and released the secretary of Mainz for a debt which this city owed him; (2) a document of 1437 recording a breach of promise case between Gutenberg and a Strassburg lady; (3) the records of a Strassburg lawsuit between Gutenberg and some Strassburg citizens in 1439: (4) the Helmasperger notarial instrument of the 6th of November 1455, recording a lawsuit of Joh. Fust against Joh. Gutenberg.

The last two, and a third dated the 26th of February 1468, mentioned above, are the only documents that can be said to connect Gutenberg with the art of printing. Various extemal and internal circumstances throw serious doubts on the genuimeness nf the 1.439 documents; but suppoee they were genuine, they only show that Gutenberg had been engaged, with other Strassburg citisens, in "polishing stones" and "manufacturing looking-glasses," and promised to give instruction in "new arts." A "press;" however, is mentioned, and a clause reports that one of Gutenberg's witncsses, Hans Dunne, a goldsmith, had testified that he had carned nearly \(t 00\) guilders from Gutenberg. " merely for that which belonged to printing " (alleire das su dem frucken gehbret). The document contains nothing to connect Guteaberg with the art of printing, except this line, which has clearly been added (as an afterthought) by a different hand from the one that wrote the two first lines of this witness's testimony, a circumstance which nakes the whole document more than suspicious. Several theories, however, as to Gutenberg printing at Strassburg in or before 1439 have been huilt upon this document, and German bibliographers are even now expressing their hope of finding some day evidence of Gutenberg having printed Donatuses and other works in that town.

As to the notarial instrument of 1455 , Bockenheimer suggests that as it contains absurdities which are contradictory to all the legal usages of the time, it may be a forgery of the Faust family, perhaps of Joh. Fr. Faust von Aschaficnburg (who pretended to descend from Joh. Fust, whom he called "Faust "), who appears to have possessed, in or about 1600, an "original" of the instrument. From this "original" are derived all the texts published before 174 r . In that year, however, J. D. Köhler (Ehrew-Retung Joh. Gultenberg's, Leipzig) printed the text again from an "original" which is now in the Gottingen University Library (republished hy Dziatzko, Beitrdge, Berlin, 1889), and is perbaps identical with Faust von Aschaffenburg's "original." Though an analysis of the text brings out various Incongruities as to the business relations between Fust and Gutenberg, it is difficult to look upon the Göttingen document as a forgery, and we deal with it here as genuine.
It is dated the 6th of November 1455, and records some of the proceedings in the lawsuit between Johan Fust (q.v.) and Guienberg, which had talen place on that day in the convent of the Barefooted Friars at Mainz, whereby the former sought to recover from Gutenbers 2026 guilders in repayment of 1600 guilders which he had advanced to him (800 about August 1450, and another 800 sbout December 1452), with the interest thereon. The document first relates that, on some previous day (not stated). Fust had testified (1) that by a written agrecment between them. Gutenberg was to "finish the work" (line 24) with the 800 guilders to be advanced to hirn at \(6 \%\); Fust being unconcerned whether it cost more or kse. (2) Gutenberg had not been content with thes 800 guilders, and Fust, wishing to please him, advanced him another 800 guilders at \(6 \%\) (3) He had himsclf borrowed this money, and as Gutenberg had never paid any interest, the principal sura and the interest thereon amounted to 2026 guilders (\(=\) between 15,000 and 16,000 marks), which be now demanded from him
(4) On the eame occasion Gutenberg had replied that Fust thould have furnished him with 800 guilders, wherewith to make his "tools" (or apparatus; Germ. Gecruge), and he should be content with this money, and might devote it to his own use. (5) Such tools should be 2 pledge to Fust. (6) The latter should also give him (lines 37 to 40) annually 300 guilders for maintenance and furnish workmen's wages, house-rent, parchment, paper, ink, \&c. (7) If they did not agree further, he should return Fust his 800 guilders, and his tools should be Iree; but it was to be well understood that he should tinish "such work" (line 41) with the money which Fust had lent him oa his pledge, and he hoped that he had not been bound to Fust to spend such 800guilders on " the work of the books" (line 41). (8) Fust had told him that he did not desire ta take interest from him; nor had these 800 guilders all, and at once, come to him in accordance with the agreement. (9) Of the additional 800 guilders he wished to render Fust an account: hence he allowed Fust no interest, nor usury, and hopes not to be legally tadebted to him.
We assume, though it is nowhere stated, that these clauses relate to the "printing of books," to be executed by Gutenberg with the money which Fust advanced to him. But as he was already in debe at Strassburg since the 17th of November 1442 (and had to pay annually interest on this debt), and at Mainz since the t 7 th of October 1448 (also against interest), it is not surprising that when he contracted this fresh loan in 1450 , at the bigh rate of \(6 \%\) he (by not giving any security except tools which he had still to make) practically admitted that he was penniless, and stipulated that Fust should give him also an annual sum for maintenance, and besides fumish workmen's wages, house-rent, parchmeat, paper, ink, \&c., in fact everything required for setting up a printing-ofice and keeping it going. Fust seems not to have complied with these demands, otherwise he would have mentioned them in bis account and at the trial. But he advanced another 800 guilders in December 1452, barely two years after his first advance, merely to please Gutenberg, who had not been satisfied with the first 800 .

It is argued that Cutenberg must have been ahle to show Fust some specimens of his work to induce him to lend him so much inoney, and we have seen above that German bibliographers attribute to him a poem on the "Weltgericht," which they date c. 14431444, and the Paris Donalus which they date a little later, boih printed, it is said, in the "first phase " of the "Gutenberg type," but showing already some traces of wear and tear; and thirdly, an Astronomical Kalendar (a broadside of 4 leaves) which they ascribe to the end of 1447, and regard as a" masterpiece "printed in a new type, said to be a "development "or "second phase" of the Gutenberg type, which must have been used for several years aiterwards, till a fresh or "third phase " was cast of it (for B") with the alteration of some of the letters. But is Gutenterg had prinied these three works in the years ascribed to them, however small they may be, he must be supposed to have had. from 1443, to 1448, types for printing them, and patrices and matrices for naking his types, besides a press and various other tools for printing. Yet the notarial instrument of 1455 , if it is genuine, reveals him as borrowing money, not so early as 1443. but so late as 1450, for "preparing his tools," and as having, at the time, nothing to offer his creditor as security except the tools which he stil! had to make(!). But, says one theory. Gutenberg, intending to print a Bible, and finding the type in his possession too large for it, manufactured a smaller one with the aid of Fust's money, while another theory would have it that he wanted to begin with the printing of a Missal, and for this purpose casted two types, one large and the other smaller. Difficulties, however, arose which induced him to use the smaller type for \(\mathrm{B}^{*}\), which was finished about the beginning of 1453. and Dziatziko places the type of \(B^{m}\) also in the year 1453. while Schwenke assigns a life of nearly twenty years (1443-1462) to this type.
If, however, Gutenberg had cast all these types, and printed al! these books, and sold them, straight from 1443 to 1450 , and from 1450 straight on to, say, 1455, he could not have done this without Fust, his money-lender, becoming aware of it, expecially as Fust, for his first advance of 800 guilders, was to have received, as security, the "tools" which Gutenbers had to make before he could begin to print. Yet in 1455, fully Give years after Fust had entered ino such elose financial relations with Gutenberg, he claimed, in spite of what he must have known of Gutenberg's suppowed activity, the whole of the money which he had advanced, with interest and compound interest on it. And Gutenberg. instead of pleading on the first day of the trial that he had from 1450 to 1455 prinied two large folio Bibles and a considerable number of other books. merely relers to the initial stakes ol his work, to "tools "to be prepared by him as a future pledge for Fust; he tells the judgea that he had expected Fust to supply him with various necessariea for printing and his own existence, without saying whether Fust
had complied with his demands or not, and finally declares that he had not lelt called upon to devote the first 800 guilders to the " work of the books "; that he was ready to account for the second 800, but did not feel indebted to Fust either for interest or anything eise, while, on the second day of the trial, be absented himeelf, and merely sent two of his workmen to hear what was going on (1). This dues not look as if he had performed much from 1450 to 1455 . but rather the reverse. Anyhow, if the Helmasperger insirument of November t 455 is not a fabrication, it shows that Gulenberg could not have begun to print before 1450; that in this year, 1450 (about August), when he borrowed money from Fust. he had no property such as a printing-office, presees, types, patrices. matrices, \&c., which he must have possessed if he had been printing since 1443 . to offer his creditor as security ; had not a penny to maintain himself; besides being already in debt at Strassburg since 1442, and at Mainz since t448.
The remainder of the instrument records the eerdict given on the first day of the trial which dexided (1) when Gutenberg shall have rendered his account of all receiptis and disbursements paid out by him on the "work for the use lor profit] of them both" (1. 49), whatever less \({ }^{1}\) money he then has received and taken in above it, that shall be reckoned in the 800 guilders; (2) but if the account should show that Cutenberg had paid out more for Fust than 800 guilders which had not come in their common good for urel (line 60) Gutenberg shall return is to Fust; (3) and if Fust adduces by oath or by reasonable evidence that he has borrowed the atove money on interest, and not lent it of his own money, then Gutenterg shall also pay such interest according to the tenor of the schedule.

The verdict is followed by Fusi's sworn declaration reganding the amount of his claim, which he had been ordered to make in Gutenberg's presence, but which he now made in his absence, declaring (4) that he had taken up 1550 guilders which Gulenberg had teceived and which also had gone on "our common work "(line 60); (5) that he had annually given interest and loss, part of which he still nwed; six guilders for every 100 guilders which he had thus taken up; (6) of all that Gutenberg had received of this borrowed money, which has not gone on the "work" of them both, which is found in the account, he claimed from him the interest in accordance with the verdict.

Gutenberg appears not to have produced the account which be was expected (clause t) to render, as Fust's allusion to an account (in clause 6) must reler to his own account. Hence we know not whether he made any " disburscments." The "receipts " seem to mean nothing more than the insialments of the first 800 guiders which he acknowledged to have received from Fust, though some authors think that allusion is made to things (printed books or broadsides?) (rom which he might have received money by sale or otherwise.
It is to be noticed that Fust speaks here (for the sake of accuracy?) of having taken up \(15 \$ 0\) not 1600 guilders, as in his first account. On the whole the wording of the verdict and the sworn declaration is obscure, and open to different interpretations, but it is impossihle to ascribe to Gutenberg, on the strength of this document, the manufacture of the types and the printing of all the books in column A above, especially when we have regard to his own inexplicable silence at the trial, when it was incumbent on him for his own sake to show what he had done with Fust's money. and still more when we have regard to the pecuniary difficulties in which he had been placed at least eight years before he contracted these heavy new loans with Fust. Within the space of two years after the trial he was bankrupt, unable to pay eirher his loans or the amall interest thereon, and might have ended his days in prison if the Strassburg St Thomas Stift had been able to have him arrested.

Certain circumstances point to Albrecht Pfister of Bamberg as the printer of the numbers vii., viii., ix., xviii. and perhaps those that come between them in column A. Even in former years when the church type of the Indulgence \({ }^{21}\) (1454) was believed to be identical with that of \(\mathrm{B}^{*}\), it was the general opioion that, though Pfister could not have printed the Indulgence, he had acquired its church type from Gutenberg for printing \(B^{*}\). Now that a closer examination has shown that the type of \(\mathbf{B}^{\mathbf{n}}\) need not be dated \(s 0\) early as 1454 , the known dates of Pfister \((1461,1462)\) harmonize with the approximate date \((1460)\) of \(B^{*}\). It is admitted that the types of vii., viii. and ix. differ from that
'The instrument says: "was er dan men gelts dar uber enpfangen. . . hait." Senckenberg, Köhler, Van der Linde, \&e. printed mun for the correct reading men. This latter word has hitherto been inmerpreted as meaning more (see Dziatsko, Gutenberefrage, p. 34, note 1: Schorbach, in Festschr. of 1900, p. 259). Zedler (Gutembergforschungem, p. 65, note) thinks that it is a dialectic by-form of the Mid. H. German meis found in mein-kowf, wrimrdt. wein-staern, mein-ddf, and slill preserved in the Mod. H. German Mcincid: he translates it therefore as "widerrechllich" (unlawfully). But men is the same as the Mid. Dutch min (see Verdam's MiddetNederl. Woordewb, in oce) = New Netherl. minder, and mens less, the only meaning which can give aense to thia clause.
of \(B^{3}\) in the form of certain capitals. But Pfister lasued on the 14 th of February 1401 at Bamberg. with the \(\mathrm{B}^{*}\) type, an edition of Boner's Ededstein (88 leaves fol., with wood-engravings), and at least eight other works (Hessels. Gutenberg, p. 161, seq.), one of which bears the date 1462 , the seven others none.

Most of the copics of the 36 -line Bible now known to us were at one time or another preserved in the libraries of Bavaria, and several fragments have been found in monasteries of that country, even in a register of the year 1460 of the abbey of St Michael at Bamberg. Moreover, a transfer or sale of type from Gutenberg to Pfister is contrary to all analogy in the infancy of printing, when every printer started with a type of his own making.
It is alleged that, in consequence of the lawsuit between Gutenbert and Fust, the former was deprived of all tools, \&c., The Cactretican which he had made, or is supposed to have made, Trpe. with the latter's moncy, and that afterwards a certain Dr Homery or Humery, a syndic of Mainz, office.
Thin allegation is made on the strength of a letter of obligation (daced Feb. 26, 1468) referred to above, and given by Dr Homery to Adolph, the archbishop of Mainz, by which he ackoowledges to have received from the said archbishop "several forms, letters instruments, implements and other things belonging to the work of printing, which Johan Gutenberg had teft after his deach, and which had belonged and still did belong to him (Dr Homery)." It is to he observed that Homery, though willing to amist or oblige Gutenberg, had been cautious enough to reserve to himself all rights to this printing apparatus, in somewhat the same way as Fust in 1450 demanded, or was promised, to receive Gutenberg's "tonls " as plodge for his advances. The Homery apparatus could hardly have been of large dimensions, seeing that it was readily passed on first from him to Gutenberg. then from the latter to the archbishop and returned again to its owner. But it is premumed that with these types, which appear in the above list as type VIII., Gutenberg had printed (i) Joannis de Balbis Catholicon of 1460 , copies of which exist in the Cambridge University Library, three in the British Muscum, two in the Paris Library, in the Spencer collection of the Rylands Library, in the Wolfenbattel and Mainz libraries, \&c.; (2) Matthaeus de Cracovia, Tractatiks rationis, 22 leaves, of 30 lines, 4to, three copies of which are in the British Museum, one in the Rylands, one in the Cambridge, two in the Paris Library, \&c.; (3 and 4), two editions of Thornas Aquinas, Swama de articulis fider, in 4 to., the first of 13 leaves and 34 lines (two copics of which are in che British Museum, one in the Rylands and one in the Cambridge Library He.): the second of 12 leaves and 36 lines (copies in the British Museum and the Paris Library); and (5) an indulgence of 1461 of 15 lines.
We have seen above that on the 17 th of January 1465 Adolph II.. archbishop of Mainz, had appointed "Johan Gudenberg, his setvant and courtier." It has always been inferred from this that Gutenberg had quitted Mainz and gone to Eltville (Elfeld) to reside at the archbishop's court, and that, his dignity as courtier preventing him from printing himself, he passed the Calholicon types on to Henry Becheermuncre at Eltvilla. It seems certajn that in 1467 the Castholicon type with come additions (already found in the Indulgence of 1461) was at Eltvile near Mainz, in the handa of Henry and Nirholas Bechtermuncze and Wigandus Spyes de Orthenberg, who issued on the 4 th of November of that year (vi.) Vocabularius ex guo (a Latin-German vocabutary) in 4to, 166 leaves, 35 lines, the only nnown copy of which is in the Paris Library. and (vii.) Voccobularius ex quo, 2nd edition, with colopbon dated the sth of June 1469 , 4to, 165 leaves, 35 lines. copies of which exint in the Rylands, the Blertheim, and the Paris horaries. It is therefore asked how the Bochtermunczes could have been using the Coltholicon type in 1467. if we asoume that it was this type to which Homery refers in his letter of obligation as being in his possession. Some, therefore, conclude that the Cohholicon and the four other works in the same type were printed at Mainz by Henry Bochtermancze. who may afterwards pirve transferred his printing office to Eltvile. In that case it is difficult to see what type Aomery could refer to, uniew it were type II, a close imitation of which, if nok the actual type. was used by Nicholas Bechtermuncze at Eltville in printing (March 12, 1472) a 3 rod edition of the Vacabularius ex quo. 166 leaves, 35 linea, copies of which are preserved in the Paris and Hamburs libraries, and an edition of Thromas Aquinas, Sxmma de articwlis fidei, 12 leavea, 35 lines (Munich Library).

It would seem, however, that Fust and Schoeffer were the printers and publishers of the Calholicon, and the other three works mentioned above, as the latter advertised them for sale in a list which he printed and circulated in 1469-1470 (see Konr.

Burger, Buchhandleranacigen das 15 Jahrhwaderts, Leipaig, 1907, No. 3). Schoeffer may of course have purchased the stock ol these books from Gutenberg or acquired it after his death from Homery, hut as nothing compels us to attribute the printing of these books to Gutenberg, there is still less reason to deny that Fust and Schoeffer printed them, as the much discussed colophon of the Catholicon is found, almost verbatim, in three books published by them in 1465 and 1467. Hence the numbers i. to vi. are the only ones that could be ascribed to Gutenberg.

Even this number, involving the manufactare of four different types (apart from the alterations in the forms of certain letters which involved the making of new patrices and matrices) would be large for a man who, after having lived in luxury for some years. practically subsisted from 1442 to 1455 on money which he borrowed from various partics and never repaid. But the poem on the "Weltgericht," printed on paper, could scarcely be placed at the head of a list which includes and, but for this poem, begins with vellum printed works. Moreover, as it can hardly be regarded as a specimen of primitive printing, it takes a more natural place by the side of the paper-printed 7 wakkalendor, Cisianms and Conjunctiones, which al show that printing on paper was beginning to supersede that on vellum. It is asserted that its type is the same as that of the 1451 Donatus, but this is doubtrul.

That the Asfromomical Kalendar calculates the ephemendes for \(144^{8}\) is no evidence of its having been printed at the end of 1447 , as kalendars of this kind seem to have been printed without any regard to time and circumstances. Some years ago the Cisianus was ascribed to Gutenberg and to the ycar 1444, because some of the saints and movable feasts mentioned in it were thought to relate to that year. But as the same saints and feasts occur in the same way in Cisianus editions printed long after 1500, this notion was abandoned. The Astronomical Kalendar in question lays down rules for blood-letting at certain times of the year, and was evidently intended to be hupg up in houses as guides for this purpose. It is admitted that it contains mistakes if we apply its calculations to 1443, and it has not yet been proved that these rules required a special kalendar for each year in particular. Removing. therefore, Nos. ii. and vi to sonocwhat later dates in the list, the Donolus No. iii. and that of 1451 (No. iv.) with another edition (No. v.) of the same scbool-book remain at the head of the column \(A\), together with the Indulgence \({ }^{\text {a }}\), as the only works that could be ascribed to Gutenberg. They bring us down to the time (c. 1451) when he, according to the Helmasperger document, may be supposed to have been in a position to exercise the new art of printing.
It is necessary to point out that eight books- (I) Prognostication or Calendar; (2) Hermann de Saldis, Speculum sacerdotum: (3) Tractatus de celebratione miscarum; (4) a work in German treating of the necessity of councils; (5) Dialogus inter Hugonem Cothonem at Olimerimm super libertate ecclesiastica; (6) Silridus de Arena. Determinalio duarum quaestionkm; (7) idem. Responsio ad quatuor gucestiones; (8) Klagspicgel, or New gelewisch' Reckituch-have been ascribed to Gutenberg on the strength (a) of the date 1460 , which was aaid to be found in a Prognostication in the Darmstade library, and (b) of a wocalled rubrication alleged to be in a copy of the Trectatus de celebratione missorum. in which "Johannes dictus a bono monte " and Johannes Numeister are represented as offering this work on the 19th of June 1463 to the Carthusians at Mainz. But the date in the Progwostication has been falsified from 1482 into 1460, and the rubrication in the Tractatus is a forgery (Hesecta, Culenberg, pp 107-114). The eight books are now considered to have been printed by Erhard Reuwich.

Apart from these disputed points there is no further difficulty as regards the history of Mainz printing. Fust and Schoeffer worked together from 1457 to 1466, starting in August 1457 with an edition of the Psolferixm, printed in large missal types, which, as far as we know, is the first printed book which bears a date, besides the place where it was printed and the name of the printers. It was reprinted with the same types in 1459 (the second printed book with date, place and name of printer), in 1490, and in 1502 (the last work of Schoeffer, who had manufactured its types). In 1459 Fust and Schoeffer also published Gul. Darantus, Rafionale dipinorwm officiorum, with the small type (usually called Durandus type) with which they continued to print long ailerwards. In 1460 they published the Constitu. tiones of Pope Clement V., the text printed in a type (Clement type) about a third larger than the Durandus. This type was, however, in existence in 1459, as the colophon of the Durandus is printed with it. \({ }^{1}\)

The Invention Controverny. -Now that we have traced the art of printing from the moment (1454) that it made its ' See further Bernand, Origime, i. 216 seq.
royal palace, Loureas (son of Jan, surnamed Cooter, who, while walking in the wood near Haarlem, began to shape beechen bark first into figures of letters, by which: reversely impressed one by one on paper, he composed one or two lines to serve as an example for the children of his son-in-law. (c) When this succeeded, he began to contemplate greater things, and first of, all iavented, aseisted by his con-in-law Thomas (son of) Peter, a more gluey and substantial kind of ink (as the ordinary ink was (ound to blot), with which he printed whole tablets with pictures, with the letters added. (d) Junius had seen books of this kind priated by Coster (the beginnings of his labours) on the rectos of the leaves only, not on both sides; the book was written (in Dutch) by an anonymous author, and entitled Speculum mostroe salulis, in which care was taken that the blank versos could be pasted together, so that the blank pages should not present any unsightliness. (e) Afterwards (Coster) changed the beechen characters into leaden, and the latter again into tio ones Very ancient winc-pots cast of the remains of these types were stil! to be seen in the house of Lourens, which was alterwards inhabited by his great-grandson Cerard (son of) Thomas, who had died an old man a few ycars before. (f) When the new merchandise attracted purchascrs everywhere, workmen were added to (Lourens) houschold, among whom was a certain John (whether, as was suspected. Faust, or another of the same mame, Junius did not inquire), who was bound to the work of printing by oath. But, when he thought be knew the art of joining the letters and of casting the types, acc, he stole away, when everybody had gone to church, the whole apparatus of the types and the tools prepared by his master, and hastened to Amsterdam, thence to Cologne, until be arrived at Mainz: where he could remain in safety, and. having opened a workoffice, issued within the space of one year, about 1442, the Docirinals of Alexander Gallus and the Tracts of Petrus Hispanus, printed with the same types which Lourens had used at Haarlem. (s) Junius recollects that Nicolaas Gaal, his tutor, a man of firm memory and vencrable old age, had told him that as a boy he had often heard a certain bookbinder, Cornclis (a man of more than eighty years of age, who had been an under-workman in the same office) narrating the story of the invention (as he had heard it from his master), the polishing and increase of the crude art, \&c., and cursing those nights which he had passed, during some months, with the culprit in one bed. (h) The burgomaster Quirinus Talesius admitted to Junius that he had formerly heard nearly the same from the mouth of the same bookbinder.
(xy.) Natalis Comes, in his Uninorsa historia sus temporis (Venice 1581; the edition of 1572 contains only boaks i to 10), lib. xxiv. 521. says that Haarlem is memorable on account of the almost divine invention of printing books first contrived by John Cutenberg in the year 1453; who, when he had invented the rudiments of \(i t\), had a rather cunning servant, observant of his master's art, who, after the death (sce xliii., xivi., xivii.) of Johan vent to Mainz and there perfected the art, nnd hence the report that it was invented in that city. (zivi.) Geo. Braunius, in the second volume of his Civilates orbis terrarum (Coln. 1575?), says of Haarlem, that in this town and the whole province of Holland, there was a fixed tradition that the art of typography was first invented there. But before it was perfected and brought to light, the inventor died (see xlifi., xlv.) and his servant went to Mainz, and made it known there. (yvil.) Mich. Eyzinger on p. 75 of his Niederlindsche Beschreibung (Coln, 1584) says that the art of printing, as it was then done, with letters and characters on paper or otherwisc, was invented by some one at Haarlem, but, on the death of his master (see xilii., xlv., xivi.). was brought to light in perfection by his servant. (Repeated by Matthias. Quadus Pictor Juliacus in Compendium Unipersi, sive Geograpkicae narrationes, lib. iii. c. 38 , Colon. 1600.) (xlvili.) Chronicon Sublacense, per P. D. Cherabinum Mintiun Trewirensem monachum Sublacensem laboralum anno ...J J629. A MS. in 4 to, on p. 150 of which is read: Non egre ferat, quaeso lector, si inseruero ratione temporis rem non plane ab instituto nostro alienam. nermpe laudabile studium monachorum Sublacensium teutonicorum... Nempe, quod nobilissima librorurn typographis paucis ante annis in inferiori Germania enata est et in lucem producta (with a note hy Mirtius: Hollandia A.D. I 453 in civitate Haarlem per Joannem Cutenbergam, quac tamen ars, postea Moguntiae per dicti inventoris famulum in meliorem redacta fuit excudendi formam). It is supposed that xlv. to xivii. are derived from Test. xfiji., but this scems impossible as regards xlviit.
(xix.) In 1628 Scriverius in his Lasrecranz (see xli.) placed the date of the Haarlem invention as far back as 1428, and mentioned as its inventor Lourens Janszoon, sheriff of Haariem. He asserts that the art of printing appeared. " not in the manner as it is used now, with letters cast of lead and tin, but a book was cut leaf for leaf on wooden blocks," and the Haarlem inventor was robbed in \(144^{\circ}\) by Johan Gutenberg. Scriverius based the dite 1428 upon a Hebrew Chromicle compiled by Joaeph ben Meir. (1496 -1575?), and published in 1554 at Sabionetta by Cornclius Adelkind, where, under the year of the Jewish era \(5188(=1428)\), the author mentions a book (without giving the title) printed at Venice and seen by him. Scriverius, being convinced that this could only refer to a book printed at Haariem, applied the entry to a xylographic Biblia pauperum, of which he gave a description, together with several other hlockbooks and carly printed books
(.) In 1639 Borhorn pothed the date of the Hagrien invertion back to 1420, selerring, as his authority, to the same Chronicle of Rabbi Joweph. Since that time the date of the Haarlem invention hat been variously placed between 1420 and 1430 .

Later testimonies are mere repetitions of earlier statements.
We need not discuss the story of Antonio Cambrussi, whoasmerted that Pamfilo Castaldi invented printing at Feltre, in Italy, in 1456, and that Fausto Comesburgo, who lived in his house in order to learn the Italian language, learnt the art from him, and brought it to Mainx; the story, however, found so much credence that in 186 a statuc was erected at Felere in honour of Castaldi. Nor need we speak of Kuttenberg in Bohemis, where John Gutenberg is amperted to have been born and to have found the art of printing. Nor is it necessary to speak of Jean Brito, who printed at Bruges c. 1477-1488, and is asserted to have invented printing there. We may. aloo pass over Johann Fust, later on called Faust (testimonies xiv., xyiti. xuvi., xxviii. xxxi, xuxii., xaxiii., xoxviii.), as we know from the Mainz lawsuit of 1455 that the had simply assisted Gutenberg with loans of money. We may also pass over Johann Mentelin of Strassburg (testimonies xuxv., xucix), only remarking here that be had already printed a Bible in 1460, and that be is mentioned in Strassburg registers as a chrysographer or gold-writer from 1447 to 1450 ; but of his whereabouts between 1450 and 1460 there is no record. That he had gone, or had been called, after 1450 by Gutenberg to Mainz has been asserted but not proved, though there is no reason why he should not be one of the two Johannet alluded to as the prothocardmatici of Mainz in the Justinian of 1468 (testimony viii). That Nicolas Jenson came to be regarded in certain circles and for a time as the inventor of printing is owiag to testimony xii. being misuaderstood.

There remain, therefore, to be considered the testimonies which bear on the rival claims of Haarlem and Mainz. So far as we know, the controversy between Germany and Holland was publicly started as early as 1499 by the Cologne Chronicle (testimony xxiv.), that between the two towns mentioned not publicly before 1561 (testimony xli.); while the name of the Haarlem inventor was not mentioned publicly in print earlier than 1588 (testimony xliv.).

The claims of Germany and Mainz, as centred in the person of Johann Gutenherg, have been discussed above while treating of the early printing at Mainz. A few more words about these cinims are necessary. Though some of the documents relating to him connect him with the art of printing, they say nothing of him as the inventor of it; nor do any of the books ascribed to him.

The first document that connects him with the art of printing. the notarial instrument of the 6th of November 1455 (testimony i.). says nothing of an invention or a new mode of printing. And yet the occasion was auch as to make it almost imperative on Gutenberg to speak of his invention, if he had made any, for he had spent 1600 guilders of Fust's moriey for making "tools," apparently without printing anything. and was on the point of being robbed by the lat ter and having taken away from him all that he is supposed to have made and done to give effect to his idea or invention. The next testlmony (ii.) i.e. the earliest Mainz books with printed dates (1457 to 1467), show that the art of printing was not treated as a secret at Mainz; it is openly proclaimed; its importance fully realieed and appreciated, but it is dixtinetly advertised as a " by-invention of printing." and still more distinctly as a "mee art of printing"; the public were informed that books were now no longer produced by means of the pen, but by a new art of forming characters and printing. Such sdvertisements are natural and appropriate if we assume that the new art of printing had recently (say about 1450 to 1455) become known at Mains, but not when we asume that Gutenberg had been printing there devorional and school books and folio Biblea since 1443. But, though the new art is \(s 0\) distinctly described and advertised, in none of these advertisements is there one word of a "Mainz invention" or an "inventor." In testimony ii. (the Cadbolicon of 1460) there is an allusion to Maing being favoured by God, but again not one word bout an invention or an inventor. If Gutenberg had printed the Coulalicon, it wotald be incredible that he, who had been wronged and robbed by his two rivals (Fust and Schoefier), should join in with them in defining and proclaiming the new art, but never with one word aseert his claim to the honour and profit of the invention, if he had made any, and should even omit his name, whereas he tav
\({ }^{1}\) Over a hundred of them have been collected by Ger. Meerman, Oricines typogr. ii. 98 seq.

In line 42 Gutenberg distinctly declares that " he hoped he was under no obligation to Fust to devote the first 800 guilders to the work of the books '"; and, as Fust, by advancing the second 800 guilders in 1452, had practically bocome Gutenbert's partner, It seems clear that the former claimed in October or November 1455, when the trial may be said to have commenced, his maney and interest because Gutenberg had as yet not.printed anything.
his two rivals never peglect to print their namea in full on every book which they publithed. Thooe who believe that Cutenberg was the inventor of priaciog suggest that he kept silent, as otherwise his creditors would have sested his copies and his printing-affice. But this explanation cannot be accepted, as we have acen that Gutenbery was practically bankrupt at that time, and prowecuted as a defaulter: and the verbose colophon at the end of a gisantic folio book like the Catholicon, published at a time when there were perhape not more than three printing offices in the world, would be calculated to draw attentien to its printer and his residesce, not to conceal him. Testimony v. (1466) can no loager be regarded as having any reference to Gutenberg or the invention of printing: vii. (1468) was formerly thought to mean: "' 1. the book. am cast (i.c. its types are cast) in the Mainz city. and the house whence the type came (= where the type was iovented) produced me." But of late years it has been shown that the author of the book. Johann Fona, was Peter Schoefier's prese-corrector. And, as he no doubt reaided in Schoeffer's bouse, the two line evidently mean: "I am a little book cast in Mains, and I was born (\(=\) written) in the same house whence the type comes 1 (\(=\) whore 1 am printed)." Teatimony viii. (also of 1468) epeales of two Johannes (Gutenbers and Fust) as the "prothocaragmatici librorum quas genuit urbs Moguntina." But this means, not that the first printers of books Were born at Mainz, but that the two Johannes (born) produced at Mainz wert the chief printers of books.

When we now place tosether the clear documentary testimonies (i. to viii.) of the first fourteen years of printing (1454 to 1468) at
yaner Tathent Mainz. we see that they all come from Mainz itsell. Everybody connected with tbe art when speaking of it does 20 in the mont public and unreserved manner it importance was as fulty realized and advertised chen es it is now; the German nation is even congratulated on possesaing it; there is never any secrecy about it: but from the moment ihat it begins to be mentioned there (ay ebout 1456) it is called a mere art. In the midst of all this publicity, however, the mew art which Mainz and Germany possess is never spoken of as having been innented at Mainz or anywhere else in Germany. The supposed Mainz inventor (Gutenberg) even speaks himself on two cocasions (certainly in the fawsuit of 1455, and presumably in the Catholicom of 1460) hut never says that he made an invention. The archbishop of Mainz, too, speaks publicly of Cutenberg in 1465 (testimony iv.). and rewards him for services, but does not speak of him as the inventor of printing, nor even as a printer. Nor does Dr Homery, in his letter to the archbishop (testimony vi. of 1468). in which he refers to Gutenberg's printing apparatus, call him the inventor of printing.

In 1468 we enter on a new phase in the history of the invention. Even if we set aside testimony viii, as being merely local, testimony in. (1468) speaks of the art of printing as having arisen in Germany. This testimony, however, does not come from Cermany, nor from Mainz, but from Italy, and is supposed to have been inspired by the two German printers who had established a printing-office at Subiaco in 1465 , and in 1467 at Rome, and who most likely learned their craft at Mainz.

As the two printers are mentioned in the testimony, and as it does not speak of Gutenberg, nor of Mainz, it is far more likely lbat it was merely derived from the colophons of Fust and Schoeffer, or from something that Cardinal Cusa had heard during his embasies in Germany. To the Mainz colophons we must also ascribe (a) the two testamonies of 1470 (x.) and (b) the three of 1471 (xi.), alf five of which come from France and ltaly. At last, in 1472 (testimony xiii.), the invention of printing is ascribed to Gutenberg of Mainz, but as a rumour, and the testimony comes from France. Guil. Fichet of Paris, who gives it. is supposed to have heard the rumour from the three German printers who commenced printing at Paris in 1470 . And as two of them had resided, immediately before they came to Paris, in the university of Dasel, and are suppoaed to have learnt their art there, the rumour is traced to "Bertolf von Hanauwe," who appears in the lawsuit of 145525 Cutenberg's servant and who was printing at Basel in 1468 . But it came more likely from ioformation which Fichet obtained from the St Victor Cathedral. near Maina (of which Gutenberg had been a lay member). as he speaks of the art having bern invented " nol far from that town." Testimony xiv. (1474) again comet from Italy, from Ronse, and was perhaps derived from one of the Cerman printers eettled there at that time. It merely speaks of Gutenberg, Fust and Meatelin as printers, hut says not a word which even touches upon the invention of the art. In testimony xy. (1476) we have the first definite mention of Mainz as the inventress of the art; it is given as an addition to the Mains colophon of 1468 (see viii.). In \(147^{8}\) Mainz is again mentioned in a Cologne testimony (xvi) which gives evidence of resegrch, as it is an amplification of an earlier one in which Mainz was not mentioned. Germany, Cutenbert and Mainz are again mentioned in the Venetian testimony xyil (1483), which gives (under the year 1457) for the first time 1440 as the date of the invention. In the same year we have

I Venit (comes), the present not the perfect tense (has come).
two earlier testimonies (xiv. End mii.) worked into one (rviii.), to the effect that printing was invented either by Gutenberg or by Fust or by Jenson. Testimony xix. (1492), which seates that printing commenced at Mainz, is practically equivalent to \(x y\). In 1494 and 1489 we have three German teatimonies (rx., xxi., xaii.) as to Gutenberg being the inventor of printing; these, however, come. not from Maing, but from Heidelberg; xuii. is given by a relative of Gutenberg. Adam Gelthus, and, as the latter resided at Heidelberg, it is clear that he was the real source of the other two Heidelbery testimonies (\(\mathrm{x} x\). and \(x \mathrm{xi}_{\mathrm{i}}\)). Two years later, when Winpheling, the author of testimony xxi., had keft Heidelberg, he ascribed (xuy.) the invention of printing to Strassburg, though stating that Gutenberg was the inventor. Testimony xxiii. is recorded above to chow the confusion that reigned in people minds about 1500 regarding the invention. We must add to thete testimonies those of 1504 (xxyii.) and 1505 (xxviii.). which are owing to lvo Wittig, a canon and the keeper of the scals of the St Victor Cathedral, near Mainz, of which, according to its liber fraternilatis, Gutenberg had been a lay member.

Thus the Helmasperger document, the two Indulgences of 1454 and tbe 42 . line Bibte tell us, that in the period from August 1450 to 1456 the art of printing had commenced and been perfected at Mainz; but not a word is heard as to how it arose, or what its nature was. In the period from 1456 (if we place Schoeffer's 35line Doxolus in this year) to 1468 various books were printed at Mainz with colophons in which the art of printing is proclaimed as a by-invention of printing; more especially as a mew art; its mechanism is fully described and said to be quite different from the mode of producing books by means of the pen; hut, no one says that it was inocmed at Mainz, or mentions the mame of a Mainz invertor.

In the period Irom 1468 to 1 gos, however, we have (1) eeveral vague statements made in Italy and France as to the art of printing being knowa or practived on invented in Gcrmany, statements which arose from the books and colophons puhlished at Mainz: (2) one item of rumour in 1472 that Gutenberg invented it mear that town; (3) two Mains statements, of 1476 and 1492 , and one Cologne statement, of 1478 , that it was invented at Maina; (4) three Cerman atatements, of 4492,1494 and 1499. that Gutenberg had invented it; and (5) two Mainz statements, of 1504 and 1505 , to the mae efiect. But it is to be particulary noticed that the statements (\(2,4,5\)), which speak distinctly of Gutenberg being the invontor, can be clearly traced to the St Victor Cathedral, thet is, to Gutenberg himself and ore of his reiatives.

Seeing then bow slender the basis is for the assertion that printing was invented by Gutenberg at Mainz, that even this slender basis was not laid till fourteen years after the art had been fully established and proclaimed in that city, and that it may be traced to Cutenberg himself, we cannot be surprised to find it promptly

\section*{Centras curtrater Cllane} contradicted, not in Holland, but in Germany itself.
This contradiction was made in 1499 (testimony xxiv.) in a Chrowicle puhlished at Cologne. To facilitate the understanding of this testimony it is divided above into cight sections. The first (taken from Hartmann Schedel's Chronicle. 1493), second, sixth, teventh and eighth are no doubt due to the compiler of the Chronicle, and must not be connected with the third, fourth and fifth, which, according to the compiler, are due to Ulrich Zell, a printer at Cologne, Who had probably settled there about 1463. and had most likely. learnt his art at Mainz, as he called himself clericus moguntinus. As Zell's testimony leaves to Gutenberg nothing but the honour of having perfocked the art, various attempts have been made to explain away this account. As long as no typographically printed Donatms had been found that could be fitted into Zcll's account it was argued that he meant a Donatms printed from wooden blocks: and this argament is brought forwand even at the present time. But a practical printer like Zell must have been able to exprese himself to that effect if he had really meant to say e0; and, as block-printing was not less practised in Germany than in Holland. we could hardly assume that blockbooks printed in Holland would have inspired the German inventor rather than the same boolad printed in Germany. That testimony xaxviii. speaks of a Donafur printed from wooden blocks may be ascribed to the notion arising at that time (\(c .1533\)) that block-printing had given rise to typography. It has also been remarked that unless we take Zefl to reler to a Domatus xylographically printed in Holland, the passage in the Chronicle would be contradictory, as it says in its first and sixth section that the art of printing was lound first of all at Mainz about 1440, by a Mainz citizen. Junker Johan Gudenburch, and then in its fourth that the art had already been found before that time in another place. But if the fourth section is read in accordance with its punctuation in the Chrosicle its.lf, it cays clearly that the art was found at Mainz, as aforesaud in the manner in which it is generally employed now. that is, more masteriy, more artistic than in the Donormsrs printed in Holland. It has further been awerted that Holland in the Chronicle means Flanders; but the Chronicle is usually correct in geographical matters, and is
therefore not likely to have gone astray In this particular case. It has also been suggested that Zell moet likely learnt his art in Fust and Schoeffer's office and invented the pasage to injure the reputation of Gutenberg, who had been their enemy. Finally it has been anid that Zell did not suggest or write the passage at all; but it is hard to see how this can be maintained in face of the compiler's own statement to that effect.
As, thercfore, all these suggestions do not weaken or invalidate Lompers Zell's testimony, we must see how far it harmonizes Conters with other circumstances and the testimonies xxiv., cletmes. xli. to xlix., which claim the honour of the invention for Haarlem in Holland

Testimony xexiv. (the Pedigree) is sufficiently clear as to the in. vention of printing at Haarlem, the supposed date and the name of its inventor. Testimonies di. and xliti., though coming from Haarlem, do not mention the name of the inventor. But xh. is a mere introduction destined for a complete book that seems to have been lost during the siege of Haarlem in 1573 before it was printed: we are, therefore, not justified in saying that Van Zuren did not know the name; xlii. may have omitted the name, because the publication of Van Zuren's work was in contemplarion at the time that it was written. That Gurcciardini (testimony xiiii.) in 1566 did not mention the name of the reputed Haarlem inventor cannot be considered as an indication that it was not known or had not yet been "invented "when he wrote, as his accounts of the cities of the northern Netherlands are all rather meagre and for the most part derived from correspondence. He and other authors caming aiter him (testimonies alv, xalvii.) state that the Haarlem inventor had died before the art was perfected, and that thereupon his servant had brought it to perfection at Mainz. We do not find any such statement in Juntus. The hatter's account (xliv.), however, gives various particulars as regards the inventor and his invention. He begins by relerring to the difficulty of vindicating the honour of the invention for Haarlem on account of the deep-rooted and general opinion that it took place at Mainz. He then mentions that Lourens (son of Jan) surnamed Coster resided at Haarlem "more than 128 years ago," and gives us to understand that in the year indicated by that phrase he invented the art of printing. Jurius's book was not published till after his death, in 1588 , but its two prefaces are dated 1575 (he died June 16, 1575), hence the number 128 is supposed to go beck from the date when he actually wrote his account, which he is calculated to have done about 1568. Thus we get the year 1440 as the supposed date of the HaarIcrm invention, though, if we based our calculation upon the date of the preface, the year 1446 or 1447 would have to be assumed. But, as Junius adds that Coster's types were stolen by one of his servants, who fled with them to Mainz, and, establishing there a printing-office, printed within a year's time, in 1442 , two books, he must, if this latter date is correct, have meant \(144^{\circ}\). By testimonies xlix. and 1. We see that in the 17 th century the date of the Haarlem invention was first put back as far 251428 , then to 1420; and since then it has usually been regarded as 1420-1423, especially alter it was discovered that the flasrlem wood where Coster is said to have cut his wooden letters was destroyed during a siege in 1426 .
The researches regarding the reputed Haarlem inventor have hitherto been made in an inadequately scientific manner, and it appears that, after Scriverius (1628) had pushed hack, in spile of Junius, the date of the invention to \(1420-1428\), he and later Dutch authors on the subject mixed up two Haarlem citizens (a) Lourens Janszoon, who never bore the surname Coster: he is proved to bave been sheriff, wine merchant and innkeeper from 1404 to 1439, and to have died in the latter year; (b) Lourens Janszoon Coster, authenticated by official documents as a chandler and innkeeper from 1436 to 1483, leaving Haarlem in the latter year. The name of this person and some gencalogical particulars known of him seemed to agree with Junius's account and the Coster pedigree.

But recent investigations at Haarlem and elsewhere tend to show that there have been two, if not three, persons of this name living at Haarlem about the same time. Thoughthis superabundance of namesakes shows that van der Linde and those who accepted his conclusions were rather hasty in declaring L. J. Coster to be a myth, it is somewhat perplexing to the historian, and it would seem that the Dutch people prefer to make speculations and guesses on this point, rather than wearch in some systematic way the original documents and registers from which they draw haphazard extracts. The result of the latest inguiries (so far as they may be called inquiries) is that L. J. Coster, who would agree with Junius's account and the Haarlem Coster pedigree, was a member of a Christmasgild in \(\mathbf{1 4 3 6}\), is mentioned in the Haarten repisters as a dealer in candles and oil till 1454, and seems to have died before 1460 (see) Fruin, De lividige stond," Antervraagstwh, 1906; Enschedé,

Laurens Janss. Cosker, 1904); 00 that his business as printer wat probably comtinued by one of his relatives, and finally broken up about 1481, when the Speculum cuts are in the hands of Veldener.

Junius's account of the Haarlem invention is based on three books: (1) a Dutch edition of the Speculum humanee saloationis; (2) the Doctrimale of Alexander Gallus; and (3) the Tracts of Petrus Hispanus (Pope John XXI.). The firot work, he said, was printed by Coster as a first specimen of his art, and it wrould seem from his words that the tradition believed it to be printed with wooden types: the second and third books, he declares, were printed at Mainz winh Coster's types, stolen from him by his workman. Of the Hispanus Tracts no edition answering to Junius's description has as yet come to light. Of the Doctrinale and the Speculum we possess editions which fit into his account, though, of course, it will be impossible to say whether any of the Doctrinale editions were printed at Haarem or at Mainz. Various editions of the Latin grammar of Aclius Donazus, printed in the same types, link Junius's independent testimony regarding Haarlem and Coster on to that of Unich Zell, who declares in the Cologne Chrovicle of 1499 that editions of this school book printed in Holland were the models (prefiguration) for the printing at Mainx, which commenced about 1450 .

As the evidence for Haarlem's claims has been obscured hy various adverse and not aiways intelligent criticisms, and no less by imperfect and incorrect descriptions of
the books on which they rest, we describe here, coutarlase from autopsy, the types and hooks that have always been and still may be, on solid grounds, attributed to Coster, and which, for this reason, we continue to call Costerians

\section*{The Costeriana. Xylographic Prinling.}

Of the Speculum humanae saltationis, a folio Latin blockbook (that is, an edition printed entirely from wooden blocks) must have been printed several years belore 147\%, consisting, like the Later type-printed Latin editions, of at least 32 sheets \(=64\) leaves, all printed on one side of the leal only, alternately on the versos or rectos (therciore 64 printed pages). The sheets were, no doubt, arranged in the same number of quires (\(a^{2}\) for the preface; bcd \({ }^{7}\) \(c^{\leq}=29\) sheets for the text) as in the later editions; the firist leal was perhaps blank, the preface occupied the leaves 2 to 6, and 58 leaves remained for the 29 chapters of text, each occupying two opposite pages of two columns each. W'e may funther assume that the upper part of each printed page of the text was occupied by one of the woodcuts, which we know from the later editions, and which are divided each into two compartments or scenes by a pillar, with a lise or legend below each compertment explaining in Latin, the aubject of the engraving; and that underneath the woodcut was the text, in two columns, corresponding to the two divisions of the engraving above.

This blockbook has already been alluded to above among the Netherlandish blockbook, but we give here further details, at various circumstanees make it clear that it was the work of the same (Haarlem) printer who issued the other editions of the Specwium. together with the several incunabula described below, and to whom a Haarlem tradition ascribes the invention of printing.

All the Speculum editions which concern us contain, 50 far as we know, 29 chapters. But previous to the above blockivook another one of more than 29 chapters (may be 45 , like most of the MSS.) must have existed, as may be inferred from Johan Veldener's ato edition of a Dutch version of the Speculum, published in 1483. in which all the 58 blocks of the ofd folio editions reappear cut up into 116 halves to suit this smallcr edition, besides twelve additional woodeuts for three additional clapters (the 25 th, 28 th and 29th) not found in any of the old folio editions, As these additional woodcuts appear to be also cut-up halves of six. larger blocks, they point to the existence, at some earlier period, of a folio edition (xylochirographic or xylographic?) of at least 32 chapters, at present unknown to us.

Of the biockbook as is here assumed we know now only 10 shects or 20 leaves, which, in combination with 22 sheets or 44 typographically printed leaves, make up an edition, called. on account of this mixture of xylography and typography, the mixed Latin edition. These twenty xylographic leaves are (counting the 6 leavet of the type-printed preface) \(7+20,8+19,10+17\). \(1 t+16,12+15,13+14\) (in quire b): \(22+33,23+32,27+28\) (in quire c); \(52+61\) (in quire e).

Copies of this mixed Latin edition still existing: (1) Bodleian Library, Oxford (Douce collection, 205), perfect; (2 and 3) Paris National Library, 2 copies, one perfect, the other wanting the first (blank) leaf; (4) John Rylands Library at Manchester (Spencer collection), wanting the first (blank) leaf; (5) Colonel Geo. Lindsay Holford. London, wanting the first (blank) leaf; (6) British Muscum (Grenville collection), wanting the leaves (blank) and 21 (this being supplied in facsimite); (7) Royal Public Library at Hanover, wanting the leaves 19 (xylogr.) and 24 (typ.), but having duplicates of the (xylogr.) leaves 15 and 28 ; (8) Museum Meerman- Wesrreenen, the Hague, wanting the leaves 1 to 36 , and portions of the text of

Lenves 37 and 38; (9) Berin Royal Library, wating the leaves 1 (blaak), 58, 59, 62, 63, 64, while in place of the (xylogr.) leaves \(\$ 2\) and 6 it has the same (type-printed) leaves of the second Latin edition; several of the other leaves are bound in a wrong order: (10) Pembroke library at Wition House, wanting the leaves 1 to 7 and 64, while the leaves \(9+18\) have been supplied from the second (type-printed) Latin edition; (11) Copy, reprevented now by the leaves is \(+{ }^{28}\). which appear as duplicates in the Hanover copy (above. No. 7); (12) Ottiey (Inevation of Priwling, p. 267) mentions another copy as baving belonged to Mr Singer, which wanted three or four leaves, but has since been iaken to pieces and dispersed. Set furtber ilodtrop, Cal. bibl. reg. Hag. \(\mathbf{5 6 0}\); idem, Mon, iyp. p. 22 and facs pls. 20, 21: Bernard, Ores. 1. 13 sq9.: Sotheby i. pl. xxxii.; Campbell. Awe. No. 1570 (who wrongly states that the two copies in the Paris National Library belong to the unmuxed Latin edition).
Efforts have from time to time been made to account for the unusual mixture of xylography and typography in this one book, and to assign a date to it and the other editions, with the lurther view of ascertaining the date of their printer, as for him the honour Bernard. of the invention of printing is claimed. Bernard (1853) to the various editions, but, without stating his reasons, concluded Chat at least six or seven must have been issued, and that the xylographic leaves of the mixed Latin (bis edition A), are the remains of a firsl complete, entircly xylogrophuc edition. As there is a close resemblance between the letters of the xylographic and typographic texts, and both texts agree, with a lew exceptions, word for word with the corresponding texts of the other Latin orver. edition (which, being wholly typographical. is called the graphic pages were lacsimites lrom those of the typographically printed wnmixed Latin edition. which the publisher caused to be made after having lost. through some accident in his office, not only those sheets already typographically printed, but also his cypes. In support of this theory he pointed to some defects or breakages in the pillars, dresses, \&e-, of the woodcuts of the xylographic pages which he did not find in the same woodcuts in the unmixed Latin edition;so that be thought the latter must be the first edition. Secondly, as the scrolls in the last vignette (Danict interpreting the handwriting on the wall) are black in the Inglis copy of the unmixed Latin edition, but white in all the copies of the mixed Latin and the other editions, he comcluded that the lormer must have been printed before the woodcutter had cut away the piece of wood which produced the black scroll, which was to him an additional prool that the unmixed Latin edition was the first. These theorice were adopted by Sotheby in 1858 and again by Schreiber in two rreatises on xylograply (in Centralbl., 1895. p. 30 sqq.: in the Gutenberg-Festschrift, Centralbl. 1900, p. 46 sqq .; and in his Manuel de la gravere sur bois, 1902, iv. 114 s9q., vii. pls. 48. 49, viii. pls. 79, 80). The latter author is of opinion that xylography was not employed for the multiplication of books till about \({ }^{1468-1470, \text { and that about that time printing with movable }}\) metal types was almost unknown in the Netherlands. Hence he thinks that the woodcut illustrations in the variouseditions of the Speciuinm were pritted somewhere in the Netherlands, and the abeets afterwards sent to Germany, most likely to Cologne, for the purpome of having the texts added by typography. These proceedings, be fancics, were successful twice, once with what he calls the farst (unmixed) Latin, secondly with the first Dutch edition, but on tbe third return journey a part of the material of the second (\(m\) ixed) Latin edition, that is the ten sheets in question, all packed in one parcel. were lost, and the publisher, in a hurry tn sell his copies. had these sherts replaced by xylography.

As 2 carcfui examination of the mixed Latin and other eritions clearly shows their real condition and the order of their issue, we do not discuss Schreiber's improbable theorics. As to those of Octley and Sotheby, some of the lines which they reparded as broken in the copy or copies of the wixed Latin edition which they exa mined. are intact in ocher copies of the same edition, so that no reliance can be placed on these delects and breakages, which are clearly due to printing from wooden blocks, a process, which admittedly causcs more defects in the impresions than priating from types. Of the black and white scrofls we speak below.
It is to be aoticed Girst of all that the legends underneath the woodcuts are in Latin, so that they were no doubt engraved for a Latin edition. But, unless we take the twenty xylographic leaves as remains of a complete xylographic edition issued (ai Haarlem) before the invention of printing, there would be no Latin edition to connect the woodcuts. with in the first instance, as the priminive types and workmanship of one, if not two, of the Duteh editions described below show that these must have been prinsed before the 44 type-pristed leaves of the mized Latin edition, and also before the wholly type-printed \(u\) umixed Latin edition, the types of which are new and far better cast.
Incidentally, this fact that the types of the mixed Latin edition are laker than those of the Dutch editions disposes also of another theory favoured by some authors, viz. that during the progrese of the xylographic edition its printer invented the movable type. and thereupoa atopped his xylographic work to complote the bwok

XXVII \(9^{\text {t }}\)
by means of type, so that in this mixed Latin edition we were to wee the transition from xyiography to typography.

The priority of the xylographic over the typographic leaves is proved by the Pembroke (No. 10) and Berlin (No. 9) copice. In the former the third sheet of quire b (\(=\) the leaver \(9+18\) with the figures 5. 6 and 23.24), the only type-printed sheet in this quire in the other copics (1 to 7 and 9). is not the same as in the other copies, but belongs to the unmixed or second Latin edition. \({ }^{1}\)
A somewhat similar but still more important manipulation we observe in the Berlin copy, in which the fourth sheet of quire e (\(=\) the leaves 52 and 61), the only xylographic sheet in this quire in the other copies, is replaced by the corresponding type-printed sheet of the unmixed or second Latin edition.
All this makes it clear that the printer of the Speculum, some time after having become a type-printer instead of a block-printer, replaced gradually (or by one operation), forty-four xylographically printed leaves of his first edition by type-printed leaves, for the purpuse of issuing the Latin edition. now known as the mixed Latin edition: then, at a later stage, prepared a new Latin edition, wholly printed in movable typc (now known as the wnmaed Latin edition), and afterwards used sheets of this latest edition. not only to replace more of his old xylographic sheets (as in the Berlin copy), but even (as in the Pembroke copy) some of the fort y-four sheets which he had printed (evidently for no more copies than he calculated to have left of the old xylographic stock). in the first instance, (or issuing the mixed Latin edition. We shall see below that he procecded in a some what similar way in completing copies of his Dutch editions.
Hence the sequence of the Latin editions was thus: (1) The zyographic edition of 64 (?) or more leaves in 29 (?) or more chapt ers. of which we have only 20 leaves remaining, which was issued before the invention of printing with movable types, and was probably precerfed in its turn by a xylographe or xylo charographic edition of at lcast 32 or more chapters: (2) anor her issue of 20 leaves \(o f\) the preceding edition, in combination with 44 typographic leaves (the mired Latin edition) printed for the purpose of replacing the curresponding xylographic lea ves of the preceding edition, considered unft Yor further publication, or discarded for other reasons: (3) the wholly typographically printed edition known as the wnmixed Latin edition
This clear sequence of the Latin makes it easy to explain that of the other editions of the Speculum.

\section*{Typographic Prinung.}
(Speculum type 1).-First edition of a Dutrh translation of the Specculam, with the ritke Spieghel der menschliher bethoudemise. hitherto called the firss, or the mamixed, Dutch edition, or the Duteh edition in one fount of type. First issue entirely printed in type 1.
Judging by this and the third, the editions of the Dutch version of the Speculum mux have had the same number of sheets, arranged (morkuts and text) in the same way, as the mixed and unmixed Latin editions, with the exception of the preface, which required only 2 sheets (\(=4\) leaves). Hence complete copies consist of the quires \(2^{2}\) (prelatory matter), bed', ef \(=31\) sheets or 62 leaves.
Holtrop, who gives a factimile of one of its pages (MOM. pl. 22). regarded this edition as the last of all the Speculume editions, because he thought the type to be identical with that employed for the ocher editions. only here more used up. Bernard, however. saw that it was a different lount, and there can be no doube that it is; it differs in form and cize from Speculmm type 2 as well as from type 3. though it has all the characteristics and the lamily likeness of the two. Moat of the letters might even be regarded as identical with those of eype 3. if they were not slightly smalier. That it looks old and battered seems to be owing to bad ink having been used for the printing; it was, however, badly engraved and badly cast, for not one line in the book runs straight. For this reason alone this edition is to be placed before the next two, which are printed with a better type, especially the thind. There are, however. more reasons for doing this. First of all, teaf 46 (with the figures 83: Semey, and 84: Rex amon) of Lord Pembroke's copy belongs to the 3 rd edition (in Speculum type 3). so that the present edition, to which the Pembroke copy belongs. must have existed earlier. It appears from Holtrop's lacsimile (Mon. pl. 22) that leaf 46 was duly primted in type \(I\) like the other leaves of this edition. But the leal 46. from which he took his farsimile, is an esolated one which found its way into the Meerman Museum at the Hapue, but is wanting in the copy of the Communal Library at Lille. Hence this particular leaf is, perhaps, a cancel meant to be replaced (in the Lilke copy) by another one of the 3nd edition, as in the Pembroke copy. The corresponding leaf of this sheet (33. with the figures 57: Cristus Rewit, and 58: Jeremias) is wanting in The Pembroke copy, to that we can obrain no lurther information. Another reason for placing this edition before the 3rd is lound in the Haarlem copy (No. 5), the leaves \(24+27,25+26\) of which also belong to the (3rd) edition, and were apparently meant to replace in that copy the corresponding leaves of ahis edition, which

1 The Pembroke copy has this additional peculiarity that these leaves \(9+18\) consist each of two separate slips, one having the engraving, the other the text, the latter being pasted on to the bottom part of the former slip.
may bave been lost, or the stock of which had become exhausted. Similar manipulations we have noticed above, type-printed lenves having been used to replace earlier xylographic leaves, and again below in the 3rd edition leaves of a nother edition are found.

Hence we must distinguish between at least three issues of this edition; the firsh, with the whole texi printed in Speculum type 1 ; the second, with sheet 46 of the 3rd Dutch edition. the third, with the leaves 24 to 27 of the 3rd Dutch edition. Copies of the first issue: (1) Communal Library at Lille, wanting the leaves 33 and 46 (which latterare probably now in the Meerman Museumat the Hague), and showing geveral peculiarities: \({ }^{\text {(}}\) (2) Haarlem Town Library (No. 4), wanting the leaves 2 and 3 , besides the woodcuts (figures 7,8 and 21, 22) belonging to the leaves 8 and 15 . The sheets of this copy have all been cut up into halves, mounted on other larger sheets. and so bound in one volume, together with a copy of the Liber Alexandri Magni, printed at Utrecht by Ketclaer and De Leempt, and of Pet. Scriverius' Laurccrans, both mounted in the same way. There is no rubrication. Second issue: (3) Lord Pembroke's copy, which was completed by leal 46 of the 3rd Dutch edition. Besides wanting the original leal 46 in type 2 , this copy also wants the leaves \(32,33,54\) and 55 . It shows, moreover, these peculiarities, that on the recto of leal 7 and the verso of the correspunding leai 16 (therefore, on the verso of the third sheet of quire \(b\)) are illegible sets-off of the texts of two other pages, or, perhaps, they are faulty impressions of the leaves 8 and 15 , which, in the Haarlem copies, seen to be reprints. Third issue: (4) Haarlem Town Library (No. 5). wanting the leaves \(20+31,21+30,22+29,23+28\), while its leaves \(24+27.25+26\) belong to the dhird (formerly called second) Dutch edition (in Speculum type 3). It has, moreover, this peculiarity that the fourth sheet of quire \(b\) (\(=\) the leaves \(8+15\); with the fgures 7.8 and 21,22), consists of two separate slips of paper, one containing the impression of the engravings, the other that of the text, the latter slip heing pasted on the former, while underncath the figures 7 and 8 are still visible the blind impressions of the two top lines (on the corresponding leal even 3 lines) of the old discarded letterpress. Seeing that the other copy at Haarlem has the text of these leaves, but not their engravings, it would seem that the letterpress had failed, that is, it had been impresced on the paper without its having been inked.

It is clear from all these manipulations in the copies of this edition. that its printer was inexperienced; moreover, considering its defective type, \&c.. it is necessary to give it precedence to all the other types and to place this edition immediately after the xylographic edition.
(Speculum type 2).-Second (?) edition of the Dutch version of the Speculum, at present only known from one sheet (the 26th) \(=\) the two leaves 49 (with the figures 89: \(X\) pris crucifixus and \(90: I n\) newtores artis) and 60 (with the figures 1t1: Exitus ione and 112: Lapis reprobetus), that is, the third sheet of quire \(c\), (ound in all the existing copies of the Dutch edition (in the Speculum type 3), called the mixed Duch edition, on account of its liaving these two leaves. printed in a different type, bound up with the others.

The type (on which see Holtrop, Mon. pl. 19, and Ottley, Inquiry, i. 2491 used for these two leaves is slightly smaller than the Speculum type 3, and differs from it and from Speculum type I in several respects, though there is a great family likeness between all three. We place it before type 3 because the letters ba, be, ha, he, he, ho, pe, pe, ve, \&c., are cast in pairs on one body of type, which combinations appear no longer in type 3. Moreover it looks so primitive, uneven and used up that its proper place would almost seem tn be before Specutum type 1. although the latter's uneven, wobbling condition suggests its priority. Further, its look and "ductus litterarum" bear such a singular likeness to the Valla type (mentioned below) that it seems reasonable to place it as near to that type as possible. Under ordinary circumstances these two leaves might be regarded
1 The fourth sheet of quire \(b\) (leaves 8 and (5) consists of two scparate slips of paper, one containing the engravings, the osher the text, the latter being pasted on the former. The fifth sheet of quire \(c\) (\(=\) leaves 23 and 28) is in the same condition. But these slips are not, like the former, pasted one on the other, but che pieces of leal 23 are pasted on a smail, a pparently old, slip of paper, another newer piece of paper having been pasted on to the outer margin to strengthen the old piece. The slipe of leaf 28 are pasted toget her by a slip of modern paper on the back, from which it would appear that they had been left loose when the volume was issued. Further the 7 th or centre sheet of this same quire \(c\) (leaves 25 and 26) is bound wrongly in the place of the firt sheet of quire d (leaven 33 and 46), which is wanting in this copy, so that leaf 25 follows after leaf 32, taking the place of the missing leaf 33, while leaf 26 follows alter leaf 45 , taking the place of the miseng leal 46 (now at the Hague). But on leal 25', which should be blank, is an impression of the text belonying to leal \(62^{\circ}\), but not of the figures (115,316), whlle on leaf 26, which should also be blank, it now the text belonging to leaf 47, but without its figures (85 and 86). Hence the text of these pages (\(62^{\circ}\) and 47 \(7^{\circ}\)) occurs twice in this copy. first on the leaves \(25^{\circ}\) and \(26^{b}\) and secondly in their proper place. These peculiarities neem to show that the letterpress was printed first, and that in this case a mistake was made in the first instance, but dincovered when the Ggures were printed.
as laler impressions for completing the edition in which they occur Ottley and others reparded them as replacing earlier leaves which, by some accident in the printing-office, had got lost or spoiled. But why should a printer use an old, quaint-looking type for printing and reprintling, with differences, one shect for a book which he had printed entirely with a mew and better type employed for many other works? We rather assume that the leaves are the remains of a complete (the second Dutch?) edition in Speculum type 2 and were used on this occasion as substitutes lor the two corresponding leaves of the third edition, which had become defective or momentarily unavanable.

Differences in the text of the second column of leaf 60 between Meerman's copy and the Spencer Rylands and (Enechede) Crawford copies (see Meerman, Origh typ. i. 121, note cl., and facs. on pl. vi. 3rd div.; also Holtrop Man. pi. 19, sec. col.) point to another edition printed in this same type. We therefore distinguish bet ween one edition represented by the Meerman-Westreenen copy, and another represented by the two other copies, without being able to say which of the two is the earlier.

No other trace of this type has hitherto been found, but as it looks old and used up, it seems reasenable to suggesc that it must have been employed not only for printing one or more editions of the Speculum, but for other books not yet known to us. It bears a singular likeness to the Valla type mentioned below, and some of the capitals seem almost identical.
(Speculurn type 3). (1) The (second, or third, but) first tyfeprimied Latin edition of the Speculum, or rather of 22 of ite sherts (\(=44\) leaves), printed on one side only, in a type which is newer. and therefore later than the above types 1 and 2 , and, for that reason, here called Specwlum type 3. it has hitherto been called the Speculuw type, as it was thought that all the editions of the Speculume were printed in one and the same type; type 1 being considered identical with 3. while of type 2 , regarded as a stray one, no account was taken. The 22 type-prinied sheets of this edition are only lound in combination with the 10 sheets (20 leaves) printed entirely (figures and text) irom wooden blocks, descrited above: and the edition so made up is, on account of this mixture of xylography and typography, called the waxed Latin edition. The type-printed leaves are 1 (blank) \(+6,2+5,3+4\) (quire a, preface); \(9+18\) (of quire b) ; \(21+34,24+31,25+30,26+29\) (of quire \(c\)); the whole quire \(d\) (leaves \(35+48.36+47.37+46.3^{8}+45.39+44\), \(40+43.42+42):\) and the leaves \(49+64,50+63,51+61\),
\(53+60,54+59,55+58,56+57\) of quire e. The copies of this edition, still in existence, with all the particulars related to them, have been enumerated above.
(2) The third (hitherto called the secomd) Dukh edition; also called the mixed Dulch edition, or the Dulch edidion in two types, two of its leaves (49 and 60) being printed in a different type (see a bove, Speculum type 2). This edition is arranged in the same way as the first and second, and cansists therefore of 62 leaves. Copies: t. John Rylands Library, Manchester (Spencer colloction). perfect: (2) Lord Crawlord's library, pertect; (3). Museum Meerman, the Hague, perfect; (4) Geneva Public Library.
(3) The (third, or fosrth, but) second type-printed Ladin edition, usually called the wnmixed Latin edition, it being printed throughout in one type (3). It contains 64 leaves, printed on one side and arranged in the same number of quires as the mixed Latin edirion. But under figure 100 (column 100) it has a fine (5th) which is wanting in the first (mixed) Latin edition, and the final word of line 4 is correctly printed corporali, not spiridaali as in the mixed Latin. Moreover, line io in col. to4 has the final word egipi, which is wanting in the mixed Latin, and line 6 in col. 62 has the correct final word terrestris instcad of celestis as in the mixed Latin. (See also Holtrop, BRH. 56I; Sotheby, i. 145; Bernard, i. 17; Facs. in Holtrop. Mon. ple. 17, 19; Sotheby, i. pls. xxix. and xxx.). Copies: (1) The Hague, Museum Meerman-Westreenen, wanting the first six leaves of the preface. A serparate impression of the engraving (Semey maledicil + Rex amon) of leal 48 is pasted on the lower part of the same cut, which had been printed with the text in the first instance, but defectively (Holtrop, Mon. p. 20. and pl. 17); (a) Florence, Royal National Library, formerly in the Pitti Palace, wanting the first (blank) lea ! and having also a separate impression of the engraving of leal 48 , but here the text seems to have failed and is pasted on the engraving; (3) Stuttgart, Landesbibliothek. wanting the first (blank) leal; (4) Munich, Hofbibliothek (pressmark Xyl. 4to No. 37) wanting the first (blank) leaf; (5) Vienna, Hofbibliothek (pressmark Inc. 2 D 19) wanting the first (blank) leal; (6) Uohn B. Inglis, bought by Mr Quaritch, and now in) the Lennox library; (7) Haarlem, Town Library (No. 8). wanting the preface (leaves ito 6): (8) Brussels, Royal Library, wanting, besides the first (hlank) leaf, the second and third sheet of quire 6 (leaves \(8+19\), \(9+(8)\), and the second hall of the fourth sheet (leaf 31) of quire \(c\); (9) Hanover, Royal Library, wanting is leaves, that is. the first lour, and the whole quired (leaves 34 to 48) ; (ro) Munich. University Library (pressmark Xyl, to). wanting the four leaves \(t\) (blank), 54. 55 and 59. In this copy Schreiber (Centralbt. 1895. p. 208) discovered the date \(\mathbf{8} 471\), in old arabic numerals in rubrics, under: neath the blind impresion of some line alter the last line of the Prohemium. The date is repeated by a hand of the 18 th century, in modern arabic numerals, underneath the old date, by way of
esplamation; (11) Library of the Royal Gymanminn at Freiberg in Sachsen where the 14 leaves of quire \(c\) are anid to be preserved, but which in June 1908 could not be found
In the Florence, Munich (University Library). Vienaa and (Inglis) Lenaox copies, all four belonging to chis (watimixed) Latin edition, the three scrolls on the last vignette of the book (over col. 116), representing Daniel belore Belahazzar, and the "handwriting on the wall." appear blach (see Sotheby. Principia fypogr. i. pl. roxx. convii., xuxvili.), hut blapk in all other copies of this and the otber editions From this fact some authors have concluded that the mamised Latin edition, here called the lash, was, in reality, the firsh, so the black scrolls show that the pieces of wood which caused these bleck impressions had not yet been cut away when the copies were printed off. But as its type and other circumstances connected with this unmixed Latin edition make it impossible to regard it as the first. we have to loot for another explanation of these black scrolls. First of all, scrolls, especially eerolls proceeding from the mouth or some individual, were already common in the pictures or illustrations of the manuscript-and block-printing periods. just as they are now. They were then, as they are now, intended in all cases to convey to the reader some memorable saying, quotation, anacription or motta. As black acrolls, thercfore, could have had mo object. we should have to assume that the practised engraver of the Speculsm bad prepared this last engraving carelessly and only ew his mistake after some copies had been printed off, which yet me allowed to pass into circulation. In some copies the Bible words Mane thecel phares have been written in the blank acrolls, as was to be expected; other copies vary this by adding the Latin interpretations, numeras, appessio, dioisio. But in one of the Haaterm copies the scrolls have been coloured yeliow with a brush, and it would seem that to some such operation the black scrolls are due; the colour in none of the impressions looks exactly like that of the vignette. It is, however. more than probable that. for some purpose ar another, some of these serolls were intended to be black, and that, whike they were printed, womething was placed in the block in the mollow of the scrolls to produce a black impression.
Sotheby. in his Primcipic typogr. p. 178 sqq., calls attention to as imitation of this Speculum vignette by Jacobus de Breda, who began printing at Deventer about 1483. This imization (having one scroll which proceeds from the mouth of a figure aupposed to represent Jacobus bimseli) be used for the first (?) time in Mat thaei Bossi Sermo, c. 1491, the scroll being blank.: But when he uses the engraving for the second (?) time, in P. Oridi Naso- melamor Liber Secundws, c. 1493 (copy in the Cambridge University Library). his name, "Jacob" de Breda." appeare in the ecroll. (upaide down when reading from right to left). A third time the vignette appears in his edition of Pub. On. Nas. Metamorphoseos lib. Lertims (copy in the Cambridge Library) with his name in the ordinery way. A fowrem time it is on the title-page of Semece de qualtuor pirtutibus, c. 2495 (also in the Cambridge Library), with the name "Senecs' is the acroll. Sotheby chows that it occurs a fifth time on the titlepage of a Donatus publighed by J. de Breda, again with his name in the ecroll. A sixth time (sayi Sotheby) the engraving occure on the title-page of a tract Dominus que Pars, again with his name in the scroll. And finally (says Sotheby) it is on the title-page of Secmeda Pars Doctrinalis Alexardri, with the date \(\mathbf{5 1 1}\) and the same " Jotmes Bergis "in the scroll. Seeing then the use made of this imization till 151t. Sotheby, not unreasonably, suggests that the original scroll in the Speculym was from the beginning meant to contain the name of the printer (the inventor of printing). See also Dibdin, Bibliographical Decameron, ii. 285-296. One thing leems certain, the scrolls in the Speculsm were not intended to be black in all eases, but to contain something or other, and oot always the words Mone, atc., as in that case it would have been as easy for the engraver to cut them on the block as any other words or figures, pillars, tec. The printer probably wished to teave the choice to his purchasers. Incidentally the use made by Jacobus de Breda \(\alpha\) his croll points to his having been a ware of the use for which the origina croll. which he imitated, was intended; and as the printer of the Spoculum was undoubtedly ehe first printer of Holland, it is not probable that Jacobus learnt his craft from him.

The above descriplions and explanations, based on bibliocraphical and typographical facts, deal exclusively with the editions and issues of editions of the Speculum now known to us. They by themselves make it clear (i) that their printer began as a aylographer and Wlock-prister; (2) that the six editions which he published of this one work cannot be placed later than 1471 , as this date is written in a copy of the latest of them; (3) that, for the printing of his fore type-printed editions (Dutch and Latin), he manufactured no less than three different types.

When round these editions and types we now group the various other incumabula which must be ascribed to him, as being printed wiil the same types or otbers related to them by a striking family Fikeness and otber circumstances, we obtain the following sequence for this printer's work.

\section*{A.-The Xylegraphic Perios.}
1. One or two folio editions of the Speculum in Latin, printed (pictures and text) from wooden blocks. and consisting most likely of 32 if not more chapters, but of which only ten sheets (twenty leaves), and six separate woodcuts (cut up into twelve halves, for the Veldener 4 to edition o(1483) have come down to us. Of one of these xylographic editions, at least of ten sheets of it, three issues are known to have been made in combination with type-printed leaves (see below).
2. As various circumstances compel us to regard the printer of the Speculvm as having been a xylographer before he invented printing with movable types, it is necessary to mention here a small block of wood which is known to have been preserved for nearly 300 years at Haaricm as a remnant of Coster's printing-office. On it is engraved part of an Horarium; its first lines beginning with Serpu [m] tuu min pace Qusa viderunt oc uli mei Salulare. \&c. of the hymn of Simeon. About 1628 it was in the possession of Adriaen Rooman printer to the Haarlem Corporation, who had obtained it from one of Corter's deccendants, a man of great age. Rooman gave it to Dr Johan Vlasveld. of Haarlem; at whose death, in IG84, it came into the hands of his children; in 1734 it was bought by Jan Mass of Haarlem, who left it at his death to his con-in-law the Rev. Jacobus Mandt, a pastor at Corinchem; at whose death it was bousht by Jacobus Koning, the well known author on the invention of printing and after his death it was acquired by the Haarlem Town Library where it now is (sce A. de Vries, de Vitoinding der Bockdrukkunst, 1862, p. 35).

\section*{B.-Printing with mooable Metal Types.}

Type I. also called the A becedarium type, with which were printed (1) The Abrcedarism, 4 leaves, 16 mo , on vellum. now preserved at Haarlem (Town Library), where M. Joh. Enschede discovered it in 1751, in a MS. Breviarimm of the \(15^{\text {th }}\) century: (2) An edition of Donatus. 31 lines, 4 to, two vellum leaves, prined on one side, discovered in 1844 , in the ancient binding of a Dutch Book of Hours printed at Dellt in 1484 ; it is now preserved in the Hague Royal Library.

Type II. (Speculum type 1: see p. 525; hitherto erroneously regarded as identical with Speculum type 3): (1) First Dutch edition of the Speculum, of 31 paper sheets (62 leaves) printed on one side. folio, hitherto known as the first or unmixed Dutch edition. Two issues: (a), printed entirely in this type, represented by copies at Lille and Harlem (No. 4); (b), having sopre of its leaves replaced by leaves of the third Dutch edition, represented by the Pembroke and Haarlern (No. 5) copies (2) An edition of Domatus, 28 lines. 4to: two vellum lcaves in the Haaricm Town Library. found pasted in the original binding of an account book of 1474 of the cathedral of that town, in which an entry testifies that this account-book was bound by Cornelis the bookbinder, whom Junius asserts to have been the servant of Lourens Janszoon Coster (Meerman, Oriz. yp. Tab. VI. \({ }^{\circ}\). (3) Another Donatus of 28 lincs, two leaves of which are in the Haarlem Town Library, and were discovered in the original bindings of account-books of the Haarlem Cathedral Church of 1476, aloo bound by "Cornelis the bookbinder." Fragments of this same edition are also in the Paris National Library, ind in various other public and private collections. (4) Donahus, 28 lincs 4to, one vellum leaf, in the Hague Royal Library (BRH. 2 ; Ca. 612 ; Hoitrop, Mon. pl. 13), discovered in the binding of a book belonging formerly to the Sion Convent at Cologne containing several treatises printed by Uirich Zell, one being dated 1467. (5) Donatus, 30 lines, 4to. Two unrubricated vellum leaves in the Cambridge University Library (Inc. 4. E. 1.1), discovered in the binding of a copy of 1. Mile's Reportorium. Louvain, \(\mathbf{1 4 7 5}\), now also in the same library The first leal contains the chapters xiv. 11 to xvi. 4, the second chapter xxvi. 6 to xxix. 10. The text is abridged, having amabamus, batis, bant. \&cc., where other editions have amabamus, amabatis, amabant, \&c. (6) Donalus, 30 lines, abridged edition, 4to, one uarubricated vellum leal. cut into halves. Wrongly described by Holtrop (BRH5) and Campbell (614) as part of No. 7 (below). (7) Donalus, 30 lines, 4 to; two rubricated vellum leaves, in the Paris National Library (Van Praet, Velins, No. 8; now 1040). (8) Doncfus, 30 uneven lines, , to. Two rubricated velium leaves, in the Hague Royal Library (BRH 5; Ca. 614). (9) Donatus, 30 lines 4to. Two vellum leaves in the Haarlem Town Library, discovered in 1750 by M. Joh. Fnschede at Haarlem in the binding of a MS (Handoesten... . wan Kennemerland. 1330 to 1477). (10) A liturgical book, containing rules for saying Mass, in 16 mo (12 lines to a page (Hoitrop. Mon. pl. 14) 2 vellum leaves, pp. 3-6), in the Brussels Royal Lihrary. (1t) Alex Galli Doctrinale, on vellum, 32 lines,

1 The present writer is certain that Speculum type 1 differs from Speculum type 3 in size, and somewhat in form too. But he is still uncertain whether the Domaluses (2 to 7) here enumerated are in the same type as the first Dutch Speculum, though he travelled twice to the places where they are preserved to examine them. It would seem that the Donaluses are in a different type, more compact, regular and better cast than that used for this edition of the Specwlum. But if there is any difference between the typer it is so minute that it is well aigh impossible to detect it.

4to; one leaf and fragment of eneond, in the Ghent University Library (Res 1409). (12) Alex. Galli Doctrinale, on vellum. 32 lises, 4to. Two leaves (forming one sheet) in the Coiogne Town Library. \({ }^{1}\)
Type 111. (Specmum type 2): (1) Second Dukh edition of the Speculum, which probably consisted of 31 paper shsets (62 leaves) printed on one side in folio, like the first and third. Only known from one sheet (leaves 49 and 60) which forms part of all the copies of the mixed of thard Dutch edition preserved to us. (2) On account ol differences in the setting up of the second column of leaf 60 , enother edition in this type may be supposed to have existed. There is no further trace of this type: which greatly reacmhles type IV.

Type iV., also called the Volla type: (1) Laur. Vallae Focetice morales ef Franc. Petrarche de salibus virorwm illustrimen ac facecins tractatus, 24 paper leaves. small 4to. No other books printed in this type \({ }^{8}\) are known to exist But four of its capitals (B, H, L, and M) have been used in printing the edition of the Singularia of Ludovicus (Pontanus) de Roma, which otherwise is entirely printed in type VI.

Type V. (Speculum type 3, hitherto wrongly called The Speculwm type): (I) The [second or third, but first type-printed Latin edition of the Speculum, for which only 22 paper sheets (44 leaves) seem to have been printed to replace the same sheets of the earlier xylographice edition \(A\), and to make up, in combination with the ten remaining xylographic leaves, a folio Latin edition of 64 anopisthographic leaves, called, on account of this mixture of xylography and typography, the mixed Latin edition. Some copica (the Berlin and Pembroke) of this mixed edition were still further mixed with sheets of the second type-printed Latin edition. (2) Third Dukh edition of the Speculum, hitherto known as the mired Dutch edition, as having two leaves. (49 and 60) printed in a different type (Specmlum type 2); 31 paper sheets (62 leaves) printed on one side, folio. (3) A Dutch version of the Senen Penitcntial Psalms, one wellum shect (\(=2\) leaves), 4 pages 16 mo, II lines to the page, printed on one side; copies in the Royal Library of Brusscls (where it was discovered) and the Hague. (4) An edition of Domatus, of 27 lines, fragments of which are in the British Museum and the Bodleian Library. (5.6.7) Three editions of Donatus, of 30 lines, all on vellum (Holtrop. Món. pl i4b; Meerman. Origg. iv.). (8) A French translation of Donatus, on vellum, 29 or 30 lines to a page; four leaves. now in the Utrecht University Library, discovered by Dr Samuel Muller, the Archivist of Utrecht, in a Utrecht MS, Cartulary of the first half of the 16th century. (9, 10) Two diflerent editions of Alexandri Galli Doctrinale on vellum, 32 lines to a page (Holtrop, Mon. pl. 15). (11) Catenis Disliche, imperfect copy of four vellum leaves, 8vo, 21 lines to a page (Holtrop, Mon. pl. 16) in the John Rylands Library (Spencer Collection). (12) The third or fourth, hut] second type-printed Latin edition of 32 sheets (64 leaves)., printed entirely in this Speculum type (3). and therefore known as the ummixed Latin edition (Holtrop, Mon., pl. 17). For the use of sheets of this edition to complete copies of the earlicr edition, sce above V.I. The Munich University Library copy has the rubricator's date 1471.

Type Vl.t also called the Pontanus type: (i) Ludov. (Pontani) de Roma Singutaria juris (in type VI.) and Pit Secundi Tractatus de wulieribus pravis et ejusdem Epitaphia (in type VII.), 60 paper leaves, folio, of which the Pontanus occupies the leaves I (blank) to 45 recto, and the Pius, the leaves 45 verso to the end. Various differences are found in the copics of the Pontanus known to us, and we may assume two if not three issucs. This type Vi., therefore, is linked on to type VII. by the two being used in one and the same book, while it is inscparably connected with type IV. by the capitals B,H,L and M of this latter type being employed in printing the Singulario. Copies in the British Muscum, Cambridge University Library, John Rylands Library (Spencer Collection), Hague Royal Library. (2, 3, 4, 5) Four different editions of Donalus, each of 24 lines, fragments of which are preserved in the Hague Royal Library, Haarlem Town Library, Paris National Library, Cologne Town Library, \&c.

Type VII., also called the Saliceto, or the Pii Secumdi Tractatus type. (1) Pii Secundi Tractafus of Epitaphia, mentioned above under type V1. as being printed with the Porlanus in one volume. (2) Guil. de Saliceto De saluite corporis. Frapments of two dellum leaves of this edition, discovered th the binding of a copy of the Formulas Noviciormm, printed at Hanrlem by Joh. Andreae, in 1486, are now in the British Museum. The fragments are printed on one side only, and their texts correspond to the leaves 3 and 5 of

\footnotetext{
It may be that some of the works entumerated under type v. are really printed in the first Specubnt type, hut it is amost
impossible to come to some certainty as to the diference between ty pes 1 and 3, unless the books are together. Rosenthal, of Munich two leaves of purchased from Herr Jaques Rosenthal, of Munich, two leaves of a Donalus, which were sad (i
Herr Rosenthal's catalogue) to be printed in the Vollo type (IV. On examination this proves not to be the case. As first sight seened to him to be type IU (Speculum type 2). But this is not the case either. It has, however, the peculiaritics of both theat
types combined, so that he dope wht hesitate to call these fragment a unicum, and its type prove
ne III.
}
another edition (see below) in the ame type, to which treatises of Turrecremaca, Pius Secundus, \&c, have been added. It is not clear why these fragments were printed on one side only; the sersos have not been scraped as was aswerted by Holtrop and Campbell, nor are they printer's waste, as they are rubricated. It is not known whether the trestises added to the other edition formed also part of this one. (3) An edition of Donalms minor, or abbrewiafus, 26 lines. (4.5.6.7.8) Five different editions of Domatus of 27 lines. (9) An edition of the Doctrinale, of 26 lines. (to) A Dachromole of 28 lines. (1 t) Doctrimale of 29 lines. (12) Doctrimale of 32 lines. (13) Catonis disficha, 23 lines. (14) !incerti auctoris, vulgo Pindari Thebani] Jliodos Howericae Epilome abbrevialm (metrice), cum praclatione Pi II. in laudem Homeri, in fotio, to leaves (first blank). 35 lines; first edition having, on fol. \(9 a\), as last line 35: " intecio homeri in proceděti poemate est describere," as in the copy in the Cambridge University Library (Inc. 3 E. I. I). (15) Guil. de Saliceto De salule corporis; De Turrecremata De salutp corporis; Pi Il. Traclatus de amere; (Pindari) Iliados Homericas eprifome abbreviatum, cum praciatione Pii 11.; added are three additional pages, the first contains "Hectoris. . Epitaphium ": the second "Homonee . .. Epitaph."; the third is blant. In folio. 24 leaves (first blank), divided into two quires of six shects each: 34. 35 and 36 lines (second edition of the Saliceto, and of the Yiada; but first of the Tutrecremata, and the Trach de amore of Pius 11.). This edition is represented by the copy in the Hague Museum Mcerman, in which a MS. note records that it was bought between t471 and 1474 (Campbell Anr. t493), which still has in the Y/uada: "in precedetti poemate est describere." (16) Second edition of the Yluda, having as tast line (35) on folio ga more correct reading: "intecio homeri in hoc opere est describere troiani." This edition is represented by the British Museum copy (pressm. 8814) and the three additional peges (3rd blanic already found in No. 15) Hectorie . . Epitaphium " and "Homonee . . . Epitaph." (17) Another edition of No. 15 (that is thind edition of the Salicefo. escond of the Twrrecremala and Tract, de amore of Pius Il., third of the Yliade and third of the additional pages), but with the line in the Yliada (on 22a); " intecio . . troiana" This edition is represented hy the British Museum copy (C. I4. b 10). (18) Another issue of the Salicelo; Turrecremala; Pit Trect de ampre et epilophia, 26 leaves, with various additions or omissions and differences in the eetting up not in the former editions Copy in the Darmstadt. Hof-Bibliothek (S 4705). which has the rubricator's date 147 ? written in two places. (ig) Another isoue of the Ylioda with the Pii Tract. de amort ef epitaphia, again with additions, omissions and differences in the eeting up, not in the Darmatadt copy or in the earlier editions. Represented by 17 loose leaves in the Museum Meerman at the Hague (see Holtrop, Mon. typ., pp. 32, 33).

An eighth type, hitherto regarded as a Costerian, in type VI. in Hessels's List of Costeriana (Haarlem not Ments, P. 31 seq.), where two editions of Donasus in this type are mentioned, one of 26 lines, four leaves of which are in the Catholic Cymnasium at Cologne (Campbell, 629), another of 27 lines, of which leaf It is in the Museum Mcerman at the Hague. some fragments in the Hatiem Town Library and two leaves (formerly in the Weigel Collection) in the British Museum (iA 47028). Holtrop (Mon. lyp. pl. 21) and Mecrman (Opp. pl. 14.) give facsimile of the type. Campioell. in his Ammales (No. 629,631), referring to pl. 31 of Holtrop's Men. for a facsimile of both these editions, says that they are printed with the types of the Pii 11. Tractatus (the Saliceso type), but that, by the sixe and form of tbe P, this edition is distinguished from the other books in this type. Hessels (l.a p. 24) repeated this; but Cempbell's assertion proves to be an error, as the two types differ, in spite of a great likences betwsen them (the C, F, I and \(V\) being almost identical). That of the two Domoluses is an early Gothic, and has some of the characteristics of the Custerian types, as the \(t\) with perpendicular stroke to its croes-bar, the marks of contraction connected with the letters above which they appear, but only a few pairs of lettern cast on one body, and no r with a curl; so that it seems somenthat later than those mentioned above.
A winh type (facsimile in Holtrop's Mow. pl. 32a), hitherto regarded as a Costerian, is No. VII. in Hesels's List (l.c.). It resembles much that of the Saliceto, and has served for a Donatur of 27 lines, fragments of which representing two copies, were found in the hinding of a Durandi Rationale, printed at Strassburg. \({ }_{4} 493\) belonging to the Convent of the Holy Cross, at Uden in North Bra bant. This type again bears a great likenest to the Salicato and also to the above type 8, but it differs from both.

Setting axide for the momeal the types viii. and ix. as doubtful Costerians, we must also point out that there is no direct evidence that type i, is connected with the other seven. or that it is the first of them. But it is a primitive one; it has all the characteristics of the Speculum and other Costerian types, and could hardly be placed later than the earliest of them; the Donalus printed with it is printed on one side of the leaf only; it shows, moreover, in other respects that it must be dated before 1470 . The Abecedarinm printed with the anme type, and discovered at Haarlem in a 15 th century manuecipt belonging to a Hariem family, looks as the work of ma inexperienced printer. The types II.; III. and V. (the Speculwen types 1, 2 and 3) are inseparably connected with each other; they
atust have been in one and the aame office; their morkmanship shows that their founder step by step simplified and improved his work, and in what onder they are to be placed; the most perfect of them (V.) was in existence not later than 1471 (see above), and the three, rogether with the xylographic leaves in the mixed Latin Speculwm (from which they cannot be eeparated) take us back to a period which could not possibly be extended beyond 1470, but which may reasomably be aid to have begun as early as, say 1440.

Therefore these three types, and the books printed with them in combination with the xylographic leaves, and various circumstances pointing to Haariem as their birthplace, would alone suffice to support and vindicate the Haariem chims to the honour of the invention of printing. It could, however, serve no useful purpose to separate the types I., IV., VI. and VII. Irom those of the Speculsum, as they have all a great family likeness and three distinctive peculiarities common among them: (i) a perpendicular stroke to the cross-bar of the \(\ell\); (2) a small curl attached to the top of the \(r\) found in no other Netherlandish type; it goes backward in types I and 3; and in type 2 another curi is added to the first, bending to the right again; (3) a minute perpendicular link connecting the marks of contraction with the tetters above which they appenr (a peculiarity common also in the Dutch MSS. of the time). A copy of the latest issue of the Saliceto. preserved at Darmstadt, printed in type VII., has the rubricator's date 1472 in two places; another book in the same type (in the Meerman Museum) was bought betweea 1471-1474, and as this type is used for a tract printed together with the Pontanus treatise printed in type VI., and the Pontanus type is supplemented with capitals of type 1V. (the Valla type), it follows that these three types (IV., VI. and VII.) must have been in use in one and the same office, and that the latest of them (V1I.) cannot be placed later than 1472. Again, it must be said that there is no direct evidence that these three types were used by the printer of the Speculum, but as Iragments of Donatuses in the Saliceto type have been found in account-books of the Great Church at Haarlem, all presumably bound by the same Cornelis the bookbinder (the reputed servant of the Haarlem inventor), who also used [ragment of Donotures in the Specultam types, Haarlem may be regarded as their common birthplace.2 Hence these seven types may be grouped thus: (a) the Abecedarium type; (b) the three Specwlum types; (c) the Vallo. Pontanus and Saliceto or Pius types; the (a) group cannot be dated later than 1470; (b) (three types) not later than 1471; (c) (ihree types) not later than 1472 and perhaps not before 1458.

Here then we have a printer who, before 1472, had manufactured and extensively used at least seven (if not eight or nine) different and primitive looking types; three of the seven must have existed long before 1471, as with them he had printed before that ycar no less than five folio editions of one book (the Speculum), besides several editions of Donatus and the Dectrinale of Alex. Gallus and other smaller books. This work may be supposed to have extended over a number of years, and before he printed any of these type-printed books he had already engraved, printed and issued at least one large folio blockbook (the Speculmm).

And yet the catalogues of the present day, which profess to arrange the incunabula chronologically, under their respective countries, towns, printers, types and dates-according to some " historical" or "natural history method" suggested in 1870 by an eminent bibliographer, and intended to show the "development of printing"-assign this primitive Dutch printer, and his primitive types and books, to what is presumed to be their "chronological" place, afler the productions of Germany, Italy, Switzerland and France; that is, they are placed in a period when printing presses had been established in nearly every large town of Europe, and the art of printing was already so fully developed and vulgarized, that the books of that period show, on comparison with the Costeriana, that the latter must have preceded them by at least two or three decades.

Apart from this anachronism, the same calalogues assign this printer and his books no longer to Haarlem in North Holland, to which they had always been attributed in conformity with the tradition that printing had been invented in that town and the Speculum and other books printed there; but they locate them at Utrecht, the capital of the province of the same name, although the types of the Costcriana show that they are imitations of the handwritings indigenous to the province of Holland, not to those of Utrecht.
The Cambridge University Library possesses two sheets of two different editions of Donalns, one (unrubricated) printed in Speculwo type 1 , the other (rubricated) in the Salicelo type, both found pasted by the biader on the wrooden boards of a copy of J. Mile's Reportorium, printed at Louvain in 1475, which is also in the same Iibrary.

This bibliographical calamity dates from the year 1870, when Dr Anton Van der Linde published his book The Hearlem Cosicr Legend. After it had become known to him that for years past the "Lourens Janszoon Coster" mentioned by Junius as the inventor of printing had been confused hy some authors with another inhabitant of Haarlem, whose name was "Lourens Janszoon," but who had never borne the surname "Coster," he, after an inadequate investigation in the Haarlem archives and elsewhere, professed to prove from documents (i) that the Haarlem tradition was nothing but a "legend," the kerncl of which was "Jacob Bellaert," who published in 1483 the first Haarlem book with a date; (2) Lourens Janszoon Coster was a "myth"; (3) Cornelis the bookbinder Junius's chief witness for the Haarlem tradition, had been Bellaert's servant, and, telling his stoty in his second childhood, magnified the first Haarlem printer of 1483 into the first printer of the worldi (4) the "Spiegel" and the Donatuses could not have been printed before 1470-1474, \&c. As Van der Linde's book was apparently based on documents, it was generally thought to have put an end to the Haarlem claims. It seems to have struck nobody at the time that this Haarlem tradition or legend, if it had originated in or after 1483 , could not have been so strangely distorted and altered that, within a few decades, "Jacob Bellaert" its hero, according to Van der Linde, was forgotten, while his "servant," in his second childhood, substituted for him another person of an entirely different name and of a much earlier period; whose descendants all appear in Haarlem's history, and one of whom records him in a genealogy; who is himself mentioned again and again in the Haariem registers of the time, hut who is finally, in 1870 , declared to be a "myth." Nor did it strike anybody at the time that if Cornelis the bookbinder had been Bellaert's servant or binder, and his story of the inventor related to him, and to no other printer, this bookbinder must have used fragments of Bellaert's productions for strengthening his hindings, instead of which be employed fragments of the Costeriana, which are admittedly not printed by Bellaert.

These are two of the many points which might have arrested Van der Linde in his sweeping denunciation of the Haarlem tradition if he had given more attention to the subject. As no reply invalidating the main part of his criticism emanated from Haarlem, Henty Bradshaw, the librarian at Cambridge, who had been studying the Dutch incunabula for some years, accepted Van der Linde's conelusions. and published, in 1871, his List of the founts of type used by printers in Holland in the 15th century, in which he explained that he was compelled to place the printer of the Speculum at Utrecht because " it is there that the cuts of the old folio editions first appear cut up into pieces in a book (Epistelen ende Evangetien) printed by Veldener at that place in 148 I . Without further information he would have found it necessaty to place the printer of the Speculum last among the Utrecht presses and to affix as his date (beiore :481). But as the types of the Fiiada (VIL.) and of the Ludovicus de Roma (VI.) bear a close resemblance to those of the Speculum, they could not be separated from the latter, and a note in the Hague copy of the Tractatus de salute corporis in the same type VII. makes it clear that it was bought between 1471 and 1474 , this was the only date which he could accept, and it compelied him to place the printer of the Speculum at the head of the Dutch printers, just as the Speculum compelfed him to place him at Utrecht."

It is clear that Bradshaw's system of classifying the incunabula, so inflexible as regards dates and places of printing, that he would admit any stray statement on these points if it be found in tbe books themselves, rather than go outside the books for further information, is yet elastic enough to ascribe the Yliada and the Ponlanus to the printer of the Speculum, merely on accnunt of a close resemblance between the types of these books. As he knew that the early printers shaped their types according to the handwritings indigenous to the places where they setiled, it must have escaped him that ic locating the printer of the Specwlum at Litrecht, he placed him among printers whose types bore no resemblance to those of the Costeriana. This system. therefore, so rigorous on the one hand and so Mexible on the other, can only be appilied with salety to books whose country; printer and date are known. not to surch as the Cozleriana, which have neither date nor prinier's name, nor place of printing, and might, therefore, be ascribed to France, Italy, Germany or any other European country, if it were not that some of them were printed in the Dutch vernacular.

As to the Speculum cuts being in Veldener's handa in 1481 (and 1483), various circumstances show (see Holtrop, Mon. p. 110 sq9.) that he could not have pomeased them, not acquired them from otber
printers at Utrecht, until he used them cut up into halves and already considerably worn out. It is also known that ten years at least before he employed them, the cuts had been used intact as illustrations in a book which could not be ascribed to him. In such casea bibliography is bound to inquire where they could have been so used before ascribing them to the place where they are used in 1481. The statements of the Cologne Chronicle (\(\mathbf{1} 499\)) and of Junius (1568) when examined together with the types and workmanship of the Costeriana give satisfactory answers on this point. The fact that fragments of a French traaslation of Donatus, printed in Speculum type 3, and of a treatise of Ludov. Pontanus on Canonical Law in the Pontanus type, were discovered at Utrecht, cannot be set against the finding of many more fragments of Donatuses, \&e. at Haarlem.

Bradshaw lived to see some result of his system in Campbelt's Annales, published in 1874, where all the Costeriana are ascribed to a Prototypographie neerlandaise a Utrecht, and he regretted it. Unhappily, his untimely death prevented him from testing his system more closely; those who adopted it were unable, or considered it unnecessary, to repeat his explanations and reservations, so that the Costeriana are now, in almost every catalogue, placed at Utrecht, \({ }^{1}\) without any sign of doubt or hesitation, though all the particulars connected with them prove that they could not have originated there.

To ascertain the probable date of the Haarlem invention, we have at our disposal: (A) some historic statements and Date of documents, namely (a) two entries of 1446 and 1451 marfem in the Diary of Jean Le Robert (Abbat of CamInvention. bray); (b) the Helmasperger Instrument of 1455; (c) Ulrich Zell's account of the invention of printing in the Cologre Chronicle of 1490; (d) the Coster pedigree; and (e) Junius's narrative of the Haarlem tradition; (B) a collection of nearly, if not more than, fifty incunabula, known as Costeriana, the printing of which must have involved the manufacture of sesen types, four of which (the Abecadarium, and three Speculum types) cannot be placed later than 1471, the other three (the Vallo, Ponfanus and Saliceto types) not later than 1472. With these types were printed five folio editions of the Speculum, twenty-three of Donalus, eight of the Doctrinale, besides several other important books.
A. Historic Slatements.-Junius, saying that Coster invented printing in \(\mathbf{t 4 4 0}\), and that Johan. who stole his types, printed with them at Mainz in I442, probably knew, or had heard, nothing more definite about a date than that Coster's types were used at Mainz within a year after the theft. The year 1440 as that of the invention was first mentioned, it seems, in I483, in testimony xvii.; a second time by the Cologne Chronicle in 1499 , (but only as the year in which the art began to be "investigated," whatever that may mean), and again in 1505 and later (testimonics xxix., oxoxix.). Junius, therefore, may have derived 440 not from the Haarlem tradition, nor from the Coster pedigree (which gives I446, and may imply a still earlier date), but from other sources, and hence fixed the commencement of printing at Mainz in 1442 (first mentioned, it seems, in 1499 by Polyd. Vergil, testimony xxiii.). Be this as it may, the Helmasperger instrument of 1455 . if it is genuine, shows that Cuten mainedme, berg could not have begun printing before the end of 1468. 1450, if so early, as in that year, about the middle of August, he borrowed money for " making his tools," and was then, moreover, destitute of everything necessary for printing, as parchment, paper, even ink. This year 1450 agrees with the date (145I) written in the Paris Donatus, which, on insufficient grounds is considered to be a forgery. It also agrces with Ulr. Zell's statement in the Cologne Chronicle that printing and all that belonged to it were "investigated " from 1440 to 1450 , and that in the latter year they began to priat. And it likewise agrees with the testimonies xoviii., xoxx., xoci., xoxiii., xoxviii. and \(x\). quoted above, which all come from persons who may be supposed to have known something about the date of early Mainz printing, namely. Johan Schoeffer, the son of Peter Schoeffer, Joh. Trithemius (who was personally acquainted with both Peter and Johan Schoeffer). Joh. Thurmayer Aventinus (who lived from I.474 to 1534), Mariangelo Accorso (who wrote c. \({ }^{1533}\)), while No. \(\mathbf{y}\). is that of Jot. Bergellanus. the first author, so far as we know. Who mentioned the lawsuit of \({ }^{1455}\). in his Encomism. printed and published in the very St Victor Stift of which Gutenberg had been for some years a haybrother till his death, 50 that this testimony points to Gutenberg's own version of the "beginning" of Mainz printing.

Therefore the Mains date 1450 , derived from documents and testimonies which cannot be lightly sct aside, is much later than the Latest date (1446) of the Haarlem claims, and those who accept the Haarlem tradition, as we do, may reasonably conclude that Fust was induced to advance money to Gutenberg abour August 1450, not by eceing anything printed by the latter, but by having come

\footnotetext{
\({ }^{1}\) It is pleasant to be able to recoon mane exceptions. Voulliéne and Goncher in their Catologues \(F\)
- Hariem.
}
of Coster's typen and toola, and a type-printed Donatms, thown and explained to him.

We are, however. now asked to disregard this date r450 and all documents that indicate, and have hitherto always been relied on as fixing, the beginning of printing at Mainz in that year, and to believe that the Astronomical Kalexdar, eaid to be for 1448, was printed at Mainz in 1447. If this year could be accepted for the printing of this Kalendar; its value would of course be greater.than any writen or printed statement. It is, however, far from certain, and its assumed date, though not interfering with the Haarlem dates, as it falls alter 1446 of the Coster pedigree, is incompatible with the Helmasperger instrument, which shows that co bate as August 1450 Gutenberg had not printed anything, and had not even made his apparat us for printing. There remains the Poem on the "Weltgericht," also ascribed to Gutenberg and aid to be printed in the same type as the Domalus of 145I, with the exception of certain letters the form of which represents, it is thought, a still earlier stage. Hence the Poem is dated back, apparently for no tangible reason, to 1443-1444, and the Dowatus placed between it and the Kalendar, the type of which is said to be a "development" of the Domatms type. This date, which is even more speculative than that assigned to the Kakendar, militates entirely against the Helmasperger instrument ; it can hardly be said to gnagainst the Coster pedigree, while it does not interfere with, but rather favours, Junius dates.

Among the histaric statements also come the two entries of the Abbot of Cambray, on folio \(16 \mathrm{I}^{\circ}\) of his Diary, preserved in the Archives at Lille, in which he records having bought in January (\(1445 ; 0.8\) - -) 1446 and in 14S1. at Bruges and Valenciennes, printed ' Doctrimalia (on vellum \({ }^{3}\) and on paper). Even if princing could be said to have begun at Mainz in 1450 or earlier, no Doctrimalia printed there have ever come to light, unless we accept the Haarlem tradition, that those printed with Coster's types were printed there. Hence these entries can only be applied to the Doctrimalia printed in Holland in the same types as the Speculw (on which Junius based the tradition of the Haarlem invention) and the Doncluses which fit into Zell's historic statement (in the Cologne Chronich of 1499), that the Donafuses printed in Holland were the models for the Mainz printing. Thercfore there is no certainty as to any Mainx printing having been done before 1450, and, if the Helmasperger instrument has any value, it is certain that it could not have begun there before that year; Ulrich Zell unreservedly places the printing done in Holland before that of Mainc; Jean Le Robert's statements make it certain that printing was exercised before January I446: the Coster pedigree fixes no later date than 1446 for the invention at Haarlem: Juniut' years (\(1440-1442\)) are, perhaps, his own gueas, Anyhow, if historic statements and documents have any value, the invention must have been accomplished withun the six yeare from \(144^{\circ}\) to 1446 (also indicated by Zell).
B. The Costeriana.-It has been pointed out above that we have nearly 50 Costeriana, for which sewen type have been employed. four of which cannot be placed later than 147t. the remaining three not later than 1472; and that with these types five folio editions of the Specmium were printed, 23 of Donatus, 8 of the Doctrinale. besides several other important books. With such an abundance of material, for the greatest part of which we have the year 147:-1472 as an undoubted terminus ad quem, we need not inquire too anxioualy whether Junius placed the invention in 1440 , or whether the Haariem Coster pedigree fixes it at 1446 or earlier. For, hy placing intervals either between the seven types or between the several editions of the Speculww, Donotus, Doctrimale, \&c., we can easily reach any terminss a quo which may be found to agree with the historic statemente explained above. Such intervals, however matural and neceseary they may be to arrange the Conteriana in pome chronological order, must always be more or less arbitrary, as it is impossible to say whether the editions followed each other within two monthe or within two or more years, or whether the types became used up within six months or within six, seven or more years. Therefore, only such intervals need be suggested as may show that the Costeriana. or some of them, may reasonably be placed before Mainz dates which are certain (that is \(c\). 1450, derived from the Helmasperger Instrument, and 1454, the date of the Indulgences), or speculative (as 1443-1444 for the "Weltgericht," and 1447 for the Astromomical Kalendar). The first products of the art of printing were intended to be faithful imitations of the manuscripts, and no material deviations from the general plan become observable till about 1473-1477. Nowhere are the features of the MSS. of the \(\mathbf{t} 5\) th century 60 faithfully imitsted as in the productions of the three carliest printingoffices of Coster, Gutenberg (?) and Schoeffer. They are all without
\({ }^{2}\) The abbot speaks of Doctrinalia " gette " or " jettez en molle", and the phrase is, as Bernard (Origine, I. 97 seq, shows by eight examples from 1474 (the year when printing is first officially spoken of in France) to 1593 . and down to the present day, applied to typographically priated books only: see also Fred. Codefroy. Dhetionairs, in voce mole (which he interprets as caracicre d'imprimeric. where he gives six quotations showing the same meaning.
\({ }^{3}\) The abbot does not mention the word pellum, but states that the Doctrinale which he had bought at Valenciennes was full of nistakes wherefore he had bought one on paper.
signatures, without printed initial directors,' without printed catchmords; in short, without any of thoec characteristics which we see gradually, one after the other, come into almost general use when printing becomes more developed, that is from 1473 (if not earlier) to 1480 . Hence a comparison of the Speculum, Donalus and Doctrinale editions, printed in the Speculum and other typen, with the Gutenbers and Schoeficr Domatuses and their other books enumerated above, shows that the types, mode of printing and workmanship of all these books stand on nearly the same primitive stage. Yet there is a considemble difference between the productions of the three offices, thoee of the Haarlem office being more primitive than any of the other two. Fist of all the types of the Costeriana (which bave nothing in common with any of those usod in the Netheriands after 1471), show by their 1 with the perpendicular stroke attached to its crose-bar, the \(r\) with a curl, and the sign of contraction connected by a fine link to the tops of the letters over which they stand, that they were manufactured during the MS. and block-printing periods of Holland. Secondly, none of the Costeriana have any hyphens, which, in the Guteaberg and Schoeffer incunabula appear already Irom the beginning. Thirdly, the five editions of the Speculum are all printed a nopisthographically (that is, on one side), the woodeuts at the top of the pages as well as the explanatory text undernesth, which would hardly be the case it they had been printed after 1471, when the printing of woodeute, together with text in movable types, on both sides of the leal, was no longer a novelty. None of them have any colophon (except such a word as explicit), which would, for a collection of nearly 50 books, be incomparible with a period after 1471, but not with the earlier period of the blockbooks and MSS. Moreover, of the 50 no less than \(3^{8}\) are printed on vellum, which is incompatible with a period after \(147^{t}\) and even earlier. when printing on paper had become universal, but not with the earlier period of the MSS. Therefore, those who wish to date the Donatxses, ascribed to Gutenberg, before 1450, or before 1447. must not forget that the more primitive editions of the Speculum, Dowotus and Doctrimake printed in types I. and II. \&e can also be dated before 1450 or 1447 : and when once so mauch is admitted, there is no reason to reject Zell's staterment that the Donatuses printed in Holland served as models to Mainz printing.

In addition to the above considerations, there is the remarkable fact that the chief productions of the three earliest printing-offices are editions of Donaks, all printed on vellum. This fact has become more conspicuous by the discovery in receat years, in various parts of Holland and Germany, of a mutitude of fragments of different editioas of this schoolbook. Of the Haariem office we know 23 editions: 13 are ascribed to Gutenberg; 9 we have in the Schoeffer or \(B^{42}\) type. The production of to many editions, all about the same time in the infancy of printing and in two different places, to widely apart from each other is Haarkem and Mainz, cannot have been an accident or coincidence, but suggests some connexion, some links : between the three or more offices that produced them. One link we find in Ulich Zell's statement that the Domaluses printed in Holland were the models for Mainz printing, another in the Haarlern tradition, as narmated by Junius, that one of Coster's workmen, taking his master's types and tooks, went with them to Mainz and settled there as 4 printer. Theee two statements go lar to explain not only bow the art of printing was transferral from Haarlem to Mainz, but how, at the latter place, it was thought expedient to continue the printing of Dowatwses begun at Haarlem. Bearing this obvious connexion between the three earliest offices in mind, and aleo that the books of the printer of the Sproculuw thow that he could not have learnt his art at Mainz or any other place, the oniy question really is: Cas the Costeriana, or some of them, by placing an interval bet ween them, be dated to lar back that they may be placed before the certain or speculative dates now attributed to books or broad. cides printed at, or ascribed to Mainz. In our former edition, when only 20 Costerian editions of Donalus were known. and no earlier Gimal date than 1474, we suggested an interval of 18 months between each of them. giving about 30 years, from 1474 back to 1445 . for the iswe of all the Dosaluses. We now know 23 editions, and 1472 as final date for the existence of all the types, though. of course. wome of the editions may have appeared after this year. Therefore, our interval need not be longer than about 15 months, which makes a ceretch of nearly 29 years from 1472 back to 1443 . As to an interval between the types, an eminent type-founder, Dr Ch. Enschede of Haarlem, when dealing with Coster's typee (in his treatise Laurens Janss. Coster de múvinder man de boekdrmkinnst.
\({ }^{1}\) An exception is to be noticed in the Costerian Yliada (see above type Vil., no. 14-17) in which on the recto of the second leal the initial director i is printed.
'Schwenke has, to some extent, observed this conncxion. and suggested that the texts of the Donatuses should be studied, as the difierences between them might show whether those of Mainz were printed from the Haariem editions or vice versa. Such a study may Ce useful, but could hardly lead to a definite result, as the types of these shoolbooks, like those of other incunabula, were imitations of the reapective handwritings of the places where they were prinied, and the texts were no doubt taken from the same MSS. in the first instance, though it is possible that the types were cast for other books and uned afterwards for the Donofuses.

Haarkem, 1904, p. 28), reminds us of three printers (Eckert van Homberch of Deff, Covaert Bac and Willera Vorsterman, of Ant. werp), who used one type all the time that they were printing (which means 23 years for the first and 19 for the second), and declares that we could not posibly put a shorter interval than 6 years betwecn each type. As there are seven Costerian types, such an interval would nean a period of 42 years, from \(147^{2}\) back to 1430 , hence only four and a half years (-3 II years) between cach type would suffice to reach the year \(1+40\).

These calculations, however, include the Abecedarium (i.). Valla (v.). Pontanus (vi.) and Solicrio (vii.) typrss and, as has boen pointed out above there is no absolute proof that these lour also belonged to the printer of the Speculum. Types v., vi., and vii. cannot be separated, and two circumstances, mentioned above, make it more than probable that they did betong to him. But the Abecedarime type can be ascribed to the Speculuw printer on no other grounds than that it has all the characteristics of the Costcrian types; that it is too primitive to be attrihuted to any later Dutch printer, 80 far as we know them, and that the Abecedarium printed with it, was discovered at Haarlem in a Dutch MS. which belonged to \(\#\) Haarlem family.

Hence a computation based on the five Speculum editions (all printed and issued at least before 1471), the 12 editions of Domatws and four editions of the Doctrinale printed in the same types might be more convincing to the opponents of Haarlem's claints. Apart from the final datc (1471) for them there is also evidence that the Speculum type 1 existed a considerable time before 1474, as in that year the bookbinder Cornclis used Iragments of a Donalus printed in that type in the binding of an account book of the cathedral church at Haarkem. Their types and workmanship. moreover, compel us to place them before the Volla. Ponianns and Salicela (or Pius) types. The last two, employed together in one bouk, cannot have been used for this book before t458, as it bears the nanne of Pope Pius If., who was not elected till that your, but it is certain that it cannot have been printed alter \({ }^{1} 472\). The Valla type, however, cxisted before the Pontanas and Salicelo types, as four capitals of the former were used to supply the want of such capitals in the Pontunus type.

If then, as suggested by Enschede, the type-foundet, an interval of six years is placed between the three Speculam types, it would mean 18 years, or a period from 147 i back to 1453 . A similar number of years we obtain by intervals of 18 months between each of the 12 editions of Donatus printed in type I . Even this moderate calculation makes it plain that the printer of the Speculum must have begun printing at least about the same time that printing began at Mainz. But we have ecen above that this printer did not hesitate to make up complete copies of his books by mixing shects of a later edition, printed in a different type, with those of an earlier edition, and even mixed type-printed with xjlographically printed sheets. A printer so carcfully and economically husbanding his stock of sheets is not likely to have printed new editions of his books before the old ones were fully sold off, or to have manufactured new types till his old ancs were used up. Morcover, Hasrlem, a quict provincial town, could not have beca a favourable market for a rapid sale of books, especialty not lor books in the vernacular, like the Dutch versions of the Specrulum.. Hence we should not put too short an interval either between his editions or his types.

As (e.g.) Gerard Leeu printed at Gouda, during the six years 1477 to 1482, 17, mostly bulky, volumes, together consisting of 2968 leaves, or nearly 6000 folio pages, all in one type. we need not hesitate to place at least cight or nine years between each of the three Speculum types, that is together 24 or 27 years from 1471 back to 1447 or \(1+44\). It is true, the types manufactured after, say \(147 \%\) may have been more enduring than the carlier types, as being, perhaps, cast of better material and by a more perfert process than those of Coster, but the number of pages printed by the latter with the three Specu/um types, barely amounts, so far as we know, to a tenth part (600 pages) of Cerard Leeu's work. Our cakulations are, of course, liable to modification or alteration; carlier dates may yet be discovered in the Costeriana or In oiher documents; more editions of Donatus in the same types may be found, which would shorten the intervals. But we have shown that, without straining chronology, bibliography or typology, the Costeriana can be dated back so as to harmonize with any historical date. Dutch \((1+40.1446)\) or German (1450), known at the prescnt time, or so as to precede even the speculative dates (1447 or 1444) assigned to some Gutenberg products.

There is therefore no reason to discredit Zell's statement in the Cologne Chronicle of 1499 , that the Donotuses printed in Holland were anterior to, and the models for, the art of printing at Mainz, or that of Hadrianus Junius in ae Earfip his Batavia, that printing was invented at Haarlem Pripter by Lourens Janszoon Coster, and that the Specsum Nefore was one of his first productions. The two statements were made independently of each other. But evrn without
*These cxamples might easily be multiplied. E.lr. Zell. for in. stance, printed more than 80 books in his furst type.
them, the existence of a group of nearly fifty primitively printed books of undoubtedly Dutch origin, the printing of which must have taken a number of ycars before 147 I , would suggest serious doubts as to the priority of Mainz printing. Zell's statement is all the more weighty, as it is not one made at random but meant to be a direct contradiction of the vague rumours and statements about an invention of printing at Mainz by Gutenberg, which bad gradually crept into print since 1468 in Italy and France, and had found their way back into Germany about 1476, after Mainz and Germany had given the greatest publicity, during twenty-two years, to the existence of the new art in their midst; while all those who might, and would and could, have told the public that the invention bad been made at Mainz, if it had come about there, preserved a profound silence on this particular point, even the suprosed inventor bimself. And, though Zell accords to Mainz and Gutenberg the honour of having "improved" the art and having made it more artistic, he denies to them the honour of having "invented" or "begun" it, and this latter honour was never claimed by that town before 1476. Junius's account, on the other hand, is the embodiment of a local tradition at Haarlem, the first written traces of which we have in a pedigree (testimony xxxiv) of the family of the reputod Haarlem inventor, which, as regards its central part, may have existed at least as early as 1520 , whereas its first part may be dated much earlicr. His account is indirectly confirmed by the finding of several fragments at Haarlem, all belonging to the groups of books mentioned above, but still more by the discovery of several fragments of the Donaluses printed in the Speculum type 1 and 3, some of which had hien used as binder's waste by Cornelis, the bookbinder, the very man whom Junius alleges to have been the servant of Coster.

As the case stands at present, therefore, we have, after careful and impartial examination, no cholce hut to repeat that the invention of printing with movable metal types took place at Hairlem between the years 1440 and \(144^{6}\) by Lourens Janszoon Coster.
That the Haarem inventor of printing was, as we have shown, a block-printer before he printed with movable types, helps us to understand what the tradition, as chronicled by Junius, says of him (Testimony xliv. \(b\)): that he, while walking in the wood near Haarlem, cut some letters in the bark of a tree, and with them, reverscly impressed one by one on paper, he composed one or two lines as an example for the children of his son-in-law. Junius does not say it, but clearly implies that, in this way, Coster came to the idea of the movability (the first stcp in the invention of typography) of the characters which, hitherto, he had been cutting together on one block. He perceived the advantage and utility of such insulated characters, and so the invention of printing with movable types was made. The questions as to whether he continued to print with movable "wooden" types, or even printed books with them, cannot be answered, because, no such books or fragments of them have come down to us. Junlus's words (Test. xliv. हf d) on this point are ambiguous, and no Dutch edition of the Speculum printed, figures and text, from wooden blocks or movable wooden types, is known.
By the middle of the sith century the claims of Coster and Haarlem had steadily gained ground, owing to the researches of Joh. Enschedé (1751), Meerman (1765), Koning (1815), Young Ottley
 they were wellnigh destroyed by a criticism which afterwards proved to be partly groundless, partly a distortion of facts. At the time, however, it was without further research, accepted as decisive; however, the claims were regarded to be a fiction, and a system of classifying the incunabula started with the unfortunate result that Utrecht came to be adopted as the birthplace of the Costeriana and Coster and Haarlem almost obliterated from all our catalogues. Since then many things have come to light, all tending to confirm Haar. lem's claims, and showing how unjustifiably they were attacked in 1870 An examination of tbe incunabula on which they rest is far from easy or inexpensive, as the books are scaltered not only over Europe but now also over America, and therefore not easy of access. We have, however, made it, sufficiently to be able to prove that the chams are based on good grounds. Our evidence, thougb stlll circumstantial, is not based on guesses; we assert nothing except on bibliographical or historical grounds; nor do we accept one statement unless it is corroborated by other statements, or by the nules of bibliogranhy and history. Hence we should not accept Zell's evidence or that of Junius, or of any one else, if the bpoks to which they refers
extent, or if the claims of Mainz to the honour of the invention could be said to have any substance of lact. The great efforts made in Germany since 1882 to strengthen the case for Gutenberg. which culminated in the celebrations of 1900 and the publication of valuable and learned books, have enriched our knowledge of early Mainz and German printing, but at the same time conclusively shown that it requires great courage to maintain that Gutenberg was the inventor of printing.
How long Coster or his successors continued the first printingoffice at Haarlem we cannot say; it seems to have come to an end in or before 1481, as the cuts of the Speculum had evidently then passed into John Veldener's hands, and the Haariem tradition says that wine pots had been cast of the remains of the types. In 1483 Jacob Bellaert was printing at Haarlem, and Jan Andrieszn in 1485: their types are imitations of the writing of their time, but already differ from those of the Speculum and the other Costeriana in various respects, and show many leatures of a later period. The question as to whether they learnt their craft from the first Haarlem printer, or from other masters, has been asked but not yet answered.
Spread of Typography.-Having explained the carly printing of Haarlem and Mainz, in so far as it bears upon the controversy as to where and by whom the art of printing was invented, and shown that the testimony of Ulrich Zell (in the Cologne Chronicle of 1499) as to Mainz having learnt the art of printing from Holland through the Donatuses printed there, and that of Hadrianus Junius, as to the tradition of its Haariem origin, are confirmed by hibliographical and historical facts, we can follow its spread Irom Ilaarlem to Mainz, and from the later place to other towns and countrics.
1460; Strassburg.-First printers: Johann Mentelin, who completed a Latin Bible in that year, according to a rubrication in a copy at Freiburg in the Breisgau; Adolph Rusch de Inguilen, who is presumed to be the printer of the undated books with a singularly thaped R. \({ }^{1}\) C. 1464 ; Henricus Eggestein, 1471 ; George Husner, Ac.
1461; Bamberg.- First printers: Albrecht Pfister, who in 1465 published Boner's Edelstein, though it is still doubtlul whether he did not print earlier, while he has always been regarded as the printer of \(\mathrm{B}^{*}\) (see above); Joh. Sensenschmidt, c. 1480.

1465: Subiaco-First and only printers: Conrad Sweynheym and Amold Pannarts, who completed in that year an edition of Cicero, \(D_{e}\) Oralore, and Lactantius, and removed to Rome in 1467.

1466: Cologne.-Earliest printers: (1) Ulrich Zell, who published in that year Chrysostom, Super Psalmo quinquagesimo liber primus, though it is presumed that he printed already in 1463 ; (2) Arnold Ther Hoernen, 1470; (3) Johannes Koelhoff of Lobeck. 1470, who printed the Cologne Caronicle in 1499: (4) Nicolaw Gotz, 1474; (5) Goiswinus Copps, 1475 ; (6) Petrus de Olpe, 1476 (not 1470): (7) Conradus Winter oi Homburg. 1476 ; (8) Joh. Guldenschaal, 1477 ; (9) Henricus Quentel, 1479. \({ }^{2} \mathrm{a}^{2}\)

1467; Eltville.-First printers: Nicolas and Henry Bechtermuncre and Wygandus Spyes de Orthenberg, who completed in that year a Vocabularius ex quo.

1467; Rome.-First printers: Conrad Sweynheym and Arnold Pannarts Irom Subsiaco, who puhlished an edition of Cicero's Epistolae ad familiares: Ulrich Hahn or Udalricus Gallus, who issued on the \(315 t\) of December 1467 Turrecremata's Meditationes.

1468; Augsburg.-First printer: Gunther Zainer or Zeyner. Same year at Basel (first printer Berthold Rot of Hanau) and at Marienthal (Brothers of the Common Life).

1469: Venice.-Printers: (1) Johannes of Spires; (2) his brother Vindelinus of Spires; (3) Christopher Valdarfer; (4) Nicolas Jenson, \&c.
The further spread of typography is indicated by the following dates: 1470 at Nuremberg (Johan Senseaschmidt, Friedr. Creusner Anton Koberger, se.), Berona or Berominster in Switzerland (Helyas Helye clias De Llouffen), Foligno (Emilianus de Orfinis and Johannes Numeister) Trevi (Johann Reynard), Paris (first printers the thrce partners Ulrich Gering, Michael Friburger. Martin Krantz); 147 r at Spires, Bologna, Ferrara, Florence, Milan, Naples, Pavia, Treviso, Savigliano (Hans Glim?); \({ }^{1472}\) at Esslingen, Cremona, Mantua. Padua, Brescia, Parma, Monreale (Mondovi), Fivizzano, Verona, lesi. St Ursino (?); 1473 at Lauingen, Ulm (perhaps as early as 1469). Merseburg, Alost, Utrecht, Lyons, Messina, Buda-Pest. Santorso; 1474 at Louvain, Genoa, Como, Savona, Turin, Vicenza, Nodena, Valencia; 1475 at Lūheck, Breslau, Blaubeuren, Burgdor, Trent, Cracow (?), Reggio (in Calabria), Cagli,
\({ }^{1}\) M. Philippe, Origine de Iimprimerie d Paris, p. 219, mentions two books printed in this type, which contain manuscript notes, to the effect that they were purchased in 1464 and 1467 , so that Inguilen is to be placed before Eggestein.

Johann Veldcner, who is said to have printed at Cologne, was never established there, but at Louvain (1473-1477), U'trecht (1478-1481), and Culenborg or Kuilenburg (1483-1484); sce Hottrop. Mon. tyô., pp. 42, 47, 109.

Caselle or Canale, Pieve (Piove) di Saeco, Perugia, Piacenza, SaraBossa: 1476 at Rostock, Bruges, Brussels. Angers, Toulouse. PotFiano (Pogliano). Pisen; 1477 at Reichensteio, Deventer, Gouda, Delft. Westminster. Lucca. Ascoli. Bergamo, Tortona, Palermo, Sevilie: \(147^{8}\) at Oxford, St Maartensdijk, Coile, Schuseentied (in Wartemberg), Eichstidt, Geneva, Vienne, Trogen (?). Chablix, Cosenza, Prague, Barceiona; 1479 at Erfur, Wurzburg. Nijmegen, Zwolle. Poitiers, Toscolano, Pinerolo, Novi, Lerida. Segorbe, Saluzzo; 1480 at London, St Albans (or in 1479), Oudenarde, Hasselt. Reggio (in Modena), Salamanca, Toledo, Nonantola, Friuli (P). Caen: 1481 at Passav, Leipaig. Magdeburg, Trevei, Urach, Casale di San Vaso, Saluzzo, Albi, Antwerp, Rougemont; 1482 at Reutingen. Memmingen, Metz. Pisa, Aquila, Promentoux, Zamora, Odense, Chartres. Wien, Guadalajara, Munchen, Erfurt; 1483 at Leiden. Kuilenburg (Culenborg), Ghent, Chalons-sur-Marne (?), Gerona, Seockholm, Siena, Soncino, Salins; 1484 at Bois-le-Duc, Eichstatt, Novi. Sangermano, Chambery, Udine, Winterberg, Klosterneuburg, Rennes. Loudeac. Tarragona; 1485 at Heldelbers. Ratisbon, Peacia, Vercelli, Tréguier or Lantreguet. Brunn. Salins, Burgos, Mallorca, Hijar, Palma, Xeres: 1486 at Münster, Stuttgart, Chivasco, Voghera, Casal Maggiore, Abbeville, Schleswig. Toledo; 1487 at Ingolstadt. Gaeta, Rouen, Murcia, Besancon; 1488 at Siendal. Viterto, Gradisca. Faro, Constaninople. Lantenac; 4489 at Hagenau. Kuttenberg. San Cucufat (near Barcelona), Portesio, Coria, Pamplona, Tolosa, Lisbon; 1490 at Embrun, Orleans, Grenoble, Dote; 1491 at Hamburg. Kirchheim. Norzano. Goupillieres, Anyoultme, Dijon, Narbonne; 1492 at Marienburg. Cluai, Zinna, Valladolid, Leiria; 1493 at Laneburg. Freiburg (in Breisgau). Urbino. Cagliari, Lausanne, Nantes, Copenhagen, Rieka; 1494 at Oppenbeim. Tours, Macon, Monterey, Braga. 1495 at Freisingen. Freiberg (near Leipzig). Scandiano, Forli, Limoges, Schoonhoven (monastery Den Hem), Pamplona, Wadstena, Cettinje; 1496 at Ofienburg, Provins. Barco, Valence, Granada, 1497 at Carmagnola, Avignon: 1498 at Tübingen, Périgueux, Schicdam, Gripaholm; 1499 at Danzig, Olmultz, Montserrat, Madrid; 1500 at Plorzheim, Surnee, Perpignan, Valenciennes, Jaen.

Printing seems to have begun in Scotland after September 1 go7, when King James IV. granted a patent to Walter Chepman and Andrew Myllar (also printed Millar) for the establishment of a printing press at Edinburgh Their first book (The Maying or disport of Chaucer) appeared on the 4 th of April 1508 . Myllar, bowever, appeared to have been established there as a bookseller already in 1503 and to have published there his first book, Joh. de Garlandia Interpr rocabulorum equivocorwm (printed for him abroad) in 1505 , his second Exposilio Sequentiarmm (also printed abroad) in 1 go6. (See Rob. Dickson and John Ph. Edmond, Annals of Scoltish Printing from 1907 to the 17th century, Cambridge, 1890 ; Harry G. Aldis, List of Books printed in Scollasd before 1700, Edinburgh 1904). Priating was introduced into Ireland at Dublin in 1551 by Humfrey Powell, who published in that year a verbal reprint of Whitchurch's edition of the Common Prayerbook of 1549 . Printing in Irish types was brougbt into the kingdom in 1571 by N. Walsh and John Kearney, the first book printed in that type being A Cateckism, written by Kearney.

Above we have sfated that printing was established at Avignon in the year 1497. But during the last two decades various trea. Owertion of tises have been published endeavouring to show that Owate at on printing had already been exercised there more than Arfenos. halfi a century carlier.
Arbsoas. Halin century earier. Requin dincovered at Avignon, in three notarial registers, five Latin notarial Protocols of the years 1444 and 14.46, which, though they mention only the arts of "writing artistically, and painting different colours on stuff, he and others interpreted as showing that, during thooe ycars, certain artisans had exerrised the ant of prinling with movable types at Avignon; so that, if the art was not invented there, one of those artisans must have learnt the eecret from Gutenberg, said to have been engaged in printing at Strassburg from 1436 to 1439. And hence Xuggnon. hitherto regarded as the both town where printing was ineroduced, was to take the second place, if not the first, in the history of the invention of printing. between Strassburg and Mainz (Requin. L'Imprimerie d Arignon en 1444; Paris, 1890; id., Origtmes de \((\) 'smprincric c: Framce, Angnom. 1444 Paris, 1891).

From Requin's first document (dated July 4 . 1444) it appears that a silversmith. Procopius Waldfoghel, of Praguc, residing at Avignon, had received from a magister Manaudus (also called Menaldus Vitalis, born at Dax. in the Departement des Landes, baccakasress in decretis, and student at Avignon) two alphabets of steel. two ison forms (frames?), one steel screw. 48 forms of tin. and divers other forms belonging to the art of wrifing (dwo abecedaria calibis at duat formas ferieas. unum instrumentum calibis nocatum vits, quadraginto octo formas, stongni neccon diversas alias formas ad arter,
ccribedi pertimentes), and promised to return thete instruments
(ed msum scribendi pertinencia) the moment Manaudus asted for them. The socond document (dated August 27, 1444) makes no mention of tools or instrumente, but is Procopius'r bond for two sums of money (10 to 27 florins) which he had borrowed from Georgius de la Jardina ; for the firss he promused to instruct the said George in the art of wrideng well and seemly, and to do the neecsaary and suitable things for one month (pro quibus promisit instruere diclum Georgium in arte scribendi bene el condecenter, el administrare mecesseria as oppersuna, hinc ad waum mensem), on condition that neither of them should instruct anyone else in the said art of wriling, without the consent of the other (fuit lamen de pacto quod nallas non debeat instrmere aliquem in dicta arke scribendi, ntsi de licensic allerins). The third document (March 10, 1446) is an agreement between Procopius and a Jew of Avignon named Davinus de Codarosia, who had advanced money to him and held property from him as security. The Jew had promised to teach Procopius tn paint stulfs in diflerent colours, and the latter had promised the Jew to make for hira and to deliver to him "twenty-sever prepared Hebrew letters, well and properly cut in iron according to the science and practice of writurs, which, two years ago, the said Procopius had shown and taught the Jew, together with instrumente of wood, tin and iron (Procopius promistt . . . judeo focere at factas reddere et restimerr vipinti seplem lilleras ebreaycas formatas, scisas in ferro bene at debith juxta scientiam at practicam scribendi, sunt duo anni elapss ipsi judeo per ductum Procopium ostensam o doctam, us dixu, wha cum ingenís de fuste, de slagno et de ferro). It was also agreed that the few should pay for the tin and wood for the instrumente of the Hebrew writing (furl de pacto quod idem judeus iodsel staznom at fustes artificiorum sive ingeniorum scripture ebraye). Aad Procapius (urther promised to give the Jew, the following week, ten florins to recover certain pledges or utensils which the Jew had in pawn from him, the laticr binding himself not to reveal the science or teach the art to any one as long as Procopius should remain at Avignon or in the neighbouthood (promisit endem judeo dare decem florenos per lotam hebdomadam proxime futuraje et restituere sibi certa pignora sive ustensilia que tpse judeus habet in pignora a dicto Procopro). The fourth document (April 5. 1446) shows that Procopius had made for the above-named Micnaldus. Vitalis and Arnaldus de Coselhaco (and Girardus Ferrosis?) and delivered to them several instruments or tools of iron, stecl, copper. latten, lead, tin and wood for writing artisticaily; he had instructed them in the said art of writing artist ically, and all the tools belonged to them in common. But Menaldus, wishing to sell his share in the said tools to the others and to retire from the association, twelve florins were paid to him in two instalments, but at the request of Procopius he testifies under oarh thet the said ant of writing, taught him artistically by the said Procopius, was real and most proper, and also easy, practicable and useful to any one wishing and choosing to work it (Cum dictus Procopius super arte scribendi artificialiter fecert penerabuitibss mris . . . Menaldo Vithlis et Arnaldo de Cosel kaco . . . monnulla instrumenta sive arlificia causa artifcialiter scribendi Lam ferro de callibe, de cuppo. de hethono. de purmbo, de stagno. et de fuste
... dictamque artem scribendi artificialiter eos docwerrit, insthumentaque ipsa ommia et singula sint . . communia inter cosdem simdentes . . . Cumque dictus. .. Vitalis cuprus. . . partem smam dielornm inslrumentorume sive artificiorym. .; vendere es a commsnione eormm recedere....vendidit dicto Procopio a Girardo presentibus. . . partem suam. . . . precio duodecim flore. norum ... Ibidem Vitahis . . . medio swo juramento . . . dixit dictam arkm scribendi per dicfum Procopikm artificialiter
doctam, esse peram et werissinam, esseque facite eidem doctam, esse seram et wristimam, esseque facilem. possiotices et ntilem laborare oolenti et diligenti eam). The fifth document (April 26, 1446) shows that Procopius had recovered from Davinus all the pledges which he had pawned with him, except one mantie and \(4^{8}\) letters engraved in iron, that Davinus had not yet carried out his part of the agreement as to tearhing Procopius the painting of difierent colours on etuffs, whercas Procopius had detivered to the Jew all the arts, tools and inssruments pertaining to writing artistically in Latin letters, as he had promised to do on the roth of March last. (Procopins confassws fuut se ab eadem judeo recepisse ominia pignora sua per cum penes dictum judewm imprgnorada, exceplo uno mantello et quadraginta octo litterrs gravatis in ferro. Es... dictus judeus confessus fuit recepisse a dicto Procopio omnia arificia, ingenia el instrumenta ad scribendum artifi. cialiter in litera lotino. \&c.) Again the compact is that Davinus shall not reveal the science to anyone, at least to long as Procopius should reside at Avignon or within 30 m . in the neighbourhood. (nemini mundi dicerc. notificare nec quonsmodo setelare, per se nec per alum ullomodo. presentem scicntiam in teorica nec pratica. at nulli mundi eam docere neque repelare eam fuisse ostensam per quemTs).
It is difficult to find. the art of printing with movable types, or the ant of casting types in these documents. The Abbat, however, says they prove the establishment of a printing office at
 meric," une "imprimetie," and "towl un mattricl d"imprimerie", in them, alt hough the documents themselves do not mention such things; they orly allude to the "art of writing." the "practice "or "exer. cise of verifing "; the " art of teriting well and seemly ": the " science and practice of twriting "; the "art of miting artistically." And
there in, apperently, no reason to think that these precise documenth, while speaking exclusively of this art, should always mean another art which they do not mention. Procopius. indeed, seemed to have known an art of witimg. in which be instructed others (second document) and which he and his associates wuhed to keep secret, "hile the "letters," tools, \&ce. of which they speak were no doubt " movable.
But Procopius himself appears to have possessed neither letters nor tools nor instruments or forms at the beginning of these proceedings: it was Menaldus Vizalis, a bachelor of law and student at Avignon, who entrusted to him the "two steel alphabets, two iron forms, one stecl serew, and forty-cight tin and other forms." mentioned in the first document of 1444 . Procopius. however, appears to have seen no permanent value in these letters, forms, \&e. as he, of his own accord, promised to return them at the first request of Menaldus, who had handed them to Procopius without asking for a receipt. The third document, however, makes it plain that Procopius engraved for Davinus the Jew, not for himself, twenty-seven Hebrew letters (therefore a complete alphabet. including the five final letters) in iron, in accordance with the art of writing which he had taught Davinus two years ago. together with tools of wood, tin and iron, in return for which the Jew would teach Procopius the art of painting stuffs. The fourth document shows that Procopius had made tools of iron, steel and other metals for wouiteng artistically. but again not lor himself but for two other men one of whom was Menaldus who. two \(\chi_{\text {ears ago, had entrusted him }}\) with two alphabets and some tools; Procopils, however, had this time reserved to himself a share in these tools, and Menaldus sold his share in the tools for twelve florins to the other assoctates, so that the value of all these tools cannot have amounted to more than about 36 forins of Avignon currency.

Therefore, the precise descriptions in the documents of the letters, tocls and instruments required for Procopius's ant of turiting artistically. and the absence of all allusions to paper, ink and oiher things necescary for printing with movable types, show that there is no reference to this art, even in its infancy. That art nucans the multiplication of books or documents by means of an adequate quantity of single iypes for composing a whole page of eext, and capable of being taken asunder and used again for a second, a third and a multitude of other pages, aod to produce a number of copies of a book in the same or a shorter time than a scribe with his pen could produce one copy. But two Latin alphabers (of steel) and one Hebrew alphabet (of iron) would not suffice for composing and printing more than two or three words on any one page at a time, so that a person with such a small quantity of tetters at his command would, in several respects, be worse of than a scribe. Hence the documents which only refer to the art of writing, mean nothing more serious than an art of taking impressions of certain letters (perhaps initials or capitals) in a more regular and stcady fashion than even trained scribes could produce them by hand. For pressing in such (ornamental) initials or capitals here and there in MSS., alter the scribes had done their ordinary work of writing. the insulated alphabets of Menaldus and Davinus would be a great he!p and save a deat of time and tabour, but usekss for the art of printing with movable types. If the two steel alphabect, and the one Hebrew alphabe! of ron, and the 48 letters engraved in iron had been patrices, and the 48 forms of tin had been matrices, the documents, no doubt, would contain some expressions to show this. in spite of the endeavour not to divulge this art of writing. What the nature of this writing was, and why all these forms and instruments, even a screw. were required, we cannot say. It has been pointed out that the art of printing was also described as an art of urtiing. which is crue; but when it is so described we learn at the same time that typugraphy is meant. But we must bear in mind that Davinus the Jew was engaged on the painting of colours on stuffs and that Procopius desired to become acguarmed with this industry. No doubt tools were much more reyuired lor this work than for writing. However, this writing asscciation seems to have come to an end in 1446, and the partics departed from Avignon, without leaving there or anywhere else any trace of themselves and their interesting operations. See also Zedier, GutenbergForsch., p. 10 sqq.

As for non-European countries and towns, printing was established in Mexico in 1544, at Goa about 1550, at Tranquebar in 1569 , Terceira in the Azores 1583 . Lima 1585 , Manila and Macao (China) 1590 , in Haiti in the beginning of the 17 th century, at Puebla in 2612, Cambridge (Mass.) r639, Batavia 1668, Tiflis 1701, German-town 1735, Ceylon 1737, Halifax (Nova Scotia) : 766, Madras r772, Calculta 1778, Buenos Aires 3789, Bombay 1792, in Egypl (at Alexandria, Cairo, and Cizeh) in 1798, at Sydney 1802, Cape Town 1800, Montevideo 1807, Sarepta 1808, Valparaiso 1810, Astrakhan 18is. in Sumatra and at Hobart Town and Santiago (in Chile) in 1818, in Persia (at Teberan) in 1820, and at Chios abonemela
\({ }^{1}\) On the introduction of printias ** topnsult Henry Cotton, \(A\) Typog. Gasel. 8 vo , OX series, 8vo.

Till the moment (say 1477) that printing was pracrised in almost all the chief towns of the Netheriands, Germany. Izaly, Switzerland, France. Spain, England, not a single printer carrod away with him a st of types or a set of punches or moulds from the master who had taught him. but, in or moulds from the master who had taught him. but, in Procers.
setting up his printing office, each man cast a set of types
for his own use, aiways imitating as closely as posible the hand. for his own use, always imitating as closely as possible the hand writing indigenous to his locality. or of some paricular manuscript which he or his patron desired to publish. When we compare Schoeffer's jo-line Indulgence of 1454 with a manuscript copy of the same Indulgence dated the loih of April 1454, now in the hands of a private collector at Wiesbaden, we see that the types used in printing that document were specially cast for the purpose after the model of the handwriting employed for the written copies. We know also that the types of the 36 -line and 42 -line Bibles and those of the Pbatier of 1457 are the closest possible imitations of the ornamental church handwriting customary at the time of their production. Also. when we compare the 3 1-line Indulgence of 1454 with the German blockbook called the Enndichrist, and both in their turn with the German MSS. of that period (especially the manuscript portions in the printed copres of the Indulgences), we see that the cutter of the text type of the Indulgence, as well as the engraver of the blockbook, formed his characters according to some German handwriting (book hand) of the period. This imitation extended not only to the shape of the individual letters of the alphabet, but likewise to all those combinations of letters (double \(p\), double \(f\). double s. st, ti, tu, re, cu, cl, st, de, co, ci, te, ce, or, de, po, fa. he, be. \&c.) and contractions (for pro, -km, -em, -en, the., uer, -bus, -bus, sed. am, tur, qui, quac, quod, srcundum, \&ce.) which were then, and had been for many centuries, in use by scribes. In most. if not all cases, the MSS. which the printers imitated were, as has been remarked above, indigenous to the place where they settled. Thus the first printers of Subiaco, though they were Germans and had most probably learnt the art of casting types and printing at Mainz yet cut their types aiter the model of some Italian MS. which was free from any Gothic influence, but written in a pure Caroline minuscule hand, differing but slightly from the Caroline minuscules which the same printers adopted two years alterwards at Rome. The first Paris printers started in 1470 with a type cast entirely on the model of the Caroline minuscule handwriting then in vogue at Paris. John de Westphalia, who introduced printing into Belgium. used from the beginning a type which he calls Venetian. Therefore a great similarity (without absolute identity) between the types of two printers (e.e. Schoeffer and Ulr. Zell), should be attributed to the similarity of the handwritings which the printers followed. not to any attempt on their part to imitate each other's types. To this universal system (clearly discernible in the first twenty-five years of printing) of each printer setting up husiness with a new type cast by himself, there would be, according to the conjectures of some bibliographers. only two exceptions; one is Albrecht Pfister (see above): the other is the Bechtermunczes of Eltiville (see above).?
Another important feature in the carlicst books is that the printen imitated, not only the handwriting. with all its contractions, combined tetters, \&c.., but all the other peculiarities of the MSS. they copied. There is in the first place the un- Unevenaese evenness of the lines, which often serves as a guide to of Lhaen. the approximate date of an early printed book, especially when we deal with the works of the same printer, since each commenced with uneven lines, and gradually made them less uneven, and finally even. The unevenness was unavoidahle in manuscripts as wiell as in blockbooks; but in the carlicen printed books it in regarded as evidence of the inability of the printers to space out their lines. Il this theory be correct, this inability was perhaps owing to the typea being perforated and connected with each other by a thread. or to some other cause which has not yet been clearly ascertained In sonve incunabuia we find some pages with uneven lines, and others quite straight in the same book It is not impossible, however. that the unevenness was simply part and pareet of the aystem of imitating MSS., and that only gradually about 1473 or 1474 , but in some caves later) printers began to see that even lises looked better than uneven. This weems clear when we observe that the imitation of MSS. was carried so far that sometimes things which deviated from the work of the scribe, but had accidentally been printed in were afterwards erased and altered in conformity with the MS The Paris Library, for instance, possesses two copies of the Liber Epistolarum of Gasparinus Pergamensis (printed at Paris in 1470). in both of which the initial \(G\) of the first line and the initial \(M\) of the lourth line were printed in, and, whitst they have been allowed to

Oxford, 1866): (P. Deschamps) Dich. de geogr. a \(\Gamma_{\text {usage }}\) de libraire, (8vo, Paris, 18j0): R. C. Hawkins, Titles of the First Books from the Earliest Presses Established in Diferent Cilues in Europe, (420. New York, 1884) ; Rob. Proctor, Early Printed Books in the British 4 useum. (1898). \&c.
\({ }^{1}\) In recent years Dr Dziatzko. overlooking the relation between MSS. and typography in its infancy. has attempted to show that the types of the 36 -line Bible were ivitations of those of the 48 -Jtoe Bible.
memain in one of the copien, in the other they were regarded as a faule and replaced by a rubricated \(L\) and \(M\).
lo the second place the initials of books or the chapters of books in MSS., aod again in blockbooks and the earliest products of printing punhe were always, or at lemst in most cases (they are prinied in the indulfences of 1454), omitted by the scribe and the printer and afterwards filled io by the rubricator. As the latter artists were sometimes illiterate and very often filled up the gap by a wrong initial, we find in many MSS. as well as early printed books small letters written either in the magin or in the blank left for the initial, to guide the rubricator. In most cases where these letters (now called initial directors) were written in the margin, they were placed as much as possible on the edges of the pages in order that they might be cut away by the binder as unsightly: but in many ancumabula they have remained till the present day. \({ }^{4}\) Later on these initial directors were in many books printed in (io lower-case type) with the text. In all cases, whether written or printed, they were meant to be covered by the illuminaled initial; but, as a matter of lact, the latter very seldom covers the initial director so completely as to make it invisible, and in various cases the intended illumination was never carried into effect. With respect to the hyphens, which were used in the 1454 Indulgences and the 36 -line and 42 -line Bibles, always outside the printed margin, some of the earliest printers did not employ them at the moment that they started their presses, and in the case of some printers the nonuse or use of hyphens, and their position outside or inside the printed margin, serve as a guide to the dating of their products. After about 1472 they become more uniform io their shape and more generally used.

The use of signatures was confined in MSS. mostly to mark the quires (with a numeral or a letter of the alphabet), sometimes also turwhe the leaves: in many cases they were written close to the bottom of the leal, so that they might be cut off by the be seen in many MSS.; in blockbooks they are usually printed with the picture on each sheet or page; they are not printed in incunabula elose to the bot tom tine of the page belore 1472 (at least in no earlier book with a date), when they appear in Joh. Nider's Praeceptorimm Dovinae Legis, published by Johan Koelhoff at Cologne. Caxton did not adopt them till 1480 . In the books printed before 1472 they were written by the rubricator or the binder, in the mame way as in the MSS.

Catchwords (custodes) were used lor the first time about 1469 by eacmander Johannes
Pagination or rather foliation was first used by Arn. Ther Hoernen, at Cologne in 1471. in Adrianus's Liber de remediss forlmitormm casusm, having each leal ' (not page) numbered by Ggures placed in the end of the line on the middle of each right-hand page.

The practice among early printers of imitating and reproducing MSS. wat not abandoned till many years after the first dated document (1454) made its appearance: and, looking at the
 Prug books printed, say from 1454 to 1477, irom our present standpoint. The printing of that period may be aid to have been almost wholly stagnant, without any improvement or modification. If some printers (for instance, Sweynheym and Pannarts at Subiaco and Rome, and Nicolas Jenson at Venice) produced handsomer books than others, this is to be attributed to the beaty of the MSS. imitated and the paper used rather than to any aperior skill. Generally speaking. therefore, we shall not be far wrong in saying that the workmanship of Ketelaer and De Leempt's firs book. published at Uirecht 6. 1473, and that of Caxton's first book issued at Westminster in 1477. exhibit almost the same etage of the art of printing as the 1454 Indulgences. If, therefore, any evidence were found that Ketclaer and De Leempt and Caxton had really prined their first books in 1454, there would hardly be anything in the workmanship of these books to prevent us Irom plaring them in that year. And conversely, if the Indulgences of 1454 had bees issued without a date of without any names to indicate their approximate dave, their workmanship might induce bibliographers to ascribe them to c. 1470 , if not somewhat latcr. Even after 1477 alterations in the mode of prining books came about showly and almosi imperceptibly. It was no longer a universal system for printers to begin business by casting a tjpe for themselves, but some received their types from one of their colleagues. And, though there were still many varieties of types, one sort began to make its appearance in two or three different places. The combinations of letters were the first to disappear; but the contractions remain in a good many books even of the 17 th century.

Some theories have been based on, and others have been considered to be upset by, the supposition that the early printers always required as much type as printers of the preseni day, or at any rate

\footnotetext{
\({ }^{1}\) The university library of Basel possesses a collection of the earliest Pans books still bound in their original binding, in which these initial directors are writen not only on the outer edges. but on the inner sides of the pages, and so close to the back that they and oaly be seen by atretching the books wide open.
}
so much as would enable them to et up, sot only a whole quire of 4 or 5 sheets (88 or 10 leaves \(=16\) or 20 pages), but even \(t\) wo quires (\(=40\) pages). Consequently calculations have been made that, for instance, the printer of the \(\mathbf{4 2}\)-line Bible required a fount of at least 120.000 characters. See Bernard, Orig. de l'impr. i. 164, who was a printer himsell and speaks very strongly on this point. But there are numerous prools that many early books were printed page by page, even when in small 4 to. For instance, in some books it has been observed that portions of the types with which the text of the first, second or third pages of a quire had been printed, were used to "lock up" the types emploved for the later pages of the same quire, as is evident from the blank impressions of such purtions being found on these later pages. Again, in some small books, two, three or four blank leaves are found at the end, showing a miscalculation of the printer at the commencement. Moreover, numerous itinerant printers of the 15th century established a press for a short time wherever they went, which proves that the furniture of the earliest printiog-offices candot have been of any great extenc.

Early Types and their Fabricotion.-We must now take notice of two theories or traditions which have been current for a long time as to some intervening stage between the art of block-printing and the art of printing with movable cast metal types. \({ }^{2}\) One theory or tradition would have it that the inventor of printing, after the idea of single, individual, movable types had arisen in his mind, practised his new invention for some time with wooden types, and that he came only gradually to the idea of movable types cast of metal.

Junius gives us to understand that the Dutch Speculum was printed with such wooden types. Of Johann Gutenberg it was asserted that he printed his first Bible with wooden types. The Mainz psalter, printed in 1457 by Joh. Fust woene and Peter Schocffer, was alleged to have been printed
with wooden types, in which case the 4th edition, published in 1502 and even the 5th edition of 1516, would be printed with wooden types. the samc being used for them as for the editions of 1457 and 1459. Theod. Bilsliander was the first to speak (in 1548) of such typee and to describe them: first they cut their letters, he \(5 a y s\), on wood blocks the size of an entire page; but, because the labour and cost of that way was so great, they devised movable wooden types, perforated and joined one to the other by a thread.* Bibliander does not say that he had ever seen such types himsell, but Dan Speckle or Specklin (d. 1589), who ascribed the invention to Mentelin. aseerts that he saw some of these wooden types at Strasshurg. \({ }^{\text {© }}\) Angelo Roccha asserted in 1591 that he had seen at Venice types perforated and joined one to the other by a thread, but he does not say whether they were of wood or of metal. \({ }^{\text {t }}\) in 1710 Paulus Pater asserted that he had seen wooden types made of the truak of a box-tree, and perforated in the centre to enable them to be joined together by a thread, originating from the office of Fust at Mainz.' Bodrnan, as late as 1781, saw the same types in a wormeaten condition at Mainz; and Fischer stated in 1802 that these relics were used as a sort of token of honour to be bestowed on worthy apprentices on the occasion of their finishing their term.
Besides those who believed in these wooden types from the fact that the letters (especially in the Speculum) vary among themselves in a manner which would not be the case had they been cast from a matrix in a mould, there were authors and practical printers who attempied to cut themselves, or to have cut for them, some such wooden types as were alleged to have been used by the early printers. Some of them came to the conclusion that such a process would be quite practicable; others lound by experiment that it would, in the case of small types, be wholly impossible. Nearly all the cxperiments, however, were made with the idea that the inventor of print ing, or the earliest printers, started, or had to start, with as large a supply of type as a modern printer. This idea is erroncous, as it is known that, for a good many years after the firsi appearance of the art, printers prinicd their books (large or small) not by quires (quaternions or quinternions) but page by page.' Therefore, all considerations of the experimenters as to the impracticability of such wooden types, on account of the trouble and length of time required for the cutting of thousands of types. fall to the ground in face of the fact that the earliest printers required only a very small quantity of type, in spite of the peculiar forms (combined letters, letters wish contractions, \&cc.) which were then in vogue. Up to
\({ }^{2}\) We do not allude to Tritheim's assertion that the Catholicon of \(t 460\) was printed from wooden blocks; for this story, which he declares he had heard from Peter Schoeffer, if it were true, wouhd belong to the history of block-printing. Nor need we speak of Bergellanus's verses (1541), in which he distinctly alludes to carved blocks.

Commentatio de ratione commwai omnium linguarmm al literarmm, p. 80 (Zurich, \({ }^{1548}\))

Chror Argent. MS ed. Jo. Schilterus, p. 442.
De Bibiothera Vaticana. p. 412 (Rome, 1591)
- De Germantac mirarula. p. 10 (Leipzig. 1710)
'See. Ior instance, W. Blades, Life of Caxion, i. 39
the present time no book or document has come to light which can be asserted to have been printed from single, movable, wooden types. But we have seen above that the Haarlem tradition, as told by Junius, distinctly points to such types having been used for, aroong other things, the first edition of the Dutch Spiegel, and no one examining this edition (of which two copies are preserved at Haarlem) would deny that there are grounds for this belief; the dancing condition of the lines and letters making it almost impossible to think that they are metal types. For how long and to what extent such types were employed, if at all, we cannot say.

The other theory would have it that between block-printing and printing with movable cast types there was an intermediate stage sculpor of printing with "sculpto-fusi " types, that is, types fuss Types. of which the shanks had been cast in a quadrilateral engraved by hand afterwards. This theory wasters or letters some who could not believe in wooden types and yet wished to account for the marked irregularities in the types of the earliest printed books.
Gerardus Meerman, the chief champion of this theory, based it, not only on the words of Celtes (Amores, iii. 3), who in 1502 described Mainz as the city " quae prima sculpsit solidos aere characteres," but on the frequent recurrence of the word sculptus in the colophons of the early printers (for Jenson and Husner of Strassburg, see p. 514 above). Sensenschmid in 1475 said that the Codex Justinianus was "cut " (insculptus), and that he had "cut " (sculpsit) the work of Lombardus. In Psalterimm. Meerman also interpreted the account of the invention of printing by Trithemits \({ }^{1}\) as meaning that, after the rejection of the first wooden types, the inventors discovered a method of casting the bodies only of all the letters of the Latin alphabet from what they called matrices, on which they cut the face of each letter: and from the same kind of matriccs a method was in time discovered of casting the complete letters of sufficient hardness for the pressure they had to bear, which letters they were beforethat is, when the bodies only were cast-obliged to cut.' In this way Meerman explained that the Speculum was printed in sculptofusi types, although in the one page of which he gives a facsimile there are nearly \(t 700\) separate types, of which 250 alone are e's. Schoepflin claimed the same invention for Strassburg, and believed that all the earliest books printed there were produced by this means. Meerman and Schoepllin agreed that engraved metal types (literae in aere sculplac) were in use for many years after the invention of the punch and matrix, mentioning among others so printed the Mainz psalter, the Catholicon of 1460 , the Eggestein Bible of 1468 , and even the Proscepforism of Nider, printed at Strassburg in 1476. But the difficulty connected with the process of first casting the shanks and afterwards engraving the faces of the types has become apparent to those who have made experiments; and it seems more probable that the terms sculpere, exscupere, insculpere, are only a figurative allusion to the first process towards producing the types, namely, the cutting of the punch, which is artistically more im. portant to the fabrication of types than the mechanical casting-all the more as Schocffer in 1468 makes his Grammatica petus thythmica say. " 1 am cast at Mainz," an expression which could hardly be anything but a fgurative allusion to the casting of the types.

Granting that all the earlier works of typography preserved to us are impressions of cast-metal types, there are still differentes of Types Cast opinion, especially among practical prinsers and typeto Sand. founders, as to the probable nethods employed to cast them. It is considered uninely that the inventor of printing passed all at once to the perfect typography of the punch, the matrix and the spould. Bernard \({ }^{1}\) thought that the types of the Speculum were cast in sand, as that art was certainly known to the silversmiths and trinket-makers of the 15 th century; and be accounts for the varietics observable in the shapes of various letters on the ground that several models would probably be made of each letter, and that the types, when cast by this imperfect mode, would require some touching up or fimishing by hand. He exhibits a specimen of a word cast for him by this process which not only proves the possibility of casting types in this manner, but also shows the same kind of irregularities as those observable in the cypes of the Spaculum

But here again it is argued that in types cast by this or any other primitive method there would be an absence of uniformity in what founders term "height to paper." Some types would stand higher than others, and the low ones, unless raised, would miks the ink and not appear in the impression. The comparative rarity of faults of this kind in the Spectulum leads one to suppose that. if a process of sand-casting had been adopted, the difficulty of uneven heights had been surmounted cither by locking up the forme face downwards, or by perforating the types, cither at the time of casting or after wards, and holding them in their places by means of a thread or wire.
I Annales Jirsaugienset, ii. 421 : "Post haer inventis successerunt subtiliora, inveneruntque modum fundendi formas omnium Latini
alphabeti literaruin, quas ipsi matrices nominabant, ex quibus rursum aeneos sive stanneos charscteres fundebant; ad omnem
pressuram sulfirientes, quos prius manibus sculpebant.

To this cause Ottley attributed the numesots misprints in the Speculum, to correct which would have involved the unthreading of every line in which an error occurred. And, as a still more striking proof that the lines were put into the forme one by one, in a piece, he shows a printer's blunder at the end of page 42 in the unmixed Dutch edition, where the whole of the last reference-line is put in upside down, thus:-

A "turn" of this magnitude could hardly have occurred if the letters had been set in the forme type by type.

A second suggested mode is that of casting in clay moulds. by a method very similar to that used in the sand process, and resulting in similar peculiarities and variations in the types.

Ottley, who was the chicl exponent of this theory, Trone Cent suggested that the types were made by pouring melted to Clay lead or other soft metal into moulds of carth or plaster, Madta after the ordinary manner used from time immemorial in casting statues of bronze and other articles of metal. But the mould thus formed could hardly avail for a second casting, as it would be scarcely possible to extract the type after casting without breaking the clay, and, even if that could be done, the shrinking of the metal in cooling would be apt to warp the mould beyond the possibility of further use. Ottley therefore suggests that the constant renewal of the moulds could be effected by using old types cast out of them. after being touched up by the graver, as models-a process which he thinks will account for the varicties observable in the different letters, but which would really cause such a gradual deterioration and attenuation in the type, as the work of casting progressed, that in the end it would leave the lace of the letter uarecognizable as that with which it began. It would, therefore, be more reasonable to suppose that one sct of models would be used for the preparation of alf the moulds necessary for the casting of a sufficient number of types to compose a page, and for the periodical renewal of the moulds all through the work, and that the variations in the types would be due, not to the gradual paring of the faces of the models, but to the different skill and exaciness with which the successive moulds would be taken.

It is evident that the sand and clay methods of casting types above described would be slow. The time occupied after the first engraving of the models in forming, drying and clearing the moulds in casting, extracting, touching up and pussibly perforating the types required lor one page; would exceed the time required by a practised xylographer for the cutting of a page of text upon a block. But he that has gone through the trouble of casting separate movable types has a clear gain over the wood-block printer in having a fount of movable types, which, even if the metal in which they were cast were only soft lead or pewter, might be used again and again in the production of any other page of text, while the wood block can only produce the one page which it contains. Moreover. only one hand could labour on the xylographic block; but nany hands could be employed in the moulding and casting of types, however rude they might be. Bernard states that the artist who produced for him the few sand-cast types shown in his work assured him that a work man could easily produce a thousand such letters a day. He also states that, though cach letter required squaring after casting, there was no need to touch up the faces.

A third suggestion was made as to the method in which the types of the rude school may have beeo produced. This may putroge. be described as a system of what the founders of about 1800 called polytype, which is a cast or facsimile copy of an engraved block, matter in type, \&c.

Lambinet,' who is responsible for the suggestion, based upon a new translation of Trithemius's narrative, explains that this proces really means an early adoption of stereotype. He thinks that the first printers may have discovered a way of moulding a page of some work-an Abecedarium-in cooling metal, 50 as to get a matrix. plate impression of the whole page. Upon this marrix they would pour a liquid metal, and by the aid of a roller or cylinder press the lused matter evenly. so as to make it penetrate into all the hollows and corners of the letters. This tablet of tin or lead, being casily lifted and detached from the matrix, would then appear as a surface of metal in which the letters of the alphalset stood out reversed and in relief. These letters could easily be detached and rendered mobile by a knife or other sharp instrument, and the operation could be repeated a hundred times a day. The metal faces so produced would be fixed on wooden shanks. type high, and the fount would then be complete. Lambinct's hypothesis was endorsed by Firmin-Didot, the renowned type-founder and printer of Lambinet's day. But it is impossible to suppose that the Mainz psalter of ta57. which these writers point to as a specimen of this mode of exerution is the impression, not of type at all. but of a collection of " casts mounted on wood.

Yet another theory has been proposed by Dr Ch. Enschedt, head of the celebrated type foundry of the same name at Haarlem. who says (pp is squ. of his Technisch onderzork nagr de withinding wan de Boekdrukkunst, 1901). that the principle ol a printing surlace
\({ }^{4}\) Orig. de l'imprinevic i. 97 (2 vols. 8vo. Paris, 1810).
cosaponed of separate pieces was known to the block-prister, but he would have found it impossible to use small insulated biocks of wood

\section*{Emorevis}

Theery. tion of idea of aparate novable characters was not the invennot for the block-printer. but for another industry, for a foundry.

From the types of \(B^{* 4}\) and \(B^{\boldsymbol{4}}\) Enschede concludes that Gutenberg's punches (patrices) were made, hike the bookbinders' stamps, of yellow copper (brass, Germ. Messing). With such patrices only leaden matrices could be made, but the latter could be produced in two ways: the lead can be poured over the patrix, or the patrix be pressed into cold lead. The first mode is somewhat complex, but the matrix would havé a smooth surface, and need no further adjustment. The sccond mode is more simple, but requires great force, although lead is a coft metal. Moreover, the eurface of the matrix has to be trimmed, as the impression forces the load downmards and sidewards, which makes the surface uneven, though by this presaure the lead becomes firmer and more compact. to the advantage of the type-founder. Enschedd thinks that Gutenherg's letters must have been sharp, and that he obtained his matrices by the recond mode; he had each letter engraved on a brass plate, 2 mm , thick, therefore 2 mere ietter without anything underneath it. This letter (patrix) was pressed, by means of a small flat plate, so far into the metal that its back formed one surface with the top part of the lead, and then removed. After the patrix and matrix had been made in this way, the ietter was to be cast, and Enschedé believes that for this work Gutenberg used what in Cermany is called the Abklatsch-method, which. after having been gradually improved, was at last superseded by more perfect machinery. By this method the letter was cast in two tempos. First the letter itself on a small plate; then the plate placed underneath a castingform. to fix it to a small shank, which was to be cast into the form and would make, with the plate, the exact height of the letter. The letter on the plate was made not by pouring the metal into the matrix, but by beating the latter into the molten metal. When lead is heated so as to be a soft mass it casily assumes the form of any object which falls on or in it, therefore also of the matrix. which is the image of the engraved type. When the metal is not overbeated it will immediately cool down by contact with the cold matrix, \(s\) that the latter will not be injured, although it consists of the same substance as the molten metal. In this way a great many letters can be cast from one matrix. Enschede describes various difficulties connected with this method, and tells us that only large letters, Ifke those of \(B^{3}\) and \(B^{a}\), could he made by it, as the operation of adding the shank to the letter becomes impossible is the case of smaller leiters. Hence Gutenberg. having conceived the idea of printing from seeing (!) the Dutch Domatuses, chose this large sive of type for his work; for the smaller types of the 1454 Indulgences a copper matrix was required, which, in its turn, necessitated the use of a steel pat rix, the introduction of which he ascribes, as others have done before him (c., Bergcllanus), to Peter Schocfier.

As to the Costerian types, their bad and irregular condition shows, he thinks, that they were produced from leaden matrices, and the latter from brass patrices, though wooden patrices are also possible, but not probable. All the tools, however, were imperfect, and the workmen inexperienced, and thercfore bound to produce such imperfections as he finds in the Abecedarimm and Donatus types. But the types were cast in one tempo; the Abklatsch-method would Gave been out of the question for them on account of their small siate. In this way Enschede thinks Coster, not having learnt his art from anybody, invented the type cast with the staff, in one tempo, while Gutenberg, having bad a Costerian Donatws as his roodel, cast his large types in two tempos by the Abklatsch system inl Peter Schoeffer, by means of his stecl patrices, was ahle to cast ennaller types such as thove of the 1454 Indulgences, with staff and all. Enachede warns us that he is merely making suggestions as a eype-lounder, that he is not a bibliographer, and leaves the intcrpretation of documents to others. We quote his theories as coming protat such a qualified type-founder, and because they have made some imprewsion in certain quarters, but they lead us away from the real points connected with the invention of printing. First of all the "pasting of metal types is not, as he thinks, the first stage in the invention; its beginning, its essence is, and has always been thought to he, the mooobiluy of the characters. This movability, and the accidental way in which it was discovered, form together the pith of the Haarlem tradition es told by Junius. He indicates it without using the word "movable." by saying that Coster. Fhile walking in the Haarlem wood, cut some letters in the bork of a tree, and with them," reverscly impressed one by orse or paper. compraned one or two lines. Nothing reems more natural than that a block-printer (as the printer of the xylographically printed Spormium must have been) should cut such separate letters, and thereupon perceive that they could be used over and over again for a variety of words, on different pages, while those which he used so cut in a block only verved him for one page and for one purpose. It is equally clear Irom the Haarlcm tradition that the art of casting netal types was the second stage in the invention, a development or outcome of the primary idea of " movable letters," and the realization of their edvantage, for Junius aye that Coster "alterwards
chareged the beechen characters into leaden, and the latter again into tin ones" This also shows that the discoverer of the insulated movable wooden letter--liter realizing, perhaps, that they could not endure much presure, or misued (as Enschedd says) the mathematical precision neceseary (or his purpose-iransformed himself from a woodcutter into a letter-founder, and had no recourne (as Enschede would have is) for casting his types to a foundry apart from his own. As this transormation is posaible and probable there seems to be no reason for departing from the simple but clear Hasrlem tradition as we read it in Junius.

In the infancy of printing every printer, in different countries and different towns, starts with his own types; hence we may conciude that he had learnt the art of engraving and casting them himself. and so combined the art of type-founding with that of prinsing. This points back to combination of the two or three arts in the first printing-office. It would be strange if the inventor of the movable letters, whom we have shown to have been a blockprinter, and therefore acquainted with the art of engraving letters, and other mechanical contrivances connected with printing, had lacked the ability, which his immediate followers posessed, of imparting to his movable characters, by some means or another, that firmness and precision which he required for the realization al his invention. How long Coster had been a block-printer hefors he inverted, and how long and to what extent he continued to use, the movable wooden letters, we cannot tell.
That Enschedé ascribes to Coster the invention of casting metal types with a shank (as they have been manufactured for centuries alterwards). and that of another mode of manufacturing typea (the Abhlalisch-rnethod) to Gutenberg, suggested to the latter by seeing (!) the Domouses printed at Haarlem, looks like an amiable attempt to get over the unpleasant tradition of the theft of Coster's types. but his theories are irroconcilable with the Haarkem tradition, with Zell's account of the relation between Dutch and Mainz printing and with bibliography in general.

It is not surprising that Enschede's theories called forth others from Zedler (Verof(cwil. i. 34), who argues as follows: Enschede says rightly that the sype of the Hague Dutch Donalus is more defective than that of any other isth-century book, more than even that of the Paris Dosabes. Such typea could not have been cast from a copper matrix. But a printer who had derived his art of casting types from Gutenberg or one of his pupils, would hardly, alter the introduction of the steel stamp and the copper matrix (necessary for manufacturing the smali typea of the 1454 Indul. gences). have returned to the casting of a small type from a leadun matrix, and used, moreover, a process which remained, in its consequences, behind that of Gutenberg. Zedler then points to a peculiarity of the earlieat Dutch incunabula already mentioned above, namely, the sign of contraction connected with some letters by a fine suroke, which he says is not (!) found in the Dutch block. books, or in the Dutch MSS. He thinks, therefore, that this stroke was required by the method of casting this type. The stamp for making the matrix cannot have been a staf, on the lower end of which the recersad letter was cut, but a mere letter without any footing. Consequently, it must have consisted of lead not wood, and have been manulactured in the same way as Gutenberg's type was made, scoording to Enschede. Every sign of contraction had to be one whole with the letters to which they belonged to prevent their being shifted during the process of printing. The letters cast from the matrix made in this way had as foot a thin square plate which enclosed the letter but no staff. owing to the mode of making the stamp and the matrix. If the Dutch printer had intended to cast a type with a staff by means of a casting tool, however primitive, he would not have required the thin plate. But his letters, with a thin phate as their loot, required to be pasted on a shect of strong paper, so as to be firmly connected in words and sentences for the purpose of printing. Hence the printer could regulate the spaces between the words, without using. like Gutenberg, spaces of a definite width for this purpose, \(\infty\) that he had no trouble in raking the lines end evenly. From such a princing-surface with a firm footing, it was possible, alter she ground had become hard, to obtain impressions just as from movable types enclosed in the forme. Zedler was told by an expert that, technically, there was nothing against such an explanation, but, he says, if it were correct. it would not solve the question, not yet satisfactorily answered, as to what we have to anderstand by the printed Dutch Donatuses. The "doctrinal jette en molke" of Jean le Robert and the libri impressi, mentioned under the year 1450 in the Mdemorial of the monastery Weidenbach in Cologne would then be books printed from such printing plates with separately cast letters. In thils way Zelts' account in the Cologne Chronicle would be confirmed (!), We should also understand why the Dutch, though knowing the art of casting types. only printed Donoluses and similar mall schoolbooks, for which there was much demand. for in the present day, stereotype-printing is likewise used for books which, when cditions follow each other rapidly, have to be printed unaltered. In this case Gutenberg would not he the inventor of the cast letter. But the Dutch could not claim, with Enschede, the honour of the invention of movable metal types. They invented the casting of letters, but it would be Gutenberg's merit to have invenied itie mooclibe cast types. As any rate he woukd be the inventor of the.
casting instrument whereby the letter with the seaff became independent, that is movable- The early Dutch printing letter, which could only be used by being firmly footed on a plate, would have missed its real value for printing, its free movability.

Zedier, for want of data, cannot say where and when Gutenberg learnt the technics of early Dutch printing, though the Cologne Chronicle tells us that from this printing his work began. But he thinks that the secret arts which occupied Gutenberg at Strassburg, and which, when the documents are impartially (!) considered, can be regarded as nothing but experiments in the printing of books, are earlier than 1440 . He will not decide whether Guten. berg has been in Holland, or whether this historical kernel is the foundation of the Coster legend (!) of Adrianus Junius which is independent of the Cologre Chronicle. Anyhow, Gutenberg still required ten years of hard work and troublesome experiments, belore he, basing himself on the early Dutch printing, whatever this may have been, could become the inventor of the present mode of printing books.
We here see how Enschede's theories give rise to Zedler's structure of theories. When the former says that Gutenberg chose for his first work the large letters of \(\mathbf{B}^{34}\) and \(\mathrm{B}^{4}\), because the Abllatsch-method (invented [?] by him) was only fit for large leters, he forgets that the printers of these Bibles, wishing to apply their new art to the production of copics of the Bible in a speedier way than the seribes of their time were able to do, had, of necessity, to design their types from the large omamental church hand then in vogue for Bibles, Psalters, Missals, \&e. For the same teason they prepared different. much smaller, types for the Indulgences of 1454, as the manuscript copies of these Indulgences, handed to them as "copy." were written in the bastand Roman book-hand, used for such documents. When the arts of casting types and of printing with them found their way to Mainz they were new in that city, but they came there already well-developed, and the printers, whoever they were, knew how to prepare themselves for any book or document which it was thought desirable to print. But of these questions Enschedé takes no account. He ascribes the two Bibles to Gutenberg, because Dziatzko has done so, without inquiring whether Gutenberg (not Pfister) had, alter all, anything to do with Bm.
Zedler's theories, partly developments, partly corrcctions of those of Enschede's, are based on the misapprehension that a peculiarity in the Costerian types, i.e. the connexion of the signs of contractions by a fine stroke with the letters over which they stand, does not occur either in the Dutch blockbooks or in the Dutch MSS. This connexion, however, far from being not found, is a conspicuous feature, in the Dutch blockbooks and MSS., and being faithfully reproduced in the Costerian types, shows how near these types stand to the block-printing and MS. periods. Zedler does not explain how he would print with the plate-footed types, pasted on strong paper, which he ascribes to Coster. Nor does he say whether he ever examined the Costerian editions of the Speculum, Donatuses, \&c., to see whether they showed any traces of such awkwand contrivances.

After having done justice, we hope, to these latest theories, which, in spite of their great length, leave many things unexplained, it is a pleasure to read once more Junius's unvarnished account of the Haarlem tradition, which contains no intricate theories, but a simple explanation of the rise and progress of printing with movable (metal) types in that city. The reading of it show that real lacts can be explained in a few words, while theories require long explanations, first for explaining away the rcal facts, and then for explaining the theories, which after all lead us astray.

The shape and manufacture of the types used as early as c. 1470 do not seem to have differed materially from those of the present

\section*{Shepe of Earikat} types. This is evident (1) from the shape of the old types which were discovered in 1878 in the bed of the river Saone, near Lyons, opposite the site of one of the 15 th-century printing-houses of that city, and which there is reason to believe belonged once to one of those presses, and were used by the early printers of Lyons: (2) from a page in Joh. Nider's Lepra moralis, printed by Conrad Homburch at Cologne in 1476, which shows the accidental impression of a type, pulled up from its place in the contrse of printing by the ink-ball, and laid at length upon the facc of the forme, thus leaving its exact profile indented upon the page; (3) from an entirely similar page (fol. 4b) in Liber de laudibus ac festis gloriosee Virginis (Cologne, c. 1468). From the small circle appearing in the two last-mentioned types. it is presumed that the letters were pierced laterally by a circular hole, which did not penetrate the whole thickness of the letter, and served, like the niek of modern types, to enable the compositor to tell by touch which way to set the letter in his stick. The fact that in these two cases the letter was pulled up from the forme acems to show that the line could not have been threaded.

Vine. Fineschi, Nolizie Sloriche sopra la slamperia di Ripoli, 8. 49 (Florence. 1781), gives an extract (rom the cost-book of the Ripoli press, about 1480 , which shows that stcel, brast, copper, tin, lead and iron wire were all used in the manufacture of types at that period.'
\({ }^{1}\) On the above theories and types consult T. B. Reed, OLd Englisk

History of the Earkest Types.-The history and nomenciature of the earliest types are practically a continuation of the history and nomenclature of the characters figured in the carliest blockbooks, wood-engravings and MSS. For instance, Gothic type was first used, say, about the year 1445, but Gothic writing, of which that type was an imitation, was already known and used about the second half of the 12 th century and can be traced still farther back (see above). Again, the pure Roman type, which appeared about 1464 , is nothing but an imitation of what in palaeography is called the Caroline minuscule, a handwriting which was already fully developed towards the end of the 8th centuty (see Palazography).

The broad outlines of the history of the carliest lypes are as follows:-

Cothic type, of the angular or pointed kind, was first used by the Haarlem printer of the Speculum, Donatus, \&c. (see specimen No. I, taken from the British Museum copy of the
Specsilum humanae salvationis. mixed Latin edition). Goadco presumably c. 1445. An entirely similar but larger type (No. 3. taken from the British Museum copy of Ludovicus [Pontanus] de Roma, Singularia) was used, presumably by the same printer, c. 1465-1470. Cothic type appeared in Germany as a church type in 1454, in the \(3:\)-line Indulgence, presumably printed by Johan Gutenberg at Mainz (No. 3. from the Gottingen copy), and in the jo-line tndulgence (No. 4, taken from the British Museum copy). printed by Peter Schoeffer at Mainz. Type No. 3 was also used about the same time for the 36 -line Bible, and type No. 4 for the 42-line Bible. Two much larger Gothic types appeared in the Psalter of 1457, published by Fust and Schocfer (sce Bernard, Oripine, pl. vil.): In ltaly Gothic type appears in 1468 (No. S, taken lrom the British Muscum copy of Cicero, De oratore, published at Rome by Ulr. Hahn, the 15th of December 1468, in small Roman type, with imprint in Gothic), but in a more rounded form: it is practically the ordinary Italian wriling influenced by the Gothic. In France Gothic began to be used in t473; in England it appears first in Caxton's type about the year 1480.: It was employed extensively in a great many of the earliest presses all over Europe, and continued to be used targely at all times, especially for Bibles, law books, royal proclamations, \&c., and even to this day it is the national character of Germany: ft is now usually called leltre de forme, block letter or English in English-speaking countries, Lettre flamand in Holland, and froctur in Germany.

Bastard Italian or bastard Roman was introduced in \(\mathbf{t} 454\) at Mainz in the \(3 I-l i n e ~(N o .6)\) and 30 -line (No. 7) Indulgences. It is also called leture de somme, some think from the Summa of Thomas Aquinas, printed in the type of the Bible of 1462 by Fust and Schoeffer. Varietics of this kind of type were, like the Cothic, much used by the earliest of type were, like the Cothic, much used by the earliest Rease, of St rassburg, c. 1460, and Uirich Zell at Cologne, c. 1466, \&c. In England it appeared in the first three books printed (1478, 1479) at Oxford (No. 8, taken Irom the British Museum copy of Jeromes Expositio en Simbolum A postolorum wrongly dated 1468 for 1478).
Roman type, the Caroline minuscule of patacography, was first used in Germany about 1464, Strassburg, by the printer whose fount of type is known by a peculiarly shaped \(R\), and who on that account is usually called "the \(R\) printer" No. 9, taken from the British Muscum copy of Durandus, Retionale, of which the Basel tibrary possesscs a copy which was bought in 1464). \({ }^{3}\) In ttaly it appears in 1465 at Subiaco (see Bernard pi. xii No. 19), at Rome in 1467 (op. cil. pl, xii. No. 20). but in alt its purity at Venice in 1469 , used by Johannes of Spires (op. cil. ph. xil. No. 25), and at Paris in 1470 (op. cii. pl, xiii. No. 25). In England it was not used before 1518 , when Richard Pynson printed Pace's Oratio in Pace nuperrima(see facsimile in Reed's Type Foundries,p.92).

Burgundian type, or gros batarde or secretary, was first used about \(1470-147^{2}\) by Colard Mansion at Bruges (No. to, taken from the British Museum copy of La Controversic de Noblesse,
c. 1471-1472). With a somewhat similar type (No. 11,
taken from the British Museum copy of the Recwyell) Willian Caxton is presumed to have printed, fikewise at Bruges, a set of five books, of which the Recuycll of the History of Troye, a translation of a work by Raoul le Fevre, is the best known and was probably printed c. 1471.4 To this same class belong the first type (No. 12 , Irom the British Muscum copy of the Dictes) used in England by William Caxton for the printing of Dectes and Sayizes of the Philosophers (Nov. 18, 1477), and that used by the printer of St Albans (No. 13, taken from the Cambridge University Library copy of Aug. Dactus. Elegancie). It was an imitation of the manuscript hand of the English and Burgundian scribes of the 15th century, and, after having figured for a long time in several of the early London and provincial presses, was about is34 entirely superseded by the English black letter. To this class of type

\footnotetext{
\({ }^{\text {B }}\) See Blades, Lift of Caxion, pl. xvii.
See Jules Hhilippe, L'Imprimerie i Paris, p. 219.
-Cf. Blades, Life of Caxtem.
}
belong aloo the iater letire de civilisf (c. 1570), the scrdp (Lethre conle, letion de financt, Dutch. geschrcesen schinfi), set compt, base secretary, and raniming secredary types.
> metaillituran 3u primu dapio
> Na. 1.-Speculem type c. 1445 (?).
> prituraméńf tut furtur:Si
> No. 2.-Pontanus type. c. 1470 (?)

Nos. 3 and 6.-Mainz 31-line Indulgence. 1454 Now 4 and 7.-Mainz 30-line Indulgence, 1454

\title{
3 Finiti et \(\infty\) \\ tubri.iss Tatriam.
}

No. 5-Cicero, De eralore, 1468.

Onis eft quí medius fe oir oat affectim
No. 8.-Jerome's Exposilio (1468). \(147^{8}\).
 (Amsterdam, 1767); Eprewe de car. de Jacques Franfois Resari, 8vo (Brussels, t77i) ; Schriflew . . . bey J. H. Prembuler. sto (Frank-fort-on-Main, 1774); Epreares des car. de la fond. de J. L. Joannis, 8vo (Paris, 1776): Epresues des car. de la fond. de J. L. de Bombers, 8vo (Brusoels, 1777); Procre van Letleren wadke gegooles morden door J. de Grool, 8vo (the Hague, 1787): Pantographie, by Edmund Fry, 8vo (London, 1799); and Mamxale typographico, by C. Bodoni, 4to (Parma, 18i8).

Printers afler 1500.-Though the Cologne Chronicle of 1499 denies to Mainz the honour of the invention of the art of printing. it was right in asserling that, after it had been brought there from Holland, it became more masterly and exact, and more and more artistic. During the first hall-century of printing a good many printers distinguished themselves by the beauty, excellence and literary value of their productions. We may mention as such: Johan Fust and Peter Schoefler at Mainz; Johan Mentelin and Heinrich Eggestein at Strassburg; Ulrich Zell at Cologne; Sweynheym and Pannarts at Subiaco and at Rome; Nicolas Jenson at Venice; Anton Koberger at Nuremberg; Ketelaer and De Leempt at Utrecht; Johan Veldener at Louvain, Utrecht and Kuilenburg; Gerard Leeu at Gouda; Johan of Westphalia at Louvain; and William Caxton (q.v.) at Westminster.

Very soon the demand for books increased, and with it came a reduction in their prices. This caused a decline in the exeeution of printing, which begins to be appreciable about 1480 in some localitics, and may be said to have become general towards the end of the 15 th century. At all times, however, we find some pinters raise their art to a great height by the heauty of their types and the literary excellence of their productions. Among the later printers we may mention the Aldi of Venice (1490 to 1597); G. B. Bodoni of Parma (1768-1813); John Amerbach at Basel (1492-1516): Joln Froben at Basel (1496-1527); John Baskerville at Birmingham (t750-1775); the house of Weichel, first at Paris (c. 1530-1 572), afterwards at Frankfort; Christopher Plantin at Antwerp (1554-1589); the Elzevirs, fist at Leiden, afterwards at Amsterdam (\(1580-\) 1680); Antoine Verard at Paris (1485 -1513); Josse Bade or Badius at Paris (1495-1 535); and the Esticnnes at Paris (15021598).

The Italic type \({ }^{1}\) is said to be an imitation of the handwriting of Petrarcb, and was introduced by Aldus Manutius of Venice for the purpose of printing his projected small editions of the classica. The cutting of it was enirusted to Fran- heale cesco da Bologna, an artist who is presumed to be identical with the painter Francesco Francia or Raibolini. The fount is a "lower case" only. the capitals being Roman in form. It contains a large number of tied letters, to imitate handwriting, but is quite free from contractions and ligatures. It was first used in the Virgil of 1500. Aldus produced six dificrent sizcs between 1501 and 1558 . It was counterfeited almost immediately in Italy, at Lyons and elsewhere. Originally it was called Venetian or Aldine, but subsequently ltalic type, except in Germany and Holland, where it is called "cursive." The Italians also adopted the Latin name "characteres cursivi seu cancellarii." In England it was first used by Wynkyn de Worde in Wakefield's Oratio in 1524 . The character was at furst intended and used for the entire text of classical works. When it became more general, it was employed to distinguish portions of a book not properly belonging to the work, such as introductions, prefaces indexes, notes, the text itself being in Roman. Later it was used in the text for quotations, and finally served the double part of emphasizing certain words in mome works, and in othern, chicfly translations of the Bible, of marking words not rightly forming a part of the text.

Greek type (minuscules) first occurs in Cicero, De officiis printed at Mainz in \(t 465\) by Fust and Schoeffer. The fount used is rude and imperfect, many of the letters being ordinary Latin. In the same year Sweynheym and Panmarts used a good
Greek letter or some of the quotations in their edition of Lactan (see, for instance, leaves 112, 102, 36a, 139, 140); but the supply wa evidently short at first, as some of the larger quotations in the first part of the book were left blank to be filled in by hand. The firt book wholly printed in Greek minuscules was the Grammar of Lascaris, by Paravisinus, at Milan in 1476. in types stated to have been cut and cast by Demetrius of Crete. The fount contains breathings, accents and some ligatures. The headings to the

\footnotetext{
These paragraphs on the various types are for the most part taken from T. B. Reed's IIistory of the Ohd English Letter Fowndrues. p. 50 req. (London, 1887).
}
chapters are wholly in capitals. The Anthologia graeca of Lascaris was printed at Florence in 1494 wholly in Greek capitals (litterac majusculae), and it is stated in the preface that they were designed after the genuine models of antiquiry to be found in the inscriptions on medals, marbles, \&c. But as late as 1493 Greek type was not common, for in that year the Venice printer Symon Bevilaqua issued Tibullus, Catullus and Propertizs with blanks left in the commentary for the Greek quotations. In England Greek letters appeared for the first time in 1519 in W. de Worde's edition of Rob. Whittington's Grammatica, where a few words are introduced cut in wood. Cast types were used at Cambridge in Galen's De tempera. menfis, traaslated by Linacre, and printed by Siberch in is21, who styles himself the first Greek printer in England; but the quotations in the Galen are very sparse, and Siberch is not known to have printed any entire book in Greck. The first printer who possessed Greek types in any quantity was Reginald Wolfe, who held a royal patent as printer in Greek, Latin and Hebrew, and printed in 1543 two Homilies of Chrysostom, edited by Sir John Cheke, the first Greek lecturer at Camhridge. In Edinburgh. in I\$63, and as late as 1579, the space for Greek words was left blank in printing, to be filled in by hand.

The Oxford University Press, re-established ia 5585 , was well suppijed with Greek types, which were used in the Chrysostom of 1586. About 1607 Sir Henry Savile introduced Greek types (vulgarly called on account of their beauty "the silver letter") into Eton College, for printing his edition of St Chrysostom (8 vols., \(1610-1613\), John Norton) and other Greck authors. He afterwards presented this type to the university of Oxtord. In 1632 Cambridge applied to Oxlord for the loan of a Greek fount to print a Greek Testament and the same university made an offer in 1700 for the purchase of a fount of the king's Greck at Paris, but withdrew on the French Acadeny insisting as a condition that every work printed should bear the imprint " characteribus Craccis e typographeo regio Parisiensi." It should not be forgotten that the large number of ligatures in the Greek of that day made the production of a fount a serious business. The Oxford Augustin Greek comprised no fewer than 354 matrices, the great primer 456, and Fournier's fount showed even 776 different sorts. The Dutch founders effected a gradual reduction of the Greek typographical ligatures. Early in the 19th century a new fashion of Greek, for which Porson was sponsor and furnished the drawings, was introduced, and has remained the prevailing form to this day. Cl. Rob. Proctor, The Prinding of Greek in the X.Vih Century, folio (Oxfind, 1900).

The first Hebrew types are generally supposed to have appeared in I475 in Petrus Niger's Trachalus contra perfidos Judaeos (eaf 10). fobrew. printed by Conrad Fyner at Esslingen. De Rossi states Twrim, of Rabbi Jacob ben Asher, was printed in 1475 at Pieve di Sacco in Austrian Italy, while in the same year, a few months earlier, Salomon Jarchi's Comment. on the Penlateuch appeared at Reggio In ltaly, printed in the Rabbinical character. Numerous other Hebrew works followed before 1488, in which year the first entire Hebrew Bible was printed, with points, at Soncino, by a family of German Jews. The Girst English book in which any quantity of Hebrew type was used was Dr Rhys's Cambro-Brytannicae Cymraceacee lineuce instituliones, printed by Thomas Orwin in 1591, though already in 1524 Hebrew characters, but cut on small blocks of wood, were used by W. de Worde in Rob. Wakefield's Oratio. The Hebrew fount made use of in Walton's Polyglott in 1657 was probably the first important lount cut and cast in England, though there were as yet no matrices there for Rabbinical Hebrew. In the beginning of the 18th century Amsterdam was the centre of the best Hebrew printing in Europe.

The first book printed in Arabic types is aid to be a Dimmale Graccormis Arabwim, printed at Fano in Itaty in \(1514^{\mathrm{L}}\) Two years Arabts bater P. P. Porrus's Polyglolf Psaller, comprising the Later a Karan ia Arahic is said to have been printed at Venice. In 1505 an Arabic Vocabulary at Granada had the words printed in Cothic letters with the Arabic points placed over them; and in other presses where there were no Arabic types the language was expressed in Hebrew letters or cut in wood. De Guignes and others mention a fount of Arabic used by Gromors in Parls in t539-1540 to print Postel's Grammar. In England some Arabic words were introduced in Wakefield's Orotio of \(\mathbf{1 5 2 4}\), but apparently cut on small blocks of wood. In Minsheu's Dertor in limguas, 1617, the Arabic wards are printed in Italic characters. Laud's gift of Oriental MSS. to Oxford in 2635 , and the appointment of an Arabic lecturer, were the first teal incentives to the cultivation of the language by English scholars. Previous to this it is atated that the Rapheiengius Arabic Press at Leiden had been purchased by the English Orientaliet, William Bedwell; hut, if it was brought to England. it does not appear to have been immediately made use of. The Arabic words in Thomas Greave's Oratio de linguae Arabicas afulitate, printed at Oxfird in 1639, were written in by hand.

Syriac type, probably cut in wood, first appeared in Postel's Lingwarmin XII. Alphabofa, printed in Paris in 1538 ; but the characters are so rude in form and execution as to be scarcely legible.

In 1553, however, Postel asisted in cutting the punches for the. Syriac Peshito New Testament, printed at Vienna in 4 to, the first portion of the Scriptures, and apparently the first book,
printed in that language. In 1569-1572 Plantin at Syrdac Antwerp included the Syriac New Testament in his Polytoll, and reissued it in a separate form in 1574. In Englaad Syriac was usually expressed in the carlier works in Hebrew characters. But in \(165^{2}\), when the prospectus and preliminary specimen of Walton's Polygloll were issued, we find Syriac type in use.

Of the Armenian character the press of the Vatican possessed e good fount in 1591, when Angelo Roccha showed a specimen in his Bibliotheca Apostolica Vaficana. A psalter is said to have been printed at Rome in \({ }^{1565}\), and Rowe Mores Armeale mentions doubtfully a liturgy printed at Cracow ia 1549. Arraenian printing was practised in Paris in 1633 ; but the Armenian bishops, on applying to France for assistance in printing an Armenian Bible. in 1662, were refused, and went to Rome, where, wearly as 1636 , the press of the Propaganda had published a specimen of its Armenian matrices. The patriarch, after fifteen months" residence ia Rone, removed to Amsterdam, where he cstablished an Armenian press, and printed the Bible in 1666, which was foliowed in 1668 by a separate edition of the New Testament. In 1669 the press was set up at Marseilles, where it continued for a time, and was ultimately removed to Constantinople. In England the first Arme nian type was that presented by Dr Fell to Oxford in 1667. The alphabet given in the prolegomena of Walton's Polydout was cut in wood.

Of Ethiopic the earliest type appeared in Potken's Psalter ond Song of Solomon, printed at Rome in \({ }^{1513 .}\). The work was reprinted at Cologne, in 1518, in Potken's Polydoil Psallet. In emepok 1548 the New. Testament was printed at Rome by some Abyssinian priests. The preas of the Propaganda issued a specimen of its fuunt in 1631, and again in Kircher's Prodromes Coplus in 1636. Erpenius at Leiden had an Ethiopic fount. which in 1626 was acquired by the Elzevirs. Usher attempted to procure the fount for England; but, his attempt failing, punches were cut and matrices prepared by the London founders for the London Polyg lod, which showed the Psaims, Canticles and New Testament in the Ethiopic version.

Of Coptic the press of the Propaganda possessed a lount, and a specimen was issued in 1636, in which year also Kireher's Prodromus Coplus apprared from the same press. In England David Witins's edition of the New Testament was Cepfe printed in 1716 Irom Coptic types cast whith matrices which Dr Fell had presented to Oxford in 1667. The alphabets shown in the introduction and prolegomena to the London Polydoft of 1655 , and 1657 were cut in rood.

Of Samaritan the press of the Propapenda had a fount in 1636 . and the Paris Polygloll, completed in 1645, contained the entire Pentatcuch in type, the punches and matrices of which had been specially prepared under Le Jay's direcion. Samerketh. The fount used for the London Polygloll in 1657 is admitted to have been an English production, and was probably cut under the super. vision of Uisher.

With Slavonic type a palter was printed at Cracow as early as 1491, and reprinted in Montenegro in 1495. The only Slavonic fount in England was that given by Dr Fell to Oxford, stavomet
and this, Mores states, was replaced in 1695 by a fount and this, Mores states, was replaced in 1695 by a fount slavoant,
of the more modern Russian character, purchased probably at Amsterdam. The Oratio Domensa in 1700 gives a specimen of this fount, but renders the Hieronymian version in Rualaa.
copper-plate. Modern Slavonic, better known as Rual copper-plate. Modern Slavonic, better known as Rusalag.
Russian, is said to have appeared first in portions of the Oid Testament, printed at Prague in 1517-1519. Ten years later there was Ruseian type in Vence. A Russian press was established at Stoctholm in 1625, and in 1696 there were matrices in Amsterdam, from which came the types used in Ludnlph's Crommatica Rarrico, printed at Oxford in that ycar, and whence also, it is said, the types were procured which furnished the first St Petersburg press, catablished in 1711 by Peter the Great. Morcs notes, hat in 1778 there was no Russan type in England, but that Cottrell was at that cimo engaged in preparing a fount. It does not appear that this project was carried out, and the earliest Russian in England was cut by Dr Fry from alphabets in the Vocabwlaria, collected and published for the empress of Russia in 1786-1789. This fount appeared in the Pantographa in 1799.

A lount of the Etruscan character cut by William Caslon about 1733 for Swinton of Oxford was apparently the first produced. Foumier in 1766 showed an alphabet engraved in metal Ermacas.
or wood. In 1771 the Propaganda published a specimen or wood. In 1771 the Propaganda published a specimen Ernachas
of their fount, and Bodoni of Parma in 1806 exhibited a third in his Oratio Dominesa.

Runic types were first used at Stockholm in a Runie and Swedish Alphabelarimm. printed in 1611. The fount, which was cast at the expense of the king, was afterwards acquired by the university. About the same time Runic type was Ruph: used at Upala and at Copenhagen. Voskens of Amsterdam had marrices about the end of that century, and it was from Hollend that Frarcis Junius is supposed to have procured the matrices which, in 1677, be greseated to Oxford. This fount appears in the

Oratio Dominice of 1700, and in Hictres's Thasamens (1703-1705). and it remained the only one in England.

Matrices of Gothic type were preseated to Offord by Francis Iunius in 1677, and a fount of them was used for the Oratio Dominice onens. of 1700 and in Hickes's Therampers. A different foumt was used for Chamberlayne's Oratio Donvisics, printed at Amsterdam in 1715 . Gailon cut a fount which appeared in his first specimen in 1734 . This and the Oxford fount were the only two in England in 1820.

Founts of Icelandic, Swedish and Danish were inctuded in Junius's fift to Orford in 1671, and were, perhape, specially prepared in teremere Holland. The first-named is shown in ethe Oratio Fitas Dowinics of 1700 and in Hickes's Thesamras. Printing had been practised in Icelapd since 153 I, when \({ }^{\text {s Brasiary }}\) In priated at Hoolum, in types rudely cut, it is alleged, is wood. produced. After a period of decline, printing was rewived in 1773. and in 1810 Sir George M'Kenzie reported that the Hoolum press posecseed eight founts of type, of which two were Ronnan, and the remainder of the common loelandic character, which, like the Danish and Swedish, bears a close resemblance to the German.

For the Anglo-Saxon language the first type wat cut by John Day in 1567. under the direction of Archbishop Parker, and appeared Aatob in Elfric's Paschal Homily in that year and in the sarear Saxon type was used by Browne in 1617 . in Minaheu's Duclor in linguas; and Haviland, who printed the eacond edition of that work in 1626 , had in 1633 made use of the chagacter in Lisk's edition of Alfric's Homily.

The first lount of Irish character was that presented by Queen Elizabeth to O'Kearney in 157 I , and used to print the Catechism atal Which appeared in that year in Dublin. from the press many of the letters being ordinary Roman or ltalic. It was uned in several works during the carly years of the 17 th century, and as late as 1652 in Grodfrey Daniel's Christian Doctrine, printed in Duhlin. The Irish mominaries abroad were better supplied with irish type. A new type was cut by Moxon, and appeared in 1681 in Boyle's New Testament, printed by Robert Everingham.

The earlicst specimen of music type occurs in Higden's Polychrouicom, printed by De Worde at Wertminster in 1495. The atmes. equare notes appent to have been formed of ordinary quadrats, and the staff-lines of metal rules imperfectly joised. In Caxton's edition of the mane work in 1482 the space had been lelt to be filled up by hand. The plain chant in the Mainz pealter of 1490, printed in two colours, was probably cut in wood. Hans Froechauer of Augsbur printed music from wooden blocks in 1473. and the notes in Burtius's Opuscwimm Musices, printed et Bologna in 4487 , appear to have been produced in the same manner; while at Lyons the misal printed by Matthias Hus in 1485 had the staff only printed, the notes being inteaded to be filled in by hand. About Igoo a musical press was established at Venice by Ottavio Petrucci, at which were produced a series of masa-books nith lozenge-shaped notes, each being cast complete with a staff-lipe. In 1513 he removed to Fomombrone, and obtained a patent from Leo X. for his invention of types for the sole printing of figurative cong (camlus figuratws). Before iS50 weveral European preswes followed Petrucci's example, and music type was used, among other places, at Augsburg in 1506 and 1511 . Parma in 1526. Lyons in 1532 and Nuremberg in IS49. In 1525 Pierre Hautin cut punches of lonenge-shaped music at Paris. Round notee were used at Avigoon in' 1532. In England, afaer its find une, music-printing did not become general till \(\mathbf{4 5 0}\), when Gralton printed Marbecke's Book of Common Prayer, soted " in movable type, the four staff. lines being printed in red and the notes in black. There are only four different sorts of notes used-three square and one lovense. About 1660 the detached notes hitherto employed began to give place to the " new tyed note," by which the freads of cets of quavers could be joined. But at the close ol the thth century music-printing Irom type became less common, on account of the introduction of etamping and engraving plates for tbe purpose. Cf. Rob. Steele. The Earliest Enflish A(usic Printing, folio (London, 1903): Andr. Deakin, Mus. Bibliogr., 8vo. (Birmingham, 1893).

Printing for the blind was first introduced in 1784 by Valentin Hady, the founder of the asylum for blind children in Paris. He Priathet made use of a large script character, from which im. tre sthe prescions were taken on a prepared paper, the impresaions relief and legible to the touch. Haúy's pupils not only read in this wray, but executed their own typography, and in 1786 printed an eccount of their institution and labours as a specimen of their press. The frrst whool for the blind in England was opened in Liverpooi in 1791. but printing in raised characters was not successfully accom. plished till 1827. when Gall of the Edinburgh asylum printed the Gospel of St John from angular types. Alston, the treasurer of the Glagow arylum, introduced the ordinary Roman capitals in relief, and this system was subsequently improved upon by the oddition of the lower-case letters by Dr Fry. the type-founder. whose specimen gained the prize of the Ediaburgh Society of Arts

In 1837. Several rival sytemas have competed in England for adoption. Of which the most important are those of Lucas. Prere. Moon. Braille, Carton and Alston (see Blindiess).

The trouble and cost involved in the use of the initial director early engested the use of woodcut initials, and Erhard Ratdolt of Venice. about 1475, is generally supposed to have been the first

Tohiab prister to introduce the likeras florentes, called also chiats latters lompaures, or typi tornatissime, which eventually superseded the hand-painted inituals. Caxton introduced one or two kinds in 1484 . Among the earicst to be used are the so called Lombardic initials or capitals. The more elaborate initials. such as those used in tho Mainz indulgences and pralter. by Aldus at Venice, by Johann Schoefier at Mainz in 1518, by Tory and the Estiennes at Poris. by Froben at Basel, and by the other great printers of their day, were known as letres prises. Besides these. the ordinary " twoline letters" or large plain capitals came into use: and these were generally cast, whilat the ormmental letters were for the most part engraved on wood or metal.
Type ornaments and flowers began, like the initials, with the illuminators, and were afterwards cut on wood or metal. The first priated ornament or vignette is supposed to be the scutum or arms of Fust and Schoefter in some copirs Orsameate of then 1457 Pealtcr, and of their edition of the Bible
of 1462. There is no vignette in the Subiaco Lactantims of 1465 (as stated by Mr Reed, Letier Foundries. p. 82). In Holtrop's Monum. bypogr. des Pays-Bas may be seen horders used by sume of the carliest printers of Holland (\(1475-1490\)). which would not look bad even in the present time, Caxton in 8490 used ormamental picces to form the Lorder for his Fifleen \(O^{\prime}\) s. At the same time the Paris printers engraved still more elaborate border pieces. At Venice entire frames were engraved in one piece, while Aldus as early; as 1495 uned thsteful head-pieces cut in artistic harmony with his Lettres graces. Early in the 16 th century we observe detached ornaments and Gouriche which have evidently been cast from a matrix.

Bibliography.-Besides the works of Berjeau, Bernard, Blades, Hawkins. Hessels, Holtrop. Noel Humphreys, Kochler, Jules Philippe, T. B. Reed, Sotheby, Steele, Weigel, \&c., already mentioned, coneult also Bigmore and Wyman. A Bibliography of Printing (London, \({ }^{1880}\)): Geo. Wolfg. Panzer, Annales typor. (Nuremberg, 1793, \&c.): Lud. Hain, Repertorium bibliog. (Stuttgart, 1826-1838) with indices by Conr. Burger (1891 and 1908): suppl. by W. A. Copinger (I8g5-1902), and Appendices ad Hainic-Copingeri reperLorium: by Dret. Reichling, (igos-1909); Holtrop, Cat. Librorum sec. st inppessormm in bibl. Regia Hagana (the Hague, 1856); M. F. A. G. Campbell, Amn. de la typog. nderlandaise ax xt sidack (the Hague, 8874); Rob. Sinker, A. Cat. of the XV. Cempury Printed Book to the Library of Trimity Callege, Cambridge (Cambridge, 1876); W. Th. Lowndes, Bibliographer's Mawmal, ed. by H. C. Bohn (London, 1858, \&c.) : J. C. Brunte, Manked du libraive (Paris, I860: four eariver editions); Th. F. Dibdin. Bibliotheca Spencerians (London. 1814, \&c., and his othes works): Ennen, Kalalog der
 bypog. (1760): Meerman, Origines typog. (the Hague, I 765): Dupont Hist. de limpr. (Paris, 1869): Firmin-Didot, Hist. de la typog. (Paris, \({ }^{1882 \text {) : E. Duverger, Hist. de Cinsention de Vimpt. (Paris. }}\) 1840): P. Lambinet, Origise de l'impr. (Paris, 18 ino); Ch. Ruelens, La Legende de Sl Servais (Brussels, 1873); J. P. A. Madden, Lettres d'wn bibliographe (Paris, 1868-1878); Wetter, Krit. Geseh. der Erfindung der Buchdruckerkunst (Mainz, 1836): A. de Vries. Elair. cissemens sur Chistoire de line. de l'impr. (the Hague, Ib43): Jos. Ames, Typogr. Antiquilies (augmented by W. Ilerbert: London, \({ }^{1} 7^{85}-1790\)); T. C. Hansard, Typugraphia (London, 1825); Thomas, Hisl. of Printing in America (Alwany, 187f); Th. L. Devinne, The Inv. of Print. (London, 1877); W. Skeen, EarlyTypography (Colombo. 1872); Sem. Palmer. A Geweral Hisf. of Primp. (London, 1732): W. Young Ottley, Inqwiry conceraing the 1 rep. of Print. (London. 1863): Henry Bradshaw, A Classified Index of the JSth Cenlury Books in the Collection of the late M.J. de Meyer (London, i870) i idem, Hist. of the Founts of Type and Woodcut Derices msed by Printers in Holland in the 15th Century (London, 1871): idem, The Printer of the Historia \(S\) Abbani (Cambridge, 1868); A. Van der Linde. Haarlem Legend (London, 1870); idem, Gutenberg (Stutigart. 1881); idern, Gesch. det Evfind. der Buchdrucherkumst (Berlin, 1886) ; Schaab, Gesck. der Erind. der Buchdruckerk. (Mainz, 1830); K. Falkenstein. Gesch. der Buchdrucherk. (Leipzig, 1856); Lorck, Handb. der Gesch. der Buchdruck. erh. (Leipzig. I882); K. Faulmann, IUsustr. Gesch. der Buchirwekerk. (Vienna. 1882); M. Denis, Wiens Buchdruckergesch. bis 1500 (Vienna, 1782); C. R. Hildebuen, A Century of Printinf-The Ismes of the Press in Penarylvonia, 1684-1784 (Philadelphia, 1887): J. Garein Icazhaketa. Bibliografia Mexicena del siglo xri. (Mexico, 1887): Bibiographica (3 vols.. London. 1895-1897); W. Blades. Bibliocrophual Miscollanies (London, 1890); C. M. Briquet. Les Filigranes. Dict. hist. des margues du papier (4 vals., Geneve, 1907): Konr. Burger, Beilräge zw Inkwnabelbibliogr. (Leipzig. Ico8); Catol. of Books printed in the 15th Century, Brit. Mus. pt. i. (London, 1908): Catal. of MSS. and early Printed Books in the library of J. Pierpont Morgan (3 vols., London, Igo7): Arth. Christian, Origimes de l'imprimerie en France (Paris, igno): A. Claudin, Monum. de limprismersed Poitiers (Paris, 1897); idem, Histoive de Fimprimeris en france as
xpo et au xaio stecle (Paris, 1900-1904); W. P. Courtney, A Register of Nation. Bitliography (2 vols. London, 1905): J. P. Edmond, Calal. of Early Priuted Books in the library of the Society of Writers to the Signet (Edinburgh, 1go6); Ehwald, Handschr. M. Inkunebeln der Gymmasialbibliothek zu' Gotha, 410 (Gotha, 1893); Will. J. van Eys, Bibliogy. des Bibles a des Nout. Testaments en Lampue franc. (Gentve, 1900); John Ferguson. Some Aspects of Bibliograpky (Ediaburgh, 1900); G. Fumagalli, Lexicon lypogrophicum Llohoe; Diction. geogr. d'ltalie (Florence); Grapures sur bois tì̛es des livres frangois du xye siecle (Paris, 1868); Konrad Haebler, TypenreperLorium der Wiegendrucke (Hatle, 1905, 1908); idern, Typographe ibérigue du xpo siecle (La Haye, Leipzig, igo2; 87 plates); idem, Bibliografa iberica del siglo xp. (La Haye, Leipxig, 1goj); Otto Günther, Die Wiegendrucke der Leipziger Sammlunger (Leipzig, 1909): Alb. Hubl, Die Inkunabein der Biblioth. des Stifles Schollen in Wien (Vienna and Leipzig, 1904); L'Imprimerie hors I'Europe, par un bibliophile (Paris, 1902); Ad. Knütgen, Incunabels im kön. kahhol. Gymnasium zu Heiligenstad! (Heiligenstadt, 1888); Paul Lacombe, Livres d'keures imprimks ax xpo at au xovi sieche (Paris, 1907); Ad. Lange, Peter Schöffer (Leipzig, t864); H. O. Lange. Analecta bibliographica (Copenhagen, 1go6); F. Madan, The Unitersity Press at Oxford (Oxdord, 1908) ; Baron F. del Marmol, Diction. des filigrames (Namur, 1900); Joh. Jac. Merlo, Ulrich Zell, ed. Otto Zaretzky (Cologne. 1900); Henri Monceaux, Les Le Rouge de Chablis, calligraphesetminiaiuristes, graveurs el imprimeurs (Pans, 1896); R A. Peddie, Printine at Brescia in the 15th Century (London, 1905): Marie Pellecbet, Catot. ginéral des incunables des bibliotheques publiques de Fraice (Paris, 1897); M. A. Péricaud, Bibliogr. lyonnaise du xpe sieclo (Lyons, 186t); J. Philippe, Origine de I'imprimeric aे Paris (Paris 1885): Guillaume Fichet, Introduction de l'imprimerie à Paris (Paris, 1892); Henr. R. Plomer, Hist. of Endish Prinding, 1476-1898 (London. 1900); G. R. Redgrave, Erhard Rotdolt and his work at Venice (London, 1894); Fr. Reiber, De primordiis arhis imprimendi ac praccipue de inventione lypographice Harlemensi (Berol., 1856); Ph. Renouard, Bibliographic des impressions ef des esupres de Josse Badins Ascensims. 1462 -1535 (Paris, 1908) ; Scymourde Ricci, 1 Census of Caxtons (London, fol., 1909); Duc de Rivoli, Billiogr. des lizfes a ngures venil., 1469-1525 (Paris, 1892); Paul Schwenke. Untersuch. sur Geschichte des ersten Buchdrucks, heraurgeg. won der hönigl. Bibl. zu Berlin (tgoo); L. C. Sitvestre, Margues lypographiques (Paris, 1853); Dav. E. Smith, Rara arilhmetica, in the library of Geo. Arthur Plimpton of New York (Boaton and Londoo, 1gos); Henrí Stein. Manuel de bibliographie gén. (Paris, 1897); C. H. Timpertey, Encyclopaedia of LiLerary and Typographical Anecdote (2nd ed., London. 1842): Tijdschrift voor boek-en bibliotheekwezen (Antwerp, Ghent. 1903); LLon Vallee, Bibliogr. des bibliographies (Paris, 1897); Herm. Varnhagen, Eine Sammlung aluer ilalien. Druche der Enlanger Uniner. sitdisbibliothek (Erlangen, 1892); Ernat Voullieme, Der Buchdruch Kolns bis sum Ende des XV. Jahrhunderls (Bonn, 1903); idem, Dic Incunabeln der kön. Universitals-Bibl. ru Bonn (Leiprig, 1894); W, H. J. Weale, Bibliographic Liturgics (London, 1886).
The tittes of other works on the invention, progress and process of printing. \&c., may be learnt from the lists of books on such subjects in the works already quoted. Also the cataloguess of secondhand booksellers, as Jos. Baehr (Frankfurt), Harrowite (Berlin), Leo S. Olschki (Florence), Bern. Quaritch and W. M. Voynich (London). Jaques Rosenthal, Ludw. Kosenthal (Munieh). Ac.
(Ј. H. H.)

\section*{II.-Modern Practical Typocrapay}

The printing surfaces used in the production of books and newspapers, apart from wood- or process-blocks and casts, and apart also from such surfaces as are obtained by means of the Linotype and kindred machines, are made up primarily of an aggregation of separate types, each representing a letter, mark or sign, though the actual surface employed on the printing press is frequently a duplicate copy made by a process of stereotyping or electrotyping.
Material Characterislics of Type.-A foumt consista of a proportioned quantity of each ol these letters and signs of any one particular body and face. It therefore contains single letters, both capitals (" upper case ") and smal! letters (" lower case "), diphthongs, ligatures, such as ff, f. accents, points, figures, fractions, commercial signs such as @, \(£\), " peculiars" such is * \(\dagger\) and leaders (...), to gether with quads (pieces of metal which do not print, but are used to compensate or the shortness of occasional lines, as at the ead of a paragraph), and spaces which separate words, A fount may thus have about 275 characters or sork, about 100 of them consisting of italic letters, points and figures.
The numbers of the different sorts vary with different languages, and even with the style of different writers, the works of Charles Dickens, for instance, making unusuatly heavy demands on the vowels, while the writings of Lord Macaulay run with like persistence on the consonants. Type-founders determine the proportions of the different sorts according to a bill of type, of scheme, either numerically, when the basis of the computation is the number of tower cans m's (or of \(\mathrm{A}^{\prime} \mathrm{s}\), in the case of display type used for headings)
or by weighe. In the aecond method a fount of 125 gh of Roman type includes, on one acherne, 8 oz . of E, M, C; 9 oz. of T; 8 tb of e ; 5 to each of \(a, b, n, o, t\); and so on down to 3 oz. of \(z\). A fount of body-lettera, that is thooe used for the reading matter of books and pewspapers, as made up by one British type-founder, contains capitals \(9 \%\) by weight, small capitals \(4 \%\), figures \(6 \%\), lower case letters, points and leadert \(56 \%\) spaces \(15 \%\) and quads \(10 \%\); rules, accents and fractions not being supplied except in new complete founts or when specially asked for. A rule for estimating the quantity of type required for a page is to divide the number of square inches it contains by 4 , when the quotient represents approximately the weight of type in fb . But for large founts \(\mathbf{2 5 \%}\) and for emall ones \(\mathbf{4 0} \%\) should be allowed in addition, on account of unused type in the case: which cannot be completely get.
For many years it was a favourite idea with inventors, especially those who were not practical printers; that great economy might be gained in composition by the use of word characters or "logotypes," instead of single letters. The constant Lasmerpen. recurrence of certain wonds such as "the," "and," " is," suggested that they, as well as affixes and suffixes like ad-, ac-, -ing. -ment, should be cast in single pieces instead of being set up with their component letters. Such logotypic printing was used in 1785 in the Loudon Daily Universal Regisicr, which three years later became The Timas, but it has never found general lavour. The chiof practical objection is that it involves the use of cases with an inconveniently large number of boxes. The greater the variety of characters the more "travel" of the compositor's hand over the cases is necessary for picking them up, and by so much is the speed of his work retarded.
Each of the parts of a type has a fechnical name. In fig. \(\mathbf{t}_{\text {, }}\) representing the capital letter \(M\), the darkest space \(a, c, a, a\), is calted the faco; and only that part of the type touches the paper in priating. The lace is divided into the stm marked 1, which comprises the whole outline of the 7 ypu type M, the serifs, or the horizontal lines marked 2, which complete the outline of the leter; the beard, consisting of the bevel or sloping part marked \(b, b\), and the shoulder or flat porion below \(b\). The shank is the entire body of the letter d, the front part (that shown) being known as the belly aad the corresponding part behind as the back. The spaces at \(h\) and \(h\) are the counters, which regulate the distances apart of the stems in a line of type. The hoHow groove extending across the shank at \(c, C\) is the nick, which enables the workman to recognize the direction of the type and to distinguish different founts of the same body. The absence of this simple expedient would retard the operation of hand-settiny up by fully one-halh. The earliest type-founders did not know the use of the nick. If a part of the face overhangs the shank, this part is called

Fic. 1.-Finished Type. the kerm, but kerned letters are avoided as much as poesible. The groove \(g\) divides the bottom of the type into two parts called the fect. An impression from that part of a type on which it stands would be as - . Types must be perfectly rectangular, the minutest deviation rendering them useless. Any roughriess at the sides is called burr, and any injury to the faces a balter.

Types which have the face cast in the middle of the shank, as a. c. \(\mathrm{c}, \mathrm{m}, \& \mathrm{c}\)., and thus leave an open space above them corresponding to that below, caused by the beard, are known as short letlers. Those whose stem extends to the top of the shank, as b, d, f, \&c, are called ascendin? letters. Those Lettion that have a stem extending over the shoulder, as \(\mathrm{g}, \mathrm{p}\), \&c., are called descending letuers. Those that are both ascending and descending, and extend over the whole of the shank, as \(Q\) and \(j\), are long letters. Small letters and figures cast upon the upper part of the shank, as is, are called superiors; those very low down on the shank are infcriors, as \(\mathrm{H}_{3}\). Types that are very heavy and massive in appearance are called fal.faced; those that are fine and delicate, lean-faced. A type whose lace is not in proportion to the depth of the shank (e.e. a small pica cast on a pica body) is a bastard sype.
types of are various sizes, from those used for the smallest pocket bibles to those used for large placards, and the sizes are classified according to the dimensions of their ends or bodies. In a given fount the length of the end of the type which Stares of bears the face is the same for all characters, but the width varies, an ifor example being narrower than a w. Each body has a distinctive name, but it used to be a confusing and in convenient anomaly that types made by different founders, though called by the same name. were not of precisely the same size. The long primer of one makes, for example, was 89 lines to the foot, of another 892. and of a third 92. This inconvenience was remedied in America by the founders agreeing to adopt a unilorm point. system: the pica of \(0 \cdot 16604 \mathrm{in}\). was taken as a standard, six picas being 0.996 in., and was divided into twelve parts or points of 0.013837 in. other types being cast as nutriples of one of these points, and specified according to the number of them they contained. This aystem, with the same basic uait, has been adopted by Britisb
typefounders, thougt not to the exclusion of older siases, and it has been extended to regulate the thicknews or sef of types, and also the position of the faces on the bodies as regards alignment. The Didot point-system, used in France, is based on a point of o-376 mm., the English point being 0.35145 mm . The following are specimens of the principal bodies of ordmary British and American types, with their corresponding appellations on the point-aystem, the first five being now mainly for display purposes:-
\begin{tabular}{|c|c|c|}
\hline ncyc & 2-line small pice & \begin{tabular}{l}
Points. \\
- 22
\end{tabular} \\
\hline MCVC & Great primer & 18 \\
\hline Le Encyclopacd & English & 14 \\
\hline cyclopaedia & Pica & 12 \\
\hline e Encyclopaedia Br & Small pies & - 11 \\
\hline e Encyclopaedia Britan & Long primer . & - 10 \\
\hline The Encyclopaedia Britanni & Bourgeois & 9 \\
\hline e Encyclopaedia Britannica & Brevier & 8 \\
\hline The Encyclopaedia Britannica. Ix & Minion & - 7 \\
\hline The Encyclopaedia Britaanics. IIth & Nonparell & , \\
\hline The Encyclopaedia Britanaica, Ith edition & Pearl & 5 \\
\hline
\end{tabular}

The height of types is \(] \mid \mathrm{in}\). Those lower that the standard dimensions are said to be "how to paper," and if surrounded by ligher zypea will not sive perfect impreseions. Spaces and quads are 1 -in. high for direct printing. but for stereotyping are cut rather higher (0.83 in.).
According to the purpose for which they are used, types are divided into two clasecs-book type, including Roman and Italic; vertriose of and job iype, including a multitude of fancilul forms of Fape latters, chiefy founded on the shape of the Roman and delicate, elegant, atc. It is impossible to enumerate all the varieties of the latter class, as additions are being constancly made and once popular styles always going out of fashion. The leading varielies are the antiques, which are Roman letters with strokes of nearly uniform thickness, as \(M\); wanserifs or grotesques. which have no werils, as M; blacks. as Aif and scripts. which represent the modern cursive or lialian handwriting. as a/f. Black letter is now only a jobbing type in English-speaking countries, although it was the fire character used in printing. It is still used in Germany, with certain modifications. as the principal text-letter for books and mewspapers. A comparison of the numerous reproductions that have been issued of Caxton's works with any modern line of black letter will show how preaty the form and style have been altered. The present atyle of Roman type dates only from about the firs quarter of the t8th century. Previously the approved shape was as follows:-

\section*{Printing has been defined to be the act, art, or practice}

The use of this type was revived by Charles Whittingham. nephew of the founder of the Chiswick Press, about 1843. and it has since become a favourite form, under the name of old st yle. Some of the punches cur by the first notable Engtich type-founder. William Caskon (1692-1766), have been preserved, and sypes are being constantly case from them. Neany all founders now produce modernized old syle.

In this connexion reserence may be made to the modern revival of artistic book printing in England by William Morris and others infuenced by him. This development rook defanite form in the lounts and books of the Kelmscort Press, which is distinguiched by the use of three founts designed by Morris. The Troye and Chaucer tounts, both Gothic, are besp fitted for ornamented medieval works, wile the Golden or Roman fount is without the exaggerated contraction of form laterally, the exaggerated use of thick and thin sakes, and the vicious stroke-terminations common to modern foumts. It is a type of full body. designed in careful relation to the mp and down strokes, and resting upon solid serifs, as with Jenson's lount. for instance, but in detail more allied to fine penmanship or black lefter. The Vaie books. often claseed with the Kelmscort. may be counted with them so far as chey also are controlled by one designer, Irom the important matter of type. decoration and illustrittions to that of "build" and pregs work. The first Vale book in Thich these conditions were achieved is Millon's MinorPozms (18g6). In this is employed the Roman type, known as the Vale fount. designed by Charles Ricketts, which differs from the Keimseoti fount in a greater roundness or fullness of body, and in a modification of deraits by the conditions of eype-making. The second fount meed in the Vale issues, first employed in 7he Plays of Shakespeore (1806), is lete round in body, more traditional in detail and lighter - eflet

Manufacture of Type.-Type is made of an alloy, known as type-metal, which consists chiefly of lead, with smaller amounts of antimony and tin. The exact proportions vary in different countries and foundries and with the size and quality of the type, but in general more than \(60 \%\) is lead and the antimony predominates over the tin. Sometimes small quantities of other metals, such as copper and iron, are added. Large letters, such as are used for bills and posters do not come within the province of the type-founder; they are made of wood, chiefly rock maple, sycamore, pine and lime, planed to the right sixe and engraved by special machinery.
The earliest printers made their own types, and the books printed Irom them can now be distinguished with almost as much certainty as handwriting can be identified. The modera priater has recourse to the type-founder. The frst atep in Mofrkoze for the making of type, according to the old method, is the Trow. production of a matrix. The letter is cut on the end of a piece of fine steel. forming the punch (Gg. 2), which is alterwards hardened. A separate punch is required for each character in every fount of type. and the making of them requires great care and delicacy in order that the various sorts in a Count may be exactly uniform in width, heighe and general proportions. During the procese of its

Fig. 2.-Punch.
Fic. 3.-Drive.
Fic. 4.-Matriz.
manufacture, the punch is frequently tested or measured by delicate gauges to insure its accuracy, and from time to time it is examined by means of a smoke-preof, that is, an impression obtained by holding it in a flame and stamping it on paper. When the letier is perfect. it is driven into a piece of polished copper, called the drive or strike (fig. 3). This passes to the justifier, who makes the width and depth of the faces uniform throughout the fount. They must then be made to line exactly with each other. When completed, the atrike becomes the matrix (fig. 4). wherein the lace of the type is made. But matrices are now commonly produced by the aid of an engraving engine which copies a standard drawing of each letter on any desired scale. and they may be obtained from existing lounts by electrotyping.

Until well into the 19 th century types were cast from the matrice in mall hand-moulds, the output from which with a alcilful worker was about 400 letters an hour. The mould consisted of two portions Gitting clowely to each other

Typer and containlos the matrix with a space to receive the metal for the ghank; holding it in his left hand the operator poured in the metal with his right, and after jerking it at arm's length. 10 bring the metal well up against the matrix. opened the two halves and threw out the type. In 1838 David Bruce. Junr., of New York. a Scoteman, who had migrated to America, invented a machine to perform substantially the eame operations; this increased the rate of production to about 100 a minute for ordinary sizes, and with improvements and modifications remained a standard appliance for 40 years after its introduction. The metal. kept molten by a small furnace, was injected by a pump into the mould, which at every revolution of the axle came up to the spout of the pump, received a charge of metal, receded, opened, and diacharged the type. But seither the hand mould nor the Bruce machine produced finished type. To the bottom of each there was attached a wedge-chaped fet (by. 5). eomewhat similar to that on a bullet cast in a hand mould. Thls had to be picked off by hand; the burr on the shoulder of the types had also to be rabbed off, and a groove had to be cut in the bottom to form the feet. Many efforts were made to devise machines which should perform these operations and produce finished type, one of the most aatisfactory being that patented by Henry Barth, of Cincinnati, in 1888, but the principle of the divided mould which opened to diecharge the type was generally retained. A new primiple. however, was adopted by Frederick Wicks (is401910) in his rotary type casting machine. which pas developed into a practical apparat us in Londos
just at the end of the 19th century, and which is able to produce finished typen, ready to be deapatched to
printer
continuous rate of 60,000 an hour. It consists of a horizontal mould wheel, 20 in. in diameter, contained in the casing D (fig. 6), in which are cut 100 radial slots, each having a matrix at its inner end. These slots thus form moulds, and are of varying width according to the letter each has to cast. Each whed can only produce type of the particular body for which it has been cut, but by changing the matrices the moulds can be made to cast any description of lace capable of being received upon the body. The wheel is rotated once in every six seconds, so that the slots are successively presented to a jet of molten type-metal, which is pumped from the

Fig. 6.-Wicks Rotary Type-casting Machine.
metal reservoir A hy a pump B of special construction, and forced out at high pressure through a nozzic under the shield C. As soon as any particular slot has passed the jet and been filled with metal, a cam-action comes into play and gradually pushea out the formed type. This operation is completed in half a revolution, the ejected type being taken up by carriers mounted on a continuous chain \(E\), which is moved along exactly in step with tbe wheel. The carriers, which are of different sizcs according to the particular letters they have to hold, are raised by a cam-action as they come opposite the slots to receive the types, but fall again at the point F, depositing the letters at the end of the race C. Each successive type thus dropped pushes its predecessors farther along the race until when the row contains 200 types-the product of two revolutions of the wheel-an attendant Jifts the whole scries off and places them on the plate \(H\), one row below the other. Since the sequence of the letters is of course the same in each revolution, the result is that each vertical line on the plate consisis of the same character, and each sort can be easily removed and packed in any required form for despatch to the printer. As soon as each slot has been emptied of its type, another cam beging to draw in the matrix towards the centre of the wheel, so that it is in as far as it can go by the time the slot is again opposite the jet. To prevent a type from being drawn back with the matrix, the bead-cam K engages with the nicks which have already been formed on the front of the type-bodies by the operation of the machine. To enaure truencss and accuracy in the product, the conditions under which casting is conducted are maintained as uniform as passible. The composition of the type-metal alloy is kept constant: the temperature of the molten metal is carefully regulated by the aid of a pyrometer to about \(800^{\circ} \mathrm{F}_{\text {., so }}\) as not to volatilize the antimony it contains: the pumps work up to a pressure of 900 to to the square inch, and by the interposition of a reducing valve deliver the metal at the nozzle at a constant pressure of 200 h ; and the moulding slots are main-poi-n 0 胞 an equably cool temperature by an elaborate sytem of ucing valus givtation. ire of 200 lth oos lo 5. sly cool tem'msy loos y.

Type-sething by Hand.-The types, received from the foundry in the packages called pages, containing about 8 D , are placed in shallow trays called coses, These contain compartments Type-case.
particular sort or character. The cases when in use stand on frames or sloping desks. The case at the top is the upper case, and that below the lower case. The former contains 98 equal-sized boxes, appropriated principally to the capital and small capital letters; the latter has 53 boxes of various sizes, appropriated to the lower case sorts. The difference in the size of the boxes corresponds to the difference of quantity of letters in a fount. the lower-case \(e\), for instance, having the largest box. As a man picks out from the boxes seldom less than 1500 letters an bour and distributes or replaces on the average about

Fic. 7.-Type-case.
5000 an hour, it is necessary that the most economical allocation of the boxes should be adopted. The system of allocating the various types is called the lay of the case; one plan is illustrated in fig. 7.

The types when taken from the cases are arranged in lines (composed or set up) in an instrument called a composing stich, made of iron, brass or gun metal. The companting slide in the midde is movable so as to accom-
modate varying lengths of lines. The compositor fixes the "copy" or document which he has to repeat in type, in a convenient place before his eye. In his left hand he holds the composing stick, and with the thumb and first finger of the right hand lifts the letters from the boxes, and arranges them in the composing stick, every letter, point or sign being picked out separately. In this operation he is much assisted by the use of a setting-rule, a thin brass or steel plate which, being removed as successive lines are completed, keeps the type in place. When so many words and parts of words as will nearly fill the line have boen composed, it is made the exact Rength required by increasing or diminishing the space between the several words This is called justifying the line and is eflected by means of the spaces already mentioned. If the work is not " solid "-t hat is, if the lines are not close together-the strips of metal called leads or bresses are inserted between each. When the composing stick is filled, the type is lifted upon a galley, a shallow tray of wood or metal, t wo or three sides of which are flanged, for the purpose of supporting the type. when the galley is slightly inclined. Stickful after stickful of type is placed on the galley until it is full. The matter is then fastened up, a proof taken at the proof press, and the work of the reader or corrector of the press begins (sce Proof-READING). The prool, marked with the necessary corrections, is given back to the compositor, in order that he may make the required alterations in the type.

The type, being duly corrected, is made up into pages of the required length (unless the author has desired to see proof in slip). It is then imposed, that is, the pages are arranged in such a manner that, when printed and the sheet lolded, fmpeates. they will [all in due numerical sequence. The impression from any arrangement of pages will be the reverse of that in which they are laid down. If a four-page newspaper be opened and spread out with the first page uppermost, it will be found that on this side the order of pages is 4,1 . when turned the pages are 2,3 . The type pages musi be renged in the reverse way, as 1,\(4 ; 3,2\). Thus the fourth page is placed alongside the first, because both must be printed together on the outside; the third page is to the left, and the second to the right, because in books the odd page-the verso-is always to the right. For a quarto a sheet of paper is folded twice, that is once acruss its breadrh and then once in a perpendicular direction down the middle. It contains four leaves, and if these are printed on hoth sides eight pages. The two sides of a sheet are called the outer and inner formes respectively. A sheet of octavo is folded three times, making 8 leaves or 16 pages. The size of a book depends not only upon the number of times the sheet has been folded, and described accordingly as 4 to, 8 vo, 12 mo . Sc., but upon the size of the sheets. The dimensions of the papers commonly used in book. printing are: imperial, \(22 \times 30\) in.; super royal, \(201 \times 271\); royal,
\(00 \times 15 ;\) mediun, \(19 \times 24 ;\) demy, 171 \(\times 221 ;\) double crown, \(20 \times 30 ;\) double foolecap, \(17 \times 27\); post, \(154 \times 19\). Hence to say merely that a book is a quarto gives no precise indication of its dimensions, as a quarto of one sise of paper may he smalier than an octavo of enother; it is aliso necessary to know the sire of the sheets of which it is comprosed.

When a printed book is opened, it will he found that at the foot of certain pages there is usually a letter and nt the foot of another strantras letter and a figure, as B, B 2; farther on another letter and another letter and figure. On going through the book it will be meen that the letters are in regular nilphabetical order, and occur at regular intervals of eight, twelve, ixteen, \&c., pages, These desigrate the several sheets of which the book is composed and are called sipuahures, to that a sheet may be designated B, and the pages of which it consitt are thereby sufficiently indicated. (Occasionally, numbers are used instead of letters.) These signatures assist the binder in folding, as they occupy a certain specified place in each shect ; hence to ascertain if the eheet has been folded properly it is only necessary to examine the position of the signature. The tinder also is thus assisted in gathering or collating together the sheets of a volume in proper order. Signature \(A\) is omitted, because it wrould be on the title or first page, and would be both unnecessary and unsightly. By old custom J, V and \(W\) are discarded, I and J. \(U\) and \(V\) being originally used indiscriminately, by printers, -hile \(W\) was written UU or VV. When the alphabet is exhausted, a new one is begun, distinguished by a figure precedent, as a \(B\), \(2 \mathrm{C}, \mathrm{sc}\)

The pages of types are arranged in proper order on a flat table, covered with stone or metal, called the imposing store. and are then ready to he made into a forme, that is. into such a state that they can be securely fastened up and noved about.
The forme is enclosed in an iron frame or chase, sub-divided by a croes bar. The portions of the type are separated by furniture, which may be of metal or wood or Coth. It is of the same height as the chase, but lower than the type, and therefore docs not print, but forms the margin of the printed pages. As the sides of the two aections of the formes are pieces of furniture of a tapering shape, called side-sticks, and at the top and bottom corresponding pieces, called food-sticks. Small wedges, called quoins, are inserted and driven forward by a mallet and a shooting-stick, so that they gradmally esert increasing preseure upon the type. Other mechanical means for locking up are also ocrasionally adopted. When sufficiently ocked up, the whole is quite as firm and portable. however many thousands of pieces of metal it may consist of, as if it were a single plate, and is ready for use on the printing press, either directly or in the form of a stereotyped or electrotyped copy.

After use the type undergoes the operation of distributimz, which is the converse of composing; it is de-composing the forme and obers) returning the several letters to their proper, boxes in the case. The forme is first washed over with an alkali or other detergent to remove the ink from its surface, and then laid down on the imposing surlace, unlocked and damped; this asists the cohesion of the type, after the chase, furniture, sidebicke, \&e., are removed. The compositor then takes in hisleft hand, upported by a setting rule, a portion of type in lines, and with the right hand takes a word or so between the finger and thumb, letting each letter drop separately into its proper bok. The types are held upside down. that is, with the nicks uppermost; hence the letters of each word are read from beft to right like ordinary matter when printed, but the words are of course dealt with in the iaverse order.

Type-selling by Machinc.-The above method of producing a printing suriace depends entirely upon hand labour, but it has long been an object of inventors in connexion with prrating to perfect a mechanical system by which hand-work may be dove away with both in setting type and in distributing it afier use. The first step in this direction was the construction of composing machines in which the compositor put together types in the required order; not by lifting them one after another from his "boxes" and placing them by hand in his "stick," but by operating a keyboard which liberated them from magazines and assembled them in the order in which the keys had been struck. Such machines were followed as a natural correlative by distributing machines which performed the converse operation. Then tbe idea occurred of avoiding distribution altogether, by returning the printing surface to the melting-pot and using the metal over again to produce an entirely new printing surface as required, instead of sorting the types into their various kinds to be set up again either by hand or by machine. There are two main solutions of this problem. One is to manufacture ordinary movable types at a cost that is less than that of distribution, when it obviously becomes advantagcous to treat the formes, after use, as old metal and return them directly to the melting pot without distribution. In 1900 The Times
began to adopt this method, thus securing the advantage of fresh new type for each issuc. In its offices for several years type made by the Wicks casting machine was set up by composing machines, and after being used in making the necessary stereotype plates was returned to the foundry to be melted and recast. The other solution depends upon the employment of apparatus which are in effect combinations of type-sctting and type-casting machines, and may be divided into two broad classes: (a) those in which, by the operation of a keyboard, letters are translated into metal types which appear as a product for use in the printing-press, not singly, but cast into complete bars or lines of type; and (b) those in which the final product is separate types, delivered made up into lines of the required length. The former class is exemplified by the Linotype, the Typograph, and tbe Monoline machines, the latter by the Lansion Monotype, the Tachytype and the Goodson. In machines of the Linotype class, which have come into extensive use, especially for newspaper printing, it is impossible to make corrections or alterations in the line of type after it has been cast. The smallest change, such as the addition of a comma, involves the resetting and recasting of a whole line, while, if two or three words have to be added or removed, the compositor may have to recast a considerable number of lines, perhaps a whole paragraph. Machines of the second class, like the Monotype, which has been employed for setting up the present edition of the Encyclopaedia Britannica, appea! rather to the book printer, though the Monotype is used by such newspapers as The Times (London) and the Sun (New York). They have the advantage that corrections can be made as with hand-set type; but for newspaper work the fact that the manipulation of the keyboard does not, as with the Linotypc, directly produce a printing surface but merely a punched strip of paper, which has then to be passed through a separate casting machine, inevitably introduces some delay. This is a matter that must be taken into account in the hurried conditions under which a daily paper is produced, when the shortest possible interval must elapse betweer the time when the latest news is reccived and the actual printing is begun. A machinc invented by Mr H. Gilbert-Stringer is designed to combine the advantages of the Linotype and Afonotype machines by casting at a single operation separate types properly arranged in lines and uniformly spaced. Up to the point where the matrices are ranged in a line ready for the bar of type to be cast, the mechanism may be identical with that of the Linotype; from that point each matrix is separately pushed into a mould which is automatically varied in size to suit the size of the particular letter it is casting, and also casts the spaces between the words (determined by the use of a modified Schuckers wedge-space), so that when all the individual types and spaces in the line are assembled after casting they exactly fill the line. The machine requires only one operator, and while one line is being cast the matrices which bave formed the preceding one are being distributed to the magazine, as in the Linotype, and the following one is being set up. The matrices differ from those of the Linotype in that the face is impressed on their broad lat surfact, not on the thin edge.

Composing Mochines.-An early attempt to make a machine for ecting up ordinary foundry type was patented in England by Dr William Church in 1822. In the machine of Young and Delcambre, which was used in London for composing the Family Herald in 1842 , and was the forerunner of the Kastenbein machine adopted in The Times office in 1869. the typers were arraged in tubes placed either vertically or horizontally, and the lowest or endmost letter was, when wanted, ejected from the tube by a pusher actuated by a finger-key. It then passed down the channels of a guide-plate to a common point. whence it was pushed forward by a reciprocating motion to the line of previously composed matter and divided into lines of the required length. To the sime group belong the Fraser machine, the Hattersley and the Empire, also known in America as the Burr. Another group of machines developed from the rotary composer was invented by Alexander Mackic of Warrington in 1871 , and used in the office of the Warrington Guardian. Ia this the rypee were arranged in vertical tubes round a rotating disk, and the letters were automatically selected by a strip of paper previously punched with holes through which feekers passed and caused the desired tyge
to be ejected upor a travelling band. This device of using a paper strip perforated in different positions to correspond to different letters was patented by Felt in 1860 (U.S. Paseni Spec. No. 28.463), and he also utilized it for effecting distribution, the "dead " or used type being deale with by another machine through which the paper strip was run in the reverse direction. This quality, however, was not so valuable as it might appear at first stght, since any correction, however simple, of necessity made the perforated paper ineffectual as a gulde in distribution. The Thome machine, exhibited in the Paris Exhibition of 8878 , was a development of the principle of a rotating disk, but the types, which were contained in a verical cylinder, were selected by touching keys in the ordinary manner. When liberated they fell upon a rotating table, whence they were deflected hy a finger upon a travelling band and delivered into the composing race. The American Simplex machine resembles the Thorne very closely. The Wicks composing machine, again, adopts a different principle from both the above groups. The types are ejected upon a straight race set at an angle of \(45^{\circ}\). Thus each has to travel a different distance from the other-a result which the inventors of the Delcambre group of machines were at pains to avoid; and when several keys are struck together so as to give a combination like "and," the several types delivered to the race follow each other in proper succession to the point of assembly, the letter whose key is nearest to the left side of the keyboard preceding those whose keys are more to the right.

The Paige composing. justifying and distributing machinean American invention-is one of the most remarkable pieces of mechanism ever put together. It contains 18,000 parts, and the patent specifications form an imposing volume. It is operated by keys in the ordinary way, but automatic mechanism advances the ejected letters in words, spaces them and inserts the lines in the galley "with " leads" if desired; at the same time other mechanism automatically distributes dead matter and refills the tubes which contain the supplies of types. Two machines were made, and are said to have done good work, but the cost of construction and the complicared nature of the mechanism made the apparatus impracticable commercially, and the two that were made are now on view as mechanical curiosities, the one in the Columbia lnstitute and the other in Cornell University. The Paige machine dispensed with the guide-plate of the Delcambre group, the letters being ejected on a plane along which a driver passed at intervals and swept the type into a receiving race on the left of the machine. The Dow composing and justifying machine, a later American invention, adopts this characteristic of the Paige, but has two drivers meeting at the centre of the plane which receives the letters. The types having been swept to the centre by these, a vertical driver forces them downwards into a vertical receiver. When a line has been set a justifying key is touched, the vertical line passes to a horizontal position, and is driven forwards to a point where apparatus measures it, and having removed temporary brass spaces replaces them with others selected from a series of ten differeat thicknesses.

Distributing Machimes. - There are two main classes of dist ributing machines. One, which is excmplified by the Delcamhre or the

Fraser machine, is operated by a keyboard; the compositor strikes the keys corresponding to the letters of the printed matter he wishes to distribute, and thus opens gates through which the types pass and find their way down a guide-plate to their proper tubes. The other comprises a number of machines which agree in requiring the type to be specially nicked for their use. Each type has its own particular combination of nicks, and the receptacles in which the type is collated are provided at their entrances with wards corresponding ta these nicles, so that each type can only enter the one receptacle for which its nicks are arranged (fig. 8). In some casca, as in the Empire and the Dow, the distribut or it a separate machine: in others, as the Thorne and the Simplex, it is combined with the composing machine in such a way that the two work simultancously.
Linotype.-An enormous amount of ingenuity has been expended on the Linotype, which was developed into a practical machine by

Fig. 9.-Diagram of Linotype Machine.
Ottmar Mcrgenthaler, of Baltimore, though two of its elementsthe solid bar of type and the wedge space-were invented by others. the former by T. W. Smith, of the Casion Foundry, and the latter by Jacob W. Schuckers, of Washington. The following will give a general idea of its working: In the magazine A (fig. 9) are a series of matrices, formed with the characters in intaglio on one edge. which are discharged by gates, operated from the keyboard \(D\) into the chutes \(E\), and thence upon the travelling belt \(F\); this delivers them upon a revolving pusher wheel by which they are set up in proper order in the assembler block \(G\). Above the assembler block is a space magazine, and from this the space key I releases a space bar, when desired, which drops into place in the line. As the matrices are forced into the assembler block they move to the left against the resistance of a sliding abutment, thus being held compactly in place in the line. As soon as a complete line is set up, the compositor operates a hand lever by which the assembler block and matrices are raised to the level of a horizontal slide, where the line is grasped between two jaws and carried to the left, and lowered into position opposite the mouth of the mould wheel K. Here the justification of the line is effected by means of an upwardly moving plunger which drives the wedge-shaped apaces, seen in fig. 10, into the line. and thus expands it to the exact length required. The matrices are then locked firmly in a vice with the characters opposite the mouth of the mould. At this time the pump plunger in the melting pot \(M\) (fig. 9) is forced downwards by mechanism actuated by suitable cams on the driving shaft, and a jet of molies type metal is ejected into the mould and against the characters on the matrices, thus casting the bar or "slug." The cast bar is next forced, by a revolution of the wheel K, between a pair of knives, by which it is trimmed, and into a galley, where it is pushed along by a packer arm and placed beside it fellows in a column ready for use.

It is next necessary to distribute the matrices to the magazines, in order that the operation of the machine may be carricd on continuously. The matrices and spaces are raised from the vice and brought opposite a bas \(R\), which carries on its under side a scries of undercut nibs corresponding to the teeth which are shown at the edges of the \(V\)-shaped notch in the top of the matrices (fig. \({ }^{\text {to }}\)) and the matrice ase pusbed on to this bar so as to be suspended by the
ribs. They are next pushed still farther towards the right of the machine into a box having ribs engaging the notches in the side of the matrices, but with downwardly inclined grooves crossing theso ribs, by which the shoulders at the upper end of the space bars

Fic. 10.-Line of Matrices with Spaces. are allowed to deacend, and the spaces are thus dropped out of line and fall through a chute into the space-box from which they originally came. The matrices are pushed still farther to the right, where their teeth slide slong the distributor bar \(T\), being carried by two screws which engage opposite sides of the matrices and keep them separated so that they hang loosely from the distributor bar. The ribs of the distributor bar nre to ar. ranged as to support each matrix by one or more pairs of teeth until it arrives opposite the mouth of its own magazine channel, where they are interropted in such a manner that the matrix is unsupported and drops into the magazine for further use. It will thus be apparent that there is a constant circulation of the matrices through the machine, and the composing of one line, the casting of another and the distribution of a third are all carried on at the same time, which adds greatly to the speed of the operation. The machine may be fitted with double magasine, which with double-letter matrices gives \(\mathbf{3 6 0}\) characters or tour faces ready for use, or even with thrce magazines, which provide for 540 characters or six faces, the movemeot of a hand Lever bringing the desired magazine into use.

Lanston 1 ponotype.-In the Lanston apparatus there are two divtinct machines, a ribbon-punching machine and a type-ast. ing and composing machine. The first of these is a mall device resembling a typewriter, having a number of keys, 257 in all, corresponding to all the characters used is a fount of type, with some additions representing certain movements to be performed by the composing machine. These keys, when depressed, admit compresed air to a pluager or combination of two plungers working punches, whereby perforations are made in a strip of paper fod step by wtep through the machine. Most of the keys make two perfora. tions. though some a single ove oaly. These perforations stand in a transverse line across the strip. as shown in fig. 11 , and their relative position in the line varies with the particular key operated. At the end of each word a spacing leey is truck, and suitable perforations are made in the strip, and as the end of line is neared, a bell rings to warn the operator, who, by booking at a line scale facing him on the machine, is enabled to see how many units of space remain to be filled, and can then determine whether another word or syllable can be set up. If not, it then becomes necessary to provide proper space-type to justily or fill out the line, which is done by increasing the width of the normal space-types already provided for in the proportion which the number of units of space still vacant in the line bears to the number of space-types which the line contains. For eximple. if there are ten space-types and if of an inch of space remains to be filled, each space-type must be increased in thickness jast il, of an inch completely to 611 the line. It is not necewary, however. for the operator to make this calculation, for he has only to consult the scale provided for this purpose, and is referred at once to the proper keys to punch the justifying perforations in the strip. Each time the space key is depressed a pointer rises one step against a cylindrical scale placed vertically in front of che machine, and when the operator has finished secting a line he presses a special key which causes the cylinder to rotate until it automatically stops with the required number at the end of the pointer. This number is in the form 2. and to complete the justification of the line the
operator has only to deprese the appropriate keyt in the top two rours of the keyboard, in this case No. 3 of the top row and No. 4 of the second.

The ribbon thus prepared in the punching machine is used to control all the movements of the casting or composing machine. The matrices for making the type faces are formed in a plate about 3 in, square, and any character is brought opposite the casting pojpt by the movement of the matrix-carrier in two directions, or rather by the resultant of two such independent movements. As the perforations for controlling the galley movements and thome for justifying the line are nccessarily made after the others in the perforating machine, and these operations must be provided for in the composing machine beiore the line is set up, the latter machine is so organized that the ribbon is passed through and the types are set in the reverse order to that in which the strip was punchied. The periorated ribbon is wound from one wheel of to another, passing over the edge of a tracker board in which there are a number of holes corresponding to those which may occur in the ribbon, and each of these holes communicates by a tube with a small piston which controls come device for performing one of the various operations of the machine. As the ribbon passes over the tracker boand, a jet of compressed air pasces to the appropriate operating device whenever a ribbon perforation or any combination of them coincides with the proper holes. The two perforations on each transverse Une control two stop pins which limit the movements of the matrixcarrice to bringing the proper matrix to the casting-point, while the justifying perforations set in motion devices which open the space mould to cast space type of the exact size to effect the proper juntif. cation of the line, and the galley perforation starts the feeding device which moves the galley lor the next line of type. The matrixcarrier may be readily removed and another carrying a differeat style or size of type substituted therefor.

In modern printing it is often the case that the printing surface actually used in the press (see Panninnc) is not the original forme of type, whether consisting of separate type set up by machine or by hand, or of Linotype slugs, but a reproduction of it made by electrotyping or by stereotyping. Of these two processes the former is the slower and the more costly. but it produces the better results, since electrotyped plates are capable of yielding a larger number of sharp impressions than are stereotypes.

Electrotyping.-In making an electrotype, a moulding composition consisting mainly of wax with a little blacklead, is poured when molten into a shallow metal tray, and, when it bas ett, its surface is brushed over with blacklead and polished. An impression of the forme, which is also blackleaded, is next taken in the wax while it is still warm, often by the aid of a hydraulic press, and the mould thus obtained, after being separated from the forme, undergoes a process of buildinf ap, which consists of dropping heated wax upon thoce portions which require to be more deeply sunk in the finished type, that is, upon those places where " whites " are to appear in the print. The face of the finished mould is then carefully covered with blacklead, which is a conductor of electricity, and the whole is immersed in an electrotyping bath, where copper is deposited on the blackleaded portions by means of 'the current from a Smee's battery or a dymano machine. When the deposit. or shell, is gufficiently thick, it is disengaged from the wax mould, backed with a metal which resembles type-metal but contains a larger proportion of lead, and trimmed and planed. For use in rotary presses curved electrotypes may be produced.

Stereotyping. The great advantage of stereotyping is in connexion with the production of newspapers, where the desideratum is the printing of of a large number of copies in a short time. For this purpose, in the first place, rotary machines must be employed, and atereotyping nffords a ready means of obtaining curved printing surfaces to fit their cylinders. It is true that stereotyping is not abeolutely necesary for rotary printing, since it has been found possible to print from movable type clamped on the cylinders in curved frames known as "turthes." But to et up duplicate formes of type is impracticable, and, therefore, this device does not permit the utilization of more than one press. Herein lien the pecond great advantage of stereotyping. for it enables the printer to obtain as many replicas of each forme as he desires, and thus not only to employ a number of machines simultaneously, but also to "dress" each of them with several duplicates of the same forme, as is required in the later developments of high-speed presses.
The first attempt at making stereotypes was by means of moist clay into which, after it had been impressed with the type and baked. molten type metal was poured; but this method did not yield a curved plate. Later the clay was replaced by papier-mache, which being fexible can be bent to the required shape. This papietmache, known as fows and composed of eeveral sheets of paper united by a paste copatile of withstanding a high temperature without burning, is moistened and had over the forme of type, into which it is well pressed cither by beating with a long-handled brush or, according to the more modern and expeditious method, by being paswed through a monldiag prems. The flong is mext dried for which
purpose it is eitser placed with the eype in a heated chamber covere: with blankets which absorb the moisture, or is removed from type and heated separately. Sometimes these two methods used in combination; processes have also been devised for press the flong dry upon the type, when subsequent drying becom unneccssary. For casting a plate the matrix thus prepared fastencd in a casting mould or box curved to the circumference the cylinder of the press, and molfen stereo-metal (a softer form type-metal) is poured upon it. During this process the box stands upright, but white the matrix is being placed in position it hies horizontally, a swivel mounting enabling it to be readily turne After time has been allowed for solidification, the cast is taken ou stripped from the matrix and adjusted on a "finishing saddle, where a machine cuts off the superfluous metal from its upper en and forms a bevel by which it can he clamped on the press. It then placed face downwards in another machine which shaves of and smonths its interior surface, and finally it is set face upward while men with claisels remove protruaing pieces of metal that migl take ink and print.
Up to the end of the 19th century the general method of stereatyping was as outlined above, though of course there were variation in different establishments. The time required to produce a plate as distinet from making the matrix, was about 1 or \(1 \frac{1}{2}\) minute, and \(t\) process was expensive in labour since it required the employmen of half-a-dozen men. This time may seem short enough, but whe plates are needed by the score, as may be the case with a pape having a large circulation, the delay entailed by the preparatio of the whole number by this method becomes of serious importance Means were therefore sought to reduce it by the adoption of auto matic mechanism. In the Autoplate machinc, invented in Ameris by Henry A. Wise Wood, and first used by the New York Here in 1900 , the operation of casting is performed automatically from th time the matrix is put in position until the finished plate is read to be placed on the printing press, and from a single matrix fou plates \(\frac{1}{2}\) in. thick, or seven or eight \(\frac{1}{6}\) in. thick, can be produce every minute, by the aid of three men only. The casting is don against a horizontal cylinder or core, the interior of which is coole by water. Below it is a frame or "back" carrying the matri This back has an up and down movement of about six inches, an when it is in its topmost position there is a semicircular spar between it and the core equal in length, breadth and thickness the plate which has to be cast. Molten metal having been injecte into this space by a pump, there is a pause of a few seconds to perm of solidification, and then the back falls, bringing away the matrix wit it. Immediately afterwards the cylinder makes a half turn, and yr sents what was previously its upper half to the matrix for anothu cast. The first cast is taken with it as it turns, and is then pushed along from the top of the core against two rotating saws which trin its edges. Next it comes under a shaving arch, where it pauses while its interior surface is smoothed to proper thickness, and finally wat is directed against its back, to cool it without wetting its printin face. The Junior Autoplate is a simpler machine which does no perform so many operations. In it the casting core is vertical, \(n\) horizontal, but the matrix is still automatically stripped from the plate, the casts are made alternately on the two halves of the cylinder, and as one plate is being removed another is being cas The machine also automatically cuts of the sprue which is left on th top of the plate as it stands in the casting box. About threa plates a minute are produced, but they are not delivered completcl finished, and have to undergo several further operations before the are ready to be placed on the press. The Double Junior consist of two Junior Autoplates served from a common melting-pot, an its capacity is six plates a minute, with two matrices; and anothr machine, the Autoshaver, has been devised which can shave, cow and deliver that number of plates automatically, no labour bein required except to take the plate from the casting machinc ant place it on the Autoshaver.
See Prectical Priming, by John Southward and Arthur Powe \({ }^{\prime \prime}\) (5th ed., London, 1900); Modern Printing, by John Southwarw (London, 1808); The American Hardbook of Primine, by Edmuni G. Gress (New York, 190\%) ; History of Composing Muchines, by Joh S. Thompson (Chicaso, 1904): Traite de la typographic, by Henri Fournier (4th ed., Paris, 1904); "Type Casting and Composirin Machines," by L. A Legros, Proc. Inst. Mech. Eng. (Londem. 1908): "Modern Stereotypy and the Mechanics of the Newspaper." by Henry A Wise Wood. Jomrn. Franklin Insl. (Philadelphiu 1910). (J.So.;H. M.R.)

TYR, the Scandinavian god of battle. He is not a prominen figure in Northern mythology, for even in this special capacit: he is overshadowed by Odin, and there are hardly any tracis aid to him. Among other Teutonic peoples at one time to have been a deity of consider-
In Anglo-Saxon he was called \(T \mathrm{~T}\left(\mathrm{Ti}_{i}, \mathrm{~T}_{i}\right.\)) "Tuesdzy ") and equated sith the Romas dentified with the Cerman god mentionsed
maner is the same as the word for "god "
in several other Indo-European languages (e.k. Lat. dinst, Lith. deves, Skr. depes), and even in Old Norse the plural (tioar) was still used in the same sense. (See Teutoric Peoples \& Religion, ad fin.)
(H. M. C.)

TYRANT (Gr. Tbpanos, master, zuler), a term applied is modern times to a ruler of a crucl and oppressive character. This use is, however, based on a complete misapprehension of the application of the Greek word, which implied nothing more than unconditional sovereignty. Such rulers are not, as is often supposed, confined to a single period, the 7 th and 6th centuries B.C. (the so-called "Age of the Tyrants") of Greek bistory. but appear sporadically at all times, and are frequent in the later city-states of the Greek world. The use of the term "tyrant" in the bad sense is due largely to the ultra-constitutionalists of the \(4^{\text {th }}\) century in Athens, to whom the democracy of Pericles was the ideal of government. Thus the government which Lysander set up in Athens at the close of the Peloponnesian War is called that of the "Thirty Tyrants " (sec Cririas). The same term is applied to those Roman generals (really 18) who usurped authority locally under Gallienus.

TYRAS, a colony of Miletus, probably founded about 600 n.C., situated some 10 m . from the mouth of the Tyias River (Dniester). Of no great importance in early times, in the and century b.c. it fell under the dominion of native kings whose names appear on its coins, and it was destroyed by the Getae about so B.c. In A.D. 56 it scems to have been restored by the Romans and henceforth formed part of the province of Lower Moesia. There exists a series of its coins with heads of emperors from Domitian to Alexander Severus. Soon after the time of the latter it was destroyed by the Goths. Its government was in the hands of five archons, a semate, a popular assembly and a registrar. The types of its coins suggest a trade in wheat, wine and fish. The few inscriptions are also mostly concerned with trade. Its remains are scaniy, as its site bas been covered by the great medieval fortress of Monocastro or Akkerman (q.v.).
See E. H. Minns, Scythons and Greeks (Cambridge, s909); V. V. Latyshev, Inscriptiones Orac Seplentrionalis Powli Euxini, vol. i. (E. H. M.)

TYRCONKELI. RICHARD TALBOT, EARL [TITULAR DOEE] of (1630-1691), Irish Jacobite, came of an ancient Anglo-Norman family, the Talbots of Malahide. His father, Sir William Talbot (d. 1633), was a Roman Catholic lawyer and politician of note. His brother Peter was Roman Catholic archbishop of Dublin. Richard Talbot served as a royalist during the Great Rebellion. He was present in Drogheds (Tredah) when it was stormed by Cromwell on the 3rd of September 1647, and was one of the few members of the garrison who escaped from the massacre; he fied to Spain. He then lived like many other royalist refugees, partly by casual military service, but also by acting as a subordinate agent in plots to upset the Commonwealth and murder Cromwell. He was arrested in London in November 1655 and was examined by Cromwell. Once more he escaped, but it was said by his enemies that he was bribed by the Protector, with whom one of his brothers was certainly in correspondence. After the Restoration he had a place in the household of the duke of York (James II.). He was actively engaged in an infamous intrigue to ruin the character of Anne Hyde, the duke's wife, but continued in James's employment and saw some service at sea in the naval wars with the Dutch. He accumulated money by acting as agent for. Irish Roman Catholics who sought to recover their confiscated property. He was arrested in connexion with the Popish Plot agitation in 1678 , but was allowed to go into exile. He returned just before the death of Charles II., and during the reign of James 11. he was the chief agent of the king's policy in Ireland. He was appointed commander-in-chief and created earl of Tyrconnell in 168 s . The duty assigned him was to create a Roman Catholic army which might be used to cocrce England. In February 3687 he was appointed lord deputy, and became the civil as well as the military governor of Ireland. Tyrconnell, who foresaw the revolution \(m\) England, entered into intrigues for handing I reland over to the king of France in order to secure tbe interest of bis
tellow Roman Catholics. For a time he made a pretence of protecting the Protestants, but when the revolution of 1688 occurred in England he threw himself, after some hesitation, into the struggle against William III., and when James tied to France Tyrconnell was left as his representative. When Williaro raised the sigge of Limerick, Tyrconnell went over to France to seek help, and after his return (January 1691) he was little more than a spectator of the military operations. When he did act it was to thwart the French General St Ruth and his own countryman Sarsbeld. He became so unpopular that he was compelled to retire to Limerick, where he died of apoplexy on the 14th of August 1691 . In 1689 King James created him duke of Tyrconnell, hut the title was recognized only by the Jacobites.

TYRCONNELL (Tir-Conaill), an ancient kingdom of Ireland. Conall Gulban, a son of Niall of the Nine Hostages, king of Ireland, acquired the wild territory in the north-west of Ulster (the modern Co. Donegal, \&c.), and founded the kingdom about the middle of the 5 th century. Of the several branches of his family, the O'Connells, O'Cannanans and O'Dohertys may be mentioned. The kings of Tyrconnell maintained their position until 107 F .
TYRE (Phoen. and Hebr. Y. 7 " \(=\) " rock," Assyr. Surru, Egypt. Dara, Early Lat. Sarra), the most famous city of Phoenicia. It is now represented by the petty town of Sur (about 5,000 inhabitants), built round the harbour at the north end of a peninsula, which till the time of Alexander's siege was an island. without water or vegetation. The mole which he constructed has been widened by deposits of sand, so that the ancient island is now connected with the mainland by a tongue of land a quarter of a mile broad. The greatest length of the former island, from north to south, is about \(\$ \mathrm{~m}\). and its area about 142 acres . The researches of Renan have refuted the once popular idea that a great part of the original island has disappeared by natural convulsions, though he believes that the remains of a submerged wall at the south end indicate that about 15 additional acres were once reclaimed and have been again lost. On this narrow site Tyre was built; its 25,000 inhabitants were crowded into manystoreyed houses loftier than those of Rome; and yet place was found not only for the great temple of Melqarth with its courts, but for docks and warehouses, and for the purple factories, wbich in Roman times made the town an unpleasant place of residence (Strabo zvi. 2, 23). In the Roman period the population occupied a strip of the opposite mainland, including Palaetyrus Pliny (Nat. Hist. v. 19) gives to the whole city, continental and insular, a compass of 19 Roman mlles; but this account must be received with caution. In Strabo's time the island was still the city, and Palaetyrus on the mainland was distant 30 stadia; modern research, however, indicates an extensive line of suburbs rather than one mainland eity that can be identified with Palactyrus. This name was given by the Greeks to the settlement on the coast under the mistaken impression that it was more ancient than that on the island; the Assyr. Ushu, frequently mentioned in the Araarna letters, makes it probable that Usu or Uzu was the native name. Owing to the paucity of Pboenician remains the topography of the town and its surroundings is still obscure. The present harbour is certainly the Sidonian port, though it is not so large as it once was; the otber ancient barbour, the Egyplian port, has disappeared, and is su pposed by Renan to have lain on the south side of the island, and to be now absorbed in tbe isthmus. The most important ruins are those of the cathedral, with its magnificent columns of rose-coloured granite, dow prostrate. The present building is assigned by De Vogué to the second half of the 12 th century, but the columns may have belonged to the ath-century church of Paubinus (Euseb. H.E. x. 4). The water-supply of ancient Tyre came from the powerful springs of Ras-al 'Ain (see AqueDUCT) on the mainland, one hour south of the city. where there are still remarkable reservoirs, in connexion with which curious survivals of Adonis worship have been ohserved by travellers. Tyre was still an important city and an almost impregnable fortress under the Arab Empire. From 1124 to 1291 it was a
strongbold of the crusaders, and Saladin himself besieged it in vain. After the fall of Acre the Christians deserted the place, which was then destroyed by the Moslems. The present town has arisen since the Motawila (Metawila or Mutawileh) occupied tbe district in 1766 .

The most important references to Tyre in the Bible are 1 Kings y., vii., ix. : Is. xxiii.; Am. i. 9 seq.; Exek. xxvi.-xxviii.; 2 Macc. iv. 18 sqq.: Mark iii. 8, vii. 24 sqq.; Matt. xi. 21 seq. (and parallels); Acts xii. 20. Cf. also Joshua xix. 29; 2 Sam. xxiv. 7; Eara iii. 7: Neh. xiii. 16: Ps. xlv. 12, Ixxxiii. 7, 1xxxvii. 4. For the history of Tyтe see Phoenicia. See also Renan. Mission de Phenicie (1864): Pietschmann, Gesch. der Phonizier (i889), 61-72: F. Jeremias, Tyrus bis zup Zeil Nebukodnesars (1891); H. Winckler. Altor. Forschungen, ii. 65 sq9.; A. Socin in Baedeker. Pal. m. Syrien.
(W. R.S.; G. A. C. \({ }^{\bullet}\))

TYREE, an island of the Inner Hebrides, ArgyUshire, Scotland. Pop. (1901), 2192 . It is situated fully 2 m . S.W. of Coll, the isle of Gunna lying in the channel between the two islands, and has an extreme length from north-east to southwest of nearly 12 m . and a hreadth varying from m . to \(4 \frac{1}{2} \mathrm{~m}\). Carnan Mor (460 ft .) is the highest point; there are several lakes. On the south-western point of Balephuill Bay are ruins of St Patrick's temple, besides duns and ancient chapels. Steamers call from Oban regularly at the small harbour of Scarinisb. Skerryvore, a loncly rock in the Atlantic, 14 m . south-west, belongs to the parish of Tyree. The massive lighthouse, which Alan Stevenson erected in 1833-1843, was constructed of granite from the quarries of Hynish at the southeastern extremity of Tyrec.
TYRONE, EARLS OP. The earldom of Tyrone was first conferred by Henry VIII. in 1542 on Conn Bacach O'Neill, and was forfeited in 1614 when an act of attainder was passed against his grandson Hugh, and earl (more strictly 3 rd earl, for his brother Bricn was for some years de jure holder of the title though never recognized as such), the famous rebel who fled from Ireland with the earl of Tyrconncll in 1607 (see O'Neile). Descendants of the ist earl in Spain continued to styic themselves earls of Tyrone till the death early in the 18 th century of Owen O'Ncill, grandson of Owen Roe O'Neill. In 1673 Richard Power, 6th Baron Le Power and Coroghmore, governor of Waterford, was created viscount of Decies and earl of Tyrone, being succecded in these titles by his two sons successively, on the death of the younger of whom in 1704 they became extinct. A daughter of this last earl married Sir Marcus Beresford, Bart., of Coleraine, Co. Derry, in 1717; and in 1720 Beresford was created Baron Beresford and Viscount of Tyrone: In 1746 he was further created earl of Tyrone. and after his death in 1763 his widow became in 1767 Baroness La loer in her own right. The only surviving son of this marriage inherited the titles of both his parents, all of which were in the peerage of Ircland, and in 1786 he was created a peer of Great Britain as Baron Tyrone of Haverfordwest in the county of Pembroke; three ycars later he was created marquess of Watcrford, with which dignity the earldom of Tyrone has remained conjoined.

TYRONE, a county of Ireland in the province of Ulster, bounded N. and W. by Donegal, N.E. by Londonderty, E. hy Lough Neagh and Armagh and S. by Monaghan and Fermanagh. The area is 806,658 acres or about 1260 sq . m . The surface is for the most part hilly, rising into mountains towards the north and south, but eastward towards Lough Neagh it declines into a level plain. Running along the north-eastern boundary with Londonderry are the ridges of the Sperrin Mountains (Sawel, 2240 ft ., and Meenard, 206 f ft .). Farther south there is a range of lower hills, and Mullaghearn, north-east of Omagh, reaches 1778 ft . South of Clogher a range of hills, reaching 1255 ft . in Slieve Beagh, forms the boundary between Tyrone and Monaghan. On each side of the Mourne River near Omagh rise the two picturesque hills Bessy Bell and Mary Gray. The Foyle firms a small portion of the western boundary of the county, and receives the Mourne, which flows northward by Newton Stewart. The principal tributaries of the Mourne are the Strule (constituting its upper waters), the Derg from

Lough Derg, and the Owenkillew, fowing westward from Fir Mountain. The Blackwater rises near Fivemiletown and forms part of the south-eastern boundary of the county with Monaghan and Armagh. With the exception of Lough Neagh, bounding the county on the east, the lakes are small, also few in number. Lough Fea is picturesquely situated in the north-west, and there are several small lakes near Newtown Stewart.
Geology. - The Sperrin Mountains in the north consist of ordinary -" Dalradian " mica schists. covered mostly with grass. Lower Carbonilerous Sandstone occurs as an outlier between the mountains and Strabane. The relation of the northern schists to the gneissic and "green rock" axis that forms the centrat moorland of Tyrone is obscure : intrusions of granite have evidently coarsened the structure of this axis. Ancient perlitic rhyolites occur among the "green rocks" on its northern fank. Omagh lies on Lower Carboniferous Sandstone. which, fringed by Old Red Sandstone, stretches west Irom the town to the county boundary; but the Dalradian schists appear continuously south of this from Omagh to Lack in Co. Fermanagh. A great mass of Old Red Sandstone. rising in long ranges of hills. occupies most of the south of the county. sesting on Silurian shales at Pomeroy. Lower Carboniferous sandstone and limestone occur on the south flank of this upland, and extend over its east end to Cookstown. At Slieve Beagh in the extreme south Upper Carbonifcrous sandstones and shales are reached, and Irom Coalisland to Dungannon true Coal Measures appear. This coalfield includes one fine seam 9 ft . thick at Coalisland: less important coals occur in the Millstone Grit series at Dungannon. Though much denuded belore Triassic times, the field doubtess continues eastward under the Triassic sandstone that stretches towards Lough Neagh. The pale clays, probably Pliocene. of the southern shore of the lake cover the flat land east of Coalisland, and are several hundred feet thick. North or Stewartstown, ncar Tullaghoge, a very small patch of Magnesian limestone contains Permian marine fossils; and, farther north. the county includes part of the basaltic platcaus, protecting Chalk, which extend away into Co. Londonderry. The Glacial epoch has keft immense deposits of gravel and long eskers throughout the county. These are especially conspicuous north of Pomeroy. Fire-clay is raised from the collicries at Coalisland; but coal-mining here awaits exploration on the east.
Industries.-The hilly districts are unsuitable for tillage; but in the tower regions the soil is remarkably fertile, and agriculture is generally practised after improved methods. the county in this respect being in advance of most parts of lreland. The excellent pasturage of the hilly districts supports a large number of young pasturage of the hilly districts supports a iarge number of young Oats. potatoes and turnips are the principal crops. The cultivation of flax. formerly an important industry. has greatly deteriorated. Poulery-keeping is a growing industry. There are manulactures of linens and coarse woollens (including blankets); brown carthenware, chomicals, whisky soap and candles are also made. There are a lew breweries and distilleries, and several flour and meal mills. But for the lack of enterprise the coal and iron might aid in the development of a considerable manulacturing industry.

Branches of the. Great Northern railway Irom Portadown (Co. Armagh) and Dungannon in the south-cast, and From Enniskillen (Co. Fermanagh) and Fintona. unite at Omagh. whence a line proceeds north by Newtown Stewart and Strabane to Londonderry. From Dungannon a branch runs north to Cookstown, where it joins a branch of the Northern Counties (Midtand) railuay. From Victoria Bridge on the Londonderry lioe the Castlederg light railway serves that town. The south of the county is served by the Clogher Valley light railway. Water communica. tion includes Lough Nieagh, and the Blackwater entering it, and navigable to Mloy, whence the Ulster canal skirts the boundary of the county with Co. Armagh to Caledon. The Foyle is navigable to Strabane.

Population.-The population (150,567 in 1901) shows a decrease among the most scrious of Irish county populations,
 Roman Catholics, \(22 \%\) I'rotestant Episcopalians and \(19 \%\) Presbyterians; about \(90 \%\) constitute the rural population The chicf towns are Strabane (pop .5033), Omagh (the county town, 47.89). Dungannon (3694), Cookstown (3531) and Newtown Stewart (1062). The county comprises 8 haronies. Two county members and 2 for each of the boroughs of Augher, Clogher, Dungannon and Strabane were returned to the Irish parliament; afier the Union the county returned 2 members to parliament, the borcugh of Dungannon also returning \(\mathbf{x}\); but in 1885 Dungannon was disfranchised and the county arranged in four rlivisions--asa, mid, north and south-each returning opemomber. Avisel are held at Omagh and quarter-
sessions at Clogher. Cookstown, Dungannon, Omagh and Strabane.

History.-Tyrene became a principality of one of the sons of Niall of the Nine Hostages in the 5th century, and from his name-Eogan-was called Tir Eogan, gradually altered to Tyrone. From Eogan were descended the O'Neals or O'Neills and their numerous septs. The family had their chief seat at Dungannon until the reign of Elizabeth, when it was burned by Hugh O'Neill to prevent it falling into the hands of Lord Mountjoy. The earldom of Tyrone had been conferred by Henry VIII. on Conn O'Neill, but on his death, when the carldom should have descended to his heir Matthew, baron of Dungannon, another son, Shane, was proclaimed chief with the consent of the people. Shane maintained a contest with English authority, but his last-remaining forces were completely defeated near the river Foyle in May 1567, and sbortly afterwards he was himself killed. Tyrone was one of the counties formed at Sir John Perrot's shiring of the unreformed parts of Ulster; but his work was interrupted by the rising of Hugh O'Neill in 1596 . During the insurrection of 1641 Charlemont Fort and Dungannon were captured by Sir Phelim O'Neill. and in 1645 the parliamentary forces under Gencral Munro were signally defeated by Owen Roe O'Neill at Benburb. At the Revolution the county was for a long time in the possession of the forces of James II.

Raths are scattered over every district of the county. There is a large cromlech near Newtown Stewart, another at Tarnlaght near Coagh and another a mile above Castlederg. At Kilmeilie near Dungannon are two stone circles. There are some ruins of the ancient castle of the \(O\) Neills. near Benburb; mention may also be made of the ruins of the castles of Newtown Sxewart. Dungannon, Strabanc and Ballygawley.

TYRONE, a borough of Blair county, Pennsylvania, U.S.A., about 15 m . N.E. of Altoona, on the Little Juniata river, small tributary of the Juniata river. Pop. (igio) 7176. Tyrone is served by the main line and three short branches of the Pennsylvania railway (which has repair shops here), and is connected with Altoona by an electric line. The borough is situated about gio ft. above sea-level, in an agricultural and lumbering region, and there are deposits of limestone in the vicinity. It is a distrihuting point for the Clearfield coal region to the northward. At the village of Birmingham, 3 m . east, is a school for girls (lounded 8853 ; incorporated 1907). Tyrone was laid out as a village in 1851, and was incorporated as a borough in \(\mathbf{1 8 5 7}\).

TYRRELL, GEORGE (186t-igo9), Irish divine, was born in Dublin on the 6th of February 1861, and came of a family noted for its intellectual distinction. He was educated under \(\mathbf{D r}\) Benson at Rathmines School and entered Trinity College in 1878 . He was greatly influenced by the writings of Cardinal Newman, and carly in \(\mathbf{8} 89\) entered the Roman Catholic Church. In 1880 he joined the Society of Jesus and passed his novitiate at Manresa and other houses of the order, becoming teacher of philosophy at Stonyhurst. He had a keen sympathy with the difficulties experienced by the ordinary lay mind in trying to reconcile the conservative element in Catholicism with the principle of development and growth, and in The Faith of the Millions. Hard Sayings and Nooc of reteru he altempted to clear them away. His writings have been described as " apologetic in intention, meditative in method and mystical in substance," and Tyrrell bimself certainly combined in a wonderful way the judiclal and the enthusiastic types of character. Besides the influence of Newman, the friendship and wort of Robert Dolling made a great impression on him, and as he admitted, saved him from being contented with a merely acsdemic and ecclesiastical type of religion. Tyrrell privately circulated among his friends writings in which he drew a clear line of distinction between religion as a life and theology as the incomplete interpretation of that life. One of these, the Leller to a Professor of Anthropology, was translated without his knowledge into Italian, and extracts from it were published in the Corriere della Scre of Milan in January 1go6. For at
least eight years before this be had been more or less in confict with the authorities of his order, through his sympathy with "modernist" views, but the publication of this letter (afterwards issued by Tyrrell as A Much Abused Letter) brought about his expulsion (rom the order in February 1906. "The conflict," be wrote, "such as it is, is one of opinion and tendencies, not of persons; it is the result of mental and moral necessities created by the antitheses with which the Church is wrestling in this period of transition." Tyrrell found no bishop to give him an ecclesiastical status and a celebref, and he aever regained these privileges. In July 1907 the Holy Office published its decree condemning certain modernist propositions, and in September the pope issued his encyclical Pascendi Gregis. Tyrrell's criticism of this document appeared in The Times on the zoth of September and the rst of October, and led to his virtual excommunication from the Church. In the few years that remained to him he gave himself with patience and dignity to the work of bis life. He had already published Ler craxdi, insisting that the true interpretation of the creed is determined by its prayer value, and in 1906 he wrote Lex credendi. This was followed by Through Scylla and Charybdis, in which he developed his lavourite view of revelation as experience: Mediactalism. a vigorous apologia in reply to a Lenten pastoral of Cardinal Mercier, archhishop of Malines, who had attacked him as the chief exponent of Modernism; and Christionily at the Cross Roads, which emphasizes the distinction between his own position and that of the Liberal Protestants, and is of special interest for its creatment of the eschatological problems of the Cospels. On the 6th of July 1909 he was suddenly taten ill, on the roth he received conditional absolution from a priest of the diocese of Southwark, and on the \(12 t h\) extreme unction from the prior of Storringion. His intimate friend, the Abbé Bremond, gave him the last absolution and remained with him until bis death on the isth of July igog. Such appear to be the facts. but Tyrrell's relations with Rome were such that a good deal of mystery was made as to whether. he really received the last rites of his Church in any authorized manner. About his own saintly and sympathetic character, and his essential religiousness, there was no doubt.

See the estimates by Baron F. von Hugel and Rev. C. E. Osborne in The Hibbert Jowrnal for January tgio; also the obituary in The Times (July 16, 1909), and the Life. by Miss M. D. Petre

TTRRELH, SIR JAMES (d. 1502), the supposed murderer of the English king Edwatd V., and of his brother Richard. duke of York, was a son of William Tyrrell and a grandson of Sir John Tyrrell (d. c. 1437), who was treasurer of the royal housebold and was on three occasions Speaker of the House of Commons. The family is said to descend from Walter Tirel, the murderer of William Rufus. During the Wars of the Roses James Tyrrell lought for the Yorkists; in 1475 he was knighted; and in 1477 he was member of parliament for Cornwall. With regard to his share in the murder of the prince in 1483 be appears to have been selected by Richard 111. and sent to the Tower of London, where he supervised the crime whicb was carried out by his subordinates. Afterwards he received several appointments from Richard and was sent to Flanders. He was also employed by Henry VII. and was made governor of Guisoes, but he seems to have incurred the king's displeasure through his friendship with Edmund de la Pole, earl of Suffolk. Having been treacherously seized he was conveyed to England and was executed on the 6th of May 1502. Just before his death he made a confession about the murder of the princes.

Members of the same family were Sir Thomas Tyrrell (1594-1672), justice of the common pleas under Charles II., and Anthony Tyrrell (1552-C. 1610), a Roman Catholic priest and spy, who afterwards became a clergyman of the Church of England.

TYRTAEUS, Greek elegiac poet, lived at Sparta about the middle of the 7 th century s.c. According to the older tradition be was a native of the Altic deme of Aphidnac, and was inviled to Sparta at the suggestion of the Delphic oracle to assist
the Spartans in the second Mescenian war. According to a later version, be was a lame schoolmaster, sent by the Athenians as likely to be of the least assistance to the Spartans (Justin iii. s; The mistius, Oral. xv. 242: Diod. Sic. xv. 67). A fanciful explanation of his lameness is that it alludes to the elegiac couplet, one verse of which is shotter than the other. According to Plato (Laws, p. 629 A), the citizenship of Sparta was conferred upon Tyrtacus, although Herodotus (ix. 35) makes no mention of him among the foreigners so honoured. Basing his inference on the ground that Tyrtacus speaks of himself as a citizen of Sparta (Fr. 2), Strabo (viii. 362) is inclined to reject the story of his Athenian origin. Suldas speaks of him as "Laconian or Milesian "; possibly he visited Miletus in his youth, where he became familiar with the Ionic elegy. Busolt, who suggests that Tyrtaeus was a native of Aphidnae in Laconia, conjectures that the entire legend may have been concocted in connexion with the expedition sent to the assistance of Sparta in her struggle with the revolted Helots at Ithome (464). However this may be, it is generally admitted that Tyrtaeus flourished during the second Messenian war (c. 650 в.c.) \(\rightarrow\) a period of remarkable musical and poctical activity at Sparta, when poets like Terpander and Thaletas were welcomed -that be not only wrote poetry but served in the feld, and that he endeavoured to compose the internal dissensions of Sparta (Aristotle, Politics, v. 6) by inspiring the citizens with a patriotic love for their fatherland. About twelve fragments (three of them complete poems) are preserved in Strabo, Lycurgus, Stobaeus and others. They are mainly elegiac and in the lonic dialect, written partly in praise of the Spartan constitution and King Theopompus (Eivopia), partly to stimulate the Spartan soldiers to deeds of heroism in the field ('Trofinauthe title is, however, later than Tyrtacus). The interes! of the fragments preserved from the Eiropia is mainly historical, and connected with the first Messenian war. The 'Ttoofika. which are of considerable merit, contain exhortations to bravery and a warning against the disgrace of cowardice. The popularity of these elegies in the Spartan army was such that, according to Athenaeus (xiv. 630 F), it became the custom for the soldiers to sing them round the camp fires at night, the polemarch rewarding the best singer with a piece of flesh. Of the marching songs (\(E_{\mu} \beta a+h p a\)), written in the anaparstic measure and the Doric dialect, only scanty fragments remain (Lycurgus, In Leocratem, p. 211، § 107; Pausanias iv. 14, 5. 15, 2; fragments in T. Bergk, Poetae lyrici graeci, ii.).

Verrall (Chassical Revieno. July 1896. May 1897) definitely places the lifetime of Tyrtaeus in the middle of the 5 th century \(\mathrm{B} . \mathrm{c}\). while Schwartz (Hermes. 1899. xxxiv.) disputes the existence of the poet altogether; see also Macan in Classical Rerrese (February 1897): H. Weil, Eludes surl'antiquụ́ grecque (1goo), and C. Gia rratani. Titco e i suoi carmi (igus). There are English verse transla: tions by R. Polwhele (1792) and imitations by H. J. Pye. poet taureate (1795), and an Italian version by \(F\). Cavallotti, with text, introduction and notés (1898). The frapinent beginning Tefrauiva yde salbu has been translated by Thomas Campbell, the poet. The edition by C. A. Klotz (1827) contains a dissertation on the war-songs of different countries.

TYRWHITT. THOMAS (\(\mathrm{t} 730-1786\)), English classical scholar and crilic, was born in London on the 27th of March 1730 , where he died on the 1 sth of August 1786. He was educated at Eion and Queen's College, Oxford (fellow of Merton. 1755). In 1756 he was appointed under-secretary at war, in 1702 clerk of the House of Commons. In 1768 he resigned his post, and spent the remainder of his life in learned relirement. In 1784 he was elected a trustee of the British Museum, to which he bequeathed a portion of his valuable library.

His principa! classical works are: Fragmenta Plutarchi 11. inedita (1773). from a Harleian MS.: Dis sertatio de Babrio (1 776). containic's some fables of Aesop, hitherto unedited, from a Bodleian MS: the pseudo-Orphic De lapudibus (2781). which he aussigned to the age of Constantius: Conjecturae in Strabonem (178,3); Isacus De Menelis hereditale (1785): Aristotle's Poetica, his most important work. published after his death under the superintendence of \(D_{r}\) Burgess. bishop of Salisbury. in 1794 . Special mention is due of his editions of Chaucer's Contribury Tales (1775-1778): and of Poems. supposed to have been writhen at Bristal by Thomas Roudey
and others in the Fifleenth Cewfinry (1777-1778), with an appendix to prove that the poems were all the work of Chatterton. In 1782 he published a Vindication of the Appendix in reply to the arguments of those who maintained the genuineness of the poems. While clerk of the House of Commons he edited Praceedings and Debates of the House of Commows. 1620-1621 from the original MS in the Ifbrary of Queen's College. Oxford, and Henry Elsynge's (15981654) The Manner of holding Parliaments in England.

TYTLER, WILHAT (1711-1792), of Woodhouselee, Scoltish historian and antiquarian, son of Alexander Tytler of Edinburgh.. was born in that city on the 12th of October 1711. He was educated at the High School and the University, and was in 1744 admitted into the society of Writers to the Signet. In 1759 he published an Inguiry, Historical and Critical, defending the character of Mary, Queen of Scots, and in 1783 the Poetical Remanns of James the First, King of Scotland. He died at Woodhouselee on the 12 th of September 1792. His life, written by Henry Mackenzie, was published in 1796.

His son Alexander Fraser Tytler, Lord Woodhouselce (1747-1813h Scottish judge, was born at Edinburgh on the isth of October 1747. He was called to the Edinburgh bar in 1770. His first work, a supplement to Lord Kames's Dictionery of Decisions, entitled The Decisions of the Court of Session, was published in \(\mathbf{5 7 8}\), and a continuation appeared in 1796 . In \(t 780\) he was appointed conjoint professor of universal history in the university of Edinburgh, becoming sole proiessor in 1786. In 1783 he published Oullines of his course of lect ures, extended and republished in 1801 under the title of Elemends of General \(H\) istory. In 1790 be was appointed judge-advocate of Scotland. and while holding this office he wrote a Treatise on the Law of Courls-Marital. In 1801 he was raised to the bench, taking his seat (1802) in the court of session as Lord Woodhouselee. He died at Edinburgh on the sth of January 1813 .

Besides the works already mentioned, he wrole Life and Writimgs of Dr John Grreory (1788); Essay on the Principles of Transhation (1790); a dissertation on Final Caxses, prefixed to his edition of Dertham's Physico-Theology (1799): a political pamphiet entitled (reland prafiling by Example (1799); an Eisay on Laura and Petrarch (1801): and Xemoirs of the Life and Wrilings of Heary Home of Kames (1807).

Patrace Fraser Trtiler (1791-1849) Scottish historian, son of Lord Woodbouselee, was born at Edinburgh on tbe zoth of August 1791. He was called to the bar in 1813; in 18:6 he became king's counsel in the exchequer, and practised as an advocate until 1832 . He contributed to Allison's Travels in France (1815); his first independent essays were papers in Blackrood's Magasime. His great work, the Histary of Scotland (1828-1843) covered the period between 1249 and 1603 . While occupied on this work Tytler removed to London, and it was largely owing to his efforts that a scheme for publishing state papers was carried out. Tytler was one of the founders of the Bannatyne Club and of the English Historical Society. He died at Great Malvern on the 14 th of December 1840 . His life (1859) was writicn by his irnewd, Juhn NV. Burgun. dean of Chichester.

His aher works include: contributions to Thomson's Selen Madodies of Scorland (182t); Life of Jomes Crichion of Clu-y, commonly called the Adwiroble Cruhtom (1819: 2nd ed. isi3), a Momoir of Sir Thowas Crasg of Ruccarton (1823); an Exay in published znonymousty (8826): Lires of Scotrish Worthies. Ior Alurray s Fownly Library (183t-1833) ; Hisinvicul Vierr of the Propert of Disecery in America (\(183_{2}^{2}\)): Life of Sir Walier Rabciph (183:) Lafe of Hewy HIJI. (IByy); Emgland Ender the Renges of Edrord! and Mary. from original hevers (1839): Notes ow thr Darwiey fres (1843). and on the Portraus of Mary Quent of Srots (1845)

TYUAEN. a town is West Siberix, in the government d Tobolsk, situated where the chief highway from Russia across the Urals touches the first navigable river (the Tura) of Siberia Pop. (to00), 20.651. A railway passing through Ehaterinbuty (dos m west by rail) and the principal ironworks on the easteril
terminus of steamboat traffic on the Kama and Volga. Tyumed has regular steam communication with Omsk and Semipalatinsk Irtysh (steamers penetrating as lar as Lake Zaisan in Dzungaria), with Tomsk, and other places in the Altai, and with the Arctic Ocean and the fisheries of the lower Ob. The town is well built, and stands on both banks of the Tura, here spanned by a bridge. The inhabitants have always been renowned for their industrial skill. Woollen cloth, linen, belts, barges, paper, and especially boots and gloves, are manufactured to a large amount; and Tyumeń carpets have a great reputation in Russia and Siberia.

TZETZES, JOHN, Byzantine poet and grammarian, flourished at Constantinople during the 12 th century a.D. Tretzes has been described as a perfect specimen of the Byzantine pedant. Excessively vain, he resented any attempt at rivalry, and violently attacked bis fellow grammarians. Owing to want of books, be was obliged to trust to his memory; hence he is to be used with caution. But he was a learned man, and deserves gratitude for his efforts to keep up the study of ancient Greek literature. Of his numerous works the moat important is the Book of Histories, usually called Chiliodes (" housands") from the arbitrary division by its first editor (N. Gerbel, 1546) into books each containing 1000 lines (iz actually consists of 12,674 lines in "political " verse). It is a collection of literary, historical, theological and antiquarian miscellanies, whose chief value consists in the fact that it to some extent makes up for the loss of works which were accessible to Tzetzes. The whole production suffers from an unnecessary display of learning, the total number of authors quoted being more than 400 (H. Spelthahn, Studien ma dre Chiliaden des Jokannes Tzelses, diss., Munich, Igon). The author subsequently hrought out a revised edition with marginal notes in prose and verse (ed. T. Kiessling. 1826; on the sourcies see C. Harder, De J. T. histeriarmm fontibus quaestiones selectae, diss., Kiel, 1886). The Chiliades is based upon a collection of Letters (ed. T. Pressel, 185i), which has been called an index to the larger work, itselí described as a versified commentary on the letters. These letters (107 in number) are addressed .partly to fictitious personapes, and partly to the great men and women of the writer's time. They contain a considerable amount of biographical detaiks. The Iliaca, an abridgment of and supplement to the Iliad, is divided into three parts-Antehomerica, Homerica, Post. homerica-containing the narrative from the birth of Paris to the retum of the Greeks after the fall of Troy, in 1676 bexameters (ed. C. Lehrs and F. Dübner, 1868, in the Didot series, with Hesiod, \&c.) The Homeric Allegories, dedicated to the empress Irene, in "pohitical" verse, are two didactic poems in which Homer and the Homeric theology are explained on euphemistic principles (ed. P. Matranga, in his Amecdola gracea, i. 1850). Tretzes also wrote commentaries on a number of Greet authors. the most important of which is that on the Cassamdre or Alexandra of Lycophron (ed. C. G. Muller, 1811), in the production of which his brother Isaac is generally associated with him. Mention may also be made of a dramatic sketch is iambic verse, in which the caprices of fortune and the wretched bot of the learned are deacribed; and of an iambic poem on the death of the emperor Manuel. noticeable for introducing at the beginning of each time the hast word of the line preceding it I (both in Matranga, An. gr. ii.).

For the other works of Tretzes see \. A. Fabricius. Bibliatiore groece (ed. Haries). xi. 228, and C. Krumbacher. Grsehichete der bya Lill. (2nd ed.. 1897): monograph by G. Hart." De Tzetzaruma nomine, vitis, scriptic' 'in Jahn's Jahroucher fur classische Philefogre. Supplemeniband xii. (Leipzig, 1881).

\footnotetext{
This versification is called clumacurts falipel. ladder), a term more commonly applied to a verse in which each word contaias one letter more than the one which precedes it.
}

UThe twenty-first letter of the English alphabet. It is a modification made in manuscript writing of the Latin inscriptional \(V\), and is itself found on the inscriptions of Rome as early as the latter part of the 2nd century a.D. The symbols \(U, V, Y\) are all of the same origin, but what the origin is has been much disputed. In the Phoenician alphabet T is the last symbol, but there can be little doubt that when the Greeks introduced symbols for vowels, which bad not been indicated in the alphabet they had borrowed, they took the sisth symbol of the Phoenician alphabet (see F) in its ordinary form \(Y\) and placed it at the end of the alphabet with the value of a vowel. This vowel was apparently \(u\) (English oo in moon), though Ionic and Attic Greek at a very early period changed it to the sound of the French u. In other dialects the earlier value long persisted, and in modern Tzakonian, the representative of the ancient Laconian, it still survives. In some places, e.s. Bocotia, the sound scems to have changed, in connexion with dental consonants, in the same way as the English sound, in certain cases \(i(y)\) being inserred in front of it. This seems to be the only leasible explanation of such spellings as twixa (rixn), rodoiteros (roditevor), which appear alter the Bocotians adopted the Ionic alphabet. A similar change must have existed in very early Attic and Iónic to account for the change of \(t\) before \(v\) into \(s\) in \(\sigma t\), "thou" for \(r\); some authorities think it was universal in the earliest Greck. Greek nowhere shows the symbol in the bowl shape that it has in the Semitic alphabet. From the jth century a.c. both \(\mathbf{Y}\) and \(\mathbf{V}\) are found, sometimes both in the same area. Another form somewhat later has the upper strokes curved outwards \(T\), while the angle is much less deep than in the other forms. It is noticeable that the symbol for min the syllabary which was used to write Greek in Cyprus has this form amongst others. The name of the sirth symbol in the Phoenician alphabet was Waso (Vau), but though Uhas taken its form, in Greek its name was 8 (i.e. English oo, as in moon, except in Altic and lonic, where it was like the French \(m\) in lune), not upsilon, as is frequently stated. In Sweet's terminology u(00), as pronounced in English "put " or "too،" is a high hack wide round, while the sound in the French sou or the Scotch prosunciation of "book" is a high back narrow round. The high frost corresponding sound is found in the French lune. With this the German " modified \(u\) " (u) is often equated, but it is not really identical. being a mid front narrow round vowel. The pitch of the vowel \(u\) is a mong the lowest of the vowel sounds; the rounding and protrusion of the lips make the breath passage longer than it is for other vowels, and so its production may be compared to that of a sound made upon a flute when all the tanger-holes are covered. In modern English i2 preceded by i (y) arises from three difterent sounds in middle English: (a) the long French \(u(x)\) hrought in with borrowed words from French (duke), (b) iu (Early English anow) as in " new, "(c) a more open sound īm (Early English laww) as in "dew" (Sweet, New Enelish Grammar, 8 806). The y-sound was dropped after r. ch and dzh, as in " truc," " choose," " juice " (ibid., \& 857). In the Literary dialect also it generally disappears after \(l\), as in "lurid," " lute." In some provincial and American pronunciations it is dropped everywhere except initially, so that "Tuesday" is pronounced Toosday, " Dew" noo.
(P. Gr.)

UAKARI (Oxakari). the native name of certain tropical American monkeys, distinguished from all other New World monkeys by their short tails. The three known species constitute the genus Uacaria (or Colkurus) of zoologists, and are conGned to the forests of Amazonin and the neighbourhood. One of them (6. calpa) is remarkable for its long, silky, pale chest nut fur and brilliant scarlet face, which is naked (see Prinates).
UBANGI, a river of Equatorial Africa, the chief northern aflivent of the Congo (q.o.). The Ubangi (otherwise Mubangi or Mobangi) enters the Congo by various mouths between \(0^{\circ}\) 22 and \(0^{\circ} 37^{\prime}\) S. and \(17^{\circ} 80^{\prime}\) and \(17^{\circ} 50^{\circ}\) E. The main channel,
fully Im . wide, joins the Congo in \(0^{\circ} 31^{\circ} \mathrm{S}\). The Ubangi is formed by the junction of the Mbomu and the Welle, both of which rise on the north-eastern rim of the Congo basin.
The water-parting between the Bahr-el-Ghazal affluents (Nile system) and the Mbomu headstreams is not very clearly marked, but high hills running parallel with the Nile between Albert Nyanza and Dufie sharply separate the valley of the Welle and other westflowing streams from that of the Mountain Nile. The chiel of the headstreams of the Welle (known in its upper course as the Kibali) riset on the western slope of a hill about 40 m . west of Wadelai. It is joined by several small streams, the main river flowing in a W.N.W. direction. After a course of over 700 m . (during which it receives one lagge southern tributary-the Bomokandi-and other considerable affluents) the Welle joins the Mbomu in \(4^{\circ} 10^{\prime} \mathrm{N} .22^{\circ} 37^{\prime} \mathrm{E}\). The Mbonn, which has two large northem tributaries, the Shinko and the Balo, rises in \(4^{\circ} 50^{\prime} \mathrm{N} .27^{\circ} 12^{\prime} \mathrm{E}\). For some distance it runs parallet to and about 100 m . north of the lower course of the Welle. About \(23^{\circ} 12^{\prime}\) E. it turns sharply south until its junction with the Welle. In its lower course the Mbornu is interrupted by many falls and rapirs. A short distance below the junction of the Mbomu and Welle the Korto, coming from beyond \(8^{\circ} \mathrm{N}\)., on the borders of Darfur, and forming the most northerly extension of the Congo basin, enters the united stream, now known as the Ubangi, on the right bank. The remaining tributaries, mostly on the right bank, are smaller, but the Kemo, which joins the Ubangi near its most northern point (\(5^{\circ} 8^{\prime} \mathrm{N}\).). is of some importance as offering water communication to within a short distance of the Shari lassin. Below the Kemo confuence the Ubangi, which has hitherto continued to fow W. N.W. makes a great bend south and runs into the Congo alter a southerly course of 400 m . Shortly aiter receiving the Kemo the river forces its way through a line of hills whose tops rise 600 to 800 ft, above the banks of the stream. Here are the Zongo or Grenlell rapids, which are a barrier to navigation save for small boats at flood season. Above The Zongo rapids the river is navigable up to the confurence of the Welle and Mbomu, and the Welle is , navigable at high flood up to the Bornokandi confuence in \(26^{\circ} 8^{\prime}\), though the stream is much interrupted by rapids.
From the Mbomu-Welle confluence to the junction of the Ubangi with the Congo the river has a course of lully 700 m ., while the Ubangi-Welle combined exceeds 1400 m . From its mouth to Zongo rapids, a distance of 350 m ., the stream is navigable by steamers drawing 3 ft . of water. In general the Ubangi flows through a fertile and forested region.
The Welle was discovered from the north by G. A. Schweinfurth in 1870 ; i.e. seven years before the discovery of the course of the Congo by H. M. Stanley. By Schweinfurth the Welle was believed to belong to the Chad system, but W. Junker, who (18821883) followed the river to near its confluence with the Mbomu, made it clear that the Welle helonged to the Congo system. In 1885 the Rev. George Grenfell, of the Baplist Missionary Society (who had discovered the mouth of the river in 1884), ascended the Ubangi as far as the Zongo rapids. He was followed in \(1886-\) 1889 by the Belgian A. van Gelle, who in the last-named year anally established the identity of the Ubangi with Schweinfurth's Welle. The Mbomu was discovered from the north in 1877 by a Greek, Dr P. Potagos, and its upper course was followed for some distance by Junker. The Uhangi and the Mbomu form the frontier between Belgian Congo and French Congo, the nort hern banks of both streams belonging to France.
See. besides the works of Schweinfurth. Junker and other travellers, A. J. Wauters. Les Bassins de l' Ubargi (inféricur) et de la Sanga. with map (Brussels, 1902): Dr Cureau's map (1: \(1,000,000\)) of the upper Ubangi in La Cóograpinie (October 1900); the CONGO and works there cited.
UBEDA, a town of southern Spain, in the province of Jaen; 2000 ft . above sca-level, in the Loma de Cbeda, a range on the right bank of the Guadalquivir. Pop. (1900), 19,913. The surrounding country produces wheat, wine, olives and fruit. Obeda has a station 6 m . south on the Madrid-Almeria railway. Portions of the old walls, with towers and gates, still remain, and there are three late Gothic churches, the oldest of which. San Salvador, dates from 1540 to 1556 , and contains some interesting paintings. An important fair is held from the zoth of September to the 5 th of October. Oil, soap, esparto and linen fabrics are manufactured. Obeda was an important town under Moorish rule.

UDAD. AOUDND or AUDAD, the Moorish name of the Barbary sheep, or arui, Owis (Ammotragus) lervio, the only wild sheep found in Africa, where it inhabits all the mountain ranges of the north, descending to the east ward far into the heart of the Sudan. The udad is distinguished by the abundant hair on the throat and fore-quarters of the rams, and the length of the tail. In the absence of face-glands and in the structure of the horns the species approximates to the goats. The "lion-coloured" coat approximates to the bue of the limestone rocks on which these sheep dwell.
UDAFPUR. Oodeypore or Mewar, a native state of India, in the Rajputana agency. Area, 12,691 sq. m . Pop. (1901), \(1,030,212\). Estimated revenue \((200,000\); tribute \(\{17,000\). The greater part of the country is level plain. A scction of the Aravalli Mountains extends over the south-western and soutbern portions, and is rich in minerals, but the mines have been long closed. The general inclination of the country is from south-west to north-east, the Banas and its numerous feeders flowing from the base of the Aravalli range. There are many lakes and tanks in the state, the finest of which is the Debar or Jaisamand, with an area of nearly \(21 \mathrm{sq} . \mathrm{m}\). ; it is considered to be the largest artificial sheet of water in the world. A portion of the state is traversed by the Malwa line of the Rajputana railway. A branch from Chitor towards Udaipur was taken over by the state in 1808 , and was extended nearer to the capital. Like the rest of Rajputana the state suffered severely from famioe in 1900 . The ancient coinage is of the Sasanian or Persian type, copper issues of this type being still in circulation. Modern coins bear on the reverse the words "Friend of London.
The chiel, whose title is maharana, is the head of the Sisodbyia clan of Rajputs, and claims to be the direct representative of Rima, the mythical king of Ajodhya. He is universally recog. nized as the highest in rank of all the Rajput princes. The dynasty offered a beroic resistance to the Mahommedans, and boast that they never gave a daughter to a Mogul emperor. They are said to have come from Gujarat and settied at Chitor in the 8th century. After the capture of Chitor by Akbar in is6s the capital was removed to U'daipur by Maharana Udai Singh. During the iSth century the state suffered greatly frominternal dissension and from the inroads of the Mahrattes. It came under British protection in 18:7. The Maharana Fateh Singh, G.C. S. I. (b. 1848), succeeded by aduption in 1884

The rame of Mexar is derived from the Meos, or Mians, a tribe of mixed Rajput origin. Who have tikewise given their name to a different tract in northern Rajputana, called Alewat, where they are vow all Mla hommedans. About 1400 a sub-divisioa of the Mifewatis. called Khanaadas, mude thermarlves the dominaut power in this tract: and at ithe end \(\alpha\) ihe asth century. and agrin during the Muting, they were motorious for their ravages in athe lipper Doab. around Agra and Dethi. In 1901 the total number of Mewatis in Rajputana was 168.506 , forming \(13^{\circ}\) : of the popenation ia the statt of Alwar. Down to 1906 ihe liewar residency mas che title of a political agency in Rajputana. comprising the four states of Cdapur. Bunswrara. Duabrpur and Partabyarh: area. 16.9 :0 sq. m.: pop (1901). 1.136.2s: But in that jear the three last spates were separaied irmm Cdaipur, and (ormed inro the Southern Rajptians States agency. The Memar Bhil Corpor raised as a local buthatmon in thio which was consoicuoushy boval durine the Mutiny. ust in togy atrached os toc Indian arny, with its headquarers at hiar wath.
 He orlit cearyry.

There is another Udalpuk Statiz in the Central Provinces (tim 190S one of the Chota Nagpur states of Bengal). Area, \(1052 \mathrm{mq} . \mathrm{m}\). ; pop. (1901)، 45.391. Iis capital is Dharmjaygarh.

UDAL MICHOLAS (1 soq-is56), English schoolmaster, tracelator and playwright, author of the earliest extant English comedy, Roister Doister, came of the family of Uvedale, whe in the 14th century became lords of Wykeham, Hants, by marriage with the heiress of the Scures. The name was probably pronounced Oovedale, as it appears as Yevedale. Owdall, Woodall, with other variants. He Latinized it as Udallus, and thence anglicized it as Udall. He is described as Owdall of the parish of St Cross, Southampton, 12 years old at Christ mas 1516, when admitted a scholar of Winchester College in 1517 (Win. Schul. Reg.). He was therefore not 14 (as Antbany Wood says) but \(16!\) years of age when admitted a scholar of Corpus Christi College, Oxford, in June 1520; he is called Wodall as a lecturer at that college in 1526 to 1528 (T. Fowler, Hist. C. C. C.).

With John Leland he produced " dites" (ditties) " and interludes' (B.M. MS. 18A lxiv.) at Anne Boleyn's coronation on the jist of Miay i533. Leland's contributions are all in Latin: those of "Udallus," which form the chief part, are mostly in English, the speeches being each spoken by a "child," at Corahill beside Leadenhall," "at the Conducte in Cornhill" and "at the little Conducte in Cheepe." His Flowres for Latine Spelynge, selectal and gathered out of Terence and the same translabed into Englysshe, published by Bartlet (in aedibus Berthedeti), were dedicated "to my most sweet flock of pupils, from the monastery of the monks of the order of Augustine," on the 28th of February 1533-1 534 There were no monks of that order, and whether Austin Friars or Augustinian canons mere meant is open to doubt. The book was prefaced with Laudatory Latin verses by Leland and by Edmund Jonson. The Latter was a Winchester and Onford contemporary of C'dal's, in 1528 lower master (kestioring) at Eton, a post which be left to become master of the school of St Anthony's Hospital, then the most flourishing school is London. From the dedication we may infer that Udal wras usher under Jonson and "the sweet fock "was at St Antboay's school next door to Austin Friars. At Midsummer 1534 be berame bead master of Eton (informalor pmerormes or Imi trammaticalis; Elon Andit Book. 25-26 Hen. VIIL). It has been sugsested (Dic. Naf. Biog.) that the Flonoes was dedicated to Eton boys in advaoce; but this is unlitely, as in those days schools dever gol their masters till the place was vacant. or on the verge of vacancy. At Eton Udal's salary mas \(f 10\) and li for livery, with "petty receipts" of Bs. ad. for abits, as. 8d. for hundress, 2s. for candles for his chamber, and 232.4 d. "for ink. candles and olber things given to the gramonar school by Dr Lupton, provost." Ooe of his school books, Comumendories on the Tincmlan pacstions of Cicere (ed Berouldos 1500). With the inscription " sum Nicolai Udalli 1536 ," is ia the King's Library at the British Museum.

There was a yearly play. ss. being paid for the repair of the dresses of the players at Christmas, and is. ad. to a servant of the dean of Windsor for bringing his mester's clothes for the players A payment for repair of the players' dresses recurs every year. Thdal has been credited (E. K. Chambers. Maliortul Stosr. ï. te4. 10:) rith producing a play at Braintree whik vicar there, recorded in the churchwardees' arcounts for isis as "Placides cias Sir Eusiace" The play in actmally called in the acrounts ior.ly extant in 17 thecentury extracts) "Placy Decy uicr Si Ewastacy." and is the old play of Placides, wemioged in the oth century. lidal did not becoge vicar of Braintree till the :ith of Sepiember Iis; (Newcourt's Repart. ii 801. At Micharimas the resirned the emastership of Elom to reside at Braintree. being called "I late scbob-rnaster wowe roome nowe enjoyeth and ocrupieth Mr Tindne "in a heter from the provost to Thoons Croencell. then privy seal oo the the Oriober is37 (Lat and Pr. Ham YIII., 2537). He retarned io Exee, bovever, or racher to Hedgeley, the sateol beine removed there on arrount of the phagwe, at Midamener is37. being peid for the third and fomith teetso of the sobool yent
(Elow Audie Book, 29-30 Hen. VIII.). In October 1538 " Nicholas Uvedale, professor of the liberal arts, informator and schoolmaster of Eion, "was licensed to hold the vicarage of Braintree, "with other benefices," without personal residence. The accounts of Cromwell for 1538 include "Woodall, the scholemaster of Eton, to playing before my lord, Es ." Presumably he brought a troupe of Eton boys with him. In that year be published a second edition of his Floures of Terence for the benefit of Eton boys. The often-questioned account of Thomas Tusser (Fite Hundred Pointer of Good Husbandric) is typical of Eton at the time, as Udal's predecessor Cox is said in Ascham's Scholemaster to have been "the best scholemaster and greatest beater of our time ":-

> From Powles I I went to Aeton sent,
> To learn straghtwies the Lain phraise;
> Where filty- three stripes given to me at once I had;
> For fault but small or none at all
> It came to pasm thus beat I was;
> See, Udall, see, the mercie of thee to mee, poor lad."

Uail's rule of the rod at Eton was brought to an abrupt conclusion by his being btought up before the privy council on the 14th of March \(1540 / 1541\) for being " counsail "with two of the boys, Thomas Cheney, a relation of the lord treasurer of the bouschold, and Thomas Hoorde, for stealing some silver images and chapel ornaments. He denied the theft, but conlessed to a much more scandalous offence with Cheney, and was sent to the Marshalsea prison. He tried, but failed, to get restored to Eton. Attempts have been made to whitewash him. But his own confession, and an abject letter of repentance with promises of amendment, addressed (probably) to Wriothesley, a Hampshire man and a family friend, cannot be got over. It shows that he was a bad schoolmaster as well as an immoral one, since he pleads " myn honest chaunge from vice to vertue, from prodigalitee to frugall lyving, from negligence of teachyng to assiduitee, from play to studie, from lightness to gravitee." In \(\mathbf{1 5 4 2 - 1} 543\), after the bursar of Eton had ridden up to London to the provost, Udal was paid " 535. 4d. in full satisfaction of his salary in arrears and other things due to him while he was teaching the children "; but on tbe other side of the account appears an item of "60s. received from Dr Core for Udal's debts." So no money passed to Udal.
He seems to have maintained himself hy translating into English, in r542, Erasmus's A pophthegms and other works. In 1544 he published a new edition of the Floures of Tcrence. He seems to have taken a schoolmastership in Northumberland or Durham, as Leland in one of his Encomic speaks of him, prebably at this time, as translated to the Brigantes. He seems to have been made to resign his living at Braintree, a successor being appointed on the 14 th of December 1544 . He purged himself, however, by composing the Ansuer to the Articles of the Commoners of Deronshire and Cornmall (Pocock, Troubles of the Prayer Book of 1540, Camd. Soc., new series, 37, 141, 193), when they rose in rebellion in the summer of 1549 against the First Prayer Book of Edward VI. In 1551 be received a patent for printing his translation of Peter Martyr's two works on the Eucharist and the Great Bible in English (Pat. 4 Edw. VI. pl. 5, m. 5, Shakespeare Soc. iii. xxx.). He was rewarded by being made a canon of Windsor on the \(14^{\text {th }}\) of December 155 . On the 5th of January "after the common reckoning \(155^{\prime \prime}\) (i.e. 1551/2) he edited a translation of Erasmus's Paraphrascs of the Gospels, himself translating the first three, while that on St John was being translated by the princess Mary, till she fell sick and handed her work oves to Dr Malet. The work was dore at the suggestion and expense of the dowager queen Katharine, in whose charge Mary was. A translation by Udal of Ceminus's Anatomic or Compendiosa tolius anatomiae delineatio, a huge volume with gruesome plates, was published in 1553 ." Udal's preface is dated the roth of July \(5552^{" a t}\) Windesore. In June and Seplember 1553 (Trectyon Pap. Camd. Soc. 84. ii. 31, 33) "Mr Nicholas Uvedale" was paid at the rate of \(\mathbf{6 1} \mathbf{j} .6 \mathrm{~s}\). 8d. a year as " scholemaster to Mr Edward Courtney, \({ }^{1}\) Tumer was a chorister of StPaul .
beinge within the Tower of London, by virtue of the King's Majesty's Warrant "-the young carl of Devon, who had been in prison ever since he was twelve years old.

Queen Mary on the 3rd of December 1554 issued a warrant on Udal's behall reciting that he had "at soundrie seasons convenient heretofore shewed and myndeth bereafter to shewe his diligence in setting forth Dialogues and Enterludes before us for our royal disporte and recreacion," and directing "the maister and yeomen of the office of the Revells" to deliver whatever Udal should think necessary for setting forth such devices, while the exchequer was ordered to provide the money to huy them (Loseley MSS. Kempe 63, and Hist. MSS. Com. Rep. vii. 612). One of these interludes was probably Roistar Doister; for it was in January 1553, i.e. 1554, that Thomas Wienon, master of St Katharine's Hospital by the Tower, produced the third edition of The Rule of Reason, the first text-book on logic writen in English, which contains, while the two earlier editions, published in 1551 and 1552 respectively, do not contain, a long quotation from Roister Doister. It gives under the heading of "ambiguitic," as "an example of such doubtful writing whiche, by reason of poincting, maie bave double sense and contrarie meaning . . . taken out of an intrelude made by Nicholas Udal," the letter which Ralph Roister procured a scrivener to compose for him, asking Christian Constance, the beroine, to marry him. Roister's emissary read it-

> "Sweete mistresse, where as I love you hothing at all,. Regarding your substance and richnesse chiefe of all,"
> and so on; whereas it was meant to read-
> " Sweete mistresse, whereas I love you (nothing at all Regarding your subslance and richnesse) chiefe of all, For your personage, beautie, demeanour a nd wit."

The play was entered at Stationers' Hall, when printed in 1566. Only one copy is known, which was given to Eton by an old Etonian, the Rev. Th, Briggs, in 58 i 8 , who privately printed thiry \(\mathbf{c o p i e s}\) of it. As the title-page is gone the only evidence of its authorship is Wilson's quotation. Wilson being an Etonian, it has been argued that his quotation was a reminiscence of his Eton days, and that the play was written for and first performed by Eton boys. But the occurrence of the quotation first in the edition of 1554, and its absence in the previous editions of 155: and I552, coupled with the absence of anything in the play to suggest any connexion with a school, while the scene is laid in London and among London citizens and is essentially a London play, furnish a strong argument that Roister Doister first appeared in 1553 , and therefore could not have been written at Eton or for Eton boys.

Nor could it have been written at Westminster School or for Westminster boys, as argued by Professor Hales in Eng. Studien (1893) xviii. 408. For though Udal did become head master of Westminster, he only became so nearly iwo years after Wilson's quotation from Roister Doister appeared. He was at Winchester in the interval, for Stephen Gardiner, bishop of Winchester and chancellor, by will of the Bith of November 1555 iP.C.C. 3 Noodes), gave 40 marks (\{i6, 13s. 4d.) to "Nicholas Udale, my scholemaister." In what sense he was Cardiner's schoolmaster it is hard to guess. He was not head master or usher of Winchester College; but he may have been master of the old City Crammar or High School, to which the bishop appointed (A. F. Leach, Hist. Winch. Coll. 32, 48). The schoolhouse bad been leased out for 41 years in 1544 but it is possible Gardiner had revived the school or kept a school at his palace of Wolvesey. At Westminster "Mr Udalc was admitted to be scholemaster 16 Dec. anno \(1555^{\text {" (Choptcr }}\) Act-Book).

The last act of the secular canons, substituted by Henry VIII. for the monks, was the grant of a lease on the 24 th of September 1556. When the monks re-entered, on Mary's restoration of the abbey (Nov. 21, 1556), the school did not, as commonly aileged, cease, nor had Udal ceased to be master (Shakespeare Soc. iii. xxxiv.) when he died 2 month later. The parish register of St Margaret's, West minster, under "Burials in December A.D. 1556 " records " 11 die Raterine Woddall," " 23 die Nichnles

Yevedale," i.e. Udal. Katharine was perhaps a sister or other relation, as Elizabeth Udall was buried there on the 8th of July 1559 . The abbey cellarer's accounts ending Michaelmas 1557 contain a payment " to Thomas Notte, usher of the boys, f6, tos., and to the scholars (scolasticis vocatis le grammer childern), \(663,65.8 \mathrm{~d} .9\) " showing that the usher carried on the school after Udal's death. Next ycar (1557-1558) the abbey receiver accounted for \(£ 20\) paid to John Fassey, (the new) schoolmaster, to Richard Spenser, usher, \{25, and \{133, 6s. 8d. for 40 grammat boys. So it is clear that the school never stopped. Udal therefore was master of Westminster icr just over two years. He died at the age of 52 .

Roister Doister well deserves its fame as the first English comedy. It is infinitely superior to any of its predecessors in form and substance. It has sometimes been described as a mere adaptation of Plautus's Miles Gloriosms. Though the central idea of the play-that of a braggart soldier (with an impecunious parasite to flatter him) who thinks every woman be sees falls in love with him and is Gnally shown to be an arrant coward-is undoubtedly taken from Plautus, yet the plot and incidents, and above all the dialogue, are absolutely original, and infinitely superior to those of Plautus. Even the final incident, in which the hero is routed, is made more humorous hy the male slaves being represented by maidservants with mops and pails.

The play was printed by F. Marshall in 1821 : in Thomas White's Otd Engtish Dramas (3 vols., 1830): by the Shakespeare Society. vol. iii., the introduction to which contains the fullest and most accurate account of his life: in Edward Arber's reprints in 1869: and Dodsley's Old Plays (1894), vol. iii.
(A. F. L.)

UDAL (Dan. odel), a kind of right still existing in Orkney and Shetland, and supposed to be a relic of the old allodial mode of landholding existing antecedently to the growth of feudalism in Scotland (see Allodiux). The udal tenant holds without charter by uninterrupted possession on payment to the Crown, the kirk, or a grantee from the Crown of a trihute called scat (Dan. skat), or without such payment, the latter right being more strictly the udal rigtt. Udal lands descend to all the children equally. They are convertible into leus at the option of the udallers.

UDINE, a town and archicpiscopal see of Venetia, Italy. capital of the province of Udine, situated between the Gulf of Venice and the Alps, 84 m . by rail N.E. of Venice, 450 ft . above sca-level. Pop. (ig \(\alpha\)), 25.217 (town); 40,627 (commune). The town walls were in the main demolished towards the end of the 19 th century. The old castle, at one time the residence of the patriarchs of Aquileia, and now used as a prison, was erected hy Giovanni Fontana in 1517 in place of the oldet one destroyed by an earthquake in \(\mathbf{t 5 1 t}\). The Romanesque cathedral contains some interesting examples of native art (by Giovanni Martini da Udine, a pupil of Raphael, and others). The church of S. Maria della Purita has frescoes by Giovanni Battista and Domenico Tiepolo. In the priacipal square stands the town hall, built in 1448-145; in the VenetianGothic style, and skilfuily testored after a fire in 1876; opposite is a clock tower resembling that of the Piazza di San Matco at Venice. In the square is a statue of Poce. crected in commemoration of the peace of Campo Formio (1796), which lies 5 m . to the W.S.W. The archiepiscopal palace and Museo Civico, as well as the municipal buildings, have some valuable paintings. The leading industry of Udine is silk-spinning, but it also passesses manufactures of linen, cuton, bats and paper, tanneries and sugar refneries, and has a considerable trade in flax, hemp, \&e. Branch railways lead to Cjvidale del Friuli and S. Giorgio di Nogaro, and a steum trammay to S. Danicle del Friuli.

The origin of Udine is uncertain; though it lay on the line of the Via Iulia Augusta, there is no proof of ts existence in Roman times. In the middle ages it became a flourishing and populous city; in \(1: 22\) or 123 S the patriarch Berthold made it the cypital of Eriuli, and in 1420 it became Venetian. In
(T. As.)

UEBERWEG. FRIEDRICH (1826-1871), German bistorian of philosophy. was born on the 22 nd of January 1826 at Leichlingen, in Rhenish Prussia, where his father was Lutheran pastor. Educated at Göttingen and Berlin, he qualified himself at Bonn as Privaldozent in philosophy (1852). In 186a he was called to Königsherg as extraordinary prolessor, and in 1867 be was advanced to the ordinary grade. He married in 1863 , and died on the gth of June 1871 . His compendiors History of Philosophy is temarkable for fullness of information. conciseness, accuracy and impartiality. At first he followed Beneke's empiricism, and strongly opposed the subjectivistic tendency of the Kantian system, maintaining in particular the objectivity of space and time, which involved him in a somewhat violent controversy. His own mode of thought he preferred later to describe as an ideal realism, which refused to reduce reality to thought, but asserted a parallelism between the forms of existence and the forms of knowledge. Bencke and Schleiemacher exercised most influence upon the development of his thought.
Worrs.-System der Logith (1857; 5th ed., 1882; Eng. traps. of 3rd ed. by T. M. Lindsay. 1872); Grnndriss der Cesch. der Phil. (\(1883-1866,81 \mathrm{~h}\) ed., M. Heinze, 1894-: 898 ; Eng. เrans., C. S. Morris, 1872; thed., 1885): an essay (ı86i) on the sulhenticity and order of Plato's writings, trowned by the Imperial Academy of Vienna; Sckiller als. Hisl. wnd Phil. (published by Brageh from his papers, Leipzig, 1884). See F. A. Lange. Friedrich Ueberoeg (Berlin, 1871): M. Brasch. Die Welf- und Lebensanschazung Friedric Ueberwegs (Leipzig, 1889).
UELzen, a town of Germany, in the Prussian province of Hanover, on the Dlmenau, east of the famous Lineburger Heide, at the junction of the railway connecting Hamburg, Hanover, Bremen and Stendal, 52 m . S.E. of Hamburg. Pop. (1905), 9329 . The town has four Evangelical chutches, one of which, dedicated to the Holy Chost, has a valuahle altarpiece dating from the 14 th century. The principal industries are flax, sugar, tobacco and machinery. and there is a trade in cattle and horses. In the vicinity are some interesting Slavonic remains and the former Benedictine monastery of Ullesheim.
Founded in the soth century as Löwenwold, Uelzen became in the middle ages an active member of the Hanseatic League.
See Jaenicke, Geschichte der Stadt Uelzen (Hanover, 1889).
UFA, a government of southeastern Russia, on the western slope of the Ural Mountains. It has the governments of Vyatka and Perm on the N., Orenhurg on the E. and S., Samara and Kazañ on the W., and comprises an area of 47,094 sq. m. Several craggy and densely wooded ranges, running from S.W. to N.E. parallel to the main chain of the southern Urals, occupy its eastern part. They rise toaltitudes of 2500 to 3500 ft.; their bighest peaks-Iremel (5230 ft .), Urenga (4 t 1 5 ft .) and Taganai (3935 ft .) -ascend above the limits of arboreal vegetation, but in no case reach those of perpetual snow. Southward Ula extends over the slopes of the Obshchiy Syrt plateau, the angular space between the latter and the Urals being occupied by elevated plains (1000 to 1500 ft), deeply grooved by the tiver valleys, and sometimes described as the "Ufa plateau." Towands the Kama the fertility of the soil increases, and the blackearth regions of Menzelinsk and Birsk are granaries for that part of Russia.
The geological structure of UIa is very varied. The main range of the Urals consists of gneisses and various crystalline slates resting upon granites and syenites: next comes a broad strip of limestones and sandstones, the lossil fauna of which is intermediate betwern the Upper Siluriaa and the Lower Devonian. These form the highest elevations in the government. Farther west the Devonian deposits are followed by Lower and Upper Carboniferous and Artinsk schists, which, topether with Permian deposits. eover western Ufa. Quaternary deposits are extensively developed in all the valleys, most of which vere occupied by lakes during the Lacustrine period. There is great wealth in iron (Devonian) and copper (Permian). The district of Zlatoust is celebrated for is granile. epidote, nephrise and a variety of decorative stones and minerals. Coal is found over a wide area

Ula belongs almost entirely to the drainage area of the Byelaya. a tributary of the Kacaa which rises in Orenburg and flows north and
morth-west through Ufs, receiving aumber of tributaries, among Which the Syun, the Tanyp and the Ufa are also navigable. The Byelaya is an important channel for trade; but it sometimes drops to so low an ebb in summer that steamers cannot proceed beyond Birsk. The Kama fows for 120 m . along the western barder of the guvernment.

The average temperature at the city of Ufa is \(37^{\circ} \mathrm{F}\)., and the winter is extremely cold (lanuary \(5.5^{\circ}\) F., July \(68^{\circ} \mathrm{F}\).); at the Zlatoust observatory the average temperature is only \(32 \cdot 2^{\circ}\) (January \(2^{\circ}\), July \(61.8^{\circ}\)). Even in the hilly tracts of Zlatoust the annual rainfali is not more than 19 in. The rivers are frozen is8 days at Ula and 202 at Zlatoust.
The estimated population in 1900 was \(2,620,600\). The government is divided into six districts, the chief towns of which are Ufa, Belebey, Birsk, Menzelinsk, Stcrlitamak and Zlatoust. Towns have sprung up around the ironworks at Zatkinsk, Yurezañ and Katav-Ivanovsk. The Russian element in the population has rapidly increased (in \(\mathbf{1 8 9 7}, 45 \%\); in \(1865,36 \%\)), the other ethnographical elements being mainly Bashkirs, Tatars and Meshcheryaks. togetherwith Chuvashesand Cheremisses, Votyaks and Mordvinians. Since the wholesale plundering of the Bashkir lands, which took place under Alexander II., the land has been sold by the nobles, and bought chiefly by the merchant class. Large estates are common, though it is the peasants and the peasants' co-operative socicties that cultivate most of the area under crops. Agriculture has greatly developed, owing partly to the Russian immigration and partly to the educational efforts of the local councils; in 1900 there were \(4.860,000\) acres (\(16 \%\)) under crops and \(9,780,000\) acres \((323 \%)\) under cultivation. The principal crops are rye, wheat, oats, Larley, millet, buckwheat and potatoes.

The gavernment is ruch in antiquities belonging to three different periods-the Finaish or Chud period, the period of the Bulgarian empire, and the period of the Nogai Tatar domination. The burialmounds of the Chudes contain brass implements and decorations, and in one of them near Ufa a coffin sheeted with silver was found. Remains from the Bulgarian epoch have been discovered at Menzelinsk. But it is the ruins of the Mongol period which are of greatest value; the remains of a large town. with a mausoleum and a palace, have been found near Ula and extend severa! miles along the Byelaya River.
(P.A. K. J. T. BE.)

UFA, a lown and river-port of Russia, capital of the government of the same name, situated 326 m . by rail N.E. of Samara, on the main line from Moscow to Siberia, at the confluence of the Ufa with the Byelaya. Pop., 49,275 . The better part of the town contains two cathedrals and a few churches; the remainder is a scattered aggregation of small wooden houses. There are a museum, public library and a theological seminary; and the industrics include iron and copper works, machinery works and saw-mills.
Ufa was founded in \(\mathbf{1 5 7 4}\). The wooden kreml, or forl, protected by wooden towers and an outcr earthen wall, had to sustain the attacks of the revolted Bashkirs and Russian serts in 1662 and at later dates; and in 1773 Chika, one of the chicfs of the Pugachev revolt, besieged it for four months.

UGANDA, a British protectorate in Eastern Equatorial Africa, lying between Lakes Victoria and Albert and between the Mountain Nile and Lake Rudolf. The same name was originally applied to the Bantu kingdom of Buganda, which is one of the five provinces of the protectorate, but which is now styled officially by the correct native name of "Buganda." The Swahili foliowers of the first explorers always pronounced the territorial prefix, Bu , as 2 simple vowel, U ; hence the iscorrect rendering "Uganda" of the more primitive Bantu designation. It was first applied to the kingdom of Mutesa, discovered by J. H. Speke in 1862, and in time came to include the large protectorate which grew out of the extension of British influence over Buganda.

Boundarics and Area.- On the north the fronticr of the protectorate is an undetermined line running between Lado (which lies a little north of \(5^{\circ} \mathrm{N}\).) on the Mountain Nile and the watershed of Lake Rudolf. This northern boundary is in any case conterminous with the southern boundary of the Anglo-Egyptian Sudan. On the east the limit of the Uganda Protectorate in 1gor was the thatioge of Lake Rudoll and a line drawn

XXVII 10
from the south-eastern coast of that lake south along the edge of the Laikipia and Kikuyu escarpments to the frontier of German East Africa. The southern frontier of Uganda was the ist degree of S. lat.; the western was the 30 th meridian of E. long., from the German frontier on the south, across Albert Edward Nyanza and the Semliki River to the line of waterparting between the systems of the Congo and the Nile (in the country of Mboga); thence northwards this western boundary descended to the north coast of Albert Nyanza at Mahagi, and then followed the main stream of the Nile to about \(5^{\circ} \mathrm{N}\). In ro04, however, it was found that the 30 h meridian had been placed some 25 m . west of its true position in the maps used when the frontier was agreed upen, and that if it was maintained as the dividing line it would cut of the Uganda Protectorate from access to Albert Edward Nyanza while giving a corner of the Congo forest to Uganda. A survey commission was subscquently despatched, and in 1910 British, Belgian and Gcrman delegates met in Brusseis to draw up a new frontier line. Germany was interested in the dispute, inasmuch as the southern frontier of the Uganda Protectorate coincided with the northern frontier

of German East Africa. Moreover Germany, Great Britain and Belgium (as inheritor of the Congo State) had conflicting claims in the region N.E. of Lake Kivu. On the 14th of May 1910 a protocol was signed defining the new frontier as follows: From the north eod of Lake Kiva the Conge-Gcrman frontier turns east by north, traversing the volcanic region of Mfumbiro, and crosses the summit of Mt Karissimbi to the summit of Mt Sahyino, where the British, Belgian and German frontiers meet. From Mit Sabyino the fronticr between Belgian Congo and the Uganda Protectorate goes in a direct line north to Mt Nkabwe, and thence along the Ishasha River, to its mouth on the S.E. shores of Albert Edward Nyanza. Thence it crosses that lake in a straight line and afterwards the Ruwenzori to its highest point, Margherita peak, whence it follows the Lamia River to its junction with the Semliki. From that point the frontier is formed by the Semliki to its mouth and the middle of Albert Nyanza to a point opposite Mahagi, where it meets the CongoSudan frontier.

Meantime in 1903 the then Eastern province of the Ugand Protectorate had been Iransferred to the adjoining East Africa Protectorate, the new eastern boundary being the west coast of Lake Rudolf, the river Turkwel, the eastern flanks of Mt Elgon, the Sio River, and a line runing south from the mouth of the Sio across Victoria Nyanza to \(1^{\circ}\) S. The area of the protectorate, approximately \(150,000 \mathrm{sq} . \mathrm{m}\). in 1000 , has been reduced by these changes to about \(110,000 \mathrm{sq} . \mathrm{m}\).

Physical Feafures.-The peotectornte, with a mingularly diversified curface of lofty plateaus, enow-capped mountains, vast swampe, atmex. dense foreats and regions of dewolate aridity (valley of Lake Rudolf), offers a remarkable variety of climates. The Rudolf province lies low-an average ahitude of not more than 2000 ft .-it extremely hot, and hat a very poor rainfall. In come of its districts no rain falls for two years at a time, elsowhere scarcely as much as \(t 0\) in. per annum. The Eastern province is abundantly watered neat Victoria Nyanma and around Mt Elgon and the noble Debasien mountain (about 50 in . to 100 in. annually); clsewhere, in Karamnjo ano the northern regions, the raingall lessens to about 20 in. Busoga and the western part of the Elgon district in this province have a regular West African climate-hot, moist and not over healthy, Thewe are the conditions of Buganda, a country with an annual rainiall of from 60 to \(80 \ln .\), a regular West African climate, and severe and frequent thunderstorms. Much the same may be said about the Western province. except for the cooling influence of the Ruwenmori snow range, which pleasantly affects Toro and northern Ankole. The rainfali on Ruwenzori and the central Semliki velley is quite 100 in. per annum. Along the Ruwenzori range are glaciers and snowficida nearly 15 m . in continuous lengt hand some 5 m . in breadih. The Northern (formeriy called the Nile) province is perhaps the hotrest part of Uganda. Like the districts mound Lake Rudolf, the average altitude (near the Nile) is not more than 2000 (t., but the rainlall is more abundans than in the terrible Rudolf region, being an average of 30 in. per annum.

The surface of the protectorate is diversified. Mount Elgon (4.8) just out side the Eastern province is one of the leading physical

\section*{M canaldtrs, Lates and Etrors.} fcaturis of the Uganda and East Alrica protectorates It consiste of the vast erater-some 10 m . in diameter of an extinct volenno, the rim of which rises in several places to over 14,000 ft. Terraces and buttresses extend and ranify in all directions frnm the central crater, so that the giant volcano and its surrounding heighs form a mountain eountry (notable for its innumerable cascades and dense forests) the size of Montenesro. The mass of Elgon can be seen Irom the northeast cuast of Victuria Nyanm, from near the inain Nile stream, from the hejehts overlooking Lake Rudolf and from the Kikuyu escarpment. The Eastern province consists of welf-forested, undulating and (Busuga) on the coast of the Lake, a vast exient of marsh round the lake-like buckwaters of the Victoria Nile (Leqkes lbrahim or Kioga, Kwania, Ac.) and a more stony, open, grain-growing eountry (Bukedi, Lobor, Karamojo). The Turkina couniry west of Lake Rudolf has been of late y cars terribly arid. A little vegetation is met with in the stream valkeys, but most of the rivers marked on the map have ccased to show running water in their lower courses. A grod deal of high land-rising in some peaks to near \(10,000 \mathrm{ft}\). -is found ia the castern part of the Northern province, and these heights attract moisture and nourish permanent streams buwing Nilewards. But much of the lower ground is stony and poor in verietaion, white the lowhad near the ravin Nile is exceedingly

The Ripon Falls, ita the centre of the northern oust of the Victoris Nyanta, at the head of the exquisitely beautiful Napolcon Gull, mark the exit of the fully borm Nile from the great lake. The Victoria Nile tumbles over 50 m , of cascades and rapids (descend-
ing some 700 ft . in that distance) between Kipon Falls and K,t.uyt
 water of the Nile digcovered by Colonet Chaith Long in 1874. and cuntinucs navisable (wwe lor Eudd obstacles at tiracs) sight throwgl
 dake Alber. The main Nile stream when if quis Lake Albert continues navigable as lar north as Nimule (3 * \(40^{\circ} \mathrm{N}\). .). Betuccr. Nimule and Fort Berteles the riser kows through a decp songe
and falls nearly tooo ft. Navigability really only begins asem at Crondoknro on the Sudan frontier, frun which poin steamers ply to Nhartum (\(\operatorname{mec}\) Nis)

The doogrophy of the W'estern provioce includes many intencs:ing

 Lakes of Turo and Ablows Blop volestive region of Mifursburo (where aclive and ertinct relonnoet tive in great cones to altitudes of from \(8 t, 000\) to menth igings fin end the lealthy platexus of Ankole. which are in a letur dogotembla vos in climate and rowicicm. ard

lakes of Toro and Ankole (singularly beantiful), the lake-awampe Salisbury and Kirkpatrick in the Eastern province, Lakes Wamala in Buganda, and Kachera in Ankole. The water of Lake Victoria is perfectly fresh. This is the case with all the other lakes excepe Rudolf. Albert Nyanza and Albert Edward, in which the water ranges from salt to slightly brackish.
Ceology.-Wide tracts remain geologically unexplored. Archean rock-gneiss, achist and granitecover large areas through which the Nile cuts its way in alternate narnow gorges and open reaches. In Ankole and Koki rocks consisting of granular quarrite, schistose sandstone. red and brown sandstone, a nd shales with cleaved killas rest on the Archean platform and possibly represent the Lower Witwatersrand beds of the Transvaal. No traces of the Karroo formation have heen detected. Volcanie rocks occur in Usoga and elsewhere. The Nile at the Ripon Falls leape over a bassit dike. The rocks on the verge of the Kisumu province al East Arrica are mainly volcanic (basalt, tuff, lava, kenyte). West of the volcanic region, nearer to Lake Victoria and the Eastern province, ironstone, granite, gneisa and achistose formations predominate, with phonolite in places
Iron ore (hacmatite) is abundant. In the Eastern province the rocks are mainly quartz, gneiss and granite, with sandstooc ia Busoga, basalit round Mt Elgon, slate (Busoga) and iron. Peromog stone (Busoga and Bukedi). In the Rudolf province there Pated are the basalt, lava, tuf and kenyte of the volcanic minceragos.
Rif valley, overlying a formation of granite, goeiss
and quarz. Cold-in some cases alluvial-is found in the mounand quarz. Cold-in some cases alluvial-is found in the mountainous country to the north-west of Lake Rudolf. Gneiss, granite and quartz-the decomposed granite giving the red "Arican" clay -are the leading features in the formations of the Northera province. of Buganda, and of the Western province, with some sandstone in the litioral districts of Buganda and in Ankole, and eruptive rocks and lava in south-western Ankole and on the eastern flanks of Ruwensori. There are indications of copper in Busoga, of gold in Unyoro. Iron is found nearly everywherc. Graphite is preseat in Buganda and Unyoro.
Flora.- The vegetation is luxuriant except in the Rudolf rection. which has the rparse flora of Somaliland. In the Western province. Busoga and the Elgon district the flora is very West Alrican in character. The swampy regions of the Nile and of the Eastern province are characterized by an extravagant growth of pepyrus and other rushes, of reeds and coarse grass. There are luxuriant tropical forests in the coast region of Buganda, in Busoga, west Elpon, western Unyoro, eastern Toro, the central Semiki valiey and north-west Ankole. The upper regions of Mt Elgon, Mt Debasien and Mt Agoro are clothed with forests of conifers- juniper and yewand witch-hazels (Trichocladus). There are also gisant yer-trees (Podocarpus) on the flanks of Ruwenzori and the M fumbirovolcanoes between 7000 and 9000 ft , , but no junipers. The alpine vegetation on all these lofty mountains is of a maxed Cape and Abyesiaina character-witch-hazels, seneetios, bobelias, kniphofiags, everbating fowers, tree beathe and hypericums. The really tropical vegetation of Buganda is nearly identical with that of West Alrica, but there is no oil-palm.
Fannc.- The fauna also has many West Arrican affrities in the hot, forested regiona In the Kisumu province of East Africa even tbere are several West Arrican mammals such as the broad-horned trageluph and the forest pig. These are also found in part of the Semliki forests. As a rule. however, the fauna of the C'rper Semliti vallev, of parts of Ankole. Buganda and C ayoso, of the Northern. Rudolf and Eastern provinces, is of that "East Airican." "Erbi: opic" characier which is specially the feature of South and Eate Africa and of the Sudan right actoses fron Abyssinia to the river Senegat. Among notabte mammals the chimpenzee is found ia Unyoro, Toro and dorth-west Ankoke, and bas on!y recently becoma extinct in Bursanda: the okapi inhabits the Senditi forexas ae tbe Congo fruaticr; the girafie fthe male sometimes depetoping five hors cores) is common in the Northern. Eastern and Rudolf provinces; there are three types of buffato-abe Cape. the Congo and the Abyssinian; two species of sebra (one of them Crivy's), the Africian wifd aso, the square Lipped (" \(\because\) hite") and pointed-lipped (" blact") rhinoceruses, the ckeplant. bippopotamus, water tragelapb ("Speke"s antelope'). Cape ant-biar, 23 rd-wolf (Proteres), hunting-dog. and mearly every genus and most of the apecies of Arrican antelopes The burds are more West Arican than the rasmank and inclode the giry parrot, all the gepera of, the spiendedy coloured rexacoct, the unaque " "hale-bwided stort," and the oscrich

Inkutifuts. - The inhstitants is 1909 numbered abous 3,500,000 matives, 3000 Braish Indians and Arabs, and 507 Europeans (Bri:ish, Fredith, Eermans, Italians and Matese). Of these last 110 mere wumen. The races indigenous to the protectorate are mainly of the Negro species (wich slight Cancasina intcranirture), 20 d Eay ti dided iato the follayint calcgories. (t) Pigmy trogritions isu-ctlind "Coago" pagmies al Sealliki forest, of Eingwe in Bugated. and of the mestern praphers (with the consert of Edrand III.) Labte Edrard and Praphers (with the consert af Edead VII.) Lit

Annks of Mt Elgon and the types of Forest Negroes); (2) Bantu megrocs (Banyoro, Bairu, Basesc, Basoga, Bakonjo, Baganda, Masaba and Kavirondo); (3) Nile megrocs (Aluru, Bari, Madi, Acholi, Gang, Lango, Latuka, Tcsi, Sabei (Nandi), Turkana and Karamojo); (4) Hamitic (some tribes on islands' and the porth coast of Lake Rudolf; and the remarkable "Hima" or "Huma " aristocracy in Unyoro, Buganda, Toro and Ankole). The pigmies are generally known as Bambute or Bakwa in the Semliki foreats. They are both reddish yellow and brownish black (accordiag to individual variation) in skin colour, with bead hair often tending to russet, and body bair of two kindsblack and bristly on the upper lip, chin, chest, axillae and pubes; and yellowish and fleecy on the cheeks, back and limbs. Their faces are remarkable for the long upper lip and the depressed broad nose with enormous alac. Associated with these pigmies is the "Forest Negro" type (Lendu, Lega، Baamba, Banande) of normal human stature, but short-legged and unusually prognathous. The Bantu negroes represent the future ruling race of the protectorate, and include the remarkable Baganda people. These last, prior to the arrival of Arabs and Europeans, displayed a nearcr approach to civilization than has as yet been attained by an unaided Negro people. Their dynasty of monarchs can be traced back with tolerable certainty to a period coincident with the reign of Henry IV. of England (a.D. 1400). The first Buganda king was probably a Hamite of the Hima stock (from Unyoro). Until recent years the Baganda and mest of the other Bantu peoples of the protectorate worshipped ancestral and nature spirits who had become elevated to the rank of gods and goddesses. The Baganda are now mainly Christian. There is also a "totem" system still in vogue. All the Baganda belong to one or other of twenty-nine clans, or " Bikj, "which are named after and have as totem familiar beasts, birds, fish or vegetables. The Baganda are not a very moral people, but they have an extence regard for decency, and are always scrupulously clothed (formerly in bark-cloth, now in calico). As a general rule, it may be said that all the Bantu tribes in the western balf of the protectorate, including the Basoga, are careful to consider decency in their clothiag, while the Nilotic negroes are often completely nude in both sexes. More or less, absolute nudity amodg men is characteristic even of the Bahima (Hamites). But in this sristocratic caste the women are scrupulously clothed.
The Nile negroes and Hima are tall people. The former are seldom handsome, owing to theis flat faces and projecting cheek-bones. The Bahima are often markedly handsome. even to European eyes. In the Bahima the proportion of Caucasion blood is about one-fourth, in the Nile negroes and Bantu from one-sixteenth to none at all. The aboriginal stock of the Uganda Protectorate is undoubtedly the pigmy-prognathous, which has gradually been absorbed, overlaid or extermınated by better developed specimens of the Negro sub-species, or by Negro-Caucasian hybrids from the north and north-cast.

The languaecs spoken in the Uganda Protectorate belong to the following stocls: (1) Hamutu (Murle and Rendice of Lake Rudolf), (2) Mosa: (Bari. Eigumi. Turkana. Sük, \&e.). (2a) Sabei, on the nort hern slopes of Eigon and on Mt Debasien: (2b) Nilotic (Achoti, Aluru, Cang, \&c): (3) Madi (spoken on the Nile between Aluru and Bari, really of Wess Afrcan affinities): (4) Bantu (Lu-ganda. Runyoro. Lu-kogio, Kuamba, Lihuku, the Massba languages of west Elgon and Kavirondo. \&c), and lastly, the unclassifiod, isolated Lendu and Mbubc spoken by some of the pigmy-prognathous peoples.

Tovms.-The seat of the British administration is Entebbe (". a throne ") on the sourt shorea of a peninsula projecting into the Victoria Nyanza in \(0^{\circ} 4^{\circ} 2^{\circ} \mathrm{N} .32^{\circ} 27^{\prime} 45^{\circ} \mathrm{E}\). It contains a number of commodious official residences, churches, hospitals, a laboratory, covered market. \&c. The port is protected by a breakwater and provided with a pier on which is the customs-house. The native copital of Buganda is Mengo (pop. abount 70,000), situated some \(20 \mathrm{~m} . N\) by \(E\). of Entebbe. It is a straggling cown built on seven steep hills: on one hill is the royal residence: on another (Namirembe - the hill of peace) was the cathedral of St Paul. destroyed by lighteing in Seprember t910, and other buildings of the Anglican mission. 5. Paul's was a fine Gothic church of brek, built by the Baganda in 1901-t904. After its destrurtion seps were at once taken tn rebmild the cathedral. On a third hifl are the cathedral and mission buildings of the Roman Catholics. On still another hill. Kampala, the Bricish fort and goverameat and European quarters are situated.

Some \(7 \frac{1}{2} \mathrm{mn}\). S. by E. of Kampala, and connected with it by monorail, is Kampala Port, on Victoria Nyanza. The capital of the Eastern province is Jinja, on the Victoria Nyanza, immediatcly alove and east of the Ripon Falls. It is a thriving trading centre and port. Hoima is the administrative headquarters in Unyoro: Butiaba is a trading port of some importance on Lake Albert: Mbarara is the capital of Ankole. Kakindu, Mruli, Fowera and Fajao are government stations and trading posts on the Victoria Nile; Wadelai (q.y.), Nimule and Gondokoro (g.v.) are similar stations on the Mountain Nite. Bululu is a port on Lake lbrahim.
- Apricullure and Trade.-A few plantations are owned and managed by Europeans. Otherwise agriculture is in the bands of the natives. Some Baganda chiefs have started cotton, rubber and cocoa plantations, the botanic department assisting in this enterprise. Para and Furtumia rubber trees are also cultivated by the department. (For the work of the botanic, forestry and scientific department، the government plantations, \&c., see the Colonial Report [Miscellaneous]. No. 64.) A forest area of \({ }^{1} 5 \mathrm{sqq}\). m . has been leased to a European company. Trade is mainly conducted by native (i.e. Arab. Somal and Negro) traders, by British Indians and by Germans. The value of the trade during 1901-1902 was approximately 400,000 in imports (largely railway material) and \(\left\{50,000^{2}\right.\) in exports. The articles exported were ivory, rubber. skins and hides, and livestock (for consumption in East Africa). These, excepe livestock, continue to be the main items of export. For the six years 1903-1904 to 1908-1909 the imports increased from f147,000 to \(\mathbf{E 4 1 9 . 0 0 0}\), and the exports-produce of the protectorate-from 43,000 to 1127,000 . The imports included the transit trade (with the Belgian Congo and German East Africa), which grew from f8460 in 1903-1904 to 882.615 in 1908-1909. The transit trade in the last-named year included bullion valued at \{33.000. being raw gold from the Kilo mines, Belgian Congo. Among the new industries are sugar and coffee plantations, while cotton, ground-nuts and rubber figure increasingly among the exports, cotion and cotton-: weed being of specialimportance. Cotton goods, chiefly" Americani." are the chief imports, machinery, hardware and provisions ranking next. Large quantities of rice are imported from German East Africa. About \(50 \%\) of the imports are from the United Kingdom and British possessions.
Conmunicatrons.-In connexion with the railway from Mombasa to Victoria Nyanza a stcamship service is maintained on the lake between Port Florence, Entcbbe and other ports, including those in German territory. Government boats also ply on the Victoria Nile and Lake Kioga (Ibrahim) and on Albert Nyanza and the Mountain Nike. A railway (begun in 1910), sorne 50 m . long, runs from Jinja to Kakindu, ie. along the Victoria Nike from its point nf usue from the Nyanza to where it becomes navigatle above Lake Kioga. Good roads connect Entebbe and Butiaba (the steamboat terminus on Albert Nyanza) and other districts. There is a direct telegraphic acrvice to Condokoro and Khartum and to Mombasa. The postal service is well organized.
Administralue Dirisums and Goternment. The protectorate is divided into five provinces-Rudolf, Eastern (Formerly central), kingdom of Buganda, Western، and Northem (Jormerly Nite), and these again into a number of administrative districts. The kingdom of Buganda, which has a thoroughly efficient and recog. nuzed native government, is subdivided into no fewer than nineteen "counties " or districts, but the other provinces have as a rule only three or four subdivisions.
The protcetorate is administered by a governor and commander-in-chtel، under the colonal office. residing at Entebbe, on the north western coast of the Victoria Nyanza. He is assisted by a siaf of officuls similar to the functionaries of a Crown colony. but there is at present no legislative council. The natives are oidinarily under the direct rule of their own recognized cheefs. but in all the organized districts the governor alone thas the power of life or death, of levying taxes, of carrying on war, of controlling waste lands and forests, and nf administering justice to non-natives. In the case of Buganda special terms were accorded to the native king and people in the settlement dated the toth of March 1900 The king was secured a minimum civif list of \(\{1500\) a ycar out of the natuve revenues. pensions were accorded to other members of the Buganda royal family; the salaries of ministers and governing chiels were guaranteed compensation in money was paid lor removing the king's contro over waste lands: definite estates were allotted to the king, royal family, nobidity and native landowners; the native parliament of "Lukiko" was reorganized and its powers were defined, and many other points in dispute were settled. The king was accorded the title of "His Highness the Kabaka of Buganda," and his special salute was fixed at eleven guns. By this agreement the king and his people pledged themaselves to pay hut and gun taxes to the adminstration of the protectorate. Somewhat similar arrange ments on a lesser scale were made with the king of Ankole, the kings of Toro and Unyoro, and with the much less important chieftains or tribes of other districts. The territories north and northeast of these Bantu kingdoms are inhabited by Nilotic negroes and up to 1909 were left almost unadministered, except in close vicinity to the Nile banks.
The education of the natives is confined to the schools maintained by the missiogaties, who are doing an excelicnt work Manual,
technical and higher education is provided. In 1909-19to there were in the Anglican schools over 36,000 scholars, of whom 17,000 were girls. Of the total number of scholars over 26,000 were in the kingdom of Buganda. The Roman Catholic schools had in 1909 over 11,000 scliolars. (See the Col. Off. Report on Uganda, No. 686.)

The expenditure for \(1902-1903\) was fixed at \(\{210,000\), of which about \(£ 170,000\) was furnished by an imperial grant-in-aid and Expeoditure the balance from local revenue. Between 1903 and and 1009 the revenue increased from \(\{51,000\) to 1102,000 . Reverat. Revenue is chicfly derived from hut and poll taxes, customs, wharfage dues, game licences and land tax. The hut and poll taxes yicld about \(£ 62,000\) a year. The expenditure increased from \(\{186,000\) in 1903 to \(\$ 256,000\) in 1909 . Deficiencies are nade good by parliamentary grants. The rupee (1s.4d.) is the standard coin, with a subsidiary decimal coinage.

History- - The countries grouped under this protectorate were invaded at some relatively remoie period-say, three to four thousand years ago-by Hamitic races from the northeast (akin to the ancestors of the ancient Egyptians, Gallas, Somalis), who aungled extensively with the Nile negroes first, and then with the aboriginal inhahitants of Buganda, Unyoro and Nandi. These Hamites brought with them a measure of Egyptian civilization, cattle, and the arts of metallurgy, pottery and otber adjuncts to neolithic civilization. There was probably no direct intercourse with Egypt ly way of the Nile, owing to the lake-like marshes between Bor and liashoda, but instead an overland traftic with Ethiopia (the Land of Junt) via Mt Elgon and the Rudolf regions. In time even this intercourse with the non-negro world died away, and powerful kingdoms with an aristocracy of Galla descent grew up in Buganda, Unjoro and Ankole.

The kingdom of Buganda especially dominated the lands of Victoria Nyanza in the 1 oth cenfury. In the 'forties and 'fifties Egyptian offeials, Austrian missionaries, and British, Dutch, Italizn, and German explorers had carricd our knowledge of the Nile leyond Khartum as far south as Gondokoro. In the same period of time the Zanaibar Arab traders were advancing from the south on the Bahima kingdoms of the western Victoria Nyanza and on Buganda, King Suna of Buganda first heard of the outer world of white men in \(1 S_{50}\) from a runaway Baluch soldier of Zanzibar. Captains Burton and Speke, on their Tanganyika expedition, heard of Buganda from the Arab traders in 1857. Captain Specke in 1862 reached Buganda, the first of sul Europeans to enter that country. In the carly 'seventies Sir Samuel Baker (who had discovered Albert Nyanza) extended the rule of the Egyptian Sudan as farsouth as the Victoria Nile. General Gordon, who succeeded Baker, and who bad Dr Emin Bey (afterwards Emin Rasha) as lieutenant, attempted through Colonel Charles Chaildé Long, in \(1 \$ 75\), not only to anoex Unjoro but also Buganda to the Egyptian dominions, and tboroughly established Egyptian control on Albert Nyanza. But owing to the indirect influence of the British government, exercised tbrough Sir John Kirk at Zanzibar, the Egyptian dominions were prevented from coming south of the Victoris Nile.
Suna, the powerful king or emperor of Buganda, who was the first to hear of a world beyond Negroland, had been succeeded in 185 ; by his still more celebrated son, Mutesa (Muicsi means the measurer). Mutesa had received Speke and Grant in - most friendly manner. Subseguent to their departure be had opesed up relations with the British agent at Zanzibar. In 1875 be received an epoch-making visit from Sir H. M. Staniey. Stanley, in response to Nutesa's questions about religion, obtained from that Hing in invitation to Anglican missionaries, which he transmitted to London tbrough the Diviy Tdçrath.' Having made the first survey of Victoria Vyansa and consponed Speke's guesses as to its shape and area,
Staniey paod on (half discovering Ruwcraori on the way) Stanley pasod on (hall discovering Ruacrsori on the way) hs had retehed Buganda in everwrere eamaest
a Belyian in a Belyian in
hy Condor. the Bert Whea vacteled is ane
propagandists of Islam, and strove hard (with some success) to convert to that religion the king and chiefs of Buganda and adjoining countrics. In \(\mathbf{1 8 7 7}\) the Rev. C. T. Wilson, one of a party of missionaries sent in answer to Stanley's appeal by the Church Missionary Society of England, arrived in Uganda, and towards the end of 1878 was joined by Alexander Mackay. In 1879 another party mantoas arrived by the Nile route; and Wilson, after thirteen months' actual residence, left for England with Dr R. W. Felkin, who had arrivel only three months before, taking with him cnvoys from Mruesa. In the same year the French Roman Catholic mission of the White Fathers of Algeria was inaugurated, and thus from 1879 dats the triangular rivalry of the creeds of Anglican and Roman Cliristianity and of Islam.
In 1882 Islam gained an ascendancy, and the French withdrew for a time. In the autumn of \(\mathbf{1 8 8 4}\) Mutesa died. A great change had been wrought in Uganda during the Motore latter years of his reign. Calico, fire-arms and aromed swords had replaced the primitive bark-cloth and bymmenta spear, while under the teaching of the missionary- 1884
engineer Mackay the native artisans had learnt to repair arms ard use European tools. Mutesa was a clever man of restless energy, but regardless of human life and suffering, and consumed by vanity. He was succeeded by Mwanga, a crucl, weak and vicious youth. The intrigues of the Arabs led him to suspect the designs of the missionaries. He was alarmed at their influence over numbers of his people and resolved to stamp out Christianity.

In the carly 'eighties the aspirations of several European powers turned towards Africa as a field for commercial and colonial cxpansion. The restless Arabs of Zanzibar had since 1857 steadily advance 1 Zanzibar influence to Tanganyika, Nyasa, and even through the Masai countries to the northeast coast of Victoria Nyanza and the "back door" of Uganda. In 188: the Royal Gcographical Society despatched Joseph Thomson to discover through Masailand the direct route to Victoria Nyanza. Thomson succeeded (be also discovered Lake Baringo and Mt Elgon), but turned back From the fronticr of Busoga in order not to provole Mutesa to hostilities. Mr H. H. Johnston was despatched on a scientific mission to Kilimanjaro, and concluded treaties on which the British East Alrica Company was subsequently based. The vague stir of these movements had perturbed Mutesa, and they were regarded with deep stacicion by his successor, M wanga.
The annexations af Emin on Albert Njanza, the visit of Thomson to the closel door of Busoga, the opposition of the Europeans to the slave trade, and, lastly, the identification of the missionarits with political embassies and their Icters of introduction from secular authorities, sdded to Mwanga's fears, and carly in 883 , simultancously with the return of the French Fathers, the ong smouldering hostility broke out, and the Christian canverts were seized and burnt at the stake. Bishop Hannington, viiu attempted to enter Buganda by the forbidden route from the cast, was murdered, atomep and the Rev. R. P. Ashe and Mackay only redecmed Haraptrate. their lives by presents The Buganda Christians 18sk showed heroism, ari: in spite of tortures and death the religion spread rapidly, Nwa aga now determined to rid himself of Cbristians and Mehommedans alike by inducing them to proceed to an island iat the lake, where be meant to leave them to starve. The plot ras discovered, and Mwanga fed to the south of the lake, and Kiwewn, his eddest brother, was made king. The chicfs of :ie rival creeds-British (Anglicans), French (Catbolirs), iad Ba-lismu, as they were called-divided the chiefshipe The atahonmedans now formed a plot to oust the Christians, and lonacherously massacred a number of their chicls and then di eated their unprepared adberents. Kiwew, refusing to subrig to circumcision, was (after pentrin reigning three or four mooths) expelied by the Fonde Ba-Islamu, who plact another brother, Kalema, on the throne and began a \{anatical propaganda, forcing the peasantry to submit in the ha:cd ircumaision. The British and French
factions, who had taken refuge in Ankole, could not agree even in their common exile, and nearly came to blows, but oh the spur of threatened famine they agreed to combine and to take back Mwanga as their king and strike a blow for supremacy in Buganda. In May \(\mathbf{8 8} 8\) Mwanga, aided by the Irader Charles Stokes, approached Buganda by water, and after several bloody batiles captured the capital, but shortly afterwards was again defeated, and Kalema and the Ba-Islamu reoccupied Mengo (the native capilal). Appeals for help were sent to Frederick John Jackson (subsequently lieutenant-governor of British East Africa), who bad arrived on the east of the lake with a caravan of some 500 rifles, sent by the newly-formed East African Chartered Company. He replied saying he would come if all the expenses were guaranteed and the British flag accepted. Père Lourdel, who was Mwanga's cbief adviser at this time, counselled acceptance of these terms, but Jackson at first marched in a different direction northwards. Recurning three months later, he found that Dr Kart Peters, a German in command of an "Emin Pasha Relief" expedition, had passed through his camp, read his letters, and, acting on the information thus obrained, had marched to Buganda, arriving in February 1890 , where with the aid of Lourdel be Aroce aed concluded a treaty which was kept secret from Brtinat the British party, who repudiated it. The Baganda fantoas. Christians, before the arrival of Peters, had again engaged the Mahommodans and driven them to the frontier of Unyoro, where King Kabarega gave them an asylum and aid. Ralema died later in the same year-i8go-and was succeeded by Mbogo, a half brother of King Mutesa. The posts of honour had been divided between the rival factions. Peters's treat y had given fresh offence and added to the disputes arising in the division of the offices of state, and the factions were on the point of fighting. Jackson arrived in April with 180 gun-men (a portion of his caravan having mutinied), and presented a new treaty, which was refused by the Freach. Feeling ran high, and Jackson withdrew his treaty, and, taking a couple of envoys who should bring back word whether Uganda was to be French or British, he lelt the country, Mr Ernest Gedge remaining in charge of his expedition.

While these events were bappening in Uganda the AngloGerman treaty of July 1890 had assigned Uganda to Great Lagarf: Britain, and in October 1890 Captain F. D. Lugard, Aroval then at Kikuyu, hallway between the coast and the ces.
lake, received instructions to go to Uganda. He had with him Messrs De Winton and W. Grant, some so Sudanese soldiers, and about 250 porters, armed with Snider carbines. Marching with unprecedented rapidity, he entered Meago on the 18 th of December. Lugard, by introducing the names " Protestant" and "Catholic "-till then unknown-and by insistugg that all religion was free, endeavoured to dissociate it from politics, and urged that as Ugande was now under Great Britain there could be no hostile "French" faction. This attitude was.welcome to neither faction, and for some days the position of the new arrivals on the little knoll of Kampala was very precarious. Lugard's first object was to obtain a treaty which would give him a right to intervene in the internal affairs of the country. The hostile French faction was much the stronger, since at this time the king (whom the whole of the pagan party followed) was of that faction; but after some critical episodes the treaty was signed on the 26th of December. Lugard then endeavoured to settle some of the burning disputes relative to the division of lands and chiefships, \&c., and to gain the confideace of hoib parties. In this he was to some extent successful, and his position was strengthened by the arrival in January 1891 of Caprain (subsequently Colonel) W. H. Williams, R.A., winh a small lorce of Sudanese and a maxim. In April Lugard, hoping to achieve better results away from the capital, led the combined factions against the Mahommedans, then raiding the frontier, whom he defeated. Secing that tbe situation in Bugande was impossible unless they bad a strong central force, which the company could not provide, Lugard and Williams had formed the idea of enlisting the Sudanese who
had been left by Emin and Stanley at the south end of the Albert Lake. Taking with him Kasagama, the rightful king of Toro, be traversed the north of Ankole, with which country he made a treaty, and passing thence through Unyoro, along the northern slopes of Ruwenzori, reached Kavali at the south end of Lake Albert, defeating the armies of Unyoro who opposed his progress. He brought away with him 8000 Sudanese men, women, children and slaves, under Selim Bey (an Egyptian officer). Some of these be left at the posis he established along southern Unyoro. After an absence of six months from Buganda, Lugard reached the capital at the end of the year (1891) with 200 or 300 Sudanese soldiers and two or three times that number of followers. Lugard litzle thought that in bringing these Sudanese, already (some of them) infected with the sleeping-sickness of the Congo forests, be was to introduce a disease whict would kill of some 250,000 natives of Uganda in eight ycars. Mcanwhile Williams, amid endless difficulties, with a mere handfuf of men, had managed to keep the two factions from civil war, though fighting had actually occurred in Buddu and in the Sese lslands.

Alter Lugard's return a lull occurred till the coast caravan left, when lawlessness again broke out and several murders were committed. On the and of January the killing of a Protestant at the capital (Mengo) proChy War duced a crisis. Lugard appealed to the ling to do justice, but he himself was treated with scant courtesy, and bis envoy was told that the French party would sack Kampala if Lugard interfered on behali of the murdered man. In spite of strenuous efforts on the part of the British administ rator to avert war the French party determined to fight, and finally attacked the British, who had assembled round Kampala. The king and French party were defeated and fled to the Sese Islands. The king and chiefs (except two ringleaders) were offered reinstatement, and they appeared anxious to accept these terms, but the French bishop joined them in the islands, and from that day all hopes of peace vanished. Fighting was recommenced by a " French" attack on "British" canoes, and Williams thereupon attacked the island and routed the bostile faction. After this the "French" slowly concentrated in Buddu in the south, the Protestants migrating thence. Williams then led a successiul expedition against the Sese islanders and went on to the south of the lake to obtain one of the young princes-beirs to the throne-who were at the French mission there. But the Fathers were bostive, and though Mwanga was eager to accept Lugard's offers of reinstatement, he was a prisoner in the hands of his party. He succeeded eventually in excaping, and arrived in Mengs on the zoth of March (1892). A new treaty was made, and the British flag flew over the capital, while the French party were given a proportion of chiefships and assigned the province of Buddu. These conditions they themselves said were liberal, nor could they have ventured to assume their old positions throughout Uganda.

The Mahommedans had all this time refrained from attacking the capital as had been expected. They now clamoured for recognition, and Lugard went to meet them, and after a somewhat precarious and very difficult interview be sueceeded in bringing back their king Mbogo to Kampala, and in assigning them three minor provinces in Uganda. \({ }^{1}\)

Lugard on his return to Uganda at the end ol 18g, had received ordets to evaruate the country witb his whole force, as the company could no longer maintain their position. me A reprieve till the end of 1892 iollowed, funds having pwestion of been raised through the efforts of Bistop Tucker Evecumbon, by the Cburch Missionary Society and friends. 1892.
The lives of many Europeans were at stake, for anarchy must follow the withdrawal, and it seemed impossible to repudiate the pledges to Toro, or \(t 0\) abandon the Baganda who had fought for the British. In June 1892, therefore, Lugard determined to leave for England to appeal against the decision for abandonment. Williams remained in Uganda, where the outlook was now fairly promising, and every effort
\({ }^{2}\) Since reduced to one.
was made to reduce expenses. On arrival in England Lugard found that the British Government had decided not to come to the help of the company, and Uganda was to be left to its fate. A strong movement was set on foot for the "retention of Uganda," and on the toth of December Lord Rosehery portar: despatciced Sir Gerald Portal to report on the
 best means of dealing with the country, and a subsidy was given to the company to enahle them to retain their troops there till the 3 3st of March 1893. Captain (afterwards General Sir) J. R. L. Macdonald, who had been in charge of a railway survey to Uganda, was directed to inquire into the claims put forward by France for compensation for the priests. His report was sel aside thy the government, which, without admitting liability, but to close the controversy with France, agreed to pay \(\{10,000\) to the French pricsts, and the foreign office published a citegorical reply by Lugard to the accusations made. Portal and his staf reached Uganda in March, and Williams left soon afterwards with the original troons of the company, leaving Selim Bey and the Sudancse and Portal's large escort in Uganda. The country on Portal's arrival bore cvery mark of prosperity and revival. By increasing the territory of the Roman Catholics, and giving them estates on the road from Buddu to the capital, Portal gave effect to projects which the Protestants had violencly opposed. He added also to their chicfships, and on the 1st of April hoisted the British flag, made a new treaty with Mwanga, and sent Major Roderick Oren to enlist 400 Sudanese from the Toro colonies. He recommended to the imperial government the retention of Uganda (i.e. Buganda), the abandonment of Unyoro and Toro, and the construction of a railway half-way only to the lake. He departed after two and a half months' residence, leaving Macdonald in charge. During Macdonald's administration the Sudanese under Selim Bey began to conspire against the British control. The movement was checked and Selim Bey was deported to the coast.
In November 1893 Colonel (Sir Henry) Colvile arrived to take charge, and at once ted the whole of the Baganda army Corvne's against King Kabarega of Unyoro. Major R. Owen ocmpenton defeated the hostile army, first in the south and of Uayoro. later in the north, and the Baganda chiefs scattered the main body, while Colvile occupied the capital and built a line of forts from Buganda to Lake Albert, of which he left Major A. B. Thruston in command. This officer fought a number of brilliant actions, and aided by, Major (later Colonel) G. G. Cunningham, Captain Seymour Vandeleur, William Grant and others, he overran Unyoro and broke down all resistance. In June 1804 Uganda (i.e. the kingdom of Buganda) was declared a protectorate, and at the end of the year Sir Henry Colvile was invalided. Mr F. J. Jackson now took temporary charge, pending the arrival in June 1895 of Mr E. J. L. Berkeley, the first administrator.
Mt this time also it was decided to construct a railmay to Uganda, but work was not begun till December 1896. Pcace seemed assured in Uganda; territorial limits to religious teaching were abolished, English Roman Catholic pricsts wcre added to the French Fathers, and the material progress of the country was very marked. European traders selted in the country, good permanent houses were buill, roads were made and kept in repair, and many new industries introduced, chief among which were the expression of oil from various oilseeds and the cultivation of coffec. Trees were imported and land set aside for planting forests. The success of these efforts at progress was largely due to Mr G. Wilson, C.B., who had been sent to Uganda from East Africa as an assistant administrator in 1890 . In this year also the protectorate was extended over Unyoro and Busoga.'
in the middic of 1807 this era of peace was rudely interrupted: Colonel Trevor Ternan was acting cemmissioner, and Macd nald had returned to East Africa in command of an exploring expedrtion, for which Ternan had been ordered to supply \(3>0\)

Toro. Ankole, Bukedi and the other countriet the protectorate were added by Sir Harry Johs

In Junc Wilson discovered a plot to revolt, and in July Mwanga nled to the south of Buddu and raised the standard of rebellion. The rebels were defeated, while Mwanga was made a prisoner by the Germans. Ternan, unaware of the Reber. disaffection of his men, now sent three companies to Macdonald, selecting those who had been continuously fighting in Unyoro, Nandi and Buddu. This caused great discontent, which was increased by the fact that their pay was six months in arrears and their clothing long overdue The men, too, resented the fact that their pay was but a fifth of that given to Zanzibari porters and to those of their owd body enlisted in the adjoining protectorate. They were sore at again being sent on service without their wives, and complained of harsh treatment from their officers. Necessaries had been delayed in the attempt to import steamers from the coast before the railway was made.

After Colonel Ternan's departure on leave the three companies who had joined Macdonald broke out into revolt in the Nandi district (East Africa) and set off to Uganda, looting the countries they passed through. Macdonald and Jack-

Sudasices son fotlowed with a force of Zanzibaris. Meanwhile Major Thruston-a man justly loved by his soldiers, in whom he had complete confidence-hurried to the garrison at Luba's, near the Ripon Falls, relying on his personal influence to control the men, and risking his life in the heroic attempt. He and two other Europeans were scized and made prisoners. On the 19th of October a battle was fought between the mutineers and Mardonald's force, in which the former were defeated. The same night the Sudanese leaders, fcarful lest their men might submit, murdered Thruston and his companions and sent letters to Uganda to incite their comrades to mutiny. Wilson, however, had already disarmed the troops in Kampala, who remained loyal, as also did Mbogo, the ex-king of the Baganda Mahommedans. A large Protestant army now went to the assistance of Macdonald, and from the igth of October to the oth of January the siege of Luba's continued, with constant skirmishes, among the killed being the Rev. G. Pilkington. Early in January Mwanga escaped from the Germans, and, declaring himself a Mahommedan, reached Buddu with a large force, which Major Macdonald defeated with the aid of the Baganda army. He then disarmed the Sudanese garrisons in Buddu. The garrisons in Unyoro (about 500) and in Taro remained loyal. Meanwhile the Sudanese at Luba's (numbering Goo, with 200 Mahommedan Baganda) escaped, proceeded up the east bank of the Nile and crossed the river, making their way to Mruli. It appeared probable that if they reached that point the Sudanese garrisons in Unyoro would revolt as well as the Baganda Mahommedans, and the last bope of the Europeans would be lost. Leaving a small column to deal with Mwanga's force in the south, and another with Kabarege. Macdonald pursued the mutineers, overtook them in the swamps of Lake Kioga, and after a couple of successful skirmishes returned to Kampala, leaving Captain (afterwards Colonei) E. G. Harrison in command. That officer, crossing a swamp supposed to be impassable, attacked the rebel stockade at Kabagambi, and carried it with great gallantry. Captaio Maloney was killed and Lieut. Osborne wounded, but the crisis was past. A large number of Indian troops arrived early in 1899, and in May Coloacl C. G. Marlyr inflicted another heavy defcal on the mutineers whuli. Mtanti. however, managed to get through and join Gabanga ald the rebels in the north.

\section*{engagements. but}

Evalt had

remnant of the Sudanese mutineers in 1900-igot. The year 1899 had been a costly one, [329,000 being voted in aid. In the autumn of 18 po Sir Harry Johnston was sent out os special commissioner to Uganda, being also given the rank of com-mander-in-chief. By extensive reorganizations, and in spite of having to cope with a rising in Nandi, his commission resulted in the reduction of expenditure and increase of local revenue. He gave the kingdom of Buganda a definite constitution, settled the land question in the provinces of Buganda, Busoga, Unyoro, Toro and Ankole, and also the question of native taxation. By the treaty of Mengo, signed in March 1900, the young king of Buganda, Daudi Chwa, a son of Mwanga, born in 1896, was accorded the title of his Highness the Kabaka. During his minority the kingdom of Buganda was governed by regents. In 1000, the Uganda Protectorate was divided into six provinces, but in 1903 the Eastern and part of the Central provinces were transferred to the British East Africa Protectorate.

In 1902 the Uganda railway, begun in 1896, was finished. Its terminus is at Kisumu (Port Florence) on Kavirondo Gulf, Victoria Nyanza. It is some 580 m . long, ascends in places to altitudes of 7000 and 8000 ft . (highest point 8300 ft .), bat has only one tunnel. Its cost was about \((5,300.000\). (See Bartish East Arrica.)

Colonel Sir James H. Sadler succeeded Sir Harry Johnston in 1902 and was transferred to East Africa in 1005. His place in Uganda was taken by Sir Henry Hesketh Bell, who was made the first governor of Uganda in sgo6. The ravages of sleepingsickness between 1901 and 1909 destroyed upwards of a quarter of a million people, and the whole of the native population bad to be removed from the lake shores and the Sese Islands; but nevertheless the protectorate continued to make steady progress in civilization and in the development of its material resources. Its transit trade, especially with the Beigian Congo, became of great importance. To facilitate commerce with the Congo and with the Anglo-Egyptian Sudan and to open up the Busoga region the British government in 1910 voted money to build a railway from Jinja to Rakindu. The work was carried out under the superintendence of Captain H. E. S. Cordcaux, who became governor of the protectorate in 1910.
Aurnomurns---1 H. Spete. Ciremepy of the Soupce of the Nibe
 In Darkest Afrita (i8go): Sir Richard Burton. Lake Repions of Central Africa (1860): Sir Samuel Haker. Albert Nyanea (1866); Emin Pasha, Journuls (a886cdision): C. Chaille Long Central Ifrica Naked Truths of Naked People (1876): Colonel Cordon in Central Africa (1881), edied by G. R. Hill: ©. T. Wilson and R. IV. Felkin. Uganda and the Eryptian Sudan (188z); R. 1'. Ashe. Two K'ings of Uganda (1889) and Chronicles of Uganda (1891), Sir 11. Colvile. the Land of the Nile Springs (1895): P. Kollmann. The Vietoria Nyarza (1899): Sir F. D. Lugard. The Rise of Our East African Empire (iRg3): G. F. Scotr-Elliol, it Naturalist in Afed Afrora (i8g6): Joseph Thomson, Through Mesai Land (3885): J. Ansarge Under the African Sun (1809); Count Trkki and Licut. Huhnel, Descaveries of Lakes Rudolf and Stiphanie (1894); F. Stuhtmann. Mil Emin Pascha ins Here zon Afrita (189y); Sir Ilarry Johnston. The U'ganda Protetarate (1002); ant The Nite Ouest (aves3): A B Thrusion. African Incidends (bo00): J, F. Cunningham. Uperab ond us Peoples (1905). 11 . 11 Aussin, Wish Mardonald in Lisundo (19031 and A mong Swamps and Gants in Equatorial dirsco (ionti): Winso.s Churchill, My African Josrney (rgos); Bishop Tucher. Eigheren Yesrs in Uganda and East A/risa (19nk): articlirs on
ethmatosy by the Rev. 11. Roscoe in the Jownal in the Royal Anthrepolereiral institule betwern 1000 and 1908 : the duke of the Absern." The Soows of slie Nile." in The Cifogrupherad Journul
 (1yos): A. F R. Wollaston, From Rweremsors to the Conkr (1008). Seymour Vandeleur. Campaigning on the Upper Nise and Niget (11. 11. J.) Russia. in the government of Yarotavl. m W. by S. of the city of Yareslavi al remains are mosily assoriated with Van the Terrible. who was Eelieved to 1) here by BorisGodunov The wooden ored in 1892) which the mince occupied. , erected at the spot where he was killed.
and a kiosk on the site of a convent where bis mother was forcibly consecrated a nun, are the principal memorials of this incident. The cathedral was erected in the \(13 t h\) century, but subsequently restored, and contains the grave of Prince Roman. The industries include paper-mills, flour-mills, distilleries, copper works, and linen factorics; and the samovars (tea-urns) and sausages made here are famous.

The local annals go as farback as the gith century. Until the 14th century Uglich was a scparate principality, which extended over eastern Tver. In 1329 the suns of Prince Roman the Saint renounced their independence in favour of Moscow, and fifty years later the Uglich princes sold their rights to the grat prince of Moscow. The Tatars plundered the town in 1237, 1293 and 1408, and the Lithuanians did the same at a later date.

UHDE, FRITZ KARL HERAANN VON (1848 -), German painter, was born at Wolkenburg in Saxony. His artistic career, for which he studied first in Dresden, was interrupted for nearly ten years by military service, which included the two years of the Franco-Gcrman War, but in 1877 he again turned his attention to art, studying under Mlunkacsy in Paris and afierwards independently in Holland. His inclination was from the first directed towards religious subjects. Ile revived the practice of treating Biblical episodes realistically by transferring them to modern days. Thus in the "Come, Lord Jesus, be our Guest," of the Berlin National Gallery. Christ appears among the peasant family assembled for their meal in a modern German farmhouse "parlour," and in "The Sermon on the Mount " (Berlin, private collection) addresses a crowd of igth cent ury harvesters. Similar in conception are" Suffer Little Children to come unto Me" (Leipzig Muscum), "The Holy Night " (Dresden Gallery), "The Last Supper," "The Journcy to Bethlehem " (Munich Pinakothek) and "The Miraculous Draught of Fishes." Other works of his in public collections are: "Saying Grace," at the Luxembourg in Paris; "Christ at Emmans," at the Stacdel Institute, Frankfort; "The Farcwell of Tobias," at the Liechtenstein Gallery. Vienna; and a portrat of the actor Wohlmuth, at the Christiania Muscum. Von Uhde became professor and honorary member of the academies of Munich, Dreaden and Berlin.

UHLAND, JOHANN LUDWIG (1787-1862), German poet, was born at Tübingen on the 26th of April 1787. He studied jurisprudence at the university of his native place, but also devoted much- time to medieval literature. Having graduated as a doctor of laws in \(\mathbf{1 8 1 0}\), he went for some monshs to Paris; and from 1812 to 1814 he worked at his profession in Stutigart, in the burcau of the minister of justice. Ife had begun his carecr as a poct in 1807 and 1898 by contributing ballads and lyrics to L. von Seckendorf's \(1 /\) nermalmanach; and in 1812 and 1813 be wrote poems for J. Kerncr's Poetiseher Almanach and Dewtscher Dicherwoid. In 18is be collected his poems in a volume entitled Gedichte, which almost immediately secured a wide circle of readers. To almost every new edition he added some fresh poems. Ife wrote two dramatic works-Einst. Heroog von Sckwaben and Ludwig der Buicr-the former published in 1818, the latter in 1819. These, however, are unimportant in comparison with his Gedichle. As a lyrie poet. Uhland must be classed with the writers of the romantic school, for, like them, he found in the middle ages the subjects which appealed most st rongly to his imagination. But his style has a precision, suppleness and grate which sharply distinguish his most characteristuc writings from those of the romanitic poets. Uhland wrote manly poems in defence of freadom, and in the states assembly of Wurtemberg he played 2 distinguished part as one of the most vigorous and consistent of the liberal members. In 18.9 he was made extraordinary professor of German Jiterature at the university of Tubingen, but he resigned this appointment in 1833 , when it was found to be incompatible with his political views. In 1848 be became a member of the Frankfort parliament.

Uhiand was not only a poet and politician: he was also an ardent student of the history of literature. In 1812 he published an interesting essay on Das altfrandsische Epos; and ten years afterwards this was followell by an admirable work on Waliher von der Vogelweide. He was also the author of an elaborate
study of Der Mythus von Th\&r nach nordischen Quellen (1836), and he formed a valuable collection of Alle koch- und niederdeutsche Volkslieder, which appeared in 1844-1845. He died at Tuibingen on the 13 th of November 1862 .
Uhland's Gesammelte Werke, edited by H. Fischer, were published in 1892 in 6 vols. ; also by L. Frankel (2 vols., 1k9;) and L. Holh hof (1901). His Gedichte passed through mearly filty cditions in the poet's lifetime; jubilee dition of the Gedichle und Dramen (1886). A critical edition by E. Schmidt and J. Hartmann appeared in 8898 (2 vols.). Uhland's Sehrifien zur Ceschichte der DuchlunR und Sage were published in 8 vols. (1865-1×7.3) : his Tagebuch van \(1810-1820\) by J. Hartmann (1893). See F. Natter. L. Uhand, som Leben und seine Dichlungen (1863): K. Mayer. L. Chland. seine Freunde und Seilgenossern (2 vols. 1867): L. Uhlunds Leben (with Nachlass), by his widow (1874): A. von Keller, Uhand als Dramanker (1877): H. Dederich, L. Uhland ais Dichler und Patriot (1886): WV. L. Holland, Zu Uhlands Gedachtn is (1886); H. Fischer, 2. Uhiand (1887); H. Maync, Uhlands Jugenddichiung (1899).

UIGHUR, or Outgiour, the name of a Turkish tribe and dynasty who came from the East and ruled in Kashgaria from the roth to the 1 ath centuries. They used a variety of the Syriac alphabet. (See Turks.)

UIST, NORTH AND SOUTH, islands of the outer Hebrides, 1 nverness-shire, Scotland. North Uist lics S.W. of Hartis (Long Island), from which it is separated about 8 m . by the Sound of Harris. The island measures 14 m . in length by 16 m . in greatest width, but the coasts are extremely indented. The highest point is Mt Eaval (1:38 ft.). The principal sea-lochs are Loch Maddy and Loch Eport, both on the east. On the east coast the surface is mostly swampy moorland, but on the west there is some fertile soil. The inhabitants are chiefly engaged in crofting, fishing and catle-rearing. The principal village, Loch Maddy, is the centre of a large trade, and is a favourite resort of anglers. being a regular calling station for the steamers from Oban and Portree The islands belonging to the parish of North Uist comprise-to the south-west Balleshare and Hleray (pop., \(38_{3}\)), Kirkibost, Heisker (98), and the Monach group, with a lighthouse on Shillay; to the south, Grimisay (290) and Ronay; to the north-east, Levera; to the north, Borcray (118) and Vallay.

South Uist has a population (1gor) of 3541 , an extreme length of 22 m . and an extreme width of 8 m . Towards the north-east it becomes mountainous, the highest points heing Buail'a Choill (2034), Ben More (1094) and Hecla (1088). The chief sea-lochs are Loch Boisdale, largely frequented by anglers, Loch Eynort and Loch Skiport on the east coast. On the east side the surface is mainly alluvial peat. broken by hills, but on the west there is a belt of productive land. Besides crofting, the inhabitants are engaged in the fisheries and catcle-raising. Steamers from Oban call regularly at the village of Loch Boisdale. The islands attached to the parish of South Uist include, to the south, Eriskay (pop., 3478), where Prince Charles landed on the and of August 1745 ; to the north-east, Wiay; to the north, Grimisay, Fladda, just off the north-east shore of Benbecula, and Benbecula (pop., 1417), with an area of 40 sq. m., from which there is at low tide a ford to North and South Uist.

UITENHAGE, a town of the Cape province, South Africa, in the valley of the Zwarthops river, 270 ft . above the sea, 21 m . by rail N.N.W. of Port Elizabeth. Pop. (1004), 12,193, of whom 6680 were whites. It was founded in 1804 by De Mist, the Batavian commissioner, who took over Cape Colony from the British in 1803 . Many natives find employment in the mills along the Zwartkops, where vast quantities of wool from the sheep farms of the eastern part of the province are cleansed and forwarded for shipment at Port Elizabeth. Extensive railway works are established here. There are in addition large flower and fruit nurseries. The town is laid out in rectangular lifols, and contains a bandsome town-hall, court-house and public offices.

UJEST (Polish, Viast), a small toma en the Klodnita in
hereditary member of the upper houses of Wurttemberg and Prussia.

UJIJI, a town in Gerrman East Africa, also known as havele, situated on the eastern shores of Lake Tanganyika, in \(4^{\circ} 55^{\prime} \mathrm{S}\)., \(29^{\circ} 40^{\prime} \mathrm{E}\). It is connected with Cape Town by an overland telegraph line. The population (about 14.000) is composed of Arabs and members of numerous Central Arrican tribes. Ujiji is the meeting-point of merchants from all parts of Tanganyika, and the terminus of the caravan route from Dar-es-Salaam. Arabs from Zanzibar made Ujiji their headquarters during the first half of the toth century, and it became a great slave and ivory mart. In 1858 Richard Burion and J. H. Speke reached Ujiji from Zanzibar, being the first Europeans to sce Lake Tanganyika. In 1869 David Livingstone, coming from the south, arrived at Ujiji, and it was here that H. M. Stanley found him on the 28th of October 1871. In 1890 it came within the German sphere of inluence. (Sec Tanganyika and German East Africa.)

UJJAIN, or UJAIN, a city of central India, in the state of Gwalior, on the right bank ol the river Sipra, with a station on the branch of the Rajputana railway from Ratlam to Bhopal. Pop. (1901) 30,892 . Ujjain, known as Avanti in the Buddhist period and as Ozene to the Grecks, is one of the seven sacred cities of the Hindus and the traditional capital of King Vikramaditya, at whose court the " nine gems" of Sanskirt literature are said to have flourished. It marks the first meridian of longilude in Hindu geography. It is heard of first as the residence of Asoka (afterwards emperor), when viceroy of the western provinces. It was sacked by the Mahommedans in 1235 . Under Akbar it became the capital of Malwa, and during the last half of the 18 th century it was the headquarters of Sindhia. It contains few old buildings, though relics of antiquity are often found on the abandoncil site of the old city. It is now a centre of the trade in Malwa opium, with a wealthy colony of Bohra merchants. The principal institutions are the Madhava College (called after the present Maharaja), two state hospitals, and a dispensary belonging to the Canadian Presbyterian mission. A great religious festival is held here every twelfth year.

UJVIDEK (German, Neusatz), a town of Hungary in the county of Bács-Bodrog, 171 m . S.S.E. of Budapest by rail. Pop. (1900). 28.763 . It is situated on the left bank of the Danube near the terminus of the Franz-Josef canal. It is the seat of a Greek Orthodox hishop, and has become the literary and religious centre of the Servians in Hungary, especialiy since the foundation in 1864 of the Malica Srbska, or Servian Literary Society. The town was founded in the middle of the 18th century, and was almost totally destroyed during the revolution of \(1848-49\). On the opposite bank of the Danube, connected with Ujvidék by a railway bridge, lies Pétervárad or Peterwardein.

UKAZ, or Ukase (Russ., from ukazat, a shortened form of measlitat, to show, announce, prescribe), a term applied in Russia to an edict or ordinance, legislative or administrative, having the force of law. A ukaz proceeds either from the emperor or from the senate, which has the power of issuing such ordinances for the purpose of carrying out existing decrees. All such decrecs are promulgated by the senate. A diference is drawn between the ukaz signed by the emperor's band and bis verbal ukaz, or order, made upos a report submitted to bim. (See Russia: Conslitution and Government.)

UKRAINE ("frontier"), the name formerly given to a dis. trict of European Russia, now comprising the governments of Kharkov, Kiev, Pot 44 an Bullar, The portion east of the
 river bid \({ }^{\text {Phal }}\) (formety apolt thlut, eriginally a Polish cavalry
UEAR cere light cavalry, cap). They mep failed to Prussia, which gives the title of duke to the head of Hohenlohe-Öhringen, a branch (asia) of that Ingelfingen (see Hohenlohe).
Ohringen was created duke succeeded by bis son Christion Kin
carry the lance.' In the Cerman army of to-day Ulans are classed as heavy cavalry and wear the distinctive lancer dress inherited from the original Polish light borse. (See Cavaley and Lance.)
ULBACH, LOUIS (1822-1889), French writer, was bom at Troyes (Aube) on the 7th of March 1822. He was encouraged to take up a literary career by Victor Hugo. He became dramatic critie of the Temps, and attracted attention by a geries of satirical letters addressed to the Figaro over the signature of " Ferragus," and published separately in 1868 . He edited the Revue de Paris untid its suppression in 1858, and in 1868 he founded a paper, La Clocke, which was suppressed in 1869 for its bostility to the empire. Ulbach was imprisoned for six months, and when on his release he revived the paper he got into troubie both with the commune and the government, and was again imprisoned in 1871-1872. In 1878 he was made librtian of the arsenal, and died in Paris on the 16th of April 1889.

Among his works are: Voyage antour de mon clocher (1864), Nos contemporains (1869-1871). Aventures de trois erandes dames de le cour de Vienne (3 vols., 1876); Les Bureurs de poisons: la fee wette (1879), La Vie de Victor Hago. (1886), \&c.

ULCER, an open sore (derived through the French from Lat. mens, Gr. \(\begin{aligned} & \text { choss). When a portion of animal tissue dies in }\end{aligned}\) consequence of an infection or injury, the death of that tissue caking place by gradual breaking down or disintegration, the process is termed ulceration and the result an ulcer. When the ulcer is spreading the place is painful and the surrounding parts are flushed with extra blood, hut under appropriate treatment the destructive process ceases and the ulcer gradually heals. The bright surface of the ulcer becomes glazed over, and those changes take place in it which occur in an open wound. The ulcer gradually contracts, and round its edges cicatrization, or scarring, occurs. Ulcers may arise from various causes in different parts of the body, and in asscciation with certain specific diseases, such as syphilis, tubercle, cancer and typhoid fever. (For Gastric Ulcer see the separate article.)
(E.O.')

ULEABORG (Finnish, \(O W W\)), a province in the grand duchy of Finland, including a wide territory to the north of Kuopio and nearly reaching Varangerfjord, taking in the bigh dreary plateau of Laponia (\(16,000 \mathrm{sq} . \mathrm{m}\).) and the fertile plains of Osterbotten. It has a total area of 63,970 sq. m., with a population, chiety agricullural in Osterbotten and nomadic in Laponia, of (1904) 295,187. The bulk of the inhabitants (\(99 \%\)) are Finnish. There are immense forests, and only \(04 \%\).. the arth is under culture. The capital of the government is Uleaborg, a seaport on the Gulf of Bothnia, now connected by railway with Helsingiors (498 m .) ; pop. (190.4), 17,737

ULEMA (Arab. "ulams, sing. "älim, literally "knowers," in the sense of scientes), the learned of Istam, theologians, canonlawyers, professors, judges, muftis, \&c., all who, whether in office or not, are versed theoretically and practically in Muslim science in general. By "science" in this case is especially meant what is learned from tradition, books or men, and through the intellect. In a narrower sense, Ulema is used, in a Muslim state, of a council of such learned men, holding government appointments. Il all conception of intermediary priesthood be climinated, the Ulema may be said to be equivalent to the secular clergy of Roman Christendom (see Dervisu). Opposed to them, again, are the "jrifs ("knowers," " perceivers," sentientes, as opposed to scientes), 10 whom religious knowledge comes in the vision of the mystic, not by tradition or reason (see SOrissu).
On the training of the ulema see Sunnites. (D. B. Ma.)
ULFELDT. KORFITS (\(1606-1664\)), Danish statecman, was the aph of the chancellor Jacob Ulfeldt. After a careful educa. to Denmark in 16:9 and quickly won IV. In 1634 he was made a Knight 6 became councillor of state, in \(\mathbf{1 6 3 7}\) and in \(\mathbf{1 6 4 3}\) lord treasurce. In \(\mathbf{1 6 3 7}\) daughter Leonora Christina, who had from her ninth year. Dileldt was the at the Danish court in all superficial
mccomplishments, but his character was marked by ambition, avarice and absolate lack of honour or conscience. He was largely responsible for the disasters of the Swedish war of 1643-45, and when the treaty of Brbmsebro was signed there was a violent scene between him and the king, though Ulleldt's resignation was not accepted. In December 1646 he was sent as ambassador extcaordinary to the Hague, but tbe results of his embassy by no means corresponded to its costiness, and when be returned to Denmark in July 1647 he found the king profoundly irritated. Ulfeldt, supported by the Raad and the nobility, who objected to Christian's fiscal policy, resisted his father-in-law, and triumphed completely. As lord high steward he was the virtual ruler of Denmark during the two months which elapsed bet ween the death of Christian IV. and the election of Frederick III. (July 6, 1648); but the new king was by no meams disposed to tolerate the outrageous usurpations of Ulfeldt and his wife, and this antagonism was still further complicated by allegations of a plot (ultimately proved to be false, but believed at the time to be true) on the part of Dina Winhavera, a former mistress of Ulfeldt, to poison the royal family. Dina was convicted of perjury and executed, but Ulfeldt no longer felt secure at Copenhagen, and on the day after the execution be secretly quitted Denmark Uuly 14, 1651), with his family. After living for a time in concealment at Amsterdam, he migrated to Barth in Swedish Pomerania, and began the intrigues which have branded his name with infamy. In July 1657 he eagerly responded to the invitation of Charies X. of Sweden, when he invaded Denmark, and entered the service of his country's deadliest foc, for the express purpose of humiliating his sovercign and enriching himself. He persuaded the commandant of Nakskov, the one fortress of Lastand, to surrender to Charles X., and did his best to convince his countrymen that resistance was useless. Finally, as one of the Swedish negotiatora at the congress of Tasscrup, be was instrumental in humiliating his native land as she had never been humiliated before. Ulieldt's treason was rewarded by Charles \(\mathbf{X}\). of Sweden with the countship of Solvitsburg in Blekinge; but the discontented renegade began intriguing against his new master, and in May 1659 was condemned to death. The Swedish regents, on the 7 th of July, amnestied him, and he returned to Copenhagen to try to. make his peace with his lawful sovereign, who promptly imprisoned him and his wife. In the summer of 1600 they were conveyed to Hammershus in Bornholm, as prisoners of state. Their captivity was severe to brutality; and they were only released (in September 1661) on the most degrading conditions. The fallen magnate henceforth dreamed of nothing but revenge, and in the course of 1662, during his residence at Bruges, he offered the Danish crown to the elector of Brandenburg, proposing to raise a rebellion in Denmark for that purpose. Frederick William betrayed Ulfeldt's treason to Frederick III., and the Danish government at once impeached the traitor; on the 24 th of July 1663 he and his children were degraded, bis property was confiscated, and he was condemned to be beheaded and quartered. He escapod from the country, but the sentence was actually carried out on his effigy; and a pillory was erected on the ruins of his mansion at Copenhagen. He died at Basel, in February 1664.
See Julius Albert Fridericia, Adelswaeldens sidste dage (Copenhagen. 1894): Danmarks riges historic, vol. iv. (Copenhages, 1897-1905); Robert Nisbet Bain. Scandinatio, chs, ví., it., \(x\) (Cambridge, 1905).

ULPILAS (c. \(315-383\)), the apostle of Christianity to the Gothic race, and, through his translation of the Scriptures into Gothic, the father of Teutonic literature, was born among the Gotbs of the trans-Danubian provinces about the year \(311 .{ }^{\text {. }}\) The Arian historian Philostorgius (Hist. ecel. ii. 5) seys that his grand-parents were Christian captives from. Sadagolthina in Cappadocia, who had been carried off to the lands beyond the Danube in the Gothic raid of 264, and became so maturalized that the boy received a Gothic name, Wulfita (Little Wolf).
\({ }^{2}\) Kraft gives 313 as the date; Waitz, 318.

An authoritative record of the outlines of his life was only discovered early in the igth century in a writing of Auxentius of Milan, his pupil and companion. At an early age Ulfins was sent, eitber as an envoy or as a hostage for his tribe, to Constantinople, probably on the occasion of the treaty arranged in 332. During tbe preceding century Christianity had been planted sporadically among tbe Coths beyond the Danube, througb the agency in part of Christian captives, many of whom belonged to the order of clergy, and in part of mercbants and traders. Ulifas may therefore lave been a convert to Christianity when he reached Coastantinople. But it was here probably that be came into contact with the Arian doctrines which gave the form to his later teaching, and here that he acquired his command over Greck and Latin. For some lime before 341 he worked as a lector (reader of the Scriptures), probably among his own countrymen in Constantinople, or among those attacbed as foederali to the Imperial armies in Asia Minor. From this work he was called to return as missionary bishop to his own country, being ordained by Eusebius of Nicomedia and "the bishops who were with him," probably at Antioch, in 341. Tbis ordination of Ulfilas by the chiefs of the semi-Arian party is at once an indication of their determination to extend their influence by active missionary enterprise, and evidence that Ulfilas was now a dechared adherent of the Arian or semi-Arian party. He was now thirty years of age, and his work as "bishop among the Goths" covered the remaining forty years of his life. For seven of these years he wrought among the Visigoths beyond the Danube, till the success which attended his labours drew down the persecution of tbe still pagan chief of the tribe. This "sacridegus judex" has been identifed with Athanaric, a later persecutor, but the identification is not beyond question. To save his fock from extinction or dispersion, Ulfilas decided to withdraw both himself and his people. With the consent of the emperor Constantius he led them across the Danube, "a great body of the faithiul," and settled in Moesia at the foot of the range of Haemus and near the site of the modern Tirnova (349). Here they developed into a peace-loving pastoral people.
The life of Ulfilas during the following thirty-three years is marked by only one recorded incident (Sozomen iv. 24), his visit to Constantinople in January 360, to attend the council convened by the Arian or Homocan party. His work and influence were not coufined to his own immediate flock, but radinted by means of his homilies and treatises, and through the disciples he despatched as missionaries, among all the Gothic tribes beyond the Danube. Thus the Church beyond the Danube, which had not been extinguished on Uliflas's withdrawal, began to grow once more, and once more had to undergo the fires of persecution. Catholic missionaries bad not been wanting in the meanwhile, and in the indiscriminate persecution by Athanaric, between 370 and 375, Catholics and Arians stood and fell side by side. The religious quartel either accentunted, or was accentuated by, political differences, and the rival chicfs, Athanaric and Frithigern, appeared as champions of Paganism and Christianity respectively. Then followed the negotiations with the emperor Valens, the general adhesion of the Visigoths under Frithigern to Arian Christianity, the crossing of the Danube by himself and a host of his followers, and the troubles which culminated in the battle ol Adrianople and the death of Valens (378). The part played by Ulfilas in these troublous times cannol be ascertained with certainty. It may have been he who, as a "preshyter christiani ritus," conducted negotiations with Valens before the battle of Adrianople; but that he headed a previous embassy asking for leave for the Visigoths to settle on Roman soil, and that be then, for political motives, professed himself a convert to the Arian creed, favoured by the emperor, and drew with him the whole body of his countrymen-these and other similar stories of the orthodox church historians appear to be without foundation. The death of Valens, followed by the succession and the early conversion to Catholicism of Theodosius, dealt a fatal blow to the Arian party within the empire. Ulfins lived long
enough to see what the end must be. Hardships as well as years must have combined to make him an old man, when in 383 be was sent for to Constantinople by the emperor. A split scems to have taken place among the Arians at Constantinople. Ulfilas was summoned to meet the innovators, and to induce them to surrender tbe opinion which caused the dispute. His pupil Auxentius describes how, "in the name of God," he set ont upon his way, hoping to prevent the teaching of these new heretics from reaching "the churches of Christ by Christ committed to his charge." No sooner had he reached Constantinople tban he fell sick, "having pondered much about the council," and before he had put his hand to the task which had brought him he died, probably in January 383. A few days later there died, also in Constantinople, his old enemy and persecutor, Athanaric.
The Arianism of Lifilas was a fact of pregnant consequence for his people, and indirectly for the eropire. It had been his fifelong faith, as we learn from the opening words of his own contession--Ego Ulfilas scmper sic credidi." li, as scems probable from the circumstances of his ordination, he was a semi-Arian and a fullowor of Eusebius in 341, at a later period of his life he departed from this postion, and vigorously opposed the leaching of his former leader. He appoars to have joined the Homocan party, wibich look shape and acquired inhuence before the council of Constantinople in 360 , where he adhered with the rest of the councit to the creed of Ariminum, with the addendum that in future the terms indoraas and oboia should be excluded from Christological definitions. Thus we learn from Auxentius that he condemned Homoousians and Homoiousians alike, a dopting for himself the Homocan formula. " filium simiten esse patri suo. This Arian form of Christianity was imparted by Ulfilas and his disciples to most of the tribes of the Gothic stock, and persisted among them, in spite of persecuition, for two centuries.

The ollher legacy bequeathed by Uiftas was of less questionable value. His version of the Scriptures is his greatest monumen. By it he became the first to raise a barbarian tungue to the dignity of a literary language; and the skill, knowledge and adaptive atility it displays make it the crowning testimony of his powers as well at of his devotion to his work.

The personal qualities of the man may be inferred from hils pupil's description of him as "of most upright conversation. truly a confessor of Christ, a reacher of piety, and a preacher of truth-a man whom I am not competent to praise according to his merit, yet altogether keep sitent 1 dare not.'
Sce Wairz, Das Leben des Ulfilas (1840); W. L. Kraff, Kirchengeschichte der deulschen Volker (Abth. i., 1854): H. Böhmer in Herzog-Hauck. Realencyklopodic, \({ }^{\text {a }}\) val. xxi.; W. Bessell, Das Leben des Ulifilas (1860); C. A. Scott, UIfilas, Aposile of the Goths (1885).
(C. A.S.)

ULLATHORNE, WILLIAM BERNARD (1806-1889), English Roman Catholic bishop, was born at Pocklington, Yorkshire, on the 7th of May 1806, of an old Roman Catholic family. At fifteen he went to sea, and made several voyages to the Baltic and Mediterranean. In 1823 he entered the Benedictine monastery of Downside, near Bath, taking the vows in 1825 . He was ordained priest in 1831 , and in 1833 went to New South Wales, as vicar-general to Bishop William Morris (1794-187a), whose jurisdiction extended over the Australian missions. It was mainly Ullathorne who caused Gregory XVI. to establish the hierarchy in Australia. He returned to England in 1836, and, after another visit to Ausiralia, setuled in England in 1841, taking charge of the Roman Catbolic mission at Coventry. He was consecrated bishop in 1847 as vicar-apostolic of the western district, in suceession to Bishop C. M. Baggs (18061845), but was transferred to the central district in the following year. On the re-establishment of the hierarchy in England Ulathorne became the first Roman Catholic bishop of Birmingham. During his thity-eight ycars tenure of the sec 67 dew churches, \(3_{2}\) convents and nearly 200 mission schools were built. In 1888 he relired and acceived from Leo XIII. the honorary tille of archbishop of Cabasa. He died at Oscott College on tire 21st of Marcb 1889.

Of his theological and philosophicat works the best known are: The Endowments of Alan (1882); The Groundwork of the Christian Virlues (1883); Christian Patience (1886). For an account of his life see his Autobiogrophy, ediced by A. T. Drane (London, 1891).

ULLMANN, KARL (\(1706-1865\)), German Protestant theologian, was born at Epfenbach, near Heidelberg, on the 1 gth of

March 1796: Fe studied at Heidelberg and Tlibingen, and in 1820 delivered exegetical and historical lectures at Heidelberg. In 1829 be went to Halle as professor to teach church history, dogmatics and symbolics, but in 1836 he accepted a chair at Heidelberg. A lifelong exponent of the mediating theology (Vermittelungs-Theologic), in 1828, with the help of Umbreit (\(1795-1860\)), he founded and edited the Theologische Studien and Kritiken in its interests. When Wegscheider and Gesenius were deaounced by Hengstenberg as rationalists, he pleaded for freedom in theological teaching (cl. his Theol. Bedenken, 1830). On the other hand, he vigorously attacked David Strauss. His Hisiorisch oder myhisch (1838; and ed. 1866) was a reply to Strauss's Life of Jesus, and his criticism resulted in Strauss making numerous concessions in later works. Ulmann died on the 12 th of January 1865 .

In Das Wesen des Christenthums (1845: 5th ed., 1865: Eng. trans., 1860) Ullmana explains that Christianity is independent of the orthodox formulas, and contends that a distinction should be made between laith and dogmatics. His principal historical works are Gregor oon Naziona (1825: and ed., 1867) and Die Reformatoren nop der Reformation (2 voly, 1841 ; 2nd ed., 1866 ; Eng. trans, 1854). Another well-known work is Die Sündlosigkeil Jesu (1854: Eng. trans., 1858 and 1870). See O. Pfeiderer, Development of Theology (1890): and cf. W. Beyschlag: Karl Ullmann (1867), and Adolf Hausrath in Kleine Schriften relizion sgeschichthichem Inhalks (1883).

ULII, a fortress-city of Germany, in the kingdom of Württemberg, situated on the left bank of the Danube, in a fertile plain at the foot of the Swabian Alps, 58 m . by rail S.E. of Stuttgart and 63 m . N.W. of Munich. Pop. (1905), 51,680 . Ulm still preserves the dignified and old-fashioned appearance of a free imperial town, and contains many medicval buildings of historic and of artistic interest. Among these are the town hall, of the 364h century, in the Transition style from late Gothic to Renaissance, restored in recent ycars; the Kornhaus; the Ehingerhaus or Neubronnerhaus, now containing the industrial museum; and the commandery of the Teutonic order, built in 1712-1718 on the site of a habitation of the order dating from the 13 th century, and now used as barracks. The magnificent carly Gothic cathedral is capable of containing 30,000 people. Begun in 1377, and carried on at intervals till the 16th century, the building was long left unfinished; hut in 1844 the work of restoration and completion was begun, being completed in 1890 . Ulm cathedral has double aisles and a pentagonal apsidal choir, but no transepts. Its length (outside measurement) is 464 ft ., its breadth 159 ft .; the nave is 136 ft . high and \(47 \frac{1}{4}\) wide; the aisles, which are covered with rich net-vaulting, are 68 ft . in height. The massive and richly decorated square tower in the centre of the west façade, which for centuries terminated in a temporary spire, was completed in 1800 , according to the original plans, by the addition of an octagonal storey and a tall open spire (528 ft .), the loftiest ecclesiastical erection in the world, outstripping the twin spires of Cologne cathedral by 21 ft . The towers of the choir, rebuilt in the course of the restoration, are 282 ft . high. The cathedral contains some fine stained glass, tbe largest organ in Germany (1856), and a number of interesting old paintings and carvings by Jorg Syrlin the elder, Jorg Syrlin the younger, Burkhard Engelberger, and other masters of the Swabian school. It belongs to the Protestant Church. Trinity church dates from 1617-1621, and there are also lour Roman Catholic churches and a synagogue.

The Danube, joined by the Iter just above the town and by the Blau just below, here becomes navigable, so that Ulm occupies the Important commercial position of a terminal river-port. Hence there is water communication with the Neckar, and so to the Rhine and into the interior of France. The market for leather and cloth is Important, and Ulm is lamous for its vegetables (especially asparagus), barley, beer, pipe-bowls and sweet cakes (Utmer Zuckerbrot). Bleaching, brewing and brass-founding are carried on, as well as a large miscellany of manufactures.

Ulm has long been a fortress of the first rank. In 1844-1859 the German Coniederation carefully fortified it, and in \(\mathbf{8 8 6}\)
the new German Empire added a comprehensive outer girdle of detached forts, culminating in the powerful citadel of Wib: belmsburg. The long straight lines of works which stretched to the plateau of the Michelsberg and lormed the outworks of the main fortress on the left bank of the Danube were purchased in 1900 by the municipal authorities, in order to be levelled and laid out in streets for the extension of the town is this direction. The fortifications also of Neu-Ulm, on the Bavarian side of the Danube, were ordered to be razed and devoted to municipal purposes. The citadel of Wilhelmsburg remains, and also the defences on the left bank of the Danube, further extended and strengthened. Ulm is the basis of operations for the German army behind the Black Forest, and can easily shelter a force of 100,000 men; its peace garrison is 5600 .

Ulm is mentioned as early as 854 , and under the Carolingian sovercigns it was the scene of several assemblies. It became a town in 1027, and was soon the principal place in the duchy of Swabia. Although burned down by Henry the Lion, it scon recovered from this disaster and became a free imperial town in il55. Towards the close of the middle ages it appears several times at the head of leagues of the Swabian towns. Its trade and commerce prospered and in the 15 th century it attained the summit of its prosperity, ruling over a district about 300 sq . m . in extent, and having a population of about 00,000 . In 1803 it lost its freedom and passed to Bavaria, being ceded to Wurttemberg in 18og. In October 1805 General Mack with 23,000 Austrians capitulated here to Napoleon. Ulm is remarkable in the history of German literature as the spot where the Meistersinger lingered longest, preserving without text and without notes the traditional lore of their craft. In 1830 there were twelve Meistersinger alive in Ulm, but in 1839 the four survivors formally made over their insignia and gild property to a modern singing society and closed the record of the Meistergesang in Germany.
See E. Nubling, Ulms Handel und Cewerbe ins Millelalter (UIm, 1892-1900): G. Fischer, Geschichte der Stadt Ulm (Stuttgart. ik63); Preseel, Ulmisches Urkumdenbuch (Seut igart, 1873) a and Ulm wnd srim Münter (Ulm, 1877): Schultcs, Chronit yom Ulm (Scutgart, 1881 and 1886): Hassler, Ulms Kwnsfgeschichte im Mittelallor (Seutt. gart, 1872); and Das role Buch der Stadl Ulm, edited by C. Mollvo (1904).

ULPIAN (Domitius Ulplanus), Roman jurist, was of Tyrian ancestry. The time and place of his birth are unknown, but the period of his literary activity was between A.D. 211 and 122. He made his first appearance in public life as assessor in the auditorium of Papinian and member of the council of Scptimius Severus; under Caracalla be was master of the requests (magister libellorum). Heliogabalus banished him from Rome, but on the accession of Alexander (223) he was reinstated, and finally became the emperor's chicf adviser and pracfectus practorio. His curtailment of the privileges granted to the praetorian guard by Heliogabalus provoked their enmity, and he narrowly escaped their vengeance; ultimately, in 228 , he was murdered in the palace, in the course of a riot between the soldiers and the mob.
His works include Ad Sabinum, a commentary on the jus civila, in over 50 books; Ad edictum, a commentary on the Edict, in 83 books; collections of opinions, responses and disputations; books of rules and institutions; treatises on the functions of the different magistrateg-one of them, the De officio proconsulis librix., being a compretensive exposilion of the criminal law; monographs on various statutes, on testamentary trusts, and a variety of other works. His writings al together have supplied to Justinian's Digest about a 1 hird of its contents, and his commentary on the Edict alone about a filih. As an author he is characterized by doctrinal exposition of a high order, judiciousness of criticism, and lucidity af arrangement, ayle and language.
Domuisi Ulpiani frogmexta, consisting of 29 titles, were first edited by Tilius (Paris, 1549). Other cditions a re by Hugo (Berlin, 1834). Bocking (Bonn. 1836). containing fragments of the first book of the Insticuliones discovered by Endlicher at Vienna in 1835 , and in Cirard's Tates de drou romain (Paris, 1890).

ULRICH, duke of Würtemberg (\(1487-1550\)), was a son of Henry, count of Montbeliard (d. 1519), younger son of Ulich V.,
count of Wartemberg. He succeeded his kinsman Eberhard II. as duke of Würtemberg in 1498 , being declared of age in 1503 . He served the German king, Maximilian I., in the war over the succession to the duchy of Bavaria-Landshut in 1504, receiving some additions to Würtemberg as a reward; he accompanied Maximilian on his unfinished journcy to Rome in 1508 ; and he marched with the imperial army into France in 1513. Meanwhile in Wartemberg Ulrich had become very unpopular. His extravagance had led to a large accumulation of debt, and his subjects were irritated by his oppressive methods of raising money. In 1514 a rising under the name of "poor Conrad " broke out, and was only suppressed alter Ulrich had made important concessions to the estates in return for financial aid. The duke's relations with the Swabian league, morcover, were very bad, and trouble soon came from another quarter also. In 151 Ulrich had married Sabina, a daughter of Albert III., duke of Bavaria-Munich, and niece of the emperor Maximilian. The marringe was a very unhappy one, and having formed an affection for the wife of a knight named Hans von Hutten, a kinsman of Ulich von Hutten, the duke killed Hans in 1515 during an altercation. Ilutten's friends now joined the other elements of discontent. Flecing from her husband, Sabina won the support of the emperor and of her brother William IV., duke of Bavaria, and Ulrich was twice placed under the imperial ban. After the death of Maximilian in January 1519 the Swabian league interfered in the struggle, and Ulrich was driven from Wurttemberg, which was afterwards sold by the league to the emperor Charles \(V\).
Ulrich passed some time in Switzerland, France and Germany, occupied with brigand exploits and in service under Francis I. of France; but he never lost sight of the possilitity of recovering Wurttemberg, and about 1523 he announced his conversion to the reformed faith. His opportunity came with the outbreak of the Peasants' War. Posing as the fricnd of the lower orders and signing himself "Ulrich the peasant," his former oppressions were forgotten and his return was anticipated witb joy. Collecting men and money, mainly in France and Switzerland, he invaded Würtemberg in February 1525 , but the Swiss in his service were recalled owing to the defeat of Francis I. of France at Pavia; the peasantry were unable to give him any serious support, and in a few weeks be was again a fugitive. During his exile Ulrich had formed a friendship with Philip, landgrave of Hesse; and his restoration, undertaken by Philip, is an event of some importance in the political history of the Reformation. In 1526 Philip had declared he was anxious to restore the exiled duke, and about the same time Francis I. and Zwingb had intimated their willingness to assist in a general attack upon the Habsburgs. Many difficulies, however, barred the way, and it was 1534 before Philip was prepared to strike. In January of that year Francis I. had definitely promised assistance; the Swabian league had just been dissolved; and, after a manifesto had been issued by Ulrich and Pbilip justifying the proposed undertaking. Wurtemberg was invaded in April 1534 . Charles V. and his brother, the German king. Ferdinand 1., could send but litte assistance to their lieutenants, and on the 13 th of May the troops of the Habsburgs were completely defeated at Lauffen. In a few weeks Ulrich was restored, and in June 1534 a treaty was negotiated at Kaaden by which he was recognized as duke by Ferdinand, but was to hold Wütlemberg under Austrian suzcrainty. After some hesitation Ulrich yielded to the solicita-

The dukc now lost no time in pressing on the teaching of the reformed doclrines of Luther and Zwingli. Many convents and monasteries were destroyed, and extensive seizures of church property formed a welcome addition to his impoverished exchequer. Taxition, however, was so the \(y\) that he soon lost his temporary popularity. In April 5536 he joined the league of Sclimalkalden, though he did not assent to some of the schemes of Philip of Hesse for attacking Charles V. In 1546 his troops fought against the emperor during the var of the league of Schmalkaldy ith disastrous resulas for Würtemberg. The dy versun, and the duke compelled to
agree to the treaty of Heilbroan in January 1547. By this treaty Charles, ignoring the desire of Ferdinand to depose Ulich again, allowed him to retain his duchy, but stipulated that he should pay a large sum of money, surtender certain fortresses. and appear as a suppliant before the emperor at Ulm. Having submitted under compulsion to the Inicrim issued from Augsburg in May 1548, Ulrich died on the 6th of November 1550 at Tühingen, where he was buried. He left a son, Christopher (\(1515-1568\)), who succeeded him.
Bigliograpay.-I. F. Heyd, Ulrich, Herzog zu Würllemberg (Tübingen, \({ }^{1841-1844) \text {; B. Kugler, Ulich, Her2og zu Wirtenberre }}\) (Stuttgart, 1865) : H. Ulmann, Funf Jakrewürthembergischer Geschichte 15t5-1519 (Leipzig, 1867): J. fanssen, Geschichis des deutschen Volks seit dem Ausgang des Mitlelatters (Freiburg, 1890), Eng. trans. by A. M. Christie and M. A. Mitchell (London, 1900 seq.) ; C F. von Stailin, Wirlembergische Geschichte. Bd. iv. (Stuttgart, 1873): and I. Wille, Phatiop der Grossmuthige von Hessen und die Restizution Ulicichs son Wirtemberg (Tühingen, 1882).

ULRICI, HERMANN (\(1806-1884\)), German philosopher, was born at Pförten, Prussia, on the 23rd of March 1800 . He was educated for the law, but gave up his profession on the dealh of his father, and devoted four years to the study of literature, philosophy and science. In 1834 he was called to a professorship at Halle, where he remained till his death, on the 1nth of January 1884. His philosophical standpoint may be characterized as a reaction from the pantheistic tendency of Hegel's idealistic rationalism towards a more pronouncedly theistic position. The Hegelian identity of being and thought is also abandoned and the truth of realism acknowledged, an attempt being made to exhibit idealism and realism as respectively incomplete but mutually complementary systems. Ulrici's later works, while expressing the same views, are largely occupied in proving the existence of God and the soul from the basis of scientific conceptions, and in opposition to the materialistic current of thought then popular in Germany.
His first works were in the sphere of literary criticism; of his treatise On Shakespeare's Dramatic Arl (1839; editions, 1847, 1868, 1874), the 3rd ed. was translated into English by L. D. Schmitz in 1876. In 1841 he published Ober Princip \(u\). Methode der Hegedschen Philosophic, a severe criticism of the Hegelian system. This was continued in the Grundprincip der Philosophic (\(1845^{-1846}\)), which also gives his speculative position. Complementary to this in his System der Logik (18522). His later works on the relation of philosophy to science and to the thought of his time were more popular in character. These are Clauben u. Wissen (1858), Goth \(\mu_{0}\) die Natur (1862: 3rd ed., 1875), Gott und der Mensch (2 vol9., \(1866-\) 1873; 2nd ed. 1874). From 1847 on ward Ulrici edited, jointly with the younger Fichtc, the Zeischiffl für Philosophic u, phil. Xritik Sce Frankel's arr. in Allecmeine deulsche Biog. (1895) and works there quoted.

ULSTER, EARLS OF. The carldom of Ulster was the first title of honour in Ireland of English creation, and for more than a century was the only one. By many authorities John de Courci (\(q .0\).), the conqueror of Ulster, is held to have been the first carl of Ulster; " it is, however, certain," says J.H. Round, "that this title was the invention of a late chronicier, and that it first appears in the Book of Houth, where we read of "Sir John Courcey, earl and president of Ulster." The confusion probably arose from the words of a charter, dated the 20th of May \(1=05\). by which King John confirmed to Hugh de Lacy, whom he then created earl of Ulster, a grant of Uister "as John de Courci held it on the day when Hugh conquered and took him prisoner in the field "; these words referring not to the earldom but to the lands held by de Courci, and possibly also to the authority which he had exercised in the king's name. The earldom therefore dates from this grant to de Lacy in 1205 .

Huga de Lacy, 1st Earl of Ulster (d. 1242 ?), was descended from Walter de Lacy (d. 1085), who fought for William the Conqueror at Hastings. The family came from Lassy in Normandy, and after the Conquest Walter de Lacy obtained extensive grants of land on the Welsh marches. He was the first baton Lacy by tenure, and was probably a brother, certa inly a kinsman, of llbert de Lacy, from whom were detcended Roger de Lacy, justiciar in the reign of King John, and the carls of Lincoln (q.v.) of the de Lacy family. Although Walter had three sons, one of wbom founded Llanthony Abbey, none of them left
beirs; but his daughter's son Girbert took the name of de Lacy and became the fourth baron. Gilbert's son Hugh de Lacy (d. 1186) was one of the barons who accompanied Henry 11. to Ircland in 1171; be obtained a grant of Meath, and governed Ireland as vicegerent for the king. By his wife Rose of Monmouth Hugh was father of Walter de Lacy (d. 1241), who succeeded his father as lord of Meath and took a leading part in the conflict of his family with John de Courci in Ireland, and also of Hugh de Lacy, ist eari of Ulster. The latter was for a time a condjutor of de Courci in Leinster and Munster, but after 1200 the rivalry between the two developed into war, and in 1203 de Lacy drove de Courci out of Down, and in the following year took him prisoner. He was rewarded by the king with grants of land in Ulster and Connaught, which were confirmed by the charter of the 29th of May 120s, when Hugh was created earl. He returned to Ireland with quasi-viceregal authority, and endeavoured without much success to reduce the \(O\) 'Neill of Tyrone to submission. In 1207 war hroke out between the earl of Ulster and Filatienry, the justiciar. This brought King John in person to Ireland, where lie expelled the eard's brother, Walter de Lacy, from Meath, and compelled the earl bimself to Aly from Carrickfergus to Scotland. For several years Ulster took part in the wars in France, and he did not retum to Ireland till 1221 , when be allied himself with \(O^{\prime}\) Neill against the English. In 1226 bis lands in Ulster were handed over to his brother Walter, but were restored to him in the following year, after which date he appears to have loyally served the king, being more than once summoned to England to give advice about Irish affairs. He died at Carrickfergus in 1242 or 1243. He left no surviving legitimate chiddren, and on his death the earldom of Ulster reverted to the Crown.

In 1254 the lordship of Ireland was granted by Henry III. to Prince Edward (afterwards Edward 1.), who about 1255 transferred "the county of Ulster" to Walter de Burgh, bord of Connaught, in exchange for the rich domain of Kilsilan. De Burgh was henceforth, or at all events within a short timg afterwards, atyled earl of Ulster, to which title he may have advanced some hereditary claim of a loose order through his mother Egidia, daughter of Walter de Lacy, the first earl of Ulster's brother. The earldom remained in the family of De Burgh until the death of William, 3rd earl of this line, in 1333, when it passed to his daughter Elizabeth, who married Lionel Plantagenet, son of Edward III. Lionel, having inherited in right of his wife the great estates of the family of de Clare as well as those of de Burgh, was created duke of Clarence in 1362. Leaving no male beirs, Lionel was succeeded in the earldom of Ulster by his daughter Philipps, who married Edmund Mortimer, earl of March. The third Mortimer, earl of Ulster, died unmarried in 1425, when bis titles were inheited by his sister's son, Richard Plantagenct, duke of York, whose son Edward ascended the throme as Edward IV. in 1461.

Since that date the carldiom of Ulster, which then merged in the Crown, has only been held by members of the royal family. It was granted in 1650 to James, duke of York, second son of Charles 1., on whose accession as James II. it again merged in the Crown. The next prince to bear the Lille (1716) was Emest Augustus, duke of Brunswick-Lancburg, son of the clector of Hanover, and youngest brother of George L. The title became extinct at his death without heirs in \(\mathbf{1 7 2 8}\). It was pext conferred on Edward Augustus, brother of Gcorge III., in 1760, again becoming extinct at his death seven ycars later. In 1784 Prince Frederick, second son of George III., was created earl of Ulster, and died leaving no children in 1827 . Each of these last four earis of Ulster, all being of separate creations, held the tilie in conjunction with the dukedoms of York and Albany. On the next-occasion of its revival it was united with the dukedom of Edinburgh, Prince Alfred Ennest Albert, second son of Queen Victoria, being created duke of Edinburgh, earl of Kent and eari ol Ulster in 1366 . On the death of the duke of Edinburgh in 1900 the carldom became extinct.

See, for the de Lacy and de Burgh earls of Ulster. The Chroniele -f Flerence of Worcester, odited by T. Forester (London, 18st);

Annals of Ireland by the Fomr Masters, edited by J. O'Donovan (7 vols.: Dublin. 1851); The Annals of Lock Cé, edited by W. M. Heanessy. "Rolls Serics " (2 vols., London, 1871); Calendar of Documents Relating to Irdand. edited by H.S. Sweetman (5 vols., London. 1875 1886); W. W. Shirley, Royal and Historical Lettery' of the Naign of Henry IIL. "' Rolls Series (a vols, London, 1862-i866); Sir]. T. Cilber, History of the Viceroys of Irelond (Dublin, 1865 . For the tater history of the earldom see C. E. C., Complete' Pecrape, vol. viii. (London, 18g8).
(R. J. M.)

ULSTER, a province of Ireland occupying the northern part of the island. It includes the counties Donegal, Londonderry, Antrim, Fermanagh, Tyrone, Cavan, Monaghan, Armagh and Down. Vister (Uladh) was one of the carly provincial kingdums of Ireland, formed, according to the legendary chronicles, at the Milesian conquest of the island ten centuries before Christ, and given to the descendants of Ir, one of the sons of Mileadh. Interprovincial wars frequently altered its boundarics, notably in 332 when the three Collas, sons of Eochaidh Doimhlein, conquered the Land between the river Boyne and Lough Neagh, which became a separate kingdom under the name of Uriel (Oriel or Otgial). Its priaces maintained themselves until the close of the 16 th century. In 1177 John de Courci, with the countenance of Henry II., set out to the conquest of Ulster. His operations were gradually successful, and he became lord depuly of Ireland in 1486 (sce above). The nominal reign of the last king of Ulstcr closed in 1200 . In 1585 Lord Deputy Sir John Perrot undertook the shiring of Ulster (cxcluding the counties Antrim and Down, which had already taken shapre); and his work, though of little immediate effect owing to the nising of Hugh O'Neill, served as a basis for the division of the territory at the plantation of Ulster in the reign of James 1. .

ULTIMATUM (from Lat. ullimus, last), a word used in diplo-macy to signify the final terms submitted by one of the partics in negotiation for setllement of any subject of disagreement. It is accompanied by an intimation as to how refusal will be regarded. English diplomacy has devised the adroit reservation that refusal will be regarded as an "unfricudly act," a phrase which serves as a warning that the consequences of the rupture of negotiations will be considered from the joint of view of forcing a settlement. This opens up a varicty of possibilities, such as good offices, mediation, the appointment of a commission of inquiry, arbitration, reprisals, pacific blockade and war. \({ }^{1}\)

As regards the altemative of war, the Hague convention. relative to the Opening of IIostilities of the 18 th of October 1907. provides as follows:-
"Considering that it is important. in order to ensure the main-
tenances of pacific relations, that hostilities should not commences
without previous warning," it is agreed by the Contracting Powers
to "recognixe that hostilities bet ween inem must not commence
without a previous and explicit warning in the form of either a
dectaration of war, giving reasons, or an ultimatum with a conditional
declaration of war."
As reasons for a declaration of war are necessarily in the nature of an ultimatum, the ullimatum may now be regarded as an indispensable formality precedent to the outbreak of hostilitics.

Another Hague convention of the same date respecting the limitation of the employment of force for the recovery of contract debts provides as follows:-

\footnotetext{
" Being desirous of preventing between nations armed conflicts originating in a pecuniary dispute respecting contract debts claimed from the government of one country by the goverament of another country as due to its subjects or citizens." the Contracting Powerts agree" not to have recourae to ammed force for the recovery of contract debte claimed Irom the government of one country by the sovernment of another couotry as being due to its subjects or citirens."

This undertaking, however, is not applicable when the debtor
\({ }^{1}\) To these may be added a new unofficial method devised by the Turks in connexion with the Austro-Turkish diffculty over the annocation of Bosnia-Herzegovina, viz. the boycotting of the goods and ships of the natives of the state against which the grievance exists. This is a method open to weaker as against more powerful states, which can have serious coercive and even complicated consequencee under the infuence of democratic institutions.
}
state refuses ot neglects to reply to an offer of arbitration or, " after accepting the offer, renders the settlement of the compromis impossible, or, after the arbitration, fails to comply with the award."

Under this convention, in the cases to which it relates, the alternative of the ultimatum is ipso facto arbitration, and it is only when the conditions of the convention bave been set at naught that other measures may be employed.

ULTRAMARINE, a blue pigment, consisting essentially of a double silicate of aluminium and sodium with some sulphides or sulpbates, and occurring in nature as a proximate component of lapis lazuli (\(q . v\). .). As early at least as the 1 ith century the art of extracting a blue pigment from lapis hazuli was practised, and from the beginning of the 16 th century this pigment began to be imported into Europe from "over the sea," as asurram ultramarinum. As the mineral only yields from 2 to \(3 \%\) of the pigment, it is not surprising to learn that the pig. ment used to be weighed up with gold. It was valued chielly on account of its brilliarcy of tone and its incrtness in opposition to sunlight, oil, and slaked lime (in fresco-painting). In 1814 Tassacrt observed the spontancous formation of a blue compound, very similar to ultramarine, if not identical with it, in a soda-furnace at St Gobain, which caused the Socitte pour \(r^{\prime}\) Encouragement d'Iudusiric to offcr, in 1824, a prize for the artificial production of the precious colour. Processes were devised by Guimet (1826) and by Christian Gmelin (1828), then professor of chemistry in Tubingen; but while Guimet kept his process a secret Gmelin published his, and thus became the originator of the "artificial ultramarine" industry.
The details of the commercial processes are trade sacers. The raw materiats used in the manufacture are: (1) iron-free kaolin. or some other kind of pure clay, which should contain its silica and alumina as nearly as possible in the proportion of \(2 \mathrm{SiO}_{2}: \mathrm{Al}_{3} \mathrm{O}_{3}\) demandel by the formula assigned to ideal kaolin (a deficit of silica. however, it appears can be made up for by addition of the calculaterl weight of fincly divided silica): (2) anhydrous sulphate of sodn: (3) anhydrous carbonate of soda: ((t) sulphur (in the state of powder): and (5) powdered charcoal or relatively ash.free coal, or colophony in leamps. "Ultramarine poor in silica"t is obtained by fusing a mixture of soft clay, sodium sulphate, charcoal, soda and sulphur. The product is at first white, but soon turns green (" green ultramarine ") when it is mixed with sulphut and heated. The sulphur fires, and a fine blue pigment is obtained. "Ultramarine tich in silica " is generatly obtained by heating a mixture of pure clay, very fine white sand. sulphut and charcoal in a mufle-furnace, A blas
produce is obtained at once but a red tinge often results. Jat product is obtained at once, but a ted tinge often results. Tad and washed with water.

Arlificial, like natural. ultramarine has a magnificent blue colour. which is not affected by light nor by contact with oil or lime as used in painting. Hydrochloric acid at once bleaches it with liberation of sulphuretted hydrogen and milk of sulphur. It is remarkable that eyen a small addicion of zinc-white (oxide of zinc) to the reddish varieties especially causes a considerable diminution in the intensity of the colour, while dilution with arificial precipitated sulphate of lime ("arnatin ") or sulphate of baryta (" Dhanc fix ") acts pretty much as one would expect. Ultramarine being very cheap, it is larkely used for wall painting, the printing of paperhangings ati! calico, \&c., and also as a corrective for the yclowish tinge ciute present in things meant to be white, such as linen, paper, \&c. Lu: \({ }^{\text {det }}\)
quantitics are used in the manufacture of paper, and especialy for producing that kind of pale blue writing paper which is so popular in Great Britain. The composition of the pignent is quite simular to that of lapis lazuli; but the constitution of both is uncertain.

By treating blue ultramarine with silver nitrate solution. "t silverultramarine is obtained as a yellow pouder. This compound gives a blue potassium- and lithium-ultramarine when encated with the corresponding chloride, and an ethyl-ulifamarine when treated with ethyl iedide. Setenium- and tellurium-ultramarine, in which these elements replace the sulphur, have also been prepared. It has been suggested that ulrantarinc is a compound of a sodium aluminium silicate and sodium sulphide. Another view is that the colour is due to some comparatively simple substance suspended is a colourless modism.

ELTRAMONTANISM (Lat. Wisc, beyond, mostes, the mowntains), the name given to a certain school of opinion in the Roman Catholic Church. The expression mbromontore was originally no more than a cerm of locality, characterizing be persons so described as living-or derived from-." beyand
so that, from the Italian standpoint, Germans and French for instance were "ultramontanc." In this sense the word was applied in the later middle ages to the Germans studying at Italian universities and-to take a particular example-to the French cardinals at the election of Clement V. (1305). North of the Alps, however, the term seems never to have been restricted to the sense implying locality; for from the very beginning we find it used as a party appellation to describe those who looked "beyond the mountains" in order to obtain a lead from Rome, who represented the papal point of view and supported the papal policy. Thus, as early as the inth century. the partisans of Gregory VII. were styled ultramontanes, and from the isth century onwards the same name was given to the opponents of the Gallican movement in France.

It was not until the 19th century that "ultramontane" and "ultramontanism" came into general use as broad designa. tions covering the characteristics of particular personalities, measures and phenomena within the Roman Catholic Church. At the present time they are applied to a tendency representing a definite form of Catholicism within that Church; and this tendency, in spite of the individual forms it has assumed in different countries, everywhere displays the same essential features and pursues the same ends. It follows, to be sure, from the very nature of Ultramontanism, and from the im. portant position to which it has attained, that the official organs of the Church and all the people interested in the conlinuance of the actual state of affairs deny that it exists at all as an independent tendency, and seek to identify it with any proper interpretation of Roman Catholicism. Numerous Catholics, on the other hand, well qualified to form a judgment, themselves protest against this obliteration of the dividing line. It is indisputably legitimate to speak of Ultramontanism as a dis: tinct policy, but it is very difficult to define its essential character. For, true to its nature, it has itself drawn up no complete programme of its objects, and, in addition to its avowed aims, its subsidiary effects claim attention. There is something chameleon-like in its appearances; its genuine views are kept in the background from tactical considerations, and first one aspect, then another, comes into prominence. It is evidept, therefore, that the request for a definition of Uliramontanism cannot be answered with a concise formula, but that the varied character of its manifestations necessilates a more detailed examination of its peculiar objects.

The indications given by the late Frans Xaver Kraus-himself a Catholic-may well serve for a guide (Spectator, ep. 2). He classes as Ultramontane: (1) Whoever places the idea of the Church above that of religion; (2) whoever confounds the pope with the Church; (3) whoever believes that the kingdom of Heaven is of this world, and maintains, with medieval Catholicism, that the power of the keys, conferred on Peter, includes sceular jurisdiction over princes and nations; (4) whoever bolds that religious conviction can be imposed by material force, or may legitimately be crushed by it; (5) whoever is always ready to secrifice a clear injunction of his own conscience to the claims of an alien authority.
The first and fundamental characteristic of Uleramontonism Is its championship of a logical carrying out of the so-called "papalistic system," the concentration, that is, of all eoclesiastical power in the person of the Roman bishop. This tendency among occupants of the Roman sce to exals themselves above other bishops, and to usurp the part of a superior authority as compared with them, may be traced oven in antiquity. No later than the end of the and century Bishop Victor made an attempt to extablish this positicn during the discussions regarding the date of the Easter festival. But he met with a sharp reboff, and Bishop Stepben fared no better when, in the middle of the 3rd century, be came into collision with Cyprian of Carthage and Firmilian of Caesares in the dispute concerning herctical baptism. How the Roman bishopric rose in status till it became the papacy, how the individual popes-in spite of these and similar repulseadvanced steadily on their peth, how they succeeded in foumdins
their primacy within the Church, and in re-establishing and maintaining that primacy notwithstanding severe defeats and long periods in which their prestige sank to the vanishing point, is told elsewhere (see Papacy). A characteristic peculiarity of the process is thal the claims of the Roman see were always in advance of the actual facts and always encountered opposition; though there were many periods-at the height of the middle ages, for instance-when the voices raised in protest were only timid and hesitating. To the curial system, so evolved, and continually fortifying its position in the domains of theology, ceclesiastical law and politics, the episcopal system stands in diametrical opposition. This system admits that the pope represents the unity of the Church, and acknowledges his primacy, but only in the sense that he is primus inter pares; while at the same time it claims on behalf of the bishops that, in virtue of the divine ordinance, they possess an inalienable right to a share in the government of the Church (see Episcopacy). This theory of the independence of the episcopate with regard to the Roman bishop was first propounded by Cyprian, in his treatise De uniale ecclesioc. In the roth century it received its classical expression in the resolutions of the ecumenical council at Constance; its principles were developed and amplified by Gallicanism, and, finally, in the 18 th century. was restored in a modernized form by "Febronius" (Nikolaus von Hontheim, q.v.) and in the Punctation of Ems (sce Febronianism). The struggle between these two systems continued well into the righ century; and, though episcopalism was not infrequently proscribed by the curia, it still survived. and till the year 1870 could boast that no ecumenical council had ventured to condemn it. This was done for the first time, in 1870 , at the Vatican Council (\(q .0\).), whose decrees, recognizing the universal episcopate and the infallibility of the pope. marked the triumph of that ultramontane doctrine by which they had been long anticipated.
In 1865 Döllinger wrote: "The Uliramontane view ean be summarized in a single, concise, and lummous proposition; but out of this proposition are evolved a doctrine and a view that embrace not merely religion and the Church, but science and the state, politics, morals and the social order-in a word, the whole intellectual life of men and nations. The proposition ruas: The pope is the supreme, the infallible, and consequently the sole authority in all that concerns religion, the Church, and morality, and each of his utterances on these topics demands unconditional submission-internal no less than external." History, since the Vatican Council, has shown this judgment to have been correct. The Roman Catholic Church, in all countries, has become more and more dependent on the Curia: the bishops have lost their autonomous standing, and their position is little more than that of papal delegates, while all important questions are referred to Rome or settled by the Duncios.

A second peculiarity of Ultramontanism is its confusion of religion with politics; it claims for the Roman Catholic Church the functions of a political power, and asserts that it is the duty of the secular state to carry out its instructions and wishes. Uliramontanism regards the state, not as a divinely established order but, like its ancient prototype, as a profane institution and, for that reason, not co-ordinate with, but subordinate to the Church.

Since the conditions of the age no longer allow the pope to depose a temporal sovereign, the practical application of this conception of the relationship between the spiritual and temporal powers has taken other forms, all of which, bowever. clearly show that the superiority of the Church over the state is assumed. This may be seen in the attitude of Uliramontanism towards secular law. It assumes that God bas conferred on the individual and on society certain rights and competences as inalienable possessions. This " natural law " ranks above all secular law, and all state legialation is binding only in so far as it is in harmony with that law. As to the provisions of this naturl law, and the consequences they cntail in individual cases, these can be decided only by the Church, i.e.
the last resort, by the pope. This is to assert the principle of the invalidity of all legislation conflicting with ecclesiastical interests and rules. This was the attitude of Innocent IIL. when he annulled the English Magaa Charta; of Innocent X. When he pronounced the treaty of Westphalia null and void; of Pius IX. when he condemned the Austrian constitution (1868) and the ecclesiastical laws of Prussia so far as they affected the circumstances of the Roman Catholic Church (1875). Thus too, cven at the present time, the opinion is very clearly expressed in Ultramontane quarters that, in the event of the state issuing laws contravening those of nature or of the Church, obedience must be relused. The attitude of Ultramontanism, for instance, towards the right claimed and exercised by the state to make laws concerning marriage is wholly negative; for it recognizcs no marriage laws except those of the Church, the Church alone being regarded as competent to decide what impediments are a bar to marriage, and to exercise jurisdiction over such cases. Thus Ultramontanism disclaims any moral subjection to secular authority or law, and will recognize the state only in so far as it comforms its rules to those of the Church. An instance of this interfcrence with the duties of the individual citizen torards the state may be found in the fact that, till the year 1904, the Catholics of Italy were prohibited by the pope from taking part in any parliamentary election.
Since Ultramontanism cannot hope to realise its political ambitions unless it surceeds in controlling the intellectual and religious life of Catholic Christendom, it attempts to extend its sphere of influence in all directions over culture, science, education, literature and the forms taken by devotion. This endeavour is the third great characteristic of Ultramontanism. Whercver its operations can be traced, they are dominated by the conviction that all stirrings of independence must be repressed, and any advance beyond the stige of immaturity and nonage checked at the outset. That science must be left free to determine the aims of her investigation, to select and apply her own methods, and to publish the results of her researches without restraint, is a postulate which Ultramontanism either cannot understand or treats with indifference, for it regards as strange and incredible the fundamental law governing all scientific research-that there is for it no higher aim than the discovery of the truth. This ignorance of the very nature of science leads to under estimation of the elemental force which science possesses; for only thus can we explain the pertinacity with which Ultramontanism, even at the present day, strives to subject her work to its own censorship and control. Nor are its criticisms limited to theology alone: its care extends to philosophy, hist ory and the natural sciences. Even medicine has not escaped its vigilance, as is proved by the prohibition of certain surgical operations. The development of these efforts may be easily traced from decisions of the Congregation of the Index and the Holy Office in Rome. Ultramontañism, too, labours systematically to bring the wbole educational organization under ecclesiastical supervision and guidance; and it manilests the greateat repugnance to aliowing the future priest to come into touch with the modern spirit. Hence the attempts to train its growing manhood in clerically regulated boarding-schools and to kcep it shut out from the external world in clerical seminaries, cven in places where there are universitics. Again, it works zealously to bring the elementary schools under the sway of the Church. Since it regards the training and instruction of childhood as inseparable، and hoids that the former is essentially the work of the Church, it contests the right of the state to compel parents to send their children to the state schools and only to the state schools. In logical sequence to these tenets it sceks to divorce the school from the state-a proceeding which it terms educational freedom, though the underlying motive is to subordinate the school to the Church. In the domain of religion. Ultramontanism tends to foster popular superstitions and to emphasize outward forms as the essence of religious life, for it can only maintain its dominion so long as the common prople remain at a low spiritual level. If any one desires to appreciate the intellectual dlane-
and the power-of this Ultramontane habit of thought, he will find ample material in the performances of the notorious swindler Leo Taxil under Leo XIII., and in the acceptance of his blasphemous effusions by the highest ranks of the clergy.

In the fourth place, Ultramontanism is the embodiment of intolerance towards other creeds. The general presupposition involved is that a man cannot be saved except within the Catholic Church. Since, however, on the one hand-in virtue of a theory advanced by Pius IX. against the emperor William J. of Germany, in a letter which has since become famous-every Christian, whether he will or no, belongs to that Church by baptism, and is consequently pledged to obey her, and, on the other hand, since the state lies under the obligation to place the " secular arm" at her disposal whenever one of her members wishes to secede, the most far-reaching consequences result. In the past this principle led to the erection of the Inquisition (q.v.) and, even at the present day, there exists in the Curia a special congregation charged with its application (see Curia Romann). On the Roman Catholic side the employment of compulsion against heretics has never been acknowledged as a blunder; and this method of silencing opposition has found champions in the bosom of the Church down to the most recent ycars. But the development of modern culture has rendered these exploits of an unbridled fanaticism impossible, and no government would consent to enforce the once obligatory sentences of ecclesiastical courts. As a result of this situation, the Catholic condemnation of heresy-though as stringent as ever in principle-has assumed less dangerous forms for the herctic. Nevertheless, it proved capable, even in the 1gth ecntury, of imposing onerous restrictions on the heterodox, and practical exemplifications of this hostile attitude persist to the present day. The embittering influence of Ultramontanism may be further traced in its attitude towards the baptism of nonCatholics, for it seeks to establish the rule that baptism conferred by Protestants is invalid through defect of form or matter, or even of intention, and that, consequently, the rite must be readministered, at least conditionally, to proselytes joining the Roman Church. Finally, ample scope for the display of tolerance-or intolerance-is found in the mixed marriages between Protestants and Catholics, which, as a result of the modern facilities for intercommunication and the consequent greater mobility of the population, have shown a large increase during the last few decades-in Germany, for instance. Here, again, Ultramontanism has done much to aggravate the pernicioys feud between the two creeds, by exacting a promise before marriage from the Roman Catholic party that all the children shall be brought up as members of the Roman Catholic Church (see Marriage: Caron Low). A like result has been produced when, in response to Ultramontane agitation, interdicts have been placed on churchyards in which non-Catholics have found their last resting-place.

Lastly, Ultramontanism is the foe of the nationalization of Catholicism. This peculiarity is connected, though not identical, with the above-mentioned tendency towards the. Romanization of the Church. Just as in Protestant countries there has often been an amalgamation of evangelical belief with national fecling, to the great gain of both. Catholics demand that Catholicism shall enter into the sphere of their national interests, and that the activitics of the Catholic Church should rest on a national basis. These aspirations have been proclaimed witb especial emphasis in France, in Germany (Reformkatholizismus) and in the United States (Americanism; see Hecxer, I. T.) but are everywhere met with a blank refusal from the Uitramontane side. For Uliramontanism fears that any infusion of a national cicment into ecclesiastical life would entail the eventual independence of the people in question from papas control, and Icad to developments opposed to its popalistic mode of thought. It endeavours, therefore, to undermine all aspirations of this nature and, its own tendency being essembialive internationiai, strives to ensure that national sentiment al intercsts shall not find over-zealous champi

The relationship of Ultramontanism to Catholicism is a much-disputed problem. The Ultramontane, indeed, maintains that there is no justification for distinguishing between the two. but the motives underlying this attitude are obvious. For, by representing the prosecution of its party-political objects as a championship of the Catholic Church, Uliramontanism seeks to acquire the support of the official organs of that Church, and the good will of all circles interested in her welfare; while at the same time it strives to discredit any attempt at opposition by branding it as an assault on the orthodox faith. But, even within the pale of the Roman Church, this identification provokes emphatic dissent, and is repudiated by all who are shocked by the effects of a onesided accentuation of political Catholicism on the inner life of the church, and are.reluctant to see the priest playing the part of a polntical agitator. It was on these grounds that Count May, in January 1904, proposed in the chamber of the Bavarian Reichsrath that the clergy should be deprived of the suffrage. In Germany, again, the last few years have witnessed a growing aversion from Ultramontanism on the part of those Catholics who cannot reconcile its tenets with their patriotic sentiments, and are disinclined to submit to a limitation of their share in the intellectual life of the times, particularly in art, science and literature. It may be admitted that. in many cases, the distinction between Ullramontanism and Catholicism cannot be clearly traced; and it is impossible to draw a sharp line of severance between the two, which could be absolutely valid under all circumstances and in relation to all questions. For there are many almost imperceptible stages of transition from the one to the other; and, for all the principal contentions of Uliramontanism, analogies may he found in the past history of the Catholic Church. Thus, in the middle ages, we find extremely bold pronouncements with respect to the position of the papacy in the universal Church; while political Catholicism had its beginnings in antiquity and found very definite expression, for instance, in the bull Unam sanclam of Bonlface VIII. Again, the attempt to subordinate all intellectual life to ecclesiastical control was a feature of the medicval Church, and the fundamental attitude of that Church towards heresy was fixed during the same period. But since then much has been altered botb in the Church and her secular environment. The state has become independent of the Church, legislates on its own sole authority, and has recognized as falling within its own proper sphere the civilizing agencies and social questions formerly reserved for the Church. Again, education, science, art and literature have been secularized: the printing-press carries knowledge into every house, the number of illiterates diminishes from year to year in every civilized country, and the elergy are no longer the exclusive propagators of culture, but merely one factor among a hundred others. Finally, the Roman Catholic Church has long forfeited the privileged position formerly accorded as her due. The days when she was the Christian Church are past: and now the civic rights of a man in a modern state are not curtailed, though he may neglect his duty to the Church or flatly tefuse to acknowledge the existence of any such duty. The struggle for religious freedom has suffered no intermission simce the beginning of the Reformation; and the result is that to-day its recognition is considered one of the most precious trophies won in the evolution of modern civilization; nor can these changes be reversed, for they stand in the closest connexion and reciprocity one with another, and represent the fruits of centuries of co-operation on the pert of the European peoples. But Ultramontanism ignores this latest page of history and treats it as non-existent, aspiring to the erection of a new order of society, similar to that which Rome created-or, at least, endcavoured to create-in the halcyon days of medievalism. For the justification of this enterprise, it is considered sufficient to point out that the several elements of its programme once enjoyed validity within the Church. But Cyprian of Carthage said long ago, Consuetudo sine veritate vetuslas erroris est; and the bare fact of previous existence is no argument for the re-introduction of obeolete
and antiquated institutions and theories. But, under the guise of \(a\) restoration on conservative lines, Uitramontanism-notwithstanding the totally different conditions which now obtain-girds itsell to work for an ideal of religion and culture in vogue during the middle ages, and at the same time holds itself justified in adopting the extreme point of view with respect to all questions which we have mentioned. Thus Uliramontanism is not to be conceived as a theological movement, but as the programme of a party whose principles are in fundamental opposition to modern culture, modern education, modern tolerance and the modern state-a party which seeks to carry out its campaign against the society of to-day, not by bridging the gulf betwixt creed and creed, but by widening in, hy awakening religious fanaticism, and by closing the way to a peaceful co-operation of Catholics and non-Catholics in the highest tasks of culture and human civilization. The hietophants of this Ultramontane system are to be found in the Society of Jesus (See Jesurts). In fact, the terms jesuitical and wliramontane may, in numerous cases, be regarded as equivalent.

The origin of modern Ultramontanism is preceded and conditioned by the collapse of Catholicism in the period of the French Revolution. Pius VI. and Pius VII. were expelled from Rome, deprived of the papal states, and banished to France. In that country the Church almost completely lost her possessions; in Germany they were at least considerably curtalled; in both the hierarchical organization was shattered, whide the Catholic laity surveyed the catastrophe in complete passivity. But from this severe fall the Roman Church recovered with comparative readiness, and the upward movement is contemporaneous with the rise of Uleramontanism. The birth of that system, however, cannot be fixed as a definite event by the day and the hour; nor was it created by any single personality. Rather it was the product of the first postrevolutionary generation. Neither is it merely fortuitous that the reaction proceeded from France itself. For in no other country bad hostility to religion attained such a pitch or assumed such erotesque forms; and consequently in no other country did the yearning for religion manifest itself so unequivocally, when bitter experience had demonst rated the necessity of a return to law and order. And in the other states of Europe there existed, more or less, a similar desire for peace and an equal dread of a fresh outbreak of revolutionary violence. In contrast to the struggle for an ideal freedom, which was at first hailed with tempestuous delight only to reveal itself as a dangerous tyranny, men became conscious of the need for a firmly established authority in the reconstruction of socicty. After the violent upheaval in the political world during the last few decades, the existent-as suchincreased in value, and the high estimation in which the old regime was now held led to a policy of restoration. At the same time, the repression of idealism and sentiment during the period of "illumination" was amply revenged, and the barren age of reason gave place to Romanticism. These tendencies in contemporary opinion favoured the renovation of the Roman Catholic Church. But the papacy signalized its reinstation by restoring the Society of Jesus (1814) and re-establishing the inder. Even before this, the earliest germs can be traced back into the revolutionary period Itself-t he movement characterized above had begun working in France on the same lines; and, as it showed great zeal for the increase of the papal authority, it received the support of the Curia. True, the principles of Bonald, Lemaltre, Lamennais and Lacordaire, were not carried through in the French Church without opposition; but, about the year 1850 , they had become predominant there. In Germany Ultramontanism had to contend with great difficulties; for here ecclesiastical affairs were not in so desperate a case that the most drastic remedies possessed the most powerful attraction; while, in addition, the clergy were too highly educated to be willing to renounce all scientific work. The result was that a series of violent struggles took place between the old Catholicism and the new Ultramontane species (Hermes, Baader, Dollinger, \&c.). But even here Ultramonianism gained mound and derived inestimable assistance from the blunders of covernment after government-witness the conflict of the

Prussian administration with Archbishop Droste-Vischering (q.v.) of Cologne, 1837. Additional impetus was also lent by the revalution of 1848 .

The growth of the Jesuitical infuence at Rome-more eapecially after the return of Pius IX. from exile-implied a more definite protection of Ultramontanism by the papacy. The proclamation of the dogma of the immaculate conception in 1854 was more than the decision of an old and vexed theological problem; it was an act of conformity to a pietistic type especially represented by the Jesuits. The Syllabus of 1864, however, carried with it a recognition of the Ultramontane condemnation of all modern culture (see the articles Prus IX., and Syllabus). Finally, in the Vatican Council, the Jesuits saw another of their favourite theories-that of papal infallibitity-elevated to the status of a dogma of the Church (see Vaticas Council and Inyallibilitiy).

Ultramontanism, again, though essentially averse from all forms of progress, had displayed great dexterity in utilizing the opportunities presented to it by modern life. Where it appeared advisable, it has formed itself into a political party, as for instance, the Centre Party in Germany. It has shown extreme activity in the creation of a press devoted to its interests, and has consolidated its influence by the formation of an extensive leaguesystem. In the episcopacy it has numerous adherents; it has made progress in the universities, and most of the learned and theological reviews are conducted in its spirit.

Whether the powerful position of this movement within the Roman Catholic Church be an advantage for that Church itself cannot be discussed here. The answer to the problem will mainly depend on the estimate which we form of the Society of Jesus and its whole activity. The outstanding event in the latest history of Ultramontanism is the separation between Church and state in France (tgo4), hy which the republic has endeavoured to break the influence of this party. Similarly, the dissolution of the German Reichstag in December 1906 was a weapon directed against Ultramontanism; and, though tbe elections of 1907 failed to diminish the numbers of the Centre, they rendered possible the formation of a majority, in face of which that system forfeited the influence it had previously possessed.
Bibliog ra phy.-F. y. Dollinger, Das Papstfum (revised by Janua, Der Papst und das Concil, Leipzig, 1869 , edited by Friedrich, Munich, 1892) ;idem. Kleinere Schriften, edited F. H. Reusch (Stuttgart, 1890); F. Friedrich, Geschichle des oatikanischen Konzils (3 vols., Bonn, 1877-1882-1887); F. X. Kraus, "Spectator "" letters in the Minnchener allgemeine Zcillang (1895. \&e); Hauviller, P. X. Kraus (3rd ed., 1905): Count v. Hoensbroech, Der Uliramontanismus, seis Wesen und scine Bekämpfunf (2nd ed., Berlin 1898); idem. Das Papstım in seiner sozial-kullurellen Wirksamkeit (2 vols., 3 rd ed., Leipzig. 1901-1902): C. Mirbt, Quellen exr Geschichte des Papstmws wid des ronischer Katholixismus (2nd ed., Tabingen, 1901); L. K. Gocts, Der Uliramontanismus als Wdianschaumeng auf Crund des Syllabus (Bonn. 1905).
A collection of the further literature will be found in Benrath's article "Ultramontanism" in the Realeacyclopddie für protes. rantische Theologie and Kirche (3rd ed., 1908, vol. xx. p. 213 seq.). Also. for the history of the rise of Uitramontanimm in Cermany, eee C. Mirbt. Die kalholisch-theologische Fakultdf mu Marburg. Ein Britrag sur Geschichle der katholischen K irche in K urhessen und Nassaw (Marburs, 1905).
ULUGH BEG, MIRZA MAHOMIED BEN SHAB ROK (1394-1449), Persian astronomer, son of the shah Rok and grandson of Timur, succeeded his father as prince of Samarkand in 1447, after having for years taken part in the government, and was murdered in 1449 by his eldest son. He erected an observatory at Samarkand, from which were issued tables of the sun, moon and planets, with an interesting introduction, which throws much light on the trigonometry and astronomical methods then in use (Prolegomènes des tables aslronomiques d'Onloug Beg, ed. by Sedillot, Paris, 1847, and translated by the same, 1853). The serious errors which he found in the Arabian star catalogues (which were simply copied from Piolemy, adding the effect of preccssion to the longitudes) induced him to redetermine the positions of 992 fixed stars, to which he added 27 stars from Al Safis catalogue, which were too far south to be observed at Samarkand.

This catalogue, the firt original one sioce Ptolemy, was edited by Th. Hyde at Oxford in 1665 (Tabulae longitudinis et latitudinis stellarwm Jxarum ex observatione Ulugbeighi), by G. Sharpe in 1767, and in 1843 by \(F\). Baily in vol. xili. of the Atemoirs of the Royal Astronomical Suciety.

See Delambre, Histoire de l'cstrononeic du moyes Age; Poggendorfi, Biographisch-litterarisches.
ULUNDI (Zulu for "high place"), the royal kraal of Cetywayo, situated in the Mahlabatini district of Zululand, about 3 m . north of the White Umfolosi River, and 115 m. N.N.E. of Durban. The valley of the White Umfolosi here forms an extensive basin called the Emhlahatini, and from the time of Chaka to the overthrow of Cetywayo in 1883 was the exclusive place of residence of the Zulu kings. The basin on the south side of the river is regarded as the cradle of the Zulu race; here all their early chiefs are buried, hence the term Emakosini (i.e. at the grave of the chiefs) applied to the district (see Blue Book C. 5143). During Cetywayo's reign a garrison of 3000 was kept at Ulundi. About a mile from the kraal on the 4 th of July 1879 a Zulu army some 20,000 strong was totally deleated by Lord Chelmsiord. The British force, consisting of the second division and Wood's column, numbered in all 4200 Europeans and some 1000 natives. On the morning of the battle they formed a square, with the mounted troops (about 300) inside. The Zulus attacked with great gallantry hut were received with so deadly a fire that they could not come within thirty yards of the rifles. After twenty minutes they broke and fled, and the cavalry followed them till broken ground rendered further pursuit impossible. The British loss was about 100 , that of the Zulus 1500 . After the fight the royal kraal was burned. On the rst of September following, at the site of the ruined kraal, Sir Garnet (afterwards Lord) Wolscley announced the partition of Zululand into thirtecn petty chieftainships. But on the 29th of January 1883 Cetywayo was reinstalled by the British at Ulundi as chief over two-thirds of his old dominions. Attacked at Ulundi in July 1883 by the rival chief Usibepu, Cetywayo and his 5000 followers fled to the Nkandhla bush. The royal kraal was again destroyed and Ulundi ceased to be a rallying point. The magistracy for the district is situated 5 m . north of the site of Ulundi. (See Zuldlano.)

ULVERSTON, a market town in the North Lonsdale parliamentary division of Lancashire, England, in the Furness district, \(9 \frac{1}{2} \mathrm{~m}\). N.E. from Barrow-in-Furness and 256 m . N.W. by N. from London, on the Furness railway. Pop. of urban district (1901), ro,064. The church of St Mary, founded in inis, retains the south door of the origimal building in the Transition style, but the greater portion of the structure is Perpendicular, of the time of Henry ViII. It contains an allar-tomb with recumbent figure of Walter Sandys of Conishead, dated 1588 . After the destruction of Furness Abbcy, Ulverston succeeded Dalton as the most important town in Furness, but the rapid rise of Barrow surpassed it in modern times. A monument on Hoad Hill commemorates Sir John Barrow, secretary of the admiralty and a native of the town. Conishead Priory, 2 m . south-east, a mansion on the site of a priory founded in the reign of Henry II., is used as a hydropathic estahlishment. Formerly Ulverston had a considerable trade in linens, checks and ginghams, but it is now dependent on large iron and steel works, chemical works, breweries, tan-yards, and hardware, paper, and wooden hoop manufactories. Through its connexion with Morecambe Bay by a ship canal of i m . in length, owned by the Furness railway, it has a shipping trade in iron and slates.

Ulverston, otherwise Vlureston, Olvestonum, occurs in Domesday Book, where Vlurestun is named as a manor in possession of Turulf, who was probably the original Saxon owner. Early in the 1 th century the manor passed to Stephen, count of Boulogne, and was given by him to Furncss Abbey. In 1196 the abbot granted the vill of Ulverstone with the inhabitants to Gilbert Fitz-Reinfred, who granted it a charter by which he raised it to the rank of a fres borough. The lordsbip became divided, a:d onc-half passed to the Harringtons and finally to Henry (rey, duke of Suffolk, on whose attainder in 1553 it was forfeited
the Crown. The other moiety returned to the ahbey about the
end of the rath oentury, and at the dissolution was surrendered to the Crown. Early in the 17 th century the Crown alienated the manor, which is now in the family of Buccleuch. The yearly court-lect and court-baron are still held in October. In 1280 Roger de Lancaster oblained a charter from Edward 1. for a weekly market on Thursday and an annual fair of three. days beginning on the eve of the nativity (Sept. 7).

UMAR, a town of Russia, in the government of Kiev, 120 m . S. of the city of Kiev. Pop. 28,628, many of whom are Jews, and carry on the export of corn, spirits, \&c. It has a park (290 acres), planted in 1793 by Count Potocki, and now containing a gardening school. Umati was founded early in the 17 th century as a fort against the Tatar raiders. The Cossacks of the Uiraine, who kept it, revolted against their Polish rulers about 1665 , and sustained a fierce siege. In 1674 it was plundered and most of its inhahitants murdered by the Ukrainians and Turks. In 1712 its last occupants were transferred by Peter the Great to the lefl bank of the Dnieper. But by the end of the 18th century, when it again became the property of the Potock is, it was repeopled and becanse one of the busicst trading towns of Little Russia. In 1768, when the Cossacks revolted anew against the Poles, they took Uman and murdered most of its inhabitants.

UMARKOT, a town in Sind, India, 7 m . froma station on the North-Western railway; pop. (1901), 4924. It is the headquarters of the Thar and Parkar district. The Mogul emperor Akbar was born here in 1542, when his father, Humayun, was flecing to Afghanistan.

UMBALLA, or Anbala, a city and district of British India, in the Delhi division of the Punjab. The city is 3 m . E. of the river Ghaggar, 902 ft . above the sea. Fop. (1901), 78,038. It has a station on the North-Western railway (1077 m . N.W. of Calcutta), with a branch line to Kalka at the foot of the hills (39 m .), which was coutinued up to Simla in 1903 . Umballa owes its importance to a large military cantonment which was first established in 1843 , and is the headquarters of 2 cavalry brigade belonging to the Northern army. The cantonment, which lies 4 m . south-east of the native town, is well laid out with broad roads shaded by trees. It contains a church, a club-house, several hotels and English shops.

The District of Unballa has an area of 185 sq sq. m . With one small exception it consists of a level alluvial plain, sloping away gradually from the foot of the Himalayas, and lying bet ween the rivers Jumna and Sutlej. These rivers do not materially affect the district, which has a drainage system consisting of the numerous torrents which pour down from the hills. In the south these torrents run in broad sandy beds scarcely below the surface of the country, and vary from 200 yds . to 1 m . in width, until, at a distance of 20 or 30 m . from the hills, they become comparatively docile streams, with well-defined clay hanks. Towards the north the torrents run in deep beds from the point where they debouch from the hills; they also differ from the streams of the south in being free from sand. The principal of these northern streams is the Ghaggar, into which the minor streams empty themselves, some within and some beyond the limits of the district. Whatever surplus water of this river is not swallowed up by irrigation passes on through Patiala state and Sirsa, and is finally lost in the sands of Rajputana. The Ghaggar is the only perennial stream within the district, but dwindies to a tiny rivulct in the dry season, and disappears altogether beyond the border of the district. In 1901 the population was 815,880 , showing a decrease of \(5.6 \%\) in the decade. The principal crops are wheat, maize, pulse, millets, rice, cotton and some sugarcane. There are factories for ginning and pressing cotton, and also for grinding wheat. Two opposite corners of the district are watered by the Sirhind and the Eastern Jumna canals. A portion is crossed by the main line of the North-Western railway and by the Delhi-Umballa-Kalka railway, which have their junction at Umballa city. Umballa is one of the territories previously held by numerous Sikh sirdars, which were attacked by Ranjit Singh during one of his marauding expeditions. This caused the movement of Brilish troops in 1809 which resulted
in the treaty with Ranjit Singh, by which he nas raturd to withdraw his army from the left bank of the Sutlej and to relinquish his recent conquests in Sithind. In June 1849, after the second Sikh War had brought the Punjab under British rute, the chiefs were deprived of all sovereign power and the district took practically its modern form. In March 8860 a grand durbar was held at Umballa on the occasion of the visit of the amir Shere Ali.

UMBELLIPERAE, in botany, an order of polypetalous Dicotyledons belonging to the scrics Umbellifforac, which inclutles also the orders Araliaceae (ivy family) and Comaceae (dugwoorl family). It contains 180 gencra with about \(1+00\) species, occurring in all parts of the world but chicfly in north temperate regions. It is well represented in the British flora by 35 gencra. The plants are annual or perennial herbs, rarely shrubby as sometimes in Bupliurum, with generally a very characteristic habit, namely stout erect stems with hollow internodes, alternate pinnatels compound exstipulate sheathing leaves and compound umbels of small, generally white, flowers.

As example of an annual is the common fool's parsley. Aethusa Cymapium; carrot (Dauces Carota) is a bicnnial; others are pereniaial,

Fic. 1.- Períoliate leaf of a species of hare's car (buplewrum rohusdifodium). The two lobes at the base of the leal are united, so that the stalk appears to come through the leaf. as Agave or Bromedic. In sanicle (Sanicula). Asfrontia and others the leaves are palnately divided: and there is a great varicty in the degree of division in the characteristic pinnate keal, which varics from simply pinnate to a branching of the blade to the fith or sixth order.

There "s also consideralite varicty in the development of the umbel, which is usually compound but sometimes simple, as generally in Hydrocofyle and Astrantiu, raruly reduced to a single flower as in epecias of Hydrocotyle. In Eryngitm the flowers are crowded into dense heads subtended by a whorl of rigid bracts. A terminal flower is sometimes present as in carrot, where it is distinguished by its form and dark colour. The presence or absence of bracts and their form when present afford useful diagnostic characters. When present at the bise of the primary rays of the umbel they form the incolucre. and the involucel when at the base of a partial umbel. In Astrantia the simple umbel is enveloped by a large, often coloured, involucre.
The small epigynous fiowers are usually hermaphrodite and regular. with parts in Gves. The sepals are usually very small, often represented only by tecth on the upper edge of the ovary; the petals are usually obovate or obsordate in shape, ofeen with the tip inflexed:

Fic. 2.-Diacram of Hower of Umbelliferae. ecpals and the rudiment appear first, followed by the petals, the
 flat-topped iaflorescences. A resemblance to the sayed hesds of Compositae is suggested in the frequently larger size of the flowers on the circumference of the umbel which arc often sterite and zygomorphic from the larger gize of the outer petils. This arrangement allows a large mamber of flowers to be visited in a short time. The howers are generally white, sometimes pink of yellow. very rarely blue; they are gencrally ecented, tut the whole pleme has an
olour from the gereral presence in the tissues of an ethereal oil or resin. The flower is widely open. the petals and stamens radiating from the central disk (fig. 3, d), on which honey is scereted. and is thus accessible to quite short-lipped flies. Crosspollination is renderud necessaly by the Howers being generaily markedly proterandrous; the stamens throughout the umbet have generally shed their pollen before the stigmas have begun to be functional even in the outer towers.

The fruit is again very characecristic: a schizocarp which splies down the septum to form two dry one-sceded nericarps which are at first attached to, or pendulons from, an entire of split central axis or carpophore (f.g. 3). The form of the mericarp affords valuable characters for distinguishing genera. On the outer surface of each are generally 5 ridges (primary ridges), between which are sometimes 4 sccondary ridpes; oil-cavitics, tillae, are often present in the intervening furrows.
 The iruits are variously adapted for From vines's siudrmis Text ristribution; they are sometimes thin and foot of Bunamy, Sy perniesion flat as in Werocleum, when they are easily of Sman, Sonocesechan \& Co. carried by the wind, or, as in carrot, provided with hooks. The seed containsa small cmbryo embelded in oily erdosperm, which is usually cartilaginous in texture.

The order is divided into 1 tribes depending on the form of the fruit, whether compressed, angled, grooved, constricted, Sic., and the presence or ahserce of tillae. The 35 British genera inclutie representatives of 7 of the tribes. The following may be mentioned: Hydrocolyle (pennywort) Erjogium (sca-liolly). Samicula septum construt. Flc. 3.-A. Pistil: \(B\), Iruit of the Caraway (Caram Corui): cn. larged.
d. epigynous diak; \(f\). ovary: \(n_{0}\) stignas: \(p_{0}\) pedicel. In \(B\) the two carpels have separated so as to form two mericarps (m). Part of the septum constitutes the
nium (Alexanders), Bupleurum (hare's-ear). A pium (celery, g.r.), Caruin (caraway, q.v.). Conopodium or Bunium (carth.nut, q.v.), Myrhis (Cicely), Chaerophylum (chervil). Focsiculim (fenmet. g.v.). Cribinum (samphire), Ocrantie (water dropwort), Aethuse

Fig. 4.-Water Dmpwort, Ocrinthe crocaft, with thiclened root hibres, about half nat. size.
1, Flower; 2 and 3. Side and front virw of fruit: elagge (rool's parsley q.e.), Angelica (q.v.), Phelfinth Gor parsnip, g.s.), Jlersclena (hogw ced), © Moys salizun is common parstey (q.i.).

UMBER, a brown mineral pigment consisting of hydrated iron and manganese oxides. The finely-powdered mineral is known as raw umber; when calcined the beauty of the colour increases and the pigment is known as burnt umber. It was probahly first ohtained from Umbria in Italy, but it occurs in many localities, notably in Cyprus (Turkey umber); large quantities of English umber are mined in Devonshire and Cornwall. (See Pigenents.)

UMBRA (Lat. for shade or shadow), in astronomy, the completely dark portion of the shadow of a heavenly body, filling the space within which the sun is entirely hidden. The body being supposed spherical, tbe umbra is a cone circumscribing both the sun and the body that casts the shadow. The term is also given to the interior and darkest part of a sunspot. (Sce Sun; Eclipse.)

UMBRELLA, a portahle folding protector from rain (Fr. paropluie), the name parasol being given to the smaller and more fanciful article carried by ladies as a sunshade, and the en-lout-cas being available for both purposes. Primarily the umbrella (ombrella, Ital. dim. from Lat. umbra, shade) was a sunshade alone-its original home having been in hot, brilliant climates. In Eastern countries from the earliest times the umhrella was one of tbe insignia of royalty and power. On the sculptured remains of ancient Nineveh and Egypt there are representations of kings and sometimes of lesser potentates going in procession with an umbrella carried over their heads; and throughout Asia the umbrella had, and still has, something of the same significance. The Mabratta princes of India bad among their titles "lord of the umbrella." In 1855 the king of Burma in addressing the governor-general of India termed himself "the monarch who reigns over the great umbrellawearing chiefs of the Eastern countrics." The baldachins erected over ecclesiastical chairs, altars and portals, and the canopies of thrones and pulpits, \&c., are in their origin closely related to umbrellas, and have the same symbolic significance. In each of the basilican churcbes of Rome there still hangs a large umbrella.

Among the Greeks and Romans the umbrella (orchs, orcadecov, umbraculum, umbella) was used by ladies, wbile the carrying of it by men was regarded as a sign of effeminacy. Probably in these southern climes it never went out of use, and allusions by Montaigne show that in his day its employment as a sunshade was quite common in Italy. The umbrella was not unknown in England in the 17th century, and was already used as a rain protector. Michael Drayton, writing about the beginning of the \(17^{\text {th }}\) century, says, speaking of doves:-

> "And, like umhrellas, with their feathers
> Shield you in all sorts of weathers."

Although it was the practice to keep an umbrellia in the coffec-bouses early in the i8th century, its use cannot have been very familiar, for in 1752 Colonel Wolfe, writing from Paris, mentions the carrying of them there as a defence against both rain and sun, and wonders that they are not introduced into England. The traveller Jonas Hanway, who died in 1786, is credited with baving bees tbe first Englishman wbo habitually carried an umbrella.

The umbrella. as at first used, was hased on its Eastern prototype, and was a heavy, ungainly article which did not hold well together. It had a long handle, with ribs of whalebone or cane, very rarely of metal, and stretehers of canc. The jointing of the ribs and stretchers to the atick and to each other was very rough and imperfect. The covering material consisted of oiled silk or cotton, heavy in eubstance, and liable to stick together in the folds. Fingham soon came to be substituted for the oiled cloth, and in 1848 William Sangater patented the use of al paca as an umbrella covering material. One of the most notable inventions for comhining lightness, strength and elasticity in the ribe of umbrellas was the ". Paragon ". rib patented by Samuel Fox in 1852. It is formed of a thin strip of steel rolled into a U or trough section, a form which gives great gtrength for the weight of metal. Umbrella silk is chiefly made at Lyons and Crefeld; much of it is so loaded that it euts readily at the folde. Textures of pure silk or of silk and alpaca mixed have t.․a. wear-reaistiag propertica.
(' \(\mathrm{O} \mu \boldsymbol{\beta}\) puch'), the name of an ancient and a modern ay.
1. The ancient district was bounded in the period of the Roman supremacy. by the Ager Gallicus (in a line with Ravenna) on the N., by Etruris (the Tiber) on the W., by the Sahine territory on the S. and by Picenum on the E. The Via Flaminia passed up through it from Ocriculum to Ariminum; along it lay the important towns of Narnia (Narmi) Carsulae, Mevania (Bevagna), Forum Flaminii, Nuceria Camellaria (Nocera) and Forum Sempronis; and on the Adriatic coast Fanum Fortunae (Fano) and Pisaurum (Pesaro). To the cast lay Interamna (Terni), Spoletium (Spoleto), Fulginium (Foligno-on a hranch of the Via Flaminia which left the main road at Varina and rejoined it at Forum Flaminii) and tbe important town of Camerinum on the side of the Apennines towards Picenum. On the side towards Etruria lay Amerin (Amelia) and Tuder (Todi), botb on the direct road from Rome to Perusia,' Iguvium, which occupied a very advantageous position close to the main pass through the Apennines, and Hispellum (Spello). Not far off was Assisium (Assisi), whilst far to the north in the mountains lay Sarsina. Under the empire it formed the sixth region of Italy. In earlier times it embraced a far larger area. Herodotus (iv. 49) describes it as extending to the Alps, and the repiodos ascribed to Scylax (a treatise which embodies material of tbe \(4^{\text {th }}\) century m.c. or earlier) makes Umbria conterminous with Samnium. Furthermore, place-names of undouhted Umbrian origin abound in Ecruria and are also found in the Po valley. Thus in the early days of Italian history Umbria may be taken as having extended over the greater part of nortbern and central Italy.
The name Umbria is derived from the Umbri, one of the chicf constituent stocks of the Italian nation. The origin and etbaic. affinitics of the Umbrians are still in some degree a matter of dispute, but their language proves tbem to have been an Aryan people closely allied with the Oscans and in a remoter degree with the Latins. Archacological considerations further show with approximate certainty that the Umbri are to be identified with the creators of the Terramara (q.v.), and probably also of the Villanova (\(q . v\).), culture in northern and central Italy, who at the beginning of the Bronze Age displaced the original Ligurian population by an invasion from the nortb-east. From the time and starting-point of their migrations, as well as from their type of culture, it may be provisionally inferred that the Umbrians were cognate with the Achaeans of prehistoric Greece. Pliny's statement (iii. 13, 19) that they were tbe most ancient race of Italy may certainly be rejected.

The process by which the Umbrians were deprived of their predominance in upper and central Italy and restricted to their confines of bistoric times cannot be traced in any detail. A tradition declares that their easternmost territory in the region of Ancona was wrested from them by the Picentes, a branch of the Sahine stock. It may also be conjectured that they were partly displaced in the valley of the Po by the Gaulish tribes which began to pour actoss the Alps from about 500 a.c. But their chief enemies were undoubtedly the Eiruscans. These invaders, whose encroachments can be determined by archaeological evidence as proceeding from the western seaboard towards the north and east, and as lasting from about ;00 to 500 b.c., eventually drove the Umbrians into that upland tract athwart the Apennines to which the name of Umhria belonged in historical times. In the course of this struggle the Elruscans are said to bave captured 300 Umbrian towns. Nevertheless the Umbrian element of population does not seem to have been eradicated in tbe conquered districts. Strabo records a tradition that the Umhrians recovered their ground in the plain of the Po at the expense of the Etruscans, and states that the colonies subsequently founded in this region by the Romant contained large Umbrian contingents. In Eiruria proper tbe persistence of the Umbrian stock is indicated by the survival of numerous Umbrian place-names, and by the record of Umbrian soldiers taking part in Etruscan enterprises, e.g. the

I The geographers make this road go round by Vettona (mod. Bettona) between Tuder and Perusia, instead of following the more direct modern live.
attack on Cumse in 524 日.c. Indeed it is not unlikely that the bulk of the population in Etruria continued to be of Umbrian ocigin, and that the Romanization of this country was facilitated by the partial absorption of the Etruscan conquerors into the Umbrian multitude.

Against the Romans the Umbrians never lought any wars of importance, a lact which may be explained partly by the remoteness of therr position, but chefly by the common hostility of the two nations to the Etruscans. After the downfall of the Etruscan power they made a belated attempt to aid their Samnite kinsmen in their decisive struggie against Rome (308 b.c.); but their communications with Samnium were impeded by the foundation of a Roman fortress at Narnia (298 b.c.), and at the great battle of Sentinum (295 B.c.), which was fought in their own territory, the Umbrians are not reported to have bent the Samnites any substantial help. It is perhaps on account of this defection that in 200 s.c. they received from the Romans a portion of the Ager Gallicus reconquered from the Senonian Gauls. They offered no opposition to the construction of the Via Flaminia through the heart of their country, and in the Second Punic War withheld all assistance from Hannihal. In the Social War (\(90-89\) 日.c.), they joined the rebels tardily and were among the first to make their peace with Rome. Henceforth the Umbrians no longer played an independent part in Italian history.

The material prosperity of Umbria, in spite of its unfavourable position for commercial intercourse, was relatively great, owing to the fertility of the numerous small valleys which intersect the Apennine system in this region. The chief products of the soil were olives, vines and spelt; the uplands harboured the choicest boars of Italy. In Pliny's time there still existed in Umbria 49 independent communities, and the abundance of inscriptions and the high proportion of recruits furnished to the imperial army attest its continued populousness. Among its most famous natives were the poets Plautus (b. at Sarsina) and Propertius (b. at Assisi).

Or the Umbrians' political and municipal organization little is known. In addition to the city (lota) they seem to have had a larger territorial division in the tribus (trifu, acc.) as we gather from Livy (xxxi. 2, "per Umhriam quam tribum Sapiniam vocant "; ef. xxxiii. 37) and from the Eugubine Tables (" trifor Tarsinates," vi. B. 54). Ancient author3 describe the Umbrians as leading effeminate lives, and as closely resembling their Etruscan enemies in their habits (Theopompus, Fragm. 142; Pseudo-Scymnus, \(366-368\)). It is almost certain that each race influenced and modified the other to a large extent. There is conclusive proof of atrong Etruscan influences in Umbria. For instance. they undoubtedly borrowed their alphabet and the art of writing from the Etruscans. Their writing ran from right to left. The alphabet consisted of nineteen letters. It had no separate symbols for \(O, G, Q\); the aspirates and \(X\) were wanting; on the other hand, it possessed forms for \(Z\) and \(V\), and had Hikewise the Etruscan \(f\) (8). It also bad a symbol peculiar to itself for expressing the sound of palatal \(k\) when followed by either \(e\) or \(i\). The fact that it is only in towns on the side next Etruria, e.g. Tuder and Iguvium. that a coinage is found indicates that they borrowed the art of minting from that quarter. The Umbrians counted their day from noon to noon. But whether they borrowed this bikewise from the Etruscans we do not know (Ptiny 12.77). In their measuring of land they employed the porsus, a measure common to them and the Oscans (Frontinus, De Limif. p. 30), \(3 \frac{1}{\frac{1}{3}}\) of which went to the Roman jugerum.

See Strabo bk. v.; T. E. Peet, The Slone and Bronte A pet of Tlaly and Sicily (Oxford, igog). pp. 492-510: B. V. Head, Historia mumerwin (Oxford. 1887); B. Nimen, Italische Landeskwnde: Bucheier, Uumbice (ise3): R. S. Conway, Italic Dialects. (M. O. B. C.)
2. The modern territorial division is situated in the middle of the peninsula, between Tuscany and the Marches on the \(N\). and E., and Rome and the Abruzzi on the S. and W., and comprising the one province of Perugia, with an area of \(3748 \mathrm{sq} . \mathrm{m}\); pop. (rgot), 675.352. Umbria and the two provinces of Ancons and Pesaro and Urbino taten together form an area slighthy
more extensive than that of the sixth region of Augustus. The surface is mountainous, but afords good pasture, and there are numerous fertile valleys. Many treasures of art and architecture are preserved, and Umbria is in this respect one of the most interesting regions of Italy (see Pervgia). Modern Umbria formed down to 1860 a part of the States of the Cburch.

\begin{abstract}
Two main lines of railway run through the territory. That from Florence to Rome skirts the borders of the province on the west, running north and south, while the Rome-Ancona runs across the province Irom north-east to south-west. The crose communication is given by three brach linez In the north a narrow gauge line from Arezzo to Fossato pabes through Gubbio. Perugia. the capital of the province, atands on the line from Terontola to Foligno, while on the extreme south a line passing through Rieti and Aquila, and ultimately reaching Sulmona, starte from Terni on the RomeAncona line.
(T. As)
\end{abstract}

UMFRAVILLE, the name of an English baronial family, derived from Amfreville in Normandy. Members of this family obtained lands in Northumberland, including Redesdale and Prudhoe, from the Norman kings, and a later member, Gilbert de Umiraville (d. r245), married Matilda, daughter of Malcolm, earl of Angus, and obtained this Scottish earldom. Gilbert's son, Gilbert, carl of Angus (c. 1244-1307), took part in the fighting between Henry III. and his barons, and in the Scottish expeditions of Edward I. His son, Robert, earl of Angus (1277-1325), was taken prisoner by the Scots at Bannockburn, but was soon released, though be was deprived of the carldom of Angus and of his Scottish estates. His son and heir, Gilbert de Umfraville (1310-1381), claimed the earldom; which he hoped to gain by helping Edward Baliol to win the Scottish crown, but he failed, and on his death without issue the greater part of his English estates passed to his niece, Eleanor, the wife of Sir Henry Talboys (d. 1370), while others, including Redesdale, Harbottle and Otterbourne, came to his half-brother, Sir Thomas de Umfraville (d. 1386). Slr Thomas's son, another Sir Thomas de Umfraville (1362-1391), left a son, Gilbert de Umiraville (1390-1421), who fought on the Scottish border and in France under his warlike uncle, Sir Robert de Umifaville (d. 1436). Although not related in blood he appears to have inherited the estates in Lincolnshire of the Kyme family, and he was generally known as the earl of Kyme, though the title was never properly conferred upon him. In i4is he fought at Agincourt; he was afterwards sent as an ambassador to Charies VI. of France, and arranged an alliance between the English and the Burgundians. He was killed at the battle of Bauge on the 2and of March 1421. His heir was his uncle Sir Robert, who died on the 29th of January 1436, when the male line of the Umfraville family became extinct. The chronicler John Hardyng was for many years in the service of Sir Robert, and in his Chronicle be eulogizes various members of the family.

UMPIRE, the term used, like " referee," for a person appointed by consent to settle disputes arising between opposing parties, and particularly one chosen to see that the rules of a game are abeyed. The word itself stands for the Middie English nompere or noumpere, "a numpere" becoming "an umpire." The earlier form represents the Old French nompere, nompair, i.e. not equal, odd. The Lath impar, unequal, was similarly used in the sense of " arbitrator."
UITRA KHAN, of Jandol (c. 1860-1903), a Pathan chief on the north-western frontier of India, who was chiefy responsible for the Chitral Campaign of 1805 . He was the younger son of the than of Jandol; but be killed his elder brother, seized the throne, and made himself a power on the frontier. In 1894 he held undisputed sway over almost the whole of Bajour, when his restless ambition caused him to interfere in the internal aftaits of Chitral. He instigated Amir-ul-Mulk, a half-witted brother of the Chitral chief, to murder his brother Nizam-ul-Mulk, and then threw over the fratricide and supported the claims of his uncle Sher Afzul to the throne. The government-4idia intervened and ordered Umra Khan to leave he refused, the Clitral Expedition was despatd Umra Khans was driven into exile in Aghanist in 1903.

DNAO, a town and district of British India, in the Lucknow division of the United Provinces. The town is 10 m . N.E. of Cawnpore, on the Oudh and Rohilkhand railway. Pop. (1gor), 13, 109 .

The District or Unao has an area of \(1792 \mathrm{sq} . \mathrm{m}\). It consists of a flat allu vial plain, lying north of the Ganges. Rich and fertile tracts, studded with groves, alternate with stretches of waste land and plains of barren usar, the whole being intersected by small streams, used for irrigation. The Ganges is the only navigable river in the district, while the Sai forms its north-eastern boundary. The temperature varies from about \(75^{\circ}\) to \(103^{\circ}\) in the bot season and from \(46^{\circ}\) to \(79^{\circ}\) in the cold season. The annual rainfall averages about 35 in . Pop. (1901), 976,639 , showing an increase of \(\mathbf{2 . 4} \%\) in the decade. The principal crops are barley, wheat, pulses, rice and millets, with some cotton, sugar-cane and poppy. The district is crossed by the main line of the Oudh \& Rohilkhand railway.
During the Mutiny of 1857-58 Unao was the scene of several severe engagements between General Havelock's little army and the rebels on his march to relieve Lucknow. On the death of Raja Jasa Singh, one of the leading rebels, and the capture of his two sons, the family estates were confiscated, and the villages either restored to their former owners or given to other landholders for their loyalty.
See Unao Districl Casctieer (Allahabad, 1903).
UNCLE, the brother of a person's father or mother, also the husband of one's aunt (i.e. the sister of a latber or mother) The French oncle, which appears in Anglo-French as ancle, comes from a Late Latin uncwlus, a shortened form of the Latin apunculus, a maternal uncle, the brother of one's mother. The word is a diminutive of apus, grandfather. The Latin for a paternal uncle is polruus. "Aunt" comes through the Old French aunie, ante, corrupled into the modern lante, from Latin amila, a father's sister, a paternal aunt, the maternal aunt being called motertera.
UNCTION (Lat. wuctio, anointing, wngere, ungucre, to smear with ointment, to anoint; cf. "ointment," O.Fr. oigncment, from oigner, mod. oindre, to anoint), the act of pouring, or rubbing oil, ointment or salve over or on to a person or object. The term is particularly used of the ceremonial practice of anointing with oil or unguents (see Anointing). The sacrament of the anointing of the sick in the Roman church is treated under Extreme Unction. The use of the term for religious fervour in speech has degenerated into its common meaning of exaggerated sentiment.
UNDER-CROFT, in arcnitecture, a synonym for crypt (g.p.), a vaulted chamber under ground.
UNDERWRITER, one who insures ships and their cargoes from loss and damage, so called from his writing bis name under the document or policy of insurance. A request to an underwriter to insure is termed the offering of a "risk," and the word risk in marine insurance is equivalent to the liability of an underwriter under a contract. When the risk is divided up among several underwriters, each signs his name individually, putting opposite thereto the amount for which he accepts liability. Each signature has the eflect of making a separate contract, in the terms of the policy, for the amount set opposite the name of the underwriter. (See Insurance: Marine.)
UNBMPLOYMEXT, a modern term for the state of being unemployed among the working-classes. The social question involved is intimately bound up with that of relief of the poor, and its earlier bistory is outlined in the article Charaty and Chasimiss. It is more particularly within the soth century that the problem of unemployment has become specially insistent, not by reason of its greater intensity-for it is open to considerable doubt whether, comparatively speaking, there was not more unemployment in the organized industrial communities of the early middle ages-hut because the greater facilities for publicity, the growth of industrial democracy, the more scientific methods applied to the solution of economic questions, the larger humanitarian spirit of the times all dermand

\footnotetext{
of remedies differing considerably from those of the past
}
at least be tried. In most civilized countries attempts
bave been made to solve this or that particular phase of the problem by improved methods. There is, however, alvays a great difficulty in knowing the extent of unemployment even in any one particular country. No census has ever been taken in any country of those of the whole population who were employed and unemployed on any particular day, and even if it were possible to take such a census modern conditions of industry might render its results valueless almost intmediatcly after. It would be complicated, too, by having of necessity to include the shiflless and unemployable sections of the population, as well as those on the borderland of employ. ment (those who are worth some sost of wage in times of pressure), while at the same time it would be necessary, to make the census of practical value, to obtioin returns of the demand for labour, in order to value the true character of the supply Such statistics are obtainable possibly only in theory, but every country makes an endeavour to obtain statistics of a sort. In England the Board of Trade, for example, has compiled valuable memoranda on the percentages of unemployment in the more important trade union groups of trades, which may be taken as a measure of unemployment in the more highly organized industries, while other memoranda throwing light on the subject deal with the amount of time lost by workpeople through want of employment and other causes; with cyclical trade depressions; the extent to which female labour has digplaced adult male labour of late years; seasonal industries and indusiries carried on by casual labour, emigration and immigration, \&c., all intimately bound up with the study of the problem. The statistics issued by the Labour Bureaus of many of the states in the United States arc of considerable value, in particular, those of Massachusetts, New Jersey, New York, Connecticut and Wisconsin. Germany, France and Belgium also publish statistics, but like the figures of other countries they far from represent the actual state of unemployment.

The actual causes of unemployment in any one country will always remain to a certain extent controversial, as will the comparative weight to be assigned to each cause. Putting aside the much disputed theories of economists as to the causer of cyclical depressions of trade, there are certain well-observed facts which present themselves in connerion with the question of unemployment, and to eacb one of them some contributory portion of blame may be assigned. These facts coaser of may be classified as (a) those over which the worker Unempang has no control, and (b) those which may be said meal to lie in the worker himself. Some of those under (a), of which it is impossible to give more than the more obvious examples, have, of course, been operating, especially in the United Kingdom, sometimes potently, sometimes slowly and almost unnoticed, over a long range of years. They are seasonal industries and industries carried on by casual labour. There are many industries affected by certain states of the weather or by the changes of the seasons, as the building and allied trades, the furriers' trade, confectionery trades, \&c. But more important are those industries which depend largely in times of pressure on casual and unskilled labour, such as port and riverside work of all kinds, construction works and to a certain extent the iron and steel industries. Then there are a number of skilled trades which bave about them continually a fringe of casual labour, for which employment is very intermittent.
To quote from the report of the British Royal Commission on the Poor Laws (1900):-
"The clase of under-employed includes not merely the whole of the men in such occupations as dock and whar labour and market portert, and a waxing and waning share of the lower grades of the building operations, but alse a very extensive fringe of men more or less attached to particular industries, and working at them only by way of brief and casual jobs. "To go in "for one half-day, one day, iwo, three, four or five days out of the five and a half is common to bootmaking, coopering. galvanizing, tank-making. oil pressimg. sugar boiling, piano-making, as it is to dock-imbouring, stevedoring. crane-lifting, building. Some trades, like that of the London beleers, regularly employ more men on one or two days of the week than on orthers. In London a large body of men is always required for the Friday night baking when the work in preparation for Saturdey and Sunday is, we are told, exceedingly beary. The ubual bourt of
morting ate fifteen or alxteen instcad of the ten of orher nights and twice as many men are required. These Friday night men, many Wradreds in number, pick up odd jobs the rest of the week. At the factory gates every night during the week, a number of men are always hanging about ready to be taken on in an emergency, or to fill the place of any man who, according to a very common custom, has " taken a night off." In busy marketing neighbourhoods, a whole class of butchers' assistants are engaged only for Fridays and Shturdays. Analogous arrangements exist in many other trades. Moreover, in every trade there are men whom the employer takes on only when he has a sudden and temporary press of business. They may be the "glut men " of the customs department or the Christmas hands of the post office. Every tramway undertaking, municipal or commercial, has its reserve of extra drivers, conductors, yard-men. washers, \&c., who get a day's work now and then when they are wanted. At Liverpool, and indeed in all large towns, there is a whole clase of casual carmen, who are taken on for the job as required.

Then there are the accidental circumstances which incidentally produce unemployment, such as the displacement of lebour by the progress of Invention and improvement. The example of the distress hrought upon the hand-loom weavers by the invention of the power-loom is only one of many, hut the process is continually going on. The change, for example, from horse cartiages to motor cars has btought much unemployment in its train. Then there is the unemployment due to decaying or declining trades, brought about through a persistent falling off of the demand, or through some change of process or of fashion; the removal of an industry from one place to another, the displacement of adult labour by that of women and boys, the continuous migration of unskiled bbour from the country to the towns, and the depression in general trade caused by the occurrence of something unforeseen, as war. Then too, there are to be added the numberless frictions of industrial life, all contributing their quota to unemployment, such as the bankruptcy of an employer, changes in management, the arbitrariness of a foreman, \& 8 . There are also what may be termed the political causes of unemployment, which depend on the commercial policy of the nation, in solar es it adopts Free Trade or Protection.

Recognizing the existence of the problem of unemployment, and putting aside the possibility of knowing exactly fis extent, Bemple: we have to consider the remedies which have been mor uname advapced for its solution. These may be cisssified Ehyment as temporary and permanent. Temporary expedients, whether in the nature of voluntary relief by individuals or organized societics, or on the larger scale of mnaicipal or state orgmized relief works, more properly (all under the description of charity (see CaARITy and Chariniss). Two particular methods of permanent remedy, however, are especially favoured. The first of these is the establishment of a system of labour exchanges, national in character if possible, by which it is claimed that machinery would at once be set in motion for assisting that mobility which is so effective lor the proper utilization of labour and which, even with the modern facilities for Iravel, labour so lacks at the present Lawer time. Labour exchanges would also, it is argued, Exchenges. facilitate the collection of data for the enumeration and classification of the unemployed. Labour exchanges have been long established in Germany. "There is a network of lebour exchanges of various types. The most important . . . are the public and municipal exchanges. There are over 200 such, among the 700 odd exchanges, filling now 150,000 places a month, which report regularly to the imperial statistical officer. Practically there is a public general exchange in every town of over 50,000 inhabitants, and in a very large proportion of the smaller towns. Most of the public labour exchanges date from 1894 to \(\mathbf{x 8 9 6}\) or received a fresh impulse then" (Report of Commission on Poor Laws, 1909). The causes of the success of the German system of habour exchanges' are attributed by the Poor Law Commis-- ioners to (a) the high standing given to the movement by the

1 The German eystem of labour exchanges is exhaustively dealt with in Repord to the Board of Trade on Aeencies and Methods for Dading wilh the Unemployed in certain Forcign Cometries, by D.F. Schlows (1904).
advocacy and practical assistance of all public authoritics, town councils, state governments, imperial government, \&c.; (b) the association through combined committees of employers and employees in the management of the exchanges; (c) the unequivocal character of the exchanges as industrial and not relief institutions; (d) the excellent arrangements for the use of telephonic, telegraphic and postal facilities by the exchanges, and (e) the preferential railway lares for men sent to a situation.
An attempt was made in England to start labour exchanges by the Labour Bureaux (London) Act 1002, which gave metropolitan boroughs power to establish and maintain bureaux, to be paid for out of the general rate. Before this act, however, certain municipalities here and there had made experiments in the way of exchanges, but they were never very successful, for they had no knowledge of what they intended to do; they were not properly staffed; they were hampered by bad ruies; they were nearly all started in times of depression, exactly the wrong time to start a labour exchange, the time to start it being when trade is going up. The act of 1002 was a failure because it merely permitted, and did not compel borough councils to establish bureaux, and consequently only a very small part of the metropolis was covered, and there was no interchange of ideas amongst those established. However, a fresh attempt was made to establish exchanges over a greater part of the United Kingdorn by the Labour Exchanges Act 1900. The Labour Exchanges Act defines a labour exchange as any office or place used for the purpose of collecting and furnishing information, either by the keeping of registers or otherwise, respecting ernployers who desire to engage workpeople and workpeople who seek engagement or employment. The act gave the Board of Trade power to establish and maintain labour exchanges in such places as they might think fit, and to collect and furnish information to employers and workpeople. An important provision of the act was the authorization of advances by way of loan towards meeting the expenses of workpeople travelling to places where employment is found for them through a labour exchange. The regulations of the exchanges provide that do person shall suffer any disqualification or be otherwise prejudiced on account of refusing to accept employment found for hlm through a labour exchange where the ground of refusal is that a Irade dispute which affects his trade exists, or that the wages offered are lower than those current in the trade in the district where the employment is found. The act also empowers the Board of Trade to establish advisory committees in connexion with the exchanges and imposes penalties for making false statements for the purpose of obtaining employment or procuring workpeople. For the carrying out of the act the whole of the United Kingdom was mapped out into divisions, with a divisional inspector at the bead of each. In all the more important lowns of each diviston whanges were established, classified according to the population of the town. All the exchanges a.e in telephonic communication either with each other or with a divisional clearinghouse, the divisional clearing-house in turn being in communication with a central cleasing-house in London. The advantage of the English system of labour exchanges will ie found in the fact that it is a national system, with the supfort of the state behind it. Unless, as has been proposed, it is made compulsory in all large trades, much of its success will depend on the patronage extended to it by employers, which in its turn must be justified by the efficiency of the service tendered. Patronage by government and munieipal authorities, while making an imposing addition to the returns of situations found, will not necessarily be an effective guarantee that the true objects of the exchanges are being fulfilled.

The German labour registries are of seven princinal types: the private registry office, maintained by ordinary agenis for purpose of عain, and occupying itself chiefy with the placing servinis: the ifavellers homes and relief slations. to find situations for their inmates-their succe the feetier elements of the labouring classes avoid regislries mainlained by trade unions to axsist
obtaining employment; gild labour registries or associations of employers (mainly small employers) for the promotion of the interests of the trade in which they are engaged; agricultural labour registries maintained in different parts of Germany by the cha mbers of agriculture; employers' labour registries, established as a countermove against the trade union registries-they are chiefly in industries employing large capital, particularly the metal industries; and public labour registrics, established either by voluntary associations or by municipalities. These latter have been very succeswl and have provided the model for the English registries. In Auntria labour registries have also been established on the German model by many district and municipal authorities, thoee of Vienna and Prague being especially successful. Switzerland has a lew registrics established by public authorities, notably thoee at Baect, Bern, Schaffhausen and Zurich. In Belgium there are a considerable number of public registries, some established by associations, some philanthropic, sume political, some organized by employers, some by employees, some jointly by employers and employed. Some of these registries are in receipt of subventions granted by municipalities. while in a few cases the municipalitica themselves have started registries. In France labour registries are of many types. There are the ordinary registry offices, carried on for gain, and requiring a licence from the municipal authorities. They are very numerous and according to returns to the French Labour Department fill over \(1,000,000\) situations yearl; in various occupations. There are also registrics maintained by trade gilds, by individual trade unions, by a number of trade unions jointly, by joint associations of employers and employed, by associations of employers, by friendly societies, by philanthropic institutions and by municipalities. These last are being rapidly increased, and will without doubt eventually supersede all the others. In the United States the states of Colorado. Connecticut, Illinois, Kansas, Maryland, Massachusctts, Michigan, Minnesota, Missouri, Nebraska, Ohio, West Virginia and Wisconsin have estabiished free public employment offices, and in many of the other states the private registries are under atrict supervision and licensing.
The second permanent remedy is that of insurance against unemployment. Certain schemes have been tried in SwitzerJasurance land, notably the voluntary municipal scheme of eratast Berne, the compulsory municipal scheme of St Gall Usemptore and a trade union scheme at Basel,' while there is meah in Germany a system of insurance against sickness, accident and incapacity (see Germany). Much attention has been devoted in England to the possibilities of insurance against unemployment, and in 1910 a scheme was being worked out by the government with a view to its discussion by parliament in 1911. The lines on which such a scheme must work were clearly laid down by Sir H. Llewellyn Smith, the permanent secretary to the Board of Trade, in his presidential address to the Economic Science and Statistics section of the British Association at Sheffield in September 1910.
"The crucial question from a practical point of view," said Sir H. Llewellyn Smith. " is whether it is possible to devise a scheme of insurance which, white nominally covering unemployment due to all causes other than those which can he definitely excluded, shall automatically discriminate as bet ween the classes of unemployment for which insurance is or is not an appropriate remedy. We can advance a step rowards answering this crucial question by enumerating some of the essential characteristics of any unemployment insurance schenve which seem to follow directly or by necessary implication Irom the conditions of the problem as here laid down.
1. The acheme must be compulsory; otherwise the bad personal risks against which we must always be on our guard would be certain to predominate.
2. The scheme must be contributory, for only by exacting rigorously as a necessary qualification for benefit that a sufficient number of weeks' contribution shall have been paid by each recipient can we possibly hope to put timits on the exceptionally bad risks.
3. With the aame object in view there must be a maximum limit to the amount of benefit which can be drawn, both alsolutely and in relation to the amount of contribution paid: or, in other words, we must in some way or other secure that the number of weeks for which a workman contributes should bear some relation to his claim upon the fund. Armed with this double weapon of a maximum limit to benefit and of a minimum contribution, the operation of the scheme it self will aut omatically exclude the loafer.
The scheme must avoid encouraging unemployment. and payable ahall be relatively low. It would be fatal to any a detailed description of these achemes sce G. Schanz, :25 der Arbeitslosen. Versicherung (Bamberg, 1895): Newe 4 Frage der Arbeislosen-Versicherung (Berlin, 1897): and - sur Frage der A pbeitslosen-Versicherkng und der -ir Arbeilslosigkei! (Berlin, 1901).
scheme to offer compensation for unemployment at a rate appoosmating to that of ordinary waper.
5. For the same reason it is cmential to enlist the interest of all those engaged in the insured trades, whether as employers or as workmen, in reducing unemployment, by associating them with the acheme both as regards contribution and management.
6. As it appears on examination that some trades are more suitable to be dealt with by insurance than others, either becaume the uncmployment in these trades contains a large insurable element, or because it takes the form of total discharge rather than short time, or for other reasons, it follows that, for the scherpe to have the best chance of success, it should be based upon the trade group. and should at the outset he partial in operation.
7. The group of trades to which the scheme is to be applied must, however, be a large ore, and must extend througbout the United Kingdom, as it is emential that industrial mobility as berween occupations and districts should not be unduly checked.
8. A state subvention and guarantee will be necessary, in addition to contributions from the trades affected, in order to give the necessary stahility and security, and also in order to justify the amount of state cuntrol that will be necessary.
" 9. The scheme must aim at encouraging the regular employer and workman, and discriminating against casual engagements Otherwise it will be subject to the criticism of placing an undue burden on the regular for the benefit of the irregular members of the trade.
10. The scheme must not act as a discouragernent to voluntary provision for unemployment, and for that purpose some well-devised plan of co-operation is essential between the state organization and the voluntary associations which at present provide unemployed bencfit for their members. Our analysis, therefore, keado us step by etep to the contemplation of a national contributory scheme of insurance, universal in ite operation within the limits of a large group of crades-a group so far as possible self-contained and carefully eelected as favourable for the experiment, the funds being derived from compulsory contributions from all those eagaged io these trades, with a subsidy and guarantec from the state, and the rukes relating to benefit being to devised as to discriminate effectively against unemployment which is mainly due to personal defects, while giving a substantial allowance to those whose unemployment result: from industrial causes beyond the control of the individual. Is auch a acheme practicable? This is a question partly actuarial, partly administrative, and partly political. I may say that so far as can be judged from such data as exist (and those data are admittedly imperfect and rest on a somewhat narrow basis) a scheme framed on the lines I have indicated is actuarially possible, at least for such a group of trades as building, engineering and shipbuilding."

In addition to insurance against unemployment by the state, there are various voluntary associations, such as friendly societies and trade unions, which make a feature of grants to their members when out of employment.

In September 1910 the first International Conference on Unemployment was convened in Paris, the subjects of statistica of unemployment, labour registries and state insurance beins the chief topics. The outcome of the conference was the formation of a society to study all phases of the problem, and to keep in touch with public and private bodies and the various governments.

Authorities.- Report of Royal Commission on Labour (i89人); Report of Housc of Commons Committee on Distress from Want of Employment (i895); Report of Royal Commission on Poor Lawi (1909): Report ol the Massachusetts Board to Investigate the Subject of the Unemployed The following recent books will be found useiul. P Alden. The Unemployed (1gos): W H. Beveridge, Un. employment. A Problem of Industry (1909). N. B. Dearle. Problems of Unemployment in the London Building Trades (1909) I A. Hotson. The Problem of the Unemployed (1004), F. W. Lewis. State Inswrance a Social and Industrial Nead (1909); D. F. Schioss, Inswrance Agains! Unemployment (1909): F. 1. Taylor, A Bibsography of Unemployment and the Unemployed (1909).
(I.A.?.)

UNGAVA, an unorganized territory of the Dominion of Canada, including the north-western side of the peninsula of Lahrador (\(q .0\).), bounded by Hudson Bay on the W. as far S. as East Main River; Hudson Strait and Ungava Bay on. the \(\mathrm{N}_{\text {. }}\) and with indefinite boundaries coward Queleec on the S ., and the coast strip of Labrador belonging to Newfoundland on the E. The area is estimated al \(354.961 \mathrm{sq} . \mathrm{m}\). Ungava includes much of the lower portion of Labrador, with a rim of recent marine deposits along its western coast, but the interior has the usual character of low rocky hills of Archean rocks, especially granise and gneiss, with a long band of little disturbed iron-bearing rocks, resembling the Animikie, or Upper Huronian of the Lake Superior region near its eastern
side. Along Hudson Bay shore there is a strip of similar rocks, and a long row of small islands of the same age, with great sheets of trap or diabase forming the tops of the hills. The iron formation is widely spread. There is evidence that Ungava, like the rest of Labrador, has risen several hundred feet since the lee Age, marine beaches being found up to 700 ft . on the Hudson Bay side; and it is interesting to find seals like those of the adjoining seacoasts in the Seal Lakes 100 m . inland and 800 ft . above the present sea-level. Owing to its northerly position a large part of Ungava is treeless, and belongs to tue barren grounds where caribou roam and feed on the socalled caribou moss, a greyish lichen.

Ungulata, the name of an order of placental mammals in which the terminal joints of the toes are usually encased in solid hoofs or covered with broad hoof-like nails, while the molar (and not unfrequently some or all of the premolar) leeth have broad tuberculated crowns adapted for crushing vegetable substances. The teeth (when all are present) are differentiated into the usual four series; and milk-leeth, not completely discarded till the full stature is attained, are invariably developed. All the cxisting members of the group are eminently adapted for a terrestrial life, and in the main for a vegetable diet. Though a few may in some circumstances kill living creatures smaller than themselves for food, none are habitually predaceous. In none of the existing, and in but few of the extinct types, are collar-bones, or clavicles, developed; and the scaphoid and lunar bones of the carpus are separate. The typical ungulates are the members of the subotders Artiodactyla and Perissodactyta (q.v.), in both of which the bones of the foot articulate with each other by means of groove-and-tongue joints, whence the name of Diplarthra (equivalent to Ungulata Vera), which has been proposed for these two groups collectively, as distinct from the other representatives of the order. The remaining and less typical subordinal groups-sometimes ranked as orders by themselves-include among living animals the Proboscidea, or elephants, and the Hyracoidea, or hyraxes, and among extinct groups the Amblypoda, Ancylopoda, Barypoda, Condylarthra, Litopterna and Toxodontia. The characteristics of thesc groups will be found under their respective headings, with the exception of the Barypoda and Condylarthra, for which see Aesinottheeruy and Prenacoous.
In the great majority of the Subungulata the bones of the upper and lower rows of the wrist-joint. or carpus. retain the primitive

Right Fore Foot of Indian Elephant.
\(\boldsymbol{J}\), ulna; \(R\), radius: c.cuncilorm; l. lunar: uc, xcaphoid; \(\boldsymbol{u}\), uncilorm; m , magnum; 1 d , trapezoid; tm , trapeaium; \(\mathcal{L}\) to \(V\), first to fifth digit. or more typical relation to each other (see fig., and contrast with Perlssodactyla, fig. t) the os magnum of the second row articulating mainly with the lunar of the first. or with the cuneiform, but not with the ecaphoid. On the other hand in the Diplarthra, the group to which the vast majority of modern Ungulates belong. the second or lower row has been shilted altogether towards the inner side of the limb, so that the magnum is brought considerably into relation with the scaphoid, and is enlirely removed from the cunciform, as in most existing mammals.
In the typical Ungulata or Diplarthra. the fect are never plantigrade, and the functional toes do not exceed four-ithe inner digit being suppressed, at all events in all forms which have existed since the Early Eocene period. The os magnum of the carpus articulates freely with the scaphoid. The allan. tois is largely developed. a nd the placenia, so far as known. Is nondeciduate. the chorionic villi being either evenly diffused or collected in groups or cotyledons (in Pecora). The teates descend tato a scrotum. There is never an os penis. The uterus is
bicornuate. The teats are usually few, and inguinal, but may be numerous and abdominal (as in Suina), although they are never solely pectoral. The cerebral hemispheres in existing Ungulates are well convoluted.
(R. L. \({ }^{*}\))

UNICORN (Lat. unicornis, for Gr. нovowepws, having one hom; Fr. licorne; Ital. alicorno), a fabulous beast, usually having the head and body of a horse, the hind legs of an antelope, the tail of a lion (sometimes horse's tail), sometimes the beard of a goat, and as its chief feature a long, sharp, twisted horn, similar to the narwhal's tusk, set in the middle of its forehead. The earliest description is that of Ctesias, who (Indica opera, ed. Baehr, p. 254) states that there were in India white wild asses celebrated for their fleetness of foot, having on the forchead a horn a cubit and a balf in length, coloured white, red and black; from the hom were made drinking cups which were is preventive of poisoning. Aristotle mentions (Hist. anim. ii. 1; De part. anim. iii. 2) two one-horned animals, the oryx, a kind of antelope, and "the so-called Indian ass." In Roman times Pliny (N.H. viii. 30; xi. 106) mentions the oryx, the Indian ass, and an Indian ox as one-homed; Aelian (De nat. anim. iii. 41; iv. 52), quoting Cessias, adds that India produces also a one-horned horse, and says (xvi. 20) that the Monoceros was sometimes called Carcazonon, which may be a form of the Arabic Corcoddn, meaning rhinoceros (sce Rev. W. Haughton, "On the Unicom of the Ancients," in Annols and Mag. of Natural History for 1862, p. 363). Strabo (lib. xv.) says that in India there were one-horned horses with stag-like heads. The origin of all these statements is probably to be found partly in the rhinoceros, which was well known to the ancients, and partly in the narwhal, specimens of the long tusk of which were probably brought home by travellers. The theory of a one-horned oryx would probably be drawn from the remembrance of a passing glimpse of an antelope in silhouette, or even of one which had broken one horn off short in fighting, and E. Schrader (Sitzungsberichte d. kgl. preuss. Akad. zu Berlin, 1892, pp. 573-58i, and pl. 5) traces the idea of a one-horned ox to the sculptures of Persepolis and other places, which Ctesias would probably have se:n, in which the ox, represented in silhouette, has apparently only one hom. As India became better known, and it was realized that the unicorn was not found there, its place of abode was changed to Africa.

The medieval conception of the unicorn as possessing great strength and fierceness may have been partly due to the fact that in certain passages of the Old Testament (c.g. Num. xxiii. 22; Deut. xxxiii. 17; Job xuxix. 9-10) the Hebrew word \(R^{\prime} \mathrm{I}^{m}\), now translated in the Revised Version "wild ox," was translated in the Septuagint \(\mu\) ovoxepus, in the Vulgate unicornis or ohinoceros, and in the Authoriscd Version " unicorn," though in Deut. xxxiii. 17 it obviously refers to a two-horned animal. The early commentators applied to this beast the classical attributes of the ponbuepws (c.g. Isidore xii. 2, 12 tells how the unicom has been known to worst the elephant in combat). There is also the passage in Aclian xvi. 20 which says that though as a rule savage and quarrcisome, even with females, the unicorn at mating time becomes very gentle to his mate, which is supposed to have given rise to the medieval idea that the unicorn is subdued to gentleness at the sight of a virgin, and will come and lay his head in her lap, which is the only means by which he can be caught on account of his swiftness and ferocity. This story is illustrated in the tapestry figured in Plate II. Fig. 10 of Embroidery, also on Pisanello's medal of Cecilia Gonzaga (see J. de Foville, Pisancllo et les mtdailleurs ibaliens, tgo9, p. 40), on the reverse of which is a young girl with a unicorn lying by her side, the unicom here being represented as a beautiful long-haired goat, with the long hom in the middle of his brow. The idea was widely spread in the middle ages, and Lauchert (Geschichte des Physiologus, 1889) gives instances of its allegorical use, as typical not only of Christ and the Virgin, but also of the soltening influence of love upon the fiercest of men, and a symbol of purity. As a decoration of drinking cupe it symbolized the ancient belief in the efficacy
of the unicorn's horn against poison, which in England remained even in the time of Charles II., though Sir E. Ray Lankester (Science from an Easy Chair, London, 1910, p. 1:27) mentions that a cup made of rhinoceros horn was then handed over to the Royal Society for experiment, with the result of entirely disproving the superstition. In the court ceremonial of France as late as \(1 ; 89\) instruments of "unicorn's" horn were still used for testing the royal food for poison. So-called unicorns' horns, or articles made of unicorn's horn, have always heen sought after as "curiosities ": some of them, like the cup mentioned above, were of rhinoccros horn; others, like the horn scen at Windsor by Heutzner, a German traveller, in 1598 (see E. Phipson, Animal-lore of Shakespcare's Time, p. 456), were prohably narwhals' tusks. Another medieval legend about the unicorn is that when it stooped to drink from a pool its horn, dipping into the water, purified and rendered it sweet. The traditional rivalry of the lion and the unicorn, which is generally considered to date at eariiest from the Union of England and Scotland, when the lion and the unicorn appeared as the supporters of the royal arms, is referred to, curiously enough, in Spenser's Faery Quecne, ii. 5.
In heraldry the unicorn was sometimes used as a device (see Heraldry, where two English families are enumerated who used the unicorn on their arms), but more frequenily as a supporter. and subsists to the present day as the left-hand supporter of the royal arms. This position it assumed at the Union, the Seottish royal arms having previously been uupported by iwo unicorns. The origin of these is uncertain. The unicom first appears (\(c 1480\)), as a single supporter, on two, gold coins of James Ill. of Scotland, hence known as "unicoms " and "half-unicorns" (see Lindsay, Coinage of Scolland, pp. 135-137 and plate xiii. figs. 22-27). It is represented in a sitting posture, having round its nock a crown, to which is attached a chain and ring. and holding the shicld between its front feet. Seton (Law and Practice of lleraldry in Scolland, Edinburgh, 1863. p. 274, foot-note) suggests that the unicorn as a supporter may have been introduced into Scothand by the marriage of James I. with Jane Beaufort, the Beauforts as dukes of Somerset having used it as such.' However this may be, the unicorn became established by the end of the 15 th eentury. J. A. Smith in "Notes on Melrose Abbey" (Proceedings of Society of A ntiquaries of Scoldand. ii. 257) describes a table dated 1505 on which are sculptured the royal arms supported by two unicorns. The royal arms are also supported by unicorns on the Great Seals of Scolland from the time of Queen Mary onwards (sec Anderson, Diplomala Scoliae, plate lxxxviii. xc. xci.). At the Union, when the unicorn became a supporter of the royal arms both of England and Scotland, a royal crowin was added on the head of the unicorn, in addition to the crown with chain and ring round its neck (ace Great Seal of James I. and VI. in Anderson, pl. xciii.). but this crown was removed after the Hanoverian succession. In England after the Union the unicorm became the left-hand supporter, but in Scotland, as late as 1766, it was still put on the right (Seton, p. 442), and Scotland displayed great reluctance to alter this, or to remove the cruwn from the head of the unicorn. Seton tells us how in 1853 a petition was made in [avour, among other things, of retaining the crown on the unicorn, but without success. The rule, however, that the unicorn is to be the left-hand supporter, uncrowned, is still sometimes ignored, and Seton states (1863) that in the case of seals, such as that of the Board of Manufactures, which bear the Scottish arms alone, the two unicorns are still kept as supporters.
Aurhorities. - There are many treatises on the unicorn and other tabulous beasts, from the 16 th century onwards. Of these, good bibliographics are given by Drexler, s.v. Monokeros, in Roscher's Lexicon, and by Rev. W. Haughton in Annals and Mfagasine of Natural' IIstory for t862, p. 363," On the Unicorn of the Ancients."
(C. B. P.)

UNIFORMS. The word "uniform" (Lat. unus, one, and forma, form), meaning adjectively homogencous, is specifically used as a substantive for the distinctive naval and military dress, which serves, in its various styles, to give homogeneity to the several serviecs, regiments and ranks. Although in ancient history we occasionally meet with uniformed soldiers, such as the white and crimson Spanish regiments of Hannihal, it was not until the beginning of large standing armies that uniforms were introduced in modern times. Before this, armed bodies were of two sorts, retainers and mercenaries, and while the former often wore their master's livery, the latter were dressed each according to his own taste or means. The absence
\({ }^{1}\) Willement, Regal Heraldry, p. 70, says that it was also so used 'y Anse Boleyn and by the carls of Hertord.
of uniforms accounts very largely for the signticance attached to the colours and standards, which alone formed rallying points for the soldicr and his comrades, and thus acquired the sacred character which they have since possessed. A man who beft the colours wandered into the terrifying unknown, for there was nothing to distinguish friend and foe. Even if the generals had ordered the men to wear some imptovised badge such as a sprig of leaves, or the shirt outside the coat, such badges as these were easily lost or taken off. The next step in advance was a scarf of uniform colour, such as it is supposed was worn by the "green," "ycllow "and other similarly-named brigades of the Swedish army under Gustavus Adolphus. This too was easily removed, as in the example of the squire who at Edgehill put on the orange scarf of the parliamentarians and with no more elaborate disguise succeeded in recapturing the lost royal standard from the hands of Essex's own secretary. By this lime, in France at least, the general character of the clothes and accoutrements to be worn on various occasions was strictly regulated by orders. But uniformity of clothang was not to be expected so long as the "enlistment" system prevailed and soidiers came and went, were taken in and dismised, at the beginning and end of every campaign. The beginnings of uniform are therefore to be found in truly national armies, in the Indella of Custavus, and the English armies of the Great Rebellion. In the earlier years of the latter, though the richer colonels uniformed their men (as, for instance, the marquess of Newcastle's " Whitecoats" and the king's ows "Bluecoats "), the rustics and the citizens turned out for war in their ordinary rough clothes, donning armour and sword-belt. But in 1645 the parliament raised an army "all its own" for permanent scrvice, and the colonels became officials rather than proprictors. The "new model" was clothed in the civilian costume of the date-ample coat, waistcoat, breeches, stockings and shocs (in the case of cavalry, boots)-but with the distinctive colour throughout the army of red and with regimental facings of various colours. The breeches were grey. Soon afterwards the helmet disappeared, and its place was taken by a grey broad-brimmed hat. From the coat was evolved the tunic of to-day. and the hat became the cocked hat of a later generation, which bas never altogether disappeared, and has indeed reverted to its original form in the now familiar "slouch-hat."

For service in Ircland the red coat was exchanged for one of russet colour, just as scarlet gave way to kbaki for Indian service in the 19th century. The cavalry, however, wore buff leather coats and aronour long after the infantry had abandoned them; the Austrians (sec Plate I., line 1, No. 2), on account of their Turkish wars, retained them longer than any.

Thus the principle ever since followed-unform coat and varicgated facings-was estahlished. Little or nothing of sentiment led to this. By ehoice or convenience the majority of the corps out of which the new model was formed had come to be dressed in red, with facings according to the colonel's taste, and it is a curious fact that in Austria sixty years afterwards events took the same course. The colonels there uniforming their men as they saw fit, bad by tacit consent, probahly to ohtain "wholesale" prices, agreed upon a serviceahle colour (pearl grey), and when in 1707 I'rince Eugene procured the issue of uniform regulations, few line regiments bad to be reclothed. The prefcrences of the coloncl were exhibited in the colour of the facings (Plate I., tine 1, fig. 3). In France, 25 in England and Austria, the cavairy, as yet rather led by the wealthy classes than officered by the professional, was not uniformed upon an army system until after the infantry. But in 1683 six-sevenths of the French cavalry was uniformed in ligltt grey with red facings; and about hall the dragoon regiments had red uniforms and blue facings. Louvois, in creating a standing army, had introduced an infantry uniform as a necessary consequence. The native French regimenis had light grey coats, the Swiss red, the German biack and the Italian blue, with various facings. The French grey was probably decided upon, like the Austrian grey, as being a good "service" colour, which could be cheaply manufactured (Plate I.,
line 1, Gig. 1). Both these greys, however, refined themselves in course of time into white.

The hat and the long coat and breeches remained the uniform of line infantry almost everywhere up to the advent of the shako and the coatee about \(1790-1820\). The gradual evolution of these two garments, from the comiortable civilian clothes of 1690 to the stif. precise military garments of 1790 , can be traced in a few words. The brim of the felt hat was first looped up on one side for convenience, then, for appearance' sake, on the other, and so became the three-cornered cocked hat, fringed with feathers, lace or braid, of Marlborough's wars. \({ }^{1}\) Then came tbe fashion of looping up before and behind, which produced the hat called the "Khevenhuiller," or the broadside-on cocked hat. Lastly, came the purely decorative, lace-looped "fore-and-aft " paltern, as worn in many states to-day. But belore this came into vogue the cocked hat had practically disappeared from the ordinary ranks of all armies. It may be said that so ong as the cocked hat survived in its simple, rank-and-file form, uniforms retained much of their looseness. Though the long skirts that rendered great coats unnecessary were looped hack, and the ample cufts of Marlborough's time were becoming narrower until they were at last sewn down to the sleeve, yet the military costume was in all essentials the civil costume of the time-long coat, hat, sleeved waistcoat, breeches and gaiters.
But other influences were at work. The principal was the introduction into armies of Slavonic irregulars, which tended to restrict line infantry and cavalry to parade drill and to pitched battes in parade order. This, and their complete separation from the civil population, stiffened their costume until it became "soldierly." Frederick the Grent, indeed, could not have developed the infanery fire power that he needed if his soldiers had had tight sleeves, but in his old age the evil of sacrificing comfort to smartness altained a height which, except in the \(1820-\) 1840 period, was never surpassed. The figure of a Prussian fusilier, Plate I. line 2, No. I (in which by mistake a slung sword is shown) shows this process beginning. The stock has made its appearance, soon to stiffen into a cloth collar, under which, as if it were not already tight enough, another stock in due course came to be worn. The flapped cuffs, shown in the British figure No. 5s have become plain round cufis, above which are embroidery stripes and huttons which at one time laced the flaps of the cuff together and now survive as the "guard-st ripe." This may be called the first instance of the dummy adornments, which are so marked in modern full-dress uniforms. Similarly the former cloth turnback on tbe front of the coat has even in 1756 been cut off, the buttons and embroidered loops that retained it being kept as decorations.
Many of these specially military adornments were borrowed from the national costumes of the irregulars themselves. Their bead-gear in particular drove out the cocked hat. The grenadier cap, now a lowering bearskin, was its frst successful rival, the shako the next. The grenadier cap was, in the first instance, a limp conical cap (identical wilh the hussar cap), edged with fur and having a tassel at the end. Soon the fur became more prominent in the front, and the tail disappeared. Then the cloth mitre-cap (Piate I., line 1, figg. 6) appeared. This was originally a feed-service cap, with ear-flaps and sunshade. But it stiffened about 1.775 into a fur cap of the same shape (with which sometimes the old cloth tail is found), and this in turn evolved, through the fulier but still narrow and forward-pointing bearskin of Peninsular days, into the great fur cap of grenadiers and fusiliers of the present time. The mitre-shaped doth cap survives in a few Russian and Pruscian regiments. As early as 175s, as the Prussian figure shows, a conical leather cap with a large brass plate in front had come into existence. This held its ground for some time, and the grenadier cap of to-day in Russia and Prussia is a metal copy of the mitre field-service cap itself. A curious derivative of the low fur cap with a peak in from and a bag-ail behind worn by some 17 th - and \(x\) sth-century grenadiers is the head-dress of the Russian horse-grenadiers
in the cavalry an iron-framed akull-cap was ofter worn under the cocked hat

The peak has become the helmet, the fur a "sausage" across the cap from car to ear. and the back part of the helmet is covered by the hag-tail.

The Hungarian hussars introduced the jacket and the busby. The latter was originally a conical cap with fur edge, but the fur became higher until there was nothing left of the cap but the ornamental "busby-bag" of to-day. It would appear also as if the hussars brought the shako to western Europe. This is a conical, bell-topped, or cylindrical head-dress of stiff materia), commonly leather. Its prototype, the tall cylindrical cap of the 18 th-century hussars, was titted on one side and wound round with a very narrow bag-tail, the last few inches of which, adorned with a tassel, hung down. But the shako itself succeeded, as nothing else succeeded, in being accepted by line infantry and cavalry, and after passing through numerous forms it remains in every army to-day, either as a low rigid cap (Germany, England and Aus:ria), a stiliened or limp képi (France and Italy), or the flat-topped peaked cap which is the most common military head-dress of modern Europe.

All these adjuncts came in the first place from the national costume of imported auxiliaries. So also did the lancer cap, which, originally the Polish czapka, was a cylindrical cap, the upper part of which could be pushed up or down after the fashion of a bellows or accordion, with a square top. The original Yorm is seen in Plate 1 ., Fine 2, fig. 6, and the stiffened development of it in Plate II., line \({ }_{1}\), fig. 5. The British lancer cap (Plate III., line \(\mathrm{I}, \mathrm{No}\). 2) has still a full middle portion, hut in Austria and Germany this has dwindled to a very narrow neck (Plate IV., line 1, No. 7; Plate VII., line 1, No. 7). The line infantry and cavalry coas, full-skirted in the first instance, retained its original length until about 1780 , but from that time onwards (proh. ably in most cases in the interests of the colonel's pocket) it becomes lit tie by little, shorter and scantier (Plate I., line 2, Nos. 4, 5 , and Plate II., line I, No. 1), until at last it is a "coatce," no as long as the present-day tunic (Plate II., line 1, Nos. 2 and 4), or a swallow-tailed coat (Plate II., line x, figs. 5, 6; line 2, No. 1). This, of course, did away with the protection aflorded by the full skirt, and necessitated the introduction of the great coat, which even to-day in some cases is worn, without the tunic, over the "vest" that represents the sleeved waist coat (Plate III., line 2, No. 6), formerly worn under the long skirted coat. The white breeches and gaiters, retained to the last, gradually gave way to trousers and ankle boots in 1800-1820.
Meanwhile another form of head-dress, which was purely military and owed nothing to Poland or Hungary, came into vogue. This was the helmet, which had disappeared from the infantry about 1650-1670, and the cavairy thirty years afterwards. It took two forms, both of which possessed some of the characteristics of ancient Greek and Roman helmets. These were a small heimet with sausage-shaped ornament from front to back, worn chiefly by British light dragoons and attillery (Plate II., line 1, fig. 3), and the towering crested helmet worn by the French, British and Austrians. The French cuirassiers and dragoons (Plate 1., line 2, No. 5) had, and still have, long horsehair tails dependent from the crest. The Austrian infantry helmet, worn with the white coat, similar to, but smaller than, that shown in Plate IV., line 1, No. 1, had no ornament, but the British heavy cavalry helmet (Plate II., line 1, No. 4) resembled that of the French. To-day, besides the French, the Austrian dragoons and lialian heavy cavalty have this form of helmet (Plate IV., line 2. No. 5, and Plate VIII., line 1, No. 3).
It has been said above that the coatee and the shako are the principal novelies in European military costumes of Napoleon's time. To these should be added the replacement of the gaitered breeches by trousers, and the adoption of hussar and lancer uniforms of ever-growing sumptuousness, in which the comfort that had originally belonged to these national irregular costumes was entirely sacrificed. Altcr Waterloo, indeed, all traces of the old-fashioned coat disappeared. and. except for the doubtiul gain of tight-fiting " overalls." the soldier was more showy and worse of in comfort and convenience than ever belore or since. One or two examples may be quoted. In George IV.'s time
the coatees of the lifeguards were so tight that the men were unsble to perform their sword exercise, and their crested helmet, surmounted by a "sausage" ornament, was so high that the sword could not be raised for a downward blow. The tota] height of the lancer cap with its plume (Plate II., line 1, No. 5) was about an arm's length, and prints exist showing British lancers in a cap of which the square top is very nearly as broad as the wearer's shoulders. The hussar furred pelisse, originally worn over a jacket (Plate I., line 1 , fig. 4), and so worn by the Austrians to-day, had become a magnificently embroidered and laced garment, always slung and never worn, and the old plain underjacket had been loaded with buttons and lace, and differed from the pelisse only in the absence of fur. It was the Restoration era, too, that delighted to decorate uniforms with sewn-down imitations of the skirt pockets, turn-back cufis, \&c., of the old coat. This was, in short, the epoch of pure dandyism, and although some of its wilder extravagances were abolished between 1830 and 1850 , enough still remained when the British army took the field in the Crimea to bring about a sudden and violent reaction, in which the slovenliest dress was accounted the best. The dress regulations of 1855 introduced the low "Albert" shako and the tunic, abolished the cpaulette-an ornament which had grown in the 18 th century out of a shoulder cord that kept the belts in place and was decorated at the outer end with a few loose strands or tassels of embroidery-and made other changes which, without bringing back uniform to its original roominess and comfort, destroyed not only the dandyism of George IV.'s time, but also the chastened finery of the Early Victorian uniforms (Plate II., line 2, No. 5).

The tunic, accompanied by a spiked helmet of burgonet shape, had been introduced in Prussia and Russia about 4835 . Russia was too poor to allow extravagance in dress, and Russians, clothed as they generally were in their great coats, had little incentive to aim at futile splendour. Both countries, however, and France and Austria likewise, passed through a period of tight, if unadorned, uniforms, before Algeria, Italy, and similar experiences brought about the abandonment of the swallow-tailed coatee. The French adopted the tunic in 1853 , the Austrians in 1856 , and in both count ries the shako became smaller and lighter. From about 1880, when the spiked helmet replaced the low shako in England, no radical changes were made
in full dress uniform, except that the Rugian army, abandoning the German pattern uniforms formerly in vogue, topted a natuonal unilom which is simple, roomy, and exceedingly plain, even in full dress. In 1906-1909, however, this attempt 10 combine handsomeness and comfort was given up, full drestes being made more decorative, and light green-grey scrvice dresses being introduced. Lastly, since the South African War and the development of infantry fire, the attempt to wear full dress uniform on active service has been practically given up. Great Britain first of all adopted the Indian khaki, and then a drab mixture for " service dress" and returned, after iso ycars, to the civilian style of field dress, adopting the "Norfolk jacket" or shooting coat with spinal pleat and roomy pockets. Germany. Italy, the United States and other countries have followed suit, though each has chosen its own shade, and the shades vary from light grey blue in Italy to deep olive drab in the United States. The details of the present-day uniforms in the principal states are given below. It might be stated, as a summary of modern uniforms, that Great Britain has most completely divorced service and full dress, and that in consequence her full dress is handsomer and her service dress plainer than those of any other country. Whether, for European war at any rate, the obliteration of regimental distinctions has not been carried too far, is open to question. The method adopted for the Italian infantry would seem to give enough means of identification, without increasing visibility, and as this method was used by the British in the South African War, it will probably be revived in future wars.

\section*{Great Beitain}

The full dress uniforms of the British service in 1910 had not undergone any radica! change since the army reorpanization of 1885. Many regiments had, however, resumed their original lacings instcad of the white common to all non-royal English regiments in the last twenty years of the tgth century. But the Scottish regiments maintained their yellow or yellow-budi facings, and the single lrish regiment which is not "royal " (the Connaught Rangers) its green. Rifle rogiments had astrakhan busbies, resembling in shape enlarged "glengarry" caps, with plume and lines. Details in all corps have been changed, renderiag the uniforms more handsome. In September 1910 it was announced that the cloth helmet would be replaced by a shako.

Cavalry.-Houschold cavalry and dragoons wear single-breasted tunics with gold buttons, culfs pointed with Austrian knot collar: and shouklerstraps of the facings colour and white piping on the front and the skirt-flaps. The household cavalry wear stect cuirasses in review order, and in undress tight-fitting jackets and blue red-striped overalls. Alt wear stecl or brase helmets, with drooping horschair plumes, except the Scots Greye (2nd Dragoons) who bave a srenadier bearakin with father plume. All wear blue paotaloons and jack boots, except the houschold cavalry, who in full dress wear white leather breeches and high jack boots, reaching above the knce. The stripes on the pantaloons are yellow, (white \(\ln\) and and 6 th Dragoon Guards), white betrs' and slinge See Plate IIl. line s . fig. 4 and line 2, fig. 3:
Lancers (Plate Ill., line I. No 2) wear double-breasted tunics with gord butions, and the from or "plastron," the peculiar mark of the lancer, varies in colour with the lacings of the regiment. Lancers wear lancet caps (tbe Polish ceapka) with droopint plumes. Panialpors are Blue with yellow stripes (white it 17th). boots as in the draqoons Round the waist is strdle of yellow and red, and the cap is secured to the collar of the tunic by yellow lines.
\({ }^{1}\) The ist Life Guards have a red line, the and a blue line, ia the pouch belt.

The undress cap is in all the above blue, with bands of various colours, amongst which the most moticeable is the white zigzag on a black background of the Scots Greys.

Hussars (Plate I., line 1, figs. I and 3) wear a blue jacket, shorter than the ordinary tunic, braided with yellow or gold in front, along the back seams and on the collars and cuffs. They have no shoulder-straps, facings or waist-belt. The 3rd Hussirs wear, however, ocarlet ard the 13 th white, collars. The distinctive head dress is the cylindrical bushy with an upright feather plume, lines, and a busby-bag on the right side. The pantaloons are blue, except for the itth Hussars. who wear crimson. Double stripes on the trouscrs, yellow (white, 13th). The undress cap is a red peaked cap. Officers Hessian boots have gold edging and hoss.

Infonfyy. -The unifornss of the four Foot Guard regiments are distinguished by the cuffs, which have slashed flaps and buttons, by the blue shoulder-straps and by the embroidery patches on the collar, cuff-flaps and skirts, which are analogous to the GardeLiten of continental annies. The only uniform which could be mistaken for it is the Royal Marine Light Infantry's (Plate VIII., line 1. No. 5), which has also slashed flaps, but it has fewer and smaller embroidery patches and plain collars. All the Guard regiments wear scarlet tunics with blue collars, shoulder-straps and cuffs, bearskin caps, blue trousers with red piping (officers, reel stripe). The regimental distinctions (Plate 111., line 2, fig. 6, and Plate (V., line I, fig. 2) are: Grenadiers-Butlons equally spaced, white plume, red cap-band. Coldstream-Buttons spaced in twos, red plume, white cap-band. Scots-Buttons in threes, no plume. diced red and white cap-band. Irish-Buttons in fours, green plume. green cap-band. All wear in undress the white jacket, which is the oid sleeved waistcost, and peaked cap.
The unilorms of the line infantry may be classed as Line, Light, Fusilier, Kife, Lowland and Highland Soottish. The tunic in the first three is red. with pointed cuffs and collars of the facings colour (blue in Royal reginents, white in English and Welsh, yellow in Scottish, green in Irish, except where the older colours have been revived), red shoulder-straps, gold buttons and white piping, blue trousers with red piping. On the shoulder-strap in the case of the rank and file is the regimental title, on the collar the reginsental badge. The line infantry have a clark blue helmet (IJate IV...line 1, No. 3), with brass spike and ornaments; the light infantry a dark green heimet of the same pattern \(i^{1}\) the fusiliers (Plate IIT, line 2 , gig. 7) bear or racoon skin cap with hackle plume. in undress all ranks have a blue (green for light infantry) peaked cap, with a black (royal regiments, scarict, non-royal lrish, grien) band. The rife regiments (Plate!V., line 1, No. 4) wear very dark green tunics and trousers without coloured cuffs or collars. In the King's Royal Rifles the scarlet piping and collar form a conspicuous distinction. The head-dress of the rifte regiments is an astrakhan cap with plume (red and black, K.R.R.; dark green and blick, K.I.R.; black, Rific Brigade), in undress a dark green peaked cap.

The Lowiand and Highland Scottish regiments wear a scarlet (Scottish Rifles, green) "doublet", with gauntlet cuffs (Plate 111, line 2, fig. 5 and Plate IV., line I. fig. 6.) In undress Highland regiments wear the white jacket. Highland regiments wear tartan kilt and plaid and sporran (varying with the regiments), diced hose-top3 and white spats, lowland regiments (also Scottish Rifles, Highland Light Infantry, and all mounted officers) tartan trews. The head. dress of Highland regiments is a "feather bonnet"- a loose fur cap of peculiar shape with hackle. The tlighland Light Infantry wear a small shako with a red and white diced band and hall. Lowland regiments (except the Royal Scots Fusiliers) wear the Kilmannock bonnet (Plate Ill. line 2, No. 5). The Scottish Rifles have a shako with black drooping plame. The undress cap of all Scottish infantry is the "glengarty.

The full dress of officers is similar to that of the men, but it is more ornamented (see below for badges of rank). In all English and Irish regimenta clothed in scarlet a crimson waist-sash is worn by officers. Guards officers on ceremonial occasions wear a gold and crimson sash. On the collar and cuffs there are broad edgings of lace terminating in the ease of the cuffs in a small Austrian knot. The rife Jacker is ol husur pattern with black embroidery and a black pouch bele (Plate IV., line 1, fig. 4). The Highiand officer has a spocial pattern of sword: in full dress the basket-hilted claymore (socalled) or a plainer sword decorated with ribbon, on service a plain cross-hited sword. He has also a richly decorated dirk, a broad white baldric, and a very full sash over the Ieft shoulder. Lowland officers have also the shoulder belt and claymore, \&ic

Royal Arillery. - The Royal Horse Artillery (Plate III., line z, Gig. 1) wears an old-「ashinned hussar unifnrm, consisting of busby with red bag and white plome, a blue jacket with 18 rows of gold braid and scarlet collar. Trovsers blue with red stripe. The Royal Fild and Royal Garricon Artillery (PlatellI., line 2, No 2) wear a blue tunic with red collar and gold lace (Austrian knot on the slecve), blue trousers with red stripe, helmet with brass plate and ball ornainent, waist-belt and pouch-bele (white for men, gold for officers). The badge is either a grenade or a device of a feld gun on its carriage.
- To be replaced by a shako.
\begin{tabular}{|c|c|c|}
\hline & Facing & Cormesponding Corps 10 d abeir lacimga in itis. (\(5=\) silver lace.) \\
\hline Line Infantry, English & & \\
\hline Quecris (R. West Surrey) & Biue & 2nd, blue (S). \\
\hline Buffe (East Kcnt). & Bufl yellow & 3rd, buff (S). \\
\hline King's Own (R. Lancaster) & Bluc & 4 th , blue. \\
\hline Royal Warwickshire & & 6th, yellow (S). \\
\hline Kink's Liverpool & & 8 ch, blue. \\
\hline Norfolk . & Yellow & 9th, yellow (S). \\
\hline Lincolnshire & White & 10th, yellow (S). \\
\hline Devonshire. . & Lincoln green & 1 tith , green. \\
\hline Suffolk if Wies's own & Yellow & 12th, yellow. \\
\hline Prince of Wales's \(\mathrm{Own}_{\mathrm{n}}\) (West Yorks) & Buff yellow & 14th, buff (S) \\
\hline East Yorkshire. . & Whise & 15 th, yellow (S). \\
\hline Bedfordshire . . & & 16th, yellow (S). \\
\hline Leicestershire & & 17th, white (S). \\
\hline Princess of Wales's Own (Yorkshire Reg1.) & Grass green & 19th, grass green. \\
\hline Cheshire. \({ }^{\text {a }}\) & Buf yellow & 22nd, bufl yellow. \\
\hline South Wales Borderers & Grassgreen & 2 th, grass green (5). \\
\hline Gloucestershire. & White & 28 th, yellow (S). \\
\hline Worcestershire . & & 61st, yellow (S) \\
\hline East Lancashire & & 36th. gosling gree \\
\hline & & \begin{tabular}{l}
3oth, pale yellow (S). \\
59th, white (S).
\end{tabular} \\
\hline East Surrey & & 31 ist, buffs (S). \\
\hline West Rititing (Duke of & & 7oth, black. \\
\hline Wellington's) . . & Siarlet & 33rd,red (S) : 76th \\
\hline Border & White & red (S). \\
\hline & & \(55 \mathrm{th}, \mathrm{green}\). \\
\hline Royal Sussex & Blue & \(35{ }^{\text {th, }}\), orange (S). \\
\hline Hampshire & Yellow & 37th, yellow \\
\hline South Staffordshire & & 67 h, yellow (S). \\
\hline & White & 38th, yellow soth, yellow. \\
\hline Dorsetshire & Grass green & 39th, grass green. \\
\hline ce of Wales's Vnlun & & 54th, green \\
\hline teers (S. Lancasthire) & White & 4oth, buff ycllow. \\
\hline Welsh & & 41st, red (S). \\
\hline Essex & & 69 h, green.
44 th, yellow \\
\hline & & \[
\begin{aligned}
& \text { 44th, yellow (S). } \\
& 56 \mathrm{th} \text {, purple (S). }
\end{aligned}
\] \\
\hline Sherwood Foresters (Notts and Derby) & & 45th, dark green (\$). \\
\hline Loyal North Lancashire & " & 47 th, white (S). \\
\hline Northamptonshire . . . & & \\
\hline ss Charlott & & 581h, black. \\
\hline Walus's Royal Berkshire & Blue & 49th, green. \\
\hline Queen's Own R. West Kent & & 66th.gosing grn. (S). 50th, black (S). \\
\hline ke of Cambridge's Own & & 97 th , blue \\
\hline Aliddlesex . . . & Lemon ycllow & 57th. yello \\
\hline itshire (Duke & & \\
\hline burgh's Own) & Buff yellow & 6znd, buff (S) \\
\hline nches & White & 99th, pale ycllow. 63 rd , dark greca (S). \\
\hline nce of Wales & & 96th, bufl (S) \\
\hline Stalfordshire. & & 64th, black. \\
\hline York and Lancashire & & 98 th, buff.
65 ,h, white; 8 \\
\hline & & y cilow (S). \\
\hline Line Infanfry, Irish Royal Irish Regt. & & \\
\hline Connaught Rangers & Green & \[
88 \mathrm{~h}, \text { yellow (S). }
\] \\
\hline & & 94th. green.
(100ih and rogth \\
\hline Leinster Regt. (R. Canadian). & Blue & (100th and rogth late H. Easi India \\
\hline Lighs Infantry. & & Co.'s troops). \\
\hline Prince Abbert's Somerset. & & \\
\hline she & Blue & 13th, yellow (S). \\
\hline Duke of Cornwall's & White & 32nd, white: 42 nd \\
\hline Oxfordshire and Bucks & & 43 rd, white (S \\
\hline & & sand, buff (S). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Facingr & Corresponding Corps and their facings in \(18 \mathbf{5} 5\). (\(\mathrm{S}-\mathrm{silver}\) lace) \\
\hline \multirow[t]{2}{*}{Ligh Infamlry-consinucd. Yorkshire (King's Own) .} & & \\
\hline & Blue & 5tst, grass green (rosth H.E.India Co. s troops). \\
\hline Shropshire (the Kigg's) . & \(\cdots\) & 53rd, red: 85th, yellow (S). \\
\hline Durham & Dark green & 68th, bottle green (S) (IO6Ch H.E. India Co.'s troops). \\
\hline Highland & Buff yellow & 71st, buff (\$) i \\
\hline Fusiliers. & & 74th, white. \\
\hline Northumberland & Cooling green & 5th, gosling green (S). \\
\hline Royal (City of London). & Blue & 7th, blue. \\
\hline Lancashire & White & 20th, yeliow (S). \\
\hline Royal Scots & Blue & \(215 t\), blac. \\
\hline Royal Welsh
Royal Irish & & 23 rd, blue. 27th, buff (108th \\
\hline Royau inish & & latell. East India Co,'s troops). \\
\hline Royal Inniskilling & " & 87th, green; 89th black. \\
\hline Royal Munster & " & (rolst and roath late H. East India Co.'s troops). \\
\hline Royal Dublin & ** & (io2nd and rozrd, late H. East India Co.'s troops), \\
\hline Rifles.
Cameronians (Scottish Rilles) & Dark green & (Formerly 26th and \\
\hline & & gothine). \\
\hline King's Royal. & Red & 6oth Rifles, red. \\
\hline Royal Irish. & Darkgreen & (Formerly 83 rd and 86th line). \\
\hline Rifle Brigade & Black & 95th. Rifles, black: \\
\hline \begin{tabular}{l}
Lime Infaniry, Lowland Seothish. \\
Royal Scots Lothian
\end{tabular} & Blue & Ist, bue. \\
\hline King's Own Scottish Bor. & & \\
\hline derers. & " & 25th, bluc. \\
\hline Highlanders. & & \\
\hline Black Watch (Royal ITrs.) & " & 42nd, blue: 73rd, dark green. \\
\hline Seaforth & Buff yellow & 72 nd, yellow (S). \\
\hline Gordon & Ycllow & 75th, yellow: 92nd yellow (S). \\
\hline Queen's Own Cameron Hrs. . & Blue & 79th, dark green. \\
\hline Princess Louise's (Argyll and & & 91st, yellow (S). \\
\hline Sutherland Hrs.) . . . & Ycllow & 93rd, yellow (S). \\
\hline
\end{tabular}

Royal Engineers (Plate IV., line 1, No. I).-Scarlet tunic with garter, blue cuffs and collar, yellow shoulder-cords and piping, blue trousers with red stripe, helmet with royal arms on plate, and spike. Waistbelt white for men, goid-laced russia leather for officers, who wear also a pouch-belt of russia leather with a wayy gold lion in the centre.
Army Service Corps (Plate III., line 2, No.4).-Blue tunic with white facings and white piping. Helmet with ball and plate, trousers hlue with double white stripe. Officers, gold belts. Royal Army Mcdical Corps, blue uniform with magenta facings: Army Veterinary Corps, blue with maroon [acings; A rmy Pay Corps, blue with yellow facings; Army Ordnance Corps, blue with red faeings. The West India Regiment (negroes) wear a red sleeveless jacket over a white smock, baggy dark blue trousers, and a round cap with white puggarce.
The distinguishing mark of the staff. officer in full dress is the aiguillette and the eocked hat with upright or drooping plume; in undress and service dress the red gorget patches on the collar. The full-dress uniforms of a field marshad and a genteral ofteer are shown in Plate 111 ., line 1, Nos. 5 and 6.
Badges of Rank-All officers have twisted gold shoulder-cords (except Foot Guards, who wear a bluc cloth shoulder-strap with lace edges) ; on these cords badges of rank are worn as followa: 2nd lieutenant, lieutenant and captain, 1,2 and 3 stars; major, crown; lieu-teriant-colonel, crown and star; colonel, crown and 2 stars; brigadiergeneral, crossed swords; gencrals, sword and baton crossed, and (inajor general)star; (lieutenant-general), crown; (general), crown and star; feld marshal, crossed batons in a laurel wreath with crown above. In service dress (khaki), however, the badges are worn in worsted on a slashed flap of the slecve, coupled with rings of braid (1 for a 2 nd lieutenant or lieutenant, 2 for a captain, \&c.). Non-commissioned officers wear chevrons (point downwards) on the upper right arm: lance-corporal ar ac ting hombardier, 1; corporal, 2 ; scrgeant, 3 ; coloursergeant, 3 chevrons and crossed colours; staff-ergent, 4 chevrons. On che lover part of the leftarmchevrons (point up) are worn as "good
conduct " badges. A sergeant-major is dressed as an officer, except that he has a crown on the lower part of the right seeve). There are also badges of proficiency such as crossed riftes for marksmen, a spur for roush-riders, a Aleur-de-lys for scouts, \&c.
Regimental Bodges.- The grenade in various forms is worn by the Royal Artillery, the Grenaclier Guards and the Fusilier regiments. The figurl of Britannia was awarded to the (gth) Norfolk regiment for gallantry at Almanza, 1707. The White Horse of Hanover was given to some regiments for service against the Jacobites. The Lion of England was awarderl by William III. to the King's Own (Royal Lancaster) Regiment for services against the troops of James II. The Queen's (Royal West Surrey) Regiment wear a Paschal Lamb, the badge of Catherine of Braganza. queen of Charles II. The Dragon of Wales figures among the badges of all the Welsh regiments. Several regiments wear a castle and key in memory of services at Gibraltar, others have a tiger for services in India and still more a sphinx for Egyptian campaigns. The most gencral of all badgesthough not the most generally worn-is the " stripped "rose. Nearly all corps possess several ladges, which are combined in various ways.
The special interest of these badges is that they are peculiar to the British army. Although a badge of the branch (infantry, cavalry, \&c.) is common, no other army wears distiuctive regimental devices. A few details of general practice may be added. All cavalry wear a pouch-belt over the left shoulder. The crimson infantry sash is worn by officers round the waist and by sergcants across the body and over the right shoulder. Alt officers and sergeants who do not wear the sash, to whatever branch they belong, have a pouchbelt, the pattern of course varying. Ankle boots (and sometimes leggings with them) are worn by dismounted men. Swords, except in the case of Scottish infantry, are worn suspended by slings from a belt (the belt in infantry, rilles and hussars being worn under the turic or sash). On foreign service the uniform is varied according to circumstances, the most usual change being from the full dress head-dress to the white helmet.

The full dress of the territorial army varies greatly, sometimes conforming exactly to the uniform of the corresponding regular units. sometimes keeping to its original "Riffe" character in grey or green of various shades. The latter conform to the rules of the dress of "Rifles" (e.g wear pouch-belts instead of sashes), and the former. though in many cases the silver lace and ornaments of the old volunteer lorce are retained, to those for the regulars, the distinguishing mark in all cases being the letter " T " on the shoulder or collar. The yeomanry cavalry is variously attized, some old regiments possessing rich old-fashioned hussar uniforms, others of recent formation wearing "service" colours only. Some regiments are dressed as dragoons, but the great majority are hussars. The infantry and artillery of the Honourable Artillery Company of London are dressed somewhat after the fashion of the Grenadier Guards and the Royal Horse Artillery.

Undress Uniforms.-In "walking-out" order most troops wear the tunic, Houschold Cavalry and Dragoons with waist-belts and sword-slings, lancers with girdle (R.F.A. and Army Service Corps also wear girdles in walking-out order), infantry and all other branches except hussars with waist-belt. Sergeants of infantry wear the sash and side-arms, the latter privilege being accorded also to corporals of the guards regiments. White gloves are worn by sergeants Since the general introduction of khaki service dress, undress uniforms of red, blue, \&c., have mostly disappeared, but the blue serge "jumper" is still retained. Officers of infantry (except in hussars and Rifics) have undress frock coats of various patterns. With these the "Sam Browne" equipment brown leather waist-belt, Trog and the sash and slings are worn, but with the jumper and service frock, braces. Field officers have an edging of braid on the peak of the undress caps, staff and general officers an oak-leaf design.

Service Dress.-This, since the conclusion of the Boer War, is universally khaki serge, of shooting-coat pattern, with a spinal pleat and four large pockets; all buttons and badges are in bronze. It has a double collar. A peaked cape breeches or trousers, and puttecs of the same colour are worn with it. The universal pattern greatcoat and macintosh are also khaki coloured. The guards and staft officers, however, wear a light grey overcoast.
Mess Dress, for officers, after undergoing various modifications now almost universally consists of a jacket with roll collar, waistcoat. and overalls and patent leather Wellington boots, the colours following in the main those of the full dress.
It remains to mention a few of the many regimental distinctions, trifling in themselves yet of the greatest importance as fostering regimental pride and as recalling specially gallant services in the old wars. The officers of the 7 th Hussars and the Oxfordshire and Buckinghamshire Light Infantry wear linen collars with their undress uniforms. The Royal Welsh Fusiliers have a bow of black velvet (called a "flash," this being an obsolete slang word for " wig " sewn to the back of the collar-a survival of the old-fashioned method of tying the hair in a club queue. The officers of certain segiments, in memory of severe losses, wear a black line in their gold lace. To commemorate Culloden the sergeants of the Somersetshire Light Infantry wear their sashes over the left shoulder as officers used to do. Unit after the South African War the only fusilier regiment that wore plumed husbies was the Northumberland Fusiliers: now, however, all fusilicers wear a hackle (in the order of regiments shown in the
table: red and white: white; primrowet white; white; grey; green; white and green: blue and green). The (28th) Cloucestershire regiment wears two budges on the helmet, to commemorate its having fought facing both ways, ranks back to back, at Alexandria In 180 .

Indian Native Army.-The uniforms of the Indian army vary fnfinitely in details, owing to the different methode of tying the turbin, sec. practised by different castes and tribes, and to the efrictly regimental systern of clothing and equipping the coldier. Bet the inlantry, except the Gurkha Rifles, have tuncs of similar pattern, viz. long skirted, without collars, and (if ecarlet) with round cufis, tlaps and broad edgings on the front of the tunic of the lacings colour. The trousers are dark blue and wide, and spats are arn with them (Plate VI., line 2, No. 2). Gurkhas (Plate VI., line 2. No. 3 are dressed as Rifles, except that their head-dress is a round cap. The pattern of cavalry uniform, which is generally followed whatever the colours and regimental distinctions, is shown on Plate VI., line 2. No. I.

In the main the dress of the native cavalry is dark blue. Five of the regiments wear red, the three Madras corps French grey, the Hyderabed and one other green, and only three drab. One regiment, the ast, wears a yellow unilorm, being perhaps the only one \(\omega\) elothed in the world.

Native artillery units wear blue with red facings, native engineer units, red with blue facings. The Queen's Own Corpe of Guides wears drab with red facings.
The greater part of the infantry mears, in full dress, scarlet, the various [acings following no discoverable system, although certain troups of regiments have a regular colour scheme.

A large number of regiments are clothed in drab, and there are Gurkha and other riffes in green: the remarkable Baluchi uniforms (green and drab with baggy red trousers) are unique in the British Empire.

The regiments of the Australian Commonurallh, with certain exceptions, wear khaki or drab with white facings and emu plume in the cavalty and green facings in the infantry. The same principle is carried out in other services. the intelligence corps having pale blue, the signal corps royal purple, the medical chocolate and the veterinary maroon facings. The artillery. engineers and army service corps are dressed as the corfesponding branches of the home army. An the Canadian forces are uniformed very similarly to the Pritish army. The 6th Dragoon Guards and the 13th Hussans are the models for the cavalty, and line, rifle, highland and Iusilier uniforms are all represented, the dark rifle uniform predominating. In South Africo, as in Australia, khaki has become almost universal.

\section*{France}

The Revolutionary simplification of the varied uniforms of the Ancien Regime has codured to the present day. Even in the various waves of flamboyant military fashions they have remained simple in the sense that all troons of an arm or branch were dressed practically alike, with none of the regimental differences that England. deferring to tradition. and Germany, systematizing the ordre de bolaille to the last detail. preserved and introduced.

The line infantry wears a single-breasted blue tunic with red collar. a small red flap on the cuff. red epaulettes and gold buttons. The number of the regiment appears on a blue collar patch. The cap is a madder-red kepi, with blue band, brass gremade, tricolour cockade and a ball. The trousers are loose, madder-red, and worn either with shoes and gaiters or with high ankle boots. The men usually march in the blue double-breasted greatcoat, under which is worn the plain seste (Plate V., line 2, No. 3). With this is worn a képi without ornaments and having the number in front. The officers wear a tunic of a different blue, almost black: ot herwise. except for rank badges, it is simitar to the men's: epaulettes and braid. gold. The officers' full dress kepi has a golden ball and the trousers have a black stripe (Plate V., line 1, No. 1).

The chasseur battalions (Plate V., line 2, No. 4) wear the ame pattern of tunic as the line. but the coliar and cufts are scll-coloured. the epauletes green. the trousers grey-blue with yellow piping. Kefpr dark blue with yellow edgings and green hall. buttons. \&c., silver. Chasseur officers are dressed as the men (with the usual officer's blue-black tunic), but have a drooping green plume. The Alpine battalions wear a plain dark blue jumper and solt cap (biref) or tam . o'shanter. Under the jumper, which is usually halloopen, they wear a light blue shawl round the waist. The trouscrs are wide. dark blue knickertookers, and puttees are worn with them.

The Zouaves (Plate V., line 2. No 2) wear dark blue red-trimmed jackets and waistcoats. with a light blue cummerbund, haggy red tmusers with blue piping and dark blue or white spats. The headdress is a red tasselled cap (chechia). The "flalsc pockets" round which the braid circles on the front of the jacket are red for the ist, White for the 2nd. yellow for the 3 ard and flue for the sth Zouaves. Zouave officers have the ordinary offiecr's tubic, with blue-black collar and gold ornaments, but wear it unbutioned fshowing a red cummerbund) and without epaulettes. The cuff is pointed and slit clmost to the elbow, the edges of the slit being gold laced according to rank and having a scarlet lining. Only the service kipi is worn. The red trousers have the usual black stripe, and are cut very wide.
The Turcos are dressed similarly to the Zouaves, but with light blue jackets and waistconts, tight blue or white trousers, red cummet.
bund and yellow braid; the four regiments are distinguished among themsclves in the same way as the four Zouave units. Their officers have a light bluc tunic with yellow collar, Zouave cuff, red trousers with tight bluc stripe; kepi red, with light blue band.

The Foreign Legion is dressed as line infantry, with certain minor distinctions. The colonial ([ormerly marine) infantry wears a double-breasted tunic with gold buttons, blue grey trousers and dark blue kepi with red piping, plain collar and cuffs. The full dress cap badge is an anchor.

Covaliy.-Cuirassiers (Plate V., line I, No. 3) wear dark blue tunics with red collars and cuff-flape, silver ornaments and steel euirasses, steel helmet with brass ornaments, black horsehair tall. red " shaving-brush" at the front of this tail and another shavingbrush, of colour varying with the squadron, \&e., on the left side of the helmet. The trousers are red (officers with dark blue stripes, men with blue piping). The number is borne on a blue collar patch. The officers wear silver, the men red, epaulettes. Undress cap as infantry, silver-laced for officers.
Dragoons wear blue tunics (the black-braided "dolman, " shown on Plate V., line 1, No. 6, is gradually passing out of the service) with white collars and cuff-naps, silver buttons, \& c., bclmet as for cuirassiers, but without the "shaving-brush", at the front of the horschair tail. trousers red with dark blue stripe. The men wear shoulder-cords instead of epaulettes, and the officers only wear their silver epaulettes on ceremonial duties. The number appears an a blue collar patch. Undress cap as for cuirassiers.

Chesseurs i cheral (Plate V., line 2, No. 1) wear a light blue tunic or dolman (the latter black-braided) with silver buttons, red collars and cuff-flaps. The trousers are red with light blue piping (two broad and one narrow light blue strijes between for officers). The full dress head-dress is a light blue shako, with dark green plume in full dress, coloured ball in other orders. The bodge on the shako is a brass bugle. The képi is red with light blue band and piping (silver braid for officers); Number on the collar.

Hussars are dressed as chesseurs d cheral, but with white braiding on the dolman instead of black, and self-coloured collar. The badge on the shako is an Austrian knot.
The Chassewrs \(d^{\prime}\) Afrigue wear the half-open veste, which is light blue with yellow collar and edgings. The cuff is slit in the Zouave style, the visible lining being yellow. A red cummerbund is worn. The shako is almost invariably vorn with a white cover and neck curtain. The trousers are red. Officers as the corresponding chasseur officers in France, but with yellow instead of red collars, \&e.

The native Algerian cavalry, the Spahis, wear national costumered jacket with black braiding, red cummerbund, light blue wide trousers, and red morocco boots. Aloove this they wear a flowing red mantle of thick cloth, and over this mantle the ample white burnous, which covers the head and shoulders. Their French oficers wear a red tunic, with self-coloured collar and cufts, gold buttons and epaulettes, number with erescent in gold on the collar, gold rings on cuff according to rank, trousers as for the hussars. \&c., in France.

Arfillery.-The rank and file wear blue tunics or dolmans (more usually, however, the veste). The dolman has black braiding but a red shoulder-cond, and has red collar, with black patch and number, and red pointed cuffs: buttons, \&c., gold. The irousers are dark blue, with two broad and one narrow red stripe. The kepi is darik blue, with dark blue band and red ornaments, the full dress cap having a badge, in red, of crossed guns and grenade. Artillery officers wear a black-braided dolman (bluc-black) with gold shouldercord and Austrian knot. Their kepi has the artillery badge in brass. sold braid, and a red plume. Plate V., line 1, No. 5.shows an artillery officer serving on the general staff.

Engineers, dark blue tunic with gold trittons, black red-edged collar patches bearing the number in red, black red-edged flap on cuffs; red epaulettes, trousers and kipi as for artillery. Engincer officers have the same tunic as infantry, without lacings. and the engineer badge (a cuirass and helmet) on the full dress ke pi.

Traiz (Army Scrice Corps), blue-grey dolman, black-braided, with red collar, Glack braid on the cuff, and red shoulder-cord; infantry kepi, officers as officers of the chasseurs \(d\) cheoal but with (silver) Austrian knot on the sleeve, and red plume. Medical officers bave dark blue dolman. red trousers with hlack stripe. and red collars and cufts. Their distinctive marks are a whole red képi (with gold traid), a white armlet with the red cross, A esculapius staff on the collar, gold-laced shoulder-strap, and a curious pouch-belt which is entirely wrapped in a red cloth cover that buttons over it. Cenerals wear in full dress the unilorm shown in Plate V.. line \({ }^{1}\). No. 4, with some distinctinns of rank. In undress they wear a dark blue jacket with black braiding. the black Austrian knot on the sleeve caming the silver stars of rank: trousers red with black siripe; kipi red. with a bluc hand covered by gold. oak leal lace. General suaf officers (see Plate V.. line 1 , No. 5) wear their regimental uniform. with gold or filver aiguiliettes. and on the collar, inslead of the regimental number, the thunderbolt badge of the saff, the hadze or number being removed also from the kepi. Their spectial distinctions are the armlet and the plume, which vary according to the staff to which the officer belongs.

Badges of Rank - Cieneral offirers fon the epaulette or on the Austrian knot). ne silier star for gencral ar brigade, two for gencral of division. Other officters (rings un the cuff and kepi band, of
gtrands of braid on the Austrian lenot), 1 for sub-liequtemant, 2 for lieutenant, 3 for captain, 4 for commandant, 5 (3 gold and 2 silver) for lieutenant-colonel, 5 for colonel (Piate V., line 1, figa. 1 and 5). Epaulettes: sub-lieutenant, I with fringe on right shoulder and I scalc on left; lieutenant, fringed oa left and scale on right shoulder; captain, both fringed; comraandant, as aub-lieutenant but with theker fringe; lieutenant-colonel and colonel, both with thick fringes (in the case of the lieutenant-colonel the body is silver). The vertical braids of the képi also vary according to rank. Ficld officers as a rule wear in full dress "shaving brush " plumes instead of a ball. Under-Officers.-The badge is a stripe crossing the lower half of the aleeve diagonally ; lance-corporals 1 , corporals 2 worted stripes; sergeants 1, sergeant-majors 2 gold or silver stripes. The "adjutant," who corresponds to the British sergeant-major, has a ring of lace, like an officer's, but narrower.

\section*{Germany}

The infantry of the Prussian Guard wear single-breasted dark Prussian blue tunics with red piping on front and skirt flaps, or gold buttons (xst and 5th Foot Guards and Guard Fusiliers silyer), white belts (3rd or "Fusilier" battalions and the Guard Fusiliers black). red collars and cuffs, spiked helmets with, in full dress, white plumes (Guard Fusiliers black). Guard distinctions throughout Germany take the form of "guard-stripes," collar stripes of embroidery, and similar stripes forming false buttonholes round the buttons on the cuff, whet her these "are of the "Brandenburg' (plain flap with 3 buttons). "French" (slashed flap with 3 buttons), or "Swedish" (round cuff with buttons along the top edge) pattern. The 1st to 4th Foot Guards have two guard-stripes on the collar, Swedish cuff with stripes, and white, red, yellow and light blue (the ordinary German indicative sequence) shoulder-straps. The Guard Fusiliers have the same uniform with yellow shoulder-straps and plume and belt as stated above. The 1st to 4th Grenadier Guards have double guard-stripes, red "Brandenburg" culfs with blue flaps and embroidered stripes, shoulder-straps coloured in the same order as the Foot Guards. The 5th Foot Guards and 5th Grenadier Guards (of later formation) wear only a single guard-stripe; these return to white shoulder-straps in the sequence, and both have the blue flap and stripes. Service cap as in the line. For gala wear the 3 rd battalion of the ist Foot Guards, and all battations of the Ist Grenadier Guards, wear the old mitre cap. once of cloth, but now become rigid and consisting of a metal front plate and a stiff red cap behind it.
The line infantry (other than Bavarians, Saxons, Würtembergers, ac.) wear blue tunic with gold buttons, red piping, and red collar. The cuffs, also red, are of the "Brandenburg" pattern, plain round with a small red flap. The shoulder straps bear the number, or cipher. The head-dress is a small black leather helmet with brass Prussian eagle badge and spike. The trousers are dark grey with red piping, the equipment of black leather, the boots of Wellington pattern (the trousers being tucked into them). The greatcoat is grey with shoulder-straps as on tunic and a collar patch of the culfflap colour. The service cap is a round cap withoul peak, dark blue with red band and piping. and two cockades, "national" and "imperial." Exceptions to these rules are: Prussian grenadiers (Nos. I to 12) wear black horsehair piumes and white belts. Mecklenburg grenadiers No. 89. Queen's Fusiliers No. 86, Brunswick regiment No. 92, 45 th Prussian regiment, black plumes.
The Prussian and quasi-Pruseian portions of the army foliow a clear rule as to the badge of the army corps. The infantry of each corps has shoulder straps of uniform colour, and when a regiment changes ita corps it changes its shoulder-strap. There is a Jurther distinguishing mark on the cuff-flap:-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 1. & II. & III. & Iv. & V. & VL & VII. & VIII. \\
\hline Shoulder atrap Cuf-0in piping & White White & \[
\begin{array}{|c}
\hline \text { White } \\
\text { Ni }
\end{array}
\] & \[
\begin{array}{|c}
\hline \text { Red } \\
\text { While }
\end{array}
\] & \[
\begin{aligned}
& \text { Red } \\
& \text { Nil }
\end{aligned}
\] & Yellow Whise & \[
\left.\begin{array}{|c}
\hline \text { Yellow } \\
\mathrm{Nil}
\end{array} \right\rvert\,
\] & Le bue White & \[
\begin{array}{|c}
\hline \text { LL. bue } \\
\text { Nil }
\end{array}
\] \\
\hline & IX. & \(\mathbf{x}\). & x . & xv. & V1 & xvil. & xvili. & XX. 1 \\
\hline Show der-binp ing & White Yellow & White L. blue & \[
\begin{array}{|c|}
\hline \text { Red } \\
\text { Yellow }
\end{array}
\] & Red L. Moe & Yellow Yellow & Yellow L. Huc & u.blue Yellow & La. bue \\
\hline
\end{tabular}

Except in regiments (such as the guards of the smaller states now numbered in the line of the army, and a few others) where the biue flap and guard-stripes are worn, the greater part of the Prussian regiments wear the historic red flap; but there came a time when the system of indicating regimental variations had to be expanded, and thercafter (from No. 145 inclusive onwards) red and white flaps were given alternately to new regiments, in such a way that there was one "white" regiment in each corps. The I. corps on the Russian frontier, being further reinforced, received one regiment with a yellow (igoth) and one with a light blue flap (isist). "Guard" distinctions are worn by the Meckienburg Grenadiers. No. 89, double guard-stripe on collar, blue cuff-flap with red piping and embroidery: hy the 7th Prusian Grenadiers. angle guard-stripe and blue flap with embroidery (edged with V. corps colour); by the lat, and, 3rd and 8th Prussian Grenadiers and by the 8orh Fusiliers
(Formerly the elector of Hesse's bodysuard), single guard-atripe and embroidery on the ordinary red cuft-flap.
The infantry of Hesse-Darmstadt, Wurttemberg and Baden are similarly uniformed to those of Prusbia, the distinctions being easily described. The five "Grand Ducal Hessian"" regiments (i15-118 and 168) have not the corpe (XV1II.) distinction, and have both shoulder-straps and cuff-flap of the same colour (red, white, light blue, yellow and red), the senior regiment, ils (bodyguard regiment), having double guard-stripe on the collar and guard patches on the flap. A very marked distinction is in the buttona, which are invariably silver, and in the helmet badge, which is a lion rampant. The first three regiments wear a black plume.
Of the Warttemberg infantry (Xill. corpa), the 119th and 1a3rd regiments (puards) wear the double guard-stripe, and the "Swedish" cuif, also plumed helmets. The remainder have red shoulder-straps and red cuff-fiape edged with light blue, like the XV, army corps and the only conspicuous distinction is the royal arms instead of the eagle on the belmet. The 120 h also wears the grenadier plume.

Of the Baden regiments, the 109th and 1 1oth (guarda and grenadiers) have white plumes and white ahoulder-straps, the \(109 t h\) having the Swedish cuff with patches, the double guard stripe, and silver buttons. The remainder have yellow, red, light blue and green shoulder-straps; there is no edging to the flap. The only distinguishing mark; for these is the Baden device (a griffin and a shield) on the helmet.
The Saxon infantry, though asoimilated to the Prussian in most respects, is distinguished by various well-marked peculiarities. All shoulder-straps are self-coloured and edged with red. All Saxon regiments have either the "Swedish" or more usually the socalled "German" plain round cuff (red), with two buttons on back seam. The guard and grenadier regiments, \(100 t \mathrm{~h}\) and roist, have black plumes, double guard-stripes and "Swedish" cuffs. The helmet has an eight-pointed brase star. The iosth is a rifle regiment, and wears a green tunic with black red-edged collar and cuffe, dark grey trousers and a shako with black plume looped to one side in the Austrian fashion. The service cap of this corps is green with black piping and band. A peculiarity of the Saxons is that the bottom edges of the tunics are edged with red, as well as the front, and the skirt flaps are very short.
The Bavarian infantry has retained its historic light blue uniforme, though in most details the Prussian model has been accepted. Tunig and trousers are light blue with red piping, red cuffs, collars and shoulder-straps. The Bavarian bodyguard regiment has red collar with double puard-stripe, red Swedish cuff with stripes, red shoulderstraps and silver buttons, but no piume. The line has gold buttons and appointments and "Brandenturg " cuffs, flaps edged according to the usual sequence (1. corps white, 11. none, Ill. yellow). Tho scrvice cap is light blue with red band and piping. Belts black.

Jägers and Schuizen.-The Jager uniform is bright green, with red collars, piping and Swedish cuffs (Prussian Guard, double guardstripe and cuff-stripes), gold huttons, trousers as (or line, and a small shako with drooping black plume. The Mocklenburg battalion No. 14, however, has light green collars, cuffs and shoulder-straps edged with red, and double guard-stripe and cuff-stripes. The Guard Schützen batialion (originally a French-speaking comps from Neuchatel) has black collars and cuffs, edged witl rod shoulderstraps, double guard-stripe and green red-edged "French" (i.c. slashed) cuffeflape with stripes; and the Jager battalions of the XII. and XVIII. corps have exactly the same uniform as the Saxon Schitzen reximent already mentioned. silver buttons being substituted for gold. The Bavarian Jager battalions have light biue uniforms with green lacings. Swedish cuff, and shako. In all these the feeld cap is of the colour of the uniform, the band of the coiour of the collar, the piping as on the tunic.

Casalry.-The heavy cavalry consists of the Prussian Gardes du Corps and Guard Cuirassiers, the eight line cuirassier regiments, and the Saxon and Bavarian " heavy cavalry." In most of these cuirasecs of black or bright iron or of brass (with or without breast decorations), and even cuirass-chaped remnants of the old buff coat, in richly decorated lealher, are worn on ceremonial occasions. The head-dress is a helmet of burgonet shape. The ordinary full dress of Prussian cuirassiers is a white long-skirted tunic (called a Koller) with whise shoulder-straps and collars, edged along the collar and down the front (which is hooked, not buttoned) with broad braid (white, with lines of the regimental colour). The Swedish cuffs, edged with similar braid, are of the regimental colour, of which colour there is also a patch on the collar and piping round the shoulder-straps and back scams. In full dress white trousers, otherwise dark grey trousers with red piping. are worn. The undress tunic is dark blue of the ordinary buttoned pattern, but with braided cuffs, white shoulder-strap and collar-parch and braid as in full dress. The field cap is of the tunic colour with band of the regimental colour. The belts are white. High jack boots are worn. The guard regiments have double guard-stripe and cuff-stripes.
The Saxon heavy cavalry wears light blue braided cuirassicr tunics, with brass seaies instead of shoulder-straps, white piping. brass helmets with the Saxon star device, Swedish cufis cut gauntlet: wise, white or light blue trougers. iight blue cap, and white belta In the ist Guard regiment the collar and cuffs are white, the braid light blue and white, the helmet ornament a silver lion, the cap-

17.50-1800

\(1848-1865\)

\section*{(;REAT BRITAN}

\section*{FRAN('E}

Infantry of the Line, Hussar Liemenant

FRANCE

\section*{INDIA}

\section*{GERMANY}

Plate Vill
ITALY

UNIFORMS
NAVIES

France: Sailor
England: Marine Light Infantry

NAVIES
\begin{tabular}{|c|c|c|}
\hline fan & Line Cavalry & Infantry. \\
\hline Officer, lindress & Officer. U'ndress & Serv \\
\hline (Pistoia Brigade) & (the Genoa & Cinosta Brikad \\
\hline
\end{tabular}

11. S A.: sailor
band white: in the and Carabineers collar and cuffs black, braid black and white, belmet ornament a brass spike, cap-band black The Bavarian heavy cavalry is dressed in dragoon lashion-light blue tunic, red facings, light blue collar edging, light blue trousers with red stripe, helmet with white plume. 1st regiment has silver buttons, the 2 nd gold.
\begin{tabular}{|c|c|c|c|c|}
\hline & Helmet. & Facings. & Blue Tunic Facings. & Buttons. \\
\hline G. du Corps & \multirow[t]{2}{*}{Brass with silver eagle (or spike)} & Red & Red & Silver \\
\hline G. Cuirassiers & & Blue & Blue & \\
\hline 10 & Steel with brass spike & & & \\
\hline \(3 \quad 3\) & bres & Dark red & Dark red & \(\ldots\) \\
\hline \(3 \quad 4\) & " & Light blue Red & \[
\left\lvert\, \begin{gathered}
\text { Lighe blue } \\
\text { Red }
\end{gathered}\right.
\] & \(\because\) \\
\hline " & & Pink & Pink & Göld \\
\hline \(\because\) & Brass with silver spike & Dark blue & Poppy-red & " \\
\hline 7 & Steel with & Yellow & Yellow & \\
\hline & brass spike & & & \\
\hline S & \(\because\) & Green & Green & " \\
\hline
\end{tabular}

The line iragcon regiments, other than those of Oldenburg. Mecklenburg, Baden, Würtemberg, and Grand Ducal Hesse (Saxony and Ba varia have no dragoons) wear light blue tunics with collars, shoulder-straps (with number), piping and cuffs of the regimental colour. The cuffs are Swedish. The trousers are blueblack without stripe. The belmet is black leather, very similar to the infantry helmet, with black borsehair plume. The regimental distinctions follow a regular scheme thus:-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Pegiment & \(\pm\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Facina & Scarlet & Mlack & Pint & Yelow & Scatiet & 8lack & Piot & \\
\hline Collar edring & Le Wluct & Lt. buec & L, blue & La buac & Lc. blue & Lic. blue & Lt. blue & Le. blue \\
\hline Bullons a0d & Cold & Gold & S3ver & Silver & Stiver & Silver & Gold & Gold \\
\hline Regisomt. & 9 & 10 & 11 & 17 & 13 & 14 & 15 & 16 \\
\hline Facing idet & & White & Crimson & Crimmon & Wariet & Black & Pink & Yellaw \\
\hline Collar edjeng & L. blue & L. blue & L. blue & Lk. blue & Whate & Wbite & White & Whise \\
\hline ernmments. & Gold & Silver & Cold & Silver & Gold & Gold & Silver & Silver \\
\hline
\end{tabular}

The 17 th and 18 th (Mecklenburg) have respectively scarlet facings and gold buttons, and black facings with silver buttons. They have the double guand-stripe and cuff stripes. The 19th (Oldenburg) have the ordinary uniform with black facings and silver butzons, but white shoulder-straps.

The Baden regiments (20, 21 and 22) have light blue uniforms with scarlet, yellow and black facings. light blue, light bue and red edgings, and silver buttons. They have white plumes instead of black, and the Baden device on the helmet. The Hessian regiments (23 and 24) have dark green tunics; the a3rd have double guard-stripe, cuff stripes and scarlet facings: the 24th the ordinary tunic with white facings, and both silver buttons. The Wurtembergers (25 and 26) have white and yellow facings respectively, collar edging light blue, buttons gold and silver respectively: the \(25^{\text {th }}\) regiment has double guard-stripe and cuff stripes, and white plame. Belts are white throughout, except in the Hessian units, which have black.
The Prussian Guard Dragoons have light blue uniforms and red facings, double guard-stripes, and cuff stripes. Buttons gold in the Ist, gilver in the 2ad. White plumes.
The uniforms of the eight Bavarian regiments of Cheraulegers resemble those of dragoons. They wear the black dragoon helmet and white plumes, dark green tunics, trousers and undress cap, and white belts. They also have the dragoon cuffs. But they have the double-breasted lancer tunic with front and piping of the regimental colour: crimson ist and 2nd; pink 3rd and 6th; scarlet 4th and sth white 7 th and 8 th; the first of each pair having gold. the second silver omaments.
The Lancers (Ulanen) wear the usual lancer uniform of czapka, doublebreasted tunic with plastron, and girdte. The trousers are dark grey, the plume white. The girdle is of the uniform colour edged with the lacings colour The cuff is the so-called "Polish," a round, slightly pointed cuff with a button (and where appropriate a guard-stripe) in the middle of the pointed portion. The collar is edged with the uniform colour. Regimental distinctions in the line are as shown in table at the top of next column.

Guard Llans: dark blue tunic with double guard-stripe and cuff stripes, and dark grey trousers; 1 st, red facings, and piping, white turnback (piped red). white czaplea; and, scarlet lacings and czapka; 3rd, yellow facings and crapka.
. 7 th, 18 th and 21 st (Saxon), light blue tunics and trousers, erimmon facings, double guard-stripes and cuff stripes, brass scales. white piping. Czapkas white, crimson, light hlue. Undress caps white. 19th and 2oth (Wurtemberg), dark blue uniforms, dark
grey trousers. facings and czapkas scarlet in 19th, yellow in 20th. 19th double guard-stripe and cuff stripe. Ornaments silver. ist and 2nd Bavarian Ulans, dark green funics and trousers, crimson facings and capkas, white belts instead of girdles; ist gold, and silver ornaments.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 5 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Facings and pupmes. \\
Czaplas and Eruand of erale Ormaneats
\end{tabular}} & Scarlet & Scardet & Scariet & Seurit & Searlet & Scarlet & Scarlet & Scuslet \\
\hline & White Coid & Scarict Cold & Yedlow Grold & L. Blue Gold & Waite Silver & Scarlet Sitver & Yellow Silver & Lt. bat Silver \\
\hline & 0 & 10 & 11 & 12 & I3 & 14 & 15 & 16 \\
\hline Facinps and piping. Cenke and ground of & White & Crimsan & Yellow & Lt.blue* & White & Crimson & Yillum & Le. bluc* \\
\hline spaund or & Wbite Coll & \[
\begin{gathered}
\text { Crimsor } \\
\text { Cold }
\end{gathered}
\] & Yellow Cold & Lt. blue Gold & White Silver & Crimson Silver & Yella Silver & Lt. Blue Surer \\
\hline
\end{tabular}

The Hussars are very richly dressed, many having the slung pelisse. The front cuffs, back seams and collar are braided. The busby is low and slightly conical, the busby-bag hanging over towards the back on the left side. On the front of the busby are various decorations. Round the waist is a white girdle intertwined with the colours of the state to which the regiment belongs. A plain shoulder cord is worn. The trousers are dark grey with lace sripe. The Hessiarl boots have embroidered top and boss. The five senior regiments preserve the unustal colours indicative of their irregular origin. The remainder are clothed in dark and light blue, or greer. All wear a white (gold or silver officers) pouch-belt, white plumes. The undress cap is of the colour of the funic, with various bands.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
47
\] & Uniform. & Busby-bag. & Lace and Braid. & Pelisse. \\
\hline Guard & Scarlet & Scarlet & Gold & Dark blue \\
\hline \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Black \\
Dull vermilion Brown Dark red
\end{tabular} & \begin{tabular}{l}
Red \\
White Vermilion Yellow Dark red
\end{tabular} & Silver Gold Silver & Black Dark"blue \\
\hline \[
\begin{array}{r}
7 \\
14 \\
15
\end{array}
\] & Dark blue & \[
\begin{gathered}
\text { Red } \\
\text { Light blue } \\
\text { Red } \\
\text { Yellow }
\end{gathered}
\] & \begin{tabular}{l}
Gold Silver \\
\#8
\end{tabular} & Dark blue Dark blue \\
\hline \[
\begin{aligned}
& 9 \\
& 12 \\
& 13 \\
& 16
\end{aligned}
\] & Light blue & Light blue White Red Yellow & Gold Silver en 14 & \begin{tabular}{l}
Light blue \\
Light blue
\end{tabular} \\
\hline \[
\begin{array}{r}
6 \\
10 \\
11
\end{array}
\] & Dark green & Red Pink Red & Gold Silver & - \\
\hline
\end{tabular}

The \({ }^{17}\) th Brunswick Hussars, preserving the memory of the Black Brunswickers of the Napoleonic wars, have black uniforms (no pelisse), with gold lace and red busby-bag. The 18th and reth (Saxon) Hussars have light blue tunics and trousers (no pelisse), with gold and silver lace and red and crimson busby-bags respectively. No information is available as to the 20th Hussars, formed in November 1910.
The Jagers zw Pferd (mounted rilles) have a green grey tunic and trousers of curassier cut, with green collars, Swedish cuffs, shoulder-straps, and piping. green-grey cap, brown belts and a black helmet of cuirassiet pattern. The buttons are silver. The broad cuirassier braid on collar, front and cuffs is green, with white lines in the 1st, red in the and, yellow 3rd, light blue th (the normal sequence), black sth. The edgings of the shoulder-straps are similarly white, red, \&ce. The "staff orderlies" wear the same uniform, with certain deviations, in particular yellow and green braid. gold buttons, and white undress cap.
The machine gun detachments wear a grey uniform with red Swedish cuffs (guard-stripes and cuff stripes in the Guard corps), collar, shoulder-strap and piping. The head-dress is the Jager shako, and the whole uniform is of Jager type, so much so that the 2nd Guard detachment bas the black collar and "Freach" cuff of the Gardeschülsen.
The field artillery has the dark blue tunic with red piping, black collar and Swedish cufts, gold appoint ments, and dark grey trousers without stripe. The helmet has a ball oniament. The cap is blue with black band. The Guard regiments have double guard-stripes and cuft stripes and a white plume-shoulder-straps, white for 1 st. red for 2 nd, yellow for 3 rd. light blue for 4 th regiment. In the field artillery at large the shoulder-straps are of the corps colour.

The Bavarian, two Wartemberg, one Baden and two Hessian regiments have white or black (Bavarians red) plumes, otherwise as for a "red " Prussian corps. The Mecklenburg artillery has silver buttons. The Saxon field arullery uniform is altogether different, consisting of green tunics with red collars and Swedish cuffs, gold appointmeots, red edgings, and black plume (horse artillery have a brass scale). Prussian and Bavarian field artillery have white belts, others black.

The foot artillery, which has white shoulder-straps, is distinguished from the field by the black Brandenburg cuff with plain blue flap (Guard Swedish cuff, guard-stripes, \&c.) and by a red trouser piping. The Saxon foot artillery is distinguished from the feld by the ball omament instead of plume, and the "German "culf. Belts black (Guard and Bavarians white). Bavarian foot artillery as Prussian, but with a spiked helmet and black cuff-liap, red-edged.
The pioncers have the same uniform as artillery, but with silver buttons and appointments. The shoulder-straps are red, the helmet is spiked (Guards, black plume). The cufts are black, rededged, Swedish. Saxon pioneers as field artillery, but with "' German "cuff. The "communication troops" wear similar uniforms with special badges, some having the Jager shako. The Train (army service corps) has dark blue dragoon uniforms with light blue facings and black plumes; Saxons, however, have light blue with black facings. Medical officers and hospital corps wear blue uniforms with blue collars and cuffs and red edgings; stretcher bearers, \&c., blue with magenta facings and silver buttons, \&c.

Rank Badges (a).-Non-commissioned officers: lance-corporal a button on each side of the collar. Corporals and sergeants gold or silver lace on the collar and cuffs, small patches of the national colours on the collar patches of the greatcoat. Sergeants ane distinguished from corporals by a button to the collar. There are numerous minor distinctions on the sword knots, lance pennons, buscar girdics, dec. Sergeant.majors have a narrow ring of lace on the cuff ia addition to the broad under-officer's ring; and on the greatcoat patch two small national patches. Aspirant officers wear the uniform of their non-cornmissioned rank with some of the officer's distinctions. (b) Officers: The distinctive mark of the commissiosed officer is the shoulder-piece (cpaulette or cord). The epaulette is almost always silver and is worn as a "scale," i.\& without fringe, by captains and subalterns, with a fine fringe hy field officers and with a thick fringe by genera! officers. The ranks within each class are distinguished by small stars on the circle of the epaulette, licutenant, major, and major-general, no star; first lieutenant, licutenant-colonel and lieutenant-general, one star; captain, colonel and general, two stars. A colonel-general has three stars and a field-marshal crossed batons. The aumber or cipher is also worn by all regimental officers. The body of the epaulette is usually of the same colour as the shoulder-strap of the rank and file. The shoulder cord for captains and subalterns is made up of straight strips of silver lace, that for field officers is of twisted silver cords, that of general officers is composed of two gold cords and one of silver and colours intertwned. In all these, lines of the national colours are interwoven with the silver. Badges, numbers, \&c, as on the epaulette. A siver waise-sash (staff officers and adjutants shoulder-sash) is worn by all combatant officers (except hussars, who have girdies). An interesting survival of earlier uniforms is found in the full dress of general officers. The tunic buttons below the waist, and while on the left shoulder there is only a narrow silver cord, on the right the thick cord of gold, gilver and coloured silks is extended to form an aiguillette. The aiguillette is also worn on the righs shoulder by staff officers and some othera. A universal custom, which is also a survival, is for all ranks to wear sword-knots, even with the bayonet.

The new service dress is a loose-fitting "field-grey" uniform, except in Jagers, machine-gun detachments and Jagers ex Pferd, who wear grey green field dress.

\section*{Austria-Hungary}

The infantry uniforms, since the abandonment of the historic white after 1866, have becn of a very quiet shade of dark blue, and the facings, colours are more varied than those of any other army. The "Germann " that is Austrian. infantry wears in full dress a dark blue single-breasted tunic, light blue trousers, and a black leather shako with double eagle and a metal ball ornament. The equipment is black. On the shoulders are straps termirating in rolls or "wings." all of the regimental colour. as are the collar and the ("German ") cuffis In marching or service dress the tunic is replaced by a hooked jacket or blouse with plain cuffis, no shoulder-straps, and only collar patclies of the regimental colour. The trouser are turned up over or tucked into a ligh ankle boot. The field cap is of cloth, cylindrical, with flaps buttoning in front. Hungarian infantry wears the same tunic but has a silver or white embroidered device in front of the cuff. The trousers are tight pantaloons, with a yellow pipung and "Aus. trian "-really Hungarian-knots. Officers of infantry have no shoulder cords or strapa. The full dress shako and the collar are ornamented with braid or lace according to rank. A ycllow waist. sash is worn. Hungarian officens are dreased as Austrian except for the tunic cuff ornament. In otler respects both the tunic and the blouse are similar to the men's. Jagers wear a broad-brimmed felt hat with cock's leather plume on the left. The tunic, trousers and cap are green-grey; the horenos gold; cuff, collar, shoulder
ornament and piping in full dress, and collar patch and piping in undress, green. Offcers wear the waist-sash and double grien stripes on the trousers. All officers in undress wear plain darí grey trousers and dark grey cylindrical cloth cap, both in the line and the Jagers.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Austrian.} & \multicolumn{2}{|r|}{Hungarian.} \\
\hline Facings. & White or silver buttons, \&c. & Cold or brase but. tons, \&e. & White buttons, \&c. & Gold buttons, \&ic. \\
\hline Black & 58th & 14th & \(3^{8 \text { th }}\) & 26th \\
\hline Dark brown & 17th & 55th & \({ }^{88 t h}\) & 68th \\
\hline Maroon & 7 h & 93 rd & 83 rd & 12th \\
\hline Dark red & \({ }^{18 \text { ch }}\) & 1 ist & 53 rd & 52nd \\
\hline Amaranth red & 95th & 90th & & \\
\hline Bordeaux red & 88th & 89th & & \\
\hline Madder red & \(74{ }^{\text {7 }}\) & \({ }_{15} 73 \mathrm{ch}\) & 23 ra & 43 rd
44 ch \\
\hline Crimson & 81 st & 84 hb & \%2nd & 96 th \\
\hline Scarlet & 80th & 45 th & 9th & 37th \\
\hline Vermilion & 20 th & 35 th & 67th & 7156 \\
\hline Pink. & 36th & 57 th & 66 th & 65 th \\
\hline Rose & 97th & 13 th & 6th & 5 th \\
\hline White & 92 nd & 94 th & & \\
\hline Sea green. & 87 ch & 215 t & 25th & \\
\hline Apple green
Bright green & S4th & \({ }_{915} 9\) th & \({ }_{\text {7 }}\) 79th & 85 th \\
\hline Bright green
Crass green & 10th & 915 sth & Soth & 46 ch \\
\hline Seaweed green & - & 102nd & - & \\
\hline Grey green & 47th & 56th & 60th & 48th \\
\hline Pike grey & 49th & 30th & 69th & 76th \\
\hline Ash grey & \(24^{\text {th }}\) & 71th & 33rd & 5 Stst \\
\hline \begin{tabular}{l}
Orange \\
Imperial
\end{tabular} & 42 nd & 59th & 63 rd & 64 th \\
\hline yellow & 22nd & 27th & 315 t & 2nd \\
\hline Suphur - & \(418 t\) & 99th & \(1015 t\) & 16th \\
\hline Sky blue. & 8 Ch & \(4{ }^{\text {th }}\) & 19th & 3and \\
\hline Peasil . & \({ }_{98 \text { 7th }}\) & 400th & 29th & 72nd \\
\hline
\end{tabular}

Dragoons weas light blue jackets with collar and cuffs of regimental colour and narrow white or gold shoulder cord, red trousers, black crested helmets (gilded crests for officers), and slung pelisse exactly similar to the jacket excep; that the collar and cuffs are of black fur. The jacket is not merely an ornatment, but is frequently worn serving as a tuns. The field cap of the rank and file is red, shaped as for infantry, but without peak. Beles brown. The facings aredark red 1st and 3 rd, black 2 nd and 6 th, grass green 4 th and 9 th, umperial yellow 5 th and 12 th, sulphur yellow 7 th and Ioth, scarlet \(8 t h\) and 11 th, madder red 13 th and 14 th, white 15 th. Silver buttons \(1,2,4,5,6,7,11,13\), gold 3, 8, 9, 10, 14, 15 .

Hussars wear dark or light blue jackets and polisees, the former braided, the latter braided and edged with black fur. The trousera are red with gold "Austran" knots and piping (all hussars are Hungarian) and the boots have the usual hussar braid. The headdress is a shako with black "shaving-brush" plume. Regimental distinctions are as follows:-
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Shako. & Silver. & Cold. & & Sliako. & Silver. & Go \\
\hline \(E \subseteq\) & White & 9th & 3rd & E & White & 12th & 2nd \\
\hline 능ㄹ & Dark blue & 13th & 15 t & ¢ 5 & Light blue & 7th & 20th \\
\hline - & Madder red & 5th & 8 th & 呂 & Madder fed & 4th & 14 th \\
\hline * 二 & Ash grey & 11th & 85th & S. & Ash grey & \(16 t h\) & 6th \\
\hline
\end{tabular}

Lancers (Uhans, who do not carry lances) wear the lancer cap (czapks) with black plume looped back, and old ornaments, light blue double-breasted lancer tunics (slung on the shoulder as pelisees) with madder red cuffs and piping-but no " plastron "-black for collar and gold shoulder cord. The jacket is plain, light biue, with breast and skirt pockets and flaps edged red, red collar and cuffs, no shoulder cord The trougers are red. Regimental distinc-tions-top of the caapka, tmperial yellow 1st and 6th, dark green and and 7 th, madder 3 rd and 8 th, white 48 h , light blue 5 th , cherry Isth, dark blue 12 th and 5 3th. Gold buttons \(2 \mathrm{Et}, \mathbf{2 n d}\) 3rd, 4 th 5th and \(52 t h\). silver \(61 h_{1}\), th, 8th, I1th and 13 th.

All cavalry officers wear gold or silver pouch-belts; in undress dark grey Irousers and cap are worn. Men's undress cap as for dragoons. All cavalry men carry the carbine slung and have brown belts.

Artillery wear maroon tunics, light blue trousers, red callars, cuffs, shoulder-graps and winge, hight blue cap, shalo with black plume looped back. Fortress arcillery have a red stripe in the trousers, technical artillery are dressed as field, bust with dark grey trousers and cap and without plume. Buttons gold. On the jacket the whole collar is red. Officers wear pouch-beles as cavalty, and in undress the usual grey irousers and cap.

Engineers have an tnfantry unilorm, but in the figer colourg grey and green. Train (A.S.C.) as artillery, but with light blue facings and red trousers with cap. Their shako has no plume

The ateff wears a dart greea tunic, short-wisted, doubtobreasted and piped all round with red. The collar and cuffs are red (cufts black for gencral staff), buttons and lace usualiy gold. The trousers are dark grey, piped red (in some cases with stripes of yellow and red) The general staff weart the waist-sash; the adjutant-general's branch, aidea-de-camp. \&c.. the same tash over the shoulder (as indeed all adjutants wear it in Germany and Austria). The cocked hat is stall and has a green feather plume. General officers ordinarily wear dark grey trousere with double red stripe, pearlgryy tunics, cocked hats and waist-sash : their collars and cuffs are red. Inspector-generals of artiliery and engineers wear the colours of their arm (brown and Jager grey). In court dreas, however, Austrian generals wear tbe old white tunic and red, gold-laced trousers; Huagarian generals an claborate red husear dreas, with a white pelisse.
Rank is shown by stars and lace on the collar. Lance-corporal, corporal and sergeant have 1, 2 and 3 worsted stars; second liesttenant, first lieutenant and captain 1, 2, and 3 gold or silver mears; major, lieutenant-colonel and colonel 1,2 and 3 stars on a goldlaced collar; major-general, lieutenant field-marshal and general (or Folderngmester) 1,2 or 3 stars on laced collar.

Russia
The figures in Plates V and VI represent the uniforme of 1905. Since that time the attempt to combine bright colours with the loosenese and comfort of service dress has been abandoned, and the troops have received a more handsome full dreas and a grey-green Geld dresa. Little information as to the details of the new unilorms has been published. The ordinary infantry uniform was a double breasted hooked tunic of dark green cloth. dark green trousers and cap (in full dress a round fur cap). With a few exceptions, details of facings, ac., followed well-marked rules. The number of the regiment appeared on the cap, that of the division on the shoulderrrap. The two regiments of the 1 st brigade in each division wore red ahoulder-straps, the two of the and brigade blue. The Ist regiment had a red cap band and red collar patches, the ind blue, the 3 red white and the ath green. It is not known how far this has been modified of late years. Regiments with royal colonels-in-chief wear ciphers on the shoulder-strap, and some have double guardtripes on the collar. In winter a heavy grey-brown greatcoat is wom, usually with a loose shecpskin lining and a fur-lined hood. The grenadiers are distinguished by yelfow shoulder-straps (with a narrow edging of red, blue, white and yellow, according to the division). The Guards wear closely fitting tunics, with guard-stripes on the collars and cuff-flaps. In the 1st Guard division the shoulderstraps and piping are red and white, in the and red and red, in the 3rd yellow and yellow respectively. The cuff-fiaps are red in ist, and 2nd, yellow in 3rd division. The colour of the collars and cuffis varies according to the order of regiment within the division. The Pavlorsky regiment wears, instead of the fur cap, the old mitrecap in brass and stiff red cloth.

Rifles wear the universal pattern uniform with plaln cap-band and collar and crimson shoulderstraps. The Finland rifles have light blue instead of crimson, and the Guard rifles have double guard-stripes and stripes on the cuff-flap (or Swedish cuff).
Line dragoons wear a dark green silver or gold buttoned tunie, double-breasted, grey-blue trousers and knee boots. The cap, which was peaked, and had a dark green band, was, ia 1905 , red for the ist, blue for the 2nd, and white for the 3rd regiment of each division, the same colours appearing on the collar patches, piping and shoulder-straps. The regimental number (or colonel-in-chiel's cipher) appears on the shoulder-strap. The fur cap is in shape a truncated cone, the body of the cap being of the colour of the facings and the sides of fur. A few regiments had special distinctions.
The cuirassiers (guards) wear in Jull dress white cuirassier uniforms with brass helmets and eagles, and in field order dark green tunics and white caps. The trousers are grey-blue with red utipe. The Horse Grenadiers wear dark green lancer tunic with rod facings, double guard-stripe and cuft-stripe, red girdles and dark grey trousers with red stripes. They wear epaulctics and the curious grenadier cap mentioned above. The Guard Dragoons are dressed as the Horse Grenadiers, but with the dragoon busby and red shoulder-straps. The Guard Lancers wear a lancer unilorm resembiing the German, blue with scarlet facings, lancer caps and grey-blue trousers. The top of the czapka is scarlet and yellow for the reapective regiments. Tbe Emperor's Hussars wear scarlet tunica and blue trousers, and the Grodno Hussars dark green tunics and crimson trousers (see Plate VI., line 1, 6g. 3), with busby, red busby-bag and white plume: girdlea scarlet and blue and green and white, and braid yellow and white respectively

The artillery tunic, trousers and cap are dark green, the piping and shoulder-trap red. The Guard Artillery has black collar and cuffs, red-edged. The enginecrs are distinguished from artillery by their having silver buttons and appointments instead of gold.

The greater part of the Cossacks wear a long, loose caftan. This, in the Don, Ural and Astrakhan contingents is dark biue, in the rest, except 20 mentioned below, dark green. Cossacks wear no spurs, but use a whip. As for the facings, the Don regiments have plain, and the other blue regiments crimson and ycllow shoulder-straps respectively, and the green regiments have red. yellow or light blue. The head-dress is a conical lambskin cap. with cloth top. or a blue or green cap with band of the regimental colour. The Caucasas
regiments, however, wear a move distinctly national uniform, consixing of a dark brown, collarless caftan, cut away below the throat to show a waiscoast, mcarlet for Kuban and blue lor Terek regiments (Plate VI., line 1. No. 2). The shoulder-straps are of the colour of this waistcoat. The Caucasus regiments always wear the full headdress and never the Geld cap. The Guard Cossacks have short tunics (scarlet, light blue and dark red) with guard-stripes on collar and cuffs, and caps of the same coiours. These wear spurs beaides carrying whipa. The Cossacks of the tsar's escort wear a scarlet caftan edged with gold braid, white waistcoat and dark blue trousers. The Cossack artillery wears green uniforms of Cossack cut, with red facings.
Badges of rank are as follows: Non-commissioned offcers, one, two or three stripes of braid acrow the shoulder-strap; sergeantmajor, a stripe of gold lace across the shoulder-strap. In and above the rank of corporal, gold lace is worn on the coliar and cuffs as in Germany. Officers wear broad cloth (red, blue, acc.) eboulder-strape nearly covered by strips of silver or gold lace; on these appear the number or cipher and stars of rank-subalterns one, two and three. second captains four and senior captains none. In these ranks the cloth of the shoulder-strap shows in one narrow strip through the lace. In the field ranks, the cloth, covered by three bars of lace, shows two strips and the same sequence is followed: lieutenant-coloncl, three stars: colonel, none In general officers' uniforms the lace entirely covers the cloth, and the stars number two lor a major-general, three for lieutenant-general and none for a full general.

\section*{Italy}

The universal colour in full dress and undress coats is a dark, flat blue, laintly tinged with purple. Generals, cavalry and infantry (except Bersaglieri) wear blue-grey trouscrs and silver ornaments; stall officers, artillery aad enginecrs dark blue trousers and gold ornamenta
The coat, whether tunic or frock, has a stand and fall collar, on the comers of which invariably figures a five-pointed silver or white star. The cuffs are slightly pointed, except for cavalry. The fulldress head-dress is a low cloth shako, the undress throughout a képi. Generals wear only the képi. The tunic, double-breasted for officers and single-breasted for rank and fike, is cut very short, and has little piping. Officers have plain biue shoulder-straps with stars showing rank. A white collar is wom under the coat collar by all ranks. Officers have a blue frock, with hlack braid and plain cuffs.

Inlantry have silver buttons and (rank and file) red-edged shoulder-strape and shoulder wings, blue-prey trousers with red piping (officers, double stripe). The shako is blue with red piping (officers, silver braid), siiver device and cockade; the ktpi (in the rank and file pointed back and front and pressed down at the sides) is similar in colour, \&c., to the men's shako. The belts are black. The Grenadier brigade aloae has red collaris and cuffe, all others are melf-coloured (red edge to cuff). The greatcoat is light bluegrey. single-breasted and unadorned except for shoulder wings. White or holland gaitera are worn with the blue uniform. The brigades are distinguisbed by gorget patches of the brigade coloure, upon which the star is worn. Officers wear a shoukder sach of light blue, and in full dress silver epaulettes.
Covedry.-Line cavalry have light coloured collars, cuffs and shoulder-strap edges, vilver buttons, and blue-grey trousers with double back stripe (officers, of the facings colour). Regimental distinctions are given in the table. The full head-dress is a singularly handeome belmet, partly black, partly bright steel, with a tall swan: neck cress (see Plate VIII., line I, Gig. 3.) and on che front a broed white cross. The undress cap is a leepi with piping as in table. Op the men's shoulder-straps is a silver grenade. The lancers (Lansieri) have coat and trousers as line cavalry with regimental distinctions given below. On the men's shoulder-gtraps are crossed lances. The head-dress is a fur cap, adomed with crossed lances and chain in silver. It has also a cockade and a small upright plume. The crossed lances appear also on the kepi. The hight horse (Cconallegieri) have a similar coat and trousers, except that the collar has a flame-shaped patch. Shoulder-strap. full headdress and kepi as for lancers, with a bugle instead of bances. All cavalry have brown bandoliers over the left shoulder.
Artillery, gold buttons, dark blue trousers, with yellow piping (officers, double yellow stripe). Officers' tunics have black yellowedgod collars and cuffs, mens a black yellow-edged collar patch, and yellow edgings on the collars, shoulder-straps and cuff. The badge of the field artillery on shako, kepi and men's shoulder-strapa is gold crossed guns; that of the horse and mountain, a gold grenade; fortress artillery are dressed practically as field. The shako has gold badge and short upright plume (borse artillery long black plume, booped back on the right side); the kepi piping is yellow. Gold epaulettes and light blue sash are worn by officers, and in the horse artillicy a pouch-belt as well. Enfineers have the arillery uniform, but with red piping, \&c. instead of yeliow, and badge ol crossed axes. The departmentai corps wear, as a rule, black facing: with light blue piping, differing a mongst themselves in decails
The famous Bersaglieri (ight infantry) have the infantry tunic and frock with goid buttons. \&c. (officers in full dress, epaulettes), dark blue trousers with crimson stripe. Officers have crimson cuffs, all ranks a blue rededged collar, with crimson flame parch. The distinctive fature is the dark, wide-brimmed, slouch hat with a
large drooping cock's feather plume. Thie Alpine infantry (Alpini) have a black felt hat with sllver device and eagie feather, tunic, trousers and képi with green instcad of red piping throughout. Offcers wear black collar with green flarme patch and green culfs.
\begin{tabular}{|c|c|c|c|}
\hline & Collar. & Cuf. & Piping. \\
\hline \begin{tabular}{l}
Line. \\
1 Nice \\
2 Piedmont \\
3 Savoy \\
4 Genoa
\end{tabular} & \[
\begin{gathered}
\text { Crimson } \\
\text { Red } \\
\left\{\begin{array}{c}
\text { Black, red } \\
\text { edged } \\
\text { Yellow }
\end{array}\right\} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Crimson \\
Red \\
Black \\
Yellow
\end{tabular} & \begin{tabular}{l}
Crimoon Red \\
Yellow
\end{tabular} \\
\hline \begin{tabular}{l}
Lancers. \\
5 Novara \\
6 Aosta. \\
7 Milan \\
8 Montebelio \\
9 Florence \\
to Victor Emmanuel II.
\end{tabular} & White Red Crimson Green Orange Yellow & Black & As collar \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Collar. & Flame patch. & Cuf. & Piping. \\
\hline Light Horse. & Red & Black & Red & Red \\
\hline \({ }_{12}\) Saluzzo : & Yellow & & Black & Yellow \\
\hline 13 Monferrato & Black & Crimson & - & Crimson \\
\hline 14 Alessandria & & Orange & " & Orange \\
\hline 15 Lodi - & Red & Black & & Red \\
\hline \({ }_{17}{ }^{\text {L }}\) Luccas \({ }^{\text {a }}\) & White & Red & Rëd & Red \\
\hline 18. Piacenza & Grcen & Black & Black & Green \\
\hline 19 Guides & Lt. blue & White & Le. blue & White \\
\hline 20 Rome. & Criack & Bläck & Black & \\
\hline \({ }_{22}{ }^{21}\) Padua Catania : & Crimson & Biack & " & Crimson \\
\hline 23 Humbert i. & White & Lt. Blue & White & White \\
\hline 24 Vicena & , & Red & " & Red \\
\hline
\end{tabular}

General officers have a single-breasted tunic with black velvet collar and cuffs laced with silver, red piping, silver shoulder-strsps, and siver buttons. Frock, trousers, \$e., as shown on Plate V1ll., line 1, No. I, Staff officers wear light blue collar and culfs, dark blue trousers with gold stripe and shako somewhat as for artillery officers. They wear the usual light blue shoulder sash, but over the left, instead of, as in the army at large, over the right shoulder.
The new service dress is blue-grey, regimental distinctions as on the officer's frock and kepi in all arms. Infantry equipment is shown on Plate VIIL., line 1, No.4. The cavalry bead-dress is a round grey helmet
Ramh Badges.-Non-commisaioned officers: Red or silver chevrons above the cuff, and small distinctions on the shako. Officers: On the ahoulder-strap. 1, 2 and 3 silver stars for subalterns and captains, the same with narrow silver edging round the strap for field officers, 1,2 or 3 gold stars on a silver shoulder-strap for general officers; on the shako, silver or gold rings round the upper part, on the képi rings round the lower part of the cap, 1,2 or 3 for company officers, 1 broader ring and 1,2 or 3 for field officers. On the general's kepi there is a red, silver-embroidered band with 1 , 2 or 3 rings above.

\section*{Umted States}

The uniforms, though recent changes have largely deprived them of eheir character, still in some respects follow the French fashion upon which they were originally modelled. The belmet, wom untul 1899, indced showed no trace of French influence-it was simply a mere showy parade head-dress The French kepi, worn during and after the Civil War, has been abolished and replaced by a cap which, like the full-dress cap now worm, bears some resemblance to the Japanese cap. But the long-skirted blue tunic, the general's "chapeau," the sergeant's and corporal's long pointed chevrons still survive to recall the old uniforms, and one or two of the innovations, the rank badges on the sleeve, are also French.
Infantry Officers.-Full dress: universal pattern tunic (dark blue, double-breasted with thick gold shoulder cord) with light blue, gold-laced collar, light blue trousers with white atripe, badges of rank and branch on aleeve. Universal pattern full-dress peaked cap (stif blue cloth, gold-edged band, and eagle badge, with light blue band). Undress: universal pattem frock (dark blue, single-breasted, braided black and hooked; acrose the shoulder, flat loops edged with gold lace and bearing rank badges); ahoulder loop light blue; plain collar with U.S. and branch badge in gold; trousers an in full dress. Sword belt under the frock, slinge brown leather. Cap, of the same shape as full-dress cap but with plain black braid band. A white undreas of similar pattern is worn in pot climates. Service drem (olive drab or light khaki). Coat
single-breasted, four pocketa, atand and fall collor, bronse bettona and ornaments. Brown maistbelt and braces, somewhat similar to British "Sam Browne," but with sword slings. Peaked cap, plain olive drab or khaki, with bronze eagle badge. Slouch hat, grey, with gold and black twisted cord.
Evening dreas and mess dress: blue, with shoulder cords and rank-marks as in full dress, blue trousern. Greatcoat, universal pattern, khaki with horn buttons; rank-marks in black braid on the sleeve, branch badge in bronze.
Casolry officers as iniantry, but with yellow collar, cap-band and trousers stripes as full dress and branch badge.
Artillery officers as infantry, but with red collar, cap-band and trousers stripes, and branch badge.
Engrecer officers as infantry, but branch badge, red ground with white edges on full-dress collar and cap. Full-dress trousers, dark blue with red, white-adged stripe; undress, light blue with red stripe. In full dress engineer officers have the special distinction ol wearing red skirt-fapa with white line and gold edge. Sigmal Corps, as infantry, but with branch badge and salmon collar, capband. \&c. Signal officers, alone in the army, wear a pouch-belt: this is of black leather-crimson leather for the chief of the corpewith gold appointments. Ordnance Corps, as infantry, but dark blue red-edged trousers stripes, \&cc., and branch badge. Medical, as infantry, but with magenta stripes, \&c., and branch badge.
Generals and Staff Officers.- Major-generals (and with a thind star lieutenant-generals), dark blue double-breasted tunic with buttons in threes, and cuffs and collar of black velvet ornamented with oak-leal gold embroidery, above the cuffs two silver stars; gold epaulettes and aiguillette, wide yellow waist-easb: dark blue trousers with two gold stripes: slings, and waist-belt if worm, crimson leather with gold stripes. "Chapeau" or cocked hat (French pattern) black felt with black feather edging and gold ornament; full-dress cap. universal pattern, with black velvet band, embroidered on band and peak as on full-dress cuffe. Undress: blue frock, double-breasted, with buttons in threes, "stand and fall" collar with U.S. in gold; rank marks on shoulder loops; plain dark blue trousers, universal pattern undress caps with oakleaves on the peak only. White undress uniform is similar. Briga-dier-generals, as major-generals with the following distinctions: one star on the slecve or shoulder-loop, narrow yeliow sash, buttons in pairs, plain black strap instead of crimson waist-belt (with, however, crimson and gold slings). Service dress and overcoats (all general officers) universal pattern: on the slouch hat a gold cord instead of black and gold. Evening and mess dress, univeral pattern, with cuffs, collar and epaulettes as in full dress. Certaia general officers who are chiefs of departments wear some of the distinctions of their branch; thus the adjutant-general, the quarter-master-general, \&c., wear the branch badge below the stars, the chief of engineers the scarlet engineer skirt flap, the chief of artillery a crimson waist-sash instead of yellow. In undress these officers have a ground of their branch colour instead of dark blue on the shoulder loops. Staff officers are in the main uniformed in the same way as those of infantry, but wear dark blue trousers (in fult dress a gold stripe), black and gold belts and slings, branch badge on sfeeve, and ful-dress collars, full-dress cap-bands and undrese shoulder loops of the branch colour.
Branch and Lane Badges.-General staff, 2 silver star, decorated with eagle device; inspector-general's department, sword and " fasces crossed in wreath, gold iadjutant-general's department, gold shield with U.S. arms; quartermaster-general's department, sword and key crossed, surmounted by eagle, over a wheel. gold; ordnance, grenade; commissary or subsistence, silver crescent: infantry, goid crossed rifies; cavalry, gold crossed swords, artillery, gold croseed guns; engineers, silver castle, signal corps, crossed flags and torch; medical, winged Acsculapius staff. Aides-de-camp wear a shield like the adjutant-general's but in red, white and blue enamel and surmounted by an eagle; adjutants, quartermasters, commissaries, \&c., of the combatant arms wear a shield, aword and key, creacent. \&c, under the guns, swords, \&ec. of the reciment or corps.
Branch and Arm Colows.- Infantry, light blue; cavalry, yellow; artillery. red: engineers, red with white edge, signal corpe, ealmon with white edge; quartermaster's department, yellow ochre; ordnance, blue with crimson edge; other staffs and departments, light blue; medical, magenta. general staf. dark blue.
Badges of Rank.-Officers: general, lieutenant-general, majorgeneral; brigadier-general, stars 4; 3. 2. and 1 respectively, in all orders of dress. Other officers, in undress, silver on a abouider loop of coloured cloth according to branch; colonei, spread eagle. leutenant-colonel, pair of oak-leaf sprigs: major as lieutenantcolonel but in gold, captain, two pairs of bars, tst lieutenant, one pair of bars, and lieutenant, no badge: in full drcss, evening dress and greatcoat, colonel fivefold, lieutenant-colonel fourfold, major threefold, captain twofold, ist lieutenant single Austrian knot of narrow gold braid, 2nd lieutenant no Austian knot. Field officers bave black leather waist-belt and slings completely covered with gold braid, and also oak-lesi embroidery on the peak of the full-dress cap. Captains and licutenants have similar belcs, but with four gold braids only: in the inlantry; cavalry, artillery and engineers the intervening spaces ("lights.) are coloured fight blue, yellow. ace. While in other cases the black lea ther is allowed to appear.

Entised men are dresced similarly to officers, with the following differences: tunic with dark blue cuffis, collar and shoulder-straps. The collar is edged top and bottom, the shoulder-straps all round and the cuffs along the top edge with yellow for cavalry, light blue jor infantry, ac. The badge of the branch in brase is on the collar. Lincs are worn (aiguilette (ashion) as an additional decoration: these are of the branch colours. The trousers are light blue, witb, in full dress. stripes of branch colours. The white undress, service dress and greatcoat are similar to thone for officers, with certain distinctions in detail. The full-dress cap is of the officers' pattern, but the band is dark blue, edged with the branch or arm colour above and below, and the badge is brass in a white metal wreath. The slouch hat has a cord of the branch colours. Rank marks of non-commissioned officers are long, graceful chevrons (inherited from France) pointing upwards. \(i\), 2 and 3 for lance-corporals, corporals and sergeants, 3 with diamond star, \&cc., far "first eerpeants " and corresponding ranks, 3 with the lower ends connected by bars or arcs of the chevron material for sergeant-majors and maft-sergeants. In full dress these chevrons are of the colour of the branch facings, in service dress of khaki embroidery.

Napal Uniforms.-The full-dress coat of British naval officers is a dark blue double-breasted swallow-tailed coat with gold buttons, lace and epaulettes, a white gold-edged slashed-flap on the sleeve with rings of lace thowing rank. Dark blue trousers with gold tripes, and black silk cocked hat. The undress coats are frock coat, which may be worn with epauiettes, and double-breasted jumper, both having plain cuffs with rings of gold lace. The undress cap is a peaked cap with gotd badge. Certain petty officers wear blue jumpers, the rest and the sailors wear sailors dresa (Plote VIII., line 2. No. 5). White is worn in the tropics, with white pith belmets in the case of officers and broad-brimmed atraw hats in that of the sailors. Royal Marine Artillery and Royal Marine Light Infantry are dressed as artilery and infantry of the army, With certain distinctions; they may always be recognized by the badge of a globe within a laurel wreath. (Plate VIII., line I, No. 5.)

Offecrs' Rank Marks.-(a) On the epaukete: Batons in laurel wreath and crown, admirat of the ficet; crown, sword and baton crossed, and \(1,2,3\) stars, rear-admiral, vice-admiral, admiral; anchor and crown, with o. 1, 2, stars, commander, junior captain, eenior captain; anchor and star, eenior lieutenant; anchor, funior lieulenant; anchor on fringeless epaulette, sub-licutenant. (b) On the sleeve (in all orfers of dress except white, and greatcoat): flag officers, broad gold ring with 1, 2, 3, 4 narrow rings (the uppermost with a curl) (or rear-admiral, vice-admiral, \&c.; other officers, 1,2 . 2 with narrower ring between, 3 and 4 for sub-licutenant, junior Jieulenant, senior Jieutenant, commander and captain. (c) Shoulder straps in greatcoat and white undress, blue strap with bars and curl as on sleeve in other orders, except flag officers, who have gold-laced shoulder-strap with rank marks as on epaulette. Non-combatant branches have not the "curl," and between the gold bars or rings there are "lights" or stripes of various colours according to branch. The Royal Naval Reserve officers have similar rank maric, but, instead of bars of plain tace, a thin twint of gold embroidery, and an oval badge surrounding the anchor on the epaulettea.

The uniforms of other navies are very similar to those of the British. The old-fashioned jacket worn over the salor blouse. and the conspicuous white lapels of the full-dress coat, are the principal peculiarities of the German navy. The Spanish naval officer has red lapels. A very marked peculiarity of the Austrian savy is that the officers, drossed in all other respects similarly to the naval officers of other countries, have the mifitary tunic. The marines, where they exist, conform to the infantry of the respective hand forces in moet respects: the German marines, however, wear the Jager shako, and navy-blue unilorms with white collars and cufls (Plate VIll.. line 2. No. I.)
See Colonel C. Walton, British Army; and British regimental histories; Ottenfeld and Teuber, Desierveicks Armee; Richard Knotel, Umiformen-Kande; R. Nevill, British Military Primls; Lienhardt and Humbert, Les Uniformes de l'Armés Frangaise; Brilish Dress Regulations, 1822. 1834 . 1846, 1855-64, 1874 , 1883 , 1891 and 1904; Lavisse. Sac au Dos, and Moritr Ruhi's handbooks of the Cerman, Austrian. Russian, Italian and Fresch army uniforms of the present day. The particulars given of the United Suates ormy unilorms have been obtained. by the kind permission of the United States Embassy, from official phates.
(C. F. A.)

UNION (known locally as Union Ilill and officially as Town of Union), a town of Hudson county, New Jerscy, U.S.A., on the Hudson river, adjolning West Hoboken and Wechawken, and opposite New York City. Pop. (1900), 15.187, of whom 5179 were forelgn-born; (1910 U.S. census) \(2 \mathrm{t}, 023\). In the forejgn element Germans predominate. The town is served by the railways passing through Wechawken and Hoboken. The principal manufactures are silk goods, shirts and mat liquors. In 1905 the factory products were valued at \(\mathbf{\$ 3 . 5 1 2 , 4 5 1}\). Originally a part of the township of North Bergen, Union was incorporated as a separated township in 1861, and as a town, under the name Town of Union, in \(\mathbf{8 6 4}\).

Town of Union must not be confused with Unioa townehip (pop. in 1910, 3419). Union county, incorporated in 1808 ; Union township (1910, 2756). Bergen county, incorporated in 1852; Union township (1910, 982), Ocean county, incorporated in 1846; and Union township (1910, 930), Hunterdon county, incorporated in 1853. Union township, Camden county, became Clougester City in 1868, and Union township, Hudson county, became West New York in 1898.
DMION, a town and the county-seat of Union county, South Carolina, U.S.A., about 66 m . N.W. of Columhia. Pop. (1000) 5400 , of whom 1701 were negroes; (U.S. census 1910) 5623. Union is served by the Southern and the Union \& Clenn Springs railways; the latter connects at Pride, 16 m . distant, with the Scaboard Air Line. The city is situated in the Piedmont region near the foot of the Blue Ridge Mountains. It is the seat of Clifford Seminary for Young Women (opened, 188ı; chartered, 8883), and has a Carnegie lihrary. Union is in a rich cotton-growing, farming and fruit-growing region, and deposits of gold, magnetic iron ore, marble and granite are found. The town has scveral large cotton mills and a large knitting mill. Union was settled about 1755 and was incorporated as a town in 1872 .

UNION LEAGUE OP AMERICA. THR, sometimes called the Loyal League, an organization for political purposes of Northern whites, later of Southern blacks, which originated in Ohio in 1862 when the Coniederate military successes and political disaffection in the Northern states made the outlook for the North scem doubtful. Within one year it had spread over eighteen Northern states and among the Unionists of the South. The order raised troops, paid their expenses, sent supplies to the field and distributed political literature. At the close of the war it worked for radical reconstruction of the Southern states, punishment of the Southern leaders, confiscation of property and negro suffrage. The Southern Unionists hoped to make it the nucleus of a new political party, but this was frustrated by the admission of the blacks for political purposes, after which the Southern wbites generally deserted the League. After the Freedmen's Bureau agents and other Northern whites ohtained command of the League in the South it became simply a machine to control the votes of the blacks. The League ceased to be important in the North, though headquarters were in New York City. Each Southern state had its grand council and each county one or more councils. A constitution and an claborate ritual were adopted, making it an oath-bound secret order, whose members were sworn to support one another on all occasions, to vote in elections only for negroes or Northern men, and to overthrow the Southern "white oligarchy." No ex-Confederate and few Southern Unionists were permitted to join. At each meeting the members were taught from a catechism prepered by Radical members of Congress that they must beware of their white neighbours as their worst enemies, that the Democratic party, to which the Southern whites belonged, had opposed emancipation and was still opposed to any rights for the negro. In order to prevent moral control of the negroes by former masters, the League, by an "exodus order," required all negroes who were still living with their former masters to find other homes. The negroes were taught the equality of men and the right of the negro to his master's property. The votes of blacks, during reconstruction, were controlled by the few white Radical leaders. No negro could safely break away and vote independently. Negrocs who voted with the mass of the Southern whites were persecuted, beaten or (as in a few cases) killed. The League died out about 1870 , but not hefore it had succeeded, with the Freedmen's Bureau and ohher forces, in permanently arraying the blacks and whites into opposing political parties.
(W. L. F.)

UNIONTOWh, a borough and the county-seat of Fayette county, Pennsyivainia, U.S.A., about 40 m . S. by E. of Pittsburg. Pop. (1000) 7344 (449 foreign-born); (1910) 13.344. Uniontown is served by the Pennsytvania and tbe Baltimore \& Ohio railways. Coal, iron and natural gas are found in the neighbouring region. The manufactures inctude glass products, iron, steel, enamet, radiators, coke, flour and bricks.

The original village was surveyed and laid out in 1776 on land owned by Henry Becson, and the borough was incorporated in 1796. From 1827 to 1832 Uniontown was the seat of Madison Collcge, formed from Union Academy (founded 1803), in \(183^{2}\) the college was merged with Allegheny College, of Meadville, Pa. In 1866 the buildings were turned over to the Soldiers' Orphans' School (now at Jumonville. a suburb), which occupicd them until 1875. In the south.castem part of the county is the district known as Great Meadows, here George Washington built Fort Necessity in 1754, and General Edward Braddock died and was buried here after his defeat by the French and Indians in 1755.

DNITARIANISM, a system of Christian thought and religious observance, based, as opposed to orthodox Trinitarianism, on the unipersonatity of the Godhead, i.e. that the Godhead exists in the person of the Father alone. Unitarlans carry their history up to the Apostolic age, claim for their doctrine a prevalence during the ante-Nicene period, and by hetp of Arian communities and individual thinkers trace a continuity of their views to the present time. However this may be, it is certain that the Reformalion of the ath century was in every European country attended by an outbreak more or less serious of anti-Trinitarian opinion. Suppressed as a rule in individual cases, this type of doctrine ultimately became the badge of separate religious communities, in l'oland (extinct), in Hungary (still flourishing), and at a much later date in England. Aiong with the fundamental doctrine, certain characteristics have always marked its professors; namely, a large degrec of toleration, a minimizing of essentials, a repugnance to formulated creed, an historical study of Scripture. Martin Cellarius (\(1490-1564\)) a friend of Luther, is usually regarded as the first literary pioneer (1527) of the movement, the anti-Trinitatian position of Ludwig Hactzer (q.o.) was not disclosed till ofter his execution (1529) for anabaptism. Both by his writings (from 153') and by his fate (1553) Scrvetus (q a.) stimulated thought in this direction. Tbe Dialogucs (\(\mathrm{I}_{5} 5_{3}\)) of Bernardino Ochino, while defending the Trinity, stated objections and difficultics with a force which captivated many. In his 27th Dialogue Ochino points to Hungary as a possible home of religious liberty. It was in Poland and Hungary that religious communities, definitely anti-Trinitarian, were first formed and tolerated.

Polond.-Scaltcred expressions of anti-Trinitarian opinion appear bere carly. At the age of 80 , Catherinc, wife of Melchior Vogel or Weygel, was burned at Cracow (15.39) for apostasy; whether her views cmbraced more than deism is not clear. The first synod of the Reformed Church was held in 1555, at the second (1556), Gregory Pauli and Peter Gonesius avowed anti-Trinitarian and anabaptist vicws. The arrival of Blandrata (9.0) in 1558 furnished the party with a leader. In \(55_{5}\) the dict of Piotrkow excluded anti-Trinitarians from the existing synod; henceforward they held their own synods as the Minor Church. Known by various other names (of which Arian was the most common). at no time in its history did this body adopt for itself any designation save Christian. Originally Arian (though excluding any worship of Christ) and anabaptist, the Minor Church was (by 1588) brought round to his own views by Fausto Sozzini, who had scttled in Poland in 1579 (see Socinus). In 1602 James Sienynski established at Rak6w a college and a printing-press, from which the Recovian Calechism was issued in 1605 . In 1610 a Catholic reaction began, led by Jesuits. The establishment at Rak6w was suppressed in \(16{ }^{6} 8\), two lads having pelted a crucifix outside the town. Twenty years later the Polish Dict gave anti-Trinitarians the option of conformity or exile. The Minor Church included many Polish magnates, but their adoption of tbe views of Sozzini, which precluded Christians from magisterial office, rendered them politically powerless. The execution of the decree, hastened hy a year, took place in 1660 . Some conformed; a large number made their way to Holland (where the Remonstrants admitted them to membership on the basis of the Apostles' Creed); others to the German frontier; a contingent settled in Tran-
sylvania, not joining the Unitarian Church, but maintaining a distinct organization at Kolozsvár till 1793. At Amsterdam was published (\(1665-1669\)) the Bibliotheca fratrium polowarnm, emhracing the works of Hans Krell, their leading theologian, of Jonas Schlichting, their chief commentator, of Sozzini and of Johann Ludwig Wolzogen; the tille-page of this collection, bearing the words quos Unilarios rocaul, introduced this term to Western Europe.

Transylvania and Hungary.-No distinct trace of anti-Trinitarian opinion precedes the appearance of Blandrata at the Transylvanian court in 1563 . His influence was exerted on Francis Dávid (\(1510-1579\)), who was successively Catholic, Lutheran, Calvinist and anti-Trinitarian. In 1564 Dívid was elected by the Calvinists as " bishop of the Hungarian churches in Transylvania," and appointed court preacher to John Sigismund, prince of Transylvania. His discussion of the Trinity began (1565) with doubts of the personality of the Holy Ghost. His antagonist in public disputations was the Calvinist leader, Peter Juhász (Melius); his supporter was Blandrata. John Sigismund, adopting his court-preacher's views, issued (1568) an edict of religious liberty at the Torda Dict, which allowed David (retaining his existing title) to transfer his episcopate from the Calvinists to the anti-Trinitarians, Kolozsvir being cvacuated by all but his followers. In 157 I , John Sigismund was succeeded by Stephen Báthory, a Catholic; and trouhle began. Under the influence of John Sommer, rector of the Kolousvir gymnasium, David (about 1572) abandoned the worship of Christ. The attempted accommodation by Sozzini only precipitated matters; tried as an innovator, Dávid died in prison at Déva (1579). The cultus of Christ became an established usage of the Church; it is recognized in the 1837 edition of the official hymnal, but removed in the edition of 1865 . On the other hand, in 1621 a new sect arose, the Sabbatarii, with strong Judaic tendencies; though excluded from toleration they maintained an existence till 1848. The term unilarius (said to have been introduced by Mclius, in discussions of \(1569-1571\)) makes its first documentary appearance in a decree of the Leecsfalya Diet (1600), it was not officially adopted by the Church till 1638. Of the line of twenty-three bishops the most distinguished were George Enyedi (15 21-1597 \(^{2-1}\)), whose Explicationes obtained European vogue, and Michacl Lombard Szentabrahámi (17371758), who rallied the forees of his Church, broken hy persecution and deprivation of property, and gave them their existing constitution. His Summa wniversae theologiae secundmes Unitarios (1787), Socinian with Arrinian modifications, was accepted by Joseph II. as the official manifesto of doctrine, and so remains, though no subscription to it has ever been required The official title is the Hungarian Unitarian Church, with a membership of over 60.000 , most of tbem in Transylvania, especially among the Szekler population, a few in Hungary, their hishop has a seat In the Uungarian parliament. At Kolousvar, the seat of the consistory, is the principal college; others are at Torda and at Székely-Keresatúr. Till \(28: 8\) the continued existence of this body was unknown to English Uoitarians; relations have since become intimate; since 1860 a succession of students have finished their theological education at Manchester College, Oxford, others at the Unitarian Home Missionary College.

England.-Bet ween 1548 (John Assheton) and 1612 we have 2 thin line of anti-Trinitarians, either executed or saved by recantation. Those burned were George van Parris (1551). Flemish surgcon; Patrick Pakingham (1555), fellmonger; Matthew Hamont (:579), ploughwright; John Lewes (1583); Peter Cole (1587), tanncr; Francis Kelt (1589), physician and author; Bartholomew Legate (\(16 \mathrm{t}_{2}\)), cloth-dealer, lest of the Smithfield victims; and the twice-burned fanatic Edward Wightman (1612). In all these cases the virus seems to have come from Holland; the last two executions followed the rash dedication to James I. of the Latin version of the Recociun Catechism (1600). The vogue of Socinian vicws, which for a time affected men like Falkland and Chillingwortb, Jed to the abortive fourth canon of 1640 against Socinian books. The
ordinance of 1648 made denial of the Trinity capital, but it was a dend letter, Cromwell intervening in the cases of Paul Best (\(1590-1657\)) and John Biddle (1610-1662). In 1650 John Knowles was an Arian lay-preacher at Chester. In 16s2-1654 and 3658-1662 Biddle held a Socinian conventicie in London; in addition to his own writings he reprinted (165t) and trans. Lated (1652) the Racovian Catechism, and the Life of Socinus (1653). His disciple Thomas Firmin (1632-1697), mercer and philanthropist, and friend of Tillotson, was weaned to Sabellian views by Stephen Nye (r648-1719), a clergyman. Firmin promoted a remarkable series of controversial tracts (i690-1699).

The term "Unitarian" first emerges in 1682, and appears in the title of the Brief Hisfory (1687). It was construed in a broed sense to cover all who, with whatever differences, held the unipersonality of the Divine Being. Firminhad later a project of Unitarian socicties "within the Church "; the first preacher to describe himself as Unitarian was Thomas Emlyn (1663-1741) who gathered a London congregation in 1705. This was contrary to the Toleration Act of r689, which excluded all who should preach or write against the Trinity It is noteworthy that in England the Socinian controversy, initiated by Biddle, preceded the Arian controversy initiated by Samuel Clarke's Scriphare Dostrine of the Trinity (1712). Arian or semi-Arian views had much vogue during the 18 th century, both in the Church and in dissent. The free atmosphere of dissenting academics (colleges) favoured new ideas. The effect of the Salters' Hall conference (1719), called for hy the a!leged heresy of James Peirce (1673-1726) of Exeter, was to leave dissenting congregations to determine their own orthodoxy; the General Baptists had already (1700) condoned defections from the common doctrine. In 1689 Presbyterians and Independents had coalesced, agreeing to drop both names and to support a common fund. The union in the London fund was ruptured in 1693; in course of time differences in the administration of the two funds led to the attaching of the Presbyterian name to theological liberals, though many of the older Unitarian chapels were Independent foundations, and at least half of the Presbyterian chapets (of \(1690-1710\)) are now in the hands of Congregationalists. Leaders in the advocacy of a purely humanitarian christology came largely from the Independents, e.g. Nathaniel Lardner (1684-1768), Caleb Fleming (1698-1779), Joseph Priestiey (\(1733^{-1804}\)), Thomas Belsham (\(1750-1829\)).

The formation of a distinet Unitarian denomination dates from the secession (1773) of Theophilus Lindsey (\(1723-1808\)) from the Anglican Church, on the failure of the Feathers petition to parEament (1772) for relief Irom subscription. Lindsey's secession had been preceded in Ircland by that of William Roberison, D. D. (\(1705-1783\)), who has been called " the father of Unitarian nonconformity." It was followed by ot her clerical secessions, mostly of men who left the ministry, and Lindsey's hope of a Unitarian movement from the Anglican Church was disappointed. By degrees his type of theology superseded Arianism in a considerable number of dissenting congregations. The Toleration Ast was amended (1779) by substituling belief in Scripture for belief in the Angtican (doctrinal) articles; in 1813 the penal acts against deniers of the Trinity were repealed In 1825 the British and Forcign Unitarian Association was formed as an amalgamation of three older societies, for literature (1791), mission work (1806) and civil rights (1818). Attacks were made on propertics held by Unitarians, but created prior 10 1813. The Wolverhampton Chapel case began in 18:7, the more important Hewley Fund case in 1830; both were decided against the Unitarians in 1842 . Appeal to parliament resulted in the Dissenters' Chapels Act (\(18+4\)), which secures that, so far as trusts do not specify doctrines, twenty- ave years tenure legitimates existing usage.
The drier Priestley-Belsham type of Unitarianism, bound up with a determinist philosophy, was gradually modified lyy the influence of Channing (sce below), whose works were reprinted in numerous editions and owed a wide circulation to the eflors of Robert Spears (\(1 \$ 25-1809\)). Another American influence, potent in reducing the rigid though limited supernaturalism
of Belsham and hin successors, was that of Theodore Parker (\(1810-1860\)). At home the teaching of James Martineau (1805-1000), resisted at first, was at fength powerfully felt, seconded as it was by the influence of John James Tayler (1797-1869) and John Hamilton Thom (1808-1894). The body has produced some remarkable scholars, e.g. John Kenrict (\(1788-1877\)), James Yates (\(1789-1871\)), Samuel Sharpe (\(1799-\) 1881), but few very popular preachers, though George Harris (1794-1859) is an exception. Its year-book specifies 406 congregations in England and Wales. For the education of its ministry it supports Manchester College at Oxford (which deduces its ancestry from the academy of Richard Frankland, begun 1670), the Unitarian Home Missionary College (founded in Manchester in 1854 by John Relly Beard, D.D., and William Gaskell), and the Presbyterian College, Carmarthen.
English Unitarian periodical literature begins with Priestley's Theologucal Repository (1769-1788), and includes the Monthly Repository (\(1806-1838\)), The Chrishan Reformer (1834-1863), tho Prospectioce Rryurv (1845-1854), the National Review (1855-1864), the Theological Review (1864-1879), and now the Hibbert Journal, one of the enterprises of the 1 libbert. Trust, founded by Robert Hibbert (1770-1849) and originally designated the Anti-Tripitarian Fund. This carpe into operation in 1853, awards scholarships and fellowships, supported (1878-1894) an annual lectureship, and has maintained (from \(189 \dot{q}\)) a chair of ecclesiaslical history at Manchester College. The general activities of the body are conducted partly by its asonciation (Essex Street, Strand), partly by its (triennial) Nationa! Conference, established 1882. It has two weekly papert, the Inquirer and the Christian Life.

Scolland.-Much has been made of the execution (1697) at Edinhurgh of the student Thomas Aikenhead, convicted of blaspheming the Trinity. The works of John Taylor, D.D. (1694-1761) on original sin and atonement had much influence in the east of Scotiand, as we iearn from Robert Burns; and such men as William Dalrymple, D.D. (1723-1814) and William M'Gill, D.D. (1732-1807), along with other " moderates," were under suspicion of similar heresies. Overt Unitarianism has never had much vogue in Scolland. The only congregation of old foundation is at Edinburgh, founded in 1776 by a secession from one of the "fellowship societies" lormed by James Fraser, of Brea (1639-1699). The mission enterprises of Richard Wright (\(1764-1836\)) and George Harris (1794-1859) produced results of no great permanence. There are now seven congregations. The Scottish Unitarian Association was founded in 1813 . mainly by Thomas Southwood Smith, M.D., the sanitary reformer. The McQuaker Trust was founded (1889) for propagandist purposes.

Ircland.-Controversy respecting the Trinity was excited in Ircland by the prosecution at Dublin (1703) of Thomas Emlyn (see above), resulting in fine and imprisonment, for tejecting the deity of Christ. In 1705 the Belfast Society was founded for theolegical discussion by Presbyterian ministers in the north, wit h the result of creating a body of opinion adverse to subscription to the Westminster standards. Toleration of dissent, withheld in Ireland till 1719 , was then granted without the requirement of any doctrinal subseription. Next year a movement against subscription was begun in the General Synod of Ulster, culminating (1725) in the placing of the advocates of non-subscription, headed by John Abernethy, D.D., of Antrim, into a preshytery by themselves. This Antrim presbytery was excluded (1726) from jurisdichion, though not from communion. During the next hundred years its members exercised great influence on their hrethren of the synod; but the counterinlluence of the mission of the Scottish Seceders (from 1742) produced a reaction. The Antrim Presbytery gradually became Arian, the same type of theology affected more or less the Southern Association, known since 1806 as the Synod of Munster. From 1783 ten of the fourteen preshyteries in the General Synod had made subscription optional, the synod's code of 1824 left "soundness in the faith " to be ascertained by subscription or by examination. Against this compromise Henry Cooke, D.D. (i788-1868), directed all his powers, and was ultimately (1829) successful in deleating his Arian opponent, Henry Montgomery, LL.D. (1788-1805). Montgomery led a ajonan
which formed (1830) the Remonstrant Synod, comprising three presbyteries. In 1910 the Antrim Presbytery, Remonstrant Synod and Synod of Munster were united as the General Synod of the non-subscribing Presbyterian Church of Ircland. They have 38 congregations and some mission stations. Till 1889 they maintained two theological chairs in Belfast, where Jobn Scolt Porter (1801-1880) was a pioneer in biblical criticism; they now send their students to England for their theological education, though in certain respects their views and practices are more conservative than those of their English brethren.
Irish Unitarian periodical literature began in 1832 with the Bible Christian, followed by the Irish Unitarian Magasime, the Christiam Unitarian, the Disciple and now the Non-subscribing Presbyterian.
See generally R. Wallace's Antutrinitarian Biog. (1850): G. Bonet. Maur's Early Sources of Eng Unii. Christianity, trans. E. P. Hall (1884); A. Gordon's Heads of Eng. Unii. Hist. (1895). (A. Go. \({ }^{\text {a }}\))

Uniled Stoles.-Unitarianism in the United States followed essentially the same development as in England, and passed through the stages of Arminianism, Arianism, anti-tritheism, to rationalism and a modernism based on a large-minded acceptance of the results of the comparative study of all religions. In the carly 18th century Arminianism presented itself in New England, and sporadically elsewhere; this tendency was largely accelerated by the reaction from the excesses of the "Great Awakening " under Jonathan Edwards and Gcorge Whiteficld. Before the War of Independence Arianism showed itself in individual instances, and French influences were widespread in the direction of deism, though they were not organized into any definite utterance by religious bodies.

As early as the middle of the 18 th century Harvard College represented the most advanced thought of the time, and a score or more of clergymen in New England were preaching what was essentially Unitarianism. The most prominent of these men was Jonathan Mayhew (\(1720-1766\)), pastor of the West Cburch in Boston from 1747 to 1766 . He preached the strict unity of God, the subordinate nature of Christ, and salvation by character. Charles Chauncy (\(1705-1787\)), pastor of the First Church from 1727 until his death, the chief opponent of Edwards in the great revival, was hoth a Unitarian and a Universalist. Ebenezer Gay (\(1696-1787\)) of Hingham, Samuel West (\(1730-1807\)) of New Bedford, Thomas Barnard (1748-1814) of Newbury, John Prince (1751-1836) and William Bentley (1758-1819) of Salem, Aaron Bancroft (1755-1836) of Worcester, and several others, were Unitarians.

The first official acceptance of the Unitarian faith on the part of a congregation was by King's Chapel in Boston, which scttled James Freeman (\(1759-1853\)) in 1782 , and revised the Prayer Book into a mild Unitarian liturgy, in 1785 . The Rev. William Hazlitt (father of the essayist and critic), visiting the United States in 1783-1785, published the fact that there were Unitarians in Philadelphia, Boston, Charleston, Pittsburg, Hallowell, on Cape Cod and elsewherc. Unitarian congregations were organized at Portland and Saco in 1792 by Thomas Oxnard, in 8800 the First Church in Plymouth accepted the more liberal faith. Joseph Priestley came to the United States in 1794, and organized a Unitarian Church at Northumberland, Pennsylvania, the same year, and one at Philadelphia in 1796. His writings had a considerable influence.

Thus from 1725 to 1825 a mare tolerant and rational belici was developing in New England, and to some extent elsewhere. The first distinctive manifestation of the change was the inauguration of Henry Ware (\(564-1845\)) as professor of divinity at Harvard College, in 1805 . In the same year appeared Unitarian books by John Sherman (1772-1828) and Hosca Ballou (17711852), and another in 1810 by Noah Worcester (1758-1837). At the opening of the soth century, with one exeption, all the churches of Boston were occupied by Unitarian reachers, and various periodicals and organizations expresed their opinions. Churches were established in New York, Balt more, Washington, Charleston and elsewhere during this period.
William Ellery Chanuing was en-l-h over the Federal Street Congregational Church, Bostwn the zil lew years be
became the leader of the Unitarian movement At first mystical rather than rationalistic in his theology, he took part with the "Catholic Christians," as they called themselves, who aimed at bringing Christianity into harmony with the progressive spirit of the time. His essays on The System of Exelysion and Denurciatian in Religion (1815), and Objections to Unitarion Christianity Considered (r81g), made him a defender of Unitarianism. His sermon on "Unitarian Christianity," preached at Baltimore in 1819, at the ordination of Jared Sparks, and that at New York in 1821, on "Unitarian Christianity most favourable to Piety,' made him its interpreter. The result was a growing division in the Congregational churches, which was emphasized in \(\mathbf{8 2 2 5}\) by the formation of the American Unitarian Association at Boston. It was organized " to diffuse the knowledge and promote the interests of pure Christianity"; and it published tracts and books, supported poor churches, sent out missionaries into every part of the country, and established new churches in nearly all the states. Essentially non-bectarian, with little missionary zeal, the Unitarian movement has grown slowly; and its influence has been chiefly exercised through general culture and the better literature of the country. Many of its clergymen have been trained in other denominations; but the Harvard Divinity School was distinetly Unitarian from its formation, in 1816, to 1870 , when it hecame an unsectarian department of the university. The Neadville (Pa.) Theological School was founded in 1844; and the Unitarian Theological School at Berkeley, California, in 1904 .

Unitarian thought in the United States has passed through three periods. The first, from 1800 to 1835 , was formative, mainly influenced by English philosophy, scmi-supernatural, imperfectly rationalistic, devoted to philanthropy and practical Christianity. Dr Channing was its distinguished exponent. The second, from 1835 to \(\mathbf{1 8 8 5}\), profoundly influenced by German idealism, was increasingly rationalistic, though its theology was largely fla voured by mysticism. In 1865 the National Unitarian Conference was organized, and adopted a distinctly Christian platform, affirming that its members were" disciples of the Lord Jesus Christ." The more rationalistic minority thereupon lormed the Frce Religious Association, "to encourage the scientific study of theology and to increase fellowship in the spirit." The Western Unitarian Association accepted the same position, and based its " fellowship on no dogmatic tests," but affirmed a desire "to establish truth, righteouisness and love in the world." This period of controversy, and of vigorous theological development, practically came to an end soon after 1885 ; and its cessation was assured by the action of the national conference at Saratoga in 1894, when it was affirmed by a nearly unanimous vote: "These churches accept the rcligion of Jesus, holding, in accordance with his teaching, that practical religion is summed up in love to God and love to man. The conference recognizes the lact that its constituency is Congregational in tradition and polity. Therefore it declares that nothing in this constitution is to be construed as an authoritative test; and we cordially invite to our working fellowship any who, while differing from us in belief, are in general sympathy with our spirit and our practical aims." The leaders of this period were Emerson, with his idealism, and Theodore Parker, with his acceptance of Christianity as absolute religion.

The third period, beginning about 1885 , has been one of rationalism, recognition of universal religion, large acceptance of the scientific method and ideas end an ethical attempt to realize the higher affirmations of Christianity. It has been marked by harmony and unity to a degree perhaps found in no other religious hody, by steady growt h in the number of churches and by a widening fellowship with all other progressive phases of modern religion. This last phase bas been shown in the organization of "The International Council of Unitarian and other Libcral Religious Thinkers and Workers," at Boston on the 25th of May 1000, "to open communication with those in all lands who are striving to unite pure religion and perfectliberty, and to increase fellowship and co-operation among them." This council has held jicnnial sessions in London, Amsterdam,

Ceneva and Boaton. Durisg the period since 188 y the influence of Emerson has become predominant, modified by the more scientific preaching of Minot J. Savage, who has found his guides in Darwin and Spencer.

Beyond its own borders the body has obtained recognition through the public work of such men as Henry Whitney Bellows and Edward Everett Hale, the remarkable influence of James Freeman Clarke and the popular power of Robert Collyer. The number of Unitarian churches in the United States in 1909 was 461 , with 541 ministers. The church membership, really nominal. may be estimated at 100,000. The periodicals are The Christian Register, weekly, Botson: Unity, weekly, Chicago; The Unilarian, monthly, New York; Old and New, monthly, Des Moines: Pacific Unitarian, San Francisco.
See Joweph Henry Allen, Our Lideral Movement in Theolozy (Bositon, 1882), and Sequed to our Librral Movement (Boston, 1897): John White Chadwick. Old and New Unitarian Belie (Boston, 1894). and specially William Ellery Channing (1903): Onitarianism: ifs Origin and History, a course of Sixtecn Lectures (Boston, 1895): George Willis Cooke, Unitarion ism in America: a History of us Origin and Derelopment (Boston, 1902); and Unitarian Year Book (Boston).
(C. W. C.")

UMITED BRETHREN IN CHRIST, \({ }^{1}\) an American religious sect which originated in the last part of the 18 th century under the leadership of Philip William Otterbein (1726-1813), pastor of the Second Reformed Church in Baltimore, and Martin Boehm (1725-1812), a Pennsylvanian Mennonite of Swiss descent. Oticrbein and Boehm licensed some of their followers to preach and did a great work, especially through class-meetings of a Wesleyan type; \({ }^{3}\) in 1789 they held a formal conference at Baltimore, and in \(\mathbf{1 8 0 0}\), at a conference near Frederick City, Maryland, the Church was organized under its present name, and Otterbein and Bochm were chosen its first bishops or superintendents. The ecclesiastical polity of the Church is Wesleyan and its theology is Arminian: there is no hard-and-fast rule about baptism. Bishops are elected for four ycars. The first delegated general conference met at Mount Pleasant, Pennsylvania, in 1815, a nd adopted a confession of faith, rules of order and a book of discipline, which were revised in 1885-1889, when women were first admitted to ordination, and when the Conservatives, protesting against the new constitution, withdrew and formed the body now commonly known as the United Brethren in Christ " of the Old Constitution."
The Liberal branch had 3732 organirations in 1906 with a total membership of 274.649. This body carries on missions in West Arrica (since 1855). Japan. China. the Philippines and Porto Rico. It bas a publishing bouse (1834) and Bonebrake Theological Seminary (1871) at Dayton, Obio: and supports Otterbein University (1847) at Westerville, O.: Westfield College (1865) at West ficld, llinois: Leander Clark Colege (1857) at Toledo. lowa: York College (1890) at York, Nebraska: Philomath College (1867) at Philomath, Oregon: Lebanon Valley College (1867) at Annville, l'a.; Camptril College (1864) at Holton, Kansas, and Central University (1907) at Indianapolis. Indiana.

The " old Constitution " body had 572 organizations in 1906 with atotal membership of 21,401 . It has a publishing house at llunting. ton, Indiana.

See D. Berger, Fistory of the Church of the Uniled Brethren (1897). and his sketch (1894) in vol xii. of the " American Church History Series":E. L. Shuey, Handbook of the United Brethren in Christ (1893) : W. J. Shuey Year-Book of the United Brethren in Christ (from 1867): and A. W. Drury, Life of Philip William Otterbcin (1884).

UMITED FRES CHURCH OF SCOTLAND, a religious organization, representing the union made in 1900 between the Free Church of Scotland (except a dissentient section who sepirated of and retained the name of Free Church) and the United Presbyterian Church. (See Free Church of Scotland and United Presbyterlan Churchi.)

The first moderator was Dr Rainy (q.0.). The Free Church brought into the union 1077 congregations, the United Presbyterians 509; the revenue of the former amounted to \(£ ; 706,546\), of the latter to \(\mathrm{f36}, 743\). The missionaries of both churches

\footnotetext{
\({ }^{2}\) The sect is not to be conlused with the Moravian Brethren (q.v.), whose official name, Unilas Fratrum, is commonly rendered in English " United Brethren.
\({ }^{2}\) Otterbein was an intimate friend of Francis Asbury and was greatly influenced by him.
}
joined the union, and the United Church was then equipped with missions in various parts of India, in Manchuria, in Africs (Lovedale, Livingstonia, de.), in Melanesia and in the West Indies. The formula which was adopted allowed for development of doctrine, the candidate atating that he believes " in the doctrine of this Church, set lorth in the Conlession of Falth," the Church being thus set above the coniession. The Church has three divinity halls, at Glasgow, Edinburgh and Aberdeen, served by scventeen professors and five lecturers.

The minority of the Free Church who had refused to join the union lost no time in testing the legelity of the act of the majority in entering it. Their summons, dated the rath of December 1900, claimed that in uniting with the United Presbyterian Church, which did not hold the principles of tbe Free Church, the majority had forfeited tbe right to the property of the Free Church, which must be judged to belong to the minority who remained faithiul to the prineiples of the Free Church and were that Church. In the Scottish courts the case was decided in favour of the union by Lord Low on the 9th of August 1g01, and by the second division of the Court of Session on the 4 th of July tgo2, it being held in both trials that the old Free Church had a right within limits to change its views and to do by its Assembly what had been done. The proceedings before the House of Lords on appeal were protracted by the death of one of the judges, which involved the necessity of a second hearing, and it was not till the ist of August 1904 that the verdict was pronounced. By a majority of five to two the House of Lords reversed the decision of the Court of Session, allowed the appeal, and found the minority entitled to the funds and property of the Free Church. It was held that the majority of an independent church, adopting new standards of doctrine or ceasing to hold essential or fundamental doctrines of the church, forfeit the right to tbe property, which remains with the minority holding the church's original doctrine: also that the establishment primciple was a fundamental doctrine of the Free Church, and that by entering a union on terms leaving that doctrine an open question, the majority had violated the conditions on which the property of the Free Church was held. On the plea that by the Declaratory Act of 1892 the Free Church had abandoned its doctrinal position, argument was heard, but the House of Lords did not decide.

Few legal decisions have occasjoned so great constemation or such serious practical difficulties. At first sight it deprived the Free Church section of the United Church of all its material goods-churches, manses, colleges and missions, even of the provision for the old age of the clergy. It appeared to divert large amounts of clurch property from the uses for which it had been provided, and to hand it over to a body with which the United Church was decply out of sympathy and which could have little prospect of making effective use of it. A conference held in September between representatives of the United Free and of the (now distinct) Free Chuich, in order to come to some working arrangement in view of the decision, found that no basis for such an agreement could be arrived at. Nothing remained but to invoke the intervention of parliament to put an end to an impossible situation. A convocation of ministers and elders of the United Free Church, held on the 1 sth of December, decided that the union should go on, and resolved to" take every lawiul means of appealing to the nation and to parliament to rescue the funds and buildings of the Church for the snered purposes for which they had been provided." The Free Church could not refuse to consent to this, and in December a commission was appointed, consisting of Lord Elgin, Lord Kinnear and Sir Ralph Anstruther, to inquire into matters connected with the two churches, while the question of interim possession was referred to Sir John Cheyne, as commissioner, for inquiry and action. The commission sat in public, and after hearing evidence on both sides, issued their report in April rgo5. They reported that the state of feeling on one side and on the other had made their work difficult. They had concluded however that the Free Church

\section*{598 UNITED KINGDOM OF GREAT BRITAIN AND IRELAND}
was unahle in many respects to carry out the purpooes of the trusts, which, under the verdict of the House of Lords, was a condition of their holding the property, and that there was a case for parliamentary interference. They recommended that an executive commission should be set up by act of parliament, in which the whole property of the Free Church, as at the date of the union, should be vested, and which should allocate it to the United Free Church, where the Free Church was unable to carry out the trust purposes. The commission was to entertain suggestions which might be made to them for friendly arrangements.

The Churches (Scotland) Act, which gave effect to these recommendations, was passed on the rith of August rigos. It contained (sce Scotland, Church of) a clause (No. s) providing for the relaxation of subscription in the Established Church, parliament thus interesting itself in the affairs of all Presbyterian churches. The commissioners were those on whose report the act was formed, with the addition of two others. In October 1906 the commission intimated that the Assembly Hall, with the New College Buildings and the Iligh Church, were to be the property of the United Free Church, the Free Church receiving the offices in Edinburgh, and a tenement to be converted into a college, while the library was to be vested in the United Free Church, but open to members of both churches. After having occupied class-rooms in the university for two sessions, and heid an assembly (1905) in another hall, the United Free Church in 1906 again occupied in its own right the historic buildings of the Free Church. All the foreign missions and all the continental stations were adjudged to the United Free Church. The allocation of churches and manses was a slow business, but in 1908 over 100 churches had been assigned to the Free Church. Some of the dispossessed United Free Cburch congregations, most of them in the Highlands, found shelter for a time in the parish churches; but it was early decided that in spite of the objection against the erection of more church buildings in districts where many were now standing empty, 60 new churches and manses should at once be built at a cost of about \(£_{150,000}\) (A. M. \({ }^{\circ}\))
the union of the two crowns, and the adoption of the name of Great Britain for the common country (Teulet, M hm . Caide \({ }^{4} \boldsymbol{M}\). de la Mothe, Dec. 20). But in England the innovation at first met with great opposition. Various objections, sentimental and practical, were urged against it in parliament; and the judges, when appealed to by the king, deciared that the adoption of the title would invalidate all legal processes. At length, on the 20th of October 1604, the king, weary of the discussion, cut the knot by assuming the title hy royal proclamation, and in due course the inscription "J. D. G. Mag. Brit. F. et H. Rex" appeared on his coins. In November 1604 we find the king instructing the lords commissioners of the Gunpowder Plot to try and discover if the prisoner was the author of a most " cruel pasquil " against him for assuming the name of Britain.
For further details see Calendar of State Papers, Domestic Series; and J . Spedding, Letlers and Life of Lord Bacon, vol iii. (London, 1861-1874).
England and Wales, Scotiand and Ireland are politically united under a parliament (q.o.). consisting of the king, the House of Lords' and the House of Commons, \({ }^{2}\) the prerogatives of the Crown being exercised through responsible ministers The executive government is carried on under the supervision of the ministers of state (sec Ministry), the more important of whom are united in the cabinet (q.o.). The first minister of the Crown or prime minister (\(q . v\). .) is appointed by the king, and having made choice of his colleagucs, recommends them for appointment. (See the separate articles on the various offices. For the judiciary system, see Court; Appent; \&c.)
The table at the foot of this column shows the imperial revenue and expenditure, with the amount of revenue per head of population of the United Kingdom for varinus years. The financial year now ends on the 31 st of March of the year following that quoted. The figures before 1907 did not include the revenue assigned to local purposes The deficit in 1909 was due to delay in passing the Finance Act.

Year ending March 3 Ist.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1891. & 1896. & 1901. & 1906. & 1910. \\
\hline Funded debt , . . & \[
\underset{579,472,082}{\&}
\] & \[
\underset{589.546,878}{£}
\] & \[
\underset{551,182,153}{f}
\] & \[
\underset{614,047,429}{C}
\] & \[
\frac{C}{614,868,547}
\] \\
\hline Terminable annuities & 66,550,579 & 49,183,748 & 60.154.800 & 43,459.548 & 35,876,861 \\
\hline Unfunded debt \({ }^{\text {d }}\). & 36,140,079 & 9.975 .800 & 78,133,000 & 65,713.000 & 62,500,000 \\
\hline Other capital liabilities* & 1.317,719 & 3.979.940 & & & 49.218.217 \\
\hline Total gross liabilities of the state & 683,480,459 & 652,286,366 & 703.934.349 & 788,990,187 & 762,463,625 \\
\hline Asseto- & & & & & \\
\hline \begin{tabular}{l}
Suez Canal shares \\
Other assets
\end{tabular} & \(3.532,040 \dagger\)
\(1,743.397\) & 22,627,000 \(\ddagger\)
939.354 & 25,806,000 \(\ddagger\) & \(\underset{\text { 3, }}{\mathbf{3 1 , 0 8 0 , 0 0 0}}\) & \(35,295,000\)
\(4,118,352\) \\
\hline Exchequer balances at banks of England and Ireland & 6,370,897 & 8.975.201 & 5.596,918 & 10,451,487. & 4,118,352
\(2,831.248\) \\
\hline
\end{tabular}
- These are in respect of sums borrowed under certain acts.
\(\dagger\) Nominal value.
\(\ddagger\) Estimated market value on the 3Ist of March each year.

UNITED RINGDOM OF GREAT BRITAIN AND IRELAND: the official titie, since the 15 st of January 880 s , of the political unity composed of England and Wales, Scolland and Ireland. "Great Britain" was employed as a formal designation from the time of the union of the kingdoms of England and Scotland in 1707. Although the name (which apparently had its origin in Britannia Major, the name given to the island to distinguish it from Britannia Minor or Brittany) bad, in earlier times, been often used both by English and by foreign writers, cspecially for rhetorical and poetical purposes, it was not till after the accession of James I. that it became a recognized part of the royal style. Its adoption was due to the king himself, who was anxious to give expression to the fact that he was sovereign of the undivided island, and not only of England or Scotland. As early as \(: 559\) the Scottish congregation had formally proposed
i See also Britain; British Empire; England; Ireland; Scotland; Wales; \&c.
\begin{tabular}{|c|c|c|c|}
\hline Year. & Total Revenue. & Total Expenditure. & Proportion of Revenue per head. \\
\hline 1861 & \[
{ }_{70,28}^{\&_{3.674}}
\] & \[
\underset{72,792,059}{f}
\] & \({ }_{2}^{2} 880\) \\
\hline 1871 & 69.945,220 & 69,548,539 & 245 \\
\hline 1881 & 81,872,354 & \(80.938,990\) & 278 \\
\hline 1891 & 89,489.112 & 87,732,855 & 262 \\
\hline 1901 & 130,384,684 & 183.592,264 & 3210 \\
\hline 1902 & 142,997.999 & 195.522 .213 & 31211 \\
\hline 1903 & 151,551,698 & 184,483.708 & \(\begin{array}{lll}3 & 18 & 6\end{array}\) \\
\hline '7904 & 141,545.597 & 146,961,136 & 363 \\
\hline 1905 & 143.370.404 & 141.956 .497 & \[
364
\] \\
\hline 1906 & 143,977.575 & 140.511.955 & \[
3511
\] \\
\hline 1907 & 156.537.690 & 151,812,094 & 365 \\
\hline 1908 & \$51,578.295 & 152,292,395 & 3.80 \\
\hline 1909 & 131,696.456 & \(157,944.611\) & 2185 \\
\hline
\end{tabular}

\footnotetext{
*Sce Peerage. *Se Representation and Parliamiott.
}

\section*{UNITED KINGDOM OF GREAT BRITAIN AND IRELAND 599}

In separate articles throughout this Encyclopaedia the main subjects of interest in connexion with British institutions are fully dealt with；and it is only necessary here to give such details as are needed to supplement those given under the subject－ heading．See Agricclture；Nayy（also Ship and Simp－B uilding）； Education；Englist Finance；Enclish History；Civil Ser－ vice；National Debt；Police；Poor Law；\＆c．A separate section，however，is devoted to the army，the constitution of which in 1910 is described；the history is given under Agmy．

National Debt（q．v．）．－The tahle on the preceding page shows the position of the national deht at quinquennial intervals during 1891－1910．

Area and Popolation．－The United Kingdom has an area of \(\mathbf{1 2 0 , 6 5 1} \mathrm{sq} . \mathrm{m}\) ．，and at the census of 189 I had a population of \(37,732,922\) and in 1901 of \(41,458,721\) ．If the islands in British sess are included，the area is increased to 120,953 sq．m．，and the population to \(41,600,091\) ．The main divisions are as follows：－
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Area ＊9． m} & \multicolumn{2}{|c|}{Population．} \\
\hline & & 1891. & 1901. \\
\hline England and Waies & 58，32 4 & 29，002．525 & 32，527．843 \\
\hline Scotland ．．．．． & 29.796 & 4，025，647 & 4，472，103 \\
\hline Ireland \({ }^{\text {a }}\) ． & 32.531 & 4．704．750 & 4．458．775 \\
\hline Islands in the British seas． & 302 & 147.842 & 150.370 \\
\hline
\end{tabular}

Vital Statistics．－The following table institutes a comparison between the birth－rates per thousand of the population in the United Kingdom and ecrtain other countrics，at intervals（so far as possible）of five years，adding the figures for other ycars in specific years when there was marked fluctuation：－

The number of marriages（a）and the proportion of persons married per thousand of the population（b）are thus shown：－
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year． & \multicolumn{2}{|l|}{England and Walex} & \multicolumn{2}{|l|}{Scotland．} & \multicolumn{2}{|l|}{Ireland．} & \multicolumn{2}{|l|}{United Kingdam．} \\
\hline & （a） & （b） & （a） & （b） & （a） & （b） & （c） & （b） \\
\hline 1896 & 242.764 & 157 & 30，270 & 14.2 & 23.053 & 10－2 & 296，089 & 150 \\
\hline 1901 & 259，400 & 159 & 31，387 & 14.0 & 22,564 & 10.2 & 313.351 & 151 \\
\hline 1906 & \({ }^{269.734}\) & & & 14.0 & & 10.3 & 325，414 & 149 \\
\hline 1909 & 260，259 & 146 & 30，092 & 12.3 & 22，769 & 104 & 313，120 & 139 \\
\hline
\end{tabular}

Emigration－The following tahle shows the number of passcngers，distinguishing English and Welsh，Scottish and Irish，who left the United Kingdom for extra－European countries in 1895,1900 and 1005，and the total for 1900 ，and in certain other years in which the numbers show marked fluctuations：－
\begin{tabular}{|c|c|c|c|c|}
\hline Year． & English and Welsh． & Scottish． & Irish． & Total． \\
\hline 1895 & 112.538 & 18，294 & 54．349 & 185．181 \\
\hline 1898 & 90，679 & 15.570 & 34.395 & 140，644 \\
\hline 1900 & 102.448 & 20，472 & 45，905 & 168，825 \\
\hline 1904 & 175.733 & 37，445 & & \\
\hline 1905 & 170,408
210.765 & 41,510
43 & 50.159
52.210 & 262,077
325,137 \\
\hline 1906 & 219.765 & 53，162 & 52.210 & 325，137 \\
\hline
\end{tabular}

In 1909 the total number to British dominions was 163.594 and the total number to other extra－European countries wat 125，167．

Occupalions．－The following table shows the occupations of the people（excluding children under ten years of age）as
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 188 I ． & 1886. & 1891. & 1896. & 1901. & \multicolumn{2}{|l|}{1905，1906．} \\
\hline Russia in Europe＊．．．． & 47.8 （1882， 50.4\()\) & 46.5 & 48.8
42.3 & 49.7
40.5 & 47.8
37.8 & & \(\overline{36.0}\) \\
\hline & \(42 \cdot 9\)
37.5
（1882．
38．9） & 45.6
38.1 & \begin{tabular}{l}
42．3 \\
\hline 38.3
\end{tabular} & 40.3
38.0 & 37.8
36.6 & 33－7 & 36.0 \\
\hline Germany & 37.0 & 37.0 & 37.0 & \(36 \cdot 3\) & 35.7 & 33.0 & － \\
\hline Japan \({ }^{\text {dolland }}\) & \(25 \cdot 6\)
35 & 27．3（1889，30－2） & 26.7
33.7 & 30.0
32.7 & 32.7
32.3 & \(30 \cdot 6\) & \(\overline{70.4}\) \\
\hline \(\underset{\text { Denmark }}{ }\)（ & 35.0
\(32-2\) & 34.6
32.4 & \({ }_{31 \cdot 0}^{33 \cdot 7}(1892,29.6)\) & 32.7
30.5 & 32.3
29.7 & 二 & 30.4
28.5 \\
\hline Switzerland． & 29.8 & －7．8 & 28.2 & 28.1 & 29.1 & 27.4 & － \\
\hline United Kingdom & 32－5 & 31．5（1890，29－2） & 30.4 & 29.0 & 38：0 & & 26.8 \\
\hline England & 33.9 & \(32.8(1890,30 \cdot 2)\) & 31.4 & 29.6 & 28.5 & 二 & 27.1 \\
\hline Scotland ．：： & 33.7
34.5 & \(32 \cdot 9(1890,30 \cdot 4)\)
\(23 \cdot 2(1890,22.3)\) & \(31 \cdot 2(1894,299 \cdot 9)\)
\(23 \cdot 1(1892,22 \cdot 5)\) & \(30 \cdot 4\)
23.7 & 29.5
22.7 & 二 & 27.9
23.6 \\
\hline & & & & & & & \\
\hline Norway． & 30.6 & & 30.9 & 30.2 & 20.6 & － & 26.3 \\
\hline Sweden ．－ & 29.1 & 29.8 & 28.3 & 27.2 & 27.0 & 二 & \(25 \cdot 7\) \\
\hline Eelgiunt ．．．． & 31.8 & 29.9 & 30.0 & 29.0
22.5 & 29.4
22.0 & 二 & 25.7
20.6 \\
\hline France ．．．．．．． & 24.9 & 23.9 & 22.6 & 22.5 & 22.0 & － & 20.6 \\
\hline
\end{tabular}

The number of births in the United Kingdom in 1909 was 1．146，118，giving a rate per thousand of 25.5 ．
－Not including Finland

The death－rate is similarly treated：－
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 1881． & 1886. & 1891. & 1896. & 1901. & 1905． 1906. \\
\hline Denmark & 18.3 & 18.1 & 20 & 15.7 & 15－8 & 13 \\
\hline Norway & 17.0 & 16.2 & 17.5 & 15.1 & 14.9 & 13.7 \\
\hline Sweden & \begin{tabular}{l}
17.7 \\
31 \\
\hline 1
\end{tabular} & 16.6
21.8 & 16.8 & 15.6 & \(16 \cdot 1\) & 14.4 \\
\hline Holland \(\begin{aligned} & \text { United Kingdom．}\end{aligned}\) & 21.5
18.7 & 21.8
19.2 & 20.7
20.0 & 17.2
16.9 & \begin{tabular}{|l}
17.2 \\
17.1
\end{tabular} & 14.8 \\
\hline England & 18.9 & 19 & 20.2 & 17－1 & 16－9 & \\
\hline Scoiland & \(19 \cdot 3\) & 18.9 & 20.7 & 16.6 & 17.9 & 16.0 \\
\hline Ireland ．． & 17.5 & 17.8 & 18.4 & 16.7 & 17.8 & 17.0 \\
\hline Belgium & 212 & 21.3 & 21.2 & 17.5 & 17.2 & － 16. \\
\hline Switserland & 22.4 & 20.7 & 20.6 & 17.8 & 18.0 & 17.9 \\
\hline Cermany & 25.5 & 26.2 & 23.4 & 20.8 & 20.7 & 19.8 \\
\hline France． & 22.0
18.7 & \(22 \cdot 5\)
24.4 & 22.9 & 20.0 & 20.1 & － 22.09 \\
\hline Hapan & 18.7
34.4 & 24.4
31.7 & \(21 \cdot 0\)
33.1 & 21.4
28.9 & 20.4 & 22．0－818 \\
\hline Aumtia & 30.5 & 20.5 & 28.1 & 26.3 & 24.0 & 5.0 \\
\hline Rumia in Europe＊． & \(33 \cdot 2\) & 31.2 & 34.6 & 32.8 & 32．1 & 5 － \\
\hline
\end{tabular}
＊？ot including Fialand．
The deathy in the United Kingdom in 1909 numbered 667．765， the rate per thousand being 14.8 ．
distinguished in five great orders，according to the census of 1901 ：－
\begin{tabular}{|c|c|c|c|}
\hline & England and Walcs． & Scocland． & Ireland． \\
\hline Prolessional Domestic & \[
\begin{array}{r}
804.427 \\
1,994.197
\end{array}
\] & \[
\begin{aligned}
& 101,061 \\
& 201,230
\end{aligned}
\] & 131.035
219.418 \\
\hline Commercial \({ }^{\circ}\) & 1，858，454 & 245.715 & 97，889 \\
\hline Agricultura！ & 1．152．495 & 237.311 & 876，062 \\
\hline Industrial & 7．534．994 & 1．197，495 & 639.413 \\
\hline
\end{tabular}

Agricul／ure．－The following tahle illustrates broadly the difference in the position of agriculture in Great Britain and in Ireland：－
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Percentage to total area of area－} & \multicolumn{2}{|l|}{Great Britain．} & \multicolumn{2}{|r|}{Ireland．} \\
\hline & 1890. & 1909. & 1890. & 1909. \\
\hline Cultivated & 57\％ & 56.6 & 73．1 & \(70 \cdot 3\) \\
\hline Under grain cropa ．．． & 14.1 & 12.4 & \(7 \cdot 3\) & \(6 \cdot 1\) \\
\hline Ueder green crope．．．． & \(5 \cdot 8\) & \(5 \cdot 4\) & \(5 \cdot 8\) & \(5 \cdot 0\) \\
\hline Under errames and other crope． & \(8 \cdot 5\) & 79 & \(5 \cdot 9\) & 11．2 \\
\hline In permanepl pasture ．． & 28.2 & \(30 \cdot 2\) & \(53 \cdot 4\) & \(43 \cdot 1\) \\
\hline
\end{tabular}

\section*{600 UNITED KINGDOM OF GREAT BRITAIN AND IRELAND}

Minerals and Mining. - The mincral production of the United Kingdom reached a total value in 1890 of \(£ 100,802,657\) and in 1909 of \(£ 1 \mathrm{r} 9.394,486\), with a maximum during that period of £ \(160,605,15+\) in 1000 and a minimum of \(\{73,024,066\) in 1803 . These figures include pig-iron produced from foreign ores. About \(73 \%\) represents the value of the coal output. The figures for the more important minerals are as follows:-
\begin{tabular}{|c|c|c|c|}
\hline Description of Minerals. & 1900. & 1909. & Value, 3909. \\
\hline & Tons. & Tons. & 2 \\
\hline Coal. & 225,181,300 & 263.774.3:2 & 106,274,900 \\
\hline Iron ore & 14,025,208 & 14.979 .979 & 3,089,777 \\
\hline Clay and shale. & 14.049 .694 & 14.067 .810 & 1,718,056 \\
\hline Sandstone & 5.019 .874 & 4.600,084 & 1.339.106 \\
\hline Slate. - \({ }^{\text {a }}\) & 585.859 & 1402,184 & 1,007,013 \\
\hline Limestone (not chalk) & 15.905 .477 & 11,811,12? & 1,226.967 \\
\hline Igneous rocks . & 4.634 .301 & 6.283 .297 & 1,235.046 \\
\hline Oil shale. & 2,282,221 & 2,967,057 & 815.937 \\
\hline Tin ore (dressed) & 6,800 & 8,289 & 617.376 \\
\hline Salt. . & 1,861,347 & 1.822 .744 & 548.896 \\
\hline
\end{tabular}

Gold ore, manganese ore and uranium ore are produced in small quantities, and the list of minerals worked in the United Kingdom also includes chalk, lead, alum, phosphate of lime, chert and flint, gravel and sand, zine ore, gypsum, arsenic, corper, barytes, wolfram and strontium sulphate.

Metals were obtained from the ores as follows:-
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Description of Metal.} & 1900. & \multicolumn{2}{|r|}{1909.} \\
\hline & Quantity. & Quantity. & Value (average market price). \\
\hline Iron & 4,666.942 tons & 4,802,163 tons & \[
\underset{15.559 .253}{f}
\] \\
\hline Tin & 4,666.942 \({ }^{4.268}\) & 4.802, 5.199 & 695.546 \\
\hline Lead & 24,364 \(\quad\). & 22,463 " & 298,945 \\
\hline Zinc & 9.066 & 3.818 י' & 87.146 \\
\hline Copper & \({ }^{765}\) & 435 ". & 27,162 \\
\hline Gold & 194.004 \({ }^{\text {oz. }}\) & 1,210 oz. & 4,400 \\
\hline Silver & 190,850 ., & 142,146 & 14.030 \\
\hline
\end{tabular}

The total number of persons employed in and about all the mines of the United Kingdom in 1901 was 839,178 , and in 1909 1,126,372.

The workers were thus distributed between the three kingdoms and the principality in 1905:-
\begin{tabular}{|l|c|c|c|}
\hline & Coal Mines, \&c. & \begin{tabular}{c}
Metalliferous \\
Mines (a).
\end{tabular} & Quarries (b). \\
\hline Enyland & 606,206 & 19,561 & 60,725 \\
Wales & 137,124 & 7.333 & 17,277 \\
Scothand & 114,94 & 974 & 12,187 \\
Ireland & 749 & 733 & 4.464 \\
\hline
\end{tabular}

The total figures given above include (a) 550 and (b) 166 workers in the Iste of Man; and the figures quoted for production include that of the isle.

The production of coal in Great Britain, though marked by coat. fluctuation, has, on the whole, largely increased. and in soor the output was \(42 \%\) greater than that of 188 s. The maximum quantity extracted in any one year
\begin{tabular}{|c|c|c|}
\hline & 1900. & 1909. \\
\hline Cumberland & Tons. & Tons. \\
\hline Cumberland . & 2,022,327 & 2.309,370 \\
\hline Derby . & 15,243,031 & 16,869,347 \\
\hline Durham & 34,800,719 & \(41,240,612\) \\
\hline Gloucester & 1,578,386 & 1.486 .526 \\
\hline Lancashire & 24,842,208 & 23,705,387 \\
\hline L-eicester & 2,106,343 & 2,661,606 \\
\hline Monmoulh & 9,818,829 & 13.204.357 \\
\hline Northumberland & 11,514.521 & 14.013 .135 \\
\hline Nottingham & 8,626,177 & 11,106,702 \\
\hline Somerset & 1,046,792 & 1,140,818 \\
\hline Stafind & 14,222,743 & 13.517 .101 \\
\hline Warwick & 2.957 .490 & 4.4.47.978 \\
\hline York & 28,247,249 & 35,896,623 \\
\hline Carmarthen & 1.333.880 & 1.950.429 \\
\hline Denbigh. & 2.447,092 & 2.556,612 \\
\hline Clamorgan & 27,686,758 & 34.461 .631 \\
\hline
\end{tabular}
between 1800 and 1910 was \(267,830,062\) tons in 1907 , and the minimum \(164,325,795\) in 1893 . The maximum estimated value, however, was \(\left\{121,65^{2}, 596\right.\) for the \(225,181,300\) tons raised in 1900; the value in 1907 being \(\{120,527,378\).

In the chief coal-producing counties of England and Wales the quantity raised in 1900 and in 1909 will be found in the table at the fool of preceding column.
Thus it appears that of the coal raised in England the county of Durhans contributes about \(22 \%\). Yorkshire \(17 \%\) Lancashire \(16 \%\) Stafford and Derbyshire each about \(9 \%\) and Northumberland \(7 \%\) : while of the coal raised in Wates \(85 \%\) is contributed by the county of Glamorgan; and that the coal production of England and Wales together constitutes, in quantity and value, \(85 \%\) of the whole production of the Lnined Kingdom.
The export of coal grearly increased on the whole during the period 1800-1909. The following table shows this: the figures for 1893 are given as the lowest during the period. The connage of coke and patent fuel is included in the totals:-
\begin{tabular}{|c|c|c|c|}
\hline Year. & Tons. & Year. & Tons. \\
\hline 1890 & \(30,442,839\) & 1900 & \(46,098,228\) \\
1893 & \(29.031,955\) & 1905 & 49.359 .272 \\
1895 & \(33.101,452\) & 1909 & \(65,694,267\) \\
\hline
\end{tabular}

The chief recciving couniries are, in order, Germany; France, Italy, Swerlen, Spain, Russian Empire, Denmark, Egspt, Holland. Argentina. Norway and Brazil.
The annual output of iron ore in the United Kingdom bas on the whole decreased since 1882 . In that year it reached a maximum of \(18,031,957\) tons; it then fell off to \(13,098,341\) tons in 1887 , rose in the two years follow- Iroe. ing to nearly \(15,000,000\), fell to little over \(115,000,000\) in \(1893-\) 1893, rose fairly steadily to \(14,461,330\) in 1800 , stood in 1900 at \(14,028,208\) tons of a value of \(£ 4,224,400\), and then showed a further fall and rise, untill in 1005 the tonnage was \(14,500,703\), and the value \(\left\{3,4^{82}, 184\right.\).
The iron ore raised in the various countries, and in the most productive countics, is here shown:-

The number of furnaces in blast (fractions showing the proportion of the year furnaces were in blast) was: in England 2988 , Wales 19名: Scotland 85\%, total 403గ. The intal number of existing furnaces in 1900 was: in England 456. Wales 42. Scotland 106; total 604: so that \(33 \%\) of the number stood unused. In 1905 furnaces in blast numbered: England \(244 \frac{1}{2}\). Wales 13 h, Scothand 87. 12 : total \(345 \%\) : and those existing: in England 412, Wales 31, Scolland 1os: !olal 54 : and the percentage unused was thus 36 .
In 1888 the imports of iron ore amounted 103.562 .071 tons, in 1898 to 5,468,396 tons, in 1899 to \(7,054.57 \mathrm{k}\) rons, in 1900 to 6,297.953 tons, in 1901 to \(5.548,888\) rons and in \(1909106,361,571\) tons, of which the bulk was imported from Spain. The amount of pig-iron obtained found its minimum, during the period 1890-1910. of 6,976.990 tons in 1893. and is maximum of \(10,183.860\) in 1906, and in 1905 the quantity produced from forcign ores \((4,847,899\) tons) for the first lime exceeded that produced from British ores (\(4.760,187\)).

The quantity of lead ore produced within the United Kingdom has decreased. It is now less than one-half of the output of about \(\mathbf{~} 877\), and the valuc has decreased more than propertionately. In the period \(2890-1008\) the maxi- Leed num annual production of metallie lead from British ore was 33.500 tons in 8800 , valued at \(£ 449,826\); the production fluctuated somewhat, but generally fell, 10 the minimum of 17.704 tons in 1002 (value \(\{108.875\)). The most productive counties are Flint, Durham and Derby; the ore obtained in the Isle of Man is increased in value by the silver it contains.
1 These counties supply tie richest ore in the United Kingdom.
In these cases the greater proportion of ore is from mines also producing coal.

\section*{UNITED KINGDOM OF GREAT BRITAIN AND IRELAND 601}

The annual output of tin ore, which in 1878 amounted to is,04s tons, valued at \(\{530,737\), fell to 12,898 tons in 188 r , though the value in that year rose to 2697,444 . In. During the years \(1882-1892\) the average output was over 14,000 tons, and its average value about \(\{770,000\), but in 1893 a decline began in the output (not however accompanied closely by a decline in the value), slightly relieved about 1905.
\begin{tabular}{|c|c|c|}
\hline Year. & Tin Ore. & Value. \\
\hline & Tons. & 6 \\
1893 & 13.689 & 837.053 \\
1900 & 6.800 & 53.604 \\
1905 & 7.201 & 574.883 \\
1909 & 5.193 & 617.376 \\
\hline
\end{tabular}

Tin ore is obtained almost exclusively in Cornwall.
Like others of the less important mining industries, copper mining in the United Kingdom has declined. In 1881 the output of ore amounted to 52,556 tons, in 189r to 9158 tons, in 1893 to 5576 tons, in 1905 to 7153 tons,
f.32,696 and yielding 716 tons of metal by smelting. valued at f,32,696 and yielding 716 tons of metal by smeiting. (chiefly from Cornwall) and 1146 from Ireland (Wicklow, \&c.). Copper precipitate is taken from water pumped up from old copper mines on Parys Mountain in Anglesey.
Zinc ore is obtained chiefly from mines in Cumberind, Wales and the Isle of Man. In I88I the output reached 35.527 tons, valued at [1t0,043; in 1801 the output was only 22,216 tons, but its value was fir 3,445 . In 1897 the quantity was 19,278 tons, and the value \(\{69,134 ;\) but in 1898 the price had risen so that the output of 23,552 tons was worth [iri7,784. In 1900 the output of 24,675 tons was worth C 97,606 ; and in 1905 that of 23,90 tons was worth \(\{139,806\).

During the period \(1890-1905\) gold mines were worked continuously in Merionethshire. Notices of the discovery of gold elsewhere (as in the Forest of Dean, Argyllshire and Ircland) have appeared from time to time
The principal fluctuations in production were as follows:-
\begin{tabular}{|c|c|c|c|}
\hline Year. & Ore. & Gold. & Value. \\
\hline & Tona. & O2 & 6 \\
1890 & 575 & 206 & 675 \\
1891 & 14.117 & 4,008 & 13.700 \\
1893 & \(4 .+489\) & 2.309 & 8.691 \\
1895 & 13.266 & 6.600 & 18.570 \\
1898 & 703 & 395 & 1.229 \\
1900 & 20,802 & 14.004 & 52.147 \\
1902 & 29.953 & 1.181 & 14.570 \\
1904 & 23.203 & 19.655 & 73.925 \\
1903 & 15.981 & 5.797 & 21.222 \\
1908 & - & 915 & 3.311 \\
\hline
\end{tabular}

It should be noted also that from imported cupreous iron pyrites, copper, gold and silver are extracted at sonce fiftecn metal extraction works in Great Britain. From 386.858 cons of burnt ore in 1900 there were obtained 13.925 toms of copper, 1777 oz of gold and 309,486 oz. of silver: and in 1905 the figures were: ore, 402,863 tons; copper, 14.502 tons; gold, 1850 02.; silver, \(322,29102\).

Textile Industries.-The most important of the textile industries of Great Britain is cotton manufacture. The quantities coctain of raw cotton imported, exported and retained for consumption for varions years during the period 1890-191a were as follows:-
\begin{tabular}{|c|c|c|c|}
\hline Year. & Imported. & Exported. & Retained. \\
\hline & It & It & Ib \\
\hline 1890 & 1.793.495.200 & 214.641.840 & 1.578.853.360 \\
\hline 1893 & 1,416,780,064 & 224,621.488 & 1.192,158.576 \\
\hline 1895 & 1.757,042.672 & 203.284.592 & 1.553 .758 .080 \\
\hline 1898 & 2,128.548.352 & 303.072 .464 & 1.925 .475 .888 \\
\hline 1900 & 1,760.206.672 & 215.747 .168 & 1.544 .459 .504 \\
\hline 1905 & 2,203,595,530 & 283.177 .888 & 1.930 .417 .632 \\
\hline 1907 & 2,386.901,104 & 330.352,064 & 2,056.549.040 \\
\hline 1909 & 2,188,761,456 & 268.633.456 & 1.920.128,000 \\
\hline
\end{tabular}

Dunag the same period the minimum and maximum amount of rat cotton (in D) imported into the United Kingdom from the prixcigal conntrie whence it is exported was an lollows: United

States of America (1893), (1,055.855.360; (1898), 1,805,353.424i Esypt (1890), 181,266,176; (1907), 423,052,448: British possesscons in the East Indien (1898), 27,349,728; (1890), 238,746,704; (1909). 75.621,168: Brazil (1899), 5.464.592; (1906). S4.362,000; Peru (1891). 6,175,344; (1909), 24.413,648. In 1905 there were imported 7,941,920 th rom Chile (only 195.328 in 1909); 6,033.104 \$1 from Canada (this also fluctuates greatly: \(1,801,072\) in 1909): \(1,241.408\) ib from British West Africa (\(4,985,232\) in 1905): 1,126.720 it from the British West Indics and Guiana (\(3,022,208\) in 1908).
According to the census returns of 1901 there were 546,065 persons employed in cotton factories, 199,920 male and 346,145 femate. Of the total number of workpeople, 529,131 were employed in England and Wales, 14,805 in Sxotland and a12 in Ireland. In 1907 the total had risen to 576,820 (217,742 males and 359,078 females).

The extent of the woollen and worsted manufactures of the United Kingdom is indicated by the following table showing the imports and exports of wool and the quantity retained for use in various years (1800-1905):-
\begin{tabular}{|c|c|c|c|}
\hline Year. & Imports. & Exports of imported Wool. & Retaised. \\
\hline & \[
633,028,131
\] & \[
\underset{340,712,303}{\mathrm{tb}}
\] & \[
\frac{\mathrm{b}}{292,315,828}
\] \\
\hline 1895 & \[
\begin{aligned}
& 633,028,1111 \\
& 775,379,063
\end{aligned}
\] & \[
\begin{aligned}
& 340,712,303 \\
& 404,935,226
\end{aligned}
\] & \[
\begin{aligned}
& 292,315,828 \\
& 270,
\end{aligned}
\] \\
\hline 1898 & 699.555.048 & 283.317,748 & 116,237,300 \\
\hline 1900 & 558,950,528 & 196.207,261 & 362,743.267 \\
\hline 1905 & \(620.350,885\) & 277,864.215 & 312,486,670 \\
\hline 1907 & 764.286,625 & 313.519,282 & 450,767,343 \\
\hline 1909 & 808,710,087 & 390,695, 182 & 418,014.905 \\
\hline
\end{tabular}

During the same period the minimum and maximum amount of wool (in lb) imported into the United Kingdom was as follows: Australia (1904), 220,483.961: (1895). 417,163,078: New Zealand (1890). 95.632 .598 ; (1909), 176 -457.150: Gritish possessions in South Airica (1900), 32.219.369: (1909). 115.896.598; South America (1890), 11.173.692; (1908). 78,938.157: British possessions in the East Indics (1901), 24.069, 771 ; (1909); \(56.238,633\); France (1890), 10,873,788; (I902), 27,770,790; Turkish Empire (I908). 5,705,671; (1897), 25,727,462.

In the woollen and worsted industries 239.954 persons wers employed according to the census of 1901, of whom 99.425 were males and 140.529 females. Of the total number 209.700 were employed in England and Wales, 24,906 in Scotland and 5348 in Ireland.

The numbers of persons employed in the other principal textile industries in 1901 was as follows:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { England } \\
\text { and } \\
\text { Wales. }
\end{gathered}
\]} & \multirow{2}{*}{Scotiand.} & \multirow[b]{2}{*}{Ireiand.} & \multicolumn{2}{|l|}{Unlted Kingdom.} & \multirow{2}{*}{Total.} \\
\hline & & & & Males. & Females. & \\
\hline Flax & 4.493 & 23.570 & 71,464 & 29,226 & 70,301 & 99,527 \\
\hline ke. & 2.750 & 39,200 & 639 & 11,618 & 30,971 & 42,589 \\
\hline Silk & 34.847 & 2.424 & 209 & 11.058 & 26,422 & 37.480 \\
\hline Hosiery & 48.374 & 11,957 & 611 & 15.067 & 45.875 & 60,942 \\
\hline
\end{tabular}

Commerce.-British commerce received an enormous development after the first quarter of the igth century. In 1826 the aggregate value of the imports into and exports from the United Kingdom amounted to no more than \(888,758,678\); while the total rose to \(\{x t 0,550,538\) in 1836 and to \(\{205,625,831\) in 1846. In 1856 the aggregate of imports and exports had risen to \(\mathbf{E} \mathbf{3 1 1 , 7 6 4 , 5 0 7}\), in 1866 to \(£ 534,195,956\) and in 1876 to \(\{631,931,305\). Thus the commercial transactions of the United Kingdom with foreign states and British colonies increased more than sevenfold in the course of fifty years.
An important fact in connexion with the foreign commerce of the United Kingdom is that there has been a steady increase in imports, but there has been no corresponding steady increase in exports of British produce and manufactures. Many industries, which cormerly were mainly in British hands, have been developed on the continent of Europe, in America, and to some extent in the East. The movement began in 1872. Up to that time the exports of British bome produce bad kept on increasing with the Imports, although at a lesser rate, and far inferior in aggregate value; but a change took place in the latter ycar. While the imports continued their upward course, gradually rising from \(\{354.693,624\) in 1872 to \(6375,154,703\) in 1876 , the exports of British produce fell from \{256,257,347 in 1872 to \{200,630,204 in 1876. The decline in exports, regular and steady throughout the period, and with a tendency to become more pronounced every year, affected all the principal articles of British

602 UNITED KINGDOM OF GREAT BRITAIN AND IRELAND
\begin{tabular}{|c|c|c|c|c|c|}
\hline Country. & 1890. & 1895. & 1900. & 1905. & 1909. \\
\hline 1.-Bentisa Possessions- \({ }^{\text {Imports }}\) & \[
37,856.598
\] & 31,076,761 & \[
32,861,217
\] & \[
40,540.341
\] & \[
\stackrel{\mathfrak{f}}{40,995.633}
\] \\
\hline India and Ceylon - . \({ }^{\text {a }}\) Exports & 38,254,769 & 27,519.909 & 32,885.147 & 45,796,432 & 46,617,909 \\
\hline Straits Settlements, Malaysia \(\{\) Imports & 6,412,865 & 5.404.887 & 8,092,057 & 7,222,215 & 8.948,582 \\
\hline and Hong Kong , - . Exports \(_{\text {Imports }}\) & \(51,766,059\)
\(11,290,022\) & \(4,077,436\)
\(12.52,366\) & 6,162,526
\(9.703,086\) & \(7,162.908\)
\(\mathbf{1 4 , 7 5 5 , 3 5 3}\) & \(7,455,726\)
13.130 .724 \\
\hline Arrica . - . . - . . Exports & 10,744.904 & 13.325 .089 & 16.725.092 & 141758,353
\(21,33,292\) & 20,181,408 \\
\hline Canada and Newfoundland. \(\begin{aligned} & \text { Imports } \\ & \text { Exports }\end{aligned}\) & 12,444,489 & \(13.400,570\) & 22,240,325 & 26,204,205 & 27,674,340 \\
\hline Canada and Newtoundiand - Exports & 8,272,743 & 6.594.903 & 9,659.138 & 14.267 .967 & 18,750,970 \\
\hline West Indies, Bermudas, IIon- \(\left.\begin{array}{l}\text { Imports } \\ \text { duras and Guiana }\end{array}\right\}\) Exports & 2,992,472
\(4,262,669\) & \(2,81,343\)
\(3.230,189\) & \(2,483,648\)
\(2,954,477\) & \(2,717.318\)
\(3.324,665\) & 2.969 .772
3.77 .244 \\
\hline Australia Imports & 20,992,185 & 24,954.779 & 23.800,820 & 26.968.977 & 32.655.709 \\
\hline - Exports & 21.750,705 & 15.867 .979 & 23.545 .565 & 19,476,463 & 27.207.430 \\
\hline New Zealand Imports & 8,347.430 & 8.383 .058 & 11.615 .881 & \(13.391,222\) & 17.730.556 \\
\hline 2ealand. - . - Exports & 3,705.428 & 3.443.688 & 5,899,292 & 6,994,806 & \(8,081,422\) \\
\hline Other \(\left\{\begin{array}{l}\text { Exports } \\ \text { impors }\end{array}\right.\) & \(1,720.583\)
3.526 .012 & \(1,952,431\)
\(3,095,184\) & \[
\begin{aligned}
& 2,287.537 \\
& 4,252,072
\end{aligned}
\] & \[
\begin{aligned}
& 3.731,132 \\
& 4 \cdot 35 \mathrm{t}, 367
\end{aligned}
\] & \[
\begin{aligned}
& 2,800,939 \\
& 4,246,362
\end{aligned}
\] \\
\hline . Foreign Cous & & & & & \\
\hline France.i Exports & \[
44,828,146
\] & \[
\begin{aligned}
& 47,470,583 \\
& 20.424 .008
\end{aligned}
\] & \[
53.618,656
\] & \[
\begin{aligned}
& 53.072,900 \\
& 23.232,663
\end{aligned}
\] & \(50,690.785\)
\(31.515 .3=0\) \\
\hline Germany Imports & 26,073,331 & -26,992,559 & \(21,87181,667\)
\(\mathbf{3 1 , 1 8 1}\) & 23.232,063
35.799 .758 & 310.515 .320
\(40,115.450\) \\
\hline Germany . . - . - & 30,516.281 & 32,736,65t & 38,542,790 & 42,742,300 & 47.168 .852 \\
\hline Belgium \({ }_{\text {Exports }}\) & 17.383 .776 & 17.545 .169 & \(23.502,603\) & \(27.751,288\) & 29.217 .560 \\
\hline Holland \(\left\{\begin{array}{l}\text { Exports } \\ \text { Imports }\end{array}\right.\) & 13.594 .966
\(25.900,924\) & \(11,934,653\)
28.419 .944 & \(14,846.307\)
\(31,381,023\) & \(14,818,923\)
\(\mathbf{3 5 , 4 8 1 , 0 5 9}\) & \(19,284.791\)
37.37 t .702 \\
\hline Holland - - Exports & 16,445.992 & 11,272,258 & 14,931,090 & 14.516,887 & 16,303,884 \\
\hline Denmark, Facroc, Iceland, Imports & 7.753,389 & 9.799.328 & 13.187,757 & 15,606,991 & 19,427.483 \\
\hline Greenland Exports & 2,928,006 & 3.135,122 & 4.724 .121 & 4,609.671 & 5,705.415 \\
\hline Norway Imports & & 3,831,727 & 5,756,018 & 5.954, \(87 \%\) & 6,574.319 \\
\hline - \({ }^{\text {Exports }}\) & & 2.532,050 & 3,910,982 & 3.712 .532 & 3,835,436 \\
\hline Sweden \(\left\{\begin{array}{l}\text { Exports } \\ \text { Exports }\end{array}\right.\) & & 8,784,236 & 10,635,060 & 9.827.993 & 9,245.303 \\
\hline Austria-Hungary Emports & 1,728,3 & 1,221 & 1.375 & 1,488,604 & 1,1208,49 \\
\hline Austria-Hungary - . \({ }^{\text {Exports }}\) & 1,694,318 & 2,149.55 & 3,157.716 & 2,603.223 & 4.333.269 \\
\hline Rumania Imports & 4.447.159 & 2,118,505 & 1,396,619 & 1,089.513 & 3.395.474 \\
\hline - Exports & 1,350,497 & 944,034 & 616,287 & 1.305.658 & 1,749,996 \\
\hline Grecce Emports & 1,962,798 & 1.241.406 & 2,227.212 & 1,328.234 & 1.613.174 \\
\hline - . . . Exports & 1,235,126 & 860,193 & 1,104,196 & 1,251,042 & 1,513.744 \\
\hline Italy \({ }^{\text {Imports }}\) & 3,093,918 & 3,132,720 & 3.417.790 & 3.324.595 & 3.634.073 \\
\hline Italy - . . . - Exports & 8,533,209 & 6,211,337 & 9.444.49 & 9,787.306 & \$3.274,764 \\
\hline Spain \(\{\) Emports & 12.508 .533 & 11.314.518 & 15.882,346 & 13.858 .631 & 13.362,959 \\
\hline - Exports & 5.702.804 & 4.052.806 & 6.333 .857 & 4.841 .774 & 5.352,017 \\
\hline Portugal \(\left\{\begin{array}{l}\text { Emports } \\ \text { Exports }\end{array}\right.\) & 2.942 .194
2.612 .638 & \(2,491.9\)
1.865 .9 & \(3.241,367\)
2.529 .305 & \(2,979,634\)
\(2,826,257\) & \(2,912.994\)
2.777 .201 \\
\hline Russian Empire \({ }^{\text {a }}\) Imports & 23.750 .868 & 24.736 .919 & 21.983 .952 & 33,366,234 & 36,897.746 \\
\hline Russian Empire - . - Exports & 8,846,054, & 10.686 .333 & 16.360.475 & 14.884 .050 & 18,325.844 \\
\hline Turkey Imports & \(8,368.851^{1}{ }^{1}\) & 5,630,240 & 5.657.627 & 5.491 .443 & 5,085.435 \\
\hline Turkey - . - . - Exports & 7.340,868 \({ }^{1}\) & 5.566,187 & 5.372 .95 & 6,979.147 & 7.789.432 \\
\hline Japan \{ Exports & 1,024,993 & 1,143.382 & 1.540.526 & 1,860.313 & 4,232,716 \\
\hline Japan. - . - . - Exports & 4.187 .373 & 4,772,829, & 9.933.925 & & 8,618,821 \\
\hline China \(\left\{\begin{array}{l}\text { Exports }\end{array}\right.\) & 6,763.2212 & \(3.343 .865^{2}\)
\(5.363 .536^{2}\) & \(2,359.821\)
5.634 .313 & & 3.725.502 \\
\hline Netherlandm-India . Imports & 1,223,037 & 874.313 & 287,454 & 2,129,479 & 2,436,518 \\
\hline Netherlands-India . . . Exports & 1,675,054 & 1,988,479 & 2,881,601 & 3.558.562 & 3.768 .264 \\
\hline Egypt . . . Imports & 8,368,851 & 9.524,507 & \(12.585 .57^{8}\) & 14.976 .888 & 19,872.288 \\
\hline - \(\{\) Exports & 3.459.991 & 3.414 .556 & 6,159.468 & 8.069.668 & 8.142 .325 \\
\hline U.S.A. Imports & 97,283.349 & 86,548,860 & 138,789,261 & 115.573 .051 & \(128,269.777\)
50.251. \\
\hline MexicoandCentral Amcrican Exports & 46,340.012 & 44,067.703 & 37.343.955 & 47,282,088 & 59,254.166 \\
\hline MexicoandCentralAmerican
States & \(1,863.284\)
\(3,050.051\) & 1,443.345 & 1,144.590 & 2.138 .574
3.022 .074 & 2.595.356 \\
\hline Brazil EImports & 4.350,675 & 3.614 .155 & 5.946 .547 & 8,109.208 & 11.271.990 \\
\hline Brazil . - . - . - Exports & 7.795.073 & 7,643.739 & 6,156,600 & 6,916,617 & 8.809.226 \\
\hline Argentina . . . Imports & 4.129 .802 & 9,084.497 & 13.080 .466 & 25.034 .325 & 32.528.446 \\
\hline Argentina - . - . . - Exports & 8,530.427 & \(5 \cdot 480.848\) & 7.438 .238 & \(13.383,835\) & 19.202 .496 \\
\hline Chile \(\left\{\begin{array}{l}\text { Exports } \\ \text { Exports }\end{array}\right.\) & 3.473 .348
3.365 .824 & 3.436 .142
3.454 .332 & \[
\begin{aligned}
& 4,828.371 \\
& 3.535 .736
\end{aligned}
\] & \begin{tabular}{l}
6,068.031 \\
4,782,382
\end{tabular} & \[
\begin{aligned}
& 6,607.415 \\
& 5.054 .144
\end{aligned}
\] \\
\hline Ohercourtiesin Asia Imports & 376,969 & 344 & & 611,096 & 1,043.280 \\
\hline Other countries in Asia . - Exports & 516,846 & 720,350 & 684,440 & 699.556 & 1,214,041 \\
\hline Arica \{ lmports & 2,345,843 & 1,683,319 & 2,503,823 & 2,901.281 & 4,538,518 \\
\hline Nrica - . - . - Exports & 3,262.463 & 3,052,023 & 4,686,727 & 6,063.114 & 7.783 .508 \\
\hline South America Emports & 2,080,466 & 2,437,294 & 2,355,801 & 3.897.595 & 5,657.201 \\
\hline Soun \({ }^{\text {a }}\). - Exports & 5,674.325 & 4,489,592 & 4.088.73t & 5.129 .351
6.289 .947 & 6.137 .748
\(4.260,700\) \\
\hline Other countrics \(\left\{\begin{array}{l}\text { Exports }\end{array}\right.\) & \(3.200,713\)
6.605 .220 & \[
\begin{aligned}
& 3.447 .034 \\
& 3.901,555
\end{aligned}
\] & \(3,190,888\)
\(6,370,943\) & 6.289.947
8.352 .264 & \[
\begin{array}{r}
4,260,790 \\
7.440,065
\end{array}
\] \\
\hline Total lor British possessions . . lmports \(_{\text {Exports }}\) & \[
\begin{array}{r}
100,279.852 \\
94.522,469
\end{array}
\] & \[
\begin{array}{r}
100,405.592 \\
76.138,896
\end{array}
\] & \[
\begin{aligned}
& 113,074,557 \\
& 102,083,109
\end{aligned}
\] & \[
\begin{aligned}
& 134,530,683 \\
& 122,12.920
\end{aligned}
\] & \[
\begin{aligned}
& 146,908,244 \\
& 136,318,475
\end{aligned}
\] \\
\hline Total forforeigncountries \(\cdot \cdot\left\{\begin{array}{l}\text { Imports } \\ \text { Exports }\end{array}\right.\) & \[
\begin{aligned}
& 324.530,783 \\
& 233.729 .649
\end{aligned}
\] & \[
\begin{aligned}
& 321.038 .151 \\
& 209.693 .511
\end{aligned}
\] & \[
\begin{aligned}
& 413,434.242 \\
& 252,290,645
\end{aligned}
\] & \[
\begin{aligned}
& 437,151,191 \\
& 284,883,607
\end{aligned}
\] & \[
\begin{aligned}
& 477.796,713 \\
& 333.206 .695
\end{aligned}
\] \\
\hline Grand total \(\left\{_{\text {Exports }}^{\text {lmpors }}\right.\) & \[
\begin{aligned}
& 420.691 .997 \\
& 328.252 .118
\end{aligned}
\] & \[
\begin{aligned}
& 416.689 .658 \\
& 285.8 .32 .407
\end{aligned}
\] & \[
\begin{array}{r}
\mathbf{5 2 3 . 0 7 5 . 1 6 3} \\
\mathbf{3 5 4 . 3 7 3 . 7 5 4} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathbf{5 6 5 . 0 1 9 . 9 1 7} \\
407.596 .527 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 624.704 .957 \\
& 469.525 .186
\end{aligned}
\] \\
\hline
\end{tabular}

\title{
UNITED KINGDOM OF GREAT BRITAIN AND IRELAND 603
}
bome produce just enumerated. The value of the cotton manu- | lactures exported sank from \(\left\{80,16_{4}, 1\right.\) in 1876; woollen fabrics from \(\{38,493\), 411 to \(\{23,030,719\); iron and steelfrom \({ }^{4} 35,996,167\) to \(£ 20,737,4\) 10; coals from \(f_{10,442,321}\) to \(\{8,904,463\); machinery from \(£ 8,201,112\) to \(£ 7,210,426\); and linen manufactures from \(\{10,956,761\) to \(\{7,0 ; 0,149\). The decline duting the four years, it will be seen, was greatest in all textile manufactures, and least in coal ansl machinery.
fhe table on p. Goz shows the subsectuent movement in value of imports from other countries to the United Kingdom, and of exports to other countries from the Unued Kingdom, at quinnuennial intervals: bullion and specie being excluded.

As regards fluctuations not revealed by the above figures, it may be mentioned that the highest total figures for any one year during the period covered are those for 1907, viz. imports £645,807,942; exports \(E 517,977,167\). As to minima within the period, the lowest totals for British possessions were: imports fo1,851,534 in 1895, and exports, the figure quoted for 1805 ; for forcign countries, imports \(\mathrm{E}_{3} 12,836,644\) in 1803 , and exports £195, 133,230 in 1804 ; grand tot: 1 s , imports \(f_{4}+04,688,1 ; 8\) in 1803. and exports \(\{: 73,-85.867\) in 1804 . It may be added that the maximal import figures for France within the period are those of 1006 (\(\{53,871,661\)), for Germany those of 1000, and for the United Slates those of \(1001(\{1+1,015,465)\). For exports to the Linited States the figures for 1902 were highest. \(t 0\) France those of \(1007(\{3,507+54.4)\) and to Germany those of 1907 (\(656,729.088\)).

The following table presents the value of the chicf groups and ariatis of importation into the Uliked King dom:-
\begin{tabular}{|c|c|c|c|c|}
\hline & 1895. & 1900. & 1905. & 1909. \\
\hline Grain and flour & \[
\underset{9.077 .081}{f}
\] & \[
\underset{62.992,082}{\ell}
\] & \[
\frac{\mathfrak{L}}{70,057.290}
\] & \[
\frac{\ell}{83,107,421}
\] \\
\hline Meat Oher principal articles of lood and & 33,334,171 & 46,782,579 & 49,431,748 & 47,623,428 \\
\hline Other principal articies of lood and drink- & & & & \\
\hline Butier & 14.235.230 & \(17.450 \cdot 435\) & 21.586.622 & 22.424.962 \\
\hline Sugar. & 17.684.413 & 19.256.439 & 19.471.811 & 21.691 .894 \\
\hline Wine. & 10.242,999 & \(10.606,910\)
\(5.192,909\) & 9,302.713 & 11,617.031 \\
\hline Coffe & 3.778 .305 & 2.544,726 & 2.578.327 & 2.075 .516 \\
\hline Fish (preserved). & 2.289 .268 & 2.895 .330 & 2.493 .876 & 2,509.573 \\
\hline Cocoa and chocolate & 1,610,483 & 2,398.248 & 2,227.141 & 903.464 \\
\hline Principal fruits- & & & & \\
\hline Apples. & 960.273 & 1.224.657 & 2.065 .193 & 2,007.911 \\
\hline Oranges & 1,925.415 & 2.120 .790 & 1,949.496 & 2,522,491 \\
\hline Tolasco & 3.353.916 & 4.799.417 & 1.721 .920 & 1,7986,663 \\
\hline Raw materials- & & & & \\
\hline Cotton & 30,522,016 & 41,117.308 & 52,370,878 & 60,295,049 \\
\hline Woot. & 28.494,249 & 24,073.917 & 26.648,737 & 35.041,766 \\
\hline Oils. \&c. \({ }^{\text {a }}\), & 18.497 .573 & 23.564 .644 & 23.600,927 & 31.039 .883 \\
\hline Wood and timber & 16,372.181 & 27.875.913 & 23.274 .020 & 23.591,579 \\
\hline Texile materials excluding cotton and wool & 11,3;8,608 & 11.553 .114 & 14.511.978 & 12,127.707 \\
\hline Caourchouc: & \(\begin{array}{r}1.760 .178 \\ \hline\end{array}\) & 6.986.133 & 9.643.153 & 14,138.204 \\
\hline Hides and skins . & 7.360,0;0 & \(8.465 .6 \times 0\) & 8.084 .793 & 11.617 .756 \\
\hline Metalic ores excluding iron & 4.575 .929 & 5.575.272 & 7.610.990 & 8.327 .193 \\
\hline Iron ore. \(\mathcal{E}\) c & 3,027,196 & 5,750,947 & 5.525 .575 & 5,076,131 \\
\hline Manufactured articies-
Yarns and textile fabrics & & & & \\
\hline Yarns and textile fabrics
Metal, exduding iron and steel & :1,196,315 & 21.844.683 & \(39,688,418\)
\(21,840,696\) & 29.651 .658
24.346 .328 \\
\hline Leather & 11,035.870 & 11.823 .132 & 11.037 .983 & 11,617.130 \\
\hline Chemicals & 8.714.360 & 8,628.279 & 9,624.638 & 10.576,593 \\
\hline lron and stecl (not machinery) & & 7,314,696 & 8.589 .405 & 7.971 .594 \\
\hline Paper. - & 2,845.730 & 4.412 .440 & 5.256,065 & 5,647.437 \\
\hline Machinery . & & 3.475.887 & 4.537 .871 & 4.438.336 \\
\hline
\end{tabular}

Certain omissions are necessary in this table oxing to alterations in classification of the returns.

The value of the chief articles and groups of export of home produce are similarly shown:-
\begin{tabular}{|c|c|c|c|c|}
\hline & 1895. & 1900. & 1905. & 1909. \\
\hline & & & & \[
\&
\] \\
\hline Cotton yarn and manulactures & \[
63,746,463
\] & \[
69,750,279
\] & \[
92,010,985
\] & \[
93.444 .799
\] \\
\hline Iron and steel and manufactures & \(19,428,383^{2}\) & \(31.623 .353^{2}\) & 31,826,438 & 38,192,142 \\
\hline Woollen yarn and manulactures & 29,094.568 & 24259.766 & 29.916,807 & 30.917,807 \\
\hline Coail & 14,600,326 & \(36,409,614\) & 24.859,129 & 37,129.978 \\
\hline Machinery & 15.150 .522 & 19619784 & 23.260 .326 & 28.057.643 \\
\hline Chemicals . & 11,463.304 & 13,154,344 & 14.536,857 & 16.783 .019 \\
\hline Texilles (not cotton or wool) & 11.986 .718 & 12,191,069 & 13,204,899 & 12.441.525 \\
\hline Aletal manufactures (not iron) & 5,048.588 & 6.473.197 & 8.920 .533 & 8,708,945 \\
\hline Clothing \({ }^{\text {a }}\). & 5.615 .594 & 6.499.086 & 6.021 .242 & 9,822.125 \\
\hline Leather and leather goods & 3.833 .980 & \[
3.875 .683
\] & 5.660 .494 & \(4.242,356\) \\
\hline Ships & & 8.587 .710 & 5.431 .298 & 5,927,114 \\
\hline
\end{tabular}

The proportion of imports and exports per head of population of the Unired Kinglom was:-
\begin{tabular}{|c|c|c|}
\hline Year & Total Imports. & Exports of British Produce. \\
\hline 1890 & \[
\begin{array}{lll}
f_{11} & \text { s. } & d \\
\hline
\end{array}
\] & \[
\begin{array}{lll}
1 & \text { s. } & d . \\
7 & 0 & 7
\end{array}
\] \\
\hline 1895 & 10126 & 5154 \\
\hline 1900 & \(\begin{array}{llll}12 & 14 & 3 \\ 13 & 1 & 5\end{array}\) & \(\begin{array}{lrrr}7 & 1 & 6\end{array}\) \\
\hline 1905
1906 & \(\begin{array}{llll}13 & 1 & 5 \\ 13 & 18 & 5\end{array}\) & \(\begin{array}{llll}7 & 12 & 7 \\ 8 & 12 & 0\end{array}\) \\
\hline 1907 & \(\begin{array}{llll}14 & 18 & 5 \\ 14 & 12 & 6\end{array}\) & \(\begin{array}{llll}8 & 12 & 0 \\ 9 & 13 & 3\end{array}\) \\
\hline 1908 & 1363 & 8894 \\
\hline 1909 & \(1317 \quad 7\) & 88 1 \\
\hline
\end{tabular}

The rables on p. 604 show the value of unregistered imports of gold and silver bullion and specie from British possessions and from loreign countrics into the Unised Kingdom, specifying the most important countries individually.
Shipping - The table at foot of p. 60 shows the tonnage of vessels chicred from and and
foreign countries at the principal ports of the United Kingdom.
For the purpose of showing the relative importance of British and Irish ports falling below the list, the following figures may be quoted for 1909 only: Methil, entered 824,375 tons, cleared \(1,105,048\) tons: Harwich, eniered 792.980, cleared 776.595; Cirangemouth, entered 988,007 . clearod 1.064,217: Burntisland, entered 609.722 , cleared 815.507; Bristal.entered858.933. clcared 615.266; Coole, cntered 815.177 . cleared 817.226; Harticpool, entered 934.836, cleared 730.14I; Newhaven. eutered 385.313 . cleared 376,083 : Folkesione, emiered 364.524 , cleared 359.697; Belfast, entered 490 . 513 .cleared ibs. 6 ; 0 ; Borrowslounness (Bo'ness), entered 301.549, cleared 292.194: Dublin, entered 219.081 , cleared 80,868 ; Cork. entered 146.724, cleared 7413; Maryport and Workington, entered ils.388, cleared 67,494: The figures for l'lymouth have included vessels which call "off" the port to embark passengers. \&c.. by tender only since 1907; Yor igo9 they were: entered, 1,455,605: cleared, 1.29?.244.
The table at the commencement of page 605 shows the total tonnage of vessels entered from and cleared to British possessions and foreign countries at ports in the United Kingdom, and also the nationality of vessels under British and the principal foreign flags-
Out of the following totals steam vesscls bad an aggregate tonnage of 30,604.5:8 entered and \(31.080,48 \mathrm{t}\) cleared in 1890 , and 64.327.508 entered and \(64,988.655\) cleared in 1909 . Tbe total tonnage of vesmels entered and
\({ }^{1}\) Adapted Crom the Statistical Abstract for the United Kingdom, where it is specified that the value of new ships and boats, with their machinery, was not included in exports belore 1899.
cleared coast wise was as follows: (1890). 47.738.612 entered,
\({ }^{2}\) Owing to an alteration in classification these figures are not strictly comparable with those for 1905.

\section*{604 UNITED KINGDOM OF GREAT BRITAIN AND IRELAND}

Gold.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1890. & 1895. & 1900. & 1905. & 1909. \\
\hline From British possessions & \[
\stackrel{f}{5.368,424}
\] & \[
\stackrel{f}{17,618,466}
\] & \[
\underset{11,350,591}{f}
\] & \[
\stackrel{t}{38,567,895}
\] & \[
\underset{40,464,212}{f}
\] \\
\hline From South Alrica . & 1,876,677 & 8,353,913 & 378,626 & 21,286,374 & 32,912,428 \\
\hline India & 443,079 & 1,929,590 & 3,637.978 & 6,850,360 & 2,170,957 \\
\hline Australia & \(1,398,627\)
88 & \begin{tabular}{|c}
\(5,324.498\) \\
\(18.300,863\)
\end{tabular} & 6,182,718
\(\mathbf{1 4 , 8 4 0 , 2 8 2}\) & 3.440,037 & 2,613,002 \\
\hline Foreign Countrics & 18.109 .625
\(23.568,049\) & \(18,390,863\)
\(36,009,329\) & \(14.840,282\)
\(\mathbf{2 6 , 1 9 0 . 8 7 3}\) & 4.949,335
43.517 .230 & \(14,227,617\)
\(54,691.829\) \\
\hline
\end{tabular}

Silver.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1890. & 1895. & 1900. & 1905. & 1909. \\
\hline From British possesaions & \[
\underset{350,094}{f}
\] & \[
\stackrel{f}{\perp}
\] & \[
6_{264,676}^{6}
\] & \[
\stackrel{f}{412.756}
\] & \[
\underset{667,619}{£}
\] \\
\hline Foreign countries . . & 10,035.565 & 10,384,063 & 13,057,624 & 12,579,258 & 17,147,270 \\
\hline United States of America & 4,057.709 & 8,082,925 & 11,459,612 & 9,784,828 & 9,971,396 \\
\hline Total & 10,385,659 & 10,666,332 & \(13 \cdot 322,300\) & 13.992,014 & 11,814,889 \\
\hline
\end{tabular}
the middle of the following century; but though raads and canals aided materially in raising the commercial and industrial activity of the nation, their fostering agency was very slight compared with that of railways, of which England is the birthplace. The first line of railway for regular passenger service, that from Stockion to Darlington, 14 m . in length, was opened on the 27 th of September 1825 . The first really important railway was the line from Manchester to Liverpool, opened on the 15th of September 1830, when William Huskisson, M.P.,

42,317,876, cleared; (1895), 54.304,703 entered, 47,263,791 cleared: (1900), 55,828,569 entered, 54,425,666 cleared: (1905). \(\mathbf{6 0 , 0 6 6 , 9 1 9}\) entered, \(58,670,971\) cleared; (1909). \(60,566,043\) entered, \(60,060,979\) cleared.
The number and gross tonnage of the registered sailing and steam vessels belonging to the United Kingdom were as follows at the end of each of the years named:-
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year.} & \multicolumn{2}{|r|}{Sailing Vessels.} & \multicolumn{2}{|r|}{Steam Vesscls.} \\
\hline & Number. & Gross Tonnage. & Number. & Gross Tonnage. \\
\hline 1890 & 14.181 & 3,055.136 & 7.410 & 8,095.370 \\
\hline 1895 & 12.617 & 3,040,194 & 8.386 & 9.952,211 \\
\hline 1900 & 10.773 & 2,247,228 & 9,209 & 11,816,924 \\
\hline 1905 & 10,059 & 1,796,826 & 10.552 & 14,883.594 \\
\hline 1909 & 9.392 & 1,407.469 & 11.797 & 16.994.732 \\
\hline
\end{tabular}

These figures show not only that steamers have been rapidly taking the place of sailing vessels, but also that large steamers are preferred to small, their average tonnage having increased from 1092 tons in 1895 to 1440 in 1909.

Railways.-The first ordinary roads deserving the name of highways were made about 1660, and canal-building began in
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1890. & 1895. & 1900. & 1905. & 1909. \\
\hline & Tons. & Tons. & Tons & Tons. & \\
\hline London Entered & 7,708,705 & 8,435,676 & 9.580,85 & 10,814.115 & 11,605,698 \\
\hline Entered & 5.772,062 & 6,110,325 & 7.479,008 & -7.913.115 & 8,622,316 \\
\hline Liverpool and Bir- \(\begin{aligned} & \text { Entered } \\ & \text { Cleared }\end{aligned}\) & 5.782,351 & 5,598,341 & 6,001,563 & 7,806,844 & 7,747.994 \\
\hline kenhead \(\quad\)\begin{tabular}{l}
Cleared \\
Entered
\end{tabular} & 5.159 .450
3.173 .699 & 4.883,199 & 5.778,114 & \(6,932,687\)
4.337 & 6,593,094 \\
\hline Cardiff . - . \({ }^{\text {cheared }}\) Cleat & 3.173 .699
5.641 .511 & 3,739,856
\(6.500,510\) & 5.132 .523
7.636 .717 & \(4.337,720\)
\(7.476,879\) & \(5,771.476\)
\(8,888,756\) \\
\hline Tyne Ports \({ }^{\text {\& } 2 .}\). \({ }^{\text {a }}\) Entered & 3.401,216 & 3.292,624 & 3,897,142 & 4,058,618 & 5,700,405 \\
\hline Tyne. \({ }^{\text {a }}\) - Clear & 5.010,098 & 4,822,648 & 4,894,157 & 5.158,899 & 6,899,023 \\
\hline Southampton . . \(\begin{aligned} & \text { Entered } \\ & \text { Cleared }\end{aligned}\) & 888,352
813.133 & \(1,420,531\)
\(\mathbf{1 , 3 2 8 , 3 9 3}\) & \(1,613,913\)
\(1,395,486\) & \(2,087,277\)
\(1,888,030\) & \(4,279,052\)
\(4,108,063\)
\(3,57,03\) \\
\hline Entered & \(\begin{array}{r}8813,13 \\ 1.997,138 \\ \hline 1.598\end{array}\) & 1,238,393
\(\mathbf{2 , 1 5 0 , 6 5 4}\) & \(1,395,486\)
\(2,66,598\) & \(1,88,070\)
\(2,546,064\) & \(4,100,063\)
3.517 .953 \\
\hline Clea & 1,655.996 & 1,612,385 & 2,274,137 & 2,102,160 & 3,164,156 \\
\hline Enter & 1,121,700 & 1,184,537 & 1,454,860 & 1,635,609 & 1,917,144 \\
\hline Cleared & \(1,697,662\)
920,560 & & 2,229,574 & 2,836,462 & 3,160,916 \\
\hline Newport . . . \(\begin{aligned} & \text { Entered } \\ & \text { Cleared }\end{aligned}\) & \[
\begin{array}{r}
920,560 \\
1.26 .410
\end{array}
\] & 873.886
\(1.374,237\) & \(1,092.068\)
\(1,511.383\)
1973 & \(1,250,192\)
\(1,773.165\) & \(1,548.258\)
2.105 .509 \\
\hline No. • . \(\begin{aligned} & \text { Cleared } \\ & \text { Entered }\end{aligned}\) & \(1,316,430\)
789,846 & \(1.374,237\)
742.940 & \(1,511.383\)
973,074 & \(1,773.161\)
\(2,928.741\) & 2.105 .509
1.636 .530 \\
\hline Dover \(\begin{aligned} & \text { Entered } \\ & \text { Cleared }\end{aligned}\) & 789,846
767.724 & \[
\begin{aligned}
& 742.940 \\
& 734.334
\end{aligned}
\] & 973,074
964,476 & \[
\begin{aligned}
& 2,928.741 \\
& 2,944,774
\end{aligned}
\] & \[
\begin{aligned}
& 1.636 .530 \\
& 1.631 .751
\end{aligned}
\] \\
\hline Entere & 833.562 & 953.985 & 1,096,130 & 1,227.017 & 1,728.385 \\
\hline Cleared & 623.967 & 875.059 & 882.156 & 1,092.958 & 1,586.148 \\
\hline Blyth* Enter & & & 974.285 & 1.094,168 & 1,292.353 \\
\hline Bly . . \({ }^{\text {Cleared }}\) & & & 1.525 .727 & 1.623,003 & 1,836,503 \\
\hline derland . . . Entered & 725,859 & 730,396 & 800,027 & 981,606 & 1,357,201 \\
\hline 8, Cleared & 956,266
565.644 & 1,002,552 & \(1,163.310\) & \(1,3.44,999\)
635.458

r & \(1,676,777\)
\(1,020,480\) \\
\hline Swansea : . . . \(\begin{aligned} & \text { Entered } \\ & \text { Cleared }\end{aligned}\) & 565.044 & 580,481
931588 & \[
\begin{aligned}
& 1,018,148 \\
& 1,427,903
\end{aligned}
\] & \[
\begin{array}{r}
635,458 \\
1,335,134
\end{array}
\] & \(1,020,480\)
\(1,719.654\) \\
\hline Entered & 706,491 & 887,842 & 1,055,291 & 1,124.281 & 1,344,898 \\
\hline Cleared & 626.573 & 750,257 & 982,309 & 1,085.734 & 1,314,361 \\
\hline msby Entered & 663.513 & 763,892 & 931.238 & 1,094.531 & 1,289.476 \\
\hline mbil • • - & 689.165 & 829,837 & 960.236 & 1,074.495 & 1,334,566 \\
\hline Manchester . . . Entered & - & 317,625
288,001 & 787,497
\(\mathbf{5 0 5 , 7 5 7}\) & \(1,133,003\)
970,620 & 1,275.937 \\
\hline Manchester - - - Cleared & - & 288,001 & 595,757 & 970,620 & 1,067,835 \\
\hline
\end{tabular}
was accidentally killed. It took three years to get the hill for the London-Birmingham railway, which was passed at last in the session of 1833, obtaining the royal assent on the 8th of May. The first sod of the great line was cut at Chalk Farm, London, on the 1st of June 1834. Enormous engineering difficulties had to be overcome, originating not so much from the nature of the ground as from intense public prejudice against the new mode of locomotion. It took over four years to construct the railway from London to Birmingham, at a cost exceeding \(4_{4,000,000}\) Even friends of the railway presaged that such outlay could not by any possibility be remunerative; hut the contrary became evident from the moment the line was opened on the 17 th of September 1838 . All the great railway systems of England sprang into existence within less than ten years after the opening of the London-Birmingham line. Out of this railway grew one of the largest companics; the London \& North-Western; while the most extensive system as regards mileage, the Great Western, originated in a line from Paddington, London, to Bristol, for which an act of parliament was obtained in i835, and which was opened in 1841. In 1836 a bill passed the legislature erecting the "Great North of England " Railway Company, from which was developed the North-Eastern system. A few years later other acts were passed, sanctioningthe" Midland Counties'" and the "North Midland" lines, from which the present Midland system grew.

The total length of railmays conveying passengers in the United Kingdom at the end of the year 1825 was 40 m ., constructed at a cost of \(\{120,000\). Five years later, at the end of 1830 , there were not more than 95 m ., built at a cost of \(\{840,925\), but at the end of 1835 there were 933 m ., costing \(\{5,648,53 \mathrm{I}\). Thus, in the first five years of railway construction, from 1825 to 1830 , the mileage doubled; whike in the second five years, from 1830 to 1835, it trebled. It quintupled in the next five-yearly period, till the end of 1840 , when the total length of miles of railway in the kingdom had come to be 1435 , built at a cost of \(f_{41,391,634, ~ a s ~ r e p r e s e n t e d ~}^{\text {a }}\) by the paid-up capital of the

INewcastle, North Shields. South Shields.
1 Blych was included with North Shields till 1897.
- Swansea included mat Talbot iill r904.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1890. & 1895. & 1900. & 1905. & 1909 \\
\hline Tocal \(\left\{\begin{array}{l}\text { Entered } \\ \text { Cleared }\end{array}\right.\) & Tons. 36,835,712 37,448,157 & Tons. 40,001,691 40,537,483 & Tons. 49.913,223 50,182,439 & \begin{tabular}{l}
Tons. \\
55.623.974 \\
56,416,760
\end{tabular} & Tons. 66,309.519 66,958,163 \\
\hline Britioh \({ }^{\text {E }}\) & 26 & 29 & 32,135,745 & & \\
\hline & \(27.895,15\)
2.161 .53
2.35 & 29,516,64 & \(32,147,000\)
\(2,966,426\) & \(35,762,218\)
\(4,298,769\) & 0.102,311 \\
\hline Cle & 2,230.419 & 1,948,284 & \(3.060,782\) & 4,340,284 & 6.754.026 \\
\hline Norwegian . . . Enter & 2,477,936 & 2,604,049
\(\mathbf{2} 660,795\) & 3,839,602 & 3,392.216 & 4.315,870 \\
\hline Ente & 283
78.0 & 2,690,7 & 1,788,8 & - & 4, 4 2,466,1214 \\
\hline Cleared & 792.767 & 1,003.634 & 1.808,3 & 2,117,717 & 2,478,534 \\
\hline Entere & 901,819 & 966,73 & 1.735.288 & 2,106.717 & 2.889.986 \\
\hline Cleared & 952.183
952.695 & 990.006
\(\mathbf{1 , 1 5 0 , 0 9 8}\) & 1.759 .509
1.600 .317 & \(2,123,830\)
\(1,949,161\) & \(2,886,731\)
\(2,272,075\) \\
\hline Dutch \(\begin{aligned} & \text { Entere } \\ & \text { Cleare }\end{aligned}\) & 952,69
948,19 & \[
\begin{aligned}
& \text { 1,150,098 } \\
& \text { 1,156,936 }
\end{aligned}
\] & \(1.600,317\)
\(1,613.450\) & \[
\begin{aligned}
& 1,949,161 \\
& 1,957,107
\end{aligned}
\] & \(2,272,075\)
\(2,294,584\) \\
\hline Entered & 884,039 & 929.250 & 1.417.128 & 1,574,395 & 1,640,466 \\
\hline Cle & 852.935 & 909.493 & 1.405 .247 & 1,587,762 & 1,663,197 \\
\hline Enter & 631,639 & 645.210 & 1.309 .915 & 1,462.488 & 1,477,199 \\
\hline C & \(644.43!\) & 682,184 & & \(1,471,300\)
936.918 & 1,499,319 \\
\hline Belgian \(\begin{aligned} & \text { Entere } \\ & \text { Cleare }\end{aligned}\) & 449.470
423.639 & 551.513
\(\mathbf{5 3 7 . 9 6 9}\) & \begin{tabular}{l}
\(801 / 472\) \\
797,134 \\
\hline
\end{tabular} & 936.918
920.597 & \[
\begin{aligned}
& 1,355.135 \\
& 1,357,668
\end{aligned}
\] \\
\hline A Entered & 146.721 & 323.700 & 282,152 & 664.360 & 274,241 \\
\hline - Cleared & 145.212 & 332.825 & 277.400 & 675,096 & 280.464 \\
\hline
\end{tabular}

In 1909 the percentage of working expenses to total receipts was 63 in England and Wales, 57 in Scotland and 62 in Ireland.

Tramwoys.-An act passed in 1870 to facilitate the construction of tramways throughout the country marks the beginning of their modern development. It led to the laying down of "street railways" in many large towns. According to a return laid before the House of Commons in the session of 1878 , the total length of tramways authorized by parlia. ment up to the 3oth of June 1877 was 363 m. , and the total length opened for traffic 213 m ., comprising 125 m . of double lines and 88 m . of single lines. On the 3 oth of June 1000 there were in the United Kingdom 70 tramway undertakings with 585 m . of line

Not far from a fresh trebling took place in the course of the next quinquennial period, and at the end of 1850 there were 6621 m . of railways, constructed at the cost of \(£ 240,270,745\).

The construction of railways (especially in England) was undertaken originally by a vast number of small companies, each under sepatate acts of parliament. But it was soon discovered that there could be neither harmonious nor profitable working of a great many systems, and this led to a scries of amalgamations (see under England; Ireland; Scotland).

The number of passengers carried per mile in 1832 was 4860 , but before ten more years were past the number of passengers had not only increased in proportion with the opening of new lines, but more than doubled per mile, and, instead of being under 5000, had in 1842 come to be near 12,000. In 1861 the number of passengers carried per mile of railway was 15,988 ; in 1876 it was 31,928 ; and in 1900 it was over 52,000 .

The two following tables illustrate the further development of milwayz in the United Kingdom:-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year.} & \multirow[b]{2}{*}{Mileage} & \multirow[t]{2}{*}{Paid-up Capital.} & \multirow[t]{2}{*}{Number of Passengers.} & \multicolumn{2}{|l|}{Traffic Receipts.} & \multirow[t]{2}{*}{Percentage of Working Expenses to Receipts.} \\
\hline & & & & Total. & Per Mile. & \\
\hline & & 488, 30.127 & & 60,622 & 61 & \\
\hline 1860 & 10,433 & 348,130,127 & 163.435,678 & 27.766,622 & 2,661 & 47 \\
\hline 1865
1870 & 13.298
15.537 & 455.478 .143
529.908 .673 & \(251,862,715\)
\(3,36.545 .397\) & 35.890 .116
43.417 .070 & 2,701
2,794 & 48 \\
\hline 1875 & 16,658 & 630,223.494 & 506,975.234 & 58.982 .753 & 3.541 & 54 \\
\hline 1880 & 17.933 & 728.316 .848 & 603.885 .025 & 62.961 .767 & 3.511 & 51 \\
\hline 1835 & 19.169 & 815.858 .055 & 697.213 .031 & 66,644.967 & 3.477 & 53 \\
\hline 1890
1895 & 20.073
21,174 & \(897.472,026\)
\(1,001,110,221\) & 817.744 .046
929.770 .909 & \begin{tabular}{l}
\(76,548.347\) \\
\(81.496,047\) \\
\hline
\end{tabular} & 3,813
\(3,8.44\) & 54 \\
\hline 1900 & 21.855 & 1,176,001.890 & 1,142,276,686 & 98,854.552 & 4.523 & 6 \\
\hline 1905 & 22,847 & 1,272,601,000 & 1,199,022,102 & 105.111 .709 & 4.601 & 62 \\
\hline 1909 & 23.280 & 1.314.406.000 & 1.265,081,000 & 110,682,266 & 4.754 & 62 \\
\hline
\end{tabular}
- Excluding season-ticket holders. whose number in 1880 was 502,174; in 1900, 1,749,804: and in Engtand and Wales alone, in 1880, 449.823 ; in 1900, 1,610.754.
In the next table further details are given for 1909:-
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{1909.} \\
\hline & England and Wales. & Scotland. & Ireland. \\
\hline Mineage of \(\left\{\begin{array}{l}\text { Double or more lines . . } \\ \text { Single lines . . . }\end{array}\right.\) & \(\begin{array}{r}10.746 \\ 5.299 \\ \hline\end{array}\) & \[
\begin{gathered}
1.580 \\
2.264 \\
5
\end{gathered}
\] & \[
\begin{gathered}
670 \\
2.721 \\
6
\end{gathered}
\] \\
\hline (\(\begin{aligned} & \text { Passenger traffic } \\ & \text { Total } \\ & \text { cools }\end{aligned}\) & 43.919.702 & 5.080 .603 & \[
2.204,756
\] \\
\hline Traffic \(\left\{\begin{array}{c}\text { Total goods traffic. . . . } \\ \text { Including }\end{array}\right.\) & 50,647,426 & 6,8,36,920 & \[
1,992,859
\] \\
\hline Receipte \(\begin{aligned} & \text { Minerals } \\ & \text { General merchandise: }\end{aligned}\) & 24.837 .682
2.858 .68 & 3,286.074 & 281,634 \\
\hline Worling expenditure \(\quad . \quad . \quad . \quad\). & 24.885 .494
65.169 .619 & 3.209 .588
\(7.200,173\) & \(\mathbf{8}, 392.600\)
2.667 .796 \\
\hline Net receipes. & 37.979.313 & 5.489.579 & 1,667.572 \\
\hline
\end{tabular}
belonging to local authorities, while 107 with 592 m . of line belonged to other than local authorities. The capital expenditure on the former amounted to \(\{10,203,604\), on the latter to \(f_{11}, 532,384\).
The development of tramway enterprise in the United Kingdom,
as shown by the milege open, the paid-up capital. grosa receipts;
working expenses and number of passengers carried, has been as
follows:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline Years ending June 30. & Miles open. & Paid-up Capital. & Gross Receipts. & Working Expenses & \[
\begin{array}{|c|}
\text { Passengenn } \\
\text { carried during } \\
\text { year. }
\end{array}
\] \\
\hline & & C. 020 & \({ }_{3,2}^{6}\) & & \\
\hline 1895 & 982 & 14,111.531 & 3,2,14,743 & 2,878,490 & 661,760.461 \\
\hline 1900 & 1177 & 20,582,692 & 5.445.629 & 4.075.353 & 1,065.374,347 \\
\hline 1905 & 2117 & 51,501,410 & 9.917.026 & 6.565.049 & 2,068,913.226 \\
\hline 1909 & 2536 & 70.345.155 & 12,641.437 & 8.045.658 & 2.059.981.136 \\
\hline
\end{tabular}

Authorries.-The following publicntions relating to the United Kingdom are issued annually in London (unless otherwise stated)- Finance Accounts: Financial Estrmates; Return shownge Re: venue and Expenduture (Enpland, Scollond and Ireland): Nalional Debe Accounts; Nationcl Debs during 60 Years: Local Taxation Returns: Army Estimates; Army Accounds; Army List (quarterly): Nary Estrmotes: Navy List (quarterly): Royal Commission on Agriculture. Reports (1896); MJineral Statistics; Reporls of Inspectors of Mines: Reports on Factories and Work3hops: Reports of Inspectiors of Fisherics: Return of Fish conseyed snland by rail; Slatement of the Trade of the United Kingdom: Statement of the Shipping and Navigation of the United Kingdom : Repors of the Posimasker-General. Vital statistics: Reports of the registrars-general respertively for England, Por Scorland (Edinburgh), for Ireland (Dublin); Census Reports (decennial, 1901, \&e.), ditto: Education: Reports of the Board of Edducation for England and Wales; Report of the Commissioners of Natsond Educatson in Ircland: Repors of the Commiltee of Council on Education in Scob Land; Electoral Slatistics (London, 1905); Stafistical Tables relating to Emigration and Immrgration. Judictal Statistics of England and Wales, of Scotland, of Jreland: Local Government Reports, ditto; Stafistical Abstract for thit United Kingdom. in which the most important statistics are summarized for each of the fifteen years preceding the year of issuc. Among books may be mentioned the following'Sir W. R. Anson, The Law and Custom of the Constituizon (2 vole., and ed., Oxford, 1892-1896); W. J. Ashley (edited by). British Indusiries (London, 1902); E. G. Boutmy, Le Dtreloppement de la constitution ef de la soctís politrique en Angleterre (and ed., Paris. 1897). Of this there is an English translation (from fre adi)

\section*{606 UNITED KINGDOM OF GREAT BRITAIN AND IRELAND}
by I. M. Eaden (London, 1891); Edudes de droil constilutionel, France, Anfleterre, Elads-Unis (Paris, 188s: Eng, trans. by E. M. Dicey, London, 1891); Brassey. The Naval Annual (Portsmouth, 1886 onwards); Cassell's Gavetteer of Great Britain and Ireland (London, 1899): W. L. Clowes and other writers, history of the Royal Navy (London, 1896-1901); W. Cunningham, Growth of English Industry and Commerce (4th ed., London, 1904); A. V. Dicey, Introduction to the Study of the Law of the Constitution (sth ed., London, 1897); R. Donald (edited by) Mmaicipal Ycar.book (London, annual): S. Eardley-Wilmot, Our Flect To-day and its Detelopment dyring the Last Half Century (London, 1900); Hon. L. W. Fortescue, History of the British Army (London, 1906): R. Giffen, Essays in Finance (London, 1880 and 1886); R. von Gneist, Das enghsche Parloment in lausendjäringen Wandelungen (Berlin, 1885; translated into English by A. H. Keane, History of the Engtish Porhament, London, 1889); Englische Verfass ungsgeschuchice (Berlin, 1882 ; Eng. trans. by P. A. Ashworth, London, 1891); E. Hull, The Coalfields of Great Britain (London, 1905): J. E. T. Rogers, Industrad and Commercial History of England (London, 1892): J. Holv Schooling. The Brttish Trade Book (London, 1908): Sir J. R. Seeley, The Growth of Bratish Polucy (2 vols., London, 1895) ; H. Taylor, The Origin and Groacth of the English Constiution (2 vols., London, \(1889-1899\)); A. Todd. Parlia. mentary Covernment in England (new ed., revised by S. Walpole, 2 vols., London, 1892).

\section*{Brilish Military Forces.}

The forces of the British Crown may be classed as (a) the regular, or general service, army, together with the Indian army; and (b) the home territorial force; while there are aiso certain forces controlled by the governments of the various selfgoverning dominions. The home government raises, pays and controls the regulararmy, its reserves, the territorial force, and some few details such as the militia of the smaller possessions, Indian native battalions employed on imperial service out of India, \&ec. But the cost of that portion of the regular army which is in India is borne by the Indian government, which is not the case with the regulars serving in olher colonies or in the dominions. Consequently the Indian government, unlike the colonial governments, can within limits dispose of the British paid regulars within its sphere.

Regular Army.-The duties of the regular army are to garrison India and overseas colonies, to garrison Creat Britain and Ireland, and to find expeditionary forces of greater or less strength for war in Europe or elsewhere. The principies upon which the reorganization of 1905-1008 was based are: (a) that in peace the army at home must be maintained at such an effective standard that all necessary drafts for the army ahroad shall be forthcoming, without undue depletion of the army at home; (b) the home army on mobilization for service should be brought up to war strength by the recall of reservists in sufficient, but not too great, numbers; (c) the wastage of a campaign shall be made good by drafts partly from the remaining army rescrve, but above all from the militia, now converted into the special reserve; and (\(d\)) the volunteers and yeomanry, reorganized into the territorial foree, shall be responsible, with little regular help, for the defence of the home country, thus freeing the regular army at home for general service. The first of these conditions entirely, the second largely, and even indirectly the third and fourth depend upon the recruiting, establishments and terms of service of the regular army. These last are a compromise between the opposite needs of short scrvice, producing large reserves, and long service, which minimizes the seatransport of drafts; they are also influenced by the state of the labour market at any given moment, as recruiting is voluntary. To enable the authorities to deal with these conditions, the secretary of state for war may without special legislation vary the terms of enlistment, not only in general but also for the various arms and branches.

After the South African Wer, several dlfierent terms were tried for the line infantry and cavalry, but these experiments proved that the terms fornerly prevailing, viz. 7 years with the colours and 5 in the reserve, were the most convenient. In the Horse and Field Areillery the lerm is 6 and 6 , in the Houschold Cavalry and the Garrison Artillery 8 and 4, and in the Foot Guards 3 and 9. Engineers and other speecialists are recruited on various terms. A certain number, again varying from year to year, almont from math to month, are allowed to engage for the lull 12 years with the (long service). Thus in 1907-1908, 1551 men were serviag
on a 12 -year colour engagement, 24,856 on a term of 7 yeare coloum and 5 reserve. 3589 on a 6 and 6 term, 3449 on 3 and 9 engagement. 4529 for other terms, out of a total of 37.974 recruts or soldiens signing fresh engagements.

The following figures show the inflow of recruits:-
\begin{tabular}{|c|c|c|c|c|}
\hline Yes. & Recruits offering. & Recruits approved. & Percentage approved. & Percentioe of Recruit: to Strength of Army. \\
\hline Oct. 1903-Oct. 1904 & 89,824 & 42,041 & 46.8 & 14.6 \\
\hline Oct. 1904-Oct. 1905 & 81.045 & 35.551 & \(43 \cdot 9\) & 13.05 \\
\hline Oct. 1905-Oct. 1906 & 83,155 & 36.380 & 43.5 & \\
\hline Oct. 1906-Oct 1907 & 72.855 & 34.710 & 47.6 & 14.25 \\
\hline Oct. 1907-Oct. 1908 & 77.526 & 37,222 & 47.9 & 14.05 \\
\hline Oct 1908-Oct. 1909 & 75.630 & 33.766 & \(44 \cdot 7\) & 13.6 \\
\hline
\end{tabular}

The army consists of about 250,000 officers and men of the regular forces on full pay, distributed (October 1909) as follows :-
\begin{tabular}{|c|c|c|}
\hline & Strength. & Establishment. \\
\hline Stafi and departments, \&c. & 3,293 & 3.392 \\
\hline Home . . & 128,412 & 130,74 \\
\hline India & 77.866 & 76,009 \\
\hline Colonier & 47,127 & 44.981 \\
\hline Total . . . & 253,004 & 253.405 \\
\hline
\end{tabular}

By units, it is composed of 3 regiments of Household Cavalry 7 regiments of Dragoon Guards. 3 of Dragoons, 6 of Lancers and 12 of Hussars (total cavalry, 31 regiments); 4 regiments of Foot Guards of 9 battalions, 51 English and Welwh, 10 Scotissh and 8 Irish line infantry and rifle reqiments (total infantry, 149 battalions); the Royal Regiment of Artillery: divided into Royal Horse and Field Artillery, and Royal Garrison Artillery-the R.H.A. consisting of 28 batteries, the R.F.A. of 150 batteries, the R.G.A. of 100 companies (told off to garrisons, siege train and heavy field batteries) and 8 batteries mountain guns: the Corps of Royal Engineers, organized into mounted field troops, field companica fortress, telegraph, railway, searchlight, balloon, wireless companies and bridging train; the Army Service Corpe, divided into transport, supply, mechanical transport and ot ther companies and sections; the Royal Army Medical Corpe of 35 companies; the Army Ordnance Corps: the Army Veierinary Corps; Army Post Office Corps (formed on mobilization only) and Army Pay Corps.

In addition, there are the following colonial troops under the home government:-West India Regiment, 2 battalions; Royal Malta Artillery, 2 garrison companies; West African Frontier Force, 2 \}atteries, I Earrison company, 1 battalion M.I., 6 battalions infantry; and King's Alrican Rifles (East Africa). 5 battalions, besides the Indian troops in imperial servicea.

The army reserve, formed of men who have served with the colours, consists of four classes. Sections A, B and C consist of men who are fulfiling the reserve portion of their original twelve years' liability; Section \(A\), which receives extra allowances, is lable to be called up in a minor emergency; section B is the general reserve; section C, also part of the general reserve, consists of men who have beed sent to the reserve prematurely; section \(D\) (which is often suspended) consists of men who at the expiry of their twelve years engagement undertake a further four years' reserve liability.

Strength and Ages of the Army Reserve (Oct. 1, 1g09).
\begin{tabular}{|c|c|c|c|c|}
\hline Section. & A. & B\&C & D. & Total. \\
\hline lnfantry & 4.051 & 70.998 & 9.608 & 84,657 \\
\hline Cavalry & \(\cdots\) & 8,894 & 1.229 & 10,123 \\
\hline R.H. \& F.A. . & 60.4 & 13.849 & 1.571 & 16,024 \\
\hline R.G.A. - & - & 7.748 & 6.2 & 8,189 \\
\hline R.E. & 425 & 4.200 & 406 & 5.021 \\
\hline Others & 427 & 9.356 & 558 & to.341 \\
\hline & 5.497 & 115.045 & 14.014 & 134.556 \\
\hline \multirow[t]{3}{*}{Under 30.
30-35
Over 35} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{98,146
21,730
666}} & 2 Cl & 98,347 \\
\hline & & & 10,758 & 32.488 \\
\hline & & & & 3.721 \\
\hline \multicolumn{3}{|c|}{120.542} & 14.014 & 134.556 \\
\hline
\end{tabular}

The special rescrve, converted from the militia, consists of infantry, feld and garrison artillery, the lrish Honse flate Yeomanry). engineers, and a few A.S.C. and R.A.M C. Its object is to male guod on mobilization deficiencies (so far an they may exict alter the

\title{
UNITED KINGDOM OF GREAT BRITAIN AND IRELAND 607
}
alling is of the army reserve) in the expeditionary or regular forces, and to repair the losess of a campaign. It also acts as a feeder to the regular army. Its establishment and strength on the tut of October 1909 were 90,664 and 69.954 respectively, without counting in the latter fgure \(617^{2}\) militia and militia reserve men not then absorbed into the new organization.

The war organization of the home establishment, with its general and special reserves, aimed at the mobilization and despatch overseas of 6 army divisions, each of 12 battalions in 3 brigades; 9 feld batteries in 3 brigades, a brigade of 3 ficld howitzer batterics, and a heavy battery, each with the appropriate ammunition columns; 2 Gield companies and : telegraph company R.E.; 2 companies mounted infantry; and ambulances, columns and parks. In addition to these 6 divisions, there are " army troops" at the disposal of the commander-in-chief, consisting of two mixed " mounted brigades" (cavalry, mounted infantry, and horse artillery) serving as the "protective cavalry," and of various technical troops, such as balloon companies and bridging train. The "strategical" cavalry is a division of 4 brigades (12 regiments or 36 squadrons). with 2 brigades (4 batteries) of horse artillery, 4 " field troops" and wireless company R.E., and ambulances and supply columas. The peace organization of the regular forces at home conforms to the prospective war organization. In addition to the field army itself, various lines of communication troops are sent abroad on mobilization. These number some 20,000 men, the field army about 135,000 , with 492 field guns, 7561 other vehicles and 60,769 horses and mules.

But the first condition of employing all the home regulars abroad is perfect security at home. Thus the pivot of the Haldane system is the organization of the Terrilorial Force as a completely self-contained army. The higher organizationwhich the volunteers (\(q .0\).) and yeomanry (\(q .0\).) never pos-sessed-varies only slightly from that in vogue in the regular army. The second line army consists of 14 mixed mounted brigades as protective cavalry and 14 army divisions of much the same combatant strength as the regular divisions, the only important variation being that the artillery consists of \(4-\mathrm{gun}\) instead of 6 -gun batteries. In addition to the divisions and mounted brigades there are "army troops," of which the most important component is the cyclist battalions, recruited in the different coast counties and spectally organized as a first line of opposition to an invader. Affliated to the territorial force are officers' training corps, cadets, "veteran reserves," and some of the other organizations mentioned below, the Haldane scheme having as its express object the utilization of every sort of contribution to national defence, whether comhatant or non-combatant, on a voluntary basis.

The conditions of enlistment and reserve in the territorial force are a four years' engagement (former yeomen and volunteers heing however allowed to extend for one year at a time if they desire to do so), within each year a consecutive training in camp of 14-18 days and a number of "drills" (attendances at company and battalion parades) that varies with the branch and the year of service. The minimum is practically always excended, and trebled or quadrupled in the case of the more enthusiastic men, and the chiel difficulty with which the officers responsible for training have to contend is the fact that no man can be compelled to attend on any particular occasion. Altendance at the camp training, in so far as the claims of men's civil employment do not infringe upon it, is compulsory, and takes place at one time for all-generally the first half of August.

The army troops, divisions and mounced brigades comsict of 56 repiments of yeomenry; 14 batteries and 14 ammunition columns RH.A.' \({ }^{151}\) batteries and 55 ammunition columns R.F.A., 3 mountaln batteries and ammuntion column, and 14 heavy batteriea and ammunition columns R.G.A.; 28 field companies, 29 telegraph complanies, railway battalion. \&c., R.E.; 204 battalions infantry (includiag 10 of cyrlints, the Honourable Artillery Conspany, and certain corps of the Officers' Training Corps training as territoriala); 60 units A.S.C.: 56 field ambulances, 23 general hospitals and 2 sanitary companies R.A.M.C. Told of to the defended seaports are 16 groupa of garrison artillery companies and 58 fortress and electric lichte comparies R.E

Establishment and Strength (April i, 1910)
\begin{tabular}{|c|c|c|c|c|}
\hline Arm or Branch. & \multicolumn{2}{|l|}{Establlshment.} & \multicolumn{2}{|l|}{Strength.} \\
\hline & Officers. & Men. & Officers. & Men. \\
\hline Yeomanty & 1.345 & 24,766 & 1.193 & 24.219 \\
\hline R.H. \& F.A. . & 1. 211 & 32,945 & 1,015 & 29,658 \\
\hline R.C.A. & 450 & 11,455 & 406 & 9.356 \\
\hline R.E. & 371 & 14,660 & 525 & 12,896 \\
\hline Intantry & 5,679 & 195.297 & 5.064 & 173.670 \\
\hline A.S.C. \({ }^{\text {- }}\) & 322 & 8,562 & 277 & 7.577 \\
\hline R.A.M.C. & 1.438 & 13,664 & 1,151 & 11.849 \\
\hline A.V.C. - & 198 & 14 & 95 & \\
\hline Total & 11,214 & 301.363 & 9.726 \({ }^{1}\) & 269.225 \\
\hline
\end{tabular}

The Territorial Force is enlisted to serve at home, but individuals and whole corps may volunteer for service abroad in war if called upon. A register is kept of those who accept this liability beforehand, and about 6000 officers and men had joined it in April \(19{ }^{2} 0\).

The force is trained, commanded and inspected exclusively by the military authorities, the regular army finding the higher commanders and staffs. But in accordance both with the growing tendency to separate command and administration and with the desire to entist local sympathies and utilize local resources. "associations," partly of civilian, partly of military memters, were formed in every county and charged by staute with all matters relating to the enlist ment, service and discharge of the county's quota in the force, finance (other than pay, \&c. in camp), buildings, ownership of regimental property, \&ce. To these duties of county associations are added that of supervising and administering cadet corps of all sorts (other than officers training corps), and that of providing the extra horses required on mobilization, not only by the territorial force, but by the expeditionary force as well.

There are several groups of more or less military character which are for various reasons outside war office control. These are: (a) boys" brigades-the Church Lads' Brigade, the London Dioce\(\operatorname{san}\) Brigade, the Jewish Lads. Brigade, \&c.; (b) the Legion of Frontiersmen. an organization intended to enroll for "irregular" service men with colonial or frontier experience; (c) rifie elubs, which exist solely for riffe practice, and have no military liahilities: (d) boy scouts. an organization founded in 1908-by Lieut.-General Sir R. S. S. Baden-Powell.

Command and Administration.-The secretary of state for war is the head of the army council, which comprises the heads of departments and is the chief executive authority. These departments (see Starp) are: the general staff; the adjutantgeneral's department; the quartermaster-general's department: the department of the master-general of the ordnance; the civil member's department; and the finance member's department. In addition to these depertments, whose heads form the army council itself, there is the very important department of the inspector-general of the forces, whose duties are to ensure by inspection the maintenance of military efficiency and an adequate standard of instraction, \&c. This department is thus in the main a complement of the general stiff branch. In 1910 the commander-in-chicf in the Mediterranean was appointed in-spector-gencral of the overseas lorces other than those in India, and the inspector-general in London supervises therefore only the forces in the bome establishment. There are, therefore, three single authorities of high rank for the great divisions of the army-the two inspectors-general and the commander-in-chief in India.

The United Kingdom is subdlvided into 7 commands and 12 districts, the commands under a licutenant-general or general as commander-in-chief and the districts under brigadier-generals. The commands afe the castern, southern, western, northern, Scottish, Irish and the Aldershot. London is onganized as a separate district under a major-general. In the colonial establishment the principal commands are the Mediterranean (including Egypt) and the South African. Except in South Africa, there are no imperial troods quartered in the self-governing colonies.

Since 1904-1g0j command and administration have been separated and peoeral officers commanding in chief relieved of administrative details by the appointment to their staffs of major* generals in eharge of administration (see Staff and Ofricers).

Finance. - The army estimates for 1910-191t show a cotal sum of \(\{27,760,000\) required for the home and colonial establishments, made up as follows (after deducting appropriations in aid):-
\({ }^{2}\) Does not include unattached list of officers, 853, or 736
R_A.M.C. oficens not avainable until mobilimation.

\title{
608 UNITED METHODIST-UNITED PRESBYTERIAN CHURCH
}

Regular Army, Pay and Allowances
Special Reserve
Territorial Force
Medical Services
Educational Establishments.
Quartering, Transport, Rempounts
Supplies, Clothing
Stores and Ordnance Establishment
Armament and Engineer Stores
Works, Buildings and Land, \&c.
War Office and Miscellancous
Pensions, \&e.
£8,733,000
833,000
2,660,000
452,000
147,000
1.589.000
4.397,000

533,000
\(1.482,000\)
2.598 .000

503,000
\(3.833,000\)
L27.760,000
The pay of the soldiers has inereased since the South Alrican War. Without allowances of any kind, it was in 1910 as follows: Warrant officer, 5 s . to 6s. per day; quartermaster-sergeants, coloursergeants, \&c., 3 s .4 d. to 4 s .6 d .: sergeants, 2s. \(4 \mathrm{~d} .103 \mathrm{~s} .4 \mathrm{~d} . ;\) corporals, 15.8 d . to 2 s . 8 d . ; lance-corporals, 1s. 3d. to 15.9 d . ; privates 1s. Id. to 1s. \(9 \mathrm{~d} . ;\) boys, 8 d. In addition, all receive a messing allowance of 3d. per day, 2d. for upkeep of kit, and most receive "service "or "proficiency" pay at 3d.-6d a day; and engineers. A.S.C. and K.A.M.C. specialist pay at various rates. Officers' pay, without allowances, is for second lieutenants 5 s . 3 d . to 7 s . 8 d : : lieutenants. 6 s . 5 d . to 8 s . 10 d . ; captains, 11 s . 7 d . to 15 s ; majors, 13 s . 7 d . to 18 s . 6 d ; and lieutenant-colonels, 18 s , to.24s. 9d.

Indian Army.-The forces in India consist of the British army on the Indian establishment and the Indian native army with its dependent local militias, feudatories, contingents, \&c. In addition there is a force of European and Eurasian voluntecrs, drawn largely from railway employes. The Indian army consists of 138 battalions of infantry, 10 regiments of cavalry, 16 mountain batteries, 1 garrison artillery company, 32 sapper and miner companies (2 railways companies included). The proportion between British and Indian troops observed since the Mutiny is roughly one British to two native, the Indian army heing about 162,000 men. In addition the native army includes supply and transport corps, the medical service, and the veterinary service, officered in the higher ranks by officers of the A.S.C., R.A.M,C. and A.V.C. respectively.

The Indian army is recruited from Mahommedans and Hindus of various tribes and sects, and with some exceptions (chiefly in the Madras infaniry) companies, sometimes resiments, are compused exclusively of men of one class. The official F.S. Pockel Book 1908 gives the following particulars: Mahommedans (Pathans of the Irontier tribes, Hazaras Baluchis, Moplahs, Punjabi Mahommedans, Bre.), 350 infantry companies, 76 squadrons (\(35 \%\) of the army). Hindus (Sikis, Gurkhas, Rajputs, Jats, Dogras, Mahrattas, Tamils, Brahmans, Bhils, Gartwalis, \&c.), 727 companies, 79 squadrons (\(63 \cdot 3 \%\)).

Enlistment is entirely voluntary, and the army enjoys the highest prestige. Service is for three years but in practice the native soldier makes the army his career and he is allowed to extend up to 32 years. The native cavalry is almost entirely Silohdar, in which the trooper mnunts and clothes himself, and practically serves without pay. In the infantry, too. the old systern of paying men and requiring them to equip, cloike and feed themselves, is in vogue to some extent. There is a reserve of the native army, numbering some 35,000 men. But it is rather a draft to replace wastage than a means of bringing the army up to a war footing in the European way. Indeed, a cardinal principle of the Indian forces, Brilish and native alike, is that the units are maintained in peace at full war effective, often a litile above their ficld strength. Part of the army, nearest the north-west fronticr, has even its transport practically in readiness to move at once. The command is in the hands of British officers assisted by native officers, promoted from the ranks. The number of native officers io a unit is equal to that of the British officers.
Besides the regular native army there are: (a) various frontier and other levies, such as the Khyber Rifles and the Waziristan Miliila: (b) selected contingents from the armies of the native princes, inspected by British officers, numbering about 20,000 and styled " imperial service troops "; (c) the volunteers, about \(\mathbf{3 2 , 0 0 0}\) strong; and (d) the military police.
The general organization of the forces is into two armies, the northern and the southern, with beadquarters at Rawal Pindi and Poona respectively.
Adminislration.- Under the governor-general in council the commander-in-chief (himself a member of the council) is the executive authority. Under him in the army department, now divided into higher committees and the headquarter sunf, the fatter comprising (since the abolition of the miliary staff department under pord Kitchener's reorsanization) the divisions on the chicf of the general staff, the adjniant-yencral and the quartermaster-general. India has her own pmal college at Quetta. aud can manufacture
rifles, ammuaition and feld artillery equipment except the actual
The cost of the Indian army, and of the British forces on the Indian amblishment, bornc by the Indian governmeat in 1909 was \(2=0,558,000\).
\begin{tabular}{|c|c|c|c|}
\hline Regulars only. & Northern Army. & Southern Army. & Tutal. \\
\hline Brtish . & 40,608 & 34,143 & 74.751 \\
\hline Jrdian Army, white
" \("\) native & 1,534
85,189 & 1.582
76,772 & 3,046
161,961 \\
\hline Total & 86.723 & 78,284 & 165,007 \\
\hline Tetal & 127.331 & 112.427 & 239.758 \\
\hline
\end{tabular}

Forces of the Domisions and Colonics.-Lord Kitchener and Sir John French in 1909-1910 paid visits of inspection to Australia and Canada in connexion with the reorganization by the local governments of their military forces, and a beginning was made of a common organization of the forces of the empire in the colonial military conference of 1909. Without infringement of local autonomy and local conditions, a common system of drill, equipment, training and staff administ ration was agreed on as cesential, and to that end the general staff in London was to evolve into an "imperial general staff." The object to be attained as laid down was twofold; (a) complete organization of the territorial forces of each dominion or colony; (b) evolution of contingents of colonial general-service troops with which the dominion governments might assist the army of Great Britain in wars outside the immediate borders of each dominion. (See British Expire; Australla; Canada.)
UNITED IEETHODIST CHURCH, or UNTTED METHODISTS, and English Nonconformist community formed in 1907 by the union of the Methodist New Connexion (1797), the Bible Christians (1825), arid the United Methodist Free Churches (1857). The act of parliament which enabled this amalgamation received the royal assent on the 26 th of July 1907, and nuthorized the union " to deal with real and personal property helonging to the said three churches or denominations, to provide for the vesting of the said property in trust for the United Church so formed and for the assimilation of the trusts thereof, and for other purposes." The union was completed on the r6th of September 1907 in Wesley's Chapel, City Road, London. The Church gives power of speech and vote in its meetings to every member of 18 years of age and upwards. Its principal courts are constituted of an equal number of ministers and laymen. The Church had theological colleges at Manchester and Sheffield, boys' schools at Shebbear, in Devonshire, and at Harrogate. and a girls' school at Bideford. It issues a weekly and two monthly journals. In 1908 its statistics showed 2343 chapels with accommodation for 714,793 persons, \(\mathrm{g}_{4} 8\) ministers and 5621 local preachers, 165,463 church memhers and 332,756 Sunday scholars; there were 55 foreign missionaries, and about 30,000 church members and probationers in the foreign field.
UNITED METHODIST FREE CHURCHEs, an English Nonconformist community merged since 1907 in the United Methodist Church (q.o.). The organization was itself formed in 1857 by the amalgamation of the "Wesleyan Association " (which had in 1836 largely absorbed the Protestant Methodists of 1828) and the "Wesleyan Rciormers" (dating from 1849. when a number of Weskeyen Methodist ministers were expelled on a charge of insubordination).

URITED PRESBYTERLAR CHURGE (of Scotland). This Presbyterian organization, merged since 1900 in the United Free Church of Scotland (see above), was formed in 1847 by the union of the United Secession and Relief Churches.
The general causes which ked to the first great secession from the Church of Scotiand, as by law established in 1688, art indicated in the article Scotland, Churcre of. Its immediate occasion rose out of an act of assembly of 1732, which abolished the hast remnant of popular election by enacting that, in casea where patrons

\section*{UNITED• PROVINCES OF Mf\&}
might neglect or decline to exercice their right of presenutione the minister was to be chosen, not by the congregation, tra only by the elders and Protestant heritors. The act inset? had been passed by the assembly, although the presbyterics to which it had been previously submitted as an overture had disapproved of it by a large majority; and in accordance with a previous act (1730), which had taken away even the right of complaint, the protests of the dissentient majority were refused. In the following Octobcr Ebenczer Erskine (q.e.), minister of Stirling, preached a synod sermon, in the course of which he took occasion to refer to the act in question as in his opinjon unscriptural and unconstitutional.' Some of his expressions were objected to by members of synod, and it was resolved that the should be censured for them. This judgment, on appeal, was affirmed by the assembly in May 1733, whereupon Erskine protested to the effect that he held himself still at liberty to teach the same truths and to testify against the same or similar evils on every proper occasion. This protest, in which he was joined by Wiliiam Witson (1690-1741), Alexander Moncrieff (:6951761) and James Fisher (\(1697-177\) 5), ministers at Perth, Abernethy and Kinclaven respectively, was regarded by the assembly as contumacious, and the commission of assembly was ordered to procure its retractation or to proceed to higher censures. In November accordingly the protesting ministers were severed from their cbarges, their churches declared vacant, and all ministers of the Church prohibited from employing them in any ministerial function. They replied by protesting that they still adhered to the principles of the Church, though now obliged to " make a seccssion from the prevailing party in ecclesiastical courts."

In December' 1733 they constituted themselves into a presbytery, but for some time their meetings were devoted almost entirely to prayer and religious conferences. In 734 they published their first "testimony," with a statement of the grounds of their secession, which made prominent reference to the doctrinal laxity of provious general assemblies. In 1736 they proceeded to exercise "judicial powers" as a church court, published a " judicial testimony," and began to organize churches in various parts of the country. Having been joined by four other ministers, including the well-known Ralph Erskine, they appointed Wilson professor of divinity. For these acts proceedings were again instituted against them in the assembly, with the result that, having disowned the authority of that body in an "act of declinature," there were in 1740 all deposed and ordered to be ejected from their churches. Meanwhile the members of the "Ascociate Presbytery" and its adherents steadily increased, until in 1745 there were forty-five congregations under its jurisdiction, and it was reconstituted into an "Associate Synod." A violent controversy arose the same year respecting the religious clause of the oath taken by burgesses in Edinburgh, Glasgow and Perth ("I profess and allow with my heart the truc religion presently profcssed within this realm and authorized by the laws thereof '), and resulted in April 1747 in a "breach," when two bodies were formed, each claiming to be the "Associate Synod"; those who condemned the swearing of the burgess oath as sinful came to be popularly known as "Antiburghers," while the other party, who contended that abstinence from it should not be made a term of communion, were designated "Burghers." The Antiburghers not ouly refused to hold turther lriendly conference with the others, but ultimately went so far as to pass sentences of deposition and the greater excommunication on the Erskines and other ministers who held the opposing view. The Associate (Antiburgher) Synod held its first meeting in Edinburgh in the house of Adam Gib (q.s.) on the roth of April 1747. It grew with considerable rapidity; and in 1788 had ninety-four setted charges in Great Britain and nineteen in Jreland, besides a presbytery in America. For purposes of organization it was formed in that year into four provincial synods, and took the name of "The General Associate Synod." The "new light "controversies is to the province of the civil magistrate
\({ }^{1}\) The passing of the act was certainly unconstitational; it was rescinded in 1734. "because not made according to former acts."
in ensin.

-isere if...
the 1 'ret of \(j=\) :
charge (4001) o
presbyterion at inas.
as wcll as therontonson
terics took the hat
in America. Aber - r-
respecting the yrwor at
arose within this syear un
have adopted " wow Lat \(\ldots\)..
sion of the "Awoctive riesy
designation of the Amprats,"
Ln 1820 the General Awsen * A A.
number of 129 congregaliwtre', w.t.
of the Associate or Burgher iy:
"The United Secossion Churis. congregations.
-The Preshytery of Relief was unar. : 46
ministers of the Church of Scotland, om \(\alpha\)
Gillespie (\(q .0\).), who had been devonen in assembly in 1752 for refusing to take intrusion of unacceptable ministern. The hene" "s of congregations under its charge increaves winn rapidity, and a Relicf Synod was formert in \(1 ; \% ;\). 1847 had under its jurisdiction 136 congregationam; Church issued no distinctive "testimonien," asm " breadth of vicw was shown in the formal deciaratuti, . terms of communion, first made in 1773 , which allowed en. communion with those of the Episcopal and Indejemere.e persuasion who are "visible saints." A Relief theological hind was instituted in 1824.
In 1847 a union was formed between all the congregations of the United Secession Church and 118 out of 136 of the Relief Churches, in what now became the United Uanoe Presbyterian Church. It wis the first Presbyterian Preabstertee body to relax the stringency of subscription, the cheres. Sytuod passing a declaratory act on the subject in 1879. On such points as that of the six days' creation it was made clear that Ireedom was allowed; but when Mr David Macrae of Gourock claimed that it should also be allowed on the question of eternal punishment, he was at once declared to be no longer a minister of the church. He left bebind him many who sympathized with his position, and in the remaining part of the igth century the United Presbyterian Church came fully to share the lorward movement of thought of the other Scottish churches. Doctrinally there was little difference between the United Presbyterian Church and the Free Church of Scotland, and between 1863 and 1873 negotiations were carried on for a union, which however were fruitless. But in 1806 the United Presbyterian Church agein made advances, which were promptly met, and on the zist of October 1900 the United Free Church of Scotland came into cxistence.
UNITED PROVINCES OF AGRA AND OUDH (formerly known as the North-Western Provinces and Oudh), a province of British India, lying between \(23^{\circ} 52^{\prime}\) and \(31^{\circ} \cdot 18^{\prime} \mathrm{N}\)., and between \(77^{\circ} 3^{\prime}\) and \(84^{\circ} 39^{\circ} \mathrm{E}\). The province, including native states, has a total area of \(112,243 \mathrm{sq} . \mathrm{m}\). It is bounded N. hy Tibet; N.E. by Nepal; E. by Bengal; S. by Chota Nagpur, Rewa, the Bundelkhand states, and the Central Provinces; and on the W. by Gwalior, Rajputana and the Punjab.

\footnotetext{
\({ }^{2}\) The majority of this synod joined the Church of Seotland in 1839. The small minority which still retalned the name joined the Original Seeeders in 1842, the resultant body assuming the desisnation of United Original Seceders. A small majority (ewentyseven ministers in all) of the Syood of United Original Seceders joined the Free Church in 1852 .
\({ }^{2}\) A dissentient remnant (eight congregations) of the General Associate Synod united with the Constitutional Associate Presbytery in 1827 , the resultant body being called the Associate Synod of Origina! Seceders.
}

Physical Aspects.-The province occupies, roughly speaking, the upper basin of the Ganges and the Jumna, corresponding to the Hindostan proper of the Mahommedan chroniclers. A large semi-circulat tract, comprising the valleys of the Gogra and the Gumti, has long been separated from the remainder of the great plain as the kingdom of Oudh; and though since 1877 it has been under the administrative charge of a lieutenantgovernor, it retains certain features of its former status as a chief-commissionership. The province includes the whole upper portion of the wide Gangetic basin, from the Himalayas and the Punjab plain to the Vindhyan plateau, and the lowlying ricefields of Bchar. Taken as a whole, the lieutemantgovernorship consists of the richest wheat-bearing country in India, irrigated both naturally by the rivers which take their rise in the northern mountains, and artificially by the magnificent system of canals which owe their origin to British enterprise. It is studded with villages, interspersed at greater distances with commercial towns. Except during the hot scason, when the crops are off the fields, the general aspect in normal years is that of a verdant and well-tilled hut very monotonous plain, only merging into hilly or mountainous country at the extreme edges of the basin on the south and north. The course of the great rivers marks the prevailing slope of the land, which falls away from the Himalayas, the Rajputana uplands, and the Vindhyan plateau south-eastwards towards the Bay of Bengal. The chief natural features of the province are thusdetermined by the main streams, whose alluvial deposits first formed the central portion of the United Provinces; while the currents afterwards cut deep channels through the detritus they brought down from the ring of hills or uplands.
\begin{tabular}{|c|c|}
\hline & \multirow[t]{38}{*}{} \\
\hline & \\
\hline
\end{tabular}
smaller channels seam the whole face of the country earrying of the surplus drainage in the rains, but drying up in the hot season. Ail the larger rivers, except the Gumi, as weil as most of the smaller streams. have beds hardly sunk below the general level; and in time of Hoods they burst through their banks and carve out new channels. Numerous shallow ponds or jhils tnark the former beds of the shifting rivers. These jhils have great value, not only as preservatives apainst inundation, but also as reservoirs for irrigation. The coil of Oudh consists of a rich alluvial deposit, the detritus of the Himalayan system washed down into the Canges valley. Usually a light loam, it passes here and there into pure clay, or degenerates occasionaliy into barren sand. The macultivable land consista chiefly of extensive usar plains, found in the touthern and western districts, and covered by the deleterious saline efflorescence known as ref. Oudh possesses no valuable minerals. Salt was extensively manufactured during native rule, but the British goverament has probibited this industry for fiscal reasons. Nodular limestone (hasiber) occurs in considerable deposits, and is used as romd metal.

The villages lie thickly scattered, consisting of low thatcbed cottages, and surrounded by patches of garden land, or groves of banyan, pipal and pakar trees. The dense foliage of the mango marks the site of almost every little homestead, no less an ares than \(1000 \mathrm{cq} . \mathrm{m}\). being covered by these valuable fruit trees. Tamarinds overhang the buts of the poorer classes, while the seat of a wealthy family may be recognized by clumps of bamboo. Plantains, guavas, jack-fruit, limes and oranges add further beatuty to the village plots. The flora of the government reserved forests is rich and varied. The sal trce yields the most important timber; the finest logs are cut in the Khairagarh jungles and floated down the Gogra to Bahramghat, where they are sawn. The hard wrood of the shisham is also valuable; and several other timber-trees afford materials for furniture or roofing shingle. Among the scattered jungles in various parts of the province, the malima tree is prited alike for its edible flowers, its íuits and its timber. The jhils supply the villages with wild rice, the roors and seeds of the lotus, and the singhars watcr-nut. The fauna comprises most of the animals and birds common to the Gangetic plain; but the wild clephant is not practically unknown, except when a stray specimen lowes its way at the foot of the hills. Tigers are now only lound in any numbers in the wilds of Khairagarh. Leopards still haunt the cane-brakes and thickets along the banks of the rivers; and milgai and amtelopes abound. Came birds consist of teal and wild duck, tuipe, jungle low and peacock.
Risers.-The Ganges and its affluents, the Jumna, the Ramganga and the Gogra, rise in the Himalayas, and meet within the province. In addition there are the following secondary streams: the Kalinadi and the Hindan flow through the Doab; the Chambal intersects the trans-Jumna tract; in Bundelkhand the principal streams are the Betwa and the Ken; the Ramgana, rising in Carhwal, pursues a tortuous course through Rohillkhand; the Gumti flows past Lucknow and Jaunpur to join the Ganges; the trans-Gogra region is divided into two pearly equal parts by the Rapti. These rivers are constantly modifying the adjacent lands. A small obstruction may divert the stream from one side to the other. The deep stream corrodes and cuts down the high ground; but meanwhile alluvial flats are gradually piled up in the shallows. The tributary streams get choked at the mouth and assist the process of deposition. The deposit is greatest when'the floods of the rainy aeason are aubsiding.

Climate.-The climate as a whole is hot and dry. The Himalayan districts of course are cool, and have a much greater rainfall than the plains. They are succeeded by a broad submontane belt. the tarai, shicb is rendered moist by the mountain torrents, and is covered by forest from end to end. This region bears the reputation of being the most unhealthy in all India, and in many parts only the acclimatized aborigines can withstand its deadly malaria. The plain country is generally warm and dry, the heat becoming more oppressive as the general level of the country sinks towards Allahabed and Benares, or among the hills of Bundelkhand. There are three seasons. The cold changes gradually to the hot; the hot ceason gives way abruptly to the rains; and the rains again change gradually into the cold seasoo. In point of humidity and temperature the province lies half-may bet ween Bengal and the Punjab. The rainfall varies from 30 to 44 in . in the plains, increasing gradually towards the Himalaya. The temperature in the bot season ranges from \(86^{\circ}\) to \(115^{\circ} \mathrm{F}\)., and even higher, in the shade.

Minerals.-Owing to the Ioany nature of the sonl. few minerals of any kind are found. Imon and coal exist in the wouthern hills. A little coal was extracted from Mirappur in 1896, but the enterprise was dropped. Iron, copper, sapphires, ace, are said to be obtainable in the Himalaya. It has been suggested that the cily water lopwn as telye pawi indicates the presence of petroieum.

A gricultare-Out of a total area of \(104075 \mathrm{sq} . \mathrm{m}\). in the British districts of the proviace, over 54,000 sq. m . are under culkivation. The course of tillage comprises two principal harvests: the harif, or autumn crops, sown in June and reaped in October or November: and the rebi. or spring crops. sown in October or Novernber, and reaped in March or April. The great agriculcural staple is wheat. but millets and rice are also largely cultivated. Spealing broadly. nice and cilseeds prodominate in the eastern agd sub-Himalayan
districts, millets and cotton in Bundelkhua an region; greater part of the Gangctic plain. The pulbes \(m\) - 04 one are grown generally in the autumn alone, or in millets: and gram alone or in combination with wh an important spring crop. Sugar-cane, indigo, poperf are locally important; and a little tea is grown in the districts of Almora Garhwal and Dehra Dun.

Land Tenure. - Owing to historical reasons, the bystem tenure is not uniform. In the Benares division, which first portion to come under British administration, the land was permanently fixed in 1795, on the same principles that had hane previously adopted in Bengal, and there a special class of tomman as well as the landlords, enjoy a privileged status. Througho rest of the province of Agra, almost all of which was acyus between soon and 1803, temporary settlements are in force, usunthy for a term of thirty years, the revenuc being assessed at one-hat of the "assets" or estimated rental value. The settlement is muth with the landholders or zomindors, who are frequently a group a persons holding distinct shares in the land, and may be themselv petty cultivators. No proprietary rights superior to those of the tetual landowners are recognized. The only privileged class of tenants are those possessing "occupancy" rights, as defined by stalute. These rights, which are heritable but not transferable, protect the tenant against eviction, except for defaule in payment of rent. while the rent may not be enhanced except by mutual agreement or by order of a revenuc court. "Occupancy" rights are acquired by continuous cultivation for ten years, but the cultivation need not be of the same holding. All other temants are merely tenants-at-will. In Oudh. after the convulsion of the Mutiny, all rights in land were confiscated at a stroke, and the new system adopted was in the nature of a treaty between the state and the talukdars. or great landlords. These tolukdars had not all the same origin. Many were Rajput chiefs, ruling over thei- tribesmen by ancient hereditary right; while others were officials or court favourites, who had acquired power and property during the long period of native misrule. On all the same status was now conferred-a status that has no analogy in the rest of India. By sanad (or patent) and by legisiation the talukdars were declared to possess permanent, heritable and transferable rights, with the special privilege of alienation, either in lifetime or by will, notwithstanding the limits imposed by Hindu or Mahommedan law. In addition most of them follow the rule of primogeniture, while a power of entail has recently been granted. The estates of talukdars extend over more than half the total area of Oudh. No. "occupancy " rights based on continuous cultivation are recognized in Oudh, but similar rights, here known as " sub-proprietary." were granted to all those who had possessed them within thirty years before amnexation. On the other hand, there are no tenanis-at-right in Oudh. Any person admitted to the cultivation of land is entitled to hold it for seven years at the same rent, which may not be advanced by more than \(68 \%\) at the end of the term.

Monsfoctures. - The principal manufactures are those of sugar, indigo and coarse cotton cloth. Ornamental metal-work is made at Benares. Among the factories on the English model are the Elgin and Muir cotton mills at Cawnpore, the Cawnpore tanneries and leather factories, the Shahjahanpur rum distillery, and breweries at Mussoorie and Naini Tal. There are also woollen and jute mills, fron and brass foundrics, lac factories and oil-mills. The manu. facture of synthetic indigo by German chemists has greatly affected the grownh and manufacture of indigo, the indigo factorics decreasing in 1904-1905 from 402 to 252 -
Trade. - The export trade is chiefly confined to agricultural produce. The principal staples include wheat, oilsceds, raw cotton, indigo, sugar, molasses, timber and forest produce, dry'stuffs, ghce, opium and tobacco. The imports consist mainly of English pieceFoods, metal-work, manufactured wares, salt and European goods. The chief centres of trade are Cawnpore, Allahabad. Mirzapur, Benares, Meerut and Moradabad.

Jrigation.- The Doab is intersected by canals drawn from the great rivers. The major productive works are the upper and lower Ganges, the castern Jumma, and the Agra canals. The greatest work in the province, and one of the greatest irrigation works in the world, is the upper Ganges canal, which is taken from the river where it leaves the hills, some 2 m . above Ifardwar. In the first 20 m. of its course this gigantic canal crosses four great torpents. which bring down immense volumes of water in the rainy scason. The first two are carried in massive aqueducts over the canal, the third is passed through the canal by a level-crossing. regulated by drop-gates, and the canal is taken over the fourth by an aqueduct. The total length of the main canal is 213 m .4 navigable throughout, and designed to irrigate \(1,500,000\) acres. The lower Ganges canal is taken from the river at Narora. 149 m . below Hardwar. Alter crossing in 55 ml . four great drainage lines, it cuts into the Cawnpore, and 7 m , lower down in:o the Etawah, branches of the upper Ganges canal. These branches are now below the point of intersection, part of the lower Canges camal system. The irrigating capacity of this canal is \(1,250,000\) acres.

Raitrays. - The province is well supplied with railarays. The main line of the East Indian runs throughout south of the Ganges, which is bridged at Benares and Cawnporc. North of the river
sculpture which, having become nearly quicacent at the close of the Mesozoic cycle, became active again in Tertiary and tater times.
The belts of structure and the cycles of crosion thus briefly described are recognizable with more or less consinuity from the Gulf of St Lawrence 1500 m . south-west ward to Alabarna, where the deformed mountain siructures pass out of sight under neasly horiontal stma of the Gulf coastal plain. But the dimensinns of the *veral belts and the strength of the relief developed by their later cinn varies kreatly along the system. In a north-eastern section, tically all of New England is occupied by the older crystalline Hic corresponding northern part of the stratified belt in the Hace and Champlain-Hudson valleys on the inland side of land is comparatively free from the ridge-making rocks ind farther south: and here the platcau member is replaced, as it were, by the Adirondacks, an outlier ta highlands of Canada which immediately succeeds tified belt west of Lake Champlain. In a nuiddle in southern Virginia, the crystalline belt is onression of its south-eastern part beneath W.ath the strata of the Atlantic coastal
Hie ocean; but the stratified belt is here rhable scries of ridges and yalleys a...ion on the many alternations of the plateau assumes full strength ridges of this middle section In a south-western a collection ar Population,-Out of : tetal \(\quad\) estratified belt again no fewer than \(40,692,818\), or \(r\) of ridge-making 6,731,034 or \(4 \%\) Mahommedans section. persons belonging to all the other \(\quad\) in finse because Buddhists, Parsees, Christians, Jew, ©ho was only 268,930 , or less than \(0.5 \%\)
guages in all are spoken in the provinces, guages in all are spoken in the provineea, ofla
pcople \(45: 7\) speak Western Hindi, 3725 Fel Bibari and 211 Central Pahari.

Hisfory.-If the present limits be slightly exteoned dircetion so as to include Delhi and Patna, the Unilef fra would contain the area on which almost the whyt Indian history has been played. Here lay the serene, koues Madhya Desu or "middle country;" of the second Aryan colonization, when the two great epics, the Methed Uhdralo and Ramayona, were probably composed, and when the religion of Brahmanism look form. Here Buddha was berm, preached and died. Here arose the successive dymastes of Asoka, of the Guptas, and of Harshavardhana, which for a thousand years cxercised imperial sway over the greater part of India. Here is Ajodhya, the home of Rama, the most popular of Hindu demigods; and also Benares and Muttra, the most sacred of Hindu shrines. Here too were the Mahommedan capitals-Delhi, Agra, Alahabad, Jaunpur and Lucknow. Here finally, at the crisis of the Mutiny, British dominion was permanently established in India.

The political vicissitudes through which this tract of country passed in carlier times are deseribed under lindia: History. It will be sufficient here to trace the steps by which it passed under British rule. In 1765, after the batte of Buxar, when the nawab of Oudh had been decisively defeated and Shah Alam, the Mogul emperor, was a suppliant in the British camp, Lord Clive was content to claim no acquisition of ecrritory: The whole of Oudh was restored to the Nawab, and Shah Nam received as an imperial apanage the province of Ailahatact and Kora in the lower Doal, with a British garrison iat the fort of Allahabad. Warren Hastings augnocnted the territory of Outh by lending the nawab a British army to conquer Rohilkhand, and by making over to him Allahabad and Kora on the ground that Shah Alam had placed himself in the power of the Mahraltas. At the same time he reccived from Oudh the sovereignty over the province of Benares. Subsequently no great change took place until the arrival of Lord Wellesley, who acquired a very large accession of territory in two instalments. In 1 Sol he obtained from the nawab of Oudh the eession of Rohilkhand, the Lower Doab, and the Gorakhpur division, thus enclosing Oudh on all sides except the north. In 1804, as the result of Lord Lake's victories in the Mahratta War. the rest of the Doab and part of Bundelkhand, together with

Agra and the guardianship of the old and blind emperor, Shah Alam, at Delhi, were oblained from. Sindia. In 1815 the Kumson division was acquired after the Gurkha War, and a further portion of Bundelkhand from the peshwa in 1817 . These new acquisitions, known as the ceded and conquered provinces, continued to be administered by the governor-general as part of Bengal. In 1833 an act of parliament was passed to constitute a new presidency, with its capital at Agra. But this scheme was never fully carried out, and in 1835 another statute authorized the appointment of a lieutenant-governor for the North-Western Provinces, as they were then styled. They included the Delhi territory, transferred after the Mutiny to the Punjab; and also (after 1853) the Saugor and Nerbudda territories, which in 1861 became part of the Central Provinces. Meanwhile Oudh remained under its nawah, who was permitted to assume the title of king in 1819. All protests against gross misgovernment during many years having proved useless, Oudh was annexed in 1856 and conistituted a separate chief commissionership. Then followed the Mutiny, when all signs of British rule were for a time swept away throughout the greater part of the two provinces. The lieutenantgovernor died when shut up in the fort at Agra, and Oudh was only reconquered after several campaigns lasting for cighteen months.

In 1877 the offices of lieutenant-governor of the NorthWestern Provinces and chie! commissioner of Oudh were combined in the same person; and in 1902, when the new name of United Provinces was introduced, the title of chiel commissioner was dropped, though Oudh still retains some marks of its former independence.
See Gavettecr of the United Provinces (a vols. Calcutta, 1908); and Theodore Morison, The Industrial Organization of an Indian Province (1906).
UNITED STATES, THR, the short title usually given to the great federal republic which had its origin in the revolt of the British colonies in North America, when, in the Declaration of Independence, they described tbemselves as "The Thirteen United States of America." Officially the name is "The United States of America," but "The United States" (used as a singular and not a plural) has become accepted as tbe name of the country; and pre-eminent usage has now made its citizens "Americans," in distinction from the other inhabitants of North and Soutb America.
The area of the United States, as here considered, exclusive of Alaska and outlying possessions, occupics a belt nearly twenty degrecs of middle latitude in width, and crosses Benederon degrecs of midde America from the Atlantic to the Pacific. The southern boundary is naturally defined on the east by the Gull of Mexico;its western extension crosses obliquely over the western highlands, along an irregular line determined by aggressive Americans of Anglo-Saxon stock against Americans of Spanish stock. The northern boundary, after an arbitrary beginning, finds a natural extension along the Great Lakes, and thence continues along the 49 th paraild of north latitude to the Pacific (see Bullelin 17:, U.S. Geological Survey). The area thus included is \(3,026,789\) sq. m. \({ }^{1}\)

\section*{I.-Prysical Grocieapry}

Coost.-The Atlantic cosst of the United States is, with minor exceptions, low; the Pacific coast is, with as tew exceptions,

The following are tbe atates of the Union (recognized abbrevia. tions being given in brackets): Alabanal (Als): Arisala (Ariz). Arkansas ivik). Califorcia (Cal.). Colorado (Col.) (Sanecticut
(Conn.). Dethine (Del.). Florida (Fla.). Georgia (C W). Idaho, Illinois (III), Indiana (lni.). lowa (la.). Kansas (Kan) Kentucky (ky.), Lovisians (La.). Maine (Me.), Mapland (Md) Masachusetts (Mras), Michiga (Mich.). Minneatra (Minn), Minionip pi (Mrss). Misnours (Ma). Montane (Mone.). Nebraska fineb. Nevid (Nev.), Niew Hampshire (N.H.). New lersey (N.).), New Mevico (N. Mex.). New Yorls (N.Y.), North Carolina (N.C. . North Datora (N. Dak.). Ohio (0.1. Othatoms (Otkla). Oregon (Oieg). Pernsyt aniz (Pa); Rhote Island (R.1). South Carolini (S.C.). South I Levora (S. Dak.). Tenmeser (Tera), Terus (Tex., Ueah Vermon: (Vi, Virinia Wyo, (Wyo.): Iogether with che Districe of Columida (D.C.)
hilly or mountainous. The Atlantic const owes its oblique N.E.-S.W. trend to crustal deformations which in very early geological time gave a beginning to what later came to be the Appalachian mountain system; but this system had its climax of deformation so long ago (probahly in Permian time) that it has since then been very generally reduced to moderate or low relief, and owes its present altitude either to renewed elevations along the earlier lines or to the survival of the most resistant rocks as residual mountains. The oblique trend of the coast would be even more pronounced but for a comparatively modern crustal movement, causing a depression in the northeast, with a resulting encroachment of the sea upon the land, and an elevation in the south-west, with a resulting advance of the land upon the sea. The Pacific coast has been defined chicfly by relatively recent crustal deformations, and hence still preserves a greater relief than that of the Allantic. The minor features of each coast will be mentioned in connexion with the lagd districts of which the coast-line is only the border.
Gencral Topography and Drainage.-The low Alantic coast and the hilly or mountainous Pacific const foreshadow the leading features in the distrihution of mountains within the United States. The Appalachian system, originally forest-covered, on tbe castern side of the continent, is relacively low and narrow; it is bordered on the soutb-east and south by an important coastal plain. The Cordilleran system on the western side of the continent is lofty, broad and complicated, with heavy forests near the north-west coast, but elsewhere with trees only on the higber ranges below the Alpine region, and with trecless or desert intermont valleys, plateaus and basins, very arid in the south.west. Between the two mountain systems extends a great central area of phains, stretching from the Gulf of Mexico northward, far beyond the national boundary, to the Arctic Ocean. The rivers that drain the Atlantic slope of the Appalachians are comparatively short; those that drain the Pacific slope include only two, the Columbia and the Colorado, which rise far inland, near the easternmost members of the Cordilieran system, and flow through plateaus and intermont basins to the ocean. The central plains are divided by a hardly perceptible height of land into a Canadian and a United States portion; from the latter the great Mississippi system discharges southward to the Gulf of Mexico. The upper Mississippi and some of the Ohio basin is the prairie region, with trees originally only along the watercourses; the uplands towards the Appalachians were included in the great eastern forested area; the western part of the plains has so dry a climate that its berbage is scanty, and in the south it is berren. The lacustrine system of the St Lawrence flows eastward from a relatively narrow drainage area.
Relotion of General Topography to Setllemext.-The aboriginal occupents of the greater part of North America were comparatively few in number. and except in Mexico were not advanced beyond the savage state. The geological processes that placed a much narrower ocean between North America and western Europe than between North America and eastern Asia secured to the New World the good fortune of being colonized by the leading peoples of the occidental OId World, instead of by the less developed races of the Orient. The transoceanic invasion progreased slowly through the \(17^{t h}\) and 18 th centuries, delayed by the head winds of a rough ocean which was crossed only in slow sailing vessets, and by the rough "bactwoods "of the Appalachians, which retarded the penetration of wagon rosds and canals into the interior. The invasion was wonderfully accelerated through the igth century. When the vast area of the treeless prairies beyond the Appelactians was offered to the setukr, and when steam transportation on sea and land replaced sailing vessels and wagooss. The frontier was tben swifty carried across the eastern half of the central plains, but found a second detay in its advance occasioned by the dry climate of the western plains. It was chiefly the mineral wealth of the Cordilicran region, first developed on the fiar Pacifc slope, and later in many perts of the inmer mountin ranges, that erged pioneers acrove the
dry plains into the apparently inhospitable mountain region; there the adventurous new-comers rapidly worked out one mining district after another, exhausting and abaindoning the smaller "camps" to early decay and rushing in feverish excitement to new-found river fields, but establishing important centres of varied industries in the more important mining districts. It was not until the settlers leamed to adapt themselves to the methods of wide-range cattle raising and of farming by irrigation that the greater value of tbe far western interior was recognized as a permanent home for an agricultural population.

The purchase of " Louisiana "-a great area west of the Mississippi river-lrom the French in 1803 has sometimes been said to be the cause of the west ward expansion of the United States, but the Louisiana purchase has been better interpreted as the occasion for the expansion rather than its cause; for, as Lewis Evans of Philadelphia long ago recognized (1749), whoever gained possession of the Ohio Valley the chiel eastem part of the central plains-would lnevitahly become the masters of the continent.

Physiographic Subdivisions.-The area of the United States may be roughly divided into the Appalachian belt, the Cordilleras and the central plains, as already indicated. These large divisions need physiographic subdivision, which will now be made, following the guide of "structure, process and stage "; that is, each subdivision or province will be defined as part of the earth's crust in which some similarity of geological structure prevails, and upon which some process or processes of surface sculpture have worked long enough to reach a certain stage in the cycle of physiographic development.

The Appalachians.- The physiographic description of the Appala. chian mountain system offers an especially good opportunity for the application of the genetic method based on "structure, process and stage." This mountain system consists escentially of two belts: one on the south-east, chiefly of ancient and greatly deformed erystalline rocks, the other on the north-west, a heavy series of folded Palaeozoic gerata; and with these it will be convenient to associate a third belt. farther north-west, consisting of the same Palaeozoic strata lying essentially horizontal and constituting the Appalachian plateau. The crystalline belt represents, at least in part, the ancient highiands. from whose ruins the sandstonet, shales and limestones of the stratifed series were formed, partly as marine, partly as fuviatile deposits. The deformation of the Appalachians was accomplished in two chief periode of compressive deformation, one in early Palacozoic, the other about the close of Palaeozoic time, and both undoubiedly of long duration; the second one extended its effects larther northwest than the first. These were followed by a period of minor tilting and faulting in early Mesozoic, by a moderate upwarping in Tertiary, and by a moderate uplift in post-Tertiary time. The hater small moventents are of importance because they are related to the existing topography with which we are here concerned. Each of the disturbances altered the attitude of the mass with respect to the general base-level of the occan surface: each movement therefore introduced a new cycle of erosion, which was interrupted by a later movement and the beginning of a later cycle.

Thus interpreted, the Appalachian forms of to-day may be ascribed to three cycles of erosion: a nearly complete Mesozoic cycle, in which most of the previously folded and faulted mountain masses were reduced in Cretaceous time to a peneplain or lowland of small retief, surmounted, however, in the north-cast and in the south-west by monadnocks of the most resistant rocks, standing singly or in groups; an incomplete Tertiary cycle, initiated by the moderate Tertiary upwarping of the Mesozoic peneplain, and of sufficient length to develop mature valleys in the more resistant rocks of the crystalline belt or in the horizontal strata of the plateau, and to develop late mature or old valleys in the weaker rocks of the stratified belt. where the harder strata were left standing up in ridges; and a brief post-Tertiary cycle. initiated by an uplift of moderate amount and in progress long enough only to erode narrow and retatively immature valleys, Ctacial action complicated the work of the latest cycle in the northern part of the systerm. In view of all this it is possible to refer nearly every element of Appalachian form to its a ppropriate cycie and stage of development. The more resistant rocks even though dissected by Tertiary erosion, retain in their summit uplands an indication of the widespread peneplain of Cretaccous time, now standing at the altitude given to it by the Tertiary upwarping and post-Tertiary uplift; and the most resistant rocks surmount the Cretaceous peneplain as unconsumed monadnocks of the Mesozoic cycle. On the other hand, the weaker rocks are more or less completely reduced to lowlands by Tertiary erosion, and are now trenched by the narrow and shallow valleys of the short post-Tertiary cycie. Evidently, therefore. the Appalachians as we now see them are not the still surviving remnants of the mountains of late Palaeozoic deformation: they owe their present beight chiefly to the Tertiary upwarping and uplifting, and their form to the normal proceses of
sculpture which, having become neariy quiencent at the close of the Mesozoic cycle, became active again in Tertiary and later times.

The belts of structure and the cycles of erosion thus brietly described are recognizable with more or less continuity from the Gulf of St Lawrence 1500 m . soush-west ward to Alabama, where the deformed mountain struetures pass out of sight under nearly horizontal strata of the Gulf coastal plain. But the dimensions of the several belts and the strength of the relief developed by their later erosion varies greatiy along the system. In a north-eastern section, practically alt of New England is occupied by the older crystalline belt; the corresponding northern part of the stratified belt in the St Lawrence and Champlain-Hudson valleys on the inland side of New England is comparatively free from the ridge-making rocks whieh abound farther south; and bere the platcau member is wantins, being replaced, as it were, by the Adirondacks, an outlier of the Laurentian highlands of Canada which immediately succeeds the deformed stratified belt west of Lake Champlain. In a middle section of the system. from the Hudson river in southern New York to the James river in southern Virginia, the crystalline belt is narrowed, as if by the depression of its south-castern part beneath the Attantic Ocean or beneath the strata of the Aclantic coastal plain which now represents the ocean; but the stratified belt is here broadly developed in a remarkable series of ridges and valleys determined by the action of erosion on the many alternations of strong and weak folded strata; and the plateau assumes full st rengit southward from the monoclinal Mohawk valley which separates it from the Adirondacks. The linear ridges of this middle section are often called tbe Alleghany Mountains. In a south-western section the crystaltine beli again assumes importance in breadth and height, and the plateau member maintains the strength that it had in the middle section, but the intermediatestratified belt again has fewer ridges, because of the infrequence here of ridge-making strata as compared to their frequency in the middic section.

The middle section of the Appalachians, rather arbitrarity limited by the Hudson and the James rivers, may be described first because it contains the best representation of the three longitudinal belts of which the mountain system as a whole is composed. The mountain-making compression of the heavy series of Pabaeozoic strata has here produced a

\section*{The Mictit Appals: chiage} marvellous series of rock folds with gently undulating axes, trending north-east and south-west through a belt 70 or 80 m . wide; no lest wonderful is the form that has been produced by the processes of sculpture. The peculiar configuration of the ridges may be apprehended as follows: The pattern of the folded strata on the low-lying Cretaceous peneplain must have rescmbled the pattern of the curved grain of wood on a planed board. When the peneplain was uplifted the weaker strata were worn down almost to a lowland of a second gencration, while the resistant sandstones, of which there are three chicf members, retained a great part of their new-gained altitude in the form of long, narrow, even-crested ridges, well deserving of the name of Endless Mountains given them by the Indians, but here and there bending sharply in peculiar zigzass which give this Alleghany section of the mountains an unusual individaality. The poat Tertisry uplift, giving the present altitude of 1000 or 1500 ft. in Pennsylvania, and of 2500 or 3500 ft . in Virginia, has not significantly altered the forms thus produced: it has only incited the rivers to intrench themselves 100 or more feet beneath the lowlands of Tertiary erosion. The watercourses to-day are, as a rulc, longitudinal, following the strike of the weaker strata in paths that they appear to have gained by spentaneous adjustment during the long Mcsozoic cycle; but now and again they cross from one longitudinal valley to another by a transverse course, and there they have cut down sharp notches or "whetr-gaps" in the hard strata that elsewhere stand up in the long even-crested ridges.
The transition from the strongly folded structure of the Alleghany ridges and valleys to the nearly horizontal structure of the Appalachian plateau is promptly made; and with the change of structure comes an appropriate change of form. The horizontal strata of the platcau present equal ease or difficulty of erosion in any direction: the streams and the submature valleys of the platcau therefore ramify in every direction, thus presenting a pattem that has been called insequent, because it follows no apparent control. Further mention of the plateau is made in a later bection.

The crystalline bett of the middle Appalachians, 60 or 80 m wide, is to-day of moderate height because the Tertiary upwarping was there of moderate amount. The height is greatest along the inner or north-western border of the belt, and here a sub-mountainons topography has been produced by normal diseection, chicfly in the Tertiary cycle; the valleys being narrow because the rocks are reastant. The relief is strong enough to make occupation difficult; the slopes are forested; the uplands are cleared and well occupied by farms and villages, but many of the valleys are wooded glens: With continued decrease of alitude south-eastward, the crystalline belt dips under the coastal plain, near a line marked by the Delaware river from Trenton to Philadelphia in Pennsylvania, and thence south-south-westward through Maryland and Virginia past the cities of Baltimore. Washington and Richmond.
The Pennsylvania portion of the erystalline belt is narrow, as has been said, because of encroachment upon it by the Inward overlap of the coastal plain; it is low because of small Tertiary uplift; but.
still more, it is discontinuous, because of the inclusion of certain beits of weak non-crystalline rock: here the rolfing uplands are worn down to lowland belts, the longest of which reaches Irom the southern corner of New York, across New Jersey, Pennsylvania and Maryland, into central Virginja.
The middle section of the Appalachlans is further distinguished from the north-antern and south-western sections by the arrangeDraboare. ment of its drainage: its chief rivers rise in the plateau belt and through and flow across the ridges and valleys of the st ratified belt and through the uplands of the crystaline belt to the sea. The
rivers which most perfectly exemplify this habit are the Delaware, Suaquehanna and Potomac; the Hudson, the north-eastern boundary of the middle section. is peculiar in having headwaters in the Adirondacks as well as in the Catskills (northern part of the plateau); the James, forming the south-western boundary of the section, rises in the inner valleys of the stratified belt, instead of in the platesu. The generally transverse course of these rivers has given rise to the suggestion that they are of antecedent origin; but there are many objections to this over-simple, Gordian explanation. The south-east course of the middle-section rivers is the result of many changes from the initial drainage; the Mesozoir and Tertiary upwarpings were probably very influential in determining the present general courses.

For the most part the rivers follow open valleys along belts of weak strata; but they frequently pass through sharp-eut notches in the naırow ridges of the stratified belt-the Delaware water-gap is one of the deepest of these notches: and in the harder rocks of the crystalline belt they have eroded steep-walled gorges, of which the finest is that of the Hudson, because of the greater height and breadsh of the crystalline highlands there than at points where the other rivers cross it. The rivers are shallow and more or less broken by rapids in the notches; rapids oceur also near the outer bonder of the crystalline belt, as if the rivers there had been lately incited to downward crosion by an uplift of the region, and had not yet had time to regrade their courses. This is well shown in the falls of the Potomac a few miles above Washington; in the rapids of the lower Susquehanna; and in the falls of the Schuylkill, a branch which joins the Delaware at Philadelphia, where the water-power has long been used in extensive factorics. Hence rivers in the Appalachians are not navigable: it is only farther down-stream, where the rivers have been converted into estuaries and bays-such as Chespeake and Delaware bays-by a slight depression of the coastal plain belt, that they serve the purposes of navigation. But the Hudson is strikingly exceptional in this respect; it possesses a deep and navigable tide-water channel all through its gorge in the
highlands, a feature which has usually been explained as the result highlands, a feature which has usually bcen explained as the result
of clepression of the land. but may also be explained by glacial erosion without change of land-level; a leature which, in connexion with the Mohawk Valley, has boen absolutely determinative of the metropolitan rank reached by New York City at the Hudson mouth.

The community of characteristics that is suggested by the associa. tion of six north-eastern states under the name " New Enpland" The Northe is in large measure warranted by the inclusion of cestern Ap* al these states within the broadened crystalime belt pafacalags. 150 m . wide. The uplands which prevail through the centre of this area at altitudes of about 1000 ft . rise to \(t 500\) or 2000 fc in the north-west, before descent is made to the lowlands of the stratified belt (St Lawrence-Champlain-Hudson valleys, described later on as part of the Creat Appalachian valley), and at the same time the rising uplands are diversified with monadnocks of incrensing number and height and by mature valleys cut to greater and greater depths; thus the interior of New England is moderately mountainous. When the central uplands are followed south-cast or south to the const, their altitude and their relicf over the valleys gradually decrease; and thus the surface gradually passes under the sea. The lower constal parts, from their aceessibility and their smaller relief, are more densely populated; the higher and more rugged interior is still largely forested and thinly settled; there are large tracts of unbroken forest in northern Maine, hardty 150 m . from the coast. In spite of these contrasts, no physiographic lint can be drawn between the higher and more rugged interior and the lower coastal border; one menges into the other. New England is a unit, though a diversified unit.

The Appalachian trends (N.E.-S.W.) that are 00 prominent in the stratified belt of the middle Appalachians, and are fairly well marked in the erystalline belt of New Jerscy and Pennsylvania, are prevailingly absent in New England. They may be seen on the western border, in the Hoosac range along the boundary of Massa. chusetts and New York; in the lincar scrics of the Green Mlountain summits (Mt Mansficid, 4364 (t., Killington Peak, \(424 t\) ft.) and their (west) piedmont ridges farther north in Vermont; and in the ridges of northern Maine: these are all in sympathy with Appalachian structure; \(t 0\) also are Fortain open valleys, as the Berkshire (limegtone) Valley in westem Massacnusetts and the corresponding Butlead (hineetone and marble) Valley in western Vermont; and more particularly the long Connecticut Valley from northern New

But in gencral the disacction of the New England upland is as irregtlar as is the distribution of the surmounting monadnocks. the type of this class of forms is Mi Monadnock in south-western New Hampshire, a fine example of an isolated residual mass rising from an upland some \(: 500 \mathrm{ft}\). in altitude and reaching a summit height of 3186 ft . A still harger example is seen in Mt Katahdin (5200 ft.) in north-central Maine, the greatest of several similar isolated mourtuins that are scattered over the interior uplands without apparent system. The White Mountains of northern New Hampshire may be treated as a complex group of monadnocks, all of subducd form except for a few clifis at the head of cirque-like valleys, with Mt Washington, the highest of the dome-fike or low pyramidal suramits, reaching 6293 fL , and thirteen other summits over 5000 ft . The absence of range-like continutity is here emphasized by the occurrence of several low passes or " notches "icading directly through the group; the best-known being Crawford's Notch (1900 ft.).

In consequence of che general south-eastward slope of the higb lands and uplands of New England, the divide between the Atlantic rivers and those which flow northward and westward into the lowland of the stratified belt in Canada and Dratmege New York is generally close to the boundary of these two physiographic districts. The chicf rivers all flow south or south-easts they are the Connceticut, Merrimack, Kennebec, Penobscot and St ohn, the last being shared with the province of New Brunswict.

The drainage of New England is unlike that of the middle and south-western Appalachians in the occurnence of numerous lakes and falls. These irregular features are wanting south of the limitis of Pleistocene glaciation; there the rivers have bad cime, in the latest cycle of crosion into which they have entered, to establich themselves in a continuous fow, and as a rule to wear down theif courscs to a smoothly graded slope. In New England also a weflestablished drajnage undoubtedly prevailed in preglacial times; but partly in consequence of the irregular scouring of the rock floarf and even more because of the very irregular deposition of unstratifed and stratified drift in the valleys, the drainage is now in great dith onder. Many lakes of moderate size and irregular outline have been formed where drift deposits formed barriers across formet river courses; the lake outlets are more or less displaced from formet river paths. Smaller lakes were formed by the deposition of washed drift around the longest-lasting ice remmants; when the ice finally melted away, the hollows that it left came to be occupied by pond and lakes. In Maine lakes of both classes are numerous; the larget is Mootehead Lake, about 35 m . long and of a very irregular shouh line.

The features of a coast can be appreciated only when it is perceives that they result from the descent of the land surface beneath the sea and from the work of the sea upon the shore line thus determined; and it is for this reason that through- Casen out this article the coastal features are described in connexion witt the districts of which they are the border. The maturely dissected and recently glaciated uplands of New England are now somewhat depressed with respect to sea-level, so that the sea enters the valleys, forming bays and cstuaries, while the interfluve uplands and hitle stand forth in treadlands and islands. Narragansett Bay, with the associated headlands and islands on the south coast, is one of the best examples. Where drift deposits border the sea, the shore line has been cut back or built forward in beaches of submature expres sion, often enclosing extensive tidal marshes; but the great part of the shore fine is rocky, and there the change from initial pattert duc to submergence is as yet small. Hence tlic coast as a whole is irregular, with numerous embayments, peninsulas and islands: and in Maine this irrogularity reaches a disadvantageous climase
As in the north-east. so in the south-west. the crystalline beft widens and gains in height, but while New England is an indivisible unit, the southern crystalline belt must be subdivided into a higher mountain belt on the north-west, 60 m . wide where hroadest, and a lower piedmont leclt on the south-east, 100 m . wide, from southern Virginia to South
Carolina This subdivision is almeady neccsenry in Mar land.... Carolina. This subdivision is already necessary in Maryland, where the mountain belt is represented by the Blue Ridge. which is mithet a narrow upland belt than a ridge proper where the Potomac cuts across it ; while the piedmont belt, relieved by occasional mona dnocke stretches from the eastern base of the Blue Ridge to the coastat plain, into which it merges. Farther south, the mountaia bett widens and attains its greatest development. a true highland dist riet in North Carolina. where it includes several strong mountain groupe. Here Mi Mitchell rises to 6711 ft, , the highest of the Appalachians, and about thirty other summits excecd 6000 ft., while the valleys and usually at altitudes of about 2000 It. Although the relief is strone, the mountain Jorms are rounded rather than rugged; few of the summits deserve or receive the name of peaks; some are called domes, from their broadly rounded tops, others are known en balds, because the widespread lorest cover as replaced over thei. heads by a grassy cap.

The feight and massiveness of the mountains decrease to the south-west, where the piedmont belt sweeps westward around them in western Georgia and eastern Alabania. Some of the residual mountains hercabouts are reducud to a mere skelcton or framework b y the retrogressive penetration of widening valleys bet ween wastimg spurs: the very type of vanshing forms, Cortain disuricts wish:

Naç
the mountains, apparently consisting of less resistant crystallipe rocks, have been reduced to Lasin-like peneplains in the same time that served only to grade the slopes and subdue the summits of the neighbouring mountains of more resiatant rocks; the best example of this kind is the Achevilie peneplain in Nort \(h\) Carolina; measuring about 40 bv 20 m . across; but in consequence of Later elevation, its general surface, now standing at an altitude of \(2500 \mathrm{ft} .\), is maturely dissected by the French Broad river and its many branches in valleys 300 [t. deep; the basin floor is no longer a plain, but a hilly district in the midst of the mountains; Ashevilte on its southern border is a noted health resort.

The rivers of the mountain belt, normally dividing and subdividing in apparently incequent fashion bet ween the hills and spurs, gencrally follow open valleys; there are few waterfalls, the streams being as a rule fairly well graded, though their current is rapid and their channels are set with coarse waste. The valley floors always join at accordant levels, as is the habit among normally subdued mountains: they thus contrast with glaciated mountains such as the Alps and the Canadian Rockies, where the laterals habitually open as "hanging valleys" in the side slope of the main vallers. it is a peculiar leat ure of the drainage in North Carolina that the head. waters lie to the east of the highest mountains, and that the chicf rivers flow north.westward through the mountains to the broad valley lowland of the stratified belt and then through the plateat. as the members of the Mississippi system. It is probable that these rivers follow in a general way courses of much more ancient origia than those of the Atanic rivers in the middle Appalachians.

The piedmont belt may be described as a maturely dissected peneplain over much of its extent; it is indeed one of the best examples of that class of forms. Its uplands are of fairly acecrdant altitude, which gradually decreases from 500 to to00 f. near the mountain belt to half that height along the coastal plain border. The uplands are here and there surmounted by residual monadnocks in the form of low domes and knobs; these increase in height and number towards the mountain belt, and decrease towards the coastal plain: Stone Mountain, mear Atanta, Gcorgia, a dome of granite surmounting the schists of the uplands, is a striking example of this class of forms. The chief rivers flow south-castward in rather irregular courses through valleys from 200 to 500 ft . deep: the small branches ramily indefinitely in typical insequent arrangement: the streams are ncarly everywhere well graded; rapids are rare and takes are unknown.

The boundary between the mountains and the piedmont belt is ralled the Blue Ridge all along its length; and although the namie is Cairly appropriate in northern Virginia, it is not deserved in the Carolinas. where the "ridge" is only an escarpment descending abruptly 1000 or 1500 ft. from the valless of the mountain belt to the rolling uplands of the piedmont belt; and as such it is a form of unusual occurrence. It is not defined by rock stracture, but appears to result from the retrogressive erosion of the shorter At antic rivers, whereby the highlands, drained by much longer rivers, are undercut. The piedmont belt merges south-castward into the coastal plain, the altitudes of the piedmont uplands and of the coastal plain hifs being about the same along. their line of junction. Many of the rivers, elsewhere well graded, have rapids as they pass from the harder rocks of the piedmont to the gemi-consolidated strata of the coastal plain.

There is one feature of the Appalachians that has greater continuity than any other; this is the Great Valley. It is detcrmined The Great structurally hy a belt of topographically weak limestones Velley. and shales (or slates) next inland from the crystalline uplands; hence, whatever the dirccion of the rivers which drain the belt, it has been worn down by Tertiary erosion to a continuous lowland from the Gutf of St Lawrence to central Alabama. Through all this distance of 1500 m . the lowland is nowhere interruped by a transverse ridge, although longitudinal ridges of moderate height occasionally diversify its surface. In the middle section. as already stated, the Great Valley is somewhat open on the east. by reason of the smalj height and broad interruptions of the narrow crystalline belt, on the west it is limited by the complex series of Alleghany ridges and valleys; in the north-east eection the valley is strongly enclosed on the cast by the New England uplands, and on the west liy the Adirondacks and Catskills (see below) : in the south-west section the valley broadens from the North Carolina highlands on the south-east almost to the Cumberland plateau on the north-west, for here also the ridge-making formations weaker, alt hough they do not entirely disappear.

A striking contrast between New England and the rest of the Appalachians is found in the descent of the New England uplands The Aslagte to an immediate imalage on the sea; while to the suuth Ceastat of New York harbour the remaincier of the Appala\(\begin{array}{ll}\text { Cosesta } & \text { chians ure set back from the sen by the inferposition } \\ \text { of } s \text { coastal plain, one of the most characteristic }\end{array}\) examples of this class of forms anywhere to be found. As In all such cases, the plain consists of marinc (with some estuarine and fluviatile) stratified deposits, more or less indurated, which were haid down when the land stood lower and the sea had its shore line larther intand than today. An uplift, inereasing to the south, revealed gart of the shallow epint, botsom in she widening coastal platis, Irom its narrow
beginning at New York harbour to its greatest breadth of 110 or 120 m. in Georgia: there it turns westward and is continued in the Gulf coastal plain, described farther on. The coastal plain, however, is the reault, not of a single recent uplift, but of movements dating back to Tertiary time and continued with many oscillations to the present; nor is its surface smooth and unbroken, for erosion began upon the inner part of the plain long before the outer border was revealed. Indeed, the original interior border of she plain has been well stripped from its inland overlap; the higher-standing inner part of the plain is now maturely dissected, with a relief of 200 to 500 ft., by rivers extended seaward from the older land and by their innumerable branclees, which are often of insequent arrangement; while the ceaward border, latest uplifted, is prevailingly low and smooth, with a hardly perceptible seaward slope of but a few leet in a mile; a nd the shallow sea deepens very gradually for many miles off shore.

South Carolina and Ceorgia furnish the hroadest and most typical section of this important physiographic province: hetc the more sandy and hilly interior parts ara largely occupied by pine forcste, which furnish much hard or yellow pine lumber, tar and turpentine. Farther seaward, where the relied is less and the woils are richer. the surlace is cleared and cotton is an important crop.
A section of the coastal plain, from Norith Carolina to southern New Jersey, resembles the phaln farther wouth in general form and quality of soils, but besides being narrower, it is further characterized by several embayments or arms of the sea, caused by a slight depression of the land alter mature valleys had been eroded in the plain. The coastal lowland berween the sea arms is so flat that, although distinctly above sca-level, vegetation hinders drainage and extensive swamps or "pocossins" occur. Diamsl Swamp, on the border of North Carolina and Virginia, is the largest example.

The small triangular section of the coastal plain in New Jersey north of Delaware Bay deserves separate treatment because of the development there of a peculiar topographic feature, which throws light on the occurrence of the islands of the New England const, described in the next paragraph. The feature referred to results from the occurrence here of a weak basal formation of clay overlaid by more resistent sandy strata; the clay belt has boen stripped for a scone or more of miles from its original inland overlap. and worn down in a longitudinal inner lowland, white the sandy belt retains a significant altitude of 300 or 300 ft . overlooking the inner lowland in a well-defined slope dissected by many inland-flowing streams, and descending from its broad crest very gently seaward, thus giving rise to what has been called a " belted coastal plain." in which the relief is arranged longitudinally and the upland member. with its very unsymmetrical stopes, has sometimes been called a " cuesta. This is a form of relief frequently occurring elsewhere, as in the Niagara cuesta of the Great Lake district of the northern United States and in the Cotswold and Chiltern hills of England, typical examples of the cuesta class. The Delaware river, unlike its southern analogues, which pursue a relatively direct course to the sca. turns south-westward along the inner lowland for some 50 m .

There is good reason for believing that at least along the southern border of New England a narrow coastal plain was for a time added to the continental border; and that, as in the New Jersey section, the plain was here stripped from significant breadih of inland overlap and worn down so as to form an inner lowland enclosed by a longitudinal upland or cuesta; and that when this stage was reached a stibmergence. of the kind which has produced the many embayments of the New England coast, drowned the outer part of the plain and the inner lowland, leaving only the higher parts of the cuesta as islands. Thus Long Island (Gronting Connecticut, but belonging to New York state), Block Island (part of the small state of Rhode Island). Martha's Vineyard and Nantucket (parts of Massachusetts) may be best explained. Heavy lerminal moraines and outwashed fluviatile plains have been laid oa the cuesta remmants, increasing their height as much as 100 ft . and burying their seaward slope with gravel and sind. Moreover, the sea has worked on the shore line thus originated, redueing the size of the more exposed islands farther east. and even consuming some islands which are now represented by the Nantucket shoals.

The same Palacozoic formations that are folded in the belt of the Allcghany ridges lie nearly horizontal in the plateau district next north.west. The exposed strata are in large part resistant sandstones. While they have suffered active The Appactalaa dissection by streams during the later cycles of erosion, Appalact. the hilltops have retained so considerable an altitude that the district is known as a platcau; it might be bette describert as a dissected plateau, inasmuch as its uplands are not continuous but are nearly everywhere interrupted by ramifying insequent valleys. The unity and continuity of the district, expressed in the name Appalachian plateau, is seldom recognized in local usage IIs northeastern part in eastern New York is known as the Catskill Mountains; here it rearhes truly mountainous heights in great dome-tike masses of full-bodied form, winh two summits rising a little over 4000 ft . The border of this part of the plateau deacends east ward by a single strong escarpment to the Hudson valley. from which the mountains present a fine appearance, and northward by two escarpments (t he second being ealled the ' llelderberg Mountains") to the Mohawt Valley, north of which riee the

Adirondacks: but to the south west the dizsected highland continues into Pennsylvania and Virginia, where it is commonly known as the Alleghany plateau. A curious feature appears in northern Pennsylvania: here the lateral pressure of the Palacozoic mountain-making forces extended its effects through a belt about fifty miles wider than the folded belt of the Hudson Valley, thus compressing into great rock waves a part of the heavy stratified series which in New York lies horizontal and forms the Catskills: hence one sees, in passing south-west from the horizontal to the folded strata, a beautiful illustration of the manner in which land sculpture is controlled by land structure. Altitudes of 1200 ft. prevail in Pennsylvania and increase in Virginia; then the altitude falls to about 1000 ft . in Kentucky and Tennessee, where the name Cumberland plateau is used for the highest portion, and to still less in northern Alabama, where the plateau, like the mountain beli, disappears under the Gulf coastal plain. Through all this distance of 1000 m . the border of the plateau on the south-east is an abrupt escarpment, eroded where the folded structure of the mountain bele reveals a series of weaker strata; but in the north-west the phateau suffers only a gradual decrease of height and of relief, until the prairie plains are reached in central Ohio and southern Indiana and Illinois, about 150 m . inland from the escarpment. Two qualifications must. however, be added. In certain parts of the plateau there are narrow anticlinal uplifts, an outlying effect of mountain-making compression; here a ridge rises if the exposed strata are resistant, as in Chesinut ridge of western Pennsylvania; but here a valley is excavated if the exposed strata are weak, as in Sequatchie Valley, a long narrow trough which cuts off a strip of the plateau from Its greater body in Tennessee. Again, in Kentucky and Tennessec, there is a double alternation of sandstone and limestone in the plateau-making strata; and as the skyline of the plateau bevels across these formations, there are west-facing escarpments, made ragged hy mature dissection, as one passes from the topographically strong sandstone to the topographically weak limestone.
In the north-east (New York and Pennsylvania) the higher parts of the plateau are drained by the Delaware and Susquehanna rivers directly to the Athantic; farther west and south-west, the plateau is drained to the Ohio river and its branches. The submature or mature dissection of the plateau by its branching insequent streams results in giving it an excess of sloping surface, usually too steep for farming, and hence left for tree growth.

The Superior Oldland.-An outlying upland of the Laturentian bighlands of Canada projects into the United States west and south of Lake Superior. Although composed chiefly of crystalline rocks, which are commonly associated with a rugged landscape, and although possessing a greatly deformed structure, which must at some ancient period have been associated with strong relief, the upland as a whole is genely rolling, and the inter-stream surfaces are prevailing plateau-like in their evenness, with altitudes of 1400 to 1600 ft . in their higher areas. In this province, therefore, we find a part of one of those ancient mountain regions, initiated by crustal deformation, but reduced by long continued erosion to a peneplain of modern relief, with occasicnal surmpunting monadnocks of moderate height not completely consumed during the peneplanation of the rest of the surface: The erosion of the region must have been far advanced, perhaps practically completed, in very ancient times, for the even surface of the peneplain is overlapped by fossiliferous matine strata of early geological date (Cambrian), and this shows that a depression of the region benealh an ancient sea took place after a long existence as dry land. The extent of the submergence and the area over which the Palacozoic strata were deposited are unknown; for in consequence of renewed elevation without deformation, erosion in later periods has stripped off an undetermined amount of the covering strata. The valleys by which the uplands are here and there trenched to moderate depth appear to be, in part at least, the work of streams that have been superposed upon the peneplain through tbe now removed cover of stratificd rocks. Glaciation has strongly scoured away the decply-weat hered soils that presumably existed here in preglacial time, revealing firm and rugged ledges in the low hills and swells of the ground, and spreading an irregular drift cover over the lower parts, whereby the drainage ls often much disordered, here being detained in lakes and swamps (" muskegs ") and there rushing down rocky rapids. The region is therefore generally unattractive to the farmet, but it is inviting to the lumberman and the miner.

The Adirondack Mountains.-This rugged district of northern New York may be treated as an outlier in the United States of the Laurentian highlands of Canada, from which it is separated
by the St Lawrence Valley. It is of greater alitude (Mt Marcy 5344 ft .) and of much greater relief than the Superior Oldland; its heights decrease gradually to the north, west and south, where it is unconformably overlapped by Palacozoic strata like those of Minnesota and Wisconsin, it is of more broken st ructure and form on the east, where the disturbances of the Appalachian system have developed ridges and valleys of linear trends, which are wanting or but fainuly seen elsewhere. (See Adirondacks.)

Region of the Great Lakes.-Tbe Palacozoic strata, already mentioned as lapping on the southern slope of the Superior Oldland and around the western side of the Adirondacks. are but parts of a great area of similar strata, hundreds of feet in thick. ness, which decline gently southward from the great oldland of the Laurentian highlands of eastern Canada. The strata are the deposits of an ancient sea, which in the carlier stage of geological investigation was thought to be part of the primeval ocean, while the Laurentian highlands werc taken to be the first land that rose from the primeval waters. Inasmuch, however, as the floor on which the overlapping strata rest is, like the test of the Laurentian and Supetior Oldland, 2 worn-down mountain region, and as the lowest member of the sedimentary serics usually contains pebbles of the oldland rocks, the better interpretation of the relation between the two is that the visible oldland area of to-day is but a small part of the primeval continent, the remainder of which is still buried under the Palaeozoic cover; and that the visible oldland, far from being the first part of the continent to rise from the primeval ocean, was the tast part of the primeval continent to sink under the advancing Palacozoic seas. When the oldland and its overlap of stratified deposits were elevated again, the overlapping strata must have had the appearance of a coastal plain, but that was long ago; the strata have since then been much eroded, and to-day possess neither the area nor the smooth form of their initial extent. Hence this district may be placed in the class of ancicnt coastal plains. As is always the case-in the broad denudation of the gently inclined strata of such plains, the weaker layers are worn down in sub-parallel belts of lower land between the oldland and the beles of more resistant strata, which rise in uplands.

Few better illustrations of this class of forms are to befound than that presented in the district of the Great Lakes. The chief upland belt or cuesta is formed by the firm Niagara limestone, which takes its name from the gorge and falls cut through the upland by the Niagara fiver. As in all such forms, the Niagara cuesta has a relatively strong slope or infacing escarpment on the side cowards the oldland, and a long gentle slope on the other side. Its relief is seldom more than 200 or 300 ft ., and is commonly of small measure. bul its continuity and its contrast with the associated lowlands worn on the underlying and overlying weak strata suffice to make it a feature of importance. The cuesta would be stratght from east and west if the slant of the strata were uniformly to the south; but the strata are somewhat warped, and hence the course of the cuesta is strongly convex to the north in the middle, genily convex to the south at cither end The cuesta begins where its determining limestone begins, in west-central New York, there it separates the lowlands that contain the basins of takes Ontario and Ene; thence it curves to the north-wesl through the provinee of Ontario to the belt of islands that divides Georgian Bay from Lake Huron, then wettward through the land-arm between lakes Superior and Michigan, and south-west ward into the narrow points that divide Green Bay Irom Lake Michigan, and al last west ward to fade away again with the thinning out of the limestone, it is hardly traceable across the Mississippt river The arrangement of the Great Lakes is thus seen to be closely sympathetic with the course of the lowiands worn on the two belts of weaker strata on either side of the Niagara cuesta; Ontario, Georgian Bay and Green Bay occupy depressions in the lowland on the inner side of the cuesta; Erie, Huron and Michigan lie in depressions in the lowland on the ouner side. When the two low lands are traced east ward they become confluent after the Niagara IImestone has faded away in central Ncw York, and the single lowland is continued under the name of Mohawk Valley, an east-wert longitudinal depression that has been eroded on a belt of relatively weak strala between the resistant crystalline rocks of the Adirondacks on the norith and the norithern escarpment of the Appalachian platcau (Catskills. Helderbergs) on the south; forming a pathway of great historic and cconomic importance between the Atlantic seaports and the interior.

In Wisconsin the inner lowland presents an Interesting feature in a knob of resistant quartzites, known as Baraboo Ridge, rising from the buried oldand floor through the partiy deauded cover
of lower Palaeozoic strata. This knob or ridge may be appropriately regarded as an ancient physiographic fossil, inasmuch as, being a monadnock of very remote origin, it has long been preserved from the destructive attack of the weather by burial under sea-floor deposits, and recently laid bare, like ordinary organic fossils of much smaller size, by the removal of part of its cover by normal crosion.

The occurrence of the lake basins in the lowland belts on either side of the Niagara cuesta is an abnormal feature, not to be explained hy ordinary erosion, which can produce only valleys. The basins have been variously ascribed to glacial erosion, to obstruction of normal outlet valleys by barriers of glacial drift, and to crustal warping in connexion with or independent of the presence of the glacial sheet. No satislactory solution of this problem has been reached; but the association of the Great Lakes and other large lakes farther north in Canada with the grcat North American ares of strong and repeated glaciation is highly suggestive.
Lake Superior is unlike the other lakes; the greater part of its basin occupies a depression in the oldland area, independent of the overlap of Palaeozoic strata. The western half of the basin occupies a trough of synclinal structure; but the making of this syncline is so ancient that it cannot be directly conneeted with the occurrence of the lake to-day. A more reasonable explanation ascribes the lake hasin to a geologically modern depression within the Superior oldland area; but there is at present no direct evidence in favour of this hypothesis. The Great Lakes are peculiar in receiving the drainage of but a small peripheral land area, enclosed by an ill-defined water-parting from the rivers that run to Hudson Bay or the Gull of St Lawrence on the north and to the Gulf of Mexico on the south.
Large canals and locks on both sidet of the Sault (pronounced Soo) Ste Marie in the outlet of Lake Superior are actively used except during three or four win.er months. the three lakes of the middle group stand at practically the same level: Michigan and Huron are connected by the Sirait of Mackinac (pronounced Mackinaw); Huron and Erie by the St Clair and Detroil rivers, with the amall Lake St Clair between them. The navigable depth of these two short rivers is believed to be the resuit of a slow elevation of the land in the north-cast, still in progress, whereby the waters have risen on their former shores near Detroil. Niagara river, connecting lakes Erie and Ontario, with a fall of 326 ft. (160 ft . at the cataract) in 30 m ., is manifestly a watercourse of very modern origin: lor a large tiver would now have a thoroughly matured valley had it long followed its present course: the same is true of the St Lawrence, which in fits several rapids and in its subdivision into many channels at the Thousand Islands, presents every sign of youth. Canals on the Canadian side of thesc unna vigable stretches admit vescels of a considerable size to lakes Ontario and Erie.

The Prairie Stotes.-The originally treeless prairies of the upper Mississippi basin began in Indiana and extended westward and north-west ward unlit they merged with the drier region described Leyond as the Great Plains. An eastward extension of the same region, originally tree-coucred, extended to central Ohio. Thus the prairies may be described as lying in a general way between the Ohio and Missouri rivers on the south and the Great Lakes on the north. Under the older-fashioned methods of treating physical geography, the prairies were empirically described as "level prairics," "rolling prairies," and so on. The great advance in the interpretation of land forms now makes it possible to introduce as thoroughly explanatory a description of these fertile plains as of forms earlicr familiar, such as sand dunes, deltas and sea clifls. The prairies are, in brief, a contribution of the glacial period; they consist for the most part of glacial driit, deposited unconformably on an underlying rock surface of moderate or small relief. The rocks here concemed are the extension of the same stratified Palaeozoic formatinns already described as occurring in the Appalachian region and around the Great Lakes. They are usually fine-textured limestones and shales, lying horizontal; the moderate or small relicf that they were given by mature preglacial erosion is now buried under the drift, but is known by numerous borings for oil, gas and water.

The greatest area of the prairies, from Indiana to North Dakota, consists of till plains, that is, sheets of unstratified drift. 30 . 50 or even 100 fr. thick, which cover the undertying rock surface for thoumands of square miles (except where portglacial atream erosion has
locilly haid it bare), and presemt an extreordinarily even surface. The till is presumably made in part of preglacial coils, but it is more largely composed of rock waste mechanically comminuted by the croeping ice sheets; although the crystalline rocks from Canada and some of the more resistant stratified rocks south of the Great Lakes occur as boulders and stones, a greal part of the till has been crushed and ground to a clayey texture. The till plains, although sweeping in broad awells of slowly changing altitude, are often level to the eye. and the view across them stretches to the horizon, unless interrupted by groves of trees along the watercourses, or by belts of low morainic hills. Here and there faint depresuions occur, occupied by marshy " sloughs," or floored with a rich black will of pestglacial origin. It is thus by sub-glacial aggradaton that the prairies have been levelled up to a smootb surface, in contrast to the hightr and non-glaciated hilly country next south.

The great ice sheets formed terminal moraines around their border at various halting stages; but the morainic belts are of small relief in comparison to the great area of the ice; they rise gently from the till plains to a height of 50,100 or more feet; they may be one, two or three miles wide; and their billy surface, dotted over with boulders, contains many small lakes in basins or hollows, instead of streams in valleys. The morainic belts are arranged in groups of concentric boops. convex sountward, because the ice sheets advanced in lobes along the lowlands of the Great Lakes; neighbouring morainic loops join each other in re-entrants (north-pointing cuspa). where two adjacent glacial lobes came rogether and lormed their moraines in largest volume. The discovery of this significant looped arrangement of the morainic belts is the greatest advance in interpretation of slacial phenomena since the firse suggestion of a glacial period; it is also the strongest proof that the ice here concerned was a continuous sheet of creeping land ice, and not a discontinuous scries of floating icebergs, as had been supposed. The moraines are of too small relief to be shown on any maps but those of the largest scale; yet small as they are, they are tbe chief relief of the prairie states, and, in aseociation with the nearly imperceptible slopes of the till plains, they determine the course of many streams and rivers, which as a whole are consequent upon the surface form of the glacial deposits.

The complexity of the glacia! period and its subdivision into several glacial epochs, weparated by interglacial epochs of considerable leogth (certainly longor than the postglacial epoch) has a structural consequence in the superposition of successive till sheets, alternating with non-glacial deposits, and also a physiographic consequance in the very different amount of normal postglacial erosion suffered by the different parts of the glaclal deposits. The southernmost drilt sheets, as in southern lowa and norshern Missouri, have lost their initially plain surface and are now maturely dissected into grace fully rolling forms; here the valleys of even the small streams are well opened and graded, and marshes and lakes are wanting: hence these shecte are of early Pleistocene origin. Nearer the Great Lakes the till theets are trenched only by the narrow vaileys of the large streams ; marshy sloughs still occupy the faint depressions in the till plains, and the associated moraines have abundant small lakes in their undrained hollows: bence these drift sheets are of late Pleistocene origin.

When the ice sheets fronted on land sloping wouthward to the Ohio, Mississippi and Missouri rivers, the drifi-laden streams flowed freely away from the ice border: and as the st reams, escaping from their subglacial channels. spread in broader channels, they ordinarily could not carry forward all iheir load; hence they acted not as destructive but as constructive agenis, and aggraded their courses. Thus local sheets or "aprons" of gravel and sand are spread more or less abundanily along the outer side of the moralnic belts; and long trains of gravel and sands clog the valleys that lead southward from the glaciated to the non-glaciated area. Later when the ice retreated farther and the unloaded streams returned to their earlicr degrading habit, they more or less compleeely scoured our the valley deposits, the remains of which are now seen in terraces on either side of the present flood plains.

When the ice of the last glaciai epoch had retreated so far that its front lay on a northward slope, belonging to the drainage area of the Great Lakes, bodies of water accumulated in front of the ice margin. forming glacio-marginal lakes. The lakes were small at first, and each had its own outlet at the iowert depression in the beight of land to the south; but as the ice melted back, neighbouring lakes became confluent at the level of the lowest outlet of the group; the outflowing streams grew in the same proportion and eroded a broad channel across the height of land and lar down stream, while the lake waters built sand reels or carved shore cliffs along their margin, and laid down sheets of clay on their floors. All of these features are easily recognized in the prairie region. The present site of Chicago was determined by an Indian poriage or "carry" across the low divide between Lake Michigan and the headwaters of the Illinois river; and this divide lies on the floor of the former outiet channel of the glacial Lake Michigan. Corresponding outlets are known for the glacial lakes Erie. Huron and Superior, and for a very large sheet of water, named Lake Agassiz, which once overspread a broad till plain in northern Minnesota and North Dakota. The outlet of this glacial lake, called river Warren, eroded a large channe! in which the Minpesota river of to-day is an evident "mistrt."

Certain extraondinary features were produced when the retreat of the ice sheet had progressed so far as to open an east ward outlet for the marginal lakes along the depression between the northward slope of the Appalachian plateau in west-central Ncw York and the couthward slope of the melting ice sheet; for when this east ward outlet came to be lower than the south-westward outlet acrosis the height of land to the Olio or Mississippi river, the discharge of the marginal lakes was cinanged from the Mississippi system to the Hudson system. Many well-defined cbannels, cutting across the north-sloping spurs of the plareau in the neighbourhood of Syracuse, N.Y., mark the remporary paths of the ice-bordered outlet river. Successive channels are found at lower and lower levels on the platcau slope, thus indicating the successive courses taken by the lake outlet as the ice melted larther and farther back. On some of these channels deep gorges were eroded heading in temporary cataracts which exceeded Niagara in height but not in breadth; the pools excavated by the plunging waters at the head of the gorges are now oceupied by litele lakes. The most significant stage in this series of changes occurred when the glacio-marginal lake waters were lowered so that the long cuesta of Niagara limestone was laid bare in western New York; the previously confluent waters were then divided into two lakes; the higher one. Erie, supplying the outflowing Niagara river, which poured its waters down the escarpment of the cuesta to the linwer lake, Ontario, whose outlet for a time ran down the Mohawk Valley to the Hudson: thus Niagara falls began. (Sce Niagara.)
Many additional features associated with the glacial period might be dexcribed. but apace can be given to four only. In certain districts the subglacial till was not spread out in a smooth plain, but accumulated in elfiptical mounds, 100 or 200 ft . high, half a mile or a mile long, with axes parallel to the direction of the ice motion as indicated by striae on the underlying rock floor; these hills are known by the Irish name, drumlins, used for similar hilis in north-wesiern Ireland. The most remarkable groups of drumlins occur in western New York, where their number is estimated at over 6000, and in southern Wisconsin, where in is placed at 5000 . They completely dominate the topography of their districts.
A curious deposit of an impalpably fine and unstratified silt, known by the German name loess. lics on the older drift sheete near the larger river courses of the upper Mississippi basin. It attains a thickness of 20 ft. or more near the rivers and gradually fades a way at a distance of ten or more miles on either side. It is of inexhaustible fertility, being in this as well as in other respects closely like the loess in China and ot her parts of Asia, as well as in Germany. It contains land shells, and hence cannot be attributed to marine or lacustrine submergence. The best explanation suggested for loess is that, during certain phases of the glacial period, it was carried as dust by the winds from the floud plains of aggrading livers, and dowly deposited on the neighbouring grass-covered plains.
South-western Wisconsin and parts of the adjacent states of Iflinois, lowa and Minnesota are known as the "driftless area." because, although bordered by drifi sheets and moraincs, it is free from glacial deposits. It must therefore have been a sort of oasis, when the ice sheets from the north advanced past it on the east and west and joined around its southern border. The reason for this exemption from alaciation is the converee of that for the southward convexity of the morainic loops; for while they mark the paths of greatest glacial advance along lowland troughs (lake basins), the driftess area is a district protected from ice invasion by reason of the obstruction which the highlands of northern Wisconsin and Michigan (part of the Superior oldland) offered to glacial advance.
The course of the upper Misaissippi river is largely consequent upon glacial deposits. Its sources are in the morainic lakes in northern Minnesota; Lake ltasca being only one of many glacial lakes which supply the headwater branches of the great river. The drift deposits thereabouts are so heavy that the present divides bet ween the drainage basins of Hudson Bay, Lake Superior and the Gulf of Mexico evidently atand in no very definite relation to the preglacial divides. The coutse of the Mississippi through Minnesota s largely guided by the form of the drift cover. Several rapids and the Falls of St Anthony (deternining the site of Minneapolis) are sugns ol immaturity, resulting from superposition through the drift on the under rock. Farther south, as far as the entrance of the Ohio, the Mississippi follows a rock-walled valley 300 to 400 it. deep, with a flood-plain 2 to 4 m . wide: this valley scems to represent the path of an enlarged early-glacial Missisoippi, when much precipitation that is to-day discharged to Hudson Bay and the Gulf of St Lawrence was delivered to the Gulf of Mexico, for the curves of the present river are of distinctly smaller radius than the curves of the valley. Lake Pepin (30 m . below \(\mathrm{St}_{\mathrm{t}}\) Paul). a picturesque expansion of the river across ins flood-plain, is due to the aggradation of the valley floor where the Chippewa river, coming from the north-east, brought an overload of duvio-glacial drift lience even the "father of watery," like so many other rivers in the Northern slates. owes many of its features more or lesa directly to glacial action.

The fertility of the prairies is a natural consequence of their origin. During the mechanical comminution of the till no vegetation was present to remove the minerals cssential to plant
growth, as is the case in the soils of normally weathered and dissected peneplains, such as the Appalachian piedmont, where the soils, though not exhausted by the primeval forest cover, are by no means so rich as the till sheets of the prairies. Moreover, whatever the rocky understructure, the till soil has been averaged by a thorough mechanical mixture of rock grindings; heace the prairies are continuously fertile for scores of miles together.

The true prairies, when first explored, were covered with a nich growth of natural grass and annual flowering plants. To-day they are covered with iarms. The cause of the treelessness has been much discussed. It does not seem to lie in peculiarities of temperature or of precipitation; for trees thrive where they are properly planted on the prairies; every town and farm to-day has its avenues and groves of trees; but it sbould be noted that west of the Mississippi river increasing aridity becomes an important factor, and is the chief cause of the treelessness of the Great Plains (see helow). The treelessncss of the prairics cannot be due to insufficieat time for trec invasion since glacial evacuation; for forests cover the rocky uplands of Canada, which were occupied by ice for ages after the prairies were laid bare. A more probable cause is found in tbe finencss of the prairie soil, which is inimical to the growth of young trees in compctition with the grasses and annual plants. Prairie fires, both of atural and artificial origin, are alio a contributive cause; for young trees are exterminated by fires, but annual plants soon reappeas.

The Culf Cocstal Plain.-The westward extension of the Atlantic coastal plain around the Gulf of Mexico carries with it a repetition of certain features alrcady described, and the addition of several new ones. As in the Atlantic coastal plain, it is only the lower, seaward part of this region that deserves the name of plain, for there alone is the surface unbroken by bills or valleys; the inner part, initially a plaia by reason of its essentially horizontal (gently seaward-sloping) structure, has been converted by mature dissection into an elaborate complex of hills and valleys, usually of increasing altitude and relief as one passes inland.

The special features of the Gulf Ploin are the peniosular extension of the plain in Florida, the belted arrangement of relief and soils in Alabama and in Texas, and the Mississippi embayment or inland extension of the plain hall-way up the course of the Mississippi river, with the Mississippi flood plain there included.

A broad, low crustal arch extends southward at the junction of the Atlantic and Culf ecastal plains; the emerged half of the ancb constitures the visible lowland peningula of Florida; the submerged half extends westward under the shallow overlapping waters of the Gulf of Mexico. The northern part of the peninsula is composed largely of a weak limestone; here much of the lowland drainage is underground, forming many sink-holes (smallowholes). Many small lakes in the lowland appear to owe their basias to the solution of the limestoncs. Valuable phosphare deposits occur in certain districts. The southem part of the state includes the "Everglades" (g.0.), a large area of low, flat, marshy land, overgrown with tall reedy grass, a veritable wilderness; thus giving Florida an unenvied first rank among the states in marsh arca. The eastern coast is fringed by long-stretching and reefs, enclosing lagoons so narrow and continuous that they are popularly called "rivers." At the southern end of the peninsula is a serics of corat islands, known as " keys "; they appear to be due to the forward growth of corals and other lime-secreting organisms towards the strong current of the Gulf Stream. by which their food is supplied: the part of the peninsula composed of coral reefs is less than has been formerly supposed. The western coast has fewer and shorter off-shore reels; much of it is of minutely irregular outline, which seems to be determined less by the work of the sea than by the forward growth of mangrove swamps in the shallow salt water.

A typical example of a belted coastal plain is found in Alabana and the adjacent part of Mississippi: The plain is here about 150 m . wide. The basal formation is chicfly a weak imestone, which has been stripped from its oricinal Alabene innermost extension and worn down to a flat inner lowland of rich black soil. thus gaining the mame of the "black belt." The lowland is enclosed by an uphind or cuesta, known as Chunnenugea Ridge, sustained by partly consolidated andy strata; the upland, however. is not continuous; and hence should be described as a " maturedy dissected cuesta." It has a relatively rapid descent toward the inner lowland, and a very gradual descent to the coast prairies, which become very low, flat and marshy before dipping under the Culf waters, where they are generally fringed by of shore reds.

The coastal plain exiends 500 m . inland on the axis of the Missit sippi embaymelht. Its inner border affords admirable esamples ol topographical discordance where it sweeps north-westward equare
across the trend of the piedmont belt, the ridges and valleys, and the plateau of the Appalachians, which are all terminated by dipping The Mhsimind gently beneath the unconformable cover of the enastal plain strata. In the same way the western side of the em bayment, trending south and south-west, pasecs along the lower south-castern side of the dissected Ozark platcau of southern Missouri and northern Arkansss, which in many ways resembles the Appalachian plateau, and along the eastern and of the Massern ranges of the Quachita mountain system in central Arkansas, which in geological history and topographical form present many analogies with the ridges and valleys of the Appalachians; and as the coastal plain turns westward to Texas it borders the Arbuckle hills in Oklahoma, a small analogue of the crystalline Appalachian belt. In the embayment of the coastal plain some low cuesta-like belts of hills with associated strips of lowlands suggest the features of a belted coastal plain; the hilly beltordissected cuesta determinerl by the Grand Gulf formation in western Mississippi is the most distinct. Important salt deposits occur in the constal plain strata near the coast. The most striking feature of the embayment is the broad valley which the Mississippi has eroded across it.

The lower Mississippi is the trurk in which three large rivers join: the chief figures (approximate only) regarding them are as follows:-

The small proportion of cotal water volume supplied from the great Missouri basin is due to the light precipitation in that region. The

Tro Lower nevon lower Mississippi receives no large tributary from the east, but two inportant ones come from the west; the Arkansas drainage area Being a little less than that of the Ohio, and the basin of the Red River of Louisiana
being about hall as large. The great river thus constituted drains an area ef about \(1,250,000\) sq. m., or about one-third of the United States: and discharges 75.000 cub. yds. of water per second, or 785.190,000,000 cubic yds. per annum, which corresponds roughly to one quarter of the total precipitation on its drainage basin. Its load of land waste (see I. C. Russeil, Rivers of Norlh Americe) is as follows:-
In suspension . . \(6,718,694,400 \mathrm{cub}\). fl. or 241 ft . deep over I sq. m. Swept along b
itom In soptationg

1,350,000,000
Average annual removal of waste from entire bäsin, dí in or ilt. in 4000 ycarm.
The head of the coastal plain embayment is near the junction of the Ohio and the Mississippi. Thence southward for 560 m . the great river flows through the wemi-consolidated strata of the plain, in which it has eroded a valley, 40 or 50 m . wide, and \(29.700 \mathrm{sq} . \mathrm{m}\). in area, enclosed by bluffs one or two hundred Icet high in the northern part. generally decreasing to the southward. but with local increase of beight associated with a decrease in flood plain breadth on the eastern side where the Grand Gulf cuesta is traversed. This valley in the constal plain, with the much narrower rock-walled valley of the upper river in the prairie states, is the true valley of the Mississippi river; but in popular phrase the "Mississippi Valley" is taken to include a large central part of the Mississippi drainage basin. The valley floor is covered with a flood plain of fine silt, having a southward slope of only half a foot to a mile. The lengib of the river itself, from the Ohio mouth to the Culf, is, owing to its windings, about 1060 m. ; its mean fall is about 3 in . in a mile. On account of the rapid deposition of sediment near the main channel at times of overflow, the food plain, as is normally the case on mature valley floors, has a lateral slope of as much as 5. to, or even 12 it. In the first mile from the river; but this soon decreages to a less amount. Hence at a short distance from the river the flood plain is often swampy, untess its surface is there aggraded by the tributary streams: for this reason Louisjana, Artanasa and Mississippi rank next after Florida in swamp area.

The great river receives an abundant load of silt from its tributaries and takes up and lays down sile from its own bed and banks with every change of velocity. The swiftest current tends, by reason of centriugal torce, to follow the outer side of every significant curve in the channel; hence the concave bank, against which the capid current sweeps, is worm away: thus any chance irregularity exagrerated, and in time a series of large serpentines or meanders in developed, the moot symmetrical examples at present being those near Greenville, Miss. The growth of the meanders tends to give the river continually increasing length; but this tendency is counterseted by the sudden oceurrence of cut-ofls from time to time, so that a fairly constant length is maintained.

The floods of the Missiscippl usually occur in spring or sammer. Owing to the great size of the drainage basin. it sekdom happens that the three upper tributaries are in flood at the sametime; the coincident ocrurrence of flooda in only two tributaries is of serions import in the lower river, which rives 30, 40, or occasionally 50 If . The
abmundant records by the Mississippi River Commission and the United States Weather Bureau by which accurate and extremely useful predictions of foods in the lower river course are made. on the basis of the observed rise in the tributaries) demonstrate a number of interesting features, of which the chief are as follows: the fall of the river is significantly steepened and its velocity is accelerated down stream from the point of highest rise; conversely, the fall and the velocity are both diminished up stream from the same point.
The load of silt borne down stream by the river finally, after many halts on the way, reaches the waters of the Gulf, where the decrease of velocity, alded by the salinity of the sea water, causcs the formation of a remarkable delta, leaving less apgraded arcas as shallow lakes (Lake Pontchartrain on the east, and Grand Lake on the west of the river). The ordinary triangular form of deltas, due to the smoothing of the delta Iront by sea action, is here wanting because of the weakness of sea action in comparison with the strength of the current in ench of the four distributaries or "passes "into which the river divides near its mouth. (See Mississippi River.)

After constriction from the Mississippi embayment 20250 m . in western Louisiana, the coastal plain continues onuth-westward with this hreadeh until it narrows to about 130 m . in wouthern Texas near the crossing of the Colorado siver, (of Texas); but it again widens to 300 m . at the national boundary as a joint effect of embayment up the valley of the Rio Grande and of the sea ward advance of this river's rounded delta front: these several changes take place in a distance of about 500 m ., and hence include a region of over \(100,000 \mathrm{sq} . \mathrm{m}\). less than halt of the large state of Texas. A belted arrangement of reliefs and soils, resulting from differential erosion on strata of unlike composition and resistance, characterizes al most the entire area of the constal plain. Most of the plain is trecless prairie, but the sandier belts are forested; two of them are known as "cross timbers," because their trend is transverse to the general course of the main consequent rivers. An inland extension from the coastal plain in north-central Texas leads to a large cuesta known as Grand Prainie (not structurally included in the coastal plain). uphed at altitudea of 1200 or 1300 ft . by a resistant Cretaceous limestone, which dipe gently seaward; its scalloped inland-facing escarpment overlooks a denuded central prairie region of irregular structure and form; its gentle coastward slope (16 ft . to a mile) is dissected by many branching consequent streams; in its southern part, as it approaches the Colorado river the cuesta is dissected Into a belt of discontinuous hills. The western eross timbers follow a sandy belt along the inner base of the ragged escarpment of Grand Prairic; the eastern crose timbers follow another sandy belt in the lowland between the eastern slope of Grand Prairie and the pale western escarpment of the next eastward and lower Black Prairic cuesta. This cuesta is supported at an altitude of 700 ft . or less by a chalk formation, which gives an infacing slope some 200 ft. in height, while its gently undulating or " rolling " seaward slope (2 or 3 (t. in a mile), covered with marly strata and rich black soil, determines an important cotton district. Then comes the East Texas timber belt, broad in the north-east narrowing to a point before reaching the Rio Grande, a low and thoroughly diseccted cuesta of sandy Eocene strata; and this is followed by the Coast Prairie, a very young plain, with a seaward slope of less than 2 fl . in a male, its smooth surface interrupted only by the still more nearly level flood plains of the shallow, consequent river valleys. Near the Colorado river the dissected cuesta of the Grand Prairie passes southward, by a change to a more nearly horizontal structure, into the dissected Edwards plateau (to be referred to again as part of the Great Plains), which terminates in a maturely dissected fault scarp, 300 or \(\mathbf{4 0 0} \mathrm{ft}\). in height, the norihern boundary of the Rio Grande embayment. From the Colorado to the Rio Grande, the Black Prairie, the timber belt and the Coast Prairie merge in a vast plain, little diferentiated, overgrown with "ehaparral" (shrub-like trees, often thorny), widening eastward in the Rio Grande delta, and extending southward in to Mexico.

Alihough the Coast Prairie is a sea bottom of very modern uplift, it appears already to have suffered a slight movement of depression, forits small rivers all enter embayments; the larger rivers, however seem to have counteracted the encroachment of the sca on the land by a sufficiently active delea building, with a resulting forward growth of the land into the sea. The Mississippi has already been mentioned as rapidly building lorward its digitate delta: the Rio Grande, next in wize, has built its delea about 50 m . lorward from the general coast-line, but this river being much smaller than the Dississippi, its delta front is rounded by seashore agencies. In front of the Brazos and the Colorado, the largest of the Texan rivers the coast-line is very gently bowed forward, as if by delca growth, and the sea touches the mainland in a nearly straight shore line. Nearly all the rest of the coast is fringed by off-shore reefs, buile up by wave from the very shallow sea bottom; in virtue of weak tides, the reefi continue in long unbroken stretches between the few inlets.

The Greal Plains.-A broad'stretch of country underlaid by nearly horizontal strata extends westward from the 97 th meridian to the base of the Rocky Mountains, a distance of from 300 to 500 m . and northward from the Mexican boundary far in to Canada. This is the province of the Great Plains. Although the altitude of plain increases gradually from 600 or 1200 ft . on the eest to 4000 , 5000 or 6000 It. near the moontains, the local relief is generally small; the
sub-arid climate excludes tree growth and opens far-reaching views. The plains are by no means a simple unit; they are of diverse structure and of various stages of eronional development; they are occasionally interrupted by buttes and escarpments; they are frequently broken by valleys: yet on the whole a broadly excended surface of moderate relief so often prevails that the name, Great Plains, for the region as a whoke is well deserved. The western boundary of the plains is usually well defined by the ahrupt ascent of the mountains. The eastern boundary of the plains is more climatic than topographic. The line of 20 in . of annual rainfall trends a little east of northward near the 97th meridian, and if a boundary must be drawn where nature presents only a gradual transition, this rainfall line may be taken to divide the drier plaims from the moister prairies. The plains may be described in northern. intermediate, central and southern sections, in relation to certain peculiar featurea.

The northern section of the Great Plains, north of latitude \(44^{\circ}\), including castern Montana, north-eastern Wyoming and most of the Dakotas, is a moderately disected peneplain, one of the best examples of its class. The strata here are Cretaceous or early Teriary, lying nearly horizontal. The surface is shown to be a plain of degradation by a gradual ascent here and there to the crest of a ragged escarpment, the cuesta-remnant of a resistant strat um; and by the presence of hiva-capped mesas and dike-ridges, sur mounting the general level by \(\mathbf{5 0 0} \mathrm{ft}\). or nore and manifestly demonstrating the widespread erosion of the surrounding plains. Alt thest reliefs are more plentiful towards the mountaing in central Montana. The peneplain is no longer in the cycle of erosion that witnessed its production; it appears to have suffered a regional elevation, lor the rivers-the upper Missouri and its branches-no longer fow on the surface of the plain, but in well graded, maturely opened valleys, several hundred feet below the general level. A significant exception to the rule of mature valleys occurs, however, in the case of the Missouri, the largest river, which is broken by several falls on hard sandstones about 50 m . east of the mountains. This peculiar feature is explained as the result of displacement of the river from a better graded preglacial valley by the Pleistocene ice-sheet, which here overspread the plains from the moderately elevated Ca nadian highlands far on the north-cast, instead of from the much higher moun. tains near by on the west. The present alcitude of the plains near the mountain base is 4000 ft .
The northern plains are interrupted by several small mountain areas. The Bhack Hills, chiefly in western South Dakota, are the largest group: they rise like a large ishand from the sea, occupying an oval area of about 100 m . north.south by 50 m . east-west, reaching an altitude in Harney Peak of \(72: 6 \mathrm{ft}\)., and an effective reliel over the plains of 2000 or 3000 ft . This mountain mass is of flat-arched, dome-like structure, now well dissected by radiating consequent streams, so that the weaker uppermost strata have been eroded down to the level of the plains where their upturned edges are evenly truncated, and the next following harder strata have been sufficiently eroded to disclose the core of underlying crystalline rocks in about half of the domed area.

In the intermediate section of the plains, between latitudes \(44^{\circ}\) and \(42^{\circ}\). including southern South Dakota and northern Nebraska, the erosion of certain large districts is peculiarly elaborate, giving rise to a minutely dissected lorm, known as " bad lands." with a relief of a lew hundred leet. This is due to several causes: first, the dry climate, which prevents the growth of a grassy turf; next. the fine texture of the Tertiary strata in the bad land districts; and consequently the success with which every little rill, at times of rain, carves its own little valley. Travel acroes the bad lands is very fatiguing because of the many small ascents and deacents; and it is from this that their name. "mauvaises terres pour traverser," was given by the early French soyageves.

The central section of the Great Plains, between latitudes \(4^{\circ}\) and \(36^{\circ}\). occupying eastern Colorado and western Kansas, is, briefly stated, for the most part a dissected fluviatile plain; that is, this section was once smoothly covered with a gently sloping plain of gravel and sand that had been spread far forward on a broad denuded area as a piedmont deposit by the rivers which iseued from the mountains ; and since then it has been more ar kess dissected by the erosion of valleys. The central section of the plains thus presents a marked contrast to the northern section; for while the northern section owes its smoothness to the removal of hocal gravels and sands from a formerly uneven surface by the action of degrading rivers and their inflowing tributaries, the southern section owes its smoothness to the deposition of imported gravels and sands upon a previously uneven anface by the action of aggrading rivers and their outgoing dintributariog The two sections are also unlike in that residual emingertatid here and there surmount the pencplain of the northern bution : Qutanatio plain of the central section completely Exception to this staternent must to the mountains in touthern
bove the general phain level, and
Plains, betmeen latitudes 35\(\}^{\circ}\)
central section it is for the most part a diseected fuviatile plain, but the lower lands which surround it on all sides place it in so strong relief that it stands up as a table-land, known from the time of Mexicap occupation as the Llano Estacado. It measuret roughly. 150 m . east-west and 400 m . north-south, but it is of very irregular outline, narrowing to the south. Its altitude is \(\$ 500\) (\(t\). at the highest western point, tearest the mountains whence its gravels were supplied; and thence it slopes south-eastward at a decreasing rate. Grat about 12 ft., then about 7 (\(t\). in a milc, to its eastern and southern borders, where it is 2000 lt in altitude : like the High Plains farther north, it is extraordinarily smooth; it is very dry, except for occasional shallow ard temporary water sheets after rains, The Lano is enarated from the plains on the north by the mature consequent valley of the Canadian river, and from the mountains on the west by the broad and probably mature valley of the Pecos river. On the east it is strongly undercut by the retrogressive erosion of the beadwaters of the Red, Brazos and Colorado rivers of Texas, and presents a ragged escarpment, 500 to 800 ft . high, overicokitg the central denuded area of that state; and there, between the Brasos and Colorado rivers, occurs a series of isolated outliers capped hy a limestone which underlies both the Llano on the west and the Grand Prairies cuesta on the east. The southern and narrow part of the table-land, called the Edwards Plateau. is more dissected than the rest, and falls of to the south in a frayed-out fault scarp, as already mentioned. overlooking the coastal plain of the Rio Grande embayment. The central denuded area, east of the Llano, resembles the east-central eection of the plains in exposing older rocks; between these two similar areas, in the space limited by the Canadian and Red rivers, rise the subdued forms of the Wichita Mountains in Oklahoma, the westernmost member of the Ouachita system.

The Cordilleran Region.-From the western border of the Great Plains to the Pacific coast, there is a vast elevated area, occupied by mountains, plateaus and intermont plains. The intermont pisins are at all altitudes from sea-level 104000 ft .; the plateaus from 5000 to to.000 ft ; and the mountains from 8000 to \(14,000 \mathrm{ft}\). The higher mountains are barren from the cold of altitude; the timber line in Colorado stands at 11,000 to 12,000 ft.

The chief provinces of the Cordilleran region are: The Rocky Mountain system and its basins, from northern New Mexico northward, including all the mountains from the front ranges bordering on the plains to the Uinta and Wasatch ranges in Utah; the Pacific ranges including the Sicrra Nevada of California, the Cascade range of Oregon and Washington, and the Coast range along the Pacific nearly to the southern end of California; and a great inter. mediate area, including in the north the Columbian lava plains and in the south the large province of the Basin ranges, which extends into Mexico and widens from the centre south ward, 90 as to meet the Great Plains in eastern New Mexico, and to extend to the Pacific coast in southern California. There is also a province of plateaus between the central part of the Basin ranges and the southern part of the Rocky Mouatains. An important geological charactenstic of most of the Cordilleran region is that the Carboniferous strata which in western Europe and the eastern United States contaia many coal seams, are represented in the western United States by a marine limestone; and that the important unconformity which in Europe and the eastern United Scates separates the Palaeozoic and Mesozoic eras does not occur in the western United States, where the Cormations over a great area follow in conlormable sequence fron early Palacozoic through the Mesozoic.

The Rocky Mountains begin in northern Mexion, where the axial crystalline rocks rise to \(12,000 \mathrm{ft}\). between the horizontal structure of the plains on the east and the plateaus on the weet. The Rwob The upturned stratified formations wrap around the The Rwob flanks of the range, with ridges and valleys formed on
their croded edges and drained southward by the Pecos river to the Rio Grande and the Gulf of Mexico. The mountains rapidly grow wider and higher northward, by taking on new complications of seructure and by including large basins between the axes of uplife until in northern Colorado and Utah a complex of ranges has. a breadth of \(300 \mathrm{~m} .\). and in Colorado alone there are 40 summits over 14,000 ft. in altitude, though none rises to 14,500 . Then turnint more to the north.west through Wyoming, the ranges decrease in breadth and height: in Montana their breadth is not more that 150 m, and only seven summits exceed 11,000 (t. (one reaching 12.834), As far dorth as the gorge of the Missouri river in Montana, the Front range. facing the Great Plains, is a rather simple uphift usually formed by upturning the flanking strata. less often by a fracture. Along the eastern side of the Front Range in Colorado most of the uptumed stratified formations have been to well worn down that. except lor a few low piedmont ridges, their even surface may now be included with that of the plains, and the crystalline core of the range is exposed almost to the mountain base. Here the streams that drain the higher areas deacend to the plains throuth narrow canyons in the mountain border, impasaable for ordinary roads and difficult of entrance even by railways: well-knopat enample is the gorge of Clear Crcek east of the Ceorgetown minims district. The cryst slline highlands thereabouts, at altitudes 8000 to \(10,000 \mathrm{fi}\), are of \(\$ 0\) moderate a reliel at to suggest that the mase had stood much lower in former cycle of eromon and had then been worn down to rounded hills; and that ince eplift to the
preseat alitude the nevived streams of the durvent cyile of exosion have not entrenched themselves deep enough to develop etrong gelicf. This idea is confirmed 80 m farther south, where Pikes Poak (14,108 (t.), a conspicuous landmark Gar out on the piains, has every appearance of beiag a huge monadnock, curmounting a rough peneplain of \(10,000 \mathrm{ft}\). in seneral elevation. The iden it till better confirmed farther north in Wyoming, where the Laramie Range, flanked with upturned surata on the east and wert, is for the moet part a broad upland at alcitudes of 7000 or 8000 ft., with no strong surmountigg summits and as yet no deep earved yalleys. Here tho frst of the Pacific railways chowe its pasi. When the sum mit is reacher, the traveller is tempted to ask, "Where are the mountains?" 00 small ts the melief of the uptand surface. Thi how range turns westward in a curve through the Rattlenake Mountains towards the high Wind River Mountains (Gannett Peak, 13.775 ft.), an anticlinal range within the body of the mountain system, with sanking strata rising well on the slopes. Flanking strala are even better exhibited in the Bighorn Mountaios, the froat range of zorthern Wyoming, crescentic in oudlime and convex to the northeat, lice the Laramie Range, bat much higher; here heavy ebeets of limestone arch far up towands the range creat, and are deeply notched where conaequent stremus have cut down their gorges.

Farther north in Moneanz, beyond the gorge of the Miseourl river, the structure of the Front Ramge is altogether different; it to here the carved residual of a great mas of moderately bent Palaeozoic etrata, overthrunt enstward upon the Mesozoic strate of the plains; instead of exposing the oldest rocke along the axis and the youngest rocks how down on the flanks, the younger rocke of the northern mage follow its axis, and the oldest rocks outcrop along its eastera fanaca, where they override the much younger strata of the plains; the harder strata, instead of lanmine on the mountain flanks in great alab-tice matis, wis in the buthoris, form out-facing scarpa, Which retreat into the: mountain interior where hey are cut down by cutfowing strearma

The structure of unc inucr manges is so variable as to elude simple deacription: but mention should ba made of the Uinta range of brond anticlinal structure in north-east Utah, with east-west trend, \(a\) if corresponding to the enst-went Rattiemaloe Mountains, already maned. The Wasatch Range, trending north-south in centrai Utah, is peculiar in posessing large enst-wext folds, which are seen in erom-acction in the disoscted western face of the range, becausa the whole mase is there squarely eut off by a great north-sonth fatult with down-throw to the Basin Range prowince, the fault face beine elabonately carved.

Voloanic sction has been reatricted in the Rocky Moontains proper Wet Spanith Peak (\(\mathbf{3} 3,680 \mathrm{ft}\).), in the Front Range of eouthern Colorado, may be meationed as a fine exaraple of a deeply dinsected voicano origitally of greater height, with many unusually etrong radiating dikeridgen mear ita denuded tlanks. In north-western Wyoming there mre ertensive and hervy hova sheets, uplifted and dispecter, and crowned with a few diseected volcanocs. It is in anociation with this field of extinct volcanic activity that a remarkable group of eyners and hot springs has bean developed, from whicts the Yellowatone river, bench of the Missouri, fows northeantward, and the Saike river, a braph of the Columbia, flows south-mitward. The geyser district in beld as a national domain, the Yellowetoce Paric.

Travellem whowe idea of pieturesquenem is based upon the abnormilly thapened pealos of the ice-sculptured Alps are disappointed with the scenery of the central and southern ranges of the Rocky Mountains. It is true that many of these ranges are characterized by the rounded tepa and the rather avenly alanting, waste-covered tope which normally resule from the long-continaed action of the ondinary ageaciet of erosion; that they bear little snow in summer and tre prictically wanting in glaciers; that forests are often scanty on the middle and lower clopes, the more so because of devastation by fres; and that the general impression of great altitude is much wealsened because the mountains are seen from a base which itself is 5000 or 6000 ft . above sea-level. Neverthelese the mountains are of expecial interest to the physiographer who wishes to make \(\frac{t}{}\) conparative tudy of land forms as affected by normal and by ciacial ceulpture, in order to give due attention to "procese" is Well to " etructure and ctage" in the analysis and description of roountain topography. A journey along the range from wouth to morth reveals most etrikingly a gradual increase in the share of sculpture due to Pleistocene gleciern. In New Mexico, if glaciers were formed at all in the high valleys, they were 00 amail as not qreathy to modify the more normal forms. In central Colorado and Hyorning. Where the mountains are higher and the Pleistocene deciers were lurger, the valley heads were hollowed out in well-formed cingues, often bolding small Labes; and the mountain valleys were eringed into U-ehaped troughs as far down as the ice reached, with banging lateral valleys on the way. Different otages of cirque development, with accompanying transformation of mountain shape, are finely llutrated in eeveral ranges around the headwaters of the Artennas river in centrai Colorado, where the highest surnmit of the Roeloy Momoting is found (Mr Massive, 14.424 ft., in the Sawatch range): and pertapse even better In the Bighorn range of Wyoming. In thi central region, however, it is only by thy of exception that the etronat were to far ealarged by retrogreative glacial erosion
 asd in no cave did fistial action here extepa \(d\) own to the plains at the eantern base of the mountains; but the wldened, trough-like glaciated valleys frequently deocend to the level of the elevated intermont basins, where moraines were deployed formard on the basin floor. The finest exmmples of this kind are the moraines about Jackoon Laloe on the basin floor east of the Teton Range (Grand Teton, 13.747 ft .), a superb north-south range which lies close to the meridional boundary line between Wyoming and Idaho. Farther morth in Moatana, in ppite of a decrease of height. thert are to-day a few sumall glaciers with snowfielde of pood cive; and here the effect of aculpture by the much larger Pleistocene daciers are seen in forms of stmost alpine etrength.

The intermont basins which oo strongiy characterize the Rocky Mountain rystom are areas which have been less uplifted than the enclosing ranges, and have therefore umally become the depositories of waste from the wrounding moyntains.

Some of the most important basins may be mentioned. San Luis "Valley" is an oval bisin about 60 m . long near the sorthern end of the mountain system in New Mexico and Colorado; its level. treeless floor, at an altitude of 7000 ft. is as yet hardly trenched by the Rio Grande, which escapes through an frupassable eanyon southward on ite way to the Gull of Mexico. The much smaller basin of the upper Arkansas siver in Colorado is well known because the Royal Corre, a very narrow cleft by which the river eacapes through the Front Range to the plains, is fohlowed by a railroad at river. level. South Park, directly west of Pike's Peak, is one of the bighest basina (nearly to,000 ft.), and gains its mame from the scatiered, park libe growth of large pine trecs; it is drained chiefly by the South Platte river (Missouri-Mississippi aystern), through a deep gorge in the dissected mass of the plateau-like Front Range. The Laramie Plains and the Green river basin, essentially a single structural basin between the east-west ranges of Rattiesmake Mountains on the north and the Uinta Range on the south, measuring roughly 260 m . east-wert by 100 m . north-sonki, is the largest intermont basin; lt is well known fror being triver sed through its greatest length by the Union Pacific re:? \(\%\) is eastern part is drained northeart ward through a yorge that separates the Laramie and Rattlesnake (Front) ranges oy tae North Platte river to the Missouri-Mintsippi; its western part, where the basin floor is much dissected, often assuming a bad-land expression, is drained southward by the Green river, through a deep canyon in the Uinta Range to the Colorado river and then to the Pacific. The Bighorn basin has a moderateiy dissected floor, drained north-eastward by Bighorn river through a deep canyon in the range of the same name to the Missouri. Several smaller basins occur in Montana, all somewhat dissected and drained through narrow gorges and canyons by members of the Missourt system.

The Plateau province, next weat of the southern Rocky Mountains, is characterized for the most part by large-textured forms, developed on a great thickness of nearly horizontal Palaeozoic, Mesozoic and Tertiary formations, and by a dry climate. The Pimesa The province was uphifted and divided into great blocks by fauits or monoclinal flexures and thus cxposed to long-lastlng denudation in a mid-Tertiary cycle of erosion; and then broadly elevated again, with renewed movement on some of the fault lines; thus was introduced in late Tertiary time the curient cycle of erosion In which the deep eanyons of the region have been trenched. The sesults of the first cycle of erosion are seen in the widespread exposure of the resistant Carboniferous limestone as a broad platform in the *outh-westem area of greater uplift through central Arizona, where the higher formations were worn away; and in the development of a series of huge, south-facing, retreating escapments of irregular outline on the edges of the higher formations farther north. Each escarpment ctands forth where a resistant formation overlies a weaker one; each escarpment is separated from the next higher one by a broad step of weaker strata. A wonderful series of these forms oceurs in touthern Utah, where in passing northward from the Carboniferous platform one ascends in succession the Vcrmilion Cliffs (Triassic standstones), the White Clifis (Jurassic eandstones, of remarkably cross-bedded structure, interpreted the dunes of an ancient desert), and finally the Pink Cliffs (Eocene strata of fluviatile and lacustrine origin) of the high, forested plateaus. Associated with these irregular escarpments are occasional rectilinear ridges. the work of extensive erosion on monoclinal structures, of which Echo Cliffs, east of the Painted Desert (so called from its manycoloured sandstones and clays), is a sood example.

With the renewal of uplift by which the earlier cycle of erosion was interrapted and the present cycle introduced, inequalitics of vurface due to resewed faulting were again introduced; these stil appear as cliffs, of more nearly rectilinear front than the retreating escarpraents formed in the previous cycie. These ciffis are peculiat in gradually passing from one formation to another, and in having a height dependent on the displacement of the fault rather than on the structures in the fault lace; they are already somewhat battered and dissected by erosion. The most important line of cliffs of this class is associated with the western and southern boundary of the plateau province, where it was uplifted from the lower ground. The few rivert of the region must have reached the quiescence of old age in the eartier cycle, but were revived by uplift to a vigorous youth in
the current cycle; and it is to this newis introduced cycie of phyniographic evolution that the deep canyons of the Plateau province are due. Thus the Virgin river, a northern branch of the Colorado, has cut a vertical slit, 1000 ft. deep, hardiy wider at the top than at the bottom, in the heavy Triasaic sandstonca of southern Utah; but the most famous example is the Crand Canyon (g.v.) of Arivona, eroded by the Colorado river across the uplifted platiorm of Carbomiferous limestone.

During the current cycle of eromion, several of the fauits, whowe scarps had been worn away in the previous cycle, have been brought to light again as topographic features by the removal of the weale strata along one side of the fault line, leaving the harder atrata on the other side in relic! ; such scarps are known as " Gault-line carps," in distinction from the uriginal "lault scarps." They are peculiar in having their altitude denendent on the depth of revived erosion, instead of the amount of faulting, and they are sometin "topographically reversed." in that the revived scarp overlook lowland wom on a weat formation in the upheaved fault-block. Another consequence of revived erosion is soch in cise uruarcuce of great landslides, where the removal of weak (Permian) clays has tapped tho face of the Vermition Cliffs (Triassic sandstone), so that huge slices of the cliff face bave slid down and forward a mile or two, all shattered into a conlused tumult of forms for a score or more of miles along the cliff base.

Volcanic features occur in abundance in the Plateau province. Some of the high plateaus in the north are capped with remnants of heavy lava flows of early eruption. A group of large volcanoes occurs on the limestone platform wouth of the Grand Canyon, culminating in Mt San Francisco (\(12,794 \mathrm{ft}\).), a moderately dimected cone, and asoociated with many more recent amaller cones and freshlooking lava flows. Mt Taylor in wettern Now Mexico is of similar age, but here dissection seens to have advanced farther, probably because of the weaker nature of the underlying roclas, with the result of removing the smaller cones and exposing many lava conduits or pipes in the form of volcanic necks or butics. The Heary Monntairs in south-wcstern Utah are peculiar in owing their relief to the dorning or blistering up of the plateau strata by the underground intrusion of large bodies or "cisteras" (laccolites) of lava, now more or leas exposed by erosion.

The lava plains of the Columbia basin are among the most extensive volcanic outpourings in the world. They cover 200,000 sq. mb. or more in south-eastern Washington, eastern Oregon and southwestern Idaho, and are known to be 4000 ft . deep in some siver gorges. The lava completely buries the preexistent land forms over most of its extent. The earlicr supposition that these vast lava flows came chiefly trom fusure eruptions has been made doubtful by the hater discovery of lat-sloping volcanic cones from which much lava seems to have been poured out in a very liquid state. Some of the flows are atill so young as to preserve their scoriaceous surface; here the "shore-line" of the lava contours cyenly around the spurs and enters, bay-like, into the valleys of the enclosing mountains, occasionally isolating an outlying mass. Other parts of the lava flood are much okder and have been more or les; deformed and eroded. Thus the uplifted, dislocated and dissected lava sheets of the Ycltowstonc National Park in the Rocky Mountains on the east (about the headwaters of the Snalae river) are associated with the older lavas of the Columbram plains.

The Columbia river has entrenched itself in a canyon-like valley around the northern and western side of the lava plains; Snake river has cut a deeper canyon fart her south-cast where the plains are higher and has disclosed the many lava sheets which build up the plains, occasionally revealing a buried mountain in which the superposed river has cut an even narrower canyon. One of the most remarkable features of this province is seen in the temporary course taken by the Columbia river across the plains, while its canyon was obstructed by Pleistocene glaciers that came from the Cascade Mountains on the north-west. The river followed the temporary course long enough to crode a deep gorge, known as "Grande Coulee," along part of its length.

The lava plains are treeless and for the most part too dry for agriculture; but they support many cattle and horses. Along parts of their castern border, where the rainfall is a little increased by the approach of the wexterily winds to the Rocky Mountains, there is a belt of very deep, impalpably five soin, supposed to be a dust deposit bet of very deep impalpaby fore son, supposed to be a dust deposit ond
erust: The tructure of the region previous to fanlting was dependent on long antecedent procemes of accumulation and deformation and the enriace of the region then was dependent on the amount of erotion suffered in the prefaulting cycle. When the retion was broken into favit blocke and the blocks were nplifted and tilted. the back slope of each block wass a part of the previously eroded surface and the tace of the block was a surface of fracture; the present form of the higher blocks is more or lest affected by eroaion tince laulting. while many of the lower blocla bave been buried under the warte of the higher ones. In the north, where dislocations tave invaded the fied of the morizontal Columbian lavas, as in wotheastern Oregon and north-atstern California, the blocks are monoctinal in structure as well as in attitude; bere the amount of diseaccion is relatively moderate, for some of the famlt faces are described as ravined but not yet deeply disected; hence these dislocations appear to be of recent date. In western Urab and through mort of Nevada many of the blocks exhibit deformed structures, involviag folds and faulte of relatively ancient (furtasic) date; 80 ancient that the mountains then lormed by the folding were worn down to the lowiand thge of old age before the block-Gaulting occursed. Whee this old-mountain lowland was broken into blockas and the blocks were tilted, their attitude, but not their structure, was monoclipal ; and in this new attitude they have been mo maturely re-dimected in the new cycle of eromion upon which they have now entered at to have gained elaborately carved forms in which the initial form of the uplifted blocks can hardly be perceived; yet at beat some of thest still retain along one side the highly significant feature of a relatively simple base-line, transecting hard and soft structures alike, and thas indicating the faulted margin of a tilted block. Here the leas uphilted blocks are now heavily aggraded with waste Irom the dissected ranges: the waste takes the form of huge alluvial fans, formed chiefiy by occasional. boulder-bearing foods from the mountains; each fan beads in a ravine at the mountain base, and becomes laterally confluent with adjacent fans as it stretches eeveral miles forward with decreasing skope and increasing fineness of material.

In the southern part of the Basin Range province the ranges are well diapected and some of the interntiont depreasions have rock floors witb gentle, centripetal slopes; beace it in sugtented that the time since the last dislocation in this part of the province is relatively remote; that erosion in the current cycle has bere advanced much lartber than in the central or northern parts of the province; and that, either by outwash to the wes or by exportation of wind-borne dust, the depressions-perhaps asgraded for a time in the earien stagea of the cycie-have now been to deeply worn down as to degrade the lower and weaker parts of the tilted blocks to an evenly sloping surface, leaving the higber and harder parts etial in relief as residual ranges. If this be true, the wouthern district Fill furnish a good illustration of an advanced stage of the cycle of arid erosion, in which the exportation of wate from enclowed deptessions by the wind hat played an important part. In such cate the washing of the centripetal slopes of the depressions by cccasional "sbetfloods " (widespreading sheets of turbid running water, supplied by heavy short-lived rains) has been cfficient in keeping the rock floor at even grade toward a central basin, where the finest waste is collected while waiting to be removed by the winds.
Oniy a small part of the Basin Range province is drained to the sea. A few intermont areas in the north-west part of the province have outlet west ward by Khamath river through the Cascade range and by Pitt river (upper part of the Sacramento) through the Sierra Nevada: a few basins in the south-east have outlet by the Rio Grande in the Gulf of Mexico: a much larger but still narrow medial area is drained south-westward by the Colorado to the head of the Gull of California, where this large and very turbid river has formed an extensive delta, north of which the lormer head of the culf in now cut off from the sea and laid bare by evaporation as a plain below sea-level. It is here that an irrigation project, involving the diversion of aome of the river water to the low plain, led to disaster in 1904, when the flooded river washed away the canal gates at the intake and overflowed the plain, drowning the newly established larms, compeling a rsilway to shift its track, and forming a lake (Salton Sea) which would require years of evaparation to remove (see Colorado Rivez). Many streams descend from the ravines only to wither away on the desert basin floors before unitimg in a trunk riyer along the axis of a depression; ot hers succeed in uniting in the winter season, when evaporation is much neduced, and then their trunk flows (or a few acore miles, only to disappear by "ainking" (evaporating) farther on. A few of the large streams may, when in cood, spread out in a temporary shallow sheet on a dead level al clay, or playa, in a basin centre, but the sheet of water vanishes in the warm geason nnd the stream shrinks far up its course, ibe abolutely barren clay floor of the playa, impasaable when wet. becomen firm enough for crossing when dry. One of the wouthwestern basins, with its floor below sea-level, has 8 plaia of galt in ite centre. A lew of the basins are occupied by lakes withont outhe, of which Gruat Salt Lake (4.0.), in north-west Utah, is the largent. Seweral smaller lakes cocur in the basins of westers Nevada, next east of the Sierre Nevada. During Pleistocese times all there lacustrine basins wert occupied by lakes of mach greater depth and targer size; the outlines of the eastern (Lake Boancvilk) and the western (lalee Lahontan) waser bodies are well reoorded by thone-liget
and deltas on the enclowing dopes, tundreds of fcet above the present lake surfaces; the abandoned shore lines, as studied by G. K. Gilbert and L. C. Rascell, have yieided evidence of past climatic changes second in importance only to those of the Pleistocene glaciated areas. The duration of the Pleistocene lakes was, however, brief is compared with the time since the dislocation of the fautted blocks, as is shown by the small dimensions of the lacustrine beaches compered to the great volume of the ravine-heading fans oa which the beaches of ten lie.
Strong mountain ranges follow the trend of the Pacific comet, 550 or 200 m . inland. The Cascade Range enters from Canada, trending
The Pacivy Southward across the international boundary through Rages. Nevada extends thence oouth-eastward through California to latitude \(35^{\circ}\). The lower coust ranges, nearer the ocean, continue a littie farther outhward than the Sierra Nevada, before giving way to that pert of the Basin Rante province which reaches the Pacific in wouthernmot California.

The Cascade Range is in essence a maturely dissected highland, compoeed in part of upwerped Columbian lavas, in part of older rocke, and crowned with reveral dissected volcanoes, of which the chief are (beginning in the north) Mts Baker (10.827 (t.), Rainier (14.363 (t.), Adams (12,470 (t.) and Hood (\(1 \mathbf{1}, 225 \mathrm{ft}\)) ; the first three in Washington, the last in northern Oregon. These bear snowfields and glaciers; while the dissected highlands, with ridges of very irregular arrangement, are everywhere sculpturec chat strongly suggests the work of numerous locai Pheisocent glaciers as an important aupplement to preglacial erosion. Lake Chelan, long and narrow, deep set between spurless ridges with hanging lateral valleys, and evidently of glacial origin, omaments one of the eastern valleys. The range is squarity transected by the Columbia siver, which besrs svery appearance of antecedent origin: the cascades in the river porge are callsed the sub-recent landslide of great size from the mountain wazis, liamath river, draining aeveral lakes in the north-mest part ot the Basin Range province and traversing the Cascade Range to the Pacific, is apparently alto an antecedent river.

The Cascade Mountains present a marked example of the effect of relief and aspeet on rainfall; they rise across the path of the prevailing weeterly winds not far inland from a great ocean; hence they receive an abundant rainfall (80 in. or more, annually) oin the westward or windward alope, and there they are heavily forested; but the rainfall is light on the eastward slope and the piedmont district is dry; hence the forcsts thin out on that side of the range and treeless lava plains follow next eastward.

The Sierra Nevada may be described, in a very general way, an a great mountain block, largely composed of granite and deformed metamorphoeed rocks. reduced to moderate relief in an earlier (Cretaceous and Tertiary?) cycle of erosion, sub-recently elevated With a slant to the west, and in this position sub-maturely dissected. The region was by no means a peneplain before its slanting uplift; irs surface then was hilly and in the south mountainous; in its central and still more in its northern part it was overspread with lavas which flowed westward along the broad open valleys from many vents in the eastern part: near the northern end of the range, eruptions have continged in the present cyele, forming many cones and young lava flows. The tilting of the mountain mass was presumably not a cimple or a single moverment; it was prohably slow, for Pitt river (headwaters of the Sacramento) traverses the nort hern part of the renge in antecedent fashion; the tilting involved the subdivision of the great block into smaller ones, in the northern half of the range at least; Lake Ta hoe (altitude 6225 ft.) near the range crest is explained as cocupying a depression between two block fragments; and farther north similar depressions now appear as aggraded highland " meadows." The tilting of the great block resulted in presenting a strong slope to the east, facing the descrts of the Basin Range province and in large measure detcrmining their aridity; and a long moderate slope to the west. The altitudes along the upraised edge of the block, or range crest, are approximately 5000 It. in the north and 11,000 it. in the south. The mountains in the sovthern part of the block, which had been reduced to subdued forms in the former cycle of erosion, were thus given a conspicuous height, forming the High Sierra," and greatly sharpened by revived erosion, normal and glacial. In this way Mt Whitney (14.502 ft.) came to he the highest summit in the United States (excluding Alaska). The displacement of the mountain block may still be in progress, for severe earthquakes have happened in the depression next east of the range; that of Owen's Valley in 1870 was strong enough to have been very destructive had there been amything in the desert valley to destroy. In the new altitude of the mountain mass, its stcep eastern face has been deeply carved with short canyons; and on the western slope en excelient beginning of dissection has been made in the erosion of many narmow valleys, whose greatest depth lies between their neadwacers which still fow on the highland surface, and their moaths at the low western base of the range- The highlands and uphands between the chiel valleys are but moderately disoected; many small side streams still flow on the highland, and descend by steeply incised gorges to the valleys of the larger sivers. Some of the chief valleys are not cut in the floors of the old valleys of the former cycie, becanse the rivers were displaced from their former conerse by
lava flows, which now otand up as table mountains. Glaciat erocion has been potent in excavating great cirques and omall rock-basins, eapecially among the higtor southern surmounting summite, many of which have been thus somewhat reduced in ficight whilo gaining an Alpise sharpness of form; sorne of the short and stcep canyons in the eastern slope have been converted into typical glacial troughs, and huge moraines have been laid on the desert floor below them. Some of the western valleys have also in part of their length been converted into U-shaped troughs; the famous Yoeemite Valley, eroded in masaive graaite, with side cliffs 1000 or 2000 ft . in height, and the smaller Hetch-Hetchy Valkey not far away, are regarded by some observers as owing their peculiar forms to glacial modifications of normal preglacial valleys

The western slope of the Sierra Nevada bears fine forests similar to thoseof ine Cascade Range and of the Coast Raage, hut of moreopen growth, and with the redwood exchanged for groves of "big trees" (Sequoia gigantea) of which the tallest examples reach 325 tt. The migher aummita in the oouth are above the tree line and expme great areas of bare rock: mountaineering is here a delightful. recreation, with camps in the highland forests and acente to the lofty peaks. Gold occurs in quartz veins traversing various formations (some as young as Jurassic), and also in gravels, which were for the most part deponited previous to the uplift of the Sierra "block." Some of the gravels then occurred as piedmont deposits along the western border of the old mountains; these gravels are now more or less dissected by new-cut valieys. Other auriferous gravels are buried under the upland lava flows, and are now reached by tunnels driven in beneath the rim of the table mountains. The reputed discovery of traces of early man in the lava-covered graveis has not been autbenticat

The northersmost part of siven ind ependene rank a as the Olympic Raige (Mt Olympus, 8i50 claciers, and sugrestive of the group, rearing snowhelds and glaciers, and suggestive of the dome-like uplift of a previously suggested origin uncertain. Farther ch:th, through Oregon and northern California, many members of the cuust rangea resemble the Cascades and the Sierra in offering well-atcested examples of the uplift of masses of disordered structure, that had been reduced to a tame surface by the erosion of an earlier cycle, and that arenow again more or less dissected.
Several of the ranges ascend abruptly from the sea; their base is cut back in high cliffs; the Sierra Santa Lucia, south of San Francisea, is a range of this kind; its seaward slope is almost uninhabitable. Elsewhere moderate re-entranta between the ranges have a continuous beach, concave seaward; such re-entrante afford imperfect harbourage for vessels; Monterey Bay is the most pronounced example of this kind. On atill other parts of the coast a recent small elevatory movement has exposed part of the former sea bottom in a narrow coastal plain of which some typical harbourless examples are found in Oregon. Most of the recent movements appear to have been upward, for the coast presents few embayments such as would reault from the depression and partial submergence of a dissccted mountain range; but three important exceptions must be made to this rule.
In the north, the Strait of Juan de Fucs and the intricately branching waterways of Puget Sound between the Cascade and the Olympic ranges occupy trough-like depressions which were filled by extenasve glaciers in Pleistocene times; and thus mark the beginning of the great atretch of fiorded coast which extenden northward to Alaska. The waterways here afford excellent harbours. The second important embayment is the estuary of the Columbia river; but the occurrence of shoals at the mouth decreases the use that might otherwise be made of the river by ocean-going vessels. More important is San Francisco Bay, situated about midway on the Pacific coast of the United States, the result of a moderate depression whereby a transverse valley, formerty followed by Sacramento river through the outermost of the Coast ranges, has been converted ifto a narnow strait the "Golden Gate" Fand a wider intermont longit wdinal valley has been flooded, forming the expansion of the Inner bay.

The Coest Range is heavily forested in the north, where rainfall is abundant in all seasons; but itt lower ranges and valleys have a scanty tree growth in the south, where the rainfall is very fight: bere grow redwoods (Sequia sempervirens) and live oaks (Qwercas agrifolia). The chief anetalliferous deposits of the rage are of mercury at New Almaden, not lar south of San Francisco. The open valleys between the spaced ranges offer many tempting sites for settiement, but in the south irrigation is needed for cultivation.
The bett of relative depression between the inver Pacific tangen and the Coast range is divided by the fine volcano Mt Shasta (14.380 (t.) In northern California Into unifike portions. To the porth, the floor of the depression is for the most part above baselevel, and hence is diseected by open valleys, partiy longitudinal, partly transverme, among hills of moderate relief. This district was oniginally for the most part forested, but is now coming to be cleared and farmed.

South of Mt Shesta, the "Valley of Californis" is an admirable example of an aggraded intermont depression, about 400 m . long and from 30 to 70 m . wide. The floor of this depression being below baselevel, it has necermatily come to be the seat of the mountain waste brought down by the many otreang from the sewhy uplifted

Sierra Nevada on the east and the coast ranges on the west; each stream forms an alluvialfan of very gente slope; the fans all become taterally conluent, and incline very gently forward to meet in a nearly level axial belt, where the trunk rivers-the Sacramento from the north and the San Joaquin from the south-east-wander in braided courses; their tendency to aggradation having been increased in the last half century by the gravels from gold washing; their waters entering San Francisco Bay, Kings river, rising in the high southern Sierra near Mt Whitney, has buit its fan radher actively, anci obs rueted the discharge from the part of the valley next forther south, which has thus come to be overflowed by the shallow waters of Tulare Lake, of flat, reedy, uncertain borders: A litie north of the centre of the valley rise the Marysville Buttes, the remains of a maturely dissected voicano (2128 ft). Elsewhere the floor of the valicy is a featureless, treeless plain.
(W. M. D.)

\section*{II.-Geology}

All the great systems of rock formations are represented in the United States, though close correlation with the systems of Europe is not always possible. The general geological column for the country is shown in the following table:-

Eras of Time.
Periods of Time.
Systems of Rocks.
Cainozoic . . \(\cdot\left\{\begin{array}{l}\text { Present. } \\ \text { Pleistocene. } \\ \text { Plocene. } \\ \text { Miocene, } \\ \text { Oligocene. } \\ \text { Eocene. }\end{array}\right.\)

Transition (Arapchoe and Denter formalions).
Mesozoic . . \(\left\{\begin{array}{l}\text { Upper Cretaceous. } \\ \text { Widespread snconformily. } \\ \text { Comanchean (Lower Cretaceous). }\end{array}\right.\)
Jurassic.
Permian.
Coal Measures, or Pennsylvanian.
Widespread unconformily.
Subcarbonifervus, or Missusisippian.
Palacozoic
Devonian.
Silurian.
Widespread unconformily.
Ordovician.
Cambrian.
Great unconformily.
Keweenawan.
Widesprcad unconformily.
Praterozoic
Huronjan.
Mildile Huronian.
Widespread unconformily.
Lower Huronian.

\section*{Creat unconformily.}

Great Granitoid Series (intry-
sive in the main, Laurentian).
Archeozoic
\(\left\{\begin{array}{l}\text { Greal } \\ \text { Archean }\end{array}\right.\) sive in the main, Laurentian). Kitchi, Keewatin, Quinnissec; Lower Huronian of some authors).
igneous rocks, among which extrusive rocks, many of them pyroclastic, predominate. Metamorphosed sedimentary rocks are widely distributed in the schistose series, but they are distinculy suburdinate to the meta-igneous rocks, and they are so highly metamorphic that stratigraplic methods are not usually applicable to thent. In some areas, indeed, it is difficuit to say whether the schists are metasedimentary or meta-igneous. The tikeness of the Archean of one part of the country to that of another isone of its striking features.

The Archean appears at the surface in many parts of the United States, and in still larger areas north of the national boundary. It appears in the cores of some of the western mountains, in some of the deep canyons of the west, as in the Grand Canyon of the Colorado in northern Arizona, and over considerable areas in northern Wisconsin and Minnesota, in New England and the piedmont plateau east of the Appalachian Mountains, and in a few other situations. Wherever it comes to the surface it cones up from beneath younger rocks which are, as a rule, less metamorphic. By means of deep borings it is known at inany points where it does not appear at the surface, and is believed to be universal beneath younger systems.
Locally the Archean contains iron ore, as in the Vermilion district of northern Minnesota, and at some points in Ontario. The ore is mostly in the form of hacmatite.

Proterosoxc (Agonktom) Systems. - The Proterozuic group of rocks (called also Algonkinn) includes all formations younger than the Archean and older than the Palawozoic rocks. The term Archean was formerly proposed to include these rocks, as well as those now called Archcan, but the subdivision here recognized has come to be widely approved.

The Proteruzoic formations have a wide distribusion. They appear at the surface adjacent to most of the outcrops of the Archean. and in some other places. In many localities the two groups have not been geparated. In some places this is because the regions where they occur have not been carefully studied since the suldivision into Archeozoic and Proterozoic was made, and in others because of the inherent dificulty of separation, as where the Proterozoic rock are highly metamorphosed. On the whole, the Proterozuic rocke are predominantly scrlimentary and subordinately igneous, Locally both the sedimentary and igneous parts of the group have bern highly metamorphosed; but as a rule the alteration of the sedimentary portions has not gone so far that stratignophic methods are inapplicable to them, though in some places detailed study is necessary to make aut their structure.

The Proterozoic formations are unconformable on the Arctean in most places where their relations are known. The unconformity between these groupss is therefore widespread, probably more so than any bater unconformity. Not only is it extersive in ares, but the stratigraphic break is very great, as shown by (i) the excess of metarmorphism of the lower group as compared with the upper, and (2) the amount of erosion suffered hy the older group before the deposition of the younger. The first of these differences between the two systerms is significant of the dynamic changes suffered by the Arctean before the beginnting of that part of the Proterozoic ena represented by known formations. The extent of the unconformity is usually significant of the geographic changes of the interval unsecorded by known Protcruzoic rocks.

The Proterozoic formations have been studied in detail in few great areas. One of these is about Lake Superior, where the formaLions have attracted attention on account of the abundant irun ore which they contain. Four major subdivisions or systems of the group have been recognized in this region, as shown in the proceding cable. These systems are scparated one from another by unconformities in most places, and the lower systenas, as a rule, have suffered a greater degree of metamorphism than the upper ones, though this is not to be looked upon as a hard and fast rule. The commoner sorts of rock in the several Huronian systems are quarezite and slate (ranging from shale to schist): but limestone is not wanting. and igneous rocks, both intrusive and extrusive, some metamorphic and some not, abound. Iron ore occurs in the sedinaentary part of the Huronian, especially in Minnesota, Michigan. Wisconsin and parts of Cantada. The ore is chtefly haematite, and has been developed from antecedent ferruginous sedintentary deposits, through concentration and purification by ground water.

The lower part of the Keweenawan system consists of a great succession of lava flows, of prodigious thickness. This portion of the system is overlain by thick beds of sedimentary rock, mostly conglumerate and sandstone, derived from the igncous rocks beneat th. A few geologists regard the sedimentary rocks here classed as Keweenawan as Palacozose, but they have yielded no fossids, and are unconformable beneath the Upper Cambrian, which is the oldest sedumentary formation of the region which bears fossils. The aggregate thirkness of the Proterozoic systems in the Lake Superior rexion is several mile's, as usually computed, but there are obvious dificulties in determining the thickuess of such great systems, especially when they are much metainorphosed. The copper of the Lake Superior region is in the Keweenaswan system, chiefly is its sedimentary and amysdaloidal parts.

The Pruterozoic formations in other parts of the continent cannot be correlated in detail with those of the Lake Superior region. The number of systems is not everywhere the same, nor are they every. where alike, and their definite correlution with one anotleer is not
possible now, and may never be. The Proterozoic formations have yielded a few Iossils in several places, especially Moneana and northern Arizona; but they are so imperfect, their numbers, whether of individuals or of species, are so small, and the localities where they occur so few, that they are ol little service in correlation throughout the United States. The carbon-bearing shales, slates and schists, and the limestone, are indications that life was relatively abundant, even though but few fossils are preserved. Arnong the known fossils are vermes, cruspacea and probably brachiopods and presopods

The character of the sediments of the Proterozoic is such as to show that mature weathering affected the older rocks before their material was worked over into the Proterozoic formations. This mature weathering, resulting in the relatively complete scparation of the quartz from the kaolin, and both from the calcium car bonate and other loasic materials, implies conditions of rock decay comparable to those of the present tune.

In all but a few places where their relations are known, the Proterozoic rocks are unconformable beneath the Palacozoic Where conformity exists the separation is made on the basis of fossils, it having been agreed that the oldest rocks carrying the Olenellus fauna are to be regarded as the base of the Cambrian system.
The Palaeozoic and later formations are usually less altered,
\(12,000 \mathrm{ft}\). in eastern New York, and almoat as much in the southern Appalachian Mountaina (Georgia and Alabama); but its average thickness is much leas. In Wisconsin, where the Upper Cambrian only is present, the thickness is about 1000 ft. The greater thickness in the cast appears to be due in part to the lact that an extensive area of land, A ppalachus. lay east of the site of the Appalachian Mountains throughout the Palaeozoic era, and quantities of sediment from it were accumulated where these mountains were to arise later. The greatness of the thickness, as it has been measured, is also due in part to the oblique position in which the beds of sediment were originally deposited.

The Cambrian formations have not been notably metamorphosed, except in a lew regions where dynamic metamorphism has been effective. The system is without any notable amount of igneous rock. As in other parts of the world, the system here contains abundart fossils, among which trilobites, brachiopods and worms are the most abundant. The range of forms, however, is great
Ordooician System.-The succeeding Ordovician (Lower Silurian) system of rocks is closely connected with the Cambrian, geographically, stratigraphically and faunally. Ity distribution is much the same as that of the Upper Cambrian, with which it is conformable in many places. The Ordovician system contains much more

 Aithoroich agd will be taken up by syatemis.
Cambiom Syitem.-The lower part of the Cambrian syetem, characterized by the Olenellus fauna, is restricted to the borders of the continent, where it rest: on the older rocks unconformably in most places. The middle part of the system, characterized by the Paradoxides launa, is somewhat more wideapread, resting on the lower part conformably, but overlapping is, especially in the mouth and west. The upper part of the system, carrying the Dicello cephalus fauna, is very much more extensive; it is indeed one of the most widespread meries of rocks an the continent. The lower middle and upper parts of the syztem all contain marine fomila. This being the case, the distribution of the several divisions indicates that progrestive submergence of the United States was in progress during the period, and that most of the country was covered by the sca before its cloce.

The system is composed chiefly of clastic rocks, and their composi Con and structure show that the water in which they were deposited Fas shallow. In the interior, the upper part of the syrtem, the Potadam mandstone, is cenerally arenaceous. It is well exposed in New York, Wisconsin, Misoour and elsewhere, about the outcroge of older rocks. The mystem is aleo exposed in many of the western mountains or about their horders, especially about thone the cores of which are of Archean or Proteroroic rock.

The thichness of the system has been estimated at 10,000 to
 poisting to clearet mas in wich life aboupded. The wocespien of beds in New York han becone a mort of standerd with which the ayotem is other parts of the United Statea has been compared. The encomen of formation in that state is as follows:-

Richmond beds (in Ohio and Indiana). Lorraine beds. Utica shales.
Trenton limestone. Black River limestone. Lowvilk limestone. Chary limestone. Beekmantown limeqtone. (\(=\) Calciferous).

The classification in the right hand column of this table is not applicable in detail to regions remote from Nicw York.

There is in some places an unconlormity between the Richmond beds (or their equivalent) and underlying formations, and this unconformity, together with certain palacontological considerations, has raised the question whether the uppermost part of the system. as outlined above, should not be classed as Silurian (Upper Silurian). Over the inkerior the strata are nearly horizontal, but in the mountain regions of the east and west, as well as in the mountains of Arkinasp
and Oklahoma, they are tilted and folded, and locally much metamorphosed. The outcrops of the system appcar lor the most part in close ascociation with the outcrops of the Carabrian systea, but the system appears in a few places where the Cambrian does not as in southern Ohio and central Tennessee. The thickness of the system varies from point to point, being greatert in the Appalachian Mountains, and much less in the interior.

The oil and gas of Ohio and eastern ladiana come from the middle portion of the Ordovician system. So also do the lead and zinc of south-western Wisconsin and the adjacent parts of Iowa and IHinois The lead of south-eastern Missouri comes from about the same horizon.

The fossils of the Ordovician fystem show that life made great progress during the period, in numbers hoth of individuals and of species. The life, like that of the later Cambrian, was singularly cosmopolitan, being in contrast with the provincial character of the life of the earlier Cambrian and of the early (Upper) Silurian which followed. Beside the expansion of types which abounded in the Cambrian, vertebrate remains (ishes) are found in the Ordovician. So, also, are the first relics of insects. The departure of the Ordovician life from that of the Cambrian was perhaps most pronounced in the great development of the molluscs and cringids (including cystoids), but corals were also abundant for tbe first time, and graptolites came into prominence.

Silurian System.-The Silurian system is much less widely distributed than the Ordovician. This and other corroborative facts imply a widespread cmergence of land at the close of the Ordovician period. As a result of this emergence the stratigraphic break between the Ordovician and the Silurian is one of the greatest in the whole Palaeozoic group.

The classification of the system in New York is as follows:-
Silurian . \(\quad\left\{\begin{array}{c}\text { Cayugan (Neo- or } \\ \text { Upper Silurian) } \\ \text { Niagaran (Meso-or } \\ \text { Middle Silurian) } \\ \text { Oswegan (Palaco-or } \\ \text { Lower Silurian) }\end{array}\right.\)
\(\left\{\begin{array}{l}\text { Manlius limestone. } \\ \text { Rondout waterlime. } \\ \text { Cobleskill timestonc. } \\ \text { Salina beds. } \\ \text { Gueloh dolomite. } \\ \text { Lockport limestone. } \\ \text { Rochester shale. } \\ \text { Clinton beds. } \\ \text { Medina sandstone. } \\ \text { Oneida conglomerate. } \\ \text { Shawangunk grit. }\end{array}\right.\)

The lower part of this system is chiefly clastic, and is known only in the eastern part of the continent. The middle portion contains much limestone, generally known as the Niagara limestonc, and is much more widespread than the lower, being found very generally over the eastern interior, as far west as the Mississippi and in places somewhat beyond. The Niagara limestone contains the ofdest known coral reefs of the continent. They occur in eastern Wisconsin and at other points farther east and south. It is over this limest one that the Niagara falls in the world-famous cataract. One member of the middle division of the system (Clinton beds) contains much iron ore, especially in the Appalachian Mountain region. The ore is extensively worked at some points, as at Birningham, Alabama. The upper part of the system is more restricted than the middle, and includes the salt-bearing serics of New York, Ohio and Pennsylvanis, with its peculiar fauna. It is difficult to see how salt could have originated in this region except under conditions very different climatically from those of the present time.

In the interior the thickness of the system is less than 1000 ft . in many places, but in and near the Appalachian Mountains its thick. ness is much greater-mnre than five times as great if the maximum thicknesses of all formations be made the basis of calculation. In the Great Plains and farther west the Silurian has Iittle known reprosentation. Either this part of the continent was largely land at this time, nr the Silurian formations here have been worn away or remaln undifferentiated. Rocke of Siturian age, however, are known at some polnts in Arizona; Nevada and southern California.

Corals, echinoderms, brachiopode and all groups of molluscs aboynded, Craptolites bad decined notably as compared with the Ordovician, ind the trilobites paseed their climax before the end of the period. y.ftyin other remarkable crustacea, however, had made their oppectacin, inony in connexion with the Selina series of
 \begin{tabular}{l}
Ihewe outliert have a common \\
\hline and
\end{tabular} laterfor of the United the route by which Sisters entered frghe United 'Arord Sweden - STH probaty m- matrexion
 *-.0:try yon
while during the more widespread submergence of the middle Silurian the launa was more cosmopolitan.

Derowian System.-The Devonian system appears in some parts of New England, throughout most of the Appalachian region, over much of the eastern interior from New York to the Missouri River, in Oklahoma, and perhaps in Texas. It is absent from the Great Plains, so far as now known, and is not generally present in the Rocky Mountains, though somewhat widespread between then and the western coast. As a whole, the system is more widespread than the Siturian, though not 50 widespread as the Ordovician. As in the case of the Ordovician and the Silurian, the New York sectios has become astandard with which the system in other parts of the country is commonly compared. Thls eection is as follows:-

Chautauquan-Chemung (including Catskill).

The formations most widely recognized-are the Helderberg limestone, the Onondaga timestone and the Hamilton shate.

The Catskill sandstone, found chiefly in the Catskill Mountain region of New York, is one of the distinctive formations of the system. It has some similarity to the Old Red Sandgtone of Great Britain. In part, at least, it is equivalent in cime of origin to the Chemung formation; but the latter is of marine origin, while the Catskill formation appears to be of terrestrial origin.

No other system of the United States brings out more clearty the value of palaeontology to palacogeography. The faunas of the early Devonian seem to have entered what is now the interior of the United States from the mid-Atlantic coast. The Onondaga faum which succeedied appears to have resulted from the commingling of the resident lower Devonian fauna with new emigrants fron Europe by way of the Arctic regions. The Hamilton launa whicb followed represents the admixture of the resident Onondapa fauma with new types which are thought to have come from South America, showing that faunal connexions for marine life had been made between the interin of the United States and the lands pouth of the Caribbean Sca, a connexion of which, before this time, there was no evidence. The late Devonian fauna of the interior represents the commingling of the Hamilton fauna of the eastern interior with new emigrants from the north-west, a uaion which was not effected uatil toward the close of the period.

Like the earlier Falaeozoic systems, the Devonian attains its greatest known thickness in the Appalachian Mountains, where sediments from the lands of pre-Cambrian rock to tbc east accumulated in quantity. Here clastic rocks predominate, while limestone is more abundant in the interior. If the maximum thicknesses of all Devonian formations be added together, the total for the system is as much as 15.000 ft . ; but such a thickncss is not found in any one place.

The Devonian system yields much oil and gas in western Peansylvania, couth-westera New York, West Virginia and Ontario: and some of the Devonian beds in Teanessec yield phosphates of commercial value. The Hamilton formation yields much hagstone.

Among the more important features of the marine life of the period were (i) the great development of the molluscs. especially of cephalopods; (2) the abundance of large brachiopods: (3) the aberrant tendencres of the trilobites; (4) the profusion of corals; and (\(\mathbf{~}\)) the abundance, size and peculiar forms of the fishes. The life of the land watert was also noteworthy, especially for the great deployment of what inay be called the crustacean-ostracodermo-vertebrate groupThe crustacen were represented by eurypterids, the ostracoderris by numerous strange; vertebrate-like forms (Cephala"pis, Cyathaspis, Trometopsis, Bolhriofepis, \&c.), and the vertebrates by a great variety of fishes. The land life of the period is represented more fully among the fossils than that of any preceding period. Gymnosperms were the highest types of plants.

The Devonian system is not set off from the Mississipplan by any marked break. On the other hand, the one system merges into the other, so that the plane of separation is often indlstinct.

Missis sipplan Syslem.-The Mississippian system was formerly regarded as a part of the Carboniferous, and was described under the ma me of Lower Carboniferous, or Subcarboniferous, without the rant of a system. This older clasaification, which has little support except that which ls traditional, is still adhered to by many geologiots; but the fact scems to be that the system is bet of from the Pemnsylvanian (Upper Carboniferous) more sharply than the Cambrian is from the Ordovician, the Silurian from the Devonitis. of the Devosian from the Mississippian.

The system is well developed in the Mississippi Basin, whence its name. Its formations are much more widespread than those of any other system since the Ordovician. They appear at the surface in great areas in the intcrior, in the south-west and about many of the western mountains. In many places in the west thry rest on what appear to be Ordovician beds, but without unconformity. The explanation of the apparent conformity of the strata from the Cambrian to the Pennsylvanian in some parts of the west, with no fossila defining with certainty any horizon between the Ordovician and the Mississippian, is ore of the open problems in the geology of the United States

The subdivision of the system for various regions in the castern part of the United States is as follows:-
\begin{tabular}{|c|c|c|c|}
\hline Minissippi River States & Ohio. & Pennsylvania. & Maryland. \\
\hline & 7. Maxville & & \\
\hline 3. St Louid & 6. Logan & & 3. Mauch Chunk \\
\hline 1. Osage or Augusta (including the Bur- & \begin{tabular}{l}
5. Black Hand \\
4. Cuyahoga
\end{tabular} & 2. Mauch Chunk & 3. Greenbrier \\
\hline lington. Kerkuk & 3. Sunbury & & \\
\hline Mand Warsaw) & 2. Berea grit & & \\
\hline 1. Kinderhook or Chouteau & I. Bedford & 1. Pocono & 1. Pocono \\
\hline
\end{tabular}

The Pottsvilie formation is chicfly clastic, and corresponds roughly to the Millstone Grit of England. The Allegheny and Monongahela series contain most of the coal, though it is not wanting in the other subdivisions of the system. Productive coal beds are found in five principal fields. These are (\(\mathbf{i}\)) the Anthracite field in eastern Pennsyivania, nearly 500 sq. m. in extent: (2) the Appalachian fich having an area of about 71,000 sq. m. (\(75 \%\) being productive), and extending from Pennsylvania to Alabama; (3) the northern interior field, covering an area of about \(11,000 \mathrm{sq}\). m. in southern Michigan; (4) the eastern interior field in Indiana, ilinnois and Kentuchy, with an area of about 5 , \(000 \mathrm{sq} . \mathrm{m}\). (\(55 \%\) being productive); and (5) the western intenor and southwestern field. some \(94,000 \mathrm{sq}\). m . in extent, reaching from lowa on the north to Texas on the south. There is also a coalfeld in Nova Scotia and New Brunswick, about i8,000 sq. m . in extent. Some of the well-known beds of coal are known to be continuous for several thousands of square miles.
Untike the older systems of the Palacozoic, the Pennsyivanian system has not its maximum thickness in the Appalach region which was probably adjacent to high lands at that time. These lands perhaps lay in the present position of the Ouachita Mountains.
The close of the Pennsylvanian periof was marked by the beginning of profornt changes, changes in reography

In the interior the Kinderhook serics has a distribution similar to that of the Devonian; the Oage serien is more widespread. pointing to progressive submergence; and the St Louis is still more extensive. This epoch, indeed, is the epoch of maximum submetm Fence during the period, and ibe maximum since the Ordovician Before its close the sea of the Great Basin which had persisted since the Devonian was connected with the shallow wea which covered much of the interior of the United States. The fourth series, the Kaskaskia or Chester, is more restricted, and points to the coming emergence of a large part of the United Seates. In the Mississippi Basin the larger part of the system is of limestone, though there is some clastic matcial in both its basal and its upper parts. In Ohio the system contains much clastic rock, and in Pennsylvania little else. The Mauch Chunk series. (shale and sandstone) in now believed to be largely of terrestrial origin.
The system ranges in thickness from nearly 5000 ft . maximum in Fennsylvania to 1500 ft. in the vicinity of the Mississippi river. In West Virginia come 2000 ft . of timestone are assigned to this system. The zinc and lead of the Joplin district of Missouri are in the timestone of this bystem, and the correspondiny limestone in some parts of Colorado, as at Leadville, is one of the horizons of rich ore.

The end of the period was marked by the widespread emergence of the continent, and parts of it were never again uubmerged, zo far as is known. Certainly there is no younger marine formation of comparable extent in the continent. When deposition was renewed in the interior of the continent, the formations laid down were langely non-marine, and, over great areas, they rest upon the Mississippian unconformably.
From the conditions outlined it is readily inferred that the faunas or the sysfem were cosmopolitan. All types of life to which shallow, clear sea-water was congenial appear to have abounded in the iatcrior. It was perhape at this time that the crinoide, as a class, reached their climax, and most lorms of lime-carbonate-secreting ife seem to have thriven. Where the seas were less clear, as in Ohio. the conditions are reflected in the character of the fossils. Marine fishes had made great progress before the clow of the period. Amphibia appeared before its close, and plant life mas abundant and varied, though the typer were not greatly in advance of those of the Devonian. The time of such widespread submergence was hardly the time for the great development of land vegetation.

Pennsyivanias System.-The Pennsylvanian or Upper Carboniferous system overlies the Mississippian unconformably over a lange part of the United States. In the eastern half of the country the ystem consists of shales and sandstones chiefy, but there is sorae limestone, and coal enough to be of great importance economically, though it makes but a small part of the system quantitatively. The langer part of the system in this part of the country is not of marine origin: yet the sea had access to parts of the interior more than once, as shown by the marine fossils in some of the beds. The dominantly cerrestrial formations of the eastern half of the country are in conrast with the marine formstions of the west. The line eaparating the two phases of the system is a little east of the rooth merilian. West of the Nississippi the Coal Measures are subdivided into two oeries, the Des Moineabelow a nd the Missouri above In the cautern part of the country (Pennsylvania, Ohio, \&c.) the system is divided ento four principal parts:-

\footnotetext{
Wlonongahela formation (or series) - Upper Iroductive Coal Mcasures.
}

Pennsylvanizan.
and elimate, and therefore changes in the amount ant hathitat of life. and in the sites of erosion and sedimentation. Onecof the great changes of this time was the beginning of the deveiopment of the Appalachian Mountain system. The site of these mountains had been, for the most part, an area of deposition shronghout the Palacoroic era, and the body of sediments which had gathered here at the western base of Appalachia, by the close of the Pennsylvanian perind, was very great. At this time these seliments, together with some of Appa lachia itself, began to be folded up into the Appalachian Mountains. These mountains have since been wom down, so that, in spite of their subsequent periods of growth, their height is not great.

The chiel interest of the palacontology of this system is in the plants, which were very like those of the Coal Measures of other parts of the earth and showed a high development of forms that are now degenerate. Among land nuinials the amphibia had great development at this time. So also had insects and some other forms of land life.
Permian Period-The Fermian aystern appears in smaller areas in the United States than any other Palacozoic system. The "Upper Barren Coal Mcasures" of some parts of the east (Ohio. Pennsylvania, \&c.) are now classed as Permian on the basis of their fossi! plants. They represent but a part of the Permian period, and are commonly described under the name of the Dunkard series.
The system has much more considerable development west of the Mississippi than cast of it, especially in Texas, Kansas, Nebraska and beyond. Some of the Permian beds of this region are marine, while others are of terrestrial origin. in this part of the councry the Permian beds are largely red sandstone, nten saliferous and gypsiferous. They are distinguished with difficulty from the sucoeeding Triassic, for the beds have very few fossils. The system has its maximum known thickness in Texas, where it is said to be 7000 ft . in maximum thickness. West of the Rucky Mountains the Permian bas not been very generally separated from overlying and underlying formations, though it has been differentiated in a few places, as in south-western Colorado and in some parts of Arizona. Perhaps the most remarkablo feature of the palaeontology of the system is its paucity of fossids, especially in those parts of the system, such as the Red Beds, which are of terrestrial origin.
In the United States no dircct evidence has been found of the low temperature which brought about glaciation in many other parts of the earth during this period. Salt and gypsum deposits, and other features of the Permian beds, together with the fewness of fossils indicate thant the climate of the fermian was notably arid in many regions.

Triassic System.-This system has but limited representation in the castern part of the United States, being known only east of the Appalachian Mountains in an area which was land throughout most of the Palaeozoic era, but which was deformed when the castern mountains were developed at the close of the Palacozoic. In the troughs formed in its surface during this time of deformation, eediments of great thickness accumulated during the Triassic period These sediments are now mostly in the form of red sandstone and shale, with conglomerate. black shale and coal in some places These rocks do not represent the whole of the period. They are oftea known as the Newark series, and seem to be chiefly. If not wholly, of terrestrial origin. The sedimentary rocks are affected by manys "libes and shects of igneous rock, some of the latcer being extrusive and some intrusive. The strata are now tiltod and much Caulterl, though but little foided. In the western plains and in thi western mountains the Triassic is not clearly separated from the Permian in most places. So far as the system is differeotiated, it is a part of the Red Beds of that region. The tendency of recent years has been to refer more and more of these beds to the Permian. The

Triassic system is wall developed on the Pacific coast, Where its strata are of marise origin, and they extend inland to the Great Basin segion.
The climate of the period, at least in its earlier part, seems to have been arid like that of the Permian, as indicat od both by the paucity of fossils and by the character of the sediment. The salt and gypsum constitute a positive arcument for aridity. The character ol some of the conglomerate of the Newark series of the east, and the widespread redncss of the beds, so far as it is original, also point to aridity.
As in other parts of the earth, the Triassic was the age of gymnosperms, which were represented by diverse types. Reptiles were the dominant Iorm of animals, and hand reptiles (dinosaurs) gained over their aquatic allies

Jurassic System.-This sytem is not known with certainty in the eastern half of the United States. though there are some beds on the mid-Atlantie coast, along the inland border of the coastal plain, which have been thought by some, on the basis of their reptilian fossils, to be Jurassic. The bower and middle parts of the syitem are but doubefully represented in the western interior. If present, they form a part of the Red Beds of that resion. On the Pacihe coast marine Jumasic beds reach in from the Pacific to about the same distance as the Triasoic syetem. The Upper Jurassic formations are much more widely distributed. During the later part of the period the sea found entrance at wothe point north of the United States to a great area in the western part of the continent, developing a bay which extended far down into the United Stakes Irom Canada. In this great bay formations of marine origin were laid down-. At the some time marine sedimentation was continued on the Pacific coast. hut the faunas of the went const and the interior bay are motably unike, the latter being more like that of the cosest north of the United Stares. This is the reason for the belief that the bay which extended into the United Statea had its connexion with the som north of the United Seates.
The Jurassic faunas of the United States were akin to thooe of other continents. The great development of reptiles and cephatopode was among the notable features. At the close of the period there were considerable deformations in the west. The first notable folding of the Sierras that has been definitely determined dates from this time, and many other mountains of the west were begun or rejuvenatied. The clooe of the period, too, taw the exclusion of the cal from the Pacific coast eart of the Sierras, and the disappearance, so far at the United States is concorned, of the great north-weseern bay of the late Jurassic. Before the close of the period, the aridity which had obtained during the Permian, and at leask a part of the Triassic, eeems to beve disappeared.

Comanchean System. -This system was fermerly classed as the lower part of the Cretaceoun, bet there are strong reasonsfor regardIng it as a seperate cysteth. Ita distribution is very different from thiat of the Upper Cretaceous, and there is a great and widespread unconformity between them. The faunas, too, are very unlike. The Comanchean formations are found (1) on the inland border of the coastal plaln of the Atlantic (Potomac series) and Gulf coasts (Tuscabosa series at the east and Comanchean at the wewt) ((a) along the western margin of the Great Plains and in the adjacent mounrains; and (3) along the Pacific coast west of the Sierras in the first two of these positions, the formations whow by their fossile that they are of rerrestrial origin in mome places, and partly of terrestrial and partly of marine origin in others. In the cosemal plain the Comanchean beds are generahy not cemented, bot consist of gravel, and and clay, oceupylng the nearty horisontal pocition to which they were originally deposited. Much plazic clay and sand are derived from them. In Texas, whence the name "Corranchean "comes, and where different parts of the system are of diverse origins, there is sorne limestone. This sort of rock increases in importance sout ward and has great development in Mexico. In the western interior there is difference of opinion as to whether certain bets rich in reptilian remains (the Morrison, Athantosa urus, Como, AEC) shoold be regarded as Juramsic or Comancicazn. On the western coast the term Shastan is sometines applied to Lower Cretaceous. In the United States, marine Stantan beda are restricted to the area wett of the Sierras, but they bere have great thicknesa.
Wideproed changea the end of the period expoed the arcas where deposition the bees in progresa during the poriod to eromion. wher the (Upper) Crotecsons formations rest upon the Comanctican a parts of the country. The Comanchcan known remeins of metted-vined lemped an advarce in the vegectable world. Reptiles They were the laryert type of hetombic syatem. It is - Fiene hape on the Drefort hapiland matrin: fimiar relations: thems; and the larger the eastern Nopdothe eastern
westera plaiph, and formed a great mediterranean sea between the eastern and western lands of the coatinent, connecting the Gulf of Mexico on the south and the Arctic Ocean on the north. This widespread submergence, followed by the deposition of marine sediments on the eroded surlace of Comanchean and older rock is the physical reason for the separation of the system from the Comanchean. This reason is reinforced by pelaeontological considerations.
Both on the Atlantic and over the western plains the mystem is divided into four principal subdivitions:-
\begin{tabular}{|c|c|}
\hline Allamic Coast & Westere Plaims. \\
\hline 4. Manasquan formation. & 4. Laramic. \\
\hline 3. Rancocas formation. & 3. Montana : Fox Hirls F Fort \\
\hline 2. Monmouth Iormation. & Plerre. \\
\hline I. Matawan formation. & 2. Colorado: Niobrara; Benton Datota \\
\hline
\end{tabular}

The most distinctive feature of the Cretaceous of the Atlantic coastal phain is ite large content of greensand marl (glanconite). The formations are montly incoherent, and have nearly their original position. In the eastern Gulf etates there is more calcarrous material, represented by limeqtone or chalk. In the Texan regiod and farther north the limestone beomes aill more importazt. In the western plains, the first and last principal subdivimions of ihe aystem (Dakota and Laramie) are almose wholly non-marise. The Dakota lormation is largely sandstone, which gives rise to " hog. backs" where it has been tilted indurated and exposed to erosion along the eastern base of the Rocky Mountains. The Colorado serics contains much limestone, some of which is in the form of chalk. This is par excellence the chalk formation of the United States That the chalk was deposited in shallow, clear seas is indicated both by the character of the fossils other than foraminifera and by the relation of the chalk to the clastic portions of the series. Tbe Montana series, most of which is marine, was deposited in water decper than that of the Colorado eppoch, though the series is tess widespread than the precoding. The Laramie is the great coal bearing series of the west, and corresponds in its gemeral physical make-up and in its mode of orfyin to the Coal Measures of the east. The coal-bearing lands of the Laramie have been estimated at not less than 100,000 sq. m . On the Pacific coast the Cretacroos formations are sometimes prouped together under the name of Chico. The distribution of the Chico formations is similar to that of the Comanchean system in this region.
The Cretaceous systern is thitk. If maximum thicknesses of its several parts in different localities, as usually measured, are added together, the total would approach or reach \(25,000 \mathrm{fl}\) : but the strata of a ny one region have scaroely more than haff this thickness, and the average is much less.

The close of the period was marted by very profound changres which may be classed under three general headings: (1) the emergence of great areas which had been submerged until the chosing stages of the period; (2) the begianing of the development of nexasal 2 the great mountains of the west; (3) the inauguration of a protracted period of igneous activity, etimulated, no doubt, by the crastal and deeper-seated movements of the time. These great changes in the relation of land and water, and in ropogrephy. hed to come spondingly great changes in fife, and the coribination marke the transition Irom the Mesomoic to the Cainosoic era.
Terriory Syslems. - The formations of the meveral Tertiary periods have many points of similarity, but in wome respects they are barpty differentiated one from another. They consist. in most parts of ithe country, of uncorsolidated sediments, consisting of gravel, and, clay, 2c., together with large quantities of tufi, volcanic asstomerney de. Some of the sedimentary formations are of marine, gorme a brackish water, and some of terrestrial origin. In the westoera part of the country there are, in addition, very extensive flows of lava oovering in the aggregate some 200,000 sq. In. Terrestrial sedimentation was, Indeed, a great feature of the Tertiary. This was the result of several conditions, among thesa the receivi development, through warping and faulting and votcanic extrasion, of high lands with more or lese considerible dopes. From these high tands sediments were borne down to lodge on the bow hamh adjacert. The sites of deposition varied ss the period progreated, for the warping and faulting of the wriface, the igneous extrution and the deposition of sediments obliterated old basins and broneth pew ones into existence. The marine Tertiary formationes ent confined to the borders of the continett, appearing along the Atantic, Gull and Pacific coasts. The brackish water formations corror in some parts of the same general areas, while the terrestrial formetions are formd in and about the western moantains. As in orther parts of the world, the chiefest pelaeontological intereat of the Teriary attaches to the mammatian fosils
The Eocene beds are unconformable, generally, opon the Cretnceors, and unconformable beneath the Miocene. On the Atlantic coast they are nearty horimontal, but dip genely geaward. On this const they are nowhere more ilin a few hundred feet thick. In the Gull region the system io more fully represented, and attains a greater thicknesp-1700 ft. at least. In the Gulf region the Eocene system contains dot a bitio
non-marine material. Thus the lower Eocene has some lignite in the eastern Gulf region, while in Texas lignite and siliferous and gypsiferous sediments arc found, though most of the syisen is marine and of shallow water origin. The Focene of the western Gulf region is continued north as far as Arliansas. The classitication of the Eocene (and Oligocene) formations in the Gulf region, especially east of the Mississippi, is as follows:-

\author{
4. Jacksonian \\ 3. Chibornian \\ 2. Chickasawan
}

Upper Eocenc. Middle Eocene.
Lower Eucene.
The Jacksonian is sometimes regarded as Oligocene. This classification is based almost wholly on the fossils, for there seems to be little physical reason for the differemeiation of the Oligocene anywhere on the continent.

On the Pacific coast the marine Eocene lics west of the Sierras, and becween it and the Cretaceous there is a gencral, and often a great, unconformity. The system has been reported to have a thickness of more than 7000 ft. in some places, and locally (e.g the Pescadero formation) it is highly meramorphic. The Eocene of southern California carries gypoum enough to be of commercial value. tt is almo the source of rouch oil. The system is wanting in northern California and southern Oregon. but appears again farther sorth, and has great development in Oregon, where its thickness has been cstimated at more than ro,000 ft. As in other comparable cases, this figure does not make allowance for the oblique attitude in which the sediments were deposited, and should not be construcd to mean the vertical thickness of the system.

In Washington the Eocene is represented by the Puget scrics of brackish waten beds, with an estimated thickness exceeding that of the marine formations of Oregon. Workable coal beds are distributed through 3000 ft . of this series. The amount of the coal is very great, though the coat is soft.

Terrestrial Eucene formations-colian, fluvial, plivial and lacus-trine-are widesproad in the western part of the United States, both in and about the mountains. By means of the fosils, several more or less distinct stages of deposition have been rcuognized. Named in chronological order. these are:-

The Fort Uniow stupe, when the deposition was widespread about the esstern base of the northern part of the Kocky Mountains, and at some points in Culorado (Telluride formation) and New Mexjeo (Puerco beds), where volcanic ejecta entered largely into the formation. The Vort Union stage is clovely associated with the Laramie, and their separation has not been fully effected.
2. The Wosalch slage, when deposition was in progiess over much of Utah and western Colorado, parts of Wyoming, and clsewhere. W. The Bridger stage, when degosition was in progress in the basin of Green river.
4. The Linta slage, when the region south of the mountains of that name, in Utah and Colorado, w'as the site of ereat deposition.

More or less isolaied deposits of some or all of these stages are found at numerous points in the western mountain region. The present height of the deposits, in some places as much as 10.000 ft ., gives some suggestion of the changes in sopography which have taken place since the carly. Tertiary. The thickness of the system in the west is great. the formations of each of the sciveral stages mentioned above running into thussands of feet, as thicknesses are commonly measured.
The Miocene sy'stem, generally speaking, has a distribution similas to that of the Encenc. The principal formation of the mbome Atlantic coastal plain is the Chesapeake formation,
Sargely of sand. In Florida the system contains Systemb catcium phosphate of commercial value. The Niocene of the Atbantic and Gulf resions nowhere attains great thickness. The oil of Texas and Louisiana is from the Miocene (or possibly Oligocene) dolomite. On the Pacific coast the system has greater devclopment. It contains much volcanic material, and reas bodics of siliceous shale; locally estimated at \(\$ 000 \mathrm{fc}\). thick and said to be made up largely of the secretions of organisms. Such thicknesses of such material go far to mudify the former opinion that the Tertiary periods were short. The Miocene of California is wilproducing. The terrestrial Miocene formations of the western part of the country are similat in kind, and, in a general way, in volcanic material, consisting of both pyroclastic material and Liva flows, is great.

At the close of the Miocene, deformative movements were very widespread in the Kocky Mountains and between the primcipal development of the Coast ranges of California and Orcgon. and mountain-making movements, new of renewed. were somewhat general in the west. At the close of the period the topography of the western part of the country must have been comparatile to that of the present time. This. however, is not to be interpreted to mean that it has remained unmodified, or but slightly modificd since that lime. Subsequent crosion has changed the details of topugraphy on an extensive scale, and subsequent deformsive movements have renewed large topographic feat ures where enocion had destruyed those developed by the close of the Miocenc. But
in spite of these great changes since the Miocene, the great ouslines of the toproraphy of the present were probably marked out by the close of that period. Volcanic activity and laulting on a large scale attended the deformation of the closing stages of the Miocene.
The Pliocene system stands in much the same stratigraphic relation to the Miocene as the Miocene does to the Eocene. The marine Pliocene has but crifing development on the Atlantic Ploceve
coast north of Florida, and somewhat more extensive Pp coast north of Florida, and somewhat more extensive Sysecm.
development in the Gulf region. The marine Pliocene Sy development in the Gulf region. The marine Pliocene
of the contincnt has its greatest development in California (the Merced series, peninsula of San Francisco), where it is assigned a maximum thickness of nearly 6000 (t ., and possibly as much as \(13,000 \mathrm{ft}\). This wide range is open to doubt as to the correlation of some of the beds involved. Thicknesses of several thonsand feet are recorded at other points in California and elsewhere along the coast farther north. Marine Pliocene beds are reported to have an altitude of as much as 5000 ft . in Alaska. The position of phese beds is significant of the amount of clange which has taken place in the west since the Pliocenc period. The non-marine formations of the Pliocene are its most characteristic feature. They are widely distributed in the western mountains and on the Great Plains. In origin and character, and to some extent in distribution, they are comparable with the Eocene and Miocene formations of the same region, and sill more closely comparable with deposite now making. In addition to these non-marme formations of the west, there is the widespread Lafayette formation, which covers much of the Athantic and Gulf coastal plain, reaching far to the north from the western Gulf region, and having uncertain limits, so far as now worked out, in various directions. The Lafayette formation has been the occasion of much difference of opinion, but is by many held to te a non-marine formation, made up of gravels, sands and clays, accumulated on land, chicfly through the agency of rain and rivers. Its depoxition seems to have followed a time of deformation which resulted in an increase of altitude in the Appalachian Mouncains, and in an accentuation of the controst between the highlands and the adjacent plains. Under these conditions sediments from the high fands were washed out and distributed widely over the plains, giving rise to a thin but widespread formation of ill-assarted sediment, without marine fossils, and, for the most part, withnut fossils of any kind, and resting unconformably on Cretaceous, Eocene and Miocene formations. To the seawand the non-marine phase of the formation doubtless grades into a marinc phase along the shore of that time, but tise position of this shore has not been defined, The marine part of the Lafayette is probably covered by scdiments of later age.

In cariicr literature the Lafayctte formation was deseribed under the name of Orange Sand, and was at one time thought to be tlie southern cquivalcint of the glacial dift. This, bowever. is now known not to be the case, as remrants of the formation, isolated by erosion. lie under the ofd glacial drift in Illinois, and perhaps elsewhere. It seems probable that the Lafayctic formation of the Culf coastal plain is continuous northward and westward with grave! deposits on the Creat Mains, washed out from the Rocky Mountains to the west. The carcful study of these fluyial formations is likely to throw much light on the history of the delormative movements and changes in topography in the United States during the late stages of geological history.

Deformative movements of the minor sort seem to have been in progress somewhat generally during the Teriary periods, especially in the western part of the country, but those at the close of the Pliocene seem to have exceeded greatiy those of the earlier stages. They resuled in increased beighe of land, especially in the west, and therefore in increased erosion. This epoch of relative uplift and active crosion is sometimes called the Sicran or Ozarkian epoch. The details of the topography of the western mountains are largely of post-Pliocene development. The sumnies of some of the high mountains, such as the Cascades, appear to be remnants of a pencplain developed in post-Miocene time. If so, tbe mountains thensslves must be looked upon as essentially post. Pliocene. Deformative movenxents resulting in close folding were not common at this time, but such movements affected some of the coast manes of California. This eproch of great dcformation and warping marks the eransition from tise Iertiary to the Quaternary.

Quaternary Formations. - The best-known formations of the Quaternary period are those deposited by the continental slaciers Which were the distinguishing feature of the period chetes and by the waters derived from them. The glacial
drift covers something like half of the continent. though murh less than half of the United States. Besides the drif of the icesheets, there is much drift in the western mountains, deposiled by local glaciers. Such glaciers cxisted in all the high mountains of the west, even down to New Mexico and Arizona.

The number of glacial epochs now recognized is five, not counting minor episodes. Four defined zones of interglacial deposits are depected, all of which are thought to represent great recessions of the ice, or perhaps its entire diappearance. The climate of some of the interglacial epochs was at least as warm as a hat of the present tinse in the same regions. The glacial eporis which have been
differentiated are the following, numbered in chronological order: (5) Wisconsin, (4) Lowan, (3) Illinoian, (2) Kansan. (1) SubAltonian, or Jerseyan. Of these, the Kansan ice-sheet, was the most extensive, and the later ones constitute a diminishing series
Essentially all phases of glacial and aqueo-glacial drift are represented. The principal terminal moraines are associated with the ice of the Wisconsin epoch. Terminal moraines at the border of the Illinoian drift are generatly fecble, though widely recognizable, and such moraines at the margin of the Iowan and Kansan drift sheets are generally wanting. The edge of the oldest drift sheet is buried by younger sheets of drift in most places.

Loess is widespread in the Mississippi River basin, especially along the larger strearns which fowed from the ice. Most of the loess is now generally believed to have been deposited by the wind. The larger part of it seems to date from the closing stages of the lowan epoch, but loess appears to have come into existence after other glacial epochs as weli. Most of the fossils of the loess are shells of terrestrial pastropods, but bones of land mammals are also found in not a few places. Some of the loess is thought to have been derived by the wind from the surface of the drift soon after the retreat of the ice, before vegetation got a foothold upon the new.made deposit; but a large part of the loess, especially that associated with the main valleys, appears to have been blown up on to the bluffs of the valleys from the flood plains below. As might be expected under these conditions, it ranges from fine sand to silt which approaches clay in texture. Its coarser phases are closely associated with dunes in many places, and locally the loess makes a considerable part of the dune material.
Much interest attaches to estimates of time based on data afforded by the consequences of glaciation. These estimates are far apart, and must be regarded as very uncertain, so far as actual numbers are concerned. The most definite are connected with estimates of the time since the last glacial epoch, and are calculated from the amount and rate of recession of certain falls, notably those of the Niagara and Mississippi (St Anthony Falls) rivers. The estimate of the time between the frst and last glacial epochs is based on changes which the earlier drilt has undergone as compared with those which the younger drife has undergone. Some of the estimates make the lapse of time since the first glacial epoch more than a million years, while others make it no more than one-third as long. The time since the last glacial epoch is but a fraction of the time since the firstprobably no more than a fifteenth or a twenticth.
Outside the region affected by glaciation, deposits by wind, sain, rivers, \&c., have been building up the land, and sedimentation has Nono been in progress in lakes and about coasts. The nonglacial deposits are much like the Tertiary in kind and distribution, except that marine beds have little representation on the land. On the coastal plain there is the Columbia series of gravels, sands and loams, made up of several members. lis distribution is similar to that of the Lafayette, though the Cofumbia series is, for the most part, confined to lower levels. Some of its several raembers are deffinitely correlated in time with some of the glacial epochs. The series is widespread over the lower part the coastal plain. In the west the Quaternary deposits are not, in all cases, sharply separated from the late Tertiary, but the deposits of glacial drift, relerable to two or more glacial epochs, are readily diferentiated from the Tertiary: so, also, are certain lacustrine deposits, such as those of the ext inct lakes Bonneville and Lahontan. On the Pacifie coast marine Quaternary formations oceur up to devations of a few scores of feet, at least, above the sca.
Igneous rocks, whether lava flows or pyroclastic ejections, are log important in the Quaternary than in the Teriary, though danic activity is known to have continued into the Quaternary. The Quaternary beds of lakes Bunneville and Lahontan have been , whed in a small way since they were deposited, and the old shone \(u\) of these lakes have been deformed to the extent of hundreds ect. So also have the shorelines of the Great Lakes, which came is cxistence at the close of the glacial period.
is th has bect written and more suld concerning the existence ma in the United States belore the dast tlacial epoch. The but tate of evidence, however, seems to aflurd no warrant for U sion that man existed in the United States before the end whes period. Whatever theoretica! reasons there may but and : his earlier existence, they must be held as warrantini uncon a presumptive conclusion, which up, to the present svisten \({ }_{2}\) mation by certain evidence.
plants. were \(n\). Hife, bot

Devonians.
Bernardston series
1950 ft.

Unconformily.
Silurian.
Leyden argillite
Conway achist
300 ft .
Amherst schist
Brisfeld fibrolite-uchist
2000 . (?)
Unconformity.
Ordovician.

Heosic schist

Becket gneiss 2000 ft.(?)
Cambrian.
Unconformály.
Proterozofic.
Washington gueise 2000 ft.(?) (Base not exposed.)
The above section is fainly representative for considerable parts of New England.

West Virginia, \&c.
Pennsylvanian.
(Top of system removed by erosion.)
Braxton formation
Upshur tandstone
Pugh formation
Pickens sandstone
Unconformíy.

\section*{Mississippian.}

Canaan formation
Greenbrier limestone
Pocono sandstone
1000-1300 ft.

Devemian.
Hampshire formation \(1500-1800 \mathrm{ft}\).
lennings formation
3000-3800 :.
Romney shale
1000-1300
Unconformily.
Montercy sandstone \(50-\mathbf{2 0 0}\) ft.
Silurian.
Lewiston limestone
550-1050 ft.
Rockwood formation
Cacapon sandstone
Tuscarora quartzite Juniata formation
\(100-800\) "
100-630,
30-300.
Ordodician
Martinsburg shale
\(800-1800 \mathrm{ft}\).
Middle and Upper Cambriam.
Shenandoah limestone
2400 ft.
(Base not exposed.)
This section is fairly representative for the Appalechian Moustaia tract, though the Cambrien is often more fuly represented.

OHIO
Permian.
Dunkard formation c 25 ft
Pennsylvanian.
Monongahcia formation \(200-250 \mathrm{ft}\).
Conemaugh formation
Alleghany formation
Pottsville conglomerate \(400-500\). 165-300"
Unconformity.
Mississippiam.
Maxville limestone:
c. 25 ft.

Waveriey series-
Black Mand conglomieraie
Cayahoga shale
Sumbury shale
Berea grit
Bedford shale
\(50-500\). \(150-300 \%\)
sian.
Ohio shale
Olentangy shale
Delaware limestone
Columbus limestone
\(80-360 \mathrm{ft}\)
turian
Monroc Sormation
\(50-600 \mathrm{it}\).
Niagara group
Clinton lisnestone
Medina shales (?)
(Belfast bed.)

Ordouscian.

\section*{Iowa}

Glacial drift.
Uncomformity.
Upper Crelaceores.
Benton formation o- 130 ft .
Dakota formation
Unconformuty.
Pennsylanian.
Nissouri formation
Des Moines formation. 250-400 . .
1500 ft.
Usconformity.
Mississippion.
St Louis limestone . . . 100 ft.
Orage (Augucta) formation \(700-300\).
Kinderhook formation. \(150-200 \%\)
Demoniark
Lime Creek formation 80 ft .
State Quarry beds. 20- 40.0
Smeethand Creek shales
20- 40 .
Unconformity.
Cerlar Valley limestone \({ }^{\text {Wapsipinicon formation }}\) (Independence. \({ }^{.250-300 \mathrm{ft}}\)
Sunrian.
Anamosa limestone \(. \quad . \quad . \quad . \quad . \quad . \quad .50-75 \mathrm{ft}\).
Le Claire limestone.\(\quad\).
Delaware stage \(\quad\).
\(500 \%\)
Unconformity.
Ordovicicr.
Maquoketa shales 175 ft.
Possible Unconfornily.
Cialent-Treaton limestone 290 ft .
St Peters sandstone 100 .
Oneota formation (includes Shakopee, New
Richmond and Oneota proper) \(. ~ . ~\)
)
Cambrian.
St Croix sandstone (\(=\) Potsdam) 1000 fe.
Unconformily.
Prpierozoic.
Sioux quartzite.
representative for mish of the central
This section is

\section*{Orlahoma}

Peninsyluanian.
(Summit removed by erosion.)
Seminole conglomerate
Holdenvilte shale
Wewaka formation
Wetumka shale.
Calvin sandstone
Senora formation
Stuart shale.
Thurman eandstone
Boasy thale.
Gavannah sandstone
McAlester ahale
Hartshorne sandstome
Atoka formation (Cbickahoc chert lentii) Wapanucka limestone.
Miscissippian.

> Caney shale.

Dronizn.
Woodlord chert
-
Siferion.
llunton limestone 180 ft .
Sylvan shale (upper pait) 50- 100.
Ordoticiar.
Sylvan shale (lower part)
250 ft
Viola limestone
Simpson series
Arbucke limestone
750 .

Cawbrian.
Regan sandstone
\(50-100 \mathrm{ft}\).
Linconformty.
Pre-Cambrian.
Tishomingo granite
(?)
Composite section. The upper part is taken from vicinty of Coalgaie, the lower part from the vicinity of Atoka.

West Central Colorado
Eocene or later.
West Elk breccia 3000 ft.
Unconformily.
Credaceons.
Ruby formation 2500 ft.
Unconformity.
Ohio formation focal only) 200 ft .
Unconformey.
Laramte formation. 2000 ft.
Montana formation 2800 .
Niobrara formation \(100-200\) "
Benton larmation
Dakota formation
\(150-300\) •
Jurassic.
Curnison formation 350- 500 ft .
Unconformity.
Pennsydoniam.
Maroon conglomerate 4500 ft .
Possible unconformity.
Weber limestone \(100-550 \mathrm{ft}\).
Unconformidy.
Mississippign.
Leadville lispestone \(400-525 \mathrm{ft}\).
Apparent maconformity.
Ordopician.
Yule limestanc 350-450 ft
Uppcr Combrian.
Sawatch quartzite 50- 350 ft.
Untonformily
Arrivan.
The Bichonn Mountains of Wyominc
Crefaceons.
De Smet formation (shale and sandstone)
4000 ft.
Kingsbury conglomerate
0-1500..
Piney formaion (shale and sandstone).
Parkman mandstone
. 2500 ..
350 "
Pierre shale \(1500-3500\)
Colorado formation : 1050-1700,
Comancheat.
Cloverly formation (upper part may be
Cretaceous)
Morrison formation (may be Jurassic)
\(30-300 \mathrm{ft}\).
Morrison formation (may be Jurassic) : soo- \(\mathbf{3 0 0}\).
Jurassic.
Sundance formation \(250-350 \mathrm{ft}\).
Unconformity.
Triassic and Permian.
Chugwater formation 750-1300 ft.
Pownsymandem.

> Tenakep sandstone
> 30- 150 ft.
> Amsden sandstone \(150-390\)

Mississippian.
Madison limestone. 1000 ft .
Urconformity.
Ordowian.
gighorn limestone : 300 ft .

Unconformity.
Cambrian (Upper).
Deadwood lormation
900 ft
Unconformity.
Pre-Cambrian.
Granites.
This section is fairly representative for the Rocky Mountains
Southenn Californta
Qwabernary.
Alluvium, 8c.
Terrace depocits and dune sand.
Phoceme (?)
Peso Robtes fommation \(1000+1 \mathrm{t}\).
Unconfowity.
Hiocene (?)
\begin{tabular}{ll}
Pismo fonmation (in wouth part of area) & \(3000=\mathrm{ft}\). \\
Santa Margarita (in north part of area) & \(1550=\ldots\)
\end{tabular}

Unconformily.
Mioces.
Monterey shale. \(5000-7000\) ft.
Vaquero sandstonc.

Vaquero sandstone.
o- 500 ..

\section*{Uncenformily.}

\section*{Cretaceoms.}

Alascadero formation 3000-4000 ft.
Unconformity.
Comanchean.
Toro furmation (Knoxville). \(3000 \pm\) ft.
Unconformity.

\section*{Jera-Trias.}

San Luis formation (Franciscan)
\(1000 \neq \mathrm{ft}\). Unconformity
Granite-age undetermined.
This section is representative of the southern Pacific coast.
Section in Central. Washington
Pliocene (?)
Howson andesite
250 ft.
Miocene.
Keechelus andesite series 4000 ft .
Unconformily.
Guye formation (sedimentary beds with some lava flows)
\(3500=\mathrm{ft}\) :
Eacene.
Roslyn formation (sandstone and shale: coal).
c. 3000 it.

4000 .
Teanaway bosalt
Kachess rhyolite
- 2000.,

Swauk formation (clastic rocks with some tuf. \&c.)

200-5000 .
Unconformily.
Pre-Tertiary.
Igneous and metamorphic rocks.
This section is representative of the north-west part of the country.
Bibliography.-A detailed bibliography for North American geology [rom 1732 to 1891 . inclusive, is given in U.S. Geological Survey Bulletin 127 (1896); (or 1892-1900 in Bulletin 188 (1902); for \(1901-1905\) in Bull. 301 (1905): for 1906-t 907 in Bull. 372 (1909) for 1908 in \(B u l l .409\) (1909), Rc. A few of the more important and available publications are enumerated below.

General Trealises.-T. C. Chamberlin and R. D. Salisbury Geologic Processes (New York) and Earth History (2 vols., New York): J. D. Dana, Mawal of Geology (New York, 1862); W. B. Scott, Introduction to Geology (New York, 1897): and Joseph Le Conte, Elements of Geology (New York, 1878).

Official Reports-F. V. Hayden. Reports of the U.S. Geolagical and Geographical Suroey of the Terribories (12 vols. Washington. 1873-1883): Clarence King, Geotogical Exploration of the Fortieth Parallel (7 vols. and atlas. Washingion, 1870-1880): Ceorge M. Wheeler, Geopraphical and Geological Exploration and Surteys Hest of the zooth Jeridian (7 vols. and 2 atlases, Washington, 1877-1879); and Reports of the U.S. Geological Survey (since 1880): (1) Monographs on special topics and areas, about 50 in number; (2) Prolessional Papers-monographic treatment of somewhat smaller arcas and lesser topics, about 60 in number; (3) Bulletins, between 300 and 400 in number; and (4) Annual Reports (previous to 1903) containing many papers of importance, of the sort now published as Professional Papers. Reports of state geological surveys have been published by most of the states east of the Missouri rivef, and some of those farther west (California, Washington, Kansas, Nebraska and Wyoming) and south (Arkansas, Texas and Louisiana). Armong the more important periodicals are the Bulletin of the Geological Sociefy of America (Rochester, N.Y., 1889 seq.); the American Journal of Science (New Haven, Conn., t818 seq.): the American Geologiat (Minneapolis, 1888 seq.): Journal of Geology (Chicago, 1893 seq.); Economic Geology (Lancaster. Pa., igos seq.). Occasional articies of value are to be found in the American Naturalist and Science, and in the Transoctions and Proceedings of variousstate and municipal academies of science, tocieties, \&c.
(R.D.S.; T.C.C.)

\section*{III.-Climate}

The chief features of the climate of the United States may be best apprehended by relating them to the causes by which they are controlled. Two leading leatures, from which many others lollow, are the intermediate value of the mean annual temperaiures and the prevalence of westerly winds, with which drift the areas of high and low pressure-cyclonic and anticyclonic areas-controlling the short lived. non-periodic weather changes. The first of these features is determined by the intermediate position of the United States bet ween the equator and the north pole; the second by the equatorial-polar temperature contrast and the eastward rotation of the planet. Next. dependent on the inclination of the earth's axis, is the division of the planetary year into the terrestrial seasons. with winter and summer changes of temperature, wind-sirength and precipitation; these seasogal changes are not of the restrained measure that is characteristic of the oceanic southern temperate zone, but of the exaggerated measure appropriate to the continental intertuptions of the northern land-and-water zone, to which the term "temperate" is so gencrally inapplicable. The effects of the continent are already visible in the mean annual temperatures, in which the poleward temperature gradient is about twice as etrong as it is on the neighbouring oceans; this being a nat ural effect of the immobility of the land surface, in contrast to the circulasory movement of the ocean currents. which thus hessen the temperature diferences due to latitude: on the continent such differences are developed in full force. Closely associated with the effect of conti. nental imanobitity are the effects dependent on the low epecific heat
and the opacity of the lands, in contrast with the high specific heat and partial transparence of the ocean waters. In virtue of these physical eharacteristics. the air over the land becomes much warmer in summer and much colder in winter than the air ower the oceans in corresponding latit udes; bence the seatonal changes of temperature in the central United States are strong; the high temperatures appropriate to the corrid zone advance northward to middle latitudes in summer, and the low temperatures appropriste to the Arctic regions descend almost to middle latitudes in winter. As a rewalt, the isotherms of July are strongly convex poleward as they crows the United States, the isotherm of \(70^{\circ}\) sweeping up to the sorthern boundary in the nort \(h\)-west, and the heat equator leaping to the overheated deserts of the south-west. where the July mean is over \(90^{\circ}\). Conversely. the isotherms of january are convex south ward, with a monthly mean below \(32^{\circ}\) in the nort hern third of the interior, and of zero on the mid-northern boundary. The seasonal bending of the isotherms is, however, unsymmetrical for several reasons. The continent being interrupted on its eastern side by the Gull of Mexico and Hudson Bay, with the Great Lakes between thexe two large water bodies, the northward bending of the July isotherms is most pronounced in the western part of the United Shates. Indeed the contrast between the moderate temperatures of the Pacific coast and the overheated areas of the next interior deterte is so great that the isotherms trend almost parallel to the coast. and are even "overturned" somewhat in southern California, where the most rapid increase of temperatures in July is found not by moving southward over the ocean toward the equator, but north-easward over the land to the deserts of Nevada and Arizona. So strong is the displacement of the arca of highest interior temperatures westward from the middle of the cominent that the Gulf of California ilmost rivals the Red Sca as an ocean-arm under a desert-hot atmosphere. In the same midsummer month all the castern half of the United States is included between the isotherms of \(66^{\circ}\) and \(82^{\circ}\) : the contrast between Lake Superior and the coast of the Culf of Mexico, 1200 m . to the south, is not 30 great as between the coast of southern California and the desert igo m . inland to the north-tast. In January the northern water areas of the continent are frozen and snow-covered; Hudson Bay becomes unduly cold, and the greatest southward bending of the isotherms is somewhat east of the continental axis, with an extension of its effects out upon the Atlantic: but the southward bending isotherms are somewhat looped back about the unfrozen waters of the lower Great Lakes. In the midwinter month, it is the eastern half of the country that has skrong temperature contrasts; the temperature gradients are twice as strong between New Orleans and Minneapolis as on the Pacific coast, and the contrast bet ween Jacksonville, Fla., and East port, Me., is about the same as between San Diego. Cal., and the Aleutian Islands.

The sirong changes of temperature with the seasons are indicated also by the distribution of summer maxima and winter minima: summer temperatures above \(112^{\circ}\) are known in the south-western deserts, and temperatures of \(100^{\circ}\) are sometimes carried lar northward on the Great Plains by the " hot winds " nearly to the Canadian boundary; while in winter, temperztures of \(-40^{\circ}\) occur along the mid-northern boundary and freezing winds wometines sweep duwa to the border of the Gulf of Mexico. The temperature anomalies are also instructive: they rival those of Asia in value, though not in area, being from \(15^{\circ}\) to \(20^{\circ}\) above the mean of their latit d de in the northern interior in eummer, and as much below in winter. The same is almost true of the mean annual range (mean of July to mean of January), the states of the northern prairiea and plains having a mean annual range of \(70^{\circ}\) and an extreme range of \(135^{\circ}\). In this connexion the eflect of the prevailing winds is very marked. The equalizing effecte of a conservative ocean are brought upon the Pacific coast, where the climate is truly temperate, the mean annual range being only \(10^{\circ}\) or \(12^{\circ}\), thus resembling western Europe: while the exaggerating effecte of the continental interior are carned eastward to the Atlantic coast, where the mean annual rahge is \(40^{\circ}\) or \(50^{\circ}\).

The prevalling winds respond to the stronger poleward temperature gradients of winter by rising to a higher velocity and a more frequent and severer eyclonic storminess; and to the weaker gradients of summer by relaxing to a lower velocity with fewer and weaker cyclonic storms: but lurthermore the northern mone occupied by the prevailing westerlies expands as the winds strengthen in winter. and shrinks as they weaken in summer: thus the stormy westerlies. which impinge upon the north-western coast and give it plentiful rainlall all through the yoar, in winter reach southera California and sweep across part of the Gulf of Mexico and Florida: it is for this reason that southern California has a rainy winef season, and that the states bordering on the Gulf of Mexico are visised in winter by occasional intensified cold winds, inappropriate to their latitude. In summer the ctormy westerly winds withdraw Irom these lowet latitudes. which are then to be more aspociated with the trade winds. In California the effect of the strong equatorward turn of the summer winds is to produce a dry season; but in the states along the Gulf of Mexico and especially in Florida the withdrawal of the stormy westerlies in favour of the steadver trade winds (here lurned somewhat toward the continental interior. at explained below) results in an increase of precipitation. The general
winds aloo are much affocted by the changes of premure the to the strong continental chagge of temperature. The warmed air of suramer produces an area of low pressure in the west-central United Sempen which interrupts the belt of high presware that planetary conditions alone would form around the enrth about latitude \(30^{\circ}\); bence there is a tendency of the ummer wind to blow inward from the nortbern Pacific over the Cordilleras toward the continental centre, and from the trades of the torid Atlantic up the Mississipp Valley; conversely in winter time, the cold ajr over the lands produoes a harge ares of high presure from which the winds send to fow outward; thus repelling the westeriy winds of the northern Pacific and greatly intensilying the outflow southward to the Guif of Mexico and eatward to the Atlantic. As a resylt of these menonal alternations of temperature and presoure there is something of a mossoon tendency developed in the winds of the Miasisaippi Valley, southerly infowng winds prevailing in summer and northerty outflowing winds in winter: but the general tendency to inflow and outfow is grestly modified by the relief of the lands, to which we nest turn.

The climatic effects of relief are seen directly in the ascent of the higher mountain rangea to altitudes where low temperatures prevail, thus preserving snow patches through the summer on the high summits (over \(12,000 \mathrm{ft}\).) in the south, and maintaining snowfiels and moderste-sined glaciers on the ranges in the north. With this goes a general increase of precipitation with altitude, so that a good rainlall map would have its darker shades very generally along the mountain ranges. Thus the heaviest measured rainfali cate of the Mintsippi is on the outhern Appalachians; while in the wetst, where obervations are as yet few at high level stations, the occurrence of forests and pastures on the higher slopes of mountains which rise from desert plains clearly testifice to the atme role. The mountains alwo introduce controls over the local winds: diurnal warming in summer suffices to cause local ascending breezes which frequently become cloudy by the expansion of ascent, even to the point of lorming local thunder showers which drift away as they \(y\) prow and soon dissolve after leaving the parent mountain. Convermely, nocturnal cooling produces well-defined descending beeces which insue from the valley mouths, wometimes attaining an unpleasant strength toward midnight.

The moentaias are of larger importance in obstructing and defiecting the course of the general winda. The Pacific ranges, standing transverse to the course of the prevailing, westerlies near the Pacific Ocean, are of the greatest importance in this respect; it is largely by reason of the barrier that they form that the tempering effects of the Pacific winds are felt for 80 short a distance inland in winter, and that the heat centre it displaced in summer mo far towards the westem coast. The rainfall from the stromy weaterly winds is largely deposited on the western slopes of the mountains near the Pacific const, and arid or desert interior plains are thus found close to the great ocean. The descending winds on the eastern slopes of the ranges are frequently warm and dry, to the point of resembling the Fohn winds of the Alps; such winds are known in the Cordilleran region as Chinook winds. The ranges of the Rocky Mountains in their turn receive some rainfall from the pasaing winds, but it is only alter the westerlies are reinforced by a moist indraft from the Colf of Mexico and the Atlantic-the repult of summer or of cyclonic inflow-that rainfall increases to a sufficient measure on the lower lands to support agriculture without irrigation. The region east of the Mississippi is singulary favoured in this way; for it receives a good amount of rainfall, well distributed through the year, and indeed is in this respect one of the largent regions in the temperate zones that are 80 well watered. The Great Plains are under correspondingly unfavourable conditions, for their manty rainfall is of very variable amount. Nong the transition belt between plains and prairies the climste is peculiarly trying as to rainfall; one series of five or ten years may have sufficient rainfall to enable the farmers to gather good crope; but the next series following may be so dry that the crops fail year after year.

The cyclonic inflow and anticyclonic outiow, so characteristic of the belt of weaterly winds the world over, are very irregular in the Cordilleran region; but farther eastward they are typically developed by reason of the great extent of open country. Athough of reduced streogth in the summer, they still suffice to dominate weather changes; it is during the approach of a low preseure centre that hot coutherly winds prevail; they sometimes reach so high a temperature as to wither and blight the grain crops; and it is almost exclusively in conrexion with the cloudy areas near and south-east of these cyclonic centres that violent thunderstorms, tith their occasional destructive whirling tormadoes, are formed. With the pacsing of the low pressure centre, the winds shift to west or northwest. The temperature falls, and all nature is relieved. In wintertime, the cyclonic a nd anticyclonic areas are of increased frequency and intensity; and it is partly for this reason that many meteoro logists have been disposed to regard them as chicfly driven by the irregular fow of the westerly winds, rather than as due to convectional instability, which should have a maximum effect in summer. One of the best indications of actual winter weather, as apart from the arrival of winter by the calendar, ia the development of eyclonic disturbances of such strength that the change from their warm, siroceo-like southeriy inflow in iront of their
centre, to the "cold wave" of their rear produces non-periodic temperature change ftrong enoush to overcome the weakened diurnal temperature changes of the cold season, a relation which practically never cocurn in summer time. A curious leature of the cyclonic storms is that, whether they cross the interior of the country mear the northern or southern boundary or along an intermediate path. they converge towards New England as they pass on toward the Athantic; and hence that the north-eastern part of the United States is subjected to especially numerous and strons weather changes.
(W. M. D.)

\section*{IV,-Fatina and Flora}

Fawna.-Differences of temperature have produced in North Americs seven transcontinental life-zones or areas characterized by relative uniformity of botb fann and flora; they are the Arctic. I udsonian and Canadian, which are divisions of the Boreal Region: the Transition, Upper Austral and Lower Austral, which are divisions of the Austral Region, and the Tropical. The Arctic, Hudsonian and Canadian enter the United States from the north and the Tropical from the south; but the greater part of the United States is occupied by the Transition, Upper Austral and Lower Austral, and each of these is divided into eastern and western subzones by differences in the amount of moisture. The Arctic or ArcticAlpine zone covers in the United States only the tops of a lew mountains which extend above the limit of trees, such as Mt Katahdin in Maine, Mt Washington and neighbouring peaks in the White Mountains of New Hampshire, and the loftier peaks of the Roclcy, Cascade and Sierra Nevada Mountzins. The larger animals are rare on these mountain-tops and the arcas are too small for a distinct fauna. The Hudsoninn zone covers the upper slopea of the higher mountains of New England, New York and North Carolina and larger areas on the elevated slopes of the Rocky and Cascade Mountains; and on the western mountains it is the home of the mountain goat, mountain sheep, Alpine fying-squirrel, nutcracker, evening grosbeak and Townsend's solitaire. The Canadian zone crosses from Canada into northern aad northwestern Maine, northern and central New Hampshire, northern Michigan, and north-eastern Minnesota and North Dakota, covers the Green Mountains, most of the Adirondacks and Catskills, the higher alopes of the mountains in Pennsylvania, West Virginia, Virginia, western North Carolins and eastem Tennessee, the lower slopes of the nnrthern Rocky and Cascade Mountains, the upper slopes of the southern Rociry and Sierra Nevada Mountains, and a strip along the Pacific coast as far south as Cape Mendocino, interrupted, however, by the Columbia Valley. Among its characterist ic mammals and birds are the lynx, marten, porcupine, northern red squirrel, Beiding's and Kennicott's ground squirrels, varying and snowahoe rabbits, nothern jumping mouse, white-throated sparrow, Blackburnian warbler, Audubon warbler, olive-backed thrush, three-toed woodpecker, spruce gronse, and Canada jay; within this zone in the North-eastern states are a few moose and caribou, but farther north these animals are more characteristic of the Hudsonian zone. The Transition zone, inf which the extreme wuthern limit of several borcal opecies overiaps the extreme northern limit of numerous austral species, is divided into an eastern humid or Alleghanian area, a western arid area, and a Pacific coast humid area. The Alleghanian area com. prises most of the lowlands of New England. New York and Pennsylvania, the north-east corner of Ohio, most of the lower penineula of Michigan, nearly all of Wisconsin, more than hatf of Minnesota, eastern North Dakota, north-eastern South Dakota, and the greater part of the Appalachian Mountains from Penn: sylvenia in Georgia. It has few distinctive species, but within its borders the southern mole and cotton-tail rabbit of the South meet the northern star-nosed and Brewer's moles and the varying hare of the North, and the southern bobwhite, Battimore oriole, bluebird, catbird, chewink, thrasher and wood thrush are neiphbours of the bobolink, solitary vireo and the hermit and Wilson's thrushes. The Arid Transition life-zone comprises the western part of the Dakotas, north-eastern Montana, and irregular areas in Washington, Oregon, Idaho, Wyoming, California, Nevada, Utah, Colorado, Arixom, New Mexico and wettern Texat, covering for the most part the eastern base of the Cascade and Sierra Nevada Mountains and the higber parts of the Great Basin and the plateans. Ita most characteristic animals and birds are the white-tailed jack-rablit, pallid vole, eage hen, sharp-tailed grouse and greentailed towhee; the large Columbia ground-aquirrel (Spermophilus columbianws) is common in that part of the pone which is west of the Rocky Mountains, but east of the Rockies it is replaced by another species (Cymomys) which closely resembles a small prajirie dog. The Pacific Coast Transition life-wne comprises the region between the Camade and Coast ranges in Washington and Oregon. parts of northern California, and most of the California coast regioa from Cape Mendocino to Santa Barbara. It is the home of the Columbia black-tail deer, western raccoon, Oreson spotted skunk, Douglas red squirrel, Townsend's chipmunk, taillews sewelled (Haplodon rufus), peculiar species of pockel gophers and voles. Pacific coast lorms of the grent-horned, spotted, screech and pigmy owls, sooty grouse, Oregon ruffed grouse. Steller't jay, chestnut. backed chickadee and Pacific winter wren. The Opper Austral
zone is divided into an eastern humid (or Carolinian) area and a western arid (or Upper Sonoran) area. The Caroliaian area extends from southern Michigan to northern Georgia and from the Atlantic coast to western Kansas, comprising Delaware, all of Maryland except the mountainous western portion, all of Ohio except the north-east corner, nearly the whole of Indiana. Illinois, Lowa and Missouri. eastern Nebraska and Kansas, south-eastern South Dakota, western central Oklahoma, northern Arkansas, middle and eastern Kentucky, middte Tennessee and the Tennessee valley in eastern Tennessec, middle Virginua and North Carolina, western West Virginia, northeastern Alabama. northern Georgia, western South Carolim, the Connecticut Valley in Connecticut, the lower Hudson Valley and the Erie thasin in New York, and narrow belts along the southern and western borders ol the tower peninsula of Miehigan. It is the nornheramust hume of the opossum, grey fox, fox squirrel, cardinal bird, Carolina wren, tufted tit, gnat catcher, summer tanager and yellow-breasted chat. The Upper Sonoran life-zone comprise south-eastern Montana, centrat, eastern and northeastern Wyoming, a portion of south-western South Dakota, western Nelraska and Kansas, the western extrcmity of Okiahoma, north-western Texas, eastern Colorado. south-pastern New Mexico, the Snake plains in Jdiho, the Columbia plains in Washington, the Malheur and Harney plains in Oregon, the Creat Salt Lake and Sevier deserts in Utah, and narrow belti in California, Nevada and Arizona. Among its characteristic mammals and birds are the sage cotton-tail, black-tailed jack-rabbit. Idaho rabbit, Oregon, Utah and Townsend's ground squirrels, sage chipmunk, fivetoed kangarco rats, pocket mice, grasshopper mice, burrowing owl, Brewer's sparrow. Nevada sage sparrow. lazuli finch, sage thrasher, Nuttall's poor-will, Bullock's oriole and rough-winged swallow. The Lower Austral zone occupies the greater part of the Southern states, and is divided near the 98 th meridian into an eastern humid or Austroriparian area and a western arid or Lower Sonoran ared. The Austroriparian zone comprises nearly all the Gulf States as far west as the mouth of the Rio Grande, the greater part of Georgia, castern South Carolina. North Carolina and Virginia, and extends up the lowlands of the Mississippi Valley across western Tennessee and Kentucky into southern Iltinois and Indiana and across eastern and southern Arkansas and castern Oklahoma into south-eastern Missouri and Kansas. It is the bome of the southern fox-squirrel, cotton rat, ricefiedd rat, wood rat. [rec-tailed bat, mocking bird, painted bunting, prothonotary warbler, red-cockaded woodjecker, chuckwill's-widow, and the swallow-tailed and Mississippi kites. A southern portion of this zone, comprising a narrow strip along the Gulf Coast froin Texas to Florida and up the Athantic coast to South Carolina, is semi-tropical, and is the northernmost habitation of several small mammals, the alligator (Alligator mississippiensis), the ground dove. white-tailed kite, Florida screech owi and Chapman's night-hawk. The Lower Sonoran zone comprises the most arid parts of the United States: \(\operatorname{couth}\)-western Texas, south-western Arizona and 2 portion of northern Arizona, southern Nevada and a large part of southern California. Some of its characteristic mammals and birds are the long cared desert fox, four-toed kangaroo rats, Sonoran pocket mice, big-cared and tiny white-haired wats, road runner, cactus wren, canyon wren, desert thrashers, hooded oriole, black-throated desert sparrow: Texas night-hawk and Carnbel's quail. It is the northernmost hone of the armadillo. ocelot, jaguar, red and grey cats, and the spiny pocket mouse, and in southern Texas especially it is visited by several species of tropical birds. There is some resemblance to the Tropical life-zone at the south-eastern extremity of Texas, but this zone in the United States is properly restricted to southern Florida and the lower valley of the Colorado along the border of Califorvia and Arizona, and the knowledge of the latter is very imperfect. The area in Florida is too small for characteristic tropical mammals, but it has the true crocotile (Crocodilus americanus) and is the hame of a lew tropical birds. Most of the larger American mammals are not restricted to any one faunal zone. The bison, although now nearly extinct, formerly roamed over nearly the entire region letwen the Appalachian and the Rocky Mountains. The black lear and beaver were also widely distributed. The Virginia deer still ranges from Maine to the Gulf states and from the Alantic coust to the Rocky Nountains. The grizzly bear, cougar, coyote, prairie doy and antelope are still found in several of the Western tates, and the grey wolf is common in the West and in nortbera Minnesota, Wisconsin and Michigan.

Flors. - The Alpineflora, which is found in the United Statesonly on the tops of those mourt ains which rise above the limit of trees, consists principally of a varicty of plants which bloom as soon as the snow melts and for a short scason make a brilliant display of colours. The flora of the Hudsonian and the Canadian zone consists largely of white and black spruce, tamarack, canoe-birch, basam-poplar, balsam-fir, aspen and grey pine. In the Alleghanian Transition zone the chestnut, walnut, oaks and hickorics of the South are interspersed amony the beech, birch, hrmtock and sugar maple of the North. In the Western Arid Transition zone the flora consists largely of the true sage brush (Artemisia tridentan:) but some tracts are covered with forests of yellow or bull pine (Pirics ponderosa). The Pacific coast Transition zone is notell fiof ita furcis of giant
conifers, principally Douglas fir, Sitka spruce, Pacife cedar and Western herolock Here, too, mosees and ferns grow in profusion. and the sodal (Gaulcheria shallon), thimble herry (Rmbes moothamens), salmon berry (Rubus spectabilis) and devil's club (Fatsia horida) are characteristic shrubs. In the Carolinian zone the tulip tree. sycamore, sweet gum, rose magnolia, short-leaf pine and sasemira: find their northernmost limait Sage brush is common to both the western arid Transition zone and the Upper Sonoran mone, but in suitable soile ol the latter several greasewoods (Arrpikx confertsfalia, A. conescens. A. mudtalli, Tehrodymas conescens, Sarcobatms vermiculatus and Grayie spinosa) are characteristic species, and on the mountain dopes are some nut pines (pinton) and punipers. The Austroriparian zone has the long-leaf and boblolly pincs, magnolia and live oak on the uplands, and the bald cypreas, tupelo and case in the swamps; and in the semu-tropical Gulf strip are the cabbage palaretto and Cuban pine; here. too. Sea lsland cotton and tropical fruits are successfully cultivated. The Lover Sonoran zone is noted for its cactuser, of which there is a great variety a nd sonte of them grow to the height of trees; the mesquite is also very large. and the creosote bush, acacias, yuccas and agaves are commonThe Tropical belt of southern Florida has the royal palm, coco-nut palm, banana, Jamaica dogwood, manchineel and mangrove; the Tropical belt in the lower valley of the Colorado has giant cactuses desert acacias. palo-verdes and the Washington or fan-leai palm. Almost all of the United States eart of the g8th merndian is nat urally a furest region, and forests cover the greater part of the Rocky Mountains, the Cascades, the Sierra Nevadas and the Const Range. but throughout the belt of plains, basins and deserts west of the Rocky Mountains and on the Great Plains east of the Rocky Mountains there are few trese except along the watercourses, and the prevaiting type of vegetation ranges from bunch grase to uage brush and cactuses according to the degree of aridity and the temperature. In the eastern fortst region the number of species decreases somewhat from south to north. but the entire region difters from the densely forested region of the Pacific Coast Transie tion wone in that it is essentially a region of deciduous or hardwood forests, while the latter is essentially one of coniferous trees; it differs lrom the forested region of the Rocky Mountains in that the latter is not only essentially a region of conilerous trees, but one where the lorests do not by any mons occupy the whole area, neither do they appronch in density or economic importanoe those of the eastern division of the country. Again, the forests of most of the rastern region eableace a variety of species, which, as a rule are very much interningled, and do not, unless quite exceptionally occupy areas chiefly devoted to one specics; while, on the other hand the forests of the west-including both Rocly Mountain and Pacific coast divisions-exhibit a small number of species, considering the vast area enbraced in the region: and these species, in m number of instances, are extraordinarily limited in their range, alebough there are cases in which one or two species have almost exclusive posse'sision of extensive areas.

Bibliograpity-C. H. Merriam, Life Zones and Crop Zomes of the United Sules, Bulletin Na. 10 of the United States Department of Agriculture, Division of Biological Survey (Washington, 18g8); 1. C. Russell, North America (New York, 1go4): W. T. Hornaday. American Nulural History (New York, 1904): W. Stone and W. E Cram, \(A\) merican Animals (New York, 1902); E. Coutes, Key to North American Birds (Boston, i896); Florence M. Bailey; Hamdbook of Birds of the Western United States (Boston, 1go2); E. D. Cope." The Crocodilians, Lizards and Snakes of North Annerica." in the Report of the United States National Muscum for the year 1898 (Washing: ton, 1900) ; L. Stejneger, "The Poisonous Stilikes of North America, ibid., 1893 (Washington, 1895).
(N. D. M.)

\section*{V.-Population and Social Conditions}

Geographical Growth of the Nation.-The achievement of independence found the pcople of the United States owning the entire country between the 'Gulf and the Great Lakes, excepting only Florida, as lar to the west as the Mississippi; but the actual settlements were, with a few minor exceptions, confined to a strip of territory along the Atlantic share. The depth of settlement, from the coast inland, varied greatly, ranging from what would be involved in the mere occupation of the shore for fishing purposes to a body of agricultural occupation extending back to the base of the great Atlantic chain, and averaged some \(250 \mathrm{~mm}^{1}\)
Westward, beyond the general line of continuous set tlement,
'In the Slatistical Allas volume of the census of 1900 the reader will find tor each decennial census since 1790 a map showing the distribution of population, with indication of the density of settlement and an claborate explanatory text. In Orin Crant Libby's Grographical Distribution of the Vote of the Thiricen States on the Federal Conslitulion, 1787-1788 (University of Wisconsin, Madison, 1894). along with a valuable map intercsting lacts are given regarding the social and economic characteristits of different sections
were four extemsions of population through as many gaps in the Appalachian barrier, constituting the four main paths along which migration westward first took place: the Mohawk Valley in New York, the apper Potomac, the Appalachian Valley, and around the southern base of the Appalachian system. Four outlying groups beyond the mountains, with perhape a twentieth part of the total population of the nation, -ore aboat Pittsbars, one in Weat Virginin, another in northern Kentucky, and the last in Tennessee: all determined in situaLion by river highways-bore witness to the qualities of itrength and courage of the Americas pioneer. Finally, there were in 2790 about a score of small trading or military posts, mainly of French origin, scattered over the then almost unbroken wilderness of the upper Mississippi Valley and region of the Great Lakea

Twedve decennial censuses taken since that timo (1800-19to) have revealed the extraordinary spread of population over the present area of the country (see Census: United Slofes). The large percentage of the population, particularly

150 years moved more that goo mo weatward, almost enactly along the 39 ch paraliel of hatitede: \(9-5\) degreas of lomgitude, with an extreme variation of less than 19 minutes of latitude.
Grooth of the Nation in Populotion.-If the igth century was remarkable with respect to national and urban growth the world over, it was particulariy so in the growth of the Undted States. Malthus expreseed the opinion that only in such a land of unlimited meass of living could poppulation freely increase. The total poppulation increased from 1800 to 3000 about fourteen fold (i335-6\%): The rate of growith indicated In 1900 was still double the average rate of western Europe: In the whole worid Argentina alone (\(1869-1895\)) showed squal (and greater) growth. At the opening of the century not only all the great European powers of to-day bat also even Spain and Turkey exceeded the United States in numbers; at its close only Russia. At the census of 19:o, while the continerital Undied States popolation (excluding Ahska) was \(91,072,266\), the total, inchading Alacka, Hawaii and Perto Eico. buf excluding the Philippine Islands. Guam, Sumea and the Cardil Zone, was 93,402,151.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{6}{*}{Cemes} & \multicolumn{14}{|c|}{Coacieractil Uhired States, eachaive w Alath.} \\
\hline & \multicolumn{4}{|c|}{Population exrumetated.} & \multirow[b]{5}{*}{} & \multicolumn{9}{|c|}{} \\
\hline & \multirow[b]{4}{*}{Populalion whatinate ef a 7 ga .} & \multicolumn{3}{|r|}{Tatal population,} & & \multicolumn{2}{|r|}{Tocal ame.} & \multicolumn{5}{|c|}{Sutled aras.} & \multicolumn{2}{|l|}{} \\
\hline & & \multirow[b]{3}{*}{Pitheretion} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & & & & & Total anct can & covered by & & \(y\) of & pula & \\
\hline & & & & & & & & & & & & On & cee & [12 \\
\hline & & & & & & Toes! & scquired in procedus decride. & Anen wht not less than two purroes per 4. & & Total. & & & & 星 \\
\hline 1790 & 37929.625 & \(\cdots\) & 31929.214 & \(\cdots\) & - & 819.466 & \(\cdots\) & 239.935 & 13.850 & 417.170 & 16.4 & 9 & - & \(9-6\) \\
\hline 1800 & 5247.355 & 61.128 & 5.308.483 & 35.1 & & 819.466 & , & 305.708 & 33,800 & 434,670 & 17.4 & 12.6 & 0.2 & \(12 \cdot 2\) \\
\hline 1830 & 6.779.308 & 460,573 & 7.239 .881 & \(36+4\) & \(\cdots\) & 1,698,107 & 878.64 I 1 & 407945 & 25,100 & 556.010 & 17.7 & \(16 \cdot 3\) & 0.8 & 13.0 \\
\hline 1820 & 8.2931 .109 & 1.344 .584 & 9.638,453 & 33.1 & aga,000t & 2,752,347 & 54.240 1 & 508.717 & 4.200 & 688,670 & 189 & 19.9 & 2.4 & 13.9 \\
\hline 1830 & 10,240,232 & \(2.605 .7{ }^{\text {a }}\) & 12,860, \({ }^{\text {che }}\) \% & 33.5 & 143.439 & 1.752,347 & - & 632.717 & 4,700 & 877,170 & 20.3 & 24-5 & \(4 \cdot 3\) & 14.5 \\
\hline 1840
1850 & \(11.781,238\)
14.569 .584 & 5,288,208 & 17,063.35, & \begin{tabular}{|c}
\(32-7\) \\
\(35-9\)
\end{tabular} & 599,125 & 1.753 .347 & 186,674 & 807.292 & 2,150
-8 & 1,883.870 & 21.1 & 28-2 & 7.1 & 14.4 \\
\hline 1850 & 14.569 .584
17.326 .157 & 8,601,24a
\(14,117,164\) & 23,191,876 & \(35-9\)
\(35-6\) & 1,743,251 & 2,939.021 & 1,186,674 & -979,249 & - 38.375 & 1.519.170 & 337 & 34.9 & \(5 \cdot 5\) & \(15 \cdot 3\) \\
\hline 1860 & 17.326,157 & 14, 117,164 & 31,448.321 & 35-6 & 2,590,214 & 2,970,038 & 31,017 & 1,194,754 & 107.375 & 1.951,520 & \(26 \cdot 3\) & \(41 \cdot 5\) & 5.7 & 16. 1 \\
\hline 1870 & 19,687.504 & 18.870.867 & 38,558,371 & 22.6 & \(2,714,824\) & 2,970,038 & \(\cdots\) & 1,272,139 & 131.910 & 2,126,290 & 30.3 & 47-2 & 7.6 & 13.4 \\
\hline 1880 & 23.925 .639 & 16,263,570 & 50,155.783 & 30.1 & 2,812,191 & 2970038 & \(\square\) & 1.569 .565 & 260,025 & 2,727,454 & 32-0. & 97-4 & 106 & 184 \\
\hline 1890 & 28,188,321 & 34,791,445 & 62,947,714 & 24.9 & 5.246613 & 2,970,038 & 808 & 1.947,280 & - & 2,974,159 & 32-2 & 67.6 & 13.6 & \(19 \cdot 2\) \\
\hline 1900
1910 & 33.533.630 & 42,749.757 & 75.994 .575
91.072 .266 & \(20-7\)
21.0 & \[
3.844420
\] & 2,970,138 & 108 & 1,925,590 & - & 2,974,159 & 39.5 & 80.4 & 16.7 & \(25 \cdot 5\) \\
\hline 1910 & & & 91,973,266 \({ }^{\circ}\) & 21.0 & \[
7.753 .816+
\] & - - & - & & & 2,974,159 & & & & 30.9 \\
\hline
\end{tabular}
- Exclurdes persons of the military and naval service stationed abroad (5318 in 1830 ; 6100 in \(1840 ; 91,219\) in 1900).
t Estimates of total up to tsaa
Total, 27,604,509, exclusive of at least rome hundreds of thousands of Canadians and Mexicans.
Louisiana purchase from France.
Florida purchase from Spain; populatlon counted first: 1830.
 eq. \(m_{1}\)).
- Gadsden purchave from Mexico.
of the great urban centres, that is established to day in the 1 river lowlands, reflects the role that. water highways have played in the peopling of the country. The dwindlings and growths of Nevada down to the present day, and to not a slight degree the general history of the settlement of the states of the Rocky Dfountain region, are a commentary on the fate of mining industries. The initial settlement of the Pacific coast following the discovery of gold in Californin in 1848, and of the eastern base of the Rocky Mountains after the discovery of gold in 3859, illustrates the same factor. The Mormons setted Utah to insure social isolation, for the security of their theological system. A large part of the Great Plains to the east of the Rocties was taken up as farms in the decade \(1880-\) 1890; abandoned afterwards, because of its aridity, to stock graving; and reconverted from ranches into farms when a system of dry farming had proved its tillage practicable. The negro more or less conscoously moves, individually, closer into the areas whose climate and crops most nearly meet his desires and capabilities as a farmer; and his race as 2 whole unconseiomaly is adfusting its habitat to the boundaries of the Austroriperian life zone. The country's centre of population in

In 1790 there were about 000,000 white families In the United States. Speaking hroadly, there were few very rich and few very poor. Food was abundant. Both social traditions and the religious beliefs of the people enoouraged fecundity. The country enjoyed domestic tranquillity. All thls time, too. the land was but partially settled. Mechanical labour was scarce, and even upon the farm it was difficult to command hired service, almost the only farm labourers down to 1850 . in the north, being young men who went out to work for a few years to get a liftle money to marry upon. A change was probably inevitable and came, apparently, between 1840 and 1850 .
The accessions in that decade from Ireland and Germany were enormous, the total immigration rising to \(1,713,251\) against 599,125 during the decade preceding, and against only 143,430 from 1820 to 1830 . These people came in condition to breed with unprecedented rapidity, under the stimulus of an abundance,

\footnotetext{
'Cnlesa otherwise explicisly atated, by "United States" is to be understood contipeatal United States exchusive of Alaska.
'According to Lavasseur and Bodio. \(14.5 \%\) from 1860 to 1880; \(21.2 \%\) from i 880 to 1900 ; from \(1888-1900,110 \%\).
}
in regard to food, shelter and clothing, such as the moal fortunate of them had never known. Yet in spite of these accessions, the population of the country realized a slighty smaller proportion of gain than when the foreign arrivals were almost insignificant.

For a time the retardation of the normal rate of increase among the native population was concealed from view by the extraordinary immigration. In the decade \(1850-1860\) it was seen that almost a seventh of the population of the country consisted of persons born abroad. From 1840 to 1860 there came more than four million immigrants, of whom probably three apd a half million, with probably as many children born in America, were living at the latter date.
The ten years from 1860 to 1870 witnessed the operation of the first great factor which reducod the rate of national iacrease, namely the Civil War. The superintendent of the Ninth Census, \(\mathbf{1 8 7 0}\), presented a computation of the effects of this cause-first, through direct losses, by wounds or disease, cither in actual service of the army or navy, or in a hrief term following discharge; secondly, through the retardation of the rate of increase in the coloured element, due to the privations, exposures and excesses attendant upon emancipation; thirdly, through the check given to immigration by the existence of war, the fear of conscription, and the apprehension abroad of results prejudicial to the national welfare. The aggregate effect of all these causes was estimated as a loss to the population of 1870 of \(1,765,000\). Finally, the temporary reduction of the birth-rate, consequent upon the withdrawal of perhaps one-fourth of the national militia (males of 18 to 44 years) during two-fifths of the decade, may be estimated at perhaps 750,000 .

The Tenth Census put it beyond doubt that economic and social forces had been at work, reducing the rate of multiplication. Yet no war had intervened; the industries of the land had flourished; the advance in accumulated wealth had been beyond all precedent; and immigration had increased.

It is an interesting question what has been the contribution of the forcign elemente of the country's population in the growth of the eggregate. This question is closely conncted with a still more important one: namely, what effect, if any, has loreign immigration had upon the birth-rate of the native stock. In 1850 the lorrignborn whites (\(2,244,602\) in number) were about two-thirds of the coloured element and one-eighth of the native-white element; in 1870 the forcign-bom whites \((5,567,229)\) and the native whites of foreign parentage (\(5.324,786\)) each exceeded the coloured. In 1900 the two loneign elements constituted one-t hird of the total population. The absolute numbers of the four clements were: native whites of native parents, \(40,949,362\); natives of forcign parents, \(15,646,017\); foreign-born whites, 10,2 ! 3,817 ; coloured, \(8,833.994\) -
Separating from the total population of the counery in 1900 the non-Caucasians (\(9,185.379\)), all white persons having both parents foreiga (\(20,803,800\)), and one-hall (\(2,541,365\)) of the number of persons having only one parent foreign, the remaining \(43.555,250\) "native" inhabitants comprised the descendants of the Americans of 1790 , plus those of the few inhahitants of annexed territorics, plus those in the third and higber generations of the foreizners who entered the country aiter 1790 (or for practical purposes, after 1800). The second clement may be disregarded. For the exact determination of the last element the census affords no precise data, but affords material lor various approximations, based either upon the climination of the probable progeny of immigrants since 1790; on the known increase of the whites of the South, where the foreign element has atways been relatively insignificant; on the percenage of natives having native grandfathers in Massachuscts in 1005; or upon the astumed continuance through the sith century of the rate of native growth (onc-third decennially) known to have prevailed down at least to 1820 . The last is the roughest approximation and would indicate a native mass of so,000,000 in 1900 , or a forcign contribution of approximately half. The results of computations by the first two met hods, yicld estimates of the contribution of foreign stock to the "native "element of 1900 varying among themselves hy only \(t .8 \%\). The average by the three methods gives \(8.539,626\) as such contribution, making \(31,884,791\) the total number of whites of foreign origin in 1900; and this leaves \(35,015,624\) as the progeny of the original stock of itga. Adding to the true native whites of 1900 (\(35.015,624\)) the native negroes (\(6,813.658\)), the increase of the native stock. white and black, Eince 1790 would thus be about \(1091 \%\), and of the whites of \(1790(3,172,006)\) alone abour \(1104 \%\) it is evident that had she lecundity of the American atock of 1790 been

IW. S. Rossiter, A Century of Population Growth (Bureau of the Census، Washington, 1909). pp. 85 wq.
equal only to that of Belgium (the mose fertile population of wexters Europe In the 1gth century) then the additions of foreign element to the American people would have been by 1000 in heavy preponderance over the original, mainly British, elements. A sudy of the family names appearing on the census rolls of 2 wo prospetocs: and typical American counties, one diatinctively urban and the other rural, in 1790 and 1900, has confirmed the popular impression that the British element is growing litile, and that the fastest reproducers to-day are the foreign elements that have become large in the immlgration current in very recent decades. In applyiag to the zotal population of 1790 the rate of growth shown since 1790 by the white poople of the South, this rate, for the purpose of the above compu. tations, is taken in its entirety only up \$0 1870, and thereafter-in view of the notorious lesser birth-rate since that year in the North and West-only one haty of the rate is used. If, however, applica. tion be made of the rate in its entirety from 1790 to 1900 , the result would be a theoretical pure native stock in 1900 equal to the then actually existing native and foreign stock combined.

In 1900 more than half of every 100 whites in New Engleand and the Middle thates (frorm New York to Maryland) were of foreign parentage (i.e. had one or both parents foreign), and in both eections the proportion is increasing with grcat rapidity. The Southern states. on the other hand, have shown a diminishing relative foreign element since 1870 and had in 1900 only 79 of foreign parentage in 1000 whites. Relatively to their share of the country's aggregate population the North Atlantic states, and those upon the Great Lakes-the manufacturing and urbanized states of the Union-hold much the heaviest thare of immigrant population.

The shares of different nationalities in the aggregate mase of foreigners have varied greatly. The family names on the registers of the firsk census show that more than \(90 \%\) of the white population was then of British stock, and more than 80 was English. The Germans were already near \(6 \%\). The entry of the Irish began on a great scale after 1840 a and in 1850 they formed aearly hals of all the foreign born. In thas year \(85.6 \%\) of this total was made up by natives of Great Britain and Germany. The latter took first plare in \(\mathbf{1 8 8 0}\). In 1900 these two countrien represented of the total only \(52.7 \%\); add ithe Dutch, the Dancs. Swedes, Norwegians and Swiss to the latter and the share was \(65.1 \%\) A great majority of all of these elements except the British are settled in the states added to the original Union-the Scandimavians being the mont typically agricultural etement; while almost all the other narionalioces are in excess, most of them heavily \(\mathbf{s o}\), in the original rtares of 1790 , where they land, and where shey are absorbod into the lower grades of the industrial organization. Since 1880 Iralians, Ruscians, Poles. Austrians. Bobemians and Hungarians have enormously increasod in the immigrant population. Germans, Irish, British, Canadians. Scandinavians, Stavs and Italians were the leading elements in 1900.

In 1790 the negroes were \(19,3 \%\) of the country's inhabitants; in 1900 only \(11.6 \%\). While the growth of the ceuntry's aggregate population from 1790 to 1900 was \(1833.0 \%\), that of the whites was \(2005.9 \%\) and of the negroes only \(1060.7 \%\)

Certain generalizations respecting the "South" and the " North," the "Eact" and the "West" are essential to an understanding of parts of the history of the past, and of aocial conditions in the present. For the basis of such comparisons the country is divided by the census into five groups of states: (1) the North Atlantic division-down to New Jersey and Pennsylvania; (2) the South Athantic division-from Dela. ware to Florida (including West Virginia); (3) the North Central division-including the states. within a triangle tipped by Ohio, Kansas and North Dakota; (4) the South Central division -covering a triangle tipped by Kentucky, Alabama and Texas; and (5) the Webtern division-including the Rocky Mountains and Pacific states. The first and third lead to-day in manufacturing interests; the third in agricultural; the fith in mining.
Groups 1 and 3 (with the western boundary, somewhat indefinite) are colloquially known as the "North "and a and 4 as the "South." The two sections stared out with population growths in the decade \(1790-1800\) very nearly equal \((\$ 6.5\) and \(33.7 \%\)), but in every sue-
ceeding decade before the Civi War the growth of the North was ceeding decade before the Civil War the growth of the North was
grcater, and that of the South leas, itan its increment in the initis decade. In the two twenty-ycar preriods after 1860 the increases of the North were 61.9 and \(48.7 \%\); of the South, 48.4 and \(48.5 \%\). In 1790 the two sections were of almost equal population: in 1890,1900 and 1910 the population of the North was practically double that of the South. In the decade \(1890-1900\) the increase of the South exceeded slightly that of the North for the same periud owing to the rapid development in recent years of the Southern states west of the Miscissippi, which only the Western group has exceeded ance 1870.3 In general the increace of the two section:
The number of inhabitante of the North at each censene for every 1000 in the South was as loilows from 1790 to 1900 ; 1004; 1025: 1092; 1181; 1253; 1455; 1562; 1769: 2057; 1930; 2005; 1932.
wisce I680 has been nearly equal, But while this growth was relatively uniform over the South, in the North there was a low (often a decreasing) rate of rural and a ligh rate of urban growth. Throughout the igti eentury the rates of growth of the North Central division and that of the eastern half of the South Central division steadily decreasod. It is notabie that that of the South Atlantic group has grown faster since 1860 than a ever before, despite the Civil War and the conditions of an old settled region: a fact possibly due to the effects of the emancipation of the slaves.
3 Comparing now the population of the rexions eat and west of the Missistippi, we fisd that the population of the finst had grown from \(3.929 .21+\) in 5,990 to \(55,023.513\) in 1900 : and that of the second from 97,401 in 1810 to \(20,971,062\) in 1900 . From 1860 to 1890 the one increased its numbers decennially by one half, and the other by under one fifth; but from 1890 to 1910 the difference in growth Was slight, owing to a tremendous falling off in the rete of growth of much of the Western and the western states of the North Central divisions. Only an eighth of the country's total population lived in 1900 wese of the goth meridian, which divides the country into two nearly equal parts Alhough, as aircady etated, the population of the original area ol 1790 was passed in 1880 by that of the added area, the natives of the former were still in excess in 1900.

Urbar and Rurad Population.-The five citics of the country that had 8000 or thore inhabitants in 1790 had multiplied to 548 in 1900 Only one of the original six (Charleston) was in the true South, which was distinctly rural. The thnce leading colonial cities, Philadelphia, New York and Boston, grew six-fold in the 18 th century, and fiftyfold in the next. The proportion of the populacion living in cities seems to have been practically constant throughout the t 8 th century and up to 8820. The great growth of urban centres has been a result of industrial expansion since that cime. This growth has been irregular. but was as a maximum about the middle of the century. On an average throughout the 110 years, the population in cities of 8000 considerably more than doubled every twenty years.' The rate of rural growth, on the other hand, fell very slowly down to 1860 ,2 and since then (disscegarding the figures of the inaccurate census of 1870) has beca steady at about ball the former rate. In Rhode Island, in 1900, eight out of every en persons lived in citics of 8000 or more inhabitants; in Massachusctts. seven in ten. In New York, New Jersey and Connecticut the city chement also excecded half of the population. At the other extreme. Missisappi had only \(3 \%\) of urban citizcss. If the limit be drawn at a population of 2500 (a truer division) the urban clernent of Rhade Istand becomcs \(95.0 \%\) of Massacbuserts, 95.5 ; of Mississippi. 77. All the Southern siates arc still relatively rural, as well today asa hundred. years ago. Tenstates of the Union had a density in 19 to exceeding too persons to the square raite: Illingis (\(100 \cdot 7\)) Delaware (103), Ohio (117), Na,yland (\(830 \cdot 3\)), Perusylvania (171-3), New York (191-2), Conncericut \((235 \cdot 3)\), New Jersey \((337 \cdot 3)\), Massachusetts (\(4 \times 8 \cdot 8\)) and Khode Island (\(5088 \cdot 5\))

There are abundant statistical indications that the lise (be the influence that dranis it economic or social) between urban centres of only 2500 inhahitants and rural districts is much sharper to-day than was that between the country and cities of 8000 inhabitants (the largest had five times that number) in \(17 g^{\circ}\). The lower limit is therelore a truer division line today. Classifying, then, as urban centres alf of above 2500 inhabitants, threc-tentbs of the total population lived in the latter centres in 1880 and four-tenths (30.363 .425) in 1900 ; thetr population doubled in these twenty yozrs. If one regards the langer units, they beld naturally a litte mort of the total population of the country-just a third \((33.1 \%\) : ten times their proportion of the country's total ia ifgo); and they grew a little faster. The ame years, however, made apparent a rapid fall. seneral and marked, yet possibly only temporary, in the rate at which such urban, centres, as well as larger ones, had been gaining upon the rural districts; this raction being mo:t pronounced in the South and least 50 in the Nortb Atlantic states, whose manufacturing industrics are conceatrated in dense centres of population.
Intersfode migration is an intencoting element ia American national life. A fifth of the total population of 1900 were living in other states than those of birth; and this does not take account of temportry nor of multiple mlyration. Every state numbers among its residents natives of nearly every other state. This movement is complicated by that of foreign immigration. In 1900 the percentage of resident natives varied from \(927 \%\) in South Carolins to \(15 \%\) in Oklaboma; almost all of the Southern states haviog high percentages.

Sexft-The percentages of males and females, of all ages, in the aggregate population of syoo, were 51.0 and 49.0 respectisely. The corresponding figures for the main elemerns of the population were as follows: for native whites, \(50-7\) and \(49-3\); foreiga whites, 540 and \(46 \cdot 0\); negroes, \(49^{.6}\) and \(50^{\circ} 4\). The aboblute excess of males in the aggregate popilation has becti progressively greater at every eaccevive census since 1820, save that of 1890 -which followed the Civil War and closed a decade of lessened immigration. The selative excess of males in each unit of popularion has not constankly progreased, hut has been continuous. In demsely seteled regions
females generally predominate: and males in thinis settled regions. In every 1000 urban inhabitants there were, in 1900,23 (in 1800 only 19) more females than in 1000 rural inhabitants. In the rural districts, so far as there is any exeess of females, it is almost solely in the Southern cotton belt, where aegro women are largely employed as farm hands.

Vital Statistics, lgoo. - The median age of the aggregate population of \(8900-t h a t\) is, the age that divides the population into halves-was 22.85 years In 1800 it was 15.97 years A falling birth-rate, a falling death-rate, and the inercase in the number of adult immigrants, are presumably the chicf causes of this difference The median age of the foreign-born in 1900 was 38.42 years. The median age of the population of cities of \(\mathbf{2 5 , 0 0 0}\) or more inhabitants was 3.55 years greater than that of the inhabitants of smaller urben centres and rusal districts, owing probably in the main to the movernent of middle-aged native and foreign adults to urban centres, and the higher birth-rate of the rural districta. The median age of the aggregatc pupulation is highest in New England and the Pacific states, towest in the South, and in the Nortb Centra about equal to the country's average. The average age of the country's population in 1900 was 26.2 years. The United States liad a larger proportion (\(59.1 \%\)) within the "productive" age limits of 15 and 60 years than most European countries; this being due to the immigration of forcign adults (corresponding figure \(80.3 \%\)), the productive group among the native whites (\(55 \%\)) being smalier than in every country of Europe. The sarme is true. however, of the population over 60 years of agc.

The death-rate of the United States, though incapable of exact determinalion, wis prubably between 16 and 17 per 1000 in 1900 ; and therefore less than in most foreign countrics. Death-rate duriag the eleven years \(1890-1000\) in 83 cities of above 25,000 population, is given by Dr J.S. Billings:-
\begin{tabular}{|c|c|c|c|c|}
\hline Averget Annual Dathszic per 100,000 Populs. tion lar ibe Citine of ibe Sections indected. & Cossumption. & Prevmonia. & Typhoid Sever. & Diphtheria and Crowp. \\
\hline New England.yl. & 6244 & 220 & 30 & 77 \\
\hline Middle statcs. & 7259 & 268 & 32 & 101 \\
\hline Lake states & 1186 & 159 & 48 & 79 \\
\hline Southern states & 277 & 189 & 50 & 54 \\
\hline West North Central & 183 & 142 & 38 & \\
\hline
\end{tabular}

Among the statiktics of conjugal condition the most atriking facts are that among the foreign-born the married are more than twice as numernus as the single, owing to the predominance of adults among the immigrants; and the native whites of foreign parents many late and in much smaller proportion Marragre. than do the native whites of native parentage-the first American gencration catised on one hand by the high American standard of living, and on the other by the relative economir indepridence of women. In \(19001.0 \%\) of the mates and \(10.9 \%\) of the females from is to 19 years of age were married; from 20 to 24 yeare \(28.6 \%\) and \(46.5 \%\) respectively. Of lemales above 15 years of age \(31.2 \%\) were sinale. 56.9 married, 11.2 widowed, - 5 divorced; many of the last class undonbtedly reporting them selves as of the others. The corresponding fgures for males were \(40.2,54.5,4.6\) and \(0.3 \%\) in 1850 there were 5.6 persons (excluding the slave population) in an average Americaa family; fifty years Iater there were only 4.7 -a decline, which was constant, of \(16.1 \%\) In 1790, 5 persons was also the normal family-i.e. the greatest proportion (\(14 \%\)) of the total were of this size; but in Famillcs. 1900 the model lamily was that of 3 persons by a more decisive proportion (\(18 \%\)). The manimum state average of 1790 which was 5.4 in Georgia, was greater than the maximum of 1900 Within the area of \(\mathbf{7 7 9 0}\) there were twice as many families in 1900 18 in 1790 eonsisting of 2 pervons, and barely half as many consisting of 7 and upward: New Englasd having shown the greatest and the South the least decrease. In 1790 about a third and in 1900 more than one half of al! families had less than 5 members. The data gathered by the Federal census have never made possible a satisfactory and trustworthy calculation of the birthrate, and state and local agencies possess no such data for any considerable area. But the evidence is on the Birtb-rath whole cumulative and convincing that there was a remarkable falling off in the birth-rate during the 19th century. And it mity be noted, because of its bearing upon the theory of General Francis A. Walker, that the Old South of 1790, practically unaided by immigration, maintained a rate of increase at least approximating that attained by other sections of the country by mative and forcign stock combined. Not a state of the Union as it existed in 1850 showed an inercase, during the hall-century following, in the ratio of white children under 16 to 1000 white females over 16 years: the ratio declined for the whole counery from I600 to 5100: and it has fallen for the census area of 1790 from 1900 in that year to 1400 in 1850 and 1000 in 1900 . On the other hand, elaborate colonial censuscs for New York in 1703 and \(16: 1\) show
\begin{tabular}{|c|c|c|c|c|c|}
\hline Eecelond of the & \multicolumn{5}{|l|}{Whites under 16 Years per 1000 of Total Population.} \\
\hline & 7790. & 1820. & 1850. & 1880. & 1900. \\
\hline Area of 1790 & 490 & 483 & 48 & 373 & 344 \\
\hline New England. & 470 & 443 & 355 & 309 & 291
326 \\
\hline Mrddle states & 494 & 485 & 403 & 358 & 3326 \\
\hline Added area & 502 & 508
526 & 464 & 431
406 & \begin{tabular}{l}
368 \\
\hline 68
\end{tabular} \\
\hline
\end{tabular}
ratios of 1900 and 2000 , and reinforce the auggestions of various other facts that the social, as well as the economic, conditions is colonial times were practically constant.

The-dectine in the proportion of children since 1860 has been decidedly less in the South (Southern Atlantic and South Central states as defined below) than in the North and West, but in the most recent decades the last section has apperently fast foliowed New England in having a progressively lesser proportion of children. In the North these was little difference in 1900 in the ratios shown by city and country districts, but in the South the ratio in the latter was almost twice that reported for the former.
The decades 1840-1850, 1880-1890 and 1860-1870 have shown much the greatest decreases in the percentage of children; and some have attributed this to the alleged heavier immigration of foreigners (largety adults) in the case of the two former decades, and the effects of the Civil War in the third. So also the three decades inmedtately succeeding the above showed minimum decreases; and thls has been attributed to a supposed greater birth-rate among the immigrants.
These uncertainties raise a greater one of much significance, viz. what has been the cause of the reduction in the national birth-rate indicated by the census figures? The question has been very differeatly judged. In the opinion of General Francis A. Walker, superintendent of the censuses of 1870 and 1880 , the remarkable fact that such reduction coincided with a cause that was regarded as certain to quicken the increase of population, viz. the introduction of a vast body of fresh peasant blood from Europe, afforded proof that in this matter of population morale are far more potent than physical causes. The change, wrote Genera! Walker, which produced this fatling off from the traditional rate of increase of about \(3 \%\) per annum, was that from the simplicity of the early times to comparative luxury; involving a rise in the otandard of living, the multiplication of artificlal necessities, the extension of a paid domestic service, the introduction of wamen into factory lebour. \({ }^{2}\) la his opinion the decline in the birth-rate coincidently with the increase of immigration, and chiefly in thoes regions where immigration was greatest, was no mere coincidence; nor was such immigrant invasion due to a weakening native increase, or economic defence; but the docline of the gatives was the effect of the increase of the forcigners, which was "" a sbock to the principie of population among the gative element." Immigration therefore, according to this theory, had "amounted not to a reinforcement of our population, but to a replacemeat of native by foreign elock. That if the foreigners had not come, the native element would long have filled the placos the Loreigners usurped, I entertain "-says General "Walker-'" not a doubt.'
It is evident that the characterintica of the "factory age" to which reference is made above would have acted upon native Britsh as upon any other stock; and that it has universally so acted there is abundant statistical evidence, in Europe and even in a land of such youlh and ample opportunities as Australia. The assuraption explicitly made by Geacral Walker that amang the immigrants no influence was yet excited in restriction of population, is also not only gratuitoun, but inhercatly weak; the European peasant who landed (where the great majority have stayed) in the eastern industriai states was thrown suddenly under the influcnce of the forces juat referred to; forces posoibly of etronger influence upon him than upon native clasees, which are in meneral economicaliy and socially more stable. On the whole, the better opinion is probably that of a later anthority on the vital statiotics of the country, Dr Joon Shaw Billings.' that though the chatacteristics of modern ife doubticsm influence the birth-rate momewhat, by raising the average age of marriage, lessening unions, and increasing divorce and prostitution, their great infuence is through the transmutation into necessities of the luxuries of simpler times; not automatically, but in the direction of an incremed resort to incens for the prevention of child-bearing.
Edxcation. - In the article Edocatzon (United States), and in the articles on the several states, details are given generally of the conditions nt American education. Here the statistics of lileracy need only be considered.
In 1900 illiterates (that is, persoss unable to write, the \({ }^{1} 1\) Table Irom Rossiter, op. oll., p. 103.
it See his Discmssions in Economics and Statistics, ij. 422, "Im,ditgtation and Degradation."
: See the Forwin (func, 1893), xv. 467.
majotty of these being atiso unable to read) odnatituted nezipis one-ninth (\(10.7 \%\)) of the population of at least ten years of age; but the greatest part of this illiteracy is due to the negroes and the foreign immigrants. Since 1880 the proportion of illiteracy has steadily declined for all classes, save the foreignborn between 1880 and 1890 , owing to the beginning in these years, on a large scale, of immigration from southern Europe Illiteracy is leas among young persons of all chames than in the older age-groups, in which the foreign-born largely fall. This is due to the extension of primary education during the last half of the igth century. The older negroes (who were slaves) naturally, when compared with the younger, afford the most striking illustration of this truth. On the other hand, a notable exception is afforded by the native whites of native parents, particularly in the South, where child illiteracy (and child labour) is highest; the declining proportion of illiterates shows by the age-groups of this class up to 24 years is apparently due to a will to leam late in tife.

The classification of the illiterate population (above 10 years of age) by races shows that the lndians (\(56.2 \%\)), ncgroes (\(44.5 \%\), Chinese \((29.0 \%\)), Japanese (\(18.3 \%\)), foreign white (\(13.0 \%\)). native white of native parentage (\(5.7 \%\)), and native whites of foreign parents (\(1.6 \%\)), are progressively more literate. The advantage of the last as compared with native whites of native parentage is apparently owing to the lesser concentration of these in cities. The percentages of illiterate children for diferent classes in 1900 were as follows: negroes, 30.1; foreign whites, 5.6: native whites of foreign parentage, 0.9: native whites of native parentage, 4.4There is a greater difference In the North than in the South between the child illiteracy of the Caucasian and non-Caucasian elements; also a ranking of the different sections of the country according to the child illiteracy of one and the other race shows that the negroes of the South stand relatively as high as do its whites. All diferences are lessened if the comparison be limited to children. and stit further lessened if also limited to cities. Thus, the illiteracy of non-Caucasians was \(4.5 \%\) of their children \(30.1 \%\) and of auch in cities of 25,000 inhabitants, \(7.7 \%\).
In the total population of 10 years of age and over the female sex is more illiterate than the male, hut within the age-group 10 to 24 ycars the reverse is true. In 1890 females preponderated a mong illiterates only in the age-group to to 19 years. The excess of female illiteracy in the total population also decreased within the same period, from 20.3 to 10.8 illiterates in a thousand. The tendency is therefore clearly toward an ultimate higher fiterary for females; a natural result where the two sexes enjoy equal facilities of schooling, and the females greater leisure. Among the whites attending school there was stlif in 1900 a slight excess of males; amiong the negro pupils females were very decidedly in excess In alf races there has been since 1890 , throughout the couniry, a large increase in the proportion of girds among the pupils of each age-group; and this is partcularly true of the group of 15 years nnd upward-that is of the grammar school and high school ape, in which girls were in 1900 decidedly preponderant. A similar tendency is marked in college education.

Religions Bodies.-According to the national census of religious bodies taken in 1906 there were then in the country 186 denominations represented by 212,230 organizations, \(92 \cdot 2 \%\) of which represented 164 bodies which in history and general character are identified more or less chooly with the Protestant Reformation or its subsequent development The Roman Catholic Church contributed \(5.9 \%\) of the organizations. Among other denominalions the Jewish congregations and the Latter Day Saints were the largest. The immigrant movement brings with it many new sects, as, for example, the Eastern Orthodox churches (Russian, Servian, Syrian and Greek), which had practically no existence in 1890 , the year of the last preoeding census of religious bodies. But the growth of independent churches is most remarkable, having been sixfold since 1890.

The statistics of communicants or members are defective, and because of the different organization in this respect of different bedics, notahly of the Protestants, and Roman Catholics, comparisons are more or less misleading. Disregarding, however, auch incom parability, but cxcluding \(15 \%\) of all Roman Catholics (for childrea under 9 years of age). tha total number of church membery was \(37.036,445\), of whom \(61.6 \%\) were Protectants, \(36.7 \%\) Roman Catholies and \(1.7 \%\) members of other churches. The correspondjing figures in 1890 were \(680,30.3\) and \(1.7 \%\). For the reacous jugt given these figures do not accurately indicate the religious affiliations of the population of the United States. In this particular they very largely oederitate the number of Ilicbrews, whese
communicants \((0.3 \%)\) are heads of families only, and largely of the Protestants; whereas they represent practically the total Roman Catholic population above 9 years of age. In comparing the fyures of 1890 with those of 1906 these cautions are not of force, since both census counts were taken by the same methods. The membership of the Protestant bodies increased in the interval \(44.8 \%\) while that of the Roman Catholic Church increased \(93-5 \%\). The immigration from Catholic countries could easily account for (though this does not prove that in fact it is the only cause of) this great increase of the Roman Carholic body.

Among the Protestants, the Methodists with \(17.5 \%\) of the total membership, the Baptists with 17.2 , the Lutherans with \(6 \cdot 4\), the I'resbyterians with 5.6 and the Disciples and Christians with 3.5 each of these bodies comprising more than a million membersfogether include one-half of the total church membership of the country, and four-fifths (\(81.3 \%\)) of all Protestant members.
The Baptists and Methodists are much stronger in the Soukh, relatively to other bodies, than elsewhere; the former constituting in the South Atlantic states \(43-9 \%\) of all church members, and in the South Central states \(39.5 \%\). Nlding in the Methodists these proportions become \(76 \cdot 3\) and \(65 \cdot 3 \%\). The Lutherans are relatively itrongest in the North Central division of the country (\(13.2 \%\)); the Presbyterians in the Nortb Atlantic and Western divisions S.0\%); and the Disciples in the South Central division (\(6-1 \%\)). The Roman Catholics are strongest in the Western division and the North Atlantic division, with \(\mathbf{4 9 . 2} \%\) in the former and \(56.6 \%\) in the latter of all church members; their share in the North Central division is \(36.9 \%\). Thus the numerical superiority of the Baptists and Methodists in the two Southern divisions is complementary to that of the Roman Catholics in the other three divisions of the country. New York, Khode Lsland, Massachusetts and New Hampshire in the eastera part of the country, Louisians in the south. and New Mexico, Aritona, California and Montana in the western part are distinctively" Romsen Catholic states, with not less than \(63 \%\) of these in the total church body. Racial elements are for the most part the explanation. So also the immigration of French Canadians and of Irish explains the fact that in every state of one-time Puritan New England the Koman Catholics were a majority over Protestants and all other churches. This was true in 1800 of 12 states, while in one other the Roman Catholics held - phurality: in 1906 the corresponding figures were 16 and 20 . The Protestant bodies are more widely and evenly distributed throughout the country than are the Roman Catholics.

The total value of church property (3lmost in its entirety exempt from taxation) reported in 1906 was \(\$ 1,257,575,867\), of which 9935.942 .578 was repprted for Protestant bodies, \$292,638.786 for Roman Catholic bodies, and \(\$ 28,994,502\) Ior all other bodies.

Occupations.-29,073,233 persons 10 years or more of agenearly two-fifths \((38.3 \%)\) of the country's total populationwere engaged in gainful occupations in 1900. Occupations were reported first for free males in 1850 , and since 1860 women workers have been separately reported. Five main occupation groups are covered by the census: (I) agriculture, (1) professional service, (3) domestic and personal service, (4) trade and transportation, (5) manufacture and mechanical pursuits. The percentage of all wage-earners engaged in these groups in 1900 was \(35.7,4 \cdot 3,19 \cdot 2,16.4\), and 24.4 respectively. Outside of these are the groups of mining and fishing.

Although manufactures have increased tremendously of recent years-their products representing in 1905 a gross total of \(\$ 14,802,147,087\) as compared with \(\$ 6,309,000,000\) for thote of farms (according to the U.S. Department of Agri-cuiture)-agriculture is still the predominant industry of the United States, employing nearly half of the workers, and probably giving subsistence to considerahly more than half of the pcople of the country.

Turning to the factor of sex, it may be stated that the total number "f the gainfully employed in 1900 above siven included \(80.0 \%\) of all the men and boys, and \(18.8 \%\) ol all the women and girls in the rountry. The corresponding fgures in 1880 were 78.7 and \(14.7 \%\) The proportion of wornen workers is greatest in the North Atlantic group of states \((22 \cdot 1 \%)\) where they are engaged in manufactuning, and in the South (23.8) where negro women are engaged in agricult iral operations. The percentage of such wage-earners is therefore increasing much more rapidly in the former region. But in all other parts of the country the increase is faster than in the South: since aside from agriculture, which has long been in a relatively stable condition, there is not by any means so strong a movement of women into professional services in city districts. The increase is universal. There is not a state that does not show it. The greatest increase for any wection between 1880 and 1900 was that of the North Central division from 8.8 to \(14.3 \%\) Here too both factors-farm-life, as in North Dalcota, and manufacturing, as in Hinois-bhowed their plain influence.

Of all agricultural labourers \(9.4 \%\) were females in \(\mathbf{8 g o o}\) (7.7 in 1880); but in the South the proportion was much greater- 16.5 in the South Atlantic and 14.9 in the South Central division. In professional service \(34: 2 \%\) (in 1880, 29.4) Fere females, the Iwo northern sections showing the highest proportions. In the occupations of musicians and tcachers of musie, and of achool-teachers and professors (which together accuunt for seven-eighths of professional women) women preponderate, The same sex constituted only \(37.5 \%(34.6 \%\) in 1880) of the wage-earners of the third group;
the South aiso showing here, as is natural in view of its coloured the South also showing here, as is natural in view of its coloured class, much the highest and the Western division of statea much the lowest percentagc. Women are in excess in the occupations of nurses and midwives, and servants and waiters. These account for almost all women in this group; servants and waitresses make up two-thirds of the total. Finally, in the fourth and fifth groups the percentage of women was \(10.6(3.4 \mathrm{in} 1880\)) and 18.5 (16.7 im 1880). In manufactures the South Atantic states show a higher percentage than the North Central, owing to the clement of childlabour already indicated. In the third group women greatly pre ponderate in the occupation of stenographers and type-writers and in those of book-keepers and accountants, clerks and copyists. packers and shippers, salciwomen (which is the largest class), and telegraph and telephone operators they have a large representation (13 to \(34 \%\)). A great variation exista in the proportion of the sexes employed in difierent manufacturing industries. Of dress-makers, milliners, seamstrenses (which togenher make up near half of the total in this cocupation group) more than \(96 \%\) are women. Of the makers of paper boxes, of shirts, collass and cuffs, of hosicry and knitting mill operatives, of glove-makers, silk mill operatives and book-binders they are more than half; so also of ot het textile workers, excluding wool and cotton mill operatives (these last the second largest group of women workers in manulactures), in which occupations males are in a slight excess. The distribution of women wagecamers in 1900 among the great occupation groups was as follows: in agriculture, \(18-4\) professional service, \(8.1 \%\); domestic and personal service, \(39 \cdot 4\) \% trade and transportation, \(9.4 \%\); manufacturing and mechanical pursuits, \(24.7 \%\).

The proportion which children to to 15 years of age engaged in gainful occupations bore to the whole number of ouch children was in \(188024.4 \%\) for males, and \(9.0 \%\) for females. Twenty years later the corresponding figures were \(26-1\) and \(10.2 \%\). In the North Atlantic and North Central states, notwithstanding their manufacturing iodustries, the proportions were much lower (17.1 and 17.0 in 1900), and they increased very little in the period mentioned. In the Western group the increase waseven less, and the total (\(10.9 \%\) in 1900) also. But in the South Atlantic and the South Contral states-where agriculture, mining and manufacturing bave in recent decades become important-although the iscrease was very slight, the proportions were far above those of the other sections. both in 1880 and in 1900 . In the former year the ratios were 40.2 and 41.5 in the latter 41.6 and \(42.7 \%\) Ia Alatama (\(70.8 \%\) in 1880), North and South Carolima, and Arkansas the ratio exceeded \(50 \%\) in 1900

National Wealh.-Mulhall has estimated the aggregate wealth of the United States in 1790 at \(\$ 620,000,000\), assigning of this value \(\$ 479,000,000\) to lands and \(\$ 141,000,000\) to Uuildings and improvements. It is probable that this estimate is grnerous accordmg to the values of that time. But even supposing \(\$ 1,000,000,000\) to be a juster estimate accurding to present-day values, it is probable ihat the increase of thin since 1790 bas been more than a hundrcdfold and since 1850 (since when such data have been gathered by the census) about fifteenfold. The value of Garm property increased from \(8,3,967,343.580\) in 1850 to \(\$ 20.439,901,164\) in 1900 . The gross value of manulactures nose in the same imterval from \(\$ 1,019,106.616\) to \(\$ 13,010,036,514\); of Carm products, from \(\$ 2,212,540,927\) in 1880 to \(\$ 6,309,000,000\) in 1900 . The acnsus estimate of the true value of "property" constituting the national wealch was limited in an enumeration of 1850 to taxable realty and privately held persamalt;: in 1900 it covered also exempt realty, govermment land, and corporation and puhlic personaliy. The estimate of the national wealth of 1850 was \(\$ 7.135,780,228\); in 1904 (made by the census office), \(\$ 107,104,192,410\). It may be added that the net ondinary revenue of the government was in 1850 243,592,889, and in 1909 \(\$ 662,324,445\); that the value of imports rome from \(\$ 7 \cdot 48\) per capita in 1850 to \(\$ 14.47\) in 1909 ; and of exports from \(\$ 6.23\) to \(\$ 18.50\), The public debt on the tst of November 1909. leas cortificates and notes affset by cash in the Treasury, wan \$1,295,147,432.04-
(F.S.P.)

\section*{VI.-Industries and Covmerce}

Manwfactures.-In the colonial period there were beginnings in some lines of manufacturing, but the policy of the British government was generally hostile and the increase was insignificant. In the first decades after the establishment of independence the resources and energies of the nation were absorbed in the lask of occupying the vacant spaces of a continent, and sub. duing it to agriculture; and so long as land was so abundant
that the spreading population easily sustained itself upon the fruits of the soil, and satisfied the tastes of a simple society with the products of neighbourhood handicrafts, there was no incentive to any real development of a factory economy. This has been, for the most part, a development since the Civil War.

No attempt was made in the census enumerations of 1790 and 1800 to obtain statistics of manufactures. In 1810 Congress provided for such a report, but the results were so imperfect that there was never published any summary for the country, nor for any state. Nor were the data secured in 1820 and 1840 of much value. Since 1850, however, provision has been made on an ample scale for their collection, although the constant modifications of the schedules under which the statistics were arranged makes very difficult comparisons of the latest with the earlier censuses.
From 1850 to 1900 fairly full industrial statistics were gathered as a part of each decennial census. In 1905 was taken the first of a new series of special decennial censuses of manufactures, in which only true factories-that is, establishments producing standardized products intended for the general market-were included, and mere "neighbourhood" (local) establishments of the hand trades were excluded. Without corrections, therefore, the figures of earlier censuses are not comparable with those of the census of 1905. This of 512,254 establishments included in the reports of 1900 , six-tenths, employing \(11.2 \%\) of the total number of wage-earners and producing \(12.3 \%\) of the total value of all manufactures, must be omitted as "neighbourhood" establishments in order to make the following comparison of the results of the two enumerations of 1900 and 1905. The magnitude in 1905 of each of the leading items, and its increase since 1900, then appear as follows: number of factories, 216.262, increase \(4 \cdot 2 \%\); capital invested, \(\$ 12,686,265.673\), increase \(41 \cdot 3 \%\); salaries, \(5574.761,231\), increase \(50.9 \%\); total wages, \(\$ 2,009,735.799\). increase \(29.9 \%\); miscellaneous expenses, \(\$ 1,455,019,473\), increase \(60.7 \%\); cost of materials, \(\$ 8.503,949,756\), increase \(29.3 \%\); value of products, including custom work and repairing (in such factories), \(314,802,147,087\), being an increase of \(29.7 \%\). Of the last item 83,269,757,067 represented the value of the products of rutal factorics (that is, those in cities of under 8000 inhabitants). The increase of the different items during the five years was greater in every case in the rural than in the urban factories. There was a very slight decline in the number of child labourers both in city and country, their cotal number in 1905 being 159,899 and in 1900 161,276. The total wages paid to children under 16 years, however, which was in 1905 \$27,988,207, increased both in the city and, especially, in the country, and was \(13.9 \%\) greater in 1905 than five years earlicr. In the same period there was an increase of \(16.0 \%\) in the number and of \(27.5 \%\) in the wages of women workers of 16 years (and upwards) of age.

Dedueting from the total value of manufactured products in 1905 the cost of partially manufactured materials, including mill supplies, a net or true value of \(\$ 9.821,205.387\) remains. Partially manufactured articles imported for use in manufactures are not included. Deducting from this the cost of raw materials and adding the cost of mill supplies, the result- \(86,743,399,718\) -is the value added to materials by manufaeturing processes.
The extent to which manufactures are controlled by large factories is shown by the fact that although in 1905 only \(11 \cdot 2 \%\) of the total number reported products valued at \(\$ 100,000\) of over, these establishments controlled \(81.5 \%\) of the capital, employed \(71.6 \%\) of the wage earners, and produced \(79.3 \%\) of the value of the products, of all establishments reported. \(52.3 \%\) of the total number, employing \(66.3 \%\) of all wage-earners, and producing \(69.7 \%\) of the total product-value, were in urban centres.
Only six establishments in a thousand employed as many as soo workers, and only two in a thousand employed as many as to00 workers. Cotton mills are most numerous in the last class of establishments. The mamufacture of lumber and timber gave employment to the largest total number of workers: and this industry, together with those of foundry and machine shops (including locomotiven, stoves and furnaces), cotton goods (including small wares), railway car and repair shops, and froa and steel, were (in order) the five greatest employers of labour.

Measured by the gross value of products, wholesale slaughtering and meat packing was the most important industry in 1905. The products were valued at \$801,757,137. In cach of four other industries the products exceoded in value five hundred millions of dollars, namely, those of foundry and machine shops, flour and grist mills, iron and steel, and lumber and timber. In one other, cotton These six industries contributed \(27.2 \%\) of the value of all manufactured products. Both int 1905 and in rgoo the group of industries classed as of food and kindred poducts ranked first in the cost of materiak used and the value tures to agriculture is reflected in
the fact that, of the raw materials used, \(79.4 \%\) came from the farm. The remainder came from mipes and quarries, \(15 \% \%\); forests. \(5.2 \%\) the sea, \(0.4 \%\)
Four states-New York, Pennsylvania, Illinois and Massachusetts - each manufactured in 1900 products valued at over \(\$ 1,000,000,000\); New York exceeding and Pennsylvania attaining almost taice that sum. The manufacture of some products is highly localized Thus, of silk goods, worsteds, the products of blast furnaces, of rolling mills and stcel works, glass, boots and shoes, hosiery and knit goods, slaughtering and meat products, agricultural implements. woollens, leather goods, cotton goods and paper and wood pulf four leading states produced in each case from \(88.5 \%\), in the caso of silk goods, to \(58.6 \%\) in the case of pulp.
M. G. Muthall (Indusiry and Weallh of Nations, 1896) assigned fourth place to the United States in 1880 and first place in 1894 in the value of manufactured products, as compared with otber countries. Paul Leroy-Beaulieu (Les Elats-Unis aw \(x x^{2 m a n}\) Siede, Paris, 1904) would assign primacy to the United States as far back as 1885. Since the English board of trade estimated the exports of British manufactured goods at from 17 to \(\mathbf{2 0 \%}\) of the industrial output of the United Kingdom in 1902, this would indicate a manufacture product hardly two-thirds as great as that of the true factory estallishments of the United States in 1900. But exact data for com parison do not exist for other countries than the United States. In the production of pig iron, the share of the United States seems to have been in 1850 about one-eighth and that of Great Britain onehalf of the world's product; while in 1903 the respective shares were 38.8 and \(19.3 \%\); and Germany's also slightly exceeded the British output. In the manufacture of textiles the United Stares huld the second place, after Great Britain; decidedly second in cottons. a close competitor with Great Britain and France in woollens, an with France in silks. In the manufacture of food products the United States holds a lead that is the natural result of immense advantages in the production of raw materials. No other couniry produces halr so much of leather. In the dependent industry of boots and shoes her position is commanding. These facts give an idea of the rank of the country among the nanufacturing countries of the world. The basis of this position is generally considered to be, partly, immense natural resources available as materials, and partly, an immense home market.

For Agriculture, see the article Acriculture; for Fisheries. se Fisheries; and for Forestry, see Forests and Forestry.

Mincrals. - In 1619 the erection of "works" for smelting the ores of iron was begun at Falling Creek, near Jamestown, Va., and iron appears to have been made in 1620; but the enterprise was stopped by a general massacre of the settlers in that region. In 1643 the business of smelting and manufacturing iton was begun at Lymn, Mass, where it was successfully carried on, at lenst up to 1671 . furoishing most of the iron used in the colony. From the middle of the 17 th century the smelting of this metal began to be of importance in Massachusetts Bay and vicinity, and by the close of she century there had been a large number of ironworks established in that colony, which, for a century after its settlement, was the chiel seat of the iron manufacture in America, bog ores, taken from the bottom of the ponds, being chiefly used. Early in the 18th century the industry began to extend over New England and into New Jerey. the German bloomery forge being employyed for reducing the ore directly to bar iron, and by the middle of that century it had taken a pretty firm hold in the Atlantic colonies. About 1789 there were fourteen furnaces and thirty-four forges in operation in Pennsylvania. Before the separation of the colonies from the mother country, the manufacture of iron had been extended through all of them. With the possible exception of Georgia. As early as , 1718 iron (both pif and bar) began to be sent to Great Britain, the only country to whict the export was permilted, the annual amount between 1730 and 1775 varying ordinarity between 2000 and 3000 torst, but in onc year (1771) rising to between 7000 and 8000 tons.

The lirst metalother than ifon mined by whites within the tervitory of the United States was lead, the discovery of which on the American continent was recorded in 1621. The first English settlers on the Atlantic bartered lead of domestic origin with the indians in the 17th century, and so did the French in the upper Mississippi Valley. The ore of the metaf occurring in the Mississippi basin-galent-p scattered widely and in large quantities, and being easily smelied by the roughest possible methods was much used at an early dale In the second half of the 18 th century, during the period of Frescb and Spanish domination in the valley, lead was common medium of exchange, but no real mining development took place. Copper was the next metal to be mined, so far as is known. The frst company began work about 1709, at Simsbury, Conn. The ore obtained there and in New Jersey seems to have been moskly shipped to England. A few years later attempts were made to work tines of lead and cobalt in Connecticut and Massachosetts

The lirst mining excitement of the United States dates back to the diseovery of gold by the whites in the Southern states, alon the eastern border of the Appalachian range, in Virginia, and ic North and South Carolina. The existence of gold in that region had been long known to the aboriginal inhabitants, but no attention was paid to this by the whites, until about the beginning of the 19th century, when nuggets were found, one of which weighed 28 B .

From 1824 the search for gold continued, and by 1829 the business had becouse important, and wat attended with no little excitement. In 1833 and 1834 the amount annually obrained had risen to fully a milion of dollars. A rapid development of the lead mines of the West, both in Miscouri and on the Upper Mississippi in the repion where lowa, Wisconsin and Illinois adjoin one another, wok place during the Grat quarter of the 19th century, and as early at 1826 or 1827 the amount of this metal obtained had risen to nearly 10,000 tons a year. By this time the making of iron had also become important, the production for 1828 being eatimated at 130,000 tons.

In 1820 the first cargo of anthracite coal was shipped to Philadel rhia. From 1830 the increase in the production was very rapid, and in 1841 the annual shipments from the Pennsylvania anthracite segion had nearly reached \(1,000,000\) tons, the output of iron at that time being estimated at about 300,000 tona. The development of the coal and jon interests, and the increasing importance of the gold product of the Appalachinn auriferous belt, and also of the lead product of the Mississippi Valley, led to a more general and decided interest in geology and mining; and about 1830 geological curveys of several of the Atlantic mates were begun. and more systematic explorations for the ores of the metals. as well as for coal, were carried on over all parts of the country then open to settiement. An important step was taken in 1844, when a cession of the region on tiee south shore of Lake Superior was obtained from the Chippewa Indians. Here explorations for copper immediately began, and lor the first time in the United States the business of mining for the metals began to be developed on an extensive acale, with suitable appliances, and with financial success. An event of still greater importance took place almont inmediately after the value of the copper segion in guestion had been fully ascertained. This was the demonstration of she fact that gold existed in large quantities along the western shope of the Sierra Nevada of California. In five years from the discovery of gold at Colome on the American river, the yield Irom the auriferous belt of the Sierra Nevada had risen to an amount estimated at betwoen aixty-five and meventy millions of dolans a year, or five times as much as the total production of this metal chroughout the wortd at the beginning of the centary.

The following details show the development of the mineral recources of the country at the middle of the 19th century. In 1850 mane the shipments of anthracite a mounted to nearfy \(3,500,000\) andestes tons; those of Cumberland or semi-bituminous coal were cteri 28Sh had risen to between 500,000 and 600,000 tons. The anmual yield of gold in the Apgalachian belt had fallen of \(t 0\) about \(\$ 500,000\) in value, that of California had risen to \(\$ 36,000,000\), and was rapidly approaching the epoch of its culmination (\(1851-1853\)). No silver was ohtained in the country except what ras separated from the native gold, that mined in Califomia contrining usually from 8 to \(10 \%\) of the less valuable metal. The ore \(\Rightarrow\) mercury had been discovered in California before the epoch of the gold excitement, and was being extensively worked, the yield in the year \(1850-1851\) being nearly \(2,000,000 \mathrm{Jb}\). At this time the copper mines of Lake Superior were being successefuly developed. and nearly 600 tons of metallic copper were produced in 1850. At many points in the Appalachian belt attempts had been made to wort mines of copper and iead, but with no considerable succest About the middle of the century extensive works were erected at Newark, New Jersey, for the manufacture of the oxide of zinc for paint; about 1100 tons were produced in 1852. The extent and Value of the depostts of rinc ore in the Saucon Valley, Pennmylvania, had also just become known in 1850 . The lead production of the Miswour mines had for some years been nearly stationary, or had declined slightly from its former importance: while that of the upper Mississippi region, which in the years just previous to 1850 had risen to from 20,000 to 25,009 tons a year, was declining, having in 1850 sunk to less than 18,000 tons.

At the end of the ceatury, in only fifty years, the United Seates had secured an casy first place among the mineral-producing countries poovat of the world. It held primacy, with a large margin,

Poopren of manter in the yield of coal, iron, lead and copper, the minerals most important in manufactures; in gold its output was socond only to that of South Africa (though practically equalled by that of Australia); and in silver to that of Mexico. Although the data are in general incomplete upon which might be based a comparison of the relative standing of different countries in the production of minerals of lesser importance than those just mentioned, it was estimated by M. G. Mulhali (Industries and Weallh of Nalions, edition of 1896, pp. 34-35) that Great Britain then produced approximately one-thrrd, the United States onc-third, and anl other countries collectively one-third of the mincrals of the world in weight.

The leading products, as mported by the Geological Survey for 1907, were as follows: coal. \(8614,79^{8,808}\) (\(85,604,312\) tons of anthracitc cial, \(394,759,112\) of bituminous) ; petroleum, \(\$ 120,106,749\) : mitural gas, \$54.222.399; iron ore, \$131,996.147 (pig iron, \(\$ 529.958,000\)): copper, refined, \(\$ 173.799,300\); gold, coinage value, 800.435.70n: luiafing-stone, \(871,105,805\) : silver, commercial value, \$37,299,700: head, refined, \$38,707,596: and zinc, refined, \$26,401,910.

The North Atlantic and the North Central census sroups of statee (chat is, the territory cast of the Mixsissippi and north of the Ohio rivers, and north of Maryland) produced ewo thirds of the total outpat. Pennsylvania, Obio, Illinois, West Virginia, California, Colorado, Montana, Michigan, New York and Missouri were the ten states of greatest absolute production in 1907. The rank relative to ares or population is of course different. Those which, according to the bureau of the census. produced \(\$ 1000\) or over per sq. m . in 1902 were Penngylvania, Ohio and West Virginia ; \(\$ 500\) to \(\$ 1000\), Illinois, Michigan. Indiana, Vermont and Mastachusetts. Seventeen statce produced from \(\$ 100\) to \(\$ 300\) per \(19 . \mathrm{m}\).

The total mineral output for the decade 1809-1908 according to the United States Ceological Survey was as follows:-
\begin{tabular}{|c|c|c|c|}
\hline Year. & Total Value of Producta. & Value of Non-metallic Products. & Value of Metallic Products. \\
\hline 1908 & 1,595.670,186 & \[
\stackrel{\$}{1,045,497,070}
\] & \[
\int_{549,923,116}^{\$}
\] \\
\hline 1907 & 2,071,607,964 & 1,167,705.720 & 903, 302,244 \\
\hline 1906 & 1,902,517,565 & 1,016,206,709 & 886,110,856 \\
\hline 1905 & 1,623,928,720 & 921,075,619 & 702,453,101 \\
\hline 1904 & 1,361.067,554 & 859,383,604 & 501,099,950 \\
\hline \(\underline{603}\) & 1,491,918,980 & 793,962,609 & 624.318.008 \\
\hline 1902 & 1.323,102,717 & 617,251,154 & 642,258,584 \\
\hline 1901 & 1,141,972,309 & 567,318,592 & 518,266.759 \\
\hline 1900 & 1,107,020,352 & 512,195,262 & 550,425,286 \\
\hline 1899 & 1,014.355,705 & 446,090,251 & 525.472 .981 \\
\hline
\end{tabular}

The vantly greater part of mineral products are used in manufactures withia the United States, and only an insignificant part (lor example, \(2.47 \%\) in 1902) is exported in the crude form.

Coal exists in the United States in large quantity in each of its important varicties: anthracite, or hard coal; bituminous, or aot coal; and lignite; and in various intermediate and special grades. Geologically the anthracite and bitumimainly belong to the same tormation, the Carboniferous by the Unedecially true of the better qualities; though it is stated coni the nited States Geological Survey that the geologic age of the coai beds ranges from Carbonifcrous in the Appalachian and Miseisippi Valley provinces to Miocene (Tertiary) on the Pacific coast, and that the quality of the coal varies only to a very uncertain degree with the geologic age. The following estimates rest upon the same authority: (1) total area undertaid by coal measures \(496,776 \mathrm{eq}\). m., of which 250,531 are credited to anthracite and bituminous, 97,636 to sub-bituminous and 148,609 to lignite; (2) total original coal supply of the country, \(3,076,204,000,000\) short tons, including \(21,000,000,000\) tons of anthracite in Pennsylvania and small amounts elsewhere (semi-anthracite and wemi-bituminous). \(650,157,000,000\) tons of sub-bituminous and 743,590,000,000 tons of lignite; (3) easily accessible coal still avail. able, \(1,992,979.000,000\) tons: (4) availabie coal accessible with difficulty, \(1,153,225,000,000\) tons.
The total production of coal from 1814 (the year in which anthracite was first mined in Pennsylvanin) to 1908 amounted to \(7,280,940,265\) tons. which represented an exhaustion-adding \(50 \%\) for waste in mining and preparation of \(11,870,049,900\), or four-teaths of \(1 \%\) of the suppoeed original supply.
In 1820 the total production was only 3450 tons In 1850 it was aiready more than \(7.000,000\). And since then, whike the population increased \(230 \%\) from 1850 to 1900 , the production of coal increased \(4,084 \%\) At the amme time that the per capita consumption thus rowe in 1907 to 5.6 tons, the waste was estimated by the National Conservation Commission it 3.0 tons per capita. This waste, however, is decreasing, the coal abandoned in the mine having averaged, in the beginning of mining, two or three times the amount taken out; and the chief part of the remaining waste is in imperfect combustion in furnaces and fire-boxes. Thus, notwithstanding the fact that the supposed supply still avail. able at the close of 1908 was 7369 times the production of that ycar, and 4913 times the exhaustion such production represented, so extraordinary has been the increased consuinption of the country that, in the opinion of the Geologieal Survey (1907), "if the rate of increase that has held for the last fifty years is maintained, the supply of easily available coal will be exhausted before the middle of the next century " (A.D. 2050).
In 1870 both Great Britain and Germany exceeded the United States in the production of coal. Germany was passed In 1871 (definitively in 1877); Great Britain in 1899. Since 1901 the United States has produced more than one-third of the world's output.
Coal was produced in 1908 in 30 states out of the 46 of the Union; and ocrurs also in enormous quantities in Alaska; \(690.43^{8}\) men were cmpioyed in this year in the cosl mines. Pennsylvania (117,179,527 tons of bituminous and 83,268.754 of anthracite), Illinois (47,659,690), Vest Virginia (\(41,897,843\)), Ohio (26,\(2 ; 0.639\)). Indiana (\(12,314,890\)) and Alabama (iI,604.593) were the states of greatest production. The production of each wis greater still in tor 7 .
The total output amounted to \(415,842,692\) short tons, valwed at
\$532,314.117 in 1908 ; and to \(480,363,424\) tons, valued at \(\$ 614,798,898\) in toog. Penusylvania produced three-fourths of the total output of the country in 1860, and since 1900 slightly less than one-half. Up to 1870 there was more anthracite mined in Pennsylvania than bituminous in the whole country, but since that year the production of the latter has become vastly the greater, the totals in 1907, in which year each stood at its maximum, being \(83,268,754\) and \(332,573,944\) tons respectively.
inasmuch as the present production is not considered locallyaod with more or less justice-as at all indicative of the weal th in coal of the respective states, it may be said that according to estimatea of the Geological Survey the following states are credited with the deposits indicated of true bituminous coal, includiag local admixtures of anthracite, the figures being milions of short tons: Colorado, 296,272; Illiools, 240,000; West Virginia, 231,000; Utah, t96,408; Pennsylvania, 112,574 ; Kentucky, 104,028; Ohio, 86,028; Ala bama. 68,903; Indiana, 44.169: Missouri, 40,000; New Mexico, 30.805. Tennessce, 25,665; Virginia, 21,600; Michigan. 12,000; Maryland, 8.044 ; Texas, 8,000 ; Kansas, 7.022; and Montana, 5,000; with lesser deposits in other states. At the same time there are estimated deposits of sub-bituminous coal, isolated or mixed with hituminous, amounting to 75.498 millions of tons in Colorado (which is probahly the richest coal area of the country); and in other states as follows: Wyoming, 423,952 millions of tons; New Mexico, 13?.975; Washington, 20,000; Montana, 18.560; California and Oregon, 1.000 each; and lesser amounts elsewhere. Finally, of true lignite beds. or of lignite mixed with sub-bituminous qualites, the states af North Dakota. Montana, Texas and South Dakota are credited with deposits of 500,\(000 ; 279,500 ; 23,000\); and to 000 millions of tons respectively. But it is to be remembered that the amount and the fucl value of both the lignite and, to a lesser degree, the aub-bituminous coals, is uncertain to a high degree.

Petroleum, according to the report of the National Conservation Commission in 1008, was then the sixth largest contributor to thi Petroleum. nations mineral wealth, furnishing alout one-sixteenth states. This productive area is divided by in the United States Geological Survey into six "fields "(in addition to some scattering states) with reference to the quality of oil that they produce, such quality determining their uses. The Appalachian field (Pennsylvania, New York, Ohio, West Virginia and Tennessec) produces oil rich in paraffin, practically free from sulphur and asphalt, and yielding the largest percentage of gasoline and illuminating oils. This is the highest grade crude oil produced in the world. The California field produces oil characterized by much asphait and little or no paraffin, and low in volatile constituents. The Lima (Ohio)-Indiana, the Illinois, the Mid-Continent (Kansas, Oklahoma and northern Texas) and the Gulf (Texas and Louisiana) fields produce oils containing more or less of sulphur and asphalt between the extremes of the two other ficlds just mentioned. The geological conditions of the different fields, and the details of the composition of the oils yielded, are exceedingly varied, aod their atudy has been little more than begun.

In 1859. when the total output of the country is supposed ta have been only 2000 barrels of oil, production was confined to Pennsylvania and New York. Ohio, West Virginia and California appeared as producers in 1876, Kentucky and Tennessee in 1883, Colorado in 1887, Indiana in 1889, along with Illinois, Kansas, Texas and Missouri, Oklahoma in 1891 , Wyoming in 1894, and, lastly, Louisia na in 1902. From 1859 to 1870 the Appalachian fied yielded \(100 \%\) of the total output of the country; in 1908 its share had fallen to \(13.9 \%\). In the same period of 50 years the yearly output rose from 2000 to \(179.572,479\) barrels (134.717 .580 in 1905) and to a grand total of \(1,086,180,942\) barrels, \({ }^{1}\) worth \(\$ 1,784,583,943\), or more than half the value of all the gold, and more than the commercial value of all the silver produced in the country eince 1792. The production in 1908 exceeded in value the output of both metals. Deducing from the figures of production since 1859 an equation of increase, one finds that in each nine years as nuch oil has been produced as in all preceding years together, and in recent years the factor of increase has been laigher. So rapid has been the extension of the yiclding areas, so diverse the fate of many fields, to shifting their relative rank is output, that the outlook Irom year' to yoar as regards all theve slements \(\frac{1}{2}\) too uncertain to admit of definite staterienss respecting the sclative importance of the five ficlde already menetioncd The total output of these, it may be stated, from 1901 to

United Statea was lit tle greater than that of Russia (the two yielding \(9.4 \%\) of the world's product), but this advantage has since then been greatly increased, so that the one has produced 63.1 and the other \(21.8 \%\) of the total output of the world. In 1908 the Geological Survey issued a preliminary map of the then known area productive of oil and natural gas io the United States, estimating the extent of the former at 8850 and of the latter at \(9365 \mathrm{sq} . \mathrm{m}\). The supply of oil in this area wias estimated at from 15,000,000,000 to \(20,000,000,000\) barrels; and the National Conservation Commission of 1908 expressed the opioion that in view of the rapid increase of production and the enormous loss through misuse the supply cannot be expected to last beyond the middle of this century.
Natural gas, as a source of light and for metallurgical purposec; became important in the mid-eighties. In recent years its use for industrial purposes has leasened, and for domestic pur- Natural Cas. poses increased. The existence of outllowe or springs of gas in the region west of the Alleghanies had loog been known. and much gas was used for illuminating purposes in Fredonia, New York, as early as 182 I . Such gas is a more or less general concomitant of oil all through the petroleum-bearing areas of the country. The total output of the country rose from a value of \(\$ 215.000\) in 1882 to one of \(\$ 54,640,374\) in 1908, with several fluctuations up and down in that interval. Pennsylvania, with a produce valued at \(\$ 1 \$ 5,620,395\) from 1899 to 1908 . West Virginia with \(\$ 84,953,496\), Ohio with \(\$ 48,172,450\) and Indiana with \(\$ 46,141,553\) were the greatest producers of the Union.
The National Conservation Commission in 1908 est imated the area of the known gas fields of the country at \(9000 \mathrm{sy} . \mathrm{m}\). ; the portion of their yield in 1907 that was utilized at \(400,000,000,000\) cub. fe. and the waste at an equal amount-more than \(1,000,000,000\) of cub. ft. daily, or enough to supply all the cities in the United States of above 100,000 population.

Of other non-metallic mineral substances, apart from coai; persoleum and natural gas, litzle need be said in detail. Stone is of the greatest actual importance, the value of the quarry output, including some prepared or manufactured product, such as dressed and crushed stone, averaging \$65,152,312 annually in 1904-1906 Limestone is by far the largest element, and with granite makes up ewo-thirds of the total value. Vermort, Penasylvania and New York are the leading producers. In this, as in other cases, actual product may indicate little regarding potential resources, aod still less regarding the distribution of these throughout the Union Glass and other sands and gravel (\(\$ 13,270,032\)). lime (\(\$ 11,091,186\)) phosphate rock (\(\$ 10,653,558\)), salt (\(\$ 7,553.632\)), natural minerai waters (\(\$ 7,287,269\)), sulphur (\(\$ 6,668,215\), almost wholly from Louisiana), slate (\(\$ 6.316,817\)), gypsum (\(\$ 4,138,560\)), clay (\(\$ 2,599,986\)), asphalt (\(\$ 1,888,681\)), talc and soapstone (\(\$ 1,401,222\)). borax (\(\$ 975,000\), all from Califormia), and pyrite (\(\$ 857,113\)) were the mext most important products in 1908. It may be noted that the output in almose every item of mineral production was considerably greater in 1907 than in 1908, and the isolated figures of the latter year are of litele interest apart from showing in a general way the relative commercial importance of the products named. In the yield of gypsum, phosphate rock and salt the United States leads the world. In sulphur it is a close second to Sicily. Phosphate rock is heavily exported, and in the opinion of the National Conservation Com. mission of 1908 the supply cannot long satisly the increasing demand for export, which constitutes a waste of a precious natural resource. Other minefais whose production may be found stated in detail in the annual volume on Mineral Resources of the United States Geological Survey are: natural pigmeots, felspar, white mila graphite, fluorspar, arsenic, quartz, barytes, bromine. Some dozens of varietics of precious stones occur widely. Of building-stone, clay, cement, lime, sand and salt, the country's supply was estimated by the National Conservation Commission of 1908 to be ample.
In 1907 iron ore was mined for blast-furnace use in twenty-aine stater ooly, but the ore occurs in almost every state of the Union. As nearly as can be estimated from imperfect statistics, the total ore production of the country rose steadily from 2,873,490 long tons in 1860 to \(51,720,619\) tons in 190\%. The United States became practically independent of forcign ore imports during the decade 1870 to 1879. The iron-producing area of the country may be divided, with regard to natural geographic, historic and tradie considerations, into four districts: (1) the Lake Superior districe. embracing the states of Minnesota, Michigan and Wisconsin: (2) the southern district, embracing the triangle tipped by Texas Maryland and Georgia; (3) the northern district, embracing the triangle tipped by Ohio, New Jersey and Massachusetts. plus the states of lowa and Missouri; (4) the western district. Which includes the states of the Rocky Mountain region and Pacific coast. Of these districts the Lake Superior region-which embraces th: Marquette range (opened in 1854), the Menominec (1872), the Gogetic (1884), the Vermilion (1884) and the Mesabi (1892)-Gisit attracted exploratioa about 1844, when the cupper deposits of thr same region were opened, and produced from 1854 to 1908 a total of \(410,239,551\) long tons, of which \(341,036,883\) were mined in th: perind 1889-1908. From the Mesabi range alone, opened in 189 : a0 less than \(168,143,601\) long tons were taken up to 1908 . The
ehare of the whole diderict for come years past hin baen procteally four-fifths of the total output of the eountry; and together with the yield of the southern district, more than \(90 \%\) Minnesota alone produces more than half of the same total, having muttiplied her product since 1889 by more than 33 times Michigan beld first place in output unti] igol. Alabama is the third great producer of the Union, and with the other two made up in 1907 more than lour-fifths of the country's total. In 1907 the product of Minnesota (\(28,969.658\) long tons) was greater than that of Germany (with Luxensburg), and nearly twice the production of Great Britain.

Of the \(t^{\text {woo }}\) classes of iron minerals ased as ores of that metal, mamely, oxides and carbonates, the latter fumish to-day an inaisnificant proportion of the coumtry's product, although auch ores were the basis of a considerable part of the early iron industry, and even so late as 1889 represented one-thirteenth of the total. Of the oxides, various forms of the brown ores in locations near to the Atlantic coast were the chief basis of the early iron inductrica. Magnetites were also early employed, at furst in Catainn forges, in Which by means of a direct process the metal was secured from the ores and forged into blooms without being cast: later they were melted ia blast furnaces. But in the recent and sreat development of the iron industry the red haematite ores have leen overwheiraingly predominant. From 1889 to 1907 the average of the red haematite, brown ores, magnetite and canbonate in the total ore production were respectively 82.4, to. 1, 7.1 and 0.4 in the censoas of 1870 the share of the three varieties appeared almost equal; in 1809 that of the red ores had risen to near two-thirds of the total. The red and brown ores are widely distributed, every state in the Union in 1907. save Ohio and North Carolina, producing one or both. Magnetite production was confined to mountain regions in the east and west, and only in Ohio were carbonatea mined.
As investigation was made in 1008 for the National Conservation Commission of the ore reserves of the country. This report was made by Dr. C. W. Hayes of the Goolleyical Survey. With the reservations that only in the case of certain red haematite bedded deposit: can any estimate be made of relative accurary, say within \(10 \%\); that the concentration deposits of brown ore cas in withatix only with an accuracy represcated by a factor varing between o. 7 and 3; and that the great Lake Superior and the les; known Adironitatk country wail extimated at \(79,594,220,000\) long tons- \(73,210,415,000\) of which were credited to haematite on tas and 5.054 , 575.010

The output of pig pron and steel in 1907 was 25.781,361 and \(23.362,594\) long tons respectively. It is believed that the first tell made in the United States was made in Connecticut in 1728 Crucible steel was first wrccessfully produced in 1832, Beseemer and open-hearth in 1864. Pennsylvania, Ohio, Illinois, Alabama and New York are the leading states ln production.
The washing of the high or Tertiary gravels by the hydravtic process and the working of mines in the solid rock did not, on the

\section*{acldead Civor} whole, compersate for the diminished yleld of the ordinary placer and river diggings; so that the product of gold in California continued to fall off, and by 1860 had dacrumed to about half what it had been ten years before. Discoveries in other Cordilleran territories, notably in Montana and Idaho, made up, however, in part for the deficiency of Caliornia, so that in 1860 the total ameunt of gold produced in the United States was estimated at not lems than \(\mathbf{4 5 , 0 0 0 , 0 0 0}\). In the latter part of the decade t8go-18s9 the territories adjacent to California on the east, north and south were overrun by thousands of niners Irom the Sierra Nevada goldfields, and within a few years an extreordinary number of discoveries were made, some of which proved to be of great importance. The most powerful impulse to mining operations, and the immediate cause of a somewhat lengthy period of wild excitement and speculation, was the discovery and auccesful opening of the Comstock lode in 1859 , in the western part of what is now Nevada, but was then pert of Utah. About this lode Frew up Virginia City. From 1839 to 1902 the total yield of this lode was \(\$ 204,653,040\) in silver and \(6448,145.385\) in sold; the average annual yieid from 1862 to 1868 was above tieven milions; the maximum yield \(36,301,537\) in 1877 ; and the total product to fuly 1880 was variously estimated at from \(8304.751,171.54\) to 306,181,251-25- The lode was an ore channel of great dimonsions incfuded vithin volcanic rocks of Tertiary age, theraselves broker through pre-existing etrata of Triassic age, and exhibited some of the features of a fissure vein, combined in part with those of a contact deposit and in part with those of a segregated vein. The gangue was quartz, very iregularly distributed in hodies often of great des, for the most part neariy or quite barren of ore. The metalliferous portion of the lode was simiarly distributed in great manses, known as "bonanzas." The next most famous lode is that of Leadville, Colorado, which from 1879 to 1889 vielded \(8147,834,186\), chielly in silver and lead. In later years the Cripple Creek district of Colorado became specially promincent.
The total output of gold and silver in the United States according to the eables published by the Dircctor of the Mint has been as op the a
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Yeas.} & \multicolumn{2}{|c|}{Cold} & \multicolumn{2}{|r|}{Silvet.} \\
\hline & Guanify h & Velun & In ongy in & Comonercial Value. \\
\hline \multirow{3}{*}{\[
\begin{aligned}
& 8700-1847 \\
& 1846-1822 \\
& 2873.1008
\end{aligned}
\]} & & 5 & & 8 \\
\hline & \[
\begin{aligned}
& 8,187,190 \\
& 5,370,79 \\
& 8,813,231
\end{aligned}
\] & 24.337000 \(1,204.750,000\) 1,8j6,344,000 & \[
\begin{array}{r}
300,500 \\
1,18,30,200 \\
1,664,27 t, 300
\end{array}
\] & \[
\begin{array}{r}
404,500 \\
1,57-749,900 \\
1,379,891,800
\end{array}
\] \\
\hline & 148.309 .179 & \$3,005,691000 & 1,783,148000 & \$1.538,046,600 \\
\hline
\end{tabular}

Coloraplo (\(\$ 22,871,000\)), Alaska (\(\$ 19,858,800\)), California (\(\$ 19,329,700\)). Nevadi (\(\$ 11,689,400\)), Sputh Dakote \((\$ 7,748,200)\), Utah (\(\$ 3,946,700\)). Montana (\(\$ 3,160,000\)) and Atizona \((\$ 2,500,000)\) were the leading producers in 1908, in which year the totals for the two metale wert \(\$ 94.560,000\) for gold and \(\$ 28,050,600\) for silver.

The grade of precious ores . Gandled has generally and greatly dacreaced in recent years-according to the census data of 1880 and 1902, dirresteding all base metallic contents-from an average commerical value of \(\$ 29.07\) to one of \(88 \cdot 29\); nevertheless the product of gold and silver has greatly increased. This is due to improver ments in mining methods and reduction procesees, which have made profitable low-grade ore that were not commercially available in 1880.

Copper was produced in 1908 in twenty-four states of the Union. Their output was almoet eeventeenfold the quantity reported by the census of 1860. The quantity produced from 1845the year in which the Lake Superior district becsone a Coppon producer, and in which the total product was only 224,000 Ib-up to 1908 was \(13,106,205,634 \mathrm{ib}\). The increaces from 1845 to 1850 , in each decennial period thereafter, and from tgor to 1908, were as follows, in percentages : \(50-0,27 \cdot 0,6 \cdot 1,7 \cdot 2,14 \cdot 8,9 \cdot 1\) and \(5 \cdot 8\). The total product passed \(10,000,000 \mathrm{Hb}\) in 1857, 20,000,000 Hb in 1867 , \(30,000,000\) to in 1873,40,000,000 th in 1875,50,000,000 lb in 1879 and \(100,000,000 \mathrm{lb}\) in 1883. Comparing the product of the finited States with that of the world, the figures for the two respectively were 23,350 and 51,936 long tons in 1879 , when the United States was second to both Spain (and Portugal) and Chile as a producer: 51,570 and 199,406 long tons in 1883, when the Unitew States first took leading rank; 172,300 and 334,565 lons tonis in 1895, when the yield of the United States firnt exceeded that of all other parts of the world combined; and \(942,570,000\) and \(1,667,098,000 \mathrm{fb}\) in 1908.

The three leading producing acstes or Territorie of the Union are, and aince the carly 'eighties have been, Arizona, Montana and Michigan. With Utah and California their yicld in 1908 was \(93 \%\) of the total. During the decade ending with that year the average yearly output of the three first-named was 197.706.968 ib, 267,172,95 I Ib and 192,187,488 th respectively.

The production of lead was for many years limited, as already mentioned, to two districts near the Mississippi: one the so-called Upper Mines of Wisconsin, lowa and Illinais; the other
the Lower Mines of southeastern Missouri The Lowh national government, after reserving the mineral lands (1807) and attempting to lease them, concluded in 1847 to sell them, owing to the difficulty of preventing illegal entry and collecting royalties. The yicid of the Upper Mines culminated about 1845, and long ago became insignificant. The greatest lead dis trict is in south-western Missouri and south-eastern Kinsas, known as the Joplin-Galena district after the names of the two cities that are its centre. The United States is the greatest lead producer and consumer in the world, its percentage of the total output and consumption avcraging \(30.4 \%\) and \(32.5 \%\) respectively in the years 1904-1908. Since \(\mathbf{3 8 2 5}\) the total product of lead refined from domestic ores and domestic base bullion was, up to the close of 1908, 7,091,548 short tons. An annual yieid of 100,000 tons was first passed in 1881; of 200,000, in 1891; of 300,000, in 1898. The total refined domicstic product in 1907 was 337,340 , and the total domestic lead smelted was 365,166 tons. Of the smelter domentic product 235,559 tons were of desifverized lead and 129,607 of soft cad. Consjderable quantities of foreign ores and base bultion are also refined in the United States. The average percentage of metallic recovery from lead ores was about \(68 \%\) in 1880, and again in 1002. according to the national censuses of these years. According to the burcau of the census the value in 1902 of the lead yielded by copper, by non-argentiferous lead and zinc, and by gold and silver ores respectively was \(319,053,85,850,721\) and \(\$ 12,311,239\). This reflects the revolutionary change in the history of iead mining since the first discovery of argentiferous lead ores in the Rocky Mountain states in 186., which became available only after the building of railways. Until the completion of the Union Pacific in 1869 there was no smeiting of such ores except for their silver contente. The deposits in the Joplin-Calena district were discovered in 184 s , but attracted littie attention for three decades. Of the soft lead stnelted in 1907 no less than \(9.8 \%\) came from Missouri. Jdaho, Utah and Colorado produce together almost as great a proportion of the desilverized lead, half of which has come in recent years from Idabo.

Spelter production began in the United States in 1858 in an experimental way, and regular production in 1860 . The censue of
the latter year reported an output of product valued at \(\$ 72,600\) According to the census data for 1889 and 1902 there was an in Zhina crease in value of product of \(184.1 \%\) in the interval, and of \(109.5 \%\) in the quantity of ore produced. The value of products in 1902 were reported as \(\$ 340,686\) from gold and silver ores, and \(\$ 8,665,675\) from non-argentilerous lead and zinc ores. The total product of zinc from domestic ore for the entire country was 7343 short tons in 1873 , passed 100,000 tons in 1898 , and 200,000 in 1907, when it amounted to 223.745 tons. From 1904 to 1008 the share of the United Statea in the world's output averaged \(28.2 \%\), and in the world'e consumption (disregarding stocks) \(\mathbf{2 7 . 3} \%\) Of the product of 1907 above stated no less than \(63.4 \%\) came Irom Missouri alone; Colorado, Wisconsin, Kansas and New Jersey yielding together \(30.8 \%\) more.

Most of the quicksilver produced in the United States comes from California (\(86 \%\) of the total in 1908), but a considerable quantity erary. comes from Texas, and small amounts are produced in Utah, Arizona and Oregon. Veins of cinnabar are known elsewhere in the Rocky Mountain and Sierra Nevada regions but not in workable quantities. The mercunal ores of the Pacific Cosst ranges occur in very irregular deposits in the form of strings and bunches, disseminated through a highly metamorphosed siliceous rock. The first locality where the metal was successfully mined was at New Almaden, about 100 m . south of San Francisco. These mines have been productive since 1824 . Another old mine discovered in 1853 , is the New Idria located another 100 m . farther south. These two are still among the foremost producers.

From 1850 to 1908 California produced a total of 2,052,000 flasks of metal, of \(76-5 \mathrm{hb}\) (since June \(\mathrm{I}, 1904,75 \cdot \mathrm{otb}\) net) each. The year of ereatest yield was 1877 , with 79,395 flasks. The production had steadily fallen to 16,984 flasks in 1908 , but in the opinion of the United States Greological Survey this reduction is mainly attributable, in recent years at least, to market conditions, and does no truly Indicate the exhaustion of the mines, although the ores now available are of low grades, those of New Almaden having shown a decrease in yield from \(36.7 \%\) in \(1850-1851\) to \(0.74 \%\) in 1895-1896, so that only the preatest metallurgical skild and husiness economy can sustain the mines against a weak market.

Bauxite was produced on a commercial scale in four states in 1908: Alabama, Arkansas, Georgia and Tennessee; Arkansas proouther ducing-as for years past-more than six-tenths of Metals. the total product of the country. This rose from an insignificant amount in 1889 to 97.776 long tons (valued at \(\$ 480,330\)) m 1907. The consumption of the United States is, however, much larger than its product, and is rapidly growing The production of aluminium rose from 83 th in 1883 to \(7,500,000 \mathrm{~b}\) in 1903, and a conaumptioo (the Geological Survey not reporting the production) of \(17,211,000 \mathrm{t}\) in 1907. Antimony. bismuth, selenium, tellurium, chtomic iron ore, tín, nickel, cobalt, vanadium, titanium, molybdentm, uranium and tantalum are produced in the United States in smalt amounts, but such "production " in several cases has amounted to only stight discoveries, and in general they are of little importance in the market. Of tungsten the United States was in 1907 the greatest producer in the world (1640 tons in a total of 6062). Tin ores have been widely discovered, but though much has been hoped for from them, particularly from the deposits in the Black Hills region of South Dakota, there has been no more than a relatively insignificant commercial production.

Commerce, Foreign and Domestic.-The English colonies that became the United States carried on during the colonial period a commerce with the mother country, and also, both so far as the legislative trammels of the British colonial system permitted it and illicitly, a tairly active commerce with the West Indies. This latter became of increasing moment in the successive periods of European colonial wars of the 18 th century. With the achievement of independence by the United States the same interest became of still greater importance to the new nation, so as to constitute a lead ing elencmt in its early diplomacy. Although relatively unsuccessful in securing access to the British islands, the importance of the United States as a supplier of the other West Indies continually grew, and when the communication of the French and Spanigh islands with their metropolises was practicaliy cut off by the British during the N apolconic wars, the dependence of thesc colonies upon the American carrying trade lecame absolute. It was the profits of this neutral trade, notwithsoanding the loasct to which is was exposed by the high-handed measures of the ki. tintwat ite freph governments, that caused these insuits to le se
 after him after h
commerce of the country grew apace, until in the years immediately preceding the Civil War the United States was a close second to Great Britain among the trading countries of the world. The Civil War caused enormous losees to the merchant marine, and the world. wide substitution about this time of iron steamer for wooden steamers and sailing vessels contributed to prevent a recovery because, although ship-building was one of the earliest arts developed in the colonies, and one that was prosecuted with the highest success so long as wooden ships were the dominant sype, the United State has never achieved marked success with the iron steamer, and the law has precluded the registry as American of vessels built abroad. The American "clipper" shipm that were constructed at Baltimore and elsewhere during the last three decades before the Civil War were doubtless the swiftest sailers that have ever been built

The total trade of the country by land and sea, the movement inward and outward, is shown in the following table for various years since 1861 :-
\begin{tabular}{|c|c|c|c|}
\hline Ycar. & \begin{tabular}{c}
Importa by Land \\
and Sea.
\end{tabular} & \begin{tabular}{c}
Exports by Land \\
and Sea.
\end{tabular} & Total Commerce. \\
\hline & \(\$\) & \(\$\) & \(\$\) \\
1861 & \(335,650,153\) & \(249,344,913\) & \(584,995,066\) \\
1870 & \(462,377,587\) & \(529,519,302\) & \(991,896,889\) \\
1880 & \(667,954,746\) & \(835,638,658\) & \(1,503,593,404\) \\
1890 & \(789,30,409\) & \(857,828,684\) & \(1,647,139,093\) \\
1900 & \(849,94,184\) & \(1,394,483,082\) & \(2,244,24,266\) \\
1905 & \(1,117.513,071\) & \(1,518,569,666\) & \(2,636,0774737\) \\
1909 & \(1,475,612,580\) & \(1,728,203,271\) & \(3,203,815,851\) \\
\hline
\end{tabular}

The excess of exports over imports in the decade \(1899-1908\) totalled \(\$ 5.728,2 \frac{1}{2}, 844\); and in the same period there was an excess of exports of gold and silver, above imports, of \(\$ 444,908,963\). Of the toral exports of \(1909 \$ 1,700,743,638\) represented domestic merchandise. The remainder, or element of foreign exports, has been of similariy small relative magnitude since about \(\mathbf{1 8 8 0}\), but was of course nuch larger while the camying trade was of imfortance. From 3820 up to 1880 agricultural products made up with remarkable steadiness almost exactly four-fifths of all exports of domestic merchandise. Since then the increase of manufactures, and to a slight degree that of minerals, has lessened much the share of agricultural producis, which in 1906 was \(56.43 \%\) that of manufactures being 35 .II\% and of minerals \(3.09 \%\) The following table indicates in a general way the increased value, in rouod millions of dollars, of the leading agricultural exports since 1860:-
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year. & \begin{tabular}{c}
Raw \\
Cotton.
\end{tabular} & \begin{tabular}{c}
Bread \\
Stuff
\end{tabular} & \begin{tabular}{c}
Leal \\
Tobacco.
\end{tabular} & \begin{tabular}{c}
Meats \\
and Dairy \\
Products
\end{tabular} & \begin{tabular}{c}
Cattle, \\
and other \\
Animuls.
\end{tabular} \\
\hline 1860 & 192.0 & 24.0 & 16.0 & 16.9 & 1.8 \\
1900 & 242.9 & 262.7 & 29.4 & 184.5 & 43.6 \\
1905 & 381.4 & 107.7 & 29.8 & \(700 \cdot 0\) & 46.7 \\
1909 & 461.9 & 139.5 & 36.8 & 152.0 & 20.8 \\
\hline
\end{tabular}

Classifying imports and domestic exports as of six groups: (3) crude foodstuffs and good animals: (2) foodstufie partly or whothy prepared; (3) raw materials for ute in manufacturing: (4) manufactured articles destined to serve as materials in furtber processiof of manulacture: (5) finished manufactures; (6) miscellaneous pro-ducts-the table on p. 645 showa the distribution of imports and exporte among these six classes since \(1820 .{ }^{2}\)

It will be seen from the table that the share of the furst two classes in both imports and exports has been relative!y constant. Oa the other hand the great increase of imports of class 111 ., and the great decrease of class V.: and of exports the great increase of those of class IV., and decrease of those of classes III. and V., all reflect the great development of manufactures in modern times. The table also shows the great rapidity of this change in recent years.

Europe takes, of course, a large share of the exports of finished manufactures-a litzle more than a third of the total in the quinquennial period 1903-1908; but North America takes but very slighily less. On Ihe otber hand, above \(70 \%\) of manufacture destined to serve as material in further processes of manufacture went, in the same years, to Europe, and from eight- to nigetenths of the first three classes of exports. After Europe the largest shares of exports are taken by North America, Asia and Oceania, South Arubica and Africa in order. The share of the five continental 1909 was as follows, respectively: \$1,169,672.326: \(\$ 113.129 .907\) : \(\$ 83.509,047\) and \(\$ 17.124 .298\). The arey of the same divisions in the imports of the as follows: \(\$ 763,704.486: \$ 277,863.210 ; 8223.254 .724:\) aud \(\$ 17,558,029\). It will te seen that the commercial

intereses in Souch America are rebatively mall. The ahanes of the cen mation havine the larget part in the trade of the oommtry were as follows in 1909:-
\begin{tabular}{|lll|l|l|l|}
\hline & & & & & \\
\hline & & \\
\hline
\end{tabular}

The leading imports in 1909 were as follows, indicating in each cace, when not evidently unnecessary, the value of finished manu. factures and of unmanufactured materials: Silk (manufactured, \(\$ 32.963,162\); unmanufactured. \(\$ 75.512,401\)): hides and skins, other then fur akiws (\(\$ 103.758,277\)); wugar and molases (S91.535.466); fibres, vegetable and textile grasset (manufactured, \(\mathbf{3 3} .511,6 \mathrm{G} 6\); mmanufactured, \(\$ 54,860,698\)) : coffee (\(886.524,006\)): chernicals \((866,401,432)\); cotton (manufactured, \(\mathbf{6 8 , 3 8 0 , 7 8 0 : ~ r a w ~ a n d ~ w a s t e . ~}\) \(\$ 5.421, R_{54}\)); rubber (manufactured, \(\$ 1,462,541\), unmanufactured, 28,682,013) ; wool (manufactured, 822,058,712: unmanufactured, \(\$ 55.530 .366\)) ; and mood (monuactured, \(\$ 43,620,591\); unmanufactured, \(\$ 13.54,4,172\)). Precious stones \((\$ 43,620.591)\); fruits and tuts; copper, iron and stcel: tobacco (leaf \(825,897,650\); manufactured, \(84,13^{8,521}\)) ; tin: spitits, wines and liquors; oils, paper, works of art, tea and leather (\(\$ 16,270,406\)), being the romaining items in excess of \(\$ 15,000,000\) each. The leading exports of domestic uperchandice in excess of the same value were the following: cotton (\(1496,334 \mathrm{r} 44^{8}\)); iron and steet, excluding ores (\(\$ 157,680,331\)); meat and dairy products (\(\$ 151.964,037\)): petroleum, vegetable and animal oils (\(\$ 126,350,916\)); wheat and wheat four (\(\$ 100,529.381\)); topper, ctuluding ones (\(\$ 92,584,640\)); wood (\(\$ 72,312,880\)) leather
 inplements \((\$ 27,327,428)\); corn and corn meal \((27,062,128)\); animals (\(224,007,122\)): chemicals (\(\$ 20,330,335\)); cil-cake (\(\$ 20,245,818\)): (rinite and nute (\(\$ 18,707,670\)): vehicles (\(\$ \mathbf{6 , 7 7 4 , 0 3 6 \text {); naval stores }}\) (\(\$ 16,103.076\)): and peper (\(\$ 15,280,541\)).

Niew, York New Orleans, Boston, Galveston, Philadelphia, Baltimore, San Francisco and Puget Sound are, in order, the leading customs districts of the country in the vatue of their imports and exports. Almost one-hnif of the country's foreign trade is dono thongh the single port of New York. in 2909 more than eight. pathe of all imports of the country entered by, and more than sevenagishs of all exports went out through, the eight customs districts cust named. Savannah and Charleston are other great ports and ysithern ont lets, particulany for cotton.
torl the imports nod exports of 1861 two-thirds (in value) were enriad is American vesuels. By 1864 the proportion had fallen 20. \(27.5 \%\) and except for a temporary slight recovery after the close di the wrat there has been a stcady progress downward since that tinc, until in 1908 only \(9.8 \%\) of the commeroe of the country was cirried on under its own fag. More than hall the shipping entering and leaving the ports of the United States in 1908 was British: Cequany, the Scandinavian coontries, France, Holland and Italy 7 Pting next in order; the United States, although ranking after theat Britain, contributed less than a seventh of the total. The (otal tonnage entered was \(\mathbf{3}^{8.539,195}\) net tons (of 100 cub . ft. each), 4 compared with \(18,010.649\) tons in 1880 .
- Of the total of tonnage entered in \(1909,30.443 .695\) tons repreFinted teaport entries, the remainder entering across the land fontiers.
fftre menchant maride of the United States in 1900 totalled \(\$, 164,839\) aicenons, which was less than that of \(1860(5.353 .808)\). in which year
has been again reached. In the decline that followed the Civil War an apparent minimum was geacled of 4,068,034 tons in 1880; but this does not adequately indicate the deprescion of the shipping interest, inasmuch as the aggregate was kept up by the tonnage of vessels engaged in the coasting trade and commerce of the inland waters, froon which foretgn shipping is by la excluded. The dechne of toanage eagaged in occan trafic was from \(2,546,237\) net tons in I860 co \(\mathrm{E}_{\mathrm{n}} 352 \mathrm{Sio}\) in \(\mathbf{1 8 8 0}\); and this declinc continued in later years. On the other hand the ay rugate connage of the country has again' begun to rise, and in 1908 the total was \(7,365.445\) net tons, a third of this being on the Great Labes, and somewhat under one-haif on the Gulf and Atlantic consta. Of the anve total \(6,371,865\) tons represented the cossting trade, only 930,413 tons being engayed in the foreign trade of the country. New England still supplies a quarter of the shipping ennually built along the entire seaboard of the country; but mpre is yearly bailt upan the Great Lakes than upon the eeabeard.
Internal Commercs: jurisuys un' Cinols.-Large as has become the foreign commerce 0 : the country, it is small beside the aggregate intcrior commerce berween the states of the Union. The basis of this is necesaarily fae tie. for tarilyotetion. At the end of 1908
 those of all Europe. The traffic on these. meatured in units moved one mile, was \(28,797,781,232\) pabsenger-minte, and \(214,340,129.523\) freight miles. Various systems, with joint or soparate outlets from the Pacific coost to the Mississippi Valley, provide for the handling of transcontipental freight. Rivers and canals are relatively much less important to-day than in the middle decades of the 19th century before the growth of the : ilway traflic made small by comparisor the movement on the inte wr watercourses. According to a special report of the department of commberce and labour of 1906, 290 strmans are used to a " mbetantial degree " for navigetion, affording together an aqgregate of 2600 m . of 10 ft . navigation, or 5800 ms of 6 lit. navigation at ordinary water. Of the last almost half belongs to the Mississippí river. More than \(\$ 250,000,000\) has been spent by the national government for the improvernent of waterways yet no general syetem exists, and a large part of this enormous sum has been wasted on upimportant or impossible projects, especially in recent decades, since the river navigation has been a declining interest. 1360 m . of state-owned canals and 632 m . of privata canals of "some importame" were alno reported as in operation in 1909. More than an equal lengih of cand ways (2444 m . costing (80,000,000) was reported as having becn abandoned after con-务ruction. Of recent years there has been a great revival of interest In the improvement of iniand waterways upon systematic plans; which promises better than an carnar period of "intermal improvemente ' in the first half of the rath century, the results of which were more or lese dianatroun lar the'stexte and local governments that undertook them, and only less so for the national government. The Eric Caral in New York, the Chesapeake \& Delaware Canal, and the Saut Ste Matie Cand are the mont important in the country.

Coal, iron ore, building materials, lumber, livestock, cotton, fruits. vegetables, tobacco and grain are the great items in the domestic commerce of the country, upon its railways, inland waterways. and in the coasting trade. The magnitude of these items is 50 Erent ab to defy exact determination; data for the formation of mome ided of thern can be found in the account of the mineral, forest and agricultural resources of the coancty, It was timated by the Burmau of the Census that in 1906 th cocinage of freivit moved by American pessels within American wisers, excluding harbour traffic, mas \(177-519,758\) short toas (at compared with \(, 514,906,985\) long tans handled by the railways of the country). (2) this total \(42 \cdot 6 \%\) was moved on the Great Lakes, and \(36 \cdot 5 \%\) on the Atlantic and Culf coasts and waterways.

The Great Lakes are connected by camais with the Atlantic, the St Lavence river and the Missiasippi; the connexion with the first being through the Erie Canal, a 7. (t. waterway, and that with the St Lawrence through Canadian canals that afford a \(14 \cdot \mathrm{ft}\). navigation: The connexion with the Mississippi is through the drainate-canal
of Chicago, and thence into branches of the Mississippi aftording as yet even less water than the Atlantic outlet. The commerce on the lakes is largely in grain. coal, iron and lumber. The tonnage of vessels cleared between American purts on the lakes in 1908 was \(103,271,885\) net tons; the freight tacy carried came to \(80,974,605\) long tons. Veswels aggregating \(46,751.717\) net tons, carrying 57.895,149 tons of freight, valucd at \(\$ 470,141 \mathrm{k} 318\), passed through the Sault Ste Marie Canal and \(47,621,078\) tons of [reight were moved through the Detroit river in the same year, In these figures no account is taken of the trade of the Canadian ports on the lakes. Compared with this volume of trathic the movement through the Suez Canal is amall.

It has been estimated by O.P. Austin, chiel of the natinnal bureau of statistics, using duta of 1903, that the internal commerce of the United States exceeds in magnitude the total internationat commerce of the wortd
\[
\begin{gathered}
\text { VII.-Constitution and Guvernaent } \\
\text { I.-Iniroduclory. }
\end{gathered}
\]
\$8. A description of the government of the United States falls paturally into tbree parts:-

Firss, an account of the states and their governments.
Second, an account of the Federal system, including the relation of the states as communities to the Federation as representing the whole nation.

Third, an account of the structure and organization of the Federal government considered as the general government of the nation.

As the states are older than the Federal government, and as the latter was, indeed. in many respects modelled upon the scheme of government which already existed in the thirteen original states, it may be convenient to begin with the states and then to proceed to the national governnent, whose structure is more intricate and will require a fuller explanation.

Before entering, however, on a description of the state governments, one feature must be noticed which is common both to the states and to the Federation, and gives to the governmental system of both a peculiar character, different from that of the government of Great Britain. This feature is the existence of a supreme instrument of government, a document, enacted by the people, which controls, and cannot be altered by, any or all of the ordinary organs of government. In Great Britain parliament is the supreme power, and can change any of the laws of the country at any moment. In the American Union, and in every state of the Union, there exists a documentary or rigid constitution, creating and defiuing the powers of every authority in the government. It is the expression of the ultimate sovereignty of the people, and its existence gives to the working both of the Federal government and of the several state governments, a certain fixity and uniformity which the European, and especially the British, reader must constantly bear in mind, because under such a constitution every legislative body enjoys far scantier powers than in the United Kingdom and most European countries.

\section*{II.-The State Covernments.}
2. The state is the oldest political institution in America, and is still the basis and the indestructible unit of the American ortato ofthe system. It is the outgrowth from, or rather the Amerkes continuation of, the colony, as the latter existed State. before the Declaration of Independence in 1776. In every one of the North American colonies there was in operation at that date a system of self-government, in seven culonies under a charter from the Crown. In each there was a governor, with minor executive officers, a legislature, and a judiciary; and althugh the Crown revinod the power of al. tering the charter, and ath Ortelsh parliamect could (in strict legel view) legivite vier sof bea? of de colonial legidature so as to abrogate statutes prossod by the lafter, still in practice cach colony wis allowed to mannger its owns aflairs and to enact the laws it ifsirud. Thus the peopic wern wall mecussomed to work thei
constitution of the \(\begin{aligned} & \text { atate for many years, in the former case }\end{aligned}\) till 1842 , in the latter till 1818 .
83. Each state was under the Confederation of 1781 sovereign (except as regarded foreign telations), and for most purposes practically independent. In adopting the Federal phtaneod Constitution of 1787-1789, each parted with some Powere of a of the attributes of sovereignty, while retaining Seme.
others. Those which were retaincd have been to some extent diminished by the \(14^{\text {th }}\) and 15 th amendments to the Consti tution, and if the right to secede from the Union ever existed (a point much controverted), it was finally negatived by the Civil War of 1861-65. Otherwise, however, these attributes survive. The powers of a statc are inherent, not delegated, and each retains all such rights and functions of an independent government as it has not, by entering the Union, afirmatively divested itself of in favour of the Federal government. Each has its own documentary constitution; its legislature of two elective houses; its extcutive, consisting of a governor and other officials; tit judiciary, whose decisions are final, except in cases involving Federal law; its system of local government and loca. taxation; its revenue, system of taxation, and debts; its body of private civil and criminal lav and procedure; its rules of citizenship, which may admit persons to be voters in state and national elections under conditions differing from those prevailing in other states.

The rights and functions of a state practically cover the field in which lie most of the relations of private citizens to one another and to the authorities with which they come into contact in daily life. An American may through a long life never be reminded of the Federal government, except when be votes at Federal elections (once in every two years), lodges a complaint against the post office, or is required to pay duties of customs or excise. His direct taxes are paid to officials acting under state laws. The state (or a local authority created by the state) registers his birth, appoints his guardian, provides schools for him and pays for them, allots him a share in the property of a parent dying intestate, licences him when he enters trade (if the trade needs a licence), marries him, divorces him, entertains civil actions against him, tries and executes him for murde? The police that guard his house, the local boards which care for the poor, control highways, provide water, all derive their powers from the state. Nevertheless the state is (as will be explained later) a slightly declining factor in the public lifc of the nation, because public interest tends more and more to centrein the Federal or national government.
\$ 4. The constitution of each state is framed and enacted by the state itself, without any Federal interference, save that the Federal Constitution requires that the Constitution under whicha new state sceks admisaion to suare coed the Union must be "republican"; and under this requirement, Congress bas seemed 10 assume a right of making the adoption, or omission, of any particular provision in a state constitution a condition of the admission of that particular state. Even in these cases, however, the constitution derives its force not from the national government, but from the people of the state. The invariable method of forming a constitution is for the citizens to elect by special popular vote a body called a convention to draft the document, which, when drafted and circulated, is usually, though not quite invariably, submitted to popular vote. This is done either when a state is to be formed out of a Territory (as to which see post, \& 10), or when an existing state desires \(t 0\) give itself a new constitution. \({ }^{1}\)

\footnotetext{
A state constitution usually consists of the following parts:-
A description of the state boundaries (now frequently omitted)
A bill of rights, definimg the so-called "primordial rights" of the citizens so securily of life, liberty and property
A declaraion and enactment of the frame of state government, ie. the namen. funcrims and powers of the houses of the legislature.
\({ }^{1}\) Details as to state cometitumings will be found in J. Bryce, American Commonuculth, chs. xasvii-xxcix., which is referred to herc and subsequently as containing a fuller treatment of all the coples deals with in this article. Furither details may be found also in the articles on the separate states.
}
the chicf exceutive officinh, and the courts of juxice, with proviaions regulating the electoral franchite;

Provisions creating, or directing the creation of, a aystem of local suverament for cities and rural areas;
Minceliarapus provisions relating to law and adminitration, including the militia, revenue and taxation, otate prisons and boepitala, agriculture, bapking and other corporations, railwaya, haboer questions;

Provisions for the amendment of the constitution:
A achedule preacribing the method of submitting the draft constitution to the vote of the people, with temporary provisions regulating the mode of transition from the old constitutional arrangements to the new ones.

The method of amending the constitution varies in detail from statc to state, but that most usual is for the legislature to propose amendments, of ten by a prescribed majority, and for these amendments to be voted on by the people. Such amendments have latterly come to includ: many matters not strictly constitutional, and so to constitute a specizs of direct legislation by the people similar in principle to what is called in Switsertand the Referendern. Some states have recently allowed a prescribed number of voters to propose, by what is called the Initiative, amendments which are submitted to the vote of all the citizens without the intervention of the legislature.

Two remarkable changes have passed over the state constitutions. In the earlier days of the republic they were comparatively short and simple instruments, confined 10 the definition of civic right and the establishment of a frame of government. They have now become very long and claborate documents, seven, eight or ten times as long as the Federal Constitution, and containing a vast gumber of provisions on all sorts of subjects, many of them partaking of the nature of ordinary statutes passed by a legishature rather than safeguards suitable to a fundamental instrument. And secondly, whereas in earlier days the constitutions were seldom chamed, they are now frequently recast or amended. Only Maine and Maseachusetts and a few of the newer states live under original constitutions, and only Miassachosetts is under a constitution older than the 19th century. Some have recast their constitutions geven or eight times. Some provide for the revision of the constitution at stated intervals. Notwithstanding the facility and frequency of amendments, the variztions between one constitution and another are less conspicuous than might have been expected. There is, bowever, a distinction of type and character between those of the western and southern and those of the eastern states. the former being generally more prolix, more prone to go into details, more apt to contain new experiments in legislation.

Comparing the old constitutions with the new ones, it may be sad that the aote of those enacted in the first thirty or forty years of the republic was their jealousy of executive power and their careful saleguarding of the rights of the citizen: that of the second period, from 1820 to the Civil War (1861-65), the democratization per the gufirage and of institutions generally; that of the third period (since the was to the present day), a disposition to limit the powers and check the action of the legislature, and to commit power to the hands of the whole people voting at the polls.

5 5. In every state the legislature consists of two bouses This remarkable feature, originally due to the practice that had prevailed in some colonies, and to the example of seow, prevaHed in some colonies, and to the example of in its necessity has passed into a fundamental dogma, the idea being that a single chamber would be elther hasty, or tyrannical or unscrupilous-perhaps all three-50 that ther must always be a second chamber to keep the first in order. The smaller bouse is called the Senate, the larger one is (usually) called the House of Representatives, sometimes, however, the Assembly-sometimes the House of Delegates. Both are chosen by popular vote, almost universally by the same voters, and usually in single-membered districts, and at the same time. The senatorial districts are, of course, larger than the house districts. A senator is usually chosen for a longer term (often four years) than a representative, and, in most cases, whereas the house is elected all at once, the senate is renewed only partially at each election. In some states hy law, and in all by custom also, a member must reside in the district which he sepresents.

Universal manhood suffrage, subject to certain disqualifications (e.8. certain crimes or receipt of poor relief), is the rule in the great majority of states. Certain terms of residence within the United States, in the state, and in the voting district are genenllly prescribed, the periods varying from state to state. Nine states allow voting rights to aliens who have declared ebeir intention to become citizens, and in some they can as
taxpayars vote on famencial matters submitted to a special vote. Kanses grank them a full municipal suffrage. Fourteen pre scribe some sort of educational qualification. Five statesWyoming, Colorado, Utah, Idaho and Washington-give the suffrage for all elections to women.' In 1905 women could vote at school elections in twenty-four states. Of late years seven Soutbern states, beginaing with Mississippi (constitution of 1890) and including Virginia, North Carolina, South Carolina, Georgia, Alabama and Louiciana, have so altered their constitutions as to exclude from voting the great bulk of their respective megro popolations, by means of oducational tests, property quallications, 2 combination of both, or by other means, while various ingenious devices have been employed to admit a large part, at least, of the illiterate whites. In 1910 Oklaboma adopted provisions of the same kind. The suffrage for legislatate elections gencrally determines that for all ot her elections within tbe state, and as a rule it carries with it eligibility to office. And by the Federal Constitution it is also the suffrage for Federal elections, viz. elections of representatives in Congress and of presidential electors.

Elections are now practically everywhere conducted under that system of secret voting, which is called in Americs "the Australian ballot," and which is very similar to that used in the United Xingdom since 1872. There used to be a good deal of fraud practised at clections, including "personating" and "repeating," as well as a good deal of bribery in a few states and in some of the larger cities. Legislation has reduced these evils in recent years; and efforts have been made to prevent the excessive expenditure of money at elections, and the making of contributions to party "campaign funds" by wealthy cosporations who desire to secure some benefit for themselves. Another evil which has not yet been dealt with is the large number of posts for which the voter is expected at an election to select the best men. This, of course, does not apply to elections to a legislature; but in city elections, and to some extent in state clections and county elections also. it creates great diff. culties, for how is the average citizen to know (especially in a large city) who are the fittest men out of a long list of candidates for perhaps ten or twenty offices, all of which have to be filled by election at the same time? The perception of these difficulties has evoked a movement for what is called "a short ballot."
The number of members of the legislative chambers varics from state to state. Delaware with 17 senators and 35 representatives, has the smallest; Minnesota, with 63 senators, has the largest Scnate; and New Hampshire (a small state) has, with its 390 representatives, the largest House. The New York houses number 51 and 150 respectively; those of Pennsylvania, 50 and 204; of 1llinois, 51 and 153 ; of Ohio, 34 and 118; of Massachusetts, 40 and 240 . In all states, members of the legislature receive a salary. which is the same for both bouses, some states fixing an annual sum, but most preferring a per diem rate, while the maximum is generally determined by a limitation on the length of the session.

It has become the wish of the people in most places to have sessions both short and few. Whereas formerly legislatures met annually, regular sessions ste now biennial except in New York, New Jersey, Massachusetts, Rhode Island, Gcorgia and South Carolina-all original states. In Alabama the legislature meets regularly once only in four years, though it may be convoked in the interval.

The Senates act as courts for the trial of state officers impeached by the house (in imitation of the British House of Lords and the Federal Senate), and bave in some states the function of confirming or refusing appointments furectesas made by the governor. Otherwise the powers and of the Staty procedure of the two bouses are everywhere sub- Leztstantially identical, though it is worth noting that
whereas every house chooses its own Speaker, the president of
- Woman suffrage amendments to state constitutions have been rejected by the penple in at least twelve states and in two territories. State organizations of women to oppose the extension of the suffrage to momen exist in Hlinois, Massachusette, New York and Oregon: powibly to other crates also.
the Senate is, in most atates, a lieutenant-governor, whom the people have directly elected. Bills may originate in either house, but in about half of the states money hills must originate in the House of Representatives-a survival of British custom which has here, where both houses equally represent the people, no functional value. Both houses do most of their work by committees, much after the fashion (to be presently described) of the Federal Congress, and it is in these committees that the form of bills is usually settled and their fate decided. Sometimes, when a committee is taking evidence on an important question, reporters are present, and the proceedings receive comment in the newspapers; hut in general the proceedings of committees and even debates in the houses are imperfectly reported and excite no great public interest. In all the states except one, viz. North Carolins, bills passed by the two houses must be submitted to the state governor for his approval. Should he return it to the legislature disapproved, it is lost unless repassed "over his veto" by a majority usually of two-thirds, but sometimes larger, in each house. A good governor is apt to use his veto frecly-indeed, a frequent exercise of the power is deemed in many states to be a sort of test of the govermor's judgment and courage.

Subjects of state legishation may be classified under three heads:-
1. Ordinary private law, including property, contracts, torts, family relations, offences, civil and criminal procedire.
2. Administrative law, including the regulation of urban and rural local government. state and local taxation and finance, education, public works, the liquor traffic, vaccination, adulteration, charilies, asylums, prisons, the inspection of mines and factorics, general laws relating to corporations, railways, labour questions.
3. Matters of a local or special nature, such as bitls for chartering and incorporating gas, water, canal, tramway, railway or telephone companies, or for conferring franchises in the nature of monopolies or special privileges upon such companies, or for altering their constitutions, as also for incorporating cisies or minor communilics and regulating their affairs. Although there usually exist gencral laws under which corporations or companies (including railway and electric car companies) can be formed, laws which in some states and for some purposes confer a greater freedom of incorporation than the general law allows in the United Kingdom, there is nevertheless a noticeable tendency to come to the legislature for special purpoees of this kind.

As respects class 1 , there is not much change in the law from year to year. The legal profession does not like to see the ordinary and established rules disturbed. Sometimes the laws belonging to this class are codified, or rather consolidated, and then usually by a special commiltee of competent lawyers whose work is passed en blac by the legislature.

As respects class 2, a good many measures are passed, particularly in matters affecting labour, and for the protecion of any sections of the population which may be decmed to need protection.

It is, however, in class 3 that the legislatures show most activity, much of it perniciout, because prompted by persons seeking to serve private interests which are often opposed to the interests of the whole community. The great "public service "corporacions have, in particular. frequentiy succeeded in obtaining franchises of large pecuniary value without making any adequate payment therefor. A peculiarly notable form of this special or private bill legislation is that of dealing by special statutes with the governmental forms and details of management of municipalities; and the control exercised hy the state legislatures over city governments is not only a most important branch of legislative business, but at the eame time a means of power to scherning politicians and of enrichment to greedy ones. This has led in some states to the grant of power to citiea to frame their own charters. Speaking generaily, It is chiefly in the sphere of special or private legislation that state legislatures have shown their weak side, and incurred, in many states, the distrust of the people.

The members of these bodies belong for the mort part, though by no means entirely, and least so in the agricultural beates, to the class of professional politicians. They are seldom persons of thining ability or high standing in their communities. Except as a stepping-stone to a seat in Congress or a high executive post, the place is not one which excites the ambition of aspiring men. The least respected legislatures are those of the richest and most populous states, such as New York and Pennsylvania, because in such states the opportunities offered to persons devoid of ecruple are the largest.
The general decline in the quality of these bodics, and eapecially their pronences to pass ill-considered or pernicious bills at the instance of private promotors, has led to the restriction in recent years of their powers by the inserion in the state constitutions of many provicions forbidding the enactraent of certain clasese of measures, and regulating the procedure to he adopted is the peating:
either of atatutes generally or of particular kinds of atatutes. Even these provisions, however. are frequently evaded.
§6. At the head of every state government stands an official called the governor, who is the descendant and representative of the governor of colonial times. Under the earlier constitutions of most of the original thirteen

Ther Stere Exacmble states he was chosen by the legislature, hut he is now everywhere directly elected hy the people, and by the same suffrage as the legislature. His term of office is four years in twenty-three states (including Pennsylvania and Illinois), three years in one state, two ycars in twenty, and one year in two (Massachusetts and Rhode Island). In a few states there are prohibitions on re-election.

It is the duty of the governor to see that the laws of the state are faithfully administered by all officials, and the judgments of the courts carried out. He has, ir most states, the right of reprieving or pardoning offenders, hut some recent constitutions place restrictions on this power. He is also commander of the militia or other armed forces of the state, which he can direct to repel invasion, or suppress insurrection or riot. He appoints some of the state officials, his nominations usually requiring the concurrence of the state senate; but his patronage is in most states not very large-in many it is indeed insignifican:because the offices of greatest importance are filled by direct popular election. He bas also the almost mechanical function of representing the state for various formal purposes, such as demanding from other states the extradition of offenders, the issuing of writs for the election of members of the legishature and of members of the Federal House of Representatives, and the receiving of reports from various state officials or boards.

Not less important than bis directly executive work is the influence which the governor exerts upon state legislation through his possession (in all the states but one) of a veto power. His right of recommending measures to the legislat ure (which does not formally include that of framing and presenting hills, but practically permits him to bave a hill prepared and use all his influence on its behall) is of greater value according to the extent to which he leads the public opinion of his state. The legislature need not regard his counsels, but if he is a strong man whom the people trust, it may fear him and comply with his demands. When a commercial crisis occurs much may depend on bis infliative. Moreover, his veto is a thing to be reckoned with. It is seldom overridden by the prescribed majority, especially if the hill against which it is directed be one of a johhing nature. And as the people look to him to kill bad measures, he is frequently able, if he be a man both strong and upright, to convey intimations to the legislature, or to those who are influential in it, that he will not approve of certain pending measures, or will approve of them only if passed in a form satisfactory to him. The use of this potential authority, which the possession of the veto power gives, has now become ane of a governor's most important dutics.

In New England, and in the greater states generally, the governorship is still a post of dignity, and afforde an opportunity for a display of character and talents. During the War of Secession, wben each governor was responsible for organizing troops from his state, much turned upon his energy, popularity and loyalty. And in recent years the danger of niols during strikes has, in some states, made it important to have a man of decision and fearlessness in the office which issues onden to the state militia. There has been of late years a revival in the case of some ahle governors of the old respect for, and deference to, the office.

If thirty-five states there is a lieutenant-governor, elected by popular vote. He is usually preaident of the state senste. is sometime a member of some administrative boards, and steps into the governor's place should it become vacant.
Executive councils advising the governor, but not chosen by him, existed under the first constitutions of all the original thirteen states. In New York the council of appointment advised the governor only in regard to appointing officers; and

In Georgia there was no executive council after 1789. True executive councils have now disappeared except in Massachusct ts, Maine and New Hampebire.
87. The names and duties of the other officers vary from state to state. In every state there are a sccretary of state. who is custodian Ahameters of the documents and archives, and a treasurer. Nearly Bre Onion everywhere there are also a comptroller or auditor, who kceps the accouns and is the principal financial officer. an attorney-general or legal adviser, an adjutantgeneral, who has immediate charge of the militia, and a superintendent of public instruction, with some lintle authority over the public schools. Most of the states have also a board of charities, a board of health, a board of railway commissioners, and either boards or single commissioners for banking, insurance, agriculture, poblic lands and prisons. Other administrative depariments lound in different states are those having control of public works-principally carals-insane hospitals, factory inspection, labour stalistics and immigration. New York state, with nearly Gifty different administrative bureaus. has a larger number than any other state. In many states the most important of these officials are elected by the people at a general election. but some officials are either chosen by the legishacure or appointed by the governor: the lacter method applying mainly to offices of recent creation. The terms of office vary for the different affices, very few exceeding lour years. The state officials, being thus langely independent of the governor, and responsible only to the people, are in no sense a cabinet (save in North Carolina). Each administers his own depart ment, subject to the detailed regulation imposed hy statutes, and as these statutes derermine such matters as might come into controversy, e general agrcement in policy among the administrative officials is not essential.

In niany states officials may be removed, not only by impeachment, but also sometimes by voie of the legislature, sometimes by the governor on the address of both houses, or by the governor either alone or with the concurrence of the senate; but such removals must be made for specific misconduct.

The extent of direct state administration of public institutions and works is very limited, and most of the state bureaus have only a supervision over private enterprises, or over local adminisirative officers. On this account the subordinate civil service of the state is not large compared with that of cither the Federal government or of the large municipalitics, and only in a lew states doca it posscas any importance. However, these burcaus are seldom well manned, because salaries and tenure of office are seldom such as to induce able men to offer themselves, while the places are often given as rewards for political service. New. York. Massachusetis and a few other states have systems of civil service examinations, similar to thove in the Federal administration, which eerve to keep certain branches out of politica.
58. The judiciary is in every state an independent department of the government, directly created hy the state constitution, and not controlled in the exercise of its The seaco functions either by the legislature or by the executive. In every state it includes three sets of courts: a supreme court or court of appeal; superior courts of record; and local courts, but the particular names and relations of these several tribunals vary greatly from state to state. Most of the original thirtecn colonies once possessed also separate courts of chancery; and thene were maintained for many years after the eeparation from Great Britain, and were imitated in several of the earlier among the new states, but special chancery courts now exist only in a few of the states, chiefly in the East and South In other states the common law judges have aloo equity jurisdietion; and in four statesNew York, North Carolina, California and Idaho-there has been a complete fusion of law and equity.

In colonial days the superior judges were appointed by the governors, except in Rhode Island and Connecticut, where the legislatures clected them. These precedents were iollowed in all the revolutionary constitutions, except in Georgia, whese election by the people was establisbed. During the democratizing period from 1820 to 1860 the system of popular election was extended, especially in the new states, and at present this system prevails in thirty-six states, including practically all of the new states and five of the original states-New York, Pennsylvenia, Maryland, North Carolina and Georgia. Three of the original thirteen have their judges elected by the legisiatures, and in five others, together with Maje and Jississippi among the zewer states, they are appointed by the governor, subject to the approval of the executive conncii, the Senate, or (in

Connecticut) the General Assembly. Local judges are generally chosen by the voters of the district in which they hold court.

Originally the superior judges were in most states appointed for life and held office during good behaviour, but only three states now retain this system. Eight to ten years is the average term of service; it is longer in New York (14), Maryland (15), and Pennsylvanin (a1), where alone superior judges are not re-cligible. Salaries, too, are small in most states, often not more than onetenth of what a prominent lawyer can make by private practice.

These three factors-popular election, limited terms and small salaries-have all tended to lower the character of the judiciary; and in not a few states the state judges are men of moderate abilities and limited leaming, inferior (and sometimes conspicuously inferior) to the best of the men who practise before them. Nevertheless, in most states the bench is respectable in point of character, while in some it is occasionally adorned by men oi the highest eminence. The changes tutroduced since 1870 have been, on the whole, for the better, though there is still room for further improvement. Corruption seems to be very rare, but instances of subservience to powerful political groups sometimes shake public confidence. Things would doubtless have become worse but for the watchfulness which the bar generally shows in endeavouring to secure the selection of bonest and fairly competent men. The administration of civil justice is decidedly better than that of criminal justice. The latter is in many states ncither prompt nor certain, offenders frequently escaping through the excessive regard for technicalities even more than through the indulgence of juries and the occasional weakness of judges.

It must be remembered that the courts of each state form a judicial system, complete in itself, and independent of the Federal courts, and, of course, of other states. There is mo appeal from the highest atate court, except in those canes where a quention of Federal law is involved, for then such cases may be removed, in manner to be explained hereafter, to the Federaf courts. And, subject only to this limitation, the jurisdiction of the state courts covers the entire field of civit and criminal law. The exiating lesal system of all the staten emopt Louisianta, whose law is based on the Romap. have been built upon the foundation of the principles contained, the common and statule law of England as that law stood in 17\%6, when the thirteen colonies declared their independence. In the development of the lav since that time the courte of one state are not bound either by law or by unge to follow the decisions either of the Federal courts or of the courte of any other state, any more than they would follow English courts, although such decisions are used and discussed as evidence of the common law, and great deference is alweys thown to the opinions expresed by the freders courts. In many states the legiviocures have taicen action in the development of haw by adopting statutory codes of procedure, and in some instances have even enacted codes embodying the substance of the eommon law Iused with the statutes. These latter codes have not, however, received the seneral approval of the legal profeesion.

It is, of course, to the mate courts that the duty belongs of construing the constitution as well as the statutes of the setete, and if they find any state lav to be inconsistent with the state constitution it is their duty to teclare it invalid. It is also the duty of the steste court to declare any stase la \(\quad\) invalid if it is comernry to the Federal constitution or to a Federal statute or treaty. As in the case of the similar power of the Federal judges, this is founded on no special commission, but arises out of the ordinary judicial lunction of expounding the law and dircriminating between the fundamental Inw and laws of inferior authority (ne poot, i 25).
8. Wide as is the range of the rights and powers of a state, and elaborate as is the structure of its goveroment, the state holds a practically less important position in the caeagy in American system than it once did, and has not so tho pooukal strong a hold as it had in the first quarter of the impertagot rith century apon the loyality and affection of Its aldo semb. citirens. The political interest and the patriotism of the peopie generally are now given rather to the nation as a whole than to a state, whereas in the two generations following the Revolutionary War the opposite would byve been the case. This nolable diference is due not to any constitational chariges, for there has been none except those contained in the 13 th, \(14^{\text {th }}\) and 15 th amendments to the Constitution, but to the three following causes:-

The first is the growth of the party aystem with its complicated machinery, wbich has linked the citizens of different states
more closely together, and has led to the eclipsing of political issues confined to a state by issues which are matters of controversy throughout the nation.

The second cause is the Civil War of \(1851-65\), which practically negatived the far-reaching claims of state sovereignty and the right of secession made by statesmen of the type of Calhoun, and showed that the nation was really much stronger than any group of states.

The third is the enormous development of swift and cheap communications by land and water, and the growth of commerce and of productive industry, which have brought every part of the country into much closer relations with every other part, and have increased the sense of economic solidarity.

8 10. During the entire history of the United States there has been a considerable area within the jurisdiction of the The Therikoriat. Fcderal government not included in that of any one or more of the states; and the systems of government for the various parts of this area require some description. The Territories (strictly so called) were at one time important, though now less so, because there remain only two, the unorgatized Territory or District of Alaska, and the Hawaiian Islands in the Pacific Ocean. Till 1910 there werc the two organized Territories of Arizona and New Mexico, but in that year Congress passed an act for their admission as states. Previously to that ycat there had been ever since 1787 a large area of the continent which, while belonging to the United Slates, was decmed too thinly peopled to be ft to be divided up into states. Parts of this area were, however, set off and organized as Territories, receiving a qualified form of selfgovernment while under the ultimate control of Congress for the purposes of legislation. When these parts had been suffi. ciently filled up by settlers, they were allowed to organize thenselves as states, each giving itself a constitution. The Territorial government consisted of a legislature of two houses elected by the people, with a governor appointed by the president of the United States, with the consent of the Scnate, and judges similarly appointed. The Territories were not represented in Congress, but each could send a delegate to the House of Representatives, who could speak there but not vote.

Since the Spanish War of 1898 there have been added to the United States various transmarine dominions, none of which has been formed into a state, or is likely to be so formed for a good while to come; and there is also one small picce of original area of the United States, viz. the District of Columbia, which is outside any state, because it contains the national capital. The Iransmarine dominions are Alaska, the Hawaijan Islands, Porto Rico, the Philippinc Islands, and the Canal Zonc on the Isthmus of Panama.

\section*{III.-Local Govermmert.}
1.11. Every state in the Union has its own system of local administrative areas and local authorities; working under its pwraflocal own lews, these systems agreeing in many points Oovers with one another, and differing in many others. aref. Three main types of rural local government may be distinguished, prevailing in different regions. The first is characterized by its unit, the town or township, and exists in the six New England states. The second is charactedized by a much larger unit, the county, and prevails in the southern states. The third may be called the mixed system, combining somic fcatures of the fifst with some of the second, and is found under a considerable variety of forms in the middle and northwestetn states. The different types spring from the original differences in the character of the colonists who settled on the Atlantic coast, and in the conditions under which the various colonial communities developed. (See American Commonucald, char.xlvii. and xlix.)

The tave, or cownilup, of New England is generalty a rural come munity occupying a comperatively amall area, and with a population averaging about 3000 , but ranging from 200 in newiy settled districts or thinly-peopled hilly districts up to 17,000 In the vicinity of large cities and in manulacturing neighbourhoods. Each inwn Is governed by the town meeting, an ascembly of all the quadified
voters within the limits, which mects at least once a yoar in the spring, and also at other times when specially summoned. This assembly elects the town officials at the annual meetings, but it is much more than an electoral body. It is also a deliberative assembly and the legislative authority for local matters. It enacts by-laws and ordinances, receives the reports of the local officials, passes their accounts, manages the town property, votes appropriations for each item of expenditure and authorizes the nocteprers taxation. Every resident citizen has the right to bring lorware and to speak in favour of any proposal. The mecting is praided over by a chairman called the moderator. In rural communitiet the attendance is usually good, the debates are sensible and practical. and a satislactory administration is generally exured. But when the town meeling has grown to exceed seven or eight hundred persons, and especially when the farming clase of native American stock has been replaced by factory operatives of other nationalities, the institution works lar less perfectly.

The town officials consist of the "selectmen" (usually three, five or seven, sometimes nine), the town clerk, treasurer, assessors, tax colicrtor, school committee men, and the holders of divers minor offices according to local needs. These are elected annually, except that in some cases the "selectmen" and school committee have a term of several years, one member of each board being clected annually: The "scicctmen," who receive no regular salary, but may charge for expenses actually incurred, form a sort of directory or exccutive committee, which manages the ordinary administrative and financial business under such instructions as may have been given by the town meeting.

In the Middle and Western states the township is a more artificial organism than the rural town of New England. In one group of states-Pennsylvania. New Jersey, New York, Ohio, Indiana, lowa-while the township has more or less power, and there are town officials, there is no town meeting. In another groupMichigan, Ilinois, Wisconsin, Minnesota, the two Dabotas-the town meeting reappears, though in a less primitive and less perfect form. In the states west of the Alleghanies each township covers an artificial area 6 m . square, and a separate quasi-municipal organization is usually provided for the villages which have grown up in many townships.

The county is to be found in every state of the Union, but its importance varics inverscly with the position held in the system of local government by that smaller and older organism, the town. In New England the county was originally an aggregation of towns for judicial purposes, and in that part of the Union it is still in the main a judicial disirict. There is no general representative council or board, but jutdicial officers, a sherift and a clerk, are clected in each county, and also a cuunty treasurer and county commissioners. The latter have the management of county buildings, such ascourthouses and prisons, have power to lay out new main highways. to grant licences, and to apportion among the towns and cities the taxation necessiry to meet county expenses. Besides these officials there are generally to be found in New England a county echool superintenderit and an overseer of roads. In the Southera atates the county is the local adininistrative unit, and in addition to ite original judicial and financial functions it has now dso control over public schools, the care of the poor and the construction and managenient of roads. County government is generally vested in a bard of county commissioners, clected (in almost every state) by the people, and in various officials also directly elected. In some Southern states some counties have been subdivided into achool districts, each of which elects a school committee, and Iram this nucleus there may possibly develop something resembling the New England town. In those Middle and Western states where the town meeting is not found, the functions and officials ol the county tend to resemble those existing in the Southerp states, while even in those parts of the west where the town meecing is found the county remains more important than in New England. Thus in many of these states poor relief is a county and not a town charge. In most states county administration belongs to a small board of three commissioners electod lor the county at large, but in New York; Michigan. Illinois and Wisconsin there is a larger board of supervisors elected by townships and cities within each county. Although iocal aflairs do not now enlist, even in New England, so large a measuric of hnterest and pablic spirit as the town system used to evoke in Massachusctos, Rhode Island and Connecticut in the 'thirties, still, broadly speaking, the rural local government of America nuay be deemed satisfactory. The administration is faidy cheap and fairly efficient, most so, on the whole, in the Northern and Westernstates, while jobbery and corruption are uncommou: The value of local self-government as a training for the duties of citizenship has been very great, and in many parts of the country, esperially where the funds dealt with are small, elections are not fought and offices not distributed upon party lines

812 . The tendency, now so marked in nearly all civitired countries, to the development of urban communities has been nowhere more marked than in the United Statcs. The increste in \(c\) the range and importance of municipal functions has cit lation. This can best be illustratod by the figures of municipal
eapentiture In \(184 a\) the manall budget of New Yerts ciny-with a population of 100.000 -wat 8100,000 ; to-day an avarage city of 100,000 popmetation has an annual expenditure of from \(\$ 1,000,000\) 10, \(\$ 2,000,000\), and the total expenditure of the city of New Yort in 1909 exceeded \(\$ 150,000,000\). Municipal government is therefore a matter of high concern to Arnerica, and playe a large part in any otudy of Asperican political institutions.

The historical origio of Amperican municipal government is to be found in certain boroughs which had been ctartered in the colonial period, after the faghion of English borougha. These American corporations had the usual Englist syatem of borough government, consisting of a mayor, aldermen and councilmas, who carried out the slmple administrative and judicial fanctions needed for the then mall communities. Tha hasis for the government of each American city ios still a charter, but since the Revolution these charters have boen grasted by the setate logivatures, and are oubject to coostant change by statute. The charters of cities have shown the same procere of increationg length and detailed regulation as the at:tc constitutions; and in details there are many differences betwo. different cities. In some states sities are now permutted to onnct their own charters. (See Americon Commonwocellh, cha 1.alii.)

An a rule, ote finde (1) a mayor, elected directly by the voters wishia the city, who is the hoad of the admanistration: (2) administrative officeri or boards, some directly elected by the city vorics. others nominated by the mayor or chosen by the council; (3) council or assembly, consisting sometimes of two, bot more in. quently of one chamber, elected diseetly by the cicy votersi; and (1) jedzes, unually elected by the city votery, but somotimes appoin by ibe wate

The mayyor is hy far the most important official in the city gover.. zent. He is elecied usually for two years, bat sumotimes for abic three or four (in New York his term is now four years). He lias ahmont everywhere a woto on all ordinamces pasod by the coun modelled on the veto of the Federal president and of a date coveral. In minny citime he appoints some or all of the heads of the sdrois. trative departments, usually with the approval of the coun bat in some important cilles the mayor hat an absolute power appointment. Ae the chief executive officer, he preservea the pul. peace. In practice the is often allowed to exect a certain discretion tos to the enforcement of the laws, especially those providing for Sunday closing, and thls discretion has sometimes become a eource of mischief. He psually receives a considerable malary, varying with the sipe of the city.
The practical work of municipal administration is carried on by a number of departmenta, wome under single heads, and some under boards or commissions. The :wather ans masnimen ion of these departments vary widely in the different citics. The board of education, which controls the public schools, is ustally largely independent of the council. and un wuwe wuvoriant witics has an iadependent power of taxation. Ih Zostoti, St Louik Baltimore. and some few other cities, the polica bayd (or commissioner) is appointed by the governor becallse frint mateers had been
 to beconce a means of extortion atod a deor to corruption.
The city councils pas local ardinanoss, vote appropriations, levy taxes and generally exert some contral over appointments to administrative positiona. The recent tendency bas been, however, to decrease the powers of the council and to increase those of the mayor. In some cities the mayor has received an absolute power of appointment; the departiments. especially the boards of healih, have large ordinancp-making powers; statutes pased by the state legisature determine (excepting the states overe sities can make their own charters) the principat lines of municipal policy. and the real esntrol over appropriations and taxes is occusionatly Connd vested in a bourc of estrmane, comsoning of the mayor, comproller (the chiel finascial officer), and a fem other adainis. trative officials. In New York City, where the councill had lost public confidence, and in some other places, the only important power still pomessed by the council is that of granting franchises to street railwaye, gas companies and the lithe. In the comalier cities, however. the councits have retained. wider meagure of euthority. In t902 the city of Galveston, in Texas, adopted a new form of municipal government by vesting all powers in a commission df five persons, elected by the citizens on 2 "general tirket." one of whom is mayor and head of the commiesion, white each of the others has charge \(\alpha\). a departmert of ram nicipal administration. A cimilar plan, difiering in some decaila, was aubrequently introdaced in the city of Des Moines, in lowa; and the success which has attended this new departure in both ciries has led to its adoption in many others, especsally, but not exclusively, in the Westers states. In 1910 more than seventy cities weve soadmiaistered. Uader in administration would appear to have become bolh more pure and more efficient. The functions of city government may be distribuled Into three groops: (a) Thase which are delegated by the state out of ins generll coercive and administrative powers, inderding the police power and the granting of licences: (b) thoec which. though done under general Lawh are properly mailect of local cbarge and subject to local regulation, such at education and the reitiet of the poor: and (c) those which involve no questions of
policy, but are of a purely buninese aature, apch at the paving and cleansing of atreets. the construction and maintenance of drains. the provison of water, ac.

It is here proper to advert to a remarkable extension of direct popular government which has in recent jears been applied both to states and to cities. Several state temetrene, constitutions now contain provisions crabling a Refroede prescribed number (or proportion) of the voters in and Recel. a state of city to submit a proposition to all the registered voters of the state (or city) for their approval. If carried, it takes effect as a law. This is the Initiative. These constitutions also allow a prescribed number of voters to demand that a law passed by the state legislature, or an ordinance pussed by the munitipal authority, be subamited to all the voters for their approval. If rejected by them, it falls to the ground. This is the Relerendum. Some cities also provide in their charters that an official, including the mayor or a member of the council, may be displaced from office if, at a special election held on the demand of a prescribed number of the city voters, he does not receive the largest number of votes cast. This is the Recall. Alt these three institutions are in operation in some Western states and are spreading to some of the Eastern cities. Their working is observed with lively interest, for they carry the principle of dircet popular sovereignty to lengths unprecedented except in Switzertand. But it is not merely to the faith of the Western Americans in the pepple that their introduction is due. Quite as much must bc ascribed to the wart of faith in the legisjatures of states and cities; which are deemed tco liable to be influenced by selfish corporations:

\section*{IV.-The Fedcral Sysiem.}
 aliegiance to the British Crown and took the litle of states they. proceeded to unita thernsetves in a league by the Articles of Confederation of \(1 \mathrm{r}^{8}\), This scheme of. union proved defative, fier ita central muthority, an assembly called Congresa, was hopelemily weak. It had meither as ceoculive mor a jodiciary, nor hat it proper meane of cortcing a recalcitront state. Its meakness became so apparent, eapecially after the pressune of the war with Great Britain had been removed, that the opinion of the wisest met called fer a doecr and more effective union. Thus: the peeseat Constiution reas draffed by a conrmation in 1989 y mad ratified by nine states (the prescribed aumber) in: \(\mathrm{z}_{7} 88\), ; and was at to wort under Ceenge Wuchington as ferst president in \(\mathbf{x} 9 \mathrm{~g}\).
614. The Constitution is a document of the feat ingportance in the history of the warid, beckuse it has not baly deternined the course of overits in the Ametican Republic, hat fid Averel has aleo infuenced, or become a medol for, other cem. constitelions, such as those of Switzerland (8848 dmm and \({ }^{1874}\)), Canada (1867), Austruita (rgooh, besides Menico and the numerous republics of South and Cental Amexices. It was in substance a compremise effersed betweer those who wished for a centrafized government and those who desired to leave very wide powers to the component states; and many subsequent difficulties arose from the omission .to settle certain points, and from the somewhat wague language in which other points were referred to. Of these omissions and points ieft vague, some were inevitable, because an agreement could not have been reacbed, some ware due to the impossibility of foresceing what difficulics the foture would bring with it. But they were, considering the conditions under which the instrument was framed, comparatively lew, and the Constitution. when one regards it as a piece of drafting, descrves the admiration which it has received fromenearly all American and most foreign critics. It is, on the whole, admirably rlear, definite and concise, probably superior in point of tectinique to all the documeats since framed on its model.

As nespecis subuance, the Constitution, being enacted by and expressing the will of the people, who are. The vilimate source of political power, is the supreme law of the land over the whole Union, entitted to prevail over all hws passed by Congress, the legislature which it creates, as well as ovet all
state constitutions and all state laws. It can be altered only by the people, in manner to be hereafter mentioned. It is a comparatively short document, and consists of seven articies, subdivided into sections. Art. I. deals with the Federal legislature, its structure and powers, and imposes certain restrictions upon the states. Art. 11. provides for the election of an execulive bead, the presideat, and assigns certain powers and dutics to him. Art. III. treats of the judicial power, defining its range and the mode of its excrise. Arts. IV., V. and V1. contain certain miscellaneous provisions, including those which regulate the mode of amendment. Two alternative methods of proposing amendments and also two of passing themare recognized. They may be proposed either by a two-thirds vote in each house of Congress, or by a convention called by Congress on the application of the legislatures of two-thirds of the states. They may be passed either by the legislatures of three-fourths of the states, or by conventions in three-fourths of the states. Congress has in every instance preferred the method of itself proposing amendments and the method of submitting them to the state legislatures for ratification.

The provisions of the Constitution, which is later in date than the creation of the original states, and presupposes the existence and activity of those communities, include two sets of matters, which must be considered separately-(a) the Federal system, i.e. the relations of the national government to the states; and (b) the structure of the national government itself.
\(f 15\). In the determination and allotment of the rights Datribertas and powers of the national government on one side offowers and of the states on the other, a determination soewressthe which is the foundation of every federal system, Natherand the American Constitution preceods upon these principles:-
1. No powers are expressly allotied to the statem, because the states are contemplated as continuing to enjoy those preexisting powers which they have by their own right, and no as devolved upon them by the nation.
2. The powers allotted to the national government are those, and those only, which are required for the purposes of the collective life of the nation, i.e. (a) powers which relate \(t o\) its action in the international sphere; and (b) powers which can be exercised within the Union more efficiently and mare to the benefit of the people by oae contral government than by 2 number of separate governments.
3. All powers which are not expressly allotted to the national government are deft to the etates, unless specially lorbidden to be exercised by the latter, i.c powets not sperifically seferred to remain with the states, and if the national government wishes to dairn any particular power, it muse show affitmatively that that power has been grantod to it by the Constitution. (This principle has been followed in the Constitution of Australia, but not in that of Canadal

\footnotetext{
The , gowars given to the national government may be deseribed as thuse which subserve purposes of common national whiny- \({ }^{1}\) They are the following (sec Const, art. I. \& 8):-

To impose and collect taxes, which must be uniform throuchout the United States;

To borrow moncy on the credit of the Unincd States;
To tegulate foreign and inter-state commerce:
To establish a uniform rule of naturalization and a uniform bankrupicy law:

To coin money and fix the standard of weights and measures;
To establish post offices and pos! roads;
To secure exclusive rights for limited lime by granting gatents and ropyrights:

To constitute tribunais inferior to the Supreme Court;
To declare war, and regulate captures on land and water:
To raise and maintain an army and a navy:
To provide for calling out the militia, for organizing and arming them, and for governing such part of then as may be in the actual service of the United States:

To exercise cxclusive gurisdiction in the area selected for the seat of the national government and over spots acquired for military or naval purposes:

Tu make all laws necessary for carrying out the above powers

}
(inctuding laws punishing sach oflonces as fall withid Federat juriv diction as being transgressions of Federal |aw);

To pass laws protecting citizens of the United States Against unjust or discriminating legisiation by any state (amendonents xill. and kiv.).

6 16. The mational government is, however, interdicted from using these powers in certain directions by the following prohibitions (art. 1. (9, and furs ten ampadments): It may not suspend the writ of trabeas corpus (except in time of war or Powert the writ of trabeas oorpus (except in tume of war or whort
public danfer) or pass a bill of attainder or an \&x fost facte law; give any state a commercial preference over from the another: grant any title of nobility:' extablich or Nathaal prohibit any religion, or impoke any religious test as a
condition of holding office; abinidge the freedom of speaking or cendition of holding office; abridge the freedom of speaking or writing, or of public meeting, or of bearing atms; try any peryon for cerviain offences except on the presentiment of a grant jury, or otherwise than by a jury of his state and disorict: decide any common law action where the value in dispute exceeds \$70 except by a jury.

Alihough prima facie all powers not given' to the mational government remain wish the states, the latter are debarred from some powers. No stite may (art 1. 6 10. and amendments xiii., xiv. and \(x y\).) make any treaty or aliance; coin money or make anything, save gold and silver coin, a legad tender; pass any bill of aitainder or ex poss facde law. or law impaising the obligation of contracts: have eny but a republican form of government; grant any title ol mobility; maintain alavery: abridge the privileges of any citizen of the. United States, or deny to Him the right of voting on account of race, colour or previous condiaion of servitudel deprive any person of ilife, Liberty. or. property erithout due process of law; deny to any person the equal protection of the laws.

There are also certain powers which, though net absoluteiy withe. drawn from the states, can be exercied only with the comant of the malional legishature, vir. those of laying dutips non exports or inat ports. keeping troops or warshipe in ilmo of peaces ontering into agreements with another state or Coreign power, engaging in wer unjess iatvaded. And it may be added that there'are certim powers which. since they do not lie within the province of the national government, and have been reluned to the slates, ape said to be "reseryed to the peopte." This expresion meens that it is oaly the people who can confer them and direct them to be exercised. Should the people wish to confer them. they would bave to: da \(\$ 0\) by way of amending the Conatitution; and herein lies a remarbible difference between the American system on the one hand and those of some Furopean countries on the at her, which, although they have created rigid constitutions, do not expressly dcbar the legislature from using any and cuery power of government.
§ 17. The aim of those who fremed the Constitution was to, avoid friction between the state governments and the Federat government by rendering their respective peroman of spheres of action as separate and distinct as possible. cho Netman They siw that the less contict the less denger of Oovoramet collision. Their wish was to keep tho two mechan- to the isms as independent of each other as was compatible with the still higher need of subordinating, for national purposes, the state to the central goverament.

Nevertheless there arc, as was unavoidable, certain points of contact between the two, the etrief of which are the following:-

The Consthution requires each state govemment to direct the choice of, and accredit to the scat of the national goverament, two senators and so many represtatuipes as the state is (in respect of its population) entitled to send; to provide for the clection, mecting and voting of presidential ciectors in cach state, and to transmit their votes to the national capital; to organize and arm the militia forces of the state, which, when duly summoned by the national government for active service, are phaced under the command of the president.

Besides these direct services imposed upon the states, each state is of course practically limited in its legishative and creculive action by the power of the Federal judiciary (in the exercise of its function of interpreting the Constitution) to declare invalid laws passed or acts done inconsistent with the Federal Constitution, or with statutes passed by the Federal legishature Within the seope of its a utherity onder the Constitution.

So, too, when a subject, such as biankruptcy, is one on which state may legislate in the absence of legistation by Congress, the: state law is valid only so long as Congness does not legislate.

Finally, another point of comeact exists is the sight of a state to call upon the national goverwment to protect it agalnat invasion or domestic violence. This rifht has been several
times exerted. The mational government in also bound to guarantec to every state a republican form of covermment. (See American Commonwealk, ch. axviii.)

8 18. It is a fundamental principle of the American systern that the national government possesses a direct and imrnediate orrot, authority over all its citizens, quite irrespective of ferthorty of theis allegiance and duly to their own state. This Thennthoesl aulhority corresponds 10 and is coextensive with ouveramert the sphere of the Fedcral government. So far as the curesa ef functions of that goverament extend, it acts upon ane steres. the citizens not through the states, but as of is own tight and by its own officers. Boyond that splicre its author tity stops, and stale authority, unless inhibited by the Federal Constitution, begins. But Federal authority is always entilled to. prevail, as against a state legislature or officer, in all maters specifically allotted to it; and in these its power of direct action has two great advantages. Il makes the cilizen recognize his allegiance to che powter which repretents the unity of the mation; and it avoids the mecessity. of calling upon the state to enfonce obedience to Federal authority, for a state might possibly be weak or didatory, or oven itself inclined to disobedience. Thus the indirect taxes of customs and excise which the Federal government imposes are levied by Fedetal custom-house collectors and excisemen, and the judgments of Federad courts are carried out by United States marshals distributed over the country. Nothing has done more to give cohesion to the Armerican Federal system than the direct action of the Federal executive and judiciary.

\section*{V.-The Federal Covernment.}

1 19. The Federal or national government was created de nope by the Constitution of 1787-1789. It was really \(\frac{1}{}\) new creation rather than a continuation of the feeble organization of the pre-existing Confederation. But the principles on which It was construcled were old principles, and most of its fealurcs were drawn from the state governments as they then existed. These states themselves had been developed out of the previous colonial eovernments, and both they and the national governroent have owed something to the examplo of the British Constitution, which had auggested the division of the legislature into two branchas and the independent position of the judiciary. It was, howevet, mainly from the state constitutions, and not from the arrangernents prevailing in Grest Britain or in any otber country, that the men of the convention of 1787 drew their ideas and precedents.

Following what was then decmed a fundamental maxim of political eclence, they divided the goverament into three departments, the legislative, the executive and the judicial, and aought to keep each of these as far as possible detached from and independent of the other two.
In 1787 all the states hul three had bicameral legislataresit was therefore natural that the new mational government The Foderel should follow this example, not to add that the Legtaterres. division into two branches secms calculated to reduce the chances of seckless haste, atd to increase the chances of finding wisdom in a multitude of counsellors. There was, however, another reason. Much controversy had raged over the conficting principles of the equal representation of states and of representation on the basis of numbers, the larger states advocating the latcer, the smaller states the former principle; and those who made themselves ckampions of the rights of the states professed to dread the tyrannical power which an assembly representing population mighe exert. The adoption of a bicameral systern made it possible to give doe recognition to both principles. Onc house, the Senate, contains the representatives of the states, every state sending two; the other, the Rouse of Representatives, contains members elected on a basis of population. The two taken together are called Congress, and form the national Iegistature of the United States.
120. The House of Representatives is composed of members elected by popular vote in each of the varions states, the re-
prosentation of esch ztate being in proportion to itse population: Each state is at liberty under the Constitution to adopt either the "general licket" system, ice. the plan of Homes of electing all its members by one vote over the Ropmoseata whole atate, \(\propto\) to elect them in one-membered thes.
districts (the " district system "). The system of singlo-member districes now prevails almost everywhere. (Pennsylvania, however, has two represencatives clected at large Irom the entire state, and there have been other similar instances.) The number of members in the house was originally 69 , but it has steadily increased until, in December rigio, there were 398. Besides the full members, each ol the Torritories is allowed to send a delegate, who bas, however, no vete. The electoral franchise on whieh the house belected is for each state the same as that by which, under the provisions of the state constitution, the members of the more numerous branch of the state legislature are chosen. Originally franchices variod asuch in different stetes, but for many years prior to 1890 what was practically manhood suffrage prevalied in nearly all of the states. In that year and since, not a few of the southern states have introduced restrictions which tend to exclude the bulk of the coloured population (seceme, is 5). It has already beens observed that paupers and convicted criminals are excluded in many states, illiterates in some states. Every member must reside in the state which sends him, and custom, revely broken, requires that he should reside even in the district which he sepresents. This habit restricts the field of choice and has operated unfavourably on the political life of the nation.

The House of Representatives is chosen for ewo years, the terms of ald the members expiring together. The election of a new house takes place in November' of the even years (i.e. 1910, 1912, \&c.). Members enter on their cerm of service in the March following, but the first regular session does not begin umil the following December, or moro than a year after the clection. In fact, the old thouse holds its socond regular session of three months after the new house has been elocted. The rules are very complicated, and considerably limit the power of debate. A remedy against obstruction his been found in a system of closure called the "previous question.". Speeches are limited to one hour, and may be confined in commitice of the whole house to five minhues. There is eomparatively littlo good debationg in the European sense of the term, and this is doe partly to the great stze of the ball, partly to the system of legislation by committees.

The organization of the house is entirely different from that of the British Fiome of Commons or of most ascemblies on the European continent. The mimisters of the pre- The sident do not sit, and since there are thus no officials commuce to undertake the leadership of the majority and Syatom. conduct business, legistatlve work is shaped and directed by a number of committees in each house. Every bill when introduced is referred to somie commitice, and eaeh bitt comes up for consideration by the whole house on the report of the committee which has dealt with it. There were in 1910 62 regular or standing committecs in the Housc of Represen tatives, each consisting of from 3 to 20 members. The most important committees are the following: ways and means, rules, elections; appropriations (with several committees for difierent branches of public expendituro), rivers and harboors, banking and cutrency, and foreign affairs, Each committec has complete control of all bills referred 10 lt , and nineteen-twentieths of the bills introduced meet tholr death by the failure of the committee to take action on them. Tho bills taken up for action are debated and frecly amended by the committecs, and sometimes public hearings are beld. The committces on the expenditure of the various government departments conduct minute investigations into the administration of each. A bill, as finally agreed on by a committee, is reported to the house, and when taken up for action the fate of most bitts is decided by an hour's discussion, opened by the member of the committee making the report. The

In Jane in Orezon: in Septefner in Mainc and Vermone.
 Ihrenzth special orders sotmaited by the comenituee an rater

The mifying force of this complicated sytien of committee kepieluicm is the Speaier of the Hoose of Represertatives.

\section*{The} sementer. Like the Speaker of the British Hease of Commoes be is primacily the presidiag official, but the charsact of his office has become differept from that of the impartial moderator of the Britisa bonce. The Americaa Spetaker, who of connse has a vote like olber meebers, always Lelonges to the party which commands a majority, and is, indeed, virtually the leader of the majority party in the Howee of Reprementatives. He revembles in some respects a Earopean prime minister, and is recond oaly to the president in poltical inaportance. His power is derived from three main sources. He appoints the members of nearly all committees, he chooses the chairman of each, and he directs the reference of bilts to the variots compriclects. Of the commitice on rules, which practically determines the order in ohich importanat measures come before the house, be was formerly chairmat, and he bad the power of appointing the committec; but on the Igh of March 19to, the house passed a resolution which increased the membership of this committee from 5 to so, excluded the Speaker, and iramoferred the appoialments to the house. As presiding officer the Speaker exercises a right of discrimination tretween members rising to speak in debate, and can thus advance or retard the proyeciss of a measure. Ife is elected by the House of Reprocentatives at its Girst estion for the whole Congress, and his ciection is regularly carried by a strict party vote.
121. The Senate in 1910 consised of 92 members, two serwons deputed from each slate, be it great or small (New York rte semots. with \(9,100,000\) population and Nevada with \(8 \mathrm{r}, 875\) having the same representation), who rocst be infiabliants of that stele, and at least thirty years of age. They are elected by the legislature of tbeir state for six years, and are re-eligible. It used to be supposed by many Europeans, following Tocqueville, that this method of election was the cause of the (former) superiocity of the senators to members of the Iloume. This was an error, the true reason being that able onen preferred a seat in tbe Senale owing to is larger powers and longer term. One-third retire every two years, so that the old rember are always iwice as gumerous as the new merobers, and the body has been continuous ever since its frrst creation. Senaton are reelected more frequently than memwers of the House, so there is always a considerable proportion of men of long service and matuse experience.

Thare has fong been a demand for an amendment to the Constitution which should vett the election of senators in the peaples of the several states, and more than one-half of the state legialatures have at one time or another passed resolutions in favour of the change. Within the last few years the object desired has been practically attained in a few states by provimions they have introduced for taking a popular vote as to the perion whom the iegislature ought to elect, the latter being expocted to defer to the popular will.
'The viec-prosident of the United States is ex officio presiding officer of the Senate, and this is his only active function in the sovernment. He has, however, no vote in the Semate, cacept casting vote wheo the numbers are equally divided, and his euthority on questions of order is very limited.

The methods of procedure in the Senate are somewhat different from those in the Housc of Representatives. There is a similar committee system, but the Seuate committees and their chairmen are chusen, not hy the presiding officer, but by the Senate itself voting by ballot. Practically they are selected by caucuses of the majority and minority partics. The Senate rules have no provinion far the closure of debate, nor any limitation on the longth either of a debate or of a speech. For the consideration of come classes of business the Senate goes into executive or eecret semion, alchough what ls done at this session usually leaks out, and fads its way to the public through the press.

The functions of dile Senate fal into three chaser-iegishative, enecotive and joricial Ia herilative matters its poomers are idestical rixh those of the Hionse of Representuives, rith the ginge restriction that bits for misiag reverse mest origizale in the popular amembly. In practice, too, the Semete is al kest as infucatial in legitation as the House Disugreements. -fich are freqeent, are usually setiled in conferemoe, and in these the Setrate is apt to get the better of ins antagonisa. Seriots deadlocks are of compparatively rare occontesce.
The execulive furctions of the Senate are: (i) To appeove or disapprove the pecsident's mominations of Federal officts, inchuding judges, minizers of state and ambessadors; (i) to approve, by a majority of two-hirds of those preseat, of ireaties saboritted by the presideat. Through the latter pomer the Senate secures a geocral controf over foreign policy. Its approval is necessary to any inportapt action, and in geseral the president finds it advisable to keep the leaders of the senscorial majority, and in particular the Senate commbiter on loreign relations, infocmed of pending negotiotions. Forcige goveraments often complain of this power of the Senate, because if prevents them from being able to rely upon the carrying out of arrangments they have made with the executive; bul as the president is not responsible to Congress and is irremorable (except by impeachment) during his term of office, there would be objections to giving him an unqualified treaty-maling anthority. Through the power of confirming or rejecting the president's mominations to office, the senators of the president's party are able to influence a large amount of patronage. This sort of "dual control " works with less friction and delay than might have been expected, but better appointments would probably be secured is responsibility were more fully and more clearly fixed on the president alone, though there would no doubt be a risk that the president might make a sctious error.
The judicial function of the Senate is to sit as a high count for the trial of persons impeached hy the House of Representatives, \(\mathbf{a}\) vote of two-thirds of those present being needed for conviclion. There bave been eight cases of impeachment. The most important was that of President Jahnson, whose conviction failed by one vote-3S to 19. Five of the other seven cases also ended in acquittal, one for want of jurisdiction, \({ }^{1}\) and one by the resignation of the official before the inppeachment was preferred in the Senate. Two Federal judges were many years ago thus deprived of office, impeachment being the oaly process by which a Federal judge can be removed.
8 22. The procedure of each bouse in Iraming and passing bills has already been noted. When a bill has passed one chamber it is sent to the other, and there referred comerosto the appropriate committee. In coursc of time this mamellogho. committee may report the bill as reccived from the motionaed other bouse, but frequently an amended or an Flaser. entircly new measure is presented, which is discussed and enacted on by the second house. When bills passed by the two chambers arc not identical, and each persists in its own vie \(w\), the regular procedure is to appoint a committce of conference; consisting of an equal number of members from the Senate and from the House. These meet in secret, and generally agree upon a compromise measure, which is forthwith adopted by both chambers. If no compromise can be arranged, the confict continues until one side yields, or until it ends by the adjournment of Congress. After passing both bouses, the bill goes to the president, and if approved by; him, or not returned by him within ten days, becomes law: if vetoed, it returns to the house in which it originated; and if re-passed by a twothirds vote, is sent to the other house; and if again passed there by a two-thirds vote, it becomes law without the president's consent.
The scope of Congreasional legislation has been indicated in the list given of the powers of the national government

TThis case was that of the impeachment of senator, and the failure to convict arnse from the fact that some of the senators al the time held the now gererally accepted opinion that a member of Congress is mot subject to impeachunent.
(cee ante, if 15). The most important measures are thone dealing with the revenues and appropriations; and the procedure on these matters is slighuy different from that on other bills The socretary of the treasury sends annually to Congress a raport containing a statement of the national income and expenditure and of the condition of the public debt, together wilh remarks on the system of taxation and suggestions for ite improvament. He also sends what is called his annual letter, enclosing the estimates, framed by the various departments, of the sums needed for the public service of the United States daring the coming year. With this the action of the executive censes, and the matter passes into the hands of Congress.
Revenue bills for imposing or continuing the various customs dutics and internal taxes are prepared by the House committee on ways and means, whose chairman is always a leading man in the majority party. The report presented by the secretary of the treasury has been referred to this commitiee, but the latter does not necessarily in any way regard that report. Neither does it proceed on estimates of the sams needed to maintain the public service, for, in the first place, it does not know what appropriations will be proposed by the spending committees; and in the second place, a primary object of the customs dutics leas been for many years past, not the raising of revenue, but the protection of American industries by subjecting foreign imports to a very high tarif. Regular appropriation bills down to 1883 were all pasced hy the House committee on appropriations, but in that year a new committee-on rivers and harbours-received a large field of expenditure; and in 1886 ccrtain other supply bills were referred to sundry standing committecs. These various appropriation committees start leom, bat are not restrictod by and do not in fact adopt, the estimates of the secretary of the treasury. Large changes are made both by way of increasing and reducing his estimates.

The financial bills are discussed, as fully as the pressure of work permits, in committee of the whole House. Freah items of appropriations are often aulder, and changes are made in revenue bills in the interest of particular purposes or localities. If the Senate is controlled by the same party as the House, it is likely to secure the acceptance of many of its amendments. The majorities in the two houses then labour together to satisfy what they believe to be the wishes of thcir party. Important legistation is almost impossible when one of the houses is controlled by one party and the other house by the other.

When finally adopted by the House, the bills go to the Senate and are forthwith referred to the committec on finance or to that on appropriations. The Senate committees amend freely borh clasees of bills, and further changes may be made by the Senate ftself. When the bills go back to the House that body usually rejects the amęndments: the Semate declines to recede, and a conference committec is appointed by which a compromier is arranged, usually hastily and in secret, often including entirely new items, and this compromise is accepted with little or no discussion, generally at the end of the session.

Thus it comes that comparatively slight use is made of the experience of the permament financial officials in the framing of revenue-raing and appropriation bilis. There is little relation between the amounts.proposed to be spent in any one year and the amounts proposed to be raised, and there is a strong tendency to deplete the public treasury through special grants secured by individual members. These defects have long been felt, but Congress is not disposed either to admit officiak to attend its sittings or to modify the methods to which it has grown accustomed. A tariff commission was, however, created by statute in 1000 , the reports of which may have some inftuence on the framing of tarifs in future.
23. The execulive power of the nation is vested in a president of the United States of America, who bolds office Th during the term of four years. He, together with Presamal the vice-president, is nominally chosen by a system of doable election through an electoral college, but in practice this system operales merely as a roundabout way of getting the judgenent of the people, voting by states.

The Conatitution directseach state so choose a nu mber of "preaidential elseters equal to the sumber of its representatives in Cooamas" 0wat scatims and members of the House of Nu, 4, utativen). Members of Congress and boldern of Ferleral oftices are ineligible se electorm Themo elcetors (in 1900, 4-3) meet in each state on the recond
 Monday in January, and give thair vores in writing for the president and vice-presil)nt. The votes are tranamitted to Washington, and there opened by the president of the Senate, in the presence of both bouses of Congress, and counced. A majority of the whole number of electors is necemary to clect. If no person have auch arajority. the promident is choven by the House of Reprementatives voting by siates, and the vice-president is chosen by the Senate Thim plon of creating an elecioral college to eetect the president was expected to secure the choice by the best cisizens of each state, in a tranquil and deliberate way, of the man whom thoy in cheir unfectered discretion chould deem fittest to be the chaef magistrate of the Union. In fact, however, the electors exerciee no discretion and are chomen under a pledge to vote for a particular candidate. Each party during the summer preceding a presidential election holda a huge party meeting, called a national convention, which nomioates candidatee for president and vice-presidont. (See post, 133.) Candidates for the office of eloctor are also mominated by party conventions, and the persons who are in each state chosen to be electors-they are chosen by a strict party vote-are expected to vote, and do in point of lact vote, for the presidential candidaten named by their respective parties at the mational conventions. The Constitution leaves the method of choosing efectors to each state, but by universal custom they are now everywhere elected by popular vote, and all the clectors for each state are voted for on a "general ticket." In the early days the clectors were chosen in many otates by the legivlatures, but by 1832 South Caroline was the only state retaining this method, and in 1868 she aleo dropped it. Some states also, for a time, chose electors by districts, but by 1832 all had adopted the "general ticket" system. Michigan, however. in the election of 1892 reverted to the "district " syatem, thereby dividing its electoral vote. Thus the cloction is virtually an election by states, and the strugale concentrates itelf in the large stales, where the great parties are often nearly equally divided. e.f. the party which earrica New York by even a small majority gains all the 39 electoral votes of that state. The polling for electors takes place early in November on the same day over the whole union, and when the result is known the contest is over, because the subeequent mexting sad voting of the electors is a mere matter of form. Nevertheless, the system here described, being an election by states, is not the same thing as a general popular vote over the union, for if sometimes happens that a person is chosen procident who bas received a minority of the popular vote cast.

The Constitution requires the president to be a native-born citisen of the United States, not under thirty-live years of age. and for fourteen years resident in the United States. There is no legal lionitation to his re-eligibility any number of times; but tradition, dating from the rofusal of Gcorge Washington to be nominated for a thind term, has virtually established the rule that no permen shall be president for more than two continuous terms. If the prosident dics, the vice-president steps into bis place: and if the latter aloo dies in office, the succession passes to the secretary of state. \({ }^{1}\) The prosident receives a salary of 875,000 a year, besides \(\$ 25.000\) a year for travelling expenses. and has an official residence called the Executive Mansion, or more familiarly the White House.

Funclions of the President.- These may be grouped into three classes: those which (i) relate to loreign afain: (2) concern legistation; (3) relate to domestic administration.

The president appoints ambassadors and ministers to foreign coontrics, and rectives thoee sent by foreign countries to the United States. He has, through his secretary of state, immediate dirsction of all negotiations with such countries, and an unfettered initialive ia all forrign affairs He doee not, however, enjoy a free hand in finally determuning the foreign policy of the government. Treatioe reguire the approval of ewo-thirds of the Semate, and the foreign affairs committee of that body is usualiy kepe informed of the negotiations which are being conducted by the exceutise. The power to declare war formally belongs to Congress; but the exacufive may. without an act of Congress, virtually emgage in howhitics and thus bring about a seate of war, 35 happened in \(1845-46\), when war broke out with Mexico.

As respects legislation, the position of the president is in marked contrast to that of the British crown. While qearly all important measures are brought into parliament by the ministers of the sovereign, and nominally under his instructions, the American president cannot introduce bills either directly or thoougb his

\footnotetext{
\({ }^{4}\) The ordet of succession, after the secretary of state, is as follows: the secretary of the treasury, the eccretary of war, the attorney general, the postmaster.gencral, the secritary of the navy, the secretary of the interior-this order to apply only to such officers as "shall have been appointed by the advice and consent of the Senate. . . and euch as are eligible to the office of presideat
and not under impeachment. ...'
}
ministers. All that the Constitution permits him to do in this direction is to inform Congress of the state of the nation and to recammend the measures which be deems to be necessary. This latter [unction is discharged by written messages addressed by the president to Congress. the message sent at the beginning of each session being usually the most important; but the suggestions made in these measages do not necesearily or diroctly induce legislation, although it is open to him to submit a bill or have one dralted by a minister presonted to Congress through a member.

More constantly effective is the president's part in the last stage of legislation. His so-called "veto-power" permita him to refurn to Congress, within ten days after its pastage, any bill of which he may disapprove, and, unless this bill re-passes both houses by a two-thinds vote, it does not become law. Most presidents have made use of the veto power sparingly. Jackson, however, as well as Tyler, Johnson and especially Cleveland, employed it pretty boidly. Most of Johnson's vetoes wero promptly overruied by the large majority opposed to him in both houses, but the vetoes of ah the other presidents have generally prevented the enactment of the bills of which they disapproved.

The domestic executive authority of the president in time of peace is small, becaute by far the larger part of law and administration belongs to the state and local governments, while the Federal administration is regulated by statutes which leave little discretion to the executive. The power of making appointments to the administrative service would invest him with a vast influence but for the constitutional requirement of securing the consent of the Senate to the more important appointments made. The president is given a free hand in choosing his cabinet ministers; but for most other appointments. whether or not they are by law in his sole gift, the senators belonging to the president's party have practically controlled the selections for offices lying within their respective states, and a nomination made by the president against the will of the senator concerned will generally be disapproved by the Senate. The members of the president's party in the Housc also dermand a share in the bestowal of offices as a price for their co-operation in those matters whercin the exocutive may find it neccssary to have legisiative aid. Nevertheless, the distribution of offices under the so-called "spoils system" remains the most important ordinary function of the president, and the influence he exerts over Congress and legislation is due mainly to his patronage.

In time of war or of public disturbance, however, the domestic authority of the president expands rapidly. This was markedly the case during the Civil War. As commander-in-chicf of the army, and navy, and as " charged with the faithful execution of all laws," he is likcly to assume, and would indeed be expected to assume, all the powers which the emergency requires. In ordinary times the president may be alniost compared to the managing clork in a large business establishment, whose chie function is to select his subordinates, the policy of the concern being in the hands of the board of directors. But when foreign affairs reach a critical stage, or when disorders within the Union require Federal intervention, immense responsibility is then thrown on one who is both commander-inchief of the army and the head of the civil executive. In no European country is there any personage to whom the president can be said to correspond. He may have to exert more authority, even if he enjoys less dignity, than a European king. He has powers which are in ordinary times narrower than thoee of a European prime minister; but these powers are more secure, for instead of depending on the pleasure of a parliamentary majority, they run on to the end of his term. Although he is always elected as a party candidate, he generally receives, if he shows tact and dignity, abundant respett and deference from all citizens, and is able to exert influence beyond the strict limits of his legal power.
The only way of removing the president from office is by impeachment, an institution borrowed from Great Britain, where it had not become obsolete at the time when the United States constitution was adopted. The House of Representatives may impeach the president. The Senate tries him, and a two-thirds majority is required for conviction. Andrew Johnson is the only president who has been impatached.
64. There is in the government of the United States no such thing as a cabinet, in the British or French or Italian The cestenen sense of the word. But the term is regularly ased end Admbs. to describe a council of the president, composed atrathe of the heads of the chief administrative departOFPbeleth. ments: the secretary of state, the secretary of the treasury, secretary of war, attorney-general, secretary of the navy, postmaster-general, secretary of the interior, secretary of agriculture, and secretary of commerce and labor. "ne the British cabinet, this council is not formally recognized Matin ; Mevertheless accepted as a permanent It is realiy a group of persons, on, and answerable to, the prepolicy, no collective responsibility.

The final decision on all queations rest with the prisident, who is solely and personally responsible. Moreover, the members of the cabinet are excluded from Congress, and are entirely independent of that body, so that an American cabinet has little to do in the way of devising parliamentary tactics, or of preparing bills, or of discussing problems of foreign policy. It is not a govermment, as Europeans understand the term, but a group of heads of depariments, whom their chief, though he usually consults them separately, often finds it useful to bring together for a talk about current politics and the course proper for the administration to take in them, or in order to settle some administrative question which lies on the borderland between the provinces of two ministers.

The principal administrative departments are those already named, whose heads form the president's cabinet. The most important are the state and sreasury departments. The former has the conduct of foreign affairs and Admborere interests, and directs the diplomatic service. but is
the Doperts. obliged to keep in touch with the Serate, because treaties roquire the consent of the latter. It also has charge of the great seal of the United States, keeps the archives, publishes the statutes of Congress and controls the consular service.
The two main functions of the treasury department are the administration of the government revenues and experditures, and of the banking and currency laws. The secretary has howrver, a smalier range of action than a finance minister in Europenn countries, for, as he is excluded from Congress, he has nothing directly to do with the inposition of taxes, and very little with the appropriations for government expenditure.

The department of the interior is less important than in Franee or Italy, since the principal functions which there belong to it lic, in the United States, within the field of state powers. In the Uniled States the principal matters in this depart ment are the management of the public lands, the conduct of Indian affairs, the issue of parents, the administration of pension laws, of the national census and of the geological survey, and the collection of educational information.

The department of war controls the formerly very small, but now largely increased, army of the United States; and its corps of eagineers execute the river and harbour improvements ordered by Congress. The navy department has charge of the dockyards and vessels of war: and the post office department directs the postal system, including the railway mail service. The department of agriculture includes the weather bureau, the bureau of animal industry and other bureaus which conduct investigations and experiments. The attorney-general is the legal adviser of the president, public prosecutor and tanding counsel for the United States, and also has general oversight of the Federal judicial administration, especially of the prosecuting officers called district attorneys and of the exceutive court officers called marshals.

The department of commerce and labor controls the bureaus which deal with the mercantile marine, the lighthouse and lifesaving service, commercial statistics, immigration, and the coast and geodetic survey, and the census is also under its charge.

Two commissions not connected with any of the above departments descrve some notice. The inter-state commerce commissions established by statute in 1887, is a semi-judicial, semi-admioistranive board of five members, with limited powers of control over inictstate railway transportation. The chief duty is to prevent dis criminations in freight rates and secret rebates from the publighed list of chasges. its powers ha ve been much extended by subsequent acts especjally that of 1910. The civil service commission, established in 1883, conducts competitive examinations for appointments to subordinate positions under all of the administrative departments. Some 235,000 posts have now been placed under civil service rules and withdrawn from the category of spoiss.

8 25. The Federal judicial system is made by the Constitution independent both of the legislature and of the execative. It consists of the Supreme Court, the circuit court of appeals, the circuit courts and the district courts. The Promer

The Supreme Court is crested by the Constitution, and consisted in 1910 of nine judges, who are nomitated by the president and confirmed by the Senate. They hold offoe during good behaviour, i.e. are removable only hy impeachmenl, thus having a tenure even more secure than thet of English judges. The court sits at Washington from October to July in every year. The sessions of the court are held in the Capitol. A rule requiring the presence of six judges 10 pronounce a decision prevents the division of the court into two or more benches; and while this secures a thorough consideration of every case, it also retards the despatch of business. Every case is discussed twice by the whole body, once to ascertain the view of the majority, which is then directed to be set
ferth in a written opinion; ther again when the writtea opinion, prepared by one of the judges, is submitted for criticism and adoption by the court as its judgment.

The other Federal counts have been created by Congress under a power in the Constitution to establish "infetior courts." The circuit courts consist of twenty-pine circuit judges, acting in nine judicial circuits, while to each circuit there is also alfot ted one of the justices of the Supreme Court. The judges of each circuit, acting with or without the justice of the Supreme Court for the circuit, constitute a circuit rourt of appeals, established to relieve the Supreme Court. Seme cases may, however, be appealed to the Supreme Court from the circuit court of appeals, and others directly from the lower courts. The district courts are now eighty in number, each having usually a single justice, rarely two. There is also a specis! tribunal called the court of claims, which deals with the claims of private persons against the Federal govemment. It is not strictly a part of the general judicial system, but is a creation of Congress designed to relicve that body of a part of its own labours. A customs court of five judges was created by an act of 1909 for the hearing of cases relating to the tariff.

The jurisdiction of the Federal courts extends only to those cases in which the Constitution makes Federal law applicable. All other cases are left to the state courts, from which there is no appeal to the Federal courts, unless where some specific point arises which is affected by the Federal Constitution or a Federal law. The classes of cases dealt with by the Federal courts are as follows:-
r. Cases in law and equity erising under the Constitution, the laws of the United States and treaties made under their authority;
2. Cases affecting ambassadors, other putilic ministers and consuls;
3. Cases of admiralty and maritime jurisdiction;
4. Controversies to which the United States shall be a party;
5. Controversies between two or more states, between a state and citizens of another state, between citizens of different states, bet ween citizens of the same state claiming lands under grants of different states, and between a state or the citizens thereof and foreign states, citizens or subjects (Const. art. iii. 8). Part of this jurisdiction has, however, been withdramen by the eleventh amendment to the Constitution, which declares that " the judicial power of the United Statcs shall not be construed to extend to any suit in law or equity commencedor prosecuted against one of the United States by citizens of another state, or by citizens or subjects of any foreign state."
The jurisdiction of the Supreme Court is original in cases affecting ambassadors, and wherever a state is a party; in other cases it is appellate. In some matters the jurisdiction of the Federal courts is exclusive; in others it is concurrent with that of the state courts.
As it frequently happens that cases come before state courts in which questions of Federal hw arise, a provision has been made wherchy due respect for the latter is secured by giving the party to a suit who relics upon Fedcral taw, and whose contention is overruled by a state court, the right of having the suit removed to a Federsl court. The Juditiary Act of 1789 (as amended by subsequent legishation) provides for the appeal to the Supreme Court of the United States of "a final judgment or decree in any suit rendered in tbe highest court of a state in Which a decision in the suit could be had where is drawnin question the validity of a treaty or statute for an authority exercised under the United States, and the decision is against their validity; or where is drawn in question the validity of a statute of, or an authority exercised under, any state, on the ground of their being repugnant to the Constitution, treaties or laws of the United States, and the decision is in favour of their validity; or where any title, right, privilege or immunity is claimed under the Constitution, or any treaty or statute of or commission held or authority exercised under the United States, and the decision is against the tille, right, priviicge
or fimmunity specially set up or claimed by either party under the Constitution, treaty, statute, comminaion or authority \({ }^{\prime \prime}\) If the decision of the state court is in fever of the right clained under Federal law or against the validity or applicability of the state law set up, there is no ground for appeal, became the applicability or authority of Federal law in the particular case couid recrive no farther protection from a Federal court than has in fact been given by the state court.

The power exercised by the Supreme Court in deciaring statutes of Congress or of Etate legishatures (or acts of the execotive) to be invalid because inconsistent with the Federal Constitution, has been deemed by many Europeans a peculiar and striking featire of the American syatem. There is, however,' nothing novel or mysterious about it. As the Federal Constitution, which emanates directly from the people, is the supreme law of the land everywhere, any statute passed by any lower authority (whether the Federal Congrèss or a state legislature) which contravenes the Constitution must necessarily be invalid in point of law, just as in the United Kingdom a railway bye-law which contravened an act of perifement would be invalid. Now, the functions of judicial tribunalsof all courts alike, whether Federal or state, whother superior or inferior-is to interpret the law, and if any tribunal fands a congressional statute or state statute inconsistent with the Constitution, the tribunal is obliged to hold sucb statate invalid. A tribunal does this not because it has any right or power of its own in the matter, but because the people have, in enacting the Constitution as a supreme law, declared that all other laws inconsistent with it are ipso jxre void. When a tribunal has ascertained that an inferior lav is thus inconsistent, that inferior law is therewith, so far as inconsistent, to be deemed void. The tribunal does not enter any conflict with the legislature or executive. All it does is to declare that a conflict exists between two laws of different degrees of authority, whence it necessarily follows that the weaker law is extinct. This duty of interpretation belongs to all tribunals, but as constitutional cases are, if originating in a lower court, usually carried by appeal to the Supreme Court, men have grown accustomed to talk of the Supreme Court as in a special sense the guardian of the Constitution.
The Federal courts never deliver an opinion on any constitutional question unless or until that question is hrought before them in the form of lawsuit. A judgment of the Supreme Court is only a judgment on the particular case before it, and does not prevent a similar question being raised again in another lawsuit, though of course this seldom happens, because it may be assumed that the court will adhere to its former opinion. There have, bowever, been instances in which the court has virtually changed its view on a constitutional question, and it is understood to be entitled so to do.
8 26. As the Federal Constitution is a short document, which deals very concisely with most of the subjects it touches, a vast number of questions have arisen upon its Rosana of interpretation in the course of the 122 years which coastirhave elapsed since its enactment. The decisions thanalimene of the Supreme Court upon these questions form a mextion. large body of law, a knowledge of which is now indispensable to \(\&\) mastery of the Constitution itseff. By them the Constitution his been so expanded in the points which it expressly treats of, and so filled up in the matters which \(h\) covers only by way of implication, that it is now a much more complete instrument than it was when it came from the hands of its framers. Thus the courts have held that, while the national govemment can exercise only such powers as have been affimatively granted, it is not restricted in its choice of the methods for exercising such powers as bave been granted. From this doctrine there has been dertved a conspicuous activity of the national government in such fields as taxation, borrowing of money, regulating commerce and carrying on war. Executive and legislative acts not authorized by the letter of the Constitution have aiso been allowed to remain unchallenged, and thus precedents have been in fact establahei.
with the teat recognition of the courts and the people, through which the sphere of the national government has been enlarged. The purchase of Louisiana from France by President Jefferson is an instance. It may indeed be said that the Constitution as it now stands is the result of a long process of development; and that process is still going on. In 1901 the Supreme Court delivered several judgments in cases arising out of the annexation of Porto Rico, which handled, though they did not fully settle, divers points of novelty and of importance, and sull more recently questions of great intricacy affecting the respective legislative rights of the Federal and the state governments have come before it.
\& 27. It is not, however, only by way of interpretation that the Constitution has been developed. A great many matters Developareat which it passed over have become the subject of of the cose legislation by Congress; and there has also sprung uspotion by up a large mass of usages regulating matters not Usage. touched either by the Constitution or by any express enactment. Tbese usages have in many cases lasted so long and become so generally accepted, that they may be regarded as parts of the actual or (so to speak) "working" Constitution, althougb of course they could be at any moment changed. Among the matters that are now thos settled by usage the following may be mentioned:-
The president practically is limited to two continuous termis of office. Tbe presidential electors are expected to vote for the candidate of the perty which has chosen them, exercising no free will of their own. The Senate always confirms the nominations to a cabinet office made by the President.
It may be added that in respect of one matter assigned by the Constitution to the states a momentous change has taken place since tbe enactment of the Constitution. This matter is the electoral franchise in Federal elections. In 1789 property qualifications were general, but now in all the northern and western states these have been long since abolished, and the electoral suffrage is practically manhood suffrage. In Wyoming, Colorado, Utab, Idaho and Washington universal adult suffrage prevails. Down till \(\mathbf{8 9 0}\) manhood suffrage had prevailed in all the Sout hern states also (as to some Soutbern states now see ante, 5 5). As the electoral suffirage for state legislature elections is also that for Federal elections (including the election of presidential electors), the working of the Federal Constitution has thus been affected without any cbange in the Constitution itself.
5 28. Besides these changes which have been brought about by judicial interprctation and by usage, the Constitution has Amead also been altered in the regular and formal way Ameato which its own provisions permit (see ance, 8 14). constion This has bappened four times Ten amendments thon. were enacted immediately after the adoption of the Constitution itself, in order to mect certain ohjections which had been taken to it. Tbese may be described as a sort of bill of rights. Anotber, the eleventh, was casted in \(1794-\) 1708 to nagative the construction which the Supreme Court had put upon its own powers in holding that it could entertain a suit by a private person against a state. Another, the twelftb (\(8803-1804\)), corrected a fault in the method of choosing the president; and three more (\(1865-1870\)) confirmed and secured some of the results of the victory of the North in the War of Secession (\(1861-65\)). In 1999 Congress proposed an amendment for enabling the national legislature to impose an income tax. But few araendments pass beyond the first stage of a formal proposal. This is due not merely to the respect of the Americans for their fundamental law, but also to the difficulties which surround the process of change. It is hard to secure the requisite majorities in Congress, and still harder a majority in three-fourths of the states. The obstacles placed in the way of, amendment, which are greater tban in the case of almost any other Constitution, may be reckoned among the canses which led to the War of Secession.
\% 20. As compared with the cabinet system of Great Britain, of the British self-governing colonies, and of sucb
apen countries as France, Italy, Holland and Belgium, the
characteristic features of the scheme of the American natienal government are the following:-
c. The legishature and the executive-are independent and disjoined. The executive does not depend upon the ammer legislature, but holds its powers by a direct commis-anderuedered sion from. the people. No member of the execu-cheframe of tive sits in the legislature, nor can the legislature Notioned eject any one from office save by impeachment.
b. Both the legislature and the executive sit for fired terms.
c. No method is provided for getting rid of deadlocks, either between the legislature and the executive or between the two branches of the legistature. Should action be needed which cannot be legally taken without the concurrence of these different authoritics, and should they be unable to concur, the legal situation must remain in statm quo until by a new election the people have changed ane or more of the conflicting authorities, and so brought them into harmony.
d. The judiciary bolds a place of high importance, because it is the proper interpreter of the will of the people expressed in the supreme law, the Federal Constitution, which the people have enacted.
It will be noted that the structure of the Fedcral Government is less democratic than that of the state governments. The only posts in the former conferred by popular election are those of the president and the members of the legislature, and while the two houses are 2 check on each other, the president is a check upon both.

The defects which have been remarked in this system are, broadly speaking, the following: There is a danger that prompt action, needed in the interests of the nation, may fail to be taken owing to a deadlock between legislature and executive, or between the two branches of the legislature. There may be a difficulty in fixing responsibility upon any person, or small group of persons, because casea may arise in which the executive, being unable to act without the concurrence of the legislature, can hardly be blamed for failing to act, while yet it is unable to relieve itself by resigning; while on the other hand the legislature-which consists of two bodies, each of them numerous, and in neither of which are there recognized leaders-contains no person on whom responsibility can be fixed. On the other hand, the characteristic merits of the system may be summed up as consisting in the safeguards it provides against the undue predominance of any one power or person in the government, and therewith against any risk there may be that the president should become a despot, and in the full opportunities it secures for the due consideration of all important measures. It is a system amply provided with checks and balances; it recognizes and enforces the principle of popular sovereigaty, while subjecting that principle to many checks in practice; and it is well calculated to maintain unchanged the relation of its component parts each to the other. There has been, in point of fact, no permanent shifting af weight or strength from any one organ of government to any other. At some particular epoch the president has seemed to be gaining upon Congress, at other epochs Congress has scemed to be gaining upon the president. Much depends on the personal qualities of the president and his power of inspiring the people with trust in his courage and his uprightness. When he possesses that power he may overawe Congress, and make them follow, even reluctantly, in the path he points out. Now and thes the Senate has been more influential than the House, now and then it has fallen back, at least so far as the confidence of the people in it is concerned. The part played by the judiciary has at some moments been of special importance, while at others it has been little noticed. But, taking the history of the republic as a whole, that equilibrium between the several organs of the government which the Constitution was intended to secure has been substantially maintained.

> VI.-The Party System.
§ 30. The actual working of the governmeat of the Union and of the governments of the several states cannot be properly
understood without some knowledge of the party system as it exists in the Upited States. That aystem is, as has been well observed by H. J. Ford, \({ }^{1}\) a sort of link between the executive and the legistative departments of government, and thus the policy and action of the party for the time being in power forms a sort of second and unofficial government of the country, drecting the legal goverument created by the Constitution. In no country have political partics been so carefully and thoroughly organized. In no country does the spirit of party so completely pervade every department of political life; nancoce of not that party apinit is any more hitter than sto Pary it is in Europe, for in some respects it is usually less sornem mana bltter and less pascionate than in France, the United she Worthe Kingdom or Auscria, but that it penetrates farther 01 100 Guvanamera into the body of the people, and exerts a more constant influence upon their minds. Party organizations have in the United States a wide range of action, for they exist to accomplish five purposes. Three of these are pursued in other countries also. These three are: first, to influence governmental policy; secondly, to form opinion; and thirdly, to win elections. But the two-others are almast (if now not quite) pecutiar to the United States, viz. to select candidates for office and to procure places of cmolument for party worters. The selecting by a party of its candidates, instead of allowing candidates to start on their own account, is a universal practice in the United States, and rests upon the notion that the supreme authority and incessant activity of the people must extend not only to the choice of officials by vore, but even to the selection of those for whom votes shall be cast. Se the practice of securing places for persons who have served the party, in however trumble a capacity, has sprung from the maxim that in the strife of politics "the spoils belong to the victors," and has farnished a motive of incomparable and ever-present activity ever since the administration (1829-1837) of President Andrew Jackson. It is chiefly through these two practices that the party organizations have grown so powerful, and have been developed into an ext remely complicated system of machinery, firm yet flexible, delicate yet quickly set up, and capable of working efficiently in the newest and roughest communities.

8 31. The contests over the adoption of the Federal Constitution by the several states in 1787-1790 brought to the surface Oryman two opposite tendencies, which may be called the mhitory of centrifugal and centripetal forces, a tendency to sob Prortos. maintain both the freedom of the individual and the independence, in legislation, in administration and in jurisdiction, of the several states, and an opposite tendency to subordinate the states to the nation, and to vest large powers in the central Federal authority. These tendencies soon arranged themselves in concrete bodies, and thus iwo great partics were formed. One, which took the name of Republican, became the champion of states' rights, and claimed to be also the champion of freedom. It was led by Thomas Jefferson. The other, the Federalist party, led by Alexander Hamilton, stood for an energetic exercise of the powers of the central government, and for a fiberal interpretation of the powers granted that government by the Federal Constitution. The Jeffersonian party has had an unbroken continuily of life, though it has been known since about 1830 as the Democratic party. The Federalist party slowly decayed, and ultimately vanished bet ween 1820 and 1830 , but out oi its ruins a new party a rose, practically its heir, which continued powerful, under the name of Whigs, till \(\mathbf{1 8} 54\), when it broke up over questions connected with the extension of slavery. Very soon thereafter a party, nominally new, but largely formed out of the Whigs, and maintaining many of its traditions, sprang up, and took the name of Republicans. Since 1856 these two great partics, Dernocrats and Republicans, have confronted one another, including between them the vast majority of the people. After the Civil War, when the questions attending Reconstruction had become less acute, economic discontents gave sise to other

1 Rise and Growlh of American Politics.
smaller parties, such as Greembackers, Labor party and Populists, and the sense of the harm done by the licensed sale of alcohol evoked a party which became known as the Prohibitionists, Still later the growth of Collectivist views, especially among the immigrants from Continental Europe, led to the formation of a Socialist Labor party and a Socialist party, some of those who had belonged to the Populists associating themselves with these new groups.
The Democratic party began to form for itself a regular organization in the presidency (\(1829-1837\)) of Andrew Jackson, and the process seems to have been first seriounly undertaken in New York state. The Whigs did the same; and when the Republicans organized themselves, shortly after the fall of the Whiga, they created a party machinery on lines resembling those which their predecessors had struck out. The eatab; lishment of the system in its general form may be dated from before the Civil War, but it has since been periected in its details.
632. The machinery of an American party consists of two distinct but intimately connected sets of bodies, the one permanent, the other temporary, or cather inter- owneo of mittent. The function of the former is to manage the systow the general business of the party from month to of Party month and year to year. That of the latter is to nominate candidates for the next ensuing elec- don. tions and to make declarations of perty opinion intended to indicate the broed lines of party policy.

The permanent organization consists of a system of committees, one for each of the more important election areas. There is a committee for every city, every county, and every congressional district, and in some states even for every township and every state legishture district. There is, of course, a committer for every state, and at the head of the whole stands a national commitice for the whole Union, whose special function it is to make arrangements for the conduct of party work at a presidendial election. Thus the country from ocean to ocean is covered by a network of committees, each having a sphere of action corresponding to some election area, whether a Federal area or a state area. Each committee is independent and respons, sible \(s 0\) far as regards the local work to be done in connexion with the election in its own area, but is subordinate to the party committecs above it as respects work to he done in its own locality for the general purposes of the party. The ordinary duties of these committees are to raise and spend money for electioneering and otherwise in the interests of the party, to organize meetings, to "look after the press," to attend to the admission of immigrants or new-comers as voters, and generaliy to attract and enrol recruits in the party forcea. At election times they also direct and superintend the work of bringing up voters to the polls and of watching the taking and counting of the votes; but in this work they are often aided or superseded by specially appointed temporary bodies called " campaign committees." These party committces are permanent, and though the membership is renewed every year, the same men usually continue to serve. The chairman in particular is generally reappointed, and is often, in a populous area, a person of great and perhops autocratic power, who has large funds at hís disposal and a regular army of "workers." under his orders.

The other and parallel branch of the party arganization consists of the bodies whose function it is to nominate party candidates for elective posts, whether legislative or Aurty Aoms. executive. (It must be remembered that many mafty executive state, county and city officers are chosen Coevere by direct popular vote.) These bodies are meetings mase of the members of the party resident in each election area. In the smallest areas, such as the township or city ward, the meeting is composed of all the recognised members of the party who are entitled to vote, and it is then called a primary. In the larger election areas, wheh as a county or city, the number of voters who would be entilled \(t 0\) be present
renders it imposiste to admit all, so the nominating meceings in these areas are composed of delegates elected in the various primarics included in the area, and the meeting is called a nominating convention. This is the rule, but in some parts of the South and West norninations for members of the state legislature and county officials, and even for members of Congress, are made by primary assemblies meeting over the entire area, which all the party voters are entitled to attend. Whero candidates are to be nominated for a stato election, the number of delegates from primaries would be too large, so the state nominating convention is composed of delegates chosen at representative conventions held in smaller areas.
Every registered voter belonging to the party in the local election area for which party candidates are to be nominated is presumably entitled to vote in the primary. In rural districts litile difficulty arises, because it is known what citizens belong to each party; but In cities, and especially in large cities, where men do not know their neighbours by sight, it becomes necessary to have regular lists of the party voters entitled to attend a primary; and these lists are either prepared and kept by the local party committee, or are settled by the votes of the persons previousty on the party rolls. The composition of these lists is of course \(\&\) serious matter, because the primary is the fount dation of the whole party edifice. Accordingly, those who control the local organizations usually take pains to keep on the listes all the voters whom they can trust, and are apt to seep of those whom they think likely to show a dangerous independence. By their constant activity in this direction, and by their influence over the pliablo members of the party, they are generally abse to have a primary subservient to their will, which is ready to nominate those inbora they may suggest as suitable candidates, and to choose as delegates to the conventions persons on whom they can rely. In this way a few leaders may sometimes be able to obtain control of the nominating machinery of a city, or even of a state, for the local committees usually obey instructions received from the committees above them. (See, as to the details of party machinery, Americen Commonwealh, chs. Lix--Lxiv., M. Ostrogorski on Democracy in England and America, and Professor Jesse. Macy on Party Orgawisation and Machinerys 1904.)
The great importance of those nominating bodies lies not only in the fact that there are an enormous number of state, county and city offices (including judicial offices) filled by direct popular election, but also in the fact that in the United States a candidate has scarcely any chance of being clected unless he is regularly nominated by bis party, that is to say, by the recognised primary or convention. To control the primary or the convention (as the case may bc) of the party which is strongest in any given arez is therefore, in ninetynine cases out of a bundred, to control the election itsedf, so far as the party is concerned, and in many places one party has a permanent majority.
As the desire to dominate primarics was found to lead to many abuses, both in the way of manipulating the lists of party voters and in the unfair management of the primary mectings themselves, a movement was started for reforming the system, which, beginning soon after \(\mathbf{2 8} 80\), gatbered 50 much support that now in the large majority of the states laws have been cancted for regulating the proceedings at primary nomination meetings. These laws vary greatly in their details from state to state, but they all aim al enabling the voters to exercise \(a\) free and unfettered voice in the selection of their candidates, and they have created a regular system of clections of candidates preliminery to the election of office-holders from among the candidetes. In mote states the voter is required, when he obtains his biltor at the primary clection, to declare to which party be belongs, but sometimes the primary is "opcn" and he may stefor any one of the persons who are put forward as desining candidates. The hws usually contain proifrand or bribery practised at a primary, man mand or bribery practised at a primary,
organizutions, Hitule objectica sciems to bave been felt to giving them statutory recognition and placing the procoedinge at them under full official control.
33. One nominating body is of such conspicuous magnitude as to need special notice. For the selection of party candidates for the offices of president and vice- ron Nacomen president of the United States there is held once Nonamer every four ycars, in the summer proceding the convontion. election (which takes place in November) of the president, a buge party assembly of delegates from conventions held in the several states, each state having twice as many delegates as it has electoral votes to cast (i.se twice as many as its Federal senators and Federal representatives). Two delcgates are chosen for eacb congressional district by 2 district convention, and four delegates for the state at large by a state convention. Each state delegation usually keeps together during the national convention, and holds private. meetings from time to time to decide on its course.
When the national convention has been duly organized by the appointment of committees and of a chairman, its frst busimess is to discuss and adopt a series of resolutlons (prepared by the committee on resolutions, but subject to amendment by the convention as a whole), which, taken together, embody the views, programme and policy of the party, and constiture what is called iss "platform" for the ensuing election. This declaration of principles and plans is somptimes of importance, not onty as an appeal to the people in respect of the past servicea and merits of the party, but as pledging them to the measures they are to introduce and push forward if they win the election. It then proceeds to receive the nomination of various aspirants to the position of party candidate for the presidency. The roll of states is ;called alphabetically, and each state, as reached in the roll, is canitied to pecsent a candidate. Thereafter a vote is taken between the several aspirants. The roll of states is again called, and the chairmas of each state delegation announces the vote of the state. In Democratic conventions a state delggation, wben instructed by the state convention to cast its whole vote solid for the particular aspirant favoured hy the majority of the delegation, must do so (this is called the unit rulc); in the conventions of the other parties individual delegates may vote as they pleasc. If one aspirant has obtained on the first roll-call an absolute majority of the whole number of delegates voting-or, in Democratic conventions, a majority of two-thirds of those voting-be is held to have been duly chosen, and the choice is then made unanimous. If, however, no one obtains the requisite majority, the roll is again called until some one competitor secures the requisite number of votes. Sometimes onc or two votings are sufficient, but sometimes the process has to be repeated many times-it may cyen continue for sevcral days-before a result is reached. Where this happens there is much room for the display of tactical skill ly the party managers in persuading delegates who favour one of the less prominent aspirants to transfer their votis to the person who seems most likely to unite the party.
When one aspiriant has been duly selected as the party candidate for the presidency, the convention proceeds to choose in the same way a person to be candidate for the vicepresidency. This is a much simpler matter, because the post is much less sought aftes, and it is usually despatched with ease and promptitude. The two nominees are then deemed to be the candidates of the whole party, entitied to the support, at the cusuing election, of the party organizations and of an sound party men throughout the Union, and the convention thereupon dissolves.
\$34. It is bardly too much to say that in the United States the parties work the govemraent. The question follows, Who work the parties? The, action of the partics tafmeenors depends upon and is the resulant of three factors, whetherith which are indced more or less present in all thermo constitutional representative govemments. These are (a) individual leaders, who are powerful either by their talents or by the influence they enjoy ovcr the citizens; (b) rich men,
who cas supply the party with the very latge tams of money needed for maintaining the party machinery in efficiency and for fighting the elections; and (c) the opinion of the nass of the citizens, who, though generally disposed to adbere to the uraditions and follow the leaders of the party to which they belong, do, especially in the more educated classes and in the most advanced patts of the country, exert a certain measure of independerce, and may refuse to vore for the pary candidates if they either distrust those candidates personally or disapprove of the policy which the party seems to be following. It need hardly be said that the relative importance of these three factors varies from time to time. Fortunately that of the second has grown weaker in recent years.
§ 35. The national parties have been so pervasive in their influence, and the working of their machinery has formed so important a part of the political history of the Oererat Unied States, that it is necessary here to call ereferwer of attention to the high significance of this clement in ce party the system of the Republic. The party system has Syriene made nearly all elections, including those for state offices and city offices, the functions of which have, as a rule, nothing whatever to do with national party issues, matters of party strife fought upon party lines. It has disposed voters in state and city elections to support party candidates, of whom they might otherwise have disapproved, for the sake of maintaining in full strength for national purposes the local party organization, and it has thereby become a fruitful source of municipal misgovernment. It has thrown great power into the hands of perty managers, because where the strife betweeth the two great parties ts keen and the resuit of a contest doubtFul, discipline and obedience are deemed needful for success. It has tended to efface state lines, and to diminish the interest In state issues, and has thus helped to make the nation overshadow the states.
(J. BR.)

Bibliography.-General Secondory Works: James Bryce, The American Commonxeadih (2 vuls., New York, 1848; rev. ed., 1910) ie the most satisfactory treacnent of the whole subject:' Alekis by Hentr Recque edited by Francis Bowen, New York, 1898, -the first English edition of this philosophical work appeared in 1835 . and it is still suggestive: A. B. Hart, Aclual Couernment os applued moder American Conditions (Jrd ed., rev., ibid., 1908), descrines the operation of the varinus parts of the government and contains Giblionraphical guides. See also R. L. Astley. The American Federal State (ibid., 190a); and B. A. Hinsdale, The American Government National and State (rev. ed., Chicago. 1895). State Governments: The chicf sonrce lor cach state is the Retised Seatwles, Gemeral Laws or Code including the Constitution. There are two official compilations of the State Constitutions, one ediced by B. P. Poore (2 vols. Washingion. \({ }^{18} 77\)) and one edited by \(F\). N. Thorpe (7 vols, ibid., igo9). T. M. Cooley. A Tratise on the Constifutional Linnitations 1go9). resi wpon the Legislation Power of the States of the Americal Uwion (Gth ed., Boston. 1890) is one of the most useful secondary works. In "Handbooks of American Covernment," edited by 1. B. Evans, there is a otudy of the government of New York by W. C. Morey (New Yark, 1902). of Ohio by W. H. Siebert (1904). of Illinois by E. B. Greene (rgo4), of Slaine oy Wiliam MacBonald (1902). of Michisgan by W. W. Cook (1gos), of Mlinnesota by F. L. HeVey (1901) and of Iodiana by E. W. Kemp (1994). See also Lincoln Sefiena, The Strugste for Self-Gooernment; beinf an cllempt wo wace American Paliical Corruption to its Sourcas in Six Slates of ate United States (Niew York, 1906). The American Poditical Sicience Reviere (Balrimore. 1907 sqq .) is espocially useful for a comparative atudy of the nate governments. For a study of the branches of coverpment, Federal as well as state, wee W. W. Willoughby, The American Constitutiomal Syslew (New Yorik, 1904): Emlin McClain, Constitulional Law in the Unitod Slates (itid. 1905); P. S. Reinsch, American Lavislatures and Lepishation Methods (ilid., igoy); J. H. Finley and J F. Sanderwon, The American Execulive and Expculine Motheds (ibid.. 1908): W. F. Willoughby, Tarriories and Dependencirs (ibid., 1905) and S. E. Baldwin, The American Judiciary (ibid, 1905). Local Gotermment: The soupces are the state constitutions, sate laws aod town and county reporte and records. The best mecondary works are I. A. Fairlic's Local Goocrnmont in Toums, Cewntias and lillages (Kiew York, 1906): and G. E. Howard's /natodmetion to ing Locel Constitwional Hishoryof her Uniled Staks (Ballimore, 1889) is of usc, although the author's theories are querionable. Governmont of Cities: The principal oource is the city charters, For a digest of some of these see Digcst of Cuty Charters, fozelther mith olker Sultuary and Constisutionaf Proowions redating to Cifies,
(Chicago, 1906). There is much useful material in \(M\) raicipot A foirs. 6 vols, and vol. v. contains "A Bibliography of Municipal Problems and City Conditions." See also Procredings of the National Conference for Good City Government (Philadelphis, 1894). Among numerous good secondary works are F. J. Coodnow's Mrunicipal Government (New York. 1909), City Government is the United States (ibid., 1904): Municipal Probitems (ibid., 1897) and Municipal Home Rule (ibid., 1895); f. A. Fairlie, Muncipal Administration (ibid., 1gor); D F. Wilcox, The American Cuy: A Problem in Democracy (ibid., 1904): and Great Cities in Amersca: Their Problems and Gooernment (ibid., 1910); H. E. Deming, The Government of American Cities (ibid., 1909): Lincoln Steffens, The Shame of the Cities (ibid., 1904); F C. Howe. The City, the Hope of Democracy (ibid., 1905): and Charles Zueblin, Americam Muncipad Progress (ibid., 1902). The Federal Government: For at study of the constitution see the Documentary History of the Constitation of the United States of America, \({ }^{2786-1870}\) (5 vols. Washington, 1894-1905); Jonathan Elliot, Debates in the Several State Conventions on the Adopsion of the Federal Conslitution, \&c. (znd ed., 5 vols., Philadelphia, 1888); The Federalast, edited by H. C. Lodge (New York. 1889) or by P L. Ford (ibid., 1898); Pamphlets on the Constipulion of the United Stales. \(P_{u}\) ithed during its Discussion by the Pcople (Brooklyn, 1888), edited by P. L. Ford; Joseph Story, Commentaries on the Constisution of the Untited Slates (5 th ed.. 2 vols., Boston, 1891); James Kent. Commenkaries on Americas Lave (14th ed., 4 vols., ibid.. 1896); J. I. C. Hare, American Constitutional Lato? (2 vols., ibid.. 1889): E. G. Elliott, Biographical Slory of he Constitulion (New York, 1980): Woodrow Wilson, Constitusional Government in the Unitad States (ibid., rev. ed, 1908); and especially important are the decision of the United' States Supreme Court, known by the name of the reporter antil 1874 -A. J. Dalla4 (1790-1800), Wm. Cranch (\(8801-1815\)), Henry Wheaton (1816-1827), Richard Peters (18281B42), B. C. Howard (1843-1860). J. S. Black (186r-1862) and J. W. Wallace (\(1863-1874\))-and published under the title of the United States Reports after 1874 . The best collection of Cases on Constititional Lase is by J. B. Thayer (2 vols., Cambridge, 1894-1895). The Untled States Statules at Large are published in 35 vols. (Boston and Washington, \(1845-1909\)), and there is an annotated edition of the Federal Statutes compiled under the supervision of W. M. Mckinney and C. C. Moore (New York, 1903-1009). J.D.Richardson compiled the Messages and Papers of the Presidents, \(1789-1807\) (10 vols., Wastington, 1896-1899). The best account of the presidential elections is in Edward Stanwood's History of the Presio dency (Boston, 1898). For the executive departments the Annual Reports of each and numerous executive documents are useful. Some of the more important secondary works on special topics are: Mary P. Follett, The Speaker of the House of Representatives (Niew York, new ed., 1910) ; H. B. Fuller, Speakers of the Howse (Boston. 1909) iJ. A. Fairlie, National Administration of the United Slates (New York, 1907); L. G. McConachie. Congressional Commilthes: a Study of the Origins and Development of our National and Loral Legislative Methads (ibid., 882) ; Woodrow Wilson. Congressional Government: a Shudy in American Politicy (isth ed., Boston, 1900): Jesse Macy, Parly Organization and Machinery (New York, 1go4): M. Ostrogorski, Democracy and the Organization of Polifical Parties (ibid., 2 vols., 1902; the second volume, revised and enlarged, was published in foto as Democracy and the Party System in the United States): J. A. Woodburn, American Politics: Political Parties and Party Problems in the Ulited States (ibid., 1903); Lucy M. Salmon, History of the Appointing Power of the President, in Ammerican Historical Association Papers, vol. i. (ibid., 1886):C. R. Fish. The Civid Senvice and Patronage (ibld., 1905); W. W. Willoughby, The Supreme Court of the Unild States; its History and Inftuence in our Constils. fiono! System. in Johns Hopkins University Studiee in Historical and Political Science, vol. vii. (Baltimore, 1890): F. A. Cleveland. Growth of Democracy in the Urited States: or the Evolution of Popular Cooperation in Covernment and its Results (Chicago, 1898); I. A. Smilh. The Spiril of Americam Gosernment: A Study of the Constitution, its Origin, Infuence and Relation to Democracy (New York, 1907): Albert Shaw. Polisical Problems in American Development (New York, (1907); D. R. Dewey, National Problems (ibid., 1907).

\section*{VIII.-Finance}

The taxing powers within the United States are as follows:-
a. The bational government, whose revenue powers are oniy limited by: (a) the provision of the constitution which prohilits all duties on exports, and (b) the provision that all direct taves must be levied in proportion to population-a provision which deprives direct taves of nearly all their efficiency for revenue purposes.
b. The several states, whooe revenue powers are only limited by: (a) restrictions in their respective constitutions, and (b) the genoral principle that those powers must hot be exercised in such a way as to contravene laws of the United States, or to destroy sources of the national revenue, although a state may prohibit within its borders the sale of liquots, from taxes upon which the United States Treasury derives a considerable part of its receipts.
c. Within each state powers of taxation, to a determinate or to an indeterminate extent, as the case may be, are by the constitution and laws of the state conferred, almot always for strictly defined
purporen, (t) upon countion, (a) upon citios, boroushs asd incorporate villages, and (3) in nearly all the states, though in widely varying

 and Western states.

The revenues of the several states, and of minor governmental areas within them, are mainly derived from a general property tax, laid directly upon realty and personalty. More than \(82 \%\) of the tax revenues of thate and local governments were thun derived in 1902. The perage real rate of assessment was 50.72 in 1880 and \(\$ 0.74\) in 1902. The details of this system, which has no other refuge in the civilized world save partially in Switzerland, are remarkable for a most extraordinary diversity in the manner of collection, which practically becomes, however, seff-assessment, and an equally extraordinary and general evidence of the crudity and inadequacy of the system, which has been the target of state tax reports throughout the Union for half a century. Nevert heless, only recently have other sources of revenuc been largely developed, and the general property tax to 4 degree abandoned. Thus an inheritance tax was first adopted by Pennsylvania in 1826, yet sixty years later only two states were taxing collateral inheritances. In 1907 there were 34 such, and 19 of these were taxing diract inheritances as well. This is a modern democratic tax, and there are similar tendencies in other taxes. Busincss taxes are fast increasing. and many special property taxes, these two classes yielding in \(19027.24 \%\) of state and local revenucs. The tazation of corporations is recent and rapidfy increasing. The same is true of habitation taxes. A beginning has been made with income taxes. Finally, the strain upon municipal finances incident to a realization of civic improvements has called attention to intangible wealth: street railways are no longer taxed as scrap iron but as working systems, with due attention to their franchises; and there is a besinning of the doctrine that the increase in value of unimproved realty constitutes income that should be taxed. The same conditions have made of importance general theories, such as the single tax theory of Henry George, for taxing landed values. All these tendencies, although strongest in municipal finances, are general.

Restrictions upon the taxing power, and unwise classifications of property for taxation purposes, embodied without good understanding in tate constitutions, have been a primary obstacle to the development of sound systems of taxation in the several states. A lack of interstate comity, and double taxation of certain classes of property, have also offered difficulties. The progress toward better conditions has, however, been in late years rapid.

A similar restriction placed by the Constitution (art. \(t\), 8 2) upon the power of the Federsl govermment to lay "direct taxes" has been interpreted by the Supreme Court, by a bare majority, in such a way as to make very dificult, if not impossible, the imposition of an income tax (although, it may be added, such taxes had been unanimously held constitutional by the court in earlier decisions, which rested in turn upon interpretations of the constitutional provision just referred to given by the court when it counted among its pembers justices who had been members of the convention that framed the constitution).

The entire Federal system is the result, partly of constitutional provisions, partly of experience. The Federal authority naturally resorted first to customs duties upon foreign commerce because \(^{\text {b }}\) in this field it had exclusive authority. It adopted next excise duties on articles produçed or consumed within the country, notably liquors and tobacco. These two species of indirect taxes have from the beginning been the main sources of national revenue. At three periods, namely 1800-1802, 1814-1817 and 1863-187t, direct taxes have contributed considerable amounts to the revenue. These taxes Included in the last period-that of the Civil War-income and Iegacy taxes, taxes on commercial transactions, and taxes on persons and property. At times also the proceeds of the sales of public lands have formed an important element of the receipts of povernment, although it has been the accepted policy to sell such lands to actual settlers at rates so low as to be inconsistent with the object or attainment (relatively) of revenue. Indeed, under the homestead law, large portions of the puhlic domaia have been given away to settlers (see Homestead and Exsmption Laws), while even larger amounts have been alienated in aid of echools, public improvements, \&c., so that the portion sold has not been a third of the wotal mount alienated. It is poosible, howrever, that the growing consciousness of the necessity of conserving the national resources may lead to a much greater income in the future from the small arnounts still remaining in the hands of the national government. In tgo8 there etill remained unappropriated and unsurveyed, acconding to the Ceneral Land Ofice, \(754,895,296\) acres.
Of thee, \(387,000,000\) aeres were sill open to entry, but moet of this Of these, \(387,000,000\) acres were sill open to entry, but moet of this Commission of 1908, of lands either arid or otherwise unsuited for ectitersent. Thero mere also, in July 1908, about 235,000,000 acres of national forests, parke and other reservations for publie use.
Customs duties have been found to be in general the most cheaply collected, the least conspicuous, and least annoying of all thace, They have, however, never bean a stable source of revenue, even during periods when the tariff was constant; and compared with the meady returne shown by the selocted articles of the Briting tarif
list this inctability bas been most exkraordiaary. Very often their income has been lar above the amount needed for all disburnepents of the government In times of war they have of coturee fallen to a minimum. Thus, in the period 1791 to t8it their ratio to total government expenditure ranged from 416 to \(189.6 \%\); during the years \(\mathbf{t 8 1 5}\)-18t7, from 17-2 in t8i4, when war Gnances reached their weakest point, to \(131.4 \%\) in 1817 , showing how rapid was their response under the return of peace; in the period 1817-1859 from \(29.9 \%\) in the crisis year of 1837 to \(158 \cdot 9 \%\) in the period \(1860-1869\) from \(6.5 \%\) in 1865, when the government's bonds fell in price to S50-93 per hundred and the war policy of loans was most desperaic to \(84.1 \%\) : in the years \(1870-1893\) from \(51 \cdot 4\) to \(85 \%\); and, finally. in the years \(1893-1909\), irom \(36.9 \%\) (in 1898) to \(52.7 \%\).

Of the total imports of \(1909.47 .4 \%\) of a value of 8699.799 .771 , entersd duty frce. More than half of these were crude materisla for manufactures. The total imports per eapita and the duty collected upon them per capita have been as follows aince 8885 , talcing every fith ycar: I885-\$10.32 and \$3.17; 1800-\$12.35 and \$3.62; 1895-\$10.61 and \(\$ 2.17\); 1900-\$10.88 and \$3.01; 1905-813.08 and 33.11 ; 1908- \(\$ 13.57\) and 83 -24.

The attempts of the Federalist perty to create a system of internal taxation was a lading cause of its downall. During the ycars in Which it was in power little more than a tenth of the national revenue was derived from excises, yet they became a national political isuue, and the Whisky Rebellion shows how little they were fitted to the nation at that time. The excioe system diseppeared with the incoming of the Democratic party in 180 t . As a temporary necearity such taxes were again resorted to during the war of 1812 , and again during the Civil War. In the latter period the excise proved of great richness, and quickly responsive in its returns; whereas the customs were inelastic so long as the war continued. After the was a system of internal revenue was therefore continued.
Of recent years the growing stringency of both national and local finances by enormously increased disbursements has made important the question of the relation of national with state and local taxation. The customs revenue, in its form of high protoction, has always had against it a strong free trade eentiment, generally unorganized, and this seems to be growing. The internal revenue is affected by the remarkable spread of the prohibition movement. A considerable and growing public sentiment in favour of the uee of the taxing power for the regulation of wealth taken from society demands the introduction into the Federal system of income and inheritance taxes. The last-inasmuch as an income tax that is eonstitutional can perhaps not be framed-is the only promising source that can give the addition to the Federal revenues that must be needed in case the customs or the excise revenues art reduced.

From \(\mathbf{2 8 6 0}\) to \(\mathbf{t 8 7 0}\) the population increased \(22.6 \%\) and the net ordinary expenditures of government, not including paymenta on the national debt, rose \(173 \%\); from 1870 to 1900 the corresponding figures (using the official estimated population) were \(129 \%\) and \(408 \%\) The aggregate net ordinary receipts into the United States treasury, from 1791 to the 30 th of June 1885 . were as follows, in millions of dollars: from customs, 5642; from internal revenue, 3449: from direct taxes, 28; from public lands, 241 ; from miscellaneoun sources, 578 ; total, \(993^{8}\). The corresponding figures for the yenth from 1886 to the 30 th of June 1909 were as follows, respectively: 5403; 4618; 0.142: 121: 969.

The expenditures of the government increased stendily per capita up to the opening of the Civil War. The ease with which money was acguired in the war period, the acquiescence of the people, snd the influences of extravagance and corruption engendered by the war, opened, at the return of peace, a period of extravagant expenditure that has continoed with progressive increase down to the present. A phenomenal growth of both customs and excise revenue has made euch expenditures casy. From t79t to \(\mathbf{t 8 8 6}\) the agrgregate net ordinary expenditures of the government - thewe expenditures being exclusive of payments on account of principal and interest of the public debt-were as follows, in millions of dollars; for the army, 4563: navy, 1106; military pensions, 900; miscellaneous. 216ג; tocal 8737. The corresponding figures for the period 1887 (Uune 30) to 1908 (June 30) were: 2003; 1219; 2884; 2790; total 8896.

The average ycarly ordinary receipes of the decade t900-1900, dis tributed by source, was as followe: from customs, \$280,728,741-30; from excise, \(\$ 257,477,356-45\) i from miscelleneous sources, 48.736.721.89; total ordinary revenue, \(\$ 586,949.919 .64\) or \(\$ 7.11\) per capita; revenue from sale of Panama bonds, \(80.730,959 \cdot 48\); from premiums exclusive of Parama bonds, 8397.894.8a, The average yearly disbursementa during the decade, distributed according to object, were as follows: for civil list and miscellaneous objects, \$143,697,123-09; army. \$130.4t6,90s.62; navy. \(96,722,000-901\) military pemsions, \(8144,856,529 \cdot t 6 ;\) Indians, \(12,966,563-00\); on socount of debt, \(\$ 25,632,072 \cdot 60\); total, \(\$ 586,942,920\)

In 1909 the ordinary receipts were \(3637,773,165\), or \(\$ 7 . t 7\) per capits: and the ordinary disbursements 8670,507.889, or 87.54 por capite. The revenues of all the states, countien, cities and oxter local governments, plus thowe of the mational goverament, agregered in \(\mathbf{t 8 7 9}\) only \(\$ 84,980,614\).

Since 1870 the national cencus office has determined eeveral timea the aggregate indebredness of the national, atate and other local
goveraments. The results are stated below, for 1870 and 1902, in round millions of dollars. Sinking funds are deducted.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Covernment.} & \multicolumn{2}{|r|}{1870.} & \multicolumn{2}{|r|}{1902.} \\
\hline & Total. & Per capita. & Total. & Per capita. \\
\hline United States & \({ }_{2.331 .2}^{8}\) & \({ }_{60}{ }^{3} 46\) & \({ }_{925}^{8}\) & \({ }_{11}{ }^{8} 77\) \\
\hline States and territories & 2.351 .2
\(352 \cdot 9\) & 6.15 & 234.9 & 2.99 \\
\hline Counties & \(187 \cdot 6\) & \(4 \cdot 87\) & 196.6 & \(2 \cdot 50\) \\
\hline ments, exciudiag rural school districts & 328.2 & 8.51 & 1.387.3 & 17.65 \\
\hline School districts outside of utban centres of 8000 or more in hebitants & _- & - & 46.2 & 0.59 \\
\hline
\end{tabular}

\section*{- Included in 1870 in the preceding eategory.}

The national government set out in 1790 with a revolutionary debt of about 75 millions of dollars. This debt continued, slightly increased but without any very important change, until 1 B06, when a reduction began, continuing until 1812 , when the debt was about 45 millions. The then ensuing war with England carried the debt up to 127 millions in 1816 . This was reduced to 96 millions in 1819 . to 84 millions in 1825 and to 24 millions in 1832 , and in the three years following was extinguished. The crisis of 1837, and the financial difficulties ensuing, created indebtedness, fuctuating in amount, which at the beginning of the war with Mexico was about 16 milions. At the conclusion of peace the debt had risen to 63 millions, near which point it remained until about 1852, from which time succeasive reduction brought it down to 28 millions in 1857 . The finaminil crisis of that year caused an increase, which continued until the imminence of the Civit War, when it rose from 65 millions in 1860 to 91 millions in 1861, to 514 in 1862, to 1120 in 1863, to 1816 in 1864, to 268 I in June, and its maximum (2846 milions) in August 1865. These Gigures are of gross indebredness. The amoumt of the debt per capita of population, less cash in the treasury, was \(\$ 15.63\) in 1800; it feil to \(\$ 0-21\) in 1840: rose again, and in 1865 reached a maximum of \(\$ 7.98\); since when it had fallen by the 30 h of June 1908 to \(\$ 10 \cdot 76\). The amount of the debt outstanding, minus gold and allver certificates and Treasury notes offeet by cash in the Treagury, wat \(\$ 1,295,147,432 \cdot 04\) on the Int of November 1909. Of thin amount \(\$ 913\) 317,490 was bearing interest.

\section*{IX.-Axmy}

The regular army has always been small, and in time of war reliance has been upon voluntecr forces (see Army). This was truer of the Civil War than of the War of Independence or the war with Mexico. In the last the numbers of militia and valunteers was but litele more than twioe, and in the second littie more than equal to the number of regulars engaged; while in the Civii War the proportion was as one 10 twenty. Again. the number of regular troops engaged in the War of Independence (namety, 130,711 men enlisted) was greater, absolutely, than that engaged in the Civil War (126.587). Finally, it ie interesting to note that in 1799, when war seemed probable with Fracce, the army was organized with a force of 52.766 men, and during the second war with Great Britain the number was made 57.35 I in 1813 and 62.674 in 1814: while the organized serength under the law of 1861, which was in force throughout the Civil War, was only 39.273 men. Smali as the regular force has always been, its organization has been altered some two score of times in all.

The law for its organization in force in 1910 provides that the total enlisted strength shail not at any ore time exceed 100,000 . The full active force of the present organization is as follows: 15 regiments of cavalry, with 765 officm and 13.155 enlisted men; 6 regiments of feld artillery, with 236 officers and 5220 enlisted men; 30 regiments of infantry, with 1530 officers and 26,731 enlisted men; 3 mettalions of engineers, with 2002 enlisted men, commanded by officers detailed from the corps of engineers; a special regiment of infantry for Porto Rico, winh 31 officers and 576 enlisted men: a provisional force of 50 companies of native scouts in the Philippines, with 178 officers and 5731 enlisted men; staff men, service school detachments, the military academy at West Point, indian scouts, Ac., sotalling 11.777 enlisted men. The total number of commissioned officers, ataff and line, on the active list, is 4209 (including 219 Erst lieutenants of the medical reserve corps on active duty). The total enlisted strength, staff and ine. is 78,782 , exclusive of the hoepital corps and the provisional force. (See also Na vy and Navies.)
(F. S. P.)

\section*{X.-History}
A.-Beginvings of Salf-government, 1578-1690.
1. The American nation owes its origin to colonizing activities in which the British, Dutch, Swedes, French and Spaniards bore a share. and which were continued during a period of more
than two centuries at the beginning of the modern era. The settements of the Dutch and Swedes (New Netherland and New Sweden) were soon merged in those of the British, and of the territory colonized by Frenchmer and Spaniards the United States, as it was in 1783, included only certain outlying regions (Florida and certain posts on the Great Lakes and in the Mississippi Valley). All the European nations which were interested in colonization shared in the enterprise, and the popalation of the region was therefore cosmopolitan from the outset. But the British, especially after 1660, secured a controlting influence, to such an extent that the history of the period can properly be regarded as the record of an experiment in British colonization.

Permanent settlements on the Atlantic seaboand were first made in the early years of the 17 th century, and they continued steadily to increase until after \(\mathbf{1 6 8 0}\). Relatively speaking, that was the period of settiement, but population continued slowly to advance westward. In the 18 ih century occurred a large immigration of Germans and Scottish-Irish, who selled in Pennsylvania and New York and thence overflowed into the western parts of Virginia and the Carolinas. The only colony which was founded in the 18 th century was Georgia (1732), by means of which British outposts on the Florida frontier were strengthened.
2. British colonization originated chiefly in private initiative, though it acted in hali-conscious obedience to certain general principles of action. From this fact originated the trend toward sell-government, which was fundamental and controlling in the history of the British
 on the American continent. But to an extent the tendencies which favoured self-government were counteracted by the influence of the British Crown and parliament. The influence of the Crown was continuous, except during the period of the Civil War and Commonwealth (1642-1660), while that of parliament was not felt until the middle of the 17 th century. and its colonial legislation subsequent to that time was chiefly confined to matters of trade. The activities of Crown and parliament were directed toward the securing of Imperial interests and of that degree of subordination and conformity which, in states that have developed from Roman and feudal origins, attaches to the condition of colonies or dependencies. The term " imperial control " therefore suggests the second tendency in colonial affairs, to the discussion of which the historian must address, himself.
3. Among the colonists the trend toward local independence and self-government was in harmony with the spirit of the English. Neither was it lacking among the other nationalities represented in the colonies. But in the case of the British it was greatly strengthened by the fact that the colonies were founded by private initiative, the govermment legalizing the efforts of the " adventurers " and planters, but leaving them in many cases almost wholly to themselves. Hence many small colonies and settlements were founded along the coast. A variety of motives-economic, religious and political-contributed to the founding of these colonies, and people correspondingly different in type came to inhabit them. As they differed from one another, so their descendants came to differ from the Europeans, out of the midst of whom they had come. The remoteness of the colonies from Europe and the difficul. ties under which communication with them was maintained confirmed and perpetuated the tendency toward independence both of England and its government. Somewhat similar conditions controlled intercolonial relations, kept the colonists apart from one another and checked efforts at co-operation. Thus it was that the causes which confirmed the colonists in the spinit of independence toward the mother country at the same time made them jealous of any extemal authority.
4. The term "chartered colonies" is the one which best describes the forms under which the British-American settlements were founded and under which they all continued for periods varying from a single generation

Chartarat to that of the eatire duration of their coionial existence. They were the direct and characteristic results of private infiative in colonization. The discoverers and would-be
colonizers, acting individually or in groups, collected the ships, men and resources necessary for their enterprises, and procured from the Crown 2 charter. By this document the king conveyed to them a claim to the soil which would be valid in English law, gave them the right to transfer Englishmen thither as colonists, to trade with them and with the natives, and to govern the colony, subject to the conditions of allegiance and of British sovereignty in general. The rights and liberties of the colonists as British subjects, without attempt to define what they were, were guaranteed by the charters, and the grantee was prohibited from passing laws or issuing orders whicb were repugnant to those of England. In only a part of the charters-those chiefly which were issued subsequent to 1660 was express reference made to the calling of assemblies in the colonies. So general were the provisions of the charters that they only remotely determined the farms which government should assume under them and what the rights of the colonists should be. A considerable variety of institutions and social types existed under them, But their very indefiniteness made them valuable as objects of appeal to those who in time of controversy were uphoiding local rights and liberties.
5. Of the chartered colonies there were two varietiesproprietary provinces and corporate colonies. Though alike Proprtitary in the fact that the patentees who founded them
Propriscene. were mesne tenants of the Crown, they were quite unlike in their internal organization and to a considerable extent also in the character of the people who inhabited them. The proprictary province was a development from the principle of the fief, though with many variations. The eariy charters of discovery, those for example which were granted to John and Sebastian Cabot and to Sir Humphrey Gilbert, contemplated the founding of teudal principalities in the New World. The grant to Sir Walter Raleigh, which resulted in the abortive colonial experiment at Roanoke, was of the same character. At the period of transition from the rule of the Tudors to that of the Stuarts, trading companies and companics whose purpose was colonization were increasing in number and importance. The first half of the 3 th century was distinguished by the founding of many such, in France and the Netheriands as well as in England. The joint companies which were chartered Loados aed by James I. in 1606, one to have its residence pomourt at London and the other at Plymouth, were of this compankes character. They were granted the right to colonize, the one in northern and the other in southern "Virginia "; the intervening territory, three degrees in breadtb, being left common to the two. The rights of the companies were confined to those of settlement and trade. The Plymouth patentees achieved no permanent result; but those of Landon founded Jamestown (1607) and other settlements along the James river, which later became the province of Virginia (\(q\). v).
6. But before this result had been reached the London patentees had secured in succession two new charters, one in 1609 and another in 1612. By means of these grants they had practically separated from the Plymouth Company, had secured a concession of territory 400 m . broad and extending through the continent, and had been able to perfect the organization of their company. By the grant of \(x 606\) the right to govern the colonies had been reserved to councils of royal appointees, one resident in England and one in each distinct colony which should be founded. But by their later charters the London patentees were fully incorporated, and in connection therewith received not only the power to grant land but rights of government as well. This made the Virginia Company of London in the full sense of the word the proprictor of the province which it was founding. It now appointed resident governors, councillors and other officials for the colony, and instructed and controlled them in all ways, subject of course to the general supervision of the king in council. Under the charter of 1606 , in order to facilitate colonization on a strange continent, joint management of land and trade was temporarily instituted. But under the fully organized company, as managed by Sir Thomas Smith, and especially by Sir Edwin Sandys and the Ferrars, this system was
abandoned, and private property in land and the control of trade through private "magazines" were established. A number of distinct plantations and settlements were founded which later developed into counties and parishes. From these localities, in 1619, under authority from the company, representatives were elected who met with the governor and council at Jamestown and formed the first colonial assembly held on American soil. Its acts were duly submitted to the company in London for its approval or disapproval. Other assemblies were called, the tobacco industry was established and the principles upon which traffic in that staple was to be conducted with Europe were announced. Thus Virginia assumed the form of a proprietary province, with an English trading company as its proprietor.
7. Meantime west of England men had been making fishing voyages and voyages of discovery to northern "Virginia", which now was coming to be known as New England. In Now 1620 a new charter was procured, the reorganized Eatien company being known, in brief, as the New England Couscli. Council. Like the London patentees, this body was now fully incorporated and received a grant of the vast territory between \(40^{\circ}\) and \(48^{\circ} \mathrm{N}\). lat. and extending through to the South Sea (Pacific). Full rights of government, as well as of trade and settlement, were also bestowed. The' moving spirit in thin revived enterprise was Sir Ferdinando Gorges (q.v.), an Anglican and royalist from the west of England. For a time John Mason (q.v.) was his most active coadjutor. Such hacking as the company received came from nobles and courtiers, and it had the sympathy of the court. But lack of resources and of active interest on the part of most of the patentees, together with the development of a Puritan interest in New England, led to the failure of this enterprise. No colony was established directly hy the council itself, but that pert of its vast territory which lay adjacent to the coast was parcelled out among the patentees and by them a few weat and struggling settlements were founded. They were all proprietary in character, and those along the northern coast were more or less connected with Anglican and royalist interests. But, as events proved, Plymouth Colony (founded in 1620), which was Puritan and Separatist to the core, became a patentee of the New England Council; and the colony of Massachusetts Bay (founded in 1628-1630), which was to become the citadel of Puritanism in America, procured the original titie to its soil from the same source. At the outset both Mfassachusetts and Plymouth must be classed as proprietary settlements, though far different from such in spirit and destiny. Massachuset ts soon (in 1629) secured a royal charter for its territory between the Merrimac and Chares rivers, and thus took a long step towards independence of the council. At the same time the Plymouth settlers were throwing aside the system of joint management of land which, as in the case of Virginia, had been imposed upon them by adventurers who had lent money for the enterprise; were paying their debts to these sume adventurers and securing contral of the trade of the colony; were establishing a system of self-government similar to that of Massachusetts. Thus a strong Puritan interest grew up in the midst of the domain which had been granted to the New England Council, and in connexion therewith the type of colony to which we have given the name corporate came into existence.
8. In order to understad the nature of the corporate colony, it is necessary to explain the internal organization of that type of company which, like the Virginia Company corpornts of London, was founded for purposes of trade and conowhest colonization. It was composed of stockholders, who atw Vingmo became members as the result of the purchase of ampany. shares ar of migration to the colony as planters, or of both acts combined. In the Virginia Company they were known as the "generality," in the Maseachusetts and other companjes as the "freemen." In them, when met as a democratically organized body under the name of "quarter court" or "gèneral court," was vested the governing power of the company. It
dected the officesta, chiof amotas wham mese a treasurer or covernor, and a oouncil or board of acristanta. These, as well at the subordimate officers, held for annual terms onily. Four tirnes a year, at the law tetms, the general courts met for the tragasction of business, eloctions being held at the spring poecting. Mernbership in such companies might he indefinitely increased througir the issue and sale of shaves. - They were, in other words, open companies, whereas the New Eagland Council was . closed body, its membership being binited to forty. The Massachusctis Company wa an open corporation of the type just describod.
9. In igrg the prospects of Proterantimm at lerge, and of Puritanism in England, were so dark that the founders of the Maneachunetts Compeny, who were decidedly Mertracter Puritan in spirit and inclined to norroconformity th compengr: practice, resolved to remove with their charter and anveref the governing body of thetr company into New cherror to England. PTeparatory to this, John Winthrop was borts. clected govemor and a settlement was made of their beaciness rechations in England. After the reanoval had been made, the assistants and general court met in New Engiand and buatiness was carried on there exclusively by planeers. An order wis soon presead that none should wote or bold office who were not members of wome one of the churches within the colony. As all these churches were Independent or Congregationalist in form and doctrine, this order gave a wholly new definition to the term "freemen." It made of this colony something approxtmating to a biblical commonwealth, and subordhated trade, land-holding and setticmont to the intereste of the Puritan faith. The board of costumas now asioumed political and jadicial functions. As local setrlements about Massechumetts Bay were founded, the general court, which before had been a primary assemblystmply the freemen of the company-came to consist partly of sepreseneatives elocted by the freemen of the towns. In this why asecond chamber-that of the depaties-was added to the asistants to form the general court of the colony. Taxes were levied by this body, and laws and orders proceeded from ik which related to all functions of government. It elected or appointed the governor and other chief officials, and determined the times of its own meeting. The governor had no veto and the general court was the controlling organ in the system.
10. Or primary importance in the afiairs of the colony was everything which concerned religious belief and church government. The churches and their relation to the civil power pre zented the great questions upon which hinged its policy. This was trae not only in its intemal affairs, but in its retations with other colonies and with the mother country. An eccleslastical system was developed in which Independent and Presbyterian elements were combined. By a rigid system of tests this wns uphetd against Antinomians, Baptists, Quakers and dissenters of all sorts. The securing of revenue from land and trade was considered subordinate to the maintenance of the purity of the faith. It was this which gave a point and vigour to the spirit of self.government in the New England colonies which is not perceptible elsewhere.
As a consequence of the Puritan migration from England and of the erpulsion of dissenters from Massachusetts, Plymouth, canmalum; Connecticut (q.0), the New Haven Colony, and the Now Hovee towns about Narragansett Bay which became the cober colony of Rhode Island (q.v.), were settled. These Rever, all were corporate colonics, organized upon fundmmentally the same plan as Massachusetts but disfering from it in minor particulars. Their settlers at the outset had no charters, but by means of plantation or town covenants assumed powers of govemment, which ultimately were vasted in general courts similar to that of Massachusetts. Rhode Island was formed by a union of towns, but elsewhere the colony was coeval with or antedated the town. Connecticut and Rhode Island, the former in 1662 and the latter in 1663 . secured royal charters by which they were tncorporated within New England itself and the governments
which they had eatablished there were legalized. New Haven was absorbed by Connecticut in r664 uader the charter of 1662 (see Connmetricut), and Plymouth remained without a chartur from the king until, toward the close of the 17 th century, it became a part of the calarged province of Massachusetts.
11. The most prominent feature of the New England land syitem was the "town grant," which in every case became the territorial besis of a group seltlement. Throughout New England, and the the outlying districta which were colonized by New Englanders, sottement was eflected by groups. The process began in Plymouth and was extended through the entire section. The Puritan migration from Europe was of the same general character. Groupe of poople, animated by a common religious or political ideal, broke away from their original or temporary abiding-places and pushed farther into the wilderness, where tracts of land were granted to them by the gencral court. The corporato colonies did not seek profit from their land, bat grantod it freety to actual settlers, and in such amounts as suited their needa. No distinct land office was established by any New England cootony. Land was not sold by the colong; mor, as a general role, was it leased or granted to individuals. Rent formed no appreciable part of the colony revenue.
12. Over the founding of towns the general courts, as a rale, exercised a watchful supervision. Not only did the courts fix and maintain their bounds, but they isoued regulations for the granting of lands, for common fields, fences, herds, the punishment of trespass, the admisslon of inhabitants and freehoiders, the requirement that records of land tilies should be kept, and the like. But subject to these general regulations, the allotment and mamagement of its land was left to each town. The colonies had no land system apart from the town. It was pertly in order to manage their lands that the towns were made centres of local government and town meetings or boards of town proprietors were established. By means of town action, taken in town meecings and by local officials, the land of each settlement was laid off as house lots, common and common fields, meadow and pasture. Detailed regulations were made for the management of common fields and for thcir ultimate division and allotment among their proprietors. The same was true of fences and herds. The result was an organization similar to the English manor, but with the lord of the manor left out; for in the case of the New England town administrative authority resided in the body of the freeholders. To this peculiarity in the form of New England settlement is due the prominence of the town, as compared with the county, in Its system of local goverament. The town was the unit for purposes of taxation and militia service as well as of elections. It was also an impor. tant ecclesiasticad centre, the parish usually corresponding with it in extent.
13. As a result of the process thus sketched, southern New England was setted by a population of English origin, with similar tnstincts and a form of political organization which was common to them all. Gorges, meantime, had secured (1639) a royal charter for his province of Maine, but Mason had died before be obtained such a guaranty for his settements on the Piscataqua river. The smal communities along that entire coast remained weak and divided. In 1635 the New England Council surtendered its charter. The helplessness of the Gorges fumity was trsured by its adhercence to the royalist cause in the English Civil War. Massachusetts availed itsell of a forced interpretation of the language of its charter respecting its northern boundary to extend lis control over all the settlements as far northeast as the Kennebec river. This was acemplianhod soon after 8650 , and for the time Anglican and royalist interests throughout New England scemed hopelessly wrecked. New England had thus developed into a clearly defined section under Puritan domination. This fact was also clearly indicated by the organization, in 1643. of the New England Coniederacy, or the United Colonies of New England (see Nzw England), which comprised the orthodox Puritan colonies, whose leading magistrates, as annually elocted commisaioners, for twenty years exercised an advisory control over New England.
14. The colonics of the middle and southern sections of the territory, which later became the United States, were wholly maseluas proprietary in form. This was true of New Nethersoutberw land (founded hy the Dutch West India Company Cabaks. in 1621) and of New Sweden (sectled under the authority of the Swedish Royal Company in 1638), as well as of the English colonies which were established on that coast. In the case of Virginia and of the Dutch and Swedish settements, trading companies were the proprietors. But the later English coloniea, beginning with Maryland in 1632, and continuing with the Carolinas (1663), New York (1664), New Jersey (1665). Pennsylvania and the Lower Counlies, afterwards Delaware (1681), were founded by individual proprictors or proprietary boards. Ceorgia (1732), the only English colony gettled after 1681 on the continent, existed for twenty years under a proprietary board of trastees. By the efforts of adventurers of this class, put forth chiefly during the period of the Restoration, the entire coast-line from Florida to Acadia was permanently occupied by the Eaglish. But, unlike New England, the population of the other sections was of a mixed character, as were their coonomic and religious systems, and to an extent also their political institutions.
15. As has already been stated, in their internal atructure and in the course of their history the proprietary provinces differed very materially from the corporate colonies. Those of later English origin also differed in some important respects from Virginia under the company and from New Netherland and New Sweden. The system of joint management of land and trade, which was so characteristic of early Virginia, was outgrown before the other proprictary provinces were founded. Neither did it prevail in the Dutch and Swedish provinces, but there the law and institutions of government of those nations existed, and no provision whatever was made for assemblies.
16. In the proprictary province the proprietor, or board of proprietors, was the grantee of powers, while in the corporate colony it was the body of the freemen organized as an assembly or general court. The proprietor might or might not be a resident of the province. He might exercise his powers in person, or, as was usually the case, delegate them to one or more appointees. In any case, the form of government of the proprietary province was casentially monarchical in character. The powers that were bestowed were fundamentally the same as those which were enjoyed during the middle ages by the counts palatine of Chester and Durham. In some charters express reference was made to Durham as a model. The normally developed provinces which resulted were miniature kingdoms, and their proprietors petty kings. As Coke said, their powers were king-like though not sovereign. This character arose from the lact that the grantee of power was the executive of the provioce. This branch of governmemt wis thercby brought into the forefront. At the beginning and for a long time thereafter it cantinued to bear the leading part in affairs. It was not so in the corporate colony; for there the freemen and the general court stood at the centre of the system, and their ultirmate control, which no one drearued of disputing, was maintained through a system of annual elections. In mast of the corporate colonies the cxerutive (i. e. the body of magistrates) was strong, but that: was due to the political and social inturace which its officials had gained, and not to their tenure of office. But the nature of the proprietary pruvince demands further explanation.
17. In every case, apart from the ordinary rights of trade and the guaranices of the libertics of the colonists, the powers anverneet which were bestowed on the propretors were orthe territorial and governmental. The territory of Previtery the provinces was granted under the conditions Protern which by English law controlled privale estates of land. An entire prosince. or any part of it, could be Irased, sold or otherwise disposed of like a private estate. It was an estate of inheritance, desceading to heirs. Ihe artitude of proprictors toward it was that of landlords. invetors or spociulators in lasd. They advertised for settlers. end, in doing 20, an ever peresens mutive pith there was the desire
to secure more provete facome from land. In 1664 the duke of York sold New Jeasey to Berkeley and Carteret, and the sale was effected by deeds of lease and release. In 1708 William Penn mortgaged Pennsylvania, and under his will dovising tbe province legal complications arose which necesaitated a suit in chancery. Thus proprietors and proprietary boards changed with every generation or efteoer. An this, of course, was different in the corporate coloay.
18. In all the later proprietary charters, except that of New York, the operation of the statute Quic emplores was suspended, so far as relations between the proprietor and his inumediate grantees were comcerned. By virtme of this provision each proprictor, or board, becanc the centre from which originated an indefinite number of grants. These ware held directly of the proprietor and through him of the Crown. In practice the same was true aleo of New York. The propeietors were thus left free to make grants on such conditions as they chose-limited by the nature of their patents-to erect of permit the erection ot manors, to deviee the machinery necessary for surveying, imuing and recording grants, and collecting rents. Preperatory to the exercise of this power, the pacprictors izuned so-called "concescions" or "conditions of plantation," atating the terms on which they would grant lands to calonisis. These were often acompanied by deacriptioms of the country, which were intended to be advertisements foc settlers. Under a system of head rights, analogons to thet which existed in Virginia, land was thus bestowed oa settlers upon easy terms. Proportioned amounts of land were granted upon the importation of aervints, and in this way a traffic in servants and their head rights to land was egcouraged among planters and masters of merchnat vessels. In all the provinces, except Net Nerherland, 2 guit reat was imposed on all grants. In the Ditch province rents were sometimes imposed, but they varied in character and differed from the English quit reat. In Margand fines were levied on alienations. In Maryland and Penasylvania the demand for land became so great that it was-sold. In most of the provinces manotial grants were made, but in none except New Netherland did the manor become an institution of governmeat. In all the provinces territorial affairs were administered directly by the provincial autborities, and bot by towns as in New Englaed. In Maryland a land office was fully arganizod, towna developed only to a very limited extent, and when they did originate they were in no sense village communities. Lots in them were granted by proviscial authorities and they were subject to a quit rent. They were simply more densely populated parts of the counties, and, unless incorporated as boroughs, had no distinct isstitutional life. In almost all cases land, in the provinces, was granted to individuale, and individual ownership, with direct relations between the owners or tenants and the propcietary authorities, was the rule. This was in marked contrast to the conditions thich have been described as existing in the corporate calonica In the corporate calony the elements of the fief had been elimionted, but in the provinces they still survived to a considerable degree.
19. Had governmental powers not accompaaied the teritorial grants which have been described, these grants mould have been ectates of laod unusually large, no doubt, but nothing mare. In cases where the povermmental rights of proprictors were suspended or resigned into the hands of the Crown, they remained thereafter anly paivale landlards. But the fact that rights of government were bestowed with the land made the territory a peovince and the proprietar its political hand The bestowment of rights of land carried with is not oaly the obligation to pay quit rent, but to take to the proprietor the 0ath of fidelity.
20 In the discussion of the corporate colony it was necearary to dwell first and chieffy on the legislature. But in the case of the proprietary province the erecutive, for the reason already mentioned, demands first attention. The provincial charten made the proprietors the executives of their provioces and for the most part left it to then to determine bow and under what forms the governmental powers which they bad received sboukd
be atercised. The powers which were definitely bestowed were executive and judicial in character-the ordinance power, the suthority to appoint all officers, to establish courts, to punish end pardon, to organize a military force and defend the provinces, to bestow tilles of honour, to found churches and present to livinga. The erecutive thus became the centre from and around which development in the province chielly occurred. It gave to the proprietor an importance, eapecially at the outan, which was comparable with that enyoyed by the general courts in the corporate colonies. It made him in a derived and inferior sense che source, within the province, of office and hoocur, the fountain of justice, the commander of the militia, tbe rectipient of the provincial revenue the constituent part of the legislature. But in most cases the proprietors did not attempt to exercise these powars in person. Even if resident in their provinces they needed the assistance of officials. By means of commissioners they appointed a group of leading officials for their provinces, as a governor, councillors, a secretary, surveyor-general, receiver-general or treasurer, and somewhat later as auorneysencral. These all held office at the pleasnre of the proprietor, and were subject to guidance by his instructions.

Altogether the chief place among these officials was held by the governor. He was par excellence the agent for the prorem mooteres regularly corremponded with the proprictor and oevorner. received the latter's directions. In making appointments the proprietor was usually guided by his recommendations. In some cases he was a relative of the proprietor, and family inftuence in Maryland after the Restoration came to domirtate the government of the province. In all his important acts the govemor was required to take the advice of hls council, and that body was expected to co-operate closely with him in all matters; but the goversor was not bound to follow their advice. The relations between the two was the same as that between the king and his privy council in England. As settlements muhiplied and counties and other local subdivisions were formed, other and inferior offices were created, the right of appointment to which rested with the governor, though it was exercised in the name of the proprietor. By means of an executive, thus organized, land was granted and the revenue from it collected, counties and other local divisions were established, relations were developed with the Indians, early preparations were made for defence, courts were opened and the administration of justice hegun.

2s But in the later proprietary charters generally, with the exception of that issoed to the duke of York, provision was made for assemblies. It was made, however, in very general terms, and it was left to the option of the proprietors to determine when, where and bow they would call them. These legislatures did not originate in the natural or pre-existent rights of Englishmen, not did the existence of a pariament in England make them necessary, though it greatly increased the difficulties of governing the colonies without them. Though they were not original in the sense which altached to tbe executive, they were immediately proven to be indispensable and their activity in the provinces gradually opened the way for the growth of modern democratic institutions.

22 When met in regular form, the provincial legislature consisted of the governor, the council or upper house, and the res assembly or deputies. The latter, who were elected provieciel by the localities, constituted the only representative Lemberse part of the legislature. In tenure and functions the governor and council were largeiy independent both of the deputies and of the eiectors. They were a part of the exectlive and were naturally swayed by a regard for the interests of the proprietor and by administrative traditions. Though a component of the legislature, the comeil was the legal advisor of the governor. In manry cases the importance of the councils was incteased by the fact that, with the governor, in early times they formed the highest judicial tribunal in the province. As the govenor had the sole power of calling, proroyaing and dissolving tbe general asembly, the council might
advise him in such a way as to detroy the body itself or therant its plans. The joint work of the council and assembly wats subject to the reto of the proprietor, or of both the proprietor and his goverzor. The kegislature of the province, therefore, differed materially from the general court, though in practice this was somewhat offset by the fact that in the Nev Eegland coloniss the masistrates were usually re-elected for a long serias of terms.
23. In the provimoe, as in the kingdom, the legislature was in a scnee an expansion of the executive, developed out of it, and was to an extent controlled by lt. Out of this relation arose the possibility of conflict between the two parta of the legislature-that which represented the people and that which represented the proprietor. In the history of the provinces this formed the central line of sleavage. From the first the assemblies largely controlled taration. Using this as a leven they endeavoured to limit and define the powers of the executive and to extend the apbere of legistation more widely. Fees, trom which officials derived most of their support, were a tavourite object of their regulation. Oocasionally afficas which had originally been appoistive were made clechive. Protests of various tinds were made against official cliques. British statutes which favoured liberty and the powers of partiement were often referred to ts guides and ideals of the opposition. Now and again the lower house came to a deadlock with council or governor. Threatened or actual revole was sometimes necessary to bring the executive to terms. By such tactics as these the popular elements in the constitutions of the provinces asserted themselves. The sphere of ordinance was gradually limited and that of statute extended, while incidentally the systern of government became more compler
In a number of provincom-the Carolinas, New Jerrey and Pennsytvania-the proprietors at various times initiated elaborate constitutions, in which not only a land system, but forms and fanctions of government were prescribed on a large scale. These wore variously known as fundamental constitutions, concessions and agreements, frames of government, and in every case were submitted to the general assembly for its acceptance or rejeotion. Long struggles often ensued over the question of acceptance, which usually ended in the modification or rejection of the schemes as too cumbersome for use or because they seserved excessive powers to the provincial erecutive.
24. Though the main features in the form and development of the proprietary provinces have thus been indicated, it ahould be noted that their history was by no conren of means uniform. In New Netherland and New Yosk Develop occurred a struggle for the establisbment of a mest. legislature, which continued at intervals for forty years and was not permanently successful until after New York had become a royal province. The proprietors of New Jersey never secured a royal charter, and therefore were not able to establish satisfactorily their claim to rights of government. As grants of land had boen made to the settlers in certain localities within that province hefore its purchase by Berkeley and Carteret, opposition was made to the collection of quit rents, as well as to the enforcement of rights of government, and disturbances, resulting from these causes, became chronix. The province was also divided into East and West Jersey, the boards of proprietors being greatly increased in both, and Weat Jersey attaining an organization which was almost democratic in character. Within the vast reaches of the Carodina grant developed two provinces. One of these-North Carolinawhes almost entirely neglected by the proprietors, and the weakened executive repeatedly succumbed to popular viofence. In South Carolina many violent controversies occurred, especially over the efforts of the proprictors to compel the acreptance of the Fundamental Coastitutions, which originated with Locke and Shaftesbury. But in the end this failed, and a simple form of government, such as was adapted to the needs of the province, was developed. In Pennsyivania the litheral policy of the propritor led at the beginning to unuseal concessions
in favour of the colondsts. One of the most characteristic of these was the grant of an elective Council, which was intended to be aristocratic and the chief institution in the province. But owing to conficts between it and the governors, affairs came to a dendlock. The total negiect of provision for defence by the Quaker province led to the suspension of Penn's powers of government for about two years after the English Revolution and the outbreak of the war with France. This did awiy with the elective Coundl for the time, and an appointive Council was soon substituted. Finally, in 1701, the Council was deprived of lts powers of legislation and thereafter the legisature of Peansylvanian consisted of only one house-the Assembly.

\section*{B.-Dealopnens of Imperial Control, \(1606-1760\).}
25. Turning now to the exercise of imperial contral over the colonies, it is to be noted that it proceeded chiefly from the The Crowe English Crown. It was exarcised through the secretary of atate, the privy council and a succession of boards subordinate to it which were known as commissioners of plantations or the board of trade; by the treasury and admiralty bourds and their subordinate bureaus; by the attomey-general and the solicitor-general and by the hishop of London. The more continuous and intimate supervision proceeded from the privy council and the commissionors subordinate to it, and from the treasury board. The latter caused the auditing of such revenue as came from the colonies, supervised expenditures for them and had an oversight over appointmento in the colonial service. The privy council received letters and petitions on almost every kind of colonial business, caused hearings and inquiries to be held, and issued letters, instructions and orders in council on an equally great veriety of matters. It abo seted as the segular court of appeal for the plantations. As time actvanced, more of the administrative business passed directly into the office of one of the secretaries of state and the privy council became less tetive. The admiralty whs concerned with the equipment of the navy for service in the colonjes, and the high court of admirally with the trial of prize cases and of cases arising from violations of the acts of trade. The assistance of the kw officers of the Crown was sought in the drafting of charters, in the prosecution of suita for their recall, and in all cases which required the interpretation of the law as affecting the colonies and the defence of the interests of the British goverament in relation thereta. The bishop of London had supervision over the appointment and conduct of clergymen of the English Charch in the colonies and over parish schoots there. Not all of these boards and officials were active from the first, but they were created or brought into service in colonial affairs as the importance of the dominions increased.
26. The parliament by mentioning the dominions in its statutes could extend their provisions to the colonies. The early acts of supremacy and uniformity contained
Perllamendsuch reference, but it was dropped after the Restoration and no serious attempt was ever made to enforce uniformity in the colonies. Parliament did not hegin to legislate seriously for the colonies until after the Restoration. Then the acts of trade and navigation were passed, to which additions were made in the reign of William III. and from time to time during the rith century. This body of legislation, including about fifty statutes, comprised the most important acts relating to the colonies which were passed by parhament. A few statutes relating to military affairs were passed about the middla of the \(\mathbf{1 8 t h}\) century. Certan other lows relating to currency and coinage, to naturalization, to the punishment of governors, to the post office, to the collection of debts, and to a few other miscellaneous subjects complete the colonial iegrslation of parlament prior to 1760 About one hundred statuis : \(: 1\) all were passed. The colonists themsclves imitated in a general way the organization and procedure of the English courts. The main features of the common law came spontancously into force in the colonies. The legislatures of several of the colonics adoptod large parts
of the statute law of Bugiend. The celondsts twere alswys accustomed to avail themselves; as far as posible, of the sreat English statutes which guacanteed liberty. After about 1690 the obligation was very generally enforced upon' the colcmias of sending the acts of their assemblies to Eagland for moceptence or rejection by the king in conecil. Thus a general mgrement between colonial and English law was attainod
27. But this, though far-reeching, was ond one of the objects which wera mought through the arearcise of imperial control. Ils object whs to minintain the righte of Great Britaim over the oolonies and her interesta in them in all respecta. The diplomacy of Great Britwin concemed itself to an incremaing extent, as the 18th century advanced, with the amquisition or losses of colonial territory, with the fixing of boundarics and with the securing of commercial interente. The inferests of trade, more than any other subject. determined the colonial policy of England. The Church and her intereats aloo demanded attention. In all these matters the Englinh executive-the Crown -coatinucusty, and for the most part exclasively, managod colonal affairs. During the Commoawealth to the zjth century parliament was the source of all activity, thether leginiative or executive, but at other tirmes, at we have scen, its begislation was confined chiefly to the subject of tradt. The Eaglish courts also played a minor part excopt when, in conjunction with the executive, they were concerned in the revocation of colonial charters.
18. A matural condition which affected colonial administration as a whole and to a large extent determinod its limits and character was the remoterfese of the coloaica sameme from England. With this the conditions of aparso afome and scatterod metilements in a mew coatinent in Cobangen the midst of savages were closely connected. At beat thme months were required for sending a despecch from Lomdon to America and procuring anturn. This oxplains the large degree of self-government which the colonies pomemed and the indifference with which their affaing mere. usvally viewed, even by British officiada. Only a relarively small part of colonial husiness canc before English efficial or received their serious attention. Only at long intervals and in aummary fashion was it brought to the allention of parliament. It in believed that the affairs of the continental coloniet were never seriously debated in parliament uatil after the beginning of the controversy which led to the American War of Independence Social and political intercourse with the colonista and governmental control over them were therefare very imperfectly developed, is compared with that which existed within the realm. That is the real meaning of the distinction between the realm and the dominions. Over the counties and other local jurnsictions of the realm the control of Crown and central courts and parhament was continuously felt. In law and theory the same was true of the dominions; in fact, the control over them was almost wholly executive, and during most of the period it was to a degree unintelligent and weak. In theory the British Empire was a consolidated structure; in fact it wes something more resembling a federation.
29. The central fact in colonial histary during the 17 th century was the development of the chartered colonies. At their founding, as we have seen, the Crown delo gated rights of settlement and subordinate rights oftop of government to proprictors, who used them in chormend a variety of ways. The effect of this was to cquar. introduce a number of mesne lords between the king and his colonial subjects, a phenomenon which centuries before had vanshed from England itself. The patentees governed the colomsts, and the Crown only interfered at intervals to adjust matters. And when the Crown did chis, its dealings were lar more with the patentees and their officials than with the body of the colonists. The king had no officials of his own in the colonies, and a practical system of immunity existed. Under the first two Stuarts some rather desultory efforts were made to check the development of such a system is the early stages, After anolroversy over a contract for
the sole importation of tobacco, which became involved with the political struggles of the time in England. the charter of the Virginia Company of London was'revoked (1624). A royal commission was appointed to readjust the aflairs of Virginia and to inaugurate its government as a royal province, and the king declared that he desired the government of all his doninions to be monarchical in form. Several commissions were later appointed to manage the tobacco trade. In 1634 2 board of commissioners of plantations was created and it received very large powers over the colonies. Of this body Archbishop Laud was the moving spiril. The year following the New England Council resigned its charter, a writ of guo ersiranio was issued against the Massachusetts charter, and a plan was nearly perfected for sending out Sir Ferdinando Corges as royal governor, or rather governor-gencral, to New England. But means were lacking, the suit against the Massachusetts patent failed to accomplish its purpose; and troubles at home soon absorbed the attention of the government.
30. During the Great Rebellion in Englard New England was left practically to itself. Strife broke out in Maryiand, over which the home government was scarcely able to exercise even a moderating influence. The Dutch from New Netherland and Eunope were able to monopolize a large part of the carrying trade in tobacco and European goods. Virginia, with Barbadoes and a few other island colonies, assumed an attitude of distrust or hostility toward the new government in England. In 1651 and 1652 parlizment sent out a commission, with an armed lorce, which reduced the island colonies to submission and adjusted aflairs in Virginia by suspending government under Sir Willian Berkeley, the royalist governor, and leaving control in the hands of the Assembly. By a stretch of power the commissioners also took control of affairs in Maryland, but there they intensified eather than allayed the strife. Battimore, however, managed to save his interests from lotal wreck, and at the Restoration was able fully to reestablish his aut hority.
31. During this period of unstable government in England the seeds were planted of a colonial policy which was hencecomarect forth to dominate imperial relations. It was then admbatara rivalrics and wars. The Cromwellian government Are Chaager determined to wrest the control of the carrying Actisand trade from the Dutch, and the Navigation Act of Actsend ather Rexictative Legtrampar. 1655 and the first Dutch War were the result. General Robert Sedgwick was sent mgainst New Netherland, but ended in attacking Acadia. At this time also the national hatred of Spain, which had so characterived the age of Elizabeth, reasserted itself and the Spanish seas were invaded, Hispaniohs was attacked, and Jamaica was conquered. In connexion with these events plans were formed for a more systematic colonial administration, which Cromwell did not live to execute, but which were taken up by Clarendon, the duke of York, the earl of Shaftesbury and a large group of officials, lawyers and merchants who surrounded them. They took definite shape after the Restoration in the creation of a council for trade and a council for forcign plantations, in the passage of the acts of trade, in the conquest of New Netherland and the organization within it of chree English provinces, in the settement of the Carolinas, in a resolute attempt to remedy grievances and adjust disputes in New England. These events and their consequences give greater importance to the next three or four decides than to any later period until the colonial revolt.
32. The council for foreign plantations was continued, some. times under a patent and sometimes as a committee of the privy council, until, in 1696, it was commissioned as the board of crade. As a board of inquiry and report, subordinate to the privy council, the most important business relating to the colonics was transacted before it. The acts of trade, in which the principles of the system were laid down, were passed in 1660, 1063,1673 and 1696 . They expanded and systematized the principles of mercintilisu as they had long been sxcepted,
and as in some particulers they had alretidy been applied to the Virginia tobarco trade. The import and export trade of the colonies was required to be carried on in English and colonial built ships, manned and commanded by Englishmen. The policy of the staple was applied to the trade of the colonies by the caumeration of their chief products which could not be raised in England and the requirement that such of these as were exported should be hrought to England and pay duties there, and that theace the supplies not needed for the English market should be sent to foreign countries. The same policy was applied to all colonial imports by the requiremeat that they should pass through English ports. In order to prevent intercolonial traffic in enumerated commoditics, which might lead to smuggling, the act of 1673 provided for the levy of an export duty on them in the colonics in cases where a bond was not given to land thern in the realm. In the 18 th century severe restrictive measures were passed to prevent the growth of manufactures, especially of wool, hats and iron, in the colonies; but these acts proved mostly a dead letter, because the colonies had not reached the stage where such jadustics couid be developed on any scale. Certaln compensations, favourable to the colonies, also appeas in the system, e.g. Zbe measures to suppress the raising of tobaceo in England and Ireland, in order that the calonists might have the monopoly of that market; the payment of bounties on the importation of naval stores and on the production of indigo by the colonists; the allowance, on the re-exportation of colonial preducts, of drawbacks of part or all of the dutice paid on importation: the admission of colonial imports at lower metes of duty then were charged on the same products from forcign countries. In order to ensure the enforcement of these acts elaborate provisions became necessary for the issue of bonds, and this, with the collection of a duty in the colonies, led to the appointment of colonial customs officers who were immediately responsible to the commissioners of the customs and the treasury board in England. With them the governors were ordered to cooperate Courts of vice-adrairalty, with authority to try cases without a jury, were established in the colonies; and just before the close of the seventeenth century they were glven jurisdiction over violations of the acts of trade, 2 power which they did not have in England. Naval officers were vary generally provided for by colonial law, who were to co-operate with the customs officers in the entry and clearance of vessols; but in some casces their aim was ratber to keep control over trado in colonial hands. It thus appears that the resolve to enforce the policy set forth in the acts of trade resulted in a noteworthy cxtension of imperial control over the colonics. How lat it was successiul in the immediate objects sought it is intpossible to say. In sone of the colonies and at some times the acts were practically nullified. Hegal trading was always carried on, especially in time of war. In such times it was closely allied with privatecring and piracy. But in the large it is probable that the acts were effective, and their existence always furnished 2 standard to which officials were required by their instructions and oaths to conform. By the Act of Union of 1707 Scotland was admitted to the advantages of the English trade system. In 1733, in order to check the development of the French colonies and prevent the importation of their products into English possessions, the Molasscs Act was psssed. This provided tor bigh

Achases specific dutics on rum, molasses and sugnr, when imported from foreign colonies into those of Great, Britain. So high were these rates that they eould not be collected, and therefore no serious attempt was made to enforce the act.
33. Returning again to the ifth century, in order to trace in other connexions the notable advance which was then made in colonial administration, we are to note that the conquest. of New Nethetland by the Eritish in 1664 was an event of great importance. Taken in connexion with the setlement of the Carolinas, it completed the hold which the English had upon the North American const and gave them for the first. time an extent of territory phich could be profitably developed

The occupation of New Netherland was effected by a royal commission, which was also empowered to hear complaints and report a plan for the settlement of disputes in New England. Precedents for such a commission existed in the past, and a little more than ten years later a similar body, accompanied by a military force, was sent to Virginia to adjust matters at the close of Bacon's rebellion. But the commission of 1664 was the most noteworthy example of its kind. Yet, though it succeeded at New Amsterdam and in the southern colonics of New England, it failed at Boston. Massachusetts would not admit its right to hear appeals. It did not succeed in wresting from Massachusetts the territory of New Hampshire and Maine, which the heirs of Gorges and Mason claimed.
34. In 1676 Edward Randolph was sent as a special agent to Massachusetts, to require it to send agents to England. He returned to England the sworn enemy of that colony and continued to be its tireless prosecutor. A series of negotiations ensued which lasted for almost a decade, and eaded in the revocation of the Massachuselts charter hy a degree in chancery, 1684. New Hampshire had already been organized as a royal province. Government under the charters of Rhode Island and Connecticut was soon after suspended. All New England was then organized as a dominion or vice-royalty under Sir Edmund Andros. Assemblies were everywhere abolished and government was left wholly in the hands of the executive. New York-also without an assembly-and New Jerscy were Domblear of soon after incorporated with the Dominion of New Now England, its boundary being extended to the Eagtage Delaware river (see New England). After Bacon's rebellion in 1676 the lines of executive control were strengthened in Virginia, but the Assembly continued active. These rapid changes involved tbe downfall of the former system: of chartered colonies and the substitution of royal provinces in their place. The effect of this was to introduce into the colonies a large number of officials of royal appointment \(\rightarrow\) the governors, members of the council, judges, secretaries, surveyors-general, receivers-general and attorneys-general. Tbe entire executive and judiciary in a royal province was appointed dipectly or indirectly by the king. Its members held under commissions subject to the king's pleasure and were controlled by bis instructions. The exclusiveness of the chartered jurisdictions no longer ohtained, but the Crown through its officials was brought into direct relations with the body of the colonists. Government could now be carried on under relations analogous to those between Crown and peopic in England.
35. By the abolition of assemblies and the union of colonies on a large scale James II. did vialence to the strongest feelings and traditions of the colonists. The New Englanders not oaly viewed the levy of taxes by prerogative with the utmost aversion, hut they feared a general unset lement of land titles, the destruction of much that was valuabic in their system of towe government, and the introduction of Anglican worship among them. They shared also in the fear, which was widespread among the colonists, that the Crown intended by an alliance with the French and Indians to force Roman Catholicism upon them. Therefore the fall of the Stuart government in Eagland was the signal for an uprising at Boston (April 1689) followred hy a less successful one at New York. The Dominion of New England at once collapsed and the old colony governments were generally restored. A revolt against the Catholic proprietor in Blaryland resulted in the suspension of his powers of government and the organization of Maryland as a royal province. William III. granted a new charter to Massechusetts (r6gi) in which full provision was made for an assembly, but also for a governor and secretary of royal appointment: Rhode Island and Connecticut were allowed coloalel to remain under their corporate charters. New Gengater York and New Hampshire were organized as royal ance: provinces with astemblies. Proprietary government struseded bick into existence in New Jersey. In Pennsylvania the goverimptherems of the proprietor were suspeaded for
two years (r692-1694), because of his neglect of provision for defence; then they were restored and Pennsylvania continued under proprietary government until the War of Independence.
36. The transition from the system of chartered colonies to that of royal provinces was thus begun and well advanced towards completion. But it was a gradual process, and the later stages of it were not reached until the second decade of the r8th century. South Carolina became provisionally a royal province in 1719, and a parallel change was completed in North Carolina a decade later. Georgia received a royal government in \(175^{2}\). But in' 1755 Maryland was permitted to resume its proprietary form. After the Revolution of 1689 the change to royol governments did not involve in any case the abolition of colonial assemblies. Henceforward the Crown had a fully equipped executive in every royal province, and for the maintenance of its rights could depend upon its eflorts and the influence which it was able to exert upon the assemblies. The governors exercised the royal rights of calling, proroguing and dissolving the assemblies; they assisted in initiating legislation and exercised the right of veto. All bills passed by the assemblies were required to be submitted to the king in council, for acceptance or disallowance. The upper houses of the legislature were the councits of the provinces. These were small bodies and consisted, in every rase except Massachusetts, of royal appointees. Their support was in most cases given to the governors, and by that means they were greatly assisted in resisting the encroachments of the lower houses of assembly, which were elected by the freeholders. But, as a rule, the Crown made no provision for the salaries of its governors and other officials, and left them largely dependent for support on appropriations by the assemblies. In very many cases the withoolding of salaries was successfully resorted to by the assemblies in a means of thwarting the executive or forcing it into submission. Under this system of balanced forces, analogous in general to that which was reached after the Revolution in England, the colonies entered upon the long period of the French wars.
\[
\text { C. - The Struggle with the French, } 1690-1760 .
\]
37. Early French discoveries and colonization in North America were confard chiefly to the valley and gulf of the St Lawrence. These led, in the early \(\mathbf{1 7}^{\text {th }}\) century, to the establishment of tbe province of Canada. By 1610 the Frer:h had possessed themselves of the valley of the lower St. Lawrence, and the relations with the Indian tribes were being determined. During the pext fifty years Canada grew slowly into an autocratically governed province, in which a mild form of feudalism existed and in which the Catholic Church was so strong as to contest supremacy at times with the eivil power. The fur trade became from the first a most important Industry in the province. The Jesuits and other priestly orders undertook missionary work on a large scale among the natives. The for trader and the missionary soon extended French influence ihrough the region of the Great Lakes and involved the province in intimate relations with the Indian tribes, and that throughout a large arez of country. Bet ween the Iroquals and the French wars wete almost continuous, but with the other Indian tribes the French were in general on friendly terms. The Iroquois, on the other hand, maintained friendly relations with the Dotch and afterwards with the English. This deeply affected selations between the English and the French, as well as the entire development of the province of New York.
38. Exploration was a most important incident of both the iur trade and the missionary enterprises of the French. Between 1670 and 1690 their work culminated in the great exploring activity of Marquette, Jolict and La Salle. The Ohio a nd Mississippi rivers were discovered and their courses were mainly or wholly traced. Explorers also penetrated far Into the regions beyond the Mississippi. Posts were established at various points along the Great Lakes. During the first two decades of the 18th century the French also freme established themselves on the Guif of Mexico, Mobile being founded in syaz and New Orkani in 1p18.

Quebec and the Gulf ports were then coninected by a series of forts which, though few and weak, sufficed for communication and for the establishment of a claim to the Mississippi Valley. They were Niagara and Detroit, commanding the approaches to Lakes Erie and Huron; Fort Miami, on the Manmee river; Fort St Joseph, at the southern end of Lake Michigan; Vincennes and French Fort, on the Wabash; Fort Chartres, on the Miscissippi opposite St Loris; Michillimackinac aad Ste Marie, which guarded the upper lahes. French zeal and enterprise bad thus seized upon the beart of the continent, and was prepared to oppose any west ward movement which the English might in the future attempt. It seemed possible that English settlements might he confined to the coast, for they expanded slowly and no genius for exploration or sympathy with Indian life was shown. The tendency of Britich commercial policy was likewise to confine them there, for in no other way did it seem possible to restrict the trade of the colonists to British markets. The Indian alliances of the English were also lar less extensive than those of the French. The provinces of South Carolima and Georgia had conficts with the Spanish on the Florida frontier, and in these the Indian tribes of the south were also involved. But these rivalries were slight and local in character, when compared with the struggle for supremacy which was preparing between the French and English.
39. The confliet with the French was precipitated by events in Europe. It was the English Revolution of 1689 that opened the great conflict between France and England. The question of Protestantism versus Catholicism was involved, but at bottom the struggle was one for the balance of power among European states. Rival claims hetween the two powrrs in America, Africa and Asia existed at the heginning of the conflict, or originated and were intensified as it progressed. Questions of commercial and navil supremacy world-wide In extent were involved, and the colonial possessions of the two states were necessarily drawn into the struggte. In America it involved four int ercolonial wars, which were closed respectively by the treaties of Ryswick (1697), Utrecht (2713), Aix-la-Cbapelie (1748), and Paris (1763). Between the second and third wars intervened thirty years of peace, the early period of Hanoverian and Whig ascendancy in Engtand, the so-called Walpole era. On the American continent during the first two wars the struggle was confined to the nort hern frontiex, and consisted of devastating raids by the French and Indians, which in turn provoked retaliatory efforts on the part of the English. These took the form in part of attacks on Aradia and of onsuccessfut efforts to conquer Canada by means of joint expeditions by sea and land. The favourite land route was that from New York by way of Lake Champlain to Montrenl, while the expeditions by sea were foreed to make the long and perilous woyage round Nova Scotia and through the Gulf and River St Lawrence to Quebec. In 1690, and again in \(\mathbf{1 7 1 1}\), an enterprise of this kind was actually undertaken. Acadia," with its ancient limits," and the claim of France to Newloundland and the Hudson Bay serritory were, however, ceded to England by the treaty of Utrecht.
40. As the great world-confict progressed the relative importance of the colonial and maritime issues which were inWer: volved increased. The first two wars had their wotwers Whwres Eramber Froncth Asmerter origin primarily in European questions. The third war had its beginning in the Spaniah West Indies, and clearly revealed the existeoce of the Boarton Family Compact, which bound France and Spain cogether in active alliance. Or the American contiment its most striking evem was the capinte, in 745 , of Looisburg, a stronghold which the French had recently fortified on Cape Breton for the purpose of defending its interests in the Gulf of St Lawrence. This victory was secured largely by the efforts of the New England colonists. In the following year another plan for the conquest of Camarka was thwarted by the necessities of wat in Earope. At the close of the war Louisburg, too, was restored to the French. After this fashion did the world-strughte reate upon the opecial interests of the English in North America, and perptes and irritate the
coloaists. In the fourth intercalonial war (\(1754-63\)) the strugele between the two antionalities in North America was decided. Events which immediately proceded this war-the occupation of the Ohio Valley aad the building of Fort Dequesne-clearly revealed an iatention on the part of the French to exclude the English from the Mississippi Valley and confine them to the Atlantic slope. A persistent efiort was also made \(t 0\) recover Acadia. The western, as well as the northern, frontier was not threatened, and the war which fellowed affected all the colonies. Great Britain sent over a succession of commanders-in-chief. Great improvement was made upon the crude efforts at joint colonial action which had characterized the earlier wars. To as great a degree did the Albany Congress of 1754 (see Albany, New York) surpass in importance the meetings of governors and raititary officers which had occasionally been held in previous times, though its plan of colonial union failed to meet the approval botb of the colonists and of the government of Great. Britain. The campaigns of this war were all upon a compera. tively large scale. Campaigns were carried on not merely along the lise of Lake Champlain asd in Acadia, but against Fort Duquesse (sce Pitisburg, Penn.), Oswego, and Fort Frontenac, Louisborg, and Quebec (g.e.) itself. The weak Spanish power was overthrown in Florida and expeditions were sent against the southern Indians. In all quarters, and especially after Pitt became secretary of state, the Bratish assumed the offensive. The navy of Great Britain, as well as its army, was called into action on a much larger scale in America than ever hefore. The result was the conquest by the British of Canada, and with it of all North Ametica east of the Mississippi river; the French claim to territory west of this river was ceded to Spain in 1762.
41. The wars with the Frencb brought the problem of colonial defence among the English into greater prominence than ever before, and added it to the other questions which had been of practical moment from the first. Against the Indians the colonists in the 17 th ceatary had provided for their own defence. Chiefly with this object in view, each colony had developed a mititia syatem, modelled in general after that of England. But such a force was not fitted for long campaigns or large operations. It was comparatively undisciplined; both officers and men were inexperienced and destitute of proper habits of command, as well as those of subordination; the commissariat was poor or totally lacking, and the men were able to remain away from their homes for only brief periods. The colonists poasessed no navy, and for coast defence only a lew rude forts. So poor were means of communication and so isolated were the colonies from one another, that co-operation in joint expeditions was very difficult. Equally dificult was it to secure proportional contributions of money from the colonics. Early in the French wars the British government prescribed quotas both of men and money to be raised by the colonies, but litue attention was paid to these except by the colonits which were in immediate peril. Because of the limited amount of available money and the modest resources of the colonists heavy tavation was impossible, and the financing of the wars was a matter of great difficulty. The assemblies resorted to the issue of bills of credit, to which they gave the legal tender quality, and for the redemption of which in vearly all cases they made inadequate provision. The paper depreciated and in some celoaies became worthless. Great confusion resulted, involving loss to all, and among the sufferers were British merchants Strained relations were produced between the assemblies and the colonial executive, because the latter, acting order royal instructions, persisted is vetolng bills for additional issues of currency. For this reason, in addition to others, the ascemblies withheld the saiarics of governors and other officials, and in this way sought to coerce the executives into submission. In some colonies the Assembly secured the right of electing the treasurer, and in most of them appropriations were made specific. Thus by skiifully utilizing their control over the purse, and that duriag a long period of war, the evonial assemblies were able materially to timit the authority of the executives and to establish not a few privileges for
themselves and their constituents. It was in such ways as these that the constitutions of the provinces became developed and llberalized during the French wars. Many a precedent was then established which was utilized in the later struggle with the mother country. The home government on its part also became convinced that requisitions were altogether inadequate as a method of procuring revenue for general purposes.
42. The quality of the rank and file of the Canadian militia was not essentially different from that of the British colonies. But the Canadian government was autocratic. The power of the French was also concentrated in a single large province, and not distributed among thirteen or more colonies. These conditions greatly promoted military efficiency. When taken in connexion with their Indian alliances, they enabled the French to take the offensive in the earlicr wars much oftener than did the English, and with much.greater effect. The government at Quebec was not subject to the limitations of quotas and requisitions. There were no assemblies to thwart its will. The English frontier was also more accessible and more exposed than was the lower part of the valley of the St Lawtence. Quebec was in every sense a citadel to which additional security was given during a large part of every ycar by the intense cold of the Canadian winter. But so superior were the training and enterprise of the French coureur de bois that, with bis Indian allies, he was far better able than the English farmer or artisan to penetrate the wilderness, whether in winter or in summer, and massacre the exposed dwellers on the frontier. It was this class which gave the French the superiority in the long succession of raids by which the English frontier was laid waste.
43. Though the French by their skill and boldness achieved a remarkable success, their defects and weaknesses were equally evident. The flow of population from France to America was never great, and even it was diminished by the exclusion of Huguenots. The natural growth of population within New France was not rapid. The result was that the French colonists did not become sufficiently numerous to maintain the interests to which their vast claims and possessions gave rise. The disparity between their numbers and those of the British colonists became greater with every generation. At the opening of the last intercolonial war the proportion of English to French colonists was approximately 15 to 1. New York alone had about the same population as that of all the French colonies on the North American continent combined. The resources of the British exceeded those of the French colonists to a corfesponding degree. Had the decision of the questions at issue depended upon population and wealth alone, the issue could not long have remained doubtful. But the tendencies arising from these fundamental conditions were to such an extent offset by other circumstances, already alluded to, that the result of the struggle was for a long time uncertain. Had it been confined to the forces of the colonies alone; it would perhaps never have been decided. The English could have defended the territory which they occupied; so could the French. Moreover, with the French and Engiish thus facing one another, it would have been impossibie for the latter to have declared their independence. The French would never have dicsired to do this. Therefore, the two peoples must apparently have remained in the condition of colonists for an indefinite period. But the motherlands were to be the decisive factors in the problem, which thus depended to an extent on complications which existed in Europo or even on remoter seas and continents. When the climax of the struggle was reached the result might have been different if France at the time had not been so deeply involved in the politics of central Europe.
44. Of the first importance in reaching a decision were the fleets and armies of Great Britain and France, or those parts of them which were available for use on the continent of North America. During the larger part of the period under review the French neglected their fieet, while the English steadily advanced toward naval and commercial supremacy. But the first conspicuous service on the northern coasts was that which was rendered by Commodore Peter Warren and his squadron
at the capture of Louisburg in 1745. In the pext year a large French fleet was despatched to North America, but it accomplished nothing. In the last intercolonial war the operations before Louisburg in 1758 and at Quebec (q.v.) in 1759 decisively proved the superiority of the British navy. The colonies also, in the later stages of the struggie, contributed loyally coward the result. France failed to make her natural military superiority effective in North America, and therefore her power on that continent had to yield before the combined attacks of Great Britain and her colonies by land and sea.
D.-The Colonial. Reoolf, 1763-1776.
45. The Treaty of Paris (1763), by which the period of colonial wars-but not the struggle between England and France-was concluded, added vast stretches of territory to the arkeb dominions of Great Britain in North America. The Acpudamoen Floridas, Canada and Louisiana as far west as the of Terrmer. Mississippi river now came into the possession of the English. Of the islands which were occupied, the two most importantGuadaloupe and Martinique-were restored to the Frencb. The retention of Canada in preference to thesc involved an important change in the nature and objects of British colonization. Hitherto tropical colonies had been preferred to those in northern climes. The occasion of this had been the view that, as England was not over-populated, colonies were not needed as "homes for a surplus population." Instead, they were estimated in proportion to their commercial value. The ideal was a self-sufficing commercial empire. Tbe supporters of this view now angued that the islands which had been conquered from the French were more valuable than Canadz and should be retained in preference to the nortberncontinental territories, which had yet produced nothing for export except furs. But the government did not hesitate. Following the lead of Pitt, it was now bent upon continental expansion. Canada and the West were retained and the most important French islands were given back. The development of modern industry-the so-called industrial revolution-had already begun ia Great Britain. Its effect was vastly to increase the population of the British Isles and to necessitate an overflow into the unoccupied regions of the glohe. Colonies therefore began to be regarded from this point of view, and the retention of Camada opened the way for the change. Henceforth, as time progressed, colonies were to be valued as homes for a surplus population quite as much as sources of raw materials and food supplics. The retention of Canada and the West also coincided exactly with the desires of the continental colonies. The chief gains of the war went therefore to them and not to the island colonies. Tbey now possessed a continental domain which was adequate to their need for expansion, and their long-cherished desire to be rid of the French was gratified. Though, as expansion progressed, conflicts witb the Indian tribes of the interior, and that on a large scale, were to be expected, the conquest of the French removed the sense of dependence on Great Britain for military aid which the northern colonies in particular had previously felt.
46. In consequence of the policy thus adopted, largely increased burdons were devolved on the imperial government, while the conquest and the events which led to it strengthened imperialist sentiment and amhitions. The course of action which was at first favoured by leading officlals, both in England and the colonies, was a more systematic adminis. tration of Indian affairs, the employment of miref sufficient regular troops under the commander-in- \(\boldsymbol{a}\) morer chief to defend the newly acquired territory, ameral the maintenance of posts with English settlers in the interior on a scale sufficient to prevent the Freach or Spanish from securing the trade of the regioa. Improved methods of administration were urged through the press by Thomas Pownall, Henry McCulloh, Francis Bernard and Dr John Campbell. French methods were praised and
the shortcomings of the surviving chartered colonies mere again emphasized. This all required additional revenue, as well ac administrative vigour, and that at a time when Great Britain was specially burdened with debt and when several of the colonies had recently incurred heavy expenditures. The large acquisitions of territory also necessitated some changes in the acts of trade. The necessity for their more vigorous enforcement was revealed by the existence of a large contraband trade bet ween the colonists and the enemy during the later years of tbe war and also of a considerable illegal trade with Europe. These conditions, together with the conviction that, as the continental colonics had reaped the chici advantages of the war, some favout should be extended to the islands, led to the passage of the Sugar Act by the Grenville ministry in 1764 . It also caused a resort to writs of assistance in two of the colonies, and finally the legalization of them in all the colonies by act of parliament (1767). The aid of the mavy was directly invoked in the enforcement of the trade laws, and the activity of the customs officials and of the admiralty courts in the colonies was increased. Garrisons of regular troops-numbering several thousandwith a commander-in-chief were now present in the colonies in time of peace, and their aid might possibly be invoked by the civil power to suppress disorder. The Sugar Act itself was a trade and revenue act combined, and the fact was expressed in the preamble of the measure. It was intended directly to affect the traffic between the northern colonics and the foreign West Indies in lumber and food-stuffs, molasses and rumThe duty on forcign molasses, for which provision had been made in the Molasses Act of 1733, was balved; but now it was proposed really to collect this duty. A cry was immediately raised in New England that, if the dut y was collected, the manufacture of rum-of which molasses was the staple materialwould be lessened or wholly prevented and a most important industry sacrificed. The fisheries mould incidentally suffer. The surply of coin, witb which colonial balances were paid in England, they also said, would be lessened. Another act of pariament, passed about this time, prohibited the bestowment of the legal tender quatity on colonial bills of credit. Though partiament regarded this act as a necessary remedy for the excesses of which many of the colonies had been guilty in the insue of paper money, it was generally regarded in America as a blow at a necessary system of credit. In spite, however, of the opposition and criticism which it provoked in the northem colonies, it is probsble that the Sugar Act could beve been permanently enforced. The Act of Trade of \(\mathbf{8} 63\) and the Moinsess Act-though the hatter was not fnlly executed-were two early instances of the exercise by parliament of the right to tax the colonies. Had the Sugar Act been enforced, a clear and decisive precedent in favour of this right would have been eatablished. In view of the general situation, that was probably as far es the British government should have gone at that time But it immediately committed itself to another and still more significant measure, and the two acts combined caused an cotburst of protest and resistance from the colonists.
47. Repeatedly in earlier years the imporition of a stamp duty upon the colonies had been raggested. Archibald Cumminge, William Keith, ex-governor of Pennsylvania, and Governor Ceorge Clinton of New York had prominently urged this policy. With the outbreak of the fourth intercolonial war comprehonive plans of parkmmentary tazation were repestedly proposed. The cont of the regular troops which moust be stacioned in America was entimated at about \(\{300,000\) amrualiy. The Sogar Act was expected to yield about 545,000 a year. It was thooght that the colonies should raise sbout f100,000 more as their reasonable share of the cost. George Grenville resolved to secure this by means of a stamp duty. This monld fall upon the island cotonies equally with those of the coattreat, thergig it mould be expended chiefly for the enlarged miltary force on the mainland. Though its simplicity and ease of collection recommended it, the Stamp Act mas a purely facal measure, and its character was not eoncealed by any eatures whick allied it to the aarlier acts for the regulation of
trade. It involved an extension of the British system of stamp duties to the colonies, and was intended to draw revenue directly from many lines of their activity. It was passed hy parliament in 1765 , almost without debate and with scarcely a thought that it would be resisted. It provided for the appointment of officials to distribute the stamped papers in the colonies and further extended the power of the admiralty courts; by giving them jurisdiction over violations of this act. The legal theory upon which the act was based was that of the unqualifed sovereignty of parliament as the representative body for the whole empire, and that its authority, if it chose to use it, was as effective for purposes of taxation as for the regulation of trade or other objects of legislation. But never before, during the century and a half of colonial history, had the taxing power been so

Scempact unqualifiedly exercised or in such trenchant force as by this statute. It followed close on the heels of the Sugar Act, which itself had aroused much hostile criticism. The two measures also came at a time when the consciousness of strength among the colonists had been increased by the deient and expulsion of the French. Moreover, at the time when the policy was initiated, George III. had undertaken to crusb the Whig party and to revive the latent prerogatives of his office. This resulted in the formation of a series of coalition ministries. Vacillation and uncertainty were thus introduced into the colonial policy of the government. The royal policy also brought into the public service in England and kept there an unusually large group of inferior men who persistently blundered in the treatment of colonial questlons. It, was only with tbe accession of the North ministry, in 1770, that permanence and a certain consistency were secured. But, in the view of the colonists, the prestige of the government had by that time been scriously lowered, and the stubborn self-will of the king became the only available substitute for broad and intelligent statesmanship.
48. Determined opposition to the Stamp Act was shown in all the colonies, by or beiore the time (Nov. r) when it was to go into effect. The forms assumed by this opposition were such as characterized the entire controversy witb Great Britain until the opening of hostilities in r775. It consisted in the passage of resolutions of protest by the lower houses of some of the colonial legislatures; in the calling of a congress at New York, which was attended by delegates from nine of the colonies; in the activity of mobs organized under the name of the "Sons of Liberty" in all the large seaports and in some smaller inland towns; and, finally, in a somewhat widely extended movement against the importation of British, or even foreign, goods and in favour of frugality and the encouragement of home manufactures. The newspaper press also sprang into much greater activity than ever before, and many notable pamphiets were published in defence of the colonial cause. The most important resolutions at the outset were those adopted by the Virginia House of Burgesses and by the House of Representatives of Massacbusetts. Through the first-named body the dramatic eloquence of Patrick Henry (q.s.) forced five resolutions. Two of hers, which threatened resistance and the coercion of any who should venture to uphold the home government, faited to pass, but the whole seven were published broadeast through the colonies. The calling of a general congress was propobed by the House of Representatives of Massachusetts. Prominent amongits members was James Otis, who had already distinguished himself by radical opposition to measures of the government, especially in the case against writs of assistance which tas argued before the superior court in 1761. Samuel Adams (q.a.), already a prominent man, was now elected a member of the house from Boston. He almost immediately became its leader, drafting its most important resolutions and papers, and to a large extent directing tis policy. With the aid of others he was able greatly to increase the activity of the town-meeting in Boston, and in the course of a few years to develop it on oceasion into a great popular convention, which could be utilized to overawe the government. Throughout New England the town and its institutions served well the purposes of opposition and
facilitated its extension over large areas. The county system of the provinces along the middle and southern coast was not so well adapted to these purposes, and their population was more dispersed. The intense Puritan spirit, with its century and a- half of pronounced independence, both in polity and temper, wes also lacking outside New England; though on the frontiers of the provinces from Pennsylvania southward was a Scotish-Irish population which exhibited many of the New England characteristics. But the tenant farmers of New York, the German pietist sects of Pennsyivania, the Quakers wherever they had settled, and in general the adherents of the English Church were inclined toward indifference or, as the controversy progressed, toward positive loyalism. Hence the mixture of nationalities in the Middle Colonies greatly increased the difficulty of rousing that section to concerted action. In Pennsylvania the issues were obscured by a struggle on the part of the western counties to secure equal representation with those of the cast. This helped to make loyalists of the Quakers. Special grievances also produced among the frontier settlements of North and South Carolina quite as much dislike of the officials and social leaders of the tide-water region as they could possibly feel toward Crown and pariament. Throughout the struggle New England and Virginia exhibited a unity and decision in action which were not equalled elsewhere.
49. But to retum to the Stamp Act. Before the meeting of the Congress at New York outbreaks of mob violence in Boston had forced the stamp distributor there to Coloant Oppeation. resign, and had wrecked the house of Thomas Hutchinson, the chief justice. Owing largely to the indecision of the elective council, the government had praved powerless to check the disorder. The resolutions passed by the Congress, as well as its petitions to the home government, gave authoritative form to the claims of the colonial oppositipn in general, though the body which issued them, like all the congresses which followed until 1776, was extra-legal and, judged by the letter of the law, was revolutionary. In these utterances, as later, the colonists sought to draw their arguments from British precedents and their own history. As they owed allegiance in common with subjects within the realm, so the rights of the two were the same. The two British rights which, it was claimed, were violated by the Stamp Act were the rigbt to trial hy jury and the right to be taxed only by an assembly in which they were represented. The former grievance was simply an incident of the latter, and was occasioned by the extension of the jurisdiction of the admiralty courts. The tax was a direct grievance. Therefore, for purposes of legislation like this these bodies denied that parliament was representative of the whole empire (so-called virtual representation), and asserted that it represented only the realm. For purposes of taxation, their assemblies, they affirmed, were the only representative bodies they had known. Therefore, ignoring the earlier and tentative measures by which parliament had actually taxed the colonies, and falling back upon the sweeping declarations of their assemblies, they denied the right of parliament to tax them. They declared that the recent policy of parliament was wholly an innovation and insisted upon a return to the Constitution as it was before 1763 . The doctrine of natural right and compact was also resorted to with increasing empbasis in New England utterances. For porposes of government they had all along acknowledged-and now did so expresslythat parliament bound them; and the inference would have been fair that they were represented in it. But they did not draw this inference, nor did they seek by any scheme of reform to secure representation in the imperial legislature. Jaraps Otis was the only colonial leader who ever contemplated the possibility of such a solution. Adams early declared it to be undesirable. The British never proposed it, and therefore it played practically no part in the discussion.
50. The decisive blows, however, were struck hy the mobs in the colonies and by the government itself in Eagland. As the time for the execution of the Stamp Act approached, more
or less violent demonstrations occurred in New York and in many other localities. The stamp distributors were foreed to resign. Everywhere in the original continental colonies the use of stamped papers was prevented, except to a slight extent in Georgia. Busimess requiring the use of stamps was in part suspended, hut far more generally it was carried on without their use. Without the aid of the militia, which in no case was invoked, the colonial executives proved indisposed or powerless to enforce the act and it was effectively nullified. In England the petitions of the colonists produced little effect. There the decisive events were the accescion of the Rockingham ministry to power and the clamours of the merchants which were caused by the decline in American trade. What might have happened if Grenville had remained in office, and if the duke of Cumberiand had not been suddenly removed by death, it would be impossible to tell. But the serious lack of adjustment between British politics and colonial government is illustrated by the fact that, more than three months before the Stamp Act was to go into effect, the ministry whose mensure it was resigned, and a cabinet which was indifferent, if not hostile, to it was installed in office. Preparations were soon made for its repeal. The slight extent to which relations with the colonies had been defined is indicated by the fact that the debates over the repeal contain the first serious discussion in parliament of the constitution of the British Empire. While the colonies were practicatly united in their views a great variety of opinions was expressed in parliament. On the question of right Lord Mansfield affirmed the absolute supremacy of parliament in realm and dominions, whike Camden and Pitz drew the same sharp line of distifaction between takation and legislation upon which the colonists insisted, and denied the right of parliament to tax the colonies. The debates at this time gave rise to the fancied distinction between internal and external taxes, of which much was made for a few months and then it was dropped. But motives of expediency, arisfing both from conditions in the colonies and in England, proved decisive, and in the spring of 1766 the Stamp Act was repealed, while its repeal was accompanied with the passage of a statute (The Repuaf of ino Declaratory Act) affirming the principle that Great segmpat; Britain bad the right to bind the colonies in all ane onctiriecases whatsoever. This measure was received with \(\operatorname{mog}\) Ach demonstrations of joy in the colonies, but the prestige of the home government had received a severe blow, and the colonists were quick to resent further alleged encroachments.
51. These soom came in the form of a colonial Mutiny Act and of the so-called Townshend Acts (1767). The former was intended largely to meet the needs of the troops stationed in
the West and in the new colonies, but it also affected Acts the older colonies where garrisons of regular soldiera Acth.
existed. The act provided for a parliamentary requasition for barrack supplies, and partly because it included certain articies which were not required for the soldiers in Europe, the New York legislature at first refused to make the necessary appropriation. Partly through the influence of the gavernor, it bier came to think better of it and in a non-committal way appropriated the supplies required. But meantime in England the Pitt-Grafton ministry had come into office, in which the brillinat but reckless Charles Tewnshend was chanceillor of the erchequer. Pitt himself was disabled by ilness, and the ministry, lacking his control, steadily disintegrated. Townshend availed himsell of this situstion to spring upon his colleagues and upon partia. ment a new massure for colonial taxation, and with it a bill legalizing writs of asoistance and eatablishing 2 board of commissioners of the custons in Americe, and a third bill suspending the functions of the assembly of New Yodk until it should comply with the terms of the Niutiny. Act. These Bills all becamelaw. Before the last-mentioned one reached the colonies, the Netr York Assembly had complied, and therefore the necessity for executing this act of parliament was avoided. The establistment of a customs board at Boston, of itself, did not provake much criticism. But the Act of Trade and Revenue, which provided for the collection in the colonies of duties on glass, lead, painters' colours, paper and tea, and that out of the revenue
raised theretrom salaries should be paid to the governons and judges in Americe, opened anew the controversy over taxation.
52. Jobn Dickinson, in his Letters of a Farmer (\(1767-1768\)), denied in toto the authority of parliameat to tax the colonies, and his argument was widely accepted. Massachusetts petitioned the home government, and in a circular letter conveyed ita views to the other colonies and asked an expression of theirs in retura. This provoked Hillsborough, the incumbent of the new colonial secretaryship, to order the Massechusetts house to rescind its action and the other colonies to treat the letter with contempt. The Massachusetis assembly refusod to rescind and was dissolved by the governor. The activity of the customs officials at Boston in scizing Jobn Hancock's sloop, "Liberty," occasioned rioting, which in turn was followod by the transfer of two regiments to Boaton. Several vessele of war were also stationed in its barbour (autumn of 1768). Deprived of their asserably, the towns of Massachusetts chose deputies, who met in convention, but without impartant result. Favourable replies to its circular let ter were, however, roceived from a majority of the colonies. Resolutions against the new act were passed by many oolonial assemblies, and in several cases petitions were sent to England. But, eitber because these addresses were not sent through the regular constitutional channels, or because they expressed views inconsistent with the Declaratory Act, they were laid on the table or rejected outright. The king and ministers expresued the view that the Americans were opposed to all restrictions, and that in Massachusetts treason or misprision of treasoan had aircady been committed. In this they had the support of harge majorities in parliament. The statute of 35 Henry VII., for the punishment in England of such offences when committed outside the realm, was now revived, and the coyal officials in Alassachusetts were iperructed to collect evidence against suspected popular loaders with a view to their deportation ecross sea for trial. Though sufficient evidence was not found, pothing could have been better calculated to increase the exasperation of the colanists than a threat of this kind. It drew from the Virginia burgesses strong addresses and resolutions of prolest. Fear lest the English Church would induce the government to establish a colonial episcopate caused much discussion at this time, especially in New England, and led to plans for joint action on the part of Dissenters, in sell-defence. Though the governmest never sunctioned the plan, the lears which were aroused by its discuscion contributed appreciably to the general agitation. In the course of 1769 the policy of commercial nonintercourse was again revived, and resolutions in favour of its enforcement were passed by many local bodies. But it was found difficult to enforce these, and, as the colonies. were proaperous, trade, open and illicit, with Europe continued to be large. The British merchanis did not clamour for reliel, as they had done at the time of the Stamp Act, but gave loyal support to the policy of the government. The king was also steadily geining an ascendancy, which in 1770 was permaneatly establisbed by the accession of Lord North to the premiership. Thus, an both sides of the ocean, parties were bracing themselves for a struggle, the one for and the other against the principle of the Deciarar wery Act. The question of revenue was now largely obscured by that of right and power.
53. It cannot be said that the Townshend Revenus Act was nullifiod, for to a certain limited extent it was executed. But \(\mathrm{T}=\mathrm{T}\) 20. in 1770 , on the specious phen that the duties were oncommercial because they were levied on British menufactures, all except the duty on tea-3d. per towere repealed, and a drawback of one-fowith and leter of whree-aifthe of this duty was grantod on the re-exportation of toa to the colonicas. But the preamble of the act was retained, and with it the principlo of taxation. For this reason opposition conlisued and non-importation agreements, expecially aguinst cen, more maintainod But after the collision which occurred bet ween the troops and the people in Boston, in March 1779 , the soldiers were semioved from that town and affiais became more quies. For more than a year it seemed as if che controveroy wes wearing itself out and that the old relations wopld be restored.

Bat the conduct of certain naval officers and small vesels of war which had been trying to suppress illegal trado in Narragansett Bay led, in June 1772, to the deatruction of the achooner "Gaspee." The inquiry which secessarily followed this, together with legislation for the protoction of the royal dockyards, ships and supplies, again revealod the ponsibility that oolonists might be removed to England for trial. About the same time provision was made for the payment by the bome govemment of the salaries of the governors and of the judges of the superior court of Mascechusetts while those officials continued to bold at the pleasure of the Crown. These events occasioned a movement in Massenchusetts and Virginin which led at once to the organization of committees of correspondence, and there ultimately extended far and wide throughout the colonies. At the same time in England the East Indis Company appealed to parliament for relief from the losses caused by the tranmer of the American trado so largely to the Dutch, and in response the Ten Act was passed authorizing the company to import its teas into the colonies and providing that the English duties should be wholly drawn back on exportation, and that no compensation need be sade to the govemment for consequent loss of revenue. This, it was expected, would enable the company to out-compete the Dutch. But popular uprisings prevented the reception or sale of the tea at any of the ports and culmimated in the destruction (Dec. 16, 1773) of 340 chests at Boston. As the king and the North ministry were now fully intreached in power, coercion was at once resorted to and affairs were thus brought to a crisis.
54. Those among the colonists who were intelligent enough to watch the course of events had long felt that they were being enveloped in a network of relations over which they had no control. This was a result of the devalopment of the compire, with its modd-wide interests and its policies the motives for which had their origin in conditiona which by the colonists were divoly parceived, if perooived al all. They were particularista whose views and resources were alike narrov, but whose perception of their interests was clear. The Quebec Act, which was passed by partiament near the close of the session of 1774 , furnished a case in point. Owing to the failure of the imperis government to socure the revense which it had hoped to collect under the Stamp Act and the later statutes, it had been forced to abandon its plens for the vigorous administra. tion of Indian aflairs and of the Weat. In view of these facts, it was thought wised and cheapest to commit the inmediates charge of the Wext to the province of Quebec, and therefore te extend its bounds southward to the Ohio. The Roman Catholie religion was recognized as begal within Quebec, and no provision was made for an assembly. Its extension also indicsted a purpose to prevent the wesu vard movement of population acrose the mountains, which wes already beginning from the Middie and Southern coloaies. It is true that this act involved the pomibility of danger to the colonies, but exaggerated infertences were drawn respecting it and the motives wich probably impelited its passage. So it had been with the distinctively imperialist mensures from the fime and so it was to continge.
55. Bet the acts of the session of 1774 which were of moot immediate importance were those which directly affected Msasuchusetts, where lay the centre of disturbance. Ooe of thase dosed the port of Boston, anolber uubstituted an appointed for an clected council in Massachneetts and took the selection of jurors out of the hands of the people, and 2 thind made possible the removal from Mamechusets of the trists of persons indicted for capital offences commitued in support of the gorernment into neighbouring colonies or to Great Britain, where a fair hearing was considered posaible. General Thomas Gage, who had been commander-in-chief in Americe, was now appointed governor of Mamachosetts, with authority to upbold the dew acts with military force. As soon as knowledge of the fate impending aver Bowion reached the olher colonies, cons ventions, local and provincial, were held, and the phas of a geweral congress, as proposed by Massechusotts ind Virginis, was adopted. Delegates were chosen from all the colonice excope Georgin, though that provisce fell into line when the
second Congress met. The members were instructed to the general effect that they should consult together and adopt such messures as were best calculated to secure the just rights of the colonists and redress their grievances. Voting by colonies, but occasionally listening to utterarices which implied that Americans ware now thrown into a single mass, this body sent addresses to the king, to the people of the colonies, of Quebec Frar and of Great Britain, and prepared a declaration Contimantar of cights. It is a significant fact that an address coamern was not sent to either of the houses of parliament. In its statement of rights the Congress (known as the First Continental Congress) limited itself to those which it believed had been infringed since 1763 . These acts they described as innovations, and claimed themselves to be the true conservatives who only desired peace on the basis of the former Constitution. Even Joeeph Galloway's elaborate plan of union (see Galloway) between Great Britain and the colonies was debated at great length and was laid on the table by a majority of only one, though later all reference to it was exproged from the record. But, on the other hand, the warlike "Suffolk Resolves." (see Mirton, Mass.) were approved, as was the opposition which Massachusetts was making to the recent acts of parlizment; and the view was expressed that, if an attempt were made to execute them by force, all America should support Massachusctts. Though the work of this Congress was deliberative, it performed one positive act which contained the germ out of which new governments were to develop. That was the issue of the Association, or mon. importation and non-exportation agreement, accompanied with resolutions for the encouragement of egriculture and bome manufactures and for the organization of committees to carry these measures into effect. Coercion, according to the principle of the boycott, was to be applied by the colonies and other local bodies to all who doclined to accept and obey the terms of the Association. This policy had been iollowed at intervals since the time of the Stamp Act. It had been revived and urged by very many local and proTheAssocior vincial bodies during the past few months. The tompertuta Congress had been called with a view to its enforceeed Noan- ment throughoot the continent. Its issue of the Exportator Ascociation gave this policy wide extension, and Arreemeat. at the same time streagthened the system of committees, whose energies were henceforth to be chiefly dovoted to its enforcoment. The Association became the touchstone by which loyalty to the colonies, or loyality to the king, was delermined. Those whose loyalty to the king forbade their submission to the new regulations now felt the coercive power of committees, evan to the extent of virtual trial, inaprimonment or banishment. Local bodies, acting under general regula. tions of Congress, and all revolutionary in chacacter, accomplished these results and thus laid the foundation of the new governments. From this action the First Continental Congress derived its chief significance.
56. The line of policy thus indicated was not such as would conciliate the home government, though it is doubtful if at that time anything short of an acknowledgment of the principle of the Declacatory Act would have been effective. All measures of congresses and committees, everything which did not emanate from the assemblies and come through legal chunnels, savoured of sedition and was little likely to secure a bearing. The Association, with its threats and coercive spirit, and depending as it did upos extra-legal bodies for enforcement, was a direct blow: at the commercial syatem of the empire and could scarcely help provoking retaliation. When the Congress adjourned, some of its mombers predicted war. In New England the impreaxion thet war was incvitable wes widespread. In Massechasetts a provincial congress was at once organizod, which ascomed the reins of government and began to prepare for defence. A comentteal of isafety was chosen to carry oo the work during recesses of the Congress. Thomas Cage, the governor, began fortifying Bostinneretile: he looked about for opportuphties 10 seize milit?

The raising of voluntary militia companies was soon begun in Virginia. In South Carolina, as earlier in Boston and New York, a quantity of tea was now actually destroyed, and a general committee assumed practical control of the province. Erom New Yort City and Philadelphia as centres the process of revolutionizing the two most conservative provinces was carried on. When parliament met, at the close of 1774, the king and ministers declared that a most daring spirit of resistance existed in Massachusetts, which was countenanced by the other colonies, where unlawiul combinations against the trade of Great Britain were already widely extended. In these opiniont the government had the support of the majority in the two bouses, and in a joint address the rebellion in Massachusetts was declared to be a fact. As a concilintory measure Chatham proposed that grarliament agree by resolution not to levy any tax upon the colonies, but that the Continental Cougress be required to make a free grant of a perpetual revenue which should be fully at the disposition of parliament, the Congress fixing tbe quota which should be paid by each province. But the imperialist and mercantilist ideas of Chatham were expresed in the further provisions that the system of trade and navigation should not be changed and that the army might be lawfully kept in any part of the dominions where it was deemed necessary, though it should never be used to violate the just rights of the people. Edmund Burke, in his great speech on conciliation, advocated a return to the system of requisitions and did not consider a representation of the colonists in pariament as a possibility. But these motions were rejected, and a resolation introduced by Lord North vas passed. This contained no recognition of extra-legal bodies, but provided that when the assembly of any colony should engage to support civil government within the colony and contribute according to its ability to the common defence, the ling and pariament would then forbear to levy any more taxes on that province except what were necessary for the regulation of trade. The colonies; with the exception of New York, North Carolina and Georgia, were excluded from the fisheries, as a counterstroke to the Association. North's resolution proved utterly futile, and the two parties drifted steadily toward wer, though, as Burke never tired of asserting, the British government in itt military estimates made no adequate provision for meeting the crisis.
57. On the roth of April 1775 hostitities begen in Massachusetts. They had been narrowly escaped two months before, whem, on a Sunday, Gage had sent an expedition by water to Salem in search of powder. Now, on a Hostruat of week-day, a fotce was sent overland to Concord, Lexhegtod 20 m . from Boston, to seize or destroy the military and stores which the colonists had brought together at Cacocorst that village. The minute-men were wamed to oppose the approtching force, and at Lexington (q.v.), a village situated on the road to Concord, oecurred a skirmish th which the first blood of the American War of Independence was shed. Tbe troops marched on to Concord (q.v.) and destroyed such of the ctores as had not been removed or concealed. On their return march they were pursued by a galling fire from behind fences and buildings, and had it not been for the arrival of a relieving force the command would have been destroyed before it reached the protection of the British vessels of war at Bocton. The "Lexíngton alarm" brought in throngs of militismen from all perts of New England. Officers were appointed by the provincial congress of Massachusetts and by similar bodies is the other coloniek, and immediat ely the so-called siege of Boston began: Carnon, as well as every other form of military equipment, were now in greal demand. In order to secure a supply of the cormet and at the same time strike a telling blow at Britsh authority in the north, Ticonderoga (q.v.) was surprised and tsken on the soth of May. Men from Consecticut, Massachusetes, and the New Hampshire Grants (later Vemmont) co-operated in this enterprise. It was soon followed by a dash into Canada, by steps which iavolved New York in the aflair, and by the organization of a millary force under General Philip Scbuyter for permanent sorwice on the northern frontier.

Meantime reinforcements reached Boston, led by Howe, Clinton and Burgoyne, and it was resolved to extend the British lines by occupying the beights of Dorchester on the south and those of Charlestown on the north. The Americans, hearing of this, seized Brced's Hill, overlooking Charlestown, where they hastily threw up a redoubt on the night of the 16th of June. The British might easily have entrapped them, but instcad on the next day the American position was assaulted on the left and carried, though with muck difficulty and after a loss to the assailants of more than 1000 men. Such was the battle of Bunker Hill (q.0.), one of the most dramatic cacounters in the wat which was then begianing. In connesion with all thesc events the Americans, as in their earlier conventions and manifestoes, claimed to be acting on the defensive. But it was not difficult to perceive that, especially in New England, this claim only imperfectly concealed an intensely aggressive spirit. (For military events of the war, see Amesican War oz Independence.)
58. The news of the outbreak of hostilities arouscd strong feeling throughout the colonics. The Second Continental Congress met under its induence. Its members, however, had been chosen and instructed before the clash of arms, and for that reason the course which had been worked out for them difiered only slightly, if at all, from that which had been followed by tbeir predecessors. To a certain extent the new body adhered to the former coursc of action. But a state of war now existed in Nicw England and on the Canadian border. Troops were expected soon to arrive at New York. Reports of these events were thrust upon the altention of Congress at once, and the provinces involved asked for advice as to what course they should pursue. The northem frontier especially demanded attention. As a result of thesc events in the colonies generally the Association was being changed from a system of co-operation against British trade into a union for purposes of defence. This mew situation the Congress was forced to meet. This it did largely by resolutions of advice to the colonics, but also by posilive orders. Of the former class were the resolutions about the procuring of military supplics, the assumption of powers of government by the various colonies, and concerning defence at New York City, on the northem frontier and, hater, in the Highlands of the Hudson. Of a more decisive character was the appointment of officers for the army, George Washington being made commander-in-chief, the prescribing of their pay, the issue of continental bills of credit, the issuc of articles of war, the regutation of trade and of Indian affairs, and the establishment of postal communication. As the colonies were passing through a strong reaction against executive authority, seavel the Congress did its business with the help of comennentemporary committees and did not seek to establish congrese a permanent executive. The same was true for a time of the congresses and conventions in the different colonies. As the movement progressed through 1775 and the early months of 1776 , executive authority in the royal and proprietary provinces collapsed. The assemblies were either dissolved or ceased to meet. The governors, their authoritygone, relired on board British vessels of war, returned to England or, perchance, found themselves prisoners in the hands of the revolutionists. This gradual fall of the old governments, imperial and colonial, was the revolution on its negative side. The rise of the system of congresees, conventions and committees, deriving their authority from the people, was the revolution on its positive side, and foreshadowed the new federal system which was rising on the ruins of the half-federated empire. The process in the different colonics was as varied as were their social and political conditions.
59. In Connecticut and Rbode Island the corporate system of government, which they had inhcrited from the \(17^{\text {th }}\) century, necessilated no change. The general assemblies always had been the cenures of power, and the leading officials were clective for short terms and were sulject to the control of the electoratc. So far as the internal organization of the colonics was concerned that was all which the revolution demanded. In the two
proprictary provinoes-Pennsyivania and-Maryland-the execuLives were not 30 directly interested and pledged to support the imperial goverament as were those of the royal provincea But Governor Robert Eden of Maryland was so tactiul that, though the last Assembly met in 1774, he was able, with the courts, to keep up some form of govermment there in the nawe ol the Crown and proprietor until the early summer of 1776. In Penssylvania the proprietors, though in sympathy with the British govermment, never sought aclively to influence events in their province. So strong was the conservative spirit there that the proprictary Asembly even met-though without a quorum-as late as September 1776 , at the time when the convention was completing the first constitution of the state. In the royal provinces the prorogation of the legialatures for indefinite or prolonged periods caused them early to ditappearthat of Massachusetts in October 1774. The buageaties of Virginis last raet for business in May 1774. They were prorogued to several later dates, but the governor was never again able to meet them. The lone and im- conapreof portant session of January-March 1775 mas the last ever held by the New York Assembly. In April 1775 mover. Governor John Martin of North Carolina met the Assembly for the last time, and even then the Provincial Convention was \(\mathrm{m}^{\mathbf{n}}\) session at the same time and place and the membership of the two bodies was the same. In Miay 1775 disappeared the Aseembly of Georgia; in June thoee of New Hampshire and South Carolina met for the last time. Governor William Franklin was able to meet the Assemhly of New Jersey as late as November, but months before that date the Provincial Convention had practically assumed the control of affairs. The royal courts and executives continued some form of activisy a few months longer and then totally vanished.
60. After Bunker 1Iill the command at Boaton had been transferred from Gage \({ }^{2} \mathrm{~S}\) Sir William Howe. In July Wiash. ington took command of the colonists and gradually estabished some degree of order and discipline among theon. Though the American levies were raw and ever fluctuating in numbers, the British never seriously attempted to break through their lines. Indeed, it was not the plan of the British to make New England the chief seat of war. As early as the 2 nd of August 1775 Lord Dartmouth wrote to General Gage on " the obvious advantages that would attend the taking Posuession of New York and the hazard of the Army's continuing at Boston." On the 5 th of September he wrote to Howe that every day's intelligence exhibited this fact in a clearer light. Rhode Island was considered as a convenient naval station, and steps were soon taken to secure possession of it and its surrounding waters. This indicates what was necessarily the fact, that the British would so plan the war as to secure the maximum of advantage from their fleet. This would give them an casy command of the entirc coast, and enable them to secure a foothold at strategic centres. Hence it was that, though the arrival of a fresh supply of cannon enabled Washington to fortify Dorchester Heights, this simply enabled him to hasten a process for which Howe had long been preparing. The evacuation occurred Eracastore. on the 17 th of March 1776, and the British force of Bartory withdrew temporarily to Halifax. Meantime the Amertern bold expeditions of Arnold and Montgomery against Expedmit Canadz-suggesting the joint cfforts of the French Caontr. wars-had met with only a partial auccess. Montreal had been occupied, but the assault upon Quebec had failed. A small Aracrican force awaited the return of spring in Canada, in order that they might renew the struggle for thet colony.
61. The view, as it was now repeatedly expreseed by king and parliament, was that the colonists were in open rebellion. North's offer of conciliation was peremptorily rejected by Congress. The acts of parliament were being openly resisted, and Congress in its manifestoes had ignored the two houses. Therefore the British government stood comanitted to coercion. That was the meaning of the legislation of the winter of 1776 -the probibition of trade with the rebellious colonics, the increane
of the estimates for the army and navy, the employment of German auxiliaries for service in America. Preparations were made to send a large military and naval force against the colonies the following season, and that it should operate in part against the imsurgents in New York and the southern colonies and in part through Canada. New England was no longer to be the direct object of attack. The Howes, as commanders of the royal army and navy, were appointed commissioners to grant assurance of peace and pardon and the repeal of the obnoxious acts, provided submission was made and some way could be found by parliament in which an imperial revenue for purposes of defence could be secured from the colonies. Military operations, meanwhile, should be directed against points of least resistance, and in that way, if possible, tbe union of the colonies should be broken. The trend of British policy indicated that an invasion from Canada might be attempted and the effort be made to hold Charleston, Philadelphia, and especially New York as strategic points on the coast.
', 62. Thecourse of events in the colonies hy which this situation was met was the erection of a system of feeble defences about New York and the removal thither of the army of about 9000 men in the spring of 1776; the fitting out of privateers to prey on British commerce and of a few small armed vessels hy the colonies and the general government to watch the coast and procure supplies; the disarming of loyalists; the opening of American ports to the trade of all peoples who were not subject to the British Crown; and the tentative opening of relations with France. As the result of a combination of ill luck, bad management and American energy the British suffered a repulse at Charleston, South Carolina, in June, which was analogous to the affair of the year before at Bunker Hill, and which necessitated a postponement of their plass in the South. The Congress and the various revolutionary bodies in the colonics were forced to carry on war upon a constantly increasing scale. They had to assume powers of government and gradually to perfect their organization for the purpose. Committees in Congress became more permanent. Conditions approximating to those which existed the year before in New England extended through the colonics generally. On the 15th of May 1776, as the result of varions earlier applications on the subject, and especially of one from certain Whigs in New York, the Congress recommended to the assemblies and conventions of tbe colonies where no government sufficient to tbe exigencies of their affairs had been established, "to adopt such government as shall, in the opinion of the representatives of tbe people, best conduce to the happiness of their constituents in particular and of America in general." The preamble to this resolution set forth as facts the statements that the colonies had been excluded from the protection of the Crown, that no answer had been given to their petitions for redress, and that the whole force of the kingdom was to be used for their destruction, and therefore that it was no longer reasonable or honest for the colonists to take the oaths or affirmations necessary for the support of government under the Crown. oryeotre- Though the preamble was warmly debated, it was thoa of Siow adopted. And this act marked a turning-point, for Covera. mests: Declurgites of loder perelongen in response to letters from Philadelphia، empowered their delegates to concur in declaring independence. On the 7th of Jupe R. H. Lee of Virginia introduced in Congress a resolution "that these United Colonies are and of right ought to be free and independent states," that it was expedient forthwith to take effectual measures for securing foreign allies, and that 1 plan of confederation should be formed. John Dickinson and others, speaking for the Middle Colonies, argued that the order of procedure should be reversed. But John Adams and the more aggressive party insisted that the proposed declaration would simply state the facts and would open the way for foreign alliances; that it was useless to wait for unanimit \(y\). The debate strowed that the delegates from the Middle Colonies and South Casolina could not act, and so the decision was postponed
for three weeks. In the interval steps were taken to draft a plan' of treaties and articles of confederation. A board of war and ordnance, the earliest germ of an executive department, was also created by Congress. At the end of the three weeks the delegates from all the colonies except Georgia, South Carolina and New York had received instructions favourable to independence. The two former left their delegates free, and under the infuence of the British attack on Charleston they voted for independence. News had just come that Howe had landed with a large force at Sandy Hook-as events proved, it was an admirably equipped army of 30,000 men, supported by a fleet. Under the impression of these stirring events Dickinson and his leading supporters ceased their opposition, and the Declaration, substantially in the form given to it by Thomas Jefferson, was agreed to Uuly 4, 1776), only three adverse votes being cast. The delegates from New York took no part, but a few days later the act was approved by the convention of that state. The signing of the document hy the members took place at a later time. Thus triumphed tbe tendencies toward self-government which had been predominant in the continental colonies from the first, and which the system of imperial control had only superficially modified and restrained. But the most significant part of the document for the future was the preamble, in which the democratic aspirations of the new nation were set forth, the spirit to which Thomas Paine had just made so powerful an appeal in his Common Sense. Governments, it was said, derive their just powers from the consent of the govemed. and when any system becomes destructive of these ends it is the right of the people to abolish it and to institute a new government, establishing it upon such principles and under such forms as seem most likely to effect their safety and happiness. (See Independence, Declaration of.)

\section*{E.-The Struggle to Maintain Independence, 1776-1783.}
63. Viewed from one standpoint, the declaration of independence was apparently an act of the utmost reckJessness. The people were by no means a unit in its support, and in several of the states widespread indifference to it , or active sympathy with the British, prevailed. In New York, South Carolina and Georgia a condition of civil war came sooner or later to exist. The United States, as yet, had no international status, and it wonld seem that that must be secured, if at all, by a series of victories which would ensure independence. But how could these be won against the greatest naval power on the globe. supported by veteran armies of continental and British troops? The colonles had no money; the few vessels which, as a collective body, they did send out, were more like privateers than anything else. Their army was an undisciplined throng of militiamen, serving on short enlistments, without organized commissariat, and for the most part under inexperienced officers. Its numbers, 100, were far inferior to those of the British. Taxation by the Continental Congress for the support of the war fmanc: was not among the possibilities of the case. The Woetomen colonies were struggling against taxation by one imperial body, and it was not likely that they would submit to similar impositions at the hands of another. The Congreas moreover, as has truly been said, was Ooverel little more than a general committee or interstate council of safety, and had to proceed largely by way of advice. A strong tendency also toward the provision for immediate needs by the issuc of bills of credit had been inherited from the period of the French wars, and resort was agtin had to that device. The hattle of Bunker Hill had been immediately followed by an order of Congress for the issue of \(\$ 2,000,000\) in that form of currency. Issues followed in ripidly increasing amounts, mata by the close of \(1779 \$ 241,000,000\) had been authorized. The states put out nearly as much \((\$ 200,000,000)\), Virginia and the two Carolinas issuing the largest amounts. All that Congress could do to secure the redemption of its issues was to recommend to the states to provide the means therefor; bnt this they failed to do, or even to provide for the redemption of their awn ismes. The continental paper money depreciated until it became
worthiess; as to a large extent did that of the states also. The states decreed it to be legal tender, and dire threats were uttered against thase who refused to receive the bills; but all to no purpose. The Congress also tried to induce the states to tax themselves for the general cause and was forced to rely on requisitions for the purpose. The colonies had insisted that the systern of requisitions mas good enougb for the mother country, but when applied by Congress it proved as complete a failure as when resorted to by the Crown. The revolution was therefore never financed. It early became necessary to resort to boans and that chiefly from foreign sources. It was therefore an absolute necessity that the colonies ahould secure international recognition and status. Then loans were obtained from the governments of France and Spain and from private bankers in Holland to the amount of about \(\$ 7.830,000\).
64. The collapse of royal govemment left the colonies in a chaotic state. The old institutions had disappeared and new ones could not be immediately developed to take their place. But the institutions of local government, the town and county systems, were left intact, and upon these as a basis the new fabrics were erected. It was therefore easier ta construct the governments of the states than to define and develop the general government. At first little else was intended than that the Congress' should be the mouthpiece of the patriol party. It proceeded mainly by way of recommendation, and looked to the states, rather than to itself, as the uleinate sources of authority. Cpon them it depended for the execution of its measures. The common will, as well as enact ment, was lacking which would have given the force of positive law to the measures of Congress. As the war proceeded the states grew jealous of the central body and tried to prevent appeals to it from the state courts in prize cases Under the pressure of war, moreover, the enthusias \(m\), which had been strong at the outset, declined, and it became increasingly difficult to secure co-operation or sacrifice toward any general enterprise. At the same time, war devolved upon Congress an enormous burden of work. It was forced to devise general policies and provide for their execution, and also to attend to an infunite number of administrative detaiks. This was due not only to the exigencies of the time, but to the fact that Do general executive was developed. As was characteristic not only of this revolution, but of all others, the committee system underwent an enormous development. "The whole congress," wrote John Adams, " is taken up, almost, in different committees, from seven to ten in the marning. From ten to four or sometimes five we are in congress, and from six to ten in committees again." "Out of a number of members," writes another, "that varied from ten dozen to five score, there were appointed committees for 2 hundred varying purposes." Upon its president and secrutary the Congress was forced to depend not a little for the diligence and ability which was requisite to keep the machine going. But as the war progressed most of the alle members were drawn off into the army, into diplomatic servio or into official service in the states. Sectional and state jealousies also developed and became intense. By many the Niew Englanders were regarded with aversion, and members from that section looked with dislike upon the aristocrats from the South. As the Congress voted by states the smaller commonwealths were often moved by jealousy of their larger rivals to thwart important measures. But, above all, the conduct of the war and foreign relations occasioned infinite jealousies and cabals, while many of the most important measures seemed to meet with downright indifference. Washington's correspondence abounds in evideace of these facts, while it is well known that be was the object against whom one of the cabals of the time was directed. Benjamin Franklin was the object of somewhat similar jealousies. But, as time passed, rudimentary executive departments, beginning with tbe board of war and the postmaster-general, were developed, and some advance was made Loward a working and permanent system. In 1781 the offices of foreign secretary, superintendent of finance, secretary of war and secretary of marine were created.
65. For a time, and indeed during most of the struggle, the course of the land was seemed to justify these criticisms and gloomy fears. Until its very closo the campaign of 1776, from the American standpoint, was a dismal tailure. The batile of Long Isfand was lost by the Americans and, as at Bunker Hill, it would have been quike poesible for the British to have captured the entire force which opposed them on Long Island. Howe compelled Washington to evacuate New York City. On the 16tb of November the practical absandenment of the
state of New York by the main army was necescitated Fore by tbe capture of Fort Washington. Eartier in the year the Americans had been compelled to retire from Canada, while the Tories in northern New Yock were contributing valuable aid to the British.
66. But there was another side to the picture, and already certain faint outlines of it might be discerned. The British commander was proceeding slowly, even according to established European reethods. At almost every step he was failing to scize the advantages that were within his reach, while Washington was leatning to play a losing game with consummate patience and tact. Although be was constantly trying to rouse Congress and the states to mene vigonous action, he ahowed no disposition to break with the civil power. Already, too, the physical obstacles arising trom the wooded and broken character of the country, and from the extremely poor means of communication, were becoming apperent to the British; while the Americans elways had the alternative, if too hard pressed, of withdrawing beyond the mountains. After Washington had crossed the Delaware, Howe, instead of seising Philadelphia and driving Congress and the American army to some remole places of refuge, as be might have done, prepared for winter quarters. Washingion seized the opportunity to return across the Delaware and surprise the British outposis al Trenton (Dec. 26, 1776) and Princeton (Jan. 3, 1777), and thus secured a safe post of observation for the winter at Morristown. Confidence was to an extent restored, the larger part of New Jersey was regained, and many loyalists were compelled to take the oath of allegiance. Howe's plan for the next campaign involved the strengthening of his army by large reinforcements from home and by all the men who could be spared from Canada. With this force he proposed to capture Philadelphia and therehy to bring the War of Independence to an end in Pennsylvania, New Jersey and New York. New England and the states farther south could then be dealt with in detail. But Fowe was overruled by Lord George Germain, the colonial secretary, whose plan included an invasion from Canada, in which Tories and Indians should share, while Howe should advance up the Hudson and meet the northern forces at Albany. If this ambitiuus scheme should succeed, the British would occupy the valley of the Hudson and New England would be cut off from the rest of the colonies. General Burgoyne was appointed to command the northern expedition. But the failure of the plan was almost ensured from the outset by neglect on the part of British officials to instruct General Howe as to his part in its execution, while Burgoyne was forced to surrender near Saratoga on the 17th of October. Meanwhile, Howe, who had long waited for instructions respecting the northern expedition, was finally informed that he might undertake the Penssylvania campaign, but with the hope that at its close he would still be able to march up the Hudson. Thereupon, embarking his army, Ifowe sailed for Chesapeake Bay, at the head of which he landed and advanced towards Philadelphia. Washington's army opposed his march at the Brandywjne (Chad's Ford), but was defcated (Sept. 11, 1777) and forced to retire beyond I'hiladelphia. The British then entered the city (Sept. 26) and the Congress withdrew to Lancaster, and later to York. in the interion of Pennsylvania. The British fleet had in the meantime arrived in Delaware Bay, and, afier a prolonged and brave defence, had captured Forts Mercer and Mifflin. When the winter began the Delaware, as well as lower New York and Rhode Island, was in the possession of the British. With the fragments of an army Washington retired to Valley Forge (q.e.).
67. But the influence of Burgoyne's surrender in Europe was to prove a turning point in the war. Since 1763 a strong sentiment at the French court had been favourable to a resumption of war with Great Britain. An opportunity was now presented by the colonial revolt. In November 1775 the Congress created a committee of secret correspondence, which, in April 1777, was developed into a committee of foreign affairs, and this concinued until 178 I , when the office of foreign secretary was established. To Congress, and to the members who were serving on its secret committee, the possible attitude of France was known from an early date. The necessity of securing supplies and loans from Europe was also imperative, though the United States had nothing to pledge in repayment except the future products of her soil. In February 1776 Silas Deane (g.v.) was sent to Paris, ostensibly as a business agent, and with tbe connivance of the French government supplies were sent to Amorica and American vessels were received into French ports. Soon American privateers were bringing their prizes into French harbours, and British commerce began to suffer from these attacks. On the French side Beaumarchais and others actively co-operated in this. In the autumn of 1776 Congress appointed three commissioners to France, and resolved that Spain, Prussia, Austria and other European states should be approached with a view to securing recognition and aid. In December 1776 Franklin, who, with Deane and Arthur Lee, had been appointed commissioner to France, arrived at Paris; bringing with him proposals for treaties of commerce and alliance. But, though the attitude of the French court toward the Americans was friendly, and though it continued to send secret aid, and to exert a favourable influence upon Spain, yet it could not be Freact- induced to abandon its outward appearance of Assoricent neutrality until after the news of Burgoyne's Allusace: surrender arrived. Then the real purpose of the French government was revealed. On the 6th of February i 778 the treaties were signed, and in the following summer war between France and England began. The influence of France under the Family Compact was also persistently used to bring Spain into the alliance. The latter was naturally hostile to England, but her aversion to colonial revolts and her desire to substitute mediation for war kept her from declaring against England until April 1779. In October 1779 Henry Laurens (\(q . v\).) was elected minister to the Netherlands, and sailed for Europe, taking with him a plan of a commercial treaty. But Laurens and his papers were captured by the British at sea, and partly by that event the Netherlands were forced into war with England. With the other states of northern Europe they undertook to defend the interests of neutrals against the arrogant enforcement by Great Britain of the rights of search at sea. Thus the conflict expanded into a commercial and naval war, Great Britain being confronted by the larger part of Europe.
68. The conclusion of the treaty of alliance by France was immediately followed by the equipment of a fleet under the comte d'Estaing, which sailed from Toulon in April 1778, having on board M Conrad Alexandre Gerard de Rayneval, who had been aceredited as minister to the United States, and Silas Deane. who was ret urning to report to Congress. Sir Henry Clinton had now succeeded Howe in command of the British army. The certainty that a French fleet would soon appear in American waters made it necessary for the British to evacuate Philadelphia and return to a point on the coast where the army could be in easy communication with the flect. This fact shows how the French alliance had changed the nature of the war. It now became to a large extent a contest between the two navies, the principal evolutions of which occurred in West Indian and European scas. (Sce Anerjcan War of Indfpfndence.) In the nortb the British now relatively neglected the land war, and refrained from sending such forces to the eastern coast as had sopported Howe in 17:6. The Americans. on the other hand, had a paval force upon which they relied, in the hope that thestadety their coasts might be raised and trade routes

Washington's army pursufd the British as they retired toward New York, and the indecisive battie of Monmouth was fought on the 28th of June. It did not prevent Clinton from reaching New York, and that city continued to be the centre of British power and operations in the north until the close of the war. The Congress returned to Philadelphia, where Gérard was received, and where he was soon exercising an influence favourable to the policies of Washington and opposed to the clique of which General Horatio Gates was the leader. Washington's army came gradually to occupy a line of forts, of which West Point in the Highlands of the Hudson was the citadel. From there as a centre it was possible to communicate with Newport on the east and with the Delaware region on the south, and at the same time to prevent the British from gaining access to the interior of the country. Though the fieet of D'Estaing carried a heavier equipment of cannon than did that of Admiral Howe, the French commander did not choose to risk an attack on New York, but passed eastward to Newport. Howe followed bim, while Washington and his generals planned active cooperation witb the new allies by land. But a sudden storm so dispersed and injured the fleets that the French admiral retired to Boston for repairs and later sailed for the West Indies.
69. While the war and foreign relations were thes developlag, the states were organizing their governments and Congreas was beginning to consider articles of confederation bet ween the states. In this way in effort was made
sitiocer to gather up and make permanent the positive results of the revolution. As.under the chartered and royal governments of the colonial period the source of political authority had been the Crown, now by a necessary reaction this was sought in the people. This principle had been stated in the Declaration of Independence, and bad been implied throughout the earlier cont roversy and in much of the history of the colonies as well. The colonies had insisted on a more precise definition of the powers of government; they had opposed parliament because its powers were undefined and therefore dangerous. Following these ideas, the states now described their institutions of government and defined their powers by means of written constitutions. These were formulated by the provinctal congresses-which had now become the legislatures-or, as they came to insist upon a more specific expression of the popular will, by conventions chosen for the purpose by the electors. Connecticut and Rhode Island retained their colonial charters. In the earlier days of hasty and temporary devices, the constitutlons, like statutes, had been promulgated by the legislatures which formed them and had been put into force by their authority tane. But as time passed and more permanent arrangements became necessary an express popular approval of the instruments was insisted upon and was obtained before they were put into force. The establishment of state governments in this way began before the issue of the Declaration of Independence. It was actively continued during 1776 and the early months of the following year, by which time all of the states had secured at least a temporary constitution. South Carolina and New Hampshire revised theirs before the close of the war. Massachusets did not secure a constitution thich suited her until 1780 , but then her procedure corresponded in all particulars with what was to be later American practice in such matters. Of the constitutions of the revolutionary period the two most striking features were the bills of rights and the provisions which were made concerning the executives and their relations to the legislatures. The men of that generation were jealous of government. They insisted upon individual rights, not as acquired and guaranteed by the state, but as original, natural and inhering in time prior to all governments. Governments were instituted for the common benefit, protection and security. Officials were trustecs and were accountable to the people. There should be no hereditary titic to office or power. There should be no titles of nobility, and in Virginia the system of entails was swept away. Monopolies were declared to be inconsistent with the spirit of a free state. The doctrine that it was unlawful to resist
arhitrary power was deciared to be absurd. Freedom of the press and of conscience was asserted, and no obstacles to fair and speedy jury trials were to be tolerated. Elections should be free and frequent, and a preference was expressed for abort terms of office. The legislature was universally regarded as the most important department of government. Although the principle of tbe separation of powers was recognized, in eight states provision was made that the executives should be elected hy the legislatures, eleven withheld from them the veto, and the states generally provided for a council to advise them. So manifold and iroportant, however, were the restrictions on suffrage that the states were as yet far from being democracies. On the other hand, many wild and impractical ideas were cherished, and there were anarchic tendencies, which were revealed soon afler the war and still later, under the influence of the French Revolution.
- 70 . The first draft of the Articles of Confederation between the states was prepared hy John Dickinson in the early summer Theartion of 1776 and was reported. The- report was debated of Goe- for some weeks after the issue of the Declaration of fedorelione. Independence. Owing to the pressure of war it was then laid aside until the autumn of 1777. By that time the feeling in favour of state sovereignty had so increased that the impossibility of securing assent to the articies in any form had begun to be feared. But the document was completed and submitted to the states in November 1777, when all were encouraged by the news of Burgoyne's surrender. The system for which provision was made in this document was a "confederacy," or "firm league of friendship" bet ween the states, for their common defence, security and general welfare. The Congress was to be continued, and was to consist of delegates annually appointed hy the legialature of each state and paid by their states. No attempt was made to create en executive for the confederacy, though authority was given to Congress to appoint a council of state which should manage general affairs, expecially during recesses of Congress. To Congress various general powers were entrusted, as deciding on peace and war and superintending the conduct of the same, building a navy, controlling diplomatic relations, coining money and emitting hills of credit, establishing post offices, reguiating Indian trade, adjusting boundary disputes between the states. The financial powers entrusted to Congreas included those of borrowing money and determining necessary expenditures; hut not the power to tax. For supplies the general government had to depend on requisitions from the states. The same aystem ako had to suffice for the raising and equipment of troops. Congress could not make its laws or orders effective in any matter of importance. This was simply a continuation of the policy ander which the revolution was being conducted. The Americans had thought that the military and financial concerns of the British Empire could be managed under a system of requisitions, and now they were bent upon trying it in their own imperial relations. The control of trade was also practically left with the states, the Americans in this matter failing to tive up to the requirements of the Brikish system. The predominance of the atates was further ensured by the provision that no votes, except those for daily adjournroent, could be carried without the assent of a majority of all the states, and noimportant measure without the consent of nine states. But a common citizenship was declared to exist, and Congress received authority to establish a court of appeal which might pass finally on all disputes between states. Taken as 2 whole, the Articles of Confederation would bear favourahle comparison with other schemes of their kind, and they fairly represented the atage of development to which the American states had then attained. The defects which existed in them were reflections of the immaturity, political and social. which had always been apparent in the Americans as colonists and which was to characterive them as a nation for generations to come.
71. We have seen that, on the whole, the attitude of Great Britain, after the peace of 1763 . was not favourable to the colonization of the Mississippi Valley. To the colonists the

Quebec Act gained in offensiveness by seeming to imply that it was intended to exclude them from the West. But all such plans wore swept away by the outhreak of the War of Independence. Already, before the beginning of hostilities, emigrants had begun to flock across the The West mountains. Plens were on foot for the establishment of 2. number of commonwealths, or proprietary provinces, as the case might be. Vandalia was planned in western Virginia, Watauga in western North Carolina. Daniel Boone and his associates pushed farther west into the. Kentucky region, and there it was proposed to establish the commonwealth of Transylvania. Other similar projects wete started, all repeating in one form or another the pohitical methods which were used when the seaboard colonies were first settled. The backwoodsmen who managed these enterprises were extreme individualists, believed in the propriet \(y\) of resistance to govemments, and were in full sympathy with the War of Independence. They desired to escape to the free land and life of the West and be rid of the quitrents and other badges of depeadence which still lingered in the East. The states which had claims in the West opposed the founding of independeat settements there and, if possihle, induced the settlers to be content with the status of counties within some one of the eastern states. After the beginning of the War of Independence, the British from Detroit incited Indian raids for the purpose of destroying or driving out the settlers, especially in Kentucky. These provoked the expeditions of George Rogers Clark (q.v.), in 1778 and 1779. With a force of Virginians he seized Kankaskia and later, after a long march, captured Vincenaes and compelled General Henry Hamillon, who had come with a relief force from Detroit, to surrender. This secured to the Amcricans a permanent hold upon the North-West. But Spain, after she entered upon the war, was determined, if possible, to wrest the valley of the Mississippi from the British and to keep all, or the larger part of it, for herself. To that end, operating from New Orleans, her troops took ponsession of Natchez, and other posts on the lower Mississippi, and occupied Mobile and Pensacola. These ovents prevented the possibility of the expulsion of the Americans from the West, but devolved upon their representatives at Paris the necessity of engaging in a diplomatic contest against Spain for the purpose of securing the Mississippi as the western boundary of the United States. But meanwhile the occupation of the West by Americans had a notable influence upon the ratification of the Articies of Confedetation.
72. Within the Confederacy a fundamental lline of cleavage was that between the large and small states. It was jealousy on the part of the latter, their fear lest they might Arckiej of be absorbed by their larger neighbours, which had confedert. necessitated the adoption of the plan that in the aloe Remb Congress the delegates should vote hy states. When sied
the article were referred to the states for ratification, the difficulty reappeared. Massachusetts, Connecticut and Now York, with Virginia and the three states to the south of it ; had large claims to territory between the Appalachians and the Mississippi. New Hampshire, Rhode Island, New Jersey, Delaware and Maryland, which were without hope of westward extension, hesitated to enter the Confederacy, if the Jarge states were to be still further increased hy additions to thelr areas of vast stretches of western country. They insisted that before ratification the states which had claims to western lands should surrender these for the common benefit of the United States. Maryland insisted upon this until, in the end, the cause of state equality and of nationality triumphed. Congress declared that the ceded lands should be formed into states, Which should become members of the union with the same rights as other states. When, in 1781, this course of action had become possible, Maryland ratified the articles and they came into effect. The possibility of the expansion of the United States through the development of territorics was thus ensured.
73. So far as the North American continent was concerned, the character of the last stage of the strugele with Great Iritali
was determined by the fact that the British resolved to tramser the main seat of war to the Southern states, in the hope that Georgia and South Carolina might be detached from the Union. At the close of 1778 Savannah was captured. In September 1779 D'Estaing returned and assaulted The Warla Savannah, but, failing to capture it, sailed for France. In 1780 Clinton sailed from New York, besieged Charleston with a force much superior to that of Lincoln, and captured it (May 12). State government in South Carolina ceased. But the chance of detaching those states from the Union and of bringing the war in that region to an end was finally lost hy the British. This was chiefly due to an order which recalled the paroles of many of those who had surrendered at Charleston and required that they should perform military service under the British. The attempt to enforce this order, with the barbarities of Colonel Banastre Tarleton and certain Tory bands, provoked a bloody partisan conflict in the upper districts, especially of South Carolina, which contributed more than any other cause to turn the scale against the Britigh in the remote South. By the winter of 1781 they were forced back to Charleston and Savaonah. (See American War or Indepzndence.)
74. During the summer of 1780 Washington was prevented from accomplishing anything in the Nortis by the demoralized condition of the finances and by the decline of public spirit. It was very difficult to secure recruits or supplies. The pay of the troops had fallen so into arrears that some of them had already begun mutiny. A second French squadron and military force, under De Ternay and Rochambeau, landed at Newport, but they were at once shut up there by the British. Clinton and Cornwalis were now planning that the latter, having put down resistance in the remote South, should march through North Carolina and Virginia to Baltimore and Philadelphia and that a junction of the two British forces should be effected which, it was believed, would complete the ruin of the American cause. This, too, was the period of Armold's treason and the death of Andre. But the turn of the tide in favour of the Americans began with the partisan warfare in South Carolina, which delayed the northward march of Cornwallis, who retired to Yortlowe. Wilmington and thence marched north with a small force into Virginia, and in July retired to Yorktown, in the peninsula of Virginia. Washington and Rocbarmbeau had meantime been planning a joint move against the British at New York, or possibly in Virginia, and a letter was sent to De Grasse, the French admiral in the West Indies, suggesting his co-operation. De Grasse replied that he would sail for the Chesapeake. This confirmed Washington and Rochambeau in the opinion that they should march at once for Vinginia and, after junction with the force of Lafayette; co-operate with De Grasse against Cornwallis. By well-timed movements the forces were brought logether before Yorktown (\(q .\), .), and Cornwallis was forced to surrender on the 19th of Ootober 1781.
75. As the effect of this event was to drive Lord North from power in England, it proved to be the last important operation monty of of the war in America. The king was compelled Thenty of to give way. Rockingham was called into office at the head of a cabinet which considered the recognition of American independence to be indispensable. Ihe negotiations fell into the hands of Shelhurne, the friend of Franklin and disciple of Adam Smith. Richard Oswald was the leading British agent, while Franklin, Jay, John Adams and Henry Laurens were the American negotiators. From the first the acknowledgment of independence, the settlement of the boundaries and the freedom of fishing were insisted on as necessary Lerms by the Americans. Free commercial intercourse and the cession of Capade to the United States, partly in payment of war claims and partly to create a fund for the compensation of loyalists, were also put forward as advisable conditions of peace. The first three points were early conceded by the British. They also agreed to restrict Canada to its ancient limits. But discussions later arose over the right to dry fish on the British coasts, over the peyment of dehts due to British subjects prior to the war,
and over the compensation of the loyalists. Adams vigorously insisted upon the right to dry and cure fish on British coasts, and finally this concession was recured. Frarklin was opposed to the demands of the loyalists, and they had to be content with a futile recommendation by Congress to the states that their claims should be adjusted. It was also agreed that creditors on either side should meet with no lawful impediment to the collection of their dehts. Both France and Spain considered the claims of the Americans to be excessive, and were not inclined to yield to them. But the Americans negotiated directly with the British and the articles were signed without consultation with the French government. This course was offensive to Vergennes, but it was insisted upon as necessary, especially by Jay and Adams. while the diplomatic skill of Franklin prevented a breach with France. Peace was formally ratified on the zrd of September 1783.
76. The Ametican army was now disbended. Since the close of active military operations both officers and men had boen striving to sccure their pay; which was hopelessly in arrears. Congress had voted haif-pay to the officers for llfe, and many had agreed to accept a commutation of this in the form of full pay for a certain number of years. Certificates for these amounts were issued. But in this, as in other cases, it was found impossible to procure the money for the purpose from tbe states. Parts of the army repettedly mutinied, and it was only tbe infuence of Washington which prevented a general outbreak against Congress and the civil government. When the disbandment was finally effected the officers found their certificates depreciated in value and the states indisposed to honour them. They consequently received only a small part of their due, and the privates scarcely anything. This deplorable result was due in part to poverty, but quite as much to bad faith. The country was teft in a most demoralized condition, the result of the long war and the general collapse of public and private credit which had accompanied it. It should not be forgotten that the conilict had caken to a considerable extent the form of a civil war. In many of the states Loyalists and Whigs had been arrayed against one another, and had been more or less fully incorporated with the two contending armies. In general the Loyalists showed less capacity for combined action than did their opponents, and in the end they were everywhere defcated. The real tragedy of the conflict will be found, not in the defeat of the British, but in the ruin of the Loyalists. It was accompanied by wholesale confiscations of property in many quarters, and by the permanent exile of tens of thousands of the leading citizens of the republic. These were the dmigrds of the War of American Independence, and their removal deeply affected property relations and the tone and structure of society in general. Many of those who had been social and political leaders were thus removed, or, if they remained, their influence was destroyed (see Lovalists). New men and new families rose in their places, but of a different and in some ways of an inferior type. By this process sympathizers with the War of Independence gained and kept the ascendancy. British and monarchical influences were weakened. and in the end the permanence of republican institutions was ensured. But, as had been foreseen, society in this period of transition exhibited so many repulsive features as almost to cause the stoutest hearts to despair.

Bieliography.-Sources: The records in which are comained the materiala for the internal history of any one of the British colonics are the land papers, the minutes of the executive council, the journals of the upper and lower houses of the legislature. the laws and the correspondence and miscellaneous papers which originated from the intercourse between the colonial authoritiesespocially the fovernor-and the home government or ot her colonics and states. Every one of the original staios has published these records in part, in series which are known under the general names of cotonial records or archives or documents, or provincial papers The first eeven volumea of the Provincial Papers of Naw Hampshive (Concord) contain general records, while other volumes are filled with local and miscellaneous records. Maseachusetts bas putlished Records of the Colony of New Plymouth (12 vols., Boston. 1885-1887), the Records of the Governor and Company of Massa.

colonial period. Comacticut has peimted The Colmial Records of Connectical (15 vola, Hertford. \(1850-1890\)), and the Records of ale Colowy of New Haven, 1038-1665 (2 vols. Hartiord, 1857-1858). The Records of the Colony of Rhode Isand 611 to vols. (Providence, 1856-186s). New York has pablistred the Lases and Ondinamoces of N© Neftorlamd (t vol.), the Coleniad Lows of Nos York from 1664 to the Revolution (5 vols., Albany, 1894). The Jowrnal of the Lequslative Coancil, 16g1-1775 (2 vols., 1861), the Jownal of ine \(V\) ates and Procuadings of ithe General Assombty, \(169 \mathrm{r}-77\) gs (a vola. \(17^{64-1766), ~ t h e ~ D o c u m e n t s ~ r a l a t i n g ~ i o ~ t h e ~ C o l o m i a l ~ B i s t e r y ~ o f ~}\) New York (15 vols, 1853 -1883). Yixater of the Albany Cominissignars for Dotecting Comspizaciat (3 vols, 1009-1910) and the Documentary
Histery of the Slate of New York (4 vols.; \(1849-1855\)). New Jerney has Hisfers of the Slate of New York (4 vols, 1849 - 185). New Jerney has 5 pier, and 28 vols. of The Archives of the Slate of New Jorery (Newark, 1880 344.). Peansytvasia has published 16 vols. of Colomiol Records, 1081-1790 (Phidadelphia, 1852) and four geries of Pennuytoamia Archives (1852-3856, 1874-1893. 1894-1895, \&cc.), the latter containiag miscelaneous recorde relating to the colonice and the War of Independence. Under the titie of Slatutes at Lergs (if vols.) its faws to the close of the War of Independence have boen published. The Archives of Maryiand (27 vols., Baltimore) comtain the proceedinges of the couscil. the assembly and the provincial court, with the laws, for a part of the colonial period. The Retords of the Virginia Cempersy af Lowdon (2 vala., Washington, 1906) have been printed; abo Hemaiag's Stahutes at Large (13 vols., 1819-1823), and the Journad of the Howse of Burgesses for the later provincial period. Under the tities of Colonial Records (1886-) and State Records, Noith Carolina has published the sourees of her early history very fully. excepe the land papere and laws. Thomas Cooper's Sectutas of Somet Cardine (4 vols., to 1782) contain practically all of its sources which that state has published. Georgia has published 12 vols. of Colomial Records. containing minutes of the trustees and of the governor and council. The Calendar of State Pepers, Colonial Serves, 1574-1660 (London, 1860), and for 1661-1700 (13 rols, London, 1880-1910), the Act of the Prity Commit Colonial, 1013-1720 (2 vols. London. 1905-1910), and the Calemdars of Trodsury Papers (for the 18th oentury) cover relations between the British povernment and the colonies. Additional matter may also be found in many of the reports of the British Histrical MSS. Commission. Hazard' Histarical Collections (2 vols., Philadelphia, 1792-1794) (en all valuable. B. Perley Poore's Federal and Slate Cowslioutions (8 vols., Washington, 1877) contains the texts of the colonial charters and etate constitutions; and a similar collection was edited by F. N. Thorpe (7 vols., ibid., 1909). The records of many New England towns have been printed, as alwo thone of New York City, Philwdelphia and Albany. The Origina! Narratioes of Eady Americam History (\(1906-1910\)), edited by J. F. Jamewon, contain reprints of much source material.

Cobbett's Parliamentary History, Almon's Remembrancer (17 vols. London, 1775-17\%4). and the writings of the Britioh etatesmen of the period, contain mach material which is indiopensable to tho bistory of the War of Independence on its British side. Of official matters relating to the period of the War of Independence. special reference should be made to the Public Journals of the Continental Congress (13 vols.), and the Secrat Jownals (4 vols.). A new and improved edition (rgos eqq.) has been edited by W. C. Ford and G. Hunt. Iadispenable to the student is Peter Force's Americaf irchires (9 vols., Washington, 1837-1853). covering the ycars 1774 to 1776 inclusive. Francis Whartons Recolutionary Liplomatic Correspomionce of the Uniled Salles (6 vois., Washington, 1889), and the earlier and bess cossplete edition of the sarme by Jared Sparks (12 volo. Boston, 1829-1830), are also of great value. Alden Bradford's Massachusetts Skate Papers is valuable for that province. The jourrals of committees of safety, provincial congresses, conventions and early tate legislatures are almo for the most part in print. The cotonial and revolutionary news papers comtaja material of great variety. Semi-official also are the writinge of the statesmen of the War of Independence-Iohn and Samuel Adams, Jefferson, Dickinson. Franklin. Washington. Jay, all of which exist in very satisfactory edtimos. Henri Doniol's Histoire de ta participation de fa Framce à J'tlabisisment des Elats-Unis \$Ametrigme (5 vole. Paris, 1886-1900) is a diplomatic history of the War of Independence and the peace, dealing chiefly with France.
The states an have historical societies, and there are many private and local societies in addition. Of these the most prominent are the societies of Masmachusetta, New York, Pennylvania, Marylaod and Virginia. In addition, mention should be made of the Prince Society of Boston, the Amcrican Antiquarian Society of Worcester. Mass., the Essex Institute of Saicm, Mass, the Narraganselt Club of Providence, R.I., and the Colonial Sociery of Massachusetts. The American Historical Amociation (Washington, D.C.) publishes valuable monographs: the wecond volume of the Report of the Association for 1905 is a detailed Bibliography of A merican Historical Socielies (Washington. 1907)
Standard Historics: Of these the histories of the states first dermand attention. Jeremy Belknap's Mistery of Nes Hampshire (3 vols., \({ }^{1} 7^{84}-3792\); entarged, 3 vols. Boston, 1813): Thomas Hutchinson's Ristory of the Procince of Massachusetts Bay (3 vols., Botchinsons, 1767, and vol. iii., Londoa, 1828); Samuel Greene Arnold':
 1650-1790 (2 vole., New Yort, 1859-1860); Benjamin Trumbull's Complete History of Connecticul, Cwil and Eeclesiastical, to 1764 (New Haven, 1818; revised, 2 vols. New London, 1898); [ohn Romeyn Brodicad's History of the Slate of Now Yorit (2 vols., New York, 18S3-1871); William Smith's History of the Late Province of New York, from its Discowery to 1762 (2 vols., New York, 18291830): Samuel Smith's History of the Colony of None Casaria, or New Jersey, Lo \(17 \mathrm{I}_{1}\) (Burington, N.J., \(1765 ;\) 2nd ed. . Trenton,
 the yeer 1742 (2 vols., Philadelphin, 1797-1798); John Leede Borman'u Histery of Marylend, 1833-5600 (2 vola., Baltimore, 1837); John V. L. McMahon's A Historical Vion of the Gewornment of Nary. Lasd from its Colonisatios to the Prosent Day (Baltimore, 1833); William Stith's Fistory of the First Diveovery and Sellement of Viefimia (Williamsburg, 1747): John Daly Burk'e History of Vipgintu (3 vola, Petersburg. 1804-1805); Francois Xavier Martin's History of North Carolima (2 vole., New Onlens. 1829); William James Rivers's Shetch of the History of South Capolina to the Close of the Proprietory Gonernment by the Revotution of 1719 (Charleaton. 1856): Edward McCrady's South Carotiona (4 rols., New York. 1897-1902)- Colcock Jones's (jun.) History of Georgia (2 vols., Boston, 1883) are especially noteworthy. Willian Bradiord's Fistory of Plimoulk. Plantatiom (latest edition, Boston, 1898), and John Winthrop's Histery of New Engtand, r6jo-1649 (2 vols, Bonton, 1825-1826), are ensentially original sources as are the Writinfy of Coplein Johy Smith (Arber'a ed,) for early Virginia. So are Alexander Brown's Genesis of the United States (2 vols. Boston, 1800), and the Firs! Repmbic in America (Boston, 1808). Phifip Alexander Bruce's Ecomanic History of Virginia in the Squenternth Contmry (2 vols. New York, 1896) and W. B. Weeden'a Economic and Social History of Nowe England (2 vols., Bostog, 1800) are of great value. Edmund B. OCallaghan's History of New Netherland (2 vols., New York. \({ }^{184} \mathrm{~B}^{2}-1848\)), John Gorham Palfrey's History of New Enpland (5 vole. Boston, 1858-1890) and I. B. Richman's Rhode Island, is Mating and its Yromeage (New York, 1902). are valuable for colonial New York, New England and Rhode Coland respectively. Gcorge Bancroft's Histury of the United States (6 vols., 1884-1885) still has a great reputation, though it is altoget her inadequate for the colonial period. Richrid Hildreeth's History of the Uniled Steses (6 vols., New York, 1849-185a) is dry but aceurate. John Andrew Doyle's English in A merica (s vols, New York, 1882-1907) is valuable for the \({ }^{17}\) th century. Herbert L. Osgood' A Aerican Colonies in the Seventeenth Century (3 vols., New York, 1904-1907) discussea the insticutional hitrory of the period. John Fiake has popularized the bistory of the times in a number of excellent works, some of them of decided orizinality. Francia Parkman's Francf amd England in Narth A merica (12 vols., latest ed., Boston, 1898) is a classic on the history of Canada and its relations with the British colonics. William Kingslond:s Fistery of Caneda (10 vola, Toronto, 1887-1898), and Franpois Xavier Garaenu's Histaire dx Cemeda (4 vola., Quebec, 1845-1852), may be cited as holding ploces of special autbority. Justin Winsor's Christopher Columbus (Boston, 1991), Cartier to Frontenac (ibid., 1894), and later volumes, are especially valuable for the history of exploration, discovery and cartography. The Americen Notion (22 vols., New York, 1903-1907). a co-operative history, edited by A. B. Hart, outlines the poltical history of the country as a whole. Edward Channing's Fistory of the United States (8 vols., New York, 1905 sq9.), and Elroy McKendree Avery's History of the Uwitad States end Its Prople (Is vols. Cleveland, Ohio, 1905 s9g.) devote much space to the colonies and War of Independence. Sir George Otto Trevelyan's American Revolusion (3 vols., London, \(1899-\) 1904) is a brilliant literary performance. of special value is Lecky's study of the same subject in hls History of England in the Eighteenth Century (8 vola., London, 1878-3890). George Louis Beer's Origins of ihe British Coloxial Syskem (New Yort, 1908) and his Britisi Colomial Palicy, 1754-1765 (New York, 1907). Justia Harvey Smith's Our Strugele for the Fourteenth Colony (a vols., New York, 1907) and S. C. Fisher's Struggle far American Inde. pendence (2 vols., Philadelphia, 1908) are valuable monographs. For biography mee the "American Statesnen Serics" (i6 vals.. Boston) and Samuel V. Wells's Life and Public Services of Sammed Adams (3 vola.. Boston, 1865): James Kendall Hosmer's Life of Thomas Autchinson (Boston, 1806); William Garrott Brown's Life of Oliver Ellruorth (New York, 1905): B. J. Lossing's Life and Times of Pkilip Schuyter (a vols., New York, \(1860-18{ }^{2} 3\)) and Bayard Tuckerman's Philip Schuyler, Major-General tw Americam Rowalion (New York, 1903); Geonge Washington Greene's Life of Nalkemael Greene (3 vols., Boston, 1867-1871) and William Johnson's Skekhes of the Life and Correspondence of Nolhanael Greeme (Charleston, 1822): Wiliiam Thompson Reed's Life and Correspondence of Georse Reed (Philadeiphia. 1870): Charles Janeway Stille's Life and Times of John Dickinson (Philadclphia, 1891): William Wirt. Henry's Patrick Henry (3 vols.. Niew York. 1891): John Marshall's Life of Gcorge ITashington (s vols.. Philadelphia, 1804-1807) : C. Tower's The Marquis de La Fayelle in the American Repolution (2 vols., ibid,, 1895); F. Kapp's Life of Frederiek William non Sicubem (New Yark, 1859), and his Life of John Kalb (New York, 1884). Moses Coit Tyers Literary Bistory of the American Repolwion (2 vola. New Yort.
1897) is of urique interest, Lorenzo Sabine's Biographical Skelcher of Loyalists of the American Repolntion (2 vols., Boston, 1864), and Claude Halsteed Van Tyne's The Loyalists in the Americas Recolutian (New York, 1902): Herbert Friedeowald's The Declargtiow of Itrdepanderice (New York, 1gO4), and John Hampden Hazelton's the Declaration of Indepondence-Its History (New York. 1906), are valuable special studies. Many important monographs have appeared in the "Johns Hopkins University Scudies," "the Columbia University Studies," the "Harvard Historical Studies," and amons the publications of the universities of Wisconsin and Pennsylvania. The Carnegie Institution has issued the first volume of a report, edited by C. M. Andrews and F. G. Davenport, oo materials in British archives for the period before 1783. The bihliography of American history receives adequate treatment in Justin Winsor's Narralive and Critical Lislory of America (8 vols., Boston, 1886-1889) and in J. N. Larned's Lileralare of American History (Boston, 1902).
(H. L. O.)

\section*{F.-The Struggle for Nalional Government, \(1788_{3}-1789\).}
77. The long struggle to secure the ratification of the Articles of Confederation had given time for careful consideration of the new scheme of government. Maryland's persistent criticism had prepared men to find defects in them. Conventions of New England states, pamphlets, and private correspondence had tound flaws in the now plan; but a public trial of it was a necessary preliminary to getting rid of it. The efforts of the individual states to maintain the war, the disposition of each state to magnify its own share in the result, the popular jealousy of a superior power, transferred now from parliament to the central government, were enough to ensure the articles some lease of life. A real national government had to be cxtorted through the "grinding necessities of a reluctant people."
78. Congress and its committees had alrendy begun to declare that it was impossible to carry on a government efficiently under the articles. Its expostulations were to be continued for several years before they were beard. In the meantime it did not neglect the great subject which concerned the essence of nation-ality-the western territory. Virginia had made a first offer to cede her claims, but it was not accepted. A committee of Congress now made a report (1782) maintaining the validity of the tights which New York had transferred to Congress; and Terrmortal in the next year Virginia made an acceptable offer. Cosulong. Her deed was accepted (March 1, 1784); the other clainiant states followed; and Congress, which was not authorized by the articles to hold or govern territory, became the sovereign of a tract of some \(430,000 \mathrm{sq} . \mathrm{m}\)., covering all the country between the Atlantic tier of states and the Mississippi river, from the British possessions nearly to the Gulf of Mexico.
79. In this territory Congress had now on its hands the same question of colonial government in which the British Terrooret parliament had so signally failed. The manner in Correrameat. which Congress dealt with it has made the United States the country that it is. The leading feature of its plan was the erection, as rapidly as possible, of states, similar in powers to the original states. The power of Congress over the Territories was to be theorctically absolute, but it was to be exerted in encouraging the development of thorough self-government, and in granting it as fast as the settiers should The oral- become capable of exercising it. Copied in succeed. aftice of ing acts for the organization of Territories, and still 6785. controlling the spirit of such acts, the Ordinance of 1787 (July 13. 1787) is the foundation of almost everything which makes the modern American system peculiar.
80. The preliminary plan of Congress was reported by a committee of which Thomas Jefferson (q.e.) was chairman, and was adopted by Congress on the 23rd of April 1784. It provided for the erection of seventeen states, north and south of the Ohio, with some odd names, such as Syivania, Assenisipin, Meiropolamia, Polypotamia and Pelisipia. These states were for ever to be a part of the United States, and to have republican governments. The provision. "After the year 1800 there shall be nother slavery nor involuntary gervitude in any of the said states, ot her than in ihe punishment of crimes whereof the party shall have been duly convicted," represented Jefferson's feeling on this subject. but was lost for want of geven states in its favour.
81. The finat plan of 1787 was reported by a committee of which Nathen Dase, of Massachusetts, was chairman. The prohibition
of slavery was made perpetual, and a fugixive slave chause wes added. The ordinance covered only the territory notch of the Ohio, and provided for not less than three nor more than five statel Ohio Indiana, Illinois, Michigan and Wisconsin have been the resultant states. At first Congress was to appoint the governor, secretary, judgea and militia generals, and the governor and judges were, votil the organization of a legislature, to make laws subject to the veto of Congress. When the population reached 5000 free male adult inhabitants the Territory wasto have an aseernhly of its own, to consist of the governor, a legislative council of five, selected by Congress from ten nominations by the lower house, and a lower House of Representatives of one delegate lor every 500 free male inhebitants. \({ }^{1}\) This aspembly was to choose a delegate to sit, but not to vole, in Congreas, and, was to make laws not repugnant to "the priociples and articles "established and declared in the ordinance. These were as follows: the new states or Territories were to maintain freedom of worship. the benefits of the writ of kabeas corpws, trial by jury, proportionate representation, bail, moderate fines and punishments, and the preservation of liberty, praperty and private contracts: they were to encourage education and keep faith with the Indians; they mere to remain for ever a part of the United States; and they were nos to interfere with the disposal of the soil by the United States, or to tax the lands of the United States, or to tax any citizen of the United States for the use of the navigable waters leading into tho Mississippi or St Lawrence rivers These articles were to be unalterable unfess by mutual consent of a state and the Unired States. The transformation of the Territory, with its limited government, into a state, with all the powers of an original state, was promised by Congress as zoon as the population should reach 6o,000 free inhahitanta, or, under certain conditions, before that time.
82. The Constitution, which was adopted almost immediately afterwards, provided metely (art. iv, 3) that "Congress shall have power to dispose of, and make all needful rules and regulations respocting, the territory or other praperty belonging to the United States," and that "new states may be adinitted by the Consrem into this Union." Opinions have varied as to the force of the Ordinance of 1787 . The Southern school of writers have been inclined to coosider it whra vires and void; and they adduce the fact that the new Congress under the Constitution thought it necesary \(t o\) re-enact the ordinance (Aug, 7, 1789). The opposite echool have inclived to holl the ordinanoe as still \(\ln\) force. Even as to the Territorial provision of the Constitution, opinions have varied.
83. In the interval of the settlement of the territorial question the afiairs of the "league of friendship," known as the United States, had been going from bad to worse, culminat- pymmerlites ing in 1786. The public debt amounted in 1783 oftse Caye to about \(\$ 42,000,000\), of which \(\$ 8,000,000\) was federation owed abroad-in Holland, France and Spain. Congress had no power to levy taxes for the payment of interest or principal; it could only make requisitions on the states. In the four ycars ending in 1786 requisitions had been made for \(\$ 10,000,000\) and the receipts from them had amounted to but one-fourth of what had been called for. Even the interest on the debt was falling into arrears, and the first iastalment of the principal fell due in 1787. To pay this, and subsequent annual instalments of \(\$ 1,00,00\), was quite impossible. Robert Morris, the financier of the War of Independence, resigned in 1783 rather than " be the minister of injustice." hoping thus to force upon the states the necessity of granting taxing powers to Congreas. Washing. ton, on retiring from the command-in-chief, wrote a circular letter to the governors of all the states, urging the necessity of granting to Congress some power to provide a national revence. Congress (April 18,1783) appealed to the states for power to levy specific duties on certain enumerated articles, and \(5 \%\) on others. It was believed that with these duties and the requisitions, which were now to be met by internal taxation. \(\$ 2,500,000\) per annum could be raised. Some of the states ratified the proposal; others ratified it with modifications; others rejected it, or changed their votes; and it never received the necessary ratification of all the slates. The obedience to the requisitions grew more lax. In 1786 a committee of Congress reported that any further reliance on requisitions would be "dishonourable to the understandings of those who entertain such confidence."
\({ }^{1}\) When the total number should reach 25, the legislature itse: was to have the power of regulating the number and proportion. Property qualifications were prescribed for electors, representativei and trembers of the councul.
84. In the states the case was eten worse. Some of them had been seduced into issuing paper currency in such profusion that they were almost bankrupt. Great Britain,
or ite in the treaty of peace, had recognized the independence of the individual states, naming them la order; and ber government followed the same system in all its intercourse with its late colonies. Its restrictive system was maintained, and the states, vying with each other for commerce, could adopt no system of counteracting measures. Every possibie burden was thus shifted to American commerce; and Congress couid do nothing, for, though it asked for the power to regulate commerce for fifteen years, the states refused it. The decisions of the various state courts began to conflict, and there was no power to reconcile them or to prevent- the consequences of the divergence. Several states, towards the end of this period, began to prepare or adopt systems of protection of domestic productions or manufactures, aimed at preventing competition by neighbouring states. The Tennessee settlers were in insurrection against the authority of North Carolina; and the Kentucky settlers were disposed to cut loose from Virginia. Poverty, with the rigid execution of process for debt, drove the farmers of western Massachusetts into an insurreetion (Shays's Insurrection) which the state had much difficulty in suppressing; and Congress wes so incompetent to aid Massachusetts that it was driven to the expedient of imagining an Indian war in that direction, in order to transfer troops thither. Congress itself was in danger of disappearance from the scene. arcogreas. The necessity for the votes of nine of the thirteen of a state's delegation quite as effective as a negative vote. Congress even had to make repeated appcals to obtain a quorum for the ratification of the treaty of peace with Great Britain. In 1784 Congress actually broke up in disgust, and the French minister reported to his government-"There is now in America no general government-neither Congress, nor president. nor head of any one administrative department." Everywhere there were symptoms of a dissolution of the Union.
85. Congress was evidently incompetent to frame a new plan of national government; its members were 100 dependent on Aropasty their states, and would be recalled if they took part fre in framing anything stronger than the articles. convenama. The idea of a convention of the states, independent of Congress, was in the minds and mouths of many; Thomas Paine had suggested it as long ago as bis Common Sense pamphlet: "Let a continental conference he heid . . . to frame a continental charter . . . fixing the number and manner of choosing members of Congress, members of assembly ... drawing the line of business and jurisdiction between them." To a people as food of law and the forms of law as the Americans there was a difficulty in the way. The articles had provided that no change should be made in them hut by the assent of every state legislature. If the work of such a convention was to be subject to this rule, its success would be no greater than that of Congress; if its plan was to be put into force on the ratification of less than the whole number of states, the step would be more or less revolutionary. In the end the latter course was taken, though not until every other expedient had failed; but the act of taking It showed the underlying consciousness that union, independence and nationality were now inextricably complicated, and that the thirteen had become one in some senses.
86. The country drifted into a convention by a roundaboat way. The navigation of Chesapeake Bay and the Potomac needed regulation; and the states of Maryland and Virginia, having plenary power in the matter, appointed delegates to arrange such rules. The delegates met \((1785)\) at Alexandria, Va. (q.0.), and at Washington's house, Mount Vernon. Maryland, in adopting their report, proposed that Pennsylvania and DelaConventioe ware be asked to nominate commisaioners, and of trys. Virginla went further and proposed a meeting of commissioners from all the states to frame commercial regulations for the whole. The convention met (1786) at Annapolis (\(q .0\).\() , Maryland, but only five states were\)
represented, and their delegates adjourned, after recommending another convention at Philadelphia la May 1787.
87. Congress had failed in its last resort-a proposal that the states ahould grant it the impost power alone; New York's veto had put an end to this last hope. Confessing its helplessness, Congress approved the call for a second cosveatha convention; twelve of the states (all but Rhode Island) chose delegates; and the convention met at Philadelphia (May 25, 1787), with an abler body of men than had been seen in Congress since the first two Contiaental Congresses. Among others, Virginia sent Washington, James Madison, Edmund Randolph, George Mason and George Wythe; Pennsylvania: Franklin, Robert and Gouverneur Morris and James Wilson: Massachusetts: Rufus King, Elbridge Gerry and Caleb Strong; Connecticut: Willinm S. Johnson, Rager Sherman and Oliver Ellsworth; New York: Alexander Hamilon; New Jersey: William Patcrson; and South Carolina the two Pinckneys and John Rutledge. With hardly an exception the filty-five delegates were clear-beaded, moderate men, with positive views of their own and firm purpose, but with a willingness to compromise.
88. Washington was chosen to preside, and the convention began the formation of a new Constitution, instead of proposing changes in the old one. Two parties were formed at once. The Virginia delegates offered a plan Phe Virgitate (see Randolph, Edmund), proposing a Congress, of two houses, having power to legislate on national subjects, and to compel the states to fulfil their obligations. This is often spoken of as a "national" plan, but very improperly. It was a "large-state "plan, proposed by those statcs which had or hoped for a large population. It meant to base representation in both houses on population, so that the large states could control both of them, and it left the appointment of the president or other executive and the Federal ludges to Congress \(\rightarrow 30\) that the whole administration of the new government would fall under large-state control. On behalf of the "small states" Paterson of New Jersey brought The New in another plan. \({ }^{1}\) It continued the old Confederation,
with its single bouse and equal state vote, but added the power to regulate commerce and raise a revenue, and to compel the states to obey requisitions. The large states had a general majority of six to five, hut the constant dropping off of one or more votes, on mipor featurea, from their side to that of the small states prevented the hasty adoption of any radical measures. Nevertheless, the final collision could not be cvaded; the basis of the two plans was in the question of one or two houses, of equal or proportionate state votes, of large-state supremacy or of state equality. In July the large states began to show a disposition to lorce their plan through, and the small states began to threaten a concerted withdrawal from the convention.
89. The Connecticut delegates, from their first appearance in the convention, had favoured a compromise. They had been trained under the New England system, in which the assemblies were made up of two houses, one representing the people of the whole state, according to population, and the other giving an equal representation to the towns. They proposed that the new Congress should be made up of two houses, one representing the states in proportion to their population, the other giving an equal vote to each state. At a deadlock the convention relerred the proposition to a committee, and it reported in favour of the Connecticut compromise. Connecticut bad been voting in the large-state list, and the votes of her delegates could not be spared from their slender majority; now another of the large ststes, North Carolina, came over to Connecticut's proposal, and it was adopted. Thus the first great struggle of tbe convention resulted in a compromise, which took shape in an important leature of the Constitution, the Senate.
90. The small states were still anxious, in every new question, to throw as much power as possible into the hands of their
\({ }^{3}\) A third plan was Introduced by Charles Pinckney; for a discussion of this plan eee the separate art icle on Pmokser.

The Come
promate.

special representative, the Senate; and that body thus obtained its power to act as an exccutive council as a restraint The Wort on the president in appointments and treaties. \(0 / t b\) This was the only survival of the first alignment Conveatios. of parties; but new divisions arose on almost every proposal introduced. The election of the president was given at various times to Congress and to electors chosen by the state legislatures; and the final mode of choice, by electors chosen by the states, was settled only two weeks before the end of the convention, the office of vice-president coming in with it. The opponents and supporters of the slave trade compromised hy agreeing not to prohibit it for twenty years. Another compromise included three-fifths of the slaves in enumerating population for representation. This provision gave the slaveholders abnormal power as the number of slaves increased.
91. Any explanation of the system introduced by the Constitution must start with the historical fact that, while the national government was practically suspended. from 1776 until 1789 , the only power to which political privileges had been given by the people was the states, and that the state legislatures were, when the convention met, politically omnipotent, with the exception of the few limitations imposed on them by the early state constitutions. The general rule, then, it that the Federal government has oniy the powers granted to it by the Federal Constitution, while the state has all governmental powers not forbidden to it by the state or the Federal Constitution. But the phrase defining the Federal government's powers is no longer " expressly granted," as in the Articles of Confederation, but merely "granted," so that powers necessary to the execution of granted powers belong to the Federal government, even though not directly named in the Con: stitution. This question of the interpretation or "construction" of the Constitution is at the bottom of real national politics in the United States: the minimizing parties have sought to hold the Federal government to a etrict construction of granted powers, while their opponents have sought to widen those powers by a broad construction of them. The strict-construction parties, when they have come into power, have regularly adopted the practice of their opponents, so that construction has pretty steadily broadened.
92. Popular sovereignty, then, is the basis of the American system. But it does not, as does the British system, choose its The coas legislative body and leave unlimited powers to it. adiulios. of its orders or prohibitions to als branches of the Federal government and to many branches of the state governments: they mut do what the Constitution durects and leave undone what it forbids. The people, therefore, are continually laying their commands on their governments; and they have instituted a system of Federal courts to ensure obedience to their commands. A British court must obey the act of parliament; the Anerican court is bound and sworn to obey the Constitution first. and the act of Congress or of the state Jegislature only so far as it is warranted by the Constitution. But the American court does not deal directly with the act in question; it deals with individuals who have a suit before it. One of these individuals relies on an act of Congress or of a state legislature; the act thus comes before the court for examination; and it supports the act or disregards it as " unconstitutional," or in violation of the Constitution. If the court is one of high rank or reputation. or one to which a decision may be appealed, as the United States Supreme Court, other courts follow the precedent. and the law falls to the ground. The court does not come into direct confict with the legislative body; and, where a decision would be apt to produce such a conflict, the practice has been for the court to regard the matter as a " political question " and refuse to consider it.
93. The preamble states that "we, the people of the United States," establish and ordain the Constitution. Events have slown that it was the people of the whole United States that cstablished the Constitution, but the people of 1787 seem to have inclined to the belief that it was the people of each state for itself. This belief was never changed in the South; and in 1861 the people of that section believed that the ordinances of secession were merely a repeal of the cnacting clause by the power which had passed it, the people of the state. An account of the form of government established by the Constitution appcars elsewhere (see UNited States: VII.-Constifution and Covernment, pp 646 eqq.).
94. The Constitution's leading difference from the Confederation is that it gives the national government power over individuals. The

\section*{Ms Power} over ladt whating Federal courts are the principal agent in securing this esential power; without them. the Constitution might easily have been as dismal a failure as the Confederation. It has also been a most important agent in eccuring to the national government its supremacy over the states. From this point of view the most important provision of the Constitution is the grant of juriediction to Federal courts in easce involving the construction of the Congtitution or of laws or treaties made under it. The

25 th section of the Judiciary Act of 1789 permitted any Supreme Court justice to grant a writ of error to a state court in a case in which the constitutionality of a Federal law or treaty had been denied. or in which a state law objected to as in violation of the Federal Consitution had been maintained. In wuch cases, the defeated party had the right to carry the "Federal question" to the Federal courts It was not until i816 that the Federal courts undertook to exercise this power; it raised a storm of opposition, but it was maintained, and has made the Constitution what it professed to be-" the supreme law of the Land, Treason was restricted
to the act of levying war against the United States, to the act of levying war against the United Statea Truasoa. or of adhering to their enemies, giving them aid and comfort The states, however, have always asserted their power to punish for treason against them individually. It has never been fully maintained in practice; but the theory had its effect in the secession period.
95. The system of the United States is almost the only mational system, in active and suocessful operation, as to which the exact location of the sovereignty is still a mooted question.
The contention of the Calhoun school-that the separate sop states were sovereign before and after the adoption of Sovernisaty. the Constitution, that the Union was purely voluntary, and that the whole people, or the people of all the other states, had no right to main. tain or enforce the Union against any state-has been ended by the Civil War. But that did not decide the location of the sovereignty. The provalent opinion is still that first formulated by Madison: that the states were sovereign before 1789; that they then gave up a part of their sovereignty to the Federal government; that the Uninn and the Constitution were the work of the states, not of the whale people; and that reserved powers are reserved to the people of the states, not to the whole people. The use of the bald phrase " reserved to the people, " not to the people of the several states, in the soth amendment, serms to argue an underlying consciousness, even in 1789, that the whole people of the United States was already a political power quite distinct from the states, or the people of the states; and the teadency of later opinion is in this direction. The restriction to state lines seems to be a self-imposed limitation by the national people, which it might remove, as in 1789, if an emergency should make it necessary.
96. By whatever sovereignty the Constitution was framed and imposed, it was meant only as a scheme in outline, to be filled up afterwards, and from time to time, by legislation. The perans of idea is most phainly carried out in the Federal judiciary: Detans of the Constitution only directs that there shall be a the Syatran Supreme Court, and marks out the general jurisdiction of all the courts, leaving Congress, under the restriction of the president's veto power. to build up the system of courts which shall best carry out the design of the Constitution. But the same idea is visible in every depart ment. and it has carried the Constitution safely through a century which has radically altered every other civilized government. It has combined elasticity with the limitations necessary to make demorratic government successful over a vast territory, having infinitely diverme interests, and needing, more than almost anything else, positive opportunitics for sober second thought by the people. A sudden revolution of popular thought or fceling ie enough to change the House of Representatives from top to bottom; it must contiave for several years before it can make a radical change in the Senate. and for years longer before it can carry this change through the judiciary, which holds lor llfe: and all these changes must take place before the full effects upon the law or Constitution are accomplished. But minor changes are reached in the meantime easily and maturally in the course of legislation. The members of the Convention of 1787 showed their wisdom most plainly in not trying to do too much: if they had done more they would have done far less.
97. The convention adjourned on the \(\mathbf{2 7}\) th of September 1787 . having adopted the Constitution. Its last step was a resolution that the Constitution be sent to the Congress of the Confederation, with the recommendation that it be Submbsion submitted to conventions elected by the people
of each state for ratification or rejection; that, if nine states should ratify it, Congress should appoint days for the popular clection of electors, and that then the new Congress and president should, "without delay, proceed to execute this Constitution." Congress resolved that the report of the convention be sent to the several legislatures, to be submiticd to conventions; and this was all the approval the Constitution ever received from Congress. Both Congress and the convention were careful not to open the dangerous question, How was a government which was not to be changed but by the legislatures of all the states to be entirety supplanted by a different system through the approval of conventions in three-fourths of them? They left such questions to be opened, if at all, in the less public forum of the legislatures.
98. Before the end of the year Delaware, Pennsylvania and

New Jersey had ratified; and Georgia, Connecticut and Maseachusetts followed during the first two months of 1788 . Thus far Aederallato the only atrong opposition had been in Massaandiett chusetts, a "large state." In it the struggle began Federaltese between the ifiends and the opponents of the Constitution, with its introduction of a strong Federal power; and it raged in the conventions, legislatures, newspapers and pamphlets. In a classic series of papers, the Federalist, Alexander Hamilton, with the assistance of James Madison and John Jay, explained the new Constitution and defended it. As it wes written before the Constitution went into forse, it speaks much for the ability of its writers that it has passed into a standard textbook of American constitutional haw.
99. The seventh and eighth states-Maryland and South Carolina-ratified in April and May 1788; and, while the conventions of Virginia and New York were still wrang-

\section*{Ratifice:} thoin. ling over the great question, the ninth state, New Hampshire, ratified, and the Constitution passed out of theory into fact. The Anti-Federalists of the Virginia and New York conventions offered conditional ratifications of all eorts; but the Federalists stubbomly refused to consider them, and at lest, by very slender majorities, these two states ratified. North Carodine refused to ratify the Constitution, and in Rhode Island it was referred to the several towns instead of to a convention and was rejected by an overwhelming majority, the Federalists, who advocated the calling of a convention, refraining from voting (\(\mathbf{j}_{1212}\)). Congress named the first Wednesday of January \(17^{89}\) as the day for the choice of electors, the first Wednesday in February for the choice of president and vice-president, and the first Wednesday in March foamura- for the inauguration of the new government, at New York City. The last date fell on the 4 th of March, which has been the limit of each president's term since that time.
100. When the votes of the electors were counted before Congress, it was found that Washington had been unanimously porefthe elected president, and that John Adams, standing combero next on the list, was vice-president. Long before abe. the inauguration the Congress of the Confederation had expired of mere inanition; its attendance simply ran down until (Oct. 21, 1788) its record ceased, and the United States got on without any national government for nearly six months. The straggle for nationality had been successful, and the old order faded out of existence.
sor. The first census (1790) followed so closely upon the inauguration of the Constitution that the country may fairly be said to have had a population of nearly four millions in 1789. sterery far Something over half a million of these were slaves, of ebe Uoked Airican birth or blood. Slavery of this sort had taken scmes. root in almost all the colonics, its original establishment being everywhere by custom. When the custom had been sufficientiy established statutes came in to regulate a relation alrondy existing. But it is not true, as the Dred Scott decision held long afterwards (\(\$ 215\)), that the belief that slaves were chattcls simply, things, not persons, held good at the time of the aduption of the Constitution. Times had changed somewhat. The peculiar language of the Constitution itself, describing a slave as a "person held to service or habour," under the iaws of any state, puts the general fecling exactly: slaves were persons irom whom the laws of some of the states withheld personal rights for the time. In accordance with this fecling most of the Northern states were on the high road towards abolition of slavery. Vermont had never allowed it. In Massa. ABelthon 2 chusets it was swept out by a summary court decision that it was irreconcilahle with the new state constitution. Other states soon began systems of gradual abolition, which finally extinguished slavery north of Maryland, but \(s 0\) gradually that there were still 18 apprentices for life in New Jersey in \(\mathbf{r} 860\), the last remnants of the former sla ve syst em. In the new seates north of the Ohio slavery was prohibited by the oedinance of \(1787(\$ 81)\), and the prohibition was maintained in spite of many attempts to get rid of it and introduce slavery.
102. The sentiment of thinking men in the South was exactly the same, or in some cases more bitter from their personal entanglement with the system. Jefferson's language as to slavery is irreconcilable with the chattel notion;

Fontiar in the Soula no abolitionist agitator ever used warmer language than be as to the evils of slavery; and the expression, "our brethren," used by him of the slaves, is conclusive. Washington, George Mason and other Southern men were almost as warm against slavery as Jefferson, and there were societies for the abolition of slavery in the South. In the Constitutional convention of 1787 the atrongest opposition to an extension of the period of non-interference with the slave trade from 1800 to 1808 came from Virginia, whereas every one of the New England states, in which the trade was an important source of profit, voted for this extension. No thinking man could face with equanimity the future problem of holding a separate race of millions in slavery. Like most slave laws, the laws of the Southern states were harsh: rights were alnost absolutely withheld from the slave, and punishments of the severest kind were legal; but the execution of the system was milder than its legal possibilities might lead one to imagine. The country was as yet so completely agricultural that Southern slavery kept all the patriarchal features possible to such a system.
103. Indeed, the whole country was almost exclusively agricultural, and, in spite of every effort to encourage manufacturcs by state bounties, they formed the meagrest Agrkutaro, element in the national production. Connecticut, commerco: which now teems with manufactures, was just begin- end manwning the production of tinware and clocks; Rhode manem.
Island and Massachusetts were just beginning to work in cotton from models of jennies and Arkwright machincry surreptitiously obtained from England; and other states, beyond local manufactures of paper, glass and iron, were almost entirely agricultural, or were engaged in industrics directly dependent on agriculture. Commerce was deperdent on agriculture for export and manufactured imports were enough to drown out every other form.
ro4. There were but five cities in the United States having a population of more than 10,000 -New York (33,000), Philadelphia \((18,500)\), Boston (18,000), Charleston (\(16,0 \infty\))
and Baltimore (13,000). The population of the chaseres city of New York is now greater than that of the original thirtcen states in 1790; the state of New York has now about twice as many inhahitants as the thirteen had in 1790 ; and the new states of Ohio and Illinois, which had hardly any white inhabitants in 1789, have each a larger population than the whole thirteen then had. Imports have swoilen from \(\$ 23,000,000\) to \(\$ 1,475,612,580\) (rgo0); exports from \(\$ 20,000,000\) to \(\$ 1,728,203,271\) (1909), since 1790 . The revenues of the new government in 1790 were \(\$ 4,000,000\); the expenditures, excluding interest on the public debt, but \(\$ 1,00,0 \infty\); now both the revenues and the expenditures are about \(\$ 1, \infty, 000,0 \infty\). It is not easy for the modern American to realize the poverty and weakness of his country at the inauguration of the new system of government, however he may realize the simplicity of the daily life of its people.
ros. Outside the cities communication was slow. One stage a week was enough for the connexion between the great cities; and communication elsewhere depended on private conveyance. The Western settlements were just The Wash beginning to make the question more serious. Enterprising land companics were the moving force which had impelled the passage of the Ordinance of 1787 ; and the first column of their setters was pouring into Ohio and forming connexion with their predecessors in Kentucky and Tennessce. Marictta and Cincinnati had been founded. But the intending settlers were ohliged to make the journey down the Ohio river from Pittsburg in buliet-proof flat-boast, for protection against the Indians, and the return trip depended on the use of oars. For more than twenty years these flat-boats were the chief means of river commerce in the West; and in the longer trips, as to New Orleans, the boats were generally broken up at the end and sold for lumber,
the crew making the trip home on foot or on horsebeck. John Fitch and others were already experimenting on what was soon to be the steamboat; but the statesman of 1789 , looking at the task of keeping under one government a country of such distances, with such dificulties of communication, may be pardoned for having felt anxiety as to the future. To almost all thinking men of the time the Constitution was an experiment, and the unity of the new nation a subject for very serious doubt.
106. The comparative isolation of the people everywhere, the lack of books, the poverty of the schoois and newspapers, were Lemederes all influences which worked strongly against any pronounced literary development. Poems, essays and paintings were feeble imitations of European models; history was annalistic, if anything; and the drama hardly existed. In two points the Americans were strong, and had done good work. Such men as Jonathan Edwards had excelled in various departments of theology, and American preaching had reached a high degree of quality and influence; and, in the line of politics, the American state papers rank among the very best of their kind. Having a very clear perception of their political purposes, and having been restricted in study and reading to the great masters of pure and vigorous English, and particularly to the English translators of the Bible, the American leaders came to their work with an English style which could hardly have been improved. The writings of Franklin, Washington, the Adamses, Hamilton, Jefferson, Madison, Jay and others show the secret of their strength in every page. Much the same reasons, with the influences of democracy, brought oratory, as represented by Patrick Henry, Fisher Ames, John Randolph and others, 10 a point not very far below the mark afterwards reached hy Daniel Webster. The effect of these facts on the subsequent development of the country is not often estimated at its full value. All through an immigration of every language and dialect under heaven the English language has been protected in its supremacy hy the necessity of going back to the "fathers of the republic" for the first, and often the complete, statement of principles in every great political struggle, social problem or lawsuit.
107. The cession of the " North-West Territory" by Virginia and New York had been followed up by similar cessions by Massachusctts (1785), Connecticut (1786) and South
Lhomat of Settlement Carolina (1787). North Carolina did not cede Tennessec until early in \(\mathbf{1} 790\), nor Georgia her western claims until 1802. Settlement in all these regions was still very sparse. The centres of Western settlement, in Tennessee and Kentucky, had become more firmly established, and a new one, in Ohio, had just heen begun. The whole western limits of settlement of the old thirteen states had moved much nearer their present boundaries; and the acquisition of the Western title, with the liberal policy of organization and government which had been begun, was to have its first rlear effects during the first decade of the new government. Almost the only obstacle to its earlier success had been the doubts as to the attitude which the Spanish authorities, at Ncw Orleans and Madrid, would take towards the new settlements. They had already asserted a claim
The Mlate that the Mississippi was an exclusively Spanish stream from its mouth up to the Yazoo, and that no American boat should be allowed to sail on this part of it. To the Western settier the Alleghanies and bad roads were enough to cut him off from any other way to a market than down the Mississippi; and it was not easy to restrain him from a forcible defiance of the Spanish claim. The Northern states were willing to allow the Spanish claim for a period of years in return for a commercial treaty; the Southern states and the Western settlers protested angrily; and once more the spectre of dissolution appeared, not to be laid again until the new govemment had made a treaty with Spain in 1795 (see Pinckney, Thomas), securing commoa navigation of the Mississippi.
108. Contemporary authorities agree that a marked change had come over the people since 1775, and few of secter coritivions. them seem to think the change one for the better. Many attribute it to the loosencss of manners and morals int roduced by the French and British soldiers; ochers to
the general effects of war; a few, Tories all, to the demoralizing effects of rebellion. The successful establishment of nationality would be enough to explain most of it; and if we remember that the new nation had secured its title to a vast western territory, of unknown but rich capacities, which it was now moving to reduce to possession by emigration, it would seem far more strange if the social conditions had not been somewhat disturbed.

\section*{G.-The Deselopmens of Democracy, 1789-180r.}
109. All the tendencies of political institutions in the United States had certainly been towards democracy; but it cannot be said that the leading men were hearty or unanimous onemernor in their agreement with this tendency. Not a few methelad of them were pronounced republicans even before states 1775, hut the mass of them had no great objections to a monarchical form of government until the war-spirit had converted them. The Declaration of Independence had been directed rather against the king than against a king. Even after popular sovereignty had pronounced against a king, class spirit was for some time a fair substitute for aristocracy. As often happens, democracy at least thought of a Caesar when it apprehended class control. Certain discontented officers of the Continental Army proposed to Washington that he become king, hut he promptly and indignantly put the offer by. The suggestion of a return to monarchy in some form, as a possible road out of the confusion of the Confederation, occurs in the correspondence of some of the leading men; and while the Convention of 1787 was holding its secret sessions a rumour went out that it had decided to offer a crown to an English prince.
sio. The state constitutions were democratic, except for property or other restrictions on the right of suffrage, or provisions carefully designed to keep the control of at least one house of the state legislature "in the hands of property." The Federal Constitution was so drawn that it would have lent itself kindly either to class control or to democracy. The electoral system of choosing the president and vice-president was altogether anti-democratic, though democracy has conquered it: not an elector, since 1796, has disobeyed the purely moral claim of his party to control his choice. Since the Senate was to be chosen by the state legislatures, "property," if it could retaia its influence in those bodies, could control at least one house of Congress. The question whet her the Constitution was to have a democratic or an anti-de mocratic interpretation was to be settled in the next twelve years.
111. The atates were a strong factor in the final settlement, from the fact that the Constitution had left to them the controd of the elective franchise: they were to make its conditions what cach of them saw fit. Religious tests for the right of mamere of suffrage had been quite common in the colonies; property smare tests were almott universal. The former disappeared the shortly after the War of Independence; the latter survived in some of the states far into the constitutional period. But the desire to attract immigration was always a strong impeling force to induce states, especially frontier states, to make the acquisition of full citizenship and political righte as easy and rapid as possible. This force was not so strong at first as it was after the great sream of immigration began about 1848, but it was enough to tend constantly to the development ofdemocrary. In latertimes, when state la wsallow the immigrant to vote even before the period assigned by Federal Laws allows him to become a maturalized citizen, there have been demands for the modification of the ultra state democracy; but no such danger was apprebended in the firse decade.
112. The Anti-Federalists had been a political party, bur a party with hut one principle. The absolute failure of that principle deprived the party of all cohesion; and the Federalists controlled the first two Congresses almost entirely. Their pronounced ahility was shown in their organizing measures, which still govern the

Orgathes theo of ots American system very largely. The departments Oevera avel of state, of the treasury, of war, of justice, and of the post-office were rapidly and successfully organized; acts were passed for the regulation of seamen, commerce, tonnage duties, lighthouses, intercourse with the Indians, Territories, and the militia; a national capital was selected; a national bank was chartered; the national deht was funded, and the state debts were assumed as
part of it. The first four years of the new system showed that the states had now to deal with a very different power from tbe impotent Congress of the Confederation. The new power was even able to exert pressure upon the two states which had not ratified the Constitution, t hough the pressure was made as gentle as possible. As a first step, the higher duties imposed on imports from foreign countries were expressly directed to apply to imports from North Carolina and Rhode Island. North Carolina having called a secund convention, her case was left to the course of nature; and the second convention ratifed the Constitution (Nuvember 21, 1780). The Rhode Island legislature asked that their state might not be considered altogether foreigners, made their duties agree with those of the new government, and reserved the proceeds for "continental" purposes. Still no further steps were taken. A bill was therefore introduced, directing the president to suspend commercial intercourse with Rhode Island, and to demand from her ber share of the continental debt. This was passed by the Senate, and waited but two steps further to become law. Newspaper proposals to divide the bitle state between ber two nearest meighbours were stopped by her ratification of the Constitution (May 29,1790). The "old thirteen" were thus united under Comparten the Constitution; and yet, so strong is the American of the Ualons. prejudice for the autonomy of the states that these last two were allowed to enter in the full conviction that they did so in the excreise of sovereign freedom of choice. Their entrance, horever, was no more involuntary than that of others. If there had been real freedom of choice, nine states would never have ratified: the votes of Pennsylvania, Massachusetts, New Hampshirc, Virginia and New York were only secured by the pressure of powerful minorities in these states, backed by the almost unanimous votes of the others.
113. Protection was begun in the first Tarif Act, whose object, said its preamble, was the protection of domestic manufactures.

The duties, however, ranged only from \(71.1010 \%\).

\section*{Preminacin:} averaging about \(8 \frac{1}{2} \%\). The system, too, had rather a political than an cconumic basis. Until 1780 the states had controlled the imposition of duties. The separate state fecling was a factor so strong that secession was a possibility which every statesman had to take into account. Hamition's object, in introducing the system, seems to have been to create a class of manufacturers, running through all the states, but dependent lor prusperity on the new Federal government and its tariff. This would be a force which would make strongly against any attempt at sceession, or against the tendency to revert to control by state legislat ures, ceven though it based the national idea on a conscious tendency towards the development of classes. The same feeling scems to have been at the botiom of his establishment of a national bank, his assumption of state debts, and most of the general scheme which his influence forced upon the Fcderalist party. (See Hamilon, Alexander; and Federalist Party.)

1r4. In forming his cabinet Washington had paid attention to the opposing elements which had united for the temporary purpose of ratifying the Constitution. The national The First purpose of ratifying the Constitution. The national the treasury, and llenry Knox, secretary of war; the particularist clement (using the term to indicate support of the states, not of a state) by Jefferson, sccretary of state, and Edmund Randolph, attomey-general. At the end of 1792 matters were in train for the gencral recognition of the existence of two parties, whose struggles were to decide the course of the Constitution's development. The occasion came in the opening of the following year, when the new nation was first brought into contact with the Franch Revolution.
115. The controlling tendency of Jefferson and his school wias to the maintenance of individual rights at the highest possible The formore point, as the Hamilton school was aluays ready to son school assert the national power to restrict individual rights OPDiks for the general good. Other points of difference are rather symptomatic than essential. The Jefferson school supported the states, in the belief that they were the best bulwarks for individual rights. When the French Revolution began its
usual course in America by egitation for the "rights of man," it met a sympathetic audience in the Jefferson party and a cold and unsympathetic hearing from the Hamilton school of Federalists. The latter were far more interested in securing the full recognition of the power and rights of the nation than in securing the individual against imaginary dangers, as they thought them. For ten years the surface marks of distinction between the two parties were to be connected with the course of events in Europe; but the essence of distinction was not in the surface marks.
116. The new government was not yei four years old; it was not familiar, nor of assured permanency. The only national governments of which Americans had had previous experience were the British government and the The Hamil Confederation: in the former they had had no share, ton Scmool. Confederation: in the former they had had no share,
and the latter had had no power. The only places in which they had had long-continued, full, and familiar experience of seffgovernment were their state goveraments: these were the only governmental forms which were then distinctly associated in their minds with the general notion of republican government. The governing principle of the Hamition school, that the construction or interpretation of the terms of the Constitution was to be such as to broaden the powers of the Federal government, necessarily involyed a corresponding trenching on the powers of the states. It was natural, then, that the Jefferson school should look on every feature of the Hamilton programme as "anti-republican," meaning, probably, at first no more that opposed to the state system, though the term soon came to imply something of monarclical and, more particularly, of English tendencies. The disposition of the Jefferson school to claim for themselves a certain peculiar title to the position of "republicans" developed into the appearance of the first Republican, or the Democratic-Republican, party, about 1793 .
117. Many of the Federalists were shrewd and active business men, who naturally took prompt advantage of the opportunities which the new system offered. The Republicans thercfore believed and asserted that the whole part Hamilton programme was dictated by selfish or class interest; and they added this to the accusation of monarchical tendencies. These charges, with the fundamental differences of mental constitution, exasperated by the passion which differences as to the French Revolution seemed to carry with tbem everywhere, made the political history of this decade a very unpleasant record. The pruvision for establishing the national capital on the Potomac (1790) was declared to have been carried by a corrupt bargain; and accusations of corruption were renewed at every opportunity. In 1793 a French agent, fwenalioned Edmond Charles Edouard Genet (1765-1834), ap-capkel peared to claim the assistance of the United States arnet'z for the French republic, and went to the length of Mlaton. commissioning privatcers and endeavouring to secure recruits, especially for a force which he expected to raise for the conquest of Louisiana from Spain. Washington decided to issuc a prociamation of neutrality, the first act of the kind in American history. It was the first indication, also, of the policy which has made the course of every president, with the exception of Polk, a detcrmined leaning to peace, even when the other branches of the government have been intent on war. Genet, however, continued his activities, and made out- the whind rageous demands upon the government, so that finally tasermoc Washington demanded and secured (1794) his recall.1 than.
The proclamation of 1793 brought about the first distinctly party feeling; and it was intensified by Washington's charge that popular opposition in western Pennsylvania (1704) to the new excise law (see Wusky Insuraection) had been Iomented by the extreme French party. Their name Admiastore Democrat, was applied by the Fedcralists to the whole Kreetack Republican party as a term of contempt, but it was aed Tewnot accepted by the party for some twenty years; then the compound title " Democratic-Rcpublican "became, as it

\footnotetext{
\({ }^{1}\) Genet, fearing tbe fate of his fellow Girondists in France, remained in the United States and became a naturalized American cilizen
}
still is, the official title of the party. There was no party opposition, however, to the re-election of Washington in 1992, or to the admission of Vermont (1791), Kentucky (1792) and Tennessee (1796) as new states.
118. The British government had aceredited no minister to the United States, and it refused to make any commercial treaty or to give up the forts in the western territory of the United States, through which its agents still exercised a commanding influence over the Indians. In the course of its war with France, the neutral American vessels, without the protection of a national navy, fared badly. A treaty negotiated in 1794 by

Chief-Justice John Jay (q.v.) settled these difficulties
Jar's
Tremy.
for the folluwing twelve years. But, as it engaged the United States against any intervention in the war on behalf of France, was silent on the subject of the right of search, and agreed to irksome limitations on the commercial privileges of the United States, the Republicans, who were opposed to the negotiation of any treaty at this time with Great Britain, made it very unpopular, and the bitter personal attacks on Washington grew out of it. In spite of occasional Republican successes, the Federalists relained a general control of national allairs; they elected John Adams president in 1796,
Electlow of though Jefferson was chosen vice-president with him; and the national policy of the Federalists kept the country out of entangling alliances with any of the European belligerents. To the Republicans, and to the French republic, this last point of policy was only a practical intervention against France and against the rights of man.
119. At the end of Washington's administration the French Directory hroke off relations with the United States, demanding the abrogation of Jay's treaty and a more pronounced sympathy with France. Adams sent three envoys, C. C. Pinckney (q.v.), John Marshall and Elbridge Gerry (q.v.), to endeavour to re-establish the former relations; they were The met by demands for "money, a great deal of "x.y.z." money," as a prerequisite to peace. They refused; masios. their letters home were published, and the Fede. ralists at last had the opportunity of riding the whiriwind of an intense popular desire for war with France. Intercourse with France was suspended by Congress (\(\mathbf{r} 798\)); the treaties with France were declared at an end; American frigates were authorized to capture French vessels guilty of depredations on American commerce, and the president was authorized to issue letters of marque and reprisal; and an American army was formed, Washington being called from his retirement at Mount Vernon to command it. The war never went beyond a few sea-fights, in which the little American navy Ouastwer and did itself credit, and Napoleon, seizing power the next year, renewed the peace which should never have been broken. But the quasi-war had internal consequences to the young repubiic which surpassed in interest all its foreign difficulties: it brought on the crisis which settled the development of the United States towards democracy.
120. The reaction in Great Britain against the indefinite " rights of man" had led perliament to pass an atien law, a sedition law suspending the writ of habcas corpus, and an act giving wide and loosely defined powers to magistrates for the dispersion of meetings to petition for redress of Error ofthe grievances. The Federalists were in control of a Congress of limited powers; hut they were strongly tempted by sympathies and antipathies of every sort to form their programme on the model furnished from England. The measures which they actually passed were based only on that construction of the Constitution which is at the bottom of all American politics; they only tended to force the Constitution into an anti-democratic direction. But it was the fixed belief of their opponents that they meant to go farther, and to secure control by some wholesale measure of political persecution.
121. Three alien laws were passed in June and July 1798.
\({ }^{1}\) In these letiers as published the letters \(X, Y\) and \(Z\) were substituted for the names of the French agents with whom the American envoys dealt; and lie letters are known as the \(X X Z\) correspondence.

The first (repealed in April 1802) raised the number of years necessary for naturalization from five to fourteen. The third (still substantially in force) permitted the arrest or pre anva removal of subjects of any foreign power with ead Sodure which the United States should be at war. The Lawn second, which is usually known as the Alien Law, was limited to a term of two years; it permitted the president to arrest or order out of the country any alien whom he should consider dangerous to the country. As many of the Republican editors and local leaders were aliens, this law really put a large part of the Republican organization in the power of the president elected hy their opponents. The Sedition Law (to be in force until March 180 and not renewed) made it a crime, punishable by fine and imprisonment, to publish or print any false, scandalous and malicious writings against the government of the United States, either house of Congress, or the president, or to stir up sedition or opposition to any lawful act of Congress or of the president, or to aid the designs of any foreign power against the United States. In its first form the bill was even more sweeping than this and alar med the opposition thorougtly.
122. Most of the ability of the country was in the Federalist ranks; the Republicans had but two first-rate men-Jeficrson and Madison. In the sudden issue thus forced mop between individual rights and national power, Repebitan Jefferson and Madison could find but one bulwark amoatioa for the individual-the power of the atates; and their use of it gave their party a pronounced list to state sovereigaty from which it did not recover for years. They objected to the Alien Law on the grounds that aliens were under the jurisdiction of the state, not of the Federal government; that the jurisdiction over them had not been transferred to the Federal government by the Constitution, and that the assumption of it by Congress was a violation of the Constitution's reservation of powers to the states; and, further, because the Constitution reserved to every "person." not to every citizen, the right to a jury trial. They objected to the Sedition Law on the grounds that the Constitution had specified exactly the four crimes for whose punishment Congress was to provide; that criminal libel was not one of them; and that amendment I. forbade Congress to pass any law restricting freedom of speech or of the press. The Federalists asserted a common-law power in Federal judges to punish for libel, and pointed to a provision in the Sedition Law permitting the truth to be given in evidence, as an improvement on the common law, instead of a restriction on liberty.
123. The Republican objections might have been made in court, on the first trial. But the Republican leaders had strong doubts of the impartiality of the Federal judges, who were Federalists. They resolved to entrench the party in the state legislatures. The Virginia legislature in 1798 passed virituenes a series of resolutions prepared by Madison, Keatuctry
and the Kentucky legislature in the same year Renotationa. passed a series prepared by Jefferson (see Kentucsy: History). Neglected or rejected by the other states, they were passed again by their legislatures in 1799, and were for a long time a documentary basis of the Democratic party. The leading idea expressed in both was that the Constitution was a "compact" between the states, and that the powers (the states) which had made the compact had reserved the power to restrain the creature of the compact, the Federal government, whenever it undertook to assume powers not granted to it. Madison's idea secms to have been that the restraint was to be imposed hy a second convention of the states. Jeflerson's idea is more doubtiul; if it meant that the restraint should be imposed by any state which should feel aggricved, his scheme was merely Calhoun's idca of nullification; but there are some indications that he agreed with Madison.
124. The first Congress of Adams's term of office ended in 1700. Its successor, elected in the heat of the French war excitement, kept the Federalist policy up to its first pitch. Out of Congress the execution of the objectionable laws ENucte of had taken the shape of political persecution. Men were arrested, tried and punished for wrinings which the people had
been accustomed to consider within legitimate political methods. The Republican leaders made every trial as public as possible, and gained votes constantly, so that the Federalists began to be shy of the very powers which they had sought. Every new election was a storm-signal for the Federalist party; and the danger was increased by schism in their own ranks.
125. Hamilton was now a private citizen of New York; but be had the confidence of his party more largely than its nominal

Pedorationt Sctume head, the president, and he maintained close and confidential relations with the cabinct which Adams had taken unchanged from Washington. The Hamilton faction saw no way of preserving and consolidating the newly acquired powers of the federal government but by keeping up and increasing the war feeling against france; Adams had the instinctive leaning of an American president towards peace. Amid cries of wrath and despair from his party he accepted the first overtures of the new Napoleonic government, sent envoys to negotiate a peace, and ordered them to depart for France when they delayed too long. Then, discovering flat treachery in his cabinet, he dismissed it and blurted out a public expression of his feeling that Hamilton and his adherents were " a British faction." Hamilton retorted with a circular letter to his party friends, denouncing the president; the Republicans intereepted it and gave it a wider circulation than its author had intended; and the Hamilton faction tried so to arrange the
amelioe of electoral vote that C. C. Pinckney should be chosen president in 1800 and Adams should be shelved into the vice-presidency. The result depended on the electoral vote of New York; and Aaron Burr, who had introduced the drill and machinery of a modern American political party there, had made the state Republican and secured a majority for the Republican candidates. These (Jeflerson and Burr) received the same number of electoral votes (73), \({ }^{1}\) and the House of Representatives (controlled by the Federalists) was thus called upon to decide which should be president. There was an effort by the Federalists to disappoint the Republicans by making Burr president; but Jefferson obtained that office, Burr becoming vice-president for four years. This disputed election, however, led to the adoption in 1804 of the 12 th amendment to the Constitution, which prescribed that each elector should vote separately for president and vice-president, and thus prevent another tie vote of this kind; this amendment, moreover, made very improbable the choice in the future of a president and a vice-president from opposing parties.
126. The "Revolution of 1800 " decided the future development of the United States. The new dominant party entered upon its career weighted with the theory of state "Revoluthon sovereignty; and a civil war was necessary before this dogma, put to use again in the service of slavery, could be banished from the American system. But the democratic development never was checked. From that time the interpretation of the Federal Constitution has generally favoured individual rights at the expense of governmental power. As the Republicans obtained control of the states they altered the state constitutions so as to cut out all tbe arrangements that favoured property or class interests, and reduced political power to the dead level of manhood sufirage. In most of the states outside of New England this process was completed before 1815: but New England tenacity was proof against the advancing revolution until about \(\mathbf{1 8 2 0}\). For twenty years after its downfall of LSoo the federalist party maintained its hopeless struggle, and tben it faded away into nothing. leaving as its permanent asemorial the excellent organization of the Federal government, which its successful rival hardly changed. Its two successors -the Whig and the second Republican party-have also been broad-constructionist parties, but they have admitted democracy as well; the Whig party adopted popular methods at least, and the Republican went further in the direction of individual rights, securing the emancipation of enslaved labour.
'Adams received 65. Pinckney. 64 and John Jay 1.
127. The disputed election of 1800 was decided in the new capital city of Washington, to which the government had just been removed, after having been for ten years at Philadelphia. Its streets and parks existed only on paper. The Capitol had been begun; the Executive Mansion. was unfinished, and its audience room was used by Mrs Adams as a drying room for clothes; and the congressmen could hardly find lodgings. The inconvenicnces were only an exaggeration of the condition of other American cities. Their sanitary conditions were bad, and yellow fever and cholera from time to time reduced several of them almost to depopulation. More than once, during this decade, the fever visited Philadelphia and New York. drove out most of the people, and left grass growing in the streets. The communication between the cities was still wretched. The traveller was subject to every danger or annoyance that bad roads, bad carriages, bad horses, bad inns and bad police protection could combine to inflict upon him. But the war with natural obstacles had fairly begun, though it had little prospect of success until steam was brought into use as the ally of man.
128. About this time the term "the West" appears. It meant then the western part of New York, the new territory north of the Ohio, and Kentucky and Tennessee. In settling land boundaries New York had translerred. The West? (1786) to Massachusetts, whose claims crossed ber territory, the right to (but not jurisdiction over) a large tract of land in central New York, and to another large tract in the Erie basin. The sale of this land had carried population considerably west of the Hudson. After other expeditions against the Ohio Indians had been defeated, one under General Anthony Wayne had compelled them in \(1794-95\) to give up all the tertitory now in the state of Ohio. Settlement reccived a new impetus. Between 1790 and 1800 the population of Ohio had risen from almost nothing to 45,000, that of Tennessee from 36,000 to 106,000 , and that of Kentucky from 74,000 to 221,000 -the last-named state now exceeding six of the "old thirteen" in population. The difficulties of the western emigrant, however, were still enormous. He obtained land of his own, fertile land and plenty of it, but little eise. The produce of the soil had to be consumed at home, or near it; ready money was scarce and distant products scarcer; and comforts, except the very rudest substitutes of home manufacture, were unobtainable. The new life bore most hardly upon women; and, if the record of woman's share in the work of American colonization could be fully made up, the price paid for the final success would seem enormous.
129. The number of post offices rose during these ten years from 75 to 903 , the miles of post routes from 1900 to 21,000 , and the revenue from \(\$ 38,000\) to \(\$ 231,000\). These figures seem small in comparison with the 61,158 post offices, \(430,738 \mathrm{~m}\). of post routes (besides \(943,087 \mathrm{~m}\). of rural delivery routes), and a postal revenue of \(\$ 191,478,663\) in 1908, but the comparison vitb the figures of 1790 shows a development in which the new Constitution, witb its incteased security, must have been a factor.
130. The power of Congress to regulate patents was already bearing fruit. Until 1789 this power was in the hands of the states, and the privileges of the inventor were restricted to the territory of the patenting state. Now he had a vast and growing territory within which all the protits of the invention were his own. Twenty patents were issued in 1793. and 23-471 one hundred years afterwards; but one of the inventions of 1793 was El Whitney's cotion gin.
131. When the Constitution was adopted it was not known that the cultivation of cotton could be made profitable in the Southern states. The "roller gin" could clean only 6 tb a day by slave labour. In 1784 cight

Cetres. bags of cotton, landed in Liverpool from an American ship. were seized on the ground that so much cotton could not be the produce of the United States. Eli Whitney (q.v.) invented the saw-gin, by which the cotton was dragged through parallel wires witb openings 100 narrow to allow the seeds to pass; and one slave could now clean 1000 it a day. The exports of cotion leaped from 189,000 ib in

1791 to \(21,000,000 \mathrm{lb}\) in 1801 , and doubled in three years more. The influence of this one invention, combined with the wonderful series of British inventions which had paved the way for it, can hardly be estimated in its commercial aspects. Its political influences were even wider, but more unhappy. The introduction of the commercial element into the slave system of the South robbed it at once of the patriarchal features which had made it tolerable; while it developed in slave-holders a new disposition to defend a system of slave labour as a " positive good." The abolition societies of the South began to dwindle as soon as the tesults of Whitney's invention began to be manilest.
132. The development of a class whose profits were merely the extorted natural wages of the black labourer was certain; and its political power was as certain, though it stavery and never showed itself cleariy until after 1830 . And this class was to have a peculiarly distorting effect on the political history of the United States. Aristocratic in every sense but one, it was ultra-Democratic (in a purely party sense) in its devotion to state sovereignty, for the legal basis of the slave system was in the laws of the several states. In time. the aristocratic element got control of the party which bad originally looked to state rights as a butwark of individual rights; and the party was finally committed to the employment of its original doctrine for an entirely different purpose-the suppression of the black labourer's wages.

\section*{H.-Democracy and Natiomality, s80I-1829}
133. When Jefferson took office in 1801 he succeeded to a task larger than be imagined. His party, ignoring the natural Demecracy forces which tied the states together even against and their wills, insisted that the legal basis of the bond Natharally. was in the power of any state to withdraw at will. This was no nationality; and foreign nations naturally refused to take the American national coin at any higher valuation than that at whicb it was current in its own country. The urgent necessity was for a reconciliation between democracy and nationality; and this was the work of this period. An underlying sense of all this has led Democratic leaders to call the war of 1812-15 the "Second War of Independence "; the result was as much independence of past ideas as of Great Britain.
134. The first force in the new direction was the acquisition of Louisiana in 1803 . Napoleon had acquired it from Spain, Lomblean. and, fearing an attack upon it by Great Britain, offered it to the United States for \(\$ 15,000,000\). Tbe Constitution gave the Federal gover, tinent no power to buy and hold territory, and the party was based on a strict construction of the coostitution. Possession of power forced the strict. construction party to broaden its ideas, and Louisiana was bought, though Jefferson quieted his conscience by talking for a time of a futile proposal to amend the Constitution so as to grant the necessary power. (See Louisiana Purchase; and Jefferson, Thonas.) The acquisition of the westem Mississippi basin more than doubled the area of the United States, and gave them control of all the great river-systems of central The North America. The difficulties of using these Steamboak. rivers were removed almost immediately by Robert Fulton's utilization of steam in navigation (1807). Within four years steamboats were al work on western waters; and thereafter the increase of steam navigation and that of population stimulated one another. The " centre of popu-

Cemife of Monotelion lation " has been carefully ascertained by the census authorities for each decade, and it represents the westward movement of population very closely. Duting this period it advanted from about the middie of the state of Maryland to its extreme western limit, that is, the centre of population was in 2830 nearly at the place which had been the western limit of population in 1870 .
135. Jefierson also laid the basis for a further acquisition in the future by sending arl expedition und \(\mathbf{r}\) Meriwether Lewis (q.2.) and William Clesplore the territory north of the thea Snanist

Rocky Mountains-the "Oregon country " as it wis afterwards called. The explorations of this party (1804-1806), with Captain Robert Gray's discovery of the The Orame Columbia river (1792), made the best part of the claims of the United States to the country forty years later.
136. Jeflerson was re-elected in 1804, serving until March, 1809; his party now controlled almost all the states outside of New England, and could elect almost any one whom it chose to the presidency. Imitating Washington in refusing a third term of office, Jeflerson established

Bration orsed more firmly the precedent, not since violated, restricting a president to two terms, though the Constitution contains no such restriction. The great success of his presidency had been the acquisition of Louisians, whicb was a violation of his party principles; but all his minor successes were, like this, recognitions of the national sovereignty which he disliked so much. Aiter a short and briliant naval war the Barbary pirates were reduced to submission (1805). The long-continued control of New Orleans by Spain, and the persistent intrigues of the Spanish authorities, looking towards a separation of the whole western country from the United States, had been ended by the acquisition of Louisiana, and the full details concerning them will probably remain for ever hidden in the secret history of the early West. They had left bebind a dangerous ignorance of Federal power and control, of which Aaron Burr (q.0.) took advantage (\(1806-07\)). Organizing an expedition in Kentucky and Tennessee, probably for the conquest of the Spanish colony of Mexico, be was arrested on the lower Mississippi and brought back to Virginia. He was acquitted; but the incident opened up a vaster view of the national authority than democracy had yet been able to take. It had been said, forty years before, that Great Britain had long arms, but that three thousand miles was too far to extend them; it was something to know now that the arms of the Federal government were long enough to reach from Washington city to the Mississippi.
137. All the success of Jefferson was confined to his first four years; all his heavy failures were in his second term, in which he and his party as persistently refused to amoriana recognize or assert the inherent power of the nation wha arowe in international affairs. The Jay treaty expired in Brtele. 1800 by limitation, and American commerce was thereafter left to the course of events, Jefferson refusing to accept the only treaty which the British govemment was willing to make. All che difficulties which followed may be summed up in a few words: the British government was then the representative of the ancient system of restriction of commerce, and had a powerful navy to enforce its ideas; the American government was endeabouring to force into international recognition the present system of neutral rights and unrestricted commerce, but its suspicious democracy refused to give it a navy sufficient to command respect. The American government apparently expected to gain its objects without the exhibition of anything but moral force.
138. Great Britain was now at war, from time to time, with almost every other nation of Europe. In time of peace European nations followed generally the old restrictive principle of allowing another nation, like the United States, Neutryl no commercial access to their colonies; but, when they were at war with Great Britain, whose navy controlled the ocean, they were very willing to allow the neutral American merchantmen to carry away their surplus colonial produce. Great Britain had insisted for fifty years that the neutral nation. in such cases, was-really intervening in the war as an ally of ber enemy; but she had so far modified her claim as to admit that "transhipment," or breaking hulk, in the United States was enough to qualify the commerce for recognition. The neutral nation thus gained a double freight, and grew tich in the traffic; the belligerent nations no longer had commerce aflout lor Britisb vessels to capture; and the " frauds of the neutral flags " became a standing subject of complaint among British merchants and naval officers. About 1805 British prize courts
Jefferson received 162 electoral wotes and his opponent. C. C Pinckney, only is.
begen to disregard transhipment and to condemn American vessels which made the voyage from a European colony to the mother country by way of the United States. This was really a restriction of American commerce to purely American productions, or to commerce with Great Britain direct, with tbe payment of duties in British ports.
139. The question of expatriation, too, furnished a good many burning grievances. Great Britain maintained the old German rule of perpetual allegiance, though she axpetry had modified it by allowing the right of emigration. The United States, founded by immigration, was ancoos to establish what Great Britain was not disposed to grant, the right of the subject to divest himself of allegiance by naturalization under a foreign jurisdiction. Four facts thus tended to break off friendly relations: (1) Great Britain's claim to allegiance over American naturalized subjects; (2)

70preat Helle her chim to the belligerent right of search of neutral vessels; (3) her claim of right to impress for her vessels of war her subjects who were seamen wherever found; and (4) the difficulty of distinguishing mative-born American from British subjects, cven if the right to impress naturalized American subjects were granted. British naval officers even undertook to consider all who spoke the English language as British subjects, unjess they could produce proof that they were mative-born Americans. The American sailor who lost his papera was thus open to impressment. A particularly flagrant case of seizure of Americans occurred in 1807. On the 27th of June the British ship "Leopard " fired upon the American frigate "Chesapeake," which, after having lost 3 men killed and 18 wounded, hauled down its flag; the British commander then seized four of the "Chesapeake's" crew. This action aroused intense anger throughout the country, and but for the impotence of the government would undoubtedly have led to immediate war. The American government in 1810 published the cases of such Impressments since 1803 as numbering over 4000 , about one-third of the cases resulting in the discharge of the impressed man; but no one could say how many cases had never been brought to the attention of a government which never did anything more than remonstrate about them.
140. In May 1806 the 耳ritish government, by orders in council, declared a blockade of the whole coatinent of Europe from Brest to the Elbe, about 800 m . In Onders to November, after the batte of Jena, Napoleon answered by the " Berlin decree," in which he assumed to blockade the British Lsles, thus beginning his "continental gystem." A year later the British government snawered by Iurther orders in council, forbidding American trade with any

Buthe Depre
Dacreves Sweden only, in American products, and permitting American trade with other parts of Europe only on condition of touching in England and paying duties. Napoleon retorted with the "Milan decree," declaring good prize any vessel whicb should submit to search by a British ship; but this was evidently e vain fulmination.
145. The Democratic party of the United States was elmost exclusively agricultural and had little knowledge of or bympathy with commercial interests; it was pledged and did not wish to take up the responsibility for a navy; and, es the section of country most affected by the orders in council, New England, was Federalist, and made up of the active and irrcooncilable opposition, tinge of political feeling could not but colour the decisions of the dominant party. Various ridiculous proposals were considered as substitutes for a necessarily naval war; and pcrhaps the most ridiculous was adopted. Since the use of non-intercourse agreements as revolutionary vreapors against Great Britain, an overweening confidence in such measures bad sprung up, and one of them was aov resorted tothe embargo of the 22 nd of December 1807 , forbiddint foreign commerce altogether. It was expected to starve Great Britain
into a change of policy; and its efficts tray be seen by comparing the \(\$ 30,000,000\) exports of \(1790, \$ 49,000,000\) of 1807 and \(89.000,000\) of 1808 . It does not seem to have struck those who passed the measure that the agricultural districts also might find the change unpleasant; but that was the result, and their complaints reinforced thooe of New England, and closed Jefferson's second term in a cloud of recognized misfort une. The pressure had been slightly relieved by the substitution of the Non-Intercourse Law of the rst of March 1809 for the embargo; it prohihited commercial intercourse with Great Britain and France and their dependencies, leaving other foreign commerce open, prohihited the impor- comern tation from any quarter of British and French goods, Blectom and forbade the entrance of British or French vessels, of 1808 public or private, into any port of the United States. Madison, Jefferson's secretary of state, who succeeded Jefferson in 1809, having defeated the Federalist candidate C. C. Pinckney in the eiection of \(\mathbf{1 8 0 8}\), assumed in the presidency a burden which was not enviable. New England was in a ferment, and was suspected of designs to resist the restrictive system by force; and the administration did not face the future with confidence.
142. The Non-Intercourse Law was to he in force oaly "until the end of the next session of Congress " and was to be abandoned as to either belligerent which should abandon its attacks on neutral commerce, and maintained against the other. In 1810 the American government was led to helieve that France had abandoned its system. Napoleon continued to enforce it in fact; but his official fiction served its purpose of limiting the nonintercourse for the future to Great Britain, and thus straining relations hetween that country and the United States still further. The elections of \(181 \mathrm{1}-1812\) resulted everywhere in the defeat of "submission men" and in the choice of new members who were determined to resort to war against Great Britain. Henry Clay, John C. Calhoun, William H. Crawford and other new men seized the lead in the two houses of Congress, and forced Madison, it is said, to agree to a declaration of war as a condition of his renomination in 1812 when he defeated De Witt Clinton by an electoral vote of 128 to 89 . (See Madrson.) Madison sent to Congress a confidential "war message" on the ist of June and on the r8th war was declared. The New England Federalists of 1812. always called it "Mr Madison's war," but the engleal president was about the most unvilling participant in it.
143. The national democracy meant to attack Great Britain in Canada, partly to gratify its western constituency, who had been harassed by Indian attacks, asserted to have been instigated from Canada. Premonitions Tremenas of success were drawn from tbe battie of Tippecanoe, in which William Henry Harrison had defeated in 18 II the north-western le.ague of Indians formed by Tecumseh (q.o.). Between the solidly settled Atlantic states and the Canadian frontier was a wide stretch of unsettled or thinly settled country, which was itself a formidable obstacle to war. Ohio had been admitted as a state in 1802, and Louisiana was The were of admitted in 1812; but their admission had been due to the desire to grant them self-government rather than to their full development in population and resources. Cincinnati was a little settlement of 2500 inhabitants; the fringe of setted country ran not very far north of it; and all beyond was a wilderpess of which little was known to the authorities. The case was much the same with western New York; the army which was to cross the Niagara river must journey almost all the way from Albany through a very thinly peopled country. It would have been far less costly, as events proved, to have entered at once upon a naval war; but the crusade against Canada had been proclaimed all through Kentucky and the West, and their people were determined to wipe out their old scoses before the conclusion of the war. (For the military and naval events of the war see Anerican War or 1812.)
144. The war opened with disaster-General William Hulls surrender of Detroit; and disaster attended it for two yearm. Political appointments to positions in the regular army were
aumerous, and such offcers were worse than useless. The war department showed no great knowledge, and poverty put its little knowledge out of service. Futile attempts Dramer at invasion were followed by defeat or abortion, until the political officers were weeded out at the end of the year 2813, and Jacob Brown, Winfield Scott, E. W. Ripley and others who had fought their way up were put in command. Then for the first time the men were drilled and brought into effective condition; and two successful battles in 1814-Chippewa and Lundy's Lane-threw some glory on the end of Calopown the war. So weak were the preparations even for Laros. Lsme. defence that a British expedition in 1814 met no
Washlaterae Bursel effective resistance when it landed and bumed Washington. For some of the disasters the responsibility rested as much, or more, upon the war department as upon the officers and soldiers in the field.
145. The American navy was but a puny adversary for the British navy, which had captured or shut up in port all the other

Stetp of the Nevy. navies of Europe. But the small number of American .vessels, with the superabundance of trained officers, gave them one great advantage: the training and discipline of the men, and the equipment of the vessels, had been hrought to the very highest point. Captains who could command a vessel but for a short time, yielding her then to another officer who was to take his sea service in rotation, were all amhitious to make their mark during their term. "The art of handling and fighting the old hroadside sailing frigate " had been carried in the little American navy to a point which unvarying success and a tendency to fleet-combats had now made far less common among British captains. Altogether the American vessels gave a remarkably good account of themselves.
146. The home dislike to the war had increased steadily with the evidence of incompetent management by the administration. Pooling The Federalists, who had always desired a navy, La Now Esgrasd. pointed to the naval successes as the best proof of lolly with which the war had beco undertaken and managed. New England Federalists complained that the Federal government utterly neglected the defence of their coast, and that Southera influence was far too strong in national affairs. They showed at every opportunity a disposition to adopt the furthest stretch of state sovereignty, as stated in the Rentucky Resolutions; and every such development urged the national democracy unconsciously further on the road to nationality. When the New England states sent delegates to meet at Hartford, Mortart Conn. (g.v.), and consider their grievances and Coarrantion the best remedies-a step perfectly proper on the Democratic theory of a "voluntary Union"treason was suspected, and a readiness to suppress it hy force was plainly shown. The recommendations of tbe convention came to nothing; but the attitude of the dominant party towards it is one of the symptoms of the manner In which the trials of actual war were steadily reconciling democracy and nationality. The object which Hamilton had sought by high tarifis and the development of national classes had been attained hy more natural and healthy means.
147. In April 1814 the first abdication of Napoleon took place, and Great Britain was ahle to give more attention to her American antagonist. The main attack was to be made on Louisiana, the weakest and most distant portion of the Union. A fleet and army were seot thither, hut the British assault was completely repulsed (Jan. 8, 8815) by the Americans under Andrew Jackson. Peace had been made at Ghent fifteen days before the battle was fought, but the news of the battle and the peace reached Wishington almost together, the former going far to make the latter tolerable.
148. The United States rcally secured a fairlygood treaty. Ye is true that it said not a word about the questions of impressment, scarch and neutral riglits, the grounds of the war: Great Britain did not abandon her position on any of them. But everybody knew that circumstances had changed. The new naval prower whose frigates alone in the past twenty years had shown their ability to fight English frigates on equal terms was not biely +
to be troubled in future with the question of impresament; and in fact, while not renouncing the right, the British government no longer attempted to enforce it. The navy, it must be confessed, was the force which had at last given the United States a recognized and cordial acceptance in the family of nations; it had solved the problem of the reconciliation of democracy and nationality.
149. The remainder of this period is one of the barreoest in American history. The opposition of the Federalist party to the war completed the measure of its unpopularity, and it had only a perfunctory existence for a few years of the longer. Scandal, intrigue and personal criticism Fodernit became the most marked characteristics of Ameri- Partr. can politics until the dominant party broke at the end of the period, and real party conflict was renewed. But the seeds of the final disruption are visible from the peace of 1814 . The old-fashioned Republicans looked with intense suspicion oo the new form of Republicanism generated hy the war, a type which instinctively bent its energies toward the further development of national power. Clay was the natural leader of the new Democracy; but John Quincy Adams and others of Federalist antecedents or leanings took to the new doctrines kindly; and even Calhoun, Crawford and others of the Southern interest were at first strongly inclined to support them. One of the first effects was the revival of protection and of a national bank.
150. The charter of the national bank had expired in 1811, and the dominant party had refused to recharter it. The aftempt to carry on the war by loans resulted in almost a bank-Bank of the ruptcy and in a complete inahility to act efficiently. Uamod As soon as peace gave time for consideration, a second seatere
hank was chartered (April 10, 1816) for twenty years, with a capital of \(\$ 35,000,000\), one-fifth of which was to be gubscribed for hy the national government. It was to have the custody of the government revenues, but the secretary of the treasury could divert the revenues to other custodians, giving his reasons for such action to Congress.
251. Protection was advocated again on national grounds, but not quite on those which had moved Hamilion. The additional receipts were now to be expended for fortifications and other national defences, and for natiooal raads Protection and canals, the latter to be considered solely as military measures, writh an incidental benefit to the people. Busines: distresa among the people gave additional force to the proposal. The war and blockade had been an active form of protection, under which American manufactures had sprung up in great abundance. As soon as peace was made English manufacturers drove their American rivals out of husiness or reduced them to desperate straits. Their cries for relief had a double effect. They gave the spur to the nationalizing advocates of protection, and, as most of the manufacturers were in New England or New York, they developed in the citadel of Federalism a class which looked for help to a Republican Congress, and was therefore bound to oppose the Federalist party. This was the main forco which brought New England into the Republican fold before 1825. An increase in the number of spindles from 80,000 in 18yI to 500,000 in 1815 , and in cotton consumption from 500 bales in \(\mathbf{1 8 0 0}\) to 90,000 in 18 is. the rise of manufacturing tomm, and the rapid development of the mechanical tendencies of a people who had been hitherto almost exchusively agricultural, were influences which were to be reckooed with in the politics of a democratic country.
152. The tarift of 1816 imposed a duty of about \(25 \%\) on imports of cotton and woollen goods, and specific duties on iron imports, except pig-iron, on which there was an ad wolorem Terersef duty of \(20 \%\). In 1818 this duty also was made reve. specific (so cents a cwt.). The ad malorem duties canted most of the manufacturers through the financial crisis of 1818 -18ig, but the iron duties were less satisfactory. In English manufacture the substitution of coke for charcoal in iron production led to continual decrease in price. As the price went down the specific duties were continually increasing the absolute amount of protection. Thus spared the necestity for improversents
in production, the American manufacturers felt English competition more keenly as the years went by, and called for more peotection.
153. James Monroe (g.v.) succeeded Madison as president in 1817, and, re-elected with hardly any opposition in 1820, he "antee served until 1825.' So complete was the supremacy ooe of the Republican party that this is often called fretres." "the ers of good feeling." It came to an end when a successor to Monroe was to be elected; the two sections of the dominant party then had their first opportunity for open struggle. During Monroe's two terms of office the nationalizing party developed the policy on which it proposed to manage national affairs. This was largely the product of the continually swelling western movement of population. The influence of the steamboat was felt more and more every year, and the want of a similar improvement in land transport was correspondingly evident. The attention drawn to western New York by the war had filled that part of the state with a new population. The southern Indians had been completely overthrown by Andrew Jackson during the War of 1812, and forced to cede their lands. Adolanan The admiscion of the new states of Indiana (1816), ofNow Mississippi (1817), Illinois (1818), Alabama (1819), semes Maine (1820) and Missouri (1821)-all but Maine the product and evidence of western growth-were the immediate results of the development consequent upon the war. All the territory east of the Mississippi, except the northern part of the North-West Territory, wras now formed into self-governing states; the state system had crossed the Mississippi; all that was needed for further development was the locomotive engine. The four millions of 1790 had grown into thirteen millions in 1830; and there was a steady increase of one-third in each decade.
154. The urgent demand of western settlers for some road to a market led to a variety of schernes to facilitate intercourse Bre ceat between the East and the West-the most successful baing that completed in New York in 1825 , the Erie Canal. The Hudson river forms the great matural breach in the barrier range which runs parallel to the Allantic coast. When the traveller has passed up the Hudson through that range he sees before him a vast champaign country extending westward to the Great Lakes, and perfectiy adapted by nature for a canal. Such a canal, to turn western traffic into the lake rivers and through the lakes, the canal, and the Hudson to Now York City, was begun by the state through the influence of De Witt Clinton, was derisively called "Clinton's big diteh" until its completion, and laid the foundations for the great commercial prosperity of New York state and city. Long before it was finished the evident certainty of its success had seduced other states into far less successful enterprises of the kind and had established as a nationalizing policy the combination of high tariffs and expenditures for internal improvements which was long known as the "American system." 2 The tarifts of duties on Tro imports were to be carried as high as revenue results "Anartay would justify; within this limit the duties were sossemen to be defined for purposes of protection; and the superabondant revenues were to be expended on enterprises which would tend to aid the people in their efforts to subdue the continent. Protection wes now to be for national benefit, not for the benefit of classes. Western farmers were to have manufacturing towns at their doors, as markets for the surplus which

In 1816 Monroe received 183 elecioral votes and his opponent. Rufus King, 34 ; in 1820 Monroe received 231 and his opponent, John Quincy Adams, I.
"For a generation the making of "internal improvements" by the Federal government was an issue of great political importance. In 1806 Congress made an appropriation for the National or Cumberland Road, eventually constructed from Fort Cumberland, Md.. to Vandalia, III. The policy of making such improvements was opposed on the ground that the Constitution gave to the Federal government to power to make them, that it was not an "enmmerated power," and that such imp"ovements were not 8 "4 necessary and proper " means of carrying out any of the enumerated powers. Others argued that the Federal government might constitutionally male such improvements, but could not exercive juriadiction over them when made.
had hitherto been rotting on their farms; competition among manufacturers was to keep down prices; migration to all the now advantages of the West was to be made easy at national expense; and Henry Clay's eloquence was to commend the whole policy to the people. The old Democracy, particularly in the South, insisted that the whole scheme really had its basis in benefits to classes, that its communistic features were not such as the Constitution meant to cover by its grant of power to Congress to levy taxation for the general weliare, and that any such legislation would be unconstitutional. The dissatisfaction in the South rose higher when the tarifls were increased rarwh of in 1824 and 1828. The proportion of customs 1834 and revenue to dutiable imports rose to \(37 \%\) in 1825 t818. and to \(44 \%\) in 1829 ; and the ratio to aggregate imports to \(33 \%\) in 1825 and \(37 \%\) in 1829. As yet, Southern dissatisfaction showed itself only in resolutions of state legislatures.
155. In the sudden development of the new nation circumstances had conspired to give social forces an abnormally materialistic cast, and this had strongly influenced the exprcssion of the national life. Its literature and its art had amounted to little, for the American people were still engaged in the fiercest of warfare against natural difficulties, which absorbed all their energies.
156. In international relations the action of the govermment was strong, quiet and self-respecting. Its first weighty action took place in 8823 . It had become pretty evident that the Holy Alliance, in addition to its interventions in Europe to suppress popular risings, meant to aid Spain in bringing her revolted South American colonies to obedience. Great Britain had been drifting steadily away from the alliance, and George Canning, the new secretary, determined to call in the weight of the transatlantic power as a check upon it. A hint to the American minister was followed by a few pregnant
passages in Monroe's annual message in December. Doctores "We could not view," he said, "any interposition for
the purpose of oppressing them [the South American states], or controlling in any other manner their destiny by any European power, in any other light than as the manifestation of an unfriendly disposition towards the United States." If both the United States and Great Britain were to take this ground the fate of a fleet sent by the Alliance across the Atlantic was not in milch doubt, and the project was at once given up.
157. It was supposed at the time that Spain might transfer her colonial claims to some atronger power; and Monroe therefore said that " the American continents, by the free and independent condition which they have assumed and maintained, are henceforth not to be considered as subjects for future colonization hy any European powers." This declaration and that quoted above constitute together the "Monroe doctrine " as originally proclaimed. The doctrine has remained the rule of foreign intercourse for all American parties. Added to the already established refusal of the United States to become entangled in any European wars or alliances, it has separated Europe and America to their common advantage. (Sec Monroe Doctinine.)
158. By a treaty with Russia (1825) that power gave up all claims on the Pacific coast south of the present limits of Alaska. The northern boundary of the United States had fie
been defined hy the treaty of 1783; and, after the Nort-west acquisition of Louisiama, a convention with Great Boander. Britain (1818) settled the boundary on the line of \(49^{\circ} \mathrm{N}\). lat. as far west as the Rocky Mountains. West of these mountains the so-called Oregon country, on whose limits the two powers could not agree, was to be held in coramon possession for ten years. This common possession was prolonged by another convention (1827) indefinitely, with the privilege to either power to terminate it, on giving twelve months' notice. This arrangement lasted until 1846 (see Oregon: History).
159. Monroe's term of office came to an end in March 1825. He had originally been an extreme Democrat, who could hardly spenk of Washington with patience; he had slowly modifed his views, and his tendencies were now eagorly claimed by
the few remaining Federalists as identical with their own. The nationalizing faction of the dominant party had scored almost
Burctos all the successes of the administration, and the divergence between it and the opposing faction was steadily becoming more apparent. All the candidates for the presidency in 1824-Andrew Jackson, a private citizen of Tennesser, William H. Crawford, Monroe's secretary of the treasury; John Quincy Adams, his secretary of state, and Henry Clay, the speaker of the House of Representatives-claimed to be Republicans alike, but the personal nature of the struggle was shown by the tendency of their supporters to call tbemselves "Adams men" or "Jackson men," rather than by any real party title. Calhoun was supported by all groups for the vicepresidency, and was elected without difficully. The choice of a president was more doubtful.
ito. None of the four candidates had anything like a party orgapization behind him. Adams and Clay represented the party nationalizing element, as Crawford and Jackson Party \({ }^{\text {Drvergence. did not; but there the likeness among them stopped }}\) The strongest forces behind Adams were the new manufacturing and commercial interests of the East; behind Clay were the desires of the West for internal improvements at Federal expense as a set-off to the benefits which the seaboard states had already received from the government; and the two elements were soon to be united into the National Republican or Whig party (\(q \mathrm{p}\).). Crawlord was the representative of the old Democratic party, with all its Southern influences and lcanings. Jackson was the personification of the new democracy-not very cultured, perhaps. but honest, and hating every shade of class control instinctively. As he became better known the whole force of the new drift of things turned in his direction. Crawford was taken out of the race, just after the electors had cast their votes, by physical failure, and Adams, later, hy the revival of ancient quarrels with the Federalists of New England; and the future was to be with Clay or with Jackson. But in 1824 the electors gave no one a majority; and the Housc of Representalives, voting by states, gave the presidency to Adams.

16x. Adams's election in 1825 was due to the fact that Clay's friends in the House-unable to vote for him, as he was the

Tionadens Admionstrate were open to choice in the House- only three names toas 1835- their votes to Adams. As Adams appointed Clay 29. their votes to Adams. As Adams appointed Clay to the leading position in his cabinet, the defeated party at once raised the cry of "bargain and intrigue," one of the most effective in a democracy, and it was kept up throughout Adams's four years of office. Jackson had received the largest number of electoral votes, though not a majority,' and the bazy notion that he had been injured because of his devotion to the people increased his popularity. Though demagogues made use of it for selfish purposes, this feeling was an bonest one, and Adams had nothing to oppose to it He tried vigorously to uphold the "American system," and succeeded in passing the tariff of 1828 ; he tried to maintain the influence of the United States on both the American continents; but he remained as unpopular as his rival grew popular. Ip 1828 Adams was easily displaced by Jackson, the electoral vote being 178 to 83. Calhoun was re-elected vice-president.
102. Jackson's inauguration in 2820 closes this pratiod, es it ends the time during which a distuption of the Union by the Election of peaceable withdrawal of any state was even possihle. ikev. De- The party which had made state sovereignty its nooracy and bulwark in 1798 was now in control of the govern-
Nationalfy. Natioasthy. ment again, but Jackson's proclamation in his frs: term, in which he wamed South Carolina that " disunion by armete force is treason," and that blood must flow if the laws were resisted, speaks a very difierent tone from the speculations oi \({ }^{2}\) 'Jackson rececived g9. Adams 84. Crawford 41. and Clay 37: in the Housse of Representatives Adams reccived the votes of 13 states.
Jachson of 7 . and Crawford of 4 . For vice-prosident Calhount

Jefferson on possible future divisions of the United States. And even the sudden attempt of South Carolina to exercise independent action (\$8 172-173) shows that some interest dependent upoo state sovereignty had taken alarm at the drift of events, and was anxious to bodge a claim to the right before it should slip from its fingers for ever. Nullification was only the first skirmish between the two hostije forces of slavery and democracy.
163. When the vast terribry of Louisiana was acquired in 1803 the new owner found slavery already established there by custom recognized by French and Spanish law. Congress tacilly ratified existing law by taking no action, slavery contunued legal, and spread further through the territnry; and the state of Lousiana entered as a sleve state in 1812. The next state to be carved out of the territory wis Missouri, admitted in 1821. A Territory, on applying for admission as a state, brings a constitution for inspection by Congress; and when it was found that the new state of Missouri proposed to recognize and continue slavery, 2 vigorous opposition spread through the North and West, and carried most of the senators and representatives from those sections with it. In the House of Representatives these two sections had a greally superior number of members; but, as the number of Northern and Southern states had been kept about equal, the compact Southern vote, with one or two Northern allies, gencrally retained control of the Senate. Admitted by the Senate and rejected by the House, Missouri's application bung suspended for two years until it was successful hy the admission of Maine, a balancing Northern state, \({ }^{2}\) and by the following arrangement, known as the Missouri Compromise of 1820: Missouri was to enter as a comprean slave state; slavery was for ever prohibited through-
out the rest of the Louisiana Purchase north of hat. \(36^{\circ} 30^{\prime}\), the main soulhern boundary of Missouri; and, though notbing was said of the territory south of the compromise line, it was understood that any state formed out of it was to be a slave state, if it so wished (see Missoury Conpronosx and Missoura, § \(H\) istory). Arkansas entered under this provision in 1836 .
164. The question of slavery was thus set al rest for the present, though a few agitatora were roused to more zenious opposition to the essence of slavery itself. In the next decade these agitators succeeded only in the conversion of Senctionst a few recruits, but these recruits were the ones who took up the work at the opening of the next period and never gave it up until slavery was ended. It is plain now, bowever, that North and South had already drifted so lar apart as to form two sections, and it became evident during the next forty years that the wants and desires of these two sections were so divergens that it was impossible for one government to make satisfactory laws for both. The chief cause was not removed in \(\mathbf{1 8 2 0}\), though one of its effects was got out of the way for the time.
165. The vast flood of human beings which had been pouring westward for years bad now pretty well occupied the territory east of the Mississippi, while, on the west side of that stream, it still showed a disposition to hold to the Thos. river valleys. The settled area bad increased from \(240,000 \mathrm{sq}\). m . in 1790 to \(633,000 \mathrm{sq}\). mm . in 183 ga , with an average of 20.3 persons to the square mile. There was still a great deal of Indian territory in the Southern states of Georgia, Alabama, Mississippi, and Fiorida, for the Southera Indians were among the finest of their race, they had become semicivilized, and were formidable antagonists to the encroaching white race. The states interested had begun preparations for their forcible removal, in public defiance (see Georgin: Histary) of the attempts of the Federal government to protect the Indians (2827), hut the removal was not completed until 1835 . In the North, Wisconsin and Nichigan, with the northern halves of Illinois and Indiana. were still very thinly settled, but everything indicated early, inc rease of population. The first lake steamboat. the "Walk-in - the Water," had appeared at Detroit in \(18 \mathrm{I8}\), and the opening of the Erie Canal in 1825 added to the namber

\footnotetext{
- A prompt admission of Missouri world have balanced the slave and (ree states, but Alabama's admisoion as a slave state balanod them in 1819.
}
of such vessels. Lake Erie had seven in 1826; and in 1830, 7. while the only important lake town, Detroit, was monomat hardly yet more than a frontier fort, a daily line of steamers was running to it from Buffalo, carrying the increasing stream of emigrants to the western territory.
166. The land system of the United States had much to do with the early development of the West. From the first settlement, the universally recognized rule bad been that
Thelead struen. of absolute individual property in land, with its corollary of unrestricted competitive or "rack" rents; and this rule was accepted fully in the national land system, whose basis was reported by Jefferson, as chairman of a compittee of the Confederation Congress (1785). The public lands were to be divided into "hundreds" each ten miles square and containing one hundred mile-square plots. The hundred was called a "township," and was afterwards reduced to six miles square, of thirty-six mile-square plots of 640 acres each. From sime to time principal meridians and east and west base lines have been run, and townships have been determined by their relations to these lines. The sections (plots) have been aubdivided, but the transfer describes each parcel from the survey map, as in the case of " the south-west 0 tarter of section 20, township 30 , nortb, range I cast of the thira principal meridian." The price fixed in 1790 as a minimum was \(\$ 2\) per acre; it has tended to decrease, and no effort has ever been made to gain a revenue from it. When the nation acquired its western territory it secured its title to the soil, and always made it a fundamental condition of the admistion of a new state that it should not tax United States lands. To compensate the new states for the freedom of unsold public lands from taxation, one township in each thirty-six was reserved to them for educational purposes; and the excellent public school systems of the Western states. have been founded on this provision. The cost of obtaining a quarter section (160 acres), under the still later bomestead system of granting lands to actual settien, has come to be only about \$26; the interest on this, at \(6 \%\), represents an annual rent of one cent per acre-making tbis, says F. A. Walker, as nearly es possible the " no-rent land" of the economists.
167. The bulk of the early westwerd migration was of home production; the great immigration from Europe did not begin until about 1847 . The West as well as the East thus had its institutions fixed before being called upon to absorb an enormous foreign element.

> 1.-Industrial Development and Sectional Dinergance,' 1820-1850.
168. The eight years \(1829-1837\) have been called "the reign of Andrew Jackson "; his popularity, bis long struggle for the nter presidency, and his feeling of his official ownership prackel of the subordinate offices gave to his administration metbede at least an appearance of Cacsarism. But it was a strictly constitutional Caesarism; the restraints of written law were never violated, though the methods adopted within the law were new to national politics. Since about 1800 state politics in New York and Pennsyivania had been noted for the systematic use of the offices and for the merciless manaer in which the officeholder was compelled to work for the party which kept him in place. The presence of New York and Pennsylvania politicians in Jackson's cabinet taught him to use the same system. Removals, except for cause, had been relatively rare before; but under Jackson men were removed almost exclusively for the purpose of installing some more serviceable party tool; and a clean sweep was made in the civil servico. Other partics adopted the system, and it remained the rule at a change of administration until comparatively recent years.
169. The syatem brought with it a semi-military reorganizaciop of parties. Hitherto nominations for the more important Tho Now offices had been made mainly by legislative caucuses; organeo candidates for president and vice-president were +oe 0 Partbe. nominated by caucuses of congreasmen, and candidates for the higher atate offices by caucuses of the state legislatures. Late in the preceding period "conventions " of delegates from the members of the party in the state
were held in New Yort and Pennsylvania; and in 1831-1832 this became the rule for presidential nominations. It rapidty developed into systematic state, county, and city " conventions"; and the result was the appearance of that complete political machinery, the American political party, with its local organizations, and its delegates to county, state and national conventions. The Democratic machinery was the first to appear, in Jackson's second term (1833-1837). Its workers were paid in ofibes, or hopes of office, so that it was said to be built on the "cohesive power of public plunder "; but its success was immediate and brilliant. The opposing party, the Whig party (q.o.), had no chance of victory in 8836 ; and its complete overthrow drove its leaders into the organization of a similar machinery of their own, which scored its first success in 1840 . Since that time these strange bodies, unknown to the law, have governed the country by turns; and their enormous growth has steadily made the organization of a third piece of auch machinery more difficultor hopeless.
170. The Bank of the United States had hardly been heard of in politics until the new Democratic organization came into bostile contact with it. A semi-official demand saak ef the upon it for a political appointment was met by a Uaked refusal; and the party managers called Jackson's States, attention to an institution which be could not but dislike the more he considered it. His first message spoke of it in unfriendly terms, and every succeeding message brought a more open attack. The old party of Adams and Clay had by this time taken the name of Whigs, probabiy from the notion that they were struggling against "the reign

The Fhen of Andrew Jackson," and they adopted the cause of the bank with eagerness. The bank charter did not erpire until 1836, but in 1832 Clay brought up a bill for a new charter. It was passed and vetoed; and the Whigs made the veto an important issue of the presidential election of that year. They were beaten; Jackson was re-elected, receiving 219 electoral votes, and Clay, his Whig opponent, only 49, and the bank party could never again get a majority in the House of Representatives for the charter. The insistence of the president on the point that the charter was a "monopoly" bore weight with the people. But the president could uot obtain a majority in the Senate. He determined to take a step which would give bim an initiative, and which his opponents could not induce botb houses to unite in overriding or punishing. Taking advantage of tbe provision that the secretary of the treasury might order the Reeneved public funds to be deposited elsewbere than in the of the bank or its branches, be directed the secretary to Dopoulla. deposit all the public funds eisewhere. Tbus deprived of its great source of dividends, the bank feil into difficulties, became a state bank after 1836, and tben went into bankruptcy. (See Banis and Banking: Uniled Slates; and Jackson, Andrew.)
171. All the political conflicts of Jackson's terms of office were close and bitter. Loose in his ideas before 2829, Jackson showed a steady tendency to adopt the strictest construction of the powers of the Federal government, except in such official perquisites as the offices. He grew into strong opposition to all traces of the "American system," and vetoed oppoakion bills for internal improvements unsparingly; and to ike his feeling of dislike to all forms of protection is as "Amertise evident, though he took more care not to make it too public. There are many reasons for believing that his drift was the work of a strong scbool of leaders-Martin Van Buren, Thomas H. Benton, Edward Livingston, Roger B. Taney, Levi Woodbury, Lewis Cass, W. L. Marcy and otbers-who developed tbe policy of the party, and controlled it until the great cbanges of parties about 1850 took their power from tben. At all events, some persistent influence made tbe Democratic party of 1830-1850 the most consistent and successful party which had thus far appeared in the United States.
172. Calhoun (q.0.) and Jackson were of the same stock-Scotush-Irish-much alike in appearance and characteristics, the former representing the trained and edu- castenesal cated logic of the race, the latter lts instincts and passions. Jackson was led to break off his friendly relations with

Calhoun in 1830, and he had been led to do so more ensily because of the appearance of the doctrine of nullification (q.v.), which was generally altributed, correctly enough, to the authorship of Calhoun. Asserting, as the Republican party of 1798 had done, the sovereign powers of each state, Calhoun held that, as a means of avoiding secession and violent struggle upon every occasion of the passage of an act of Congress which should seem unconstitutional to any state, the state might properly suspend or " nullify" the operation of the law within its jurisNulliferso tion. diction, in order to protect its citizens against oppression. The passage of the Tariff Act of 1832 , which organized and systematized the protective system, forced the Calhoun party into action. A state convention in South Carolina (\(q, v\).) on the 24 th of November 1832 declared the Tariff Act null, and made ready to enforce the declaration.
173. But the time was past when the power of a single state could withdraw it from the Union. The president issued a proclamation, warning the people of South Carolina against any attempt to carry out the ordinance of nullifieation; he ordered a naval force to take possession of Charleston harbour to collect the duties under the act; he called upon Congress for additional executive powers, and Congress passed what nullifiers called the "bloody bill," putting the land and naval forces at the disposal of the president for the collection of duties against "unlawful combinations"; and he is said to have announced, privately and profanely, his intention of making Calhoun the first victim of any open conflict. Affairs looked so threatening that an unofficial meeting of "leading nullifiers" agreed to suspend the operation of the ordinance until Congress should adjourn; whence it derived the right to suspend has never heen stated.
174. The president had already asked Congress to reduce the duties; and many Democratic members of Congress, who had

Trentf of f833. yiclded to the popular clamour for protection, were rery glad to use "the crisis" as an excuse fer now voting against it. A compromise Tariff Act, scaling down all duties over \(20 \%\) by one-tenth of the excess every two years until 1842, when the remaining excess over \(20 \%\) should be dropped, was introduced by Clay and became law. Calhoun and his followers claimed this as all that the nullification ordinance had aimed at; and the ordinance was formally repealed. But nullification had received its death-blow; even those Southern leaders who maintained the right of secession refused to recognize the right of a state to remain in the Union while nullifying its laws; and, when protection was reintroduced by the tariff of 1842 , nullification was hardly thought of.
175. All the internal conditions of the United States were completely altered by the introduction of railways. For twenty The years past the Americans had been pushing in every Locomotive, direction which offered a hope of the means of reconciling vast territory with enormous population. Stephenson's invention of the locomotive came just in time, and Jackson's two terms of office marked the outburst of modern American life. The miles of railway were 23 in 1830,1008 in 1835 , some 2800 in 1840 , and thereafter they about doubled every five years until 1860 .
176. A railway map of 1840 shows a fragmentary system, designed mainly to fill the gaps left by the means of communication in use in \(\mathbf{1 8 3 0}\). One or two short lines run back Rellwart into the country from Savannah and Charleston; of 1840 . another runs north along the coast from Wilmington to Baitimore; several lines connect New York with Washington and other points; and short lines elsewhere mark the openings which needed to be filled at once-a number in New England and the Afiddle states, three in Ohio and Michigan, and three in Louisiana. Year after year new inventions came in to increase Aathractere and aid thls development. The anthracite coal of the Middle states had been known since 1700 but no means had been devlsed to put the refractory agent to work. It was now peoctroftily applied to railways (1836), soo. and to the mumplattite of froo (8837). Hiftherto -2uking; now
and production was restricted to the states in which nature had placed coal alongside of iron. Steam navigation across the Atlantic was estahlished in 1838 . The telcgraph Ocoan Navy came next, S. F. B. Morse's line being erected in gathon. The 18.44. The spread of the railway system hrought rekgraph. with it, as a natural development, the rise of the Amcrican system of express companics, whose first phases of individual enterprise appeared in 1839 . No similar period in American history is so extraordinary for material development as the decade \(1830-1840\). At its beginning the country was an overgrown type of colonial life; at its end American life had been shifted to entirely new lines, which it has since followed. Modern American history had burst in with the explosiveness of an Arctic summer.
177. The steamboat had aided Western development, but the railway aided it far more. Cities and states grew as if the oxygen of their surroundings had been suddenly increased. The steamboat influenced the railway, Westero and the railway gave the steamboat new powers.
Vacant places in the states east of the Mississippl were filling up; the long lines of emigrant waggons gave way to the new and hetter methods of transport; and new grades of land were made accessihle. Chicago was but a frontier fort in 1832; within a hall-dozen years it was a flourishing town, with eight steamers connecting it with Buffalo, and dawning ideas of its future development of railway connexions. The maps change from decade to decade, as mapmakers hasten to insert new cities which have sprung up. Two new states, Admission Arkansas and Michigan, were admitted (1836 andolartaasae 1837). The population of Ohio grew from 900,000 and to \(1,500,000\), that of Michigan from \(3^{2,000}\) to Mikitren. 212,000 , and that of the country from \(13,000,000\) to \(17,000,000\), between 1830 and \(\mathbf{1 8 4 0}\).
178. With the change of material surroundings and possibilities came a steady amelioration of social conditions and a development of social ideals. Such features of the past as imprisonment for debt and the cruel indiffer- Soclas ence of old methods of dealing with crime began

Condtions
dieannear: the time pas nast when a state could us
to disappear; the time was past when a state could use an abandoned copper mine as its state prison, as Connecticut had formerly done (sce Snisbury, Connecticut). The domestic use of gas and anthracite coal, the introduction of expensive aqueducts for pure water, and the changing life of the people forced changes in the interior and exterior of Amcrican dwellings. Wood pas still the common building material; imitations of Greek architecture still retained their vogue; but the interiors were models of comfort in comparison with the houses even of 1810. In the "new " regions this was not yet the case, and here social restraints were still so few that society seemed to be reduced almost to its primitive elements. Western steamers reeked with gamhling, swindling, duelling and every variety of vice. Public law was almost suspended in some regions; and organized associations of counterfeiters and horse-thieves terrorized whole sections of country. But this state of affairs was altogether temporary, as well as limited in its area; the older and more densely settled states had been well prepared for the change and had never lost command of the social forces, and the process of settling down went on, even in the newer states, with far more rapidity than could reasonably have been expected. Those who took part in the movements of population in \(8830-\) 18.40 had been trained under the rigid forms of the previous American life; and these soon re-asscrted themselves. The rebound tras over before 1847, and the Western states were then as well prepared to reccive and digest the great immigration Which followed as the older states would have been in 1830.
179. A distinct American literature dates from this period. Most of the publications in the Unired States were still cheap reprints of foreign works; but native productions no longer followed foreign models with servility. Between 1830 and 1840 Whittier, Longellow, Holmes, Poe, Hawt horne, Bmerson, Bancroft and Prescott joined the advanceguart of American writers-Bryant, Dana, Halleck, Drake

Irving and Cooper; and even those writers who had already made their place in literature showed the influence of new conditions by their growing tendency to look less to foreign models and methods. (See higeican Literature.) Popular education was improved. The new states had from the first endeavoured to secure the best possible system of common schools. The attempt came naturally from the political instincts of the class from which the migration came; but the system which resulted was to be of incalculable service during the years to come. Their abooiute democracy and their universal use of the English Common language have made the common schools most scrow successful machines for converting the raw material syatom. of immigration into American citizens. This supreme benefit is the basis of the system and the reeson for its existence and development, but its incidental advantage of educating the people bas been beyond calculation. It was an odd symptom of the general change that Nows. American newspapers took a new form during these napors. ten years. The old "blanket-sheet" newspaper, cumbrous to handle and slow in all its ways, met its first rival in the type of newspaper which appeared first in New York City, in the Sun, the Herald and the Tribwne (1833, 1835 and 1841). Swift and energetic in gathering news, and fearless, sometimes reckless, in stating it, they brought into American life, with very much that is evil, a great preponderance of good. 180. The chaos into which a part of American society had been thrown had a marked effect on the financial institutions Laedsame. of the country, which went to pieces before it for a hands of the United States a source of revenue so much as a source of development. The sales bad touched their high-water mark during the speculative year 18 g , when receipts from them had amounted to \(\$ 3,274,000\); in other years they seldom went above \(\$ 2,000,000\). When the railway set the stream of migration moving faster than ever, and cities began to grow like mushrooms, it was natural that speculation in land should feel the effects. Sales rose to \(\$ 3,200,000\) in 1831 , to \(\$ 4,000,000\) spacmeman. in 1833 , to \(\$ 5,000,000\) in 1834 , to \(\$ 15,00,000\) in
1835 , and to \(\$ 25,000,000\) in 1836 . In 1835 the president announced to Congress that the public debt was extinguished, and that some way of dealing with the surplus should be found. Calhoun's proposal, that after the year 1836 any surplus in excess of \(\$ 5,00,0 \infty\) should be divided among the states as a foan, was adopted, as regards the surplus (almost \(\$ 37,000,000\)) of that year; and some \(\$ 38,000,000\)-still carried on the books of the treasury as unavailable funds-were actually distributed before the crisis of \(\mathbf{1 8 3 7}\) put an end to the surplus and to the policy. The states had already taken a hand in the general speculation by beginning works of public improvement. Foreign, particularly English, capital was abundant; and states which had been accustomed to think a dozen times over a tax of a hundred thousand dollars now began to negotiate loans of millions of dollars and to appropriate the proceeds to the digging of canals and the construction of railways. Their enterprises were badly conceived and badly managed, and only added to the confusion when the crash came. If the Federal government and the states felt that they were rich, the imaginations of individuals ran riot. Every one wanted to buy; prices rose, and every ene was growing richer on paper. The assessed value of real estate in New York Ciy in 1832 was \(\$ 104,000,000\); in 1836 it had grown to \(\$ 253,000,000\). In Mobile the assessed value rose from \(\$ 1,000,000\) to \(\$ 27,000,000\). Fictitious values were the rule.
181. When Jackson in 1833 ordered the government revenues to be deposited elsewhere than in the Bank of the United States, there was no government agent to receive them. The secretary of the treasury selected banks at various points in which the revenue should be deposited by the collecting officers; but these banks were organized under charters from their states, as were all banks except that of the United States. The theory of the dominant party denied the constitutional power of Congress to charter a bank, and the states had not yet learned bow to
deal with such institutions. Their grants of bank charters had been based on ignorance, intrigue, favouritism or corruption, and the banks were utterly unregulated. The Democratic feeling was that the privilege of forming banking corpers. corporations should be open to all citizens, and it cloan. soon became so. Moreover, it was not until after the crash that New York began the system of compelling such deposits as would really secure circulation, which was long afterward further developed into the present national bank system. In most of the states banks could be freely organized with or without tangible capital, and their notes could be sent to the West for the purchase of government lands, which needed to be held but a month or two to gain a handsome profit. (See Banys and Baniling: United Slates.) "Wild-cat banks" sprang up all over the country; and the "pet banks," as those chosen for the deposit of government revenues were calied, went into speculation as eagerly as the banks which hardly pretended to have capital.
182. The Democratic theory denied the power of Congress to make anything but gold or silver coin legal tender. There bave heen "paper-money heresies" in the party; but there was none such among the new school of Cow "Speal Democratic leaders which came in in 1829 ; they were "hard-money men." In July 1836 Jackson's secretary of the treasury ordered land agents to take nothing in payment for lands except gold or silver. In the following spring the full effects of the order became evident; they fell on the administration of Van Buren, Jackson's successor. \({ }^{1}\) Van Buren had been Jackson's secretary of state, the representative man of the new Democratic school, and, in the opinion of the opposition, the evil genius of the Jackson administration; and it seemed to the Whigs poetic justice that he should bear the weight of his predecessor's errors. The " specie circular " turned the tide of paper back to the East, and when it was presented for payment most of the banks suspended specie payment witb hardly a struggle. There was no longer a thought of buying; every one wanted to sell; and prices ran down with a rapidity even more starting than that with which they had risen. Failures, to an extent and on a scale unprecedented in the United States, made up the "panic of 1837." Many of the
makef states had left their bonds in the hands of their agents, end, on the failure of the latter, found that the bonds had been bypothecated or disposed of, so that the states got no return from them except a debt which was to them cnormous. Saddled suddenly with such a burden, and unable even to pay interest, some of the states "repudiated" their obligations; and repudiation was made successfil by the fact that a state could not be sued by its creditors except by its own consent. Even the Federal government felt the strain, for its revenues were locked up in suspended banks. A little more than a year after Congress had authorized the distribution of its surplus revenues among the states Van Buren was forced to call it into special session to provide some relief for the government itself.
183. Van Buren held manfully to the strictest construction of the powers of the Federal government. He insisted that the panic would best right itself withour goverament interference, and, after a four years' struggle, he smbe succeeded in making the "sub-treasury scheme" stheme law (1840). It cut of all connexion of the government with banks, putting collecting and dishursing offers under bonds to hold money safely and to transfer it under orders from the treasury, and restricting payments to or by the United States to gold and silver coin. Its passage had been preceded by another commercial crisis (1839), more limited in its field, but more discouraging to the people. It is true that Jackson, in dealing with the finances, had "simply smashed things," leaving his successor to repair damages; hut it is far from certain that this was not the best way available at the time. The wisest scheme of finwocial reform would bave had small chance
\({ }^{1}\) In the elertion of 1836 Van Buren received Iyo clectoral votes, W. H. Ilarricon (Whig) 73. Hugh L. White 26. Daniel Webster 14 and W. P. Mangum II.
of success with the land-johbers in Congress, and Van Buren's firmness found the way out of the chaos.
184. Van Buren's firmness was unpopular, and the Whig party now adopted methods which were popular if somewhat Efoctloe demagogical. It nominated William H. Harrison of 18 rat in 1840; it contrasted his homely frontier virtues with Van Buren's "ostentatious indifference to the misfortunes of the people" and with the supposed luxury of his life in the White House; and, after the first of the modern "campaigns" of mass meetings and processions, Harrison was elected, receiving 234 electoral votes and Van Buren only 60. He died on the 4th of April 1841 , only a month after his inauguration, and the vice-president, John Tyler, became president. Tyler was of the extreme Calhoun school, whicb had shown some disposition to grant to Van Buren a support which it had refused to Jackson; and the Whigs had nominated Tyler to retain his faction with them. Now he was the nominal leader of the party, while his politics were opposite to theirs, and the real leader of the party, Clay, was ready to force a quarrel upon him. The quarrel took place; the Whig majority in Congress was not large enough to pass any measures over Tyler's veto; and the first two years of his administration were passed in harren Tertrf of 1643. conflict with his party. The "sub-treasury" law 186. was repealed (1841); the tariff of 1842 introduced a modified protection; and there the Whigs were forced to stop. Their dissensions made Democratic success comparatively easy, and Tyler had the support of a Democratic House bebind him during the last two years of his term.
185. The success of the Democratic machincry, and the reflex of its temporary check in 1840 , with the influences hrought to bear on it by the returning Calhoun faction, were such as to take the control of the party out of the hands of the leaders who had formed it. They had had high regard for political principle, even though they were willing to use doubtful methods for its propagation; these methods had now brought out new men, who looked mainly to success, and to close connexion with the controlling political ciement of the South as the easiest means of attaining success. When the Democratic convention of 1844 met it was expected to renominate Van Buren. A majority of the delegates had been sent there for that purpose, hut many of them would have been glad to be prevented from doing so. They allowed a resolution to be passed making a two-thirds vote necessary for nomination; Van Buren was unable to command so many votes; and, when his name was withdrawn, James K . Polk was nominated. Tte Whigs nominated Clay.
186. The beginning of the abolitionist movement in the United States, the establighment of the Liberator (1831), Abolitonke and of the American Anti-Slavery Society (1833), Moomosmert and the subsequent divisions in it, are dealt with
elsewhere (see Garrison, Willian Liovo). Up to that time "abolition" had meant gradual abolition; it was a wish rather than a purpose. Garrison called for immediate abolition. The basis of the American system was in the raserved rights of the states, and slavery rested on their will, which was not likely to be changed. But the cry was kept up. The mission of the Abolitionists was to force the people to think of the question; and, in spite of riots, assaults and persecution of every kind, they fulfilled it manfully. In truth, slavery was more and more out of harmony with the new economic condition: which were taking complete control of the North and West, but had hardly been felt in the South. Thus the two sections. Norti) and South, were more and more disposed to take opposite views of everything in which slavery was involved, and it had a faculty of involving itself in almost everything. The status of slavery in the Territories liad been settled in 1820; that of slavery in the states had been settled by the Constitution; but even in minor queations the intrusive element had to be reckoned with. The Alelitionists sent their documents through the mails, and the South wished the Federal government to interfere and stop the partice. The Abobtionists persisted in petitioning Congress he passage of various measures which Congress regarded a nconstitutional; and the disposition of Congress to deny
or regulate the right of petition in such matters (see Aowns, Joan Quincy) excited the indignation of Northern men who had no sympathy with abolition. But the first occasion on which the views of the two sections came into flat contrast was on the question of the annexation of Texas.
187. The United States had had a vague claim to Texas until 1819, when the claim was surrendered to Spain in part compeosation for Florida. On the revolt of Mexico Texas became a part of that republic. It was colonized by

Texan Americans, mainly southerners and slave-holders, seceded from Mexico in 1835 , and defeated the Mexican armies and established its independence in the following year. Southern politicians desired its annexation to the United States for many reasons. Its people were kindred to them; its soil would widen the area of slavery; and its territory, it was hoped, could be divided into several states, to reinforce the Southern column in the Senate. People in the North were either indifferent or hostile to the proposal; Van Buren had declared against it, and his action was a reason for his defeat in the Democratic convention. On the other hand, there were indications that the
joint occupation of the Oregon country could not Orame. last much longer. American immigration into it had begun, while the Hudson's Bay Company, the British tenant of the soil, was the natural enemy of immigration. To carry the sentiment of both sections, the two points were coupled; and the Democratic convention declared for the reannexation of Texas and the reoccupation of Oregon.
188. One of the cardinal methods of the political Abolitionists was to nominate candidates of their own against a douhtiul friend, even though this secured the election of an open enemy. Clay's efforts to guard his condemnation of tbe Texas annexation project were just enough Linert to push the Liberty party (q.v.), the political Abolitionists, into voting for candidates of their own in New York; on a close vote their loss was enough to throw the electoral votes of that state to Polk, and its votes decided the result. Polk was elected (November 1844); \({ }^{1}\) and Texas ofiesth was annexed to the United States in the following Admere spring. At the next meeting of Congress (1845) of Toxat Texas was admitted as a state.
189. West of Texas the northern prolongation of Mexico ran right athwart the westward movement of American population; and, though the movement had not yet reached the harrier, the Polk administration desired further acquisitions from Mexico. The western boundary of Texas was undefined; a strip of territory claimed hy Texas was settled exclusively by Mexicans; hut the Polk administration directed General Zachary Taylor, the American commander in Texas, to cross the Nueces river and seize the disputed territory. Collisions with Mexican troops followed; they were beaten in the hattles of Palo Alto and Resaca de la Palma, and were chased across the Rio Grande. Taylor followed and took the city of Montercy.
190. On the news of the first bloodshed Congress declared war against Mexico, over the opposition of the Whigs. A land and naval force took possession of California, and a land expedition occupied New Mexico, so that the authority of Mexico over all the soil north of her present boundaries was abruptly terminated (1846). At the opening of 1847 Taylor fought the last batte in northern Mexico (Bucna Vista), defeating the Mexicans, and General Winfield Scott, with a new army, landed at Vera Cruz for a march upon the city of Mexico. Scott's march was marked by one successful battle after anot her, usually against heavy odds; and in September he took the capital city and held it until peace was made (1848) by the treaty of Guadalupe Hidalgo. Among the terms of peace was the cession of the present Cali. fornia, Utah, Arizona and New Mexico, the consideration beine a payment of \(\$ 15,000,000\) hy the United States and the assumption of some \(\$ 3,000,000\) of dehts due by Mexico to American citizens. With a subsequent rectification of frontier (1853) hy the Gadsden Treaty (see Gadsden, Jayes), this cessioe
\({ }^{1}\) Polk received 170 electoral votes and Clay ios.
added some \(500,000 \mathrm{sq} . \mathrm{m}\). to the area of the United States; Tezas itself made up a large additional area. The settlement of the north-east and north-west boundaries (see Manse and Oregon) by the Webster-Ashburton and Buchanan-Pakenham treaties \((1842,1846)\) with the Texas and Mexican cessions, gave the United States the complete territorial form retained until the anneration of Alaska in 1867.
191. In the new territory slavery had been forbidden under Mexican law; and its annexation brought up the question of finvery is its status under American law. He who remembers ane Now the historical fact that slavery had never been more Terriory. than a custom, ultimately recognized and protected by state law, will not have much difficulty in deciding about the propriety of forcing such a custom by law upon any part of a territory. But, if slavery was to be excluded from the new territory, the states which should ultimatcly be formed out of it would enter as free states, and the influence of the South in the Senate would be decreased. For the first time the South appears as a distinct imperinan in imperio in the territorial difficulties which began in 1848 .
192. The first appearance of these difficulties brought out in the Democratic party a solution which was so closely in line asspmetter with the prejudices of the party, and apparently so sove- likely to meet all the wishes of the South, that it mown." bade fair to carry the party through the crisis without the lous of its Southern vote. This was "squatter sovereignt \(y\)," the notion that it would be best for Congress to leave the people of each Territory to settle the question of the existence ol slavery for themselves. The hroader and democratic ground for the party would have been that which it at first seemed likely to take-the "Wilmot Proviso," a condition
Wrimet proposed to be added to the act authorizing acquisitions of territory, providing that slavery should be forbidden in all territory to be acquired nnder the act (see Wrimot, Davmo. In the end apparent expediency carried the dominant party off to "squatter sovereignty," and the Democratic adherents of the Wilmot Proviso, with the Liberty party and the anti-slavery Whigs, united in 1848 under the Froe Sall name of the Free Soil party (q.e.). The Whigs had no solution to offer; their entire programme, from this time to their downfall as a party, consisted in a persistent eflort to evade or ignore all difficulties connected with slavery.
193. Taylor, after the batle of Buena Vista, resigned and came home, considering himself ill-used by the administration. He refused to commit himself to any party; and the ancotion. Whigs were forced to accept him as their candidate in 1848. The Democrats nominated Lewis Cass; and the Free Soil party, or "Free-Soilers," nominated Van Buren. By the vote of the last-named party the Democratic candidate lost New York and the election, and Taylor was elected president, receiving 163 electoral votes, while Cass received 127. Taking office in March 1849, he had on his shoulders the whole burden of the territorial difficulties, aggravated by the discovery of gold in California and the sudden rise of population there. Congress was so split into lactions that it could for a long time agree upon nothing; thieves and outlaws were too strong for the semi-military government of California; and the Californians, with the approval of the president, proceeded to form a constitution and apply for admission as a state. They had so framed their constitution as to forbid slavery; and this was really the applica. tion of the Wilmot Proviso to the richest part of the new territory, and the South felt that it had been robbed of the cream of what it alone had fought cheerfully to obtain.
194. The admission of Califormia was not secured until September 1850 , soon after Taylor's sudden death (July 9), and then only by the addition of a bonus to Texas,

\section*{Alinfashore} the division of the rest of the Mexican cession into the Territories of Utah and New Mexico without prohibition of slavery, and the passage of a fugitive slave law. The slave trade, but not slavery, was forbidden in the District of Columbia. The whole was generally known as the Compromise Measures of 1850 (q.v.). Two of its features need notice.

As has been said, slavery was not mentioned in the act; and the status of slavery in the Territories, was thus left uncertain. Congress can veto any legislation of a territorial legislature, but, in fact, the two bouses of Congress cangero. were hardly ever able to unite on anything after 1850, and both these Territories did establish slavery before \(\mathbf{1 8 6 0}\), without a Congressional veto. The advantage here was with the South. The other point, the Fugitive Slave Law (q.v.), was a special demand of the South. The Constitution contained clauses directing that fugitive Pastive criminals and slaves should be delivered up, on shave Law. requisition, by the state to which they had fled. In the case of criminals the delivery was directed to be made by the executive of the state to which they had fled; in the case of slaves no delivering authority was specified, and an act of Congress in 1793 had imposed the duty on Federal judges or on local state magistrates. Some of the states had passed "Personal Liberty Laws," forbidding or Persead limiting the action of their magistrates in such cases, Liberty and the act of 18 go transferred the decision of such Laws cases to United States commissioners, with the assistance of United States marshals. It imposed penalies on rescues, and denied a jury trial.
195. The question of slavery had taken up so much time in Congress that its other legislation was comparatively limited. Tie rates of postage were reduced to five and ten cents for distances leas and greater than 300 m . (1845); and the naval school at Annapolis was established in the same year. The military academy at West Point had been established as such in 1802. When the Democratic party had obtained complete control of the government, it re-established (by act of 6th August, 1846), the "sub-treasury," or independent treasury, which is still the basis of the treasury system. In the same year, after an exhaustive report by Robert J. Walker, Polk's secretary of the treasury, the tariff of 1846 was passed; it reduced duties, and moderated the application of the protective principle. Apart from a slight reduction of duties in 1857 , this remained in force till \(\mathbf{1 8 6 1}\).
196. Five states were admitted during the last ten years of this period: Florida (1845), Texas (1845), Iowa (1846), Wiscon\(\sin (1848)\) and Califomia (1850). The early entrance adenasion of Iowa, Wisconsin and Florida had been due largely of Floridea to Indian wars-the Black Hawk War (see Black lowa aad HAWK) in Iowa and Wisconsim (1832), and the Semi- Wheosst. nole War in Florida (\(1835-37\)), after each of which the defeated Indians were compelled to cede lands as the price of peace. The extinction of Indian titles in northern Michigan brought about the discovery of the great copper fields of that region, whose existence had been suspected long before it could be proved. Elsewhere settlement followed the lines already marked out, except in the new possessions on the Pacific coast, whose full possibilities were not yet known. Railways in the Eastern states were beginning to show something of a connected system; in the South Rapmaye they had hardly changed since 1840; in the West and they had only been prolonged on their original lines. Temgapan The telegraph was brought into use in \(\mathbf{8 8 4 4}\); but it is not until the census of 1860 that its effects are seen in the fully connected net work of railways which then covers the whole North and West.
107. The sudden development of wealth in the country gave an impelus to the spirit of invention. Charles Goodyear's method of vulcanizing rubber (1839) had come into use. Cyrus Hall M'Cormick had made an invention tirreation. whose results have been hardly less than that of the locomotive in their importance to the United States. He had patented a reaping machme in 1834, and this, further improved and supplemented by olher inventions, had brought into play the whole system of agricultural machinery, whose existence was scarcely known elsewhere until the London "World's Fair " of 1851 brought it into notice. A successful sewing-machine came in 1846; the power-loom and the surgical use of anaesthetics in the same year; and the rotary press for printing in 1847.
198. All the conditions of life were changing so rapidly that It was natural that the minds of men should change with them or become unsetued. This was the era of new sects, of communities, of fantastic proposals of every kind, of transcendentalism in literature, religion, and politics. Not the most The fantastic or benevolent, but certainly the most successful, of these was the sect of Mormons or Latter-day Saints. They settled in Utah in 1847, calling their capital Salt Lake City, and apreading thence through the neighbouring Territories. They became a menace to the American system; their numbers were so great that it was against American instincts to deprive them of self-government; while their polygamy and total submission to their bierarchy made it impossibic to erect them into a state having complete control of marriage and divorce. The difficulty was lessened by their renunciation of polygamy in 1890 (see Mormons).
109. The material development of the United States since 1830 had been extraordinary, but every year made it more evident that the South was not sharing in it. It is The Seuth plain now that the fault was in the labour system of the South: her only labourers were slaves, and a slave who was fit for anything better than field labour was prima facie a dangerous man. The divergence had as yet gone only far enough to a waken idtelligent men in the South to its existence, and to stir them to efforts as hopeless as they were earnest, to find some artificial stimulus for Southern industrics. In the next ten years the process was to show its effects on the national field.

\section*{J.-Tendencies to Disunion,' 1850-1861.}
200. The Abolitionists had never ceased to din the iniquity of slavery into the ears of the American people. Calhoun, sirver Webster and Clay, with nearly al the other political Eandito Sand 1he ness of these fanatics, who were persistently stirring up a question which was teadily widening the distance between the sections. They mistook the symptom for the disease. Slavery itself had put the South out of harmony with its surroundings. Even in 1850, though they hardly yet knew it, the two sections had drified so fer apart that they were practically two different countries.
201. The South remained much as in 1790; while other parts of the country had developed, it had stood still. The "Stove Tbe remnants of colonial feeling, of class influence, which advancing democracy had wiped out elsewhere, retained all their force here, aggravated by the cffects of an essentially aristocratic system of employment. The ruling class had to maintain a military control over the labouring class, and a class influence over the poorer whites. It had even secured in the Constitution provision for its political power in the representation given to three-fifths of the slaves. The twenty additional members of the House of Representatives were not gimply a gain to the South; they were still more a gain to the " black districts," where whites were few, and the slaveholder controlled the district. Slave-owners and slave-bolders together, there were but 350,000 of them; but they had common interests, the intelligence to see them, and the courage to contend for them. The first step of a rising man was to huy slaves; and this was enough to earol him in the dominant class. From it were drawn the representatives and semators in Congress, the governors, and all the bolders of offices over which the "slave power," as it came to be called, had control. Not only was the South inert; its ruling class, its ablest and best men, united in defence of tendencies hostile to those of the rest of the country.
202. Immigration into the United schtes sas not an important factor in its development until about 1847 . The immigrants, so late as 1820 , numbered but 8000 per Jmartre annun; their number did not touch '100,000 until thos. \(\quad 8842\), and then it fell for a year or two aimost to half that number. In 1847 it rose again to 235,000 , in \(\mathbf{1 8 4 9}\) to 300,000 , and in 8850 to 428,000 ; all told, more thes two and a quarter miltion persons from abroad settled in tho United States between \(8 \mathrm{~S}_{47}\) and 1854 . Leaving out the dregs of the immigra-
tion, which settled down in the seaboard cities, its best part was a powerful nationalizing force. It had not come to any particular state, but to the United States; it had none of the traditional prejudices in favour of a state, but a strong feeling for the whole country; and the new feelings which it brought in must have had their weight not only on the gross mass of the people, but on the views of former leaders. And all the influences of this enormous immigration were confined to the North and West. The immigration avoided slave soil as if by instinct. So late as 1880 the census reported that the Southern states, except Florida, Louisiana and Texas, are "practically without any foreign element "; but it was only in \(1850-1860\) that this differentiating circumstance began to show itself plainly. And, as the sections began to differ further in aims and policy, the North began to gain beavily in ability to erfsure its sucress.
203. Texas was the last slave state ever admitted; and, as it refused to be divided, the South had no further increase of numbers in the Senate. Until 1850 the admission of a free state had been so promptly balanced hy TheSeotione the admission of a slave state that the senators of
the two sections had remained about equal in number; in 1860 the free states had 36 senators and the slave states only 30. As the representation in the House had changed from 35 free state and 30 slave state members in 1790 to 147 free state and 90 slave state in 1860, and as the number of presidential clectors is the sum of the numbers of senators and representatives, political power had passed away from the South in 1890 If at any time the free states should unite they could control the House of Representatives and the Senate, elect the president and vice-president, dictate the appointment of judges and other Federal officers, and make the laws what they pleased. If pressed to it, they could even control the interpretation of the lews hy the Supreme Court. No Federal judge could be removed except by impeachment, but an act of Congress could at any time increase the number of judges to any extent, and the appointment of the additional judges could reverse the opinion of the court.
204. In circumstances so critical a cuutious quiescence and avoidance of public attention was the only sale course for the "slave power," but that course had become impossible. The numbers interested had become too Tratenctes large to be subject to complete discipline; all could
not be held in cautious reserve; and, when an advanced proposil came from any quarter of the slave-holding lines, the whole army was shortly forced up to the advanced position. Every movement of the mass was necessarily aggressive; and aggression meant final collision. If collision came it must be on some question of the rights of the states; and on such a question the whoje South would move as one man.
205. The Protestant churches of the United States had reflected in their organization the spirit of the political institutions under which they lived. Acting as purely voluntary associations, they had been organized Smecritar into governments by delegntes, much like the "conventions" which had been evolved in the political parties. The omnipresent slavery question intruded into these bodies, and split them. The Methodist Episcopal Church was thus divided into a Northern and a Southern branch in 2844. and the equally powerful Baptist Church met tbe same fate in the following year. Two of the four great Protestant bodies were thus no longer national; it was only by the most careful management that the integrity of the Presbyterian Church was maintained until 1861, when it also yielded; and only tbe Episcopal and Roman Catholic Churches retained their national character.
106. The political parties'showed 'ibe same tendency. Each began to sbrivel up in one section or the otber. The notion of "squatter sovereignty," attractive at first to the Western democracy, and not repudiated hy the South, enabled the Democratic party to pass the crisis of 1850 without losing much ofits Northera vote, whilo Southern Whigs began to drift in, making the party continunlly
zore pro-alevery. This conld not continue long without beginning to decrease its Northern vote, hut this effect did not become plainly visible until after 1852 . The efforts of the Whig party to ignore the great question alienated its anti-slavery members in the North, while they did not satisfy its Southern members. The Whig losses were not at first heavy, hut, as the electoral vote of each state is determined hy the barest plurality of the popalar vote, they were enough to defeat the party almost everywhere in the presidential election of 88 sz . The Whigs

\section*{Election} nominated General Winfield Scott and the Democrats of 8 8s? Franklin Pierce; and Pierce carried all but four of the thirty-one states, and was elected, receiving 254 out of the 296 electoral votes. This revelation of hopeless weakness was the downfall of the Whig party; it maintained its organization for four years longer, but the life had gone oyt of it. The future was with the Free Soil party, though it had polled but few votes in \(\mathbf{1 8 5 2}\).
207. During the administration of Taylor (and Vice-President Millard Fillmore, who succeeded him) Clay, Webster, Calhoun, Polk and Taylor were removed by

\section*{Clages in} death, and there was a steady drift of other political leaders out of public life. New men were pushing in everywhere, and in both sections they showed the prevailing tendency to disunion. The best of them were unprecedentedly radical. Charles Sumner, William H. Seward, and Salmon P. Chase came into the Senate, hringing the first accession of recognized force and ability to the antislavery feeling in that body. The new Southern men, such as Jefferson Davis, and the Democratic recruits from the Southern Whig party, such as Alexander H. Stephens, were ready to take the ground on which Calhoun had always insisted-that Congress was bound not merely to the negative duty of not attacking davery in the Territories, but to the positive duty of protecting it. This, if it should become the general Southern position, was certain to destroy the notion of "squatter sovereignty," and thus to split the Democratic party, which was almost the last national ligament that now held the two fragments of the Union together.
208. The social disintegration was as rapid. Northern men travelling in the South were naturally looked upon with secel increasing suspicion, and were made to feel that they anverace were on a soil alien in sympathies. Some of the worst phases of democracy were called into play in the South; and, in some sections, law openly yielded supremacy to popular passion in the cases of suspected Abolitionists. Southern conventions, on all sorts of subjects, became common; and in these meelings, permeated by a dawning sense of Southern nationality, hardly any proposition looking to Southern independence of the North was met with disfavour.
209. Calhoun, in his last and greatest speech, called attention to the manner in which one tie after another was snapping. But he ignored the real peril of the situation-its dangerous facts: that the South was steadily growing weaker in comparison with the North, and more unahle to secure a wider area for the slave system; that it was therefore being steadily forced into demanding active Congressional protection for slavery in the Territories; that the North would never submit to this; and that the South must suhmit or bring about a collision hy attempting to secede.
210. Anti-slavery fecling in the North was stimulated by the manner in which the Fugitive Slave Law was enforced immediately after \(18 j 0\). The chase after fugitive Ampor immediately alter saves prosecuted in many cases with circumstances of revelting brutality, and leatures of the slave system which had been tacitly looked upon as fictitious were brought home to the heart of the free states. (See Focitive Slave Laks.) The added feeling showed its Sorce when the Ransas:Nebraska Act was passed by Congress (1854). It organized the two new Territories of Kamane: Kansas and Nehraska. Both of them were for ever Nobratic ACl.
destroying the Whig party had intoxicated Stephen A. Dooglas (q.0.), and other Northern Democrats; and they now applied the doctrine to these Territories. They did not desire "to vote slavery up or down," hut left the decision to the people of the two Territories and the essential feature of the Missouri Compromise was specifically repealed.
211. This was the grossest political hunder in American history. The status of slavery had been settied, by the Constitution or by the compromises of 1820 and 1850 , on every square foot of American soil; right or wrong, the settlement was made. The Kansas-Nebraska Act took a great mass of territory out of the settlement and flung it into the arema as a prize for which the sections were to struggie. The first result of the act was to throw parties into chaos. An American or "KnowNothing" (q.v.) party, a secret oath-bound organization, pledged to oppose the infuence or power of ocAmen foreign-born citizens, had been formed to take the place porr." of the defunct Whig party. It had been quite successful in state elections for a time, and was now beginning to have larger aspirations. 1t, like the Whig party, intended to ignore slavery, hut, after a few years of life, the questions complicated with slavery entered its organization and divided it also. Even in 1854 many of its leaders in the North were forced to take position against the Kansas-Nehraska Act, while bosts of others joined in the opposition without any party organization. No American party ever rose so swiftly as this latter; with no other party name than the awkward mo title of "Anti-Nebraska men," it carried the Romancoan Congressional elections of 1854 at the North, forced Pmote.
many of the former Know-Nothing leaders into union with it, and controlled the House of Representatives of the Congress which met in 8855 . The Democratic party, which had been practically the only party since 1852 , had now to face the latest and strongest of its broad-constructionist opponents, one which with the nationalizing features of the Federalist and Whig parties combined democratic feelings and methods, and, above all, had a democratic purpose at bottom. It acknowledged, at first, no purpose aimed at slavery, only an intention to exclude slavery from the Territories; but, under such principles, it was the only party which was potentially an anti-slavery party, the only party to which the enslaved labourer of the South could look with the faintest hope of aid in reaching the status of a man. The new party had grasped the function which belonged of right to its great opponent, and it seized with it its opponent's original title. The name Democrat had quite taken the place of that first used-Republican-but the latter had never passed out of popular remembrance and liking at the North. The new party took quick and skilful advantage of this by assuming the old name (see Republican Party), and early in 1856 the two great parties of the present-Democratic and Republican-were drawn up against one another.
21 \%: The Ioreign relations of the United States during Pierce's term of office were overshadowed hy the domestic difficulties, but were of importance. In the Koszta case (1853) national protection had been afforded on foreign soil to a person who had only taken the preliminary steps to naturalization (see Marcy, W. L.). Japan had been opened to American intercourse and commerce (1854). But the question of slavery was more and more thrusting itsell even into foreign relations. A great Southern republic, to be founded at first by the slave states, but to take in gradually the whole territory a round the Gulf of Mexico and include the West indies, was soon to be a pretty general ambition among slave-holders, and its first phases appeared during Pierce's administration. Eforts were begun to obtain Cuba from Spain; and the three leading American ministers abroad, meeting at Ostend, oatead united in declaring the possession of Cuba to be mentiontor essential to the well-being of the United States fumener (1854). (See Buchanan. James.) "Filibustering" ma.
expeditions against Cuba er the smaller South Americad states, iniended so to revolutionize them as to lay a basis for an
application to bo annexed to the United Stater, became common, and taxed the energies of the Federal government. But these yielded in importance to the affairs in Kansar
213. Nebraska was then supposed to be a desert, and attention was directed almost exclusively to Kansas. No sooner Kanase had its organization left the matter of slavery to be decided by its "people." than the anti-slavery people of the North and West felt it to be their duty to see that the "people" of the Territory should be anti-slavery in sympathy. Emigrant associations were formed, and these shipped men and lamilies to Kansas, arming them for their protection in the new country. Southern newspapers called for similar measures in the South, but the call was less effective. Southern men without slaves, settling a new state, were uncomfortably apt to probibit slavery, as in California. Only slaveholders were trusty pro-sla very men; and such were not likely to take slaves to Kansas and risk their ownership on the result of the struggle. But for the pcople of Missouri, Kansas would have been free soil at once. Lying across the direct road to Kansas, the Missouri settlers blockaded the way of Iree-state settlers, crossed into Kansas, and voted profusely at the first Territorial clection. The story of the contest between the freestate and pro-slavery settlers is told elsewhere (see Kansas: 6 History); here it need only be said that the struggle passed into a real civil war, the two powers mustering considerable armies, fighting battles, capturing towns and paroling prisoners. The struggle was really over in 1857 , and the South was beaten. There were, bowever, many obstacles yet to be overcome before the new state of Kansas was recognized by Congress, after the withdrawal of the senators of the seceding states (1861).
214. In the heat of the Kansas struggle came the presidential election of 1856. The Democrats nominated James Buchanan,

\section*{Election \\ of 1856.} declaring, as usual, for the strictest limitations of the powers of the Federal government on a number of points specified, and reaffirming the principle of the Kansas-Nebraska Act-the setulement of slavery by the people of a Territory. The remnant of the Whig party, including the Know-Nothings of the North and those Southern men who wished no further discussion of slavery, nominated the president who had gone out of office in 1853 , Millard Fillmore. The Republican party nominated John C. Frémont; the bulk of its manifesto was taken up with protests against attempts to introduce slavery into the Territories; but it showed its broad-construction tendencies by declaring for appropriations of Federal moneys for internal improvements. The Democrats were successful in electing Buchanan; but the position of the party was quite different from the triumph with which it had come out of the election of 1852 . It was no longer master of twenty-seven of the thirty-one states; all New England and New York, all the North-West but Indiana and lilinois, all the free states but five, had gone against it; its candidate no longer had a majority of the popular. vote. For the first time in the history of the country a distinctly antislavery candidate had obtained an electoral vote, and had even come near obtaining the presidency. Fillmore had carried but one state, Maryland; Buchanan had carried the rest of the South, with a few states in the North, and Fremont the rest of the North and none of the South. If things had gone so far that the two sections were to be constituted into opposing political parties, it was evident tbat the end was near.
215. Oddly enough the constitutionality of the Compromise of 1820 had never happened to come before the Supreme Court TheDred for consideration. In \(: 856-1857\) it came up for Scout the first time. One Dred Scott, a Missouri slave Dections. who had been taken in 1834 to Illinois, a free state, and in 1836 to Minnesota, within the territory covered hy the Compromise, and had some years after being taken back to Missouri in 1838 sued for his frecdom, was sold (1852) to a citizen of New York. Scolt then transierred his suit from
\({ }^{1}\) Buchanan received 174 electoral votes, Fremont 114 and Filtmore 8. The popular vote was: for Buchanan, 1,838,169: for Frémunt, 1,341,264; for Fillmore, 874.534.
the state to the Federal courts, under the power given them to try suits between citizens of different states, and the case came by appeal to the Supreme Court. Its decision, announced on the 6th of March 1857, put Scott out of court on the ground that a slave, or the descendant of sla ves, could not be a citizen of the United States or have any standing in Federal courts. The opinion of Chief Justice Taney went on to attack the validity of the Missouri Compromise, for the reasons that one of the Constitutional functions of Congrese was the protection of property; that slaves had been recognized as property by the Constitution, and that Congress was bound to protect, not to prohibit, slavery in the Territories. \({ }^{2}\) The mass of the Northern people held that slaves were looked upon by the Constitution, not as property, but as "persons held to service or labour " by state laws; that the Constitutional function of Congress was the protection of liberty as well as of property; and that Congress was thus bound to prohihit, not to protect, slavery in the Territories. A large part of the North flouted the decision of the Supreme Court, and the storm of angry dissent which it aroused did the disunionists good service at the South. From this time the leading newspapers in the South maintained that the radical Southern view first, advanced by Calhoun, and but slowly accepted by other Southern leaders, as to the duty of Congress to protect slavery in the Territories, had been confirmed by the Supreme Court; that the Northern Republicans had rejected it; even the " squatter sovereignty " of Northern Democrats could no longer be submitted to hy the South.
216. The population of the United States in 1860 was over \(31,000,000\), an increase of more than \(8,000,000\) in ten ycars. As the decennial increases of population became adminstas larger, so did the divergence of the sections in popu- ofmhanetola lation, and still more in wealth and resources. Two ard Onges more free states came in during this period-Minnesola (1858) and Oregon (1859)-and Kansas was clamouring loudly for the same privilege. The free and slave states, which had been almost equal in population in 1790, stood now as 19 to 12 . And of the \(12,000,000\) in slave states, the \(4,000,000\) slaves and the 250,000 free blacks were not so much a factor of strength as a possihle source of weakness and danger. No serious slave rising had ever taken place in the South; but John Brown's attack (1859) on Harper's Ferry as the first move in a project to rouse the slaves (see Brown, John), and the alarm which it carried through the South, were tokens of a danger which added a new borror to the chances of civil war. It was not wonderful that men, in the hope of finding some compromise by which to avoid such a catastrophe, should be willing to give up everything but principle, nor that oflers of compromise should urge Southern leaders further into the fatal belief that " the North would not fight."
217. Northern Democrats, under the lead of Douglas, had been forced already almost to the point of revolt by the determination of Southern senators to prevent the admission of Demene Kansas as a free state, if not to secure her admission of the as a slave state. When the Democratic convention Dervernate of \(\mathbf{5} 860\) met at Charleston the last strand of the Pary. last national political organization parted; the Democratic party itself was split at last by the slavery question. The Southern delegates demanded a declaration in favour of the duty of Congress to protect slavery in the Territories It was all that the Douglas Democrats could then do to maintain themselves in a few Northern states; such a declaration meant political suicide everywhere, and they voted it down. The convention divided into two bodies. The Southern body adjourned to Richmond, and the Northern and Border state convention to Baltimore. Here the Northern delegates, by scating some delegates friendly to Douglas,
In his decision Taney. relerring to the period before the adoption of the Constitution, wrote: :" They (negroes) had for more than a century before been regarded as beings of an inferior order, and altogether unfit to associate with the white race, either in social or political relations; and so far inferior that they had no rights which the white man was bound to respect." This was intended to be morely a historical statement, but it is often incorrectly \(q\) soted as if it referred to the status of the negro in 1857.
provoked a further secession of border state delegates, who, in company with the Richmond body, nominated John C. Breckinridge (q.v.) and Joscph Lane for president and vice-president. The remainder of the original convention nominated Douglas and H. V. Johnson.
218. The remnant of the old Whig and Know-Nothing parties, now calling itself the Constitutional Union party, met Coanano at Baltimore and nominated John Bell (g.v.) conalUmen and Edward Everett. The Republican convention Part: eppert. met at Chicago. Its "platform" of 1856 had been somewhat broad-constructionist in its nature and leanings, but 2 strong Democratic element in the party had prevented it from going too far in this direction. The election of 1856 had shown that, with the votes of Pennsylvania and Illinois, the party would have then been successfui, and the Democratic element was now ready to take almost anything which would secure the votes of these states. This state of affairs will go to explain the nomination of Abraham Lincoln, of Illinois, for president, with Hannibal Harmlin, a former Democrat, for vice-president, and the declaration of the platform in favour of a protective tariff. The mass of the platform was still devoted to the necessity of excluding slavery from the Territorics. To sum. The Partiva up: the Bell party wished to have no discussion of aedSurvery slavery; the Douglas Democrats rested on "squatter ta the Tirrt sovereignty" and the Compromise of i850, but would mortes. accept the decision of the Supreme Court; the Republicans demanded that Congress should legislate for the probibition of slavery in the Territories; and the Southern Democrats demanded that Congress should legislate for the protection of slavery in the Territories.
219. No candidate received a majority of the popular vote, Lincoln standing first and Douglas second. But Lincoln and

Erection
-f sect. Hamlin had a clear majority of the electoral vote, and so were elected, Breckinridge and Lane coming next. \({ }^{2}\) It is wortny of mention that, up to the last hours of Lincoln's first term of office, Congress would always have contained a majority opposed to him but for the absence of the members from the seceding states. The interests of the South and even of slavery were thus anfe enough under an anti-slavery president. But the drift of events was too plain. Nullification had come and gone, and the nstion feared it no longer. Even secession by a single state was now almost out of the question; the ketters of Southern governors in 1860 , in consultation on the state of aflairs, agree that no state would secede without assurances of support by others. If this crisis were allowed to slip by without action, even a sectional secescion would soon be impossible.
230. In October 1860 Governor W. H. Gist, of South Carolina, sent a letter to the governor of each of the other cotton states samaster except Texas, asking co-operation in case South. Carolina should resolve upon secession, and the replies were favourable. The democratic revolution which, since 1829, had compelled the legislature to give the choice of presidential electors to the people of the states had not affected South Carolina; her electors were still chosen by the legislature. That body, after having chosen the state's electors on the 6th of November, remained in session until the telegraph bad brought assurances that Lincoln had secured a sufficient number of electors to ensure his election; it then (on the toth) summoned a state convention and adjourned. The state convention, which is a hegislative body chosen for a special purpose, met first at Columbia and then at Charleston, and on the 2oth of December unanimously passed an "ordinance of secession," repealing the acts by which the state had ratified the Constitution and its amendments, and disaolving " the union now subsisting bet ween South Carolina and other states, under the name of the 'United States of America.'" The convention took all steps necessary to prepare for war, and adjounned. Similar ordinances were passed by conventions in

\footnotetext{
\({ }^{1}\) Lincoln received 180 electoral votes. Breckinridge 72. Bell 39 and Douglas 12. Their popular votes were \(1,866,352,847.5141\) g67.830 and \(1,375,157\) respectively.
}

Mississippi (Jan. 9, 1861), Florida (Jan. I0), Alabama (Jan. ri), Georgia (Jan. 19), Louisiana (Jan. 26) and Texas (Feb. 1).
221. The opposition in the South did not deny the right to secede, but the expediency of its exercise. Their eflort was to elect delegates to the state conventions Tbo Arzw who would vole not to secede. They were beaten, avent for says A. H. Stephens, by the cry, originally uttered secession. by T. R. R. Cobb before his state legislature (Nov. 12, 1860), we can make better terms out of the Union than in it." That is, the states were to withdraw individually, suspend the functions of the Federal government within their jurisdiction for the time, consider maturely any proposals for guarantees for their rights in the Union, and return as soon as satisfactory guarantees should be given. A second point to be noted is the difference between the notions action at of a state convention prevalent in the North the State and in the South. The Northern state convention was generally considered as a preliminary body, whose action was not complete or valid until ratified by a popular vote. The Southern state convention was looked upon as the incarnation of the sovereignty of the state, and its action was not supposed to need a popular ratification. When the conventions of the seceding states had adopted the ordinances of secession, they proceeded to other business. They appointed delegates, who met at Montgomery, the capital of Alabama, formed a provisional constitution (Feb. 8) for the "Confederate States," chose a provisional presigent and vice-president (Jefferson Davis and 7he "Case A. H. Stephens), and established an army, treasury, sman"o" and other executive departments. The president and vice-president were inaugurated on the 18th of February. The permanent constitution, adopted on the nith of March, was copied from that of the United States, with varialions meant to maintain state sovereignty, to give the cabinet seats in Congress, and to prevent the grant of bounties or any protective features in the tariff or the maintenance of internal improvements at general expense; and it expressly provided that in all the territory belonging to the Confederacy but lying without the limits of the several states "the institution of negro slavery, as it now exists in the Confederate States, shall be recognized and protected by Congress and by the Territorial government" (see Confederate States of Ayerica).
222. Under what claim of Constitutional right all this was done passes comprehension. That a state convention should have the final power of decision on the conation question which it was summoned to consider is cosant quite as radical doctrine as has yet been heard Rtchist of; that a state convention, summoned to consider the one question of secession, should go on, with no appeal to any further popular authority or mandate, to send delegates to meet those of other states and form a new national government, which could only exist by warring on the United States, is a novel feature in American Constitutional law. It was revolution or nothing. Only in Texas, where the call of the state convention was so irregular that a popular vote could hardly be escaped, was any popular vote allowed. Elsewhere the functions of the voter ceased when he voted for delegates to the state convention; he could only look on belplessly while that body went on to constitute him a citizen of a new nation. 223. The Border states were in two tiers-North Carolina, Tennessee and Arkansas next to the seceding states, and Deisware, Maryland, Virginia, Kentucky and Missouri next to the Iree states. None of these was willing stme Bos to secede. There was, however, one force which might draw them into secession. A state which did not wish to secede, but believed in state sovereignty and the abstract right of secession, would be inclined to take up arms to resist any attempt by the Federal government to coerce a seceding state. In this way, in the following spring. the original seven seceding states were reinforced by four of the Border states.
224. In the North and West surprisingly little attention was given to the systematic course of procedure along the

Gulf. The people of those sections were very husy; they had heard much of this talk before, and looked upon it as a kind of stage-thunder, the incvitable accompaniment of
Feefinas to We North. recent presidential elections. Republican politicians, with the exception of a few, were inclined to refrain from public declarations of intention. Some of them such as Seward, showed a disposition to let the "erring sisters" depart in peace, expecting to make the loss good by accessions from Canada. A few, like Senator Zachariah Chandler, believed that there would be " blood-letting," but most of them were still doubtful as to the future. In the North the leaders and the people generally shrank from the prospect of war, and many were prepared to make radical concessions to avert hostilities. Among the various proposals to this end that offered in the Senate by John J. Crittenden, of Kentucky, and known as the Crittenden Compromise, was perhaps received with most favour. This took the form of six proposed amendments to the Constitution, of which two were virtually a rephrasing of the essential feature of the Missouri Compromise and of the principle of popular or squatter sovereignty, and others provided that the national government should pay to the owner of any fugitive slave, whose return was prevented by opposition in the North, the full value of such slave, and prohibited the abolition of slavery in the District of Columbia" so long as it exists in the adjoining states of Virginia and Maryland or either." This proposed compromise was rejected hy the Senate by a close vote on the and of March 186r. A Peace Congress, called hy. Virginia, met in Washington from the 4th to the 27th of February 186r, 21 states being represented, and proposed a constitutional amendment embodying changes very similar to thosé of the Crittenden Compromise, but its proposal was not acted upon hy Congress. Democratic politicians were hide-bound hy their repetition of the phrase "voluntary Union "; they had not yet hit upon the theory which carried the War Democrats through the final struggle, that the sovereign state of New York could make war upon the sovereign state of South Carolina for the unfriendly act of secession, and that the war was waged by the non-seceding against the seceding atates. President Buchanan publicly condemned the doctrine of secession, though he added a confession of his inability to see how secession was to be prevented if a state should be so wilful as to attempt it. Congress
Aimbusion: of Kacsas; did nothing, except to admit Kansas as a free state Morrim rarth of 1861. and adopt the protective Morrill tarif; even after its members from the seceding states had withdrawn, those who remained made no preparations for conflict, and, at their adjournment in March 1861, left the Federal government naked and belpless.
225. The only sign of life in the body politic, the half-awakened word of warning from the Democracy of the North and West, was its choice of governors of states. A remarkThe "Werr," ahle group of men, soon to be known as the "war governors"-Israel Washburn of Maine, Erastus Fairbanks of Vermont, Ichabod Goodwin of New Hampshire, John Albion Andrew of Massachusetts, William Sprague of Rhode Island, Wiliam Alfred Buckingham of Connecticut, Edwin Dennison Morgan of New York, Charles Smith Olden of New Jersey, Andrew Gregg Curtin of Pennsylvania, William Dénnison of Ohio, Oliver Perry Morton of Indiana, Richard Yates of Illinois, Austin Blair of Michigan, Alexander Williams Randall of Wisconsin, Samuel Jordan Kirkwood of Iowa, and Alexander Ramsey of Minnesota-held the executive powers of the Northern states in \(186 \mathrm{x}-1862\). Some of these governors, such as Andrew and Buckingham, as they saw the struggle come nearer, went so far as to order the purchase of warlike material for their states on their private responsihility, and their action saved days of time.
226. The little army of the United States had been almost selrowe of put out of consideration; wherever its detachments Uaked could be found in the South they were surstatsa rounded and forced to surrender and were transProperts. ferred to the North. After secession, and in some of the states even before it. the forts, arsenals, mints, custom-
houses, ship-yards and puhlic property of the United States had been seized by authority of the state, and these were held until transferred to the new Confederate States organization. In the first two months of 186r the authority of the United States was paralysed in seven states, and in at least seven more its future authority seemed of very douhtful duration.
227. Only a few forts, of all the magnificent structures with which the nation had dotted the Southern coast, remained to it -the forts near Key West, Fortress Monroe at the peation of mouth of Chesapeake Bay, Fort Pickens at Pensa theremalo. cola and Fort Sumter in Charleston harbour. Both me Forts. the last-named were beleaguered by hostile batteries, but the administration of President Buchanan, intent on maintaining the peace until the new administration should come in, instructed their commanding officers to refrain from any acts tending to open conflict. The Federal officers, thereforc, were obliged to look idly on while every preparation was made for their destruction, and even while a vessel bearing supplics for Fort Sumter was driven back by the batteries between it and the sea.
228. The divergence between the two sections of the country had thus passed into disunion, and was sobn to pass into open hostility. The legal recognition of the custom of slavery, acting upon and reacted upon by every Satary and step in their economic development and every difference in their natural chatacteristics, surroundings and institutions, bad carried North and South further and faster apart, until the elements of a distinct nationality had appeared In the latter. Slavery had had somewhat the same eflect on the South that democracy had had on the colonies. In the latter case the aristocracy of the mother-country had made a very fechle struggle to rmaintain the unity of its empire. It remained to be seen, in the American case, whether democracy would do better.
\[
\text { K.-The Civil War, } 1861-1865 .
\]
229. Secession had taken away many of the men who had for years managed the Federal government, and who understood its workings. Lincoln's party was in power emberrert. for the first time; his officers were new to the memesootione routine of Federal administration; and the circum- Coveramer stances with which they were called upon to deal were such as to daunt any spirit. The government had become so nearly bankrupt in the closing days of Buchanan's administ ration that it had only escaped by paying double interest, and that by the special favour of the New York banks, which obtained in return the appointment of John A. Dix as secretary of the treasury. The army had been almost broken up liy captures of men and material and by resignations of competent and trusted officers. The navy had come to such a pass that, in Fchruary 1861, a House committee reported that only two vessels, one of twenty, the other of two guns, were available for the defence of the entire Atlantic cosst. And, to complicate all difficulties, a horde of clamorous office-seekers crowded Washington.
230. Before many weeks of Lincoln's administration had passed, the starting of an expedition to provision Fort Sumter brought on an attack hy the batteries around the fort, and after a bombardment of 36 hours the Port fort surrendered (April 14, 1861). It is not necessary Rhengim to rehearse the familiar story of the outlourst of abe North. feeling which followed this event and the proclamation of President Lincoln calling for volunteers. The 75,000 volunteers called for were supplied chree or four times over, and those who were refused felt the refusal as a personal deprivation.
231. There had been some belief in the South that the North-West would take no part in the impending condict, and that its people could be persuaded to keep up friendly relations with the new mationality until The North the final treaty of peace should estahlish all the West. fragments of the late Union upon an international basis. Ia the spring months of 186i Douclas, who had long been
denounced as the tool of the Southern slave-bolders, was spending the closing days of life in expressing the determination of the North-West that it would never submit to have "a line of custom-houses" between it and the ccean. The batterles which Confederate authority was erecting on the banks of the Mississippi were fuel to the flame. Far-off Californin, which had been considered neutral by all parties, pronounced as unequivocally for the national authority.
232. The shock of arms put an end to opposition in the South as well. The peculiar isolation of life in the South precluded the more ignorant voter from any com"Potlowtorg parisons of the power of his state with any other;
to him it was almost inconceivable that his state should own or have a superior. The better educated mien, of wider experience, had been trained to think state sovereignty the foundation of civil liberty, and, when their state spole, they felt bound to "follow their state." The president of the Confederate States issued his call for men, and it also was more than met.
233. Lincoln's call for troops met with an angry reception wherever the doctrine of state sovereignty had a foothold. The governors \(n f\) the Border states generally

TheBorter returned it with a refusal to furnish any troops. Two states, Nurth Carolina and Arkansas, seceded and joined the Confederate States. In two others, Virginia and Tennessoc, the state politicians formed " military leagues" with the Confederacy, allowing Confederate troops to take possession of the states, and then submitted the question of secession to "popular vote." The secession of these states was thus accomplished, and Richmond became the Confederate capital. The same process was attempted in Missouri, but failed, and the state remained loyal. The politician class in Maryland and Kentucky took the extraordinary course of attempting to maintain neutrality; but the growing power of the Fcucral government soon enabled the people of the two states to resume cobtrol of their governments and give consigtent support to the Union. Kentucky, however, had troops in the Confederate armies; and one of her citizens, the late vice-president, John C. Breckinridge, left his place in the Senate and became an officer in the Confederate service. Delaware cast her fot from the first with the Union.
234. The first blood of the war was shed in the streets of Baltimore, when a mob attempted to stop Massachuetts troops Cow Wer. on their way to Washington (April 19). For a time there was difficulty in getting troops through Maryland because of the active hostility of a part of its people, but this was overcome, and the national capital was made secure. The Confederate lines had been pushed up to Manassas Junction, about 30 m . from Washington. When Congress, called into special session by the president for the 4 th of July, camo together, the outline of the Conlederate States had been fixed. Their line of defence held the left bank of the Potomac from Fortress Monroc nearly to Washington; thence, at a distance of some 30 m . from the river, to Marper's Ferry; thence through the mountains of western Virginia and the southern part of Kentucky, crossing the Mississippi a litule below Cairo; thence through southern Missouri to the eastern border of Kansas; and thence south-west through the Indian Territory and along the northern boundary of Texas to the Rio Grande. The length of the line, including also the Atlantic and Gulf coasts, has been estimated at \(t 1,000 \mathrm{~m}\). The territory within it comprised about \(800,000 \mathrm{sq}\). m., with a population of over \(9,000,000\) and great natural resources. Its cotton was almost essential to the manufactories of the world; in exchange for it every munition of war could be procured; and it was hardly possible to blockade a coast over 3000 m . in length, on which Thoretan the blockading force had but one port of refuge, and that about the middle of the line. Nevertheless President Lincoln issued his first call for troops on the igth of April, President Davis then issued a proclamation (on the 17th) offering letters of marque and reprisal against the comearce of the United States to private vessels, and on the rgth

Lincoln answered with a proclamstion announcing the blockade of the Southern cosst. The news brought out proclamations of neutrality from Great Britain and France, and, according to subsequent decisions of the Supreme Court, made the struggle a civil war, though the minority held that this did not occur legally until the act of Congress of the 13 th of July 186 r , authorixing the president, in case of insurrection, to shut up ports and suspend commercial intercourse with the revolted district.
235. The president found himself compelled to assume powers never granted to the executive authority, trusting to the subsequent action of Congress to validate his smaposione action. He had to raise and support armies and or "Haboen navies; be even had to authorize seizures of neces. Comas." sary property, of railroad and telegraph lines, arrests of suspected persons, and the suspension of the writ of habeas corpus in certain districts. Congress supported him, and proceeded in 1863 to give the president power to suspend the writ anywhere in the United States: this pow er he promptly exercised. The Supreme Court, after the war, in the Milligan case (4 Wallace, 133) decided that no branch of the government had power to suspend the writ in distriets where the courts were open-that the privilege of the writ might be suspended as to persons properly involved in the war, but that the writ was still to issue, the court deciding whether the person came within the classes to whom the suspension applied. This decision, however, did not come until "arbitrary arrests," as they were called, had been a feature of the entire war. A similar suspension took place in the Confedcrate States.
236. When Congress met (July 4، 1861) the absence of Southern membera had made it heavily Republican. It decided to consider no business but that connected with the war, authorized a loan and the raising of 500,000 volunteers, and made confiscation of property a penalty of rebellion. While it was in session the first serious battie of the war-Bull Run, or Manassas-took place (July 21), and resulted in the defeat of the Federal army. (For this and the other battles of the war see Ayritican Crivil War, and the supplementary articies dealing with particular hattles and campaigns.) The over-zealous action of a naval officer in taking the Confederate envoys James M. Mason and John Slidell out of the Britich steamer "Trent" sailing between two neutral ports almost brought about a collision between the United States and Great Britain in November. But the
"Trad"
"Trap American precedents were all against the United States, and the envoys were given up.
237. The broad-construction tendencies of the Republican party showed themselves more plainly as the war grew more serious; there was an increasing disposition to cut Paper every knot by legislation, with less regard to the comreat: constitutionality of the legislation. A paper cur- stavery. rency, commonly known as "greenbacks" (g.v.), was adopted and made legal tender (Feb. 25, 1862). The first symptoms of a disposition to attack slavery appeared: slavery was prohibited (April 16) in the District of Columbia and the Territories (June 10); the army was forhidden to surrender escaped slaves to their owners; and slaves of insurgents were ordered to be confiscated. In addition to a bomestead act (see Homestead and Exemption Laws) giving public lands to actual scitlers at reducted rates, Congress began a further development of the system of granting public lands to railways. Another important act (1862) granted public lands for the establishment of agricultural and mechanical colleges (see Morrinl, J. S.).
238. The railway system of the United States was but twenty years old in 1850, hut it bad begun to assume some consistency. The day of short and disconnected lines had passed, and the connexions which were to develop into railway systems had appeared. Consolidation of smaller companies had begun; the all-rail route across the state of New York was made up of more than a dozen original companies at its consolidation in 1853. The Eric railway, chartered in 1832, was completed from

Revinay toraco.

Piermont to Dunkirk, New York, in \(185 r\); and another linethe Penosylvania-was completed from Harrisburg to Pittston, Pennsylvania, in 1854. These were at least the germs of great trunk lines. The cost of American railways has been only from one-half to one-fourth of the cost of European railways; but an investment in a Far Western railway in 1850-1860 was an extra-hazardous risk. Not only did social conditions make any form of business hazardous; the new railway often had to enter a territory bare of population, and there create its own towns, farms and traffic. Whether it could do so was so doubiful as to make additional inducements to capital necesLaed sary. The means attempted by Congress in 1850, Orasts. in the case of the lllinois Central railroad, was to grant public lands to the corporation, reserving to the United States the alternate sections. At first grants were made to the states for the benefit of the corporations; the act of 1862 made the grant directly to the corporation.
239. The vital military and political necessity of an immediate railway connexion with the Pacific coast was hardly rue pacluc open to doubt in 1862 ; but the necessity hardly The Paclllo justified the terms which were offered and taken. The Union Pacific railroad was incorporated; the United States government was to issue to it bonds, on the completion of each \(40 . \mathrm{m}\)., to the amount of \(\$ 16,000\) per mile, to be a first mortgage; through Utah and Nevada the aid was to be doubled, and for some 300 m . of mountain building to be trebled; and, in addition to this, alternate sections of land were granted. The land-grant system, thus begun, was carried on extensively, the largest single grants being those of 47,000,000 acres to the Northern Pacific (1864) and of \(42,000,000\) to the Atlantic \& Pacific line (s866).
240. Specie payments had been suspended almost everywhere towards the end of 186 x ; but the price of gold was but

\section*{Proves io \\ Pager.}

102 's at the beginning of 1862. About May its price in paper currency began to rise. It touched 170 during the next year, and 285 in 1864 ; but the real price probably never went much above 250. Other articles felt the infiuence in currency prices. Mr D. A. Wells, in 1866, estimated that prices and rents had risen \(90 \%\) since 1861 , while wages had not risen more than \(60 \%\).
241. The duties on imports were driven higher than the original Morrill tarif had ever contemplated. The average rates, which had been \(18 \%\) on dutiable articles and \(12 \%\) Termfeas on the aggregate in 1860-1861, rose, before the mereraal end of the war, 10 nearly \(50 \%\) on dutiable Reverue
Texathee. articles and \(35 \%\) on the aggregate. Domestic Taxation. manufactures sprang into new life under such hothouse encouragement; every one who had spare wealth converted it into manufacturing capital. The probability of such a result had been the means of getting voles for an increased tarif; free traders had voted for it as well as protectionists. For the tarifi was only a means of getting capital into positions in which taxation could be applied to it, and the "internal revenue" taxation was merciless beyond precedent. The annual increase of wealth from capital was then about \(\$ 550,000,000\); the internal revenue taxation on it rose in 1866 to \(\$_{3} 10,000,000\), or nearly \(60 \%\).
242. The stress of all this upon the poor must have been great, hut it was relieved in part hy the bond system on which Boods. the war was conducted. While the armics and navies were shooting of large blocks of the crops of 1880 or 1890 , work and wages were abundant for all who were competent for them. It is true, then, that the poor paid most of the cost of the war; it is also true that the poor had shared in that anticipation of the future which fadd been forced on the country, and that, when the drafts on the future came to be redeemed, it was done mainly by iaxation on luxuries. The destruction of a Northern railway meant more work for Northern iron mills a ad their workmen. The destruction of a Southem road was an vamitigated injury; it had to be made good at once, by paper ivues; the South could make no drafts on ". "...urc, by bom issues, for the
blockade had put cotton oat of the game, and Southern bonds were hardly saleable. Every expense had to be met by paper issues; each issue forced prices higher; every rise in paper prices called for an increased issue of paper, with lasoesim incressed effects for evil. A Rebel War-Clerk's an Somas Diary gives the following as the prices in the Richmond market for May 1864: "Boots, \(\$ 200\); coats, \(\$ 350\); pantaloons, \(\$ 100\); shoes, \(\$ 125\); flour, \(\$ 275\) per barrel; meal, \(\$ 60\) to \(\$ 80\) per bushel; bacon, 89 per pound; no beef in market; chickens, \(\$ 30\) per pair; shad, \(\$ 20\); potatoes, \(\$ 25\) per bushel; turnip greens, \(\$ 4\) per peck; white beans, \(\$ 4\) per quart or \(\$ 120\) per bushel; butter, \(\$\) is per pound; lard, same; wood, \(\$ 50\) per cord." How the rise in wages, always far slower than other prices, could meet such prices as these one must be left to imagine. Most of the burden was sustained by the women of the South.
243. The complete lack of manufactures cold heavily against the South from the beginning. As men were drawn from agriculture in the North and West, the increased demand for labour was shaded of into chaoalan an increased demand for agricultural machinery; every increased percentage of power in reaping-machines liberated so many men for service at the front. The reapingmachines of the South-t the slaves-were incapable of any such improvement, and, besides, required the presence of a portion of the possible fighting-men at home to watch them. There is an evident significance in the exemption from military duty in the Coniederate States of "one agriculturist on such farm, where there is no white male adult not liable to duty, employing 15 able-bodied slaves between ten and fifty years of age." But, to the honour of the efislaved race, no insurrection took place.
244. The pressing need for men in the army made the Confederate Congress utterly unable to withstand the growth of cxecutive power. Its bills were prepared by the coafederate cabinet, and the action of Congress was quite per-conedrorat functory. The suspension of the writ of habeas andpreak corpus, and the vast powers granted to President deat.
Davis, ot assumed by him under the plea of military necessity, with the absence of a watchful and well-informed public opinion, made the Confederate government by degrees almost a despotism. It was not until the closing months of the war that tbe expiring Confederate Congress mustered up courage enough to oppose the president's will. (See Confederate States of Axerica.) The organized and even radical opposition to the war in the North, the meddlesomeness of Congress and its "committees on the conduct of the war," were no doube unpleasant to Lincoln but they carried the country through the crisis without the effects visible in the South.
245. Another act of Federal legislation - the National Bank Act (Feb. 25, 1863; supplemented hy the act of June 3, 1864)-should be mentioned here, as it was closely connected with tbe sale of bonds. The banks were to Natheed beorganized, and, on depositing United States Eenaliay bonds at Washington, were to be permitted to Gystece. issue notes up to \(90 \%\) of the value of the bonds deposited. As the redemption of the notes was thus assured, they circulated without question all over the United States. By a subsequent act (1865) the remaining state bank circulation was taxed out of existence. (See Banks and Banxing: Uniled States.)
246. At the beginning of 1862 the lines of demarcalion between the two powers had become plainly marked. The western part of Virginia had separated itself from admbave the parent state, and was admitted as a state (1863) of Weat under the name of West Virginia. It was certain Vrastem that Delaware, Maryland, Kentucky and Missouri had beea saved to the Union, and that the battle was to be fought out in the territory to the south of them.
247. At the beginning of the war the people and leaders of the North had not desired to interfere with slavery, but circumstances had been 100 strong for them. Lincoln had declared that he meant to save the Union as he best could by preserving slavery, by destroying it, or by destroying part
and preserving part of it. Just after the battle of Antietam (17 Sept. 1862) be issued his proclamation calling on the revolted The Eacact states to return to their allegiance before the next anten Pro- year, otherwise their slaves would be declared cenamation. free men. No state returned, and the threatened declaration was issued on the ist of January 1863. As president, Lincoln could issue no such declaration; as com-mander-in-chief of the armies and navies of the United Stales he could issue directions only as to the territory within his lines; but the Emancipation Proclamation applied only to territory outside of his tines. It has therefore been debated whether the proclamation was in reality of any force. It may fairly be taken as an announcement of the policy which was to guide the army. and as a declaration of freedom taking effect as the lines advanced. At all events, this was its exact effect. Its international importance was far greater. The locking up of the world's source of cotion supply had been a general calamity, and the Conlederate government and people had steadily expected that the English and French governments, or at least one of them, would intervene in the war for the purpose of raising the blockade and releasing the Southern cotton. The conversion of the struggle into a crusade against slavery made intervention impossible for governments whose peoples had now a controlling influence on their poticy and intelligence enough to understand the issue.
248. Confederate agents in England were numerous and active. Taking advantage of every loophole in the British Foreign Enlistment Act, they built and sent to sea Cenforderter the "Alabama" and "Florida," which for a time almost drove Fidcral commerce from the ocean. Whenever they were closely pursued by United States vessels they took reluge in neutral ports until a safe opportunity occurred to put to sea again. Another, the "Georgia," was added in 1863. All three were destroyed in 1864. (See Alabama Arbitration.) Confederate attempts to have ironclads equipped in England and France were unsuccessful.
249. The turning-point of the war was evidently in the early days of July 1863, when the victories of Vicksburg and The corved Geltysburg came together. The national governof Swoses ment had at the beginning cut the Confederate etagere States down to a much smaller area than might well have been expected; its armies had pushed the besieging lines far into the hostile territory, and had held the ground which they had gained; and the war itself had developed a class of generals who cared less for the conquest of territory than for attacking and destroying the opposing armies. The great drafts on the future which the credit of the Federal government enabled the North to make gave it also a starting appearance of prosperity; so far from feeling the war, it was driving production of every kind to a higher pitch than ever before.
250. The war had not merely developed improved weapons and munitions of war; it had also spurred the people on to a more careful attention to the welfare of the soldiers, the fighting men drawn from their own number. The sanitary commission, the Christian commission, and other voluntary essociations for the physical and moral care of soldiers, received and disbursed very large sums. The national government was paying an average amount of \(\$ 2,000,000\) per day for the prosecution of the war, and, in spite of the severest taxation, the debt grew to \(\$ 500,000,000\) in June t862, to twice that amount a year later. 10 \$ \(\$, 700,000,000\) in June 1864 , and reached its maximum on the 31st of August \(1865-\$ 2,845.907,626\). But this lavish expenditure was directed with energy and judgment. The blockading fleets were kept in periect order and with every condition of success. The railway and telegraph were brought into systematic use for the first time in modern warfare. Late in 1863 Edwin M. Stanton, the secretary of war, moved two corps of 23,000 men from Washington to Chattanooga, 1200 m ., in seven days. A year later he moved another corps, 15,000 strong, from Tennessee to Washington in eleven days, and within a month had collected vessels and transferred it to North Carolina.
251. On the other hand, the Federal armies now held almost all the great southern through lines of railroad, except the Georgia lines and those which supplied Lee from the South. The want of the Southern people was merely growing Comsorto in degree, not in kind. The conscription, sweeping from the first, had become omnivorous; towards the end of the war every man between seventeen and fifty-five was legally liable to service, and in practice the ondy limit was physical incapacity. In 1863 the Federal government also was driven to conscription. The first attempts to carry it out resulted in forcible resistance in several places, the worst being the "draft riots" in New York (July), when the city was in the hands of the mob for several days. All the resistance was put down; but exemptions and substitute purchases were so (reely permitted that the draft in the North had tittle effect except as a stimulus to the states in filling their quotas of volunteers by voting bounties.
252. In 1864 Lincoln was re-elected with Andrew Johnson as vice-prcsident. The Democratic Convention had declared that, after four years of liailure to restore the Union by war, during which the Constitution had been vio-

\section*{Electhon} lated in all its parts under the plea of military necessity, a cessation of hostilities ought to be ohtained, and had nominated General George B. MlcClellan and G. H. Pendieton. Farragut's victory in Mobile Bay (Aug. s), by which he sealed up the last port, except Wilmington, of the blockade-runners, and the evidenely staggering condition of the Confederate resistance in the East and the West, were the sharpest comment aries on the Democratic platform; and its candi. Aumbrioe dates carried only three of the twenty-five states which took part in the election. \({ }^{\text {a }}\) The thirty-sixth state-Nevada-had been admitted in 1864.
253. The actual fighting of the war may be axid to have ended with the surrender of General Robert E. Lee to General U.S. Grant at Appomattox, Va., on the gth of Aprii 1865. All the terms of surrender named by Grant were Surrewder generous: no private property was to be surrendered; both officers and men were to be dismissed on parole, not to be disturbed by the United States government so long as they preserved their parole and did not violate the laws; and he instructed the officers appointed to receive the paroles "to let all the men who claim to own a horse or mule take the animals home with them to work their litlle farms." It should be stated, also, to Grant's honour that, when the politicians alterwards undertook to repudiate some of the terms of surrendet, he personally intervened and used the power of his own name to lorce an exact fulfiment. General Joseph E. Johnston, with the only other considerable army in the field, surrendered on much the same terms at Durham Station, N.C. (April 26), after an unsuccessful effort at 2 broader settlement. All organized resistance had now ccased; Union cavalry were ranging the Sownowe South, picking up government property or arresting leaders; but it was not until May that the last detached parties of Confederates gave up the contest.
254. Just after Lee's surrender President Lincoln died by assassination (April i5). the crime of a half-crazed enthusiast. Even this event did not impel the American people to any vinulictive use of their success for the punishment of individuals. In the heat of the war, in 1862, Congress had so changed the criminal law that the punishment of treason and rebellion should no longer be death alone, but death or fine and imprisonment. Even this modified punishment was not inflicted. There was no hanging: some of the leaders were imprisoned for a time, but never brought to trial.
255. The armies of the Confederacy are supposed to have been at their strongest \((700,000)\) at the beginning 7 me of 1863 ; and it is doubtful whether they contained opposiag 200,000 men in March 1865 . The dissatisfaction aralore of the southern people at the manner in which Davis
'Lincoin received 212 electoral voles and McClellan only 11; but Lincoln's popular vote was only about 407,000 in excem of McClellan s, out of about 4,000,000.
had managed the war seems to have been profound; and it was only converted into hero-worship by the ill-advised action of the Federal government in arresting and imprisoning him. Desertion had become so common in 1864, and the attempts of the Confederate government to force the people into the ranks had become so arbitrary, that the bottom of the Confederacy, the democratic clements which had given it all the success it had ever obtained, had dropped out of it before Sherman moved northward from Savannah; in some parts the people had reaily taken up arms agninst the conscripting officers. On the contrary, the numbers of the Federal armies increased steadily until March 1865, when they were a few hundreds over a million. As soon as organized resistance ceased, the dishanding of the men began; they were sent home at the rate of about 300,000 a month, about 50,000 being retained in service as a standing army. The cost of the Civil War has been variously

Cost of the
War.
Lincols at th ed., 1809, p. 541) at \(\{555,00,0 \infty 0\) and (p. 586) at \(\{740,000,000\); by Nicolay and Hay (Abrahom Lincoln, Vol. x., p. 339) at \(\$ 3,250,000,000\) to the North and \(\$ 1,500,000,000\) to the South; by Edward Atkinson (the Forum, October 1888, p. 133), including the first three years of Reconstruction at \(\$ 5,00,000,000\) to the North and \(\$ 3,000,00,000\) to the South. The last alone of these estimates is an approximation to the truth. The ordinary receipts of the government for the four fiscal years 1862 to 1865 totalled \(\$ 729,458,336\), as compared with \(\$ 196,963,373\) for the four preceding ycars, 1858-1861; the difference representing the effort of the treasury to meet the burden of war. In the same period more than \(\$ 2,600,000,000\) was secured in loans upon the credit of the nation; and this total was raised by later borrowings on account of the war to more than \(\$ 2,800,000,000\). The immediate and direct cost of the struggle to the North was therefore about \(\$ 3.330,000,000\). To this sum must be added, in order to ohtain the final and total cost: (1) the military pensions paid on account of the war since 386 r -about \(\$ 3,600,000,000\) up to 1909 , inclusive; (2) the interest on the war deht, approximately \(\$ 3,024,000,000\) in the same period; (3) the expenditures made during the war by state and local governments, which have never heen totalled, but may be put at \(\$ 1,000,000,000\); and (4) the abnormal expenditures for army and navy during some years following the war, which may be put, conservatively, at \(\$ 500,000,000\). The result is a total of some \(\$ 11,450,500,000\) for the North alone. But the cost to the South also was enormous; \(\$ 4,000,000,000\) cannot be an exaggeration. It follows that, up to 1909 , the cost of the war to the nation had approximated the tremendous total of \(\$ \mathbf{5}, 500,000,000\).
256. In return for such an expenditure, and the death of probahly 300,000 men on each side, the abiding gain was incalculable. The rich section, which had been kept back Eersolts of in the general development by a single institution, and had been a clog on the advance of the whole country, had been dragged up to a level with the rest of the country. Free labour was soon to show itself far superior to slave labour in the South; and the South was to reap the largest material gain from the destruction of the Civil War. The persistent policy of paying the debt immediately resulted in the higher taxation falling on the richer North and West. As a result of the struggle the moral stigma of slavery was removed. The power of the natlon, never before asserted openly, had made a place for itself; and yet the continuing power of the states saved the national power from a development into centralized tyranny. And the new power of the nation, by guarantceing the restriction of government to a single nation in central North America, gave security against any int roduction of international relations, international armament, international wars. and continual wat taxation into the territory occupied by the United States. Finally, democracy in America had certainly shown its ability to maintain the unity of its empire.
Bibliography.-Sources: The proceedings of the Continental Congress from 1783 to 1788 are in The Journalt of Congress. vols. viii. to xiii., and The Secret Jourmals of Congress, 4 vols. There is
a naw and greatly improved edition of the Journals (Washington, 1904-). cdited by W. C. Ford and Gailtard Hunt from the originals in the Library of Congress. The debates of Congrese for the period from 1789 to 1824, were collected from newspapers, abridged and published under the title of The Annals of Congres: (43 vols., Washington, \(1834-1856\)). The principal debates from 1825 to 1837 are in the Register of Debates in Congress (29 vols., Washington, 1825-1837), and from 1833 to 1873 the debates are in the Congressional Clobe (108 vols., Washington, 1834-1873). There is an Abridgement of the Debales of Congress, Irom 1789 to 1856, by T. H. Benton (16 vols, Ncw ' 'ork, 1860). The acts of Congrese. together with important documents, are in the appendices of the A nnals, Repister and Globe. See also United Slates Statutes at Large. Irom \({ }^{1789}\) to 1865 (13 vols., Boston, 3845-1866), vol. vii. contains the treaties between the United States and the Indian tribes to 1845; and Indian Afairs, Lavos and Treatics, edited by C. J. Kappler under direction of the Senate cormmittee on Indian affairs (Washing. ton, 1904). Treaties of the United States have been published in Statutes at Large, and in Treaties, Conrentions, International Acts, Protocol's and Agrecments between the United States of America and Other Powess, 7770-1900 (Washington, 1910) w.hich superseded a colle:tion of 1889 edited by John H. Haswell. The decisions of the United States Supreme Court were reported from 1789 to 1800 by A. J. Dallas (4 vols., Philadelphia, 1790-1807): from 1801 to 1815 by Wialiam Cranch (9 vols., Washington. 1804-1817); from 1816 to 1827 by Henry Wheaton (12 vols. New York, 1816-1827) ; from 1828 to 1842 by Richard Peters (16 vols., Philadelphia, et al., 1828-1842); from 1843 to 1860 by B. C. Howard (24 vols., Philadelphia, et al., 1843-1860); in 1861 and 1862 by J. S. Black (2 vols., Washington. 1862-1863) ; a nd from 1863 to 1874 by J . W. Wallace (23 vols., Washington, \(1865-1876\)). There is a valuable collection of Cases on constitutional law, in 2 vols. by J. B. Thayer (Cambridge, 1894-1895). A large portion of the important executive documents are contained in The Messages and Papers of the Presidents, 1780-1897, compiled by J. D. Richardson (10 vols., Washington, 1896-1899). and the \(\lambda\) merican State Pepers: Docnments Legistative and Execufise (38 vola, Washiagton, 18321861); (wo volumes of thesc State Papers relate to commerce and navigation, 1789-1823; five to finance, 1789-1828: six to foreiga relations, 1789-1859: two to Indian aftairs, 1789-1827; seven to military afiairs, 1789-1838; four to naval afsirs, 1789-1836; eight to public lands, 1789-1837; one to the post office depart ment: two to miscellaneous affairs. There is considerable firathand material on the framing and ratification of the Constitution in the Documentary History of the Constitution, 1780-1870 (5 vols. Washington, 1894-1905), and The Debotes in the Several Stale Con. ventions on the Adoption of the Foderal Constiuntion. . . Logether with the Journal of the Federal Convention, hy Jonathan Elliot (5 vols. Philadelphis, 1861; 2nded.. 1888). See also]. F. Jameson," Studice in the History of the Federal Convention of 1787." in the Amenal Report of the American Historical Association for 1902, vol. i.: and Pennsylvania and the Federal Constitution (Philadedphia, 1888), edited by J. B. McMaster and F. D. Stonc. For the Civil War by far the most important source is the vast compilation of the Official Records of the Union and Confederate Armies, in four scries, an at las and a general index (Washington, 1880-1000). The material in William MacDonald's Select Documents Illustratioe of the History of the United Stales, 1776-1861 (Ncw York, 1898) relates almost wholly to constitutional development, loreign relations and bankingA. B. Hart's Amcrican Iistory told by Contemporarics (Ncw York. 1901), of which vol. iii. and part of vol. iv. are collected from thit period, consists largely of contemporary narratives, correspondence and extracts from diarics on a preat variety of subjects. The Library of Congress has 333 vols. of Washington Manuscripts, 135 vols. of Jefferson Manuscripts. 75 vols. of Mcdison Manuscripis, 64 vols. of Alexander Hamilion Manascripls, more than 200 letters between Jackson and Van Buren, a collection of Polk papers, the nuore important part of Webster's correspondence, a lew Clay letters 22 vols. of Salmon P. Chase papers besides over 6300 letters, and 440 Blennerhassett manuscripts. The Massachusetts Historical Socicty has the Adams papers : the Historical Society of Pennsylvania has the Buehanan papers: the Historical Society of New Hampshire has a large collection of Vcbster papers; and the Historical Society of Chicago has some of the Polk papers. Various valuable report on manuscript materials available to students of this period have been published in the Annual Reports of the Historical Manuscript: Commission of the American Historical Association, and there is much valuable material in the Annual Reports nf the association and in the volumes of the American Histerical Review. The Americam Historical Association has published an index in its "Bibliography of American llistorical Socictics," edited by A. P. C. Grifin. in vol. ii. of its Annrat Report for 1905 (VVashington, 1907). See also. for social and economic sources. Documertary History of Americane Industrial Socirly (Cleveland. O., 1910 sqq.). Among the meost useful published works of the public men of the period are: The Writings of George Washinglon edited hy W. C. Ford (It vols. New York 1889-1893); Complete W'orks of Alcxander Hamileom. edited by H. C. I. Adee (9 vols., New York. 1885-1886), and Tin Works of John Adams . . . wilh a Life of the Author, edited, Fith

Liff, by C. F. Adams \{ro vols., Boston, \(1850-1856\)), representing the Fcueralists: The Wrutings of James Madison, edited by Gaillard Hunt (9 vols. New York, s900-1910), and The Wruings of Thomas Jefferson, edited by P. L. Fond (io vols. New York, 1892-1899). representing the Ansi-Federalists or Republicans; The Wratings of James Monroc, edited by S. H. Hamilion (7 vols., New York, 1898-1003); Alemoirs of John Quincy Adams, comprising Portions of hes Diary fram 1705 to 1848 , edited by C. F. Adams (12 vols., Philadelphia, 1874-1877); Works of Henry Clay, comprising his Life. Correspendenceand Speeches, edited, with Life, by Calvin Colton (to vols., New York, 1904) and Thomas Hart Bentoris Thinty Years liew; or, a Ilistory of the Working of the Amercon Covernment (2 vols., New York, \(185 f^{-1856), ~(o r ~ t h e ~ " M i d d l e ~ P e r i o d ": ~ T h e ~ W r i t i n g s ~}\) and Spreches of Daniel Webster. edited by J. W. Mcintyre (18 vols. Boaton, 1903): Letters of Daniel Wedster. edited by C. H. van Tyne (New York. 1902): Complete Works of Abraham Licucoln. comprising his Speaches, Letiers, State Papers and Miscelloneous Wratings, edited by J. C. Nicolay and John Hay (2 vols., New York, 1902); The Works of Willicm H. Seroard, edited by G. E. Baker (s vols., and ed. Boston. 1883-1890), and The Works of Charles Sumencr (15 vola. Boston, 1870-1843), Lor the Northern view; The Werks of John C. Calhoun, elited by R. K. Crallé (6 vols. New York, 1854-185s): Alexander H. Stephens, Constituional Virwo of the Late Waf between the Sakes (2 volk., Philadelphia, s868-1870), and Jefferson Davis, Rise and Foll of the Confederate Goacramens (2 vols, New York, 1881), lor the Southern view.

Secondary Works: Three large and important secondary works cover the whole. or nrarly the whole, period from the War of Independence to the Civa War. They arc: James Schouler, History of the United Siates of Americe amder the Consitution (rev, ed.. 6 vols. New York 1899), whotarly and comprehensive, bu! lacking in clearness, and, in the latter portion, unfair to the South; J. B. Mc.Master. History of the People of the Uniled Slates from the Revolu. tion to the Cirt War (7 vols., New York, 1883-1910), especially valuable for its treatment of nocial and economic conditions and for material gathered from newspapers; H. E. von Holst, Comst imimional and Polutical Hislary of the Cinited Slates (2nd ed., 8 vols., Chicaga 1899), chiefly a treatment of the constitutional aspects of slavery by a German with strong ethical and strong anti-slavery sentiments The period is ably treated in sections by A. C. McLaughlin, The Confoderation and the Constitution, vol. \(x\) of " The American Nation Series "(New York, 1905) ; I. S. Bassets, The Federal System, vol. ii. of The American Nation Series "; Iienry Adams, Ifistory of the United States of A mertico during the Administrations of Jefferson and Madison (9 vole., New York, 1891), quotes (recly from records in foreikn archives: I. W. Burgess, The Mredle Peried, 1817-s858 (New Yark, tgol), and J. F. Rhodes, History of the United States from the Com. promise of 1550 (7 vols., New York, 1900-1506), which, although writien largely from Northern sources, is for the most part lair and pudicial. For lisis of works dealing with special events (e.e. the IIssouri Compromise, the Compromise of 1850. The Fugitive Slave Law, \&C.), wee the articles devoted to those subjects. See also vols. xii. \(10 \times x\). of "The American Nation Series, "consisting of Edward Channing. The Jefersonton System: K. C. Babcock. The Rise of Americon Nationofty: F. J. Turner, Rise of the Nety West; William Mac Donald, Jackionion Democracy: A. B. Hart. Slavery and Abols tion: C. P. Garrison, Hestuard Expension; T. C. Smith. Porlics and Slasery; F. E. Chaduick, Causes of the Ciril War; and J. K. Hosmer, The Appeal 10 Arms. and Outcome of the Crit War. For further study of the Civil War see Edward McPherson, Political Histery of the I'nued States during the Great Rebellion (Washington, 1864: 3rd ed., 1876), chitly a compilation of hrst-hand material; J. W. Burgess. The Ciml Thip and the Constitution (2 vals., New York, 1001). The best account of the military operations of the Mexican War is in R. S. Kipley. The War with Merico. (2 vols. New York, 8899). For a list of works relating to the malitary events of the War of 1812 and the Civil War see the separate articles on those subjects. On the War with France, 1798, see G. W. Allet, Ou? Nated Wap trith france (New York, 1909). On the development of the West there are: H. B. Adams. Marydand"s Infimence apon Land Cessions to tir Uniled Slates (Baltimore, 1885); B. A. Hindale, The OLd North. Wen (revined ed. New York, iS99). a acholarly work; Justin Winsor, The He utiand Movement (Buston, 1897), a storehouse ef lacts, but dry fur the general reader: Theodore Rossevelt, The Wimning of the W'est (4 vols. New York. 186-1896). a graphic outline. Other importane works on spocial mbjects are: Edward Stanwood. Hislory of the Presidency (Boston, i898) a study of presidential campaigns. J. P. Gordy, History of Poifical Parties in the L'nited Stotrs (2 valg, rev ed, New York. 1900-1902): E. D. Warfield. The Kentucty Resolutions of 1708 (New York, 1887); Freeman Snow. Treaises and Topers in \(A\) mericam Diplemecty (Boston. 1894): J. B. Moure. A Diers of International Low (6 vols. Wiashing. inn, 1906). and History and Difest of the Intornotional Aibitrations to ishich the l'rited Staks has been a Party (6 vols. Washington, 1R98). E. S. Marlay, Histery of the United Suster Navy from 1775 to 1898 (3 vols., New York, 1897-1903): C W Alken. Our Napy and the Barbary Corsars (Bnstan. 1go5)i.I. R. Spears, Hitery ef eur Nary (4 vals. New York. \({ }^{1897 \text {) }}\) of

Banking in the United Stases (New York, 1896); R. C. H. Catterall The Second Bank of the United States (Chicago 1003); F. W. Taussig Tarif History of the Uwited States (4th ed. New York, 1898): E. L Bogart, Economic History of the United Seates (New York, (907); E. D. Fitc, Sociat and Indxsirial Condutions in the North during the Civi War (New York, 1910), and J. L. Bishop, Haslory of A merican Manufacturcs (3 vols., 3rd ed., Philadelphia, 1867). For biographies of the leading statesmen of the period see American Statesmen, edited by J. F. Morse, jun. (32 vols., new ed., Bowton, 1899); see also the bibliographies af the close of the biographical sketches of statesmen in this edition of the Ency. Brit. There is a "Critical Essay on Authorities" in earh volume of The American Nation; and both The Literafure of American History, edited by J. N. Larned (Boston. 1902), and Channing and Hart's Gxide to the Siudy of Americon History, are valuable bibliographical guides. (A. J.; C. C. W.)

\section*{L.-History, 1865-1920.}
257. The capitulation of Lee (April 9, 1865), followed by the assassination of Lincoln (April 15) and the surrender of the last important Conjederate army, under J. E. Johnston, marked the end of the era of war and the beginning of that of Reconstruction, a problem which involved a revolution in the social and political structure of the Soutb, in the relation of state and nation in the American Federal Union, and in the economic life of the whole country.
258. Economically the condition of the South was desperate. The means of transport were destroyed; railways and bridges were ruined; Southern securities were valueless; the Confederate currency system was completely disorganized. Great numbers of the emancipated negroes wandered idly from place to place, trusting the Union armies for sustenance, while their former masters toiled in the fields to restore their plantations.
259. The social organization of the South had been based on negro slavery. Speaking generally, the large planters had constituted the dominant class, especially sactelead in the cotton states; and in the areas of heaviest scomomes negro population these planters had belonged for coadtome of the most part to the old Whig party. Outside the seoter of the larger plantation areas, especially in the hill regions and the pine barrens, there was a population of small planters and poor whites who belonged in gencral to the Democratic party. In the mountain regions, where slavery had hardly existed, there were Union areas, and from the poor whites of this section had come Andrew Johnson, senator and war governor of Tennessce, who was chosen vice-president on the Union ticket with Lincoln in 1864 as a recognition of the Union men of the South. Accidental as was Johnson's elevation to the presidency, there was an clement of fitness in it, for the war destroyed the former ruling class in the Southern States and initiated a democratic revolution which continued after the interregnum of negro government. Of this rise of the Southern masses Johnson was represent ative.
260. The importance of personality in history was clearly Illustrated when the wise and sympathetic Lincoln, who had the confidence of the masses of the victorious onstrust of North, was replaced by Johnson, opinionated and fresterelt intemperate, whose antecedents as a Tennesscan and temesos.
Democrat, and whose state rights' principles and indifference to Northern ideals of the future of the negro made him distrusted by large numbers of the Union Republican party.
261. The composition of this party was certain to endanger its stability when peace came. It had carried on the war by 1 coalescence of Republicans, War Democrats, Whigs. Uabo Constitutional Unionists and Native Americans, Roowatican who had rallied to the cause of national unity. Panty.
At the outset it had asserted that its purpose was not to interfere with the established institutions in slave states, but to defend the Constitution, and to preserve the U'ion with all the dignity, equality and rights of the several states unimpalred. But the war had destroyed slavery, as well as preserved the Union, and the civil status of the negro and the position of the revolled states now became burning questions, reviving old antagonisms and party factions. To the extremists of the Radical wing it seemed in accordance with
the principles of human liberty that the negro should not oniy be reieased from siavery but should also receive full civil rights, including the right to vote on an equality with the whites. This group was also ready to revolutionize Southern society by destroying the oid ascendancy of the great planter class. Of this idealistic scbool of radical Republicans, Charles Sumner, of Massachusetts, was the spokesman in the Senate, and Thaddeus Stevens, of Pennsylvania, in the House.
262. For many years before the war parties had differed on such important questions as the tarifi, internal improvements and foreign policy; and the South had used its alliance with the Nonhern Democracy to resist the economic demands of the industrial interests of the North. A return of Southern congressmen, increased in numbers by the inapplicability to the new conditions of the constitutional provision by which they had representation for only a fraction of tbe slaves, might mean a revival of the old political situation, with the South and the Northern Democracy once more in the saddle.
263. Any attempt to restore the South to full rights, therefore, without further provision for securing for the freedmen Nonsers the reality of their freedom, and without some Attitade means of establishing the political control of the sowarde the victorious party, would create party dissension. Semt. Even Lincoln had aroused the bitter opposition of the radical leaders by his generous plan of Reconstruction. Johnson could have secured party support only by important concessions to the powerful leaders in Congress; and these concessions he was temperamentally unable to make. The masses of the North, especially in the first rejoicings over the peace, were not ungenerous in their attitude; and the South, as a whole, accepted the results of defeat in so far as to acquiesce in the permanence of the Union and the emancipation of the slaves, the original issues of the war.
264. In the settement of the details of Reconstruction, however, there were abundant opportunities for the hatred engendered by the war to flame up once more. As it became clear that the Northern majority was determined to exclude the leaders of the South from political rights in the reconstruction of the Union, and especially as the radicals disclosed their purpose to ensure Republican ascendancy by subjecting the section to the rule of the loyalist whites and. later, to that of the emancipated negroes, good will disappeared, and the South entered upon a fight for its social system. The natural leaders of the people, men of intelligence and property, bad been the leaders of the section in the war. Whatever their views had been at first as to secession, the great majority of the Southern people had followed the fortunes of their states. To disfranchise their leaders was to throw the control into the hands of a less able and small minority of whites; to enfranchise the blacks while distranchising the white leaders was to undertake the task of subordinating the former political people of a section to a different race, just released from slavery, ignorant, untrained, witbout property and fitted only to follow the leadership of outside elements. The history of this attempt and its failure constitutes much of that of the Reconstruction.
265. These underlying forces were in reality more influential than the constitutional theories which engaged so much of the discussion in Congress, theories which, while they afford evidence of the characteristic desire to proceed constitutionally were really urged in support of, or opposition to, the interests just named.
266. The most extreme northern Democrats, and their southern sympathizers, starting from the premise that con-

Theorks Regordtar the Statis of fite Sourher: Sertiss. stitutionally the Southern states had never been out of the Union, contended that the termination of hostilities restored them to their former rights in the Federal Union unimpaired and without further action. This theory derived support from President Lincoln's view that not states, but assemblages of individuals, had wased war against the government. The theory of the extreme Republican Radicals was formulated by Sumner and Stevens. The former contended that, while
the states could not secede, they had by waging war reduced themselves to mere Territories of the United Siates, entited only to the rights of Territories under the Constitution. Stevens went further and, appealing to the facts of secession, declared the Southern states conquered provinces, subject to be disposed of under international law at the will of the conqueror. In the end Congress adopled a middie ground, holding that while the states could not leave the Union, they were, in fact, out of normal relations, and that the constitutional right of the Federal government to guarantee republican governments to the various states gave to Congress the power to impose conditions precedent to their rehabilitation.
267. It is necessary to recall the initiation of Reconstruetion measures by President Lincoin rightly to understand the position which was taken by President Johnson. Prowtere Impatient of theoretical discussion, Lincoln laid Lheodart: down practical conditions of restoration in his proclamation of the 8 th of December 1863 . In this he offered amnesty to those who would take an oath of loyalty for the future and accept the acts of Congress and the proclamation of the president with reference to slaves. From the amnesty be excepted the higher military, civil and diplomatic officers of the Confederacy as well as those who had relinquished judicial stations. seats in Congress, or commissions in the army or navy to aid the rebellion, and those who had treated persons in the Federal service otherwise than lawfully as prisoners of war. The proclamation provided, further, that when in any of the seceding states (except Virginia, where the president bad already recognized the loyal government under Governor Francia H. Pierpont) a number of persons not less than one-tenth of the voters in 1860 should have taken the above described oath, and, being qualified voters under the laws of the state in 1860, should have established a state government, republican in form, it should be recognized. Lincoln's comprehension of Southern difficulties was shown in his declaration in this proclamation that the president would not object to such provisions by the states regarding the freedmen as should, while declaring their freedom and providing for their education, recognize their condition as a labouring, landless and homeless class.
268. Although Lincoln expressly pointed out that the admission of the restored states to representation in Congress rested exclusively with the respective coempore bouses, and announced hir readiness to consider che First other plans for Reconstruction, heated opposition Reconstrob by the radicals in Congress was called out by \({ }^{\text {chen }}\) ar. this proclamation. They feared that it did not sufficiently guarantee the abolition of slavery, which up to this time rested on the war powers of the president, and they asserted that it was the right of Congress, rather than that of the president, to determine the conditions and the process of Reconstruction. In a bill which passed the House by a vote of 73 to 59 and was concurred in by the Senate. Congress provided that Reconstruction was to be begun only when a majority of the white male citizens of any one of the Confederate States should take oath to support the Constitution of the United States. The president should then invite them to call a constitutional convention. The electors of this convention would be required to take an oath of allegiance which excluded a much larger class than those deprived of the beneft of the amnesty proclamation. for it eliminated all who had voluntarily borne arms against the United States, or encouraged hostility to it, or voluntarily yielded support to any of the Coniederate governments. In addition to cntrusting the formation of a constitution to the small minority of thorough-going loyalists, the bill required that the state constitution should exclude a large proportion of the civil and military officers of a Confederate government from the right of voting. and that it should provide that slavery be for ever abolished and that state and Confederate debts of the war period should never be paid. In July 1864 Lincoln gave a "pocket veto" to the bill and issued a proclamation explaining his reasons for refusing to sign, whereupon Bedjamin F. Wade and Henry W. Davis (g.v.), Jeaders of
the radicals, violently attacked the president. The triumph of Lincoln in the election of 1864 did not clearly signify the will of the people upon the conditions of Reconstruction, or upon the organ of government to formulate them, for the declaration of the Democratic convention that the war was a failure overshadowed the issue, and the Union party which supported Lincoln was composed of men of all parties.
269. On January \(315 t\) 1865 the House concurred in the vote of the Sennte in favour of the Thirceenth Amendment to the Constitution abolishing slavery throughout the rmorement Union. Four years carlier Congress had suhmitted to the states another Thirtecuth Amendment by the terms of which no amendment should ever authorize Congress to interfere with slavery within the states. But owing to the war this amendment had remained unratificd, and now Congress proposed to place beyond constitutional doube, or the power of states to change lt , the emancipation of slaves. By the 18th of December 186s the amendment had been ratified and was proclaimed in force.
270. In the meantime, Louisiana, in accordance with Lincoln's proclamation, had adopted a constitution and abolished slavery within the state. Owing to the obstructive tactics of Sumner, aided by Democrats in the Senate, Congress adjourned on the 4 th of March 1865 without having recognized this new state government as legitimate. "If we are wise and discreet," said Lincoln, "we shall reanimate the states and get their governments in suctessful operation with order prevailing and the Union re-estahlished before Congress comes together in December."
271. Such was the situation when Johnson took up the presidency upon Lincoln's death. After an interval of uncertainty, in which he threatened vengeance against various Southern lea Jers and gave the radicals some hope that he would favour negro suffrage, President Johnson accepted the main features of Lincoln's policy. Congtess not being in session, he was able to work out an executive Reconstruction on the lines of Lincoln's policy during the summer and autumn of 1865 . On the 29th of May he issued a proclamation of amnesty, requiring of those who desired to accept its provisions an oath to support the Constitution and Union, and the laws and proclamations respecting the emancipation of slaves. Certain specified classes of persons were excepted, Including certain additions to those excluded by Lincoln, especially " all persons who have voluntarily participated in said rebellion and the estimated value of whose taxahle property is over twenty thousand dollars." This provision was characteristic of Johnson, who disliked the Southern planting aristocracy, and aimed at placing the preponderant power in the hands of the Democratic small farmers, who had been his supporters. To those of the excepted classes who would ask pardon from the president, he promised 2 liberal clemency. As part of his system he issued poncy of another proclamation in which he appointed a Prosione governur for North Carolina and haid down a plan for Reconstruction. By this proclamation it was made the duty of the governor to call a convention chosen by the loyal people of the state, for the purpose of altering the state constitution and establishing a state government. The right to vote for delegates to this convention was limited to those who had taken the oath of amnesty and who had been qualified to vote prior to the secession of the state. To the state itself was to be left the determination of the future qualifications of electors and office-holders.

2;2. Already Virginia, Tennessee, Louisiana and Arkansas had governments which had been recognized by Lincoln. Between the \(13^{\text {th }}\) of June and the i3th of July 1865 Johnson applied the same process which he had outlined for North CaroGina to the remaining states of the Confederacy. Before Congress met in December all the Conicderate states, except Texas (which delayed until the spring of 1866), had formed constitutions and elected governments in accordance with the presidential plan. All of their legislatures, except that of Miesissippi, ratified the Thirteenth A mendment abolishing slavery.
273. Gradually, however, the South turned to its former leaders to shape its policy, and the radical Republicans of the North were alarmed at the rapidity of the process of restoration on these principles. The disorganized and idle condition of the former slaves constituted a serious element in the Southern situa. tion, as Lincoln had foreseen. The negroes expected a grant of land from confiscated Southern estates, and il was difficult to preserve order and to secure a proper labour supply.
274. Under these conditions the efforts of the South to provide security for their communities hy bodies of white militia were looked upon with apprehension by the North, and there was sufficient conflict between the two races to give colour to charges that the South was not accepting in good faith the emancipation of the slaves. Especially irritating to Northern sentiment were the so-called "black codes " or "peonage laws," passed by the newly elected Southern legislatures. Sentione They rested on the belief that it was necessary that the former slaves should be treated as a scparate
"Alect! and dependent class, and varied in severity in the different states. Some of these imposed special disahilities upon the negro in the matter of carrying weapons and serving as witnesses. Vagrancy laws and provisions regarding labour contracts which had precedents in colonial and English legislation, but were specifically framed to restrain the negroes only, were common. Mississippi denied them the right to own land, or even to rent it outside of incorporated towns; South Carolina restricted them to husbandry and to farm or domestic service, unless specially licensed. Although several of the Southern states, perceiving that their course was likely to arouse the North to drastic measures, repealed or mitigated the most objectionahle laws, the North had received the impression that an attempt had been made to restore slavery it. disguised form.
275. The problem of succouring and protecting the negroes had forced itself upon the attention of the North from the beginning of the war, and on the 3rd of March 1865 The Congress had crealed the Freedmen's Burcau (g.v.), Frowdere's with the power to assign ahandoned lands, in the Bureash states where the war had existed, to the use of the freedmen; to supervise charitable and educational activities among them; to exercise jurisdiction over controversies in which a freedman was a party; and to regulate their labour contracts. The lucal agents of the bureau were usually Northern men; some of them gave the worst interpretation to Southern conditions and aroused vain hopes in the negroes that the lands of the former masters would be divided among them; and Later many of them became active in the political organization of the negro.
276. Although the national govemment itself had thus recognized that special treatment of the freedmen was necessary, Congress, on assernhling in December 1865, was disposed to regard the course of the South in this respect with deep suspicion. Moreover, as the Thirteenth Amendment was now ratified, it was seen that the South, if restored according to the presidential policy, would return to Congress with added representatives for the freed negroes. Only three-fifths of the negro slaves had been counted in apportioning representalives in Congress; though now free they were not allowed to votc.
277. Under the leadership of the Radicals Congress refused. thercfore, to receive the representatives of the states which had met the conditions of the president's proclamations. A joint committee of fiftern took the whole suhject of Reconstruction under advisement, and a hill was passed continuing the Freedmen's Bureau indefnitely. When this was vetoed by President Johnson (Feb. 19, 1866) Congress retaliated by a codcurrent resolution (\(\mathrm{March}_{2}\)) against adaitting any reconst ructed state until Congresi declared it entitied to recognition, thus asserting for the legislative body the direction of Reconstruction.
273. While the measure was under consideration the president in an intemperate public address stigmatized the leaders of the radicals hy name as labouring to destroy the principles
of the government and even intimated that the assassination of the president was aimed at. It was hardly possible to close the breach after this, and the schism between the

Ornact in
spreceitibe
Presidetat
and Cos.
sposse the
GNuFBth
BIL persons and entilled to the protection of the Federal erament. It provided punishment for those who, relying upon state authority, should discriminate against the negroes.
279. To place this measure beyond the danger of overthrow by courts, or hy a change of party majority, on the \(\mathbf{z}\) th of

\section*{The}

Fonreert June 1800 Congress provided for suhmining to the Fourcemth states a Fourteenth Amendment to the Constitution. amesed- This gave constitutional guarantee of citizenship mace. president and the leaders of the Union Republican party was completed when Congress passed (April 9, 1866) the Civil Rights Bill over Johnson's veto. The act declared the freedmen to be citizens of the United States with the same civil rights as white provided that when in any state the right to vote should be denied to any of the male inhabitants twenty-one years of age and citizens of the United States, except for participation in rebellion or other crime, the basis of representation in the state should be reduced in the proportion which the number of such citizens bore to the whole number of male citizens twenty-one years of age in the state. This section of the amendment, therefore, left the states the option between granting the suffrage to the negro or suffering a proportionate reduction in the number of representatives in Congress. It was a fair compromise which might have saved the South from a long period of misrule and the North from the ultimate breakdown of its policy of revolutionizing Southern political control by enfranchisement of the hlacks and disfranchisement of the natural leaders of the whites. But the South especially tesented that section of the amendment which disqualified for Federal or state office those who, having previously taken an oath to support the Constitution of the United States, afterwards engaged in rebellion, which involved the repudiation of their leaders. The anendment further safeguarded the validity of the United States deht and declared null the war deht of the seceding states and the Confederacy and forbade the payment of claims for emancipation.
280. In order to ensure the passage of this amendment the Radical leaders proposed bills which declared that, after its adoption, any of the seceding states which ratified it should be readmitted to representation. But it also provided that the higher classes of officials of the Confederary should be incligible to office in the Federal government. Thesc bills were allowed to await the issue of the next election.
281. For further protection of the rights of the negro, Congress succeeded in passing, over President Johnson's veto, an act continuing the Frecdmen's Bureau for two years. Tennessee having ratified the Fourteenth Amendment was (July \({ }^{24}\), 1866) restored to representation and Congress adjourned, leaving the issue between the president and the legislative body to the people in the Congressional elections.
282. The campaign brought with it some realignment of party. President Johnson having broken with the leaders of the Union Republican party was more and more forced to rely Purts Re attremasta upon Democratic support, although his executive appointments were still made from the ranks of the Republicans. The so-called National Union Convention, which met in Philadelphia in midsummer in an effort to abate sectionalism, and to endorse the president's polley, included a large number of War Democrats who had joined the Union party after the secession of the South, many moderate Southerners, a fragment af the Republican party, and a few Whigs, especially from the Border states. They claimed that the southern States had a right to be represented in Congress. Other meetings friendly to the Radicals were called, and under the designation of Union-Republican party they declared for the Congressional policy. While the campaign for elections to Congress was in progress the president made a journey to Chicago, speaking at various cities en rowte and still further
alicnating the Republicans by coarse abuse of his oppoaents. As a result of the autumn clections two-thirds of the members of the House of Representatives were opposed to him. Almost contemporaneously every seceding state except Tennessee rejected the Fourteenth Amendment, and thereby paved the way for the entire triumph of the Northern extremists, who favoured negro suffrage on idealistic grounds or as a means for. forcing the South to agrec to the Republican policy.
283. In the ensuing winter and spring Congress completed the conquest of the president, a wed the Supreme Court, and provided a drastic body of legislation to impose negro suffrage on the South. By the Tenure of Office Act (March 2, 8867) Congress forbade the president to remove civil officers without the consent of the Senate, and at the same time by another aet required him to issuc military orders only Tomere of through the througb the general of the army (Grant), whom the president was forbjdden to remove from command or to assign to duty at another place than Washington, unless at the request of the officer or by the prior assent of the Senate. These extraordinary invasions of the presidential authority were deemed necessary to prevent Johnson from securing contsol of the military arm of the government, and to protect Edwin Stanton, the secretary of war, and Gencral Grant. Fcaring lest the president might take advantage of the interim during which Congress would not be in session, the Fortieth Congress was required to meet on the 4 th of March immediately following the expiration of the thirty-ninth.
284. The Reconstruction Act of the and of March 1867 provided for the military government of the Southern states while the drastic policy of Congress was being carried out. It was passed over the veto of the president evoumberse and declared that no legal governments or adequate mertes 2, protection for life or property existed in the 1037. seceding states, except Tennessee. These states it divided into five military districts, each to be placed under the command of a general of the army, whose duty it was to preserve law and order, using at discretion either local civil tribunals or military commissions. But the existing civil governments were declared provisional only and subject to the paramount authority of the United States to abolish, modify, control, or supersede them. The act further provided that a constitutional convention might be elected by the adult male citizens of the state, of whatever race, colour or previous condition, resident in the state for a year, except such as might be disfranchised for rebellion or felony. No persons excluded from holding office under the Fourteenth Amendment were eligible for clection to the convention or entitled to vote for its members.
285. When the convention, thus chosen under negro suffrage. and with the exclusion of Confederate leaders, should have framed a state constitution conforming to the Federal Constitution and allowing the franchise to those entitled to vote for the members of the convention, the constitution was to be submitted for the approval of Congress. If this were obtaincd and if the state adopted the Fourteenth Amendment, and this amendment hecame a part of the Federal Constitution, then thestate should be entitled to representation in Congress; but the senators and representalives sent to Congress were required to take the " ironclad oath," which excluded those who had fought in the Confederate service, or held office under any government hostile to the United States, or given support to any such authority.
286. By the pressurc of military control Congress thus aimed at forcing the adoption of the Fourteenth Amendment, as well as the acceptance of negro suffrage in the state constitutions of the South. A supplementary act of the 23 rd of March 1867 and an act of interpretation
 passed on the igth of July completed this policy of "thorough." In the registration of voters the district commanders were required to administer an oath which excluded those disfranchised for rebellion and those who after holding state or Federat office had given aid and comfort to the enemies of the Coit ed States.
287. Against this use of milltary power to govern states in
time of peace the Supreme Court interposed no effective obetacle. Like the execucive it was subordinated to Congress.

Smerre
Dectrioes. It is true that in the case ex parte Milligan, decided in December 1866, the court held military commissions unlawiul where the ordinary civil tribunals were open. In the case of Cummings v. Missouri (Jan. 14, 1867) it decided also that a state test oath excluding Confederate sympathizers from professions was a violation of the prohibition of ex posf facto laws; and the court (ex parte Garland) applied the same rule to the Federsl test oath so lar as the right of attorneys to practise in Federal courts was concerned.
288. But threats were made by the radicals in Congress to take away the appellate jurisdiction of the court, and even to abolish the tribunal by constitutional amendment. The judges had been closely divided in these cases and, when the real test came, the court refused to set itself in opposition to Congress. When Mississippi attempted to secure an injunction to prevent the president from carrying out the Reconstruction acts, and when Georgia asked the court to enjoin the military officers from enforcing these acts in that state, the Supreme Court refused (April and May 1867), pleading want of jurisdiction. Chief Justice Salmon P. Chase argued that if the president refused to obey the court could not enforce its decree, while if he complied with the order of the court, and If the House of Representatives impenched him for refusing to enforce the law, the Supreme Court mould be forced to the vatin attempt to enjoln the Senate from silting as a court of impeachment.
289. In one instance it seemed inevitable that the court would clash with Congress; the McCardle case involved an editor's arrest by military authority for cricicizing that

\section*{ceas Case} athority and the Reconstruction policy. But Congress, apprehending that the majority of the court vould deciere the Reconstruction ects unconstitutional, promptly repealed that portion of the act which gave the court jurisdiction in the case, and thns enabled the judges to dismiss the appeal. Afterwards, when the Reconstruction policy had been accomplished, the court, in the case of Texas \(v\). Whit (1869), held that the Constitution looked to "an indestructible Union composed of indestructible states "; and that although the secession acts were null, and the Federal obligations of the seceding states remained unimpaired, yet their rights were
Trime 0
when sospended during the war. It also held that in re-establishing the broken relations of the state with the Union, Congress, under the authority to guarantec to every state a republican form of government, was obliged to regard the freedmen as part of the people of the statc, and was entitled to decide what government was the established one. This decision, though it did not involve the direct question of the constitutionalit y of the Reconstructionacts, harmonized witb the general doctrines of the Congressional majority.
290. The powerful leaders of the Republicans in Congress had been awaiting their opportunity to rid themselves of hepeech- President Johnson by impenchment. After various merif of Enuphole Sremeen. failures to convince a majority of the House that articies should he preferred against him, an opporfunity scemed to preseat itself when Johnson, in the summer recess of \(\mathbf{3 8 6}\), suspended Secretary Stanton and made Ceneral Grant the acting secretary of war. The Senate, on reassembling, refused to consent to the saspension, and General Grent yieided his office to Stanton, thus spoiling the president's plan to force Stanton to appeal to the courts to obtain his office and 30 test the constitutionality of the Tenure of Office Act. This proved to be a turning-point In Grant's political career, for by his break with Johnson he gained new support among the masses of the Republican pariy. To Johnson's foes it seemed that the president had delivered himself into their mands when be next defied Congress by taking the decisive step of removing Stanton in defiance of the Tenure of Onfice Act, and the House announced to the Senate (Fcb. 45, 186) its decision to bring articles of impeachment against
the president. But careful reading of the law showed that it could not be relied on as conclusive ground for impeachment, for it provided that cabinet officers should hold office during the term of the president by whom they were appointed and for one montb thereafter, subject to removal with the consent of the Senate. As Stanton had been appointed by President Lincoin and had merely continued under Johnson, a doubtful question was raised. The leaders, therefore, incorporated additional charges in the articles of impeachment which they pushed through the House of Representatives. By these the president was accused of attempting to hring the legislative branch into disgrace by his public utterances and of stigmatizing it as a Congress of oaly part of the states. This raised the question whether it was necessary to show a legal, technical crime or misdemeanour as the necessary ground of impeachment. Had the theory of the leaders that this was not the case been successlul, the executive would have been reduced to an obvious dependence upon Congress. In the spring of 1868, however, the trial by the Acpmintity Senate resulted in a verdict of acquittal. (See acto semm. Johnson, Andrew.)
291. Mcanwhile the military Reconstruction of the South and the organization of the negro vote progressed eflectively. The party management of the negroes was conducted by "carpet-baggers," as the Northern men who came South to try their fortunes under these new conditions were nicknamed, and by the white loyalists of the South, to whom was given the name "scalawags." In the work of marshal-
"Carpel" Bature" aserscato wage" 14 Uaion Lane. ling the freedmen's vote for the Republican pariy secret sorieties like the Loyal League, or Union League (q.t.), played an important part. As the newly enfranchised mass of politically untrained negroes passed under Northern influence politically, the Southern whites drew more and more together in most of the former Confederate States, and although they were unable under the existing conditions to take control, they awaited their opportunity. A "Solid South " was forming in which old party divisions gave way to tbe one dominant antagonism to Republican ascendancy by negro suffrage; and a race antagonism developed which revealed the fact that underneath the slavery question was the negro question.
292. Politically the important fact was that the Republicans had rejected the possibility of reviving the old party lines in the South, and had gambled upon the expectation of wielding the united coloured vote with such leadership and support as might be gained from former Northerners and loyal whites. In the end negro rule failed, as was inevitable when legal dis. abilitics and military force were removed; but the masses of the Southern whites emerged with a power which they had not possessed under the old rule of the planting aristocracy. For the time being, however, negro votes gave control to the Republicans. In South Carolina, Florida, Alabama, Mississippi and Louisiana the negroes were in a majority; in Virginia, North Carolina, Arkansas and Iexas they were in the minority; while in Georgia the two races were nearly evenly balanced.
293. The white leaders of the South were divided as to thg best means of meeting the problem. Some advocated that those cntitled to vote should registcr, and then refrais from the polls, in order to defeat the con maigy of stitutions made under negro sulfrage, for the law we kor required them to be ratified by a majority of the אhor ween qualified voters. Others would have the white race bear no part in the process. Societies such as the "Ku-Klux Klan" and the "Knights of the White Camelia" were organized to intimidate or restrain the freedmen. But for the present the Repubicans carried all before them in the South. Some of the new state constitutions imposed scvere disfranchisement upon the former dominant class, and before the end of July 1868 all of the former Confederale States, except Virginia. Mississippi and Texas, had ratified the Fourteenth Amendment, which was proclaimed in effect. By the beginaing of \(18 ; 0\) these tbree states had also ratified the amendment, as had

Ceorgia a second time, beezuse of her doubtful status at the time of her first ratification.
294. By the summer of 1868 Arkansas, South Carolina, North Carolina, Georgia, Alabama, Louisiana and Florida, having satisfied the requirements of the Recon\(5 / x\) struction acts, were entilled to representation in Southorn struction But Georgia did not choose her senators erored to until after the adjournment of. Congress, and, inasthe Ualos, much as the state excluded the negro members of the legislature in September, Congress on reassembling returned the state to military rule until its submission. Alabama was restored in spite of the fact that her white voters had remained away from the polls in sufficient numbers to prevent a majority of all the voters registered from having ratified the constitution of the state, as the Reconstruction acts had required. The nominating conventions and the campaign of 1868 gave interesting evidence of the trend of political and economic events. Party lines, which had broken down in the North when all united in saving the Union, were once more reasserting themselves. President Johnson, who had been elected by the Union Republican party, had found his most effective support among the Democrats. The Republicans turned to General Grant, a Democral before the outbreak of the war. His popularity with the Republicans was due not only to his military distinction, but also to his calm judgment in the trying period of the struggle between the president and Congress. He was scriously considered by the Democrats until he hroke with Johnson in the Stanton episode.
295. The Republican nominating convention met on the 20th of May 1868, a few days after the failure of the impeachment proceedings, and it chose Grant as

Nathand
Republicas
Conventhor: Oreat
Nomineted for the Preahteacy. the candidate for the presidency. The platform supported theCongressional Reconstruction measures. Upon the vital question whether universal ncgro suffrage should be placed beyond the power of states to repeal it by a new constitutional amendment, the platform declared: "The guarantee by Congress of equal suffrage to all loyal men at the South was demanded by every consideration of public safety, of gratitude and of justice, and must be maintained; while the question of suffrage in all the loyal states properly belongs to the people of those states." Nowhere in the North was the negro an important element in the population, but the North had shown an unwillingness to apply to itself the doctrines of negro rights which had been imposed upon the South. Between 1865 and 1868 Connecticut, Wisconsin, Minnesota, Kansas, Ohio and Michigan had refused to give the negro the right to vote within their own bounds, and this plank was evidence of the unwillingness of the party to make a direct issuc of universal negro suftrage. Although the platform failed to indicate the future proposals of the Republican leaders on the negro question, on the topics of finance and currency it clearly showed that the party was controlled by economic interests which were to exercise increasing influence upon it. It pronounced in favour of payment of the public deht, not only according to the letter but the spirit of the laws under which it was contracted. The significance of this lay in its challenge to the Democratic agitation on the currency question.
206. It was this question which gave the tone to the proceedings of the Democracy at their convention in July 1868. The situation can best be presented by a brief review of the financial history just preceding the convention. Together with the discussion over political Reconstruction in the South, Congress and the administration had been obliged to deal with the reconstruction of debt, taxation and currency in the nation at the close of four years of expensive war. At its maximum point the debt had risen to \(\$ 2,758,000,000\), of a complicated variety of forms and of the total less than one-hall was funded. The problems of funding, readjustment of taxation, and resumption of specie payments proved to be so complicated with the industrial growth of the nation that they led to issues destined to exert a long continued influence.
297. The various war tariff, passed primarily fur the sake of increased revenue, had been shaped for protection under the influence of the manufacturing interests, and they had been framed also with reference to the need of ars the Tanits compensating the heavy internal taxes which were Reterast imposed upon the manufacturers. When the war Revenoe. ended public sentiment demanded relief from these heavy burdens, and especially from the irksome internal taxes. The rapidly growing grain-raising districts of the Middle West exhibited a lively discontent with the protective tarif, but this did not prevent the passage in 1867 of the Wool and Woollens Act, which discriminated in favour of the woollen manufacturers and raised the ad salorem duty on wool. In spite of several large reductions of internal revenue, the national deht was being extinguished with a rapidity that only a prosperous and growing nation could have endured.
298. The currency question, however, furnished the economic issue which was most debated in the period of Reconstruetion. One set of interests aimed at rapidly reducing the volume of the currency by retiring the legal tender notes, or "greenbacks," issued during the war, on the ground that they had been provided only as a war measure, that the country needed a

\section*{The Carreegr Desstion: "Orowe. sactes"} contraction of this currency, and that specie payments would be hastened by the withdrawal of the greenbacks. The secretary of the treasury, Hugh McCulloch, pressed this policy to the foreground, and desired authority to issue bonds to retire these notes. Another set of interests demanded the retention of the geenbacks, supporting their views by arguments varying according to the degree of radicalism of the speakers. The more moderate, like Senator John Sherman, of Ohio, who reflected the views of parts of the West, argued that the recuperation of the nation and the rapid increase of business would absorb the existing currency, while gold would cease to go abroad. Tbus, by the increasing credit of the government, specie payment would be automatically resumed, and the holders of currency certificates would convert them into coin obligations at a lower interest rate. Others wished to use the greenbacks to pay the principal of such of the bonds as did not explicilly specily coin as the medium of payment; the most extreme, so far from contracting the currency by retiring the greenbacks, wished to increase this form of money, while diminishing the circulation of the notes of the national banks. The discussion tended to produce a sectional issue with the West against the. East, and a social issue with bondholders and the creditor class in general arrayed against the less weli-to-do. Congress agreed with Secretary McCulloch, and in the Funding Act of 1866 not only provided for converting short-time securities into long-term bonds, but also for retiring ten million dollars of greenbacks in six montha and thereafter not more than four millions monthly. But the agricultural depression of 1866 produced a reaction. Loud demands were made that bonds should be paid in greenbacks instead of coin, that United States securities should be taxed, and the national bank notes suppressed. In 1868, on the eve of the presidential campaign, Congress, alarmed by the extent of these popular demands, suspended the process of contraction by decisive majorities in both houses, after forty million dollars in greenbacks had been retired by the secretary of the treasury.
299. Ohio was the storm centre of the agitation. The "Ohio idea" that greenbacks should, become the accepted currency of the country was championed by George H. Pendleton, of that state, and his friends now

The "Obls brought him forward for the Democratic nomination for president on this issue. In the national convention of that party they succeeded in incorporating into the platform their demands that there should be one currency for the government and the people, the bondholder and the producer, and that where the obligations of the government did not expressly provide for payment in coin. they should be paid in lawful money (i.e. greenbacks) of the Uaited States.
300. But another wing of the Democratic party desired to
make prominent the issue against the Reconslruction measures of the Republicans. This wing added to the platform and declaration that these acts were unconstitutional and void, and the demand that the Southern states should be restored to their former rights and given control over their own elective franchise.
30t. Although the followers of Pendleton had shaped the financial plank of the platform, they could not nominate their nompat leader. The opposition was at first divided between Democrate the various candidates. New York, which feared Comveoctos; the effect upon the conservative financial interests Sieymeur Nomplanted tor ise Prusterecy. of the East if Pendlet on were nominated, attempted to break the deadlock by proposing an Ohio man. Chief Justice Chase. But eager as Chase was for the presidency he had flatly refused to abandon the views which he held in favour of negro suffrage. Ohio was, therefore, able to retaliate by stampeding the convention in favour of Horatio Seymour, of New York, chairman of the convention. As the war governor of his state he had been a consistent critic of the extremes to which the Federal administration had carried its interpretation of the war power. For vice-president the convention nominated Francis P. Blair, jun., of Mifssouri, who had denounced the unconstitutionality of the Reconsiruction acts in unmeasured terms.
302. But the popularity of Grant in the North, together with the Republican strengtio in the states of the South whicb
Graat had been reconstructed under negro suffrage, gave an easy victory to the Republicans in the election of 1868. Seymour carried only Delaware, New Jersey, New York and Oregon, of the North; and Maryland, Kentucky, Ceorgia and Louisiana of the South. Tennessee, and five of the former Confederate States, upon which negro suffrage had been imposed under military Reconstruction (North Carolina, South Carolina, Florida, Alabama and Arkansas) voted for Grant. Virginia, Mississippi and Texas had not yet been restored.
303. This decisive victory and the knowledge that it had been won hy the advantage of the negro vote in the restored states Finterats Amendmear. platform declaration in regard to negro sulfrage. Shortly after Congress assembled propositions were made to place the freedman's right to vote beyond the power of the states to change. To do this by constitutional enactment it was necessary to make the provision universal, and Congress, therefore, submitted for ratification the Fifteenth Amendment declaring that " the right of citizens of the United States to vote shall not be denied or abridged by the United States or by any state on account of race, color or previous condition of servitude." Congress was given power to enforce the amendment by appropriate legislation. By the zoth of March i87o the amendment had been ratified; but it is doubtful whether this could have been accomplished by legislatures chosen on the issue. As it was, the states of Virginia, Mississippi, Texas and Georgia were required to ratify it as a condition of their readmiltance to representation in Congress, and the three former states, having been permitted to vote separately on the obnoxious provisions of their constitutions in regard to the disfranchisement of former Confederates, rejected those clauses, edopted the Fifteenth Amendment and were restored in 1870. Georgia, after a new experience of military rule, onagtera Likewise ratified the amendment, and her representatives were likewise admit ted to Congress.
304. As soon as the Fifteenth Amendment was prochaimed in effect, and the military governments of the South were Now coo- superseded, the dominant party proceeded to enact fracalosel Hamant measures of enforcement. These seemed especially necessary in view of the fact that, partly by intimidation of the coloured vote, Louisiana (1868) and Tennessee (8869) broke away from the Republican colamn; while in the election of 1870 Tennessee, North Carolina, Georgia, Virginia and Alabema went Democratic. The enforcement legislation of 1870 provided penalties for violating the Fourteenth and Fifteenth amendments and re-enacted the Civil Rights Act of

XXVII 12 \%
8866. Jurisdiction was given to the Federal courts to maibtain the equality of the races before the law. The underlying doctrine of the acts was that the amendments guaranteed the freedmen against invasion of their rights by the acts of individuals as well as by explicit legislation of the states. In the next two years (1871 and 1872) acts were passed providing for effective Federal supervision of Congressional elections, and the "Ku-Klux Acts" (\(\mathrm{x}_{711}\) and 1872) still further is. creased the power of the Federal courts to enforce the amendments and authorized the president to suspend the writ of habeas corpus and use military force to suppress the public disorders occasioned by the attempts to intimidate negro volers. But these stern measures were accompanied by some eflorts to restore barmony, such as the repeal of the "ironclad oath" for ex-Confederates, in 1871, and the passage of the General Amnesty Act of 1872 . The North was becoming restive under the long continued use of the Federal military arm within state borders in time of peace, and especially with the results of negro rule under "carpet-bag" leadership.
305. In any case the cost of rehabilitating the public works and providing education and the political and judicial institutions which should equally apply to the hitherto non-political class of the blacks, would hitherto non-political class of the blacks, would ravor of on
have been a heavy one. But the legisintures, coasumatoe especially of Louisiana, South Carolina, Tennessee, Covera, Arkansas and Alabama, plunged into an extravagance made possible by the fact that the legislatures contained but few representatives who paid considerable taxes, and that they were controlled by Northern men who were sometimes corrupt, and often indifferent to the burdens laid upen the propertled classes of the South. In 1872 it was estimated that the public dehts of the eleven reconstructed states amounted to nearly \(\$ 132,000,000\), two-thirds of which was composed of guarantees to corporations, chiefly railway companies. Legislative expenses were grotesquely extravagant, the coloured members in some stales engaging in a saturnalia of corrupt expenditure. Gradually this alienated from the so-called Radical party the support of Southern whites, because they resented the concessions of the carpet-bag leaders to the negro vote, because they suffered from the hurden of taxation, and above all because race friction increased, drawing the whites together, in spite of former antagonisms between localities and classes.
306. By 1872 a coalition had been formed under the name of Conservatives. But the control of clectoral machincry in the strongly centralized state executives chosen by negro votes, and cocrcion by the Federal authority, still upheld Republican rule in various Southern states. Virginia and North Carolina were practically bankrupt, the capitals of Louisiana. Arkansas and Alabama, where rival state officers claimed posseasion, were occupied by Federal troops, and many of the governments were so corrupt that only the contemporaneous revela. tions of rottenness in New York City and in certain branches of the Federal government afford a parallel.
307. It was a time of lax public morals after war, which was ill suited to the difficult experiment of transferring political power to a race recently enslaved. Only the strong arm of the Federal authority sufficed to prevent the whites of the South from overthrowing a condition of things which it was impossible under American political ideas permanently to maintain.
308. An important economic reorganization was in progress in the South. White districts were recovering from the wat and were becoming the productive cotton areas hy ecomemb the use of fertilizers and by the more intelligent chengre in white labour. Cities were rising, and the mines and the Sourth manufactures of the southern Appalachians were developing. In the black belt, or region of denser negro settlement, the old centres of cotton production and the citadels of the Southern political aristocracy, the blacks became tenant farmers, or workers on shares, but the white farmer in other areas raised his cotton at less cost than the planter who lived in the rich soils of the former cotton areas. The effective and just direction of pegro labour was a dificult problem and was aggravated by
the political agitation which intensified race friction. It became evident that there was a negro problem as well as a slavery question, and that the North was unable to solve it.
309. In the meantime important forcign relations had been dealt with by Secretary William H. Seward, under Johnson, Forete and by Secretary Hamilton Fish, under Grant. Not Remionas only were many treaties of commerce and extradition, including one with China, negotiated by Seward, but he also brought about a solution of more important diplomatic problems. The relations of the United States with France and England had been strained in the course of the war, by the evident friendliness of the govermments of France and England for the South. Not only had Napolcon III. been inclined to recognize the Confederacy, but he had also taken advantage of the war to throw into Mexico a French army in support of the emperor Maximilian. The temptation to use force while American military prestige was high appeaied even to General Grant; but Seward by firm and cautious diplomatic pressure induced France to withdraw her troops in 1867; the power of Maximilian collapsed, and the United States was not compelled to appeal to arms in support of the Monroe Doctrine. Russia's friendly attitude throughout the war was signalized by her offer to sell Alaska to the United States in 1867. Seward promptly accepted it and the Alante. treaty was ratified by the Senate and the purchase money (\(\$ 7,200,000\)) was voled by the reluctant House, which saw little in the acquisition to commend it. Later years revealed it is one of the nation's treasure houses, particularly of gold and coal.
310. With England affairs were even more threatening than with France. Confederate cruisers (notably the " Alabama "), built in England and permitted by the negligence of "Alebema"the British government to go to sea, had nearly caucres. swept the American merchant marine from the ocean. Unsctuled questions of boundary and the fisheries aggravated the ill fecling, and England's refusal in 1865 to arbitrate made a serious situation. Prolonged negotiations foliowed a change of attitude of England with regard to arbitration, and in \(\mathbf{1 8 7 0}\) President Grant recommended to Congress that the United States should pay the claims for damages of the Confederate cruisers, and thus assume them against England. However, in 1871, the treaty of Washington was negotiated under Secretary Fish, by the terms of which England expressed regret for the escape of the cruisers and for their depredations, and provided for arbitration of the fisheries, the north-western boundary, and the "Alabama" claims. Senator Sumner had given fiery expression to demands for indirect damage done by the destruction of our merchant marine and our commerce, and for the expenses of prolonging the wer. For a time this so aroused the passions of the two nations as to endanger a solution. But Sumner, who quarrelled with the president, was deposed from the chairmanship of the committec on forcign relations, and Secretary Fish so arranged mattera that the Geneva arbitration tribunal ruled these indirect claims out. Thus limited, the case of the United States was victorious, the tribunal awarding damages against Great Britain to the amount of \(\$ 15,500,000\). Two months later the German emperor gave to the United States the dis-

Sae data talatel. puted north-west boundary, including the San Juan island in Puget Sound. The fisheries controversy Wiss not setued until 1 sif7
318. In the West lntics alsu impurtan questions were presented. Scward had negotiated a treaty of purchase of the Danish Dsolsh West Indics, but the Senate reiused to ratify it, nor Westratien: did Grant's attempt to acquire Santo Domingo meet Ssato with a different fatc at the hands of that body (\(\mathbf{1 8 7 0}\)). Dosalogo. In Cuba another insurrection was in progrese. Secretary Fish "pigcon-holed" a proclamation of President Grant recognizing the Cubans as belligerents, and secured a policy of neutrality which endured ever the shel; of the "Virginius affir " in 1873 , when fifty of the men of the filibustering Mataner Bying the American flag wets slot by the Spanish
authoritics (see Santriaco, Cuma). It was shown that the vessel had no right to the flag. Negotiations about an isthmian canal resulted only in a treaty with Nicaragua in 1868 giving to the United States a The \(\cdot \mathrm{VM}\) flater \({ }^{\circ}\) Anter. right of way across the isthmus and in provisions for a government survey of the Panama route. Foreign relations in this period were chiefly significant in that they were conducted in a spirit of restraint and that peace was preserved.
312. It was in the field of domestic conoerns, in cconomic and social development, that the most significant tendencies appeared. The old issues were already diminishing in importance before the other aspect of Reconst ruction which came from the revived expansion of the nation toward the West and the new forms taken by the development of American industrial society.
313. The Republican party, following the traditions of the Whigs, was especially responsive to the demands of the creditor class, who demanded legislation to conserve their interests. Its victory in 1868 was signalized by the passage in the apring of the following year of an act pledging the faith of the United States to pay in coin or its equivalent all the obligations of the United-States, except in cases where the law authorizing the issue had expressly provided otherwise. In 1870 and 1871 refunding acts were passed, providing for the issue of bonds to the total amount of \(\$ 1,800,000,000\), one billion of which was to run for thirty years at \(4 \%\). This abandonment of the doctrine of early convertibility was made in order to render the bonds acceptable to capitalists, but in fact they soon went to a premium of over \(25 \%\). Long before their maturity the government had a surplus, but although it could then borrow at \(2 \frac{1}{2} \%\) these bonds could not be retired.

Finascial Altares. While the legislature was thus scrupulous of the credit of the nation and responsive to the views of capital, the Supreme Court was engaged in deciding the question of whether the legal tender notes (greenbacks) were constitutional. Successive decisions in 8868 determined that they were not legal tender for state taxes, that they were exempt from taxation, and that they were not legal tender in the settlement of contracts providing for payment in specie. In the case of Hepbwre v. Griswold (1870) Chief Justice Chase, under whom, as secretary of the ireasury, the notes were first issucd, gave the opinion of the court denying that they were legal tender in settlement of contracts made before the first Legal Tender Act, and intimating that they were not legal tender for later contracts. The judges had divided, four to three. Within a year the court was changed by the appointment of one new judge to fill a vacancy, and the addition of another in accordance with a law enlarging the court. In 1871 the former decision was reversed and the constitutionality of the Legal Tender Acts sustained on looseconstruction reasoning. In 1884 the court went to the extent of affirming the right of Congress to pass legal tender acts in time of peace, in accordance with the usage of sovereign governments, as an incident to the right of coinage, and it declared that the power to borrow money includes the power to issue obligations in any appropriate form. In 1871 and 1872 Secretary George \(S\). Boutwell illustrated the power of the administration to change the volume of the currency, by issuing in all over six million dollars of legal tender notes; and, following the practice of his predecessors, he sold gold from the treasury to check speculations in that part of the currency. The most noteworthy instance of this was in 1869, when two Wall Street speculators, Jay Gould and James Fiak, jun., attempting to corner the gold market and relying upon a supposed influence in the councils of President Grant, ran up the premium on gold until Secretary Boutwell ordered the saie of gold by the government. The result was the financial crash of "Black Friday."
314. Speculation and the repid growth of great fortupes were characteristic of the period. The war itself had furnished means for acquiring sudden riches; the reorganization of taxation, currency and banking increased the opportunities as well as the uncertainties; and the opening of new ficlds of speculalive enterprise in the oil fields of Pennsylvania and Ohio and the gold and silver mines of the mountains of the Far West tended in the
same direction. An enormous development of manufactures resulted from the diminished commerce and increased demand for manufactured goods, the protection afforded by

Maturap nores. the tarif, the stimulus due to rising prices, and the consumption of the rapidly growing West. It was officially reported in 1860 that "wilhin five years more cotton spindles had been put in motion, more iron furnaces erected, more iron smelted, more bars rollod, more steel made, more coal and copper mined, more lumber sawn and bewn, more houses and shops constructed, more manufactories of different kinds started, and more petroleum collected, refined and exported, than during any equal period in the history of the country."

31 g . Between the Civil War and 1872 the extension of the nation's ectivity to the industrial conquent of the great West, as wrell as the economic reorganization of the East, had a profound effect upon the development of the United States. Between 1862 and 1872 grants were made to the Union Pacific and Central Pacific companies, and to other connecting corporapacilis: Rallweth tions, for railways from the Missouri to the Pacific, amounting to nearly \(33,000,000\) acres, and in the same period large lomns of funds were made hy the general eovernment for this enterprise. Construction advanced rapidly titer 1866, and by 1869 an all-rail connexion bad been extablished on the line of the Union Pacific and Central Pacific railways hetween the East and San Francisco. Various prants were made in these years to other roads, botb transcontinental and Middle Western. Between 1850 and 1871 Congress granted about \(155,000,000\) acres for railway construction, but not all these grants were perlected. It is estimated that some \(8500,000,000\) were invested in the construction of Western rail ways het ween 1868 and the panic of 1873 , and about \(30,000 \mathrm{~m}\). of railway had been added.
316. The effects of this extraordinary extension of rallway transportation were immediately apparent. In the Far West enectu of the railway lines rapidly made possible the exEefrear tinction of the bison herds which had occupied Eramelese the great plains. Divided into the northern and southern herds by the Union Pacific railway in 1869, the soutbern herds were slaughtered in the period between 1871 and 1879 , and the northern herds between 1880 and 1883 . This opened the way for the great extension of the cattle coontry, foliowing the retreat of the Indians. Upon the plains Indians the effect was revolutionary. Their domain had been penetrated by the railways, at the same time that their means of subsistence had been withdrawn. During the Civil War most of these Western tribes had engaged in hostilities against the Federal government. In 1866 and 1867 General George Crook was reducing the Indians of the South-West to submission, while other generals trained in the Civil War were fighting the Indians in the northern plains and Kansas, Nebraska and Oklahoma. By the Peace Commission Act of the 20th of July 1867 commissioners, including Gencral William T. Sherinan, were sent to negotiate treatics. As a result the tribes of the Indian Territory were so concentrated as to permit the transfer of other Western tribes to the same region, while the Sioux of the northern plains were given a reservation embracing the western portions of the Dakotas. Discontent with these treatics resulted, however, in hostilities following 1867. Between the close of the war and 1880 some \(\$ 22,000,000\) were expended in Indian wars, although the act of \(\mathbf{8 8 7 1}\) inaugurated the change of policy wherehy the Indians were no longer dealt witb by treaty, but were regarded as wards of the nation, to be concentrated on reservations and led at the expense of the nation under the supervision of Indian agents.
317. Part of these Indian difficulties were due to the opening up of new mining areas in the Rocky Mountains, some of them maing. within the Indians' choicest hunting grounds. At the beginning of the Civil War a preliminary mining boom struck Colorado; the rich Comstock lode was opened in Nevada; Arizona was the scene of mining rushes; the Idaho mines were entered; and the Montans ores were discovered; so that in the period of the Civil War iself the Territories
of Nevada, Idaho and Mastana had been organized and the mountains provisionally occupied from the northern to the southern limit. The discovery of gold in the Black Hills in 1874 continued the same movement. In 1860 the nation produced \(\$ 156,000\) worth of silver, in 1861 over \(\$ 2,000,000\) and in 1873 nearly \(\$ 36,000,000\). In the last-mentioned year the production of gold amounted also to \(\$ 36,000,000\), although in 1860 it had been \(\$ 46,000,000\). Capital in mines and quarries of the United States was over \(\$ 65,000,000\) in 1860, over \(\$ 245,000,000\) in 1870 , and nearly \(\$ 1,500,000,000\) in 1880.
318. This revolution in the life of the great plains and the Rocky Mountains, opening the way to agriculture and to cattle raising, and preparing for the exploitation of the precious metals of that great area, was contemporancous with the important development of the farming regions of the Middle West. Even during the Civil War the agricultural development of the northern half of the Mississippi Valley had continued. This mas aided by the demand for food products to supply the armies and was made possible by the extension of railways, the taking up of the prairie lands through the operation of the Homestend Law of 1862, the marketing of the railway land grants, and the increased use of agricultural machinery in those years. Between \(\mathbf{8 8 0}\) and 1870 the population of the North Central group of states (engaged chiefly in grain raising) increased over \(42 \%\), and in the next docade by \(34 \%\) a total addition to the population in those two decades of \(8,000,000\). Between offte 1870 and 1880 about \(200,000 \mathrm{sq}\). m. werc added to the ofste farm lands of the United States, an arca almost equal in extent to that of France. In the same decade the North Central states increased their improved farms from near \(78,500,000\) ecres to over \(136,500,000\) acres. The product of Indian corn about doubled between 1860 and 8880 , and that of wheat and oats more than doubled. The addltion came chiefly from the Middle West. In 1860 the North Central stetes raised \(95,000,000\) bushels of wheat; in 1870 nearly \(195,000,000\); in 1880 329,000,000. In 1870 the same states produced \(439,000,000\) busbels of corn; in 1880 they produced over \(\mathrm{r}, 28 \mathrm{5}, 000,000\).
319. The pressing need of increased transportation facilities had led, as we have seen, to lavish land grants and to subsidies by nation, states and municipalities to the railways. The railways themselves, tempted by these opportunities, had extended their lines in some cases beyond the immediate needs of the regions entered in advance of semlement. Extravagances in construction and operation, aggravated by "construction rings" of railway officials, who secured the contracts for themsclyes and their friends, and by rolling stock companies who received extravagant prices by favouritism, as well as the watering of stock in tbe creation of systems by absorption and consolidation of railway corporations, brought about a condition where the roads were no longer able to meet the demands of their stockholders for returns on the investment without imposing rates that the Western farmer decmed extortionate. In the competitive development of these roads and in the struggle of business corporations and localitics with each other, the roads also discriminated between persons and places. This condition chiefly accounted for the political unrest whicb manifested itsclf in the West in the so-called "Granger" movements of the 'seventics.
320. The farmers felt the pressure of the unsettled currency, taxes were very heavy, the protective tariff scemed to them to bear unduly upon the producers of crops which exceeded the home consumption and had to şek the foreign markets. The price of Indian corn, wheat and cotton in the early 'seventies tended to fall as production rose, so that the gold value of the total crop was not greatly increased during the decade after the war, in spite of the extraordinary extension of agricultural settlement and the increase of production. Dissatisfaction with his share in the prosperity of the country, and especially with the charges of middienten and transportation companies, discontent aitb the backwardness of rural social conditions, and a desire for larger political influence, all aided in fostering the growth of
organizations designed to promote the farmers' interests. The most influential of these organizations was the Patrons of Husbandry, which was founded in 8867 and spread chiefly after 1872 by local clubs or "granges," especially in the West and South.
321. The height ot the movement was reached in the autumn of 2874 . It threatened the disruption of the old political parties The in most of the Middle Western states. By holding
"Ornegmer the balance of power the Grangers secured legislation moveliens in many of these states, fixed maximum railway rates, and provided for regulation through commissions to prevent discriminations. In the reaction after the panic of 1873 (when nearly a fifth of the railway milcage of the United States had passed into the hands of receivers) many of the "Granger laws" were repealed, the regulation was rendered nominal and the railways more than regained their political power in the states; yet the agitation had established the important principle, sanctioned by decisions of the Supreme Court, that the railways were common carriers subject fully to public regulation so far as it was not confiscatory. The movement for regulation of interstate commerce by congressional legislation was begun at this time under the leadership of congressmen from the Granger states. Later efforts were more wisely considered and more effective; but the rural democracy showed its opposition to the increasing political infuence of capital, to special privileges and to the attempts of corporations to avoid public control periodically thereafter (see Farmers' Movenent). The attempt to eliminate the middlemen by co-operative stores and grain elevators was another feature of the time which gained a brief strength but soon declined.
322. The presidential election of 1872 took place in the midst of this Western upheaval. At the same time in the South the The Tiveed
Qties. reform Republicans and Democrats were uniting under the name of "Conservatives" against the carpet-bag rule, and control was passing into their hands. A reform movement was active against the evident corruption in national and municipal administrations, for Grant's trust in his appointees was grossly violated. The Tweed Ring was systematically looting New York City, and prior to Tweer's indictment in 1871 (See New Yorx (City); Tammany Hall; Tilden, S. J.) it was aequiring large power in state legislation. Jay Gould, the railway operator, was one of the signers of Tweed's million dollar bail bond. Civil service reformers, men of moderate views with respect to Reconstruction, such as Car! Schurz, many War Democrats wito had adhered to the Union party, and tariff reformers began to break away.
323. The Liberal-Republican movement started in Missouri, and a national convention was called to meet at Cincinnation
LBerel Repubicea irrecontin movearat. the Congressional districts, attacked the corruption of clvil service by the administration, supported the results of the war as embodied in the last three amendments and demanded amnesty and local civil government for the South. It opposed further land grants to railways, but denounced repudiation and demanded specie payments in terms which excluded from its support the advocates of inflation of the currency. This effort 10 combine the opponents of Grant's administration was wrecked by the nomination of Horace Greeley, a strong protectionist, who did not command the confidence of the masses of the disaffected. Although endorsed by the Democrats, Greelcy was defcated hy Grant, who ran

\section*{Orene}

Reneloctos on the record of the Republican party, which now dropped the word Union from its name. Greeley died before the electoral count; the Democrats won only the states of Maryland. Kentucky. Missoun. Tennessee, Georgia and Texas, the voles of Louisiana and Arkan as being thrown out.
324. The enormous cost of the war, the excessive railway building, over-trading, and inflated credit and fuctuating currency, the sinking of capital in opening new farming lands and in readjusting manufactures to new conditions brought their results in the panic of 1873 , precipitated by the lailure (Sept. 18) of Jay Cooke, the financier of the Northern Pacific railway. For over
five years the nation underwent a drastic purgation; railway building almost cessed, and so late as 1877 over \(18 \%\) of the railway mileage of the nation was in the hands of receivers. The iron industry was prostrated, and mercantile failures for four years amounted to

\section*{Puets 8972}
\(\$ 775,000,000\). At the close of the period there was a replacement of partnerships and individual businesses by corporations, but in the interval political unrest was in the foreground.
325. The charges that congressmen had been bribed by stock in the Credit Mobilier (\(q . p\).), a construction company controlled by Union Pacific stockholders, led to a congressional investigation which damaged the reputations of prominent Republicans, including Vicepresident Schuyler Coliax; but the same Congress

\author{
The Cretay \\ Alowner \\ the Sminy \\ Orat
} which investigated this scandal voted itself retroactive increases of salary, and this " back-pay grab "created popular indignation. Evidences of fraud and corruption in revenue collection under the "moiety system," and the general demoralization of the civil service continued. The demand for relief from the stringency of the crisis of 1873 expressed itself in the so-called Inflation Bill (passed April 2874), providing 2 maximum of four hundred million dollars for greenback issues. This was vetoed by Grant, but he later signed a bill accepting as a maximum the existing greenback circulation of \(\$ 382,000,000\). This compromise was satisfactory neither to contractionists nor greenbackers. The latter especially resented the provisions regarding the national banks and tbeir circulation.
326. The "tidal wave" in the Congressional elections of 1874 was the result of these conditions. It marked a political revolution. The House of Representatives, which exhibited a two-thirds Republican majority in 1872 , mepmateans showed an opposition majority of about seventy, olCemeresi and the Senate was soon to be close. Such Republican stroagholds as Pennsylvania, Ohio and Massachusetts went over to the Democrats in the state elections, while in the grain-raising states of the Middie West the Grangers were holding the balance of power, and in the South the Republican radicals remained in force in few states and only by the use of Federal troops. President Grant in his message of December 1874 acknowledged that public opinion was opposed to this use of force, but declared that without it ncgro suffrage would be worse than a mockery. Thus by the year 1874 the era of triumphant Republicanism and Reconstruction was closing. The leaders perceiving power about to pass from them rapidly enacted a series of party measures before tbe meeting of the newly elected Congress. Under the leadership of Senator John Sherman an act was passed (Jan. 14, 1875) providing for resumption of specie payments on the ist of January 1879 , gradually contracting greenbacks to three hundred million dollars and compensating this by expanding the circulation of the national banks. Sherman's personal preference was to make the greenbacks exchangcable for \(4 \%\) bonds and thus to make the general public instead of the banking houses the purchasers of these securities, but he was unahle to convince his colleagues. In the ficld of the tariff a similar policy was followed. The act of 1870 had somewhat reduced duties on tea, coffee, sugar and iron; but under Western pressure in 1872 the Republican Congress had consented to a \(10 \%\) reduction on most classes of goods in order to save the general system of protection. On the eve of their relinquishment of full power the Republicans

The tarmer. (March 3. 1875) repealed the Tariff Act of 1872, increased the duties on molasses and sugar and increased the revenue tax on tobacco and spirits. Thus the tariff was restored to the war basis, before the incoming Democratic House could block the advance. Similarly on the 1st of March Congress passed a Civil Rights Act, milder than the measure for which Sumner had lought so long,

Crifirtera guaranteeing equal rights to the negroes in hotels, public conveyances, and places of amusement and forbidding the exclusion of them from juries. But an effort to pass a new force bill levelled against the intimidation of negro voters lailed. By these measutes the Republicans placed the
important features of their policy where they could be overturned only by a Democratic capture of presidency and Senate.
327. In the midst of these changes the Supreme Court handed down decisions undoing important portions of the Reconstruction spoweos system by restraining the tendency of the nation to Cowrt Dechicese eneroach on the sphere of the state; and restricting the scope of the recent constitutional amendments. On the 14th of April 1873, in the Slaughter House cases, the courts held that the amendments were primarily restrictions upon the states for the protection of the frecdom of the coloured man, rather than extensions of the power of the Federal government under the definition of United States citizenship, and that general fundamental civil rights remained under state protection. In the case of the Uniled States v. Reese, decided on the 27th of March 1876, the court declared parts of the act of \(\mathbf{s 8 7 0}\) (which provided for the use of Federal force to protect the negro in his right to vole) unconstitutional, on the ground that they did not specily that the denial of suffrage must be on the sole ground of race or colour. A reasonable prerequisite, such as a poll tax, for voting was permissible. The South later took advantage of this decision to restrain negro suffrage indirectly. In United SLates v. C'ruikshank (1876) the court held that the amendments to the Constitution left it still the duty of the state, rather than of the United States, 10 protect its citizens, even when whites bad mobbed the negroes. The right of the nation in the case was held to be limited to taking care that the state governments and laws offered equal protection to whites and hiacks. The affirmation of the power of the states over common carriers in the Granger cases (\(\mathbf{1 8 7 7}\)) has been mentioned. In 1883 the court declared the conspiracy clause of the Ku-Klux Act unconstitutional and restricted the application of the law to acts of a state through its officers and not to private citizens. In the same year it declared the Civil Rights Act of 1875 invalid.
328. In \(\mathbf{8 8 7 5}\) President Grant refused the appeal of the "carpet-bagger " Governor Adelbert Ames of Mississippi to be supported hy troops, whereupon Ames resigned his office into the bands of the Conservatives. The Mississippi plan of general mtimidation of negroes to keep them from the polls was followed in Louisiana, South Carolina and Florida which alone remained Republican. Thus steadily the radical Reconstruction policy and Republican control of the South were being reversed. It was made clear that negro suffrage could he enforced upon the South only by military rule which could no longer command Northern sympathy or the sanction of the Federal court. Northern interest increasingly turned to other issues, and especially to discontent over administrative corruption.
329. The spoils system had triumphed over the advocates of civil service reform to such an extent that Grant abandoned the competitive system in 1875 on the ground that
The Whato Congress did not support him in the policy. Enormous frauds in the collection of the internal revenue by the Whisky Ring with the connivance of Federal officials were revealed in 1875 , and about the ssme time, Secretary of War William W. Belknap resigned to avoid impeachment for corruption in the conduct of Indian affairs. The enforced resignation in \(\mathbf{1 8 7 6}\) of Secretary of the Treasury Benjamin H. Bristow (q.o.) after he had successfully exposed the Whisky Ring, and of Post master-General Marshall Jewell, who had resisted the spoils system in his department, tended to discredit the administration. Blaine, the leader of the Republicans in the House of Representatives, fell under suspicion on account of his eartier relations with the Little Rock \& Fort Smith and Northerr Pacific railways (see Blaine, J. G.), which left it doabeful, in spite of his aggressive defence, whether he had not used his influence as speaker in previous Congresses to securc pecuniary advantages from land grant railways. This clouded Blaine's prospects for a presidential nomination, and the House of Representatives voted a resolution against the third term which Grant seemed not unwlling to accept.
330. Thus the campaign of 1876 approached, with the Republicans divided into (1) steadlast supporters of the Grant adminiztration, (2) a discontented reform wing (which favoured
ex-Secretary Bristow), and (3) an intermediate group which followed Blaine. This statesman made a bold stroke to shift the fighting which the Democrats planned to make against the scandals of the administration, to the old time war issues. By proposing to exclude Jefferson Party
Plaiform:
of 1876 . Davis from amnesty, he goaded southern congressmen into indiscreet utterances which fanned anew the fires of sectional animosity. The Republican platform, while deprecating sectionalism, placed the war record of the party in the foreground and denounced the Democracy, because it counted upon the united South as its chief hope of success. A compromise candidate was selected in the person of Governor Rutherford B. Hayes, of Ohio, who had vigorously opposed the greenback movement in his state, and whose life and character, though little known to the general public, made him acceptable to the reform leaders of the party. The Democrats, demanding reform, economy, a revenuc tarifland the repeal of the resumption clause of the act of 1875 , chose the reform governor of New York, Samuel J. Tilden, as their candidate. The Independent National, or Greenback, party, which was to develop rapidly in the next two years, nominated Peter Cooper, a New York philanthropist, and demanded the repeal of the Resumption Act, and the enactment of a law providing a paper currency issued directly by the government, and convertible on demand into United States obligations bearing a rate of interest not exceeding one cent a day for each one hundred dollars and exchangeable for United States notes at par. It also proposed the suppression of bank paper, and was in general antagonistic to the bond-holding and banking interests.
331. The election proved to be a very close contest. Tilden, according to the count of both parties, had a plurality of over a quarter of a million votes, and at first the leading Republican joumals conceded his election. He had Hayment carried New York, Indiana, New Jersey and Con- the Ehocont necticut and, by the Democratic count, the solid comemp South. But the Republican headquarters claimed
the election of Hayes by one electoral vote, based on the belief that the states of South Carolina, Florida and Louisiana, \({ }^{1}\) had gone Republican. Since these states were in the midst of the transition from negro to white government, and elcctions were notorious for fraudulent practices, a serious question was raised, first as to the proper authority to count the electoral vote, and second, how far it was permissible to go behind the returns of the state authorities to ascertain the validity of the canvass of the votcs in the state. The political capacity and moderation of the nation were severely tested; but in the end a characteristic American solution was found by the creation of an Electoral Commission (q.v.) in which five ascociate justices of the Supreme Court were joined with an equal number of representatives from each of the two houses of Congress. The result was that this commission refused to "go behind the returns," and Hayes was declared elected by one vote. To prevent the threatened danger of a filibuster by Democrats

Mayes of the House of Representatives against the com-
pletion of the count until after legal date for the inauguration of the president, Hayes's friends agreed with leading Democrats that he would withdraw the Federal troops from Louisiana. Thus a new cra began under a moderate and reforming Republican president, a close Republican Senate and a Democratic House of Representatives. The Southern question was not settled, but other issues of an economic and social nature increasingly forced themselves to the fiont. They were concealed in a measure by the fact that the following of each of the leading political parties was divided on financial policies, which resulted in attempts to compromise and evade the issue hy the party managers. During the dozen years that followed Hayes's inauguration neither party held complete posses. sion of both the executive and the two houses of Congress. His own moderate character, the conditions of his clection and

I There was a conflict with regard to the electoral voee of Oregre also._(Sec Orecion : Hislory.)
the check imposed during the first two years by a Democratic House of Representatives (and during the second two years by an opposition in both houses) made the period of Hayes's administration a transition from the era of Reconstruction to the era of dominant economic and reform agitation.
332. When he withdrew the troops which sustained the Republican governments in Louisiana and South Carolina, those states returned to the rule of the white Democrats. In the Congress elected in 1878 the former slave states chose ror Democrats to the House of Representatives and only four Republicans. Leading Republicans like Blaine protested vigorously against the policy, declaring that the men who saved the Union should govern it; and on the other hand the Democrats in Congress added " riders" to appropriation bills designed to starve the administration into complete cessation of the use of troops and Federal deputy marshals at Southern elections. Extra sessions had to be summoned in 1877 and 1879 to provide supplies for the government, due to this policy. Hayes assisted his party by vetoing these coercive attempts of the Democrats and it was not until later that Federal attempts to supervise Southern elections entirely ceased.
333. As his early policy toward the South had dissatisfied many of the leaders of his party, his opposition to the spoils system alienated others. In 1877 a Civil Service CVill Service Reform Association was formed in New York, and under the leadership of reformers like George William Curtis, Carl Schurz, John Jay and Dorman B. Eaton, it extended to other states. In June 1877 President Hayes issued an executive order against the participation of Federal officers in political management, and be furnished evidence of his sincerity by removing Alonzo B. Cornell, the naval officer of New York, who was also chairman of both state and national Republican committees, and Chester A. Arthur, collector of the port of New York. As both men were friends of Senator Roscoe Conkling of that state, the leader of the Grant men, this was a bold challenge. The "Stalwarts" answered it by soon afterward securing the nomination of Cornell as governor of New York and Arthur as vice-president of the United States.
334. The monetary question rose to primary importance at this time. Hayes himself had campaigned in Ohio successfully comene against the Greenback movement, and he chose
a/ 1873 . former senator from that state, whose long service as chairman of the finance committee had made him familiar with conditions and influential with moderate men of all factions. The per copita circulation of the nation had fallen from \(\$ 20.57\) in 1865 to \(\$ 15.58\) in 1877 and was still declining. The remarkable increase in the production of silver, as the new mining regions were opened, was accompanied by a fall in its ratio to gold from 15 to 1 in 1860 to 17 to I in 1877. Congress had, in 1873, passed an act dropping the standard silver dollar from the list of coins; the significance of this omission of a coin not widely circulated, although it came at a cime when European nations were adopting the gold standard, passed almost unnoticed at the moment; but the demonetization of silver was afterward stigmatized as a conspiracy, "the crime of 1873. ." As the date (January 1,1879) for the redemption of the greenbacks in specie approached, demands were renewed for the replacement of national bank notes by greenhacks, for the postponement, or abandonment of resumption, for the free coinage of silver, and for the use of silver as well as gold in the payment of bonds redeemable in "coin." Sectional grouping of the debtor against the creditor regions, rather than party alignment, showed itself in the votes, for cach party bad its "soft money" as wit as its "hard money" followers. Many who could not suppet the Greenback party in its theory that currency derived value from purchasing power based on the government's credit and authority rather than on convertibility, would, nevertbeless, make larger use of paper moncy; while men who did not assent to the free coinage reasonine annosed the single gold standard as too narrow
and too much under the influence of the speculative and banking interests, and would adopt some system of bi-metallism.
335. A Monetary Commission, appointed in 1876, reported in 1877 , but without agreement or real infuence upon the country. The president took strong ground against free coinage (though he would resume coinage of the bheodsilver in limited quantitics) and against the pey-
ment of bonds in silver; but the House of Representatives passed the measure, known as the Bland Bill, for the free coinage of silver, by a vote of 163 to 34 . In the Senate this was amended, and as it finally passed both houses it was known as the Bland-Allison Act after the two leaders, the Democratic representative from Missouri and the Republican senator from lown. This compromise was carticd over the veto of President Hayes and became a law on the 28th of February 8878 . In the vote of the 1 th of February, all hut one of the senators from New England, New York and New Jersey opposed it, while the thates west of the Alleghanies furnished only four opposing votes. The law restored the legal tender character of the silver dollar and authorized the secretary of the treasury to buy silver bullion at the market price, to an amount of not less than \(\$ 3,000,000\) nor more than \(\$ 4,000,000\) per month, and to coin the hallion into silver dollars. Silver certificates of denominations not less than ten dollars were to be issued upon deposit of silver dollars. As neither the silver nor the certificates circulated Ireely the denominations of the certificates were reduced in 1886, when they filled the deficiency in the contracting banknote circulation.
336. Hardly had the Bland-Allison compromise been effected on the silver issue when an act was passed (May 31, 1878) forbidding the further retirement of greenbacks, which remained at \(\$ 346,681,000\). Substantially the same sectional alignment was followed in the vote on this bill as in the silver votes. Not satisfied witb this legislation, nearly a million voters cast their ballots for Greenback party candidates at the Congressional elections in the autumn of 1878 . The preparations of Secretary Sherman had been so carefully made, and the turning tide of trade brought coin so freely to the United States, that before the date of resumption of specie payments a good reserve had been accumulated to the amount of \(\$ 133,000,000\) in excess of matured liabilities and the greenbacks rose to par before the date of redemption.
337. In the campaign of 1880, Hayes and Tilden both declined to stand for renomination. Thus the issue of the "fraud of 1876," which the Democratic platiorm called the Pure paramount issue, was subordinated. Nor was it Priterang possible for the Republicans to force the tariff of ise question into a commanding position, for although the Democratic platform declared for a tarifif for revenue only, a considerable wing of that party led by Samued J. Randall, of Pennsylvania, favoured protection. Genoral Winfield S. Hancock, a distinguished soldier in the Civil War, whose nomination for the presidency by the Democrats was designed to allay Nortbern distrust, refused to make the tarifi a national issue. The recent adjustment of the monetary question and the return of prosperity relegated the discussion of the currency also to a subordinate place, so that the Greenback party was able to poll only a litile over 300,000 votes instead of the million which it commanded two years before. It favoured unlimited coinage of silver as well at the replacement of bank-notes by greenbacks.
338. The Republicans, after a heated convention in which the followers of Grant (who had recently returned from a several years' trip round the world), Blaine and Sherman, fought each other to a deadlock, selected General

\section*{anctict} James A. Garfield (q.v.) of Ohio, who was poilitical Premedeme. manager for Sherman in the convention. This was a blow to the Grant, or "Stalwart" wing, which was partly placated by the nomination of Arthur for the vice-presidency. Garfields popular plurality was only a little over seven tbousand out of a total vote of over nine millions; but his electoral vote was 214 to Hancock's 155. The area of the former slave
states marked the boundaries between the Republican and the Democratic states, except that Hancock also cartied New Jersey, Nevada and Califomia. The Republicans won the elections for the House of Representatlves which would meet in 1881, and the Senate was at first nearly evenly divided, two independents holding the balance. In the ensuing four years party lines were badly broken, factions made bitter war upon each other, and the independent refor mers or " Mugwumps " (q.v.) grew in numbers. The selection of Blaine as secretary of state committed Garfield to the anti-Grant wing, and the breach was widened by his appointment of the collector of the port of New York against the protests of Roscoc Conkling and Thomas C. Platt, the "Stalwart" senators from New York. They resigned, then sought re-clection in order to vindicate the right of senatorial recommendation; but were defeated.
339. In the midst of this excitement the president was assassinated by a disappointed ofice-seeker of unsound mind. Vice-President Arthur, who succeeded Gerfield in A encaralas: tose of Uartiolts Artion urcemes Prosideot. September \(\mathbf{1 8 3}\), by his tact and moderation won the admiration of former opponents; but the bad crops in 188! and the dissatisfaction with loss rule among independent voters caused a Democratic victory in the Congressional campaign of 1882. Garfield's assissination had given new impetus to the movement against the spoils system, a National Civil Service Reform League had been organized in 1881, President Arthur presented the question in his message of December of that year, and in 1882 George H. Pendleton, a Democratic senator from Ohio, urged the subject upon the Aractitea attention of Congress. Stimulated by the elections of 1882 Congress passed an act (January 16، 1883) authorizing the president to appoint a commission to classify certain of the Federal employees, and providing for appointment and promotion within this classified list by competitive examination, the employces being distributed among the states and territorics according to population, with preference for soldiers and sailors of the Civil War. Congressional recommendations for these offices were not to be reccived, and politicat assessments for campaign purposes were forbidden. This was an eflective beginning in the purification of the civil service; but the evil of assessment of empioyees was succeeded by the evil of soliciting campaign contributions from corporations interested in legislation. The extension of the competitive

Anexporygaty Act: chimes Erapuetos list proceeded gradually through succeeding administrations. The Edmunds Anti-Polygamy Act (1882) was levelted at the Mormons (q.e.), and the Chinese Exclusion Act was passed at the demand of labour, after a long agitation in 1882, the way having been prepared by the Treaty of Peking in 1880. Bilis to this effect had been vetoed by Hayes and Arthur as violative of international agreement. but the desire of the politicians to win the California vote, and the compromise by which the exclusion was limited to ten years finaliy carried the measure, and the Supreme Court (\(\mathbf{1 8 8 9}\)) held it constitutional. Later acts modified and extended the exclusion.
340. From 1879 to 1890 the treasury showed a surplus of revenue over expenditure. This furnishes the explanation of much of the legisiation of that period. It led to extravagant appropriations, such as the Arrears of Pensions Act of 1879. and the River and Harbor Act of 1882 providing for the expenditure of more than \(\$ 18,000,000\), which was passed over the veto of Arthur. Appropriation bills were merely constructed in various committees of Congress under a system of bargaining between interests and sections with primary reference to the political fortunes of the congressmen.
341. The surplus also strengthened the demand for a reduction of the tariff. A tarifl commission, composed of men friendly to protection, appointed in 1832, proposed an average reduclion of 20 to \(25 \%\). Nevertheless in the act as passed in 1883 duties were increased in general on those protected articles which continued to be imported in large volume, especially on certain woollen goods and about two-thirds of
the imported cotton goods, and on iron ore and some steel products, while they were lowered on finer grades of wool and cheaper grades of woollen and cotton fabrics, \&c. It was unsatisfactory to large portions of both parties and did not materially lower the revenuc; but the act of 1883 made extensive reductions in internal taxes. As the Senate had just lallen into the hands of the Republicans, and the House would not become Democratic until the new Congress met, this protective law gave the former the advantage of position. Moreover the Democrats were themselves divided, nineteen Representatives (one-third from Pennsylvania) voting with the Republicans on the act of 1883 . In the next Congress (\(\mathbf{1 8 8 4}\)), when the leaders made an attempt to rally the Democrats to show their position by passing a bill for a horizontal reduction of \(20 \%\) in general, fort y-one Democrats voted against the bill and prevented its passage through the House.
342. Thus the campaign of 1884 found both parties still lack. ing unity of policy although it seemed possible that the tariff might become the touchstone of the contest. The Republicans challenged the independents by nominating Blaine, whose record was objectionable to many reformers, and who had been chiefly identified with the Reconstruction politics. The Democrats, taking advantage of the situation, nominated Grover Cieveland (q.v.) of New York. He had won approval by his reform administration as mayor of Buffalo and as governor of New York during the past two years, when he had shown an independence of party "bosses" and had convinced the public of his sincerity and strength of character. He represented conceptions and interests which had grown up since the war, and which appealed to a new generation of voters. The platform emphasized the idea that "new issues Puts are born of time and progress," and made the leading pheforme question that of reform and change in administra- of 1884. tion, lest the continued rule of one party should corrupt the government. On the question of tarifi the Democrats took a conservative attitude, emphasizing their desire to promote healthy growth, rather than to injure any domestic industries, and recognizing that capital had been invested and manulactures developed in reliance upon the protective system. Subject to these limitations, they demanded correction of the abuses of the tarifl and adjustment of it to the needs of the governttent economically administered. The Greenbackers nominated General Benjamin F. Butler of Massachusetts, recently chosen governor of that state on the Democratic ticket, but he polled only 175.000 votes, while John P. St John, the candidate of those who would prohibit the liquor traffic, secured 150,000 votes, an unprecedented gain. The Prohibitionist platiorm included a demand that all money, coin and paper, should be made, issued and regulated by the government and be a legal tender for all debts, public and private.
343. The campaign abounded in bitter personalitics, and the popular vote was close, Cleveland's plurality being only twenty-three thousand. The great state of New York, with electoral votes enough to have turned the scale, was carried by the Democrats by only a few Preaide more than one thousand votes out of a total of over a million. Cleveland's electoral majority was 37. The election was nevertheless recognized as making an epoch. For the first time since victory came to Lincoln and the Republicans on the eve of the Civil War, nearly 2 quarter of a century carlier, the country had entrusted power to the Democrats, although over two-thirds of their electoral vote came from the former slave states. New York, Connecticut, New Jersey and Indiana constituted their Northern territory. Perhaps the most significant thing about the result was the evidence that in the North political and sectional habits and prejudices were giving way among a sufficient number of independent voters, responsive to strong personal leadership on reform issues, to turn the political scale. The transtion irom war issucs which began in 1872, and became marked in 1870, was completed by the election of Cleveland in 1884.

During the first half of his term President Cleveland had the opposition of a strongly Republican Senate. In the second half

Civit Serrba the Senate remained Republican by a majority of two, and the House continued Democratic. His civil service policy naturally met severe criticism not only from his party foes, but also from the spoilsmen among his Democratic followers, who desired a clean sweep of Republican office-holders, and from those of his independent supporters who looked to him to establish the service on a strictly non-partisan basis. The outcome of the first two years of his administration was that, of the entire body of Federal office-holders, two-thirds were changed and the obnoxious Tenure of Office Act was repealed, thus leaving the president the right of removal without presenting his reasons. Nevertheless there was a gain, for Cleveland somewhat checked the political activity of officeholders, the criticism by the Republicans placed them on record against the former spoils system, and before leaving the presidency (but after the election of 1888 showed that power was to pass to the Republicans), he transferred the railway mail service to the classified list requiring competitive examination.
344. The transition of executive power for the time to the Democratic party, however much it impressed the imaginations of the public as the end of an era, was not so significant as the national growth and expansion in the decade between 1880 and 1890 whercby forces were set loose which determined the characteristics of the succeeding period. Between these years the nation grew from about fifty millions to over sixty-t wo millions. The Middle West. or North Central group of states, gained nearly five millions and the Western division over a million and a quarter. West of the Alleghanies altogether more than eighe million souls had been added, while the old Eastern states gained but four millions. In 1800 the North Central division alone had achieved a population nearly five millions greater than that of the North Atlantic, while the trans-Alleghany region surpassed the whole East by about ten millions, and the numbers of its representatives in House and Senate placed the political destiny of the nation in its hands.
345. One of the most important reasons for the wholesale taking up of Western resources in these and the lollowing years was the burst of railway building subsequent to the Dovelopmeat interruption of the panic of 1873 . The eager pioneers pushed into western Kansas and Nebraska is they had into the northern Ohio Valley a half-century before. Nebraska grew from a population of one hundred and twenty-three thousand in 1870 to nearly half a million in 1880 and to over a million in 1890 . From about a third of a million in 1870 , Kansas rose to almost a million in 1880, and to nearly a million and a half in 1890. The railway had "boomed" the Golden West and a cycle of abundant rains seemed to justify the belief that the "Great American Desert" was a myth. Thus settlers borrowed money to secure farms beyond the region of safe annual rainfall under the agricultural methods of traditional pioneering. Swift dissppointment overtook them after 1886, when droughts and grasshoppers ruined the crops and turned back the tide of Middle IVestern colonists until the western parts of these states were almost depopulated, Kansas alone losing one-seventh of its population; nor did prosperity return for a decade.
346. As the column of settlement along the Ohio Valley had extended its flanks into the old North-West between the Ohio and the Great Lakes, and into the old South. West of the lower Mississippiafter the War of 1812 , so the later pioneers by railway urains began to take possession of the remoter and vaster NorthWest and South-West. The "granger roads," centring in Chicago, thrust their lines out to develop wheat farms \(\ln\) interior Iowa, Minnesota and the Dakotas, where the virgin soil of the prairie farms brought returns that transferred the wheat belt to this new land of promise, and by competition: forced the older wheat areas to develop varied agriculture. The introduction of the recently invented steel roller system of making flour into the Minneapolis mills not only buile up a great flour industry there but created a demand for the hard wheat suited to the

North-western prairies. The pine forests of Michigan, Wisconsin and Minnesota were exploited in the same era.
347. A more impressive movement was in progress as additional transcontinental railways were extended from the fronticr to the Pacific. In 1870 for a thousand miles west of Duluth, at the head of Lake Superior, along the line of the projected Northern Pacific railway there were no cities or little towns. Relying upon its land grant and upon the undeveloped resources of the vast tributary region, the railway, after halting for a few years subsequent to the panic of 1873 at Bismarck on the Missouri rushed its construction to Seattle and was opened in 1883. The Great Northern, a product of the vision and sound judgment of James J. Hill, started from St Paul without a land grant and reached Puget Sound in 1893, constructing lateral feeders as it built. Thus a new industrial zone had been brought into existence. Colorado had become a state in 1876; in 1889 North Dakota, South Dakota, Washington and Montana were admitted as states and the next year Idaho and Wyoming were added. The Western political forces, especially the friends of silver, were thus given the balance of power in the Senate and additional weight in the electoral college.
348. As a new North-West was opened by the completion of the Canadian Pacific (1883), the Northern Pacific (1883) and the Great Northern (1893), so the new South-West was entered by the completion of the Southern Pacific from New Otleans across Texas, New Mexico, Arizons and southern California to San Francisco by 1883. In 1883 also the lines which became the Atchison. Topeka \& Santa Fé, extending from the lower Missouri valley, with St Louis and Kansas City as important terminals, through south-eastern Colorado, northern Arizona and New Mexico, reached the same goal. The Denver \& Rio Grande in the same period opened new mining areas between Denver and Ogden. Not only additional mines were reached by these lines, but a great cattle country, recenuly the habitat of the bison and the Indian, was opened. All the large cittes commanding the approaches to this country developed packing industries, but Chicago especially profited. Although her main supply was still the Middle Western farms, this domestic supply was supplemented by vast quantities of range cattle. South-eastern Texas was the original home of these cattle ranches, but the driving of herds to supply the miners of the Rocky Mountains revealed the fact that the whole bison country was capable of supporting range catte, and the practice grew of driving the stock to the feeding ground of the north and returning. The heighe of the movement along the catte trail, which in its largest extent ran through the public lands of the great plains from Texas to the Dakotas and Montana, was reached in 1884. In that period catulemen fought over the possession of the range, controlled vast tracts by seizing the approaches to the water supplies under perversion of the land laws, fenced in the public domain, either defiantly or by leases from land grant roads, and called out proclamations of presidents from Hayes to Cleveland. The steady advance of the farmer, and protective measures against the spread of the cattle diseases known as Texas fever, gradually prevented the continuance of the trail, and ultimately broke down the system of great ranches. The grade of catzle was improved and great packing interests organized the industry on the basis of concentrated large scale production. About 1870 shipment of livestock from Chicago had become significant. and within a decade the refrigerator car revolutionized the packing industry by making possible the shipment of dressed beel not only to the markets of the Eastern United States but even to Europe. The value of slaughtering and packing industries in the United States increased from less than thirty million dollars in 1870, to over three hundred millions in 1880, and to five hundred and sixty-four millions in 1890.
349. Another important revolution in American economic life was effected by the opening of new iron-mines, the grow-th of the steel and coal industry and the rise of an extraordinary internal commerce along the whole length of the Great Lakes. By 1890 the output of pig-iron in the United States surpassed
that of Great Britain. baving-doubled since \(\mathbf{1 8 8 0}\). The full meaning of the revolution is seen in the fact that by 1907 the
mblageod United Slates produced more pig-iron and steel Comperce. than Great Britain, Germany and France combined. As a result of the growth of the wheat, lumber and iron-ore production of the North-West, the traffic along the thousand miles of the Great Lakes grew (chiefly after \(\mathbf{1 8 9 0}\)) by leaps, and changed from wooden sailing vessels-to steel ships driven by steam. The traffic through the Sault Ste Marie Canal came greatly to exceed that through the Suez Canal.
350. The South shared in these industrial translormations. Not only did white labour produce an increasing proportion of
The sement the cotton crop, which was now extended into the cut-over pine lands, but cheap white labour came from the uplands to cotton mills situated at the water-powers. This, with the abundant supply of raw material, enabled the South to develop cotton manulacture between 1880 and 1890 on a scale that threatened New England's dominance. The southern Appalacbians began to yield their treasures of coal and iron; northem Alabama became one of the great centres of the iron industry and the South produced nearly 400,000 tons of pig iron in 1880 and two and a half millions twenty years later. By 1890 the production of coal, iron-ore and pig. fron in this section was as great as that of the United States in 1870 . The value of the products of manufacture in the South rose from \(\$ 338,000,000\) in 1880 to \(\$ 1,184,000,000\) in 1900. The exploitation of the long leaf pine forests also attracted Northern capital. Fruit and truck gardening grew rapidly, and the South began to exhibit traits of industrial development familiar in the North and West. Protective tarifis and the interests of capital found recruits in the old-time planting states; but the negro problem contibued to hold the South as a whole to the Democratic party.
351. The opportunities opened to capital by these forces of growth in the West and South, as well as the general influence

\section*{enetriel and Procractal} of an age of machine production, led to transformations in the East which brought new difficulties lor political solution. The East began to exhibit characteristics of other long-settled countries where increasing density of population and highly developed industry are accompanied by labour troubles, and where problems of democratic society and government take the form of forcible action or political revolt, in the absence of ample outlets into adjacent areas of cheap lands and new opportunities. To capital the opening resources of the West, and the general national prosperity after \(\mathbf{1 8 7 9}\), offered such inducements that large scale production by corporations and vast designs became the order of the day. The forces which had exhibited themselves in increased manufaeture and railway development hetween the Civil War and the panic of 1873 now found expression in a general concentration of industrics into fewer plants with vastly greater capital and output, in the combination of partnerships into corporations, and of corporations into agreements, pooss and trusts to avoid competition and to secure the needed capital and economies for dealing with the new problems of industrial magnitude. Western farming competition led to the actual abandonment of much inferior land in New England and to agricultural disadvantages in the Middle states. As agriculture became less attractive and as industrial demands grew, the urban population of the East increased at the expense of the rural. The numbers of cities of the United States with more than 8000 people nearly doubled between 1880 and 1890 ; by 1900 the urban population constituted a third of the total, and this phenomenon was especially marked in the North Atlantic division, where by 1000 over hall the population was in cities of more than eight thousand inhabitants.
352. In similar fashion concentration of industry in large estahlishments was in progress. In \(\mathbf{1 8 8 0}\) nearly two thousand mills were engaged in the woollen industry; in 1890 not many more than thirteen hundred. Even more marked was the change in iron and steel, where large-scale production and concentration of mills began to revolutionize this fundamental
industry, and ot her lines of production showed the same tendency. The anthracite mincs of Pennsylvania, the great resource for the nation, fell into the possession of seven coal-earrying railway; which became closely allied in interest. In most of the important indust ries the tendency of large organizations to subject or drive out the small undertakings became significant. Already the railways to avoid "cut-throat competition" had begun to consolidate their systems by absorption of component lines, to form rate agreements and to "pool" their earnings in given districts. Western agitation had led to reports and bills by committees headed by Western congressmen, such as the report of William Windom. of Minnesota, in 1874, where the construction of Federal lines to regulate rates by competition, was suggested; the repurt of George W. McCrary of Iowa, whose bill for regulation was passed by tbe House in 1874 under the stimulus of the Granger movement, but failed in the Senate; that of John H. Reagan, of Texas (1878), whose bill forbidding pooling and compelling publicity of rates by the machinery of the Federal courts, was discussed for several years, but failed to become law; and that of Shelby M. Cullom, of llinois, in 1886.
353. The decision of the Supreme Court in the Wobash case, made in that year, reversed the doctrine followed in the case of Munn v. Illinois, and held that the regulative power The finter. of the state (even in the absence of Federal legis- state Comr lation) was limited to traffic wholly within the merce Act. state and not passing from one state to another. The Cullom bill as enacted into the Interstate Commerce Law of the 4 th of February 1887, was framed to prevent unjust discriminations by the railroads between persons, places and commodities, the tendency of which was, as the report declared, to foster monopoly. The law forbade discriminations and pooling, made a higher charge for a short haul than for a long haul over the same road illegal (unless permitted after investigation by the commission), required publicity of rates, and provided for a commission to investigate and fine offenders. But the decisions of the commission were reviewatle by the Federal courts and the oflender could be coerced, if he relused to obey the commission, only by judicial proceedings. The commission was empowered to provide uniform accounting and to exact annual reports from the roads. The principle settled by the law was an important one, and marked the growing reliance of the former individualistic nation upon Federal regulation to check the progress of economic consolidation and monopoly. But the difficulties by ho means disappeared; the Federal judiciary relusing to accept the findings of the commission on questions of fact, retried the cases; and the Supreme Court overruled the commission on fundamental questions, and narrowed the scope of the act by interpretation.
354. Labour exhibited the tendency to combination shown by capital. The Knights of Labor, founded in 1869, on the basis of "the individual masses" instead of the trades unions, and professing the principle that "the injury of one is the concern of all," grew from a membership of about one hundred thousand in 2885 to seven hundred and thirty thousand in 1886. The number of strikes in 8886 was over

Laboer
Combleathata; las custrial and Seclal Uarege. iwice as many as in any previous year. In one of the strikes on the Gould railway system six thousand miles of railway were held up. In New York, Henry George, author of books proposing the single tax on land as a remedy for social ills, ran for mayor of the city and received 68,000 out of 219,000 votes. At the same time socialistic doctrines spread, even among Western farmers. But sympathetic strikes, anarchistic outbreaks, and drastic plans for social change did not appeal to the people as a whole. The Knights of Labor began to split, and the unions, organized as the American Federation of Labor, began to take their place with a less radical membership. President Cleveland broke with precedents in 1886 by sending in the first message on labour, in which he advocated, without success, a labour commission to settle controversies. A national bureau of labour to coltect statistics had been established in 1884 ; state legislation increasingly provided for arbit ration of labour disputes, and regutation of factories and child
labour. Early in 1885 a law had been enacted forbidding the importation of labour under contract, and in 1888 the Cbinese Exclusion Act was continued. Immigration was exceptionally large in the decade from 1880 to \(\mathbf{1 8 9 0}\), amounting to about five and a quarter millions as come. compared with two million eight hundred thousand for the previous decade. But 2 large number of these new-comers settled on the newly opened lands of the Middle West. By 1890 the persons of German parentage in the Middle West numbered over four millions-more than half the total of persons of German parentage in the nation. Dinnesola held 373,000 persons of Scandinavian parentage, and of the whole of this element the Middle West had all but about 300,000. The Irish constituted the largest element among the Englishspeaking immigrants. The population of foreign parentage amounted to one-third of the whole population of the United States in 1890 . In the midst of this national development and turmoil President Cleveland struggled to unite his party on 2 definite issue. The silver question continued to divide each party, the continued fall of silver leading to renewed agitation for free coinage. In 1886 a bill for this purpose was defeated by a majority of 37 in the House, 98 Democrats favouring it, and 70 opposing, as against 26 Republicans for it and 93 against. The surplus led to extravagant Cleveland: appropriation bills, such as special pension bills, which Cleveland vetoed by the wholesale, thereby incurring criticism by veterans of the Civil War, and river and harbour improvement measures, particularly the act of 1886 , to wbich the president gave reluctant assent and the bill of 1887 to which he gave 2 "pocket veto" by refusing his signature. But the retention of the surplus in the treasury would create a monctary stringency, its deposit in banks aroused opposition, and its use to buy bonds was unpopular with the Democrats. Cleveland boldly met the issuc and gave purpose to his party

Tarll Meseaga. by his annual message of December 1887, which he entirely devoted to an exposition of the situation arising from the surplus, and to a demand for a revision of the tarifi in order to reduce revenue. He did not profess-free trade doctrines: "It is a condition which confronts us, not a theory," he declared. The election of 1886 had reduced the Democratic majority in the House, but the president was able

The Mill: Bns. to induce his party to pass the Mills Bill (1888) through that body as a concrete presentation of policy. The bill put many important raw materials (including wool and unmanufactured lumber) on the free list, substituted od valorem for specific duties to a large extent, and generally reduced the protective duties. It was believed that the measure would remit over fifty and 3 -half million dollars of dutics, nearly twenty millions of which would result from additions to the free list. The Republican Senate also found party unity on the tariff issue and its committee on finance, under the leadership of Senator Nelson W. Aldrich of Rhode Island, drafted a counter proposal. They would reduce revenue by repealing the taxes on tobacco, and the taxes on spirits used in the arts and for mechanical purposes, and by revising the tariff so as to check imports of articles produced at home.
355. On the tariff issue the two parties contested the election of 1888, the Republicans denouncing the Mills Bill and the Beateria Denocrats supporting it. Blaine having withdrawn

Herrted from the contest, and John Sherman having secured efected Prosketat. but little more than half the votes necessary to nominate, the Republicans picked from a multitude of candidates Gencral Benjamin Harrison of Indiana, grandson of President William Henry Harrison, to run against Mr Cleveland. The popular vote was exceedingly close, but Harrison had an electoral majority of 65 , having carried all of the states except the solid South, Connecticut and New Jersey. The increasing use of money to influence the election, and particularly the association of great busincss interests with such political "bosses" as Matthew S. Quay of Pennsylvania and Thomas C. Platt of New York, were features of the campaign. The Congressional reetions ensured to the Republicans tbe undis-
puted control of all branches of the government wiben the Fiftyfirst Congress should convene, and it was generally agreed that the party had a mandate to sustain the protective tariff.
356. Lacking a large majority in either house the Republicans were not only exposed to the danger of free silver defections in the Senate, but to " filibustering " by the Democratic minority in the House as a means of blocking the Spoeker Thomeat victorious party's programme. These obstruclive 8. Rext. tactics were made possible chiefly by the use of privileged motions and roll calis to delay business, and the relusal to respond on the roll call for a vote, thus preventing a quorum. Speaker Thomas B. Reed of Maine, a virile and keen-witted leader, greally strengthened the power of the speaker, as well as expediting the business of the House, by ruling that the Constitution required a present, not a voting, quorum; and in spite of disorderiy protests he "counted a quorum" of chose actually present. By securing rules sanctioning this action and empowering the speaker to refuse to entertain dilatory motions, that officer became the effective agent for carrying on the business of the party majority. As his power through the committee on rules, which he appointed, grew, he came, in the course of time, also to dominate the action of the House, refusing to recognize members except for motions which he approved, and through his lieutenants on important committecs selecting such measures for consideration as seemed most desirable. This efficiency of action was secured at a loss to the house as a representative and debating body, responsive to minority proposals.
357. But the discipline of party caucus and House rules enabled the Republican leaders to put through with rapidity a number of important laws. One of these was the 7 mo measure known as the Sherman Anti-Trust Act of Shernaes. the and of July r890, which declared combinations Aatt-Traw affecting commerce bet ween the several states, or with Act. foreign nations, illegal and punishable by fine or imprisonment or both. This act, the full power of which was not exhibited until later, was a response to the growing unrest of the nation as other corporations emulated the success of the Standard Oil Trast (formed in \(\mathbf{1 8 8 2}\)). The members of a (rust combined in an organization managed by boards of trustees whose certificates the former owners accepted instead of their shares of stock in the component companies. Competition was thus eliminated within the combination and the greatly increased capital and economies enabled it not ondy to deal with the increasing magnitude of business operation, but also to master the smaller concerns which opposed it. State legislation had proved unable to check the process, partly because the trust was an interstate affair. By putting into operation its power under the Constitution to regulate interstate commerce, Congress responded to the popular demand for Federal restraint of these great combinations which threat ened the old American ideals of individualism and freedom of corapetition. The trusts, although embarrassed, soon showed their ability to find other devices to maintain their unified control. Nor was the act used, in this period, to prevent the railways from agrements and combinations which in large measure neutralized the anti-pooling clause of the Interstate Commerce Act of 1887.
358. Another important law was the so-called Sherman Silver Purchase Act of the 14th of July 1890 . By 1889 the ratio of silver to gold had fallen to 1 to 22 . In the shemenea twelve years of the Bland-Allison Act of 1878 Shver Paer over \(378,000,000\) silver dollars had been coined from chaser Ace bultion purchased at the market price. This bullion value wras falling: it was \(\$ 89\) in 1877 and \(\$.72\) in 1889 . The production of gold in the United States in 1878 was about two and one-half million fine ounces, and of silver about thirty-five millions; in 1890 the gold production was \(1,588,000\) and the silver \(54,500,000\). The Silver Purchase Act authorized the secretary of the treasury to purchase each month \(4,500,000 \mathrm{oz}\). of silver at its market price and to pay for it in treasury notes redecmable at his discretion, in silver or gold. This law, pessed to placate the demands of the free silver men by increasing the use of silver, was insufficient to prevent the Senate from pass. ing a free coinage bill by a combination of Democrats and the
silver Republicans, chiefly from the newer states of the Far West; but this free coinage bill was lost in the House by a small majority. The explanation of this sudden re-opening of the question was that of party apprebension. In some of the Republican states of the Middle West, long relied upon as saie, the Farmers' Alliance had been spreading, and fomenting a demand for unlimited coinage of silver. A silver convention beld at St Louis in the fall of 1889 had been attended by many delegates from this region as well as from the new silver-mining states whose increased power in the Senate was soon to be effective. It was feared, therefore, that a veto of a free coinage measure might array the West and South-West against the East and break up the party.
359. The customs duties upon which the fighting of the campaign of 1888 had turned was promptly taken up, and in Tho the McKiniey Tarif Act of the rst of October 1800 moktios the Republicans embodied their conceptions of Tarm. protection to American industry. Some of the main features of this law were: the addition of agricultural products to the protected articles; the extension of the free list. particularly the inclusion therein of raw sugar, which had been bringing in a revenue of \(\$ 50,000,000\) annually: the granting of compensating bounties to sugar planters to an amount of about \(\$ 10,000,000\) a year; and the raising of duties to the prohibitory point on many articies of general consumption which could be produced at home. Mr Blaine, then secretary of state, had just been active in promoting closer relations witb South America wherein he hoped tor an extension of American trade and he severely criticized the bill as it passed the House, because the free list opened wide the doors of American trade, particularly to sugar producing countries, without first exacting compensating advantages for our products in those markets. To meet this criticism a provision was finally added authorizing the president to impose discriminating duties where it was necessary to obtain the advantages of reciprocity.
360. This teriff, which passed on the eve of the Congressional efections of 1890 , was immediately followed by such increases in prices and the cost of living that it was potent in bringing about the political revolution, or " land slide," which swept the Republicans from power in the House of Representatives. The Republicans returned but 88 members as compared with nearly twice that number in the Congress which passed the McRinley Bill. The South sent but four Republicans; New England a majority of Democrats; and such strongholds of Republicanism as the Middle Westernstates of Illinois, Michigan, Wisconsin, Iowa and Kanses, hitherto responsive to the traditions of the Civil War, sent Democratic or independent delegations. Looked at hroadly, the movement was a rural uprising, strongest In the South and Middle West, the old Granger areas, against forces which seemed to thern to threaten their idcals of American democracy. But the movernent was recruited by the silvermining states and discontented labour interests.
361. Farm products had not proportionally shated the general increase in prosperity. This convinced large portions of the Wratore agricultural West that the currency system had too Decaetern narrow a basis in gold, which was appreciating in value. Much of the Middle Western agricultural development had been made on borrowed Eastern capital, and it seemed to the farmer that the principal of his mortgage was in effect increasing with the rise in the price of gold. at the same time that his crops brought a smaller net profit. He did net give due attention to the effect of greatly increased production, as the new wheat lands were opened on such a grand arale; but he was keenly sensitive to increased freight rates and discriminations, to the influence of Eastern capitalists, banks. boodbolders, trusts and railways upon Federal and state legisLa: ures and judiciary. and to the large amount of railway lands, unproductively held by the companies, while the land hunger of the nation was exhibited in the rush to newly opened Indian lands, such as Oklahome (1889) and paris of the Sioux reservation (1800). After the evidence of the power of this tide of Western discontent in the efections of 1890 , those portions of it
which were ripest for revolt combined in 1892 as the People's party or Populists, soon to prove an important political factor. 362. The Republicans meanwhile had been actively reducing the surplus. In 1802 the excess of revenue over expenditures was ten million dollars; by 1893 only two millions. This was effected not only by the Tariff Act but by

Pegslong. such measures as the Dependent Pension Act of 1890 (resulting in a list of pensioners of the Civil War which cost the nation \(\$ 68,000,000\) by \(\mathbf{1 8 9 3}\), over half of these pensioners having been added during Harrison's administration); the rapid construction of the new navy, raising the United States from twelfth to fifth in the list of naval powers; the repayment of the direct war tax to the states (1891) to the amount of fity-one millions; and other appropriations such as those provided ty river and harbour bills. The Democrats stigmatized this Congress as a "billion dollar Congress" from its expenditures, to which Speaker Reed replied that the United States was a billion dollar nation. In fact the Democrats when they regained power were not able greatly to diminish the cost of government.
363. The Democratic House in the Fifty-second Congress repressed obstructive Republican tactics by methods like those adopted by Speaker Reed, and contented itself with passing a series of bills through that body proposing reductions of the tariff in special schedules, including free wool and a reduction of the duty on woollens, free raw material for the cotton planters of the South, free binding twine for the farmers of the North and a reduced duty on tin plate for the fruit raisers. The new industries of the southern Appalachiens prevented action on coal and iron. Of course thase bills failed in the Republican Senate. A bloody strike on the eve of the election of 1892 in the great steel works at Homestead, Pennsylvania, where armed guards engaged by the company Sormestead fired upon the mob which sought higher wages, was
not without its adverse effect upon public sentiment in regard to tbe Republican tarif for the protection of labour.
364. During the campaign of 1892 the Democrats rejected a conservaiive tariff plank, denounced the McKinley tariff in violent language, and denied the constitutional power to impose tarif duties except for the purpose of revenue only. But Cleve. land, who was renominated in spite of vigorous opposition from leading politicians of his own state, toned down the platform utterances on the tariff in his letter of acceptance. In their declarations upon the currency the Democrats furnished a common standing ground for the different factions by attacking the Silver Purchase Act of 1890 as a cowardly makeshift.
365. The Pcople's party, in its national convention at Omaha (July 1892), drew a gloomy picture of government corrupted in all of its branches, business prostrated, farms covered with mortgages, labour oppressed, lauds concen. The Proph's trating in the hands of capitalists. Demanding the restoration of government to the "plain people," they proposed an expansion of its powers, to afford an adequate volume of currency and to check the tendency to "breed tramps and millionaires." Among their positive proposals were: the free and unlimited coinage of silver at the legal ratio of sixteen to one; the expansion of a national currency issued directly to the people; the establishment of postal savings banks; government ownership of the railways, telegraph and telephone; restoration to the government of the lands held by railways and other corporations in excess of their needs; and a graduated income tax. In supplementary resolutions the Australian ballot system, which had spread rapidly in the past few years, was commended. as also were the initiative and referendum in law-making. Combining wisb the Dernoctatic party in various states beyond the Mississippi, and with Republicans in some of the Southern states, they won large masses of voters in the West, and exerted an influence upon public opinion in that sertion beyond what was indicated in the returns, although General James B. Weaver of lowa, their candidate for the presidency, received oves 1.000 .000 popular votes and 22 votes in the electored college. The Republicans renominated President Harrison, though he lacked an entbusiastic personal following. They
supported the McKinley Tariff Act in spite of the wave of opposition shown in the elections of 1890 . But, fearing party divisions, they, like the Democrats, made an ambiguous declaration on the currency. The result of the election of 1892 was to Ciovelated return the Democrats under Cleveland to power reorecticed by a plurality of over 380,000 and an electoral Proadoas. plurality of 132 . Congress in both branches was to be Democratic in 1893, and the way was open for the first time in a generation for that party to carry out a policy unchecked by any legislative or executive branch of government.
366. But before Cleveland was fairly started in his second administration the disastrous panic of 1803 swept the nation, nor did prosperity return during the four years poetc of .that followed. The panic is not, directly at least,
1893 . 152. to be traced to the silver purchases, but was the result of various causes, including the agricultural depression, farm mortgages, reckless railway financiering and unsound banking in the United States, as well as to Argentine and European financial troubles. The panic began in the spring with the failure of the Reading railway (which had undertaken the acquisition of coal land and an extension of activity beyond its resources) and the collapse of the National Cordage Company, one of the numerous examples of reckless trust financiering into which large banks had also been drawn. Clearing-house certificates were resorted to hy the Ncw York hanks in June, followed in August by partial suspension of specie payments. Currency remained at a premium for a month; depusits in national banks shrank enormously; national hank loans contracted more than \(14.7 \%\); failures were common; \(22,000 \mathrm{~m}\). of railways were under receiverships, and construction almost ceased. The interruption to business is indicated by the decline of iron production by one-fourth.
367. The panic of 1893 was in many ways a turning point in American history. It focused attention upon monetary questions, prostrated the silver-mining states, embittered the already discontented farming regions of the West, produced an industrial chaos out of which the stronger economic interests emerged with increased power by the absorption of embarrassed companies, and was accompanied by renewed labour trouhles Most noteworthy of these was the Pullman Car Company strike near Chicago in 1894 , which led to sympathetic strikes by the American Railway Union, extending over twenty-seven states and Territories from Cincinnati to San Francisco. Mobs

\section*{Rallowe
Scrtioe Serition} of the worst classes of Chicago hurned and looted cars. The refusal of Governor John P. Altgeld of Illinois to call out the militia, and the interference with the United States mails, led President Cleveland to order Federal troops to the scene, on the constitutional ground that they were necessary to prevent interference with interstate commerce and the postal service and to enforce the processes of the Federal courts. The latter isued a sweeping injunction requiring that the members of the American Railway Union or other persons desist from interference with the business of the railways concerned. The president of the striking organization, Eugene V. Debs, was imprisoned for contempt of court and conspiracy.
368. The most immediate political effect of the panic was upon the silver issue. Soon after the outbreak of the finamial irisis, the gold ruscre, which protcited the greenbacks and the tresiury notes issucd under the Silver Purchase Aci, shrank ominously, while foreimers returned their American acurities instead of sending gold. To sell bonds in order to replenish the gold rescrve, and to repeal the Silver Iurchase Ac without substituting free coinage, would aggravate western coontent and turn away the promise of recruits to the Democritic party from the Populists of the prairie and silver-mining ates; to carry out the Democratic platiorm by a tarifi for revenue oaly while mills were shutting down would be hastadous in
 everpa esbes; but Cleveland summoned a speri it session hamath of Cobgras for August, while the panic :a acute, party 10 repeal the Silver Puri ume Act ang the repeal with provisions io: silver.

Not until the last of October 1803 was repeal carried, by a vote in which the friends of repeal in the House were about equally divided between Democrats and Republicans, and nearly two-thirds of its opponents Democrats
369. By this time the surplus had disappeared and the gold reserve was drawn upon for ordinary expenses. Early in 1894 the administration, failing to secure legislation from Congress to authorize the sale of gold bonds on favourable terms to protect the reserve, sold under the Resumption Act of 1875 \(\$ 50,000,0005 \%\) bonds, redeemable in ten years. Part of this very gold, however, was withdrawn from the reserve by the presentation of legal tender notes for redemption, and the "endless chain" continued this operation to the verge of extinguishing the reserve, so that another loan of \(\$ 50,000,000\) in 1894 was followed in 1895 by a dramatic meeting between Cleveland and some of his cabinet with the important Wall Street banker, J. Pierpont Morgan, who agreed on behalf of his syndicate to sell the government \(865,166,000\) of gold for \(862,315,000\) of bonds, equivalent to \(4 \%\) bonds for thirty years at a price of 104 . In return the syndicate agreed to use its influence to protect the withdrawals of gold from the treasury. These securities were over-subscribed when offered to the public at 112 f . President Cleveland had protected the treasury and sustained the parity of gold and silver, but at the cost of disrupting his party, which steadfestly refused to authorize gold bonds. Again, in the begianing of 1806, the treasury was forced to sell bonds, hut this time it dealt direculy with the public and easily placed \(\$ 100,000,000\) in bonds at about \(11 \pm\). affording a rate of interest about equal to \(3.4 \%\).
370. Before the political harvest of the monetary issue was reaped, the Democrats had also found party ties too weak to bear the strain of an effective redemplion of the party pledges on the tarif. The Wilson Bill pre- The whate pared as the administrative measure was reported late in 2893 , while the panic was still exerting a baneful influence. Its leading leatures were the substitution of ad oclorem for specific duties in general, the extension of the free list to include such materials of manufacture as iron ore, wool, coal, sugar and lumber, and the reduction of many prohibitory rates. The loss in revenue was partly provided for by an income tax, significant of the new forces affecting American society, and an increase in the duty on distilled liquors. Although the bill passed the House by an overwhelming majority. it met the opposition in the Senate of the representatives, Democratic as well as Republican, of those states whose interests were adversely affected, especially the iron ore and coal producing states of the Southern Appalachians, the sugar producers of Louisiana, the wool growers and manufacturers of Ohio, and the regions of accumulated property in the East, where an income tax was especially obnoxious. Led by Senators Arthur P. Gorman, of Maryland; Calvin S. Brice, of Ohio; and David B. Hill, of -New York, be bill was transformed by an alliance between Democratic and Republican senators, on the ples that it would otherwise result in a deficit of \(\$ 100,000,000\) Coal, iron ore and sugar were withdrawn from the free raw materials and specibic duties replaced ad valorem in many cases, while many other individual schedule were amended in the direction of protection. The Hoase, given the alternative of allowing the McKinley Act to rernaia or to accept the Senate's bill, yielded, and the Wilson-Corman Tarifi Act became a law without the president's signalure, on the 27th of August 1894. He called upon his followers still to fight for free raw materials, and wrote bitterly of at the truuts and combinations, the communism of pelf, whose machinations have prevented us from reaching the success we deserved." Even the income tax was soon (1895) beld by the Suprempe Court to be unconstitntional.
371. Toward the close of his administration Cleveland's brusque mesage on the Vemervelan boundary question (see later) aroused such excitement and so rallied the general puiblic (though not the more conservative) that the war spirit, shown 3000 afterwards agaiost Spain. might have been a potent factor
in the election of 1806 had not England exhibited exceptional moderation and self-restraint in her attitude. The silver question, therelore, became the important issue. The Republicans nominated McKinley and declared for the gold standard in opposition to free coinage, losing therchy an influential following in the silver-mining and prairic states, lut gaining the support of multitudes of business men among the Democrats in the East and Middle West, who saw in the free-silver programme a violation of good laith and a menace to returning prosperity. The Democratic convention marked a revolution in the party. Froe siver The old school leaders were deposed by decisive asery, majorities, and a radical platform was constructed Wintand which made "the free and unlimited coinage of Eryas. both silver and gold at the present legal satio of sixtcen to one, without waiting for the aid or consent of any other mation," the paramount issue. Objecting also to the decision against the income tax, and to "government by injunction as a new and highly dangerous form of oppression," they incurred the charge of hosility to the Federal judiciary. William J. Bryan made a brilliant speech in behall of free coinage, and so voiced the passion and thought of the captivated convention that he
 was nominated by it for the presidency over the veteran free-silver leader, Richard P. Bland of Missouri. The Cleveland men, or "gold Democrats," broke with their party after it becane committed to free silver, and holding a convention of their own, nominated General John McA. Palmer of lllinois for the presidency on a platform which extolled Cleveland, attacked free coinage, and lavoured the gold standard. Its main influence was to permit many Clevcland men to vote against Bryan without renouncing the name of Democras. On the other hand the Populist convention also nominated Bryan on a platform more radical than that of the Democrats, since it included government ownership of the railways, the initiative and referendum, and a currency issued without the intervention of banks.
372. The contest was marked by great excitement as Bryan travelled across the country addressing great audiences. The endangered husiness interests lound an effient manager in Marcus A. Hanna of Ohio. MeKinley's adviser, and expended large sums in a campaign of education. In the event, the older states of the Middie West, holding the balance between the manufacturing and capitalistic East and the populistic prairie and mining states of the West, gave their decision against free silver. But class appeals and class voting were a marked feature of the campaign, the regions of agricultural depression and larm mortgages favouring Bryan, and those of urban life lavouring McKinley. Labour was not convinced that its interests lay in expanding the currency, and Mr Hanaa had conducted McKinley's campaign surcessfully on the plea that he was the advance agent of prosperity under the gold standard and a restoration of confidence. McKinley carried all the Northern whas states east of the Mlissouri, and North Dakots, maxlety efoctor Pretiteal Oregon and California of the Farther West, as well as Maryland, Delaware, West Virginia and Kentucky along the borders of the South. His plurality over Bryan in the popular vote was more than 600,000 , and his electoral majority 05 . All the departments of government were transferred by the clection to the Republicans.
373. Having secured power, the administration called a special session of Congress, and enacted the Dingley protective tarif (July 24, 1897), under which the deficit in the

\section*{} treasury was turned into a surplus. The act raised duties to their highest point, and as the protective schedules included some important articles produced by trusts which had a practical monopoly, such as sugar and petroleum, this was seized upon by the Democrats to stipmatipe the tarill as the "mother of trusts." Many articles whicb had been placed on the free list in the Tarif Act of 1894 , including lumber, wool and the raw material for cotion baling, were made dutiable. The high rates were delended, in part, by the provision authorizing the president to negotiate reciprocity trealies under which they might be lowered. Several
such traties were signed, but the Senate refuned to ralify them.
374. The Republicans also wrote their triumph into the Gold Standard Act of the 4th of March 1900 , which ensured the maintenance of this standard by reserving oove \(\$ 150.000 .000\) of gold coin and bullion to redeem stamant the United States notes and the treasury notes of Act 1890 , and by authorizing the sale of bonds when necessary to maintain the reserve. National banks were authorized in the smaller towns (three thousand or less) with a capital of \(\$ 25,000\), balf of inat formerly required, and increased circulation was further provided for by permitting the national banks to issue United States bonds up to their par value.
375. The economic policy of the Republicans was facilitated by the prosperiny which set in about 1898 . The downiall of silver-mining turned the prospectors to seek new gold fields, and they found them, especially in Alaska, about this time; and contemporaneously the chemists discovered cheaper and more efficient methods of extracting the gold from low-grade ores. Within five years after the crisis of 1893 the gold production of the United States nearly doubled. The United States coined \(\$+37,500,000\) in gold in the Give-year period 1807-1902, while the average for Give-ycar periods since 1873 had been only \(\$ 224.000,000\). Thus gold instead of silver began to inundate the market,

Ecourenal ced
Jadustrial Chatere and to diminish the demand for expansion of the currency. Agriculture, prostrated in the ycars immediately preceding and following the panic of 1893, turned to the scientific study of its problems, developed dry larming, rotation and variety of crops, introduced lorage crops like alfalfa, fed its Indian corn to cattle and hogs, and thus converted it into a profitable and condensed form for shipment. Range cattie were brought to the corn belt and fattened, while packing industrics moved closer to these western centres of supply. Dairy-farming replaced the unprofitable attempts of older sections of the Middle West and the East to compete with the wheat-felds of the Farther West. Truck and fruit farming incressed in the South, and the canning industry added utility to the fruits and vegetables of the West. Following the trend of combination the farmers formed growers' associations and studied the demand of the mazket to guide thelr sales. The mortgaged farms were gradually freed from debt. The wheat crop increased from less than \(400,000,000\) bushels valued at \(\$ 213,000,000\) in 1803 to \(675,000,000\) bushels valued at \(\$ 302,000,000\) in 1808 . Prosperity and contentment replaced agitation in the populistic West for the time, and the Republican party gained the advantage of these changed conditions. Land values and the price of farm products rose. The farmers soon found it profitable to sell all or part of their land and re-invest in the cheaper virgin soils of the farther NorthWest and South-West, and thus began a new movement of colonization into the new West, while the landowners who remained gained an increasingly higher status, though farm labour failed to share proportionally in this advance.
376. In the South also there was greater contentment as the new industries of iron, textiles and forestry grew, and as the cotton crops increased. Unrest was diminished
by the new state constitutions, which after \(1890{ }^{\text {rbe Soorb. }}\) disqualified negro voters by educational and tax requirements so contrived as not to disfranchise the poor whites.
377. In the decade which followed the crisis of 1803 a new industrial structure was made out of the chaos of the panic. "High financiering" was undertaken on a scale -mbe hitherto unknown. Combinations absorbed iheir fineoctro weaker rivals; Standard Oil especially gained large "ate" interests in New York hanks and in the iron mines and transportation lines about the Great Lakes, while it extended its power over new fields of oil in the South-West. In general, a small group of powerful financial interests acquired holdings in other lines of business, and by absorplions and "community of interest" exerted great influence upon the whole business world. The group of financiers, headed by J. Pierpont

Morgan, came to dominate various Soulhern transportation lines and the anthracite coal roads and mines, and extended their influence to the Northern Pacific railway, while a new genius in railway financiering, Edward H. Harriman, began an avowed' plan of controlling the entire railway system of the nation. Backed by an important banking syndicate he rescued the Union Pacific from bankruptcy, and with its profits as a working basis he started in to acquire connecting and competing lines. Labour also shared in the general prosperity after 1898. Relative real wages increased, even allowing for the higher cost of living, and the length of the working day in general decreased except in special industries.
378. By 1900 the continental United States had a population of \(76,000,000\); an aggregate real and personal wealth of \(\$ 88,500,000,000\); a per capita public debt of \(\$ 14.52\), and per capita money circulation of \(\$ 26.94\) against \(\$ 21.41\) in 1896 . In rgoi bank clearings amounted to nearly \(\$ 115,000,000,000\) araeral against \(\$ 45,000,000,000\) in 1804 . Imports of merCrasperthy. chandise had fallen in this period, while exports rose from about \(\$ 847,000,000\) in 1893 to \(\$ 1,394,000,000\) in 1goo. Of these exports food stuffs and food animals, crude and partly manufactured, aggregated nearly \(40 \%\) of the total. The production of pig-iron, which was about \(7,000,000\) long tons in 1893, was nearly twice that in 1900. This economic prosperity and these far-reaching processes of social change by which the remaining natural resources of the nation were rapidly appropriated, went on contemporaneously with the extension of the activity of the nation overseas. The first rough conquest of the wilderness accomplished, the long period of internal colonization drawing to a close, the United States turned to consider its position as a world power.
379. To understand this position it is necessary to return to an earlier period and briefly survey the foreign relations since the close of the Reconstruction era. The most significant and persistent influence came from the growing interest of the United States in the Pacific, as its population and economic power extended to that ocean. The problem of an overfiow of Chinese migration to the Pacific coast, and the jeopardizing of the American standard of labour by this flood, had been gettled by various treaties and laws since 1880 . The question of the relation of the United States to an interoceanic canal was not so easily settled. In 1878 Colombia granted a concession to a French company, promoted by Ferdinand de Lesseps, the engineer of the Suez Canal, to dig a tide-level canal through the Isthmus of Panams. President Hayes voiced the antagonism of the United States to this project Isthmias Calat. of European capital in his message of 1880 in Ehe deciared that such under the control of this nation, and that it would be "virtually a part of the coast-line of the United States." Altbough an American company was organized to construct a canal under a concession from Nicaragua in 1884, no real progress was made, and the French company, defeated hy engineering and sanitary difficulties, failed at the close of 1888.
380. Meantime, for a few months, Blaine, as secretary of state under President Garfield, began a vigorous foreign policy with especial reference to the Pacific. He attempted to get the consent of England to abrogate the Clayton-Bulwer Treaty of 1850 , which contemplated the construction of an isthmian canal by private enterprise under joint control and neutraliza. tion of the United States and Great Britain, together with such other powers as should join them. In South America he actively pressed the infuence of the United States to settle the war between Chile and Peru. Again, in the years from Pear. \(\quad 1889\) to 1892 , Blaine held the portfolio of state, and Amoncate attempted to increase the influence of his country Cogross. in Spanish America by the Pan-Anterican Congress of 1890 , which proposed a great international railway system and bank, commercial reciprocity and arbitration, without immediate results. (Sec Pan-American Conferences.) Indeed, the had feeling aroused by his earlier policy toward Chile found expression in 1891 in a mob at Valparaiso, when some
of the men from the United States ship "Baltimore" on shore leave were killed and wounded. An apology averted the war which President Harrison threatened. Blaine also asserted, against Canada particularly, the right of the United States to the seals of the Bering Sea; but in 1893 arbitrators decided against the claim.

38t. As the navy grew and American policy increasingly turned to the Pacific, the need of coaling stations and positions advantageous to its sea power was appreciated. By a tripartite trealy in 1889 the Samoan islands were placed under the joint control of the United

Samaty hiland: States, England and Germany, and, a decade later, they were divided among these powers, Tutuila and the harbour of Pago-Pago falling to the United States. The Hawaiian islands, which had been brought under the influence of civilization by American missionaries, were connected by commercial ties with the United States. Upon the attempt of the ruler to overturn the constitution, the American party, aided by the moral support of the United States, which landed marines, revolted, set up a republic, and asked

Hampata annexation to the Union. A treaty, negotiated under President Harrison to this end, was withdrawn by President Cleveland, after investigation, on the ground that the part of the United States in the revolution was improper. He attempted without success to restore the original state of affairs, and on the 7th of July 1898 the islands were annexed.
382. President Cleveland's conservatism in this and other matters of foreign policy had not prepared the people for the sudden exhibition of firmness in foreign policy with whlch he startled the nation in his message Vesermelan of December 1895 upon the question of the boundary of Venezuela. That nation and England had a long-standing dispute over the line which separated British Guiana from Venezuela. Great Britain declined to arbitrate, at the suggestion of the United States, and gave an interpretation to the Monroe Doctrine which the administration declined to accept. President Cleveland thereupon brusquely announced to Congress his belief that Great Britain's attitude was in effect an attempt to control Venczuela, and proposed that a commission on the part of the United States should report upon the disputed boundary, and support Venezucla in the possession of what should be ascertained to be her rightful territory. Secretary-of-State Richard Olney declared: "To-day the United States is practically sovereign on this continent, and its fiat is law upon the subjects to which it confines its interposition." Great Britain tactfully accepted arbitration, however, and in the end (1899) was awarded most of the territory regarding which she had been unwilling to arbitrate.
The growing activity of the United States in foreign relations next manifested itself against Spain. Cuba in its commanding position with reference to the Gulf of Mexico and the approaches to the pmposed isthmian canal, as well as in its commercial relations, and its menace as a breeding spot for yellow fever, had long been regarded by the United States as an important factor in her foreign policy. Successive administrations from the time of Jefferson had declared that it must not fall to another European nation, if Spain relinquished it, and that it was against the policy of the United States to join other nations in guaranteeing it to Spain. Between 1868 and 1878 a harsh war had been in progress between the island and the mother country, and American interventioa was imminent. But Spain promised reforms and
conter peace followed; again in 1895 revolt broke out, accompanied by severe repressive measures, involving grave commercial injury to the United States. (See Spanisa-Amireacas War.)
383. By the Treaty of Paris, signed on the Ioth of December 1898, Spain lost the remaining fragments of her ancient Americas Empire. She relinquished Cuba, which the United States continued temporarily to occupy without praster of holding the sovereignty pending the orderly establishment of an independent government for the island. Porto

Rico, Guam and the Philippines mere ceded outright to the United States, which agreed to pay \(\$ 20,000,000\) to Spain, and to andisfy the claims of its citizens agalost that power. By the treaty Congrese was to determine the civil rights and political glatus of the native inhabitants of the ceded territory.
384. As a result of the Spanish-American War, the United Suates found itself in a position of increased importance and prestige among the nations of the world. Especially Resumes of ato War. in the Pacific, it was immediately involved in the diplomatic situation created by the efforts of European states to divide China into spheres of influence or of actual possession. The interests of the United States in the trade with China, as well as her new position in the Philippines, inclined her to oppose this policy, and Secretary-of-State John Hay showed himself one of the great American diplomats in his treatment of this difficult problem. In order to preserve Chinese entity and the "open door" for trade, be drew replies from the nations concerned, the result of which was to compel them to avow and moderate their inteations. When the Boxer insurrection broke out in China in 1900, and the legations were besteged at Peking, it was largely through the United States that a less rigorous treatment was secured for that disordered nation.
385. The acquisition of Porto Rico and the acceptance of responsibilitics in Cuba gave new importance to the isthmian canal and increased the relative weight of the United States in regard to its control. The popular excitement with which the voyage of the "Oregon" was followed, as it took its way \(14,000 \mathrm{~m}\). around South America to participate in the destruction of the Spanish flect in the batcle of Santiago, brought home to the American people the aced of such communication between the Allantic and Pacific coasts.
386. But the immediate political issues were concerned with problems of the relation of the newly won lands to the United States government. Bryan had persuaded his party to join in ratifying the treaty of Paris, expecting to determine the status of the islands later. But attention soon turned to the insurrection which broke out (Feb. 4, 1899) in the Philippines (q.v.) under Aguinaldo, after it became probable that the administration intended to retain these islands, not under a weak protectorate, but as a possession to be ruled and "assimilated." It was not until the spring of 1902 that this insurrection was completely put down, and in the interval the question of the destiny of the islands and the harshness of the measures of repression aroused political debate. The Democrats and many Repuhlicans charged the administration with a policy of imperialism.
387. The same issue was involved, in its constitutional and economic aspects, in the treatment of Porto Rico and Cuba. While the insurrection continued in the Philippincs the government there was legally a military one, althougb exercised in part through civil officers and commissions. But in the case of Porto Rico the question was whether the "Constitution follows the flag," that is, whether it extended of its own force without an act of Congress to acquired territory, and covered the inhabitants with all the rights of citizens of the United States, as an integral part of the American people. Not only was it a question whether the native inhabitants of these new acquisitions could be wisely entrusted with this degree of political liberty, but the probiem Parte Plote of the tariff was involved. The beet sugar producers of the United States feared the effect of the competition of Porto Rican sugar unless a protective tariff excluded this commodity. But if Porto Rico were an integral part of the United States the Dingley tarifl could not be applied against its products, since this act imposed duties only on articles from "foreign countries." To meet this difficulty the Foraker Act of 1900 imposed a special tariff for two years upon Porto Rico, the proceeds to go to that island's own treasury. The act further aserted the principle that the inhabitants of the new possessions were not incorporated into the United States or entitled to all the privileges of citizens of the United States under the

Constitution, by declaring that stat utory acts of the United States locally inapplicable should not be in force in Porto Rico. The Supreme Court sustained this act in 1901, holding that Porto Rico was not so utrictly a part of the United States that separate customs tarifis could not be imposed upon the territory. The close division of the court and the variety of opinjons by which the decision was sustained left it somewhat uncertain whether and bow far the Constitution extended of its own force to these annetations. The Foraker Act also provided a government for the island (see Porro Rico). In Cuba the United States remained in authority until the 20th of May 1902, and details of the work of the government there, and the subsequent arrangernents whereby the United States secured the substantial advantages of a protectorate without dastroying the independence of Cuba, will be found in the article on Cuma.
388. Meantime, in the election of 1900 , the Democrats renominated Bryan on a platiform which opposed the Republican administration's acts in relation to the newly acquired territory and declared that "imperialism" "hepeotor was the paramount issuc. The platiorm reaffirmed
its silver doctrine of the previous campaign and denounced the tariff as a breeder of trusts. The Republicans renominated McKinley and endorsed his administration. While the Democrats declared for publicity in the affairs of interstate corporations and favoured enlargement of the interstate commerce law to prevent discriminations in railway rates, the Republicans were less hostile in their attitude toward the combinations, admitting the necessity of honest co-operation of capital to meet new business conditions. The Populists divided, the " anti-fusionists" supporting a separate lichet, with free silver, government ownership of railways, and anti-imperialism prominent in their demands; the other wing supported Bryan. Marcus A. Hanna, the Republican campaign ponotectoon manager, who was increasingly influential with the and Aaset: great business intercsts of the country, appealed to miartion of labour to support the administration and thereby Moklaky. retain " a full dinner pail." MfcKinley received an electoral majority of 137 and a popular plurality of 849,790 . Before his second term was fairly begun he wias shot by an anarchist while attending the Pan-American Exposition at Buffalo, and died on the 14ih of September 1001 . His wisdom in choosing able cabinet officers, his sympathetic tact in dealing with men and with sections, as well as the victories of the SpanishAmerican War, had brought him popularity even among his political opponents. But McKinley, like Cleveland, lacked the imagination to perceive and the desire to voice the aspirations and demands that had been gathering force for many years for legislation and exccutive action that should dcal with the problem of effective regulation of the economic forces that were transforming American society. This gave his opportunity to Theodore Roosevelt (q.v.), who as vice-president now succeeded to office.
It was in foreign relations, which Secretary Hay continued to conduct, that continuity with McKinley's administration was most evident. But even here a bolder spirit, a readiness to break new paths and to take short acoavonk cuts was shown by the new president. Venezuela had long delayed the payment of claims of citizens of various nations. In 1001, the president, having been informed by Germany of its iniention to collect the claims of its citizens by force, but without acquisition of territory, announced that the United States would not guarantee any state against punishment if it misconducted itself, provided that the punishment did not take the form of acquisition of territory. As a result, a blockade of Venezuela was undertaken hy the joint action of Germany, England and Italy at the close of 1902 . The diplomatic intervention of the United States early the next year resulted in Venezuela's agreement to pay the claims in part and to set aside a portion of her customs receipts to this end. But since the blocksding powers demanded preferential treatment, the United States secured a reference of the question to the Hague court, which derided that this demand was justified. San

Domingo offered a similar problem, having a debt incurred by revolutionary governments, beyond its power to pay, and

Sur being threatened with forcible intervention by
Domblaga. European states. President Roosevelt, in 1904, declared that in case of wrongdoing or impotency requiring intervention in the western hemisphere the United States might be forced "to the exercise of en international police power." In 1905 San Domingo and the United States signed a protocol under which the latter was empowered to take possession of the custom-house, conduct the finances and settle the domestic and foreign debts of San Domingo. In spite of the refusal of the Senate to assent to this protocol, President Roosevelt put the arrangement unofficially into effect, until, in 1907, the Senate consented to a treaty authorizing it with some modifications.
389. In the Far East the Boxer insurrection in China had been followed by the combined military expedition of the powers to the relief of Peking (in which the United States Fartyontion shared), and the exaction of a huge indemnity, of the Ports- which the United States relinquished nearly half of Tremety. Its share, as in excess of the act ual losses. The Treaty. -United States protested against Russian demands upon China, and actively participated in the negotiations which resulted in Russia's agreement to evacuate Manchuria. The delays of that power and her policy toward China having led Japan to declare war, Secretary llay's diplomary was influential in limiting the zone of hostilities; and the good offices of President Roosevelt brought about the conference between the two powers at Portsmouth, New llampshire, which terminated hostilitics in rgos. In this, and in his efforts to promote peace by extending the power of the various international peace congresses and by making the Hague tritunal an effective instrument for settling disputes, Rooscvelt won the approval of Europe as well as of America. The dispute over the boundary between Alaska and Canada was narrowed by diplomatic discussion, and the remaining questions, involving the control of important ports at the head of the great inlets which ofiered aceess to the goldficlds, ware seltled by arbitration in \(1 g 03\) favourably to the American contentions.
390. The Isthmian Canal also reccived a setulement in this administration by a process which was thoroughly characteristic of the resolution of President Roosevelt. The ClaytonBulwer treaty was superseded by the llay-Pauncefote trealy of 1901 , by which Great Britain withdrew her objertions 10 a canal constructed by the l'nited States, and under the sole guarantee of neutralization by the latter power. The treaty also omitted a clause previously insisted on. lorbidding the fortification of the canal. Having thus cleared the way, the United States next debated the advantages of the Nicaragua and the Panama routes. Influenced by the cost of aequiring the rights and property of the French company, an American commission reported in \(1 g o 1\) in favour of the Nicara-

\section*{Tho Paspation} Ceall guan route; but upon receiving information that a smaller sum would be accepted, the Spooner Law was enacted (June 28, 1902) authorising the president 10 purchase the rights and property of the Panama Company for \(\$ 40,000,000\), 10 acquire upon reasonable terms the title and jurisdicion to a canal strip at least 6 m . wide from Colombia, and through the Isthmian Canal Commission to construct the canal. But if the president was unable to secure a valid title from the French company and the control from Columbia within "a reasunatie time and upon peasonable terms" the Nicaraguan route was to be made the line of the canal. With this means of pressure the president acquired the Fernch righis: but Colombia der linerl to ratify the reaty the United States the In this cmergeney an srd of November 31003. ing under the theory
acruss the isthmus d forces from the d forces from the
having derlared its
independence of Colombia, was promptly recognized on the 6th of November. Twelve days later a treaty was negotiated with this republic, by which the United States paid Panama \(\$ 10,000,000\), together with an annuity of \(\$ 250,000\) to begin ten years later, and guaranteed the independence of the republic, receiving in exchange the substantial sovereignty and ownership of a ten-mile strip for the canal. . This trealy was ratifed by the Senate on the 23rd of February 1904, and excavation was begun in 1907. (See Panama Canal.)
391. In the Philippines early in 1901 municipal and provincial governments were provided for, and the president had been for a brief time granted full power to govern the archipelago. He appointed Judge Taft civil pher governor, and limited the power of the military governor to regions where insurrection continued. On the ist of July 190, Cungressional authority was substituted for that of the president, but Taft remained governor. The provisions of the Constitution guaranteeing lifc, liberty and property were in general extended specifically to the dependency, and a legislative assemlly was promised, the lower house clective, and the upper house to consist of the Philippine Commission. By negotiations with Rome Governor Taft secured for the Philippines the "Iriars' lands" which had been a source of friction. On the 16 th of October 1907 the first Philippine assembly was convened in the presence of Taft, then secretary of war.
392. The tariff question complicated American relations with both the Philippines and Cuba. Beet sugar and tobacco interests feared the competition of these products, and opposed freedom of trade between the United States and the new territorics. The Philippine tariff of 1902 made a reduction of only \(25 \%\) from the Dingley tariff in the case of the products of those islands, instcad of the \(75 \%\) urged by Taft; but the duties were to go to the Philippines. In the case of Cuba a more heated controversy arose over the tarifi-Roosevell strongly urged a substantial reduction in justice to Cuba at scveral regular and special sessions of Congress; but not untit the close of 1903 was a trealy in operation which. under the principle of reciprocity, admitted some products of the United States to Cuba at reduced ratcs, and allowed Cuban products a reduction of \(20 \%\) from the Dingley tariff, stipulating at the same time that so long as this arrangement continued no sugar should be admitted at reduced rates from any other country. This sacrifice of the means of reciprocity with sugar countries tor the advantage of the beet sugar raisers of the Wiest was quirkly followed by the acquisition of preponderant interest in the beet sugar refineries by the Sugar Trust, which was thus able to control the donestic market; but for the time being it was evident that the forces Iriendly to the protective tariff had increased their following in important agricultural regions.
303. The dominant historical tendencies of the beginning of the 2oth century in the United States, however, were characterized by huge combinations of capital and labour, the rapid passing of natural resources into private possession, and the expluitation of these resources on the principle of individualism by aggregations of capital which prevented effective competition by ordinary individuals. Pionetr conceptions of individual industrial achievement free from governmental restraint were adopted by huge monopolies, and the result was a demand for social control of these dangerous forces.
304. After the Sherman Anti-Trust Act of 1800 the combinaions found in the favourable laws of states like New Jerser upportunity to incorporate under the device of the "holding "ompany," which was supposed to be within the law. A "promotion mania" sel in in 1901 . The stel Industry, after a hreatened war between the Standard Oil and Carnegie groups, was united by litrpont Morgan into the United Stases Steel Curporation with storks and lunds aggregating \(\$ 1.400,000,000\). This was ouly one of the many combinations embracng pullic unhturs of all kinds. Where open consolidathon was not eflerbed. sextet agretments, as in the case come of of the meat packers, cilectively regulated the market ield of packers, vilecilively regulated the markel In ihe ield of raidway transportation, Hartiman used the bonds of the

Union Pacific to acquire the Southern Pacife with the Central Pacific, and by 1906 he was dictator of one-third of the total mileage of the United States. Meanwhile the Great Northern and the Northern Pacific had been brought into friendly working arrangements under James J. Hill, and tried to secure the Burlington railway. A Gerce contest followed between the Hill, Morgan and Harriman forces, resulting in a compromise by which the Northern Securities Company, a holding company for the joint interests of the contestants, was created. It was admitted by the counsel for this company that the machinery provided yo Northere secintions Compear.
in this organization would permit the consolidation of all the railways of the country in the hands of three or four individuals. By using notes of one railway company, based on its treasury securities,
it was possible to acquire a controlling interest in others; and by watering the capital stock to recover the cost of the undertaking, while the public paid the added rates to supply dividends on the watered stock.
395. Following a similar tendency the great Wall Street banking bouses were dominated by the large financial groups in the interest of speculative undertakings, the directors of banks loaning to themselves, as directors of industrial combinations, the funds which flowed into New York from all the banks of tbe interior. By a similar process the great insurance and trust companies of New York became feeders to the same operations. Thus a community of contral over the fundamental economic interests of the nation was lodged in a few hands. Rebates and discriminations by tbe railways gave advantage to the powerful shippers, and worked in the same direction.
396. Such was the situation in domestic aflains which confronted Roosevelt when be became president. In his first message he foreshadowed his determination to grapple with these problems. In 1903 he instructed the attorneygeneral to bring suit to discolve the Northern Securities Company as a combination in restraint of trade, and in 1904 the Supreme Court held the merger illegal. But the effect was to Increase the tendency to change from incomplete combination of financial interests to consolidated corporations owning the property, and to lead the government, on the other hand, to

Treaplies Lawt ito Amore Cerpere: tras seek to regulate these vast business interests by legislation. The Elkins Law, passed in igo3, increased the power of the interstate commerce commission to prosecute offenders, especially those who violated the anti-rehating clauses. In the same year the creation of the Federal Bureau of Corporations provided for increased publicity in the affairs of these organizations.
397. Labour was combining in its turn. Not only did local unions in most of the trades increase in number and power, but comase- workers in separate industries over large areas were stonas combined for collective bargaining and the national Lenan organization, the American Federation of Labor, had a membership by 1905 of approximately \(2,000,000\). Labour legislation by the states increased under these influences, and political leaders became increasingly aware of the power of the lahour vote, while employers began to form counter organizations to check the growth of the movement. . In 1902 Pennsylvania members of the United Mine Workers of America, led hy John Mitchell, struck. Inasmuch as their employers were the owners of the anthracite coal monopoly under the control of an allied group of coal-carrying railways, the contest was one of far-reaching importance, and soon brought about a coal famine felt throughout the nation. So threatening was the situation that President Roosevelt called a conference of the contestants, and succeeded in inducing them to submit their difficulties to an arbitration commission which, by its report, in the spring of 1903 , awarded to the miners shorter bours and an increase of wages.
398. Steadily the United States enlarged Its economic functions. In 1003 Congress created a Department of Commerce and Labor and made the secretary a member of the cabinet. The reports of this department gave publicity to investigations of the perplering industrial conditions. The Depertment of Agriculture
enlarged its staff and its activity, investigating diseases of planta and animals, ascertaining means of checking insect pests, advising upon the suitability of soils to crops, seeking new arocombs and better seeds, and circulating general information. Mcesurve of The contemporaneous development of agricultural the Federal education in the various Western and Southern ststes Oovernamat whose agricultural colleges had been subsidized by land grante and appropriations by the Federal government, and the experimental farms conducted by railways, all worked to the same end. Congress passed acts to limit the substitution of oleomargarine for butter (1902) and provided for the limitation of the spread of live-stock diseases (1903). The nation began also to awake to the need of protecting its remaining lorests, which were rapidly falling into the bands of corporations by perversion of homestead and other land laws. President Cleveland had withdrawn large forest tracti, and in 1898 Cifford Pinchot was made head of a division of forestry in the Department of Agriculture. In 1901 the work was organized under a separate bureau, and four years later the National Forests were placed under his management.
399. The increasing demand for lands for agriculture led also, under Roosevelt, to the real bexinning of national irrigation actively in the vast arid area of the Far West. 7no
The Reclamation Service was created by the act Roctomation of the 17tb of June 1902, which set aside the pro- Sarrke, ceeds of the sale of public lands in thirteen states and three Territories as a fund for irrigation works. The government itself reserved timber and coal tracts, water powers and other requisites for construction, and sold the irrigated lands to actual settlers in small farms, while retalning title to the reservoirs and the works. The income from the reciamation fund between igoi and 1910 agsregated over \(\$ 60,000,000\). By the use of suitable crops and dry farming agricultural occupation was extended into formerly desert lands.

When corruption was discovered in the Land Office and Post Office, Roosevelt, instead of yiclding to the effort to conceal the scandal, compelled effective investigation. Two United States senators were convicted of land frauds. The application to all kinds of lands, whether coal lands, timber tracts, water rights or other natural resources, of the general principle of homesteads governing the acquisition of agricultural lands, had invited fraudulent entries. The Homestead Act of 1862, the Timber Culture Act of 1873, the Desert Land Act of 1871, the Stone and Timber Act of 1878 had all been used by corporations to secure great tracts of valuable land through employing men to homestead them, and the laws themselves were loosely enforced. In successive measages, and by reports of public land commissions, the administration urged the importance of readjusting the land laws for the protection of the public.
400. In the election of 1904 the popularity of President Roosevelt, after his strenuous activity in challenging some of the strongest tendencies in American life, was put to the test. His political management exhibited the fact that he was trained in the school of the New York politician as well as in the reformer's camp, and be was easily nominated by the Republicans on a platiorm which endorsed his administration, and made no promise of tariff changes. The Democrats turned to the conservative wing, omitted any reference to silver or the income tax, and nominated Judge Alton B. Parker, of New York. The radicals, who favoured William R. Hearst, the well-known newspaper proprietor, Who was influential with the masses of large cities, were largely represented in the convention, but unable to poll a third of its vote. Parker accepted the nomination after telegraphing that he regarded the gold standard as irrevocably established. The issue of imperialism had been largely eliminated by the current of events and the anti-trust issue was professed by both partics. In the outcome Roosevelt won hy the unprecedented popular plurality of over \(2,500,000\), and an electoral majority of 196.
401. The state elections of the same period showed that a

Wave of reform and of revolt against former political lorces was rising. In five states which Roosevelt carried by his popularity the machine Republican candidates for governor were defeated by reforming Democratic candidates, and in cities like Chicago and Philadelphia the issues of reform and radicalism won unexpected though temporary success. Roosevelt had "stolen the thunder" of the parties of social unrest, inciuding tbe old populistic areas of the Middle West and the labour element of the cities at the same time that he retained control of the Republican party machinery.
402. In his second administration President Roosevelt pressed his policies so hard and with sucb increasing radicalism The that he lost control of the regular organization proshentrs in Congress before the end of his term. In the Reakellem. House Speaker Joscpb G. Cannon, of Illinois, exhibited the full power of his office in concentrating party policies in the hands of the few regular leaders, while in the Senate a directing group of New England men who had served for a long time, chiefly senators Nelson W. Aldrich and Eugene Hale, sbowed a similar mastery. Against this control a significant revolt, illustrative of revived discontent in the Middle West, was made by the Republican senator Robert M. La Follette, of Wisconsin, who had won his fight in that state against tbe faction friendly to the railways, and had secured primary clections, railway rate regulation on the basis of expert valuation of the physical property of the railways, and a system of taxation which rested more beavily upon public utilities. In pressing similar policies upon Congress he became isolated from the party leaders, hut forced thern to go on record by roll calls.
403. In New York a legislative investigation of the insurance companies disclosed such connexions witb the high New Yort financiering of Wall Street as to create widespread maneme distrust and to lead to reform legislation. The Iaventere attorney who conducted the investigation, Charles chas. Evans Hughes (b. 1862), had shown such ability that he was chosen governor of New York in \(1906 .^{2}\) His administration was marked by independence of the party machine and a progressive policy. Foreign relations were conducted during the second adminlstration of Roosevelt by Secretary Elihu Root from 1905. He fostered friendly relations with the other American nations, allaying their concern lest ambitious designs of their larger neighbour might endanger their independence. In Cuba a signal illustration of the good faith of the United States was exhibited when an insurrection in tbe summer of 1906 left the republic substantially witbout a government.

\section*{Cuba.}

Mr Taft, then secretary of war, was sent. under
the treaty provisions for intervention, to organize a provisional government. During bis few days' service as governor-general he set in motion the machinery for restoring order. But President Roosevelt had plainly stated that if the insurrectionary habit became confirmed in Cuba she could not expect to retain continued independence.
404. Attention was agrin fixed upon the Pacific coast, not only by the earthquake and conflagration which in 1906 Japances destroyed the husiness parts and much of the resi-tonomere- dence section of San Francisco, but also by municipal U10a. regulations tbere against the presence of Japanese in the public schools. The incident seemed to tbreaten grave consequences, which were averted by the popularity of Roosevelt hoth in California and in Japan. In the Immigration Act of the 20tb of February 1907 the problem of exciusion of Japanese labour, which underlay the difficulty, was partly solved hy preventing the entrance to the continental United States by way of neighbouring countries of persons bolding passports issued by a foreign government for going to otber countries or dependencies of the United States. Since Japan discouraged its citizens from migrating directly to the United States thls satisficd California.
405. As a demonstration of the naval power of the United States in Pecific waters, the President sent the American feet on
- In 1910 Hughes was appointed a justice of the United States Supreme Court.
a cruise around the world, in the course of which they were received in a friendly spirit hy Japan. The navy was increased to keep pace with the growth of that of other nations, both in numbers and size of vessels, in this period, but not to the extent demanded by the administration. Already a more efficient organization of both army and navy had been effected. While the nation prepared for war, it also engaged prominently in the successive international peace congresses between 1809 and 1907 , aiming consistently to increase the use of arbitration.
406. The tendencies of the government to deal with social improvement were exemplified by the laws of 1906 providing for pure food and meat inspection. The Railway Ralway Rate Regulation Act of 1906 strengthened previous Reto Regro inter-state acts by including pipe lines (except theton Ach for gas and water) under the jurisdiction of the Interstate Commerce Commission, and extending the meaning of "common carrier" to include express and sleeping-car companies. Published rate schedules were required, not to be changed without thirty days' notice, and more stringent provisions were made to prevent rebating. The act provided for review hy the Federal courts, and did not permit the commission to investigate an increase of rates until the rates went into operation, nor did it provide for a valuation of the railways as a basiz of rate-making which the commisaion had desired. Later acts partly met the demands of railway employes by increasing the liability of common carriers and by providing for shotter hours.
407. Although Roosevelt had made concessions to the railways in the formation of the act of 1906 , his utterances showed a tendency alarming to the large business interests and the holders of corporation securities generally. The uasettled business conditions were reflected in the stock market, and began to produce a reaction against the activity of government in this direction. Tbe panic of 1907 started with the downfall of an attempted combination of a chain of banks, copper interests and other enterprises of F. Augustus Heinze and Charles W. Morse, two daring operators in Wall Street, and was followed by the collapse of the Knickerbocker Trust Company (October 21, 1907). Already, in 1903, liquidation had begun in some of the stocks so actively issued in the preceding years. The leading New York banks failed to check speculation, however, and were even contributors to the movement up to the time of the panic. The country was generally prosperous, though much of the hanking funds was tied up in New York City at this juncture. Clearing-house certificates were resorted to; by the ist of November partial suspension was general throughout the nation; and banking facilities were more completely interrupted than at any time since the Civil War. The government greatly increased its deposits, and offered Panama \(2 \%\) bonds to the amount of pankeof \(\$ 50,000,000\), and \(3 \%\) certificates for \(\$ 100,000,000\), \(190 r\). witb the object of providing the national banks a besis for additional note issues. But these were taken only to a small amount, as they proved useful for their moral effect chiefly. An enormous addition to the money supply was made in the course of the panic, both by governmental activity, gold imports and national bank-notes. The crisis was brought to a close before the end of 1907 by the vigour of the government and the activity of the large financial interests under the lead of J. P. Morgan, who finally entered the field to stop the decline, at the same time that his associates in the Steel Trust acquired possession of their last remaining rival of importance, the Tennessec Coal \& Iron Company.
408. The reaction after the panic, and the loss of influence resulting from his announcement that he would not permit his renomination for the campaign of 1908 , left Roosevelt unable to exercise the compelling power which he had displayed in previous years. Congress under the control of the conservatives refused him legislation wbicb he asked, Coagmere but before he left the presidency be raised a the. new issue to national importance in his calling of a congress of state governors and experts to consider the sced
of the conservation of natural resources (see Iramanon: United States; and the article Roosevelt). This congress met in May 1908 and endorsed the proposal for vigorous attention by state and nation to the question.
409. In the campaign of 1908 he succeeded, againat the opposition of both the extreme conservative and the radical wings, in procuring the nomination of Secretary Talt by the Republicans on a platform endorsing the Roosevelt policies, promising a revision of the tariff at a special session, on the basis of such protection as would equal the difference between the cost of production at home and abroad, together with a reasomable profit to American industries, and providing for maximum and minimum rates to be nsed in furthering American commerce and preventing discriminations hy other nations. A postal bank was promised, a more effective regulation of the railways, and a modification of the Sherman Anti-Trust Act. Labour failed to secure a thoroughgoing pledge to prevent the use of the writ of injunction in labour disputes, but the convention promised legislation to limit its use. The Democrats again selected William J. Bryan as their candidate; demanded the enforcement of criminal law against " trost magnates" and such additional legislation as would prevent private monopoly; opposed the use of injunctions in cases where they would issue if no industrial dispute was involved; impugned the Republicans' good faith in tariff revision, promising for themselves a substantial reduction of duties; favoured an income tax and a guarantee fund by national banks to pay depositors of insolvent banks, or a postal savings bank, if the guaranteed bank could not be secured; demanded clection of United States senators by direct vote of the people, legislation to prevent contributions by corporations to campaign funds, and a more efficient regulation of railways. The party also declared against centralization, favouring the use of both Federal and state control of interstate commerce and private monopoly.
410. The Republicans won a sweeping victory, Taft's popular plurality reaching about \(1,270,000\) and his electoral wham majority 159 . But it had been won by some m. Tah. ambiguity of utterance with respect to tariff Preationd and railway regulation. The result was made manifest early in the new administration, when party contentions over the direction of revision of the Lariff, the thoroughness of the regulation of railways and corporations, and the question of where the postal bank fund should be placed, resulted in a movement of "insurgency" among the Republicans of the Middle Weat. The insurgents termed themselves "Progressive Republicans," and did not besitate to join forces with the Democrats in order to shape legislation to their wishes. Progressives and Democrats united in overturning the control of Speaker J. G. Cannon in the House of Representatives by modilying the rules, and a group of senators, chiefly from the Middle Western states, destroyed the control of the regular leaders in the Upper House. President Talt's influence over the revoiting wing was further weakened by the charges made against his secretary of the interior, Richard A. Eallinger, on behalf of Gifiord Pinchot, the chief forester, who accused the administration of obstructing Mr Rooseveli's " conservation" policy.
411. Mr Pinchot was indeed removed from office, but the "comservation" issue was raised to primary importance by the return of Mr Roosevelt from his African trip. anownars His influence was revealed even while he was Nentoctis Nember enjoying the hospitality of European countries on his return. Tbere was a widely extended desire to know his judgment of the administration's policy; but be maintained silence until the close of the summer of 1910, when in a series of public utterances in the West he ranged himself, on the wbole, with the progressive wing and announced a "new nationalism" which should enlarge the power of the Federal government and drive the "special interests" out of politics. The "insurgents" achieved remarkable victories in the Middle West, California, New Hampabire and New York in the fall conventions and primary
elections, retiring various leaders of the regutar wing of the Republicans. Senators Aldrich and Hale, former regular leaders in the Senate, had already announced their purpose to resign. President Taft's utterances indicated his intention to discontinue the use of patronage against the leaders of the progressive wing and to secure additional tariff revision by separate schedules. The result of the autumn elections was a pronounced victory for the Democratic party.
412. At the close of the first decade of the 2oth century the United States was actively engaged in setuling its social economic questions, with a tendency toward radicalism in its dealings with the great industrial forces of the nation. The " sweat shops " and slums of the great cities were filled with new material for American society to assimilate. To the sisterhood of states had been added Ollahoma (1907), and in 1910 Congress empowered New Mexico and Arizona to form constitutions preparatory to statchood, thus extinguishing the last Territaries, except the insular dependencies and Alaska. Already the-food supply showed signs of not keeping pace with the growth of population, while the supply of gold flowed in with undiminished volume. High prices became a factor in the political situation. Between 1800 and 1900 , in the continental United States, farms were added in area equal to that of France and Italy combined. Even the addition of improved farm land in that decade surpassed the whole area of France or of the German Empire in Europe. But intensive cultivation and agricultural returns hardly kept pace with the growth in population or the ertension of farms.

Bibliographical Guides.-J. N. Lamed (ed.), The Literoture of American History (Boston, 2902), is useful so lar as it extends. The "Critical Essays on Authorities," in vols. xxi-xxvi. (1907) of the "American Nation Series " (New York, 1903-1907), edited by A. B. Hart. constitute the best bibliographical apparatus for the whole period. W. Wilson, History of the American People, vol. v., has helpful evaluated lists of authorities. The Cambridge Modern History, vol. vith has a uselul unannotated list. Periodical literature, important for this era, can be found through the successive volumes of the Indcx to Pcriodical Literature (New York, 1882 sqq.), edited by W. F. Poole and W. J. Flctcher. Public documents are listed in B. P. Poore, Descriptrie Catalogue of Government Publications of the United Stakes, 1775-i881 (Washington, 1885): J. G. Ames, Comprehensive Indax of Publieations of the United States Goternment, IS\$1-1803 (Washing(on, 1894); Catalogue of Public Documents of Congress and of an Dejartments of Gouernment of the United States, 1893-1890: Tobles nf and Annotaled Index to Congressionol Series of United Slatas Public Documents (Washingtan, 1902). For economic material see the bibliographies in D. R. Dewcy, Financial History of the United States (New York, 1902); E. L. Bogart, Exonomic History of the U'n ited States (ibid., 1907); F. A. Cleveland and F. W. Powell, Railroad Promotion and Capitalization in the United Stales (New York, 1909); and Miss A. R. Hasse's Index of Economic Material in the Documents of the United States (Washington, 1907 sqq.).

The Library of Congress publishes, under the editorship of A.P.C. Grifin. lists and references to books and articles on special subjects.
General Accounts.-Much the most satisfactory treatment is in the volumes of the "American Nation Series" mentioned above, auch as W. A. Dunning, Reconstruction. Political and Economic, 1865-1877: E. E. Sparks, National Davelopment, \(1877-1885\); D. R. Dewey. National Problems, 1885-1897: J. H. Latant, America as c World Power, and A. B. Hart, National Ideals Historically Traced. All these were published in 1907. The later volumes of I.F. Rhodes History of the United States since the Compromise of 1850 (7 vols.. New York, 1893-1904). cover the period from 1865 to \(18 ; 6\) with solid judgment and accuracy; Woodrow Wilson. History of the American Peoble, vol, v. (New York, 1902), gives an informing prexentation with a sympathetic treatment of Southern conditions Lee and Thorpe (editors), Hlistory of North America, vols. xvi.-xx.; H. W. Elson, History of the Unised States, vols, iv and v. (New York, 1905). and J. W. Garner and H. C. Lodge. History of the Unied Slates; vol. iv. (Philadel phia. 1906). deal with the period as part of a general history. E. B. Andrewis, The United Slates in our oum Time (New York, 1903). and H. T. Peck, Tueealy Years of the Republic, t8851005 (New York, 1906), are popular presentations.
Documentary Sources.-The Congressional documents and state public documents afford valuable material. The Congressional debates have become too bulky for the general reader. but in the president's messages, as collected in J. D. Richardson (ed.), Hessages and Papers of the Presidents (to 1899). the main questions are precented. and detailed information is in the reports of the beads of departments and bureans. W. MacDonald, Select Stasuks of United Slates, \(186 I-1308\) (New York. 1903), contains important laws, with brief hislorical inusuductions.
(F. J. T.)

UHITED STATES NAVAL ACADEATY, an institution for the education of officers of the United States Navy, at Annapolis, Maryland, occupying about 200 acres on the banks of the Severn. Its principal buildings are the marine engineering building, the academic building (containing the library); the chapel, the gymnasium, the physics and chemistry building, the auditorium, the armoury, the power-house, the administration building, Bancroft Hall (the midshipmen's quarters), officers' mess and club, and Sampson Row, Upshur Row and Rodgers Row, the officers' quarters. \({ }^{1}\) By an Act of Congress passed in 1903 two midshipmen (as the students have been called since 1902; "naval cádets" was the term formerly used) were allowed for each senator, representative, and delegate in Congress, two for the District of Columbia, and five each year at large; hut after 1913 only one midshipman is to be appointed for each senator, representative and delegate in Congress. Candidates are nominated by their senator, representative, or delegate in Congress, and those from the District of Columbia and those appointed at large are chosen by the President; but to be admitted they must be between sixteen and twenty years of age and must pass an entrance examination. Each midshipman is paid \(\$ 600\) a year, beginning with the date of his admission; and he must bind himself to serve in the United States Navy for eight years (including the years spent in the academy) unless he is discharged sooner. The course of instruction is for four years-" final graduation" comes only after six years, the additional years being spent at sea-and is in eleven departments: discipline, seamanship, ordnance and gunnery, navigation, marine engineering and naval construction, mathematics and mechanics, physics and chemistry, electrical engineering, English, modern languages, naval hygiene and physiology. Vessels for practice work of midshipmen in the first, second, and third year classes are attached to the academy during the academic year, and from early in June to September. of each year the midshipmen are engaged in practice cruises. The academy is governed by the Bureau of Navigation of the United States Navy Department, and is under the immediate supervision of a superintendent appointed by the secretary of the navy, with whom are associated the Commandant of Midshipmen, a disciplinary officer, and the Academic Board, which is composed of the superintendent and the head of each of the cleven departments. The institution was founded as the Naval School in 1845 by the secretary of the navy, George Bancroft, and was opened in October of that year. Originally a course of study for five years was prescribed, but only the first and last were spent at the school, the other three being passed at sea. The present name was adopted when the school was reorganized in 1850 , being placed under the supervision of the chief of the Bureau of Ordnance and Hydrography, and under the immediate charge of the superintendent, and the course of study was extended to seven years; the first two and the lart two to be spent at the school, the intervening three years to be passed at sea. The four years of study were made consecutive in \(\mathbf{1 8 5 1}\), and the practice cruises were substituted for the three consecutive years at seq. At the outbreak of the Civil War the three upper classes were detached and were ordered to sea, and the academy was removed to Fort Adams, Newport, Rhode Island (May 1861), but it was brought back to Annapolis in the summer of 1865 . The supervision of the academy was eransferred from the Bureau of Ordnance and Hydrography to the Bureau of Navigation when that bureau was established in 1862 ; and, although it was placed under the direct care of the Navy Department in 1867, it has been (except in 1869-1889) under the Bureau of Navigation for administrative routine and financial management. The Spanish-American War greatly emphasized its importance, and the academy was almost wholly rebuilt and much enlarged in 1809-1906.
\({ }^{1}\) The ofd quarters of the superintendent. a colonial house, once the official residence of the governors of Maryland, was destroyed In 1900 . In 1909 old Fort Severn. a small circular structure with thick walla, buil \({ }_{-\infty} 9\), was torn down.

See I. R. Soley, Historical Shetch of the Uwited Slales Namal Acalemy (Washington, 1876); Park Benjamin. The Umited States Nased Academy (New York, 1900): Randall Blackshaw, "The New Naval Academy," in the Century Magazine for October 1905.

UNITs, DIMBNSIONS OF. Measurable entities of difierent kinds cannot be compared directly. Each one must be specified in terms of a unit of its own kind; a single number attached to this unit forms its measure. Thus if the unit of length be taken to be \(L\) centimetres, a line whose length is \(l\) centimetres will be represented in relation to this unit by the number //L/ while if the unit is increased [L] times, that is, if a now unit is adopted equal to [L] times the former one, the numerical measure of each length must in consequence be divided by [L] Measurable entities are either fundamental or derived. For example, velocity is of the latter kind, being based upon a combination of the fundamental entities length and time; a velocity may be defined, in the usual form of language expressive of a limiting value, as the rate at which the distance from some related mark is changing per unit time. The element of leagth is thus involved directly, and the element of time inversely in the derived idea of velocity; the meaning of this statement being that when the unit of length is increased [L] times and the unit of time is increased [T] times, the numerical value of any given velocity, considered as specified in terms of the units of length and time, is diminished [Ll/[T] times. In other words, these changes in the units of lengib and time involve change in the unit of velocity determined by them, such that it is increased [V] times where \([\mathrm{V}]=[\mathrm{L}][\mathrm{T}]^{-1}\). This relation is conveniently expressed by the statement that velocity is of +1 dimension in length and of -1 dimension in cime. Again, acceleration of motion is defined as rate of increase of velocity per unit time; bence the change of the units of length and time will increase the corresponding or derived unit of accelerstion [V]/[T] times, that is \([\mathrm{L}][\mathrm{T}]^{-}\) times: this expression thus represents the dimensions (\(x\) in length and -2 in time) of the derived entity acceleration in terms of its fundamental elements length and time. In the science of dynamics all entities are derived from the three fundamental ones, length, time and mass; for example, the dimensions of force (\(P\)) are those of mass and acceleration jointly, so that in algebraic form \((P)=[M][L][T]^{-2}\). This restriction of the fundamental units to three must therefore be applicable to all departments of physical science that are reducible to pure dynamics.
The mode of transformation of a derived entity, as regards its numerical value, from one set of fundamental units of reference to another set, is exhibited in the simple illustrations above given. The procedure is as follows. When the numerical values of the new units, expressed in terms of the former ones, are substituted for the symbols, in the expression for the dimensions of the entity under consideration, the number which results is the numerical value of the new unit of that entity in terms of the former unit: thus all numerical values of entities of this kind must be divided by this number. in order to transfer them from the former to the latter system of fundamental units.

As above stated, physical science aims at reducing the phenomena of which it treats to the common denomination of the positions and movements of masses. Before the time of Gauss it was customary to use a statical measure of force, alongside the kinetic measure depending on the acceleration of motion that the force can produce in a given mass. Such a statical measure could be conveniently applied by the extension of a spring, which, however, has to be corrected for temperature, or by weighing against standard weights, which has to be corrected for locality. On the other hand, the kinetic measure is independent of local conditions, if only we have absolate scales of length and time at our disposal. It has been found to be indispensable, for simplicity and precision in physical science, to express the measure of force in only one way; and statical forces are therefore now generally refersed in thecoretical discussions to the kinetic unit of measurement. In mechepiond
engineering the static unit has largely survived; but the increasing importance of electrical applications is introducing uniformity there aiso. In the science of electricity two different systems of units, the electrostatic and the electrodynamic, still to a large extent persist. The elertrostatic system arose because in the development of the subject statics caroe before kinetics; but in the complete synthesis it is usually found convenient to express the various quantities in terms of the electrokinctic system alone.

The system of measurement now adopted as fundamental in physics lakes the centimetre as unit of length, the gramme as unit of mass, and the second as unit of time. The choice of these units was in the first inslance arbitrary and dictated by convenience; for some purposes subsidiary systems based on multiples of these units by certain powers of ten are found convenient. There are certain absolute entities in nature, zuch as the constant of gravitation, the velocity of light in free space, and the constants occurring in the expression giving the constitution of the radiation in an enclosure that corresponds to each temperature, which are the same for all kinds of matter; these might be utilized, if known with sufficient accuracy, to establish a system of units of an absolute or cosmical kind. The wave-length of a given spectral line might be utilized in the same manner, but that depends on recovering the kind of matter which produces the line.

In physical science the uniformities in the course of phenomena are elucidated by the discovery of permanent or intrinsic relations between the measurable properties of material systems. Each such relation is expressible as an equation connecting the numerical values of enities belonging to the system. Such an equation, representing as it does a relation between actual things, must remain true when the measurements are referred to a new set of fundamental units. Thus, for example, the kinematical equation \(i^{2}=n f^{\prime} l\), if \(n\) is purcly numerical, contradicts the necessary relations iovolved in the definitions of the entities velocity, acceleration, and length which occur in it. For on changing to 2 new set of units as above the equation should still hold; it, however, then becomes \(r^{2} /[\mathrm{V}]^{2}=n-f^{2} /[\mathrm{FP} \cdot l /[\mathrm{L}]\). Hence on division there remains a dimensional relation \([V]^{2}=\) [FY[L], which is in disagreement with the dimensions above determined of the derived units that are involved in it. The inference follows, either that an equation such as that from which we started is a formal impossibility, or else that the factor * which it contains is not a mere number, but represents * times the onit of some derived quantity which ought to be specified in order to render the equation a complete slatement of a physical relation. On the latter hypothesis the dimensions \([\mathrm{N}]\) of this quantity are determined by the dimensional equation \(\left[V^{3}=[N / F P] L D\right]\) where, in terms of the fundaraental units of length and time, \([V]=[L][T],[F]=[L][T]^{\top}\); whence by zubstitution it appears that \([\mathrm{N}]=[\mathrm{L}]^{-1}[\mathrm{~T}]^{3}\). Thus, instead of being merely numerical, m must represent in the above fornula the measure of some physical entity, which may be classified by the statement that it has the conjoint dimensions of time directly and of velocity inversely.
It often happens that a simple comparison of the dimensions of the quantities which determine a physical system will lead to important knowledge as to the necessary relations that subrist between them. Thus in the case of a simple pendulum the period of oscillation \(t\) can depend only on the angular amplitade a of the swing, the mass \(m\) of the bob considered as a point, and the length \(l\) of the suspending fibre considered as without mass, and on the value of \(g\) the acceleration due to gravity, which is the active force; that is, \(\tau=f(a, m, l, g)\). The dimensions must be the same on both sides of this formula, for, when they are expressed in terms of the three independent dynamical quantities mass, length, and time, there must be complete identity between its two sides. Now, the dimensions of \(g\) are [LYTT]; and when the unit of length is altered the numerical value of the period is unaltered, hence its expression must be restricted to the form \(f(a, m, 4 / \mathrm{s})\). Morcover, as the period does not depend on the unit of mass, the form is further
reduced to \(\mathrm{f}(\mathrm{a}, \mathrm{I} / \mathrm{s})\); and as it is of the dimensions +I in time, it must be a multiple of \((1 / g)\), and therefore of the form \(\phi(a) \sqrt{ }(1 / g)\). Thus the period of oscillation has been determined by these considerations except as regards the manner in which it depends on the amplitude \(a\) of the swing. When a process of this kind leads to a definite result, it will be one which makes the unknown quantity jointly proportional to various powers of the other quantities involved; it will therefore shorten the process if we assume such an expression for it in advance, and find whether it is possible to determine the exponents definitely and uniquely so as to obtain the correct dimensions. In the present example, assuming in this way the relation \(r=A \Omega^{r} m^{\circ} l^{\prime} g^{\circ}\), where \(A\) is a pure numeric, we are led to the dimensional equation \([\mathrm{T}]=[a]^{\rho}[\mathrm{M}] \cdot[\mathrm{L}]^{\prime}\left[\mathrm{LT} T^{-7}\right]^{*}\), showing that the law assumed would not persist when the fundamental units of length, mass, and time are altered, unless \(q=0, s=-\frac{1}{j}, f=\frac{1}{3}\); as an angle has no dimensions, being determined by its numerical ratio to the inoariable angle forming four right angles, \(p\) remains undetermined. This leads to the same result, \(T=\phi(a) r^{+1} g_{S}-1\), as beforc.
As illustrating the power and also the limitations of this method of dimensions, we may apply it (after Lord Rayleigh. Roy. Soc. Proc.. March 1900) to the laws of viscosity in gascs. The dimensions of viscosity (\(\mu\)) are (force/area) \(\div\) (velocity/length). giving [\(\mathrm{ML}^{-1} \mathrm{~T}^{-1}\)] in terms of the fundamental units. Now. on the dynamical theory of gases viscosity must be a function of the mass \(m\) of a molecule, the number \(n\) of molecules per unit volume, their velocity of mean square \({ }^{\circ}\), and their cffective radius \(a\); it can depend on nothing else. The equation of dimensions cannot supply more than three relations connecting these four possibilitics of variation, and 20 cannot here lead to a definite result without further knowledge of the physical circumstances. And we remark conversely, in passing, that wherever in a problem of physical dymamics. we know that the quantity sought can depend on only three other quantities whose dynamical dimensions are known, it must vary as a simple power of each. The additional knowledge required. in order to enable us to proceed in a case like the present, must be of the form of such an equation of simple variation. In the present case it is involved in the new fact that in an actual gas the mean free path is very great compared with the effective molecular radius. Oa this account the mean free pash is inversely as the number of molecules per unit volume; and therefore the coefficient of vis cosity, beink proportional to these two quantities jointly, is independent of either, so long as the other quantities defining the system remain unchanged. If the molecules are taken to be spheres which excrt mutual action only during collision, we therefore assume
\[
\mu \propto \pi \approx r a p
\]
which requires that the equation of dimensions
\[
\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]=[\mathrm{M})\left[\mathrm{LT} \mathrm{~T}^{-1}\right\}(\mathrm{L})^{-1}
\]
must be satisfied. This gives \(x=1, y=3, z=-2\). As the temperature is proportional to mari, it follows that the viscosity is proportional to the square root of the mass of the molecule and the square root of the absolute temperature, and inversely proportional to the square of the cffective molecular radius, being, as already seen, uninfuenced by change of density.

If the atoms are taken to be Bowcovichian points exerting mutual attractions, the effective diameter a is not definite; but we can still proceed in cases where the kaw of mutual attraction is expressed by a simple formula of variation-that is, provided it is of type Am². where \(r\) is the distance betwicen the two molecules. Then, noting that as this is a lorce, the dimensions of \(k\) must be \(\left(\mathrm{M}^{-1} \mathrm{~L}^{+1} \mathrm{~T}^{-2}\right]\), we can amame
provided \(\quad\left[\mathrm{ML}^{-T} \mathrm{~T}^{-1}\right]=[\mathrm{M}]\left[\mathrm{LT}-1 \mathrm{I}^{-1} \mathrm{M}^{n+1} \mathrm{~T}^{-1}\right]\), which demands and is satisfied by
\[
x-w=1, y+2 w=1, y+(x+1) w=-1,
\]
so that \(\quad w=-\frac{2}{s-1}, y=\frac{s+3}{s-1}, x=\frac{s-3}{s-1}\).
Thus, on this supposition,
where \(\theta\) represents absolute temperature. (See Diffuston.)
When the quantity wought depends on more than three othert, the method may often be equally useful. though it cannot give a complete result. Cf. Sir G. G. Stokes. Math. and Phys. Papers, v. (1881) p. 106, and Lord Rayleigh, Phil. Mag. (1905), (1) p. 494, for examples dealing with the deternination of viscosity from obeervations of the retarded swings of a vane, and with the formulation of the most general type of characteristic equation for gasea respertively. As another example we may consider what is involved in Bashforth's experimental conclusion that the air-resistances to atot of the same ahape are proportional to the squares of their
linear distensions. \(A\) priori, the resistance is a force which is determined by the density of the air \(\rho\), the linear dimensions of the shot, the viscosity of the air \(\mu\), the velocity of the shot \(p\), and the velocity of sound in air \(c\), there being no other physical quantity sensibly involved. Five elements are thus concerned, and we can combine them in two ways so as to obtain quantities of no dimensions; for example, we may choose pel/ \(\mu\) and \(v / c\). The resistance to the shot must therefore be of the form \(\mu^{2} \rho^{n} \sim \phi(\rho u / \mu)\)) (\(v / c\)), this form being of sufficient generality, as it involves an undetermined function for each element beyond three. On equating dimensions we find \(x=2, y=-1, z=0\). Now, Bashforth's result shows that \(\phi(x)=x^{2}\). Therefore the resistance is \(p v^{2 / f} f(v / c)\), and is thus to our degree of approximation independent of the viscosity. Moreover. we might have assumed this practical independence straight off, on known hydrodynamic grounds; and then the argument from dimensions could have predicted Bashforth's law, if the present application of the doctrine of dimensions to a case involving turhulent fluid motion not mathematically specifiable is valid. One of the important results drawn by Osborne Reynolds from his experiments on the regime of flow in pipes was a confirmation of its validity: we now see that the ballistic result furnishes another confirmation.
In electrical science two essentially distinct systems of measurement were arrived at according as the development began with the phenomena of electrostatics or those of electrokinetics. An electric charge appears as an entity having different dimensions in terms of the fundamental dynamical units in the two cases: the ratio of these dimensions proves to be the dimensions of a velocity. It was found, first by W. Weber, by measuring the same charge by its static and its kinetic effects, that the ratio of the two units is a velocity sensibly identical with the velocity of light, so far as regards experiments conducted in space devoid of dense matter. The emergence of a definite absolute velocity such as this, out of a comparison of two different ways of approaching the same quantity, entitles us to assert that the two ways can be consolidated into a single dynamical theory only by some development in which this velocity comes to play an actual part. Thus the hypothesis of the mere existence of some complete dynamical theory was enougb to show, in the stage which electrical science had reached under Gauss and Weber, that there is a definite physical velocity involved in and underlying electric phenomena, which it would have been hardly possible to imagine as other than a velocity of propagation of clectrical effects of some kind. The time was thus ripe for the reconstruction of electric theory by Faraday and Maxwell.
The power of the method of dimensions in thus revealing general relations has its source in the hypothesis that, however complicated in appearance, the phenomena are really restricted within the narrow range of dependence on the three fundamental entitics. The proposition is also therein involved, that if a changing physical system be compared with another system in which the scale is altered in different ratios as regards corresponding lengths, masses, and times, then if all quantities affecting the second system are altered from the corresponding quantities affecting the first in the ratios determined hy their physical dimensions, the stage of progress of the second system will always correspond to that of the first; under this form the application of the principle, to determine the correlations of the dynamics of similar systems, originated with Newton (Principia, lib. ii. prop. 32). For example, in comparing the behaviour of an animal with that of another animal of the same build but on a smaller scale, we may take the mass per unit volume and the muscular force per unit sectional area to be the same for both; thus [L], [M], . . . being now ratios of corresponding quantities, we have \(\left[\mathrm{ML}^{-2}\right]-1\) and \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]=1\), giving [L\(]=[\mathrm{T}]\); thus the larger animal effects movements of his limbs more slowly in simple proportion to his linear dimensions, while the velocity of movement is the same for both at corresponding stages.

But this is only on the hypothesis that the extraneous force of gravity does not inlervene, for that force does not vary in the same manner as the muscular forces. The result bas thus application only to a case like that of fishes in which gravity is equilibrated by the buoyancy of the water. The effect of the inertia of the water, considered as a perfect fluid, is 3 this comparison; but the forces arising
from viscosity do not correspond in the two systems, so that neit her system may be 80 small that viscosity is an important agent in its motion. The limbs of a land animal have mainly to support his weight, which varies as the cube of his linear dimensions, while the sectional areas of his muscles and bones vary only as the square thereof. Thus the diameters of his limbs should increase in a greater ratio than that of his bodytheoretically in the latter ratio raised to the power \(\frac{3}{3}\), if other things were the same. An application of this principle, which has become indispensable in modern naval architecture, permits the prediction of the behaviour of a large ship from that of a small-scale model The principle is also of very wide utility in unravelling the fundamental relatioas in definite physical problems of such complexity that complete treatment is beyond the present powers of mathematical analysis; it has been applied, for example, to the motions of systems involving viscous fluids, in elucidation of wind and waves, by Helmholtz (Akad. Berlin, 1873 and 1889), and in the electrodynamics of material atomic systems in motion by Lorentz and by Larmor.
As already stated, the essentials of the doctrine of dimensions in its most fundamental aspect, that relating to the comparison of the properties of correlated systems, originated with Newton. The explicit formulation of the idea of the dimensions, or the exponents of dimension, of physical quantities was first made ly Fourier, Theoric de la chalenr, 1822, ch. ii. nee. 9; the homogencity in dimensions of all the terms of an equation is insisted on by him, much as explained above; and the use of this principle as a test of accuracy and precision is illustrated.

UNITS, PHYSICAL. In order that our acquaintance with any part of nature may become exact we must have not merely a qualitative but a quantitative knowledge of facts. Hence the moment that any branch of science begins to develop to any extent, attempts are made to measure and evaluate the quantitics and effects found to exist. To do this we have to sclect for each measurable magnitude a writ or standard of reference (Latin, unifos, unity), by comparison with which amounts of other like quantities may be numerically defined. There is nothing to prevent us from selecting these fundamental quantities, in terms of which other like quantities are to be expressed, in a perfectly arbitrary and independent manner, and as a matter of fact this is what is generally done in the early stages of every science. We may, for instance, choose a certain length, a certain volume, a certain mass, a certain force or power as our units of length, volume, mass, force or power, which have no simple or direct relation to each other. Sinilarly we may select for more special measurements any arhitrary electric current, electromotive force, or resistance, and calf them our units. The progress of knowledge, however, is grcatly assisted if all the measurable quantities are brought into relation with each other by so selecting the units that they are related in the most simple manner, each to the other and toone common set of measurahle magnitudes called the fundomentol quanifics.

The progress of this co-ordination of units has been greatly aided hy the discovery that forms of physical energy can be converted into one another, and that the conversion is by definite rule and amount (see Ennecy). Thus the mechanical energy associated with moving masses can be converted into heat, bence heat can be measured in mechanical energy units. The amount of beat required to taise one gramme of water through \(1^{\circ} \mathrm{C}\). in the neighbourhood of \(10^{\circ} \mathrm{C}\). is equal to fortytwo million ergs, the erg being the kinetic energy or energy of motion associated with a mass of 2 grammes when moving uniformly, without rotation, with a velocity of 1 cm . per second. This number is commonly called the "mechanical equivalent of heat," but would be more exactly described as the "mechanical equivalent of the specific beat of water at \(10^{\circ} \mathrm{C}\)." Again, the fact that the maintenance of an electric current requires energy, and that when produced its energy can be wholly utilized in beating a mass of water, enahles us to make a similar statement about the energy required to maintain a current of one ampere through a resistance of one ohm for one second, and to define it by its equivalent in the energy of a moving mass Physical units have therefore been selected with the object of
establishing simple relations between each of them and the fundamental mechanical units. Measurements based on such relations are called absolule measurements. The science of dynamics, as far as that part of it is concerned which deals with the motion and energy of material substances, starts from certain primary definitions concerning the measurable quantities involved. In constructing a system of physical units, the first thing to consider is the manner in which we shall connect the various items. What, for instance, shall he the unit of force, and how shall it be determined by simple reference to the units of mass, length and time?

The modern absolute system of physical measurement is founded upon dynimical notions, and originated with C. F. Gauss. We are for the most part concerned in studying motions in mature; and even when we find bodies at rest in equilibrium it is because the causes of motion are halanced rather than absent. Moreover, the postulate which lies at the base of all present-day study of physics is that in the ultimate issue we must seek for a mechanical explanation of the facts of nature if we are to reach any explanation intelligible to the human mind. Accordingly the root of all science is the knowledge of the laws of motion, and the cnunciation of these laws by Newton laid the foundation of a more exact knowledge of nature than had been possible before. Our fundamental scientific notions are those of length, time, and mass. No metaphysical discussion has been able to resolve these ideas into anything simpler or to derive them from each other. Hence in selecting units for physical measurements we have first to choose units for the above three quantitics.

Fundamental Units.-Two systems of fundamental units are in common use: the British system, having the yard and pound as the standard units of length and mass, frequently termed the "foot-pound-second" (F.P.S.) system; and the "centimetre-gramme-second" system (C.G.S.), having the centimetre and gramme as standard units of length and mass, termed the "metric" system. The fundamental unit of time is the same in both systems, namely, the " mean solar second," 86,400 of which make 1 solar day (see TwE). Since these systems and the corresponding standards, together with their factors of conversion, are treated in detail in the articic Weights and Measures, we need only deal here with such units as receive special scientific use, i.e. other than in ordinary commercial practice. The choice of a unit in which to express any quantity is detcrmined by the magnitude and proportional error of the measurement. In astronomy, where immense distances have to be very frequently expressed, a common unit is the mean radius of the earth's orbit, the " astronomical unit " of length, i.e. \(92,900,000\) miles. But while this unit serves well for the region of our solar system, its use involves unwieldy numerical cocfficionts when stellar distances are to be expressed. Astronomers have thercfore adopled a unit of length termed the " light year," which is the distance traversed by light in a year; this unit is 63.000 limes the mean radius of the carth's orbit. The relative merits of these units as terms in which astronomical distances may be expressed is exhibited by the values of the distance of the star a Centauri from our earth. namely, \(25.000,000,000,000\) miles \(=275,000\) astronomical units \(=4.35\) light years.

As another example of a physical unit chosen as a matter of convenience, we may refer to the magnitudes of the wave-lengt hs of light. These quantities are extremely small, and admit of correct determination to about one part in ten-thousand, and range, in the visible spectrum, from about 6 to 4 ten-millionths of a metre. Since their values are determined to four significant gigures. it is desirable to choose a unit which represents the value as an integer number; the unit is therefore a ten-thousandmillionth of a metre, termed a "tenth metre," since it is \(10^{-10}\) metres. Sometimes the thousand-millionth of a metre, the "A micromillimetre." denoted by \(\mu \mu\), serves as a anit for wave lengths. Another relatively minute unit is the "micron," denoted by \(\mu\), and equal to one-millionth of a metre; it is especially used by becteriologisss.

Units in Mechavics.-The quantitits to be measured in mechanics (g.s.) are velocity and acceleration, dependent on the units of length and time only, momentum, force, energy or work and power, dependent on the three fundamental units. The unit of velocity in the British system is 1 foot, 1 yard, or 1 mile per second; or the time to which the distance is referred may be expressed in hours, days, \&ce., the choice depending upon the actual magnitude of the veiocity or on custom. Thus the muzzie velocity of a rifle or cannon shot is expressed in feet per second, whereas the speed of a train is usually expressed in miles per hour. Similarly, the unit on the metric system is a metre, of any decimal multiple thereof, per second, per hour, \&c. Since acceleration is the rate of increase of velocity per unit time, it is obvious that the unit of acceleration depends solely upon the units chosen to express unit velocity; thus if the unit of velocity be one foot per second, the unit of acceleration is one foot per second per second, if one metre per second the unit is one metre per second per second, and similarly for other units of velocity. Momentum is defined as the product of mass into velocity; unit momentum is therefore the momentum of unit mass into unit velocity; in the British system the unit of mass may be the pound, ton, \&c., and the unit of velocity any of those mentioned above; and in the metric system, the gramme, kilogramme, \&cc., may be the unit of mass, while the met re per second, or any other metric unit of velocity, is the remaining term of the product.

Force, being measured by the change of momentum in unit time, is expressed in terms of the same units in which unit momentum is defined. The common British unit is the "poundal،" the force which in one second retards or accelerates the velocity of a mass of one pound by one foot per second. The metric (and scientific) unit, named the "dyne," is derived from the centimetre, gramme, and second. The poundal and dyne are related as follows:-1 poundal \(=13,825.5\) dynes.

A common unit of force, especially among engineers, is the " weight of one pound," by which is meant the force equivatent to the gravitational attraction of the earth on a mass of one pound. This unit obviously depends on gravity; and since this varies with the latitude and height of the place of observation (sce Earth, Ficure or), the "force of one pound" of the engineer is not constant. Roughly, it equals 32.17 poundals or 980 dynes. The most frequent uses of this engineer's unit are to be found in the expressions for pressure, especially in the boilers and cylinders of steam engines, and In structures, such as bridges, foundations of buildings, \&c. The expression takea the form: pounds per square foot or inch, meaning a force equivalent to so many pounds' weight distributed over a square foot or inch, as the case may be. Orher units of pressure (and therefore special units of force) are the "at mosphere " (abhreviated "atmo"), the force exerted on unit area by the column of air vertically above it; the " millimetre or centimetre of mercury," the usual scientific units, the force exerted on unit area by a column of mercury one millimetre or centimetre high; and the "foot of water," the column being one foot of water. All these units admit of ready conversion:-1 atmo \(=960 \mathrm{~mm}\). mercury \(=32\) feet of water \(=1,013,600\) dynes.

Energy of work is measured by force acting over a distance. The scientific unit is the "erg," which is the energy expended when a force of one dyne acts over one centimetre. This unit is too small for measuring the quantity ol energy associated, for instance, with engines; for such purposes a unit ten-million timea as great, termed the " joule," is used. The British absolute unit is the "poundal-foot." As we noticed in the case of units of force, common-life experience has led to the introduction of units dependent on gravitation, and therefore not invariable: the common British practical unit of this class is the "lootpound "; in the metric system its congener is the "kilogramme metre."

Power is the rate at which force does work; it is therefore expressed by "units of energy per second." The metric unit in use is the "watt," being the rate equal to one joule pes second. Larger units in practical use are: "kilowalt." equal to 1000 watta; the corresponding energy unit baing the
kilowatt-second, and 3600 kilowatt-seconds or \(I\) kilowatt-hour called a "Board of Trade unit" or a "kelvin." This last is a unit of energy, not power. In British engineering practice the common unit of power is the "horse-power" (H), which equals 550 foot-pounds performed per second, or 33,000 foot-pounds per minute; its equivalent in the metric system is about 746 watts, the ratio varying, bowever, with gravity.

Uxits of Heat.-In studying the phenomena of heat, two measurable quantities immediately present themselves:(1) temperature or thermal potential, and (2) quantity of beat. Three arbitrary scales are in use for measuring temperature (see Thermometry), and each of these scales affords units suitable for the expression of temperature. On the Centigrade scale the unit, termed a "Centigrade degree," is one-hundredth of the interval between the temperature of water boiling under normal barometric pressure (760 mm . of mercury) and that of melting ice; the "Fahrenheit degree" is one-hundred-and-eightieth, and the "Réaumur degree" is one-eightieth of the same difference. In addition to these scales there is the "thermo-dynamic scale," which, being based on dynamical reasoning, admits of correlation with the fundamental units This subject is discussed in the articles Thermopynnacs and Thermometry.

Empirical units of " quantity of heat" readily suggest themselves as the amount of beat necessary to heat 2 unit mass of any substance through unit temperature. In the metric system the unit, termed a "calorie," is the quantity of heat required to raise a gramme of water through one degree Centigrade. This quantity, bowever, is not constant, since the specific heat of water varies with temperature (see Calozncistay). In defining the calorie, therefore, the particular temperatures must be specified; consequently there are several calories particularized by special designations:-(1) conventional or common grammecaloric, the beat required to mise I gramme of water between \(150^{\circ} \mathrm{C}\). and \(17^{\circ} \mathrm{C}\) through \(1^{\circ} \mathrm{C}\).; (2) " mean or average gramme caloric," one-hundreduh of the cotal beat required to raise the temperalure of 1 gramme of water from \(0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\).; (3) "zero gramme calorie," the heat required to raise 1 gramme of water from \(0^{\circ} \mathrm{C}\). to \(1^{\circ} \mathrm{C}\). These units are thus related:1 common calorie \(=1.987\) mean calorics \(=0-902\) zero calories. A unit in common use in thermo-chemistry is the mojor caloric. which refers to one kilogramme of water and \(x^{\circ} \mathrm{C}\). In the British system the common unit, termed tbe "British Thermal Unit " (B.Th.U.), is the amount of heat required to raise one pound of water through one degree Fahrenbeit.

A correlation of these units of quantity of heat with the fundamental units of mass, length and time altended the recognition of the fact that heat was a form of energy; and their quantitative relationships followed from the experimental determinations of the so-called "mechanical equivalent of heat," i.e. the amount of mechanical energy, expressed in ergs, joules, or foot-pounds, equivalent to a certain quantity of heat (cf. Calornietry). These results show that a gram-calorie is equivalent to about 4.2 joules, and a British thermal unit to 780 foot-pounds.

Electrical Unils.-The next most important units are the electrical units. We are principally concerned in electrical vort with three quantities called respectively, electric current, electromotive force, and resistance. These are related to one another by Ohm's law, which states that the electric current in a circuit is directly as the electromotive force and inversely as the resistance, when the current is unvarying and the temperature of tie circuit constant. Hence if choose units for two of these quantitics, the above law defins the unit for the third. Much discussion has taken place ever this question. The choice is decided by the mature of the quantities themselves. Since resistance is a permanent qual 1 y of a substance, it is possible to select a certain picce of wive or tube full of mercury, and dechare that its resistance shall be the unit of resistance, and if the substance is permanent we shall prosess an unaliershle ationdard or unit of resistance. For these reacoos the practical
unit of resistance, now called the intermational ohsm, has bees selected as one of the above three electrical units

It has now been decided that the second unit shall be the unit of electric current. As an electric gurrent is not a thing, bat a process, the unit current can only be reproduced mben desired. There are two available methods for crealing a standard or unit electric current. If an unvarying current is passed through a neutral solution of silver nitrate it decomposes or electrolyses it and deposits silver upon the negative pole or cathode of the clectrolytic cell. According to Farday's law and all subsequent experience, the same current deposits in the same time the same mass of silver. Hence we may define the unit current by the mass of silver it cas liberate per second. Again, an clectric current in one circuit exerts mechanical force upon a magnetic pole or a current in another circuit suitably placed, and we may measure the force and define by it 2 unit electric current. Both these methods have been used. Thirdly, the unit of electromotive force may be defined as equal to the difference of potential between the ends of the unit of resistance when the unit of current fews in it.
Apait, however, from the relation of these electrical umits to each other, it has been found to be of great importance to establish a simple relation between the latier and the absolate mechanical units. Thus an electric current which is passed through a conductor dissipates its energy as abcurtat beal, and bence creates a certain quantity of heat
 per unit of time. Having chosen our units of energy and related unit of quantity of beat, we must so choose the unit of current that when passed through the unit of resistance it shall dissipate I unit of energy in 1 unit of time.

A further consideration has weight in selecting the sire of the units, namely, that they must be of convenient magnitude for tbe ordinary measurements. The foupders of the modern system of practical electrical units were a committee appointed by the British Associalion in 3861, at the suggestion of Lord Kclvin, which made its
 first report in 1862 at Cambridge (see B. A. Report). The five subsequent reports containing the results of the committee's work, together with a large amount of most valuable matter on the subject of electric units, were collected in a volume edited by Prof. Fleeming Jenkin in 1873 , entitled Reperts of the Commiltee on Electrical Slandards. This committee has coptinued to sit and report annually to the British Association since that date. In their second report in 1863 (see B.A. Reparf, Newcastle-on-Tyne) the committee recommended the adoption of the absolute system of electric and magnetic units on the basis originally proposed by Gauss and Weber, mamody, that these units should be derived from the fundamental dynamical units, but assuming the units of length, mass and time to be the metre, gramme and second instead of the milimetre, miligramme and second as proposed hy Weber. Considerable differences of opinion existed as to the choice of the fundsmental units, but ultimately a suggestion of Lord Kelvin's was adopted to select tbe centimetre, gramme, and second, and to construct a system of electrical units (called the C.C.S. systeta) derived from the above fundamental units. On this system the unit of force is the dyme and the unit of work the erg. The dyne is the uniform force which when acting on a mass of 1 gramroe for 1 second gives it a velocity of 1 ceatimetre per second. The erg is che wort done by 1 dyne when acting through 2 distance of 1 centimetre in its own direction. The electric and magnetic units were then derived, as previoushy suggested by lieber, in the following manner: If we consider tro very small spheres placed with centres 1 centimetre apart in air and charged mith equal quantities of electricity, then if the force between these bodics is 1 dyne cach sphere is said to be charged with i unit of electric quantity on the electrostatic system. Again. if we consider two isolated magretic poies of equal strength and consider them placed 1 centime:re apert in air, then if the force between them is 1 dyone these poles are said to have a strength of i unit on the electromagnetic system. Unfortunately the committee did not tate iato
scoount the fact that in the first case the force between the electric charges depende upon and varies inversely as the dielectric constant of the medium in which the experiment is made, and in the second case it depends upon the magnetic permeability of the medium in which the magnetic poles exist. To put it in otber words, they assume that the delectric constant of the circumambient medium was unity in the first case, and that the permeability was also unity in the second casc.

The result of this choice was that two systems of measurement were created, one depending upon the unit of electric quantity so chosen, called the dectrostatac system, and the other depending upon the unit magnetic pole defined as above, called the dectromagnetic system of C.G.S. units. Moreover, it wres found that in veither of these systems were the units of very convenient magnitude. Hence, finally, the committee adopted a third system of units called the practical system, in which convenient lecimal multiples or fractions of the electromagnetic units were selected and named for use. This system, moreover, is not ooly consistent with itsell, but may be considered to be derived from a system of dynamical units in which the unit of length is the earth quadrant or 10 million metres, the unit of mans is \(10^{-4}\) of a gramme and the unit of time is 1 second. The tinits on this system have received names derived from those of eminent discoverers. Moreover, there is a certain relation between the size of the units for the same quantity on the electrostatic (E.S.) system and that on the electromagnetic (E.M.) system, which depends upon the velocity of light in the medium in which the measurements are supposed to be made. Thus on the E.S. system the unit of electric quantity is a point charge which at a distance of 1 cm . acts on another equal charge with a force of 1 dyne. The E.S. unit of electric current is a current such that i E.S. unit of quantity fows per second across each section of the circuit. On the E.M. system we start with the definition that the unit magnetic pole is one which acts on another equal pole at a distance of 1 cm . with a force of I dyne. The unit of current on the E.M. system is a current such that if flowing in circular circuit of 1 cm . radius each unit of leogth of it will act on a unit magnetic pole at the centre with a force of 1 dyne. This E.M. unit of current is much larger than the E.S. unit defined as above. It is 9 times greater, where \(:=3 \times 10^{\circ}\) is the velocity of light in air expressed in cms . per second. The reason for this can only be understood by considering the dimensions of the quantities with which we are coscerned. If L, M, T denote length, mass, lime, and we adopt certain sized units of each, then we may measure any derived quantity, such as velocity, acceleration, or force in terms of the derived dynamical units as already explained. Suppose, however, we alter the size of our selected units of L, M or T, we have to consider how this alters the corresponding units of velocity, acceleration, force, \&c. To do this we have to consider their dimensions. If the unit of velocity is the unit of length passed over per unit of time, then it is obvious that it varies directly as the unit of length, and inversely as the unit of timc. Hence we may say that the dimensions of velocity are L/T or LTT; similarly the dimensions of acceleration are L/T or LT , and the dimensions of a force are MLT?
For a fuller explanation see above (Units, Dinenstons or), or Evereat's Illuskations of the C.G.S. System of Units.

Accordingly on the electrostatic system the unit of electric quantity is such that \(f=q / / \mathbf{K}^{n}\), where \(q\) is the quantity of the two equal charges, \(d\) their distance. \(f\) the mechanical enewo two equal charges, \(d\) their distance. f the mechanical
force or stress between them, and K the dielectric
constant of the dielectric in which they are imtaction
 mersed. Hence since \(f\) is of the dimensions MLT \({ }^{3}, q^{4}\) must be of the dimensions of KMLT? , and \(q\) of the dimencions MiLTTK!. The dimensions of \(K\), the dielectric constant, are unknown. Hence, in accordance with the suggestion of Sir A. Rucker (Pkil. Mag., February 1889), we must treat it as a fundamental quantity. The dimensions of an electric current on the electrostatic system are therefore those of an electric quantity divided by a time, since by current we
mean the quantity of electricity conveyed per second. Accord. ingly current on the E.S. system has the dimensions MIL'T \({ }^{-1} \mathrm{~K}^{4}\).

We may obeain the dimensions of an electric current on the magnetic system by observing that if two circuits traversed by the same or equal currenta are placed at a distance from each other, the mechanical force or atres, between two elements of the circuit, in accordance with Ampere': haw (ere Electra-Einetics), varict as the square of the current \(C\), the product of the elements of leagth \(d s\). \(d 5\) of the circuits, inversely as the square of their distance \(d\), and directly as the permeability \(p\) of the medium in which they are immersed. Hence \(C^{2} d s d^{d} s^{\prime} / d^{2}\) must be of the dimensions of a force or of the dimensiona MLTT. Now, ds and ds are lengths, and d is a length, bence the dimensions of electric current on the E.M. system must be \(\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mu^{-1}\). Accordingly the dimensions of current on the E.S. syatem are M/Li'T-1 \(K^{1}\), and on the E.M. systern
 electric constant of the mediurn, are of unknown dimensions, and therefore treated as fundamental quantities.

The ratio of the dimensions of an electric current on the two systems (E.S. and E.M.) is therefore LT \({ }^{-1} \mathrm{Kl}_{\mu}\) I. This retio must be a mere numeric of no dimensions, and therefore the dimensions of \(\sqrt{K}\) must be those of the reciprocal of a velocity. We do not know what the dimensions of \(\mu\) and \(K\) are separately, but we do know therefore, that their product has the dimensions of the seciprocal of the square of a velocity.

Again, we may arrive at two dimensional expressiona for electromotive force or difference of potential. Electrostatic difference of potential between two places is measured by the mechanical work required to move a small conductor charged with a unit electric charge from one place to the other against the electric force. Hence if V stands for the difference of potential between the iwo places, and \(Q\) for the charge on the small conductor, the product \(Q V\) must be of the dimensions of the ppork or energy, or of the force Xlength, or of ML'T-1. But \(Q\) on the electrostatic system of measurement is of the dimensions \(M^{1} L^{1} \mathrm{~T}^{-1} \mathrm{~K}^{\dagger}\); the potential difference V mum be, thercfore, of the dimensions \(M^{\prime} L T^{-1} K I\). Again. since by Ohm's law and Joule's law electromotive force multiplied by a current is equal to the power expended on a circuit, the dimensions of electromotive force, or, what is the same thing, of potential difference, in the electromagnetic system of measurement must be thooe of power divided by a current. Since mechanical power means rate of doing work, the dimensions of power must be \(\mathrm{ML}^{1} \mathrm{~T}^{-3}\). We have already seen that on the electromagnetic syatem the dinconsions of a current are \(M^{1} L^{\prime} T^{-1}{ }_{\mu}^{-1}\); therefore the dimensions of electromotive force or potential on the electromagretic system must be \(\mathrm{M}^{\prime} \mathrm{L}^{\prime} \mathrm{T}^{-1} \mu^{1}\). Here again we find that the ratio of the dimensione on the electrontatic system to the dimensions on the electromagnetic system is \(\mathrm{L}^{-1} \mathrm{TK}^{-1} \mu^{-1}\).

In the same manner we may recover from fundamental facts and relations the dimensions of every electric and magnetic quantity on the two systems, starting in one case from electrostatic pheepomena and in the other case from electromagnetic or magnetic. Tbe electrostatic dimensional expression will always involve \(\mathbf{K}\), and the electromagnetic dimensional exprestion will always involve \(\mu\), and in every case the dimensions in terms of \(K\) are to thone in terms of \(\mu\) for the same quantity in the ratio of a power of \(\mathrm{LT}^{-1} \mathrm{~K}^{\boldsymbol{j}} \mu^{4}\). This therefore confirms the view that whatever may be the trus dimensions in terms of fundamental units of \(a\) and \(\mathbf{K}\), their product is the inverse square of a velocity.

Table 1. gives the dimensions of all the principal electric and magnetic quantitice on the electrostatic and electromagretic systems.
It will be seen that in every case the ratio of the dimensione on the two systems is a power of \(\mathrm{LT}^{-1} \mathrm{~K}^{\boldsymbol{j}} \mu^{1}\), or of a velocity multiplied by the square root of the product \(K\) and \(\mu\) : in other words, it is the product of a velocity multiplied by the geometric mean of \(K\) and \(\mu\) This quantity \(1 / \sqrt{\mathrm{K}_{\mu}}\) must therefore be of the dimensions of a velocity, and the questions anise, What is the absolute value of this velocity? and, How is it to be determined? The answer is, that the value of the velocity in concrese numbers may be oblained by measuring the magnitude of any electric quantity in two ways, one making use only of electrostatic phenomena. and the other only of electromagnetic. To take one instance:-it is casy to show that the electrostatic capacity of a sphere suspended in air or ia vacuo at a great distance from other conductors is given by a number equal to its radius ia ceatimetres. Suppoee such a sphere to be charged and discharged rapidly with electricity from any source. sach as a battery. It would take electricity from the source at a certain rate, and would in fact act like a resistance in permitting the passage through it or by it of a certain quantity of electricity per unit of time. If \(\mathbf{K}\) is the capacity and \(n\) is the number of discharges per socond, then \(n K\) is a quantity of the dimensiose of an electric conductivity, or of the reciprocal of a resistance. If a conductor, of which the electrostatic capacity can be calculated, and which has associated with it a commutator that charges and

Table 1.-Dnemsions of Electaje Quantities

a system of aboolute and magnetic units settled abo on a system of practical units of convenient magnitude, and gave nimes to them as follows:10 absolute electromagnetic units of resist-
\(100 \quad . \quad . \quad .\)\begin{tabular}{c}
units of electre- \\
ance \\
motive force
\end{tabular}\(=1\) volt

In th of an ., ., unit of current \(=1\) armpere ath of an ." .". unit of quantity \(=1\) coulomb 10.0 units of capacity -1 ifarad Since the date when the preceding terms were adopted other multiples of absolute C.G.S. units have received practical names, thus:-
so ergs or absolute C.G.S. units of energy \(=1\) joule
\({ }^{10}{ }^{\circ}\) ergs per second or C.C.S. units of power \(=1\) watt
iof absolute units of inductance \(=1\) henry
it absolute units of magretic flux \(\quad=1\) weber \({ }^{2}\)
1 absolute anit of magnetomotive force \(=1\) gauss \({ }^{1}\)
An Electrical Congress was held in Chicago, U.S.A. in August \(\mathbf{8 8 9 3}\), to consider the subject of international practical electrical units, and the resuit of a conference between scientific representatives of Great Britain, the United States, France, Germany, Italy, Merico, Austria, Switzerland, Sweden and British North America, after deliberation for six days, was a unanimous agreement to recommend the following resolutions as the definition of practical international units. These resolutions and definitions were confirmed at other conicrences, and at the last one beld in London in October 1908 were finally adopted. It was agreed to take :-
"As a unit of resistance, the Inernational Okm, which is based upon the ohm equal to 10 units of resistance of the C.C.S. system of electromagnetic units, and is represented by the resistance offered to an unvarying eiectric current by a cotumn of mercury at the temperature of melting ike 14.4521 grammes in mass, of a constant cross-bectional area and of the length of 106.3 cm .
"As a unit of current. the International \(A\) mpere, which is one-tenth of the unit of current of the C.C.S. system of clectromagnetic units, and which is reprevented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, dep psits silver at the rate of 0.00111800 of a gramme por
discharges it \(a\) thmes per motoble is artanged in one bramia of a Wheatstunces Bridge, it can be treated and measured as if it were a resistance, and its equivalent resistance calculated in ierms of the resistance of all the other branches of the bridge (see Phil. Mag., 1885. 20, 258).

Accordingly, we have two methods of measuring the capacity of a conductor. One, the electrosiatic merhod, depends only on the measurement of a length, which in the case of a sphere in free space is its radius; the other, the elertrumagnetic method, determines the capacity in terms of the quosient of a time by a resistance. The ratio of the elearostasic to the electromagnetic value of the same capacity is therefore of the dimensions of a velocity multiplied by a resistance in clectromagnetic value, or of the dimensions of a velocity squared. This particular experimental measurement has been carried out carefully hy many observers, and the result has been always to show that the velucity ow which expresses the ratio is very nearly equal to 30 thousand million centimetres per secund; \(\mathrm{v}=\) nearly \(3 \times 10^{\text {th }}\). The value of this important constant can be determined by experiments made to measure electric quantity, potential, resistance or capacity, both in electrostatic and in electromagnetic measure. For details of the various methods employed. the reader must be referred to standard treatises on Electricity and Magnetiem, where full particulars will be found (see Maxwell, Treatise on Elactricity and Mragnetism, vol. ii. ch. xix. 2nd ed.: also Mascart and Joubert, Treatise on Electricity and Magnetism, vol. ii. ch viii, Eng. trins. by At kinson).

Table 11. gives a list of some of these deterninations of 5 , with references to the original papers.
It with be seen that all the most recent values, especially those In with a comparison of capacity has been made, approximate to sXiN opatimetres per second, a value which is closelve in accord Win the latere and teet deterninations of the velucity of lighe.
We hove la the seat piace to consider the question of Noilsar proctinat ectric enits and the determination and ef cencrete standards. The committes
second.
" As a unit of electromotive force, the Infernational Voll, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere. it is represented sufficiently well for practical purposes by 18 ifl of the E.M.F. of a normat or saturated cadmium Weston cell at \(20^{\circ}\) C., prepared in the manner descrived in a certain specification.

As a unit of quantity. the International Coulomb, which is the quantity of clectricity transferred by a current of one international ampere in one second.
- As the unit of capacity, the International Farad, which is the capacity of a condenser charged to a potential of one intcrnational volr by one international coulomb of electricity.

As a unit of work, the Jould, which is equal to 10 units of work in the C.G.S. System. and which is represented sufficientiy well for practical use by the energy expended in one accond by ai international ampere in an international ohm.
"As a unit of power, the Wath, which is equal to \(10^{\circ}\) unit of power in the C.G.S. System, and which is represented sufficicotiy welt for practical use by the work done at the rate of one joule per second.
" As the unit of inductance, the Henry. which is the induction in a circuit when an electromotive force induced in this circuis is one international volt, while the inducing current varies at the rate of one ampere per second.

\footnotetext{
\({ }^{2}\) Neither the weber nor the zauss has recejved very general adoption. although recommended by the Commirter of the Briato Asociation on Electrical Units Miany different suggerions have beca made as to the meaning to be applied to the word "gaus." The practical electrical engineer, up to the present, prefers to use one amperroturn as his unit of magnetomotive force. and ome lime of ferce as the uait of gagneric flux. equal reapoctively to 10/4* Itmes and If times the C.G.S absolute units Very frequeatly the " kithline." equal to 1000 lines of force, is now unod as a unit al magnetic fux
}

Taela 11.-Omserved Values of Vin Cinftnithes per Second
\begin{tabular}{|c|c|c|c|c|}
\hline Dete. & Name. & kefarseom & Electis Quantiky Measured. & h Ceutheters per Sesond. \\
\hline 1856 & W. Fitber and R. Koblruusch & Electredysemische Mersbestingmungen and Pozi. AEn. zris. Augus 10 . 1856 & Quastity & 3.109 \(\times 10^{10}\) \\
\hline 1867 & L Lond Xelvia & Report of British & Potenth & 4-65 \(\times 1016\) \\
\hline 1864 & fand W. F. Eing & Assoc.. 186g, p. 434: and Reports an Elec. tpical Shanderat, F. Jenkin. p. 866 & & \\
\hline 1008 & J. Clert Muswell & Phil. Trens. Rey. Sec., \(1^{8665}\), p. 643 & \(\omega\) & - \(4.4 \times 1010\) \\
\hline 857a & Lord Relvin and Dugatd M'Kicb. an & Phil. Trent Eeg. Sec_ \(1 \mathrm{~B}_{\mathrm{IS}} \mathrm{D}, \mathrm{D}-\infty\) & * & -69 \(\times 10^{10}\) \\
\hline 28,8 & W. E. Ayrtas and \(J\) Perty & Joura. Soc. Td. Ese. vol. viii. p. 118 & Capucity & \(2.94 \times 80^{14}\) \\
\hline 1880 & \(\underset{\text { Shide }}{\text { Lowd Kin and }}\) & Phil. Map., 1880, vol. -D \(45:\) & Potentiat & \(2059 \times\) solis \\
\hline , 888 & A. G. Staleton & Soc. Freac. de Plys., 3881 & Capecily & \(290 \times 100\) \\
\hline 153, & F Exner & Wiom, Ber, ; 88: & Potenial & \(200 \times 100\) \\
\hline 1303 & Sir J J. Thamion & Phil. Trame. Rey. Sor., 186 3. D. 701 & Capacily & - \(863 \times 10{ }^{10}\) \\
\hline ,88: & I. Klemencic . & Jourr. Soc. Td. Eare, 1857. D. 162 & \(\cdots\) & \(3010 \times 3050\) \\
\hline \$883 & F. Hemstedt . . & Electrician, March 23. 1859, vol. 2x p 530 & * & \(3007 \times 10{ }^{14}\) \\
\hline \% 188 & Land Kivin, Ayrion anal P'rry & British Associasion. Balb; and Elec. trisicm, Sept 2s, 3858 & Potential & \(2.92 \times 1010\) \\
\hline 1888 & H Fiose - & Elcitricion, vol. mi. p. 215: and. Prech Phys. Soc. Lest., June 9. 1888 & Capecity & -603 \(\times 10^{\circ}\) \\
\hline 1887 & Lord Eelvia & Prac. Roy. Inti, 8880 & Potential & \({ }^{3} 004 \times 100\) \\
\hline \(1{ }^{1} 50\) & & Phil. Mat. 1889 Phil Mar,, RSo & & \[
3 \mathrm{~g}_{1} \times 1 \mathrm{ol}^{10}
\] \\
\hline 1839
1890 & E. B Rona Sir J. J Thomtron & \begin{tabular}{l}
Phil. Mas, 1 RSg \\
Phil. Treas., 1890
\end{tabular} & Capacity & \[
3000 \times 1010
\] \\
\hline 1890 & and G F C searle & Prin. Jras., 1090 & \(\cdots\) & \(2905 \times 10{ }^{10}\) \\
\hline 8597 & M. E. Maltby. & & Altrmation currents & \\
\hline
\end{tabular}

In connexion with the numerical values in the above definitions much work has been done. The electrochemical equivalent of silver or the weight in grammes deposited per second by i C.G.S. electromagnetic unit of current has been the subject of much research. The following determinations of it have been given by various observers:-
\begin{tabular}{|c|c|c|}
\hline Name. & Value. & Reference. \\
\hline E. E. N. Mascart & 0.011156 & Jours. de physique, 1884 , (2), 3. 283. \\
\hline F. and W Kohlrausch & 0.011183 & Wred. Ans., 1886, 27, 1. \\
\hline Lord Raykigh and Mrs Sedgwick & 0.011179 & Phil. Trans. Roy. Soc., 188, 2, 411 \\
\hline J. S. H. Peltat and & 0.011192 & Journ.de Phys., J890, (2), \\
\hline A. Poticr Karl Kahle & 0.011183 & W'9,d. Ann., 1899.67. 1. \\
\hline G. W. Patterion and & 0.011192 & Physical Revicto. 1898, 7. \\
\hline J. S. H. Pellat and S. A. Leduc & 0.011195 & Comptes rendus. 1903. 136. 1649. \\
\hline
\end{tabular}

Although some observers have urged that the 0.01119 is nearer to the true value than oolitis, the preponderance of the evidence seems in lavour of this latter number and hence the value per ampereaccond is taken 250.0011800 gramme. The exact value of the electromotive force of a Clark cell has also been the subject of meuch research. Two forms of cell are in use, the simple tubular form and the H-form introduced by Lord Raykigh. The Berlin Rcichsanstalt has isuled a specification for a particular H-form of Clark cell, and its E.M.F. at \(15^{\circ} \mathrm{C}\). is taken as \(1 \cdot 4328\) international volss. The E.M.F. of the cell set up in accordance with the British Board of Trade epecification is taken as \(\mathbf{I} 434\) international volts at \(15^{\circ} \mathrm{C}\). The detailed apecifications are given in Fleming's Hand. book for the Electrical Laboralory and Testing Room (1901). vol. i. chap. 1; in the same book will be found copious references to the scientific literature of the Clark cell. One objection to the Clark cell as a concrete mandard of electromotive force is ite variation with temperature and with slight impurities in the mercurous sulchate used in its construction. The Clark cell is a voltaic ceil made with mercury, mercurous sulphate, zinc sulphate, and zinc
at clements, and ite E.M.F. decreaser \(0008 \%\) per degree Centigrade with rise of temperature In 1891 Mr Weston proposed to employ cadmium and cadmium culphate in place of zinc and zinc sulphate and found that the temperature coefficient for the cadmium cell might be made as low as \(0.004 \%\) per degree Centigrade. Ite E.M.F. is, however, \(1-0184\) international volts at \(20^{8}\) C. For details of construction and the literature of the subject see Fleming's Handbook for the Electrical Laboralory, vol. i. chap. 1 .

In the British Board of Trade laboratory the ampere and the volt are not recovered by immediate reference to the electrochemical equivalent of silver or the Clark cell, but by means of instruments called a standard ampere balance and a otandard 100 -volt electrostatic volemeter. In the standard ampere balance the current is determined by weighing the attraction between two coils tra. versed by the current, and the ampere is defined to be the current which causcs a certain attraction between the coils of this standard form of ampere batance. The form of ampere balance in use at the British Board of Trade electrical standards office is described in Fleming is Handbook for the Electrical Laboratory, vol. i., and that constructed for the British National Physical Laboratory in the report of the Committee on Electrical Standards (Brid. Assec. Rep., 1905). This latter instrument will recover the ampere wihhin one-thousandth part. For a further description of it and for full discussion of the present position of knowledge respecting the values of the international practical units the reader is referred to a paper by Dr F. A. Woll read before the International Electrical Congress at St Louis Exhibition, U.S.A., in 1904, and the subsequent discussion (see Jourm. Insk. Elec. Eng. Lond., Ig04-5, 34, 190, and 35. 3).

The construction of the international ohm or practical unit of resistance involves a knowledge of the specific resistance of mercury. Numerous determinations of this constant have been made. The resulta are expressed either in terms of the length in cm . of the column of pure mercury of I sq. mm. in section wifich at \(0^{\circ} \mathrm{C}\). has a resistance of \(10^{\circ}\) C.G.S. electromagnetic units, or else in terms of the weight of mercury in grammes for a column of constant crosssectional area and length of \(100 \cdot 3 \mathrm{~cm}\). The latter method was adopted at the British Association Meeting at Edinburgh in 1893. but there is some uncertainty as to the value of the density of mercury at \(\circ^{\circ}\) C. which was then adopted. Hence it was proposed by Prolessor J. Viriamu Jones that the redetermination of the ohm should be made when required by means of the Lorentz method (see J. V. Jones, "The Absolute Measurement of Electrical Resistance," Proc. Roy. Inst. vol. 14. part iii. p. 601). For the length of the mercury column defining the ohm as above, Lord Rayleigh in 1882 found the value 106.27 cm ., and R. T. Glazebrook in the same year the value \(106-28 \mathrm{~cm}\). by a different method, while another determination by Lord Rayleigh and Mrs Sedgwick in 1883 gave 106.22 cm . Viramu Jones in is91 gave the value 106.30 cm. , and one by W. E. Ayrton in 1897 by the same method obtained the value 106.27 to 106.28 cm . Hence the specific resistance of mercury cannot be said to be known to 1 part in \(\mathbf{J 0} 000\), and the absolute value of the ohm in centimetres per cecond is uncertain to at least that amount. (See also J. Viriamu Jones, "On a Determination of the International Ohm in Absolute Measure," Brit. Assoc. Report, 1894.)

The above-described practical system based on the C.G.S. double system of theoretical units labours under several very great disadvantages. The practical system is derived from and connected with an abnormally large unit of length (the earth quadrant) and an absurdly small

Rartocel syrtem of efectrical \#FH5. unit of mass. Also in consequence of the manner in which the unit electric quantity and magnetic pole strength are defined, a coefficient, \(4 \pi\), makes its appearance in many practical equations. For example, on the present system the magnetic force H in the interior of a long spiral wire of N turns per centimetre of length when a current of \(A\) amperes circulates in the wire is \(4 \pi \mathrm{AN} / \mathrm{I} 0\). Again, the electric displacement or induction D through a unit of area is connected with the electric force \(\mathbf{E}\) and the dielectric constant K by the equation \(\mathrm{D}=\mathrm{KE} / 4 \pi\). In numerous electric and magnetic equations the constant \(4 \pi\) makes its appearance where it is apparently meaningless. A system of units in which this constant is put into its right place by appropriate definitions is called a rational system of electric units. Several physicist s have proposed such systems. Amongst others that of Professor G. Giorgi especially deserves mention, We have seen that in expressing the dimensions of electric and magnetic qualities we cannot do so simply by reference to the units of length, mass and time, abryta aymber of chertital mens. but must introduce a fourth fundamental quantity. This we may take to be the dielectric constant of the ether or its magnetic permeability, and thus we obtain two systems of
measurement. Professor Giorgi proposes that the four fundamental quantities shall be the units of length, mass, time and electrical resistance, and takes as the concrete units or standards the metre, kilogramme, second and ohm. Now this proposal not only has the advantage that the theoretical units are identical with the actual practical concrete units, but it is also a rational system. Moreover, the present practical units are unaltered; the ampere, volt; coulomb, weber, joule and watt remain the actual as well as theoretical units of current, electromotive force, quantity, magnetic flux, work and power. But the unit of magnetic force becomes the ampere-turn per metre, and the unit of electric force the volt per metre; thus the magnetic units are measured in terms of electric units. The numerical value of the permeability of ether or air becomes \(4 \pi \times 10^{-7}\) and the dielectric constant of the ether or air becomes \(1 / 4 \pi \times 9 \times 10^{\circ}\); their product is therefore \(1 /\left(3 \times 10^{2}\right)^{2}\), which is the reciprocal of the square of the velocity of light in metres per second.
For a discussion of the Giorgi proposals, see a paper by Professor M. Ascoli, read belore the International Electrical Congress at St Louis, 1904 (Journ. Inss. Elect. Eng. Lond., 1904, 34, 176).

It can hardly be said that the present system of electrical units is entirely satisfactory in all respects. Great dificulty would of course be experienced in again altering the accepted practical concrete units, but if at any future ume a reformation should be possible, it would be desirable to bear in mind the recommendations made by Oliver Heaviside with regard to their rationalization. The British Association Committee defined the strength of a magnetic pole by reference to the mechanical stress between it and another equal pole; hence the British Association unit magnetic pole is a pole which at a distance of one centimetre attracts or repels another equal pole with a lorce of one dyne. This, we have seen, is an imperfect definition, because it omits all reference to the permeability of the medium in which the experiment takes place; but it is also unsatisfactory as a starting-point for a system of units for another reason. The important quantity in connexion with polar magnets is not a mechanical stress between the free poles of different magnets, but the magnetic flux entanating from, or associating with, them. From a technical point of view this latter quality is far more important than the mechanical stress between the magnetic poles, because we mosly employ magnets to create induced electromotive force, and the quantity we are then mostly concerned with is the magnetic flux proceeding from the poles. Hence the most natural definition of a unit magnet pole is that pole from which proceeds a total magnetic flux of one unit. The definition of one unit of magnetic flux must then be that flux which, when inserted into or withdrawn from a conducting circuit of one turn having unit area and unit conductivity, creates in it a flow or circulation of one unit of electric quantity. The definition of a unit magnetic pole ought, therefore, to have been approached from the definition of a unit of electric quantity.

On the C G S. or British Association system, il a magnetic filament has a pole strength \(m\)-that is to say. if it has a magnetization 1. and a section s, such that is equals \(m\)-then it can be shown that the toral flux emanating from the pole is 4 rm . The lactor \(4 \mathrm{\pi}\), in consequence of this definition, makes its appearance in many practically important expressions. For instance, in the well-known magnetic equation connecting the vector values of magnctization 1. magnetic force \(H\) and magnetic fux density \(B\), where we have the equation
\[
\mathrm{B}=\mathrm{H}+4 \mathrm{II} \text {. }
\]
the appearance of the quantity 4 r disuises the rel' physical meaning of the equation.

The true remedy for this difficulty has been suggested by Heaviside to be the substitution of rational for irrational formulac and definitions. Heart He proposes to ressate the definition of a unit magnetic 8/5': Herer pole in such a manner as to remove this constant \(4 \pi\) from the most Irequently employed equations His start. ing-point is a new definition according to which a unit magnetic pole is stid to have a strength of \(m\) units if it aftracts or repels another equal pole placed at a distance of ¿centimetres with a force of \(m^{2}\) is \({ }^{2} d^{4}\) dynes. If follows from this defaition that a rational unit magnetic pole is weaker or smaller that the irrational or British Association unit pote in the ratio of
\(1 / \sqrt{4 \pi}\) to 1 , or 28805 to 1 . The magnetic force due to a rational pole of atrength \(m\) at a distance of \(d\) centimetres being \(w / 4\) rid unita If we suppose a magnetic filament having a pole of ctrength \(m\) in rational units to have a smaller sphere of radius, described round its pole, the magnetic force on the surface of this spbere is m/4 mF units, and this is therefore also the numerical value of the fiux density. Hence the total magnetic flux through the surface of the sphere is

\section*{\(4 r^{2} \times m / 4 \pi r^{2}\) units \(=m\) units;}
and therefore the number which denotes the total magnetic flux coming out of the pole of strength m in rational units is also m .

The Heaviside system thus gives us an obvious and natural definition of a unit magnetic pole, namely, that it is a pote through which proceeds the unit of magnetic flux It follows, therefore. that if the intensity of magnetization of the magnetic flament is 1 and the section is \(s\). the total flux traversing the centre of the magnet is is units; and that if the filament is an endless or poletess iron filament magnetized uniformly by a resultant external magnceic force H , the flux density will be expressed in rational units by the equation \(\mathrm{B}=\mathrm{I}+\mathrm{H}\). The physical meaning of this equation is that the flux per square centimetre in the iron is simply obtained by adding toget her the fux per square centimetre, if the iron is supposed to be removed, and the magnetization of the iron at that place. On the rational system, since the unit pole strength has been decreased in the ratio of 1 to \(1 / \sqrt{45}\), or of 3.544 ; to 1 , when compared with the magnitude of the present irrational unit pole, and since the unit of magnetic fux is the total flux proceeding from a magnetic pole, it follows that Heaviside's unit of magnetic fux is larger than the C.G.S. unit of magnetic flux in the ratio of 3.5441 to 1 .
It will be seen, therefore, that the Heaviside rational units are all incommeasurable with the practical unite. This is a great barrier to their adoption in practice, because it is imponsble to discard all the existing resistance coile, ammelers, voltmeters, de., and equally impossible to recalihrate or readjust them to read in Heaviside units. A suggestion has been made, in modification of the Heaviside system, which would provide a system of rational practical units not impossible of adoption. It has been pointed oot by J. A. Fleming that if in place of the ampere, ohm, vatt, joule. farad and coulomb, we employ the dekampere. dekohm. the dekawatt, the dekajoule, the dekalarad and the dekacoulomb, we have a system of practical units such that measurements made ia these units are equal to measurements made in Heaviside rational units when multiplied by some power of 4r. Moreover, he has whowa that this power of 4x. in the case of most units, varies inversely as the power under which \(F\) apprars in the complete dirnensional expression for the quantity in electromagnetic measurement. Thus a current measured in Heaviside rational units is numerically equal oo (4r)! times the same current measured in detamperes, and in the electromagnetic dimensional exprestion for current, namely, \(\mathrm{LIM}^{\prime} \mathrm{T}^{-1} \mu^{-1}\), mappears \(25 \mu^{-1}\). If, then, we consider the permeability of the ether to be numerically it instead of unity, the measurement of a current in dekamperes will be a number which is the same as that given by reckoning in Heavissde rational units In this way a system of Rational Practical Uwets (R.P. Unite) might be constructed as follows:-
The R.P. Unit of Magnetic Foree \(=4 \mathbf{x} \quad \times\) the C.G.S. Unit.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \% & * & Magnetic Polarity \(=1 / 4\) & & * & \(\cdots\) \\
\hline " & * & Magnetic Flux & - & 1 & \\
\hline " & \(\cdots\) & Magnetomotive Force & - & 1 & \(\infty\) \\
\hline * & " & Electric Current & \(=\) & 1 & \(\cdots\) \\
\hline \(\because\) & " & Electric Quantity & - & 1 & \(\cdots\) \\
\hline * & \(\cdots\) & Electromotive Force & = & 100 & \\
\hline . & " & Resistance & - & \(10^{6}\) & \(\cdots\) \\
\hline " & * & Inductance & - & \(10^{\circ}\) & \(\cdots\) \\
\hline " & \(\cdots\) & Power & - & \(10^{\circ}\) & 0 \\
\hline " & " & Work & \# & \(10^{6}\) & \(\cdots\) \\
\hline
\end{tabular}

Al" except the unit of magnetic force and magnetic polarity are commensurable with the corresponding C.G.S. units, and is multiples which form a coovenient practical system.

Even the rational systems already mentioned do not entirely fulfil the ideal of a system of physical units. There are certain constants of nature which are fundamental, invariable, and, as far as we know, of the same magnitude in all parts of the universe. One of these is the mass of the atom, may of hydrogen. Another is the length of a wave of light of particular refrangibility emitted by some atom, say one of the two yellow lines in the spectrum of sodium or one of the hydrogen lines. Also a dime is fixed by the velocity of light in spece which is according to the best measurement very close to \(3 \times 10^{\text {m }}\) cms. per sec. Another natural unit is the so-called constand of erevitation, or the force in dymes due to the attraction of two spherical masoes each of 1 gramme with centres at a distance of 1 cm . Very approsimaidy this is equal to \(648 \times 10^{-70}\) dynes. Abother natural electrical
unit of great importance is the electric charge represented by I dectron (see Electelcity). This according to the latest determination is nearly \(3.4 \times 10^{-10}\) electrostatic units of quantity on the C.G.S. system. Hence, 2930 million electrons are equal to I E.S. unit of quantity on the C.G.S. system, and the quantity called I coulomh is equal to \(879 \times 10^{16}\) electrons. In round numbers \(9 \times 10^{10}\) electrons make 1 coulomh. The clectron is nature's unit of electricity and is the charge carried by 1 hydrogen ion in electrolysis (sce Conduction, Electrac, 8 Liguids). Accordingly a truly natural system of physical units would be one which was based upon the electron, or a multiple of it, as a unit of electric quantity, the velocity of light or fraction of it as a unit of velocity, and the mass of an atom of hydrogen or multiple of it as a unit of mass. An approximation to such a natural system of electric units will be found discussed in chap. 17 of a book on The Elctirons Theory, by E.E. Fournier d'Albe (London, 1906), to which tbe reader is referred.

See J. Clerk Maxwell, Treatise on Electricity and Magnetism, vol. ii. chap. x. (3rd ed., Oxford, 1892) i E. E. N. Mascart and J. Joubert, Treatise on Electricity and Magnedism.-translation by E. Atkinson, vol. i. chap. xi. (London, 1883): J. D. Everctt, ILustrations of the C.G.S. System of Units (London, 189i); Magnus Maciean, Physical Units (London, 1896); Fleeming Jenkin, Reports on Electrical Standards (London, \({ }^{1873 \text {); Reports of the British Associa. }}\) tion Committee on Electrical Units From 1862 to present date: 1. A. Fleming. A Handbook for the Electrical Laboratory and Testing: Room (2 vols., London, 1901); Lord Rayleigh. Collected Scientific Papers, vol. ii. (1881 - 87); A. Grey Absolute Measurememts in Electricity and hagnelism, vol. ii. partii. chap. ix. p. 150 (London, 1893); Oliver Heaviside, Electromagnetic Theory, 1.116 (London, 1893): Sir A. W. Rucker, "On the Suppressed Dimensions of Physical Quantities," Proc. Pkys. Soc. Lond. (1888). 10, 37; \(\mathbf{W}\). Williams. "On the Relation of the Dimensions of Physical Quantitics to Directions in Space." Proc. Phys. Soc. Lond. (1892), 11. 257 i R. A. Fessenden. On the Nature of the Electric and Magnetic Quantitics." Physical Review (January 1900).
(J. A. F.)

UIIVERSALIST CEURCR, a religious body organized in the United States, and represented chiefly by parishes and churches in that country and in Canada. While the distribution of the denomination extends to every state in the Union, the greater number of organizations and members are found in New England and New York.

A distinction should be noted between Universalism and the Universalist denomination. Universalism is found very early in the bistory of the Christian Church-apparently from the betinning. It was certainly beld and taught by several of the greatest of the Apostolic and Church fathers: as Clement of Alexandria, Gregory of Nyssa, Origen and probably by Chrysostom and Jerome. It was taught in a majority of the Christian Schools of the second and third centuries; at Alexendria, at Antioch, at Edessa and at Nisibis. \({ }^{1}\) But the Universalist denomination is of modern origin and confined mostly to the American continent. It dates from the arrival in Good Lack, N.J., of the Rev. John Murray (1714-1815),' of London, in September 1770; although there were some preachers of the doctrine in the country before Mr Murray came. He preached in various places in New Jersey, New York, Pennsylvania and Massachusetts, and societies sprang up as the result of his ministry in all these states. His first regular settlement was in Gloucester, Mass., in 1774, whence in 1793 he removed to Boston, which from that time forth became the headquarters
\({ }^{2}\) See Dr Edward Beecher's Fistory of Opinions on the Scriplural Doctime of Retribution (New York, 1878), and Hosea Ballou 2nd's A ncrew History of Uwisersalism (Boston, 1829).
IA Wedeyan, then a follower of Whitefeld, Murray became a Universalist after reading the tract on Union (1759) written by Jamess Relly (\(1720-177^{8}\)), minister of a Universalist congregation in London. Murray was a chaplain in a Rhode Island brigade during the War of American independence, and a friend of General Nathanaed Greeos. His Universalism was Calvinistic in its tone, arguing from a universal election to a universal redemption-Ballou first openly broke with Calvinism. Murray's parish in Gloucester through him brought suecessful suit for the recovery of property appropriated for the use of the original (Congregational) parish, and thus gained the first legal recognition granted in New England to a Universalist society. See the Aulobiography (Boaton. 1816) edited by his wife, Jodith Sargent Murray (1751-1820).
of the denomination. A contemporary of Murray in his later years was Hosea Ballou (q.0.), also of Boston, who soon became the recognized leader of the movement, and for half a century was its most honoured and influential name. During his ministry the sect developed fromi twenty or thirty churches to five hundred, with a distribution over the Eastern and Middle states. In the period of Mr Ballou's domination little attention was paid to organization. It was the period of the propagation of the doctrine and of the controversies to which that gave rise. But about 1860 began an agitation for a more coherent organization, and a polity better suited to unity and progress than the spontaneous congregationalism that had developed during the earlier period. The result of that agitation was the adoption, at the Centennial Convention in \(\mathbf{1 8 7 0}\), of a somewhat elaborate plan of organization, and a manual of administration under which the denomination has since been conducted.
The plan of organization of the Universalist body follows, with necessary modifications, the scheme of the civil organization of the national government. While the local parish is the unit, the states are organized as independent federations, and combined into a national congress or convention. The parisbes within the territory of a state are organized into a state convention; representatives, duiy elected by the several state conventions, constitute the General Convention, which is the supreme legislative authority of the denomination. The state conventions meet annually; the General Convention once in two years. In the interval of sessions a Board of Trustecs. consisting of eleven members, of whom the secretary, the chief administrative officer of the Convention, is one, administer the affairs of the denomination, except those concerns "reserved to the states and the people."

Doctrine.-The historic symbol of the denomination remains the Winchester Profession, adopted at the meeting of the General Convention-then a spontaneous yearly gathering of Universalists, without ecclesiastical authority-in Winchester, N.H., in Sept. 1803. It consists of three brief articles, is follows:-
Articie 1.-We believe that the Holy Scriptures of the Old and New Testaments contain a revelation of the character of God and of the duty, interest and final destination of mankind.
Article \(I \mathrm{i}\). - We believe that there is one God. whose nature is Love, revealed in one Lord Jesus Christ, by one Holy Spirit of Graie who will finally restore the whole family of mankind to holiness and happincsil.
Article III.-We believe that holiness and true happiness are inseparably connected. and that believers ought to be careful to maintain order and practise good works; for theme things are good and profitable unto men. \({ }^{2}\)
At the session of the General Convention in Boston in October 1g00, a still briefer "Statement of Essential Principles" wias adopted and made the condition of fellowship, in the following terms:-
1. The Universal Fatherhood of Godi 2. the Spinitual authority and leadership of His Son, Jesus Christ; 3. the trustworthines of the Bible as containing a revelation from God; 4. the certainty of just retribution for sin; 5. the final harmony of ali souls with God.

Universalism, shortly described, is the belief that what ought to be will be. In a sane and beneficent universe the primacy belongs to Truth, Right, Love. These are the supreme powers. The logic of this conception of the natural and moral order is imperious. It compels the conclusion that, although we see not yet all things put under the sway of the Prince of Peace, we see the Divine plan set forth in Him, and cannot doubt the consummation which He embodies and predicts. Universalists are those members of the Christian family in whom this thought has become predominant. The idea that there is a Divine order, and that it contemplates the final triumph of Good over Evi, in human societ y as a wbolc and in the history of each indlvidual, has taken posscasion of them. Hence they are Universalists.
\({ }^{2}\) Certain Universalists objected to the last clause of Article II. as implying a universal fall in Adam's sin; and others objected to the material and utititarian construction which might be put on the last clause of Article 111.

The Universalist Church embraces hut a fraction of those who hold the Universalist belief. The literature of religion, the testimony of common knowledge, the drift of theological thinking, equally with the results of expert investigation, confirm this conclusion. But the denomination holds aloft the banner, conducts the campaign of education and organization, and represents in the religious world the principle, that the best possible outcome is to he expected to the human experiment.

Work.-Some idea of the work carried on hy the denomination may be derived from the extent and variety of its organized forces. There were in 1907 about 1000 parishes on its roll; and these, with large numbers of familics not included in parishes, were organized into 41 state and provincial conventions; into a National Young People's Christian Union of over 600 local societies, with a membersbip of 10,000 ; into one National Women's Missionary Association and several state societies; and into one General Convention, with its Board of Trustees, Secretary, Superintendent, and Committees on Missions, Education, Investments, Ways and Means and Fellowship.
a. The Home Missionary work devolves in the first instance on the several State Conventions, which have a Board and local secretaries and superintendents charged with this particular business in their ueveral territories. In the next place, the Home Missionary work in new felds and where the local organization is weak, is in charge of the Board of Trustees of the General Convention. They employ a Southern Missionary and a General Superintendent, and appoint and aid in maintaining superintendents and missionaries in the newer states and Territorics-as the North-Western Superintendent, the California Superintendent, \&cc.
b. Foreign Missions. In 1907 the Universalist denomination had for about fifteen years maintained a mission in Japan, where five American and five native missionaries were regularly employed. with teachers and helpers of varying numbers. The parent church of this mission is established in Tokyo, and plantings have been made at eight or nine other points throughout the empire. A Girls' Home is maintained in Tokyo, and a considerable work in teaching and training is conducted under the auspices of the Mission in universities and other schools elsewhere. A mistion under the auspices of the Universalist General Convention is also maintained at Columhia, Province of Camaguley, Cuba.
c. The educational interests and activities of the denomination are expressed in four colleges, estahhished by the UniversalistsTults College (1852), at Mediord, Massachusetts: Lombard College (1855: opened in 1852 as Illinois Liberal Institute), at Galesburg. Illinois; St Lawrence University (1856), at Canton, New York; and Buchtel College (1872). at Akron, Ohio; three theological echools. connected with the first three colleges just named and founded respectively in 1869, 1881 and 1858; and three academies, Dean Academy, Franklin, Massachusetts, Goddard Seminary, Barre, Vermont, and Westbrook Seminary, Portand, Maine; and a puhlishing house in Boston with a branch in Chicago is one of the denomination's chief agencies for the spread of the knowledge of what it holds to be the truth.
d. The Chapin Home in New York, the Church of the Messiah Home in Philadelphia, the Washburne Home in Minneapolis and the Bethany Home in Boston are examples of the benevolent and charitable work in which the Universalist body is interested and enlisted.
As stated above, the Universalist denomination embraces about 1000 churches, with congregations numbering about 200,000 persons; a membership of communicants reported in 1906 as 55,831 ; a membership in Sunday schools of 52,538 ; and church property valued at \(\$ 10,598,100-39\).
B1BLIOGRAPHY - -The Universalist Quarterly Reviet (Boston, 184391): T. Whittemore, Modern History of Unitersalism (Boston, 1830): Richard Eddy, Uniocrsalitm in America (2 vols., 1884); J. G. Adams, Fijty Notable Years (Boston, 1882): Abel C. Thomas, A Century of Unien salism (Philadelphia, \(\mathbf{1 8}_{8}\) O); 1. W. Hanson, Uniocesalism in the First Fiop ITundred Years of the Christian Church (Boston and Chicago. 1902); T. B. Thayer, Origin and History of the Doctrine of Endless Puisiskment (Boston. I885), tracing the doctrine directly to heathen sources: T. B. Thayer. The Theodogy of Universalism (Boston. 1862); 1. M. Atwood (ed.). The Latest Word of Unioursalism, Essays by Thircen Represchtadite Clergymen (Boston. 1880); Hanuals of Faith and Duty, a set of eleven volumes by different writers, treating of the chicl doctrines, institutions and problems of religion in the modern cra: Orello Cone. The Gospel and its Eartiest Incerpretations (New York, 1898): and biographies of John Murray, Hosea Ballou. Edwin H. Chapin, Thomas J. Sawyer, A Jonzo Ames Miner, James Henry Tuttic, \&c.
(1. M. A.)

LANGUAGES. The inconveniences resulting
flanguages bave been felt since the dawn 'he most gifted linguist cannot master
more than a comparatively small number of languages, and has to rely more or less on interpreters in his intercourse with speakers of foreign languages.
Advancing civilization brought with it a partial remedy at different periods and in different parts of the world by the spread of such languages as Assyrian, Greek, Latin, Arabic, English over a wide area as the accompaniment of political supremacy, or as a vehicle of culture. Even when Latin split up into the Romance languages, and ceased to be a living language itself, it still survived as the common learned language of Europe both in speech and writing (see Latin Lancuage and Classics), till the rapid development of modern science and modern thought and the rapidly inereasing complexity of modern life outstripped the limited range of a language never suited for international use.

Meanwhile the growth of the spirit of nationality has largely increased the number of literary languages. Russian men of science are no longer content to record their discoverics in French or German. The English student of science or philosophy bas to leave unread many important works written in the more remote European languages, or make their acquaintance through an often inaccurate translation-perhaps in a language of which he is only imperfectly master.

The question of the adoption of a common language becomes, therefore, more and more pressing.
The most obvious solution of the problem would be the adoption of some one existing language as a means of international communication.- But which ? To revive the international uee of Latin is out of the question. If it is to be a dead language, post-classical Greek would afford a more fexible -and perhaps an casier-means of expression. If we dismiss dead languages as impracticable, the choice of a living language raises new difficulties. To exalt English, or French, or Spanish to the rank of a world-language would give its native speakers such an advantage over the other nationalities that it has been seriously proposed to disarm international jealously by selecting such a language as Norwegian, which is apoken by a small community and is at the same time comparatively simple in structure.

But even if agreement were possible, we are still met by the difficulty that to the average human being it is practically impossible to acquire anything like an easy, thorough command of any foreign language. No natural language is really easy. In fact, we may go further and say that all languages are equally difficult (see H. Sweet, Practical Study of Languages, p. 66); although some are made more difficult than they peed be by the way in which they are written-by the crahbedness of their alphabet, or by their unphonetic spelling-by the want of handbooks or their unpractical character, by the artificiality of their literature, and other purely external causes. Norwegian is easy to a Swede because it is practically a mere dialect of his own language; be knows two-thirds of it already. But that does not prove that Norwegian is easy in itself-that it would be easy, for instance, to an Oriental. The dialects of Chisese are mutually unintelligible, but it takes a Chinaman only about six months to learn another dialect, which would occupy even 2 gifted European at least three years to learm to speak; and yet Chinese is, from a European point of view, far simpler in structure than Norwegian, or even English.

Natural languages are difficult because they are imperfect expressions of thought: because language is only partly rational The greatest difficulty of a language is the vocabulary; and the foundation of the vocabulary of all languages is practically arbitrary: there is no connexion between sound and meaning except in a few isolated words. And even that part of a language which can be brought more or less under general rules is full of irregularities and exceptions, ambiguities and redundancies of expression, and superfluous or irrational distinctions such as those of grammatical gender, so that when we have leamt one sentence we can never be sure that it will serve as a patticrn for another.
These considerations suggest a further step towards the
ttainmeot of a cornmon language: to rationalize and make regular some existing language. Even if we agreed to adopt an existing language unaltered in itself, we should certainly get rid of its external difficulties: neither English nor French could become world-languages till they had got rid of their unphonetic spelling. But from this it would be a natural step to eliminate such grammatical difficulties as those of shall and will in English. If this were once agreed on, why not go a step further and get rid of all grammatical irregularities, making, for instance, belter men into sooder mans, sow, seen into seed, and so on? The vocabulary would offer little obstacle to a parallel simplification. The self-evident method would be to select certain words as the foundation: to use them as root-words from which all the other words could be formed by derivation and composition. The inconvenient length of many of the words so formed would then suggest reducing the root-words to a monosyllahic form, with such modifications as would be required to prevent confusions of form or meaning, or to make their pronumciation easier.

It is on these principles that the well-known Volapirit (g.v.) is coastructed (\(\mathbf{1 8 8 0}\))-the first artificial language that achieved a certain measure of success. But its roots are 50 disguised by arbitrary alterations that the English basis is not generally easy to recognize.

Volaptuk is mainly an adapted (borrowed) or a-posteriori language, as opposed to an original or a-prion one, although it belongs partly to the latter clase as well. Its vocabulary is adapted, but its grammar is, to a great extent, original.

On the ruins of Volapilk there rose Esperanto (g.v.), which by 1907 had become the most widely known and used of its numerous competitors. In its grammar Esperanto is partly original, partly borrowed. Its vocahulary is not based exchasively on that of any one language, hut is selected from the chief European languages-including Latin and Greekthe words being generally unaltered except in spelling. The extensive use made of word-composition and of derivative prefixes and suffixes enables the author to reduce the number of his root-words to between two and three thousand. This does not include international literary, scientific and technical words such as professor, telegraph, which are not translated into Esperanto compounds or derivatives, hut are simply incorporated into the language with the minimum of change.
The most formidahle rival of Esperanto is unquestionably Idiom Neutral (1902). It is the collective work of the Akademi internasional de lingu wniversal, its real author being the director of the Akademi, M. Rosenberger, of St Petersburg. This academy was originally instituted hy the two intemational Volapul congresses in 1887 and 1889 : it now numbers among its membere not only many former adherents of the defunct Volapuk, but also many ex-Esperantists. The most marked feature of Idiom Neutral is that its vocabulary is definitely and consistently based on the principle of the maximum of internationality for the roots. A systematic examination of the vocabularies of the seven chief European languages-English, French, German, Spanısh, Italian, Russian, Latin-showed that the number of international mots and words was much greater than had been supposed. There are many, such as aperit and tri, "three," which occur in all seven; and it is only occasionally that it has been found necessary to adopt a word or root which occurs in less than four of them. The result is that instead of the unpleasant mixture of Romance elements with words taken arhitrarily from English and German which makes a great part of the vocabulary of Esperanto unintelligible to learners who know only one language, Idiom Neutral offers a vocabulary which is practically Romance-Latin. Thus the Idiom Neutral ornif, " bird," and diurn, "day," are almost sell-interpreting even apart from any context, while the Esperanto bird and tag are unintelligible except to those who know English and German; and as the former is pronounced in Esperanto approximately es English beard, it is only intelligible to English speakers when written, not when spoken. In its grammar Idiom Neutral is almost entirely a-posteriori on a

Romance basis, geperally following French, sometimes in a somewhat slavish and unintelligent fashion, as in the use of eske as an interrogative particle, and of leplus as the mark of the superiative, although there is no definite article in Idiom Neutral. On the whole, there can be no douht that Idiom Neutral is the simplest language that has yet been devised, and the most easily understood hy any educated European; those who take several days to learn to read Esperanto find that they can read Idiom Neutral in as many minutes. Compare the following extract from a letter written by a Norwegian doctor to a colleague in Russia with the specimens given under the headings Volaptux and Esperanto:-
Idiom Neutral es usabl no sole pro skribasion. ma et pro perlasion; sikause in kongrea sekuant internasional de medisinisti mi av intension usar ist idiom pro mie raport di maladitet " lupus," e mi esper esar komprended per omni medisinisti present.

But the construction of such languages is hy no means so easy as would at first sight appear. All a-posteriori systems are linble to various defects, the inevitable result of tbe confict between their old and new elements, and the difficultics and embarrassments of an arbitrary selection. Thus Idiom Neutral, which ought to be the most perfect of these attempts, admits homonyms (kar = " carriage" and "dear," adj.), alternative forms such as sientik and sientifik, and ambiguities such as flosofi, which is both an abstract noun and the plural of filosof, "philosopher." Esperanto is better constructed in this respect; hut it often only avoids confusion hy arbitrary alteration of its words.

Another difficulty is that of national associations. No one likes to have his own language travestied. Thus Esperanto, which looks like bad Italian, is on that account less popular *mong the speakers of Romance languages (except in France) than clsewhere. It is a significant fact that none of the inventors of these languages hase tbem on their native speech.

And then, these languages are not international after all. A really international language ought to be as acceptable to speakers of Arabic, Chinese or Japanese as to a European. Even from a European point of view they are not wholly international.

And they are not independent languages: they are only parasites-sickly parasites-on other languages. Their vocabularies are liahle to incessant change and addition; and the meanings of their words are liable to be misunderstood in different ways hy speakers of diferent languages. It is no answer to say that they are only auxiliary languages, which are not intended to supplant the national languages; for every artificial language must, at first at least, content itself with this role.

It is evident that the a-priori is the only basis which is really international, neutral and independent. And it is a significant fact that the carlier attempts were all a-prion. But all these attempts-beginning with Dalgarno's Ars signormm (1061) and Wilkins' well-known Real Character (1668)-have been failures. They were failures because the ground was not sufficiently prepared. A great part of Wilkins' folio is taken up with attempts to lay the necessary foundations. He sawwhat none of his successors has yet seen-the necessity of a knowledge of the formation of sounds and the principies of their representation; and his sketch of phonetics is still valuable. His classification of the ideas expressed hy language is an attempt to do what was afterwards done hy Linnacus and his successors and hy Rogct in the Thesaurus of English Hiords and Phrases.

Wikins was oaly a dilettante, because the greater part of science was then oaly in the dilettante stage. We have a right now to demand that our universal language shall be the work, not of dilettantes, but of experts: that is, of trained philologists.

Now that the ground has been prepared-now that the principles of linguistic science are the common property of the educated world, and the chief languages of the earth have been made accessible, and whole families of languages have been included in comparative grammars and dictionaries- we
have a right to ask that no one shall henceforth come before the puhlic as the inventor of a new language till he has made himself acquainted with those branches of the science of language which form the natural foundation for such a work.

The first step in constructing an artificial language is to settle what sounds it is to contain. The answer, of course, is: the easiest. To the man in the street the only casy sounds are those of his own language. The question, which sounds are easiest in themselves, can only be settled by means of general practical phonetics, which often leads to conclusions directly contradicting popular prejudices. Then comes the question, how these sounds are to be written. It would be an easy matter to re-write Esperanto in the alphabet, say, of the International Phonetic Association, instead of its present antiquated and unpractical orthography; but the mere fact that the author of Esperanto did not take the trouble to make himself acquainted with the principles of phonctics and sound-representation before attacking so stupendous a problem makes us sceptical of his competence for the rest of his task.
The grammar of the new language must not be a mere imitation of that of Latin or an ordinary modern European language: it must be based on first principles. The inventor, after carefully considering the grammatical structure of languages of different types, must not only pick out what is best in each, but must consider whether he cannot do still better.

As regards the vocabulary, we are told that the inventor of Esperanto in his first attempts to construct a new language began with forming his roots by arbitrary combinations of letters, but failed to arrive at any satisfactory result in this way. It is, in fact, impossible to construct words arbitrarily: the attempt to do so inevitably results in distorted reminiscences of words already familiar to the experimenter. There are only two ways in which it is possible to construct an a-priori vocabulary: the schematic and the symbolic. The systems of Dalgarno and Wilkins belong to the former class. Wilkins's vocabulary is founded on a classification of all ideas under 40 categories, each expressed by the combination of a consonant and a vowel in a certain arbitrary (partly alphabetic) order. Thus de signifies "element," from which is formed the first suhdivision deb, "fire," from which, again, is formed the further subdivision deba, "flame." The ohjections to this method are that there is no direct connexion between the words and their meanings, and that it involves not only knowing by heart the endless categories, and subdivisions of these, on which it is founded, hut also their order and number-a task beyond any human memory. Even if it were not, no one would care to learn a classification which the advance of knowledge might render obsolete in a few years-together with the language itself.
The symbolic method, on the other hand, aims at establishing a direct association bet ween the word and the idea it expresses, as is already the case, to some extent, in existing languages. Thus we have imitative words such as cuckoo, interjectional words, such as hush, and specially symbolic or gesture-words, such as thou, me, molker.
The difficulty in carrying out the symbolic principle is that the associations are few and often vague. But the material is sufficient, if handled in a practical spirit. However far removed from theoretical perfection the result might be, it would have at least two advantages:-(1) There would be none of that waste of material which is common to all natural languages and those artificial ones which are founded on them. (2) This would result in a brevity far exceeding that of the opposite type of language.
A well constructed a-priori language would, indeed, have many uses far transcending those of a rough-and-ready language of the Esperanto type. It would be more tban a mere auxiliary language. It would be useful not only as a means of international communication, hut as a means of expression superior in most respects to the native language: as an aid, not a hindrance, to accurate thought and scientific exactitude. It would ' is its unfamiliarity. It mould have to be learnt;
and it would not be learnt without effort, for its use would imply accurate thought and emancipation from the associations of the native language. But the difficulties would be impartially distributed: the new language would not necessarily be more difficult for the speakers of one language than for those of another.

The obstacles to the construction and adoption of an a-priori language are many; and meanwhile the need is pressing. So it is possihle that the prohlem may be parially solved in the near future by the provisional adoption of an adapted language. Although such a language would not be very acceptable to non-European nations, it rould still be casier to them than any European language. But whatever language \(m\) : \(y\) be adopted, it must be imposed by a competent tribunal, which, as in all analogous cases, will refuse to consider any scheme which has not been worked out by experts-that is, by scientific linguists.
(H. Sw.)

UNIVERSITIEs. \({ }^{1}\) The medieval Latin term uninearsiks (from which the English word "university" is derived) was originally employed to denote any community or corporation regarded under its collective aspect. When used in lts modern sense, as denoting a body devoted to learning and education, it required the addition of other words in order to complete the definition-the most frequent form of expression being " universitas magistrorum et scholarium" (or "discipulorum "). In the course of time, probably towards the later part of the s4th century, the term began to be used hy itself, with the exclusive meaning of a community of teachers and scholars wbose corporate existence had been recognized and sanctioned hy civil or ecclesiastical authority or hy both. But the more ancient and customary designation of such communities in medieval times (regarded as places of instruction) was "studium" (and subsequently "studium generale"), a termimplying a centre of instruction for all.2 The expressions "universitas studii" and "universitatis collegium" are also occasionally to be met with in official documents.
It is necessary, however, to bear in mind, on the one hand, that a university often had a vigorous virtual existence long before it obtained that legal recognition which entiled it, technically, to take rank as a "studium generale," and, on the other hand, that hostels, halls and colleges, together with complete courses in all the recognized branches of learning, were by no means necessarily involved in the earliest conception of a university. The university, in its earliest stage of development, appears to bave been simply a scholastic gild-a spontancous combination, that is to say, of teachers or scholars, or of both combined, and formed probatly on the analogy of the trades gilds, and the gilds of aliens in foreign cities, which, in the course of the 13th and 14th centuries, are to be found springing up in most of the great European centres. The design of thrse organizations, in the first instance, was little more tban that of securing mutual protection-for the craltsman, in the pursuit of his special calling; for the alien, as lacking the rights and privileges inherited by the citizen. And so the university, composed as it was to a great extent of students from forciga countries, was a combination formed for the protection of its members from the extortion of the townsmen and tbe other annoyances incident in medieval times to residence in a foreign state. It was a first stage of development in connerion with these primary organizations, when the chancellor of the cathedral, or some other authority, began, as we shall shortiy sec, to accord to other masters permission to open other schools than the cathedral school in the neighbourhood of his church; a further stage was reached when a licence to teach-grantod only after a formal examination-empowered a master to carry on his vocation at any similar centre that either already existed or might afterwards be formed throughout Europe-"faculus
. It is the design of the present article to exhibit the universities in their gencral historical development: more detailed Information respeciing the present condition of each will be found in the separate articles under topographical headings.
- Denifie, Dre Universitalen des Mittelattors, i. 1-ag.
whique docendi." It was a still further development when it began to be recognized that, without a licence frome either pope, emperor or king, no "studium generale " could he formed possessing this right of conferring degrees, which originally meant nothing more than licences to teach.

In the north of Europe such licences were granted hy the Chancellor Scholasticus, or some other officer of a cathedral megatas charch; in the south it is probable that the gilds of of masters (when these came to be formed) were at first "extern., free to grant their own licences, witbout any ecclesigreorate." astical or other supervision. But in all cases such permissions were of a purely local character. Gradually, however, towards the end of the rath century, a few great schools claimed from the excellence of their teaching to be of more than merely local importance. Practically a doctor of Paris or Bologna would be allowed to teach anywhere; while those great schools began to be known as stadia generalia, i.e. places resorted to hy scholars from all parts. Eventually the term came to have a more definite and technical signification. The emperor Frederick II. set the example of attempting to confer by an authoritative bull upon his new school at Naples the prestige which the earlier studia had acquired by reputation andgeneral consent. In 1229 Gregory IX. did the same for Toulouse, and in 1233 added to its original privileges a bull by which any one who had been admitted to the doctorate or mastership in that uriversity should have the right to teach anywhere without further examimation. Other studia generalia were subsequently founded by papal or imperial bulls; and in 1292 even the oldest universitics, Paris and Bologaa, found it desirable to obtiin similar bulls from Nicolas IV. From this time the notion began to prevail among the jurists that the essence of the studiums semerale was the privilege of conferring the \(j u s\) ubicunque docendi, and that no new studimm could acquire that position without a papal or imperial bull. By this time, however, there were a few studia generalic (e.g. Oxford) whose position was too well established to be seriously questioned, although they had never obtained such a bull; these were held to be studia generalia ex comswetudine. A few Spanish universities founded by royal charter were beld to be studia generalia respectu regni. Tbe word

Ortele of
the ferl minum A
gild gild (or gilds) within the studinm, and was at first not used absolutely; the phrase was atways xnisersitos me gitfrormm, or scholarium or magisforum et scholariwn. By the close of the medieval period, however, the distinction between the terms studium generale and mriversitas was more or less lost sight of, and in Germany especially the term ansiversitas began to he used alone. \({ }^{1}\)

In order, however, clearly to understand the conditions under which the esthest universities came into existence, it is necessary to take account, not only of their organization, but also mistery of their studies, and to recognize the main influences of Enfurise - miver elty ert. which, from the oth to the \(12 t h\) century, served to modify botb the theory aad the practice of education. In the former century, the schools of the Roman empire, which had down to that time kept alive the traditions of pagan education, had been almost entirely swept emay by the barbaric invasions. The latter century marks the period when the iastitutions which supplied their place-the episcopal chools ateached to the cathedrals and the monastic schooi--attained to their highest degree of influence and reputation. Between these and the schools of the empire there existed an easential diference, in that the theory of education by which they were pervaded was in complete contrast to the simply secubar theory of the schools of paganism. The cathedral school taught onily what was supposed to be necessary for the education of the priest; the monastic school taught only what was tappoeed to be in hamony with the aims of the monk. But between the pagan system and the Christian system by which it had been superseded there yet existed something that was common to both: the latter, even in the narrow and meagre instruction which it imparted, could not altogether dispense

\footnotetext{
- Denife in 34-39
}
with the ancient text-books, simply because there were no others in existence. Certain treatises of Aristotle, of Porphyry, of Martisnus Capella and of Boetius continued consequently to be used and studied; and in the slender outlines of pagan learning thus still kept in view, and in the exposition which they necessitated, we recognize the main cause which prevented the thought and literature of classic antiquity from falling altogether into oblivion.

Under the rule of the Merovingian dynasty even these scanty traditions of learning declined throughout the Frankish dominions; but in England the designs of Gregory Revivat in the Great, as carried out by Theodorus, Bede and gume of Alcuin, resulted in a great revival of education and Chertre letters. The influence of this revival extended in the amge. 8th and gth centuries to Frankland, where Charlemagne, advised and aided by Alcuin, effected a memorable reformation, which included both the monastic and the cathedral schools; while the school attached to the imperial court, known as the Palace School, also became a famous centre of learned intercourse and inst ruction.

But the activity thus generated, and the interest in learning which it served for a time to diffuse, well-nigh died out amid the anarchy which characterizes the roth century in Latin Christendom, and it is at lenst questionable whether any real connexion can be shown to have existed hetween this earlier revival and that remarkable movement in which the university of Paris had its origin. On the whole, however, a clearly traced, although imperfectly continuous, succession of distinguished teachers has inclined the majority of those who have studied this obscure period to conclude that a certain tradition of learning, handed down from the famous school over which Alcuin presided at the great abbey of St Martin at Tours, continued to survive, and became the nucleus of the teaching in which the university took its rise. But, in order camest of adequately to explain the remarkable development formotioa and novel character which that teaching assumed in the course of the rath and 13th centuries, it is necessary to take account of the operation of certain more gencral causes to which the origin of the great majority of the earlier universities may in common unhesitatingly be referred. These causes are-(i) the introduction of new subjects of study, as embodied in a new or revived llterature; (2) the adoption of new methods of teaching which were rendered necessary by the new studies; (3) the growing tendency to organization which accompanied the development and consolidation of the European nationalities.

That the carlier universities took their rise to a great extent in endeavours to obtain and provide instruction of a kind beyond the range of the monastic and cathedral schools atse of appears to be very generally admitted, but with respect molvof to the origin of the first European university-that of ety of
Salermo in Italy, which became known as a school of Selorma. Salerno in Italy, which became known as a school of medicine as early as the gth century-the circumstances are pronounced by a recent investigator to be " veiled in impenetrable obscurity." \({ }^{2}\) One writer \({ }^{2}\) derives its origin from an independent tradition of classical learning which continued to exist in Italy down to the roth century. Another writer \({ }^{4}\) maintains that it had its beginning in the teaching at the famous Benedictine monastery of Monte Cassino, where the study of medicine was undoubtedly pursued. But the most authoritative researches point to the conclusion that the medical system of Salerno was originally an outcome of the GraecoRoman tradition of the old Roman world, and the Arabic medicine was not introduced till the highest fame of the Civitas Hippocratica was passing away. It may have been infuenced by the late survival of the Greek Language in southern Haly, though this cannot be proved. In the first half of the oth century the emperor at Constantinople sent to the Caliph

\footnotetext{
\({ }^{2}\) Rashdall. Unitersities of Europe in the Midtle Ages. i. 76.
- De Renzi. Storia Documentala della Scuola Medica di Salemo (ed. 1857). p. 145.
- Puccinotti, Storic della Medicina, i. 317-a6.
\(2 a\)
}

Mamoan at Bagdad a considerable collection of Greek manuscripts, which seems to have given the carliest impulse to the tudy of the Hellenic pagan literature by the Saracens. The original terts were translated into Arabic by Syrian Christians, and these versions were, in turn, rendered into Latin for the use of teachers in the West. Of the existence of such versions we have evidence, according to Jourdain. \({ }^{1}\) long prior to the time when Constantine the African (d. 1087) began to deliver his lectures on the science at Salerno, although these early versions have since altogether disappeared. Under bis eeaching the fame of Saterno as a medical school became diffused all over Europe; it was distinguished also by its catholic spirit, and, at a time when Jews were the object of religious persecution throughout Europe, members of this nationality were to be found both as teachers and learners at Salerno. Ordericus Vitalis, who wrote in the first half of the 12 th century, speaks of it as tben long famous. In 1231 it was constituted by the emperor Frederick II. the only school of medicine in the kingdom of Naples.
The great revival of legal studies which took place at Bologna about the year 1000 had also been preceded by a corresponding activity elsewhere-at Pavia by a famous school of Lombard law, and at Ravenna by a yet more important Bolopan. school of Roman law. And in Bologna itself we have evidence that the Digest was known and studied before the time of Irnerius (\(1100-30\)), a certain Pepo being named as lecturing on the text about tbe year 1076. The traditional story about the "discovery" of the Pandects at Amalfi in 1135 was disproved even before the time of Savigny. Schulte has shown that the puhlication of the Decretum of Gratian must be placed earlier than the traditional date, i.e. not later than 1142 . This instruction again was of a hind which the monastic and cathedral achools could not supply, and it also contributed to meet a aew and pressing demand. The neighbouring states of Lombardy were at this time increasing rapidly in population and in wealth; and the greater complexity of their political relations, their growing manufactures and commerce, demanded a more definite application of the principles embodied in the codes that had been handed down by Theodosius and Justinian. But the distinctly secular character of this new study, and its ciose connexion with the claims and prerogatives of the Western emperor, aroused at first the susceptibilities of the Roman sec, and for a time Bologna and its civilians were regarded by the ehurch with distrust and even with alarm. These sentiments were not, however, of long duration. In the year risi the

Dearse
tume of
Gratle
and ane
canne
now appearance of the Decretum of Gratian, largely compiled from spurious documents, invested the studies of the canonist with fresh importance; and numerous decrees of past and almost forgotten ponififs now claimed to take their stand side by side with the enactments contalned in the Corpus Juris Civilis.
They constituted, in fact, the main basis of those new pretemsions asserted with 30 much success by the popedom in the course of the ath and inth centuries. It was necessary, aecordingly, that the Decrefum shouid be known and studied beyond the walls of the monastery or the episcopal palace, and that its pages should receive authoritative exposition at some common centre of instruction. Such a centre was to be found in Bologna. The needs of the secular student and of the ecclesiastical student were thus brought for a time into accord, and from the days of Irnerius down to the close of the 13 th century e have satisfactory evidence that Bologna was generally recopnized as the chief school both of the civil and the canon law. \({ }^{2}\) thas, indeed, been asserted that university degrees were instituted there as early as the pontificate of Eugenius III. (inis 53), but the statement rests on no good authority, and is in erery way im. probable. There is, however, another tradition which is in better harmony with the known lacts. When Barbarossa marched his forces into Italy on his memorable expedition of is55, and reasserted those imperial claims which had so long

\footnotetext{
Surlidece ef
Denifle.
aductions latines, \&c., p. 225.
-., i. \(4^{8}\)
}
lain dormant, the professors of the civil lat atid their scholess, but more especially the foreign students, erthered round the Western representacive of the Roman Caesars, and besought his intervention in their favour in their relations with the citizens of Bologna. A large

\section*{Furnta} \(\square\) Bakara proportion of the students were probably from Germany; and it did not escape Frederick's penctration that the civilian might prove an invaluabie ally in the assertion of his imperial pretensions. He received the suppliants gracioucly, and, finding that their grievances were real, especially againat the handlords in whose bouses they were domiciled, he granted the foreign students substantial protection, by conferring on them certain special immunities and privileges (November 1358). \({ }^{2}\) These privileges were embodied in the celebrated A whousica, Habia, in the Corpus Juris Civilis of the empire (bk. iv. tit. 23), and were eventually extended so as to include all the ot her universities of Italy. In them we may discern the preceded for that state protection of the university which, however essential at one time for the security and freedom of the teacher and the teregit, has been far from proving an unmixed benefrt-the influence which the civil power has thus been able to enert being toe often wieldiod for the suppression of that very liberty of thought and inquiry from which the earlier universities derived in no small measure their importance and their fame.

But, though there was a flourishing scbool of study, it is to be observed that Bologna did not possess a university so early as 1r58. Its first university was not constitated until the close of tbe 1 ath century. The "universities "at The "ryeh Bologna were, as Denifle has shown, really student gilds, e formed under influences quite distinct from the pro- Bavagne tecting clauses of the A uthentica, and suggested, as already noted, by the precedent of those foreign gilds which, in the course of the 12 th century, began to rise throughout western Earope. These were originally only two in number, the Uliramomani and the Citramonlani, and arose out of the absolute necemsity, under which residents in a foreign city found themselves, of obtaining by combination that protection and those rights which they could not claim as citizens. These societies were modelled, Denilie considers, not on the trade gilds which rose in Bologna in the \(13^{\text {th }}\) century, but on the Teutonic gilds which anose nearly a century earlier in north-western Europe, being ementially " spodtaneous confederations of aliens on a foreign soil" Originally. they did not include the native student element and were composed exclusively of students in law.

The power resulting from this principle of combination, when superadded to the privileges conferred by Barbaroses, gave to the students of Bologna a superiority of which they were not slow to avail themselves. Under the teadership of their rector, they extorted from the citizens concessions which raised Lhemfrom thecondition of an oppressed to that of a specially privileged class. The same principle, when put in force agajnst the professors, reduced the latter to a position of humble deference to the very body whom they were called upon to instruct, and imparted to the entire university that essentially democratic character by which it was afterwands distinguished. It is not surprising that such advantages should have led to an imitation and extension of the pricciple by which they were obtained. Denife considers that the "universities" at Bologna were at one time certainly more than four in number, and we know that the Italian students alone were subdivided into two-the Tuscans and the Lombards. In the centres formed by secession from the parent body a like subdivision took place. At Vercelif there were four unidersibates, composed respectively of Italians, English, Provengals and
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular} Germans; at Padua there were similar divisions into Italians,
\({ }^{3}\) See Savigny, Gesch. d. rom. Rechts. iii. 157, 49i-92. See atso Giescbrecht, Gesch. d. Kaisersié (ed. 1880), v. \(5 \mathrm{x}-58\). The atory is preserved in a recently discovered metrical composition deacriptive of the history of Frederick I.; see Sitzungsberichte d. Bairisch. Akad. d. Wissensthaft. Phil.-Hist. Klasse (1879). ii. 285. Its authertticity is called in question by Denifle, but it would wem to be quite in harmony with the knowp facts.

Prench (1.e. Proncigenae, comprising both Enstish and Normans), Provengals (including Spaniards and Catalans). When, accordingly, we learn from Odofred that in the time of the eminent jurist Azo, who lectured at Bologna about 1200 , the mumber of the students there amounted to some ten thousand, of whom the majority were foreigners, it seems reasonable to conelude that the number of these confederations of students (socictates scholorixme) at Bologns was yet greater. It is certain that they were not formed simultaneously, but, similarly to the free gilds, one after the other-the last in order being that of the Tuscans, which was composed of students from Tuscany, the Campagna and Rome. Nor are we, again, to look upon them as in any way the outcome of those democratic principles which found favour in Bologna, but rather as originating in the traditional home associations of the foreign students, fostered, however, by the peculiar conditions of their university life. As the Tuscan divisinn (the one least in sympathy, in most respects, with Teutonic institutions) was the last formed, so, Deniffe conjectures, the German "university" may have introduced the conception which was successively adopted by the other nationalities.

In marked resemblance to the gilds, these confederations were presided over by a common head, the "rector scholarium," an obviousimitation of the "rector societatum"

\section*{The}
necter: or " artium " of the gild, but to be carefully distinguished from the " rector scholarum " or director of the tadies, with whose function the former officer had, at this time, nothing in common. Like the gilds, again, the difierent nations were represented by their "consiliarif," a deliberative assembly with whom the rector habitually took counsel.

While recognizing the essentially democratic character of the constitution of these communities, it is to be remembered mater that the students, unlike the majority at Paris and later areotite universities, were mostly at this time of mature years. anderats As the civil law and the canon law were at first the only branches of study, the closs whom they attracted were often men already filling office in soine department of the church or state-archdeacons, the beads of schools, canons of cathedrak, and like functionaries forming a considerable element in the ageregate. It has been observed, indced, that the permission accorded them by Frederick I. of choosing, in all cases of dispute, their own tribunal, thus constituting them, to a great extent, swi juris, seems to presuppose a certain maturity of judgment among those on whom this discretionary power was bestowed.

Innocent IV., in according his sanction to the new statutes of the university in 1253 , refers to them as drawn up by the Poreen "rectores et universitas scholarium Bononiensium."

Pormes
then of
the ald
versh
Peculow
Moser
ant

About the year 1200 were formed the two facultics of medicine and philosophy (or "the arts" \({ }^{1}\)), the former being somewhat the carlier. It was developed, as that of the civil law bad been devcloped, by a succession of able teachers, among whom Thaddeus Alderottus was especinlly eminent. The faculty of arts, down to the t4th century. scarcelyatt ained to equal eminence. The teaching of theology remained for a long time exclusively in the hands of the Dominicans; and it was not until the year 1360 that Innocent VI. recognized Bologna as a " studium generale "in this brancb-in other words, as a place of theological cducation for aII st udents, with the power of confcring degrecs of universal validit y.

In the year 1371 the cardinal legate, Angicus, compiled, as chiel director of ecclesiastical afiairs in the city, an account anomet of the university, which he presented to Urban V.
-100 ativar eny in Ansiture The information it supplies is, however, defective, owing to the fact that only the professors who werc in receipt of salaries from the municipality are mentioned. Of these there were twelve of civil law and six of canon law; three of medicine, three of practical medicine and one of surgery; two of logic, and one cach of astrology, rhetoric

\footnotetext{
The arts course of stady was that represented by the ancient bivium (i.e. grammar. logic and rhetoric) and the guofroman (i.e. erichmetic, seometry. muic and axtronomy) as tanded down from the echools of the Roman ernpire. See 1. B. Mullinger's Hastory of the \(U\) miversity of Cambridge, \(i .24-27\).
}
and notarial practice. The professors of theoilosy, who, as members of the religious orders, received no state remuneration are nnmentioned. The significance of the term "college," as first employed at Bologna, differed, like that of "university," from that which it subsequently ecquired. The collogia of the doctors no more connoted the idea of a place of residence than did the uniocrsilates of the students. There were the College of Doctors of Civil Law, the College of Doctors of Canon Law, the College of Doctors in Medicine and Ars and (from 1352) the College of Doctors in Theology. Though the professors were largely dependent upon
embrer
elme the students, they had separate organisations of their Bateria own; the college alone was concerned in the conferment of degrees. Each faculty was therefore at Bologna entirely independent of every other (except for the union of medicine and arts): the only connecting lint between them was the necessity of obtaining their degrees (after 1219) from the same chancellor, the arehdeacon of Bologna. The dectine in the reputation of the siudium from about 12 go was langely due to the successful efforts of the doctors to exctude all but Bolognese citizens from membership of the doctoral colleges (which alone possessed the valuable "right of promotion "), and from the more valuahle salaried chairs. They even attempted and partially succeeded in restricting these privileges to members of their own families.

Colleges as places of residence for students existed, however, at Boiogna at a very early date, but it is not until the rbe 14th century that we find them possessing any serthat organization; and the humble domus, as it was termed, carthat was at first designed soleiy for necessitous students, not being natives of Bologna. A separate house, with a certain fund for the maintenance of a specified number of scholars, was all that was originally conteroplated. Such was the character of that founded by Zoen, bishop of Avignon, in February 1256 (O.S.), the same month and year, it is to be noted, in which the Sorbonne was founded in Paris. It was designed for the maintenance of eight scholars from the province of Avignon, under the supervision of three canons of the church, maintaining themselves in the university. Each scholar was to receive 24 Bolognese lire annually for five years. The college of Brescia was founded in 1326 by William of Brescia, arehdeacon of Bologna, for poor foreign studente without distinction as to nationality. The Spanish college, founded in 1364, for twenty-four Spanish scholars and two chaplains, is noted by Denifle as the one college fourded in medieval times which still exists on the Continent.

Of the general fact that the early universities rose in response to new wants the commencement of the university of Paris supplies us with a further illustration. The study of logic, which, prior to the 12 th century, was founded exclusively on one or two meagre compends, received about the year 1100 , on two occasions, a powerful Onizte of mativer athy of Perts. stimulus-in the first instance, from the memorable controversy between Lanfranc and Berengar; in the sccond, from the no less famous controversy between Ansclm and Roscellinus. A beiicf sprang up that an intelligent apprehension of spiritual truth depended on a correct use of prescribed methods of argumentation. Dialectic was looked upon as " the science of sciences"; and when, somewhere in the first decade of the 12 th century, William of Champenux opened in Paris a school for the mere advanced study of dialectls as an art, his teaching was attended with marked success. A mong his pupils was Abelard, in whose hands the study made a yet more notable advance; so that, hy the midde of the century, we find John of Salisbury, on returning from the French capital to England, relating with astonishment, not unmingled with contempt, how all learned Paris had gone wellnigh mad in its pursuit and practice of the new dalectic.

Abclard taught in the first instance at the cathedral school at Notre Dame, and subsequently at the schools on the Montagne Ste Ceneviève, of which he was the founder. and where he imparted to logic its new dmanes
stuple of Nand: development. But in 1147 the secular canons of Ste Genevieve
gave place to canons regular from St Victor; and benceiorth the school on the former foundation was merely a seruly of school for the teaching of theology, and was attended only hy the members of the house. \({ }^{\text {I }}\) The schools out of which the university arose were those attached to the cathedral on the tle de la Cite, and presided over hy the chancellor-a dignitary who must be carefully distinguished from the later chancellor of the university. For a long time the teachers lived in separate houses on the island, and it was only hy degrees that they comhined themselves into a soriety, and that special huildings were constructed for their class-work. But the flame which Abelard's teaching had kindled was not destined to expire. Among his pupils was Peter Lombard, who was bishop of Paris in 1159, and widely known to posterity as the compiler of the famous volume of the
Sentences. The design of this work was to place before
- Sarme

Amans
the student, in as strictly logical a form as practicable, the views (sententiac) of the fathers and all the great doctors of the church upon the chief and most diffcult points in the Christian belief. Conceived with the purpose of allaying and preventing, it really stimulated, controversy. The logicians scized upon it as a great storehouse of indisputable major premises, on which they argued with renewed energy and with endless ingenuity of dialectical refinement; and upon this new compendium of theological doctrine, which became the text-book of the middle ages, the schoolmen, in their successive treatises Super sententias, expended a considerable share of that subtlety and Lebour which still excite the astonishment of tbe student of metaphysical literature.
It is in these prominent features in the history of these early universities-the development of new methods of instruction
aree ef cierly mab certirien concurrently with the appearance of new material for their application-that we find the most probable solution of the question as to how the university, as distinguished from the older cathedral or monastic schools, was first formed. In a similar manner, it seems probable, the majority of the carlier universities of Italy-Reggio, Modena, Vicenza, Fadua and Vercelli-arose, for they had their origin independently alike of the civil and the papal authority. Instances, it is true, occur, which cannot be referred to this spontaneous mode of growth. The university of Naples, for example, was founded solely by the fiat of the emperor Frederick II. in the year 1224; and, if we may rely upon the documents cited by Denifle, Innocent IV. about the year 1245 founded in connexion with the curia a "studium gencrale,"; which was attached to the papal court, and followed it when removed from Rome, very much as the Palace School of Charles the Great accompanied that monarch on his progresses,
As the university of Paris became the model, not only for the universities of France north of the Loire, but also for the great majority of those of central Europe as well as eart uno of men any of pint for Oxiord and Cambridge, some account of its carly organization will here be indispensable. Such an account is rendered still further necessary hy the fact that the recent and almost exhaustive researches of Denifle, the Dominican father, have led him to conclusions which on some important points run altogether counter 10 those sanctioned by the high authority of Savigny
The original university, as already stated, took its rise entirely out of the movement carried on by teachers on the island, who taught by virtue of the licence conferted by the chancellor of the cathedral. In the second decale of the 13 th century, it is true, we find masters withdrawing themselves from his authority by repairing to the left bank of the Scine and placing themselves under the jurisdiction of the abbot of the monastery of Ste Geneviève; and in 1255 this dignitary is to be found
'The viey of Thurox (De Targamisation de Tenseignemext dans \(r_{\text {kniverside }}\) de Paris. pp. 4-i) that the university arose out of a combination of these several schools is rejected by Denife (see Dic \(U\) miwrititaten. Ac., i. \(658-94\)).
TWhere the words aydiom erwerole are placed within marks of qutation they ogur io the orizinal chater of foundation of the university, redered to.
appointing a chapecullor whose duty it should be to confer licentia docendi on those candidates who were desirous of opening schools in that district. But it was around the bestowal of this licence by the chancellor of Notre Dame, on the lle de la Cite, that the university of Paris grew up. It is in this licence that the whole significance of the master of arts degree is contained; for what is technically known as admission
to that degree was really nothing more nor less than
receiving the chancellor's permission to "incept," and by "inception" was implied the master's formal entrance upon, and commencement of, the functions of a duly jeensed teacher, and his recognition as such by his brothers in the profession. The previous stage of his academic carecr, that of bachelordom, had been one of apprenticeship for the mastership; and his emancipation from this state

\section*{The}
bechever of ares. was symbolized by placing the magisterial cap (bircllo) upon his head, a ceremony which, in imitation of the old Roman ceremony of manumission, was performed by bis former instructor, "under whom" he was said to incept. He then gave a formal inaugural lecture, and, after this proof of magisterial capacity, was welcomed into the society of his professional hrethren with sct speeches, and took his seat in his master's chair.

This community of teachers of recognized fitness did not in itself suffice to constitute a university, but some time between the years 1150 and 1170 , the period wben the Sentences of Peter Lombard were given to the world, the university of Paris came formally into being. Its first written statutes were not, however, compiled until about the year 1208, and it was not until long after that date that it possessed a "rector." Its earliest recognition as a legal corporation belongs to about the year 1211, when a brief of Innocent III. cmpowered it to elect a proctor to be its represeatative at the papal court. By this permission it obtained the righs to sue or to be sued in a court of justice as a corporate body.

This papal recognition was, however, very far from implying the episcopal recognition, and the earlier history of the new community exhibits it as in continual conflict alike with the chancellor, the bishop and the cathedral chapter of Paris, by all of whom it was regarded as a centre of insubordination and doctrinal licence. Had it not been, indeed, for the papal aid, the university
 enry would probahly not have survived the contest; but with that powerful assistance it came to be regarded as the great Transalpine centre of orthodox theological teaching. Successive pontiffs, down to the great schism of \(\mathrm{r} 378^{8}\), made it one of the foremost points of their policy to cultlvate friendly and confidential relations with the authorties of the aniversity of Paris, and systematically to discourage the formation of theological faculties at other centres. In 1231 Gregory IX., in the ball Parens Scicntiarum, gave full recognition to the right of the several faculties to regulate and modify the constitution of the entire university-a formal sanction which, in Deniffe's opinion, rendered the bull in question the Magna Charta of the university.

In comparing the relative antiquity of the universities of Paris and Bologna, it is difficult to give an anqualified decision. The university of masters at the former was probably slightly anterior to the university of students at the latter; but there is good reason for believing that Paris, in reducing its traditional customs to statutory form, largely availed itsclf of the precedents afforded by the already existing code of the Transalpine centre. The fully developed university was divided into four faculiesthree "supcrior," viz. those of theology, canon law and medicine, and one "inferior," that of arts, which was divided into four "nations." These nations, which incloded both professors and scholars, were-(r) the French nation. composed, in addition to the native element, of Spaniards, Itatians and Greeks; (2) ?he Pirard nation. representing the students from the northeast and from the Netherlands; (3) the Norman nation; (4) the English mation, comprising. besides students from the provinces under English rule, those from England, Ireland, Scotland and

Cermany. The bead of eaph factulty mas the dean; the hedd of each nation was the proctor. The rector, who in the finst instance was head of the faculty of arts, by whom he was elocted, was eventually head of the whole university. In congregations of the university matters were decided by a majority of faculties; the vote of the faculty of arts was dotermined by a rajojority of nations. The chancellor of Notre Dame, whose functions weve new limited to the conferment of the licence, atood as such outside the university or gild altogether, though as a doctor of choolegy be was always a member of that faculey. Oniy "regents," that in, masters actually eagaged in teachiog, bact any right to be present or to vote in congregations. Neither the astire university nor the separate facultics had thus, it will be seen, origipally a common bead, and it was mot uniil the raiddle of the 14th century that the rector became the bead of the collective universily, by the incorporation under him, first, of the students of the canon law and of medicine (which took place about the end of the \(13^{\text {th }}\) century), and, secondly, of the theologians, which took place about half a century later.
In the course of the 16th and 17 th centuries this democratic constitution of the middle ages was largely superseded by the srowth of a small oligarchy of officials. The tribunal of the university-the rector, deans and proctor-came to octupy a somewhat similar position to the old "Hebdommedal Boand" of heads of colleges at Onford and the Capad at Cambridge. Moreover, the teaching functions of the university, or rather of the faculty of arts, owing chiefly to the absence of any endowment for the regonts or teaching graduates, practically passed to the colleges. Almost as much as the English wniversities. Paris came to be virtually reduced to a federation of colleges, though the colleges were at Paris less independent of miversity asthority, while the smaller colleges sent their members to receive instruction in the larger ones (colliges de plein exercise), which received large numbers of non-\{oundation members. This state of things lasted till the French Revolution swept away the whole universily system of the middie ages. It may be remarked that the famous Sorbonne was really the most

The San mage. celebrated college of Paris-founded by Robert de of Navarre were the only college foundations which provided for students in theology, the cloce consexion of the former with the faculty and the use of its hall for the disputaLions of that body led to the word Socbonse becoming a popular term for the theological faculty of Paris.
Apert from the broad difieremess in their organimation, the very conception of learning, it will be observed, was different Apreat cere crastol at Bologna from what it was at Parie. In the former it was entirely professional-designed, that is to say, to prepare the student for a definite and practical caseer in after life; in the latter it was sought to provide a grneral mental training and to extract the learner to studies which were speculative rather than practical. In the sequel, the less mercenary spirit in which Paris cultivated knowledge added immensely to her influence and reputation, trich about the middte of the salh century may be said to have reached their apogee. It had forty colleges, governed either by secular or religious compunitiea, and numbered sanong its students representalives of every country in Europe (Jourdain. Excmosions hisforiques, c. xiv.). The university becane known as the grest school where theology was atudied in its most scientific spirit; and the decistons of ita great docters upon those abutruse questions which abeorbed so much of the bighest intellectual activity of the middle ages were regartied at clmost final. The popes themsives, alabough averse from theological controversies, deemed it expedient to Promb cultivate friendly relations with ecentre of such importance for the purpose of securing their infucnce in a yet wider feld. Dow therefore to the time of the great schirm (r 378), they at once conciliated the university of Paris and consulted what they deemed to be the interests of the Roman see, by discouraging the creation of faculties of thoology coewhere. The apperent exoeptions to this policy ase easily
expiained: the foar facalties of theology which they sanctioned in Italy-Pisa (1343), Florence (1349), Bologna (1362) and Padua (1363)-were designed to benefit the Italian monasteries. by saving the monks the expense and dangers of a long journey heyond the Alps; while that at Toulouse (1229) took its rise under circumstances entirely exceptional, being designed as a bulwark against the beresy of the Albigenses. The popes, on the other hand, favoured the creation of new faculties of law, and especially of the canon law, as the latter represented the source from which Rome derived her most warmly contested powers and prerogatives. The effects of this twotold policy were sufficiently intelligible: the withbolding of each charter which it whs sought to obtain for a new school of theology only served to augment the numbers that flocked to Parts; the bestowal of each sew charter for a faculty of law served in like manner to divert a certain proportionate number from Bologan. These facts cmable us to understand how it is that, in the \(13^{\text {th }}\) and \(14^{\text {th }}\) centuries, we find, even in France, a larger number of universities created after the model of Bologna than after that of Paris.

In their carliest stage, however, the importance of these new institutions was but imperfectly discemed alke by the civil and the ecclesiastical power, and the first four universities of Italy, after Bologna, rose into existence, like Bologna itself, without a charter from either pope or emperor. Of these the first were those of Reggio nell' Emilia and Modena, both of which are to be found mentioned as schook of civil law before the close of the 12th century. The latter, throughout the inth century, appears to have been resorted ta by teachers of sufficient eminence to form a flourish ing school, composed of students not only from the
 city itself, but also from a considerable distance. Both of then would seem to have been formed indeperidently of Bologna, but the unlversity of Vicenza was probably the outcome of a migration of the students from the nowese former city, which took place in the year r204. During the next fifty years Vicenza attained to coosiderable prosperity, and appears to have been recognized by Innocent ML; its students were divided into four nations, each with its own rector; and in 1864 it included in its professoriate teachers, not only of the civil Law, but also of medicine, grammar and dialectic. The university of Padua was unquestion-
ably the direct result of the migration in 1122 of a Pohe considerable number of stadents from Bologna. Somo writers, indeed, have inferred that the "studium" in the latter eity was transierred in its entirety, but the continued residence of a certain proportion in Bologna is proved by the fact that two years hater we find them appealing to Hocorius III. in a dispute with the civic authoritics. In the year 1328 the students of Padua were compelled hy circumstances to transier their residonce to Vercelli, and the latter city guaranteed them, besides other privileges, the right to rent no less than five hundred lodging-bouses at a fixed rental for a period of eight yeara At first Padua was a school only of the civil and canon law, and during the oppresaive tyranny of Eaxelin (\(1237-60\)) the university maintained its existence with some difficulty. But in the lateer part of the century it incorporated the faculies of grammar, shetoric and medicine, and became knowa as ane of the most flourishing schools of Italy, and a great centre of the Dominicans, at chat time among the most active promotess of learaing.

The university of Naples was founded by the emperor Frederick IL. in the year rais, as a achool of theology, jurisprudence, the arts and medicipe-his design being that bis subjects ia the kingdem of Naples abould Meaten. find in the capital adequate instruction in every branch of learoing, and " not be compelled in the parsuit of knowledge to have recouse to foreip nations or to beg in other lands" In the year 1231, however, be decreed that the faculty of medicine should cense to exist, and that the study ahould be porsued nowhere in the kingdom but at Salerno. The university never attained to much emineace, and after the death of Froderick cape for a time altopethor to an end, but was reatored
in 1258 by King Manfred. In 1266 its faculty of mediciae was reconstituted, and from 1272-74 Thomas Aquinas was one of its teachera of theology. The commencement of the university of Vereelli belongs to about the year 1288; it probably iacluded, like Naples, all the faculies, but would seem to have been regarded with little favour by the Roman See, and by the year 1372 had ceased to exist. allbough mention of colleges of law and medicine is to be found after that date. The two universities of Piacenza and Pavia stand in close connexion with each other. The Plecosia.
former is noted by Denifle as the earliest in Italy which was founded by virtue of a papal charter (6th Fehruary 1248), although the scheme remained for a loag time inoperative At length, in the year 1398 , the university was reconstituted by Giovanni Galeazzo Visconti, duke of Milan, who in the same year caused the university of Pavia to be transferred thither. Piacenza now became the scene of a sudden but short-lived academic prosperity. We are told of oo less than twentyseven professors of the civil law-among them the celebrated Baldus; of twenty-two professors of medicine, of professors of philosophy, astrology, grammer and rhetoric; and of lecturers on Seneca and Dante. The faculty of theology would appear, however, never to have been duly constituted, and but one lecturer in this faculty is mentioned. With the death of Galeazzo in 1402, this precarious activity came suddenly to an end; and in 1404 the university had ceased to exist. Its history is, indeed, unintelligible, unless taken in conjunction with that of Pavia. Even before Irnerius taught at Bologna,

\section*{Parte.}

Pavia had been widely known as a seat of tegal studies, and more especially of the Lombard law, although the evidence is wanting which would serve to establish a direct convexion between this early school and the university which tras founded there in 1361 , by virtue of the charier granted by the emperor Charles IV. The new "studium" included faculties of jurisprudence, philosophy, medicine and the arts, and its students were formally taken under the imperial protection, and endowed with privileges identical with those which had been granted to Paris, Bologna, Oxford, Orieans and Montpellier; but its existence in Pavia was suddenly suspended by the removal, above noted, of its students to Piacenza. It shared again in the decline which overtook the university of Piacenza after the death of Giovanni Galcazso, and during the period from tyou to 1412 it altogether ceased to exist. But in October 1412 the lectures were recommenced. and the university entered upon the most brilliant penod of its existence. Its professors throughout the igth century were men of distinguished ability, attracted by munificent salaries such as but lew other universities could offer, while in the number of students who resorted thither from other countrics, and more especially for the study of the civil law, Pavia had no rival in Italy hut Padua. Arezzo appears to have been koown as a centre of tbe same study so early as 1215 . and its earliest statutes are astigned to the year 1255 . By that time it had become a school of ants and medicine also: but for a considerable period after it was almost entirely deserted, and is almost unmentioned until the year 1338 . When it acquired new importance by the accession of several erainent jurists from Bologna. In May 1355 it received Its charter as a sfudimengencrale from Charles IV. After the year 1373 the school gredually dwindled, although it did not become altogetber extinct until about the year 1470. The university of Rome (which is to be carefully distingaished from the school attached to the Curia) owed its foundation (1303) to Boniface VIII., and was especially designed by that pontiff for the benefit of the poor foreign students sojourning in the cmpitas It originally included alt the facultics; but in
 mendoa and civil law. The hehoughout the period of保 4nglowever, to be bus a
fallacious test of the prosperity of the acedimit' communiry. for it is stated that many of the prolessors, owing to the imperfect manner in which they were protected in their privileges, were in the reccipt of such insufficient fees that they were compelied to combine other employments with that of lecturing in order to support themselves. An appeal addressed to Leo \(\mathbf{X}\). in the year 1513 represents the number of students as so small as to be sometimes exceeded by that of the lecturers ("4t quandoque plures sint qui legant quam qui avdiant "). Scarcely any of the universities in Italy in the rath centary attracted a larger concourse than that of Perugia. where the study chiefly culivared was that of the

Prusian civil law. The universily received its charter as a stadium gencrale from Clement V. in the year 1308 , but had already in 1306 been formally recognized by the civie authorities, by whom it was commended to the special care and protection of the podesta In common with the rest of the Italian universities, it suffered severely from the greal plague of \(\mathbf{1 3 4}^{8-49 \text {; }}\) but in 1355 it recoived new privilcges from the emperor, and in 1362 its first college, dedicated to Cregory the Great, was founded by tbe bishop of Perugia. The university of Treviso, which received its charter from Frederick the Fair in 1318, was of little celebrity and but short doration. The circumstances of the rise of the university of Florence are unknown, but the earliest evidence of academic instruction belongs to the year 1320 . The dispersion of the university of Bologna, in the March and April of the following year, afforded a tavourable opportunity for the creation of a studimm generale, but the necessary measures were taken somewhat tardily, and in the meantime the greater number of the Bolognese students had betaken themselves to Siena, where for the space of three years twenty-two professors gathered round them a body of enthusiastic sxudents. Eventually the majority returned to Bologna, and when in \(133^{\circ}\) that city was placed under an interdict by Benediet XII. another exodus of students repaired to Pisa, which in 1343 received from Clement VI. its charter as a stwdium gemeralc. Closed in 1406, Pisa, aided by the powerful intervention a Lorenzo de' Medici, reopened in 1473, to undergo, however, a long series of vicissitudes which at last found a termination in 1850 , when its fortunes were placed on a more stable basis, and it gradually acquired the reputation of ranking among tbe foremest universities of a reunited Italy The charter of foundation for Fiorence, on the other hand, was not granted uatil May 31, 1349. When Ciement VI. decreed that there should be instituted a studiam generale in theology, jurisprudence, medicine and every other recognized faculty of learning, the teachers to be professors who had obtanned the degree of doctor or mauter either at Bologna or Parts, or " oome other sfudixim sewerole of celebrity" On the and of January 1364 the university also obtalned the grant of imperial privieges from Charles IV. On 14th February 1388 It adopted a body of statutes which are still extant, and afford an interesting study in connexion with the university history of the period. The university now entered upon that briliant period in its history which was destined to so summary an extinction. "It is almost touching," says Denifie, "to note how untiringly Florence trerted herself at this period to attract as teachers to her schools tbe great masters of the sciences and learning." In tbe year 147, however, it was decided that Florence was not a convenient seat for a university, and its atudents joined the throng which repaired to the reopened halls of Pisa. A special interest attaches to the rise of the university of Siena,
as that of one which had made good its position prior Siree to becoming recognized eitber by emperor or pope. Its beginning dates from about the year 1241, but its charter was first granted by the emperor Charles IV, at the petition of the citizens, in the year 1357. It was Lounded as a studimm geserale in jurisprudence, the ants and medicine. The imperial charter was confirmed by Gregory XII. in 1408, and the various bulls relating to the university which be subsequeptly issued affiord a good llustration of the conditions of scadeovic

We in-these times. Residence on the part of the students appears to have been sometimes dispensed with. The bishop of Siena was nominated chancellor of the university, just as, gays the bull, be had been appointed to that office by the imperial authority. The graduates were to be admitted to the same privileges as those of Bologna or Paris; and a faculty of theology was added to the cusriculum of studies. The uni-
Anveren versity of Fertara owes its foundation to the bouse of Este-Alberta, marquass of Este, baving obtained from Boniface IX. in 3 391 a charter couched in terms precisely siminar to those of the charter for Pisa. In the first half of the asth century the university was adorned by the presence of several distinguished humanists, but its fortures were singularly chequered, and it would appear for a certain period to hove been altogether extinci. It was, however, restored, and became in the hiter part of the century one of the most celebrated of the universitics of litaly. In the year 1474 its circie of stidies comprised all the existing faculies, and it numbered no less than fifty-one professers or tecturers. In later times Ferrara has beén noted chicfly as a school of medicise.

Of the universities modelled on that of Paris, Oxford would appear to have been the earliest, and the manner of its develop-

\section*{arfors.} meat was probably similar. Certain schools, opeened within the precincts of the dissolved nunnery of St Frideswyde and of Oseney abbey, are supposed to have been the nucleus round which the university grew up. In tbe year 1133 one Robert Pullen, a theologian of considerable eminence (but whether an Englishman or a Breton is uncertain), arrived from Paris and delivered lecsures on thr Bible. It has been main. tained, on the authorit \(y\) of Cervase of Canterbury, that Vacarius, a native of Lambardy, who, in the lat ter hall of the iath century, incurred the displeasure of King Stephen by lecturing in England on the civil law, delivered lectures at Oxford. H. S. Denifle, homever (Die Entsiehnng der Unimersidaten, p. 241), maintains that the naming of Oxford is a gratuitous assumption on the part of Gerrase, and that we hove, at best, only presumptive evidence of a sumbium generale there in the 125 h century. Of this, Mr Rashdall inclines to find the beginning in a migration of Engtish sivdents from Paris about 1167 or 3168. In the first-mentioned year we are told by Johr of Salisbury that "France, the mildest and moat civil of nations," has "expelled ber forcign scholars" (MAcrials for the History of Themas Beckel, ed. Robertson, vi pp. 235-36). At about the game time we hear of an edict of Ilcnry 11., during the quarrei with Becket, recalling all clerks holding benefices in England (as they loved their bencfices), and lorbidding all derks in Eugland to cross the Channel (ibid. i. pp. \(53^{-54}\)). The archbishop himself remarks that "The king will that all scholars shall be compelled to return to their country or be deprived of their benefices" (ibid. vii p 1q6). Paris was at this time the great place of bigher education for English students. No English school was a recognized shudium generabe. Immediately after 1168 allusions to Oxford as a aludium and a aindimm generale begin to mutifly. The natural inference is that the breaking of of relations between England and Paris in 1167 or 1168 led to the growth of a atminm gencrale in Oxford, formed no doubt in the first instance of seceders from Paris. En the i3th ceatury mention first occurs of university " cbests," especially the Frideswyde chest, which more benefactions designed as funds for the assistance of poor studeats. Halis, or places of ticensed residence for students, also began to be established. In the year 2257, when the bistrop of Lincoln, tos diocesan, had trenched too closely on the liberties of the community, the deputies from Oxford, when prefersing their appeal to the king at St Albans, could venture to speak of the university as "schola secunda ecclesiae," or second only to Paris. Its numbers sbout this time were probably some three choosand; hur it was eseentially a ductuating body. and whenever plague or tumult led to a temporary dispersion a serious diminution ir its numerical strongth generally ensuld for some time after. Agninst such viciscitudes ibe foundation of colleens proved the more effoctual remedy. Of these the three
eartiest were University Collesei founded in 22 ap by Wiliam of Durham, Balliol College, founded about 1263 by John Balliol, the father of the king of Scotland of the same name; and Merton College, founded in 2264. The last-named is especially notable as associated with a new conception of university education, manely, that of collegiate discipline for the secular clergy, instead of for any one of the religious orders, for whose sole benefit all similar foundations had hitherto been designed. The stalutes given to the sociely by Walter de Merton are not less noteworthy, as characterized not only by breadth of conception, but also by a carcful and discriminating attention to detail, which led to their adoption as the model for later colkges, not only at Oxford but at Cambridge. Of the service rendered by these foundations to the university at large we have significant proof in the fact that, although representing oniy a small numerical minority in the academic community at large, their members soon obtained a considerahle prepoaderance in the administration of affairs.

The university of Cambridge, although it rose into oxistence somewhat later than Oxford, may reasonably be held to have had its origin in the same century. There was probably a certain amount of educational work carried on by the canons of the church of St Gites, which Cume gradually developed into the instruction belonging to a regular stadium. In the year 1112 the canons crossed the river and took up their residence in the new priory in Barnwell, and their work of instraction acquired additional importance. Ia 1209 a boty of students migrated thither from Oxford. Then, as early as the year 1224, the Franciscans eatablished themseives in the town, and, somewhat less than half a century fater, were [ollowed by the Dominicans. At both the English universities, as at Paris, the Mendicants and other religious orders were admitted to degrees, a privilege which, uatil the year 1337, was extended to them at no other university. Their interest in and influence at these three centres was consequently proportionably great. In the years 1231 and 1233 certain royal and papal letters afford satisfactory proof that hy that time the university of Cambridge was already an organized body with a chancellor at its head-a dignitary appointed by the bishop of Ely for the express purpose of granting degrees and governing the sudiume. In 1329 and 1231 the numbers were largely augmented by migrations from Paris and from Oxford. Cambridge, however, in its turn suficred from emigra. tuon, while in the year 1261, and again in 1381, the records of the university were wantonly burnt by the townsmen. Throughout the 13th century, indeed, the university was still only a very elaghtly and imperfectly organized community. Its endowments were of the most skender kind, it had no systematic code for the government of its members, the supervision of the students was very imperiectly provided for. Although both Oxford and Cambridge were modelled on Paris, their highet faculties never developed the same distinct organization; and while the two proctons at Cambridge originally represented "north" and "south," the " nations" are scarcly to be discerned. An important step in the direction of discipline was, howe ver, made in the year 1276, when an ordinance was passed requiring that every one who claimed to be recognized as a scholar sbould have a fixed master within fifteen days after his entry into the university. The traditional constitution of tho English universities was in its origin an imitation of the Parisian chanceilor, modified by the absence of the cathedral chancelior. As Onford was not in the 12 th century a bishop's see, the hishop (in 1219, if not eariver) appointed a chancellor for the express purpose of graming degrees and governing the studism. But he was from the first elected by the masters, and early ohtained recognition as the head of the university as well as the representative of the bishop. The procurofores (originally also rectores) remained representatives of the faculty of ants and (there being at Oxford no deans) of the whole universily. But the feature which most served to give permanence and cohesion to the entire community was, as at Oxiord, the institution of colleges. The earliest of thexe was Peterhousc, firs founded as a seperate

Institution by Hugh Balsham, bithop of Ely, in the year 1284, its earliest extant code being that given in 1344 by Simon de Montacute, which was little more than a transcript of that drawn up by Walter de Merton for his scholars at Oxford. In 1323 was founded Michaelhouse, and two years later, in 1326 , Edward II. instituted his foundation of "king's scholars," afterwards forming the community of King's Hall. Borb these societies in the ith century were merged in Trinity College. To these succeeded Pembroke Hall (1347) and Gronville Hall (1348). All these colleges, although by no means conceived in a spirit of bostility to either the monastic or the meadicant orders, were expressly designed for the benefit of the secular clergy. The toundation of Trinity Hall (Awla)' in 1350 by Bishop Bateman, on the other hand, as a school of civil and canon law, was probably designed to further ultramontane interests. That of Corpus Christi (1352), the outcome of the liberality of a gild of Cambridge towasmen, was conceived with the combined object of providing a house of education for the clergy, and at the same time securIng the regular performance of masses for the benefit of the souls of departed members of the gild. But both Trinity Hall and Corpus Christi College, as well as Clare Hall, founded ia 1359, were to a great extent indebted for thelr origin to the ravages caused among the ciergy by the great plague of 1349 . In the latter half of the same century, the coming change of feeling is shown by the fact that the chancellor was under the necessity of issuing a decree (1374) in order to protect the house of the Carmelites from molestation on the part of the students.

Returning to France, or rather to the territory Included within the boundacies of modern France, we find Montpellier

Mantmollivor a recognized school of medical science as early as the rath century. William VIII., lord of Montpellier, in the year u8i proclaimed it a school of free resort, where any teacher of medical science, from whatever country, might give instruction. Before the end of the century it possessed also a faculty of jurispridence, a branch of learning for which it afterwards became famed. The university of medicine and that of law continued, however, to be totally distinet bodies with different constitutions. Petrarch was sent by his father to Montpellier to study the civil Law. On 26th October 8289 Montpellier was raised by Nicholas IV. to the rank of a "studium generale," a mark of favour which, in a region where papal influence was so potent, resulted in a considerable aceession of prosperity. The university also now included a faculty of artsi and there is satisfactory evidence of the existence of a faculty of theology before the close of the rath century, altbough not formally recogaized by the pope before the year 1421. In the course of the same century several colleges for poor students were also founded. The university of Toulouse is to be

\section*{Touloess.}
noted as the first founded in any country by virtue of a papal charter. It took its rise in the efforts of Rome for the suppression of the Alhigensian beresy, and its foradation formed one of the articles of the conditions of peace imposed by Louis IX. on Count Raymond of Toulouse. In the year 1233 it first acquired its full privileges as a "studium generale" by virtue of a charter given by Gregory IX. This pontif watched over the university with especial solicitude and through his exertions it soon became noted as a centre of that Dominican teacling which involvel the extermination of the Catharists. As a school of arts, jurisprudence and medicine, although faculties of each existed, it never attained to any reputation. The university of Orleans had a virtual existence as a studium generaic as early as the first half of the Orksss. 13 th century, but in the year 1305 Clement V. endowed
it with new privileges, and gave its teachers permission to form themselves into a corporation. The schools of the city had an existence long prior-as carly, it is said, as the 6th century-and subsequently supplied the nucleus for the foundation of a university at Blois; but of this university no records are extant. \({ }^{\text {² }}\)

Oricaus, in its organization, was modelled mainly on Parts, bot its studies were complementary rather than in civalry to the older university. The absorbing character of the study of the civil law, and the mercenary spirit in which it was pursued, had led the authoritits at Paris to refuse to tecognise it as a faculty. The study found a bome at Orleans, where it was cultivated with an energy which attracted numerous students. In January 1235 we find the bishop of Orleans soliciting the advice of Gregory IX. as to the expediency of countenancing a study which was prohibited in Paris. Gregory decided that the lectures might be continued; but he ondered that no beneficed ecclesiastic should be allowed to devote himself to so eminently eecular a brancb of learning. Orleans subsequeatly incorporated a faculty of arts, but its repotation from this period was always that of a school of legal atudies, and in the 14th century its reputation in this respect was surpasmed by no other university in Europe. Prior to the z3th century it had been famed for its classical learning; and Angers, which recrived its charter at the sume time, also ance enjoyed a like reputation, which, in a similar manner, it exchanged for that of a school for civilians and canonists. The roll of the university forwarded in 1378 to Clement VII. contains the names of 8 professors atriuspme juris, 2 of civil and 2 of cannn law, 72 licentiates, 884 bachelors of both the legal faculties, and 190 scholars. The university of Avignon was first recognixed as a " studium generale " by Boniface VIII.

Artanses. in the year 1303, with power to grant dogrees in jurisprudence, arts and medicine. Its numbers declined somewhat during the residence of the popes, owing to the counter-attractions of the "studium" attached to the Curia; but after the return of the papal court to Rome it became one of the most frequented universitics in France, and possessed at one time no less than reven colleges. The university of Cabors enjoyed the advantage of heing regarded with eapecial favour by

Celers John XXII. In June \(133^{2}\) he conferred upon it privileges identical with those already granted to the university of Toulouse. In the following October, again following the precedent established at Toulouse, he appointed the scholasticks of the cathedrai chancellor of the univerity. In November of the same year a bull, couched in terms almost identical with those of the Magna Charta of Paris, assimilated the constitution of Cabors to that of the oldest university. The two schools in France which, down to the close of the 14th century, most clesely resembled Paris werc Orleans and Cahors. The civil immunitica and privileges of the latter university were not, however acquired until the year 1367, when Edwand IIL of England, in his capacity as duke of Aquitaine, not oaly exempted the scholars from the payment of all taxes and imposts, but bestowed upon them the peculiar privilcge known as frividegiwns fari Cahors also received a licence for faculties of theology and medicine, but, like Orleans, it was chiefly known as a school of jurisprudence. It was as a "studium generale" in the same three faculties that Grenoble, in the year \(\mathbf{1 3 3 9}\), received its charter from Benedict XII. The university Oremonh never attained to mucb importance, and its annals are for the most part involved in obscurity. At the commencement of the 16th century it had ceased altogether to exist, was reorganixed by Francis of Bourbon in 1542, and in 3565 was united to the university of Valence. The university of Perpignan, founded, according to Denife, in 1379 by Clement VII. (although tradition had previously ascribed its origin to Pedro IV. of Aragon), and that of Orange, founded

Ornage in 1365 by Charles IV., were universities only by name and constitution, their names rarely appearing in contemporary chronicles, while their very existence becomes at times a matler for reasonable douht.

To some of the earlier Spmish miversities-such as Palencia, founded about the year 1214 by Alphonso VIII.; Huesce, founded in 1354 by Pedro IV.; and Leridn, founded in 1300 by James II.-the same description is applicable; and their insignificance is probably indicated by privich the fact that they entirely failod to attract forcigm studeats

Vallmolotid, which seocived its cbarter froma Pope Clement VI.
in 1346, attuined, bowever, to great celebrity; and the forcign teachers and atudents frequenting the university became so numerous that in 1373 King
Vatse
4ners
Eoriques II. caused an enactment to be passed for securing to themt the same priviltepes as thowe already accorded to the native element. But the total number of the sudents in 3403 wes only 116, and grammar and logic, along with jurisprudence (which was the principal study), constituted the sole curriculum. In 1418, bowever, at the council of Constance, Martin V. not only docceed that Valiadolid should take rank as a stiwdixm gemerole, but also as a " universitas thoologine," and that the new laculty should possess the same privileges as those of the ssme laculty in Paris. From this time accoardingly the advance of the university in aumbers was atceady and contimuous throughout the isth century, and, along with Salamanca, it zerved as the model Akaln. for Alcali in 1499 . The university which rose on the banks of the Hena resand becane ia mousunder the direction of the eminent Ximenes, was removed in 1623 to Madrid; and for the neast century and a half the foremore plece among the universities of Spain must be assigned to Salamancs, to wivich Sevilte, in the south, slood in the relation of a kind of subsidiary echool, having been founded in 1254 by Alphonso the Wise, servers simply for the ztudy of Latin and of the Semitic end Salo- languages, eapocially Arable. Salemanca had been napes tounded in 1243 by Ferdinand 11I. of Cantile as a studiun generale in the three facultios of jufisprudences, the arts and medicine. The king akso extended his special prorection to the students, grantiog them aumenous privileges and imananitics. Under his son Alphonse (above named) the university sequired a further development, and eveatually incloded all the factokies meve that of theology. But the main stress of ics activiky, as was the case with all the earlier Spanish univenities antil the beginning of the igth ceatury, whs hid on the civil and the conom law. The provision for the payment of its prodesson was, bowever, at írst so inadequate and procarious that in 1298 they by common conserx muspended their leccures, it consequence of their scanty remomeration. A permaneat remedy lor this difficulty was thereupon provided, by the appropriation of a cerain portion of the ecclesimetical revenues of the diocese for the purpose of augmenting the prolessori' salaries, and the offorts of Martin V. exabtishod a school of theology which was aftermards regarded almow as an oracle by Catbolic Europe. About the yoar 1600 the students are ahown hy the matriculation books to have numbered over 5000 . According to Cervantes they were noted for their lawlessness. The eartieat of the numerous colleges founded at Satamanca was that of St Bartholomew, loag noted tor lts ancient tibrary and valuable collection of manameripts, which now form part of the poyal librury in Madrid.
The one university poscessed by Portugal bad its mat in medieval times alternately in Lisbon and in Coimbra, umiti, in the year 1537. it was permanently attached to the Latter city. Its formal foundation took place in 1309 . conmera when it received from King Diniz a charter, the provinions of which were mainly taken from those of the charter'given to Salamanca. Ia \(177^{2}\) the university was entirely reconstituted.
Or the universities included in the present Austrian empire, Prague, which existed as a " Hudium" in the syth century, was the earliest. It was at first frequented mainly by students from Styria and Austria, countiee at that time ruled by the emperor Charles IV., who was also king of Bohemia, and at whose request Pope Clement VI., on the abh of January \({ }^{3} 347\), promulgated a bull authorizing the foundation of a "studium generale" in all the faculties. In the following year Charies himself issued a charter for the fourdation. This document, which, if original in character, would have been of much interest, bas but few distinctive fealures of its own, its provisions being throughout adapted from those contained in the charlers given by Frederick II. for the university of Naples and by Conrad for Salerno-almost the only important feature of difference being that Charles bestows on the sludents of Prague all the civil
privileges and immunities which were enjoyed by the teachers of Paris and Bologna. Charles had himself been a student in Paris, and the organization of his new foundation was modelled on that university, a like division into four " nations" (although with different names) constituting one nf the most marked features of imitation. The numerous students-and none of the medieval universities attracted in their earlier history a larger concourse-were drawn from a gradurally widening area, which at length induded, not only all parts of Germany, but also Eng. land, France, Lombardy, Hungary and Poland. Contemporary writers, with the exaggeration characteristic of medieval credulity, even speak of thirty thousand students as present in the university at one time- \(\mathbf{z}\) statement for which Denifle proposes to subscitute two thoosand as a more probable cestimate. It is certain, howevar, that Prague, prior to the foundation of Leipzig, was one of the most frequented centres of learning in Europe, and Paris suffered a considerable diminutioa in her numbers owing to the counter-attractions of the great stodixm of Slavonia
The eniversity of Cracow in Poland was founded in May 1364, by virtue of a chavter given by King Casimir the Great, who bestowed on it the same privileges as those possessod by the universities of Boiogria and Padua. In the cracow, following Seplember Urban V., in consideration of the remotoness of the city from other centres of education, constituted it a "studium generale". in all the facalies save that of theology. It is, however, doubtul whether these designs were carried into actual realization, for it is ceetain that, for a long time after the death of Casimir, thete was mo university whatever. Its real commencement must accordingly be considered to belong to the year 1400, when it was reconstitured, and the papal sanction was given for the incorporation of a faculty of theology. From this time its growth and prosperity were contimoous; and with the yeur 1416 it hud so far acquired a European repatation as to venture upon forwarding an expression of its views in connexion with the deliberations of the council of Constance. Towards the cloee of the ig th century the university is seid to have been in hige repure as as achool of boch astronomical and humanistic studies
The Avignonese popes appoar to have reganded the extablishment of new facuatios of thoology with eapocinl jealousy; and when, in 1364 . Duke Rudolph IV. lounded the university of Vienna, with the design of constuting It a " sudfum generale" in all the faculties, Urban V. refuved tis asssent to the loundation of a theological school. Owing to the sudden death of Duke Rudolph. the university languished for the next iwenty years, but ghter the accession of Duke Abert III., who may be regarded at its real founder, it acqutred additional priviteges, and its prosperity became marted and continvous. Like Prague, Vienna was for a long time dirtingsished by the comparatively Intle attention bessiowed by its teachers on the study of the civil law.
No country in the rath century was looked upon with greater disfavour at Rome' than Huagary. It was atigmatized as the land of heresy and schism. When, accordingly, in 1367 King I.ouis applied to Urban \(V\). for lis sametion of the scheme of founding a university at Funfkirchen, Urban would not consent to the foundation of a faculty of theology. although theological learning was in special meed of encouragement in those regions; the pontiff even made it a condition of his sanction for a studium generale that King Louis should first undertate to provide for the payment of the prolessors. We hear but little concerning the university after its foundation, and it is doubtful whether it survived for any length of time the close of the century. "The extreme east of civilized continental Earope in medieval times," observes Deniffe, "can be compared, so far as university education is concerned, only with the extreme west and the extreme south. In Hungary, as in Portugal and In Naples, there was constam fluctuation. but the west and the south, although troubled by yet greater commotions than Hungary, bore better fruit. Among all the coumtries possossed of universities in modieval
times, Hungary occopies the lowest place-a state of affairs of which, however, the proximity of the Turk must be booked upon as a main cause.'

The university of Heidelberg (the oldest of those of the Cerman reatm) received its charter (October 23, 1385) from

Urban VI. as a "studium generale" in all the re.

\section*{Hehert} bery. form and substance of the document being almost identical with those of the charter granted to Vienna. It was granted at the request of the elector palatine, Rupert L. who conferred on the leachers and students, at the same time, the same civil privileges as tbose which belonged to the university of Paris. In this case the functionary invested with the power of bestowing degrees was non-resident, the licences being conferred by the provost of the cathedral at Worms But the real founder, as he was also the organizer and teacher, of the university was Marsilius of Inghen, to whose ahility and energy Heidelberg was indebted for no litue of its eariy reputation and success. The omission of the civil law from the studies licensed in the original charter wrould seem to show that the pontiff's compliance with the elector's request was merely formal, and Heidelberg, like Cologne, included the civil law among'its faculcies almost fromits first creation. No modieval university achieved a more rapid and permanent success. Regarded with favour alike by the civil and ecclesiastical potentates, its early annals were singulatly free from crises like those which characterive the history of many of the medieval universities. The number of those admilled to degrees from the commencement of the firse session (igth October 1386 to 16th Deoember 1387) amounted to 579. \({ }^{\text {t }}\)

Owing to the Labours of the Dominicans. Cologne had gained a reputatioa as a seat of learning long before the founding of calogre. its university; and it was through the advocacy of some leading members of the Meadicant orders that, at the desire of the city council, its charter as a "studium generale" (ast May t388) was obtained from Urban V1. It was organized on the model of the university of Paris, as a school of thoology and canon law, and "any other recognized faculty "-the civil law being incorporated as a faculty soon after the promulgation of the charter. In common with the \(\alpha\) ber early universities of Cermany-Prague, Vienna and Heidelberg-Cologne owed nothing to imperial patronage, while it would appear to have been, from the first, the object of special favour with Rome. This circumstance serves to account for its distinctly ultramontane sympathies in medieval times and even las into the roth century. In a report transmitted to Gretery XIIL. in 1577, the university exprestly derives both its first osigin and its privileges from the Holy See, and professes to owe no allegiance save to the Roman pontiff. erfart. Erlurt, po less noted as a centre of Franciscan than charter (16th September 1379) from the anti-pope Clement VII. as a "studium generaic" in ail the faculties. Ten years later (4th May \({ }^{1389}\)) it was founded afresh by Urban VI., without any recognition of the act of his pretended predecessor. In the 15 th century the number of its students was larger than that at any other German university-a fact attributable partly to the reputation it had acquired as a school of jurisprudence, and partly to the ardour with which the nominalist and realist controversies of the time were debated in its midst; its readiness in according a hearing to novel theories causing it to be known as novorum omrium porlus.

The collegiate system is to be noted as a feature common to all these early German universities; and, in nearly all, the professors were partly remuncrated by the appropriation of certain prebends, appertaining to some neighbouring church, to their maintenance.

During the first hall of the 15 th century the relations of the Roman pontiffs to the universities continued much the smene, alibough the independent attitude assumed by the deputies

of those bodies at the great councils of Constance and Santi, and especially by thone from Paris, could noe fall to give tise to apprehensioas. The papal bulls for each new foundation begin to indicate a certain jealousy with rospect to the appropriation of prebends by the founders. Where such appropriations are recognized, aod more particularly in France, a formal sanction of the transier geter-
 ally finds a place in the bull authocizing the foundation; but sometimes the founder or founders are themsetves enjoined to provide the endownents requisite for the establishment and support of the university. In this manner the control of the pontifl over each pewly created seat of learoing assumed a more real character, from the fact that his assent was accompanied by conditions which rendered it no longer 2 mere formality. The imperial intervention, an the otber hand, was rarely invoked in Germany-Greifswald, Freiburg and Tubingen being the only instances in which the emperor's confirmation of the foundetion was solicited. \({ }^{2}\). The inadequacy of the traditional atudies to mett tbe growing wants of civilization, and the consequent lack of sympathy on the part of each civic population in which a new studium was founded, now become frequently apparent. Of such conditions the fortunes of the studium at Wuraburg in Bavaria-founded in 402 by a bishop, with a charter bestowed by Bonilace LX.-illustrate the dangers. The students beloniged chiefly to the facultica of law and theology, and the frequency of their conflicts with the citizers made it necessary before ten years bad elapsed to dose the university, which was not reopeaed until ig82. Under the patronage of the prince Bishop Julius Echteri von Meapelbrunn, however, it soon became largely frequented by Catholic students. At the present time, under the potronage of the house of Wittelabach, it is widely famed as a school of medicinc.
In Turin the university founded in 1412 by the counts of Savoy hand to be refounded in 4331. The efforts of Parma in the isth cent ury to raise itself hy papal aid to the dignity of a university proved ahogecher abortive, and it was not until 1422 that, under the protection of the dukes of Milan, its object was atcained. In Sicily, Catania, the carliest of its bigh schoots, was crealed 2 university by Alphonso of Aragon in 1445. Five years later Barcelona received from Pope Nicholas \(V\). the stime privileges ts
cuncila Toulouse had abteined from Gragory IX. Amorg the Spanish Perce universities, bowever, nowe has had a more chequered bistory, although now takingrank with foremost.
In Huagary, Mathias Corvinus obrained from Paul II. in 1465 permission to found a gencral studium where he thought best within his realms-a latitude of choice conceded probably in consequence of the dangers which menaced the kingdom alike from Bohemia and from the Turks; while the fact that the university at Ofen (Hungarian Buda) was not actually foupded until some ten years later, may have been owing to the resolute stand made by the youthful monarch agninst the claims to nominate bishops put forward not only by Pope Paul but by his succescor Sixtus IV. (1471-84). Alter a series of eventful experiences, the university of Budapest remains, at the present time, almost exclusively Magar. It has a school of law at Pressburg, which is all that remains of the universit y there founded by Methias Corvinus in 1465.
In northern Germany and in the Netherlands. on the other hand, the growing wealth and prosperity of the difierent states especially favoured the formation of new centres of learnipg. In the flourishing duchy of Brabant the fine university of Louvain (1426) was to a great extent Louvele controtled by the municipality; and their patronage, although ultimately autended with detrimental results, long enabled Louvain to outbid all the other universities of Europe in the munificence with which she rewarded her professors. In the course of the nexa century the "Belgian Atheas," as she is styled by Lipsius, ranked second only to Paris in numbers and repulation. In its numerous scparate foundations and geperal

\footnotetext{
\({ }^{2}\) mleiners, Geakh. d. hoten. Schulen, i. 37 a
}
ectamintion-it ponased wo less than twenty-eight colleges -It cloedy resembled the Eaglish universities; while its active prese afforded facilities to the author and the controversialist of which both Cambridge and Oxford were at that time almost destitute. It embraced all the faculties, and no degrees in Europe stood so high as guarantees of general acquirements, Erasmus records it as a common saying, that "no one could greduate at Louvain without knowledge, manners and age." Sir William Hamilton speaks of the examination at Louvain for a degree in arts as " the best example upon record of the irue anode of sucb examination, and, until rocent times, in tact, the only example in the history of universities worthy of consideration at all." He has transhated from Vernulseus the order and method of this examination.' In 1788 the faculues of jurisprudence, medicine and philosophy were removed to Brussels, and in 4797 the Finencb suspended the university alogether.

In Germany the conditions under which the new centres were created reflect and illustrale the history of the country in a remarkable manner. Those connected with the rise Laport of the university of Leipzig are especially noteworthy, it having been the result of the migration of alsoost the entire German element from the university of Prague. This element comprised (1) Bavarians, (2) Saxons, (3) Pules (this lastnamed division being drawn from a wide area, which included Meissen, Laselia, Silesia and Prussia), and, being represented by three votes in the assemblies of the university, while the Bohemians posesssed but one, had acquired a preponderance in the direction of affairs which the latter could no longer submit to. Religious differences, again, evoked mainly by the preaching cf John Huss, further intensified the existing disagreements; and eventually, in the year 1409. King Wenceslaus, at the prayer of mis Bobemian subjects, issmed a decree which exactly reversed the previous discribution of votes,-three votes being assigned to the Hoheminn nation and only one to all the rest. The Germans took deep umbrage, and seceded to Leipzig, where, 2 bull having been obtained from Alemander V. (September 9. 1409), a new " studium renerale" was fouaded by the landgrave of Thuringia and the margraves of Meisses. The members were divided into fournations-composedof natives of Aleiven, Saxany, Bavaria and Poland. Two colleges were founded, a greater and a smaller, but designed, mot for poor stodents, but for matsters of arts-iwelve being admitted on the former and eight on the latter foundation.
At Rostock, in the north, the dukes John and Abbert of Hecklenburg conceived the design of founding a university fromeset.
Pope which the faculty of theology should be excluded. mas scarcely in a position to refuse in, absorbed as he was with the pacification of Italy, the consolidation of his own temporal power, and the restoration of his almost rohous caplea. The univeriny was accordingly founded as proposed in 1419; but in 5435 Eugenius IV. Instituted a faculty of theology, and two colieges wite founded with the same design and on the same scale at at Leipadg. Six years later the whole acidernic community having incurred the papul ban was fain to migrate to Cretwald, returaing, however, to Rostock in 1443, but with one important oxception, that of a master of arts named Henry Rubenow, who remained to become burgomaster of the former cky, and succeeded in persuading Duke Wratislaw of Pommern to make it the seat of a univervity. Calixtus III. granted a ball in 1456, but it whis ulpulated that the rector should be a

\section*{Grab}
-an binhop, and the professorial chairs were also made partially dependent for endowment on ca nonries. Greifswald thus betame exposed to the full brunt of the struggle which had ensued when the endeavour to nationalize the German church was terminated by the Concordat of Vienna (1448). Or its orighal statutes only those-of the arts faculty are extant.
The oniveraities of Freiburg in Baden and Tabingen In Wartiemberg, on the other hand. reffect the sympathies of Pramose the Catholic party onder the Austrian rule. They
aine owed their foundation to the countess Matida. by whose persuasion her husband, the archduke of Austria, 1 Dissertations and Discussions. Append. iii
knowa as Albreche V1., was laduced to found Fpeiburg in 145s, and Count Eberhand (her son by a former marriage) to found Tübingen in 4477. The firse setsion at Freiburg opened auspiciously in 1460 under the supenvision of its recior, Matthew Hummel of Villingen, an accomplished and learned man, and its numbers were soon largely augmented by migrations of students from Vienna and from Heidelberg, while its resources, which ariginally were chiefly an annual grant from the city council, were increased by the bestowal of canonrics and prebends in the neighbouring parishes. Erasmus had made Frciburg his reaidence from 1529 to 1535 , during which time be may have originated a tradition of liberal learning, but in \(16 \%\), under the rule of the archduke Maximilian, the control of the Humanistic studies and of the entire faculty of philosophy was handed over to the Jesuits, who also gained possession of two of the chairs of theology. Although Strassburg since 1872 has been able to offer considerable counter-attractions, Freiburg has held her own, and numbers over 1600 students. The miversity of Tabingen was foanded in 1477 with four faculties -those of theology, law, medicine and the arts-and numbered acholars such as John Reuchlin and Melanchthon among its teachers; while in the last century it was famous both for its school of medicite and that of theology (see TUbingan). Its general condition in the year i541-1542, and the sources whence its revenues were derived, have been illustrated by Hofmann in a short paper which shows the fluctuating nature of the resouress of a university in the 16th century-Hable to be affected as they were both by the seasons and the markets.

The earliest sth-century university in' France was that of Air in Provence. It had originally been nothing more than a chool of theology and law, but in 1409 it was reorganized under the direction of the local count as a studium generale on the model of Parss. The sphere of its activity is indicated by the fact that the students were divided into Burgundians, Provericals and Catalans. The next foundation, that of Poitiers, had a wider significance as Alustrating the struggle that was going on Powners between the French crown and the Roman see. It was instituted by Charies V11. in 1431, almost immediately after his accension, with the special design of creating a centre of learning less favourable to English interests than Paris had at that time shown herself to be. Eugenius IV. could not refuse his sanction to the scheme, but he endeavoured partially to defeat Charles's design by conferring on the new " studium generaie" simply the seme privileges as those possessed by Toulouse, and thus placing it at a disadvantage in comparison with Paris. Charles rejoined by an extraordinary exercise of his own prerogative, conferring on Poitiers all the privileges collectively possessed by Paris, Toulouse, Montpellier, Angers and Orienns, and at the same time placing the oniversity under special royal protection. The foundation of the university of Caen, In the diocese of Baycux, was attended by conditions almost exactly the reverse of those which belonged to the loundation of that at Poltiers. It was founded under English auspices during the short period of the sumpremacy of the English arms in Normandy in the 1gth century. Iss charter (May 1437) was given by Eugenius IV., and the hichop of Bayeux was appointed its chancellor. The university of Paris had by this time complet ely forfelted the favour of Eugenius by its attitude at the council of Basel, and Eugenius inserted in the charter for Claen a clause of an entirely novel character, requiring all those admitted to degres to take an oath of Gidefity to the see of Rome, and to bind themselves to attempt nothing prejudicial to herinterests. To this proviso the famous Fragmatic Sanction of Bourges was Charles's rejoinder in the following year. On the 18th of May 1442 we find Ring Henry VI. writing to Eugenius, and dwelling with satisfaction on the rapid progress of the new university, to which, he cays, students had flocked from all quarters, and were still daiby
- Ohonomischer Zestand dep Unitersitat Tubingen segen dic Mille des tolem Jahrhumderts (1845).
arriving. \({ }^{\text {B }}\) Ten years later, when the Engith had been oxpelled, its charter was given alresh by Charles in terms which left the original charter unrecognized; both teachers and learners were subject to the civil authorities of the city, and all privileges made previousty conferred in cases of legal disputes were abolished. From this time the university of Caen was distinguished by its loyal spirit and firm resistance to ultramontane pretensions; and, although swept away at the French Revolution, it was afterwards restored, owing to the sense of the services it had Bondean, thus once rendered to the national cause. \({ }^{2}\) No especiVabrise, ally notable circumstances characterize the foundation Numase
of the university of Bordeaux (1441) or that of Valence (1452), but that of Nantes, which received its charter from Pius II. in 1463, is distinguished by the fact that it did not receive the ratification of the king of France, and the conditions under which its earlier traditions were formed thus closely resemble those of Poitiers. It seems also to have been regarded with particular favour by Pius II., a pontif who was at once a ripe scholar and a writer upon education. He gave to Nantes a notable body of privileges, which not only represent an embodiment of all the various privilcges granted to universities prior to that date, but afterwards became, with their copious and somewhat tautological phraseology, the accepted model for the great majority of university charters, whether issued by the pope or by the emperor, or by the civil authority. The hishop of Nantes was appoiuted bead of the university, and was charged with the special protection of its privileges Boerges. against all interference from whatever quarter. \({ }^{2}\) The bull for the foundation of the university of Bourges was given in 3465 by Paul IL. at the request of Louis XI. and bis brother. It confers on the community the same privileges as those eajoyed by the other universities of France. The royal sanction was given at the petition of the citizens; but, from reasons which do not appear, they deemed it necessary further to petition that their charter might also be registered and eorolled by the parlement of Paris.
Founded about the sappe time, and probably in a spirit of direct rivalry to Freiburg, the university of Basel was opened Beoph in 1460 under the auspices of jts own citizens. The cathedral school in that ancieat city, together with others attached to the monasteries, afforded a sufficient nucleus for a studium, and Pius IL., who, as Aeneas Sylvius, had been a resident in the city, was easily prevailed upon to grant the charter (November 12, 1459). During the first seventy years of its existence the university prospered, and its chairs were held by eminent professors, among them bistorical scholars, such as Sebastian Brant and Jacob Wimpheling. But with the Reformation, Basel became the arena of contests which menaced the very existence of the university itself, the profeseors beiag; for the most part, opposed to the new movement with which the burghers warmly sympathized. Eventually, the statutes were revised, and in the latter half of the 16 th century the university may be said to have attoined its apogec. Before he had signed the bull for the foundation of the university of Basel, Pope Pius, at the request of Duke William of Bavaria, had issued another bull for the foundation of a university at lngolnegot stadt (7th April 1459). But it was not until 1472 sioter that the work of teaching was actually commeaced there. Some longexisting prebends, founded by former dukes of Bavaria, were appropriated to the endowment, and the chairs in the different faculties were distributed as follows: theology 2, jurisprudence 3, medicine \(I_{\text {, arts }} 6\) Tarts in conjunction with theology thus obtaining the preponderance. As at Caen, twenty-two years before, an oath of fidelity to the Roman pontiff was imposed on every student admitted to a degrec.4 That this proviso was not subsequently
abolished, as at Caen, is a feature in the history of the uafoentiy of Ingolstadt which was attended by important results. Nowhere did the Reformation meet with more stubborn resistance, and it was at Ingolstadt that the Counter-Reiormation was commenced. In 1556 the Jesuits made their first settlement in the university.

The next two universities took their rise in the archiopiscopel seats of Treves and Mainz. That at Treves received its charter as early as 1450; but the first academical session did not commence until r473. Here the ecclesiastical influences The anchbishop demanded 2000 florins as the price of his sanction. The cathedral chapter threw dlfficulties in the way of the appropriation of certain livings and canonries to the university endowment; and so obstinate was their resistance that in r65s they succeeded in altogether rescinding the gift on payment.of a very inadequate sum. It was not until 1722 that the assembly of deputies, by a formal grant, relieved the university from tho difficulties in which it had become involved. The
university of Mainz, on the other hand, was almost
entitely indebted to the archbishop Dlether for its foundation. It was at his petition that Sixtus IV. granted the charter, 23rd November 1476; and Diether, being himself an enthusiastic humanist, thereupon circulated a letter, couched in elegant Latinity, addressed to students throughout his diocese, inviting them to repair to the new centre, and dilating on the advamtages of academic studies and of learning. The rise of these two universitics, however, neither of which attained to much distinction, represents little more than the incorporation of certain already existing institutions.into a homogeneous whole, the power of conferring degrees being superadded.
Nearly contemporaneous with these foundations were those of Upsaia (1477) and Copenhagen (1479), which, although lying without the political beundaries of Germany, reflected her influence. The charter for Copenhagen was given by Sixtus IV. as early as 1475. The students athracted to this new centre were mainly from within the radius of the university of Cologne, and its statutes were litule more than a transeript of those of the latter foundation.

The etectorates of Wittenberg and Brandenburg were now the only two considerable German letriteries which did not possess a "studium gencrale," and the university founded at Wittenberg by Maxamilian 1. (6ah July 1502) is notable as the first establiehed in Cermany by virtue Where of an imperial as distinguished from a papal decrea Its charter' is, however; drawn up. with the traditional phraseology of the pontifical hulls, and is evidently not conctived in any spirit of antagonism to Rome. Wittenberg is constit uted a "studium generale" in all the four faculties-the right to confer degrees in theology and canon law having been sanctioned by the papal legate some months before, on the and of Fehruary 1502. Tbe endowment of the university with church revenues duly received the papal sanction-a bull of Alexander VI. authorixing the appropriation of twelve canonries atteched to the castle church, as well as of eleven prebends in oullying districto-m sic per ommem modmen unum corpus ex sfadio et collegio praedictis fial a constifuatur. No university in Germany attracted to itself a larger share of the attention of Europe at its commencement. And it was its distinguishing merit that it was the first academic centre north of the Alps where the antiquated methods and barharous Latinity of the scholastic era were overthrown. AraskThe last university founded in Germany prior to the fort-aes. Reformation was that of Frankfort-on-the-Oder. The fe-own design, first conceived by the elector John of Brandenburg, was carried into execution by his son Joacbim, at whose request Pope Julius II. issued a bull for the foundation, 15 th March 1506. An imperial charter, identical in its contents with the papal bull, followed on the 36 th of October. The university reccived an endowment of canonries and livings similar to that of Witcenberg, and some houses in the city were ascigned fore its use by the elector.

The frast university in Scotimnd was that of St Andrews, tounded in 1411 by Henry Wardlaw, bishop of that see, and 8 modelled chieffy on the constitution of the university of Paris It acquired all its three colteges-St Salvator's, St Leonard's and St Mary's-before the Reformation-t be first having been founded in 1456 by Bishop James Kennedy; the second in 1512 by the youthful Archbishop Alerander Stuart (natural son of James IV.), and John Hepbum, the prior of the monastery of St Andrews; and the IBird, atso in 1522, by the Beatons, who in the year 1537 procured a bull from Pope Paul III. dedicating the college to the Blessed Virgin Mary of the Assumption, and adding further endowments. The most ancient of the universities of Scotland, with its three colleges, was thus reared in an atmosphere of medieval theology, and undowbtedly designed as a buiwark against teresy and schism. But "by a etrange irony of fate," it has been obscrived, "two of these colleges became, almost from the first, the foremost agents in working the overthrow of that church which they were founded to defend." St Lecaard's more expecially, like St John's or Queens' at Camboidge, became a noted centre of intellectual life and Reformation principles. That he " had drunk at St Leonand's well " became a current expression for implying that a theologian had imbibed enomes. the doctrines of Protestantism. The university of Ghasgow was founded as a "studium generale" in 1453, and possessed two colleges. Prior to the Reformation it acquired bat little celebrity; its discipline was lax, and the pumber of the students but smaH, while the instruction was pot only inefficient but irregularly given; no funds were provided for the maintenance of regular lectures in the higher faculties; and there was no adequate executive power for the mairtensmice of discipline. The university of Aberdeen, which was founded in 5494 , at first ponsersed only one college, Aborteen namely, King's, which wat coextensive with the founded university and conferred degrees. Marischal College, conctited 1593 by George Keith, fifth Earl Manschal, was constituted by its founder independent of the university in Old Aberdeen, being itself also a college and a university. with the porrer of conferting degrees. Bishop Elphinstone, the founder both of the university and of King's College (\(\mathbf{5} 505\)), had been educated at Glasgow, and bad subsequently botb studied and taught at Paris and at Orleans. To the wider experience which we had thes gained we may probably attribute the fact that the constitutioa of the university of Aberdeen was free from the dering defects which then characterized that of the university of Glmatow.' But in all the medieval universities of Germany, Eogland and Scothand, modelled as they were on a common type, the absence of adequate dixipline was, in a greater or less degree, a conation defect. In connexion with this feature we may note the comparatively smad percentage of matriculated mudents procereding to the degree of B.A. and M.A. When compared with lator times. Of this disparity the table on next Deprose Chate Laver colamn, exhibiting the relative numbers in the unjwersity of Leiprig for every tea years from the year 1427 to 1552 , probably afords a fair average illustrathome semarkable fluctuations probably depending quite at mach upon the comparative bealthiness of the period (in respect of freedom from epidemic) and the abundance of the harvests as upon any otber cause.

The German universities in these times seem to have adnitted for the most part thelr inferiority in kearning to older and more favoured centres; and their consciousness of the fact is
enporcts of aprose 4-viner Bhrer Elvas epintit of aystematic opposition to the Roman see (as Meibers and others havo contended, or that their organization was something exteral to and independent of the church, is an ascertion somewhat qualified by the foregoing evidence. Ceparally speahing, they were eminently conservative bodies,
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Matricu & & & & Perce & age of \\
\hline & & & & & B. \({ }^{\prime}\) 's. & M. A' \\
\hline 1427-1430 & 737 & 1429-1432 & 151 & 28 & 20.4 & 3.8 \\
\hline 14,37-1440 & 715 & 1439-1442 & 1199 & 50 & 27.8 & 6.9 \\
\hline \(1+77-1450\) & 808 & 1+49-1452 & 274 & (50) & \(33 \cdot 9\) & \\
\hline 1457-1460 & 1,447 & 1459-1462 & 559 & 81 & 38.6 & \(5 \cdot 6\) \\
\hline 1467-1470 & 1,137 & 1469-1472 & 410 & 61 & \(36 \cdot 0\) & 5.4 \\
\hline :477-1480 & 1.163 & 1479-1482 & \(45^{8}\) & 49 & 39.4 & \(4 \cdot 2\) \\
\hline 1487-1490 & 1,858 & 1489-1492 & 714 & 62 & 38.4 & 3.4 \\
\hline 1497-1500 & 1,288 & 1499-1502 & 497 & 59 & 38.5 & \(4 \cdot 6\) \\
\hline 1507-1510 & 1,948 & 1509-1512 & 510 & 65 & 26.1 & \(3 \cdot 4\) \\
\hline 1517-1520 & 1,4.75 & 1519-1522 & 247 & 35 & \(17 \cdot 0\) & \(2 \cdot 4\) \\
\hline 1527-1530 & 419 & 1529-1532 & 77 & 33 & 18.4 & 79 \\
\hline 1537-1540 & 686 & 1539-154? & 122 & 27 & 17.8 & 3.9 \\
\hline \multirow[t]{2}{*}{1547-1550} & 1,318 & \multirow[t]{2}{*}{1549-1552} & 200 & 72 & 15.2 & 5.5 \\
\hline & 14.969 & & 4418 & 672 & 29.5 & \(4 \cdot 5\) \\
\hline
\end{tabular}
and the aew iearnims of the nammists and the new methods of instruction that now began to demand attention were alike for a long period unable to gain admission within academic circles Reformers rucb as Hegius, Joha Wessel and Rudolphus Agricola carried on their work at places like Deventer remote from university infuences. That there was a considerable amount of mental activity going on in the universities themselves is not to be denied; but it was mostly of that unprofitable kind which, while giving rise to endless controversy, tumed upon questions in connexion with which the implied postulates and the terminology employed rendered all scientific investigation hopeless. At almost every university-Leipzig, Greifswald and Prague (after 1409) being the principal exceptions \(\rightarrow\) be so-called Realines and Nominalists represented two great partics occupied with an internecine straggle. At Paris, owing to the overwbelming strength of the theologians, the Nominalists were indeed under a kind of ban; but at Heidelberg they had altogetber expelled their antagonists. It was much the same at Vienna and al Erfurt -the latter, from the ready reception which it gave to new speculation, being styled by its enemies " novoram omnium portus." At Basel, under the leadership of the eminent Johannes a Lapide, the Realists with difficulty maintained their ground. Freiburg, Tubingen and Ingolsesdt, in the bope of diminishing controversy, artived at a kind of compromise, each party having its own professor, and representing a distinct "nation." At Mainz the authorities adopted a manual of logic which was essentially an embodiment of Nominalistic principles.

In Italy, almost without exception, it was decided that these controversies were endless and that their effects were pernicious It was resolved, aceordingly, to expel logic, and allow its place to be filled by thetoric. It was by virtue of this decision, which whas of a tacit rather than a formal character, that the expounders of the new learning in

Aberdoar mert of nitel Etinlaty the isth century-mea bike Emmanucl Chrysotoras,
Guarino, Leonardo Bruni, Besserion, Argyropulos and Vallacarried into effect that important revolution in academic studiea which constitutes a dew era in university leaming, and largely belped to pave the way for the Reformation. \({ }^{1}\) This discouragoment of the controversial spirit, continued as it was in relation to theological questions after the Relormation, obtained for the Italian universities a fortunate immunit y from dissensions like thowe which, as we shall shortly sec, distracted the centres of leanting in Germany. The professorial body also attained to an almost marivalled reputation. It was exceptionally select, only those who were in receipt of salaries being permitted, as a rule, to lecture; it

\section*{Hestro} Nerthot of Ran sers. was also famed for its ability, the institution of concurredt chaira proving an excellent stirnulus. Tbese chairs were of two kinds-"ordmary" and "extraordimary"-the former being the more tiberally endowed and fewer in number. For each subject of importance there were thus always two and sometimes three rival chairs, and a powerful and continuotrs emulation wes thus maintained among the teachers. "From
- For an excellent account of this movement, see Genrg Voigt. Die Wiederbelabmang des clestischen Alurtinnus (rod od., 2 vola, 1880),
the integrity of their patrons, and the lofty standard by which they were judged," says Sir W. Hamilton, "the call to a Paduan or Pisan chair was deemed the highest of all hiterary honours. The status of proiessor was in Italy clevated to a dignity which in other countries it has never reached; and not a iew of the most illustrious teachers in the Italian seminaries were of the proudest nobility of the land. While the universities of otber countries had fallen from Cbristian and cosmopolite to sectarian and local schools, it is the peculiar glory of the Italian that, under the enlightened liberality of their patrons, they still continued to assert their European universality. Creed and country were in them no bar-the latter not even a reason of preference. Foreigners of every nation are to be found among their professors; and the most learned man in Scotland, Thomas Dempster, sougbt in a Pisan chair that theatre for his abilities which he could not find at home." \({ }^{\prime \prime}\)

To such catholicity of sentiment the Spanish universities during the same period offer a complete contrast, their history being so strongly modified by political and religious movements that some reference to these becomes indispensable. Valencia, founded in 1501 as a school not only of tho. ology and of civil and canon law, but also of the arts and of medicine, and sanctioned at the petition of its council by Alexander VI. (see Denife, i. 645-46), and Seville, sanctioned by Julius II. in 1505, appear both to have been regarded without mistrust at Rome. But although the latter pontiff had approved the foundation of the university of Santiago as early as 1504 , the hull for its creation was not granted by Clement VIL. until 1526 . While, again, the design of establishing a university aramen Granada had been approved by Charles V. in the same year, it was not until is3t that Clement gave his consent, and even then the work of preparation was deferred for another six years. Littlic indeed is to be learnt respecting the new societ y until the foundation of the liberally endowed College de Sacro Monte by the archbishop of the province in 1605 . These delays are partly to be accounted for by the well-known political jealousies that existed between the monarch and the pontiff; hut it is also to be noted that at precisely the same period a movement of no slight importance, whereby it was sought to gain the recognition by the church of the writings and teaching of Erasmus, had been going on in the universities of Spain, and had ultimately died out. It died out at the uncreating voice of the Dominican Melchior Cano, who revived the ancient scholasticisms and the teaching of Aquinas. Then followed the Jesuits, whom Cano himself had once denounced as "precursors of Antichrist," and under their direction the sebolastic philosophy, together with a certain attention to Greek and Hebrew, became the dominant study. And when the council of Trent had done its work, and doctrinal controversy seemed to bave been finally laid to rest, Gregory XIII. in 1574 authorized the Oriedo. foundation of the university of Oviedo; but this was
not opened until 1608 , and then only with a faculty of law. After this time the universities in Spain shared in the general decline of the country; and even after the expulsion of the Jesuits in 1769 no marked improvement is discernible in their schools. On the contrary, the departure of a body of very able instructors, who, whatever objections might be taken to their doctrinal teaching, were mostly good scholars and men in close touch with the outer world, distinctly favoured that tendency to lifeless routine and unreasoning tradition which characterizes the Spenish universities until the second hali of the ugth century
The comparative unimportance of the universities founded during the same period in Italy is pastially explained by the ramaa number of those which previously existed. In the sheren papal states Macerata and Camerino were lounded whes at a wide interval; the former, according to tradition, meserere by a bult of Nicholas IV. as early as the t3th century. Onpiten th later nos until the year 1927 by a butl of Benedict erver, ceased to exist as a university in - only a faculty of law, but contributing,
to the maintenance of the medical factity at Camerino, which was constituted one of the newly created "free universities" (along with Urbino, Ferrara and Perugia) in 1890, but continued to exist only with the aid of contributions levied on the local parishes. Urbino, originally opened as a studium under papal patronage in 1675 , was aho constituted a free university, its chief study being that of lav. At Modena there had long existed a faculty of the same study which enjoyed a high repute, but it was not until 1083 that it received its charter from Duke Frapcis 11. of Este as the university of his capital. Like Camerino, Modena had to rely chiefly on funds collected in the commune, but was able nevertheless to acquire some reputation as a school of law and medicine, declining, when the Jesuits were installed by the Austrian authorities, to revive again in the general recovery which took place among the seats of learning after the unifcation of Italy. In Sicily, Palermo (1779) originated in an earlier institution composed mainly of subjects
statr. of Ferdinand IV., who had followed him on his ex-

Priercea pulsion from the throne of the Two Sicilies at Naples towards the end of the 18th century. It was closed in 1805 . but reopened in 1850 to become a school of considerable importance in all the faculties with over 1000 students. The two universities of Sardinia-Saseeri (1634)and Cagliari (2 596)were founded under the Spanish rule, and both died out when that rule was exchanged for that of Austria. Under
capers the auspices of the house of Savoy they were re-established, but neithet can be said to have since achieved any marked succesa.

For the most part, however, the Reformation represents the great boundary line in the hustory of the medieval universitien, and long after Luther and Calvin had passed away was still the main influence in the history of those new foumationa which arose in Protestant countries Even in Cacholit countries its secondary ellects were scarcely lesa perceptible, as they found expression In connexion with the Counter-Reformation. In Germany the Thirty Years' War was attended by consequences which were felt long after the 17th centary. In France the Revolution of 1789 resulted in the actual uprooting of the university system.

The influence of the Humanista, and the special character which it assumed as it made its way in Germany in connerion with the labours of scholars like Erasmus, John Reuchlin asd Melanchthon, augured well for the future. It was free from the frivolities, the pedantry, the immoralities and the scepticism which characterized so large a proportion of the corresponding culture in Italy. It gave promise of resulting at once in a critical and enlightened study of the masterpieces of classical antiquity, and in a reverent and yet retionalinterpatation of the Scriptures and the Fatbers. The fierce bigotry and the ceaseless controversies evoked by the promulgation of Lutheran or Calvinistic doctrine dispelled, however, this hopeful prospect, and converted what might otherwise have become the tranquil abodea
 might otherwise have become the trangual abodes of the Mluses into gloomy fortresses of sectarianism. Of the manner in which it affected the highest culture, the obecrvetion of Henke in his Life of Celiatus (i. 8), that for a costury after the Reformation the history of Lutheran theology becomes almost identified with that of the German universities, may serve as an illustration.

The first Protestant university was that of Marburg, founded by Philip the Magnanimous, Inndgrave of Hease, 3oth May i5ay. Expressly designed as a bolwark of Lutheranista, it was mainly built up out of the confiscation of the property of the religious orders in the Hescian capital. The house of the Dominicans, who had fled on the first rumorer of spoliation, was converted into lecture-rooms for the faculty of jurisprudence. The chiurch and convent of the order known as the "Kugelherrn" was appropriated to the theoiogion faculty. The friary of the Barefooled Friars was shared between the faculties of medicine and philosophy. The university, which was the object of the landgrave's peculiar care, rapidly rose to celebrity; it was resorted to by madents from remote
conatrien, even from Greece, and hs profemors were of distion guabed ability. How much, however, of this popularity depended on its theological associations is to be seen in the foct that after the year 1605, when, by the decree of Count Maurice, itu formulary of faith was changed from Lutberan to Calviniatic, its numbers greally declined. This dictation of the temporal power now becomes one of the mont notable features in academic history in Proteatant Germany. The univertities, having repudiated the papal authority, while that of the episcopal order was at an end, now began to pay especial court to the temporal roler, and sought in every way to concillate his goodwill, representing with peculiar distinctness the theory-cujus regio, gius roligio. This tendency was further strenghened by the fact that their colleges, bursaries and other similar foundations were no longer derived from or supported by ecclesiastical institutions, but were mainly deperdent on the ctvil power.

The Lutberan university of Konigeberg wis founded 17 th August 1544 by Albert III., margrave of Brandenbarg, and the first duke of Prussia, and his wife Donothea, a Kanyo Denish princess. In this instance, the religious character of the foundation not having been determined at the commencement, the papal and the imperial sanction were both applied for, although not accorded. King Sigismuind of Poland, however, which kingdom exercised at that time a protectorate over the Prussian dachy, ultimately gave the necemary charter (29th September 1561), st the sme time ordaining that all students who graduated as masters in the faculty of philosophy should rank as nobles of the Pofish kingdom. When Prussia was raised to the rank of a kingdom (1701) the university was made a royal foundation and the "colleginm Fridericianum," which was then erected, received corresponding privileges. In 1862 the university bulldings were rebuilt, and the number of the students soon after roee to mearly a thousand.

The Lutheran university of Jena had its origin in a gymnasiumt founded by John Frederick the Magnanimots, elector of sea. Saxony, during his imprisonment, for the express purpose of promoting Evangelical doctrines and repairiag the loss of Wittenberg, where the Philippfists had gained the ascendaney. Its charter, which the emperor Charles V. had refused to grant, and which was ohtained with some difficulty from his brother, Ferdinand 1., enabled the authoritie9 to open the university on the and of February 1558 . Dis. tinguished for its vehement assertion of Lutheran docirine, its bostility to the teaching of Wittenberg was hardly kess pronounced than that with which both centres regard Roman Catholicism. For a long time it was chicfly noted as a school of medicine, and in the 17th and 13th centurics was in bad repute for the lawlessness of its students, among whom duelling prevailed to a scandalous extent. The beauty of its situation and the eminence of its professoriate have, however, generally attracted a considerable proportion of students from other countries. Its numbers in 1906 were 128 s.

The Lutheran university of Helmstedt, founded by Duke Julias (of the house of Brunswick-Wolfenbuttel), and designated
and
and after him in its official records as "Academia Julia." received its charter. 8th May 1575 , from the emperor Maximilian II. No university im the ith century commenced under more favourahle auspices. It was munificently endowed by the founder and by his son: and its "Convictorium," or college for poor students. expended in the course of thirty years no less than 100,000 thalers, an exiraordinary expenditure for an institution of such a character in those days. Beautifully and conveniently situated in what had now become the well-peopled region between the Westr and the lower Elbe, and distinguished by its comparatively temperate malntenance of the Lutheran tenets. it altracted a considerable concourse of students. especially from the upper classes, not a few being of princely rank. Throughout its history, until suppressed in 1800 . Helmstedis enjoyed the sperial and powerful patronage of the dukes of Sixony.

The "Gymmasiug Acgidianum" of Numemberg, founded in 1526, and removed in 1575 to Aitdori, represents the origio of the university of Altdori. A charter was granted in is78 by the emperor Rudalpb H., and the university was formally opened in 1580 . It was at first, bowever, empowered only to grant degrees in arts; but in 3623 the emperor Ferdinand II. added the permission to crene doctors of law and medicine, and also to conier crowns on poels; and in 1697 its facultios were completed by the permision given by the emperor Leopold I. to create doctors of tbeology. Lille Louvain, Altorf was mominally ruled by the municipality. but to the latter university this power of controf romained practically isoperative, and the consequent ireedam enjoycd by the community from evils like those which hoought about the decline of Louvain is thus deacribed by Hamilton: "The decline of that greal and wealhy seminary (Louvain) was mainly determined by lte vicious patronage, both as vested in the university ard in the town. Altdorf, on the other hand, was about the poorest university in Germany, and fong one of the most eminent. Its whole endownent never rose above [800 a year; and, thl the period of its declension, the professors of Aldorl make at least as distinguished a Ggure in the history of philosopoy as tbose of all the cight universities of dhe British ethpire together. On looking elosely into its constitution the anomaly is at once solved. The patrician senate of Nusembers were too intelligent and pat riotic to attempt the exercise of such - function. The nommation of professors, though formally raified by the senate, was virtually mado by a board of four curasors; and what is morthy of remark, as long as curatorial petroange was a singularity in Germany, Ahdorf maintained its refative pre-minersce, losing it onty when a similar moan was adopted in the more favoured universities of the empire."

The conversion of Marburg into a achoot of Calviaiste dottrine gave occasion to the foundation of the universities of Ciessen and of Rinteln. Of these the former, founded by the margrave of Hesce-Darmstadt, Louis V., as a kind of refuge for the Lultreran professoss from Marburg. recetved its charter froers the emperor Rudolph 11. (1gh h May 160才). When, howevor, the margraves of Daranstadt arquind possession of Marburg in 1625, the university was tranafernel thither; in \(16 g o\) it was moved back again to Giessen. The number of malriculated stodems, which at the beginaing of last century was about 250 , had risen belore its close to over 800. In common with the other universitics of Cermany, but with a facility which obrained for it a specially usenviable reputation, Giessen was for a long time wont to confer the degree of doctor in abrentia in the different facuties without requiring adequate eredentials. This practice drew forth an emphatic protest from the eminent historian Monmsen, and was abandoned long before his death. The univeraily of Rinteln was founded 17 th July 8621 by the emperor
Ferdinand 11. Almost immediately after its fonndation it became the prey of contending partics in the 'Thirty Years' War, and its early development was thus materially hiodered. It never, however, altained to much distinction, and in 1819 it was suppressed. The university of Strassburg was lounded In 1621 on the basis of an already existing academy, Streseto which the celebrated John Sturm stood, during the ars. latter part of his life, in the relation of "rector perpetuus' and of which we are told that in 1578 it included more that a thousand scholars, among whom were 200 of the aobility. 24 counts and barons and three princes. It also attracted studenis from all parts of Europe, and especially from Portugal, Poland, Denmark, France and England. The method of Sturm's teaching became the basis of that of the Jesuita, and through them of the public schoot instruction in England. In 1621 Ferdinand (I. conferred on this academy full privileges as a university; in the language of the charter, "in omnibus fatul tatibus, doctorcs, licentiatos, magistros, et baccalaureon, atque insuper poetas loweatos creandi et promovendi."2 In 1681

1 Discussionr. ac., 2nd ed., pp. 388-89.
\({ }^{1}\) Promulg. Acad. Privil., dac. (Scraseburg, 2608).

Strassburg becume French, and remained so until 1872, when it was refounded by the Emperor William I., and before the close of the century numbered over 1 roo students.

At the beginning of last century Russia possessed but three moscow. universities-that of Moscow (1755), founded by Whae. the Empress Elizabeth; of Wilna (1578), which was
Dappar Polish and chiefly in the hands of the Jesuits; and of Dorpat [Yuriev] in Livonis, which was virtually German.- Under the enlightened policy of Alexander 1. was founded the university of Charkow (1804) for New Russia,

Chartow.
Kavan
st PetersBurs. that of Kazan (1804) for the countries about the Volga, but designed also for the populations of Finland and Siberia, and that of St Petersburg (i8ig). Each of the foregoing six universities bad a definite district assigned to it, from whence it was entilled to recruit students, and, as a further incentive to the pursuit of academic studies, a wkos promulgated in 1800 prockaimed that in all appointments to official posts throughout the empire the holders of a university degree would receive the first consideration in the competition for vacancies. In 1826 the uni-

Melstage versity at Abo in Finland was removed to Helsingfors, sars. and still preserves the charter whereby, in its original home, it had been constituted a university by Queen Christina and her chancellor Oxenstiern in the year 1640. In 1832 the foundation of the St Wladimir University of Kiev Ker. absorbed both that at Wilna and the lyceum of KreOdessen. menetz. Odessa, founded in 1865 , was designed to represent the university of New Russia Although at St Petersburg considerable. attention was regularly given to the teaching of languages, especially those of Armenia, Ceorgia, and Tatary, the general status of the Russian universities continued throughout the greater part of last century exceptionally low; and in 1884 they were all reconstituted by the promulgation of a "universal code"; with this the statutes of the universities at Dorpat (1632) and Warsaw (1886) are essentially in agreement. The former, originally founded at the suggestion of the governor-general, with the design of bringing "martial Livonia into the path of virtue and morality." was at first almost exclusively taught by German professors, of wham, however, very few had retained their chairs at the conclusion of last century. The study of the Slavonic lenguages, on the other hand, received a considerable stimulus; and when, by a decree in May 1887, the use of the Russian langrage was made obligatory in all places of instruction Howughout the baticic provinces. Rusitin began to displace German as the language of the lecture-room, the only faculties in which the use of German continucd to be permissible being Tomsk. those of theology and medicine. The university of Tomsk in westera Siberia, founded in 1888, recruited its numbers chiefly from students in the same faculties. It was, hawever, without endowment, and depended chicfly on a grant from the state aided by private liberality.

During the ensuing twenty years the general influence of Dorpat rapidly spread far beyond the Baltic provinces, while Ionfuence the number of students, which in 1870 was 1106 , rose Iofluence
of Dorpsi to nearly 2000 .' \(^{1}\) In 1880 , however, the appointment of the university officials was taken from the Senatus Academicus and entrusted to the state minister, a change which went far to deprive the university of its claim to be considered German. A like contest between contending nationalities Prague. met with a final solution at Prague, where a Czech basis, the German university beesan its sed on an independent basis, the German university began its separate carcer in the
winter session of \(8882-83\). The German foundation retains certain revenues scerving from special endowments, but the state subvention is divided between the two.

Protestant universities voked a counter-demon athered to Catholicism, erise to a great reaction. edieval Catholic univerledieval Catholic univer-
sitiss were reinvigonted and reorganized (elthough strictly on the traditional lines), while new and important centres were created. It was on the tide of this reaction, aided by their own skilful teaching and practical sagacity, that the Jesuits were borne to that commanding position which made them for a time the arbiters of education in Europe. The carliest university whose charter represented this reaction was that of Bamberg, founded by the prince-bishop Melchior Otto, after whom it was named "Academia Ottonianse" It was opened rst September 1648, and received both from the emperor Frederick III. and Pope Innocent X. all the civil and ecciesiastical privileges of a medieval foundation. At first, bowever, it comprised only the faculies of arts and of theology; to these was added in 1729 that of jurisprudence, and in 1764 that of medicine. In this latter faculty Dr Lgnatius Döllinger (the lather of the historian) was for a long time a distinguished professor. The university library is of especial interest, as including that of an earlier Jesuit foundation and also valuable collections by private donors. Its collection of manuscripts in like manner includes those contained in some thirty suppressed monasteries, convents, and religious institutions at the time of the "secularization." The university of Innsbruck was founded in 1672 by the emperor Leopold 1 ., from wham it received its name of "Academia Lecpoldina.". In the following century, under the patronage of the empress Maria Theresa, it made considerable progress, and received from ber its ancient library and bookshelves in 1745 . In 1782 the university underwent a somewhat singular change, being reduced by the emperor Joseph II. from the status of a university to that of a lyceum, although retaining in the theolagical faculty the right of conferring degrees. In 1791 it was restored to its privileges by the emperar Leopold II., and since that time the faculties of philosophy, law and medicine have been represented in nearly equal proportions. The foundation of the university of Breslau was contemplated as early as the year 1505 , when Ladislaus, king of Hungary, gave his sanction to the project; but Pope Julius II. \(_{\text {, }}\) in the assumed interests of Cracow, withheld his assent.

Nearly two centuries later. in 1702, under singularly altered conditions, the Jesuits prevailed upon the emperor Leopold L to found 2 university without soliciting the papal sanction. When Frederick the Great conquered Silesia in 1741, he took both the university and the
 Jesuits in Breslau under his protection, and when in 1774 the order was suppressed by Clement XIV. he established them as priests in the Royal Scholastic Institute, at the same time giving new statutes to the university. In 18 ir the university was considerably augmented by the incorporation of that at Frankforton-the.Oder, and was ulimately reconstituted on lines similar to those of the newiy founded university of Berlin. In no country was the influence of the Jesuits on the universities more marked than in France. The civil wars in that country during the thirty years which preceded the close of the 16 th century told with disastrous effects upon the condition of the university of Paris, and with the commencement of the 17 th contury its collegiate life seemed at an end, and its forty colleges stood absolutely deserted. To this state of aflairs the obstinate conservatism of the academic authorities not a little contributed. The statutes by which the Part
 university was still governed were those which had been given by the cardinal D'Estouteville, the papal legate, in 1452 , and remained entirely unmodified by the influences of the Renaissance. In 1579 the edict of Blois promulgated a scheme of organization for all the universitics of the realm (at that time twenty-one in number)-a measure which, though productive of unity of teaching, did nothing towards the advancement of the studies themselves. The theological instruction became largely absorbed by the episcopal colleges, and acquired, in the schools of the different orders, a narrower and more dogmatse character. The eminent lawyers of France, unable to find chairs in Paris, distributed themselves among the chicf zowns
of the provinces. The Jesuits did not fall to proft by thit bmobility and excessive conservatism on the part of the aniversity, and during the second half of the i6th century and the whole of the r7th they had contrived to gain almest a connplete monopoly of both the higher and the lower education of provincial France. Their schools rose at Toulouse and Bordeaux, at Auch, Agen, Rhodex, Ptrigueur, Limoges, Le Puy, Aubenss, Conery Beriers, Tournon, in the colleges of Flanders and Lorctic suation France
raine, Douni and Pont-d-Mouseon-places beyond
the jurisdiction of the parlement of Paris or even of the crown of France. Their banishment from

Paris itself had been by the dectee of the parlement alone, and had never been confirmed by the crown. "Lyons,", asys Pattison, "loudly demanded a Jesuit college, and even the Huguenot Lesdiguières, almost king in Dauphiné, was preparing to erect one at Grenoble. Amieas, Rheims, Rouen, Dijon, and Bonrges were only waiting a favourable opportunity to introctuce the Jesuits within tbeir wails."' The university was sescued from the fate which seemed to threaten it only by the excelleat statutes given by Richer in 1598 , and by the discerning protection extended to it by Henry IV., while its higher culture was in some measure provided for by the extablishment by Richelieu in 1635 of the Acadénie française.

The "college of Edinburgh" was founded by charter of Jemes VI., dated 14th April 1582 . This document contains Eano no reference to a studimm generale, nor is there ground ourat for supposing that the foundation of a university was at that time contemplated. In marked contrist to the three older centres in Sootland, the college rose comparatively untrammelled by the traditions of medievalism, and its creation when not effected without some jealousy and opposition on the part of its predecensors. Its first course of instruction was commenced in the Kirk of Fiedd, mender the direction of Robert Rolleck, who had been educated at St Andrewe under Andret. Melvirt, the eminent Covenanter. "He began to teach," sayb Craufurd, "in the lower hall of the great lodging, there being a great concourse of students aliared with the great worth of the man; but diverse of them being not ripe enough in the Latin tongue, were in November next put unden the charge of Mr Dencan Name, . . . who, upon Mr Rollock's recommendation, was chosen second master of the college " 2 In 1585 both Rollock and Nairne subscribed the National Covenant, and a ITe sabecription was from that time required from all who were admitted to degrees in the college.
Disastromas were the effects of the Thirty Yaun' War npon the external condition of the German univerities, resulting peratey in not a few instances in the total dispersion of the arose Tho
Thery
Thars students and the burming of the buildinge and libcaries, they were bess detrimental and less permarient than those which were discernible in the tone and temper of thesecommunities. A formal pedantry andunintelligent method of study, combined with a pacsionate dogmatiom in matters of relfious belief and a rude cootempt for the ataemities of social intercourse, became the leading characterimics, and notm. lasted throughout the a7th centory. But in the year 1693 the foundation of the university of Halla opened up a carcer to two very eminent men, whose insurence, widely diferent as was its charecter, may be compared for its effects with that of Luther and Melanchthon, and served to modity the whole current of German philooophy and German theology. Fialle has indeed been described an "the first real modern university." It was really indebted for its origin to a spirit of rivalry betwees the conservatism of Sucony nad the progressive seadendies of the house of Bresdenbers, but the occession of its sise wes the removal of the ducal court from Halle to Magdeburg. The archbishopric of the latter city having passed into the posesaion of Brandenburg in 1680 was changed into a dukedonen, and the city itself wes selected as the ducal residence. This change left unoccupied some commodious buildings in Halle, which it was decided to utilize for purposes of education.

\footnotetext{
\({ }^{1}\) Zife of Casamben, p. 881 .

}

A "Ritterschafe" for the sons of the nobility was opened, and in the course of a few ycars it was decided to found a university. Sarony endeavoured to thwart the acheme, urging the proximity of Leipsig; but her opposition was overruled by the emperor Leopold I., who granted (roth October 1693) the requisite charter, and in the following year the work of the university commenced. Frankfort-on-the-Oder had by this time become a centre of the Reformed party, and the primary object in founding a university in Halle was to create a centre for the Lutheran party; but its character, under the infuence of its two most notable teachers, Chrixtian Thomasius and A. H. Francke, scon expanded beyond the limits of this conception to assume a highly original form. Thomasius and Francke had hoth
rafliveace of Thome asher and Aractic. with which their liberal and progressive tendencies were there reganded by the seademic authorities, and on many points the two teachers were in agreement. They both regarded with contempt alibe the scholastic philosophy and the acbolastic tboology; they both desired to see the rule of the civil power superseding that of the ecclesiastical power in the seats of learning; they were both opposed to the ascendancy of classical studies as expounded by the humanists-Francke regurding the Greck and Roman pagan writers with the old traditional dislike, as immoral, while Thomasius looked apon them with contempt, as antiquated and representing only a standpoint which had been long left behind; both again agreed as to the desirtbility of inclading the elements of modern culture in the educbtion of the young. But here their agrecment ceased. It was the aim of Thomasius, as far as possible, to secularize education, and to introduce among his countrymen French habits and French modes of thought; his own attire. was gay and fashionablo, and be was in the habit of taking his seat in the professorial chair adorned with gold chain and rings, and with his dagger by his side. Francte, who became the leader of the Pietists, regarded all this with even greater aversion than he did the lifeless orthedoxy traditional in the universities, and was shocked at the worldily tone and diaregard for sacred things which characterized his brother professor. Both, however, commandod a considerable following among the students. Thomasius was professor in the faculty of jurisprndence, Francke in that of theology. And it was a common prediction in those days with rempect to a student who proposed to pursue his acedemic career at Balle, that he would infalibly become either an atheirs or a Pietist. But the services rendered hy Thomasius to learning were gentine and lasting. He was the first to set the example, soon after followed by all the universitics of Germany, of lecturing in the vernacular instead of in the customary Latin; and the discourse in which he first departed from the traditional method was devoted to the consideration of hov far the German mation might with advantage imitate the French in matters of social life and interoourse. His more general viens, as a disciple of the Cartesian philosophy and founder of the modern Rationalismos, exposed him to incessent attacks; but by the establishment of a monthly journal (at that time an aciginal iden) he obtained a chanpel for expounding his views and refuting his antagonists which gave him a great advantage. On the influence of Francke, as the founder of that Pietistic chool with which the reputation of Halle afterwards became especially identified, it is unnecessary bere to dilate: Christian Wolf, who followed Thomasius as an agertor of the new culture, was driven from Halle by the sccusacions of the Pietist s , who dechared that his teaching wes frsught with atheistigal pripciples. In 1740 , bowever, he was recalled by Frederick II., and reinstated in high office with every mark of consideration and reapect. Throughout the whole of the 18th century Halle was the leader of acadernic thought and adranced theology in Protertant Germany, although sharing that leadership, after the middle of the century, with Gattingen. The university of Gettingen (named after its founder "Georgia Augusta ") atecho was endowed with the amplest privileges is a university by George II. of Engiand, elector of Hanover, 7th December \({ }^{1}\) See Pauisen, Ceach. des pelalorten Umioriches, \&c., Pp. 348-58.
1736. The imperial sanction of the scheme had been given three years before (13th January 1733), and the university was formally opened 17th September 1737. The king himself assumed the office of "rector magnificentisaimus," and the liberality of the royal endowments (doubling those of Halle), and the not less liberal character of the spirit that pervaded its organization, soon raised it to a foremost place among the achools of Germany. Halle had just expelled Wolf; and Goltingen, modelled on the same lines as Halle, but rejecting its Pietism and disclaiming its intolerance, appealed with remarkable success to the most enlightened feeling of the time. It included all the faculties, and two of its first professors-Mionheim, the eminent theologian, from Helmstedt, and G. Le. Bohmer, the no less distinguisbed jurist from Halle-together with Gesner, the man of leters, at once established its reputation. Much of its early success was also due to the supervision of its chief curator (there were two)-Beron Minchimusen, himself a man of considerable attainments, who by his sagacious super. intendence did much to promote the general efficiency of the whole professoriate. Not least among its attractions was also its splendid library, located in an ancient monastery, and now containing over 200,000 volumes and 5000 MSS. In addition to its general influence as a distinguished seat of learning, Gobtingen may claim to have been mainly instrumental in diffusing a more adequate conception of the importance of the study of history. Before the latter half of the 18 th century the mode of treatment adopiced by university lecturers was singularly wanting in hreadth of view. Profane history was held of but little account, axrepting so far as it served to illustrate ecclesiastical and sacred history; while this, again, was invariably treated in the narrow spirit of the polemic, intent mainly on the defence of his own confession, according as he represented the Latheran or the Reformed Church. The labours of the professors at Gottingeni especially Putter, Gatterer, Schlorer and Spittler, combined with those of Mascov at Leiprig, did much towards promoting both a more catholic treatment and a wider scope. Not lests beneficial was the example set at Cottingen of securing the appointment of its professors by a less prejudiced and partial body then a university board is only too likely to become. "'The Great Munchhausen,' says an illustrious professor of that seminary, 'allowed our university the right of presentation, of designation, or of recommendation, as litule as the right of frec election; for he was taught by experience that, although the faculties of universities may know the individuals beat qualified to supply their vecant cbairs, they are seldom or mever disposad to propose for appointiment the worldiest witkin their knotiedge.' \({ }^{1}\) I The system of patronage adopted at Gottingen was, in fact, identical with that whicb had already been instituted in the universities of the Netheciands by Douzs. The Ariages. university of Erlangen, a Lutheran centre, was founded by Frederick, margrave of Baireulth. Its eharter was granted by the emperor Charles VII., \({ }^{\text {a }}\) 1st February 1743, and the university was formally constituted, ath November. From its special guardian, Alexander, the last margrave of Ansbach, it was styled "Acadernia Alexandrina." In 1791, Ansbach and Baireuth having passed into the posseasion of Prussia, Eriangen also became subject to the Prussian government, and, as the igth century advanced, her theological faculty became distinguished by the fervour and ability with which it championed the tenets of Lutheranism.

On comparison with the great English universities, the univerities of Germany must be pronounced inferior both in point

Tho
Bugtat ead Ourn mes matverikice comparod. of discipline and of moral control over the students. The superiority of the former in these respects is partly to be attributed to the mere systematic care whicb they took, from a very early date, for the supervision of each student, by requiring that within a certain specified time after his entry into the university he should be registered as a pupil of some master of arts, who was responsible for his conduct, and represeated him generally in his relations to the academic authorities. Mat\({ }^{1}\) Hamilton, Discmssions, p. 381 .
burg in its earliest statutes (those of 1529) endeavoured to establish a similar rule, but without succen.' The development of the collegiate system at Oxford and Cambridge materially assisted the carrying out of this discipline. Although again, as in the German universities, feuds were not unfrequent, especially those between "north" and " south" (the nativea of the northern and southern counties), the fact that in elections to fellowships and scholarships only a certain proportion were allowed to be taken from cither of these divisions acted as a considerable check upon the possibility of any one college representing, either element exclusively. In the German universities, on the other hand, the ancient division into nations, which died out with the \(1 \mathrm{~g}^{\text {th }}\) century, was revived under another form by the institution of national colleges, which largely served to foster the spirit of rivalry and contention. The demoralization induced by the Thirty Years' War and the increase of duelling intensified these tendencies, which, together with the tyranny of the alder over the younger students, known as "Pennalismus," were evils against which the authorities contended, but ineffectually, by various ordinanoes. The institution of "Burschentum," having for its design the encouragement of good fetiowship and social feeling irrespective of nationality, served only as a partial check upon these excesses, which again received fresh stimulus by the rival institution of "Landsmannschaften." or societies of the same nationality. The hatter proved aingularly provocative of duelling, while the arrogant and even tyrannical demeanour of their members towards the unassociated students gave rise to a general combination of the latter for the purposes of self-defence and organized resistance.
The political storms which marked the close of the 18 th and the beginning of the rith century gave the death-biow to not a few of the ancient univesities of Germany. Mainz and Cologne coased to exist in 1798; Bamberg. Dillingen and Duisburg in 1804; Rinteln and Helmstedt in 1800; Salzburg in 1810; Erfurt in 1816. Aldorf was united to Erlangen in 1807 , Frankfort- on-the-Oder to Breslan in 1800 , and Wittenberg to Halle Exilao 0 Snare - Givery ter tur \(\rightarrow f^{2}-\) E34. in 1815. The university of Ingolstadt was first moved in 1802 to Landshut, and from thence in 1836 to Munich, where it was united to the academy of sciences which was founded in the Bavarian capital in 1750 . Munster in Prussia Alimath was for the. first time constituted a university in four faculties by Maximilian Frederick (elector and archbishop) in 1771. Its charter whe coafirmed by Clement XIV. in 1773, and again by the Empecor Jcseph LI. The university was abolighed in the year 1818; but two faculties, those of theology and philooophy, continued to exist, and in 1843 it received the full priviteges of a Prussian university together with the desigmtion of a royal foundation. Of those of the above centres which altogether ceased to exise, bat few were much mised or regretted -that at Mains, which had numbered some six hundred studeats, being the one notable exception. The others had for the moest part fallen into a perfunctory and lifeless mode of tenching. and, with wasted or diminished revenues and declining nu mbers, had long ceased worthily to represent the functions of a university, while the more studious in each centre were haraseed by the frequency with which it was made an arena for polition demonstrations. Whatever loss may have attended their map. pression was more than compensated by the activity and infloecoe of the three great German universities which rose in the ina century.

Murich, after having been completely reorganieed, soon became a distingaisbed centre of study in all the faculties; and
:"Volumus neminem in hanc nostram Academiam admitti. aut per rectorem in album recipi. qui non habeat privatum atque domesticum praeceptorem, qui ejus discipulum egnoscat, ad cujus judicium quisque pro sua ingeniu capucitate atque Marte hecturas et publicas ef privatas audiat, a cujus la tere aul raro aut munguan discedat." Koch expressly compares this provision with the discipline of Oxford and Cambridge, which. down to the commencement of the present century. was very much of the same charicter (Koch, Geachdes acadanischen Pdiagogimus in Merburs, p. is).
its numbers, allowng for two great wars, have been continuously do the increase, the emineace of its professonate, among whom have been Dollinger, Leebig. Schelling, Zeuss and Gesebrecht, having attracted students from all parts of Europe

The univenity of Berhn, known as the Royal Friedrich Wilhelm University, was founded in 1800 , immediately after the Bertle. peace of Tilsit, when Prussia had been reduced to the level of a third-rate Power. Under the gurding infuence of Wilhelm von Humboldt, however, supported by the stroas puspose of Frederick WiHism III, the principles adopted in connexion with the new seat of learning not only raised it to \(\frac{a}{}\) foremost place among the universities of Europe. but also largely conduced to the regeneration of Germany. It had not anly incorporated at the time of its foundation the fanous "Academy of Scicnces" of the city, but expressly repadiated all attachment to any particular creed or school of thought, and professed subservience only to the interests of seience and learning. " Each of the eminent teachers with Whom the university began its hfe-F A Wolfe, Fichte. Savigny, Reil-represented only himself, the path of inquiry or the completed theory which he had himsell propounded its subsequent gremh was astonishing, and before the 10 th century closed the number of its matriculated students exceeded that of every other univencity except Vienna"

The university of Bonn, founded in 1838 and also by Friedrich Wilbelm III., thus became known as the Rhewish Fnedrich

\section*{Banen.} Withelm University-It being the design of the lounder to introduce into the Rhine provinces the classic literature and the newly developed scientific knowledge of Germany proper. With this aim he summoned to his atd the best available talent, among the earher instructors being Nrebuhr, A. W. von Schlegel, with C. F Nasse in the faculiy of medicine and G. Hermes in that of theology. In the last-named faculty it further became noted for the manner in which it combined the opposed schools of theological doctrine-that of the Evangelical (or Lutheran) Church and that of the Roman Catholic Church here skanding side hy slde, and both adorned by eminent names. After the war with Austria in 1859 the German universities underwent a considerable change owing to the enforced military service required by the law of 1867; and the events of 1870 were certainly not disconnected with the martial spirit which had been evoked in the student world, while in the unipersities thentaselves there had risen up a new and more tively interest in political aftairs.

In 1878 a comparison of the numbery of the students in the different faculties in the Prussian universities with those for the year \(\mathbf{8 6 7}\) showed a remarkable diminution in the
Anctass.
chasef
nembit
ter
arontyief
theresom faculy of theology, amounting in Lutheran centres to more than one-half, and in Catholic centres to nearly three-fourths. In jurisprudence there was an inerease of nearly two-fifths, in medicine a decline of a third, and in philosophy an increase of one-lourh.
The universities of the United Provinces, like those of Protestant Germany, were founded by the state as schools for the Uatrere malnterance of the princtples of the Reformation and shlos of the education of the clergy, and afforded in the 36 th Umethod An-
vinces. and 17 th centuries a grateful refuge to not a few of these Huguenot or Port - Royalist scholars whompersecu. tion compelled to lee beyond the boundaries of France, 25 well as to the Purian divines who were driven from England The earliest, that of Leiden (ia what was then the county of Hotland), founded in 1575. commemorated the gellant and successful resistance of the cinizens to the
LeMane. Spanish forces under Requesens. Throughour the 17th century Laiden was distinguished by its leaming, the ability of its protensors, and the shelter it afforded to the more liberal thought associated at that period with Arminianism. Much of its eariy success whs owing to the wise provisions and the influence of the celebrated Janas Douza:-" Douza's principles." says Hamilton. " were those which ought to regulate the practice of all academical patroms; and they were those of his surcessors. He fenew that at the rate learning was seen prized by the state in
the acadetny, would it be valued by the nation at large. He knew that professors wrought more even by example and rafluence than hy teaching, that it was theirs to pitch high or low the standard of learning in a country, and that, as it proved easy or arduous to come up with them, they awoke ether a restless endeavour after an even loftrer attanment, or lulled into a self-satisfied conceit" Douza was, for Leiden and the Dutch, what Munchhausen alterwards was for Gottingen and the German universities. "But with this difference: Leiden was the model on which the younger universities of the republic were constructed, Gbitingen the model on which the older universities of the empire were reformed Both Munchhausen and Doura proposed a high ideal for the schools founded under their auspices; and both, as first curators, laboured with paramount infuence in realizing this idcal for the same long period of thirty-two years. Under their patronage Leiden and Göttingen took the highest place among the universities of Europe; and both have only lost their relative supremacy by the application in other seminanes of the same measures which had at first determined their superionty" The appointment of the profeseors at Leiden was vested in three (afterwards five) curators, one of whom was selected from the body of the nobles, while the other two were appointed by the states of the pro-vince-the office being held for nine years, and eventually for life With these was assoriated the mayor of Leiden for the time being. The university of Francker was founded in 1585 on a somewhat less liberal hasis than Lenden, the professors being required to declare their assent to the rule of faith embodied in the Hendelberg Catechism and the confession of the "Beigian Church." Its four faculties were those of theology, jurisprudence, medicine, and "the three languages and the liberal arts." For a period of twelve years (\(c 1610-22\)) the reputation of the university was enhanced by the able teaching of Wilham Ames (" Amesius "), a Puritan divine and moralist who had been driven by Arebhishop Bancroft from Cambridge and from England. His fame and ability are said to have altracted to Francker students from Hungary, Poland and Russia.

With similar organization were founded the universities of Farderwijk (1600), Groningen (16:4) and Utrecht (1634), the last-mamed being much frequented in the 18 th Harsurn century by both English and Scottish students who repaired thither to obtain instruction of a kınd that Oxford and Cambndge at that time failed altogether to impart-more than a fourth of the stodents of Oroche ERED. Urroctac. Utrecht about the year 1736 being of those nationalities. In the zoth century, however, political considerations began seriously to diminish such intercourse between different centres, and turing the first Napoleon's tenure of the imperial dignity the universities in both the "kingdom of Holland" and the Austrian Netherlands (as they were then termed) were in great peril. But on the settlement of Europe in 1814-15 the restoration of the house of Orange and consequent formation of the "kingdom of the Netherlands" brought both realms under a single rule. The universities of Franeker and Harderwijk were suppressed, and those of Ghent and Litge created, while a uniform constitution was given both to the Dutch and Belgian unsversities. It was also provided that there ahould be attached to each a board of
abeat LMon. curators, consisting of five persons, " distinguished by their bove of literature and science and by their rank in socicty," to be nominated by the king, and at least three of them to be chosen from the province in which the university was situated, the other two from adjacent provinces. After the lapse of another fifteen years, however, the kingdom of the Netherlands having been reduced to its present limits and the kingdom of Belgium (identical for the most part with the Austrian Netheriands) newly created, an endeavour was made in dealing with the whole question of secondary education to give a fuller recognition to both traditional creeds and ethnic affinities. At Louvain, the chief Catholic centre, the faculties of law, medicine
\({ }^{1}\) Statule at Leges (Franeker, 1647), p. 3 .
and philosophy had already, in 1788 , been removed to Brussels arouncts -an alnost unique example of a university which owed its arigin neither to a temporal nor an ecclesiastical authority-and in 1834 Brussels was constituted a free and independent university with a new fourth faculty of natural science, and supported mainly by contributions from the Liberal party. Having, however, no charter, it continued incapable by law of possessing property. While Louvain and Brussels thus represented to a great extent the two chief political parties in the realm, the universities of Ghent on the Scheldt and Liege on the Meuse recruited their students mainly from the two chief races-the Flemish and the Walloon. In Holland, on the other hand, where no such marked racial differences exist, the universulies of Groningen, Leiden and Utrecht have been assimilated (1876) in constitution, each being administered by a consistory of five rectors with a senate composed of the professors in the respective faculties. The foundation of the Amatorn university of Amsterdam (1877) more than repaired dind. the loss of Francker and Harderwijk, and the progress of this new centre during the first ten years of its existence was remarkably rapid. The higher education of women bas made some progress in the Netherlands

In Sweden the foundation of the university of Upsala, sanctioned in 1477 by Sixtus IV. as a studium generale on the

Uaiver shics of Swoder ad Norway. Lend Uperla. model of Bologna, was followed at a long interval by that of Lund (1666), which was created during the minority of Charles XI. with statutes and privileges almost identical with those of Upsala and with an endowment largely derived from the alienated revenues of the chapter of the cathedral. The students were recruited from Denmark, Germany and Sweden; and Puffendorf, the civilian, was one of its first professors. During Chazles's reign its resources were in turn confiscated, and the university itself was clased in 1076 in consequence of the war with Denmark. When again opened it remained for a long time in a very depressed condition, from which it failed to rally until the rgth century, when it took a new departure, and the erection of its handsome new buildings (1882) invested it with additional attractions. The royal university of Upeala, roused to new life in the 27 th century by the introduction of tbe Cartesian philosophy, has been throughout (notwithstanding its singularly chequered bistory), the chief home of the higher Swedish education. In the i8th century lectures began to be delivered in Swedish; while the medieval division of the students into "nations" continued, as at Lund, until the second quarter of the rgth. The various changes and events during the interesting period 1872 to 1897 have been recorded at length in the national tongue hy Reinhold Geijer in a handsome quarto which appeared in 1897. Gothenburg, on the other hand, with its socicty of science and literature, dating from 1841 , has represented rather a popular institution, existing independentiy of the state, maintained chiefly by private contributions, and governed by a board called the Cwratorimm, For a long time it was not empowered to hold examinations. Stockholm (1878) still remains a gypnasium, but its curriculum is to a certain extent supplemented by its connexion with Upsala, from which it is litule more than forty miles distant by rail. The university of Christiania in Norway, founded in 1811 ,

\section*{Clirk-}
thetm and the Swedish universities are strongly Lutheran in character; and all alike are closely associated with the ecclesiastical institutions of the Scandinavian kingdoms. The same observation applies to Copenhagenwhere, bowever, the labours of Rask and Madvig have done much to sustain the reputation of the university for learning. mincri 《iThategal upiversity of Kid was founded in 1605 by
 faculties of thoology, law,
ifed its ground, although tonds that frequently arose benmank, and under the
 Denmark made a
marked advance. In the latter half of latt century it scquired new buildings and rose into high reputation at a school of chemistry, physiology and anatomy, whlle its library in 1904 exceeded 250,000 volumes.

The number of universities founded in the last century is in striking contrast to the paucity which characterizes the two preceding centuries, an increase largely reaulting, however, from the needs of English colonies and dependencies. In the Mediterrancan, Genoa (1812), Messina (1838) and Oroce. Marseilles (2854) were foundations which supplied menata genuine want and have gradually attained to a fair measure of success. The first had previously evisted comione. as a school of lew and medicine, but when, along with the rest of the Ligurian republic, it became incorporated in the empire under Napoleon I., the emperor, in order to conciliate the population, raised it to the rank of a university in 1812. The university subsequently fell into the hands of the Jesuits, who maintained their tenure of the principal chairs until the unification of the Itahian kingdom under Victor Emmanuel, when Messina, which had been founded during the rule of the Bourbons over the Two Sicilies, became similarly included under Italian rule Of Marseilles mention has above been made.

In France the fortunes of academic learning were even less happy than in Germany. The university of Dole in Franche Comté had for two hundred ycars been 2 flourishing centre of higher education for the aristocracy, and was consequently regarded with envy by Besancon. In 1691, however, when the country had been finally ceded to France, and Savoy had been aubjugated by the arms of Catina, Louis XIV. was induced, on the payment of a considerable sum, to transfer the university to Besancon. Here it forthwith scquired enhanced importance under the direction of the Jesuits. But in 1722, on the creation of a university at Dijon, the faculty of law was removed to that city, where it. continued to exist until the Revolution.

The university of Paris indeed was distracted, throughout the 17 th century; by thoologieal dissensions-in the first instance owing to the struggle that ensued after the Jesuits had effected a footing at the Collège de Clermont, and subsequently by the strife occasioned by the teaching of the Jansenists. Its studics, discipline and numbers alike suffered. Towards the close of the century a certain revival took place, and a succession of illustrious mames-Pourchot, Rollin, Grenan, Coffin, Demontempuys, Crevier, Lebeau-appear on the rall of its teachers But this improvement was soon interrupred by the controversies excited by the promulgation of the bull Un;genitus in 1713, condemoing the tenets of Quesnel, when Rollin himself, although a map of singularly pacific disposition, deemed it his duty to head the opposition to Clement XI. and the French episcopate. At last, is \(\mathbf{1 7 6 2}\), the parlement of Paris issued a decree (August 6) placing the colleges of the Jesuits at the disposal of the university, and this was immedintely followed by another for the expulsion of the onder from Paris, the university being installed in possession of their vacated premises. Concurrently with this measure, the curriculum of prescribed studies assumed a more hopeful character, and both history and natural scienca began to be cultivated with a certain success. These innovations, however, were soon last sight of in the more sweeping changes which followed upon the Revalution. On the \(15^{\text {th }}\) of September 1793 the universities and colleges througbout France, together with the ficulties of theology, medicine, jurisprudence and arts, were abolished by a decree of the convention, and the wbole system of national education may be said to have remained in abeyance, until, in 1808, Napoleon I. promulgated the scheme which in its essential fcatures is almost identical with that which at present obtains-the whole system of education, both secondary and primary, being made subject to the control and direction of the state. In pursuance of this conception, the "university of France," as it was benceforth styled, became litule mosa
than an abstract termi signifying colisctively the various centres of professional education in their new relations to the state. All France was divided into seventeen districts, desigmuted "academies," each administered by its own rector and council, but subject to the supreme authority of the minister of public instruction, and representing certain faculties which varied at different centres in conformity with the new scheme of distribution for the entire country.

While, accordingly, three new " acadcmies "-those of Lille, Lyons and Rennes-date their commencement from 1808 , Lan. many of the pre-existing centres were completely supLuran: pressed. In some cases, however, the effacement an
Reaser.
importanc,
with the deparment as at Each rector of an "academy " was also constituted president of a local conseil. d'enseignoment, in conjunction with which the nominated the professors of lycees and the communal schoolmasters, \({ }^{2}\) these appointments being subsequently ratified by a promotion committee sitting in Paris. In 1895, however, motro the goverament was provailed upon to sanction the
Hat 0

\section*{anmiles."} institution of certain " free faculties," as they were termed, to be placed under the direction of the bishop, and depending for support upon voluntary conaributions, and each including a faculty of theology. The faculty at Marseilles, on the other hand, which originated in an earlier "faculty of sciences" founded in 1854, was now called upon to share the governmental grant with Aix, and the two cenires

Atromitr became known as the Académic d'Aix-Marseillearomarn the faculties in the latter being restricted to mathescbool), while faculties of law and philosophy were fixed at Aix, which possesses also the university library properly so termed. In the capital itself, the university of Paris and the Ecole Pratique dos Hautes Etudes carried on the work of higher instruction independently of each other-the former with faculties of Protestant theology, law, medicine, science, lecters and chemistry distributed over the Quartier Latin; the latter with schools of mathematics, natural acience, history, philology, and history of religions centred at the Sorbonne.

The Collige de France, founded in the 16 th century by Francis I., was from the first regarded with hostility both by the university and by the Sorbonne. It became, Candre 0 Prames. however, so highly esteemed as a school of gratuitous instruction in Latin, Greek and Hebrew, that it not only beld its ground, but at the Revolution utimately survived alike the univensities and their hostility. As reconstituted in 1832 it became chiefly hnown as an institution for the inseruction of adults, and its suall of professors, some fify in number (including their deputies), has compriced from time to time the names of not a few of the most distinguished scholars

\section*{seracs.}

3 m
had been distinguished by an intellectual activity which became amocisted with the names of Goethe; Herder and others, was also swept away by the Revolution. It wis revived in ssos as a Protestant "academy," bat four years later incorporaled in the newiy created " acaderay" of Nancy, with a faculty of Protestant theology which lasted only until 48.8.

In Smitzerland the universities shared is the conflicts handed down from the days when the Helvolic. republic had been
sekien mand. first cncated, and each with somewhat similar experiences. In 1832, Basel havins joined the Sormer Buad or League of the Catholic Cantons, the Confederates divided the capton into iwn, and agreed to raise the

It retains a certain professional meaning in that a student atudying for the "university" is understood to be one who is bimscll aiming at the prolession of a teacher in a lycte.

EThe prefet of the departiment has since talucu the place of the sector with refatd to eomintaions.
flourishing Hochschule which already eristed at Zurich to the rank of a university-a measure which may be said to mark a turning-point in the history of the higber 2 artch. education of the republic. In 1839, however, the teaching of D. F. Strauss, who bad been installed in the chair of theology at Zurich soon alter his expulsion from Tübingen, gave rise to a popular demonstration which not only brought about tbe overthrow of the governing body, but placed the existence of the university itself in jeopardy. But the storm was successfully weal hered, and in 1859 the statutes were revised and a considerable addition made to the professoriate. The gymnasium of Bern, originally established under the teaching of Ulrich Zwingli, developed in 1834 into a university with all the faculties, those of medicine and philosophy rising with the advance of the century into high repute. As early as 1586 Lausanne had been a noted school
for the education of Protestant ministers, but it was Leusasmen not until 1806 that chairs of philosophy and law were eatablished, to which those of natural science and literature were added in 1836, and, somewhat later, that of medicine. It was not, however, until 1891 that Lausanne was formally consti tuted a university. At Geneva the famous academy of the 16 th and \(17^{\text {th }}\) centuries, long distinguished as

Camera a centre of Calvinistic teaching, became merged in 1876 in a university, where the instruction (given mainly in the Frenels language) was carticd on by a staff of forty-one professors. With this was also incorporated an earlier school of science, in which De Saussore and De Candolle had once been teachers. Fribourg, founded in \(\mathbf{1 8 8 9}\) as a universit \(y\) of the canton so nanjed, began wilh only two faculties-those of Framen law and philosophy, to which one of theology was added in the following year. A certain spirit of innovation character. ined most of the Swiss universities at this time; especially in connexion with female education. At Zurich, in 1872 (and somewhat ber at Gemeva and Bern), women were admited to the lectures, and in 1892 were permitted themselves to lecturc, Lady, Frau Dr Emilic Kempin, sucreeding to the chair of Roman law. At Fribourg the proposition was first brought forward that all professors should bo appointed only for a specified period, a limitation which along with other questions affecting the professorial body gave rise to much divergence of opinion.
In Spain the act of 1857 introduced a radical change similaz to that in France, the whole system of edacation being placed under the responsible comitrol of the mlnister lor that depertment, while the entire kingdom was at the same vime divided into ten university districts-Madrid, Barcelona, Gramada, Oviedo, Salamanca, Santisgo, Sevilte, Valencia, Valladolid and Saragoses-the rector of the universities in each dissrict representing the chief authority. The degrees to be conferred at each were those of bachelor, licentiate and doctor. Each university received a rector of its own, selected by the government from among the professors, and a precise plan of instruction was prescribed in which every bour had its appointed lecturer and subject. Philosophy, natural science, law and medione were to be sundied at all these unjversitics, and at the majority a school of chemisiry was subsequently instituted, excopt at Oviedo, which was iimited to a faculty of law and a schoot for notaries. But at Salamanca, Villadotid, Seville and Saragossa no school of chemistry was instituted, and at the first three that of medicine wtimatcly died out. No provision was made for instruction in theology, this being relegned to the seminaries in the episcopal cirics. The university of Manila in the Philippines was opened in 160 , as a school for the nobility, and ten years later the famous college of St Thomas was founded by the Dominican order; bat it was mot until 1857 that the university, properly speaking, was founded by royal Spanish decree. In Portugal, Coimbra, which narrowly escaped suppression in the 16th century and was removed from 1380 to 1537 to Lisbon, hes long been a fommsting schoot. Its instruction is given gratis; bet, as all members of the higher courts of fudicature and adoministration is the roakop are required to have graduated
at the university, it is at the same time one of the mest aristocratic schools in Europe. Of its five faculties, theology, jurisprudence, medicine, mathematics and philosophy, that of law is by far the most flourishing, the number of students in this faculty nearly equalling the aggregate of all the rest. In 1772 the university received new statutes and was to a great extent reorganized. There is a valuable library, largely composed of collections formetly belonging to suppressed convents. As a school of theology Coimbra has always been distinctly antiultramoniane.

In Italy, as in Spain, education for the church has been relegated almost extirely to the numerous "seminaries," where it tuabr. is of an almost entirely elementary character. In 1875
a laudable effort was made by R. Bonghi, the minister of education, to introduce reforms and to assimilate the universities in their organization and methods to the German type. His plans were, however, to a great extent reversed by his successor, Coppino.
In Austria the universities, being modelled on the same systero as those of the German Empire, present no especially Aastris noteworthy features, except that the sphere of the Huagary. functions of a rector corresponds precisely with that of Veasa. the rector in those German universities which have ao curator, and the faculties are represented by the ordinary professors as a body along with two representatives of the "Privatdozents." Vienna has long been chiefly distinguished for its school of medicine, which enjoyed in the last century a reputation almost unrivalled in Europe. The other faculties were, however, suffered to languish, and throughout the first half of the last century the whole university was in an extremely depressed state. From this condition it was in a great measure restored by the exertions of Count Thun. The university of Olmutz, founded in 158 , was formerly in possession of what is otmetrs. now the imperial library, and contained also a valuable collection of Slavonic works, which were carried off by the Swedes and ultimately dispersed. It was suppressed in 1853, and is now represented only by a theological faculty. The university of Graz, the capital of Styria, was founded in 1586 ,

Oras.
Selaburg
Lembers. and has long been one of the most flourishing centres, with nearty 2000 students, chiefly in law and philosophy. The university of Salzburg, founded in 1623, was suppressed in 1810; that of Lemberg, founded in 1784 by the Emperor Joseph II., was removed in 1805 to Cracow and united to that university. Ia 1816 it was opened on an independent basis. In the bombardment of the town in 1848 the university buildings were burnt down, and the site was changed to what was formerly a Jesuit convent. The fine library and natural history museum were at the same time almost entirely destroyed. The most recent foundation is that of Czernowitz (1875), with faculties of theology (Greek crere sowkt. Church), law and political economy, and philosophy. The universities of the Hungarian kingdom are three in number:-Budapest, originally founded at Tyrnau in 1635 sudapest. under the auspices of the Jesuits, now possessing four facultics-theology, jurisprudence, medicine and philosophy (number of professors in 1903, 180; students, 3223); Kolozsvar (Klausenburg), the chief Magyar centre, founded in Klowneto 1872 and also comprising four faculties, but where ang. mathematics and natural science supply the place of
Agram. theology; Zagrah (Agram), the Slovack university, in Croatis, originally founded hy Maria Theresa in 1776 from some suppressed schools of the Jesuits, and reopened in 1874 with three faculties, vis. jarisprudence, theology and philosophy. The chlef centre of Protestant Do arocrata education is the college at Debreczen, founded in 1531, which in past times was not infrequendy subsidized from England. It has facuities of law and theology, courses of inatruction in philosophy, and a school for teachers, and possesses a ine library.
In Japan there are two imperial universities-Tokyo (1868) and Kiote" 'he former representing the union of two preexis
on which occacion it was placed under
the control of the minister of instruction with yearly grants from the treasury. The ordinary course of studies was limited to three years, that of medicine being extended to four. Kioto was formed out of four previously existing colkges of haw, medicine, science and engineering.

The "National University" of Athens (founded May 22, 1837) was modelled on the university systems of northern Cermany, on a plan originally devised by Prolessor Brandis It originally included only four faculties,
viz. theology, jurisprudence, medicine and philusophy, to which one of applied mathematics was subsequently added.

In European Turkey the university of Jassy (\(\mathbf{1 8 6 0}\)) in Rumania was founded by its ruler, Prince Cuza, and logether with the newly founded university of Bucharest received its Turkey completed organization in 1864. Both werc constituted state institutions and were represented in the senate, although not receiving any fixed revenues from the government. lts students are instructed and examined gratuit. ously. In the university of Sophia (1888) in Bulgaria, faculties were established, in the course of the ensuing four years, of history, philology, physics, mathematics and jurisprudence, the main object in view being the training of competent teachers of schools and of lawyers, and affording them the means of gaining an intelligent insight into the real wants of the native population. The university of Constantinople was founded in 1900 at the jubilee fertivat in honour of the sultan's succession to the throne. It included five faculties and was placed under the control of a director and sub-director, the former being invested with authority over teachers and scholars alike.

The history of the two English universities during the 16 th and following centurics has presented, for the most part, features which contrast strongly with those of the continental seats of learning. Both suffered severely from confiscation of their lands and revenues during the period of the Reformation, but otherwise have generally enjoyed a remarkable immunity from the worst consequences of civil and political strife and actual

\section*{the}

Eactirs
arevrer
ahies
shace the
medtival
mented warfare. Both long remained centres chiefly of theological teaching, but their intimate connexion at once with the state and with the Church of England, as "by Lew established," and the modifications introduced into their constitutions, prevented their becoming arenas of fierce polemical contentions like those which distracted the Protestant universities of Germany.
The influence of the Renaissance, and the teaching of Erasmus, who resided for some time al both universities, excrised a notable effect alike at Oxiord and at Cambridge. The names of Colet, Grocyn and Linacre illustrate chis intluence at the former centre; those of Bishop Plsher,
danueace ortion Remat Si John Cheke and Sir Thomas Smith at the latter. Remer The laboars of Erasmus at Cambridge, as the auctor of a new Latin version of the New Testament, with the design of placing in the hands of students a text fret frotrt the errors of the Vulgate, were productive of important effects, and the university bccame a contre of Reformatfon doctrine some years before the wrilings of Luther became known in England. The foundation of Chrisi's Cellege (1505) and St John's College (1511), through the Infinence of

The
Externe
cale st
Cing
Criden Fisher with the countess of Richmond, also materi ally aided the gencral progress of leaming at Cambridge. The Royal Injunctions of 1535 , embodying the views and designs of Thomas Cromwell, mark the downfall of the old scholastic methods of study at both miversitien; and the foundation of Trinity College, Cambridge, in 1547 (partly by an amalgamation of two older societies), represents the eariest conception of such an institution in Engiand in complete independence of Roman Catholic traditions. Trinity (1554) and St John's (1555) at Oxford, on the aiber hand, founded during the reactionary reign of Mary, serve rather as examples of a transilional period.

In the reign of Elizabeth Cambridge became the centre of another great moveracnt-that of the earlier Puritanism, St John's and Queens' being the strongholds of the party lod
by Cartwight, Waker Travers and others. Whitaker, the eminent master of St John's, altbough he sympathized to some pumas. extent with these views, strove to keep their expres-

A붕
capes
Erite. sion within limits compatible with conformity to the Church of England. But the movement continued to gather strengh; and Emmanuel College, Lounded in 1584, owed much of ile early prosperity to the fact that it was a known school of Puritan doctrine. Miost of the Puritans objected to the discipline enforced by the university and ordinary college statutes-especially the wearing of the cap and the surplice and the conferring of degrees in divinity. The Anglican

\section*{erper}

Mand
macime of 1578. party, headed by such men as Whitgift and Bancroft, resorted in defence to a repressive policy, of which subecription to the Acts of Supremacy and Uniformity, and the Elizabethan statutes of \(157^{\circ}\) (investing the "caput" with larger powers, and thereby creating a more oligarchical form of government), were the most motable results. Oxford, although the Puritans were there headed by Leicester, the chancellor, devised at the same time a similar cheme, the rigid discipline of which was lurther developed in the Landina or Caroline statutes of 1636 . It was under these Lomas respective codes-the Elizabethan statutes of is7oand atactes the Laudian statutes of 1636 -2hat the two universities ep/a36 were governod until the introduction of the new codes of 1858 . The fodelity with which both universitics adhered to the royal causc in the Civil War caused them to be regarded with suspicion by the Puritan party, and under the Commonwealth both Oxford and Cambridge were for a brief period in great danger owing to the distrust, which culminated among the members of the " Nominuted Parliament " (July December 1653), of university education generally, as tending to loster contentiousness with respect to religious belief. It was even proposed. by William Delt-himself the master of Caius College-to abolish the two universities altogether, as hopelessly pledged to antiquated and obsolete methods, and to establisb in their place schools for the higher instraction throughout the country. They were saved, however, by the firmness of Cromwell, at that time chascellor of Oxiord, and, althpugh Aristotle and the scholastic philosophy no longer held their ground, a marked improvement wis observable both in discipline and morality among the stadents, and the prescribed studies were assiduously parsued. At-Onford; under the influence and Leaching of Dr Wilkins, Seth Ward and John Wallis, a tourishing school of mathematics was formed at a time when the study had died out at Cambridge.

After the Restoration Cambridge became the centre of 2 remarkable movement (a reflex of the infuence of the Cartesian

\section*{Thi Case}
treve
plerentin
mave
erex.
ander the
Tive Mrw
sent
phor
erght. philosophy), which attracted for a tirae considerable attention. Its leaders, known as the Cambridge Platonists, among whom Henry More, Cudworth and Whichcote were especialiy conspicuous, were men of high character and great learning, alt hough too much master of Trinity (\(1673-77\)), the two Levessian pro fessors, Isasc Newton (prof. \(1660-1702\)) and his successor Wiltiam Whiston (prof. 1702-1 I), and Roger Cotes (Plumian prof. 3707-16), began to render the exact aciences more and more an object of study, and the institulion of the tripos examinations in the course of the first half of the 18 th century establiched the repatation of Cambridge as a schoot of mathematical science. At Oxford, where the sudy had in turn declined, and where the statutable requirements with respect to lectures and exercises were suffered to fall into neglect. the deqeneracy of the whole community as a school of acoderic cultare is attested by evidence too emphatic to be gainsaid. The moral tone al both universitics

\section*{Arfleat \\ ming} was at this timesinpularlylow; and the rise of Met bodism触 asociated with the names of the two Weskeys and Whitefeid at Orford and that of Berridgo at Cambridse, cperted with gretter efect upos the malion at large then
on either of the two centres where it had its origin. With the advance of the next ceatury, bowever, a perceptible change took place. The labours of Charles Simeon at Cam bridge, in conncxion with the Evangelical party, and the far more celebrated movement known as Tractarianism, at Oxford, exercised considerable influence in developing a more thoughtiful spirit at either university. At both centres, also, the range of studies was extended: written examinations took the place of the often merely formal viod woce ceremonics; at Cambridge the study of the classics was raised in 1824 to the dignity of a new tripos. The number of the students at both universities increased, the matriculations at each rising to over four hundred. Further schemes of improvement were put forward and discussed. And in 1850 it was decided by the government to appoint commissioners to inquire what edditional reforms might advantageously be introduced. Their recommendations were not all carried into effect, but the main results were as follows:' "The professoriate was considerably increased, reorganized and re-endowed, by means of contributions from colleges. The colleges were emancipated from their medieval statutes, were invested with new constitutions, and acquired new legislacive powers. The fellowships were almost universally thrown open to merit, and the effect of this was not merdy to provide ample rewards for the highest academical attainments, but to place the governing power within colleges in the haods of able men, likely to promote further improvements. The number and value of scholarships were largely augmented, and many, though not all, of the restrictions upon them were abolished. The great mass of vexatious and obsokete oaths was awept away; and, though candidates for the M.A. degree and persona clected to lellowships were still required to make the old subscriptions and declarations, it was enacted that no religious test should be imposed at matriculation or on taking a bacheloris degrec."1

In 1869 a statute was enacted at Cambridge admitting students as members of the university without making it imperative that they should be entered at any hall or college, but simply be resident cither with their parents or in duly licensed lodgings.

The entire abolition of tests lollowed next. After belng rejected on several occasions in parliament it was eventually carried as a government measure, and passed the House of Lords in 187 t .

In 1317 the reports of two new commissions were lollowed by further changes, the chief fealures of which were the diversion of a certain proportion of the revenues of the colleges to the uses of the university, especially with a view to the encouragement of studies in natural science; the enforcement of general and uniform regulations with respect to the salaries, selection and duties of professors, lecturers and examiners; the abolition (with a (ew exceptions) of all clerical restrictions on headships or fetlowships; and the limitation of tellowships to a uniform amount.

That these successive and fundamental changes were on the whole in unison with the national wishes and requirements may fairly be inferred from the remarkable increase in numbers at both universities, especially at Cambridge, where the number of undergraduates, which in 1862 was 1526 , rose in 1887 to 2979. In the academic year 1862-63 the number of matriculations was 448 , and in 1go6-7 1083. The following universitios and colleges, twenty-two in number, have since, in the order of their enumeration, sought and received the privilege of affiliation: University College, Nottingham; university of Sheffeld; university of Adelaide;

Amilistel
Aviver
shics and colloges. St David's College, Lampeter: university of Calcutta; university college of Waics. Aberystwyth; university of Ncw Zealand; university of the Cape of Good Hope; university of Allahabad; runjab University; universily of Bombay; universily of Toronto; Si Edmund's College. Ware; university of Madras; university of Sydney: At'Gill University, Montreal; university of Tasmania; university of New Brunswick; Hartley University,
\({ }^{1}\) Brodrick, Universily of Oxford, pp: 136, 137.

College, Southampton; University College of South Wales and Monmouthshire, Cardiff; university of King's College, Windsor, Nova Scotia; university of Qucen's College, Kingston, Ontario.

The changes introduced by the legislation of 1877 have been gradually carried out as the occurrence of vacancles in the colleges has made possible the appropriation of portions of their revenue for the foundation of professorships and other university purposes, though in some cases the intentions of the commissioners bave been irustrated thy the effects of agricultural depression upon college revenues. The general effert of the revolution has been a marked diminution in the clerical character of the college teaching bodies, the conversion of the college

Aurther
chager:
at Onfort
and Cand
brldese. teaching staff from a temporary employment for bachelors awaiting livings or other preferment into a permanent profession, and the growth of a resident and working university professoriate. At the same time a change of almost equal significance has taken place in the teaching system of the university through the gradual growth of "inter-collegiate lectures." At Oxford nearly all honour lectures given by college tuiors and lecturers bave been thrown open to all members of the university: the college tutor is now recognized by the university as a teacher in the faculty to which he betongs, and the institution of boards of facultics has done something to bring the organization of the university into harmony with that of universities outside the British Isles.' At Cambridge the system of inter-collegiate lectures has also developed itself, but to a considerably smaller extent. At both the old English universities the great widenlng of the courses of study open to senior studenis (honour men), which began about the middle of the 1 oth century, has been continued, while there has been some widening and modermizing of the studies by which a pass or "poll " degree can be obtained. At Orford there are now the following "Final Honour Schools": Litterae Humaniores (Classice, Ancient History and Philosophy), Mathematics, Natural Science, Jurisprudence, Modern History, Theology, Oriental Languages, English Literature; and at Cambridge there are the following "Triposes ": Mathematics, Classios, Motal Sciences, Natural Sciences, Theology, Law, History, Oriental Languages, Medieval and Modern Languages, Mechanical Sciences (Engineering). Degrees in letters and science have also been instituted at both Oxford and Cambridge. The doctorme is given for original work. At Oxford the B.Litt. and B.Sc. can be taken by dissertatlon or original research, without passing the examination for B.A. At Cambridge the B.A. can be obrained in a similar manner by advanced students.

The strenuous efforts of both universities fully to meet the constantly increasing requirements of scientific education have necessitated appeals for public aid which have met with much generoas response. Among the latest instances is that of the late Slr W. G. Pearce, who appointed to Trinity Colleze; Cam-

1 The proposed relorms initiated by Lord Curzon as chancellor of Oxiord Universiny, though largely administrative, may be mentioned here. In 1909 he issucd his " Principles and Meihods of University Reform." Commitices of Council were formed 10 prepare definite schemes in the various directions indicated, and in 1910 a volume on the subject was issued to the members of Congregation. It was proposed, inter alia, to make Greek an optional subject in Responsions, thus foreshadowing changes in Moderations and final schools. Responsions itself was to be replaced by an entrance examination, though it has long practically served as such. The creation of "a diploma specially suitable for candidares contemplatiag a commercial carecr" was recommended. Addirional provision to assist poor siudents. including tite resignation of their emoluments by non-necessitous students in favour of exhibition funds for necessitous students in the colleges, and changes in the system of college fellowships, with esperial reference to the encourage. ment of nesearch in combination with 1 thorial work, were alce indicated. Among purely administrative reforms, berfifes certman changes in the rutes goverring eligibility to the Hebdomadal (wacil 4.1. Congregation, it was proposed to reconctifute the met od of Qa to and membership of the boards of raculsies, at the. ame mating a gemeral board of the faculices, 10 control the individual and to" relieve the Heldomadal Council of the ereates port Fonnected with currucula and examinations thoposed to review the accounts of the university, nos and colleges, and to act in an advisory 1,-[ED.]
bridge, a certain trust fund over which he had a genecal power of appointment, and also bequeathed to the society the residue of a considerable cstate.

So long ago as the year 1640 an endeavour had been made to bring about the foundation of a northern univertily for the benefit of the counties remote from Oxford and Cambridge. Manchester and York both petitioned to be made the seat of the new centre. Cromwell, bowever, rejected both petitions, and decided in favour of Durham. Here he founded the university of Durham (1657), endowing it with the sequestered revenues of the dean and chapter of the cathedral, and entitling the society "The Mentor or Provost, Fellows and Scholars of the College of Durham, of the foundstion of Oliver, \&x." This scheme was cancellod it the Restorttion, and not revived until the present eentury; but on the 4 th July 1832 a bill for the foondation of a university at Durbem received the royal assent, the dean and chapter being thereby empowered to appropriate an estate at South Shields for the establishment and maintenance of a university for the edvancement of learning. The foundation was to be directly connected with the cathedral church, the bishop of the diocese being appointed visitor, and the dean and chapter governors; while the direct control was vested in a warden, a senate and a convocation. A college, modelled on the plan of those at the older universities, and designated University College, Durham, was founded in 1837, Bishop Hatfield's Hall in 1846, and Bishop Cosin's Hall (which no longer exists) in 1851 . The university includes all the faculties, and in 8865 there was added to the laculiy of arts a school of physical science, including pure and applied mathematics, chemistry, geology, mining, engineering, \&c. In 1871 the corporation of the university, in conjunctioa with some of the leading landed proprietors in the adjacent counies, gave further extensi a to this design by the foundation of a college of physical science at Newcasile-upon-Tyme (subsequently designated Armstrong College), designed to teach scientific principles in their application to engineering, mining, manufactures and agriculture. Students who had passed the required examinations were made admiscible as associates in physical science of the university. There is atso at Newtastle the College of Medicine which stands in similar relations so Durham, of which university Codringtion Ccllege, Berbados, and Fourah Bay College, Sierrs Leone, are likewise afriated calleges.

The university of London had its origin in i movemeat initiated in the year 1825 by Themes Campbell, the poet, in conjunction with Henry (afterwards Lord) Breugham, Mr (aftervards Sir) Isaac Lyon Goldsmid, Joseph

Uolver
Leagder Hume and some influential Disenters, most of them

Learden connected with the congregation of Dr Cox of Hackney. The scheme was originally suggested by the fact that Dissenters were practically excluded from the older universities; but the conception, as it took shape, was distinctily nonitheological The first council, appointed December 1825 , comprised names representative of nearly all the religious denominations, inchuding (beside those above mentioned) Zachary Macaulay, Ceorge Grote, James Mill, William Tooke, Lord Dudley and Ward, Dr Olinthus: Gregory, Lord Lansdowne, Lord John Russeh and the duke of Norfolk. On 12 th February 2826 the deed \(\alpha\) seltiement was drawn up; and in the course of the year seven acres, constiruting' the site of Undversity College, wrere purchased, the foundation stone of the new buildings being laid by the duke of Sussex 3oth April 8827 , The course of instruc. tion was designed to include " languages, mathemavics, physica, the mental and the moral sciences, together with the bers of England, history and political economy, and the various branches of knowiedge which are the objects of medical education." It October 8828 the college was opened as the university of London. But' in the meantime a certain axction of the supporters of the movement, whlle satisfied as to the essential soundmess of the primary design as a development of national education, entertained considerable soruples as to the propriety of altogether dissociating such en institution frown the national church. This foeling found expression in she foundation and
incorporation of Ring's College (14th Augut 18a9), apened 8th October 1831, and designed to combine with the original plan instruction in "the doctrines and duties of Christianity, as the same are inculcated by the United Church of England and Ireland." This new phase of the movement was so far succesuful that in 1836 it was deemed expedient to dissociate the univeraity of London from University College as a "teaching body." and to limit its action simply to the institution of examinations and the conferring of degrees-the college itself receiving a new charter, and being thenceiorth designated as University College, London, while the rival institution was also incorporated with the university, and was thenceforth known an King's College, London. In the charter now given to the university it was stated that the king " deems it to be the duty of his royal office to hold forth to all clases and denominationa of his faithful sabjects, without eny distinction whatsoever, an encouragement for pursuing a regular and liberal course of education." The charters of the university of London and of Univerity College, London, were signed an the same day, 384 November 1836. In 2869 both the colleges gave their adberion to the moveroent for the higher education of women which had been initiated elsewhere, and in 1880 women were for the first time admitted to dogrees.

By the University of Landan Act 1898 , and the statutes of the commimioners named therein (issued in s000), the university \& London was reconstituted. The senate is composed of the chancellor and fifty-four merrbers, of whom foar are appointed by the king in counsil, sixtees by the convocation (i.e. doctors and proctors) of the unjversity, sixteen by the various faculties, and the remainder by various public bodies or institutions. The senate is the supreme governing body, and has three staoding comrrittees, of which one is the academic coluncil for "internal students," another the council for "external students" and the third a board to promote the extension of university teaching. Provision is made for the appointment of profesers and other teachers by the umiversity itself, and aloo for the recognition as teachers of profestors and others tesching in such institutions in or mar london as may be recognized as schools of the university. The following bodies are constituted schools of the eniversity: University College and King's College, London; the Royal Hollowey College, Egham, Bediord College, London, and Westifeld College, Hampstead (oolleges for women); the Imperial College of Science and Technology; the medical schoods of the priacipal London hoapitals, the Laadon School of Economica and Political Science; the South.Easterm Agricultural College, Wye; the Central Technical College of the City and Guids of London Institute, and the East London College; and several theological colleges. The " appointed "and " secognized" teachers in each group of subjecte form the various facultiea of the university. O these there are eight-theology, arts, Saw, music, medicine, science, engineering, oconomics and political science (inclading commerce and Industry). Each faculty elects its dean. Courses of stady are to be provided by the oniversity for its "internal" students, i.e. those who pursue their studies in one of the schools of the university. Its degrees remain open to "external "students as heretofore, but separate examinations are in futere to be held for "internal" and for "external" students respectlvely, and the senate is t0 "provide that the degress conferred opon both classes of atudents ohall repeesent, as far as possible, the same standard of knowledge and allainments." The whole scheme may be described as a comptomise between the views of varlous schools of reformer-as an attempt to create a teaching university without destroying the existing pufely examining unlversity or erecting two distinct universities of London, and at the same sime, without any immediate endowments, to create a university Which might hereafter expand by utillzing existing institutlons. One of the most important of these, King's ColInge, it may be observed, has, without losing its connexion with the Church of England, abandoned its theological test for members of its teaching body.

The Owens College, Manchester-m called after a weathy
chtimen of that - name; to wham it owed ite foundation-wes founded on the \(13 x / \mathrm{h}\) of March 1851, for the purpose of aflording to students who were unable, on the ground of expense, to resort to Onford or Cambridge, an education of an equally high chass with that given at thoeccutres. Tbe institution was, from the first, un-

\section*{7.} eetoro ata man cherator sectarian in cbaracter; and, for mote than a quarter of a ceotury, stindents desirous of obtaining a university degree availed themselves of the examinations conducted by the university of London. In July \(\mathbf{L 8} 77\), however, a memorial was presented to the privy council petitioning for the grant of a charter whereby the college should be raised to the rank of a university with power to grant degrets. This petition having received a favourable hearing, it was at first decided that the new university should be atyled the university of Manchester, and the New University College at Liverpool and the Yorkshire College at Leeds were. invited to become affiliated institutions. But before the chatter was issued, exception having been taken to the localization implied in the above title, it was resolved that the newr institution should be styicd the "Yietoria University of Manchester," and under this name the university on the zoth of April 188 a received its charter. Since then, however, not only Liverpool (c88r) and Leeds (1904), bur the Mason University Collego at Birmingham (1900) and the University College at Shefficid (igos) have aspired to and attained whe independence. The academic authorities at Mancherter have accordingly since preforrod, in other than legal documems; to revert to the originat designation of the " eniversity of Manchester."
In Scolland the next change to be noted in connexion with the university of St Andrews is the appropriation in 1579 of the two colleges of St Salvator and St Leonard to the caigares faculty of philosophy, and that of St Mary to theology, Lan untiven In 1747 an act. of parliament was obtained for the mionat union of the ive former colleges into one, while in 1880 Scolladed the uaiversity college at Dundee was ingtituted as a general school both of atts and science in similar coonexion. Glasgow, in the year r577, recelved a dew charter, and its history from that date down to the Restoration was one of almost continuous progress. The re-establishment of episcopacy, bowever, involved the alienation of a considerable portion of its revences, and the comsequent suspension of several of its chairs. With the Revolution of 1689 it took a new departure, and several additional chairs were created. in i864 the old untversity buildinga were sold, and a government grant having been obtained, together with private subscriptions, new buildings were erected from the joint fund. By tho act of 1858 thoportant measures vete passed in connexion with all the four universities. In Abedieen, King's College and Marischal College, with their Independent powers of conferring degrees, were amaigamated. In Glasgow the distribution of the " mations" was modified in order more nearly to equalize their respective numbers. The right of returaing two members of parliament was bestowed on the four universitics collectively -one representing Aberdeen in conjunction with Glasgow, the other Edinburgh in conjunction with St Andrews. Other important changes were emacted, which, however, became merged In turn in those resultlog from the commission of 1889, whereby, after investigations extending over nearly ten ycars, a complete transformation was effected of both the organization and the curriculum of each university.
The government was transferred from the senatus to the courts, which were enlarged so as to include representatives from the senatus, the genersl councils of graduates, and the municipaliny within whick the university is situated. In addition to these representatives, the primeipal. the lord rector, his assessor, the chancellor's ussessor, and the lord provosts of the cities of Aberdeen, Edinburgh and Glasgow, and the prowost of St Andrews havo seats in the coarts of their respective universities. The provost of Dandee occupies a seat in the universlty court of St Andrews. The lord rector is the president of the court. To the coun is entrusted the management of the property and finances, and, in most cases, such patronage
as does not belong to the crown; bet in the case of Edinburgh, the patronage of some of the older chairs is in the hands of a body of curators. Disciplinary powers are retained by the senatus, and the geoeral council remains, as under the act of 1858, a purely advisory body. Another advisory body-the students' representative counci-was added by the commission. The curriculum of ell the faculties (except divinity) was reorganized: the most important alterations consisted in the abolition of the once sacred sir as compulsory subjects in arts (Latin, Greek, Mathematics, Natural Philosophy, Logic and Moral Philosophy).! The curriculum was greatly widened, an elaborate scheme of "options" introduced, and a new system of honours degrees was established. The length of residence required was reduced from four years to three, and the courts were empowered to instltute summer sessions, and to admit women to lectures and degrees in all faculties.

There has boen since the act of 1858 a great development of student life, illustrated by the institution of student's unions in all four universities, by the publication of undergraduate magasines, and by the growth, in Edinburgh, of combined residences and settlements.

All the four universities of Scotland were aided from

Parifo anemiar gramet it Scoctide matref Antro time to tinec in the last century by grants from govern. ment, and in 1905 received a material addition to their resources by the magnificent donation of \(\{2,000,000\) from Mr Carnegie.

Trinity College, Dublin, was founded in 2 59x, under the auspices of Sir John Perrot, the Irish viceroy. A royal charter nominated 2 provost and a minimum number of Trativy three fellows and three scholars is a body corporate, Comefw, empowered to establish among themsclves" whatever Duattin
laws of either of the universities of Cambridge or Oxford they may judge to be apt and suitable; and especially that no other persons should teach or profess the liberal arts in Ireland without the queen's special licence." The first five provosts of Trinity College were all Cambridge men, and uader the influence of Archbishop Loftus, the first pnovost, and his successors, the foundation received a strongly Puritan bias. The original statutes were mainly the work of Temple, the fourth provost, modified by Bedell, the emineot bishop of Kilmore, and the policy of Laud and Wentworth was to make the college more distinctly Aaglican as regards its tone and belief. At the Restoration its condition was found to be that of a wellordered home of learning and piety, with its estates well secured and its privileges unimpaired. Under Bishop Jeremy Taylor, who succeeded to the vice-chancellorship, its progress in learaing was considerable. and the statules underwent further trodificatlon. Prior te the year 1873 the provostahip. fellowships and foundation scholarships could be held only by members of the Church of Ireland; but all such restrictions were abotished by Act 36 Vict. c. 21, whertby the requirement of subscription to any article or formulary of faith was finally abrogated.

The first departure from the above exclusive system dates from the creation of the Queen's University, incorporated by
preater
Unetver:
and. vested in the university senate. In 1864 the charter of 1850 was superseded by a supplementary chartor, and the university reconstituted "'in order to render more complete and salisfactory the courses of education to he followed by students in the colleges "; and finally, in 1880, by virtue of the act of parliament known as the University Education (Ireland) Act 1879, the Queen's University gave place to the Roym Royal University of Ireland, which was practically a Unman reconstitution of the former foundation, the discoluany of briand is the newly constituted body should be in a posj tion to confer degrees; at the same time all graduntes of
\({ }^{2}\) At Edinburgh there was a swenlk. viz rhetoric and Englinh Giteratute.
the Queen'i Unlversity were recognited as greduates of the new university with corresponding degrees, and all matriculated students of the former as entitled to the same status in the latter. The mpiversity confers degrees in arts (B.A., M.A., D.Litt.), sciebce, engineering, music, medicine, surgery, obstetrics and law. The preliminary pass examinations in arts were to be held at annually selected centres, -those chosen in 3885 being Dublin, Belfast, Carlow, Cork. Galway, Limerick and Londonderry-ill honour examinations, and all examinations in orther faculties, in Dublin. The Queen's Colleges at Belfast, Cork and Galway were founded in December 1845, under an act of parliament "to Cof Bernat enable Her Majesty to endow new colleges for the Cort, and advancement of learning in Ireland," and were sub- Getwey. sequently incorporated as colleges of the university. Their profestors were at the same time constituted professors in the university, and conducted the emaminations. But in the reconstruction of 1880 the chief thare ia the conduct of the examinations and advising the semate with respect to them was vested in a board of fellows, elected by the senate in equal numbers from tbe non-denomiational colleges and the purely Roman Cetholic institutions. The colleges retained, however, their independence, being in no way subject to the control of the university senate except in the regulations with respect to the requirements for degrees and other academic distinc(ions. In 1907 a scheme was projectad by Mr Bryce (them chief secretary for Ireland) for reconstructing the universiny. whereby Trinity College was to beoome merged in a Untornew "University of Dublin," in which the Queen's afo Colleges and a new college for Roman Catholics were omime also to be included. The control of the entire community wat to be vested in a board, partly trominated by the crown and partly by the colleges and the general body of students. The scheme, however, was strongly opposed by the Dublin University Defence Committee on the ground that the ideals which had hitherto dominated the aims and teaching of Trinity College were incompatible with a system in which regard for the prisciple of authority and the repudiation of scientific theorizstion (as it finds expression in the Indes) are leading features. On the other hand. the Irish hishops, while admitting the need for more efficient scientific instrection of the Catholic yourt throughout their respective dioceses, dectined to give support to measures whereby such students would be attracted into an atmosphere inimical to their religious faith. It was consequently next proposed by the government to establish two mew universities-one in Dublin (side by side with Trinity College) and one in Belfast-in which, although no religious teste were to be enforced, it should be tacitly agreed that the former was to be the resort for Catholics, the latter for Presbyterians. Trinity College remaining, as before, the recognized Episcopalian centre. To this considerable exception was taken-the nonconformists, more especially, maintaining that such an arringement could not fail to be prejudicial to the higher interests of the people by imparting to education a denominational bias which it was most desirable to avoid-and eveatually Mr Birrell's measure was brought forward and ultimately adopted, whereby Trinity College has been left inlact, but two new universities were created, one in Dublin and one in Belfass, the former involving the erection of another college (towards ite expense of which the government was pledged to contribute) and the incorporation of the Queenis Collegen at Cork and Galway; while the college in Belfast was to form the nuclema of the second university. In order further to ensure their representative character, the new university of Dublin hed a nominated senate of 36 members, of whom all but seven were to be Roman Caibolics; that of Belfast had a similar body, of whom all but one were to be Protestants. In all these mew centres thate were to be no religious teats cither for profermons or students. On the other hand, the obligation formerly impoeed of a preximinary course of study at ooe or other of the collegta Lelore admission to degrees had been abolished at the founde. tion of the Royal Univeraity, the eramolnations being now epen,
trie those of the undvertity of Leordon, to all matriculated students on payment of certain fees.

The university of Wales, which received the royal charter in 1393, incorporsted three carlicr foendations-lite universicy Watri colleges of Aberystwyth, Bangor and Cardif. St David's College at Lampeter was founded in 1832 for the perpose of educating clergymen in the principles of the established Church of England and Wales, mainty for the supply of the Welsh dioceses, but, although affiliated 10 both Onford and Cambridge, retained its independence and aleo the right of conferring the degreet of bechelor of arts and of divinity. Bangor In Norih Wales, on the other hand, which received its charter in 1885 , ha dekigned \(\infty\) " provide instruction in all the branches of a liberal education except theology."

In India the three older umiversities all date from itsy-mat of Calcutta having been incospersied Jamary 24, Bombay July ranh 18. Madras September 5s, in that year. At there three universitics the instruction is mainly in English university in lodia is a body for examining candidates for degrees, and for conferring degrees. It has the power of prescribing textbooks, standands of instruction, and rules of procedure, but is aot an institution for reaching. Ifs governance and management are vested in a body of fellowz, some of whom are ex officio, being the chief European functionaries of the state. The remainder are appointed by the Government, betng generally chosen as representrotive men in respect of eminent learnibg. scientific attainment, official position. social scatus or permanal morth. Being a mixed body of Europeans and nativen they thus comprise al that is best and wisett in that division of the empire to which the university belonga, and fairly represent most of the phases of thought and philosophic tendencies observable in the country. The fellows in their corporate capacity form the senate. The affaus of the university are conducted by the syndicate, consisting of a limited number of members elected from among the fellows. The faculties comprise arts and phitosophy, law. medricine and civil engineering. A degree In natural and phywical oilence has more recenily been added" (STM R. Temple. India in 188n, p. 145). The Punjab Uaiversity Princorpocated in 1883-the Punjab University College. prior to that date, having conlerred titles only and not degrecs. The main object of this university is the encouragement of the study of the Oriental languages a nd fiterature, and she rendering accescible 30 native stadents the reauks of Europenan acientific senching Throwe the medium of their own vernacular. The Oriental faculty is here the oldest. and the degree of B.O.L. (bachelor of Oriental Titerature) is glven as the result of its examinations. At the Oriental Colkge the inptruction is given wholly in the native haguages, and the mocces of the inatitution was meficiensly denonsprated before the close of the igth century by the fact that twelve centres of jastruction at Lahore and elsewhere had been affiliated. The university of Allahabad was lounded In 1887 as an examining orniversity for the united provinces of Agrs and Ouch. In 1887 she cemate at Cambridge (mainhy on the representations of Mr C. P. Hhert, formerly vice-chancellor of the university of Calcutta) adopled resolutions whereby some forty-nine collegiate institutions already affiliated to the latter body were affliated to the university of Cambridge, thetr students becoming eatited to the remission of ore, year in the requisements with reapect to reaidence al Cambridge

In Australia the university of Sydney was incorporated by an ach of the colonial legistature which received the royal assent gth December i8si.and on 27th February 185 s a royal charter was granted conlerion on graduates of the univerity the samerakk, wyle and procedenkensareenjoyed by graduates ans of universities within the United Kingdom. Sydncy is also one of which certificates of having received a due couree of instruction may be received with a wiew to admiesion to degrtes. The desigs Of the university is to mpply the meam ol a liberal education to all orders and denominations, without any distinction whatever. An act lor the purpone of facilitating the erection of colleges in connexion with different religious bocies was, however, passed by the legislature during the semion of 1884, and since ihat time colleper reprementing the Episcopalian, Presbyterian and Romen Catholic Churches bave been founded. In the warme year women were first admitted to degrees, and subsequently became an appreciable element, numbering belore the close of the 19t th century one-fit \(h\) of the entire number of studeata. The university of Melbourne, to the state of Victoria, was incocporated and endowed by royal act On the 220nd of January 1853 . This act was amended on the 7 th of June 1881. Here aiso no refigious tests are imponed on admission to any deyree or election to any office. The council is empowered, after due examination, to confer degrees it all the facultita (excepting divisity) which can be conferred in any university within the Britioh dominioms. It is also authorized to anitiate colleges; and. Trinity College (Church of England), Ormond College
(Presbyterian) and Qupn's Coliare (Methodiat) were all eatabliahed in the 19 th century. The univeruty or Adelaide is South Australia (founded maiely by the exertions and munificence of Sir Walter Watson Hughes) was imorporated by an act of the colonial legisherure in 1074. in which year it was further endowed by Sir Tboman Elder. In 188i degrees conferred by the univeruity were constituted cf equal validity with thooe of any university of the United Kingdom. The university of Tammania at Hobart was lounded in 1890 Ey act d. parlizmed as a etate umiversity with an annual grant, and was submequenaly afliated both to O ford and Cambridge.

The university of New Zealard, founded in 2870 , and reconstituted in 1874 and 1875, was empowered by royal charter to grant the everal deperces of bachelor and master of arth, and bachelor and doctor in haw, medicine and nlusic. Wonks ha e since been made Admiable to degrees. To this university, Usiversity College at Auckland, Canterbury College at Christchurch, and the university or Otapo ar Dunedin have successively been admutted into connexion as afflated inseitution,, while the unversity of lew Zealand itsell has beconis aldicized to that of Camoridge. Dtago was lounded in 8869 by an order of the provincial council, with the power of conlerring degrees in afte, medicine and law, and received os an endowment 100,000 acres of gasiorial hand. It was opened in 1871 with a stafl of three professor, all in the faculty of arts. In 1872 the provincial council lurthes culvidised : by a grapt of a second 100,000 acres of land, and ine bnivirsity was thereby enabled to entablish a lectureship in law, and to tay the loundations of a medical school. In 1874 an agreement was made between the univerrity of New Zealand and that of Otago, whereby the fupctions of the former were restricted to the examination of candidates for matriculation, for scholarships and for degreesa while the latter bound itself to become affiliated to the university of New Zealand and to hold in abeyance its power of granting degrees. As the result of this arrangement, the university of Otago became possessed of 10,000 acree of land which had been set apart for university purposes is the former province of Southland. In 1877 a achool of mines was established in connexion with the upiversity.
Prior to the union of the two provinces of Lower and Upper Canada, the \(M \cdot G i l l\) College and University in the former province had been instituted in Montreal by royal charter in 1821 , on the foundation of the Honourible lames M4III, who Cease died in that city on the igith of December 1812. It was designed to be Protestant but undenominational. With this a group of eolleges in the same province-the Stanstead Werkeyan, Vancouver. Victoria, and King's-have zince becoms associated on afhiated institutions, as also have the four Protestant collggea in Monareal itsell. mech affilition, however, extending no further than tbe examinations in the faculty of arts. Into similar relarion the Universite Laval in Quebec. foumded as a Catholic unlversiry in 1852, was adanitted in 1078. Notwithstanding the difficulties presented by divergencies of race, Montreal has prospered during the chancellorahip of Lord Stratbrona, and numbers over 1100 students. The university of Tofonto in Upper Canada, or Ontario, was originally established by royal charter in 16ay, undet the title of King's College, with certain religions restrictions, bet in 1834 these rentrietions were abolished. In 1849 the decimation of the university was changed into that of the university of Toronto, and the laculty of divinity was abolished. in 1853 the unlversiry wan constituted with two corporations. "the university of Toronto" and "Uniweriny College, the hater being retericted to the tenching of cubjects lo tbe faculty of arta. In 1373 furtber amendoments were made in the conscitution of the university. The chancelior was made elective for a period of three years oy convocaticn, which was at the same time reorganized so as to include all graduates in taw, medicine and turgery, all masters of ants. and bachelors of arts of throe years maadins, all doctoce of scleace, and bacheion of crience of thros years ctanding. The powers of the senate nere alco extended to all branches of literature, acience and the aits. \(t 0\) granting certificates of proficiency to women, and to affiliatiang colfeges. The whole work of mnsmetion was now andened to U aiversity College, which is maintained out of the endowment of the provincial univervity, and governed by a council compored of the residents and the profestors. Its several chairs include claseical literature, logic and rhetoric, mathematics and natural philosophy, chemistry and enperimenca! bhilocopty, bivtory and English liferature, mineral matural history. and le ureshipe on Oriental literature. Cerman and Fr: irh. Trinity Colege, in the same university, is the Church of England colicge, (ounded in 185 ? in consequence of the abovementioned suppression of the theological faculty. Other universities and coffeges with power to confer degrees are the Dalhousie College of Halfax. which obrained the righes ol a university in 184t and was subwequently organized as sweh in 1863. With the governor of Nova Scotia as supreme authority: ibe Victorim University 2t Cobours (1836), supported by the Meihodist Church of Carrada: Oueen's University, Kingston (1841).
In South Xmerica the berinning of the " mational onivernity "" of Buenos Aires may be asuipned (in the abrence of any charter) to about the year 1890 . Before the cloee of the century it had become a dourishing achool of law. medicine and the ekact sciences
with professors in all the faculties and considerably over 2000 students. Monte Video in Uruguay had its origin in a faculty of medicine eatablished in 1876, with cournes of atudy exAmerta. tending over six yearm. It is here imperative when the should be attested by the consul of their own country Facultie of law and mathematics were subsequently created, and also a faculty of preparatory studiea corresponding with the gymnasium or Realshule of Germany. The new " national univerity of La Plata "has recently (1905-1908) been opened in the city of that name, under the auspices of the university of Phitadelphia. It claims to be the exponent of the most advanced theories in relation to subjects and methods of instruction and to university extension. In the north of the continent the academy at Caracas is little more than a branch of the royal Spanish academy for education in the Spaniab language, and is subsidizel by the Venezuelan government.

The university of the Cape of Good Hope (see Cape Colont) grants degrees, but is not a teaching institution. An inter-state Boefh commission, appointed in 1907, recommended the estabAlrten lishment of a Federal University for South Africa with freedom in manaent colicges. While the colleges wourd possess the university should test all candidates seeking admission to the colleges and tor the final examinations for degrees, \&c. At the opening of the first Union parliament in November 1910 the ministry announced that a scheme for a national South Arrican University would be submitted. It was also announced that the Beit bequest of (200,000 for a university at Joha nnesburg (q.e.) would be diverted towards the creation of a teaching university at Groote Schuur, and that Sir Julius Wernher would make a donation towarde it of 6 300,000 .

In 1903 a highly inftuential conference was held at Burfington House to promote closer relations between British and colonial universities, the sittings being presided over by Mr Bryce. Lord Strathoona and Sit Gilbert Parker. The conference held that Great Britain should help the colonial universities to co-operate one with another, and increase their own efficiency by combination and specialization.
(J. B. M.)

\section*{Universities in the Uniled Slakes.}

In the United States the word " university" has been applied to institutions of the most diverse character, and it is oniy since 1880 or thereabouts that an effort bas been seriously made to distinguish between collegiate and university instruction; nor has that effort yet completely succeeded. Harvard, William and Mary, and Yale, the three pioneers of colonial times, were organized in the days of coionial poverty, on the pians of the English colleges which constitute the universities of Oxford and Cambridge. Graduates of Harvard and Yale carried these British traditions to other places, and similar colleges grew up in New York, New Jersey, Pennsylvania, New Hampshire and Rhode Island, and later in many other ortase states. The underlying principle in these institutions was discipline-mental, moral and religious. Dormitories and commons were provided, and attendance upon religions worship in the chapel was enforeed. Harvard and Yale were the children of the Congregational churches, Columbia was fostered by the Episcopalians, Princeton hy the Presbyterians, Ratgers by the Dutch Reformed and Brown by the Baptists. Around or near these nuclei, during the course of the rith century, one or more professional schools were frequently attached, and so the word "unfversity" was naturally applied to a group of schools aseociated more or less closely with a central school or "college." Harvard, for example, most comprehensive of all, has seventeen distinct departments, and Yale has almost as many. Columbia and Pennsylvania have a similar scope. In the latter part of the 1gth century Yalo, Columbia, Princeton and Brown, in recognition of their eniargement, formally changed thetr titles from coliegea to udiversitics. The ecclesiastical, or religious, note was a strong characteristic of these foundations. Protestant evangelical doctrines were taught with authority, especially among the undergraduates, who were spoken of as constituting "the college proper." In the oldest and largest coileges this denominational influence has ceased to have the importance it once possessed.

Noteworthy innovations came when Thomas Jefferson, the philosophical stateaman, returned to the United Staten from France, emancipated from some of the narrow views by which his countrymen were bound. He led the Virginians - oxtablish, on a new plan, the university of Virginia as a
child of the state; and the freshacan of his advice, the ism portation of distinguished foreign teachers, and the freedom of the student from an eniorced cusriculum awakened admiration and emulation on the one hand, and animadversion on the other. But this university unquestionably led to broad conceptions of academic work, which appeared foreign and even questionable, if not irreligious, to the colonial universities already mentioned, although many of the features which were then regarded at doubtful peculiarities are now familiar everywhere. Following Virginia's example, many of the new states in the West established state universities, most of which included a central college of the colonial type and afterwards one or more professional schools. Freedom from ecclesiastical control is found in all the foundations that make up this second group-t be state universities Michigan, Wisconsin, Minnesota and California present distinguished examples of such organizations In earlier days, Maryland, North and South Carohina, Gcorgia and other states of the South had anticipated in a limited way the state support of higher education which was made so conspicuous in Virginia. In their plans of education, intellectual and moral, they adhered closely to the college menhods which the Northern institutions had introduced from English antecedents. Since 1865 another class of universitics has arisea, quite distinct from the colonial establishments and from the wards of the state. These are independent foundations due to individual generosity. The gifts of Cornell, Johns Hopkins, Rockcfeller (University of Chicago), Tulane, De Pauw, Clark and Leland Stanford have brought into being universities which have no dependence upon state control,' and when a denominational character is assured this fact is not made prominent.

Thus, looking at their origin, we see three impulses given to American high schools, from churches, states and individuals It is true that all receive from the state some degree of authority as incorporations, but this authority is so easily obtained that in a single city there may be, and in some places there are, aeveral incorporations authorised to bestow degrees and to bear the name of eniversities. A foreigmer cannot underntand nor can an American justify this mnomaly. The most that can be said for it is that there is complete freedom of organization, and that the best, and only the best, are likely to survive. Another influence, proceeding from the mational government, must also be borne in mind. During the Civil War, Congreas, led by Senator Morrill of Vermont, bestowed upon every state a certain portion of the public domain in the Far West-" landscrip," as it was called-the procoeds of its sale to be devoted to the establishment and maintenance of one or more colleges in each state, where instruction should be given in agriculture and the mechanic arts, not excluding liberal studies, and including military tactics In some states this hounty was directed to existing universities. New departments were organized in old institutions. Elsewhere new institutions were created. Whilo all these schools were regarded as practical and technical at the first, most of them as they developed became liberal and scientific; and when Congrem made later large appropriations for "experiment stations" in the sciences relating to agriculture, an impulse of the most valuablecharacter was given to many departments of scientific research.
This sketch would not be complete without the mention of two foundations, each unique. The Catholic University in Washington has been created by the pope, and in its governmeat the hierarchy of the Roman Catholic Church is made dominant. Already the Roman Catholics had establisbed, especially under the charge of the Jesuit fathers and of the Sulpicians, excellent colleges for liberal education, as well to chools of theology; but the newer metropalitan university was distinctly orgamited on a broeder phan, in closer accordance with the universities of continental Europe, and with a propounced recognition of the importance of science. The university of the State of New York is a supervisory (not a teachian)

\footnotetext{
\({ }^{1}\) Cornell, however. received New York's share of the Congrestionst land grant of 1862, and the state ie represented on its board of trustece See Corngli Univgrasity.
}
body exercising a general control over all the schools of higher instruction in the state, and especially guarding the conditions upon which degrees are conferred.

The interior organization of these institutions may now be considered. Some of them have but one department, the philosophical, which includes the liberal arts and sciences; others have iwo, three or many correisted departmensas Clark University, for example, has but one faculty, the philosophical; Harvard, as already stated, has many departments, including philosophy, law, medicine and theolpgy. So has Yale. Princeton has four. Johns Hopkins has two, the philosophical and the medical. In most American oniversities a sharp Orgases ABE distinction is made between undergraduates and graduates, between those who are candidates for the baccalaureate degree (A.B., S.B., and Ph.B.) and those who aro engaged in higher prolessional study, like law, medicine and theology, or in the manifold branches of modern science, like phidology, historical and political science (including economics), philosophy (inciuding logic, ethics and psychology), mathematics, physics, chemistry, biology, geology, \&cc. In certain places, as at Johns Hopkins, since 8876 , emphasis is given to the idea that college instruction is disciplinary, requiring definite, but not uniform methods, and a certain deference to the authority of a master; white university instruction is mach freer, and the scholar is encouraged to inquire rather than to accept; to test and observe rather than to hear and recite; to walk with a friendly guide rather than to obey a commander. This distinction is pot universally recognized. Indeed, it has been made but recently in American institutions, so that older men are often heard asking, "What is the difference between a college and a university?". But generally it is admitted that college training is one thing, and work in a university is another; that thorough instruction in language, bistory, mathematics, natural and physical sciences, and in morals, should precede the discipline of professional schools and the pursuit of the higher and more advanced studies in letters and science. In a complete university provision should be made, according to ancient and widespread usages, for the study of law, medicime and theology; hut unfortunately the development of such schools in the United States has been fettered by narrow conditions. The schools of theology, with rare exceptions, are under denominational control; and so established is this asage, that in the state universities, and in most of the private foundations (Chicago being an exception), theological departments are not encouraged, because of the dread of religious rivalrics and dogmatism. Until recently there have been no prover endowments for medical schools to any adequate H04 extent, and consequently the fees paid by students have been distributed among the teachers, who have usually been the real managers of the institution, although acing under the name of some university. It is pearly the same in law. There are many indications that changes are at band in these particulars. Theological schools make their denominational characteristics less propounced, and the odd colleges no longer speak of the schools of law and medicine as "outside" departments. The rapid growth of the physical and natural sciences during the sgth century, and the extension of scientific methods of inquiry and verification to subjects which were formerly taugbt by the traditional methods of authority, have led to the development of laboratories and libraries Everywhere special huildings, well equipped with the latest and best apparatus, are springing up, where the students of chemistry, physica, biology (in its numerous sub-departments-bacteriology among themi) and electricity have every facility for study and research. The introduction of Laboratories for psychology is specially noteworthy. Pathological laboratories have become essential in schools of medicine.

Libraries are-as they always have been and alwass will be-storehouses where the books and manuscripts of the past are preserved; but in American universities they have taken on another characteristic. Subdivided into special departments, or supplemented by fresh additions, they are the working-
rooms of "seminaries," where capable teachers, surrounded by scholant properly qualifed, are engaged in teaching, studying and writing. Seminaries and laboratorics distinguish the modern philosophical deparments from those of old, where the lecture-room was the seat of instruction. Numerous memoirs and monographs proceed from this active life. Books, periodicals and dissertations aro contributions to the advancoment of knowledgo. Two agencies have effected these changes, most of which are the product of the last quarter of the 19th century. In the first place, gifts for higher education have been munificent, sometimes, espocially in the East, from private citizens-often, especially in the Wcas, from the treasurics of separate states. Quite as important has boen the growth of liberal ideas. Very many of the ioremost professors in American univeratites are the scholans of European teachers, especially Germana. Candidates for professorships are resuming the wasages which prevailed early in the 19th century, of stadying in Prance and Great Britain. On their return it is essential that they stiould keep themscives familiar with the latest literature in their departments, whatsoever may be the language in which it appears. Hence the American universities are no longer provincial. They must be judged, for better or for worse, by the standard of universities established in Europe. The bestowal of academic degrees ought to be strictly governed by some recognized authority, and according to ancient usages Ir. is one of the highest functions of a aniversity. In the United States there is bot litte restraint proceeding from law, tradition or public opinion. Every "college" is at liberty to exercise this privilege. Hence the variety of academic titles that have been introduced; hence, also, occasional and scandalous frauds in the issue of diplomas. The best irstitutions exercise due dillgence; the public may be protected by requiring that every one who claims the priviteges of his degree, or who appends to his name the usual abbreviations indicative of professional or academic authority, should make it clear where, when and how he received his title.

The institutions in the United States which claim to be universitiog in the worid-wide use of that designation, recognize thece principles and, so far as their means allow, adhere to these methods: 1. There is a disciplinary stage in education which is the requisite introduction to the highes and freer work of the university. Thip is the sphere of the colieges. 2. The success of the higher work depends upon the inteifoctual and moral qualities of the professora. No amount of material prosperity is of value unless the dominant euthorities are able to discover, secure and retain as teachers men of tare gifts, resolute will. superior training and an indomitable love of Rearning 3. The profeasory in a university should be free from ail pecunuary anxiety, so that their lives may be consecrated to their several calliags. Peasions should be given them in cases of diasbility, and, in case of premature dealb, to their families: la methods of instruction they should have as large an amount of freedom 28 may be consistent with due regard for the co-operation of their colleagues and the plans of the foundation. 4 The steady improvement of the libraries and laboratories is esseatial if the institution is to beep in the front line. The netert books and the best apparatus are indispensable, for instruments and books quickly deteriorate and must be superseded. 5. For all these outlays large endowraents are required. To a considerable extent reliance must be placed on wealthy and public-spirited citisens. In order to enlipt such support, the members of a faculty should manifest their interest in public affairm and by booka, lectures and addrcsees should inform the publice and interem them in the progress of knowledge. 6. Publication is ose of the cutics of a professor. He owes it nit only to his reputation but also to his science, to his colicagues, to the public, to pot cogether and ret forth, for the information and criticiem of the morld, the results of his inquiries, discoverics, refloctions and investigations Qualified students chould also be encouraged, under hin guidance, to print and publish their diswertations.
Closely associated with the development of the university idea since 1875 is the improvement of the American colicge. Complaints are often made that the number of col- contre leges is too large, and it is undoubtedly true that improvesome institutions, inferior to city high schools, have weats. usurped the names, the forms and some of the functions that should be restricted to establishments with larger endowments and better facilities for the promotion of scholarship; bur while this is admitted, the great benefits which have resulted
from the recognition, far and wide over the vast domain of the United States, of the value of higher education must not be forgotten. The support of churches of every name and the gifts of states, cities and private citizens, have been everywhere enlisted in behalf of learaing. In every college worthy of the namc, mathematics, ancient and modern languages, and the elements at least of modern science, are taught. More or less choice is permitted in the courses requisite to a bachelor's degree. Moral and religious influeoces are brought to bear on the formation of character. All this is favourable to the enlightenment of the people, and excuses, if it does not justify, the multiplication which is so often deprecated. The establishment of colleges for women, fully equal to the colleges for men, and in many places the admission of women to colleges and universities not originally intended for women, is one of the most noteworthy of the advances in higher education. Opinions are still divided in respect of the widsom of co-education, especially in the undergraduate period, but there is no longer any question as to the wisdom of giving to women the very best opportunities for intellectual culture; while the success that women have shown in the pursuit of many hranches of science has led in many universities to their admission to the established laboratories and lecture-rooms. Separate colleges for women are now maintained in close connexion with llarvard, Columbia, Tulane and other institutions, and this mode of procedure seems likely to be introduced elsewhere. At the same time, independeat foundations like Vassar, Smith, Wellesley, Bryn Maws and Goucher are supported with so much vigour, and with such able faculties, that it is not casy to say which organization is the best, and indeed there is no occasion to raise tbe question. In the Western universities gencrally, as in Michigan, Wisconsin, California, Chicago, \&c., women are admitted to all courses on the same terms as men. (D.C.G.)
Authorities.-On the earlier history and organization of the medieval universities, the student should consult \(F\). C. von Savigny, Gesch. d. rowischen Rechts im Mittelalter (7 vols.. 1826-5s); for the university of Paris. Du Boulay, Historia Unisersicatis Parisiens is (6 vols., Paris, 1665): Crevicr. Mist. de l'unibersité de Paris (7 vois., Paris, 1761) : and C. Jourdain, Hist. de \(I\) 'unimerité de Paris au XVII' et au XVIII' sieccle (Paris, 1862), and aleo articles on special points in the same writer's Excursiows historiques (1888).

The work of Du Boulay (Bulaeus)is one of great research and labour, but wanting in critical judgment, while that of Crevier is little more than a readable outline drawn from the former. The views of Du Boulay have been challenged on many important points by P. H. Denifie in the firat volume of his \(D_{\text {ie }} U_{\text {tiviver sitaten des }}\) Mittelallers bis 1400 (1885). and more paricularty on those relating to the organization of the early universiiies. The results of Denife's researches have been largely incorporated in Mr Rashdall's Universities of Exrope in the Misdle Ages (2 vols., Oxford, 1893). especially In connexion with the origimes of Paria, Oxlord and Cambridge; and the earlier works of Meiners, Gesch. d. Entskehung und Entoickelung der hohen Schulen (4 vols, 1802-5): aod T. A. Huber. Die englischem Universiddicn (Cassel, 1839-fo). translation by F. W. Newman (3 vols., 1845), are thus to a great extent superseded. Much useful criticism nn the comparative merits of the German and the English universitics prior to the 1gth century is to be found in the Discussions (1853) of Sir W. Hamilon. For the German universities excludively, Zarncke's Die deubshem Universidden im Milleloller (Leipxig. 1857); Heinrich van Sybel, Die deulschen Unixersildten (2nd ed. 1874); and Georg Kaulmannis Gesch. der deuschen Unisersitalen (2 voli.), are indispensable. Of the latter, vol. i. (1888) treats of the origines; vol. ii. (1896) carries the subject to the end of the middie ages, dealing generally with the history of academic institutions rather than the details of separace universities. Georg Voigi's Die Wiederbelebums des classischen Allerthums (2 vols., \(1880-83\)) throwe much light on the history of both Italian and German echolarship at the time of the Renalasance, and supplies a useful bibliography. The work of Profewor Friedrich Paulsen. Gesch. d. golehrtem Uakerrichus axf den deutschen Schuken Med Unipersitaten (2nd ed., 2 vols., 1906 ; English eranstation by M. E. Sadlet. London. 1906), is a misterly survey of the whote modern period down to the close of last century. Tholuck. Das ecademische Leben des 17 Jahrhunderls (2 vols., Halle. 1853-54): Dolch, Gesch. des deutschen Studententhums (1858): J. Conrad, The Cerman Universilies for the Last Fifty Years, translated by Hutchinson, preface by Bryce (Clasgow. 1885): T. Ziegler, Der deubshe paudent am Endedes 19 Jahrhunderts (Stuttgar, 1895), all deal with Adoif Harnack. Geschichte der kon iplich preussischen Armanchaflen en Beelin (4 vols., 1900), is also of high yolumes for the medieval, the latter two for
the modern period. To these may be added, as useful for referemoes the Geschiclite der Erriehung vom Anfang an bis auf unsere Zeit (Stuttyart, 1896-1901), by DT K. A. and Ceorg Schmidt, containing critical bibliographies at the beginning of each chapter: while the Biblingrophic der deudschen Dmisersitolen by Wilhelm Erroan and Ewald Horn (3 vols., Leipzig. 1904-6) is most complete for the literature of the entire subject down to the close of last century. For a comparative estimate of the history of the different faculties. Die Unimersital Giessen 90081607 bis 1907 (2 vols., Giescen, 1907) is highly sutgestive. The Monumenta Cermaniac Pardacegica (20 vols. \(1886-1900\)), though relating mainly to schools, of (en supplies valuable illustrative matter.
The statutes of the French universities, to far as ascertainable. have been edited by Fournier, Statules et proviliges des waxioctsitts franeaises (18gol; the Charislarimm of the university of Paris, as cdited by Denifle and Chatclain (4 voly, Paris, 1889-97). coming down to \(145^{2}\). Works dealing with later history arc Greard, Nis adieux d la vicille Sorbanne (Paris. 1893): H. Schön. Dte fronsossischem Hochschulen scie der Revalution (Manich, 1896): L. Liard, L. Enseignement superieup en France. 1789-1804 (2 vole., Paris, 1894); Joseph Prost. La Mhilosophie d facadénic prote Llance de Sammur, J 600 -1085 (Paris, 1907).

For Italy, the origines of Bologna are dealt with by Chiapeili, Lo Studio Bolognese (Pistoia, 1888): Fitting, Die Xnfange der Rechisschule zu Bologna (Hologna and Leipzig, 1888); Ricci. I primordi d. Studio di Bologna (2nd ed. Bologna, 1888). All the exlant statules are edited by Cario Maiagola. Statufi d. unit. e dei collegi d. studio bolosnese (Bologna. 1888); and a new edition has appeared of the learned C. J. Sarti's De clarts Archigymmasii Bomon. icnsis Pmicssoribus (Bologna, 1888. \&c. I. In connexion with Padua we have Die Staluten der Suristen. Universilat Podua som Jahre IXJI, ed. H. Denifle, a reprint from the Archiv. For Spain, the work of De La Fuente (Madrid, 1855) gives a concise summary of the main facts in the growth of the universities and also of the ocher institutions for public instruction throughout the couptry; the Libre Afemsoric, by Solicr and Vilches (1895) gives the necessary information down to a later period, in connexion with the central institution in Madrid. The history of the faculty of theology at the Portuguese university of Coimbra has been recorded on a more cla borate scale by Dr Mlanuel Eduardo da Motta Veiga (Coimbra, \({ }^{1873)}\)). The
Universidades y Colegios of Dr Joaquin v. Conzalez (Buenos Aires, 1907) contains an interesting account of the new university movement in Argentina. For OxIord there are the latorious collections by Anthony Wood, History and Antiquities of the Unipersily axd of the Colleges and Halls of Oxford, edited with continuation by Rev. I. Gutch (5 vois., 1786-96). and Ahernce and Fasti Oxonienses. edited by Dr P. Bliss (4 vols., 1813-20); A History of the University of Oxford from the Earliest Times 10 1530, by H. C. Maxwell Lyte (1886); and Slatutes of the Unibersiy of Oxfored compiled in 16 inder Authority of Archbishop Leud, ed. Griffiche (Oxford, 1888). The publicationa of the late joseph Foster, Ahumni Oxonienses, \(1500-s 886\) (8 vols.). supply the facts that are contained in the resisters relating to the acadcmic careers of graduates; his Oxford Mien and their Colleges, \(1880-92\) (2 vols,; 1893) containa, vol. \(i\). college life and antiquities, with illustrations; vol. it. completion of Alamni and Matriculation Reqisker, 1880-02. The publications of the Oxford Historical Sociery include some valuahie histories of separate colleges, that of Pembroke (by Macleane). Corpus Christi (by Fowler), Mcrton (by Brodrick); also Anthony Wood's Life and Times, ed. Rev. Andrew Clark (4 vols): Hearne's Collections, ed Doble and Rannie (4 vols-); and Early Oxford Press (to 1640), by Falconer Madan. The series of College Histories, originally published by F. E. Roblnson (now by Hutchinson \& Co.). is often servire able hoth to the historian and the biographor. For Cambridge. the researches of C. H. Cooper. gteatly surpassing those of Wood in thoroughness and impartiality, are comprised in three series: (1) Annals of Cambridge (5 vols. \(184^{2-1 g o 8): ~(2) ~ A t h e n a e ~ C n i n t a-~}\) brigienses, \(1500-1600\) (2 vols, \(185^{8-61}\)): (3) Memorials of Cambridse (3 vols: new ed. 1884). The A rchilectural Hislory of the Unimersity af Cambridge and of the Colleges, by the late Robert Wiliis, edited and continued by J. Wilis Clark (4 vols., 1886), is a work of admirable thoroughness and completeness. The Crace Books, In 3 vols, down \(t 0\) 1526, have been carefully edited and published by the University Pres. J. B. Mullinger, History of the Uninersity of Ca, Unidge frosy the Earliest Times to Accession of Charics I. (2 vala, \(\left.1873^{-8}\right)_{5}\)), vol. 3 at prest, and Cambridge Described and lllustrated, by T. D. Arkinson and J. W. Clark (1897), deal chiefly with the course or education and learning, and with the amiquities respectively. To these onay be added Thomas Baker's IFistory of the College of. St John the Eecurgetist, edited by Prolesor Mayor (a vols., 1869): also, by same editor, Admissions to 5 Sohn's (3 vols., 1630-1765): and Records of same society (2 series), edited by R. F. Scott-all thiree works being valuable aids both to the tiography and history of contemporary times. Equally so is Dr Venn's excellent Biopraphijal Hratery of Caius Collepe (3 vols., 1897-1901). Mr J. A. Veonis Stalistical Chart exhihiting conjointly the diatriculation Statistics at botb universities from 1544101906 , has been reproduced, along wit t an explanatory article. in the Oxford and Cambridge Revirv for Lent term. 1908, and a similar chart for the colleges (in Cambridge) has been.
 iswed by the Oxford and Cambridge Compaistions of 1 OSB.

Mr M. E. Sadler's Special Report to the Education Office on the Admission of Women to the Unierrsities is the most authoriative source of information on the subject. Of the existing endowmente, faculties and profescoriate of universicies throughout the world, the serial entitled Minerso, edited by Dr K. Trubner (Trubner, Strasburg), has supplied trustworthy particulars since its first publication in 1891 , together with concise information and references to original sources respecting the origin and history of the universities themselves.
J. B. M.)

\section*{Academic Hoods \\ 1. Creat Britain and Irdand}

Aberdeen.-D.D., ccarlet cloth lined purple; B.D., black,' purple: LL.D., scarket cloth, lined pale blue; LL.B., black, bondered pele blue: M.D., scarket cloth, lined crimeon: M.B., black, lined crimeon; D.Litt., scardet cloth lined white; D.Phil., scarlet cloth, lined white; D.Sc.. scarlet cloth. lined green; B.Sc., black, Lined green: M.A., black lined white.

Cambride.-D.D., scarlet cloth, Fined pink and vioket thot, with loops of black cord; B.D., black, unlined; LL.M. black lined white; LL.D., scariet cloth, liacd pink; LL.B., black sidk or stuf. edged white fur; M.D. scarlet cloth lined dark cherry colour: M.B., black, lined dark cherry colour: Mus. D., cream damask, lined cherry colour; Mus B. dark cherry colour, lined white fur: Litt.D. scarlet cloth, lined scariet; D.Sc., scarict cloth. lined piak and light blue shot: M.A., black, lined white; B.A., black stuif or silk, edged white fur. Proctors as their Congregation habit wear the rut and black and white hood; on other oceasions they wear the hood " mquared."

Dudiin.- (The hoods are the same for the Royal University, except M.B., Mue.D. and divinity degreas, which it does not grant.) D.D., scarlet cloth. tined black; B.D., black, urlined: LL.D., scarlet cloth, lined pink; LL.B., black, bordered white; M.D. ecariet cloth, lined scariet; M.B., black, lined white fur (Royal University, black, bondered scaret); Mus.D., crimson cloth, lined white (Royal Universily, white damask, foced and lined rope eatin); Mus. B., blue, lined white (ur (rabbit-skin); Litt. D., ecarlet cloth, ined white; D.Sc., scarlet cloth. lined bluc: M.A. black, Fioed blue: B.A., black, edged white fur; Proctor. black silk, llaned "emmine"
Durkant-D.D. icarlet " caminvers." lined " palatimate people ": B.D. black, unlined; D.C.Le, scarket cassimere, lined white: B.C.L., palatinate purple. edged whise fur; M.D., scarlet cassimere, lined scariet, bordered pulatinate purple: M.B., scarlet silk. lined palatinase purple, edged white fur; Mus.D., white brocade, lined palatinate purple: MusB., patatinare purpie, cefacd white fur: Litt.D., scarlet cascimere, linod old-gold satin; Lits.B., old-gold satin, edged white Jur; D.Sc., palasinate purple cassimere, lined scariet; B.Se., palatinate purple, edsed white fur: M.A., back. lined palatimate porple: B.A. biack stuff or silk, edped white fur.
Edinbergk.-D.D., black cloth, lined purple; B.D., black milk. ined purple, edged white fur: LL.D., Wack cloch. lined blue; LL.B., black silk. tined hlue. edged white lur; B.L., Wack. bordered blue, edged white fur: M.D. black cloth. with cape attached, lined and faced crimson silk; M.B., black. lined crimson. edfed white fur; Mus.D., scarker cluth. lined white corched silk: Mus \&., scarlet silk. lined white, edged white fur: Litt.D., black cloth, lined royal Wue shot with maize: D. 「hil, black cloth. lined white, shot with "Vesuvius"; D.Sc.. black dioth, lined green; B.SC., black silk. lined green, edged white fur: M.A., black silk. lined white.

Glasgoto.-D.D., werlet cloth, lined white; B.D., black, hined light eherry colour, bondered scarlet cloth; LL.D., scariet eloth, lined Venetian red; LL. B., black. Lined Yenetian sed, bordered carlet cloth; B.L., black; borlered Venctian red: M.D., scaplet cloth, lined scarlet; M.B., black. lined scarket. bordered scarket cloth; D.Sc. monerlet cloth. lined gold colour; B.Sc., black. lined gold cotour. bordered carket cloth: M.A., biack silk. linod " bell. bether "colour (purplich red); B.A. black silk or stull, bordered bell-heather red.
London.- (Bachelors, if members of Convocation. have thenr hoods lined white silk, bondered with the colour of their faculty.) D.D. scarlet cloth. lined "marum red": B.D., black, bordered arum red; LL.D., wcarket cloth, lined blue; LL.B., black, bordered blue: M.D., scarlet cloth, lined violet: KI.B., and B.S., black, hordered violet: Mus.D., *carlet cloth, lined white, if a member of Convocation, if not. same as Mus.B., Bue, tined white, watered cilk: Litt.D., scarlet cloch, lined rusect: D.Sc., scariet clork, lined gold colour: B.Sc., black, bordered gold colour ; M. ., black, lined russet : B.A. black, bordered rusect.

Oxford.-D.D.. ecarlet cloth. lined black: B.D., black. urtined: D.C.L scariet cloth, lined rose: B.C.L. fight biue, edeed white fur: M.D., marlet doxb. linod rose: M.L.. dark blue eofged white fur; Mus.D., white damask. lined crimson; Muk.B., lighr bluc, edped white fur: Litt.D. scarlct cloth, lined slate colour: Litt.B., light blue, edged white fur; M. A., black. lined ned: B. A., black ink or stuff, rdged white fur; Proctors wear a " miniver" bood.
' Where not otherwise stated, the hood is of silk.

St A mircous.-D.D., violet silk or cloth, lined white satin: B.D. violet silk or cloth, linod white matin, edged white fur: LL.D. scartet silk or cloth, lined white satin; LL.B., scartet silk or cloth lined white satin, cdged white fur; M.D., erimson silk or cloth. lined whise atin: M.B., crimson silk or cloth, lyned white satin, edgod white fur; Mua. D. cernlean blue silk or cloth, lined white atin; MueB., cerulean blue, lined white satin, edged white lur: D.Se., "amaranth silk or cloth lined white satin; B.SC., a maranth silk or cloth, lined white satia, edged white fur; M.A., black, lined red.

Viccaria Uminossify.-HLL.D., gold velvet or atin, lined light gold; LL.B., black, bordered vioket; M.D., pold velvet or matin, lined laght gold; M.B., black, bordered red: Litt.D., gold velvet or matin. lined light gold: D.Se., gold velvet or satin, lined light gold; B.Sc., black, bordered pale red; M.A., bleck, lined pale blue; B.A. black, bordered pale bhe.

Unitersily of Wodes and Lampeter.-B.D. (Lampeter), black, lined violet, bordered white; B.A., black, bordered blue and green shot.

\section*{2. A molualis}

Sydney.-B.A., black stuff, odged white fur; M.A., black, Triet blue; LL.B., black, bordered bluc; LL.D., scarlet cloth, lined blue; B.Sc, black mufi, boodered amber: D.SC., warkt cloth, lined amber: B.E. (Engincering), black mufi, bordered light maroon; M.E. black, lined light maroon; M.B., black, bondered purple; M.C. black, lined French grey: M.D., scarlet doth, lined purple.
Adedaide.-BA. black, lined grey: M.A., black, lined dark grey; LL.B., black, lined blue; LL.D., dark blue, lined ligbt blue; B.Sc. black, tinod yelow; D.Sc., dark yellow. bined light yellow; M.B., black, lined rose; M.C. (Surgery), black, lined dark ruse; M.D., dark rose, lined light rose; Mus.B., black, lined green; Muk D., dark green, lined light green.
Melbenrme.-B.A. Hack, lined dark bue; MA, black, liwed viofet; Litl.D., black, lined dark blue; LL.B., black, lined white fur: LL.M., black cloth, edged red silk. lined white; LL.D., black lined white; B.Sc., black, lined mose-green, edged white fur; M.Sc., black, llned monsegreen; D.S.. scariet eloth, lined mosegreen; B.E. (Engineering), black, lined light blue: M.E., black, lined yellow: M.B., black, lined white; M.C. (Surgery), black, lined dark amber: M.D.; blark, lined erimson; Mus.B., black, lined lavender, edged white fur: Mus.D., black. lined lavender.
New Zealand-B.A. black lined pink, edged white fur; M.A. black, hined pink: LL.B., black. lined bluc, edged white fur; LLLD., black, lined light blue: B.Sc., hlack. lined dark blue, edged white fur : D.Sc., black, lined dark blue; M.B., black. lined mauve, edped white for: M D., black. lined mauve; Mus.B., biack. lined white, edged white fur; Mus.D., black, lined white.

\section*{3. Canada}

These follow the British model, with the exception of Lavad, Ousbec, which grants the mane degrees as the University of France, the distinctive mark of which is the scarf.
Dolhousie (N.S.).-B.A., black stuff, lined white fur: M.A. black sulf. lined crimson; B.L. (Letters), black stuff, lined white, bordered tight bive: M.L., black stuf. fined light blue; LL. B., black, bined whire bordernd gold; LL.D., black, lined purple: B.Sc., block stufl, lined white silh, bordered crimson: M.Sc., black otuf, lined crimzon: B.E. (Engineering), black stuf, lined white silk. bordered purple; M.C. scarlet cluth, bordered whitc: M. D., scarlet silk, bordered white; Mus.B., black stuff, lined white. bordered lavender.

Frederictem (N.B.)-B.A. black stuff, edped white fur: M.A., black, lined blue; B.C.L., black. lined blue silk, cuged white fur; D.C.L., scarlet cloth, lined pink.

IfcGill (Montrcaf)-B.A., black stuff, edged white fur: M.A. Back, lined blue: Litt.D. (Literatore), scarlet cloth, lined pale blue; B.C.L.. black, lined French grey, edged whise fugy D.C.L. scarket cloth, lined Freneh grey; B.Sc., black, lined yellow, edged white fur: M.Sc., black, lined yellow: D.Sc., scarlet cloth, tined ycllow: M.H., blark. linel dark bluc: M.D.. scarlet cloth, lined dark hue; D.V.S.' (Doctor ol Voterinary Science), scarlet cloth, lined fawn.

Toromto.-DD.D. (Trinity College), scarlet clotb, lined black: B.D. (Trinity College), black, unlined; B. A., black stuff, edged white fur; M.A., black. lined crimson: LL.B., bluc, lined white fur: LL.D., meariet cloth, lined pink; M.B., blue, lined white fur: M.D., scarket cloth. lined pink.

Windsor (N.S.)-B.A., buck stuff, edged white fur: M.A., hack. lined crimson; B.C.L., blue, edged white fur; D.C.L., scarlet cloth, lined pink.

\section*{4. India}

These follow the British model, but also give Oriental degrees the distinctive mark of which is a sash. They also grant the degree of Licentiate in certain sebjects, which has a hood.

Allohubad-B.A. black. bordered amber: M.A., black, lined amber: LL.B., black, lined blue; LL.D., pale blue.

Bombay.-B. A., black stuf. bordered garter bluc; M.A., garter blue, lined same; LL.B., black, bordered scarlet cloth; B.Sc.,
black stuff, bordered garter blue: L.C.E. (Engineering), black stuff, bordered brown: M.E. brown, lined garter blue; L.M. and S. (Medicine and Surgery), black stuf, bordered crimson: M.D. crimson, lined garter blue; L.Ag. (Agriculture), black stuff, bordered green.

Colcaila.-B.A., black, bordered dark blue: M.A., black, lined blue: LL.B., black, bordered green; I.L.D., scarlet, lined white satin: B.Sc, black, bordered light blue; B.E black, bordered arange; M.E, 以ack, lined green; M.B., black, bordered scarlet: M.D., black, lined scartet.

Madras.-B.A., black, bordered crimson; M.A. black, lined crimson; LL.B. black, lined purple: M.L., purple silk; LLLD., scarlet silk: B.E., black, fined orange; M.B., black, lined light blue: L.M. and S., black, lined light blue; M.C., black, lined light blue; M.D., scarlet cloth, lined light biue; L.San.Sc. (Sanitary Science), black, bordered terra-cotta; L.T. (Teaching), black, lined gold.

Puwjab-B.A, purple, lined yellow; M.A., purple, lined claret; Litt.D., purple, lined scarlet; LLB., white, lined blue: LL.D., scarlet silk; M.B., purple, lined purple cloth; M.D., purple, lined purple.

\section*{5. Soalh Africa}

Cape of Good Hoper-B.A., black, bordered orange-brown; M.A., black, lined orange-brown, bordered black: Lirt.D., orangebrown, lined white, bordered black: LL.B., black, bordered red; LL.D., red, lined white, bordered black; B.Sc., black, bordered green; M.Sc., green, bordered black; D.Sc., green, lined white, bordered black; M.B., black, bordered blue; M.D., blue, limed white, bordered black; Mus.B., black, bordered purple; Mus.M., purple, bordered black; Mus.D., purple, lined white, bordered black.

\section*{6. Uniled Stakes}

The American universities have adopted a uniform system, according to which the length and shape of the hood indicate the degree (bachelor, master, doctor), the silk lining displays the official colours of the university or college granting the degree (c.g. crimson for Harvard, blue for Yafe, orange and black for Princeton, light blue and white for Columbia, royal purple and white for Cornell and red and blue for Pennsylvania), white the vetvet trimming indicates the faculty or department. Thus the trimming lor arts and letters is white, for theology scarlet, laws purple, philosophy blue, science gold-yellow, fine asts brown, medicine green, masic pink, pharmacy olive, dentistry lilac, forestry russet, veterinary science grey and library science lemon. It is also usual in America' for a graduate of a German university to wear a hood Jined with the colours of the university charged with a trichevron of the German colours, black, white and red.

UNIVERSITY COURTS, in the English universities of Oxford and Cambridge, courts of inferior jurisdiction, administering principles of justice originally founded on the canon and civil law, but now defined and limited by the common law (see particularly Ginnetl v. Whillingham, 1886, 16 Q.B.D. 769).

At Oxford the judge of the chancellor's court is the vicechanceller, who is his deputy or assessor; the court has had since 1244 civil jurisdiction, to the exclusion of the king's courts, in all matters and suits wherein a scholar or privileged person of the university is one of the parties, except in actions relating to frechold. It had also, from 1290 downwards, jurisdiction of all injuries and trespasses against the peace, mayhem and felony excepted, but since the Summary Jurisdiction Acts this is passibly no longer exercisable, but the chancellor, vicechanecllor and the vice-chancellor's deputy are justices of the peace for Oxford, Oxfordshire and Berkshire, where scholars are conccrned, and exercise this jurisdiction under the Summary Jurisdiction Acts. By the Oxford University Act 1854 the vice-chancellor's court now ndministers the common and statute law of the realin.

The criminal jutisdiction of Cambridge University in cases where any person not a member of the unifersity is a party thas ceased, and its jurisdiction over light women, which was founded on a charter and statute of Elizabeth, was taken a way in 1 Soq 4 by a private act of that year (c. 60), and an act of 6 Gea. IV. c. 97. dealing with them and applicable till then only 10 Oxiord University, was extcoded 10 Cambridge University. Previous to 18 pl , women of light character, who had been consicted of consorting with or soliciting members of the university in sfalu pmpillori, were detained in a bouse of correction called the spitinitg howse, but in that year a conviction was held bad (ate verte Hoplins, 180 , 61 I.J.Q.B. 240; see also, however.

\footnotetext{
Y. Wn Newill 186 t , 10 C.B.N.S. \(5^{23}\)).
}

UNAA, a town of Germany, in the Prussian province of Wetphalia, 15 m . by rail E. of Dortmund, on the line to Hamm. Pop. (1905) 16,324. It has two Roman Catholic and two Prolestant churches, a synagogue and several schools. Its chief industries are iron foundries, machine shops, salt warks and brewcries-other articles of manufacture being bricks and cement. In the middle ages Unna formed part of the electorate of Cologne. It received municipal rights in 1256 and was a member of the Hanseatic League.

UNTERWALDEN, one of the cantons of central Switzerland, extends to the south of the lake of Lucerne, \(44 \mathrm{sq} . \mathrm{m}\). of which are included within the canton (13 being in Nidwalden). It is composed of two valleys, through which run two streasms, both called Aa, and both flowing into the lake of Lucerne. The more westerly of these glens is called Obwalden, and the more easterly Nidwalden. These names really come from the 13 th century expression for the inhabitants, homines intramoriani (men dwelling in the mountains), whether of pollis superioris (of the upper valley) or pallis infaioris (of the lower valley). But in the 14th century the relative position of the two valleys is defined as "upper" and "lower" with reference to the great Kerns lorest (stretching between Stass and Kerns), and hence is derived the historically inaccurate mame of "Forest cantons," now so well known. The tatal area of the canton is 295.4 sq . m. (Obwalden has 183.2 and Nidwalden 152". though it must be borme in mind that the upper portion of what should be the ecritory of Nidwalden is, as regards the Blacken Alp, in Uri, while the Engelberg region is in Obwalden). Of this area 238.2 sq . m. (154.1 in Ohwalden and 84-I in Nidwalden) are classed as "productive," forests covering \(73.8 \mathrm{sq} . \mathrm{m}\). (47 in Obwalden and 26.8 in Nidwalden), while of the rest glaciers occupy 5.2 sq . m. (3.9 in Obwalden and 1.3 in Nidwalden), the highest point in the canton being the Titlis (10,627 ft.) situated in the Obwalden half. The small lates of Sarnen and of Lungern are wholly sitwated in Obwalden. Obwalden, as including the Engelberg region; is far more mountainous than Nidwalden, which is rather hilly than mountainous. The inhabiants in both cases are mainly devoted to pastoral and, in a lesser degree, to agricultural pursuits In. Obwalden there are 290 "alps," or mountain pastures. capable of supporting 13,399 cows, and of an estimated capital value of \(5,474,400 \mathrm{fr}\).: the Ggures for Nidwalden are respectively 166, 5207 and \(3,899,900\). In 1900 the total population of the canton was \(28,3,30\) (15,260 in Obwalden and 13,070 in Nidwalden), of whom all but the most insignificant proportion were German-speaking and Romanists. Till 1814 the canton was in the diocese of Constance, but since then it is practically administered by the bishop of Coire, though legally included in no diocese. The capital of Ohwalden is Sarnen (q.v.), and of Nidwalden Stans (q.o.). The other most considerable villages are all in Ohwalden-Kerns (2392 inhah.), Engelberg (1973 inhab.) and Lungern (1828 inhab.). The canton is traversed by the Brunig railway line from Hergiswil (in Nidwalden) to the top of the pass (20 m .), but most of the electric line from Stansstad to Engelberg (14 m .) is in Nidwalden. The mountain lines up Pilatus (Obwalden), the Stanserhorn. and to the Bürgenstock (both in Nidwalden) are also in the canton. Each hali forms a siggle administrative district, and has its own independent local institutions, while is Obwalden there are 7 communes and in Nidwalden 11 . In each the supreme legislative authority is the "Londsgenctinde" or primitive democratic asscmbly (mecting in boih cascs on the last Sunday in April), composed of all male citizens of 20 (Ohwaden) or 18 (Nidwalden) years of age. In both cases the Landsgemerinde elects the executive for three years (Nidwalden) or four years (Obwalden), while it is composed of 11 (Nidwalden) or 7 (Obwalden) members, aut of whom the Lawdsgemciade elects annualiy the chief officials. In each half there is also a sart of "standing commiltee" (the Landrath, Nidwalden. or Kiamtonsrath, Obwalden), which drafts measures to be submitied to the Landsgenreinde, supervises the cantonal administration, and is eropowered to spend sums below a certain amownt. Is
each cape the Landru/ is composed of the members of the executive, plus a certain number of asembers elected in each "commune," in the proportion of 1 member to every 250 inhabitaots, or fraction over 125 (50 Nidwalden, which allowa them to hold office for siz years), or 1 member to every 200 inhabitants (Obwalden, which allows them to bold office for four yearn). These Landsgancinden anc of inamermorial antiquityv while the atber constitutional details are aettled by the constitution of 1877 in Nidwalden, and by that of 1901 in Obwalden. In each half the singie member of the Federal Sulimderal is clected by the Landsgemeinde, while the single nember enjoyed by cach in the Federal Nedionaliat is chosen by a popular vote, but not by the Laxdsgemainde. The people of the canton have always been very pious and religious. In the church of Sachseln (near Sarnen) still lic the bones of the holy hermit, Nicholas van der Flise, fondly ksewa as "Bruder Claus" (1417 -148y), whil at Sarpen there are several convents, though the moost fameus of all the monaeteries in the cantom, the great Benedictine house of Engelberg (fauncled about Irzo) is situated at the head of the Nidwalden valley, though politically in Obwalden. At the lower end of the Nidwalden valley is Stans, the home of the Winkelried family (\(q . \operatorname{s}\).).
It is very remarkable that in both valleys the ofd "commoe Lands "are still in the hands of the old gildss, and "commanes" consist of nativen, not merely mesidenta, though in Obwaiden these contribute to the expenses of the new "political consmunes " of residents, while in Nidwalden the latter bave to raise special taxes. In Engelberg (which will retains some indepeodeace) the poot are greatly favoured in the division of the common lands and their proceeds, and unmarried persons (or widowers and widows) rective mily hall of the share of those who are marricd.
Histocically, both Obwalden (save a small bit in the Aargau) and Nidwalica were included in the Zlirighate. In both there were many eread landowaers (epeciadly the abbey of Murbach and the Habsburgs) and few free menci vile the fact that the Hiabsburgs were counts of the Aargau and the Zürichgau further delayed the development of political freedom. Both took part in the risiogs of 1245-47, and in 1247 Secota was threatened by the pope with excommunication for opposing its bereditary land, the count of Habsburg. The alleged cructices committed by the Habshurge do not, however, appear in history till Justinger's Chrosicle, 1450 (see Tell). On the 16th of April 1291, Rudolph the future emperor bought from Murbach all its estates in Unterwalden, and thas rulad this district as the chief landowner, as count and as empecior. On the ast of August 1291 Nidwalden (Obwaiden is not named in the text of the document, though it is named on the seal appended to (it) formed the "Everlasting Leapue" wifh Uri and Schwyz (this being the first known case in which its common seal is used). In 1304 the two valleys were joined cogether under the same iocal deputy of the count, and in 1309 Heary VII. confarmed to them all the liberties granted by his predocessor -though none is known to have been granted. However, this placed Unterwalden on an equal poltical footing with Uri and Schwys; end as such it took part (1315) in Morgarten fight (also driving back an invasion over the Brünig Pass) and in the renewal of the Everlastiog League at Brwneen (1315), as well as at Sempach (1386) and in driving back the Gugler or English freebooters (1375). For physical reasons, it was difficult for Unterwalden to enlarge its territories. Yet in 1368 it acquired Alprach, and in 1378 Hergiswil. So 100 Obwalden shared with Uri in the conquest of the Val Leventina (1403) and in the purchase of Bellinzona (1419), as well as in the loss of both (1422). It was Nidwalden that, with Schwyz and Uri, finally won (1500) and suled (till r79B) Bellinaona, the Rivicra, and the Val Blecnio; while both shared in conquests of the Aargary (1415), the Thurgau (1460), and Locarno, \&c. (\(151:\)), and in the temporary occupation of the Vald' Oseols (\(1410-14,1416-22,1425-26,1512-1.5\)). In the Burgundian war Unterwaklen, like the other Forest cantons, Jong buag back through jealousy of Bern, tut came to the rescue
in time of need. In 448r it was at Stans that the Confederates acarly broke up the League for various reasons, and it wal only by the intervention then of the boly hermit Nicholas von der Flie (of Sichseh in Obwabden) that peace was restored, and the great Federal agreement known as the compact of Stans concluded. Like the other Forest cantons, Unterwalden clung to the old faith at the time of the Reformation, being a member of the "Christliche Vereinigung" (I 529) and of the Colden League (1586).
In' 1798 Unterwalden resisted the Helvetic republic, but, having farmed part of the short-lived Tellgau, became a district of the huge caston of the Waldstitten. Obwalden submitted at an early date, but Nidwalden, refosing to accept the oath of bdelity to the constitution mainly on retigious grounds, rose in desperate revok (September 1798), and was only put dowe by the arrival of 16,000 armed men and by the storming of Stims. In 1803 its independence as a canton was restored, but in 18:5 Nidwalden refmsed to accept the new constirtion, and Federal troops had to be employed to put down its resistance, the punishment inflicted being the transfer (1816) to Obwalden of the funiatiction over the abbey lands of Engelberg (since 1461 "protected" by the four Fotest castons), which in 1798 had falles to the lot of Obwalden and had passed \(\ln 1803\) to Nidvalden. Since that time the history of Unterwalden has been like that of the other Forest cantoas It was a member of the "League of Satnen " (1832), to oppose the reforming wishes of ocher cantoms, and of the "Sonderbund " (5845); it was defeated in the war of 1847; and it voted against the acceptance of the Federal constitution bath in 1848 and in 1874.
Aurnozituss-Baindige a Caschichta Nidualdems (Stann, from 1884) : J. I. Blumer, Staats- wnd Reghtsgeschichte d. sehoe is. Demokratien (3 vols St Gall, 1850-59); J. Businger, Der Kanton Uniertoolden (St Gall, 1836) and Dic Geschichte des Volkes ton Unter. malden (2 vols, Lumeme, \(1807^{-28) \text {; M. A. Cappeller, Pilatio woutis }}\) historia (Baseh, \(\left.17{ }^{67}\right) \mathrm{i}\) E Eelin. Die Alptoirtschafi in Obwalden (Soleure, 1903); H. Christ, 06 dem Kermuald (Basel, 1869) ; R Durter, Dic Lunst- und Architeklurdenkmaler d. Uinterwaldens (in course of probfication since 1809); J. Gander. Die Alperirfsckaf im Kanh Nidmalden (Soleure, 1896): Gaschichasfrewnd, (rom 1848 (in vole 49, 51-53, 55 and 57 the charters of Engelbere 1 129-1428 have been printed); Coprad Geaner, Descriplio moxtis •rachi (Pilatus) (Zarich 1555); A. Lütolf,' Sagen Bruuche, Legenden aus dex Funf Orien (Lucerme, 1862): Obraldner Geschichtsblitter (Zarich, from 1901); W. Oechsi. Die Anfonge U.schoovis. Eidge-
 dem (Zurich. 1903); J. Sowerby, The Foras Cantans of Switreitand (London, 1892).
(W. A. B. C.)

UNTOR (or UMpTon), SIR HENRT (c. 1557-1596), English diplomatist, was the second son of Sir Edward Unton, or Umplon (d. 1583), of Wadiey, near Faringdon, Berkshire, his mother, Anne (d. 1588), being a daughter of Edward Scymour, duke of Somersct, the protector. Educated at Oriel College, Oxford, Uaton became a member of parliament in 1584 and served with the English forces in the Netherlands in 1585 and 1586 , being present at the skirmish of Zutphen. In is 88 he was knighted. In 1591, through the good offices of the earl oi Essex, Unton was sent as amhassador to Heary IV. of France; be became very friendly with this king and accompanied him on a campaign in Normandy before be was recalled to England in June 1592. Again securing a scat in parliament be lost for a short time the favour of Queen Elizabeth; bowever, in 1593 he went agaia as ambassador to France. He died in the French camp at La Ferre on the 23rd of Nareh 1506 , a collection of Lation verses being published in bis memory at Oxford later in the ycar. This was edited by his chaplain, Robert Wiright (1560-1643), afterwards bishop of Licbfield and Coventry.

There is an interesting picture in the National Portrait Gallery representing Unton and various scenes in his life. Many of his official letters are in the Britioh Museum and in the Public Record Office, London. A colliccion of these was edited by foeeph Scevensom (1847), and some are pristed in W. Murdin's Burghley Pa pars (1759).

UnYallwezl, a region of German East Arrica, lying S. of Victoria Nyama and E of Lake Tanganyika. It is mentioned as carly as she 16 th century by the Portuguese and by Antonio Pigaretta, under the aame Muncmugi or " Land of the Moon," which is the exact equivalent of the name-Wo-nya-mwex-by
which the land is known to its own people. It is part of the plateau between the two great rift-valleys of East Africs, is rich in woods and grass, and has many villages surrounded by well cultivated farms and gardens. The western portions, however, are somewhat swampy and unhealthy. The people of Unyamwexi, called Wanyamwezi, are Bantu-ntgroes of medium size and negroid features, but with long nooes and curly rather than woolly hair, soggestive of mixed blood. Dwelling on the main road from Bagamoyo to Tanganyike, the route by which J. H. Speke, Richard Burton, J. A. Grant, H. M. Stankey and otbers travelled, and having from early times had commercial relations with the Arabs, the Wanyamwezi are more civilized than tbe neighbouring races. They practise tattooing, file or extract the upper incisor teeth, and load their legs and arms with hrass wire rings. The men look after the Gociks and poultry, while the women do the field-work. They often keep bees; in some cases the hives are inside the huts, and the bees form an efficient protection against intruders. Inheritance is to the direct issue, not as is often the case among Negro races to the nephew. In some parts, one of twins is always killed. On Stanky's first visit in 2871, the Zanzibar Arabs were predominant in the country, but later the natives rose and, under Mirambo, who from a common porter rose to be a conquering chiel-earning for himself the titie of the "Black Bonaparte"- Negro kingdom was formed. Since 1890 the country has been under German control and the power of the native chiefs greatly curtailed. As a people the Wanyamwezi are extremely vigorous and have shown great capacity for expansion, being energetic and enterprising.
See H. Brode, Tippoo Tib: the Story of his Career in Central Africa (1907); Sir H. H. Johnston, The Usanda Protectorale (1902) ; Sir Charles Eliot, The Easi Africa Protectorate (1905).

UNYORO, called by its people Bunyoso, a country of east central Africa lying N.W. of the kingdora of Buganda (Uganda) and bounded E. and N. by the Victoria Nile. On the west, Unyoro includes nearly all the eastern shores of Albert Nyanza and a strip of territory-incorporated in Belgian Congo in 1910west of that lake. In 1896 a British protectorate was established over Unyoro, which now forms the S.W. part of the nornhern province of the Uganda Protectorate. The limits of Unyoro have varied according to the streagth of its rulers; during the rith century the states of Bunyoro and Buganda appear to bave been rivals for the overlordship of the region between the Bahr-el-Jebel and the great lakes. The Banyoro (as its people call themselves) had a certain degree of civilization and were skilled in iron-work, poltery and wood-work. The ruling class is of Hima stock, the Bahima possessing large herds of cattle. The first Europeans to enter the country were J. H. Speke and J. A. Grant, who spent part of 1882 there, the king, Kamurasi, putting many obstacles in the way of the travellers continuing their journey down the Nile. Its next white visitors were Sir Samuel and Lady Baker, who in 1864 discovered the Albert Nyanza. At this time ivory and slave traders, nominally Egyptian subjects, penctrated as far south as Unyoro, and a few years later (\(\mathrm{r} 870-74\)) Baker, as governorgeneral of the Equatorial Provinces, extended Egyptian influence over the country and placed a garrison at Foweira on the Victoria Nite. He formally annexed Unyoro to the Egyptian dominions at Masindi on the 14th of May 1872. Gencral Gordon, who succeeded Baker, established posts at Masindi and Mruli. With King Kabarega, a son of Kamurasi, the Egyptians had many encounters. Egyptian authority ceased altogether with the withdrawal of Emin Pasha in 1888, hut not long afterwards British influence began to be Ieft in the country. Kabarega in 189: found himself in conflict with Captain F. D. Lugard, who entered Unyoro from the south. From this point the history of Unyoro is traced in the aricle Uganda. It need only be stated here that in \(\mathbf{8 8 0 9}\) Kabarega was captured by the British and deported to the Seychelles, and that one of his sons (Yosia, a. minar) was mbsequently recognized as chief in his place, though mith mamerbicted powers, the province being virtually adHby the British goverament.

Unyoro has playod rither an important role in the past (unwritten) history of Equatorial Africa as being the region from which the ancient Gala (Hamitic) aristocracy, coming from Nileland, penetrated the forests of Bantu Arica, bringing with them the Neolithic civilization, the use of metals, and the keeping of cattle. Unyoro, though not a large country, is in many ways remarkable. It is thought to contain gold in the north and north-cast. In the west and south-west are the vast primeval forests of Budonga and Bugoma, containing large chimpanzees and a peculiar gub-species of straight-tusked elephants (only found in Unyoso).

See the works of Speke, Grant and Baker; also Colonel Gondon in Central Africa (4th ed., 1885), J. F. Cunningharn's \(U_{\text {fande }}\) and its Peoples (1905); and Winston Churchill's Ily Afrucan Jearney (1908).
(H. H. J.)

UPAs, a Javanese word meaning poison, and specially applied to the poison derived from the gum of the anchar tree (Antiaris loxicaria), a member of the fig-family (Moracear), and a native of the Sunda Islands, which was commonly used to envenom the darts of the natives. The name of the upas tree has become famous from the mendacious account (professedly by one Foersch, who was a surgeon at Samarang in 1773) publishid in the London Magazzac, December 1783, and popularized hy Erasmus Darwin in "Loves of the Plants " (Botanic Garden, pt. ii). The tree was said to destroy all animal life whin a radius of 15 m . or more. The poison was fetched by condemned malefactors, of whom scarcely two out of ewenty returned. All this is pure lable, and in good pert not even traditional fable, but mere invention. The milky juice of the tree contains an active principle named anfiarin, which has been recommended as a cardiac stimulant. It is without any properties, however, that entitle it to clinical employment. The tree is described as one of the largest in the forests of Java, the straight cylindrical stem rising without a branch to the height of 60 to 80 ft . It has a whitish bark and on being wounded yields plentifully the milky juice hom which the poison is prepared.

For a full account of the tree, see Bennett and Brown, Plented Javanicue rersores, p. 52 (1838).

UPHOLSTERER, in modern usege, a tradesman who supplies coverings, cushions, padding and stuffing lor chairs, sofas or beds, or who repairs the same, and more generally one who also provides carpets, cartains and household furniture. The word first appears as "upholder," then as "upholdster" or "upholster," and finally with repetition of er, as in "poukerer," "upholsterer," The first meaning seems to have been a broket or dealer in small wares. Probably the name was given to a broker who sold such goods by auction, holding them up to public view as is the manner of auction-rooms.

UPPER SIND FRONTIER, a district of British India, in the Sind provinee of Bombay, with administrative headquarters at Jacobabad. Area, 2621 sq. m . In the north-east the country is hilly; the remainder consists of a narrow strip of level plain, one half bcing covered with jungle and subject to inundation, from which it is protected by artificial embankments. The land is watcred by canals from the Indus, of which the chief are the Begari and Desert canals. The district contains several thriving timber plantations. The climate is remarkable for its drymess and for its extraordinary variations of temperature. The annual rainfall at Jacobabad averages kess than 5 in. In rgor the population was 2320.45 , showing an increase of no less than \(33 \%\) in the decade, chiefly due to immigration from Baluchistan. The principal crops are millete, oil-seeds, pulses, wheat and rice. The internal trade is principally in grain, the greater part of which is sent to the sea-board; the transit trade from Central Asis into Sind crosses the district, bringing wool and woollen grods, fruits, carpets and horses. The district is crossed by the Quetta branch of the North-Westeri railway. The wild Balachi inhabitants were pacified by General Jobn Jacob bet ween 1847 and his death in 1858 .
UPMNGHAM, market town of Rutand, England, os m N.S.E. of London, on a branch of ithe London \& Nortb Wesern raidway. Pop. (1901) 3 g88. The church of St Peter
and St Paul has Decorrated portiona in the nave, tomer and apire. The pulpit is of the 17 th century. Jeremy Taylor was roctor here at the outbreak of the Civil War. The principal inatitution of Uppingham is the school. It is coeval with the gramsaar school of Oakham (1584), and had the same founder, Robert Johnson, archdeacon of Leicester. It rose in the last balf of the iglh contury to a place of dibtinction among Engliah public schools, owing to the exertions of its headmaster (\(1885-77\)), che Rev. Edward Thring. A new group of school-buildings, with chapel, was erected in 1863 from the designs of \(G\). E. Street. New (Tercentenary) class-rooms were opened in 1890 , and a memorial chapel, contaning a statue of Edward Thring. by T. Brock, R.A., wns erected in 1892 The Vketwin Buikting, containing museum, laboratory and lecture theatre, whe opened in 1 Rg7. The quadrangle is by T. G. Juckson, R_A, and over the gatewny is a statue of the founder, by G J. Framplon, R.A. The achood contuins about 450 boys. There are general exhibitions to the nniversitien, and aleo eeveral, in whicb esholars of this school and Onkham achool bave preference, at St John's, Clare, Emmannel and Sidney Sussoz cotlegres, Camberdge. The town of Uppingham has some agricutuial trade.
mpsalin, or Uppsala, a city of Sweden, the seat of a university and of the archbishop of Sweden, chief town of the district (lan) of Upsala, 41 m. N. of Stockholm by the Nortiera railway. Pop. (1900) 22,855 . It has water-communication with Stockholm hy the river Fyris and the worthward arm of Lake Milar, into which it fows. The older part of the city lies on its sloping west bank, the cathedral and cattlo occupying dominaling heights, with the university bruildangs below. Weat and south is a girdle of gardens. The new town occupies the eat east bank, and the whole is set in a fertile plain.

The university, the chief and oldest in Sweden, was foundod in 1477 by Archbishop Jakob Ulficon. The university bailding, completed in 1887, lies west of the cathedral. It has a ane vestihule with gallories, lit from a cupola, a senate-hall, rooms for the governing body, and lecture rooms. The whole is very richly adorned. The library huilding was erected in 1829-41. It is on the site of the Academis Canolina, founded by Charles IX., and is known in consequence as Caroline Rediviec. Since 1707 the library has had the right of receiving a copy of every work printed in Sweden, and its MS. collection is also large and valuabte. Among the MSS, is the famous Codex Argenteus (6th century), a tramslation of the Gospels in the Gothic of Bishop Ulijas (4th century). Other university institutions are the chemical laboratory, the chemical, physical and pathological institutes, the anatomy house, and the collection of Northern antiquities. The last is situated in the old botanic garden, where Rudbeck and Linnaeus worked, and Linnaeus had his residence. The new botanic garden, W. of the caste hill, was given by Gustavas III. in 1787 The astronomical observatory was founded in 1730, though thete was a professorial chair in the preceding century. The Victoria Muscum contains Egyptian antiquities. The Royal Society of Sciencos, founded in 1780 hy Archbishop Erik Benzelius, occupics a house of its own and has a valuable kibrary Among other learned societies in the university are the Royal Association for Literary Science, and the Society for Swedish Literature. The annual expenditure of the university amounts to about \(\{56,000\), a large proportion of which is covered hy a grant from parliament. The revenue of the umiversity itself, bowever, amounts to about \(\{25,000\), a considerable part of which is stitl drawn from the property with which Gustavus Adolphus endowed it in 1624 from his private estates, a mowning to 360 farms. There are about sixty professors, and a large number of assistants, lecturers and docents. The number of students is from : 500 to 2000 , but it fthetuates considerably; the average in \(1886-90\) was 1825 . Every student must helong to a " nation" (landskap), of which there are thirteen. each comprising mainly students from a particular part of the country. Each nation has generally its own club-house and fund. There are also socicties for special hranches of study, cthletics and muste, especially singing, for which the students
bave a deservedily high repurtation. A cap of white velvet with a bleck border is worn by the students.
The cathedral stands nobly above the town; its tall westem towers with their modern copper-sheathed spires aro visible for many mikes It is of simple form, consisting of a nave with aisles and flanking chapels, short transepta, and choir with ambulatory and chapels and an apsidni cestern end. It ia French in style (the first architect was a Frenchman, Exienne de Boantuil) modified by the ube of brick as building material. Orasmentation is thus alyghe except at ibe southern portal. The church was building from \(\mathbf{2 3 8 7}\) to \(\mathbf{2 4 3 5}\). It suffered frotn several fires, and a thorough restoration was completed in 1893. The easternmost chaped is the fine mavsoleum of Gustavus Vasa. The cmatle was founded in 1548 by Gustavus I. but was not finished till a century later, when it was often used as a royal residence. It was destroyed by fire in 1701, and is still in part ruined, but part is used as the offices of the goversment of the \(U n\) and the residence of the governor. Apart from tbe eathedral and a few insignificant buildings, there are xo ot her medieval remains. Ampong institutions may be mentioned the Ultoma Agricultural Institute, immediately south of the city The indostries are unimportant.

The name of Updala originally belonged to a place still called Otd Upselun neurly 2 m . N. of the present city. This Upach, mentioned as early as the oth century, was hamous throughout Scandinavia for its splendid heathen temple, which, gleaming with gold, made it the centre of the coantry, then divided into a greal number of small kingdoms. Three huge grave mounds or barrows remain here. In the same plece the firm cathedral of the bishops of Upsaln was also erected (c. 1roo). On the destruction of this buiding by fire, the inconvenient situation coused the removal in 1273 of the archioplscopal sce to the present city, then called Oatra Aros, \({ }^{2}\) but within a sbort time it came to be generally callod Upeala. During the middlle ages the cathedral and the ree of the archhishop made Upsala - kind of ecclesiostical capital. Here the kings were crowned, after thetr election had caken plece at the Mora Stones, 10 na. S.E. of Upsah. In 1567 Eric XIV.murdered in the castle five of the most eminent men of the kingdom, three of them belonging to the family of Sture. In 1593 was held the great synod whicb marks the final vietory of Protestantism in Swoden; in the same year the university was restored by Charles IX. In the castle, Christina, daughter of Gustavus Adolphus, resigned her crown to Charies \(X\). in 1654. In 1702 nearly the whole city, with the caste and the cathedral, wns burnt down. Among the teachers of the university who have carried its name beyond the boundaries of their own country the following (besides Linnseus) descrve to he mentioned: Olof Rudbeck the eider, the anthor of the Allantica (1630-1 701); Torbern Bergman (1735-1784), the celebrated chemist; and Erik Gustal Geijer (: \(783-1847\)), the historian.

BR, one of the most important of the early Bahylonisn cities, represented to-day by the ruin moonds called Mughalr (Moghair), or, more properly, Muqzyyar (Mukayyar), "the pitched," or "pitch-buill." It lay 140 m. S E. of Babylon (\(30^{\circ} 95^{\circ} \mathrm{N}, 46^{\circ} \mathrm{s}^{\prime}\) E), about 6 m . S. of the present bed of the Euphrates, half-way between that and the low, pehbiy sandstone hills which form the border of the Syrian desert, and almost opposite the month of the Shatt-et-Hay, on the Sa'ade canal. It was the site of a famous temple, E-Nannar, " house of Nannar," and the chicf seat in Bahyloniz of the worship of the moongod, Nannar, later known as \(\operatorname{Sin}(g 0)\). Under the title Ur of the Chaldees; it is mertioned in the Bible as the original home of Abraham. It is worthy of notice that Haran, in upper Mesopotamia, which also was a home of Ahraham, was likewise a famous site of worship of the god Sin, and that the name of that god also appears in Mount Sinai, which was historically connected with the origin of the Hebrew nation and reiigion. While not equal, apparently, in antiquity, and

\footnotetext{
\({ }^{1}\) The name first occurs in Snorro Sturlusoa in consection with events of the year 1018; it signifies "the mouth of the castern river."
}
certainly not in religious importasce, to the cities of Nippur, Eridu and Erech, Ur, from a very early period, played a most important part politically and commercially. Lying at the janction of the Euphrates and Tigris, at the bead of the Persian Gulf, it enjoyed very extensive water-commanications with rich and important regions. Lying close to the Syrian desert, at a natural point of communication with Arabia, it was the centre of caravan communication with interior, southern and western Arabia. In the Sumerian period, antedating the time of Sargon, about or before 3000 B.c., we find Ur exercising hegemony in Babylonia under a king whose name is read Lugal-Kigub-Niduda. Comparatively early, however, it became a centre of Semitic iafluence and porier, and immediately alter the time of the Sargonids it comes to the front, under King Ur-Gur, or Ur-Engur, the great builder of siggwrats (stagetowers) in the ancient Babylonian cities, as mistress of both nortbern and southern Babylonia, and even seems to have exacted tribute from countries as far remote as southern Syria. With relatively brief intervals, during which Erech and Isin come to the fore, Ur held the begemony in Babyloniz until or shortly before the Elamite invasion, when Larsa became the scat of authority. After the period of the Elamite dominion and the establishment of the empire of Babylon, under Khammurabi, about or shortly after 2000 B.c., Ur lost its political independence and, to a considerable extent, its political importance. The gradual filling up of the Persian Gulf had probably also begun to interfere with its trade supremacy. It continued, however, to be a place of religious and literary importance unil the close of the Babylonian period. The ruins of the ancient site were partly excavated by Loftus and Taylor in 1854. They are egg-shaped, with the sharper end towards the north-west, somewhat clevated above the surrounding country, whicb is liable to be inundated by the Euphrates, and encircled by a wall 9946 yards in circumference, with a length of 1056 and a greatest breadth of 825 yds. The principal ruin is the temple of E-Namnar, in the north-western part of the mounds. This was surrounded by a low outer wall, within which rose 2 platform, about 20 ft . in height, on which stood a two-storeyed siggurat, or stage-tower, a right-angled parallelogram in shape, the long sides towards the north-east and south-west. The lower stage measured 198 ft . in length by 133 ft . in breadth, and is still standing to the height of 27 ft . The second storey was 4 ft . in height and measured 119 by 75 ft . The ascent to the first storey was by a stairway 8 ft . broad, on the north-east side. Access to the summit of the second storey was had on the same side, either by an inclined plane or a broad stairway-it is not clear which-extending, apparently, the whole length of that stage. Ruins on the summit show that there was a chamber on top, apparently of a very ornamental character, like that at Exidu. The bricks of the lower stage are laid in hitumen, and bear the inscription of Ur-Gur. The bricks of the upper stage are laid in mortar, and clay cylinders found in the four corners of this stage bore an inscription of Nabonidus, the last king of Babyion (639 B.c.) , closing with a prayer for his son Belshar-uzur (Bel-sarra-Ǔzur), the Belshazzar of the book of Danicl. Between these two extremes were found evidences of restoration by Ishme-Dagan of Isin and Gimil-Sin of Ur, somewhere towards the middle of the 3 rd millennium B.C., and of Kuri-galzu, a Cossacan (Kassitc) king of Bahylon, of the \(84^{\text {th }}\) century B.c. Ncbuchadrezzar also chaims to have rebuilt this temple. Tayior further excavated an interesting Babylonian building, not far from the temple, and part of an ancient Babylonian necropolis. All about the city he fuund abundant remains of burials of latur periods Apparently, in the later times, owing to its sanctity, Ur became a favourite place of sepulture, so that after it had censed to be inhabited it still continued to be used as a necropolis. The great quantity of pitch used in the construction of these guins, which has given them the name by which they are to day laowh among the Arabs, is evidence of a peculiarly close relations Whame pitch-producing neighbourhoot, presumat,ly Itio,
located. Large piles of sheb and scorita, in the meighbourhood of Ur, show, apparently, that the pitch was also used for manufacturing purposes, and that Ur was a mamufacturing as well as a commercial city. Since Taylor's time Mughair has been visited by numerous travellers, almor all of whom have found ancient Babylonian remains, inscribed stones and the bike, I ying upon the surfoce. The site in rich in remains, and is relatively easy to explore.
See J. E. Taylor. Jowrnal of the Royal Asiatic Society (1855). vol xv-i W. K. Loftus. Chaldoed and Susiome (i897): John P. Petern, Nippme (i897): HL V. Hilprecht, Eccesalions is A ssypit and Babylenia (1904).
(J. P. PE)

URALABTALC, the general term for a group of languages (also called Turanian, Fimo-Tatur, Acc.) constituting a primary linguistic family of the eastern hemisphere. Its subgroups are Turkish, Finno-Ugrian, Mongol mad Mancha. Philologists have difierentinted various forms of the hagoages into numerous subdivisions; and considerable obscurity rest: on the relationship which such hanguges as Japanese or anciont Accadian and Etruscan bear to the suligroups already named, which are deals with in other articles.

In its morphology Ural-Altaie belongs to the agglutinating order of speech, differing from other langaages of this order chiefly in the exclusive use of suffixes attached to the unnodified root, and partly blended with it by the principle of progressive vowel harmony, in virtue of which the vowels of all the suffives are assimilated to that of the root. Thus the typical formuta is \(R+R+E+2\), \&ce, where \(R\) is the root, always pleced first, and R, I, I . . . the succossive postifed relational elements, whoot vowels conform by certain suhtle laws of euphony to that of the root, which never changes. These suffixes difier also fram the case and verbal endings of true inflecting languages (Aryan, Semitic) in their slighter fusion with the root, with which they are ratber mechanically uniled (agglutinated) than cheonically fused into a term in which root and relational element are no longer eeparable. Hence it if that the roots, which in Aryan are generally obscured, blurred, often even changed past the possibility of identification, inUral-Allaic are always in evidence, unafiected by the addition of any number of formative particies, and conl rolling the whole formation of the word. For instance, the infinitive element mak of the Osmanli yaz-mak \(=\) to write becomes wek in seo-mek = to love (vowel barmony), and shirts its place in sep-il-mek \(=\) to be loved (imperfect fusion with the root), whik the root itself remains unchanged as to form and position in ser-ish-il-mek \(=\) to be impelled to love, or in any otber possible combination with suffixed elements. The lacility with which particles are in this way tacked on produces an exuberance, especislly of verbal forms, which in Osmanli, Finnish, Magyar, Tungus and Mordvinian may be said to rua riot. This is particularly the casd when the numerous modal forms become further complicated by incorparating the direct pronominal object, as in the Magyar marjok = they await him, and the Mordvinian palasa \(=1\) embrace him. Thus arise endless verbal combinations, reciconed in Turki at nearly 30,000 , and pact counting in the Ugrian group.

Another marked peculiarity of the Ural-Altaic, at least as compared with the inflecting orders of speech, is weat subjectivity, the subject ar agent being slightly, the object of the action strongly accentusted, so that "it was done by him" becomes " it wras done with him, through him, or in his place" (apod exm). From this fealure, which seems to be characteristic of all the branches, there follow some important consequences, such as a great preponderance of locative forms in the declension, -the nominative, and often even the possessive, being expressed hy no special suffix. Hence also the object normally precedes the subject, while the idea of possession (to have) is almost everywhere replaced by that of being (to be), so that, even is the highly developed Osmanli, "I bave no moncy" becomes " money-to-me not-is" (Akchehton yokdir). In fact the verb is not clearly differentiated from the noun, so that the conjugation is mainly participial, being effected by agglutinating pronominal, modal, temporal, negative, passive, causative, reciprocat
reflerive and other sufixes to nominal roots or gerunds: I write \(=\) writing-to-me-is. Owing to this confusion of noun and verb, the same suffixes are readily altached indififerently to both, as in the Osmanli jdn = soul, jon-ler = souls, and your \(=\) he will write, yaideter \(=\) they will write. So also, by assimilation, the Yakut \(k \delta t o r d \delta r\) koldllor \(=\) the birds dy (from root kot = flying), where Latbl stands for kbtor, and dor for lor, the Osmanli ler, or suffix of plurality.

But, notwithstanding this wealth of nominal or verbal forms, there is a great dearth of general relational ciements, such as the relative pronoun, grammatical geader, degrees of comparison, conjunctions and even postpositions. Byrne's remark, made in reference to Tungus, that "there is a great scarcity of elernents of relation, very few conjunctions, and no true postpositions, except those which are given in the declension of the nour,"12 is mainly true of the whole family, in which nouns constantly do duty for formative suffixes. Thus nearly all the Ostiak postpositions are nouns which take the possessive suffix and govern olber nouns in the genitive, precisely as in the Hindi: ddmi-kI ! \(\mathrm{d} d \mathrm{~d} f(\mathrm{men}\)) gdyd=man-of-direction (in) I tent \(=\) I went towards the man, where the so-called postposition !drdf, bcing a feminine noun a direction, requires the preceding possessive particle to be also feminine (ki lor ke).
As there are thus only two classes of words-the roots, which always remain roots, and the suffixes, which always remain suffixes-it follows that there can be no true composition or word-building, but only derivation. Even the numerous Magyar nominal and adjectival compounds are not true compounds, but merely two words in juxtaposition, unconnected by vowel harmony and liable to be separated in construction by intervening particles. Thus in aran-sinu \(=\) gold-colour - golden, the first part aran receives the particle of comparison, the second remaining unchanged, as if we were to say "gold-er-colour" for "more golden"; and ata \(-k=\) relative becomes ada-m- \(6-a=m y\) relative, with intrusion of the pronominal \(m\) - my.

But, while these salient features are common, or nearly common, to all, it is not to be supposed that the various groups otherwise present any very close uniformity of structure or vocabulary. Exclading the doubuful members, the relationship between the several branches is lar less intimate than between the varjous divisions of the Semitic and even of the Aryan family, so that, great as is, for instance, the gap between English and Sanskrit, that between Lapp and Manchu is still greater.

Ater the labours of Castrên. Csink, Gabelentz, Schmidt, BohtKingt Zenler. Almqvist, Radiov, Muakacri-Berat and enpecially Winder, their gemetic affinity can no tonger be seriously doubted. But the order of their genetic descent from a presumed common ogzanic Ural-Altaic language is a question presenting even greater difuculties than the analogous Aryan problem. The reason is, not ouly because these groups are spread over a far wider range, but because the dispersion from a common centre took place at a time Then the organic speech was still in a very low state of development. Hence the various groupen, starting with little more than a common Girst germ, uuficient, however, to give a uniform direction to their uubeequent evolution, have largely diverged from each other during their independent development since the remotest prehiswric times. Hence also, while the Aryan as now known to us represents a descending line of evolution from the synthetic to the analytic etate, the Ural-Altaic represents on the contrary an upward growth ranging from the crudest syntactical arrangements in Manchu to a highly agglutinating but not true inflecting state in Finnish. \({ }^{2}\) No doubt Manchu also, ijke its congeners, had formerly powemive affxes and pervonal clements, lost probably through Chinese ialuences; but it can never have possessed the surprisingly rich and even superabundant relational torms so characteristic of

\footnotetext{
\({ }^{1}\) Gren Prin of Suruch, of Lang. i. 391 (London, 1885).
"" Meine Aasichten werden sich im Fortgange ergeben, so namentJich date ich nicht enternt die fionischen Soracheo for flexivische halten kean" (H. Winder, Uralaluaische Vealker. 1884 , i. p. 54). Yet even true inferion can scarcoly he denied at least to some of the wo-called Yenisei Ostiak dialects, wuch as Kotta and others still sarvivigg about the middle Yeaisei and on its affuents. the Agul and Kañ (Castrita. Yen., Ostjah mad Kopl. Sproshlehse, 1858. Prefice, P? v-viil). Thees, however, may be regarded as aberrant members A the family, wod oa the whole it is trwe that the Ural-Altaic symem nowhere quite reaches the stage of true infiexion.
}

Magyar, Finn. Ommanli and other western branches. As regards the mutual relations of all the groups, little more can now be said than that they fall naturally into two main divisiong-MongoloTurkic and Finno-Ugro-Samoyedo-Tungusic-according to the several methods of employing the auxiliary elements. Certainly Turkic lies much closer to Mongolic than it does to Samoyedic and Tungusic, while Finno-Ugric seems to occupy an intermediate position between Turkic and Samoyedic, agreeing chiefly In its roots with the former, in its suffixes with the latter. Finno-Ugric must have separated much earlier, Mongolic much later, from the common connexion, and the latter, which has still more than half its roots and numerous forms in common with Turkic, appears on the whole to be the most typical member of the family. Hence many Turkie forms and words can be explained only by reference to Monsolic. which has at the same time numerous relations to FinnoUgric and Samoyedic that have been lost in Turkic and Tungusic. It may therefore be concluded that the Finno-Ugric migrations to the north and west and the Tungusic to the east had been completed while the Turkic and Mongolic tribes were sill dwelling side by side on the Altal steppes. the probable cradle of the Ural-Aleaic peoples.
How profoundly the eeveral groupe differ one from the other even in their otructure is evident from the fact that such assumed universal features as unchangeahle roots and vowed harmony are subject to numerous exceptions, often spread over wide areas. Not only is assimilation of Ginal consonants very common, as in the Ormanli bulsre-mak for the Uighur bulul-mak, bat the root vowel iteelf is frequendy suhject to wmiaul through the influence of suffixed vowels, as in the Aryan family. Thus in the Surgut dialect of Ostiak the long vowels of nominal stems become modified before the possessive sultix, \(\begin{gathered}\text { and } \\ z \\ \text { to } \\ 3\end{gathered}\) and \(\delta\) to \(a\) (Castrén). It is scill more remarkable to find that the eastern (Yenimi) Ortiak has even developed verbal forms analogous to the Teutonic ment conjugation. the presents tabaq', abbalag'an and datpaq' beooming in the past tobaq', abbatog'an and datpiyaq* respectively; so also taig, itrg and targ, present, past and imperative. are highly sug. gestive of Teutonic inflexion, but more probably are due to Tibetan influences. In the mame dialects many nouns form their plurals either by modirying the root vowel, in combination with a suffixed element, or by modification alone, the suffix having disappeared, as in the English foot-feet, goose-geese. So also vowel harmony, bigity developed in Finnish, Magyar and Osmanti, and of which two distinct forms occur in Yakutce, ecarcely exims at all in Cheremissian, Votyak and the Revel dialect of Esthonian, while in Mordvinian and Syryenian, not the whole word, but the final vowels atone are harmonized. The unassimilated Uighuric kilmr-im answers to the Osmanli kilcu-vom, while in Manchu the concordance is neglected. especially when two conconants intervene between the root and the suffixed vowels. But too much weight ghould mot he attached to the phenomenon of vowel harmony. which is of come paratively recent origin, as shown in the oldest Magyar texts of the 12 th century, which abourd in such discordances as haldo-weh, tiseta-seg. for the modern haldi-mak, tissto-saly. It clearly did not esiot in the orgaric. Ural-Altaic speoch, but was independently developed by the differeat branches oo different lines after the diaperion, itu arigin being due to the matural tendency to merge root and suffix in one harmonious whole.

This progreasive vocalic harmony has been compared to a sort of progrewsive smidand, in which the suffixed vowele are brought by assimilation into harmony with those of the root. All vorels are broadly divided into two categorics, the guttural or hand and the palatal or weak, the principle requiring that, if the root vowed be hard, the muffixed most al so be hard, and vice verga. But in some of the groups there is an intermediate clam of "neutral" vowela, Which do nor require to he harmonized, being indifferent to either category. In accordance with these general principlea the vowets in some of the leading members of the Altaic fumily are thas clanafied by L. Adam: \({ }^{2}\)

A close analogy to this law is presented by the lrish rule of " broad to broad" and "slender to alender," according to which under certain conditions a broad (\(c, 0, u\)) must be followed in the next syilable by a broad, and a slender (\((, i)\) by a slender. Obvious parallelisms are also such forms in Latin as annus. perennis, ors, iners. legu, diligo, where, however, the root vowel is modified by the affix, not the afix by the root. But such instances suffice to show

\footnotetext{
\({ }^{1}\) De l'harmonie des moyelles dans les laxgues Oxralo:Allaigmas (Paris, 1874).
}
that the harmonic principle is not peculiar to the Ural-Altaic. but only more systematically developed in that than in most other linguistic families.

Bialiography. - Besides the references given above, the chief general treatises on Ural-Altaic philology are. Winkler, Des Uralalfasche wind scine Gryppen (Berlin, 1885): Keltgren, Die Grundzuge der fonascken Sprochen mat Rucksicht anf die Urat allasschea Sprachsiämme (Berlin, t847); Castrén, Ueber die Ursutse des firnuschen Volkes (Helsinglors, 1849); bid., Sywaen. Gram., Samojed. Gramo, and numerous other comparative grammars. dictionarics and general trestises, chiefly on the Finno-Ugric and Samoyedic groups; W. Thomsen, Ueber den Einfluss der germanischen Sprachen auf die Fimnusck-Lappischen (Germ. trans. by Sievers, Halle, 1870-a classical work); Abel Rémusat, Recherches sur les langucs Tartares (Paris, 1820); L. Adarn, Gram. de la langue Mandchome(Paris. 1872), and Gram. de la langme Tongouse(Paris,1874): Bohtlingk, Die Sprache der Jakuten (St Pelersburg, 1851); Radiof, Volksliteralur der burkischen Siomme Sud-Sibiriens (St Petersburg, 1872). and " Remarks on the Codex Comanicus," Bull. Si Petersb. Acad. Sc. xxxi. No. 1; Zenker, Gram. der tishischen-falarischen Sprachen; Schmidt, Mongol. Crem-: Cabelentz. Gram. Mardichoue (Alterburg, 1833): Csink, Hung-Grama (London, 1853); and Vambéry, Das Twrkentolk (Leipzig, 1885), and Uigurische Sprach. Moпиmente u. das Kwdalku Bilik (Inasbruck, 1870). (A. H. K.)

ORAL MOUNTAINS, a system of mountains which extends from the Arctic Ocean southwards nearly to the Caspian Sea, and is regarded as separating Europe from Asia. Russians describe them either as Kameñ (stone) merely, of by the appropriate name of Poyas (girdle), while the name of Urals (Uraly)derived either from the Ostyak urf (chain of mountains) or Irom the Turkish argi-lou or ural-iGu-has with them become a generic name for extensive mountain chains. Although the real structure of the Urals, both orographical and geological, is imperfectly ascertained, enough is known to warrant the statement that they have been affected by a scrics of separate upheavals, some having a north-western strike and some a north-eastern, and that they reach their maximum altitudes along a zone stretching nearly north and south. The composite nature of the Urals is best seen at the northern and southern extremilies of the system, where the upheavals assume the character of distinct chains of mountains.

The Paë-khoy or coast sidge (Samoyedic "stony ridge ") is quite independent of the Urals proper, from which it is separated by a marshy tandra, come 30 m . wide. It has a distinct north-northwesterly and north-westerly trend along the shores of the Kara Sea: and, although it is cut through by the Ugrian Serait Yugorskiy: shar), there is no doubt that it is continued in Vaygach Island and Novaya-Zendya. Its dome-shaped summits, which rise ioooft. above the tundra (Vozaipač, 1312 ft), are completely destitute of tuees, and its stony crags are separated by broad marshy tumdras.

The Obdorsk or Northern Urals, which begin within a few miles of the head of Kara Bay (Konstantinov Kameñ, in \(68^{\circ} 30^{\prime}\) N.. 1465 ft .), and extend south-west as far as the 64 lh paraliel. form a ditinct range, stony and craggy, sloping steeply towards the southeast and gently towards the marshes of European Russia. Its highest elevations (e.g. Khard-yues, 37 is ft ., and Paè-yer, 4650 ft .) are on the 66 h and 67 th parallels. Sometimes the main chain has on the west two or three secondary chains, formed by the upheaval of sedimentary rocks, and it is towards the southern extremity of one of these that the bighest peaks of the Urals oceur (Sablya, \(5135 \mathrm{fl}^{\circ}\). in \(64^{\circ} 47^{\prime} \mathrm{N}\)., and Toll.poz it or Murat-chakhl, 5535 ft. in \(63^{\circ} 55^{\circ}\)). Dense forests, chiefly ir, pine and larch, clothe the slopes of the mountains and the narrow valleys: but, as the less hospitable Latitudes are approached, every species except the larch gradually disappears and the upper limit of vegetation (2400 ft in the south) rapidly deacends till it reaches the very base of the mountains towards the Arctic Circle, and forest vegetation disappears altogether about \(65^{\circ} \mathrm{N}\). (\(67^{\circ}\) in the plains of Russia and Siberia).
Althougli usually reckoned to the Northern Urals, the section between \(64^{\circ}\) and \(61^{\circ} \mathrm{N}\). has again to wholly distinct character. Here the main chain (or, more correctly, the main water-parting) ccession of plateaus stretching in a north-westery lated dome-shaped, flattened summits, mostly on 1 amp, \(62^{\circ} 43^{\prime} \mathrm{N}\). 4170 (t .). The whole region,
in summins, is densely clothed with conifenous ring only occasionally in the south, and even in a lew salleys. This part of the range is

isk, Gioroblagodatsk and Ekarerin.

the Tara-tash in the south (2800 ft.) may be considered as mariong the limits of this section. Here the orographical structure is stil more complicated. In the north (6ist to 6oth parallel) there is a succession of chains with a distinct north-eastern trend: and it atill remasns an open question whether, for rwo degrees farniser south, the whole of the Bogoslovsle Urals (4795 It. in the Konth-kovski-Kamen, and Irom 3000 to 4000 (t. in several other summits) du not consist of chains having the same direction. South of Kachkanar \((2885\) It.), t.e from the 58 th to the 56 th parallel, the (irals assume the appearance of broad swellings 1000 to 2000 ft . in height, deeply irenched by ravines. These low and ravine-broken plaicaus, the higher parts of which can be reached from Russia on a very gente gradient. have been utilized for centuries as the chief highway to Siberia. The water-parting between the Ruasian and Siberiaa rivers is here not more than 1245 it. above sea-level on the great Russo-Siberian highway (W. of Ekatcrinburg). The castern slope is steeper, but even there Ekaterinburg is only 435 ft . below the water-parting. The valleys have a decidedly south-eastern direction. and such is also the course of the railway from Perm to Tyumeñ, as soon as it reachea the Siberian slope. The Middle Urals aee densely forested. The valleys and tower slopes are covered with a thick sheet of rich humus and have become the site of large and wealthy villages. The mines also support a considerable population.

The Sourhern Urals (\(55^{\circ}, 30^{\circ}\) to \(51^{\circ} \mathrm{N}\).), instead of beint marte up of tbree chains of mountains radiating from Mount Yurras, as was formerly supposed, consist of three parallel chains running norbeast and south-west, and therefore constitute a quite independent part of the Ural system. The Urals proper are a low sinuous chain exlending due south-west and hardly exceeding 2200 to 2800 ft . in altitude. They slope gently towards the north-west and abruptly towards the coutheast, where several short, bow spurs (Inren. Irenly) rise in the basins of the Miyas and the Ui. In the vest a chain, separated from the main range, or Ural-tau, by a fongirudinal valley. accompanies it throughout its entire length. This, alt hough pierced by the sivers which rise in the longitudinal valiey just mentioned (Ai, Upper Byelaya), nevertheless rises to a much greater height than the main range. Its wild stony crest reaches an extreme altitude of 5230 ft. Farther west, another series of chains reach nearly the sane altitudes. The gorges by which the rivers pierce the Devonian limestones on their way towards the lower terraces are most picturesque in the west, where the Urals assume an alpine character. The forests are no longer continuous the gentle slopes of the hilly tracts are doted with moods, mostly of deciduous trees, while the hollows contain rich pasture prounds The whole region, formerly the exclusive abode of the Bashkirs, is being colonized by Russians,

Farther south, between the 53 rd and \(5 t\) st parallels, the main range continues in the same direction, and, except when deeply trenched by the rivers, assumes the appearance of a plateau which hardis reaches 1500 ft . It is continued farther south-west (towards the Volga) under the name of Obshehiy Syrt.

As a rule. the Urals are not considered to continue south of the great bend of the Ural river, where quite independent ranges of hills, or fat swellings, appear (e.g. Dzhaman-tau, M ugodzhar Hills), It appears, however, that the Mugodzhar Hills may safely be regarded as an actual prolongation of the upheavals which constitute the Urals. These consist of diorites and erystalline slates, and reach their maximum in Airyuk (1885 (t.). A range of heights connerts the Mugodzhar Hills with the Ust-Urt plateau (see Trasscasplay Region).
Geology. - The Ural Mountains are no more than the wettera edge of a broad belt of folding of which the greater part is buried beneath the Tertiary deposits of western Siberia. Throushout the greater portion of the chain a broad strip of granites, diontes, peridotites, gneisses and other crystalline rocks rises directly from the Siberian plain, and is covered towiards the west by Silurian. Devonian. Carboniferous, Permian and Triassic strata, which are thrown into numerous folde parallel to the length of the chain and usually rise to much greater beights than the crystalline zome. in the north. however, folded sedimentary rocks lie to the east as well as to the West of the crystalline axis, and between \(60^{\circ} 40^{\prime}\) and \(46^{\circ} 50^{\circ} \mathrm{N}\). Fedorov distinguishes three zones; (i.) the eastern hill region. where one finds Mesozoic rocks (Chalk. Jurassic) in the north, and Devonian limestones, porphyrites and quartz-porphyries farther sonth; in this zone most gold placers are found: (ii.) the central mountain zone consists of various amphibolitic metamorphic slatex and also of syenite and gabbro: granites, greisses, and occesionally serpentines and porphyrites are found subordinately: and (aii.) the western hilly zone coneiste chiefly of Carboniferous and PermoCarboniferous deposits: Middle and Vpper Devonian limestones and, occasionally, crystalline slates are found in a few meridional ridges. The crystalline rocks are asually believed to be of Archean age. The Carboniferous deposits-coat-bearing in the Middle and Southern Ural-although appearing at the surface only as a nartow strip in the west Urals, nceupy an extensive area, but are concealed by the largely developed Permian deposits, and that series of sediments which must be considered as intermediate between the Carhoriferous and the Permian. These lapter, described as "PermoCarbon " by Russian and German geologists, are largely developed
in the mest Unals. The Peruian deposite cover a wide sone all along the western slope of the Urals from north to south. and are most important on account of their copper ores, salt beds and salt springs. They are also covered with varicgated marls which sire almost destitute of fossil organisms, 50 that their age is not yet quite set tled.

Climalk. Geo-Belanical and Gep-Zoalogical Imporlance.-The importance of the Urals as a climatic and geo-botanical boundary can no longer be regarded as very great. Most European species of plants Ireely cross the Urals into Siberia. and reveral Siberian epecies travel acrose them into northern Russia. But, being a zone ol hilly tracts extending Irom north to sourh, the Ural Mountains necessarity exercise a powerful influence in pushing a colder northern climate, as well as a northern flora and launa, farther south along their axis. The harshness of the climate at the meteorological stations of Bogotovsk, Zlatoust and Eloserisburt is not owing merely to their cievation a lew hundred leet above rea-level. Even if reduced to sea-level, the average temperatures of the Ural meteorological stations are such as to produce a local deflexion of the isotherms towards the south. The mame is true with regard to the lirults of distribution of vegetable and animal species. The reindeer, for instance, is met with as far south as the 52 nd parallel. The Southern Urals introduce into the Cis-Caspian steppes the flora and fauna of middle Russia.

In the distribution of the races of mankind the Urals have played an important part. To the present day the Northern Urals are inhabited by Finnish races (Samoyedes, Syryenians, Voguls and Permians) who have been driven Irom their former homes by Slav colonization, while the steppes on the alopes of the Southern Urala have continued to be inhabited by the Turkish Bachkirs. The Middte Uirals were in the gib century the abode of the Ugrians, and aheir land. Bjarmeland or Biarmia (now Perm), was weil known to the Byzantine historians for its mineral wealith.-there being at that time a lively intercourse between the Ugrians and the Creeks. Cormpelled to abandon these segions, they moved (in the gith century) south along the Ural slopes towards the land of the Khazart, and through the prairies of eourh-eastern and southern Rusaia (tbe Aepesle of Constantine Porphyrogenifus) towards the Danube and to their present seat-Hungary-leaving but very fow memorials behind them in the Northern and Middle Urals. At present the Urals expecially the Middle and the Southern, are being more and more colonized by Creal Rusian immigrauts, while the Finmish tribes are rapidly melting away.

Metallurey and dinims.-The mineral wealth of the Urals was known to the Greeks in the gth century. and afterwards to the Movporodians, who pencerated there in the tith century for trade with the Lgrians. When the colonies of Novgorod (Vyatka, Perm) fell under the rule of Boscow. the Russian tears soon grasped the importance of the Ural mines, and Ivan III. sent out Cerman engipeers to explore that region. In i5ss the whole of the present government of Perm was granted by the rulers of Moscow to the brothers Stroganov, who began to cstablish malt-works and mines for iroa and copper. Peter the Great gave a new impulse to the mining industry by founding everal iron-works, and from 1745 . when gold was harst discovered. the Rustian colonization of the Urals cook a new departure. The colonization was of a double character, being partly Iree-chiefly by Nonconlormisss in searrh of religious freedon-and partly compulsory,-the government sending peasant ettlers who became erffs at the iron and copper works. Until 1811 all work at the mines was done by merfs belonging either to private permons (Ife Stroganove, Demidovs and orhers) or to the crown. Not only are the Urals very rich ia minerals but the vast areas covered with forcsts allord an almost inexhaustible supply of clotap fuel for smelting purposes Thus for a long time the Urals were the chief mining region in Russia. But when coal began to be used for smelting purposcs. south Ruscia generally. and Elcaterinodav in particulaf, became the chied iron-producing region. Altention has, bowever, again been directed to the great mineral wealth locked up in the mouncain region. and the last two ycars of the tgth century witnesed a "boom" in the purchase of iron and gold mines by foreizn companies. The chief pig-iron and iron-works are at NizhniyTagitsk, and the principal weel-works at Bogoslovak. The manufacture of agricultural machinery has increascd in the southern Urals. especially at Krasmoufinsk, and the manufacture of tea-urns has erown in importance at Perm.

Cold is met with in the Urals both in veins and in placers; the output increased from about 30,000 oz. in 1883 to three sirwes that a mount at the end of the century. The lirals have also rich placers of plarinum, ofien mixed with gold, iridium. osmium and other rare metals and supply annually some 13,000 th, i.e. \(95 \%\) of all the platinum obsained in the world. Silver, mertury, nickel, zinc and cobalt ores are found. Rich mines of copper are found at Turinsk, Gomiahev and other places. yielding as much as \(5 \%\) of pure copper; nickel is obtained at Revdinak, and the extraction

\footnotetext{
'Comp Moratw and the Madiors, by K. I. Croth: Zahyrlin's History of Rersian Life, and the polemics on the subject in /arsisa of the Ruse Geogr. Soc., xir. (1883).
}
a iron chronster hat developed. Coal exista in many plepen on the western slope of the Urals, mainly on the Yuiva niver. in the basin of the Kama, and on the Usva (basin of the Chusovaya), and about \(\$ 00,000\) cons are raised annually. Several beds of coal heve been lound on the eastern slope; excellent anthracite exists at Irbit and good coal at Kamyahiav. Sapphireasemeralds beryls, chrysoberyls, tourmalines, aquamarincs topaz, amethysts. mock: crystals, garnets and many kinds of jade, malachite and marble are cut and polished at several stone-cutting works, especially at Ekaterinburs: and dirmond-mining may prove successful. Good asbetcos st extracted and pyrites is worked for the manulacture of sulphuric acid Many varietics of mineral waters occur in the Urals, the luest being those at Serginsk, Klyuchevsk and Elovsk.
Autirowrits -Sir R.J. Murchison, Geel. of Russis (and ed., 1853): E. Hofmana, Nordl. Ural (St Peteraburg. 18s3-56); Mcglitaky and Antipov, Bergbay im Ural (1861); Ruprecht. Verbr. der Pflanzen im nordt. Ural; Panaev, Climalology of the Urals (Rusaian, 1882): P. Semenov, Geographical Dictiovery (Russian): E. Fedonov. Geolozical Rescarches in Northern Urals (1884-96), and Begeslonh Distruct (1901); Chupin, Geogr. and Slah Dict. of the Governmernt of Perm; Mendcicev. The Ural Irom Industry (1900).
(P.A.K; J. T. BE)

ORALSK, a province of Asiatic Russia, lying N. of the Caspian Sea, with an area of \(140,711 \mathrm{sq} . \mathrm{m}\). It is bounded by the government of Astrakhan on the W., Samara and Orenburg on the \(N_{\text {. }}\) Turgai and the Sea of Aral on the-E.! and the Caspian Sea and Transcaspian region on the \(S\). It is geographically situated mostly within the boundaries of Asia, i.c. E. of the Ural river, and both its physical features and its inhabitants are, to a very large extent, Asiatic. Administratively, it belongt to the "Kirghiz provinces," or governor-generalship of the Steppes. Apart from a narrow strip of land in the north, where the slopes of the Obshchiy-Syrt plateau, covered with fertile black earth and stretches of forest, descend towards the Ural river, and the gentle slopes of the Mugojar Hills in the north-east, Uralsk consists of arid steppes and deserts, which incline with an impereeptible gradient towards the Caspian. Most of the province is below sea-level, the zero altitude line running from Kamyshin on the Volga to the south of the town of Uralsk.

Urakk is drained by the river Ural or Yaik, which rises in Orenbury and fows south, west and south, entering the Caspian after a course of 900 m . Its chirel tributaries, the Salmara, the Qr and the Itek. are in the north; along its lower course the Creat and Litcle Lizell and many small strcams on the lefe bank become lost in takes before reaching the Ural. The Emba, which flows through the north of the Ust-Urt plateau, reaches the Caspian by a scrics of shallow lagoons, which were navigable in the tBth century.

The chimate is influenced by the Central Asian steppes. A cold and dry winter is succeeded by a hot and still dricr summer. during which the grase and sonctimes all the crops, are destroyed by the burning heat. Uralsk, although lying wholly to the south of 52" N. has the ame average jearly cmperature as Moscow and south Findand (\(39^{\circ} \cdot 5\)): its January is colder than that of north Finland (3"). while July avcrages 73*.
The estimated population in 1906 was 730.300 . It coosists of three different elemens-Ural Cossacks, who constitute about ane-fireh; some 15,000 Russian peasants, and Kirghiz. The Kirghiz art almost entirely dependent on pastoral pursuits. The Cossacks, descendanes of thone independent communities of free settiers and Raskulniks who are so often mentioned in Russian bistory under the name of Yajk Cossacks, owing to their unwillingness to submit to the rule of the tans, are fine representatives of the Great Ruskian race, though not without some admixtunc of Tatar and Kalmuck blood. Their chief oocupations are live-stock breeding and 6isting.

History.-In the first hall of the t6th century Uralsk was occupied by the Nogai horde, a remanat of the Mongol Colden Horde, which retired there after the fall of Astrakhan and Kazan; the khans resided at Saraichik on the river Ural. At the same time the lower parts of the Ural were occupied by Russian runaway serfs and free Cossacks who did not recognice the euthority of Muscow. They took Saraichik in 1560 and formed an independent community. like that of the Zaporogian Cossacks. When the Aloscow princes attempted to bring them under their rule and prosecuted them for nonoonformity, the Cossacks revoled. first under Stenka Razin (1667-71) and afterwards under Pugacher (1773-75). After the latter rising, the mame of Ural was officially given to the Yaik river and the Yaik Cossacks. The disbanding of their artillery, the planting
of Russian garrisons within the domains of the voisko, and the interference of Russian officials in their interior organization during the rgth century occasioned a series of smaller outbreaks, the latest of which, in 1874, resulted in the deportation of 2500 Cossacks, with their families, to Turkestan.

URALSK, a town of Asiatic Russia, the capital of the province of the same name, on the Ural river, 165 m . W.S.W. of Orenhurg, and 270 m . by rail E. of Saratov. Pop. (1885) 26,055 ; (8901) 38,919 . It is rapidly developing owing to its trade with the nomad Kirghiz in cattle, sheep and animal products, all of which are exported to Russia; it is also a centre for trade in grain. It has two cathedrals, founded, one in the 18th century, the other in 1837 ; a small museum, a school farm, a people's palace, free libraries, and branches of the Russian Geographical and the Fisherics Societies.
URANIUM [symbol \(U\), atomic weight \(238 \cdot 5 \quad(O=16)\)], a metallic chemical element. In 1789 Klaproth isolated from pitchblende a yellow oxide which he viewed as the oxide of a new metal, which he named uranium, after the newly discovered planet of Herschel. By reducing the oxide with charcoal at a high temperature, be obtained a product which he took to be metallic uranium. Berzelius abnut 1823 found that the yellow oxide, when treated with excess of sulphuric acid, gave a sulphate not unlike the ferric salt. He concluded that the uranium salt was \(\mathrm{Ur}_{2} \mathrm{O}_{3} 3 \mathrm{SO}_{3}\), where \(\mathrm{Ur}_{2} \mathrm{O}_{3}\), according to his analysis, represents 864 parts of yellow oxide (\(O=16\)). Like \(\mathrm{Fe}_{3} \mathrm{O}_{3}\), the yellow oxide lost 48 parts oi oxygen per \(\mathrm{Ur}_{2} \mathrm{O}_{3}\) (\(=864\) parts) as water, while \(\mathrm{U}_{\mathrm{r}_{2}}=816\) parts of metal remained. These results were adopted until Pêligot in 1840 discovered that Berzelius's (and Klaproth's) metal contains oxygen, and that his \(\left(\mathrm{Ur}_{2}\right) \mathrm{O}_{2}\) really is \(\left(\mathrm{U}_{6} \mathrm{O}_{6}\right) \cdot \mathrm{O}_{3}=3 \mathrm{U}_{2} \mathrm{O}_{2}\), where \(\mathrm{U}=120\) is one equivalent weight of real utanium. Péligot's results, though called in question by Berzelius, have been amply confirmed by all subsequent investigators; only now, on theoretical grounds, first set forth by Mendeleeff, we double Peligot's atomic weight, so that U now signifies 240 parts of uranium, while \(\mathrm{UO}_{3}\) stands as the formula of the yellow oxide, and \(\mathrm{UO}_{2}\) as that of Berzelius's metal.
The only practically available raw material for the extraction of uranium is pitchblende (q.e.). Pure pitchblende is \(\mathrm{U}_{3} \mathrm{O}_{\mathrm{s}}\), which, in relatively good specimens, forms some \(80 \%\) or more of the whole. If is remarkable as always containing helium (q.v.) and radioactive elements (see Radioactiviry). To extract the metal, the pitchblende is first roasted in order to remove the arsenic and sulphur. In one process the purified ore is disintegrated with hot nitric acid to produce nitrates, which are then converted into sulphates by evaporation with sulphuric acid. The sulphates are treated with water, which dissolves the uranium and other soluble salts. while silica, lead sulphate, \&c., remain; these are removed by filtration. From the solution the arsenic, copper. \&c., are precipitated by sulphuretted hydrogen as sulphides, which are filtered off. The Giltrate contains the uranium as uranous and the iron as ferrous salt. These are oxidized and precipitated conjointly by excess of ammonia. The precipitate, after having been collected and washed, is digested with a warm concentrated solution of ammonium carbonate, which dissolves the uranium as a yellow solution of ammonium uranate, while the hydrated oxide of iron, the alumina, \&c., remain. These are filtered of hot. and the filtrate is allowed to cool, when crystals of the uranate separate out. The mother licfuor includes gencrally more or less of nickel, cobalt, zinc and other heary metals, which, as Wơhler showed, can be removed as insoluble sulphides by the addition of ammonium sulphide: uranium, under the circumstances, is not precipitated by this reagent. The filtrate, on being boiled down. ypelds a second crop of uranate. This uranate when gnited in a platinum cracible leaves a green oxide of the composition
 \(m\) compounds. The green oxide. as a Tof the nirate \(\mathrm{CO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\), and from it
grate by oxalic acid (Peligot). The IF dralare by oxalic acid (Peligot). The by Péligot. can be obtained by chloride of potassium and sodium at a red heat. A (Compt. rend., 1896, 122, . 10 giiş Pêligot,
No sbizolds o chlot
3s muiboe sodium 36 muibor sodium
14 moj) amn (Comp
gravity has the high value 15.7 ; its specific heat is 0.02765 , which, according to Dulong and Petit's law, corresponds to \(\mathrm{U}=240\). It melts at bright redness. The compact metal when exposed to the air tarnishes only very slowly. The powdery metal when heated in air to \(150^{\circ}\) or \(170^{\circ} \mathrm{C}\). catches fire and burns hrilliantly into \(\mathrm{U}_{3} \mathrm{O}_{8}\); it decomposes water slowly at ordinary temperatures, but rapidly when boilingIt burns in oxygen at \(170^{\circ}\), in chlorine at \(180^{\circ}\), in bromine at \(210^{\circ}\), in iodine at \(260^{\circ}\), in sulphur at \(500^{\circ}\), and combines with nitrogen at about \(1000^{\circ}\). Dilute sulphuric acid attacks it but slowly; bydrochloric acid, especially if strong, dissolves it readily, with the formation, more immediately, of a hyacinthcoloured solution of \(\mathrm{U}_{2} \mathrm{Cl}_{6}\), which, however, readily absorbs oxygen from the air, with tbe formation of a green solution of UCl4, which in its turn gradually passes into one of yellow uranyl salt, \(\mathrm{UO}_{2} \cdot \mathrm{Cl}_{2}\).

Uranium is chemically related to chromium, molybdenum and tungsten. If forms two series of salts, one, the uranous compounds, are derived from the oxide \(\mathrm{VO}_{2}\), the other, the uranyl compounds, contain the divalent group \(\mathrm{UO}_{3}\).
Uranous Compounds.-Uranium dioxide, \(\mathrm{UO}_{2}\) (Berzelius's metal), is a brown to copper-coloured powder, obtained by heating \(\mathrm{U}_{2} \mathrm{O}_{3}\) or uranyl oxalate in hydrogen. It fires when heated in air. add dissolves in acids to form uranous salts. It may be obtained as jet black octahedra (isomorphous with thoria) by lusion with borax. Uranous hydrate is obtained as reddish-brown flakes by precipitating a uranous solution with alkali. The solution in sulphuric acid deposits green crystals of the sulphate, \(\mathrm{U}\left(\mathrm{SO}_{4}\right)_{2}-8 \mathrm{H}_{7} \mathrm{O}\), on evaporation. Uranous chloride, UC14, was first prepared by Peligot by heating an intimate mixture of the green oxide and charcoal to redness in a current of dry chlorine; it is obrained as sublimate of black-green metallic-looking octahedra. The chloride is very hygroscopic. By heating in hydrogen it yields the trichloride. \(\mathrm{UCl}_{3}\), and by direct combination with chlorine the pentachloride. \(\mathrm{UCl}_{3}\). With hydroflouric acid it ylelds uranous fluoride UF E which forms double salts of the type MF-UF, Uranous bromide, UBr and uranous iodide, \(\mathrm{UI}_{4}\), also exist.
Uranyl or Uranic Compounds,- Uranic oxide, \(\mathrm{UO}_{2}\) or \(\mathrm{VO}_{3}\).O. is obtained by heating uranyl nitrate to \(250^{\circ}\) as a yellow solid, insoluble in water, but soluble in acids with the formation of uranyl salts. Various hydrates have been described, but they cannor be formed by precipitating a uranyl salt with an alkali, this reagent giving rise to salts termed uramales. These salts generally resemble the bichromates; they are yellow in colour, insoluble in water, soluble in acids. and decomposed by heat. Sodium uranate, \(\mathrm{Na}_{2} \mathrm{U}_{2} \mathrm{O}_{7}\), is used as a pigment for painting onglass and porcelain under the name of uranium yellow. It is manufactured by heating pitchblende with lime, treating the resulting calcium uranate with diiute sulphuric acid, and adding sodium carbonate in excess. Dilute sulphuric arid precipitates uranium yellow, \(\mathrm{Na}_{8} \mathrm{U}_{2} \mathrm{O}_{7}-6 \mathrm{H}_{2} \mathrm{O}\), from the solution so obtained. Ammonium uranate heated to rednesis yislds pure \(\mathrm{U}_{3} \mathrm{O}_{4}\), which serves as a raw material for uranium compounds. Uranyl nitrate, \(\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{3}-6 \mathrm{H}_{2} \mathrm{O}\), is the most important uranium salt. It is obtained as fine lemon yellow deliquescent prisms by evaporating a solution of any of the oxides in nitric acid. By electrolysis it yields uranium dioxide as a pyrophoric powder, and penaranic -hydroxide, UO. \(2 \mathrm{H}_{5} \mathrm{O}\), when treated with hydrogen peroxide. The latter gives rise to salts, the peruranates, eg. \(\left(\mathrm{Na}_{4} \mathrm{O}_{2}\right)_{4} \mathrm{UO}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}\). Upanyl nitrate is used in photography, and also in analytical chemistry as a precipitant for phosphoric acid (as uranyl ammonium phosphate, \(\mathrm{UO}_{4} \cdot \mathrm{NH}_{4} \cdot \mathrm{PO}_{4}\)). Uranyl chloride. \(\mathrm{UO}, \mathrm{Cl}_{2}\) o is a yellow crystalline mass formed when chlorine is passed over uranium dioxide at a red heat. It is also obtained by dissolving the oxide in hydrochlorie acid and evaporating. It forms double salts with metallic chlorides and with the hydrochlorides of orkanic bases. Uranyl sulphide. \(\mathrm{UO}_{3} \mathrm{~S}_{\text {, }}\) is a black precipitate obtained by adding ammonium sulphide to a uranyl solution. Exposed to asy this mixture is oxidized to the pigment uraniam red, Uo(\(\mathrm{NH}_{4}\)) \(\mathrm{SO}_{4}\). which is a fine blood-coloured amorphous powder.
Analysis.-A borax bead dissolves uranium oxides in the reducing flame with a green. in the oxidizing flame with a yellow. colour. Solutions of uranyl salts (nitrate. \&ce.) hehave to reagents as follows: sulphuretted hydrogen produces green uranous salt with precipia: tion of sulphur; sulphide of ammonium in neutral solutions gives a black precipitate of \(\mathrm{UO}_{3} \mathrm{~S}\), which settles slowly and. while beine washed in the filter, breaks up partially into hydrated \(\mathrm{NO}_{3}\) and sulphur; a mmoria gives a vellow precipitate of uranate of ammonia. characteristically soluble in hot carhonate of ammonia solution: prussiate of potash gives a brown precipitate which in appcarance is not unlike the prccipitate produced by the same reagent in cupric sales
URANUS, in astronomy, the seventh major planet in the order of distance from the sun, and denoted by the symbol \(\delta\) or lid. It was discovered by the elder Herschel on the
z3th of March 178x. Fiesaw it as a round nebulous disit, slowly moving among the stars, and at first supposed it to be a comet, and apounced it as such to the Royal Socicty. But a lew weeks' observation showed it to be moving in a nearly circular orbit at a distance from the sun about nincteen times that of the earth. Its planetary character was thus established, and Herschel named it the Georgixm Sidus in honour of his royal patron. This name was long rocognired in England, and "the Georgian " was officially used in the Nautical Almanac up to 1850. But it was never received with favour on the continent of Europe, nor was that of the discoverer, which was proposed by Lalande. The name Uranus was proposed hy Bode, and adopted everywhere outside of England.

As scen in a telescope of the highest power, Uranus presents to the eye the appearance of a disk about four seconds in diameter of a faint sea-green tint. No trace of a makking can be seen on the surface, and, so far as measurea have yet been made on it, no deviation of the disk from a circular form bas been established. Nothing is therefore known as to its axial rotation. Although the planet is commonly considered a telescopic one, it is really of the sixth magnitude, and therefore faintly visible to the naked eye if one knows precisely where to look for it. Long before its discovery it had heen observed as a fired star by J. Flamstecd. P. C. Lemongier also made eight observations of it during the opposition of \(1768-69\), which would have revealed its planetary chameter bad he reduced and compared them. For other particulars relating to Uranus, its spectrume, dec., see Planet

Salellites of Uranus.-In January 1787 Herschei detected two satellites of Uranus of which the inner one, now known as Tizania, had a period of 9 days, the outer, Oberon, of 131 days. He also on other occasions saw what he supposed to be two additional satellites, but careful investigation of his observations has shown that the supposed objects could not have been of this character. But in 2851 -51 Whliam Lassell at Mala. in conjunction with his assistant A. Marth, obeerved two satellites yet nearer the planet than those of Herschel These are now known as Ariel and Umbriel. Their periodic times are about a\} and 4 days respectively. Lassell's teleacopes, which were reflectors, were superior to others of his time in light-power, and these inner satellites were not scen hy other astronomers for more than tiwenty years after their discovery. Indeed, doubts of their reality sometimes found expression until, in \(\mathbf{1 8 7 3}\), they were obscrved with the Washington 26 -inch telescope, and observations upon them showed their identity with the objects discovered by Lassell. The greater difficulty in seeing the inner than the outer satellites ariscs from their proximity to the planet. There is no very great difference in the actual brightness of the four objects. It is found that Umbriel, though less easy to see than Titania, actually exceeds it in light. But none of them has been seen except in a few of the most powerful telescopres. The most remarkable leature of these bodies is that, instead of the plapes of their orbits being near that of the ecliptic, they are actually inclined to it nearly \(90^{\circ}\). The result is that, as the planet performs its orbital revolution, there are two opposite points near which the orbits are seen edgewise, and the satellites seem to us to swing north and south on each side of the planet. This was the case in 1882 , and wiil be the case again in 1924. At the points midway between these two, through which the planet passed in 186x and 1003, and will pass again in 1045, the orhits are seen almost perpendicularly, so that the apparent orbit, like the real one, is nearly circular.

Orbils of the Salclites of Uranks.-So far as has yet been determined, the four satellites all revolve In the same plane, the position of which, relerred to the Earth's equator and equinox, -
R. A. of ascending node, \(166^{\circ}-05+0^{\circ}-01420\).
laclination of orfit. \(75^{\circ} \cdot 26-0^{\circ} \cdot 00134\).
None of the orbits scems to have a measurahle eccentricity. The positions of the satellites in the orbits at any time may be foum irom the following elements, where 4 \& the angular
distance from the node upon a plane parallel to that of the Earth's equator, and the motion ia that in a Julian year.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Satellite.} & Epoch. & Annual Motion. & Daily Motion. & Mean Dist. \\
\hline Ariel & - & \(22^{\circ}\). 61 & 579 rev. \(+242^{\circ} \cdot 64\) & \(142^{\circ} .836\) & 13.78 \\
\hline Umbriel & - & \(t 36^{\circ} \cdot 49\) & \(352 \cdots+195^{\circ} \cdot 31\) & \(86^{\circ} .869\) & 19'. 20 \\
\hline Titania & - & 229.93 & \(167 \ldots+294^{\circ} \cdot 20\) & \(41^{\circ} \cdot 351\) & \(31^{\circ} \cdot 48\) \\
\hline Oberon & . & \(154^{\circ} \cdot 90\) & \(108 \ldots+186^{\circ} \cdot 27\) & \(26^{\circ} \cdot 739\) & \(42^{\circ} \cdot 10\) \\
\hline
\end{tabular}

The epoch force is \(\mathbf{1 8 7 2}\), January o, Washington mean noon. The mean distance is the angle subtended by the radius of the orbit as seen at the mean distance of Uranus from the Sun \((\log a=2 \cdot 28310)\).

Bibliograpay.-Details as to Uranus are found in Chambers's Descriplise Astronomy, and all the current treatises no popular astronomy. For researches on the spectrum of the planet see Sir William Huggins in Proceedings of the Roval Socicty. vol. xix. (187r): H. C. Vogel, Aslrophysical Joxrnal. vol. i.; and P. Loweli, Bulletin of the Lotwod Odutroatory, No. 13. Tables of the motions of this planet were published by Alexis Bouvard in 18:3. S. Newcomb in 1873 (Smithsonian Contritutions to Knozoledge. No. 262). Leverrier in 1877 (Annales de lobservaloire de Paris, Mitmoires, tome xiv.). and Newcomb again in Astromomical Papers of the Americam Ephemeris. vol. vii. Tables of the four satellites are lound in Newcomb, Uranian and Nepkuncan Systeas (Appendix I. to Waskington Obserations for 1873). Observations are found in the Bulletins of the Lick Observatory and elsewhere.
(S. N.)

URANUS (Heaven), in Greek mythology, the husband of Gaes (Earth), and father of Cronus (Saturn) and other deities. As such he represents the generative power of the sky, which fructifies the earth with the warmoth of the sun and the moisture of rain. For the legend of his treatment by Cronus and its meaning, see Saturn. Uranus and other Greek gods anteriot to Zeus were probably deities worshipped by earlier barbarous inhabitants of the land.

The Roman Carlus (or Caelum) is simply a translation of the Greck Oiparbs, not the name of a distinct national divinity. There is no evidence of the existence of a cult of Caclus, the occurtence of the name in dedicatory inscriptions being due to Oriental influences, the worship of the sky being closely connected with that of Mithras. Caelus is sometimes associated with Terra, represented in plastic art as an old, bearded man holding a robe stretched out over his head in the form of an arch.

See Wissowna, Religion der Romer (1902), P. 304, and his article in Pauly-Wissowa's Realencyelapodic. ili. pt. I (i897); also Steuding in Roscher's Lexikon der Myithologic and De Vit's Onomasticon (suppt. to Forcellini's Lexicon).

URA-TYUBE, or Oratepe, a town of Russian Turkestan, in the province of Samarkand, lying 37 m . S.W. of Khojent, on the road from Ferghana to Jizak across the Zarafshan range. Pop. (1900) 22,088 , chicfly Uzbegs. It is surrounded by a wall and has a citadel. The inhabitants carry on trade in horses and camel-wool cloth, and manufacture cottons, boots and shoes, oil, and camel's:hair shawls. Ura-tyube is supposed to have been founded hy Cyrus under the name of Cyropol, and was taken in 329 n.c. by Alcxander the Great of Macedon. Later it was the capital of an independent state, though often held by either Bokbara or Kokand. The Russians took it in 1866.

URBAN (Urbanus), the name of cight popes.
St Urban, first pope of that name, was hishop of Rome from 223 to 230. He had been preceded hy Calixtus, and was followed by Pontianus.

Urban II. (Odo or Orbo or Eudes de Lagary), pope from the 12th of March 1088 to the 20th of July 1099, was horn of knightly rank at Lagary (or Lagery or Lagny), near Reims. He studied for the church, became archdeacon of Auxerre, and later joined the congregation of Cluny. Displaying great ability ae reformer and theologian, he was chosen subprior of the celebrated monastery. He was created cardinal-hishop of Ostis in rops by Gregory VII., to whom be displayed sucb loyalty, enpecinlly es papal legate in Germany (1084), that
be was imprisoned for a time by Finry IV. He was designated by Gregory as one of four men most worthy to succeed him, and, after a vacancy of more than five monthe following the decease of Victor III., he was elected pope on the rath of March 1088 by forty cardinals, bishops, and abbots assembled at Terracina, together with representatives of the Romans and of Countess Matidda. He frankly took up the policy of Gregory VII., but, while pursuing it with equal determination, showed greater flexibility and diplomatic skill. Throughout the major part of his pontificate be had to reckon with the presence of the powerful antipope Clement LII. (Guibert of Ravenna) in Rome; but a series of well-attended synods at Rome, Amal反, Benevento and Troia, supported him in renewed declarations against simony, lay invesliture, and clerical marriages, and in a policy of continued opposition to Henry IV. He maintained an alliance with the Norman Duke Roger, Robert Guiscard's son and successor, and united the German with the ltalian opposition to the emperor by promoting the marriage of the Countess Matilda with young Welf of Bavaria. He aided Prince Conrad in his rebellion against his father and crowned him king of the Romans at Mian in 1093, and likewise encouraged the Empress Praxedis in her charges against bet husband. By excommunicating Philip I. of France for matrimonial infideliry in rogs, Urban opened a struggle which was not terminated until after his death. Invited to Tuscany by the Countess Matilda, he convoked a council st Piacenza in March ro95, attended by so vast a number of prelates and laymen that its sessions were held in the open air, and addressed by ambassadors of Alexis, the Byzantine emperor, who sought aid against the Mussulmans. Urban crossed the Alps in the summer, and remained over a year in France and Burgundy, being everywhere reverently received. He held a largely attended council at Clermont in November 1095, where the preaching of the First Crusade marked the most prominent feature of Urban's pontificate. Thenceforth until his death he was actively engaged in exhorting to war against the infudels. Crusaders on their way through Italy drove the antipope Clement III. Gnally from Rome in 1097, and established Urban firmly in the papal see. With a view to facilitating the crusade, a council was held at Bari in October 1003, at which religious differences were debated and the exiled Anselm of Canterbury combsied the Fstern view of the Focentia of the Holy Chosedays after the capture of Jcrusalern, but before the tidings of that event had reached Italy. His successor was Paschal 11.

It is well established that Urban preached the sermon at Clemont which gave the impetus to the crusades. The sermon was written out by Bishop Baudry, who heard it, and is to be found in full in J. M. Watterich, Pontif. Roman. Vice. Letters of U'rban are published in J. P. Migne, Patrol. Lah, vol. 15 r.
Soe J. Langen. Geschichie der fömisciner Kirche son Gregor VIJ. bis Inmucenz 111. (Bonn. 1893); F. Gnegorovius, Rame in the Middle Ages. vol. 4. trans by Mrs G. W. Hamilton (London, 1900-2) K. J. von Herele. Conciliengeschichle, vol. 5 (2nd ed., \(8873-90\)) Jafié-Watteniach, Rycsla pontif. Romam. vol. (\(1585-88\)): H. 11 Milman. History of Latin Christionify, vol. 3 (London, 1899); M. F Sien. Zar Biographie des Papstes Urbans 11. (Berlin, 1883): A de Brimont. Un Pate am moven age-Unbain 11. (Paris, 1862): W Norden. Das Popstizen und Bycuta (Berlin, 1gos): Gigalski, "Die Srellung des Papstes Virbans IV. zu den Sucramentshandlungen der Simonisren. Schismariker und Harctiker," in the Tubsmger theot Quartalschrifi: 1897)

Ciman IIT. (Uberto Crivelli), pope from the 2 zth of Fovember 185 to the \(20 t h\) of October 1187 , was a Milanese, and had beer ctrimal-priest of Se Lorenzo in Dumaso and archbisho
in ber Lucius 111 .. whom he succecded 111. whom he succecded. His iamily ha ae hands of Fredenick I.. and he now too's pnodecessor's quarre's with the emperor. bout the territories of the His opmainion to the petections of thi morcover. comt montiticate. Hu
son, Henry, king of Italy (January 1286), in viokation of his own rights as archbishop of Milan; and oaly the entreatia of the citizens of Verons, where he was stopping, prevented him from excommunicating Frederick. In 1187 be exhorted the Christian kings \(t 0\) renewed endeavours in the Holy Land, and the fall of Jerusalem on the and of October is said to have caused his death. He died at Ferrara and was succeeded by Gregory VIII. His letters are in J. P. Migre, Patrol. Lat., vol 202.

See J. Langen, Geschichte der romischen Kircke woe Gregor V1I. bis Immocewi 1II. (Bonn. 1893); Jaff-Wattenbech. Retecla ponif. Roman. (1885-88); F. Gregorovius, Rome in the Mrddle Ages, vol. 4 trans. by Mrs G. W. Hamilton (London, 1896): P. SchefferRoichorst. Friedrichs 1. Leteter Streit mit der Curie (Berlin. I866); W. Meyer." Zum Streite Kaiser Friedrichs I. mit Papst Urtan Ill.," in Forschungen aar demusches Geschnchice, vol. 19 (1879).

Uabin IV. (Jacques Pantalóon), pope from the zoth of August 1 26s to the znd of October 1264, was the son of a shoemaker of Troyes Having received a monastic educition, be became archdeacon of Liege and papal legate of lnnocent IV. to Poland and Prussia; he was consecrated bishop of Verdan in 1253, and two years later was translated to the patriarchate of Jerusalem. While on a trip to Italy to explain at court a quarrel with the Hospitallers he was elected to succeed Alexander IV., after a three months' vacancy in the Holy See. He never visited Rome, hut lived most of his pontificate al Orvieta He favoured bis own countrymen, and under him began that preponderance of the Freach in the caria which later led to the papal residence at Avignon, and indirectly to the Great Schise. He endeavoured without success to stir up Louis IX. of France to undertake a new crusade. In 1264 be instituted the festival of Corpus Christi. His chief domestic problems arose out of the competing claims for the crown of the Two Sicilies. He favoured Charles of Anjou, and declared in June 1263 that the papal grant of the kingdom to Edmund, son of Henry III. of England, had expired because of the hater's inability to oust tbe usurper Manfred. Uiban died before the arrival of Charles of Anjou, and was succeeded by Clement IV.

The registers of U'man IV. have been published by L. Dorez and J. Guiraud in the Bibicoetidque des beoles frangasses d'Athiner at de Rome (Paris, 1892)

See F. Gregorovius, Rome in the Middle Ages. vol. 5 , trans by Mrs C. W. Hamilion (Iondon, \(1900-2\)); H. H. Milman. Laha Christianty, vol. 6 (London, is99): K. Hampe. "Uritan IV. und Manfred "in Abhandinngen sur mituleren n. memeren Ceschichace (Heidehberg. 1905): Sievert, " Das Vorleben Papst lirbans IV." in Die rome ische Quarlalschrifi (1898): A. Pothast, Regesta pontif. Romer (Berlia, 1875).

Urban V. (Guillaume Grimoard or Grimaud de Bearvoir), pope fram the 28 Lh of October 1362 to the 19th of December 8370, was born in 1309 near Loeire in Languedoc, and entered the Benedictine priory of Chiriac. After receiving ordens be became successively professor of canon law at Avignon and Montpellier, vicar-general of the dioceses of Clermont and Uzes, abbot of St Germain d'Auxerre, sbbot of St Victor at Marseilks, administrator of the bishopric of Avignon, and papal legate to Naples. He was returning from his mission to Italy when mews reached him at Corneto that he had been chosen to succeed Innocent VI. He announced his acceptance froin Marseilles, and was consecrated at Avignon on the 6th of November 1362 Urban witnessed the completion of the work of tranquilliaing Italy under the able Cardinal Albornoz, and in 1364, in the interests of peace, ruade heavy concessions to Bermabo Iisconci. Moved by Peter of Lusigran, king of Cyprus, and by the celcbrated Carmelite Peter Thomas, who had come to Avigpon in February 1363, the pope proclained another crusade, which found some echo in France and resulted in the temporary oocepation of Alerandria (1365). Urban, yielding to the eatreaties of the Emperor Charles IV. and of Petrarch, left Avignon on the 3oth of April 1367, despite the opposition of the French cardinals, and made his entry into Rome on the roth of October. The following year be was visited by Charles IV., and crowned the Empress Elisabeth (ist of November); and in 1369 be received the Greek emperoc, John Palneologus, who renounced the
achism but for whom the pope was unable to secure assistance. Urban sanctioned the order of Jesuates and founded the medical school at Montpellier. On account of the poor repair of Rome, the restlessncss of the Romans and the discontent of the French cardinals in Italy, he at length announced his incention of returning to France, avowedly to settle trouble between France and England. He took ship at Cometo on the sth of September 1370, and, arriving at Avignon on the 24th of the same month, died on the igth of December. Urban was serious and humble, opposed to all nepotism, simony, and secular pomp He was himself of blameless morality and reformed many abuses in the curia. He was honoured as a saint immediately after his death, and beatified by Pius IX. in 1870. Urban's successor was Gregory XI.

See H. J. Tomaseth, " Die Register u. Secretare Ubans V. u. Gregors X1." in Mitteilungen des lnstituls fur osterrechashe Ge. schichusforschung (1898); Baluxius, Vitace Pop. Avesion., vol. 1 (Paris 1693): L. Pastor, History of the Popes, vol. 1, trans. by F. 1. Antrobus (London, 1899): F. Cregorovius, Rome in the Xredile Ages, vol. 6, trans. by Mrs G. W. Hamilton (London. 1200-2); J. P.' Kirsch, Die Rückkehr der Pdpste Upban V. w. Gregor KI. won Arigmon nach Rom (Paderborn, 1808): J. H. Albands, Actas anclens concernant le brenhemroux Urbain V. (Raris, 1897) i. B. Magnan. Histoire d'Urbain V. (2nd ed., Paris, 1863); H. (. Wurm, Cardinal Albormos (Paderborn, 1892); H. H. Milman, Latin Christianity, vol. 7 (Tondon. 1806): J. B. Christophe, Histoire de la papauté pendent 4 XIVmere siecle, vol. 2 (Paris, 1853).

Urban VI. (Bartolommeo Prignano), pope from the 8th of April 1378 to the 15 th ol October 1389, was born at Naples in 1318. He was made bishop of Acercnza in 1364, and in 1377 was translated to the archicpiscopal see of Bari and placed in charge of the papal chancery. On the death of Gregory XI., who had finally returned to Rome from Avignon, he was elected pope in a conclave held under circumstances of great excitement, owing to popular apprchension of an intention of the French cardinals to elect a French pope and again abandon Rome. The populace broke into the hall after the election had been made and dispersed the cardinals, but the latter returned and confirmed their action on the following day. Urban VI. turned his attention at once to the reformation of the higher clergy, and, in spite of the warnings of Catherine of Siena, so angered the cardinals by his harsh and ill-tempered measures that they assembled at Anagni in July 1378, and revoked his election, in which they declared they had acted under lear of volence. On the 2oth of September they elected at Fondi the Cardinal Robert of Geneva, who called himself Clement VII. and took up his residence at Avignon. Urban, on the other hand, remained at Rume, where he appointed twenty-six new cardinals and excommunicated Clement and his adherents. Thus began the Great Schism which divided the Western Church for about fifty years. Urban deposed Joanna of Naples (\(215 t\) of April 1380) for adhering to France and Savoy In support of the antipope, and gave her kingdom to Charles of Durazzo. Charles was crowned at Rome on the ist of June 1381, but three years later quarrelled with the pope and shut him up in Nocera. Urban succeeded in escaping to Genoa, where he put several of his cardinals to death for suspected disloyatty. On the death of Charles he set out with an army apparently to seize Naples for his nephew if not for himself To raise funds he proclaimed, by bull of the ith of April 1380 , 2 jubilee for every thirty-three years, but before the celebration could be beld he died of injuries caused by a fall from his mule Urban was frugal and never practised simony, but harshness, lack of tact, and fondness for unworthy nephews disgraced his pontificate. He was succeeded by Boniface IX.
The chief sources for the life of Urban VI. are in Baluzias. Vited Pep. Asenion. (Paria, 1693): Thooderci de Nycm De schusmate Libri bres, ed. by G. Erler (Leipzig. I8go): Suuerlandc "Actensṻcke zur Gesch. des Papstes Urtan VI.: in Mist Jahrhuch dep Goryes-Gesellsckafi, xiv. (1893): "Acta Ürbani Vi. et Bomifarii IX.," ed. C. Krofta, in Monxmenta vaticama res gestas Botemscos
 Jahre 1380, ed. by G. Erler (Leipsig. 1888): II Trallato di S. Vincenso Ferver intorno al grande schisma doccidente. ed. by A. Sorbelli (Bologni, 1906).

See L. Plestor, Birstay of che Popes, vol. 1, trane. by P. I. Antrobus (London, 1899); M. Souctron. Die Popstmathes in def Zeit des grossen Schismas, vol. I (Brunswick, 1898); N. Valois, La Fratace at le grand schisme docrident (Paris, 1896-1902) ; M. Creighton, History of the Papacy, vol. 1 (London, 1899); F. Gregocovius, Reme in the Middle Ages, vol. 6, trans. by Mrs G. W. Ramiton (London, 1900-2) ; R. Jabr, "Dié Wahl Urbans VI."" in Hallische Beifrdge zur Geschichesforschwne (1892): T. Lindner. "Papat Urtan VI."" in Zoilschrifi firr Kirchengeschickle, iii. (1879); W. St C. Baddeley, Charles III. of Naples eind Urban VI. (1894); J. B. Christophe, Histoire de la papamet peadant io XI Vias sicic, vol. 3 (Paria, 1853).
(C. H. Ha.)

Urban VII. (Giovanni Battista Castagna), successor of Sixtus V., was born on the 4th of August 1521. He became governor of Bologna, archbishop of Rossano, and was long nuncio to Spain. Gregory XIII. made him a cardinal, 1583; and in 1590 he was elected pope by the Spanish faction, but died twelve days later, on the 27th of September \(\mathbf{2 5 9 0}\), and was succeeded by Gregory XIV.
See Ciaconius, Vilae et res geston summorum Pontiff. Rom. (Rome; 1601-2); Cicarella, continuator of Platina, De vits Pontif., Rom. (both contemporary; the latter prolix and tedious); Arrigho Vis Urbani VII. (Bologna, 1614); and Ranke. Popes (Gag. trang, Austin), ii. 227.

Urban VIII. (Maffeo Barberini), pope from 1623 to 1644 was born in 1568 , of a wealthy Florentine family. He early entered the prelecy, became prefect of Spoleto, twice nuncio to Ftance, cardinal (r6o6), and finally, on the 6th of August 1623, succeeded Gregory XV. as popa. Urban was vain, soll-willed and extremely conscious of his position; he accepted the papacy chicfty as a temporal principality, and made it his first care to provide for its defence and to render it formidable. He built Castelfranco on the northern frontier; fortified the port of Civita Vecehia; and strengthened the Castel Sant' Angelo, equipping it with cannon made from the bronze of the Pantheon, an act of vandalism which the Romans punished by the epigram, "Quod non fecerunt barbari, fecerunt Barberini." He also establisbed an arsenal and a factory of armas. But all this provision was to no puspome. The only territory gained during Urban's pontificate, the duchy of Urbino, the last addition to the papal states, was acquired by reversion (1631); and in his one war, with the duke of Parma, for the district of Castro, he meo defeat and humiliation (i644). The Thirty Years' War Urban professed to regard as waged for political, not for religious, ends. He therefore took counsel merely with his interest as a temporal prince, threw in his lot with France, supported the duke of Nevers in the Mantuan Succession, and, under stress of fear of Habsburg supremacy, suffered himself to be drawn into closer relations with the Protestants than beseemed his office, and incurred the reproach of rejoicing in the victorics of heretics. Later, in kceping with his position, he opposed'all concessions to the Protestants; but still showed himself so vacillating that the papacy ceased to be regarded as a serious political factor, and wes entirely ignored in the final settlement of Westphalia, 1648.

Urban was the last pope to practise nepotism on a grand scale. He failed to found a princely bouse; but he enriched his family to an extent that astonished even the Romans. Uiban bore a hand in the condemmation of Galiteo. He acknowledged the genius of the astronomer, and had not approved of the action of the Inquisition in 1616; but subsequently, believing himself to have been caricatured in the Diologo, he permitted the Inqulsition to have its way and to compel an abjuration (1633). Urban also denoanced the doctrines of Jansen, 1644 (see Jaxsentsy). He promuigated the famous bull \(I\) It Coend Domini in its final form, 1627; published the latest revision of the Breviary, 1631 ; founded the College of the Propaganda for the education of missionaries, 1627 ; and accorded the tiele of "eminence" to the cardinals, 1630 . Urban did much to embellish the city. Conspicuous among his works are the Berberind Palace, the College of the Propaganda, the Fountain of the Triton, and the baldachin of St Peter's. His hyman and poems, which have frequently been published, are evidence of his literary taste and ability. Urban died on the zgth of Juily 1644, and wats succseded hy Innocent \(X\).

For contemporary accounts of Urban see: Tommasucri, in Platina, De vilis Pontiff. Rom; Oldoin, continuator of Ciaconius, Viae at res gestae summoram Pomtaff. Rom.: and Sinonin, Gesta Urbawi (Antwerp, 1637). A rich collection of materials was made by Andrea Niccaletti. Della vilo di Papa Uróawo VIII. e sioria dal swo pontificalo, never published, but extensively used by Ranke and athers. See also Ranke, Popes (Eng. trans.. Austin), ii. 552 seq., iii. I seq., 21 seq.; v. Reumont, Gesch. der Sladl Rom, iii. 2, 611 seq., 702 seq.: Santa Pieralisa, Urbano VIII. e Galileo Gubuei (Rome, 1875) ; Gregorovius, Urban VIII. im Widerspruch zu Spanien 4. dem Kaser (Stuttgart, 1879) : and Weech, LibaE VIII. (London, 1005).
(I. F. C.)

URBANA, a city and the county-seat of Champaign county, Ohio, U.S.A., about 47 m. W. by N. of Columbus. Pop. (iSgo) 6510; (1900) 6805, including 796 negroes and 405 foreign-born; (1910) 7739. U'rbana is served by the Erie, the Pittsburg, Cincinnati, Chicago \& St Louis, and the Cleveland, Cincinnati, Chicago \& St Louis railways, and by the Ohio Electric interurban line. It has a public library (1890) and a county children's home (1892), and is the seat of Urbana University (co-educational), founded in 1850 under the auspices of the New Church. The city is situated in a fertile farming region. Its manu. factures include furniture, telephones, voollen goods, paper, foundry and machine-shop products, \&c. Urbana was laid out in 1805 by Colonel William Ward, of Greenbriar, Va., who owned the land included in the original survey and gave many lots to the county on condition that the proceeds from their sale should be used for public improvements; it was incorporated as a village in 1816 and was chartered as a city in 1867 . Colonel Ward was the grandfather of the sculptor J. Q. A. Ward, who was born here and here first pursued, unaided, his study of art. Urbans was also the home for several years (after 1802), and is the hurial place, of Simon Kenton, the famous pioneer and Indian figher.

URBINO (anc. Urvinum Malourense), a city and archiepiscopal see of the Marches, Italy, in the province of Pesaro and Urhino, 19 m . direct S.W. of Pesaro and 50 m . by rail N. by W. of Fabriano, a junction on the line from Ancona to Rome. Pop. (igos) 6809 (town), 18,244 (commune). It is picturesquely situated on an abrupt hill 1480 ft . above sea-level; its strcets are narrow and crooked, and the town has a medieval aspect. It is dominated by the ducal palace erected by Luciano da Laurana, a Dalmatian architect, in 1460-82, for Federigo Montefeltro, and regarded by the contemporaries of the founder as the ideal of a princely residence. The sculpiured doorways, chimneys and friezes of the interior are especially fine. Some are by Domenico Rosselli of Florence, others by Ambrogio d'Antonio da Milano. The rich and beautifully executed intarsia work nay be due to Baccio Pontelli. The massive irregularity of the exterior is due to the unevenness of the site. The decoration of the exterior was never completed, but the arcaded courtyard is the finest of the Renaissance, except perhaps that of the Cancelleria at Rome (Burckbardt). The palace is now partly used for government purposes, and also contains the municipal archives, a collection of ancient inscriptions, formed by the epigraphist Rafiacte Fabretti (many of them from Rome), a gallery of sculpture of various periods and a picture gallery. This last contains a small but interesting collection of pictures, including works by Paolo Dccello, Giovanni Senti, Justus of Ghent, Timoteo dell Vite, and other 4 sth-century artists, also a "Resurrection" by Tithem (i lale work). The picture of the "Last Supper"
 The cathedral, in buiding of no special interest, stands in the friat piames eloue to the sual palace. It was erected in 1801
 artity In the trype there as a fine piet in matble by Giovami
 portal and a
The interior A fine \(14^{\text {th }}\) porial of a
chapel in the interior by Constantino Trappola (15th centary). S. Bernardino, outside the town, is a plain early Renaissance structure. On the walls of the chapel of the gild or confraternity of San Giovanni Battista are some valuable early frescoss, painted by Lorenzo and Giacomo Salimbene da San Severino in 1416. In the church of S. Spirito are two painlings by Luca Signorelli, the "Crucifixion" and the "D2y of Pentecost," originally intended for a processional banner. The modest house where Raphael was born and spent his boybood is preserved. It is now the property of a society of artists. Iis rooms form a muscum of engravings and other records of Raphael's works, together with a picture of the Madopna by his father, Giovanni Santi, formerly thought to be by Raphaed himself. A monument was erected to him is the pizzza in 1897. The theatre, decorated by Girolamo Genga, is one of the carliest in Italy; in it was performed the first Italian comedy, the Calandria of Cardinal Bibbiena, the friend of Leo \(\mathbf{X}\). and Raphael. The magnificent library formed by the Montcfeltro and Della Rovere dukes was removed to Rome, and incorporated in the Vatican library (but with a separate numbering) in 1657 . There is a frec university founded in 1564 which has two faculies (with 163 students in 1902-03), and also a technical school. The town has manufactures of silk, majolica and bricks.

The ancient town of Urinum Mataurense (taking its name from the river Mataurus or Netaurus) is mentioned a few times in classical literature, and many inscriptions relating to it cxist. The course of its walls can still be traced. It was an important place in the Gothic wars, and is frequenty mentioned by Procopius. At the end of the 12 th or begirning of the 1 th contury it came into the possession of the family of Monefeltro. Of this by far the most important member was Federigo da Montciclero, lord of C'rbino from 144 to 1482 , one of the most successful condattieri chicfs of his time, and not only a man of great military and political ability, but also an enthusiastic patron of art and literature, on which he lavished immense sums of money. Federigo much strengthened his position, first by his own marriage with Battista, one of the powerful Storza family, and secondly by marring his daughter to Giovanni della Rovere, the favourite nephew of Pope Sixtus IV., who in return conferred upon Federigo the tive of duke. Federigo's only son Guidubaldo, who succeeded his father, married in 1489 the gitted Elizabeth Gonzaga, of the ruling family in Mantua. In 1497 he was expelled from Virbino by Caesar Borgia, son of Alexander VI, but regained his dukedom in 1503, after Caesar's death. Guidubaldo was the last duke of the Montcfeluro line, at his death in 1503 he bequeathed his coronct to Francesco 3faria della Rovere, nephew of Jutius II., and for about a century Ľrbino was ruled by its second dypasty of the Della Rovere family. In 16:6 the last descendant of Francesco, called Francesco Maria II, when old and childtess abdicated in favour of Pope Crban VIII, after which tive Urbino, with its subject towns of Pcsaro, Fano, Fossombrone. Gubbio, Castel Durante, Cagli and about 300 small villages, became part of the papal states untl the suppression of the temporal power in \(185^{\circ} \mathrm{O}\).

During the reigns of Federigo and Guidubaldo, Uirbino was one of the foremost centres of activity in art and liserature in Italy. The palace erected by Federigo has already been mentioned. It was at his court that Piero della Francesca wrote his celebrated work on the science of perspective. Francesco di Grorgo Martini his Traldabo dr archicthura (published by Saluzzo, Turin, 1841). and Giovanni Santi hus poetical account of the chief artisis of his time. The refined magnificence of Gudubaldo's cour is eloquently described by Baldassare Castiglione (\(g=\).\() in\) his Corbegiano. When Henr; VII of England conferred the order of the Garter on Guidubaldo, Castiglione was sent to England winh a letter of thanks and with the small picture, now in the Louvre, of "St George and the Dragon," painted by Raphacl in 150 , as a present to the English king. This paiming was among Charles I.'s collection which was sold by order of the Commonwealth in 1649

Throughout the whole of the 16 th century the stale or Uitime
was one of the chicf ceatres for the production of majolice, eapecially the towns of Gubbio and Castel Durante. Moat of tho finest pieces of Urbino ware were made specially for the dukes, who covered their sideboards with the rich storied piattidi pompa. Among the distinguished names which have been associated with Urbino are those of the Ferrarese painter and friend of Raphael, Timoteo della Vite, who spent most of his life there, and Bramante, the greatest architect of his age. The Milanese sculptor, Ambrogio, who worked so much'for Fedcrigo, married a fady of Urbino, and was the progenitor of the Baroccio family, among whom were many able mathematicians and painters. Federigo Baroccio, Ambrogio's grandson, was a very popular painter, some of whose works still exdst in the cathedral and elsewhere in Urbino. This city was also the birthplace of Pope Clement XI., of several cardinals of the Alban family, and of Bernardino Baldi, Fabretti, and other able scholars. An interesting view of Urbino, in the first half of the ioth century, occurs among the pen drawings in the MSS. Arte del vasajo, by the potter Piccolpasso, now in the Victoria and Albert Museum.
See aho E. Calcini. Urimo ei seof monsmenti (1897); G. Lipparini, Urhino (Bergemo, 2903).

URES SALVIA (mod. Urbisaglia), an ancient. town of Picenum, Italy, about 8 m . S. of the modern Macerata, and \(10 \mathrm{~m} . \mathrm{S}\). of Ricina. It was the meeting-point of several ancient roads; the road leading south From Ancons through Ricina and Falerio to Asculum was crossed here at right angles by that from Fanum to Tolentinum, Septempeda (S. Severino) and Nuceria Cameiiaria, while another led north-east from Urbs Salvia to Pausulae and the coast at Potentia (near mod Porto Recanati). It seems to have been also called Pollentia. The date of its foundation is unknown, but It became a colony in the time of Trajm, and its importance seems to begin from this period. It was utterly destroyed by Alaric, and both Procopius (B.C. ii. 16, 17) and Dante (Paradiso, xvi. 73) speak of its desolation. The ars is occupied by the modern village; below it considerable remains of the city walls and of the buildings within them, alike of brickwork of the imperial period, are preserved -an amphitheatre \(323 \times 349 \mathrm{ft}\)., with an arena \(190 \times 112 \mathrm{ft}\)., a theatre, baths, tombs, \&cc. A subterranean aquefuct and a number of inscriptions have been found on the site. Close by is a bitile chapel with paintings of the early \(\mathbf{1 6 t h}\) century. The Romanesque abbey church of the Fiastra, about 3 m . to the north, is noticeable. The territory of Urbs Salvia probably ertended as far as the old Romanesque church of S. Maria di Rembona, 8 m . to the nortb-west.

URDO, the name of that variety of Hindostani which borrows a great part of its vocabulary from Persia and Arabic, as contensted with "Hindi," the varicty which eschews such words, bet borrowe from Senskrit Instead. It is spoken by Mussulmans and those Hindus who have come under Mussulman influcnces, and has a considerable literature. See Hendostani and Hindostani Litizature.
dREA, or Carbantide, \(\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\), the amide of carbonic ecid, discovered in 1773 by H. M. v. Rowelle, is found in the urine of mammalia, birds and some reptiles; buman urine contains approaimately \(2-3 \%\) a grown man producing about 30 grammes daily. It is also a constituent of the blood, of milk, and other animal fluids. Its syntheas in 1828 by F. Wobler (Pogs.: Ans., 1828, 12, p. 253) is of theoretical importance, since it was the first organic compound obtained from inorganic materials. Wöhler oxidized potaspium ferrocyanide to potassium cyanate by fusing it with lead ar mangroese dioxide, converted this cyanate into ammonium cyanate by ndding ammoniam sulphate, and this on ovaporation gives urea, thus:-

\section*{\(\mathrm{K}_{4} \mathrm{Fe}(\mathrm{NC})_{\rightarrow} \rightarrow \mathrm{KNO} \rightarrow \mathrm{NH}_{4} \mathrm{CNO} \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2} \cdot\)}

It may aloo be prepared by the action of ammonia on carbonyl chloride, diethyl carbonate, chlorcarbonic ester or urethane: by beatins ammonium carbamste in a seatod tube to \(130-140^{\circ}\) C: by oxidizing potasaium cyanide in acid solution with
 p. 393) by the actlon of \(50 \%\) sulphuric mefd or cythinimite; \(\mathrm{CN} \cdot \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\); by the action of mercuric oride on oxamide (A . Williamson): \(\left(\mathrm{CONH}_{2}\right)_{2}+\mathrm{HsO}=\mathrm{CO}\left(\mathrm{NH}_{4}\right)_{2}+\) \(\mathrm{H}_{5}+\mathrm{CO}_{2}\); by decomposing potassium cyanide with a dilute solution of sodium hypochlorite, followed by adding ammonium sulphate (A. Reychler, Bull. Soc. Chim., 1893 [3L, 9, p. 427); and by oxidation of uric acid. It may be obtained from urine by evaporating to dryness on the water bath, taking up the reslue in absolute alcchol and evaporating the alcoholic solution to dryness again. The residue is then dissolved in water, decolorized by animal charcoal and saturated at \(50^{\circ} \mathrm{C}\). with oxalic acid. The ures aralate is recrystallized and decolorized and finally decomposed by calcium carbonate (J. J. Berzelius, Pogs. Ann., 1830, 18, p. 84). As an alternative method, A. N. E. Millon (Ann. chim. phys [2], 8, p. 235) concentrates the urine and procipitates the urea by nitric acid. The precipitate is dissolved in boiling water, decolorized by potassium permanganate and decomposed by harium carbonate. The solution is then evaporated to dryness and extracted by alcohol.

Ures crystallizes in lons needles or prisms which melt at \(132^{\circ}\) C. and sublime when beated in pacuo. It is readily soluble in water and in alcohol, but is insoluble in chlorolorm and ether. When heated above its melting-point, it yiclds ammonia, cyanuric acid, biuret and ammelide. On warming with sodium, it yields cyanamide. Dry chlorine gas passed into melted urea decomposes it with formation of cyanuric acid and ammonium chloride, nitrogen and ammonia being simultaneously liberated. Alkaline hypobromites or hypochiorites or nitrous acid decompose urea into carbon dioxide and nitrogen. It is also decomposed by warm aqueous solutions of caustic alkalis, with evoiution of ammonia and carbon dioxide. When heated with aloohol in sealed tubes, it yields carbamic esters; with alcohol and carbon bisulphide at \(100^{\circ} \mathrm{C}\)., carbon dioxide is liberated and ammonium sulphocyanide is formed. Acid potassium permansanate oxidizes it to carbon dioxide and nitrogen. It acts as a monacid base.
Urea may be recognized by its crystallipe oxalate and nitrate, which are produced on adding oralic and nitric acids to concenuatod colutions of the base: by the white precipilate formed on adding mercuric nitrate to the neutral aqueoue solutions of urea; and by the so-called "buuret". reaction. la this reaction urea is heated in a dry tube until it gives of ammonia freely; the reaidue is dineolved in water, made alkaline with caustic soda, and a drop of copper sulphato solution is added, when a fre violet-red coloration is fremen. Sevial mendis are employed for the quantitative eaximation of urea. R. Bunsen (4 mn., 1848, 65. p. 875) heated uren with an ainnioniacal schition \(\alpha\) berium chloride to \(220^{\circ} \mathrm{C}\)., and converted thobarium cartmate formed into barium sulphate. whi is then wighed (see alse E. Pfuger and K. Bohland. Zcii. f. amad. Chons, 1000,23, p. syy. K. A. A. Mörner, ihid., 1891. 30, p. 389). Among the volumetric methods used, the one most commooly employed is that of W. Knop (ibid., 1870, 9 p. 226), in which the urea is decomposed by an alkaline hypobromite and the evolved nitrogen is measured (see A. H. Allen, Commercial Oreanic Amalysis). J. v. Liebig (Amn., \({ }^{1853,85}\), p. 289) procipisates dilute sohutions of urea with a dihute casadard solution of mercuric nitrate, using alkaline carbonase as indicator. In thin procest phouphates must be absent, and the nitric acid liberated during the reaction should be peutralized as soon as posibible. Chlorides also perevent the formation of the precipitate until enough of the mercury solution has been added to convert them into mercuric chloride (see alvo E. PGuger, Zeip f. amal. Chems, 1880, 19, p. 378). E. Riegler (ibid. 1894, 33. p. 49) deconposes urea molutions by means of nercury dimolved in nitric acid, and measures the evolved gas.
Ures chlerides are formed by the action of carbonyl chloride on ammonium chloride (at \(400^{\circ} \mathrm{C}\).), or on malte of primary amines. Tbey are readily hydrolyeed by water, and combine with bases to Corm alikyl ureas. and with alcohols to form carbamic exters Subbetituted urrea chlorides are formed by the direct actioh of chlorine (F. D. Chattaway and D. F. S. Wuasch, Jowr. Chem. Soc.1909. 95. p. 129). Uree chlordie. NHs.CO.C. (L. Getternaman; Ans., ists, 24f, P. 30). welts at \(50^{\circ} \mathrm{C}\). and boils at \(61^{-69^{\circ} \mathrm{C} \text {. In }}\) the presence of anhydroas aluminium chloride it reacta with aromatic hydrocarbons to form the amides of aromatic acide. Niurowrea, H,N.CO-NH-NO prepered by addipe urea nitrate to well. cooled concentrated aniphurie acid U. Thiele and A Lachmann, Anin. Thy, 288, p. 281), is 2 arymaline powder, woluble in water; and which decompones on hoaking. It is a strong acid and is grable towards oridiring apeate. Diamomethane converts it in to the
methyl derivatives of isocyanic acid, and titramide, \(\mathrm{NH}_{2} \mathrm{NO}_{2}\). Amiloures, or semicarbazide, \(\mathbf{N H}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}\), is best prepared from hydrasine sulphate and potaseium cyanate \((\mathbb{J}\), Thiele and O . Stange, Ber. 1894,27, p. 31). It may also be obtained by reducing nitrourea in acid solution with zinc dust. It crystallizes in prisms, which melt at \(96^{\circ} \mathrm{C}\)., and are ensily soluble in water. It reduces Fehling's solution in the cold. It reacts with carbonyl compounds, giving semi-carbazones, and in consequence is frequently used for characterizing such substances. Hydroxy-urea, \(\mathrm{NH}_{3} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{OH}\), is produced 7rom hydroxylamine and cyanic acid (W. F. Dresler and R. Stein, Anth, 1869, r50, p 242), or (rom ammonium hypochlorite and potassium cyanate (A. Hantzsch. Ann.. 1898, 299: p. 99). It crystallizes in needles, which melt at 128-130 \({ }^{\circ} \mathrm{C}\)., and is decomposed on long heating. It is readily soluble in water and reduces warm silver solutions. Hyponitrous acid is formed by pascing nitrous fumes into its methyl alcohol solution.

Alkyd areas are formed by the action of primary or secondary amines on isocyanic acid or its esters: \(\mathrm{CONH}+\mathrm{NH}_{2} \mathrm{R}=\) \(\mathrm{R}-\mathrm{NHCONH}_{3}: \mathrm{CONR}+\mathrm{NHR}_{3}=\mathrm{NR}_{3} \cdot \mathrm{CO} \cdot \mathrm{NHR}_{\text {; }}\) by the action of carbonyl chloride on amines: \(\mathrm{COCl}_{3}+2 \mathrm{NHR}_{2}=\mathrm{CO}\left(\mathrm{NR}_{8}\right)_{2}+2 \mathrm{HICl}_{;}\) and in the hydrolysis of many ureides. The tetra-alkyl derivatives are liquids, the remainder being solids. Hydrolysis by alkalis decomposes them into carbon diaxide, amines and ammonia. The symmetrically substituted ureas are generally tasteless, while the asymmetrical derivatives are sweet. For example, aa-dimethyl urea is sweet, ap-dimethyl urea is tasteless; \(p\)-phenetol carbamide or dukin. \(\mathrm{NH}_{4} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{C}_{4} \mathrm{H}_{4}-\mathrm{OC}_{2} \mathrm{H}_{4}\), is sweet, while the di-p-phenetol carbamide, \(\mathrm{CO}\left(\mathrm{NH}^{2} \mathrm{C}_{4} \mathrm{H}_{4}-\mathrm{OC}_{8} \mathrm{H}_{8}\right)_{2}\), is tastcless.

The derivatives of urea containing acid radicles are known as ureides. Those derived from monobasic acids, obtained by the action of acid chlorides or anhydrides on urea, decompose on heating and do not form altes. Those containing more than one acyl group are formed by the action of carbonyt chloride on acid a mides:

\section*{\(\mathrm{COCl}_{2}+2 \mathrm{CH}_{3} \mathrm{CONH}_{2}=\mathrm{CO}\left(\mathrm{NHCOCH}_{2}\right)_{2}+2 \mathrm{HCL}\)}

Acety wrea, \(\mathrm{NH}_{3} \mathrm{CO} \cdot \mathrm{NH}-\mathrm{COCH}_{3}\) formed by the action of acetic anhydride on urea, crystallizes in needles which meit at \(212^{\circ} \mathrm{C}\). and, on heating, strongly decomposes into acetamide and cyanuric acid. Methyl acetyd wered, \(\mathrm{CH}_{2} \mathrm{NH} \cdot \mathrm{CO}-\mathrm{NHCOCH}_{3}\), is formed by the action of potash on a mixture of bromine (r mol.) and acetamide (2 mols.) (A. W, v, Hofmann, Ber., 1881, 14. P. 2725), or of methylamine on ucetylurethane (G . Young Jour. Chem. Soc., 1898,73, p. 364). When heated with water it is decomposed into carbon dioxide. ammonia. methylamine and acetic acid. Bromural or a-bromisovaleryl urea, \(\mathrm{NH}_{3}-\mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{CHBr}^{2} \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\), has been introduced as an hypnotic; its action is mild, and interlered with by the presence of pain, cough or delirium.

The ureides of oxy-acids and dibasic acids form closed chain compounds (see Allantoin: Alloxan: Hydantoin: Purin). Parabanic acid (oxaty urea). CO[NH-COh, is formed by oxidizing uric acid: or by condensing oxalic aeid and urea in the presence of phosphorus oxychtoride. It crystallizes in needles and is readily hydrolysed by alkalis. It behaves as a monobasic acid and forms ungtable stits. When heated with urea, it forms oxatyl diureide, \(\mathrm{H}_{3} \mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}\). Dimethy parabanic acud (cholesterophane), \(\mathrm{CO}\left(\mathrm{NCH}_{3} \cdot \mathrm{CO}\right.\), is formed by oxidizing cafteine or by methylating parabanic acid. It crystaHizes in plates, which melt at \(145.5^{\circ} \mathrm{C}\)., and is sotuble in cold water. Hydrochloric acid at \(200^{\circ} \mathrm{C}\). decomposes into oxalic acid, carbon dioxide and methylamine, whilst an alcoholic solution of ectustic allali gives dimethyl urea and oxalic acid. Barbituric acid (matonyl urea). \(\mathrm{CH}_{2}\left(\mathrm{CO}-\mathrm{NH} \mathrm{CO}-2 \mathrm{H}_{2} \mathrm{O}\right.\), formed by condensing matonic acid with ures (E. Grimaux, Bull. Soc. Chem., 1879, 31, 146), crystallizes in prisms, which decompose on heating. If yields a nitroso derivative, is nitrated by nitric acid to dilituric acid and brominated by bromine. It is a dibasic acid. Verenal (g.o.) is diethyl malonyl urea. For isobarbituric acid mee T. B. Johnson and E. V. McCollum, Jowr. Biol. Chew., 1go6, 1, p. 437. Tartrowyl wres (diaturic acid), \(\mathrm{CO}(\mathrm{NH} \cdot \mathrm{CO} \mathrm{CH} \cdot \mathrm{OH}\), formed by the reduction of alloxan \(\mathbb{U}\). v. Licbig and \(F\). Wohler, An"., 1838, 26, p. 276), or of alloxantin (A. Baeyer, Ane., 1863. 127. p. 12), crystallizes in needles or prisms and possesses a very acid reaction. It becomes red on exposure, and in the moist condition absorbs oxysen from the air, giving alloxantin. Athophanic acid. \(\mathrm{NH}_{1} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO}_{3} \mathrm{H}\), is not known in the free state, as when liberated from its salts, it is decompoeed into urea and carbon dioxide. Its esters are formed by pabsing the vapours of cyanic acid into alcohols (W. Traube, Ber., 1889, 22, p. 1572):
\[
\mathrm{CONH} \rightarrow \mathrm{NH}_{3} \cdot \mathrm{CO}_{2} \mathrm{R} \rightarrow \mathrm{NH}_{3} \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO}_{3} \mathrm{R}_{;}
\]
by the action ol chlorcarbonic esters on urea (H. Schilf, Awn., 1896, \(291, p .367\)) ; and by the action of urethanes on urca chloride (L. Gattermann, Bey., 1888, 21, p. 293 R). They are readily decomposed hy alkalis, yielding cyanuric acid and ammonia. Bimed (allophanamide), \(\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CO}-\mathrm{NH}_{3}\). is formed by hoating urea; by the action of ammonia on allophanic ester: and by heating urea to \(140^{\circ} \mathrm{C}\) and pasing chlorine into the melt at \(140-150^{\circ} \mathrm{C}\). U. Thisele. A ma, \(188,303.9 .95\) Anm.). It crysiallizes in needles which melt When he. (with decomposition), and is readsly soluble in hot water. Whon hearod strongiv it is decomposed invo ammonia and cyanuric
urea. With silver nitrate and caustic soda it yields a silver salt, \(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\). With nitric acid in the presence of sulphuric acid it yields a nitro derivative.

Thiourca, or sulphocarbamide, \(\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}\), is formed by prolonged fusion of ammonium thiocyanate (E. Reynolds, Amm, 1869, 150 , p. 224), by passing sulphuretted hydrogen into an ethereal solution of cyanamide (E. Baumann, Ber.p t873, 6, p. 1375), or by healing isopersulpho-cyanic acid (F.D. Chattaway, Jour. Chem. Soc., 1897, 71, p. 612). It crystalizes in thick prisms which melt at \(180^{\circ}\) C. and is readily soluble is water. When heated for some time with water to \(140^{\circ} \mathrm{C}\), in a sealed tube, it is transformed into ammonium thocyanate, a similar result being obtained by heating the base alone for some hours to \(160-170^{\circ} \mathrm{C}\). On heating alone for some hours 10 \(170-180^{\circ} \mathrm{C}\). it is converted into guanidine thiocyanate. It is hydrolysed hy alkalis, giving carbon dioxide, ammonia and sulphuretted hydrogen. It is readily desulphurized by silver oxide, mercuric oxide or lead oxide. Potassium permanganate oxidizes it to urea (R. Maly, Monots., 18go, 11, p. 278). It acts as a weak base and forms salts with one equivalent of an acid.

The alkyl derivatives of thiourea are obtained by the action of ammonia and of primary and secondary amines on the mustard oils (A. W. Hofmann, Ber. 1867, t, p- 27):
\(\mathrm{CSNR}+\mathrm{NH}_{3}=\mathrm{NH}_{3} \mathrm{CS}-\mathrm{NHR} ; \mathrm{CSNR}+\mathrm{NH}_{2} \mathrm{R}=\mathrm{R} \cdot \mathrm{NH} \cdot \mathrm{CS} \cdot \mathrm{NHR}\). or by beating the amide salts of the alkyl dithio-carbaminic acids, iz., NR.CS.S(NHRR). The monoalkyl derivatives are desulphurized hy lead hydroxide in the presence of sodium carbonate, the of dialkyl and trialkyl derivatives being unaflected (A. E. Dixon, fowr. Chemp. Soc., 1893, 63, p. 325). The dialkyl thioureas when digested with mercaric oxide and amines give guanidines. \(\mathrm{CS}\left(\mathrm{NHR}_{2}+\mathrm{NH}_{2} \mathrm{R}+\mathrm{HgO}_{5} \rightarrow \mathrm{H}_{5} \mathrm{~S}+\mathrm{RN}: \mathrm{C}(\mathrm{NHR})_{2}\right.\).

Thiourea and many of its unsymmetrical derivatives have marked physiological action; thiourea causes a slowing of the pulse and respiration, cardiac failure, and death in convulsions; phensl-ethyl-and acetyl-thiourea are actively toxic. The most importans derivative pharmacologically is allyl-thiourea, also known as thiosinamine or rhodallin, \(\mathrm{NH}_{2} \cdot \mathrm{CS} \cdot \mathrm{NH} \cdot \mathrm{CH}_{3} \cdot \mathrm{CH}: \mathrm{CH}_{2}\).

Thiosemicorbazide. \(\mathrm{NH}_{2}-\mathrm{CS} \cdot \mathbf{N H} \cdot \mathrm{NH}_{3}\), prepared from hydrasine sulphate, potassium carbonate and thiocyanate (N. Freund. Ber.. 1895. 24, p. 946: 1896, 29, p. 2501), crystallizes in long needlex, which melt at \(181-183^{\circ} \mathrm{C}\). The addition of sodium nitrite to an aqueous solution of its hydrochloride converts it into amido-triak. sulphol \(\mathrm{S}<\begin{aligned} & \mathrm{N}=\mathrm{N} \\ & \mathrm{C}\left(\mathrm{NH}_{2}\right): 1 \mathrm{~N}\end{aligned}\)

The hydrochloride with polascium cyamate gives hydrazothio-carbonamide, \(\mathrm{NH}_{3} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{NH} \cdot \mathrm{CS} \cdot \mathrm{NH}_{3}\).

Medicime.-Wrea has been given in medicine in doses of 10 to 60 grs either in mixture or hypodermically. It has been used with success as an antiperiodic and antipyretic in aguc, and also as a diuretic in gout and kidney affections. Thiosinamire is giver internally in doses of \(\frac{1}{4}\) to 1 gr . in eapsule. Larger doses usually upset the digestion. It has been used for the cure of tupus and of keloid. in which case it is administered hypodermically. In keloid \(2 n\) minims of a \(10 \%\) solution is injected directly into the part. It causes a local reaction with absorption of the scar tissue. For this reason it is used to remove corneal npacities, dea fness due to thickeraing of the membrane, stricture of the oesophagus and hypertrophy of the pylorus, it has also been successtul in the treatment of adhesive parametritis. Fibrolysin is a modified form of thiosinamine made by mixing it with sodium salicylate Fibrolysin is freely soluble and may be given in hypodermic or intra-muscular injettion. Liles thiosinamine it has a specific action on sar tissue and has beea used in urethral strictures. Both these preparations should only be used in cases where it is possible to exclude any tuberculous foci, or by their action in. breaking down protective fibrous tissues they may cause a quiescent lesion to become active. In hrge doses toxuc symptoms are produced. death following on coma.

URETHANB, \(\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{4}\), the ethyl ester of carbamic acid, is synthesized from ammonia and chlorcarbonic ester or diethy! carbonate: by prolonged boiling of urea with aloohot (A. W. Hofmann, Ber., 1871, 4, p. 268); by the action of alcotolic hydrochloric acid on cyanogen; by the action of alcohol on urea chloride (L. Gattermann, Ann., 1888, 244, p. 4o): and by warming alooholic hydrochforic acid with an alcoholic solution of potassium cyanate (O. Folin, Amer. Chem. Jour., 1897, 19, p. 341). It crystallizes in lagge plates, readily soluble in water and meiting at \(49-50^{\circ} \mathrm{C}\). When heated with ammonia to \(180^{\circ} \mathrm{C}\)., it gives urea. Cold alcoholic potash decomposes it inte potassium cyanate and alcohol.

Nifroso wrethome, \(\mathrm{NO} \cdot \mathrm{NH} \cdot \mathrm{CO}_{4} \mathrm{C}_{3} \mathrm{H}_{5}\), formed by reducing ammenjut mitro-urethane with zinc dust and glacial acetic acid (1. Thieles
 \(5 i-52^{\circ} \mathrm{C}\). (with decomposition). It is decomposed by alkalis and by acids:
\[
\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}=\mathrm{CO}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{8}
\]
(alkelis), \(2 \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{3}=2 \mathrm{CO}_{4}+\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{OH}+2 \mathrm{~N}_{3}+\mathrm{H}_{4} \mathrm{O}+\mathrm{C}_{4} \mathrm{H}_{4}\) (acida). On oxidation it yialds aitro-urecthane. With a methyt alcobolic solution of pocash in yields a yellow precipitate, which in probebly the potascium salt of nitrusocarba mic acid. NK-NO-CO2K. Nitrowrethane. \(\mathrm{NO}_{r} \mathrm{NH} \cdot \mathrm{CO}_{3} \mathrm{C}_{2} \mathrm{H}_{5}\). lormed by dissolving urethane in concentrated sulphuric acid and adding ethyl nitrate to the wellcooled mixture (J. Thisle ibid.), crysallizes in plates which neelt at \(64^{\circ} \mathrm{C}\). and is solubie in water. It has a atronaly acid reaction its salis, however, beiag acutral. its ajver salt with methyi iodide gives a methyl ether, which is readily split by ammonia into methyl nitramine and methyl urethane (c. A. P. Franchimont, Rece. Iras. chim. 1894. 13, p. 309). On reduction with aine dust and acetic acid it yielde hydrazine carboxylic ener. Phenyy wrelhema, \(\mathrm{C}_{0} \mathrm{H}_{0} \mathrm{NH} \cdot \mathrm{CO}_{3} \mathrm{C}_{2} \mathrm{H}_{4}\) is formed by the action of cyanformic ester on aniline at \(10^{\circ}\) C.: by the action of absolute alcohol on benzoyl azoimide (T. Curtius, Jour. prak. Chem. [2]. 52, p. 214): and by the action of bromine and sodium echylate on bencamide (E. Jeffreya, 4mer. Chem Jowr., 1899, 22, p. 41). It erystallizes in lons need iss which melt at \(51-52^{\circ} \mathrm{C}\). and boil at \(227-228^{\circ} \mathrm{C}\) (with partial decomposition). It is easily soluble in alcohol and when heated in a sealed tube yields aniline and urea. With phosphorus pentasulphide it yieide phenyl mustard oil.
Physiologically vrethare has a rapid bypaotic action. producipg a calm sieep and baving wo depremsat effect on the circulation. If is much used as an anaesthetic for animals. Di-urethane. NH \(\left(\mathrm{CO}_{3} \mathrm{C}_{4} \mathrm{H}_{3}\right)_{2}\), and hedonal. \(\mathrm{NH}_{4} \mathrm{CO}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \cdot\left(\mathrm{C}_{2} \mathrm{H}_{7}\right)\), are also narcotics, the latter being. in addition, a powefiul diuretic. Pheay urethane or euphoria has a physiological action more like that of scetanilide and phenacetin than of wrethane. it depresses the temperature and is an analgesic. It is of little value as an hypnotic.
 Criteaurever (\(1568-1625\)), French novelisk and mincellaneous writer, was born at Mancilles on the inth of Fehruary ig68, and was educated at the College de Tsamson. A partisan of the Leqge, he was taken prisoner in 1595 , and, though soon wet at liberty, be was again captured and imprisoned. During hin imprisooment he read Ronsard, Petrarch and above all the Diems entmorada of George de Montemayor and Tanso's Amiola. Here, too, he wrote the Eptires morales (t 598). Hownt's beother Aape, comte D'Urfe, had matried in 1571 the beautifui Diane de Chateaumorand, but the marriage was annulled in \(159{ }^{3}\) by Clement VIII. Anne D'Urfe was ordained to the priesthood in 1603 , and died in 1621 dean of Montbrison. Diane had a great fortune, and to avoid the alienation of the money from the D'Urte famliy, Honote married ber fon 1600. This marriage also proved unhappy; D'Urfe apent most of his tine separated from his wife at the court of Savoy, where he beld the charge of chamberlain. The separation of goods arranged leter on may have been simply due to money embarrassments. It was in Savoy that he coaccived the plan of his povel Astrte, the scene of which is laid on the banks of the Lignon in his native province of Fores. It is a leisurely romance in which the foves of Céladon and Astree are told ai immense length with many digressions. The recently discovered circumstances of the marriages of the brochers have disposed of the idea that the romance is autobiographical in its main idea, but some of the episodes are said to be but dightly veiled eccounts of the adventures of Henry IV. The shepherds and shepherdesses of the story are of the conventional type usual to the pastoral. and they discourse of love with a camuisary and etaborate delicacy that are by no means rustic. The two firs parts of A stete appeared in 1610, the third in 1610, and in 1627 the fourth part was edited and a fifth added by D'Urie's secretary Balthazar Baro. Astres set the fashion temporarily in the drama as in romance. and no tragedy was complete without wire-drawn discussions on love in the manner of Celadon and Astrte. D'Urfé also wrote two poems, La Sineine (16it) and Sytuonire (1625). He died from injuries received by a fall from his horse at Villafranca on the ist of June 1625 during a campaign against the Spaniards. The best edition of Astyde is that of \(\mathbf{r 6 4 7}^{3}\) In 1008 a bust of D'Urit was erected at Virien (Ain), where the greater part of A strde was written.

URGA (the Russian form of the Mongol Orgo = palace of a ligh official), a city of Mongolia, and the adnuiniserative cemtre of the
 on a tribulary of the Tols siver. It is the boly city of the Mongols and the residence of the "Living Buddha," metropolitan of the Kalka tribex, who ranks third in degree of venerntion among the dignitaries of the Lamaist Church. This " resplendently divine lama' resides in a sacred quarter on the western side of the town, and acts as the spiritual colleague of the Chinese amban, who controls all temporal.matters, and who is specially charged with the control of the frontier town of Kiakhta and the trade conducted there with the Ruscians.
Hurac, ss the Mongols cell Urga (Chinese name, K'ulun), stands on the high road from Peking to Kiakhta (Kiachta), about 700 m . N.W, of Peking and 165 m . S. of Kiakhta. There are three distinct quarters: the Kwren or monastery, the residence of the " Livisg Buddha "; the Mongol city proper (in which live some 13.000 monks); and the Chinese town, two or three milss froma the Miongal quarter. Beaides the monks the inhabitants number about \(\mathbf{2 5 , 0 0 0}\). The Chinese town is the great trading quarter. The houses in this part are more substantially built than in the Monsol town, and the streets have a well-to-do appearance. The law which prohibits Chinamen from bringing their wives and families into the place tends to check increase. There is considerahle trade between the Russians, Mongols and Chinese, chiefly in cattlo, camels, horses, sheep, piece-goods and mill. Until the second half of the igth century bricks of tea formed the ondy circulating medium for the retail trade at Urga, but Chinese brass cash then began to pass curreat in the marketi. The trade of Urga is valued at over \(\{1,000,000\) a yeer.

The temples in the Moagol quarter are mumerous and imponing, and in one is a gitt image of Meitreya Bodhinattva, 33 ft . in beight and weighing 125 tons. When in 1904, on the occasion of the British expedition to Tibet, the Dalai Lama withdrew from Lhassa be went to Urga, where he remained until 1go8. During his tesidence there the Dalai Lama would have no communicetien with the Urga Lema-described as a drunken profigate (ser The Chimese Empire, ed. M. Broomhall, London, 1907, p. 357). The Chinese contemplate building a railway from Pcking to Urga. The gust section. 20 Kalgen, was completed in 1909 (see Crath, 8 Comanamications).

FBL ore of the cantons of central Switeerland, and one of the'carlient members of the confederation. The name is probably comacted with the ame obecure root as Reuss and Ursern, and is poppularly derived from Urochs or Auetochs (wild bull), a bult's head having been borne for ages as the arms of the region. The total ares of the canton is 415.3 sq . m., of which 184.3 are reckomed as "productive" (forests oovering \(43 \cdot 9\) 2q. 7 .), while of the rext 44.3 are occupied hy glaciers and 71 sq. mi . by the cantional share of the Lake of Lucerne. The highest summit is the cantom is the Dampastock (11,920 ft.). The canton is cornpoeed of the upper valley of the Reuss, a mountain torrent that has cut for itself a deep bed, save in case of the basin of Ursern, near its upper end, and the plain of Altdorf, just before It forms the Lake of Lucerne. Hence, save in these two cases, the canton is made up of a wild Alpine valley, very picturesque in point of scenery, but not offering much chance of cuativation. Through neady the whole of this savage glen runs the main line of the St Gotthand railwey (opened in 1889), the part (281 mm .) in the canton being that between Sisizon, on the Lake of Lucerne, and Csschenen, at the northem mouth of the great tunnel (9 m m .) through the Alpa, and at the lower end of the wild Schollemen gorge that cuts it of Irom the basin of Ursern. The nose remarkable engineering feats are near Wassen. There ts also an electric tramway from Altdor to its port, Flielen. On the other hand, several magnificent carriage roads are within the borders of the canton. leading to or over the mountain passes that give access either to Glarus (the Klausen Pass, 6404 fL), or to Ticmo (St Gotthard Pase. 6036 (t.). or to the Grisons (Oberalp Pass, 6719 ft .). or to the Valais (Furka Pass, 7092 ft .). Owing to the physical conformation of the canton, it was difficult for it to extend its rule save townds the south (see below), but since very early days it has held the splendid pastures of the Urperbodex, on the other slope of the Klausen Pass, as well
as the Blacken Alp, at the bead of the Engelberg valley, though the northernmost slope of the St Cothard Pass still belongs to Ticino. In 1900 the population of the canton was only 19,700, of whom 18,685 were German-speaking, 947 Italianspeaking (this number varied much during the construction of the St Gotthard railway, mainly by Italian navvies), and 24 French-sp aking, while 18,924 were Romanists, 773 Protestants, and I a Jew. The capital is Altdorf (q.e.), indissoluhly connected with the legend of William Tell (g.0.). The only other important villages are Erstfeld (2416 inhah.), a great railway centre, where the mountain eagines are put on, and Silenen (\(\mathrm{t} \mathrm{S}_{9} 2\) inhab.). The population is all but exelusively pastoral, natural causes limiting much effort in the way of agriculture, save near Altdorf. In the canton there are 102 "alps" or mountain pastures, capable of supporting 10,354 cows, and of an estimated capital value of \(5,771,000 \mathrm{fr}\). Till 1814 Uri formed part of the diocese of Constance (save Ursern, which has always been in that of Coirc), while since that date it is administered by the hishop of Coire, though legally in no diocese. The inhabitants are very industrious and saving, though not rich in worldly goods, as their land is so barren. They are extremely conservative, and passionately attached to their religion. Wooden sandals are still commonly worn in the Alpine glens. Of recent years the canton has been much visited hy travellers, who have brought much money into it. It forms a single administrative district, which comprises twenty communes. The legislature of tbe canton is the time-hoooured primitive democratic assembly, called the Landsgemeinde, composed of all male citizens of 20 years of age, and meeting once annually near Altdorf on the first Sunday in May. It has retained many curious antique ceremonies and customs. It elects the single member of the Federal Siarderat, as well as the cantonal cxecutive of seven members (holding office for four years), two of whom are the highest officials, the Landammann and his deputy. There is also a sort of standing committee, called the Landrat, which is charged with the administration and minor legislative matters. It is composed of members elected for four yoars by a popular vate in the proportion of one to every 400 (or (raction over 200) inhabitants, though each commune, even if not attaining this standatd of population, is entitled to a member. The single member of the Federal Nationalrat is elected by a popular vote. The constitutional details, apart from the Landsgemeinde, are settled by the cantonal conslitution of 1888 (since revised slightly).

Uri is first mentioned in \(73^{2}\) as the place of banishment of Eto, the abbot of Reichenau, by the duke of Alamannia. In 853 it was given by Louis the German to the nunnery (Framenminnster) af Zürich which be had just founded, and of which bis daughter, Hildegard, wras the first abbess. Heace the "abbey folk" in Uri enjoyed, as such, the privilege of exemption from all jurisdictions save that of the king's Vogt or "steward of the manor" at Zurich, this Vogtei being cut off from the country of the Zuirichgau. The rule of the abbess was mild, so that the other inhahitants of Uri either became her tenants or ohtained similar privileges. Litule by bittle the gathering together of all the inhahitants for the purpooe of regulating the customary coltivation of the land created a corporate feeling and led to a sort of local government. On the extinction of the Zxringon dynasty (1218); the Vogtei rivethed:48ig Mis, who gave it to the Habsburgs. But in
 ithe king, the puirchase being Yefor cotethe peate over the
 "rivnicorferntion of its \(\therefore\) FYentromation is T2 \(\therefore\) rejwe verlaiting
deriast of
(1315) and renewing the League of the Three at Brunben (1315). Later it took part in the victory of Sempach (1386). In 1403 , with the help of Ohwalden, it won the Val Leveotina from the duke of Milan, but it was lost in 1422, though in 1440 Uri alone reconquered it and kept it (winning the bloody fight of Giornico in 1478) till 1798. In 1419, whit Obwalden, Uni bought Bellinzona, but lost it at the battle of Arbedo (1422), though, with Schwyz and Nidwalden, it won it back in 1500 , keeping it also till 1798 . In 1512 Uri ahared in the conquest of Lugano. \&e., by the Confederates, her natural poshion forcing her to extend her rule towards the south, though many attempts on and temporary occupations of the Val d'Ossola (1410-1515) ultimately failed. In 1410 a perpetual alliance was made with the valley of Ursern or Val Orsera, the latter being allowed its own head-man and assemhly, and courts under those of Uni, with which it was not fully incorporated till 1888 . Ursern originally belonged to the greal Benedictine monastery of Disentis, at the head of the Vorder Rhine valley, and wats most probably colonized in the \(\mathbf{1}^{\text {th }}\) century by a Germanspeaking folk from the Upper Valais. At the Reformation Uri clung to the old faith, becoming a member of the "Christliche Vereinigung" (1529) and of the Colden League (1586). In 1798, on the formation of the Helvetic republic, Uri became part of the huge canton of the Waldstatten and lost all its Italian possessions. In September ijog Suworof and the Russian army, having crossed the St Gotthard to Altdorf, were forced by the French to pass by the Kinzigtulm Pass into Schwyz, instead of sailing down the lake to Lucerne. In 1803 Uri became an independent canton again, with Ursern. but without the Val Leventina. It tried hard to hring back the old state of things in 1814-15, and opposed all attempts at reform, joining the League of Samen in 1832 to matintain the pact of 1855 , opposing the proposed revision of the pect, and being one of the members of the Sonderbund in 1845. Despite defeat in the civil war of 1847 , Uri voted against the Federal constitution of \(\mathbf{2 8 4 8}\), and by a crusbing majority against that of 1874 .
Authorities.-I. I. Blumer. Steats- ind Reahergeschichte 2 shroeis. Demokration (3 vols. St Gall, 1850-1859); Guecmichesfreus from 1843. Historisches Newjahrsbicy (published by the Cantonal Hist. Soc.), Altdorl, from 1895 . K. F. Lusser, Der Kanton Uri (St Galt, 1834). and Geschichte des Kanf. Uri (Setwyz, 1862): A. Lutoh. Sagen. Brdwothe, Legenden aus den Fuinf Orten (Luceme. 1862); E. Motta, Des personeget celebri che varcarone il Gollardo nei trmipi anfrici e moderni (Bellinzona, 1884); C. Nager, Die Alpuirtschah \({ }^{2} \mathrm{~m}\) Kant. Uri (Soleure, 1898); W. Oechsli. Die Anfance der schwris Eadgenossenschafl (Zurich. 1891); R. von Redinf-Biberegg. Der
 Dis sekwers. Landsgemernden (ZUrich. 1903), F. V Schmid. All gemeine Geschichte d. Fristagts Uri (2 vols. Zug. 1788-90):

Sowerby, The Forest Camtons of Switzerland (London. 1892);
 published by A. Denier in vols. 41-44 (1886-89) of the Geschichtsfremal (as above) : M. Wanner، Geschiche d. Ba wes d. Goukardbahn (Lucerme. 1885). See also Tell.
(W. A.B.C.)

URIC ACID, \(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}\) in organic chemistry, an acid which is one of the penultimate products of the tissuc waste in the human body. While the bulk of the nitrogen of the albuminoids passes off through the bladder as urea, a small portion of it stops at the uric acid stage Human urive contains only a fraction of a per cent of the acid, chiefly as sodium salt; abundance of uric acid is met with in the es. crement of serpents and birds, with whom it is the principal nitrogenous product of tissue waste. For its preparaion guano is boiled repeatedly with a solution of borax in 120 parts of water The filtered solution is acidafied with hydrochloric acid, when impure uric acid separates out as a brown precipitate, which is washed with cold water, it is then dissolved in hot dilute caustic potash or soda, the solution filtered, and the filtrate saturated with carbon diocide Ao almost insoluble urate is precipitated, which is filtered, washed and decomposed by hot dilute bydrochloric acid. Uric acid separates as a white precipitate, which is filtered off, wasbed and dried, to be repurified by a repetition of the altal process or otherwise. Pure uric acid forms a soow-whute
mierocrystalline powder, devoid of smidt or taste, soluble in 1800 parts of bolling and in 34,000 parts of cold water, but insoluble in alcohol and in ether. For its detection in urine, the urine is mired wilh excess of hydrochloric acid, and allowed to etand, when the uric acid reparates out, generally coloured reddish by impurities. The precipitate is dissolved in a few drops of nitric acid and the solution cautiously evaporated to dryness. The residue when exposed to ammonia gas assumes the intense perple colour of murexide.

The acid, which was discovered by C. Schecle in 1776 in urinary calculi, was afterwards investigated by Liebig and Wobler. The deternination of its constitution, and its relation to other vogetable and animal products, followed from the researches of A. von Bacyer and E. Fischer (see Purin).

ORICONIDA (more correctly Viroconiunt), a large RomanoBritish country town, chef-lieu of the Cornovii, now Wroxeter on the Severn, 5. m. E. of Shrewsbury. At first perhaps (A.D. 45-55) a Roman legionary fortress, held by Legio XIV. Gemina against the Welsh hill-tribes, its gartison was coon removed and it bocame a flourishing town with stately sown hall, batbe and other appurtenances of a thoroughly civilized and Romanized city. It was larger and probably richer than-for example--Silchester. The lines of its walls can still be traced, enclosing an area of \(5 ; 0\) acres, and parts of the town hall and baths have been uncovered. Its originally Celtic name seems to survive in the names of Wroxeter and the neighbouring hill, Wrekin.
See Victoria History of Shropskire, i. 215-56.
URIM AND THUMMIM, in the Bible. These descriptive terms are applied to one of the methods of divination employed by the ancient Hebrews, which, it is now gencrally agreed, consisted in a species of sacred lot. Together with "drcams" and the prophetic oracle it formed the recognized channel by wbich divise conmunications were given (cl. x Sam. xxviii. 6). That some methorl of casting lots is denoted by the terms is evident from I Sam. xiv. 4 f . The Hebrew text in this passage, as emended by tbe LXX and in this form generally accepted, runs as follows: "And Saul said: 'O Jehovah, God of Israci, why dost Thou not answer Thy servant to-day? If this fault be in me or in Jonathan my son, give Urim, and if it be in Thy people Israel, give Thurmimu.' And the lot fell upon Saul and Jonatban, and the people escaped. And Saul said: 'Cast (the lot) between me and Jonathan my son, and on whomsocver Jehovah shall cause the lot to fall let him die.' So they cast (the lot) between him and Jonathan his son, and Jonathan was taken."

From this illuminating passage it is clear (a) that by means of the Urim and Thummim the guilt or innocence of the surspected parties was determined; (b) that this was effected by a teries of categorical questions implying the simple alternative of "yes" or "no," or something positive or negative. A further inference (c) from a comparison of I Sam. xiv. 41 I . with ver. 36 (Greck text) is that this method of casting the sacred bot mas closely conoccted with divination by the ephod (q.e.), and was the prerogative of the priests. "This last point appears explicitly in the "Blessing of Moses" (Deut. xuxiii.), where the opening words of the Benediction on Levi run thus (text as emended by Ball, following LXX; P.S.B.A. 1896, 158 f.):-
"Give to Levi Thy Thummim,
And Thy Urim to the man of Thy favour."
Similar modes of divination were practised, it would seem, among the pre-Islamic Arabs. The following custom is cited by Poofessor C. F. Moore, \({ }^{2}\) on the testimony of Moslem writers, as beving been in vogue: "'Two arrow shafts (without heads or feathers), on one of which was written 'Command,' on the orber 'Prohibition,' or words of similar purport, were placed in a receplacle, and according as one or the other of tbem was drawn out it was known whether the proposed enterprise was in accordance with the will of the god and destined to succeed © not" (ci. Prov xvi. 33; Acts i. 26).

Reganding the form and material of the Urim and Thummim
\({ }^{2}\) Encycl. Diblico, iv. (col. 5236), where further dctails are given
no detares are given the the Old Testament. Thiey seem to bave fallen into desurtude at a comparatively early period No mention is made of their use in the historical books after the time of David and Solomon, though it is probable that such use is implied in passages where the ephod is mentioned (e.g. Homa iii. - a \(^{\text {a }}\). In the post-exilic Priestly Code fi.e. the bulk of the Levitical Legilation of the Pentateuch), however, the Urim and Thummin igure as part of the equipment of the high priest (d.. Ex. xxviii. 30; Lev. viii. 8; Num. xxvii. 28). Here it is stated that they are kept in a square pouch which is worn upon the high priest's breast (" the breastplate of jutgment "), and attached to the ephod. Thus the association of the Urim and Thummin with the ephod, which appears in the oldest narratives, is setained in the Pricstly Code (\(\mathbb{P}^{P}\)). It is doubtful, however, whether \(P\) had any clear notion as to what exactly the Urim and Thummim were. The pricsely writer gives no directions as to how tbey were to be madc. They were retained in his ideal legisiation, apparently, because their use was already invested with the mystery of a long-vanished past, and thity were regarded as having formed one of the most venerable adjuncts of the pricsthood. That this macthod of divination was not in actual usc after the Exile is shown by Neh. vii. 65 (Ezra ii. 63 ; Esdras v. 40) where an important point affecting the priestly families is reserved "till there stood up a priest with Urim and Thummin." Later refereaces' (Ecclus. xlv. 10 ; in Josephus and the Talmud) prove that no real tra dition survived on the subject. The identification of them with the jewels of the breastplate and on the shoulders of the high priest (which apparently has the authority of Josephus) is unwarranted; other ancient guesses are cqually baseless. Nor has any satisfactory explanation of the names Urim and Thummim been proposed. As vocalized in the Massoretic Hebrew text the names = "Lights and perfection." But the Greek translators read the former 'orims and connected it with tcrah, "decision"; it would thus="doctrine"; so Symmachus, cf. I Esc. v. 40, where "a high priest wearing Urim and Thummim."(R.V.) is given as "a high priest clothed in doctrine and truth" in A.V. Nor can the attempt of the American scholar Muss-Arnolt to exphain thera as cognate with the Babylonian Tablets of Destiay be pronounced success. ful. Perhaps the conjecture least opce to objection is that which regards the terms Urim and Thummim as the names of two lots² (perhaps actually writen on thera) of opposite import. In this case the former of the two rames might be derived from the root 'arar," to curse"; the other from a root meaning "to be without faull." The one would thus signify "that a proposed action was satisfactory to God, the other that it provoked His wrath" (Professor G. F. Moorc) But all such explanations are bighly precarious.

Bibliography -For the older views, se Spencer. De leg. Hedr. rit. Diss VIl.; and a usclul sumnary by plumpire in Smith's Bib. Dict. For modern dixussions, we the articles "Urim and Thuramim " in the Bible dictionaries: the relevant sections in the treatises on anchaeology; and W. Muss-Arsolt, The Urim and Thummim (reprinted from the American Journal of Semitic Lamzuages, July 2900).
(G. H. Bo.)

URINARY SYSTEM. The urinary system in the fully devcloped haman being consists of (1) the kidncys, (2) the ureters, (3) the urinary bladder, and (4) the urethra

As the greater part of the male urethra is a generative as well as a urinary canal, its description will be found in the article on the Reproductive System.

The kidneys are two bean-shaped granular masses, firm in consistence and reddish brown in colour, about \(4 \frac{1}{3} \mathrm{in}\). long. and placed obliquely behind t he ot her abdominal viscera-one on each side of the last thoracic and three upper lumbar vertebrae. Kiderye. Each is imperfectly covered on its ventral surface by peritoneum and is moulded to some extent by the viscera which press on it. Around them there is usually a considerable amount of fat and areolar tissuc, by which, as well as by the penitoneum and by the presence of the surroundigg viscera. the lidaeys are retained in ther place. In rare cases the kidnpy may slip from its usual place in the boins to a lower position (movable kidney), and may even be movable

\footnotetext{
\({ }^{2}\) The lots may have been small pebbles, or small tablets of wood
} or bone.
in the abdominal cavity (floating kidney)-a condition often productive of serious consequences. The bidney in the foctus is lobulated, but the intervals between the lobes become snouthed out in later years of childhood. Each gland is invested

F1c. 1.-Vertical Section through the Kidney. A, branch of renal artery; \(U_{\text {: }}\) ureter. 1, cortical substance with cortical pyramids. and labyrinth substance of tortuous tubes; 2 and 3, medullary pyramids of straight tubules: 4, fatty masses around blood vessel (5): 6. papilla; 7. pelvis.

From A. F. Diron, Cuminghan's Tcst-Book of Amalimy.
Fig. 2.-Diagrammatic Representation of the Structures forming a Kidncy Lobe.
In the middle part of the figure the course of one of the kidney tubules is irdicated, and in the latcral parts tbe disposition of the larger arterics. A, cortex; \(\mathbf{B}\), intermediatc zone; C. papillary portinn.

The diagram at the right-hand side of the lower part of the figure illustrates the connexions of the structures composing a Nal. pighisn corpuscle.
by a firm, closely adherent, fibrous capsule, under which is an thens lamina of unstriped muscle. The inner and ventral ech kidney is concave, and into this kilum or concavity
the renal artery from the aorta passes. Here also the renal vein escapes and joins the vena cava inferior. The ureter or metanephric duct, always behind and below the blood vessels, emerges here and pasises downward to the bladder. When the kidney is longitudinally divided from hilum to outer edge, the cut surface is seen to consist of two parte-an outer layer, the cortex, and an inner part, the medulla (fig. 1). The iatter consists of a series of cight to sixteen pyramids, whose bases and sides are invested with cortical matter, and whosc apices or papillae project into the hilum, where they are severally surrounded by membranous tubes (calices), which by their union make up the ureter. The part of the ureter situated in the bilun is dilated, and is mamed the pelvis of the kidney.

In minute structure the kidney is the most complex gland in the body. Each of the papiltae consists of a large number of straight tubes-collecting tubules-which open by pores on its surface. When these are traced into the pyramid, they are seen to divide several times, their fine end-branches projecting in little tufts imo the cortical matter at the base of each pyramid. Here the branches coming from the tube change in structure and become convoluted in the cortex- the convoluted tubules. "Next, each suddenly dips back again as a long straight loop-the loop of Henle-into the pyramid, reaching nearly to the papiltary region; then tuming sharply on itsclf. passes back straight to the cortex, where it again becomes convoluted, ultimately ending by dilating into a flask. like bulb called a Malpighian corpuscle. The renal artery, afier breaking

Fic. 3.-Vertical Section through Pelvis, showing urinary bladdar and rectum in sifu. 1. peritoncum; 2, pubic symphysis: 3. muscular coat of bladder; 5, mucous membrane folded and wrinkted; 6 , opening of ureter; 8 , prostate; 10 , vena dorsalis penis; 12, corpus spongiosum; 14, testis in its sac; 15, bulbocavernosus muscle: 16 , bulb; 17 . sphincters of the anus; 22, anal opening: \(30, \operatorname{coccyx:~*~vesicula~seminalis.~}\)
up into branches between the pyramids, ends in minute end arteries io the cortex. Each of these pierces into one of the dasks just described, and there becomes branched, the branches being collected into a little ball or plomerulus which nearly fills the tiask From this an efferent versel cscapes. which. joining with ite neighbouring vewsels of the same kind, makes a close network around the convoiuied tubes, ultimately ending in the renal vein. It is supposed that the different constituents of the urine are eliminated in different parts of these tubes-some, especially the warery parts in the llask, and some, especially the more solid constituents, in the convoluted tubular apparatus A peculiar form of glandular epithelium lines the two convoluted areas of the tubes and the limb of the loop nearer the straight or collecting tubes.

The weler or duct of the kidney begins at the bilum and descends on the back wall of the abdominal cavity to open into the bladder. It is usually about 12 in . in lengu and as thick as a goose quill. At its ecrmination it passes obliquely through the coats of the bladder, so that when the bladder is distended the lumen of its end is closed. The arinary bladder is a membranous bag lyine in the pelvic cavity drecily behind and above membranous bag lying in the pelvic cavity directly behind and above the dorsal surlace of the pubes. In the foctus and indant, how: ever, the bladder lies in the abdomen, not in the pelvis. During life it is seldom distended so as to hotd more than about 10 cz . hut when the abdomen is opened it can be dilated to more than double that size. When distended it rises and is applied closely against the back of the ventral abdnminal wall. The bladder has a strona muscular tavertment of uostriped muscle in several Layers, which
are innervated by branches from the sacral nerves. It has a peculiar epithelial lining of several strata, the superficial cells of which are cubical when the sac is collapsed, but become flattened and scalelike when it is distended. At the lower part of the hladder there is 1 triangular space known as the trigone, the angles of which are formed by the openings of the two ureters and the urethra. In this space the mucous membrane is smooth and firmly bound to the subjacent muscle; elsewhere it is thrown into numerous folds when the bladder is empty. A muscular band called the toms uretericus

From A. F. Dirob, Cuningham's Texs Boel of A mesmy.
FiG. s.-The Bladder, Prostate and Seminal Vesicles, viewed from below. Taken from a subject in which the viscera were hardened in silu. The hladder contained but a small amount of fluid.
or Mercier's bar joins the orifices of the ureters. The female ure thra is only \(\frac{1}{3} \mathrm{in}\). in length and is comparable only with that part of the mate urethra which extends from the bladder to the openings of the seminal ducts (6g. 3).

\section*{Embryology.}

The excretory organs of the embryo are developed as a series of smail tubes in the internediate cell mass (see fig. 5), the ventral part of which projects to lorm the Wolfian ridge. Three sels of these tubes appear in surcession and occupy the whole length of the body from the corvical to the lumbar region. The most anteriorpromephros or head kidmey-is represented in man by only two or three small tubules on each side which appear as ingrowths from the neishbouring coelom (fig. 6, Pro.N.). From the study of comparative anatomy it is proballe that these are mere vestiges. Although the promeptiros is rudimentary, the duct which in lower Neural tube

Froen A. F. Diroc, Cuas'nglum's Texh Bocl of A matomy.
Fig. 5.-Transverse Section through the Body of a Fowl Embryo. types carries away its excretion is well developed. This is the Wolfan duct, which appears in man before the pronephric tubes are formed, and runs longitudinally back in each intermediate cell mass to open into the closea (fig. 6. W.D.). In certain parts of its course it is at an carly date in very close relation with the skin on the dorsd side of the intermediate cell mass, and many embryologists bold that it is originally ectodermal in origin, and has sunk into the mesoderm secondarily. Others think that it is primarily mesodermal but has gained becondary conncxions with the ecroderm. From a morphological point of view, as will be explained in the com. parative anatomy section, the lormer view scems the more likely.

When the pronephric tubules disorpeap, which they do at an early stage of the enibryo's development, the Wolffian duct persists and acts as the drain lor another and much more important series of tubules, which are formed in the intermediate cell mass behind the region of the pronephros, and make up the mesomephros or niddle kidncy (fig. 6, M.N.). There is some doubt as to whether these tubes are strictly homologous and in series with those of the pronephrow; but they are certainly of later development.

By about the sixth week of intra-uterine life these tubules reach their maximum development and form the Wholfian body, which projects into the coelom as the now very definite Wolffan hidge and acts as the functional excretory organ of the embryo (see 6g. 7). When the permanent kidncy is formed this organ degenerates and its ultimate late is discussed in the article on the Reproductive System.
The melanephnos or hind bidncy bexins as a diverticulum from the dorsal side of the Wolffian duct close to its opening into the

Fig. 6.-Diagram of the Formation of the Cenito-Urinary Apparatus. The first figure is the generalized type, the second the male and the third the female specialized arrangements. Suppressed parts are dotted.

N. Nephrasinme.
M.C. Malphighinn corpuscle
Tetis.
Epididymis.
O. G. Orean of Ciralde
V. D. Yas deferens.
U. M. UYrrus masculimus
O. Ovary.
Epar 0 . Eporpharon.
Par O. Purnonhoron.
F. T. Fifloplas tube.
cloaca (sce fig. 6, Mt.N.) : his occurs about the fourth week of intra utenne life, and the diverticulum grows forward (cephalad), dorsa! to the hind end of the Wolffian body. In doing this it lorms a duct-the melamephric duct or wreter-t he cephalic end of wich enlarges and divides to form the callces of the kidney. From the calices numerous smaller ducts grow into the mesoderm of the hind (caudal) end of the intermediate cell mass and become the collecting

From A. F. Dizot, Cumiogham's Tart Bool of A maiomy.
Fig. 7.-Transverse Section through the Body of a Rat Embryn. The position where the germinal epichelium arises is indicated at \(a\). tubes of the kidney. While this is going on another set of tubules, prubably in series with the mesonephric tubules. develop independently in the intermediate cell mass and so lorm all the rest of the eubular system of the kidney. Toward these tubules, at one print, branches from the aura push their way and invaginate each tube, thus forming the Malpighian corpuscles.

By the eighth week the kidncy is definitely formed and takes over the excrelory work of the mesonephros, which now atrophies: its surface is distinctly lobulated, a condition which persists uncil after birth.

At first, as has been stated; the ureters open into the Wolfian ducts, but later on each gains a separate opening into the cloaca, and eventually these shift in a ventral direction until they reach their permanent connexion with the allantoic bladder.

The bladder is developed from that part of the cloaca from which the allantois has grown out, and also lrom that part of the allantois which is nearest the cloaca. At first it is a tubular structure, but after the second month becomes more pyriform, the stalk of the pear corresponding to the fibrous urachus which reaches the umbilicus. Most of that part of the tubular allantois which lies between the permanent openings of the ureters and the Wolfian ducts becomes the urinary sinus and does not dilate in the same way that the permanent bladder does. This, in the female, forms the whole of the urethra, and in the male the upper part of the prostatic urethra. Belind (caudad) the urinary sinus is the urogenital sinus, which is treated of in the article on the Reproductive System.
The Müllerian ducts (fig. 6, M.D.) are formed after the Wolfian ducts are fully developed. A ridge appears in the intermediate cell mass ventral to the Wolffian duct, and into the anterior (cephalic) end of this a tubular process of the coclom forces its way backward (caudad). Before reaching the eloaca the two Mallerian ducts coalesce and open between the orifices of the two Wolffian ducts. These ducts, as is shown in the article on the Reproductive SYSTEm, form the oviducts, uterus and at hast part of the vagina.

For further details and literature see Quain's Analomy, vol. i. (Longmans, Green \& Co., London, 1908); J. M'Murrich, The Depelopment of the Human Body (Rebman, London, 1906), and A. Keith, Humen Embryology and liforphology (Arnold, London).

\section*{Comparative A natomy.}

In the Acrania (Amphioxus) the nephridial tubules are segmentally arranged and are onty found in the pharympeal region; each opens into the coclom by several ciliated funnels called nephrostomes and also into the atrium, which is practically the exterior of the animal, by an opening called the nephridiopore. There is reason to believe that we have here a pronephros of a very primitive type and arranged on the same plan, in many respects, as the simple nephridia of such lowly forms as the earthworm. There is nothing to indicate that a mesonephros is present, nor are there any Malpighian corpuscles or longitudinal ducts

Among the Cyclostomata (lampreys and hags) the pronephros persists throughout life in Bdellostoma and probably in the hag (Myxine), but a Wolffian (arehinephric) duct has been evolved so that the tubules no longer open on the surface by nephridiopores. It has been surmised that in a transitional type the tubules opened Into a groove on each side of the surface of the animal and that the edges of this, coming together, formed a duct. At any rate the superficial openings of the primitive nephridia maloe it probable that the Wolffian duct was originally of ectodermal orrgim. A mesonephros has now appeared behind (caudad) the promephros, though it is not certain whether its tubules (mesonephridia) are in cries with those of the pronephros or whether they are atructures on a more dorsal plane; but they certainly open into the Wolffan duct, which atso drains the pronephros, and so this duct is lunctionally simply a ureter and has nothing to do with the sexual glands. No Müllerian duct has yet been evolved.
In the Teleostomi (bony and ganoid fish) the pronephros is usually aborted in the adult and the mesonephros is the functional kidney. As the genital glands have special coelomic relations the Wolffian duct is still merely a ureter, and in the Teleostei at least there is no true Mullerian duct.

In the Elasmobranchii (sharks and rays) the pronephros is more completely and more early aborted than in the last subclass, and the mesonephros is divided into an anterior or genital part, which receives the vasa efferentia in the male from the testis and thus is the first appearance phylogenetically of an epididymis and a posterior or renal part. The Wolffian duct therefore acts both as a vas deferens for the aperm and a ureter for the urine, though in the female it is merely a ureter. In the hindmost part of the mesonephros there are separate ducts which are called ureters and open into the lower part of the Wolfian duct in the same way that the metanephric ducts of the Amniota do; it is, however, very doubtful whether they are really homologous with these ducts. The Millerian duct (see Reproducitye Sysiem) is present in elasmobranchs and according to modern views arises as a backgrowth Irom the coelom as in the Amniota.

The Dipnoi or-mudfish are remarkable for having a cloacal caecum which probably lunctions as an urinary bladder. It is situated on the dorsal wall of the cloaca and is not homologous with the allantoic bladder of higher forms. A good deal of the kidney (mesonephros) as it appears to the naked eye is composed of lymphoid tissue.

In the Amphlbla the snake-like forms (Gymnophiona) show a very primitive arrangement of the kidncy tubules, each having its nephrostome, Malpighian capsule and short convoluted part Teading to the Wolfian duct which acts both as uretet and vas đeferens.

In the adult Anura (froge and toads) the nephrostomes looe their
conmexion with the neplaridia and commalainate with the remal veins. In the amphibuans a true allantoic bladder first appean as a diverticulum from the ventral wall of the cloaca; in different Iorms it may be single, bilobed or even double

In Repilia the hind kidney or metanephros is developed and takes over all the excretory work; it is usually lobulated, its nephridia are never provided with nephrostomes and its duct (tbe ureter) opens into the Wolffian duct or vas deferens before reaching the cioaca. The allantoic bladder is present in the Lacertilia (lizards) and Chelonia (turtes), but is alsent in others Birds resemble reptiles very closely in their urinary system except that there is never any bladder and that the ureters and vasa delerentia open ind pendently intu the claata
In the Mammalia the bean shape of the kidno' is fairly character. istic. In foetal life the organ is always lobulated, and this sometimes persists throughout adult life as in the ox, bur, seal and whale. More often the lobulation disappears on the urface and is only imperfectly represented, on making a section. by the pyramids; even these in some cases fuse so closely that thit apices appear as a single papilla. This is the case in many monleys, carnivores and rodents.
In the Monotremata (Ornithorhynchus an Echidna) there is an allantoic bladder, but the ureters open into :He cloaca as they do in birds. In all other nammals they have suached the bladder and oper into it by valvular orifices.

On comparing the embryology (ontogeny) of the urinary system with its comparative anatomy (phylogeny) the hamoay of the two from a broad point of view is very suriking.
For furiter detavs see Farker and haswell, Jext-Book of Zoology (Macmillan, London, 1897); Wiedersheim's Comparative Anol. of Verkebrates, translated by W. N. Parker (London, 1907); Gegeabaur, Verglech. Anah der Wirbelibere (Leipzig, 1901).
URMIA (the name as written by the Persians is Urdionich and Urmich; the inhabitants of the place say Urmi), a town in the province of Azerbaijan in Persia, situated at an elevation of 4400 ft ., in an extremely fertile and highly cultivated plain. 78 m . S.W. of Tabriz (120 by road), it to 13 m . from the western shore of the lake of the same name, in \(37^{\circ} 34^{\prime} \mathrm{N}\). and \(45^{\circ} 4^{\prime} \mathrm{E}\). It is surrounded by a wall and deep dry ditch that can be flooded, and is encircled hy orchards and gardens which extend all round for miles and even penctrate the heart of the town. The streets are broader than is usual in Persian cities, and most of them have a stream of water running down the middle. There are a busy bazaar and some old mosques. The population is about 35,00 , and there are post and telegraph offices. The only huilding of importance is the ark, or citadel, a walled building in the centre of the town containing an arsenal and barracks for a small garrison. Urmia has for many years been the headquarters of various missions to the Nestorians of the neighbourhood: an American mission (since 1835) representing the "Board of the Forcign Missions of the Presbyterian church of the United States of Amcrica"; the French Latarists (since 1840); Brit: h , "The Anglican Mission" founded by Archbishop Benson (\(1 \mathrm{SS}_{1}\)), and a Rusian mission (Orthodor, since 1902). Urmia is the capritai oi a fertile district 50 m . long and about 20 m . broad, having the same name and containing more than 300 flourishing villages. It exports great quantities of dried fruit and excellent tulun, tobacco for chibluks, or Turkish pipes.

URMIA, LARE OF (also spelt Uromina), the in morthwestern Persia, between \(37^{\circ} 10^{\prime}\) and \(38^{\circ} 20^{\prime} \mathrm{N}\). and between \(45^{\circ} 10^{\prime}\) and \(46^{\circ}\) E., which takes its name (Pers. Deryackeh i Urweig, Turk. Urmi gol from the town of Urmia, situated near its western shore, hut is also known as the Deryacheh ; Shahi and Shahi giti The limits of the lake vary much, the length, N.-S., Irom Bo to 90 m ., the width, E. W. from 30 to 45 , being greater in the season of high water-in spring when the snows melt-and censiderably less in the season of low water. A rise of the leved by only \(s\) few inches extends the shore of the lake for miles inland, and it may be estimated that the surface covered by the lake during high water is half as much again as that during Low water. The Shahi peninsula, which juts out into the lake from the castern bank, is an island during the season of bigh water and also sometimes after heavy autumnal rains, separated from the mainland by several miles of shallow water. The mean depth of the lake is 15 to 16 ft ., and its greatest depit probably docs not exceed so it. The lake has in recent ycars exhibited extraordinary changes of levil, and it is not certain
wheher atme occsaional extroordinary rises of level were due to a movement of the earth's crust or mercly to an'incremec of rainfall as compared with evaporation. Gunther calculated thet the lake covered 1795 sq. m., hut the did not stace whether daring high or low water. De Morgan gives 4000 and 6000 sq. kilometres (1544 and \(23: 7 \mathrm{sq} . \mathrm{m}\).) for low and high water respectively. In the southers half of the lake is a cluster of about fifty rocky island composed of Miocene strata with marina ahelk, echinoderms and corats, much resernbling the bede of the Vienna basin. The hargest of these islands, Koyun daghi, ie. "Sbeep-mountain," is 3 to 4 m . long and has a spring of street water near which a lew people settle occasionally for looking after herds of goasts and shoop takea thete for grazing. Ali the islands are uninhabited and some are mere baseracks of litule extent. Although fed by many rivers and streams of sweet water the lake is very saline and its water is about threefifths as sath as the water of the Dead Sea-far too salt to permit the existence of 6ash life. The specific gravity of the water is 1.155 during low water and 1.113 during high water. The principal salts contained in solution are 'bodiutn ehloride. hromide and iodide and sulphates of magnesia, soda and iron. The only organisms living in tho lake are a species of artemia, a crustacean known from othor brine lakes in Europe and North Arserica, the larva of a species of dipterous insect, prohatly allied to ephydra, and green vegetahle masses composed of bacterial roogloses covered with a species of diatom. The rivers which flow into the lake drain an area of nearly 20,000 sq. m.; chub asd rasch are found in all of them, silurus in some. The lake is navigated by a few round-bottomed boats with roand bows and flat sterns, each of about 20 tons burden and carrying an enormous square sail.

Serabo (xi. c. 13. 2) mentions the lake with the name Spauta. a clerielal error for Kapauta, from Pers. Kapont, New Pers. Kebud. meaning ".: blue." Od Armonian orriters have Kapolt-dzov. ""the blue sen." In the Zendavesta and Bundahish it is called "Chaechasta, and Firdousi in his Shahnamuh (1ith century) has "Chichast."

See J. de Morgan, Mistion scientifique en Parst (1094):' R. T. Gereher. "Lake Urmi and its Neighbourhood;" Gcogr. Journ. (Noveraber 1899).

URI (Lat wrna, cither from root of wrers, to harn, being made of burnt clay, or connected with arceus, Gr. ipxa, jar), a vessel or vase, particulaly one with an oviform body and a toot. The Roman term wha was used primarily of a jar for earrying or drawing water, hut was also specifically applied to the vessel in whith the voting-tablets (subellac) and lots (sorles) were cast, whence its figorative use for the urn of late from which are drawn the varying lots of man's desting. The ashes of the cremated dead were deposited ln cincrary uros, a custom perpetuated by the marble or other urns placed upon faneral mosuments. The Roman wra was also a liquid sneasure containing half. an amphora, or about \(3 \frac{1}{2}\) gallons. Modern usage has given the name to lagge silver or copper reseds containing tea or coffee with a tap for drawing off the Equids and heated either by a spirit lamp or, as in the older sorms, hy the insertion of a hot iron in a apecinal soceptacle placed in the body of the vessel.

UROTROPIN (hexamethylenetetraminc), known also in the United States upder the name Uritone, a medicinal preparation due to the action of ammonia on formaldehyde. It consists of colourlest granular erystals freely soluble in water and having an alkaline reaction. Urotropia is among the most powerful of urinary antiseptics. It was formerly thought that its action was due to the sciting free of formaldehyde in the urine, but it is now known hy the reearches of P. Cammidge that this is not so. It is used to render the urine acid in cases where it is alkaline, loaded with phosphates or purulent, and is this useful in cases of cystitis. It is slightly diuretic. Experimentally it has been shown to have a solvent action on uric acid, but its action in this direction in the body requires confirmation. Urotropin is very viluable in steriliziag the urine of patients who bave suffered from typhoid fever and thus preventing the spread of the dicease by what are known as "typhoid carricrs" Analogous
preparitions ave cystamine, helmitol and hetralin. Chinotrophs is urotropin quinate, and borovertin is urotropin triborate.

URQUHART, DAVID (1805-1877), British diplomatist and pablictst, bom at Braelangwell, Cromarty. He came of a good Scottish family and was educated in France. Switzerland and Spain, and then at St John's College, Oxford. In 1827 he went under Lord Cochrane (Dundonald) to fight for the Greeks in the War of Independence; he was present at the action of the 28th of September when Captain Hastings destroyed the Turkish squadron in the Bay of Salona, and as licutenant of the frigate "Ilellas" he was severely wounded in the atuack on Scio. In November \(\mathbf{1 8 2 8}\) he left the Greet service. In 1830 he privately examined the new Greek frontier as deteranined by the protocel of March 22, 2829, and the vaiue of his rtports to the government ked to his being named British commatssioner to accompany Prince Leopold of Coburg to Greece, but the appoiatment fell to the ground with that prince's relusal of the Greek throne. His knowledge of the local conditions, however, led to his being appointed in November 1831 attache to Sir Stratford Canning (Lotd Stratford de Redclifio, g.o.), ambeasador extraordinary to the sultan, for the purpose of finally deliminating the frontiers of Turkey and Grecce. On his return to Engtand he published in 2833 Twrkey and its Resowrces, a violent denunciation of Russia. In 1833 he was sent on a secret mission to Turkey to inquire into possible openings for British trade, and at Constantinople he gained the complete confidence of the Turkish government. The situation, however, was a delicate one, and Urquhart's outspoken advocacy of British intervention on behalf of the sultan against Mebemet Ali, the policy of Stratford Canning, made him a danger to international peace; be was conse quently recalled by Palmerston. At this time appeared his pamphlet England, Franca, Russia and Turkcy, the violent anti-Russian character of which brought him into conflict with Richasd Cobden. In 1835 he was appointed secretary of embassy at Constantinople, but an unfortunate. attempt to counteract Russian aggressive designs in Circassia, which threatened to iead to an international crisis, again led to his recall in 1837. In 1835, before leaving for the East, he founded a periodical called the Portfolio, and in the first issue printed a series of Russian state papers, which made a profound impression. From 1847 to 1852 he sat in parliament as member for Stafford, and carried on a vigorous crusade against Lord Palmerston's foreign policy. The action of England in the Crimean War provoked indignant protests from Urquhart, who contended that Turkey was in a position to fight her own batties without the assistance of other Powers. To attack the goverument, he organized "foreign affairs committees" which became known as "Urquhartite," throughout the country, and in 1855 founded the Froe Press (in 1866 renamed the Diplomatic Revicw), which numbered among its contrihutors the socialist Karl Marx. In 1860 be published his book on The Lebanon. From 1864 until his death Urquhart's health compelled him to live on the continent, where be devoted his energies to promoting the study of international law. He died on the r6th of May 1877. His wife (Harriet Chichester Fortescue), by whom he had two sons and two daughters, and who died in 1889, wrote numerous articker in the Diplomatic Reaiewo over the signature of "Caritas"

To Urquhart is due the introduction into Great Britain of hot-air Turkish baths. He advocated their use in his book called Pillars of Hercules (1850), which attracted the attention of the Irish physician Dr Richard Baxter (i802-1870), and the latter introduced them in his system of hydropathy at Blarncy, Ca. Cork. The Turkish baths in Jermyn Screet, London, were buit under Urquhart's direction.

URQURART, or URCHARD, ER THOMAS (161I-1660), Scottish author and trenslator of Rabelals, was the son of Sir Thomas Urquhart of Cromarty, the repiesentative of a very ancient family, and of Christian, daughter of the fourth Lord Elphinstone. Sir Thomas was hard pressed by his creditors, and after part of the family estate had been alienated recoived
a "letter of protection" from his creditors from Charles 1. in 1637. In the same year, his son Thomas and a younger one were accused of forcibly detaining their father in an upper room, but the matter was settled without further proceedings. Thomas was educated 3t King's College, Aberdeen, spending his spare time in the pursuit of physical science. On leaving the university be travelled over Europe, succeeded to his embarrassed inheritance, and got together a remarkable library, which. however, fell into the hands of his creditors. All his later life was disturbed by pecuniary and political difficultics. He was an enthusiastic Royalist; and, so far as religious matters went. his principles may be judged from his favourite signature, "C. P.;" for Christiadus Presbyteromastix. He took part in the "Trot of Turrifl" in 1639, and was rewarded by being knighted on 7th April 1641 by the king's own hand at Whitehall. He took occasion by this visit to London to see through the press his first work, 2 collection of Epigrams of no great merit. Four years later, in 1645, he produced a tract called Trissotetras, a treatise on logarithms, adjusted to a kind of memoria technica, like that of the scholastic logic. In 1649 he was proclaimed a rebel and traitor at the Cross of Edinburgh for taking part in the abortive rising at Inverness on behall of Charles II. in that year; but no active procecdings were taken against him. He took part in the march to Worcester, and was there wounded and taken prisoner. His MSS. were destroyed after the battle, with the exception ol a few pages of the preface to his \(U\) niversal Language. Urquhart was imprisoned in the Tower and at Windsor, but was released by Cromwell's orders in 1651 . He published in rapid succession during 1652 and 1653 three tracts with quaint titles and quainter contents. Ilartoxparoxaroy is an amaing genealogy of the house of Urquhart up to Adam, with the names extemporized for the carlier ages in a kind of gibberish. 'EncosBadaupon is supposed to be a creatise on the virtues of a jewed found in the streets of Worcester. The jewel is the recovered sheets of his manuscript. The defence of his system for a universal language was supplemented by a eulogy of the Scottish character, as shown in the Admirable Crichton and others. Finally, in Logopandecteision he again handled the subject of a universal language. The Translation of Rubelais (Books 1. and II.), which Urquhart produced in 1653, is of the highest value as literature, and, by general testimony, one of the great masterpieces of Iranslation. Though by no means a close rendering, it reproduces the spirit of the original with remarkable felicity. The transiation was reprinted in 1664 ; andint 693 that of the Third Book was added. Next to nothing is known of Urquhart after 1553; it is said that he sought refuge, like other cavaliers, on the continent, and died (\(\mathbf{1 6 6 0}\)) of a fit of laughing, brought on by joy at hearing of the Restoration.

His original Works, with such scanty particulars of his life as are known, and with reproductions of two original and curious frontispieces, which represent him as a handsome and dandificd wearer of Pull cavalier costume, were published by the Maithand Club (1834). See also Sir Thomas Urquhart of Cromartie, by John Willcock (i8op). and the articles in the Newo Ravieto (July 1897) and Dict. Nas. Biog. The Rabelais has been frequently reprinted: Pcter Motteux's transhation of the whole appeared in 1708, and Ozell's in 1737, each incorporating Urquhart's portions. Theodore Martin in 1838, and Henry Morlcy in 1883. published editions of Úqquhart's text.

URSA MajOR ("The Great Bear "), in astronomy, a constellation of the northern hemisphere, supposed to be referted \(t 0\) in the Otd Testament (Job ix. g, xxxviii. 22), mentioned by
 Eudoxus (4th century 日.c.) and Aratus (3td century B.c.). The Greeks identifed this constellation with the nymph Callisto (g.v.), placed in the heavens by Zeus in the form of a bear together with her son Arcas as "bear-warder." or Arcturus (q.v.); they named it Arctos, the she-bear, Helice, from its turning round the pole-star. The Romans knew the constellation as Arclos or Ursc: the Arabians termed the quadrilateral, formed by the four stars a, \(B, \gamma, \delta, N a\) 'sh, a bier. whence it is sometimes known as Fcrelrum majus. The Arabic name should probably be identified with the Hellrew name 'Ash and 'Ayish in the beok of Job (see G. Schiaparelli, Astranumy in the Old Testament,

290j). Ptolemy catalogued 8 stars, Tycho 7 and Hevelivs if. Of these, the seven brightest (a of the ist magnitude, \(\beta, \gamma, \epsilon, \xi\), , of the and magnitude, and \(\delta\) of the 3 rd magnityde) constitute one of the most characteristic fgures in the northern sky; they have received various names-Septentriones, the wagon, plough, dipper and Charles's wain (a corruption of "'churl's wain," or peasant's cart). With the Hindus these seven suncs represented the seven Rishis. \(a\) and \(\beta\) are called the "pointers," since they are collinear with, or point to, the pole-star. EUrsee majoris is a beautiful binary star, its components having magnitudes 4 and 5; this star was one of the first to be recognized as a binary- i.e. having two components revolving about their common centre of gravity-and the first to have its orbit calculated. \(\$\) Ursoe mujor is is perhaps the best known double star in the northern hemisphere, the larger component is itself a spectroscopic double. The nebula Mi, 97 Ursae majoris is of the planctary type; the earl of Rosse observed two spiral condensations turning in opposite directions,-hence its name,the "Owl nebula."

UBSA MINOR (" The Little Bear"), in astronomy. a constellation of the northern hemisphere, mentioaed by Thales (7th century a.c.) and by Eudoxus and Aratus. By the Greeks it was sometimes named Cynosura (Gr. aunos, dog's; oiph, tail), alleging this to be one of tbe dogs of Callisto, who became Ursa major. The Phocnicians named it Phoenice, or the Phoenician constcilation, possibly in allusion to the fact that the brightest star is a Ursuc minoris or the pole-star, which being situated very close to the north poic is of incalculable service to navigators. Piolemy catalogued 8 stars, Tyrbo Brahe 7 and Hevelius 22 . a Ursae minoris, more generally known as the pole-star or Polaris, a atar of the and magnit ude, describes a circle of \(2^{\circ} 25^{\prime}\) daily about the north pole; it has a gth-magnit ude companion, and is also a spectroscopic binary.

URSINS, marIE anNe de la tremollle, princess des (1642-1722), lady of the Spanish court, was the daughter of the duke of Noirmontier and his wife René Julie Aubri. She was born in 1642 , and was married young to Adrien Blaise de Talleyrand, Prince de Chalais. Her husband, having been concerned in the duel of four against four, in which the duke of Beauvilliers was killed in 1663 , was compelled to fly the country. He died soon afterwards in Spain, and his widow established herseif in Rome. In 8675 she married Flavio Orsini, duke of Bracciano. The marriage was far from har monious, but her husband left her his fortune. It brought her a series of lawsuits and troubies with Livio Odescalchi, who claimed that he had been adopted by the duke. At last the widow sold the title and estates to Odescalchi. She then assumed the title of Princess des Ursins, a corruption of Orsini, and was tacitly allowed to use it, thougb it had no legal existence. The Princess des Ursins had indulged in a great deal of unofficial diplomacy at Rome, more particularly with Neapolitans and Spaniards of rank, whom it was desirable to secure as French partisans in view of the approaching death of Charles II. of Spain, and the plans of Louis XIV. Ior placing bis family on the Spanish throne. Her services were rewarded in t 699 by a pension which her spendehrift habits made necessary to her. When Thilip, duke of Aajou, grendson of the French king. was declared heir by the will of Charles II., the princess took an active part in arranging his marriage with a daughter of the duke of Savoy. Her ambition was to secure the post of Camarera Mayor, or chiel of the houschold to the young queen, a mere child of twelve. By quiet diplomacy, and the help of Madamic de Maintenon, she succeeded, and in 1701 she accompanied the young queen to Spain. Till 1714 she was the most powerful person in the country. Her functions about the king and queen werc almost those of a nurse. Her letters show that she had to put them to bed al night, and get them up in the morning. She gives a most amusing description of her ensp barrassments when she had to enter the royal bedroom. laden with articles of clothing and lumiture. But if the Camarros Mayor did the work of a demestic servant. it was for a serious political purpose. She was expected to look alier French

Iterests in the peince, and to manage the Spanish nolles, many of whom were of the Austrian party, and who were gemerally opposed to foreign vays, or to interferences with the abourdly chaborate etiquette of the Spanish court. Madarme des Ursime was resolved not to be a mere agent of Versailles. During the first period of her tenure of office she was in'frequent conflict with the French ambassadors, who claimed the right of sitting in the council and of directing the govermment. Madame des Ursins wisely held that the young king should rely as much as possible on his Spanish suhjects. In \(\mathbf{1 7 0 4}\) her enemics at the French court secured her recall. But she still had she support of Madame de Mainterson, and her own tact enabled her to placate Louis XIV. In 1705 she retwrned to Spain, with a free hand. and with what was practically the power to name her own ministry. During the worst times of the war of the Spanish Succession she was the real head of the Bourben party, and was well aided by the spirited young qucen of Philip V. She did not hesitate to quarrel even with such powerful personages at the Cardinal Archbishop of Toledo, Portocarrero, when they proved hostile, but she was so far from offending the pride of the nation, that when in 1709 Louis the XIV., severely pressed by the allies, threatened, or pretended, to desert the cause of bis grandson, she dismissed all Frenchmen from the court and threw the king on the support of the Castilians. Her influence on the sovereigns was so strong that it would probably have kasted all through her IIfe, but for the death of the queen. Madame des Ursins coniesses in her voluminous correspondence that she made herself a burden to the king in her anxiety to exclude him from all other influence. She certainhy rendered him ridiculous by waching bim as if he were a child. Philip was too weak to break the yoke himself, and couid oaly insist that be should be supplied witb a wife. Madame des Ursins was persuaded by Alberoni to arrange a marriage with Eliza. beth Farase of Parma, hoping to govern the new queen as she had done the old. Elizabeth had, however, stipulated that she should be allowed to dismiss the Camarerd Mfayor. Madame des Ursins, who had gone to meet the new queen at Quadraque near the frontier, was driven from her presence with insult, and sent out of Spain without being allowed to change her court dress, in such bitter weather that the coachman lost his hand by frostbite. After a short stay in France, she went to Italy, and finally established herself in Rome, where she had the salisfaction of meeting Albctoni after his fall, and where she died on the sth of December 1722. Madame des Ursins has the credit of having begun to check the overgrown power of the church and the Inquisition in Spain, and of having attempted to bring che finances to order.
A readable life of Madame des Ursins was published in Paris in 1858 by N,F. Combes, and there is an English life by C. Hill. The Princess des Ursins in Spain (London. 1899). Sce her Lelles indiues, edited by A. Geoffroy (Paris, 1859), and har correspondence vith Madame de Maintenon (Paris, 2836).
URSIMOS, ZACRARTAS (\(1534-1583\)), German theologian, and one of the authors of the Heidelberg Cotcchism (p.v.), was born at Breslau on the 18 ith of July 1534, and became a distipie of Mclanchthon at Wittenberg. He afterwards studied divinity at Geneva under Calvin, and Hebrew at Paris under Jean Mercier. In 156: he was appointed professor in the Collegium Sapicntiae at lleidelberg, where in 1563 at the instance of the elector-palatine. Frederick III. he drew up the Coterhism in co-operation with Kaspar Oleving. The death of the elector in 1576 ied to the removal of Ursinus, who from 1578 till his death in 1583 occupied a professorial chair at Neustadtan-der-Haardt.

His Works were published in 1587-89. and a more complete edition by his son and two of his pupils. Pareus and Reuterus, in 1612.

URSULA, ST, and her companions. virgins and martyrs. are commemorated by the Roman Catholic church on the 21st of October. The Brctiary gives no legend; but in current works. such as Butler's Lives of the Saints. it is to the rffert that "' these holy martyrs seem . . . to have met a plorinus death in defence of their virginity from the army of the tluns. ...

They came originatly from Britain, and Ursuls was the comductor and encourager of the holy troop." The scene of the martyrdom is placed near the lower Rhipe.

The date has been assigned by different writers to 238, c. 28s and c. 451. Tbe story, however, is unknown both to Jerome and to Gresory of Tours-and this though the lateer gives a somewhat detailed description of the Cologne church dedicated to that Thebain legion with which the tradition of the martyred virgins was very early associated. The story of their fate is not catered under 21st October in the martyrology of Bede (ab. c. 735), of Ado (c. 858), of Usuard (ante 877), Notker Bat bulus (896) or Hrabanus Maurus (845); but a gth-century bif of St Cunibert (ob. 663) associates a prominent incident im the tife of this asint with the basilica of the sacred virgins at Cologne (Surius vi. 275, ed. 1575). Not only does Archbishop Wichfrid attest a grant to the church of the sencrod virgins outside the walls of Cologne (in 917), hut he was a large donor in his own person. Still earlicr a Cologne martyrology, written, as Binterim (who edited it in 1824) argues, betwoen 889 and 893; has the following entry under a sst October: "xi. virg. Ursule Seacie Gregorie Pinose Marthe Saule Britule Satnine Rabacie Saterie Paladie." Much shorter entrics are found in two of the old martyoologles printed in Migne (caxxulii. 1207, 1275). A more definite allusion to the legend may be found (c. 8 go) in Wandelbert of Prim's metrical martyrology (2 ist October):

> Tunc numerosa simul Rheni per littors fulgent
> Christo virgines erecta troppoa maniplis Atipringe urbi quarven furor impius olitm. Afilian ractavit ductricibus inclytz sanctis."

The full legend first makes lts appearance in \(a\) festival discourse (scrmo) for the a1st of October, written, as internal evidence seems to show, between 731 and 839 . This serme does not mention St Ursula, but makes Pinnosz or Vimmeim the leader of these spiriteal "r amasons," who, to avoid Maximian's persecution, left their taland home of Britain, Iollowing their bridegroont Chriat zowerds that East whence thcir faith had come a hundred years before. The concurrent traditions of Britain, Batavia, i.e. the Netherlands (where many chapeh still preserved their memory), and Cologne are called in evidence to prove the same origin. The legend was already very ald and the festival " nobis omni tempore celeberrima"; but, as all written documents had disappeared since the burning of the early church ereeted over the sacred bones, the preacher could only appeal to the continuous and carcful memory of the society to which he belonged (nosirales). Even in his time there were sceptics who pointed dubiously to the full-grown bones of "widows" and of men among the so-called virgin relica. The author of the sermo pointedly rejects the two theories that connected the holy virgins with the Theban band and brought them is pilgrims from the East to the Wcat; but be adds that even in his days there still existed an Inscription in the church, showing how it had been restored from its foundations by 2 certain "Clematius, tir consularis, ex partibus Orientis."

Two or three centurics later the Passio XI. MM. SS. Virginum, based apparently on the revelations made to Helentrude, a nan of Heerse near Paderborn, gives a wonderful increase of detail. The narrative in its present form may date somewhere between 900 and 1100 , while Ilelentrode apparently flourished before 1050 . According to her account, the son of a powerful pagan king demands in marriage Ursula, the beautiful daughter of Deonotus, a king " in partibus Britanniace." Ursula is warned by a dream to demand a respite of three years, during which time her companions are to be 11,000 virgins collected from both kingdoms. After vigorous excrcise in all kinds of manly sports, to the admiration of the populace, they are carried of by a sudden brecze in eliven triremes to Thiet on the Waal in Gelderland. Thence they satil up the Rhise by way of Cologne to Basel, at which place they make fast their vessels and procerd on foot to Rome. Returning, they re-eater their ships at Basel, but are slaughtered by the Huss when they reach Cologne. Their relics are then collected and buried "sicut hodie ilic est cemere," in a spot where " to this day"
no mesmer sepalture is permited. Then follows the usual allusion to Clematius; the date is expressly fixed at 238 , and the whole revelation is seemingly ascribed to St Cordula, one of the 11,000 who, after escaping death on the first day by hiding in one of the vessels, on the morrow gave herself up to death of bet own accord. Towards the beginning of the i2th century Sigebert of Gembloux (ob. 1112) gives a brief ptsume of the same story. He is the first to introduce the name of Attila, and dates the occurrence 453.

Passing over the visions and exhumations of the first half of the \({ }^{\text {rith }}\) century, we come to the singular revelations of St Elizabeth of Schönau. These revelatons, delivered in Latin, German or a mixed jargon of both languages, were turned into simple Latin by Elizabeth's hrother Egbert, from whose words it would scem that in 1156 an old Roman burialground had lately been laid open near Cologne. The cemetery was naturally associated with the legend of St Ursula; and, this identification once accepted, it is not unlikely that whan more careful investigations revealed male skeletons and tombstones bearing the names of men, other and more definite opitsphs were invented to reconcile the old traditions with the facts of such a damaging discovery. Hence perhaps the baretaced imposture: "Cyriacus, papa Romanus, qui cum gaudio suscepit sanctas virgines et curn eis Coloniam reversus martyrium suscepit." One or twocircumstantial forgeries of this kirth would form the basis of a scheme for explaining not a few other problems of the case, such as the plain inscription "Jacobus," whom St Elizabeth promptly transformed into a supposititious British archbishop of Antioch, brother to the equally jmaginary British Pope Cyriacus. For these epitaphs, with others of a humbles kind, were brought before St Elizabeth to be identified in her ecstatic converse with St Verena, her cousin St Ursula, and others. Elizabeth herself at times distrusted ber own revelations: there was no Cyriac in the list of the popes; Antherus, who was said to be his successor (235-36), died more than two centurics before Attila, to whom common report assigned the massacre; and it was hardly credible that James of Antioch could cut 11,000 epitaphs in less than threc days. Every douht, however, was met by the invention of a new and still more improbable detail. According. to St Verena, the virgios suffered when Maximus and "Africanus " were principes at Rome (\({ }^{3}\) 387-88).
In 1183 the mantle of St Elizabeth fell upan Hermann Joseph, a Priemonstratensian canon at Steinfeld. He had to solve a more difficult problem than St Elizabeth's; for the skeletons of little children, ranging in age from two months to seven ycars, had now been found buried with the sacred virgins. But even such a difficulty Hermann explajos away: the little children were hrothers, sisters or more distant selatives of the 11,000. Hermann's revelations are mainly taken up with an attempt to show the mutual relationship of nearly all the characters he introduces. The mames are a most extraordinary mixture. Amogg British bishops we have Michaet, William, James and Columbanus. Sovereign princes-an Oliver, a Clovis and a Pepin-start out in every page, till the writer finds it necessary to apologize for the number of his kings and his own blunders. But, for all this, Hermann exposes his own doubts when he tells that often, as he was preparing to writc, he heard a voice hidding him lay down the pen, "for whatever you write will be an unmixed lie." Iiermann makes St Ursula a native of Brittany, and so approximates to the version of the story given by Geoffrey of Monmouth (Historia Britonum), according to whom Maximian, after flecing from Rome and incquiring Britain by marriage, proceeds to conquer Brittany and wetle it with men from the island opposite. For these settlers he has to find British wives, and to this end collects 14,000 moble nad 60,000 plebeian virgins, who are wrecked on their passage across. Certain of the vessels being driven upon "harbarous islands." their passengers are slain by Guanius and Mclga, Wrangs of the Huns and Picts," whom Gratian had called in then against Maximian. In this version St Ursula is Pil Diopotus, king of Cornwall. Hermann alludes
-more than once to the Bistoria Britonnm, and even to King Arthur.
The legead of St Ursula is perhaps the most curious instance of the development of an ecclesiastical myth. Even in the earliest form known to us this legend is probably the complex growth of ceaturies, and any chaim to the discovery of the first germ can haardly approve itself to the historic sense. These remarks apply espocially to that venerable rationalization which evolves the whole legend from a miareading of Undecimilla, the name of Ursula's companion, into undecim millia, i.e. ir,000. A more modern theary makes St Ursuln the Christimnized representative of the old Teutonic poddess Freya, who, is Thuringia, under the name of Hörsel or Ursel, and in Sweden Old Urschel, welcorned the souls of dead maidens. Not a few singular coincidences seem to point in the same direction especially the two virgins, "Maxtha and Saula," whom Usuard states to have'suffered "cum aliis pluribus" on the 20th of October, whence they were probably transierred to the zist. It is curious to note that Jeromic and many of the earliest martyrologies extant have on the mist of October the entry, "Dasius Zoticus, Gaius cum duedecim miliibus." Even in copies of Jerome this is transformed into millibur; and it is perhaps not impossibile that to this misreading we may indirectly owe the "thousands" in the Ursule legend. The two entrics seem to be mutually exclusive in all the early martyrologies mentioned in this article, and in those printed io Migne, coxxvii. The earlier "Dasius" entry secms to disappear steadily, though slowily, as the Urssla legead works its way into current martyrologies.
See H. Crombach, Vite et Martyrism S. Ursulat (Cologne, 8647). and the Bollandist Acla Sonctotum, 21 st Octaber, where the ciory fills 230 folio pages. The rationalization of the story is to be found in Oscar Schade, Dic Sage mon der heiliger Ursula (Hanover, 1854). of which there is a short resume in \(\mathrm{S}_{\mathrm{P}}\). Baring. Could's Lives of 1 d Saints. Ser also S . Barine Gould, Popular M (xhs of the Middh Azes: A. G. Stein, Dis Heilige Ussula (Cologne, 1879). The credibility of some of the detaith was doubted as carly as the \(13^{\text {th }}\) century by Jacolbus de Voragine in the Legenda a.arra. For furher works, especially medieval, see A. Potthast. Bithiothica hist. med. acoi (Berlin, 1896), p. 1616.
(T. A. A.: A. J. G.)

URSULINES, a religious order founded at Brescia by Angela Mcrici (\(1470-1540\)) in November 1535 , primarily for the education of girls and the care of the sick and peedy. It was approved in 1544 by Paul III., and in 1572 Gregory XIII., at the instance of Charles Borromeo, declared it a religious order under the rule of St Augustine. In the following century it was powerfully encouraged and supported by Si Francis of Sales. In most cases, especially in France, the sisters adopted coclosure and took solcmn vows; they were called the "religious" Ursulines as distinct from the "congregated" Ursulines, who preferred 10 follow the original plan. There were Ursulipes in Canada in 1639, who taught the catechism to Indian children, and subsequently helped to preserve a religious spirit among the French population and to humanize the. Indians and hall-breeds Towards the beginning of the 18 th century, the period of its greatest prosperity, the order embraced some 20 congregations, with 350 convents and from 15,000 to 20,000 nums. The members wear a black dress bound by a leathern girdle, a blark slecveless cloak, and a close-fitting head-dress with a white veil and a longer black veil. Their patron is the St Ursula mentioned above. The founder was beatified by Clement VIII. in 1 :cs and canonizod as St Agres of Brescia by Pius VII. in 150 ; The Irish Ursulines were established at Cork in 1771 by Miss Nano Nagle. The Ursulines do not increase now as rapidly as they did, congregations taking simple vows like the Sisters of Mercy being apparently more adapted to modern needs.
DRSWJCK, CHRISTOPHER (1448-1522), English diplomatist, was born at Furness in Lancashire and was probably educated at Cambridge. He became chaplain to Margaret. countess of Richmond and Derhy, and was amployed by her to forward the schemes for securing the English throne for her son, Henry of Richmond, alterwards Henry VII. He crossed from Harfleus to Walcs with Henry in August 488 , and was present at the
battle of Bosworth; then followed for him a series of ecclesiastical preferments, the most important of which was to the deanery of York. He was seat on several weighty embassies, including one to Ferdinand and Isabella of Spain to arrange the marriage between I'rince Arthur and Catherine of Aragon, and annther to France in 1492, when he signed the treaty of Etaples. In \(14 \times 5\) be became dean of Windsor, and he died on the 24 th of March 1522. Urswick was very friendly with Erasmus and with Sir Thomas More. He dil some building at Windsor, and one of the chapels in St George's chapcl there is still called the Urswick chapel. U'rswick's kinsman, Sir Thomas U'rswick, was a Yorkist partisan, who was recorder of London and chief baron of the exchequer.

Sce U'rswick, Records of the Family of Urwick or Urswick (1893).
URTICACEAE (nctile family), in botany, an order of Dicotyledons belonging to the scries Urticiflorae, which includes also Ulmaccac (clm family), Moraccae (muluerry, fig, \&c.) and Cannabinaccae (hemp and hop). It contains 4 I genera, with about 500 species, maialy tropical, though several specics such as the common stinging nettle (Untica dioica) are widely distributed and occur in large numbers in temperate climates. Two genera are represented in the British Isles, Urica (sce Netrie) and Puricharia (pellitory, q.o.).

The plans are generally herbs or somewhat shrubby, rarely, as in some tropical gencra, forming a bush or trec. The simple, of en serrated, leaves have somerimes an alecrnate sometimes an opposite arrangement and are usually slipulate-exstipulate in Parielaria. The position of the stipulos varies in different genera; thus in Urtice they are laveral and distince from the leaf-stalk, in other cases they are attached on the base of tha leal-stalk or stand in the leaf-axil when they are more or less uniled. Seinging hairs often occur on the stem and leaves (fig. 1). The bast-Gbres of the

Fig. 2.-Male Flowerot the Neithe (lintica). The four scials are arranged sym. melicically, an outer median and an inner Literal pair. A stamen is mpponite each sepal. andl in the rentre of the flower is the rudiment of a pisul.

 Thas of Beosey. Dy Dermiawiog of \(S=20\) Sonneancrin \& Ca
Fig. 3.-A staminal (\(\sigma^{\circ}\)). \(B\) carpellary (b) flower of the Nertice p, perianth: \(a\), stamen: \(n\). rulimentary ovary of the " "lower: ap, outer. ip, inner, whopl of the perianth; \(\pi\). stigma of the \& flower (enlarged).
seem are generally long and firmly attached end to end, and hence of great value for textile mse. Thus in ramie (q.e., Amphmeria nirva) a single fibre may reach nearly 9 in. in lenget, and in stinging nettle \(a 5\) much as 3 in . The small inconspichous reqular flowers (fige 3 and 4) are arranged in definite (cymosc) inflorescences aften crowded
 dioecious. The four or five green perianth leaves (or sepaly) are free or more or less united; the male flowers (fig. 2) contain an many stamens, opposite the sepals, which bend inwards in the bud

Fig. 4.-Urtica mrens (alter Cartis, Flowa Lomdinensis). 1, male fower; 2, female fower in froiting singe- the dry compreseed frult 3 escaping from the pervisecat periamth; 4 , fruit cut open, revealing the seed within the large araight enbryo e. 1, 2, 3, calarged.
stage, but when mature apring backwards and outwards, the anther at the ame time exploding and ecattering the polien. The flowers are thue adepted for wind-pollination. The female flower contaias one carpel bearing owe style with a brush-like stigma and containing a ningle crect orule. The fruit is dry and ooperceded: it is often encloved within the pervistent perianth. Tbe straight embryo is murtounded by a rich oily eodouperim.

URUGUAY (officially the Oricneal Republic of the Uregmay. and long locally called the Bonda Oricrial, meaning the Land on the castern side of the river Uruguay, from which the country takes its name), the smallest independent state in South America. It runs conterminous with the soutbern border of Brazil, and lics between \(30^{\circ}\) and \(35^{\circ} \mathrm{S}\). and between \(53^{\circ} 25^{\circ}\) and \(57^{\circ} 42^{\prime} \mathrm{W}\). (for map, see Axcentina). It has a seaboard no the Atlantic Occan of 120 m. , a shore-line to the sourh in the Rio de ln Plate of 235 m , and one of 270 m . along the Uruguay on the west. The boundarics separating it from Rio Grande do Sul, a province of Erazi, are Lake Mirim, the ivers Chuy, Jaguarao and Quarahy, and a cuchillo or Iow ange of hills called Santa Aon. The extent of the northorn eronticr is 450 mm . The southern half of the country is mostly andulating grass land, well watered by streams and aprings. The porthern section is more broken and rugged; barren fidges and low rocky mountain-ranges, interspersed with ertile valleys, being its characteristic features. There is no lorest, timber of any size being found only in the valleys near unning water. Uruguay is intersected nearly from west to sorth-ast by the river Negro and its affluent the Yi. The Uruguay is navigable all the year by steamers from the ialand
of Martin Carcia at the mouth to Salto (200 m.). Above this place the navigation is imerrupted by rapids. The ordinary volume of water in the Uruguay averages it millions of cub. ft. per minute. Excluding the Uruguay, the Negro, of which the principal port is Mercedes, is the principal navigabie river. Others are navigable only for short distances by steamers of light draught. Besides the rivers mentioned, the chief streams are the Santa Lucia, which falls into the Plata a little west of Montevideo; the Queguay, in Paysandú; and the Cebollati, rising in the sierras in Minas and flowing into Lake Mirim. These rivers as weil as the Uruguay are fed by innumerable smaller streams or arroyos, such as the Arapey in Salto, the Dayman in Paysandü, the Jaguary (an afluent of the Negro) in Tacuarembo, the Arroyo Grande between the departments of Soriano and San Jose, and the San Jose (an aflluent of the Santa Lucia). None of the sierras or mountains in Uruguay exceeds (or perhaps even altains) a height of 2000 ft.; but, contrasting in their tawny colour with the grassy undulating plains, they loom high and are often picturesque. They are ramifications of the highlands of Brazil. The main chains are the. Cuchilla de Haedo on the north and west and the Cuchilla Grande on the south and east.

Geology.-Littie is known of the geology of Uruguay. There is a foundation of schists and erystalline rocks upon which rests a series of sandstones. The tatter is, no doubt, identical with the similar sandstone series which is found in the neighbouring Brazilian province of Rio Grande do Sul, and which has there yielded plants which prove it to belong to the Permian or the upper part of the Carboniferous. The plains are covered by a formation similar to that of the Argentine pampas and by the alluvial deposits of the present rivers.

Climate--Uruguay enjoys the reputation of possessing one of the most healthy climates in the world The geographical position ensures uniformity of temperature throughout the year, the summer heat being tempered by the Aclantic breezes, and severe cold in the winter season being unknown. Endemic diseases are unknown and epidernics are rare. In the interior, away from the sea and the shores of the greal rivers, the temperature rroquently rists in summer to \(86^{\circ}\) F. and in winter ralls to \(35^{\circ} \cdot 6\). In the districts bordering on the coast the thermometer seldom fants below \(37^{\circ}\) : and only for a few moments and at long intervals hias it been known to rise as high as \(105^{\circ}\). The annual rainfall is about 43 in .
Flore.-The pastoral wealth of Uruguay, as of the neighbouring Argentine Republic, is due to the fertilizing constilutentsol." pampa mud." geologically associared with gigantic antediluvian animals. whoec oossil remaina are abundant. The country is rich in hard woods, suitable for cabince work and certain building purposes. The principal trees are the alder, aloc. palm, poplar, acaria, willow and eucalyptus. The montes, by which are understood plantations as well as native thickets. produce among other woods the algarrobo. e poor imitation of oak: the guayabo, a substitute for boxwood; the quebracho, of which the red kind is compared to sandalwood: and the urunday, black and white, nor unlike rosewood. Indigenous palms grow in the valleys of the Sierra Jose lgmacio, almo to sonne extent in the departments of Minas, Maldonado and Paymandu. The myrde, rosemary, mimosa and the scarlet-flowered ceibo are common. The valleys within the hill ranges are fragrant with aromatie shrubs. In the plains below, the swards are gay with the scarlet and white verbena and other brilliant wild fowers. The country abounds in medicinal plants. The sarsaparilla even colours. the water of the Rio Negro and gives it its name-the " black river."

Famna-Among wild animals the tiger or ounce-calked in the Guarani language the fogud or "big dog "-and the purna are found on the frontier of Brazil and on the wooded islors and banks of the larger rivers. The tapir, fox, deer, wild cat, wild dog, carpincho or water hog and a few small rodents nearly complete the liss of quadrupeds. A litte armadillo, the mulita, is the living repreentative of the antediluvian giants Myodom, Megotherium, \&ic. The ostrich-Rhea americam-roams cutrywhere in the plains; and there are a fcw spocimens of the vulture tribe, a native crow (lean, tall and ruffed), partridges and quails. Parakeets are plentiful in the montes, and the tagoons swarm with waterfowl. The most eateemed is the pato reaf, a large duck. Or the birds of bright plumage the humming. bird and the cardinal-the scarlet, the yellow and the white-are the most attractive. The fish of the lagoons and streams are coarse, and some of them primitive in type: but two or three kinds, found generally in the large rivers, are much prized. The varieties of fish on the wea coast are many and excellent. More than 2000 species of insects have leen classified. The scorpion is rare, but larse and veromous spiders are comonon. The principal reptiles are a lizard, a tortoise, the titora de la crus (a dangerous Yiper, so called from marks like a crose on its head) and the ratue-

Ares and Population.-The area of the republic ta eximatel at \(72,210 \mathrm{sq} . \mathrm{m}\)., and has a popalation of \(2,042,063\) according to the census of 1908 (in 1900 it wat 915,647). The country is divided into 19 departments, the area and the population of which, according to the census of 1908 , are given in the subjoined lable:--
\begin{tabular}{|lllll|l|l|}
\hline & Departments. & & \\
\hline
\end{tabular}

The average density of population on the above fgures is 12.9 per sq. m., ranging (exclusive of Montevideo) (rom 47.9 in Canelones to 5.8 in Tacuarembo and 6 in Artiges. The greal majority of the loreign population are: Italians or Spaniards, with lesser numbers, in descending scale, of Brazilian, Argentine and French birth. British, Swiss and Germans are comparatively lew. In 1907, 26, ios Italian immigrants arrived, 21,927 Spanish, 2355 British, 2315 French and 1823 German.
The matives of Uruguay, though living in conditions similat to those of the Argentine population, are in gencral more reserved, showing more of the Indian type and less of the Spaniard. In the north there is a strong Brazilian element and the people are intensely conservative. The average annual birth-rate is about 35 per 1000 , and the death-rate about 15.5 . About \(26 \%\) of the hirths are illegitimate. The principal towns are Montevideo, Salto, Paysandú and San José.

Agricullare.-The condition of agriculture is fairly satisfactory, In 1885 Uruguay imported most of her breadstuffs: now not only is wheat grown in sufficient quantitics to meet the local demand. but a surplus (about 20,000 metric tons in 1908-9) is annually available for export. Land Jor 「arming purposes is expensive, and wages are high, leaving small profit, unless it happens that a man. with his family to assise him, works his owin land. The farmers a are ehiefty Italians, Canary Islanders and Frenchmen. The priscipal crops in addition to wheat are oats, barley, maize, linseed and bind seed. Since 18 go the cultivation of the grape and the manulacture of wine have considerably extended, especially in the department of Salto, Montevideo, Canelones and Colonia. Red wine, 2 smaller quantity of white, grape alcohol and wine akcohol are produced. The olive-planting industry is becoming important: the trees thrive well, and the amea devoted to their cultivation is annually increasing. Tohacco is also cultivated.
Cattle breeding and sheep-farning, however, are the principal industrics. The lands are admirably adapied for catilebreeding purposes, alt hough not capable of fattening animals. The caite are destined chiefly for the saladero establishments for the preparation of tasajo, or jerked beef, for the Brazilian and Cuban markers, and for the Liebig factory, where large quantities of extract of meat are prepared for the European trade. Cattle-breeding is carried
on in all parts of the republic, but chicly in the departments of Salto, Paysandú and Rio Niegro. In the southern disericts where the farmers are Europeans, the breed of catile is being steadily improved by the introduction of Durham and Hereford bulla Daity-farming is making some progress, eopecially in the Swis colony near San Joos.
Sheep-farming flourishes chiefly in Durazno and Soriana. Uruguayan wool is favourably rexarded in foreign markets on account of the clean ssate in which it is sbipped, this being largely due to the natural conditions of the land and climate. The busincse of ahipping live shẹp and frozen multoa has not been attempted
 at the port of Montevideo or elsewhere.

Miwing. -Minerals are known to exist in the northern eection of the repoblic, and gold-mining is carried on to a small extent. Expert opiaiona have been advanced uating that gold-mining in Uruguay is capable of developmemt into an important indusery. The other minerals found are silver, lead, coppor, magnesion and lignite coal.
Commerce.-The economic development of Uruguay was retarded by the comption of aucceesive governments. by revolutionary outbreaks, by the wisure of farm stock, withourt adequate compensenion, for the support of military forces, by the consequences of reckless borrowing and over-trading in 1889 and 1890 and also by the transference of commercial undertakingy from Aiontevideo to Buemos Aires between 1890 and 1897, on the opening of the harbour and docks at that port. The annual value of the imports (4.7 dollars taken at \((1)\) was \((5, t 01,740\) in 1900 and \(67,365.703\) in 1908; that of exports was \(06,257,600\) in s900 and \(\mathbf{6 2 , 9 3 2 , 0 2 6}\) in 190s.
The principal imports consist of machinery, textiles and clothing, lood substances and beverages, and live stock. The chief exports are anlmal products and agricultural producta Of the imports about \(27 \%\) in value are from Great Britain, \(14 \%\) from Cermany, and smaller proportions Irom France, Argention, Italy, Spain, the United Scates and Belgium. Of the exports, France, Argentina, Belgium and Cermany take the bulk. Trade is controlled by foregners, the British being prominent in banking, finance, railway work and the higher branches of commerce; Spaniards, Italians and French in the wholesalc and retail trade. Uruguayans find an insignificant place in commerce. The loreign trade passes mainly through Montevideo, where the port has been greatly improved.
In addition to the natural lines of commernication provided by the river bordcring on or betanging to the republic, there are about 2240 m . of national road, besides more than 3000 m . of departmental roads. The railways had a tength of 1380 m . open for traffic, and the system is readily extending. There are over 170 m . of tramway in operation.
Conernment.-The legislative power of the state rests with the general assembly, consisting of two chambers, one of senators (19 in number) and one of representatives (75). The deputies of the lower house are elected for three years directly by the people, one deputy for every 3000 male adults who can read and write. One senator is named for each department by an electoral college, whose members are elected directly by the people. The senators are elected for six years, and one-t hird of their number retire every two years. The executive power is exercised by the president of the republic, who is elected by the general assembly for a lour years' term. He is asisted by a council of ministers representing the departments of the interior, foreign affairs, Gnance, war and marine, industry, labour and instruction and public works. Each department or province of the republic has a governor appointed by the executive, and an administrative council; whose members are chosen by popular vote. The judicial power is vested in a high court and many subordinate courts. The general assembly elects the five judges who compose the high court. There are civil, commercial and criminal courts in Mlontevideo, a departmental court in each departmental capital, and a justice of the peace in each of 205 judicial districts into which the republic is divided, with sub-district courts under deputy judges in addition. The administration of justice in Uruguay has long beets of bad repute. It was reformed on the above lines in \(\mathbf{t 9 0 7}\).

Edreation is much neglected. and the public-school system is becficient. The attendance of children at the schools is small, and the instruction they receive is inferior. Primary instruction is nominally obligatory: nevertheiess at the beginning of the zorb century nearly half the population over six years of age was illiterate. Montevideo possesses a university and a number of preparatory chools, a wate-supported technical whool and a military eollege. The atate religion is Romas Catholic, and there is an archibishop of Montevideo with tro suffragen bishopa. A number of seminaries are maintaised throughout the republic. Other religions are colerated.

Army.-There in a standing army with a peace strenth of about 2000 oficent and men. Service is nominally voluntary. though it appears that a certain amount of compulsion is cexercizod. In addition to this there is compulsory ecrvice in the National Guard (a) in the first class, consisting of men bet ween reventeen and thinty years of age, liable for scrvice with the slanding army. and number Hy some 15,000; (b) in the second clasa. for deparmennal service only, except in to tar as it may be drawn upon to make up losses the the more active units in time of war, consisting of men from thirty to forty-fove years of age. and (\((\)) in the thind clase, for local garrisoa
duty, consisting of men between forty-five and sixty years old. The arm: in: patarl jre telt expuipped with modurn arms.
 customs duties, taxes being levied also on real cstate, ficences, tohacco, stamped paper and in other ways. Nearly hall the ex. penditure goes to nivet dibt charges, while governmem, internal development and defence abeorb moet of the remainder. The receipis for the ycars specified were as follows, Uruguayan dollars being converted into sterling at the par value, \(4 \cdot 7=\) Li:-
\begin{tabular}{|c|c|c|}
\hline Years & Revenue & Expenditure. \\
\hline \(1894-1895\) & \(\mathbf{6 3 4 0 3 . 3 2 4}\) & \(\ldots\) \\
\(1899-1900\) & 3.236 .300 & \(\ldots\) \\
\(1904-1905\) & \(3.438,300\) & \(\mathbf{C 3 . 4 3 8 , 5 1 0}\) \\
\(1909-1910^{2}\) & \(4.971,660\) & \(4,704,500\) \\
\hline
\end{tabular} \({ }^{1}\) Estimate.
In \(\mathbf{1 8 9 1}\), when the debt of the republic a mounted to \(887,789,973\), or about \(4: 8.678,710\), the government suspended payment of interest, and an arrangement was made with the bondholdera A new comsolidated debt of \(\{20,500,000\) was insued at \(31 \%\) interent. and, as security for paymeat of inserest, \(45 \%\) of the customasecripts at Montevidoo was assigned. At the same time the interest guaranteed to the milway companies was reducod from 7 to \(31 \%\) In 1806 a \(5 \%\) loan of \(11,667.000\) was issucd, and the debt was subsequently increased, until on January 1, 1909, it was \(\{27,692,795\), and ia the same ycar the annual debt charre anrounted to \(6,185,347\).

The Bank of the Republic was emablished in 1896 with a nominal capital of \(\$ 12,000,000\), and in 1899 it roccived the right to issue further shares amounting to \(\$ 5,000,000\). Its note issue (for which it has an exclusive right) may not exceed the value of half the subocribed capital. Besides a number of local banke, braoches of German. Spanisho Freach and several British banka are established in Montevideo.
There is no Uruguayan gold coin in circulation, but the theoretical monetary unit is the gold peso nacional, weighing 1.697 grammes 917 fine. The ailver pewo weighs 25 grarmes, 900 one. A hatr. Ifth and tenth of a peso are coined in silver, in addition to bronse coins.
The metric system of weights and measures has been officially adopted, but the old Spanish syztem is still in general use.
Hislory.-In i5:2 Juan Diaz de Solis entered the Paranaguazu or "sealike" estuary of the Plata and landed about 70 miles east of the present city of Montevideo. Uruguay at that time was inhabited by Indians, of whom the dominant tribe was calfed Charraz, a people desctibed as physically strong and well-formed, and endowed with a natural nobility of character. Their habits were simple, and they were disfigured neither by the worst crimes nor by the primitive superstitition of savages. They are said to have revealed no vestige of religion. The Charruas are generally classified as a yellow-skinned race, of the same family as the Pampa Indians; but they are also represented as tanned almost black by the sun and air, without any admixture of red or yeliow in their complexions. Almost beardless, and with thin eycbrows, they had on their heads thick, black, lustrous hair, which neit her fell off nor turned grey until extreme old age. They lived principally upon fish, venison and honey. In the Guarani language "Charrua " means turbuIent, and by their enemies the Charruas were accounted as such, and even ferocious, although admitted to be generous to their captives. They were a curiously taciturn and reticent race. Theit weapons were the bow and arrow and stones.

Solis, on his second visit, : 5 15-1 516, was slain by the Charruas in Colonia. Eleven ycars later Ramon, the licutenant of Sebastian Cabol, was defeated by the same tribe. In 1603 they destroyed in a pitched battle a veteran force of Spaniards under Saavedra. During the next fifty years three onsuccessful attempts were made by the Spaniards to subdue this courageous people. The real conquest of Uruguay was begun under Philip III. by the Jesuit missions. It was gradually consummated by the military and commercial settlements of the Portuguese, and subsequently by the Spaniards, who established themselves formally in Montevideo under. Governor Zavala of Buenos Aires in 1726, and demolished the rival Portuguese settement in Colonia in 1777 . From 1750 Montevideo enjoyed a provincial govermment independent of that of Buenos Aires. The American rebellion, the French Revolution and the British invasions of Mfontevideo and Buenos Aires (1 Bo6-7), under Gemernis Auctimutr(1756-1822) and John Wriciocke (\(1757-1833\)),
all contributed to the extinction of the Spanish power on the Rio de la Plata. During the War of Independence, Montevideo was taken in 1814 by the Buenos-Airean general Alvear (see further Monrevineo). A long struggle for dominion in Uruguay between Brazil and the revolutionary government of Buenoe Aires was concluded in 1828, through the mediation of Great Britain, Uruguay being declared a free and independent state. The republic was formally constituted in 1830 . Subsequently Juan Manuel Rosas, dictator of Buenos Aires, interfered in the intestine quarrels of Uruguay; and Montevideo was besieged by his forces, allied with the native partisans of General Oribe, for nine years (1843-52).

After the declaration of independence the history of Uruguay becomes a record of intrigues, financial ruin, and potitical folly and crime. The two great political factors for generations have been the Colorados and the Blancos. So far as political principles are concerned, there is small difference between them. Minn are Colorados or Blancos largely by tradition and not from political conviction. The Colorados have held the government for many years, and the attempts of the Blancos to oust them have caused a series of revolutions. The military element, moreover, has frequently conspired to elect a president amenable to its demands. In 1875 General Latorre headed a conspiracy against President Ellauri and at first placed Dr Varela in power as dictator, but in 1876 proclaimed himself. In the following year Latorre caused himself to be elected president, but political unrest caused him to resign in March 1880 . The president of the scnate, Dr Vidal, nominally administered the government for two years, when General Santos, who had held the real power, became president. His administration was so vicious and tyrannical that the opposition organized a revolution. Their forces, however, were surprised by the governmen: ttopps at Qucbracho, on the Rio Negro, ant defeated. Ulinnately the Colorados themseives exiled Santos. He had plundered the national revenues and scorned constitutional government. The Colorados now made General Jajes president, the practical direction of the administration being in the hands of Julio Herrera y Obes. In March 1890 General Tajes handed over the presidency to Herrera y Obes, a clever but unscrupulous man, who filled every official post with his own friends and ensured the return of his supporters to the chamber In 1891 he was obliged to suspend the service of the public delot and make arrangements by which the bontholders accepted a reduced rate of interest. The country was at this period conducted practically as if it were the private estate of the president, and no accounts of revenue or expenditure were vouchsafed to the public. In 1894 the Colorados nominated Schor Idiarte Borda for the presidency. He seerned at first inclined to govern honestly, but corruption soon became as marked as under the preceding regime. The Blancos, using the fraudulent elections in 1896 as a pretext, now broke out in armed revolt under the Ieadership of Aparicio Saraiva. The president made no altempt to conciliate them, and in Marsh iS97 a body of goverament troops suffered a reverse. On the 25 th of August 1807 Borda, after attending a Te Deum at the cathedral in Montevideo, was shot dead by a man name Aredondo, who was sentenced in 1899 to two years' imprison ment. The defence was that the murder was a political offentu and therefore not punishable as an ordinary case of assassination for personal motives

The president of the senate, Juan Cuestas, in accordance with the constitution, assumed the duties of president of the republic. Ile arranged that hostilities should cease on the conditions that representation of the Blancos was allowed in Congress for certain districts where their votes were known to predominate; that a certain number of the jefes politicos should be nominated from the Blancos; that free pardon be extended to all who had taken part in the revolt; that a sufficient sum in money be advanced to allow the seltlement of the expenses contracted by the insurgents; and that the clectoral law be reformed on a basis allowing the people to take part frecly in elections Cucstas, on attempting to reform corrupt practiocs, was soon
threatened with another revolution, and on the 10 th of Februng 1898 he assumed dictatorial powers, dissolved the Chambers and suspended all constitutional guarantees. In the following year he resigned and was re-elected to the presidency on the ist of March 1899. His second term was marked by premonitions of further disorder. In July 1902 a plot for his assassination was Irustrated, and in 1903, on the election of Jose Batule to the presidency, civil war broke out. On Septeraber 3. 1904, the revolutionary general Saraiva died of wounds received in battle; and later in the year peace was deciared. Claudio Wultiman became president in 1907. The Colorados favoured Battle as his successor, and before the elections to the chamber in November 1910 the Blasos were again is arms.
See F. Bauza, La Domitacion Espafiola en ed Urypuay (Montevideo, 1880): F. A. Berro. A. de Vedia and M. de Pena, Album de la Republica Oriental del Uruguay (Montevideo, 1882); R. L- Lomla, La Republica Orential ded Uruguay (Mantevideo. 1884); The Urmenay Republic. Territery and Condilions, reprinted by ordet of the Consuf General of Uruguay (London, 1888); V. Arreguine, Historia dal Urweuay (Montevideo, 189z): M. G. and E. T. Mulhali, Handbook of the Riser Plata (London, 1892); H. Roustan and C. M. de Pena, Uruguay en la Exposicaon ... de Chicago (Montevideo, 1893): O. Aranjo, Compendio de la Geografia Naciona! (Montevideo, 1894): Uruguay, its Geography, History, \&c (Liverpoal, 1897): P. F. Martin. Through Fire Repzbics (London, 1905) ; Anuario Estadistice and A nuario Demografico (official. Monsevideo): British and American Consular Reporls; Publications, Bureau of American Republics.
URUGUAYANA, a city and river port of the state of Rio Grande do Sul, Brazil, on the. Icit bank of the Uraguay river, 348 ft . above sea-level (2 t the R. R. station) and about 360 m . in a direct line W. of Porto Alegre. Pop. (1900) 13,638 . A railway connects with Quarahim (47 m .) on the Unuguayan Irontier, and thence by a Uruguayan line with Montevideo by way of Paysandil. The same line extends N. \(62 \mathrm{~m} . ~\) to the naval station of Itaquy. A cross-country line was under construction in 1009 to Cacequy, which is in direct communication with Porto Alegre and the city of Rio Grande. The upper Uruguay is navigable from the Quarahim to the town of Siso Tomé, and small river steamers ply regularly between Ceibo, on the Argentine side, and the latter. Opposite Uruguayana is the Argentine town of Restauracion, or Paso los Libres. The river is 1 m . wide at this point, and 154 ft . above sea-devel. Uruguayana is prettily situated on 2 low hill rising gently from the riverside and its low houses are surrounded by orange groves. There are large military barracks near the shore, a theatre and a eustom-house. The surrounding country is chiefly pastoral, but there is 2 small area under vineyards, and in addition to grapes some other fruits are produced. Uruguayana was captured by a Paraguayan force under General Estigarribia on the 5 th of August 1865, and was recaptured without a fight by the allied forces under General Bartolome Mitre on the \(\mathbf{8} \mathrm{sh}\) of Scptember. The l'araguayan occupation left the town partially in ruiss, and it remained in a decadent condition untid near the end of the century, when reviving industries in the state and a renewal of railway construction promoted its commercial activity and growth.

USAS (from the root vas, to shine, and cognate to Latio Aurora and Greek 'llẅs,) in Hindu mythology, the goddess of dawn. She is celelirated in some twenty hymns of the Ris Veda, and is the most graceful creation of Vedic poetry. Sime is borne on a shining car drawn by ruddy cows or bulls. She is the daughter of the sky and the sun is her lover. She is described as "rising resplendent as from a bath, showing ber charms she comes with light . . . cver shortenint the ages of men she shines forth . . . she reveals the paths of men and bestows new life: . . she opens the doors of darkness as the cows their stalls." Scarcely the name of the goddess survives to-day, so complecely was she associated with the Vedism lons dead and gone.
See A. A. Macdonett, Vedic Mythology (Strassburg. 1897).
USEDOM. an island of Germany, in the Prussian province of Pomerania, lying of the Baltic coast, and separated by the Swine from the island of Wollin, which together with it divides the Stetiner Half from the open sea. It is 31 m . in lengith

13 hroad and 160 sq. \(m\). in area. The-surface is gemerally flat (only a few sand-hills rising to any beight) and is diversified by moor, fen, lakes and forest. Agriculturc, cattle-rearing, fishing and other maritime pursuits are the chief occupations of the inhabitants. Swinemiinde and Usedom (pop. 1700) are the chief towns, and Heringsdorf, Ahlbeck and Zinnowitz are frequented watering-places. Pop. (1900) 33,000.
See Gadebusch, Chroxik der Insel Usedom (Aaklam, 1863), and C. Müller, Die Scebader der Inseln Usedom und Wodin (6th ed. Berlin. 1896).

USBLIS (mod. Uscllus), an ancient town of Sardinia, situated in the hills to the S.E. of Oristano, 900 it . above sea-level. A bronze tablet of A.D. 158 (a tabula patronatus, setting forth that M. Aristius Balbinus had accepted the position of patron of the town for himself and his heirs) speaks of the place as Colonia Julic Augusta Uselis. From this it would seem that it had become a colony under Augustus, were it not that Pliny (H.N. iii. 85) asserts that Turris Libisonis was the only colony in Sardinia at his time. It may be that civic rights were obtained from Augustus (Th. Mommsen in Carp. Inscr. Lad. x. p. 816). The site of the ancient town is marked by the church of S. Reparata, and various antiquities have been found there. The episcopal see was transferred to Ales in the 12th century, though the old name is still officially used.

USEs, in law, equitable or bencficial interests in land. In early law a man couid not dispose of his estate by will nor could religious bonses acquire it. As a method of evading the common law arose the practice of making feoffments to the use of, or upon trust for, persons other than those to whom the seisin or legal possession was delivered, to which the equitable jurisdiction of the chancellor gave effect. To remedy the abuses which it was said were occasioned by this evasion of the law was passed the famous Statute of Uses (1536), which, however, failed to accomplish its purpose. Out of this failure of the Statute of Uses arose the modern law of Trusis, under which beading will be found a full history of uses. See also Conveyancing.
USHAK, a town of Asia Minor, altitude 3160 ft . in the Kutaiah sanjak of the Brusa vilayet, situaled in a fertile district, on a tributary of the Menderes, and connected with Smyma and Konia hy rail. Pop. 0000 Moskms and 2000 Christians. It is noted for its heavy pile carpets, helob; knowin as "Turkey carpets." The Oriental character of the carpels has been almost destroyed by the adoption of aniline dyes and the introduction of Western patterns. The town has a trade in valonia, cereals and opium.

USHANT (Fr. Oxessant), the most westerly of the islands off the coast of France, about 14 m . from the coast of Finistère, of which department it forms a canton and commune. Pop. (1006) 2761. Ushant is about 3850 acres in extent and almost entirely granitic, with stecp and rugged coasts accessible only at a fcw points, and readered mare dangerous by the frequency of fogs. The island affords pasturage to a breed of small black sheep, and about half its area is cocupied by cereals or potatocs. The male inhahitants are principally pilots and fishermen, the women working in the fields. Ushant was ravaged by the English in 1388. The londship was made a marquisate in 1597 in favour of René de Rieux de Sourdfac, governor of Brest. In 1778 a naval action without decisive result was fought off Usbant between the English under Keppel and the Frenct under the Count d'Orvilliers.

USERR (or Uscman), JAMES (\(1581-1656\)), Anglican divine and archbishop, was borm in the parish of St Nicholas, Dublin, on the 4 th of January 1581. He was descended from the house of Nevill, one of whose scions, accompenying John Plantagenet. to Ireland in the eapacty of usher in 1185 , adopted his official tille is a sumame. James Usher was sent to a school in Dublin opened by two political agents of James VI. of Scotland, who adopted this manner of averting the suspicioas of Elizabeth's goverament from their reel object, which was to secura B .paty for James in Ireland in the event of the queen's death. In 1504 Usber matriculated at the newly founded university of Doblin,
whoce charter had just been obtained by bis uncla, Henry Usher, archbishop of Armagh. He proved a diligent student, devoting much attention to controversial theology, graduated as M.A. in 1600 and became a fellow of Trinity College. On the death of his fat her in 1508 he resigned the family estate to his younger brother, reserving only a small rent-charge upon it for his own maintenance, and prepared to take orders. When he was but nineteen be accepted a challeage put forth by Henry Fitasimons, a learned Jesuit, then a prisoner in Dublin, inviting discussion of Bellarmine's arguments in defence of Roman Catholicismb and acquitied himself with much distinction. In 1600 be was appointed proctor of his college and catechetical lecturer in the university, though still a layman, and was ordained deacon and priest on the same day, in 160 r , while still under the canonical age, by his uncle the primate. In 1607 he became regius prolessor of divinity and also chancellor of St Patrick's cathedral, Dublin. He was a frequent visitor to England, and made the acquaintance of contemporary scholars like Camden, Selden, Sir Thomas Bodley and Sir Robert Cotton. In 1613 he puhlished his first printed woik, though not his first literacy composition-Graxissimase Quactionis de Christianarum Ecclesi. arum, in Occidentis pracsertim partibus, ab A pastalicis semporibus ad nostram usque actalem, continua succetsione el statu, Historice Explicatio, wherein he took up the history of the Western Church from the point where Jewel had left off in his A pology for the Church of England, and carried it on from the 6th till past the middle of the ith century, but never completed it. In 1615 he took part in an atterapt of the Irish clergy to impose a Calvinistic confession, embodying the Lambeth Articles of \({ }^{1595}\), upon the Irish Church, and was delated to King James in consequence. But on his next visit to England in 1619 he brougbt with him an attestation to his orthodory and high professional standiag, signed by the lord deputy and the members of the privy council, which, together with his own demeanour in a private conference with the king, so influenced the latter that he nominated Usher to the vacant see of Meath, of which he was consectated bishop in 1621. In 1622 he published a controversial Discourse of the Religion anciently Profested by the Irish and British, designed to show that they were in agreement with the Church of England and opposed to the Church of Rome on the points in debate between those churches. In 1623 be was made a privy councillor for Ireland, and in the same year was summoned to England by the king that he might more readily carry on a work he had already begun upon the antiquity of the British churches. While he was detained on this business the archbishop of Armagh died in January 1625 , and the king at ance nominated Usher to the vacant primacy; but severe illness and other causes impeded his return to Ireland until August 1626.

For many years Usher was actively employed both in the government of his diocese and in the publication of several learned works, amongat which may be specifed Emonanued (a treatise upon the Incamation), published in r638, and Briamnicerwn Ecclesiarum Antiquilates, in 1630. In 1629 he discountenanced Bishop Wiliare Bedell's proposal to revive the Irish language in the service. In 1634 be took part in the convocation which drafted the code of canons that formed the hasis of Lrish ecclesiastical law till the disestablishoment of the Irish Church in 1869, and defeated the attompt of John Brams hall, then bishop of Derry and later his own successor in Armagh. to conform the Irish Church exactly to the doctrinal staodards of the Eaglish. He put the matter on the ground of preserving the independence of the Irish Church, but the real motive at work was to maintain the Calvinistic element introduced is 1615. In 1640 he paid another visit to England on one of his usual scholarly errands, meaning to return when it was accomplished. But the rebellion of 1641 broke out while he was still at Oxiord, and he never saw his native country again. He published a collection of tracts at Oxford in that year, including a defeare of episcopacy and the doctrine of mon-resistance, All Usher's property in Ireland was lost to him through the rebellion, except his books and mome plate and furniture, but be was
assigned the temporalities of the vacant see of Carlisle for his support. In 1043 he was offered a scat in the Assembly of Divines at Westminster, but dectined it publicly in terms which drew upon him the anger of the House of Commons, and an order for the confiscation of his litary was averted only by the interposition of Selden. He quitted Oxford in \(16 \not 45\) and went into Wales, where he remained till 1046 , when he returned to London, and was in 16.47 elected preacher to the Society of Lincoln's Inn, an office which he continued to hold until neat his death. During his residence in Wales a byper-Calvinstic work entitled A Body of Divinity; or the Sum and Substunce of the Christian Retigion, was published under his name by John Downham, and, although he repudiated the authorship in 1 letter to the editor, stating that the manuscript from which It was printed was merely a commonplace-book into which he had transcribed the opimons of Cartwright and other Engltsh divines, often disapproving of them and finding them dissonant from his own judgment, yet it has been persistently cited ever since as Usher's genuine work, and as lending his authority to positions which he had long abandoned, if he ever maintained them. In 1648 he had a conference with Charles I. in the Isle of Wight, assisting him in the ahortive negotiations with parliament on the question of episcopacy. About this time Richelicu offered him a pension. In \(1650-54\) he publushed the work which was long accounted his most important production, the Annales Veteris et Noni Testamenti, in which he propounded t now disproved scheme of Biblical chronology, whose dates were inserted by some unknown authority in the margin of reference editions of the Authorized Version. In 1655 L'sher published his last work, De Graccu LXX Interprethem Versione Syntagma He died on the 20th of March 1656, in Lady Peterborough's house at Reigate, and was butied in Westminster Abbey He was long remembered, not only for his great learning but for his modesty and kindly disposition. His daughter sold his library to the state, and in 1061 it was placed in the library of Trinity College, Dublin, of which it still forms a part.

Usher's works are very numerous, and were first collected by C. R. Elrington and J. H. Todd. Dublin (\(188_{7}-64\), in 17 vols) see Life by Carr (1895); W. B. Wright, The U'Ssher Mcmors (1889).

USHER (O. Fr. ussier, wissier, mod. huissier, from Lat. ustiarius, a door-keeper, ostiam, doorway, entrance, os, mouth). properly an official or servant who guards the entrance to a building, admits those who have the right of admission and keeps out strangers; such functions as the introduction of those who are admitted. the conducting them to theit seats or to the presence of the persons receiving them and the kecping of order and silcace are also performed by them. The "ushers" of a law-court are faniliar officials of this hind. The name is also applied to various members of the British royal household. in which there are several "gentlemen-ushers." The fout principal British orders of knighthood style one of their chief officers "usher"; thus thete is a gentleman-usher of the Black Rod, who is also one of the high officials of the House of Lords (see further, Black Rod, and Knighthood and Chfyalry, \& Orders of Kuighthood). A common usage of the word, now obsolescent, is for an undermaster at a school.
USK, THOMAS (d. 1388), the author of The Testament of Love, was born in London. His name was first added to the history of English literature in 8897 by Mr Henry Bradley's discovery that The Testoment of Love, an important prose work hitherto attributed to Chaucer, hore in the initial letters of its chapters a statement of authorship-" Margarete of virtw, have merci on thin Usk." By the light of this perception, various autobiographical statements became luminous, and there remained no possible doubt that the author was Thomas Usk. who was clerk of the closet to John of Northampton when he was mayor of London from 13 3ir to 1383 . In July 1384 Usk was seized and put in prison, but was released on promise of bringing charges against the mayor. Usk had no wish to be what he called "a stinking martyr," and he freely manued cvidence which sent John of Northampton to gaol.

For this he was not forgiven by the duke of Gloucester's party. although he continued to hold confidenial posts in London until the close of 1386, when he was appointed sub-sherif of Middlesex. But he fell with the king, in the triumph of the duke of Gloucestet, and on the 3rd of February 1388 Osk, among others, was tried for treason and condermed. He was sentenced "to be drawn, hung and bcheaded, and that his head should be set up over Newgate." John of Malvern, in his continuation of Ralph Higden's Polychronicon,' gives a hortid description of his execution, which occurred on the 4th of March 1388, in circumstances of rede barbarity; it took thirty blows of a sword to sever Usk's head from his shoulders. Professor Skeat has shown that the date of this book must be about \({ }^{13} 8_{7}\), for in it he reviews the incidents of his career, including the odd lacts that, after his first imprisonment in 1384, he challenged any one who "contraried" his "saws" -that is to say, denied his allegations-to fight, but that no one took up his wager of battle. From 138i 10 \({ }_{13} 33\), while Chaucer was comptroller of customs, Usk was collector, and they were doubtless acquainted. In The Testument of Lose, the god is made to praise " mine own true servant, the noble philosophical poet in English," who had composed "a treatise of my servant Troilus." Uak had at one time been a Loilard, but in prison he submitted to the Church and thought he was forgiven. His solitary work is remarkahle, and the most elaborate production in original English prose which the end of the 14 th century has bequeathed to us. It is, however, excessively tedious, and of its obscurity and dullness a very amusing proof is given by the fact that successive editors-and cuen Dr Henry Bradley and Professer Skeat-did not discover till too late that the leaves of the original MS. had been shuffled and the body of the treatise misarranged. No MS. of The Testament of Leve has been preserved, it was first printed by W. Thynne in his edition of Chtucer, 1532. In 1897 Professor Skeat, with cancelled sheets to cover the unlucky mistake above referred to, issued a revised and annotated text in his Chaucerion ond other Pieces.
(E.G.)

USK, a tiver of Wales and England, rising on the borders of Carmarthenshite and Brecknockshite, and flowing to the Bristol Channel with a course of 70 m ., and a drainage are of \(540 \mathrm{sq} . \mathrm{m}\). The source lies at an elevation of 1700 ft . on the north flank of Carmarthen Van, a summit of the Brecon Beacons, and the course is at first northerty, but won turns cast through a beautiful valley closely beset with lofty bills, The river passes the finely stluated town of Brecon, and then turns south-cast past Crickhowrll and south past Abergavenny. Between hiese towns it forms a short stretch of the Welsh boundary before entering England (Monmouthshire). The valley now broadens, and the course of the river becomes sinuous as it flows by the ancicnt towns of Usk and Caerteon. The scenery throughout is most beautiful. Not far from the mouth lics Newport, with its extensive docks, to which the estuaty gives access. Except in this part, the Usk is not used for navigation, but the Monmouthshire and Brecon and Abergavenny canals, in patt following the valley, carry a small trade up to Brecon. The Usk is noted for its salmon and trout fishing.

USK, a small markct town, is beautifully sitrated on the right bank of the U'sk tiver, 10 m . N.N.E. of Newport. Pop. of urban distict (190s), 1476. It unites with Newport and Monmouth to form the Monmouth parliamentary district of boroughs, returning one member. It is of high antiquity, occopying the site of a Roman-Btitish village of fort; and there are picturesque ruins of an ancient castle erected in defence of the Welsh marches, and as such, a scene of frequent strife from Norman times until the days of the warlike Owen Glendower, about 1400 . The church of St Mary originally belonged to a Bencdictine nunnery of the tith century.

USKOKS. or Useocs. During the early years of the atah century, the Turkish conquest of Bosnia and Herzefovis
drove large numbers of the Christian fahabitants from their homes. A body of these Ushoks, as they were called, from a Serbo-Croatian word meaning " refugee," established itself in the Dalmatian fortress of Clisse, near Spalato, and thence waged continual war upon the Turks. Clissa, bowever, became untenable, and the Uskoks withdrew to Zengg, on the Croatian coast, where, in accordance with the Austrian system of planting colonies of defenders along the Military Frontier, they were wetcomed by the Emperor Ferdinand 1., and promised an annual subsidy in retum for their services. Their new stronghold, screened by mountains and forests, was unassailable by cavalry or artillery, but admirably suited to the light-armed Uskoks, whose excellence lay in guerilla warfare. The Turks, on their side, organized a body of equally effective troops called Maredossi, for defence and reprisals. Thus, checked on land, and with their subsidy rarely paid, the Uskoks turned to piracy. Large galleys could not anchor in the bay of Zengg, which is shallow and exposed to sudden gales, so the Uskoks fitted out a ffeet of swift boats, light enough to navigate the smallest creeks and inlets of the Illyrian shore, and easily sunk and recovered, if a temporary landing became necessary. With these they preyed upon the commerce of the Adriatic. Their ranks were soon swelled by outlaws from all nations, and by their own once peaceful neighbours, from Novi, Ottotac and other Croatian towns. After 1540, however, Venice, as mistress of the seas, guaranteed the safety of Turkish merchant vesscls, and provided them with an escort of galleys. The Uskoks retaliated by ravaging the Venetian islands of Veglia, Arbe and Pago, and by using the Venctian territories In Dalmatia as an avenue of attack upon the Turks. Neanwhile the corsairs of Greece and Africa were free to raid the unprotected southern shores of Italy; and Venice was besieged with complaints from the Porte, the Vatican, the Viceroy of Naples and his sovercign, the king of Spain. An appeal to Austria met with little success, for the offences of the Uskoks were outweighed by their services against the Turks: while, if Minucci may be trusted, a share of their spoils, in silk, velvet and jewels, went to the ladics of the Archducal Court of Graz, where the matter was negotiated. From 1577 onwards, Venice endeavoured to crush the pirates withoul offending Aust ria, enlisting Albanians in place of their Dalmatizn crews, who feared reprisals at home. For a time the Uskoks only ventured forth by night. in winter and stormy weather. In 1592 a Turkish army invaded Croatia, hoping to capture Zengg, but it was routed and dispersed in the following year. Austria being thus involved in wat with Turkey, the Venetian Admiral Giovanni Bembo blockaded Trieste and Fiume, whither the pirates forwarded their booty for sale. They also erected two forts to command the passages from Zengg to the open sea. In 16022 raid hy the Uskoks upon Istria resulted in an agreement hetween Venice and Austria, and the despatch to Zengs of the energetic commissioner Rabatta with a strong bodyguard. All these measures, nowever, availed Jittle. Raballa was murdered, the fugitive Uskoks returned to Zenag and piracy was resumed, with varying fortunes, until 1625 , when a grosser outrage than usual led to open war between Venice and Austria. By the treaty of peace concluded at Madrid, in 1617, it was arranged that the Uskoks should be disbanded, and their ships destroyed. The pirates and their families were, accordingly, transported to the interior of Croatia. where they gave their name to the Uskoken Grebirge, a group of mountains on the borders of Carniola. Their presence has also been traced near Monte Maggiore, in Istria, where such signifcant fitmily names es Nowlian (from Novi), Otocian (from Ottodac) and Clissan (from Chisan), were noted by Franceschi in 1879.

See Minuccio Minucel. Hisleria defli Usecechi (Venice. 1603); eningred by P. Sarpi, and translated into French as 2 supptement to Amelot de ta Houssaye's Iistoire du gourernement de Ven ise (Amsterdam, i705). Minuoci was one of the Verotian envoys al Graz. See aiso the conriser narratives in C. de Franceschi's L.'Istria, chap. 37 (Parenzo. 1879): and T. G. Jackeson's Dalmasia. ahe Quamero and listia, chap. 27 (Oxford, 1887).

USKUBE, Uscup, or Skopin (anc. Scupi, Turk. Oshkib, Slav. Skojlyc), the capital of the vilayet of Kossovo, European

Turkey; on the left bank of the river Vardar, and at the junction of the railways from Nish and Mitrovitza to Salonica. Pop. (1905) about 32,000, consisting chiefly of Slavs (Serbs and Bulgars), Turks, Albanians and a few gipsies. Uskub occupies a picturesque and strategically important position at the foot of a valley which severs two mountain ranges, the Shar Planina and Kara Dagh. Main roads radiate N.W. to Prizred, W. to Gostivar, an important centre of distribution, E.N.E. to Kumanovo, and thence into Bulgaria, and S. to Kopruldi and Monastir. The city is the headquarters of an army corps, and the see of an Orthodox Greek archbishop, of the archbishop of the Roman Catholic Abbanians and of a Bulgarian bishop. Its principal buildings are the citadel, the palace of the vali or provincial governor, the Greek and Bulgarian schools, numerous churches and mosques and a Roman aqueduct. The industries include dyeing. weaving, tanning and the manufacture of metal-work, wine and flour, but Uskab is chicfly important as the commercial centre of the whole vilayet of Kossovo (q.v.). The Imperial Ottoman Bank and the Banque de Salonique bave branches in the city, and French is to a remarkable extent the language of commerce. Uskub retains in a modified form the name of Scupi, one of the chief cities of northerm Macedonia. A few unimportant ruins mark the ancient site, about \(1 \$ \mathrm{~m}\). N.W. Scupi was destroyed by an earthquake in a.D. 518, but was rebuilt by Justinian under the name of Justiniana Prima. Up to the 14 th century it was at times the capital of the Servian tsars.

USTARANA, a Pathan tribe who inhabit the outer hills opposite the extreme south portion of Dera Ismail Khan district in the North.West Frontier Province of India. Originally the Ustaranas were entirely a pastoral and trading tribe; but a quarrel with their neighbours, the Musa Khel, put a stop to their annual west ward immigration, and they were forced to take to agriculture, and have since acquired a good deal of the plain country below the hills. Their territory includes only the eastern slopes of the Suliman mountains, the crest of the range heing held by the Musa Khel, Isots and Zmarais (see Suliman Hills). The Ustaranas are venturesome traders, carrying goods from Kandahar as far as Bengal. They are a fine manly race, quiet and well-behaved, and many of them enlist in the Indian army and police.

USTICA, an island off the N. coast of Sicily, 41 m. N.N.W. of Palermo. Pop. (186t) 2231; (1001) 1916. It is the Osteodes of the Grecks. but in Roman times was known as Ustica. The island is entirely volcanic and subject to carthquakes, and is fertile. There is a considerable penal colony. There are some Roman tombs excavated in the rock.

USTYUG VELIKIY, a town of Russia, in the government of Vologds, 216 m . N.E. from the city of Vologda, on the navigable Sukhona river, near its confluence with the Yug. Pop. (1885) 8119; (1897) 11,309. It manufactures hosiery, woollens and linens, has sawmills, and carries on an active trade in com, hemp, flax, bristles and butter, which it exports. It has two important yearly fairs. Its artisans are famous for their jewelry, for engraving upon silver and the fabrication of bozes with secret locks.

USORY. An ascient legal conception, it has been said, corresponds not to one but to several modern conceptions; and the proposition is equally true when economic is substituted for legal. Until quite recent times the term "usury" (Lat, usuro, use, enjoyment, interest, from muss, use) covered a number of essentially different social phenomena. "Thou shalt not lend upon usury to thy brother; usury of money, usury of victuals, usury of anything that is lent upon usury. Unto a stranger thon mayest lend upon usury; but unto thy brother thou shalt not lend upon usury, that the Lord thy God may bless thee " (Deut. xxiii. 19, 20). In this sentence we find interest of all kinds blended together, and the natumal economle tendencies directly coumeracted by the moral and religious lav. Al the prasml day." usury." if used in the old sense of the term. wortd embrace a mutitude of modes of receiving interest upon capital to which not the slightest moral taint is altached.

The man tho does not in some shape or other lend his capital upon " uaury" is, in the modern world, generally considered as lacking in his duty to himself or his family. The change in the moral attitude towards usury is perhaps best expressed by saying that in ancient times so much of the lending at interest was associnted with cruelty and hardship that all lending was branded as immoral (or all interest was usury in the moral sense), whilst at present so little lending takes place, comparatively, except on commercial principles, that all lending is regarded as free from an immoral taint. This change in the attitude of common-acase morality in respect to "anything that is lent upon usury" is one of the most peculiar and instructive features in the economic progress of society.
" It is morthy of remark," says Grote (History of Greece, iii. 244), "that the first borrowers must bave been for the most part men driven to this necessity by the pressure of want, and contracting debt as a desperate resource without any fair prospect of ability to pay; debt and famine rup together in the mind of the poet Hesiod. The borrower is in this unhappy Hate rather a distressed man soliciting aid than a solvent man capable of making and fulfilling a contract; and if he cannot find a friend to male a free gift to him in the former character he would not under the latter character obtain a loan from a stranger except by the promise of exorbitant interest and by the fullest eventual power over his person which he is in a position to grant." This remark, though suggested by the state of wociety in ancient Grecce, is largely applicable throughout the world mutil the close of the early middle ages. Borrowers wire not inducd to borrow as a rule with the view of employing the copital mothained at a greater profit, hut they were comprlled in necessity to borrow as a last resort. The conditions ol atciout worry find a graphic illustration in the account of the limilinge of the second temple at Jerusalem (Nch. v. 1-12). The wowny for borrowing are famine and tribute. Some said, "Wr hinc thorgaged our lanis, vineyards and houses, that wr misht buy corn, because of the dearth." Others said, "Wo have borrowed money for the king's tribute, and that uphll war lands and vincyards ... and, lo, we bring into lumbinge our sons and our daughtens to be servants,... nutitier ls if in our power to redeem them, for other men h.we our lands and vineyards." In ancient Grecce we find ainilar examples of the evil effects of usury, and a law of bankriphey testing on slavery. In Athens about the time of Solon's ligistalion (594 日.c.) the bulk of the population, who had originally bern swall proprictors or metayers, became gradually indebted to the rich to such an extent that they were practicaliy slaves. Those who still kept their property nominally were in the position of Irish cottiers: they owed more than they could pay, and stone pillars erected on their land showed tbe amount of the debts and the names of the lenders. Usury had given all the power of the state to a small plutocracy. The remedy which Solon adopted was of a kind that we are accustomed to consider as purely modern. In the first place, it is true that according to ancient practice he proclaimed a general seisachiheia, or shaking off of burdens: he cancelled all the debts made on the security of the land or the person of the debtor. This measure alone would, however, have been of little service had he not at the same time enacted that henceforth no loans could be made on the bodily security of the deblor, and the creditor was confined to a share of the property. The consequence of this simple but effective reform was that Athens was never again disturbed by the agitation of insolvent debtors. Solon left the rate of interest to be determined by free contract, and sometimes the rate was exceedingly high, but none of the evils so generally prevalent in antiquity were experienced.
When we tum to Rome, we find eractly the same difficulties arising, but they were never successiully met. As in Atbens in early times, the mass of the people were yeomen, living on their own small estates, and in time they became hopelessly in deht. Accordingly, the legislation of the XII. Tables, about 900 b.c., was intended to strike at the evil by providing a maximum rave of intereal. Uniortunately, however, no alteration
was made in the law of debt, and the attempt to requilate the rate of interest utterly lailed. In the comrse of two or throe centuries the small free farmers were ullenly destroyed. By the pressure of war and taxes they were all driven into debt, and debt ended practicaliy, if not technically, in slavery. It would be difficult to overestimate the importance of the influence of usury on the social and economic history of the Romen republic. In the provinces the evils of the syatem reached a much greater height. In 84 8.c. the war tax imposed by Sulla on the province of Asia was at first advanced by Roman capitalists, and rose within fourteen years to six times its original smount. It is interesting to observe that the old law of debt was not really abolished until the dictatorship of Julius Caesar, who practically adopted the legislation of Solon more than five centuries before; but it was too late then to save the middle class. About this time the rate of interest on first-class security in the city of Rome was only about \(4 \%\), whilst in the provinces from 25 to \(50 \%\) were rates often exacted. Justinian made the accumulation of arrcars (onalocismus) illegal, and fixed the rate at \(6 \%\), except for mercantile loans, in which the rate received was \(8 \%\). On the whole, it was truly said of usury during the republic and carly years of the empire: "Sed vetus urbi faenebre malum et seditionum discordiarumque creberrima causa." Even when it came to be authotized by Roman law under certain restrictions, it was still looked upon as a pernicious crime. "Cicero mentions that Cato, being asked what be thought of usury, made no other answer to the question than by asking the person who spoke to him what he thought of murder."

It was only natural, considering the evils produced by usury in ancient Greece and Rome, that philosopbers should have tried to give an a priori explanation of these abuses. The opinion of Aristotle on the bartenness of money became proverbial, and was quoted with approval throughout the middle ages. This condemnation by the moralists was enforced by the Fathers of the church on the conversion of the empire to Christianity. They held usury up to detestation, and practically made no distinction between interest on equitahle moderate terms and what we now tetm usurious exactions. \({ }^{1}\) The consequepce of the condemnation of usury by the church was to throw all the dealing in money in the carly middle ages into the hands of the Jews. A full account of the mode in which this traffe was conducted in England is given by Madox in chapter vii. of his History of the Exchequer (London, 1715). The Jews were considered as deriving all their privileges from the hand of the king, and every privilege was dearly bought. There can be no doubt that they were subjected to most arbitrary exactions. At the same time, however, their dealings were nominally under the supervision of the Jews' exchequer, and a number of regulations were enforced, partly with the view of protecting borrowers and partly that the king might know how much his Jews could afford to pay. It was probably mainly on account of this money-lending that the Jews were so heartily detested a nd liable to such gross ill-treatment by the people. A curious illustration of this popular animosity is found in the insertion of a clause in the charters granted by Henry III, to Newcastle and Derby, lortidding any Jew to reside in either place. Ultimately in 1290 the Jews were expelled In a body from the kingding under circumstances of great barbarity, and were not allowed to retum until the tlme of Cromwell. Before the expulsion of the Jews, bowever, in spite of canonical opposition, Christisus had begun to take interest openly; and one of the most interest. ing examples of the adaptation of the dogmas of the Cburch of Rome to the social and economic environment is found in the growth of the recognized exceptions to usury. In this respect the canonical writers derived much assistance from the later Roman law. Without entering into technicalities, it may be said generally that an attempt was made fo distinguich between usury, in the modern sense of unjust exaction, and interest on capital. Unfortunately, however, the modifications

\footnotetext{
: For a poptilar account of the reasons given in support of the canonical objections to usury, and of the modifications and excepp tions admitsed in some quarters, wee W. Cunainghamis Usery.
}
which were really admitted were not openly and avowedly mado by a direct change in the statutes, but for the most part they were effected (as so many carly reforms) under the cover of ingenious legal fictions. One of the most curious and instructive results of thes treatment has been well brought out by Walter Ross in the introduction to his Leclures on the Law of Scolland (1703). He shows, in a very remarkable manner and at considerable length, that "to the devices fallen upon to defeat those laws (i.e. against usury) the greatest part of the deeds now in use both in England and Scotland owe their original forms" (i. 4). One of the consequences of this indirect method of reforming the law was that in some cases the evil was much exaggerated. "The judges," says Ross, "could not award interest for the money; that would have been contrary to law, a moral evil, and an oppression of the debtor; but, upon the idea of damages and the failure of the debtor in performance, they unmercifuly decreed for double the sum borrowed." He may well remark that imagination itself is incapable of concesving a higher degree of inconsistency in the aflairs of men (compare Blackstone, iii. 434. 435).

In the limits assigned to this article it is impossihle to enter further into the history of the question (see also Moneylenoinc), but an attempt may be made to summarize the principal results so far as they bear upon the old controversy, which has again been revived in some quarters, as to the proper relation of law to usury and interest. (1) The opinion of Bentham that the atuempt directly to suppress usury (in the modern sense) will only increase the evil is abundantly verified. Mere prohibition ander penalties will practically lead to an additional charge as security against risk. The evils must be partly met by the general principles applicable to all contracts (the fitness of the contracting parties, \& c .) and partly by provisions for bankruptey. Peculiar forms of the evil, such as mortgaging to excessive amounts in countries largely occupied by peasant proprietors, may be met hy particular measures, as, for example, by forbidding the accumulation of arrears. (2) The attempt to control interest in the commercial sense is both useless and harmful. It is certain 20 be met by fictitious devices which at the best will cause needless inconvenience to the contracting parties; restraints will be placed on the natural flow of capital, and industry will suffer. (3) In the progress of society borrowing for commercial purposes has gradually become of overwhelming amportance compared with borrowing for purposes of necessity, as in earlier times. By far the greater part of the interest now paid in the civilized world is, in the language of the English economists, only a fair reward for risk of loss and for management of capital, and a necessary stimulus to saving.

See Capilal and Interest (Eng. trans. I890), by E. Boehm von Bawerk; Nature of Capital and lncome, by lrving Fisher (1906). (J.S.N.)

UTAH, \({ }^{1}\) one of the Central Western states of the United States of America. It lies between latitudes \(37^{\circ}\) and \(42^{\circ} \mathrm{N}\). and between longitudes \(32^{\circ}\) and \(37^{\circ} \mathrm{W}\). from Washington (i.e. about \(109^{\circ}:^{\prime} 34^{\prime}\) and \(114^{\circ} 1^{\prime} 34^{\circ}\) respectlvely W. of Greenwich). The state is bounded wholly by meridians and parallels, and is bordered on the N. by Idaho and Wyoming, on the E. hy Wyoming and Colorado, on the S. by Arizona, and on the W. by Nevads. Utah has an area of 84,090 sq. m., of which 2806 sq. m. are water rurface, including Great Salt, Utah and other lakes. The state has a maximum length of 345 m . N. and S., and a maximum width of about 280 m . E. and W .

Physical Features.-The castern portinn of Utah consiats of high plateaus, and constitutes a part of the Colorado Phateau province. The remaining wespern portion of the state is lower, belongs in the Great Basin province, and is characterized by noreh-mouth mountang ranges etparated by desert basins. The high platcaus consist of great blocks of the earth's crust which are eeparated from each other by Lault-lines, and which bave been uplifted to different heighta Erosion has developed deep and sometimes broad valleys along the fault-lines and elscwhere, so that many of the blocks and portione of blocks are isolated from their peighbours. As a rule
\({ }^{3}\) The name iat that of a Shothonean Indian tribe, more commonly called Ute:
the blocks have not been greathy tils of nearly horizontal layers of sand In some cases these sedimentary lavas pourcd out by valcanoes lon
rise to elevetions of \(9000,10,004\)
forested, but are too difficult of accean
people live along the arreams in the vilu
In the southern part of the state the hugh,
by a serice of ciant terraces which descend to
the Grand Canyon Platform in northern Arizon
represent the out-cropping odges of hard sandstone
in the serice of plateau sediments, and are named an
the colour of the rock exposed in the south-facing eacas.
the Pink Clifs (highent), White Cliffs and Vermilion Cliffs.
bower terrace, terminating in the Shimarump Cliffs, is less conspicuou. but the higher ones aford magnificent scenery. The northeramout member of the high plateaus is a broad east-west trending arch known ns the Uinta Mountains. Local glaciation has carved the higher levels of this range into a maxe of amphitheatres containing takes, separated from each other by arater and alpinc peaks. Among the peaks are King's Peaks (13.498 ft . and 13.496 ft.), the highest pounts in the state: Mc. Emmons (13.428 ft .); Gilbert Pcak (13.422 ft): Mt. Lovenia (\(13,250 \mathrm{ft}\).) ; and Tokewanna Peak (13.200 ft .). In the south-eastern part of the sate are lower desert plateaus, and several mountain groups which do not property belong to the plateau system. Most interesting among these are the Henry Mountains, formed by the intrusion of molten igneous rock between the layers of sediments, causing the overlying layers to arch up into dome mountains. Stream erosion has dissected these domes far enough to reveal the core of the igneous rock and to give a rugged topography. The highest peaks exceed 11.000 ft By far the greater part of the high plateau district is drained by the Colorado river and its branches, the most important of which are the Green. Grand and San Juan, portions of whose courses lie in canyons of remarkable grandeur. The western members of the high plateaus drain into the Great Basin for the most part, and in this drainage system the Sevier river is perhapa most prominent. Inasmuch as the streams entering the basin have no outlet to the ocean, their watere disappear by evaporation, either directly from alluvial slopes over which they pass, or from ealine lakes occupying depressions bet ween the mountain ranges.
The lower basin portion of Utah is separated from the high plateaus by a series of great fault scarps, by which one descends abruptly to a level of but 5000 or 6000 ft . One of the fault scarps is known as the Hurricane Ledge, and continues as a prominent landmark from a point south of the Grand Canyon in Arizons to the central part of Utah, where it is replaced by ocher scarps farther east. The floor of the Basin Region is formed of alluvium washed from the high plateaus and mountain ranges, a part of which has accumulated in alluvial fans, and part in the greatly expanded takes which existed here in the glacial period. This alluvium gives gently sloping or level descrt plains, from which isolated mountain rangee rise like islands from the ses. The barren " mad flats," frequently found on the desert floor, result from the drying up of temporary shalow lakes, or playas. Lake Bonneville fs the name given to the most important of the much greater lakes of the glacial period. whose ofd shore-lines are plainly visible on many mountain slopes. Great Salt Lake (q.v.) is a shrunken remnant of Lake Bonneville. The mountain ranges of the Basin Region are most frequently formed by faulted and tilted hlocks of the earth's crust, which have been carved by stream erotion into rugged shapes. Oquirth. Tintic, Beaver, House and Mineral Mountains are typical examples of these north-south "basin ranges," which rise abruptly from the desert plains and are themselves partial deserts. The Wasatch Mountain range constitutes the eastern margin of the Great Bavin in central and northern Utah, and resembles the true basin ranges in that it is formed by a great block of the earth's crust uptited along a north-south fault-line. Its steep lault scarp laces west, and rises from 4000 to 6000 ft . above the basin floor: the eastern slope is more gentle. but both slopes are much scored by deep canyons, some of which have been modified in form by ancient glaciers. Among the highest summits are Timpanogos Peak (\(11,957 \mathrm{ft}\).). Mr. Nebo (\(\mathrm{II}, 887 \mathrm{ft}\).), Twin Peak (\(11,56 \mathrm{Jf}\).), and Lone Peak (\(11,295 \mathrm{ft}\).). At the western base of the Wasateh are Salt Lake Cily, Ogden, Provo and other smaller towns, situated where streams isoue from the mountains, soon to disappear on the desert plains. In such places agriculture is made possible by irrigation, and the Mormon villages, both here and larther south along the base of the Hurricane Ledge. depend largely on this industry. Important mining operations are carried on in the Wasalch Mountains and in a number of the basin ranges. Mercur, Tintic, Bingham and Paris City are well-known mining centres.
fawna.-In the open country the mule deer, the pronghorn antelope and the coyote are found, and the biwon formerly ranged over the north-eastern part of the atate; the side-miped groundsquirrel, Townsend's eppermophile. the desert pack-rat and the dewert pack-rabbit inhabit the fat country. In the mountaidous districts and bigh plateaus are the grizzly, formerly more common. the black bear, the lour-atriped chipmunk and the yellowherired

Thespine
ofla the marabee of the Salt Lake breed grebea, gull and terns, lnd lormerly the white pelican. Many ducke breed here, and many others pews through in migration: of the former, the mot numerous art malland and teal; of the latter, pintail, ahoveler, scaup, ring-neck duciss, and mergansers. Wood and glows ibises are commonly seen, and the white ibis breeds in numbers; the sand-bill crane is lea conmon than formerly. A few varieties of thore birds breed here, as the Western willet, the Bartramian andpiper, and the longbilled curlew. Gambel's partridge is reaident in the wouthern pert of the state, and the sage-hen and sharp-tail grouse on the plains. The dusty groume and grey rufled grouse are confined to the mountains and plateaus. The California vulture is very rare; various species of hawics and golden and bald eagles are common. The burrowing owl is found on the plains, and various species of small birds are characteristic of the different physical divisions of the state. A few lizards are found in the arid districts. The trout of the Utah mountain gtreams is considered a dirtinct epecies.

Flora.-Western Utah and vast areas along the Colorado niver in the east and south-east are practically treeless. The lower plateaus and many of the basin ranges, as well as the basins themcelves, are deserts. The higher platcaus, the Uinta and Wasatch mountains, bear forests of Gir, spruce and pine, and the lower slopes are dotted with pifion, juniper, and scrub cedar. On the slopes of mountain valleys grow cedars, dwarf maples and occasional oalch. Willows and cottonwoods grow along streams. The west slope of the Wasatch has been largely denuded of its forests to supply the demands of the towns at its bese. Aroong other plants common to the state are the elder, wild hop, dwarf sunflower, and several opecies of greasewood and cacti. The sagebrush, artemisia, is characteriatic of the desert areas. Bunch grass is abundant on the hillsides the year round, aad affords valuable pesturage.

Chimate.-On account of its great diveraity in topography, the tate of Utah is characterized by a wide range in climatic conditions. Extremely cold weather may occur on the lofty plateaus and mountain ranges, while the intervening valleys and basins have a milder climate. The mean temperature of the state ranget from \(58^{\circ}\) in the extreme south to \(4^{\circ}\) in the north. Winter temperatures as low as \(36^{\circ}\) below zero are known for the higher altitudes; in the south, summer temperatures of \(110^{\circ}\) and higher have been recorded. At Sale Lake City the mean winter temperature is \(3 I^{\circ}\), the mean summer temperature \(73^{\circ}\). Corresponding figures for St George, in the wouth-western part of the otate, are \(38^{8}\) and \(80^{\circ}\). In general Utah may be aid to have a true contiaental climate, although the presence of Great Salt Lake has a modifying effect on the climate of that portion of the Basin Region in which it lies. Killing frosts occur early in September and as late at the last of May, and in the higher valleys they may occur at any time. The mean annual precipitation is only 11 in., the greater part of which occurs in the form of snow in the winter months, summer being the dry mason. At Salt Lake City the annual precipitation is \(\mathbf{1 5 . 8} \mathrm{in}\)., of which a in. Gall in summer. For St George the figures are: annual precipitation, 6.6 in.; summer, 1.3 in. Both Salt Lake City and St Ceorge are neas the boundary between the Basin Region and the high plateaus Well out in the basin deserts the precipitation is still lese; and the same holds true for the low desert plateaus in the south-eastern part of the state, where Hite has an annual precipitation of only 2.3 in., of which o-4 in. lalls in the summer. On the other hand, the precipitation on the high plateaus probably exceeds 30 in. in places. In the inhabited parts of the state, irrigation is generally necespary for agriculture.

Soil.-The alluvium of the desert basins furnisnes much good soil, which produces abundant crops where irrigated. Alkali soils are also common is the basins, but when water is available they can often be wasbed out and made productive. Very rich floodplaia sils oocur along the larger streams. Vast areas of unreclaimable desert exist in the west and south-east. In the protected valleys between the high plateaus alluvial soils are cultivated; but the plateau summits are relatively inaccessible, and, being subject to oummer frocts, are not cultivated. Comparatively poor, sandy soil is found on the lower desert plateaus in the south-eate, where population is ecanty.

Forests.-The lorest resources of Utah are of little value: the total wooded area was about 10,000 \%q. m . in 1900 , or about \(111 \%\) of the land area of the state. The only timber of commercial importance is found in the Uinta Range in the north eastern corner of the state, and is chiefly yellow pioce. The timber of the Wasatch Range is small and ocattering. In 1910 there were in the state Courteen national forests yarying in size from \(1,250,610\) acres (the Uinta reserve), 947.490 acres (the Ashley reserve), and 786.080 acres (the Manti reserve), down to the smallest Pocatello (10,720) on the Idaho border. The total ares of these reterves was 7.436 .327 acres.

Irrigation.-Under the Federal Reclamation Fund, entablished in 1902, 8830,000 was allotted to Utah in 1902-9. and \(\$ 200,000\) more in 1910, for the development of the Strawbery Valley project. This project. which was about one-third completed in the beginning of 1910, provides for the irrigation in Strawberry Valley (Utah and Wateicif counties, S. of Provo), of 60,000 acres, by a 6800 -acre
reservoir of sia,000 acrelleet caprecity, an Surawberry siveri by a tunnel, 19,000 It. long, connecting the reservoir with Diamond Fork, a tributary of Spanish Fork river; by a storage dam, 50 fL high, of 60,000 cub. yds contents, diverting water from Spanish Fork river into two canals, one on each side of the river, for the irrigation of land in the valley of Utah lalke; by a hydro-electric power plant about 3 m . below the diversion dam; and by the enlargement of existing canal systerne. The diversion dam, the power canal, and the first unit of the power plant were completed in 1909 . Irrigation of the and western regions of the United States began in the Great Basin of Utah when the Mormon pioneera in 1847 diverted the waters of City Creek upon the parched soil of Salt Lalke Valley. In 1900 nearly \(90 \%\) of the land reclaimed by irrigation in the whote state lay within the Great Basin. Between 1889 and 1899 the number of irrigators in the state (exclusive of Indian reservations) increased from 9724 to 17,924 . or \(84.3 \%\) and the number of acrea irrigated from \(263-173\) to 629,293 , or \(138.8 \%\) In 1900 , of the total improved acreage (1,029,226 acres) \(61.2 \%\) (629,293 acres) was irrigated; and in 1899, of the 686,374 acres in crops, 537.588 acres, or \(78.3 \%\)

Agricullure.-The number of farms in Utah (not including those of less than 3 acres and of mall productivity) in 1880 was 9452 in \(1890,10,517\); and in 1900, 19,007, ther average size in 1880 war 69.4 acres; in \(1890,125.9\) acres, and in \(1900,216.6\) acres. The total number of all farms in the state in 1900 was 19.387 ; and the number of white farmern, 19,144. The greatest number of farms wert between 100 acres and 500 acree- 1916 in 1880 . and 5565 in 1900. Other holdings were as follows: between 20 acres and 5 C acres, 3688 in 1880 , and 5261 in 1900 ; betwcen 50 acres and \(10 c\) acres, 2056 in 1880 and 3741 in 1900 ; less than 10 acres. 434 in 188c and 1622 in \(1900 ; 1000\) acres and more, 9 in 1880 and 248 in 1900. The proportion of farms operated by owners decreased from \(95 \%\) (9019 farms) in 1880 to \(91.2 \%\) (17,674 farms) in 1900 ; those operated by cash tenants increased from \(0.6 \%\) (60 (arms) in 1880 to \(2.6 \%\) (506 farms) in 1900 , and those operated by share temants from \(4 \%\) (373 (arms) in 1880 to \(6.2 \%\) (1207 farms) in 1900 . The total area of farms increased from 655.524 icres la 1880 to \(4,116.951\) acres in 1900, but the proportion of improved land decreaced from \(63.5 \%\) (416,105 acres) in 1880 to \(25.1 \%\) (\(1,032,117\) acres) in 1900 indicating the great increase in land used for graving.
The value of farm property, including land with improvemente implements and machinery, and live-ateck was \(819,333.569\) in 1880 and \(85.175,141\) in 1900 ; the average value per farm was \(\$ 2045\) in 1880 and 83878 in 1900 ; and the average value per acre of farm land was \(829-49\) in 1880 and 818.26 in 1900 . The value of all farm products was \(33.337,410\) in 1879 and \(\$ 16,502,051\) in 1899 , and the amount expended for fertilizersincreased only from \(\$ 11,394\) to \(\$ 14,300\)
In 1899 hay and grain furnished the principal income from \(\mathbf{3 5 . 4} \%\) of all taras in the state, and live-stock from \(28.1 \%\) of all farms. In 1899, 255.699 acres, or \(\mathbf{3 7 . 3} \%\) of the acreage of all crops, was sown to cereals, which were valued at \(82,386,789\), or \(29 \%\) of tbe value of all cropa. The production of cereals (which grow cbicty in the northern counties of the state) was \(130,842 \mathrm{bu}\). in 1849 770,28 bu. in \(1869,2,395,744\) bu. in 1889, and \(5,3{ }^{81,125}\) bu. in 1899 The principal cercal was wheat, the value of which was \(\$ 1.575 .064\) \((3,413.470 \mathrm{bu}\).\() in 1899\), and \(\$ 5,481,000(6,090,000\) bu.) in 1 geg . The value and product of onts in 1899 was \(\$ 553.847\) (\(1.436,325\) 6u.). and in 1909, \(\$ 1,319,000\) (\(2,536,000 \mathrm{bu}\)): of Indian corn, in 1899 \(\$ 121,872\) (250,020 bu.), and in 1909 , 355,000 (\(408,000 \mathrm{bu}\)); of bartey, in 1899. \$121,826 (252,140 bu.). and in 1909. \$343.000 (\(520,000 \mathrm{bu}\)): of rye in 1899 . 313.761 (\(28,630 \mathrm{ba}\)), and in 1909 \$46,000 (66,000 bu.). The value of the hay and forage crop in 1899 was \(33,862,820\), or \(46.9 \%\) of the value of all crops and its acreage was 388,043 acres, or \(56.5 \%\) of the acreage of all crops: in 1909 , the acreage in hay was 375,000 acres, and iis value was \(89.792,000\) Alfalfa (or lucerne) forned the principal part of the hay crop in 1899. and was produced chiefly in the counties of Utah (95.3t6 tons). Salt Lake (91,266 tons), Cache (64.543 toas) and Bonelder (50,019 toas), all in the northern part of the state.

The vesctable crop in 1899 occupied 34,042 acres, or \(3.5 \%\) of the acreage of all crops, and it value was \(\$ 1,250.713\), or \(15-2 \%\) of the value of all crops. The product of potatoes increated very rapidy from 519.497 bu. is 1889 to 1.483 .570 bu. valued et 54.7 .816 in 1899, and to \(2,700,000\) bu. valued at \(\$ 1,161,000\) in 1909. The production of other vegetables in 1899 was as follows: water-meloms, 620,440; musk-melons, 516,500; tomatoes, 254,052 bu.; cabbages, 997.690 heads, and sweet corn, 16,192 bs. For the importamt surarbeat crop, see below under Manyactures. On Gunnigon and Het islands in Great Salt Lake are valuable guano deponits which ene ued as fertilisers for vegetable gardens.

The value of live-stock on farms and rapgesin 1890 was 89.914 .766 : on farms in \(1900, \$ 21,474,241\). The number of meat catte in 1900 was 343,690 , valued at \(37,152,844\); on January 1. 1910.: 415.000
\({ }^{1} 1909\) atatistics are from the Year. Book of the U.S. Depertmest of Agriculture.
These 1910 figures for live-stock are taken from the Year Bow (1909) of the United States Department of Agriculture.

.
valaed at \(88.976,000\), of which 88,006 were milch cows valued at \(\$ 2,992,000\). The number and value of other live-stock were as foltows: sheep, in 1900, 3.818,423 (\(\$ 10,256,488\)), and on January 1 . 1910, 3.177,000 (\(\$ 13,026,000\)); horses, in \(1900,1 t 5,884(\$ 3.396,313)\). and in 1910, 130,000 (\(\$ 11,030,000\)) ; mules, in 1900,2116 (35,850), and in 1910, 3000 (5240,000); twine, in 1900, 65.732 (8293,115), and in 1910, 61,000 (8549,000).

The total value ol dairy products in 1899 wase \(\$ 1,522,932\). The principal products were: milk, in \(1890,8,614,694\) gals, and in 1899, \(25.124,642\) gals. (received from aales, (645.550); butter, in 1890, \(1,759,354\) mand in \(1899,2,812,122\) 10 (received from entea, (a14.910); checoe in 1890 , 163.539 ib , and in 1899, \(169,215 \mathrm{~B}\) (received from sales, \(\$ 122,933\)). The value of all poultry raised in 1899 was \(\$ 262,503\); the product of egss was 3.387 .340 doz., and their value. \(\$ 424,62\).

The product of wool in 1890 (exclusive of woot ahorn after the ust of Junc) arac \(9,685.513 \mathrm{~B}\) in 1900 , \(87.050,977 \mathrm{Ib}\) and in 1910, \(14,850,000\) th. The value of the honey and wax produced in 1899 was \(\xi_{0}+364\). Honey was a large crop with the early setilers, who put a hive and honey-bees on the state-seal of Deseret and of Utah.

Mining. -The mineral resources of Utah are varied and valuable, but their development mas retarded for many years by the policy of the Mormon Church, which practically fortade its members to do any mining; more recently the development has been slow because of inadequate transportation facilities, and the inaccessibility of some of the deposits. In \(\mathbf{1 9 0 2}\) the state ranked fourteenth amony the state in the value of ite mineral products, \(818,378,350\), and took thirteenth rank in \(190 \%\), with a product of \(838,099.756\), but dropped to the fifteenth rank in 1908, when the tolal value of ita product was \(\$ 26,422,121\). . The value of products manufactured from minerals in 1902 mas \(9,123.228\), or \(43.1 \%\) of all the manufactures is the state. The relalive lmportance of mining and maseufacturing may be shown thus: in 1902 the mines and quarries of the state employed 5712 wage-earners and paid to them \(\$ 5.089,122\), and in 1900 manufacturing industries employed 6615 wage-eamers, who received \(\$ 3.388,370\) in wages.

Systematic proepecting for the precious metals did not begin it Uth twil 1860, When Colonel Patrick E. Connor (1820-1891) of the Third Catifornia Infantry cstablished Camp Douglas near Salt Lake City. He permitted many members of his regiment who had been prospectors in California to prospect the territory, with the result that mines were located at Stockton, Bingham Canyon, Little Cottonwood and clsewhere; but attempte to smelt leadsilver ore near Stockton about 1866 were not succeadul, and the mining of precious metals did not become an established industry in the Territory until about 1870. Ores of good quality are now known to be quite generally distributed throughout the seate. In 1900 the state ranked third in the value of its gold and eilver production, \(88,500,904\); in 1908 it ranked sixth in gold, \(\$ 3.946 .700\) (a decrease of \(\$ 1,174,900\) since 1907), and fourth in silver, \(84,520,600\) (a docrease of \(\$ 3,007,900\) since 1907). In 1900 the richeat producers of gold were Salt Lake (60.872 .63 oz), Juab (\(58,679 \cdot 17 \mathrm{02}\)) and Tooele (\(41,969-9602\).) counties, which produced lout mimetenths of the totat for the state; in Salt Lake and Juab counties the principal source was copper ore, but in Tooele county almost all the gold was from siliceous ores. For the whole state, of a total of \(179.054^{-60} \mathrm{oz}\). in 1908, 111.086 ta were from copper ore, \(47.439-15\) from siliceous ores, and \(19,906,36\) from lead oren. Ln the same year the langet prodscing gold mines were the Centennial Eurrelen in Juab county, the Mercur in Tooele county, and the Utah Consolidated and the Utah Copper in Salt Lake county. The priocipal sitver regions in 1908 were the Tintic, in Juab and Utah counties, and the Park City, in Summit and Wasatch countiea. Of the total production, 8,451338 oz. (valued at \(\$ 4.479,209\)) im \(1908,2,748,299 \mathrm{oz}\). (of which more than two-thirds was from copper ores) were from Juab county; 2.463 .73502 . (all but 9586 ote., which were from lead zinc ore, being from lead ores) were from Symmit and Wasatch counties; t,j61.983 of. (all from lead ore, except 5158 ot from copper ore) were from Utah conaty: \(1,125,209 \mathrm{oz}\). (70y. 358 from copper ore, 499,276 from lead ore, 47,130 from copperfend ore and 44.445 from siliceous ore) were from Salt Lake county; and 378,373 o2. (of which 341.375 oz . were from lead ore) were from Tocele county. The principal cource of the silver was the lead ores mined, from which in 1908 about two-thirds of the total of the silver mas secured.

Far larger in value than either gold or silver, and larger than both toget her, was the output of copper in Utah in 1907 (\(12,851,377\)) and in igas (\(811,463.383\)). Up to 1905 the output of silver in the scate wras greater than that of copper. In the production of copper in 1908 Utah ranked fourth armont the states. Most of the metal Fes produced in the Bingham, or Wext Mountain district, Salt Leke county, where there were four mines in 1 gos with an output of more than \(1.000,000 \mathrm{~B}\) : the Tintic district in Juab connty; the Frisco district ia Beaver county; and th Lacin district

THe 1907 and 1908 statistics are from the Minaral Rerourcas of the Uniled Slates, published by the United Srates Geological Surver.
in Bowelder county. In 1908 more than two-thirde of the tota output was from the low-grade perphyry ores mined at Newhouse, Beaver county, and at Bingham, Salt Lake connty. There ate copper smelters at Carfield, Copperton and Binghamton. An anti-smoke injunction in 1908 cloced the furmaces in the immediate vicinity of Salt Lalre City. The production of copper in 1883 was 341,885 th; in 1890 , \(1,006,636 \mathrm{~m}\); in \(1895,2,184.708 \mathrm{~m}\) : in 1900 , 16,354,726 D ; in 1904, 46,417,234 H; in 1907, 64,256,884 B : and in t908, 81, 843,81a m.

Third in value (leas than copper or silver) in igos, but usually equalling sitver in value, was the state's output of lead. The masemum production, \(125,342,836 \mathrm{D}\), wes in 1906 ; in 1908 the output was 88,777,498 io (valued at \(53,738,655\)). The decrenme in output and value is largely due to the lower price of lead in the market and the higher merting rate. In 1906 the following mines produced more than \(5,000,000\) \& each of tead: Silver King at Park Ciny, the Colorado In the Tiatic district, the Daly Weat and the Daly Judge in the Park City diatrict, and the Old Jordan and the Telegraph at Bingham, and there were fifteen other mines that produced between \(1,000,000\) and \(3,000,000 \mathrm{it}\) of lead.
Zinc has been produced in commercial quastities is Summit. Tooele and Beaver counties. In 1906 the out put تas \(6,474,615 \mathrm{th}\) valued at 8394,952 ; in 190 it was \(1,460,554\) ith, valued at \(\mathbf{8 6}, 646\), and almont the entire outpat was from Summit county.
The apparently iseahastible upplies of iron ore in couthera Utah, and eepecially in Iron county, had been tittle worked up to 1910 on account of their inaccemibility. The beds of magnetite and hematice, in the southern portion of the Wagatch Mountains, are the largest in the western United States; in 1900 the four pro. ductive mines in Milford, Juab and Utah counties produced 16,240 tons of ore, valued at 527,417 . There are valuable manamere depodit in the andstone of the eastern plateau.

Coal was first discovered in Utah in 1851 along Coal Creek near Cedar City (in what is now Iron county) in the south-western part of Utah, and there wall some mining of coal at Wakes, Sanpert county, ms carly as 1855 , but there was no general mining until about twenty years later, and the industry was not well established until 1888. Thereafter its development was rapid, and the dimcovery of cotcroppings throughout the central and couthern parts of the state gave evidence of the existence of great bodies of the mineral. The only important region of coal mining in the state up to 1910 was in Carson county. Where more than nipe-tenths of the tolal output of the state was mined in 1907 and in 1908 . The production in. 1870 was 5800 tons; in 1880, \(14.74^{8}\) toms (probably an underestimate) : in 1890, 318.159 tons; in 1900, 1,147,027 tons: in 1903. 1,681,409 tons; in 1907, t,947,607 tons (the maximum); and in 1908, \(1,846,792\) tons. The total production from 1870 to 1908 was 20,683,974 tons, or allowing for coal loot, mbout \(31,000,000\) tons, which is estimated to repreant \(0.016 \%\) of the original supply, in 1909 the United States Geological Survey reported workable beds of coal aggregating \(\mathbf{t} 3,130 \mathrm{sq} . \mathrm{m}\). In area, and 2000 sq. m. more in which it seemed probable that coal might he found. The shales of Utah, Sanpete, Juab and San Juan counties may furnish a valuable supply of petroleum if transportation facilities are improved; and there are rich supplies of asphalt-19.033 tons (valued at 8100.324) was the output for 1908.
Salt is obtained by solar evaportion chiefty of the waters of Great Salt Lake and other brime found in that vicinity; at Nephi City, Juab county; mear Gunniton, Sanpete county; in Sevier and Miflard counties, and at Withee Junction in Weber county. I he value of this product in 1907 was 5199.779 (345.557 bble), and in \(1908,5: 69,833\) (242.678 bbla.).
Of other non-metallic products, among the most important were limestone-valued in 1900 at \(\$ 186,663\), and in 1908 at \(\$ 553,008=\) and sandstone-valued in 1902 at \(\$ 105011\) and in 1908 at \(\$ 05,097\). Some marble is quarried at Beaver in Beaver county, and Utah onys has been used for interior decoration, notably in the city and county building of Salt Lake City. The clay products of the state in the same year were valued at \(\$ 658,517\). There are considerable deposits of sulphur, of varying degrees of sichmes, near Black Rock in Beaver county. Many eemi-precious and preciove stones nre found in Utah, including garnet (long sold to touriste by the Navaho Indians), amethyst, jasper, topaz, tourmaline, opal. variscite (or "Utahlite "), malachite, diopside and Smithsomite. In tgos the reported value of precious stones from U'tah was 820.350.

Nonkfactures.-The manufacturing industry vas long comparatively unimportant, being largely for local markets. It is still largely dependent on local raw material. But, with the growth of the mineral industry and of the cultivation of augar beets. there was a remarkable growth in manufacturims between 1900 and tgos: the amount of capital increased from \$13.219.039 to \(\$ 26,004.011\), or \(96.7 \%\), the average number of wage-carners from 5413 to 8052 . or 4 \({ }^{3} \cdot 6\) : and the value of factory producta from \(\$ 17,981,648\) to \(\$ 38,926,464\), or \(116.5 \%\) In the period aoder

\footnotetext{
\({ }^{2}\) These statistics for 1904,1907 and 1908 are from Mancral Rosemers of tiv Uniled States for 1900.
}
diecussion usban extabliahments (is. those in the two munici-palities-Salt Lalee City and Ogden-having a population ia 1900 of at least 8000), increased in number from 205 to 256 or \(24 \% \%\) and rural establishments decreased in number from 370 to 350 \((5.4 \%)\); the capitalimation of urban extablishments increased from 84.212 .972 to \(\$ 7,700,750(82-8 \%)\), and that of the rural from \(59,006,067\) to \(\$ 18,303,361(103 \cdot 2 \%)\); the average number of wageearners in turban establishments increased from 2832 to 3859 (\(36.3 \%\)), and those in rural establishments from 258 t to 4193 (\(62.5 \%\)); the value of the products of urban establishments increased from \(\$ 5.521,140\) to \(\$ 10,541,040(90 \cdot 9 \%\) and that of rural establishmeats from \(812,460,508\) to \(\mathbf{2 8 , 3} 85,424(127.8 \%)\). This unusual predominance of rural over urbaa manufacturing is further showa by the fact that in \(1900,64.3 \%\) of the establishments report. ing, and \(69.3 \%\) of the value of their products were from iactories classified as rural, and in 1905, the proportion of rural factories was \(58.8 \%\) and the value of their products \(72.9 \%\) of the total. This predominance was largely due to the smelting and refining industry. the smelters being chiefly in the rural districts.

The flour and grist mill industry was the most important in the state, with products valued at \(\$ 1,659,223\) in 1900 , and \(82,425,791\) in 1905. The values of the products of other industries in 1900 and 1gos, m the order of their importance, were as (ollows: Car and general shop construction and repairs by steam railway companies, in 1900, \(\$ 1,306,591\), and in \(1905, \$ 1,886.651\); printing and publishing, in 1900, 8770,848 , and in 1905, 81.466.549; confectionery, in 1900, \(\$ 403,379\), and in 1905. \(\$ 1,004,601\); canning and preserving fruit and vegetables in \(1900, \$ 300,349\), and in 1905, \(\$ 801,958\). The value of the products of industries of lesser importance in 1905 were: slaughtering and meat packing (wholesale), \(\$ 553.314\) : malt liquors, \(\$ 636.688\); and fouadry and machine shop products, \(\$ 587,484\).

The beet sugar industry is one of growing importance is Utah: there were in 19003 refineries, having a daily total capacity of 1100 tons of beets: in 1905. 4, with a daily total capacity of 2850 tons, and in \(1909,{ }^{\text {L }} 5\), which treated 455,064 tons of beets and produced 48,884 tons of sugar. In 1853 a sugar factory bought in England was erected at Provo, but no augar was manufactured there, and aone was successfully refined until 1889. Sugar beets were first grown by irrigation in Utah; under that syatem it becomes possible to estimate closely the tonnage of the product. Slicing stations established at distances of from 12 to 25 m . from a factory reccive the beets, extract the juice and force it through pipes to the factory.

Transportation.-The first trade route to be established by white men within the present boundarics of Utah was the old Spanish trail from Santa Fe to Los Angcles. The trail cotercd what is now Utah, just east of the Dolores river, croseed the Grand river near the Sierra La Salle and the Green river at the present crossing of the Denver \& Rio Grande railway, proceeded thence to the Sevier river and southward along its valley to the headwaters of the Vingin river, which is lollowed southward, and then westward, so that its line left the present state near its south-west corner. The presence of this and other trails to California was of great importance during the gold excitcment of 1849, when many miners outfinted at Salt Lake City and the Mormons grew rich in this business. The first considerable railway enterprise in the terrilory was the Union Pacific, which was completed to Ogden in 1869. This system (which includes the Oregon Short line) has since been supplemented by the Denver \& Rio Grande, the Southern Pacific, the San Pedro, Los Angeles \& Salt Lake, and various connecting lines. The railway mileage ia 1870 was 257 m .; in \(1890,1265 \mathrm{~m}\).; and in \(1909,2962.87 \mathrm{~m}\).
Popolation.-The population in 1850 was 11,380 ; in 1860, 40,273 ; in 1870, 86,786; in 1880, 143,963; in 1890, 207,905; in 1900, 276,749; and in 1910, 373,351 . Of the population in 1900, 219,661 were native whites, 53.777 , or \(19.4 \%\), were foreignborn, 2623 were Indians (of whom 1472 were not taxed), 672 were negroes, 572 were Chincse and 417 were Japanese. The reservation Indians in 1909 were chiefly members of the Uinta, Uncompahgre and White River Ute tribes on the Uinta Valley reservation (179,194 acres unallolted) in the north-eastern part of the state. . Of the 1000 native-born population \(38 \% 0\) were born in Illinois, 3032 in New York, 2525 in Ohio and 2519 in Pennsylvanis. Of the foreign-born by far the largest number, 18,879, were natives of England, 9132 were Danes, 7025 were Swedes; and natives of Scotland, Germany, Wales and Norway were next in numbers. The large English immigration is to be ascribed to tho successfiul proselytizing efforts of the Mormons in England. The same infiuence may be traced in the other immigration figures. There was, however, a relative

1 Year Book of she United States Department of Agriculture.
: The Repert of the commiscioner of Indian Affairs for 1 gag givet the following figuras lor the Indian population: under the Panguitch School, Kanab Kaihab, 81, Shivwits Paiute. si8; under the Uinta and Puray Agency, Uinta Ute, 443. Uncompahgre Uto, 469, White River Ute, 296; not under agency, Paiute 370 .
decrease in the number of foreign-born in the state from \(\mathbf{1 8 9 0}\) to 1900 . Of the total 1900 population 169,473 were of foreign parentage (i.c. either one or both parents were foreign-born), and 42,735 were of English, 18,963 of Danish and 12,047 of Swediah parentage, both on the father's and on the mother's side. The Latter-Day Saints (Mormons) are far more numerous than any other sect, this church having a membership in 1000 of 151,525 (of these 493 were of the Reorganized Church of Jesus Christ of Latter-Day Saints) out of a total of 172,814 in all denominations; there were 479 members of this denomination to every 1000 of the population in the state, and the next largest sect, the Roman Catholics, had only 26 per 1000 of population and no Proteatant body more than 6 per 1000 . In the same year there were 8356 Roman Cathotics, 1008 members of the Northern Presbyterian Church, 1537 members of the Northern Methodist Episcopal Church, 1174 Congregationalists, and 987 Baptists (of the Northern Confereace). The state in 1900 had 3.4 inhabitants to the sq. m . Whise this approached the avcrage- 3.5 for all the states west of the Rocky Mountains taken together, with the exception of Colorado, which had 5:2it was noticeably higher than that of its immediate neighbours, Idabo (\(1-9\)). Arizona (\(1 \cdot 1\)) and Nevada (\(0-4\)). At the census of 1880 the density of the population was 1.8 and in 1800 it was 2.6. From 1800 to 1900 the urban population (i.e. the population of places having 4000 inhabitants or more) increased from 69,456 to 81,480 , or \(17.3 \%\), the urban population in 1900 being \(59.4 \%\) of the total; the semi-urban population (i.e. population of incorporated places, or the approximate equivalent, having less than 4000 inhabitants) increased from 56,867 to \(83.740,712 \%\) of the total increase in population; while the rural population (i.e. population outside of incorporated places) increased (rom 104,456 to \(111,529,10 \% 7 \%\) of the total increase. The principal cities of the state are: the capital, Salt Lake City, pop. (1910) 93,777; Ogden, 25,580; Provo, 8925; and Logan, 7522.

Adminislration.-The state is govemed under the first constitution adopted on the 5 th of November 1895, and amended in November 1900, November 1906, and November 1go8. An amendment may be sabmitted to the people at the next general election by a two-thirds vote of the members elected to each house of the legislature, and only a majority of the clectors voting thercon is required for approval. By a two-thirds majority the legislature may recommend that a constitutional convention be called; and il a majority of the electors at the next general election approve, the legislature shall provide for the convention, hut the approval of a majority of the electors voting is necessary for ratification of the work of the convention. Article III., which guarantecs religious frecdom, forbids sectarian control of public schools, prohibits polygamy and defines the relation of the state to the public lands of the United States, is irrevocable except by conscant of the United Statcs. Every citizen of the United States, male or female, twenty-one years old or over, who has lived one year within the state, four months within the county and sixty days within the precinct bas the right of suffrage, except that idiots, insase, and those convicted of treason or crime against the clective franchise are disfranchised; hut in electiona ievying a special tax, creating indebtedness or increasing the rate of state taxation, only those who have paid a property tax during the preceding year may vote. A form of the Australian hallot with party. columns is provided at public expense. As in so many of the newer Western states, the constitution specifies minutely many details which in the older instruments are left to be fixed by statute. For example, the employment of women or of children under fourteen in mines and the leasing of convict labour by contract are forbidden, and eight hours must constitule a day's work in state, county or municipal undertakings.

Execulive.-The-eseculive department consicts-of the governor, secretary of state, maditor, treasurer, axtaracygeneral and superintendent of public instruction, ath elected by the people at the time of the presidential election, and
bolding office for four years from the fint day of Jammery following. All these officers must be qualified eleators and must have reided within the state for five years preceding their clection. The auditor and treasmrer may not succeed themseives, end governor and secretary of state must be at least thirty years old. The governor may call the legislature in extraordinary session or may summon the Seaste alone. With the consent of the Senate he appoints all officers whose election or appointment is nor otherwise provided for, including the bank eraminer, state chemist, dairy and food commimioners, the boards of labour and health, the directors of the state fnstitutions, sec., and fills all vacancies in clective offices until new officers are chosen and qualified. The governor, justices of the suprame court and the attorney general constitute a bourd of pandons. The governot and other state officers form ether boards, but the legislature is given power to establish epecial boards of directors. The veto of the governor, which ertends to separate fterns in appropriation bills, can be overcome only by a two-thirds vote of each house of the legislature; but if the bill is not returned to the legislature, within five days it becomes a law without the governor's approval. The governor may not be dected to the United States Senate during his gubernatorial term.

Legislative. -The legislative power is vested in (1) the legishature, consisting of the Senate and House of Representatives, and (2) in the people of Utah. The legislature meets biennially on tbe second Monday in January of the odd-numbered years. No person is eligible to either house who is not a citisen of the United States, iwenty-five years of age, a resident of the state for three years and of the district from which he is chosen for one year. Senators are elected for four years, but one-half the membership of the Senate retires every two years. The representatives are elected for two years. No person who holds any office of profit or trust under the state or the United States is eligible to the legislature, and no member, during the term for which be was chosen, shall be appointed or elected to any office created, or the emoluments of which have been frereased during his term. Each house is the judge of the election and qualification of its own members. The membership of each house is fixed by law every five years, hut the number of senators must never exceed thiriy, and the number of representatives must never be less than twice nor more than three times the number of senators. In 1909 the Senate had eighteen and the House forty-five members. The legislature is forbidden to pass any special act where a general law can be made applicable, and is specifically forbidden to pass special acts on a number of subjects, including divorce, the rate of interest, and the incorporation of citics, towns or villages, or the amendment of their charters, \&c. Ncither the state nor any political subdivision may lend its credit or subscribe to the stock of any private corporation. The powers of the houses are the same, except that the Senate confirms or rejects the govemor's nominations and sits as an impeachment coute, while the Representatives initiate impeachments. By an amendment of 1900 , the legislature was instructer to provide that a fixed fraction of the volers might cause any law to be submitted to the people, or that they might require any legislative act (except one passed by a two-thirds vote of each bouse) to be so submitted before going into effect, but up to sgio no law had been passed putting the amendment into force.
Indiciary.-The judicial power is vested in the Senate sitting as a court of impeachment, in the Supreme Court. the district courts, in justices of the peace, and in "such inferior courts as may be estabiished by law." The Supreme Court is cemposed of three justices (but the number may be increased to five whenever the legislature shail deem it expedient) each of whom must be thirty years old, leamed in the law, and a resident of the state for five years preceding his election. They are elected by the people for a term of six years, but the term of one expires every tro years, and that justice who shall have the shorteat time to serve acts as chief justice. The court has original jurisdiction to issue writs of mandamus, certiorari,
promibition, quo marrarto and habeas corpws. Otherwise its jurisdiction is exclusively appellate, and every final decision of a district court is subject to review. The court holds threo terms yearly in the capital. The state is divided into seven districts, in which from one to four judges are elected for terms of four years. They must be twenty-five years old, residents of the state for three years, and of the district in which they are chosen. They have original jurisdiction of civil, criminal and probate matters, not specifically assigned to other tribunals, and appellate jurisdiction from the inferior courts. At least three terms yearly must be held in each county. In cities of the second class (\(5000-30,000\) inhabitants) municipal courts may be established. In cities of the first class (30,000 or more) a city court was established in 1901. Special juvenile courts may be established in citics of the first and second class Esch precinct elects a justice of the peace, who has civil jurisdiction when the deht or damage claimed does not exceed three hundred dollars, and has primary criminal jurisdiction.

Local Gooernment-The county is the unit of local government. The chief fiscal and police authority is the Board of Councry Commissioners of three members, wo clected every 1 wo years, one for two years and one for four. They create and after cubdivisions, levy taves, care for the poor, construct, maintain and maloe requla. tions for moads and bridges, erect and care for public buildings. grant franchises, issue liocnces, supervise county officers, make and enforce proper police regulations (but the authority does not extend to incorporated towns or cities), and perform such other duties as may be authorized by law. Other county officers ase the clerk (who is ex officio clerk of the district court and of che comp missioners). sheriff, treasurer, auditor, recorder, surveyor, assessor, attorney and superiatendent of district achools, hut where the ascesed vaiuation of any county is leses than \(820,000,000\) the clerk is ex offcio auditor, and the commimioners may consolidate offices. The precincts are laid of by the comnnesioners and each elects a justice of the peare and a conatable. Cities are divided ioto clmsees (sec above) according to population, and are soverbed by a mayor and a council. In cities of the brat clase giteen, and of the second ten, counciimen are elected by wards, while in cities of the third clasa (ail having lese than 5000 inhabitants) five councilroen are clected on a general ticket.

Miscellaneous Laws.-Men and women may hold and diepooe of property on the same terms, except that a husband cannot devise more than two-thirds of real estate away from his wife withour her oonsent, and that a woman attains ber majority at eighteen or when ahe mamies. Theproperty of an intestato leaving a widow or widower. but no issue, goes to the survivor if not over \(\$ 5000\) in value: if over that amount, one-half the excess goes to the survivor and onchail to the father and mother of the deccaned or to either of them. If neither lather nor mother aurvives, their share goes to the brothers and sistern of the deceased or to their descendants. If there are no descendmate, the whole goes to the surviving husband or wife. If a hustand or wife and one child survive. they share the esate equaliy: if more than one child. the surviving huaband or wife takes one-third and the children divide the reraminder. If the iniestate leaves imsue but no busband or wife, the issue takes the whole. Failing ali these, the estate gocs to the next of kin. An illegitimate chald is an heir of ixa mother and of the person who acknowled ges himself to be its father. Eetates exceeding \(\$ 10,000\) pey an inheritance tax of \(\$ \%\) on the excesa. A homestead not exceeding \(\$ 1500\) for the head of the lamily and \$500 additional for the husband or wife and \(\mathbf{5} 50\) additional for each other member of the family is not subject to execution except for the purchase price. or mechanic': and labourcr's liens, lawiul mortgage or taxes. The district court have exclusive jurisdiction in divorce, which may be granted because of impotency at time of marriage, aduitery, willul desertion for more than one year, wilful neglect to provide the necessitics of life, habitual drunkenness, conviction for felony, imtolerable cruelvy, and per manent insanity which has existed for at least five years. An interlocutory decree is entered which becomes absolute at the end of six months, unless appeal is entered. The guihy party forfeits all rights acquired through marriage. Chitdren over ten years of age may select the parent to whom they will attach themselvea. A marriage may be annulied on ground of idiocy, insanity, bigamy, foathsome disense at time of marriage. epilepsy. miscegenation (white and negro or white and Mongola3n), or when a male is less than sixteen or a female fess than fourteen years of age. A marriage ticence is required. No fermale and no mate under fourteen may work in a mine. Eight hours is the limit of a day's work in misee and smelters. A person sentenced to death may choose one of two methods of execution-hanging or shooting.

Education. - Before 1890 some districts in the state under a local option law had established free schools, but the general free school opstem wis founded in 1890 by a lave which consolidated all the districts in rach city into one large school district and clansified Salt Lake City as a city of the first class, and Ozden. Logan and

Provo as cities of the second chass for school purposes: in rgos-9 six county school districts of the first class were formed. Ia 1892 1893 text-books and supplies were first furnished frec to pupile in the grades; and in the same yoar supervisory work, was introduced. At the head of the public chool system is a state superintendent of public instruction, elected for four years, and a board of education, composed of the state superintendent, the pressident of the state university, the president of the Agricultural Coltege, and two appointees of the governor serving for four years There is a county superintendent whose term is two years. And in each district there is a board of three trustees, one retiring each year. Two or more contiguous districts may unite to form a high echool district. School attendance is compulsory for twenty weeks each year in rural districts and for thirty weeks each year in cities of the first and second class for all children between eight and sixteen years. In 1000 the percentage of illiterates at least ten years old was 3.1. In 1909 there were 685 public schools in the state; the total number of pupils of achool age (six to eighteen years) was 102,050, the number enrolled in the public schools was 84,804 , and the average daily attendance was 66,774; the total number of teachers was 2255 (1645 women), and the average monthly solary of men teachers was \(\$ 88.13\) and of women \(\$ 57.44\) i and the cotal expenditure for public education was \(\$ 2,762,581\) for the year, being more than twice as much as was expended by the state ten years before. The laws of the state provide for a commiasion, in cities and countics, for the retirement of public school teachers on a pension. The university of Utah at Salt Lake Cley was opened in 1850 as the state university of the "state of Deseret." The State Agricultural College and Experiment Station (1888) is at Logan. Ae Cedar City, in Iron county, is a branch normal school, connected with the state university. There is a state school for the deal and the blind (1884) at Ogden. The Art Institute at Salt Lake City has an annual art exhibit, a mate art collection, and a course of public lectures on art. There is a state commission which promotes the establishment of free libraries and gymnasiums. The Mormons control Brigham Young University (1876) at Provo, Brigham Young College (1878) at Logan, the Latterday Saints University (1887) at Salt Lake City, and acadernics at Ogden, Ephraim, Castle Dale, Beaver and Vernal. Other denominational mehools are : St Mary's Academy (1875; Roman Catholic) in Salt Lake City; All Hatlows College (1886 : Roman Catholic) in Salt Lelee City; Westminster College (1897; Presbyterian) in Salt Lake City, and Presbyterian academics at Logan, Springulle and Mt. Pleamant; Rowland Hall Academy (1880; Protestant Epiccopal) for girla at Salt Lake City; and Gordon Academy (1870; Congregational) at Salt Lake City.
Charifable and Penal Instilutions.-The state supports a Mental Hospital (1884, with provision for feeble-minded and non-insane epileptica since 1907) at Provo, a state Industrial School (1889) at Ogden and a atate prison (1850) at Salt Lake City. Under a iaw of 1905. amended in 1907 and 1909, provision is made for separate juvenile courts in all districts in which there are cities of the first (Salt Lake City) or the second ctase (Ogden, Logan and Provo) with juriadiction over children under eighteen years of age; and similar jurisdiction is given to district courts elsewhere. In connexion with the juvenile court detention hormes have been established, and in cerlain conditions justices of the peace are empowered to act as judges of the juvenile court in their respective precincts. There are many denominational cbarities, eapecially Mormon, the entise state being divided into eoclesiastical units or "stakes" for charity orgenizztion.

Finance. The principal sourec of public revenue is the property tax. An amendment of 1908 provides for the taxation of mince and mining property. The state assumed the Territorial debt of \(\$ 700,000\), and has added to it a bonded indeltedness of \(\$ 200,000\) : the bonds, formerly \(5 \%\), have been refunded at 31 and \(3 \%\). There were only private banks until 1872, when Brigham Young organized a national bank. The first savings bank was orranized in 1873, ard state banks now outnumber national banks. The banking business for many years was largely in the hands of high Mormon officials. aad the loyatty of church members built up a remarkable financial confidence, so that no Utah banks failed even in the panic of 1893 .

History.-Existing documents seem to indicate that Francisco Vasquez de Coronado, the Spanish explorer, sent out an expedition of twelve men under Captain Garcia Lopez de Cardenas in 1540 , which succeeded in reaching the Colorado river at a point now within the state of Utah. But more extended exploration was conducted by two Franciscan friars, Francisco Atanasio Dominguez and Silvestre Velez de Escalante, who, on the 29th of July 1776, left Santa Fe with seven others to discover a direct route to Monterey on the coast of Alta Califoroia. This party came in sight of Utah lake on the azrd of August. Almost half a century later, in the winter of 1824-25, Jamen Bridger, a trapper, discovered the Great Selt \(1+{ }^{-1}\) eleking the source of the Bear river. Many
trappers in their skin boats followed his lead, notably Wiliam H. Ashley, of the Rocky Mountain Fur Company, who, in 1825, at the head of about 120 men and 2 train of horses, left St-Louis and established the fort named for him at Lake Utah. In 1843 General John C. Fremont with Kit Carson and three others explored the Great Sale Lake in a rubber boat. With Brigham Young and his little band of Mormon followern (between 140 and 150 members), who entered the Great Salt Lake Valley in July 1847, begins the story of settlement and civilization (see Monmons). Before the end of 1848 about 5000 Mormons had settled in the Salt Lake Valley. The treaty of Guadalupe Hidnigo (Feb. 2, 1848) ceded to the United States the vast western territory which included Utah. Early in 1849 the Mormon cormmunity was organized as the state of Deseret \({ }^{1}\) with Brigham Young as governor. Deseret then comprised not only the present state of Utab, but all Arizons and Nevada, together with perts of New Mexico, Colorado. Wyoming and California. Application was made to Congress to admit it as a state or Territory, and on the oth of September 1850 the Territory of Utah, then comprising the present state and portions of Nevada, Colorado and Wyoming, was established under an Act, which provided that it should be admitted as a state, with or without slavery, as the constitution adopted at the time of admission prescribed. (See Compromise or 18 go.) The Republican party and (less violently) the Democratic in their national platforms and in Congress attacked and opposed the Mformon institution of polygamy. Statebood, therefore, was not granted until the 4th of January 1896, owing to the apparent hostility of the Mormon authorities to non-Mormon settiers and to repeated clashes between the Mormon Church and the United States government regarding exteat of control. polygamous practices, \&c. And even after the admission of the state these questions a rose in the matter of seating prominent Mormons who were elected to Congress. For a detailed account of these difficulties and of the growth of the "Gentile " or nonMormon element sce the article Mormons.

Through irrigation experiments agriculture became the industrial foundation of the desert community. The waters of City Creck were at first diverted and a canal was built; and the results were encouraging, though in the summer of 1848 crops were destroyed by a swarm of black crickets; hut in turn this pest was devoured by sea-gulls, and the phrase "gulls and crickets" has become one of pecultar historic significance in Utah. After 1849 the gold-fever borde bound for Califormia furnished a source of revenue to the Mormons, as their settlement afforded an admirable post for supplies.

The divisioa of land among the Mormons was singularly equitahle. Each city block consisted of 10 acres divided into eight \(1 \frac{1}{\text {-acre }}\) lots, which were assigned to professional and business men. Then 2 tier of 5 -acre lots was apportioned to mechanics, and 10 - and 20 -acre parcels of land were given to farmers, according to the size of their families. As Great Salt Lake City grew all landholders benefited, either by the location of their property or because of its size, the smaller bots being closer to the business centre and the larger tracts being in the outlying districts.

In 1847 Brigham Young had succeeded Joseph Smith as president of the Mformons, and he held that position of veritable dictator until his death (1877); John Taylor succeeded him, and Wilford Woodruff in 1890 was chosen head of the organiza. tion; then Lorenzo Snow was president in 1898-1901, and Joseph Ficlding Smith was eleçted in 1901.
From time to time the Indians have risen against the Mormons. Between 1857 and 1862 outbreaks were frequent, and on the 29th of January 1863 occurred the battle of Bear river, where some 300 Shoshones and Bannocks and about 200 of Colonel P. E. Connor's command participated in a bloody engagement. In April 1865 an Indian war hroke out under the leadership of Blackhawk, which lasted intermittently until the end of \(\mathbf{1 8 6 7}\). But in June 1865 treaties were concluded with the majority
'According to the Book of Mormon, " Deseree" means "Land of the working bee."
of Ctah tribes, whereby they agreed to remove to Uinta Valley, where a reservation had been made for them. One other important reservation, the Uncompahgre, has also been opened for the Indians of the state.
The state has chosen Republican governors and, except in 1806, when it gave its electoral vote to. W. J. Bryan, the Democratic candidate for the presidency, has voted for the Republican eominees in presidential elections.

Binliocpapily.-On the physiography of Utah see Henry Gannett, Gazetteer of Utah (Washington. i900), being Bulletin 166 of the U.S. Geological Survey; J. W. Powell, Geology of the Uinia Momitates (ibid., 1876), Exploration of the Colorado River of the Wesf (ibid., 1875), and The Lands of Ulah (ibid., 1879); W. M. Davis,"An Excursion to the Plateau Province of Utah and Arizona " and "' The Mountain Ranges of the Great Basin," in vol. 42 (\(\mathbf{1 9 0 3}\)) of Bulletim of the Harvard Museum of Comparative Zoology; S. F. Emmons, "Uinta Mountains," in vol. 18 (1907) of the Bullelim of the Geological Society of America; C. E. Dutton. The High Plateaus of Otah (Washington, 1880); and C. K. Gilbert, Lake Bonneville (ibid. 1890), Monograph I. of the U.S. Geological Survey. On mineral wenlth see Nichols, Mineral Resources of Ulah (Pittsbarr, 1873). For administration ece James T. Hammond and Grant H. Suith (edd.). Compiled Laurs of the Slate (Salt Lake City, 1908). The important titles for the history of the state are those given in the article Mormons, especially H. H. Bancroft, History of Ulah (San Francisco, 1889), and O. F. Whitney, IIistory of Ulah (4 vols., Salt Lake City, 1892-98).

UTAMARO (1754-1806), one of the best known of the Japanese designers of colour-prints, was born at Kawayoye. His fatber was a well-known painter of the Rand School, Toriyama Sekiyen (Toyofusa), a pupil of Kand Chikanobu; and Utamaro traced bis descent from the old feudal clans of the Minamoto. whose war with the Taira family belongs to the romantic period of Japanese history. Utamaro's personal name was Yusuke; and he first worked under the signature Toriyama Tojo-aki; but after a quarrel with his father substituted the name Kitagawa for the former appellation. His distinct style was the outcome of that of his father, tempered with the characteristics of the Kano scbool. As a painter, his landscapes and drawings of insects are most highly considered by Japanese critics; but his fame will always rest among Europeans on his designs for colour-prints, the subjects of which are almost entirely women-professional beauties and the like. These were done for the most part while he lived, in a sort of bondage, in the bouse of a publisher, Tsutaya Shigesaburo. His talents were wasted by an unbroken carcer of dissipation, culminating in a term of imprisonment for a pictorial libel on the shogun Iyenari, in 1804 . From this he never recovered, and died on the third day of the fifth month, 1806 . The colour-prints of Ctamaro are distinguished by an extreme grace of line and of colour. His composition is superb; and even in his lifetime
he achicved such popularity among his contemporaries as to gain the title Ukiyo-ye Chako-no-so, "great master of the Popular School." His work has a considerable reputation with the Dutch who visited Nagasaki, and was imported into Europe before the end of the 18 th century. His book illustrations are also of greal beauty. Three portraits of him are known: two colour-prints by himself, and one painting by Chobunsai Yeishi (in the collection of Mr Arthur Morrison). His prints were frequently copied by his contemporaries, especially by the first Toyokuni and by Shunsen; and many of those bearing his name are really the work of Koikawa Harumachi, who had been a fellow-student, and afterwards married his widow. That artist is known by the name of Utamaro II. Most of these imitations were made betwcen 1808 and \(\mathbf{1 8 2 0}\). Utamaro II., who afterwards changed hia name to Kitagawa Tetsugoro, died between 1830 and 1843 .
See E. de Concourt, Ontamaro (i891); E. F. Strange, Japanese Illustration (1897): and Japanese Colour-Prints (Victoria and Albert Muecum Handbook, 1904).
(E. F.S.)

OTR, or Utar, a tribe of North American Indiand of Shoshonean stock. They originally ranged over central and western Colorado and north-eastern Utah. They were divided into five sub-tribes, all acknowledging the authority of one chief. They were a wild warlike people, constantly fighting the Plain Indians and raiding as far sout h as New Mexico. Their relations with the whites have been generally friendly. The outbreak of the White River Band in 1879 is almost the only exception. They are now on reservations in Utah and Colorado, and number over 2000.

UTICA, a city of ancient Africa on the sinms Ulicensis, \(15 \frac{1}{1} \mathrm{~m}\). N.W. of Carthage and Tunis, on the route from Carthage to Hippo Diarrhytus (Bizerta) and Hippo Regius (Bona). The modern marabout of Sidi Bu Shater, at the foot of Jebel Menzel el Cul, occupies the site of the ruins oi Utica, which in ancient times stood at the mouth of the Bagradas (Mijerda). The mouth of the river is now 12 m . to the north, owing to alluvial deposits, and the level of the ancient town is covered with lowlying meadows, pools of water and marshes. The name Ulica is of uncertain origin; the coins give the form \(2 n \times\) (\(A\) tag, \(\boldsymbol{A l}\) lig); it is therefore with justification that Movers, Tissot and other scholars have suggested a form upng (Aliqa) meaning "the ancient" or "the magnificent," or Slatio noxlarsm (Movers, Die Phönizier, ii. 2nd part, p. 512; Olshausen in Rheinisches Musexm, 1853, p. 329; Tissot, Géogr. comp. de l'anc. prov. d'A frique, ii. p. 58). The Greeks transliterated the Punic name as irukn, Oirism, Oirixa and the Romans by Ulica. According to tradition, Utica was one of the oldest Phoenician settlements on the African coast, founded three centuries before Carthage. It soon acquired importance as a commercial centre, and was only partially eclipsed by Carthage itself, of which it was al ways jealous, though it had to submit to its authority. It is mentioned in the commercial treaty of 348 s.c. between Rome and Carthage (Polyb. iii. 24). Agathocles easily captured it in his expedition to Africa in 310 . It remained faithful to Cacsar during the First Punic War (Polyb. i. 82), but soon withdrew its support in view of the revoit of the Mercenaries. In the Third Punic War it declared for the Romans (Livy, Epit. xlix.; Polyb. xxxvi. 1; Appian viii. 75). After the destruction of Carthage it received the rank of a civitas libera with an accession of territory (Appian viii. I35; C.I.L. i. 200; Caesar, De bell. cip. ii. 36; A. Audolient, Carthage romaine, p. 30). Having become the city of an adminisiration of the new Roman province up to the time of the rebuilding of Carthage, it played an important part in the wars at the end of the Republic. After the battle of Thapsus in 46 Cato shut himself up in Utica for the final struggle against Caesar, and there committed suicide. Augustus gave the town the rank of municipiom with full civic rights (Dio Cass. xlix. 16; Pliny, Hist. naf. V. 4, 24); its inhabitants were entolied in the Quirinal tribe (mumicipium Julimm Uticense). Under Hadrian it became a colonia romana, with the title Colonia Julia Aclia Hadriana Awgusta Ulica (Aul. Gell. Noct. Attic. xii. 4; C.I.L. viii. 1181 and 1183).

Septimins Severus conferred upon it the Ius Italicum (Digest. 50. 15; 8. 11).

We find evidence of the African Church at Utica as early as at Carthage; it was the seat of a bishop and had its martyrs from the 3rd century onwards. But its harbour was beginning to silt; the Sladiasmus Maris Magni (cxxvi.) states that already it was no longer a harbour but merely an anchorage. It was captured by Genseric and the Vandals in 439, reconquered by the Byzantines in 534, and Gnally, in 698, it fell into the hands of the Arabs and was depopulated. The list inhahitants were driven away by fever after tbe 8 th century.

The ruins of the left bank of the Mejerda are often visited by travellers, but very little is left above the level of the ground. In 1869 A. Daux, the French engineer, explored them and made some important investigations. He was able to distinguish the fortifications, the acropolis, the quays of the commercial harbour and also of the military harbour or Cothon. Conjectural attempts have been made to identify the remains of large huildings with a temple of Apollo, the municipal Curia, the Arsenal and the Palace. The only certain identification, bowever, is that of the ruins of the amphitheatre, which was capable of holding 20,000 spectators, of the theatre, the baths, the reservoirs and the aqueduct which brought drinking water to the city. Subsequently there was found a Punic cemetery datiog from the sth \(^{\text {th }}\) century b.c. (Delattre, Compks-rendus de P'Acad. des Inscrip. at Belles Lelltes, 1906, p. 60). A number of coins have been found with Punic legends with the aame Utica and heads of the Dioscuri Castor and Pollux. For the Roman period the coins have Latin legends and heads of Livia and Tiberius; they have also the names of the pro-consuls of the African province and of the local Duumvirs.
Authoritias.-Hérisson, Relation duure mission arcklologique en Tunisie (I881): Sninte-Marie, Mission à Carthoge (1884); Revue archeologique (1881 and 1882); A. Daux in Le Four du Moude (1872) (vicws of the ruins); a mosaic of Utica is in the British Miseum: Graeco-Roman Seulpture, ii. p. 86; A. Daux, Recherches sur l'origine et lemplacement des emporia phiniciens dons le Zeagis et le Bysacium (1869); Ch. Tissol, Gdographie comparie de la prosince romaine d'Afrique (1888), ii. pp. 57 et seq.: Lud. Müller, Numismotique de I'ancienne Afrique, ii. p. 159 .
(E. B. \({ }^{\circ}\))

UTICA, a city and the county-seat of Oneida county, New York, U.S.A., on the Mohawk river, about 45 m . E. of Syracuse and about 85 m . W. of Albany. Pop. (1890) 44,007; (1900) 56,383 , of whom 13,470 were foreign-born, including 3696 Germans, 2458 Irish, 1661 Italians and 1165 Welsh; (1910, census) 74,419 . Utica is served hy the New York Central \(\&\) Hudson River and several lines leased by it, including the Rome, Watertown \& Ogdenshurg; the Delaware, Lackawanna \& Western; the New York, Ontario \& Western; and the West Shore railways; by the Eric Canal, and hy interurban electric railways. The city is situated on ground rising gradually from the river. There are many fine business and public buildings, especially on Genesee Street, the principal thoroughfare, and Utica is known for the number of its institutions, puhlic and private. Those of an educational character include, in addition to the public schools and the Utica Free Academy, the New School (for girls) and the Utica Catholic Academy. Amang the libraries are included the Public Lihrary (1893) with 54,000 volumes in 1909, the library of the Oncida Historical Socicty (which occupies the Munson-Williams Memorial Building), the Utica Law Library and the Deutscher Leservercin. The city is the scat of a State Hospital for the Insane (1843). Amoag its many charitable institutions are a Masonic Home and School (1893), a llome for the Homeless (1867), St Elizabeth's Home (1886), St Luke's Home (1869), a Home for Aged Men and Couples (1879), Utica Orphan Asylum (1830), St Joseph's Infant Home (1893) and St John's Fcmale Orphan Asylum (1834), both under the Sisters of Charity; the House of the Good Shepherd (1872 i Protestant Episcopal); and the General (1873; City of Utica), Homeopathic (1895), St Luke's (r869; supported by the Protestant Episcopal Churches), St Elizabeth's (1866; Sisters of the Third Order of St Francis) and Faxton (1873) hospitals. Among the public buildings are a Federal building,
the city hall, the County Court House, I Y.M.C.A. building a Masonic Temple, an Odd-Fellows' Terople and a State Armoury and Arsenal. The city has a number of bne parks. In Forest Hill Cemetery are the graves of Horatio Seymour and Roscoe Conkling. On West Canada creek, about is m. N. of Utica, are Trenton Falls, which descend 312 ft . in 2 m ., tbrough a sandstone chasm, in a serics of cataracts, some of them having an 80 ft. fall. From the geological formation here the name Trenton is applied to the upper series of the Ordovician (or Lower Silurian) system, and, particularly, to the lowest stage ol this series.

Utica has varied and extensive manufactures. In 1905 the capital invested in manufacturing industries was \(\$ \mathbf{2 1}, \mathbf{1 8} \mathbf{4}, 0 \mathbf{0} 3\), and the total value of the factory products was \(\$ 22,880,317\), an iacrease of \(\mathbf{3 8 . 8} \%\) since 1900 . Of this product, hosiery and knit goods, with a total value of \(\$ 5,261,166\), comprised \(23 \%\) of all, and cotton goods (\(\$ 4,287.658\)), \(18.7 \%\). The hosiery and knit goods constituted \(3.9 \%\) of the total value of that product of the entire country. Other important products were: men's clothing (\(\$ 2,943,214\)); foundry and machineshop products (\(\$ 1,607,25^{8}\)); steam futings and heating apparatus (\(\$ 1,010,755\)); malt liquors (\(\$ 933,278\)); and lumber products (\(\$ 869,000\)). Among the other manufactures are food preparations, wooden ware, wagons and carriages, stoves and furnaces, boots and shoes, tobacco and cigars, flour, candy, gloves, bricks, tile and pottery, furniture, paper boxes and firearms. Utica is a shipping point for the products of a fertile agricultural region, from which are exported dairy products (especially cheese), nursery products, flowers (especially roses), small fruits and vegetables, honey and hops.

The territory on which Utica was built was part of the \(22,000-\) acre tract granted in 1734 by George II. to William Cosby (c. 1695-1736), colonial governor of New York in 1732-36, and to his associates, and it was known as Cosby's Manor. During the Seven Years' War a palisaded fort was erected on the south bank of the Mohawk at the ford where Utica later sprung up. It was named Fort Schuyler, in honour of Colonel Peter Schuyler, an uncle of General Philip Schuyler. A fort subsequently built at Rome also was at first called Fort Schuyier (and afterwards Fort Stanwix), and the fort at Utica was then distinguished from it by the prefix "old" and it was as "Old Fort Schuyler" that Utica was first known. The most used trade route to the western country crossed the Mohawk here. In default of payment of arrears of rent Cosby's Manor was sold at sherifi's sale in 1792 and was bid in by General Philip Schuyler, General John Bradstrect, John Morin Scott and others for Eis \(^{2} 7\), or about 55 cents an acre. Soon after the close of the War of Independence a settlement was begun, most of the newcomers being Palatine Germans from the lower Mohawk. In 1786 the proprietors had the manor surveyed. An inn was erected in 1788 , and new settlers, largely New Englanders, began to arrive. Among these, in 1789 , was Peter Smith (\(1768-1837\)), later a partner of John Jacob Astor, and father of Gerrit Smith, who was born here in 1797 . In 1792 a bridge was built across the Mohawk. In 1797 Oneida county was established, and the village was incorporated under the name of Utica. The first newspaper, the Corclle, began publication in the same year and the first church, Trinity (Protestant Episcopal), was built. The Eric Canal, completed in 1825 , added to Utica's prosperity. Utica was chartered as a city in 1832.
See Pomroy Jones, Annals and Recollections of Oncida Connty (Rome, N.Y., 1851) M. M. Bags. Pioneers of Ulice (Utica, 1877): Oulline Ifistory of Ulica and Vicinity (Utica. 1900); and the publications of the Oneida Historical Society (Ulica, 1881 sqq.).

UTILITARIANISM (Lat. ufilis, useful), the form of ethical doctrine which teaches that conduct is morally good according as it promotes the greatest happiness of the greatest number of people. The term "utilitarian" was put into currency by J. S. Mill, who noticed it in a novel of Galt; but it was first suggested by Bentham. The development of the doctrine has been the most characteristic and important contrihution of British thinkers to philosophical speculation. While British philosopbizing up to a recent date has been notably lacking in
width of metaphysical outlook, it has taken a very high plece in its handing of the more practical problema of cooduct. This is due in part, no doubt, to national character; hut in the main, probably, to religious and political freedom, and the habit of discussing philosophical questions with regard to their bearing upon matters of religious and political controverry. The British maralists who wrole with political prepossessions ase interesting, not merely as contributors to speculation, but as exponents of spiritual tendencies which were expresed practically in the political agitations of their times.

The history of atilitarianism (if we may use the term for the carlier history of a philooophic tendency which appeared long before the invention of the term) falls into three divisions, which may be termed theological, political and evolutional respectively. Hohbes, when be laid it down that the state of nature is a state of wer, and that civil organization is the source of all moral hws , was under the influence of two great aversions, political anarchy and religious domination. It is in a clerical work written to refute Hobbes, Bishop Cumberkad's De Legiows Noturac (pub. im 107a), that we find the beginoings of uilitarianism. Hobbes's conception of the state of nature antecodent to civil organization as a state of war and moral anarchy mes obviously very offensive to churchmen. Their interest was to abow that the goapel precept of universal benevolence, which owes nothing to civil enactment, was both agreeable to nature and conducive to happiness. Cumberland, therefore, linys it down that "The greatest possible benevolence of every rational agent towards all the rest constitutes the happiest state of ench and all. Accordingly common good will be the soprespe 1w"; and this supreme and all-inclusive law is ementially a law of nature. This important principle was developed hy Cumberland with much originality and vigour. But his bandling of it is clumsy and confused; and he does not make lt sufficiently clear why the taw of nature sbould be obeyed. He does, however, lay much stress upon the naturaily social character of man; and this points forward to that treatment of morality as a function of the social organism which characterizes modern ethical theory. The further development of theological atilitarianism was conditioned by opposition to the Moral Sense doctrine of Shaftesbury and Hutcheson. Both these writers, more particulariy the latter, had postulated in controverting Hobbes the existence of a moral eense to explain the fact that we approve benevolent actions, done either by oarselves or by others, which bring no advantage to ourselves. There was a general feeling that the advocates of lee moral ense cloimed too much for human nature and that. they assumed a degree of unselfsohneaz and a natural inclination towards virtue which by no means corresponded with the hard facts. The fire of human enthusiasm burnt fow in the 18 th century, and ebeologians shared the general conviction that sell-fnterest was the reling principle of men's conduct. Moral sense seemed to them a subjective affair, dangerous to the interess of religion. For, if the ultimate ground of obligation hay in a refined sensitiveness to differences between right and wrong, what should be said to a man who might affirm that, Just as he had no ear for music, be was insensitive to ethical differences commonly recognized? Moroover, if mere sense were sufficient to direct our conduct, what deed had we for religion? Such considerations prevailed where we might least expect to find them, in the mind of the idealist Berkeley. And it was another dergyman, John Gay, who in a discertation prefixed to Law's translecion of Arch bisbop King's Origin of Evil (pub. in 1731) made the ablest and moost concise statement of this form of doctrine. What he says comes to this: that virtue is benevolence, and that benevolence is incumbent upon eacb individual, because it keads to his individual tappiness. Happiness arises from the rewands of virtue. The mundane rewards of virtue are very great. bot need to be reinforced hy the favour or disfavour of God. Further advances along the same bine of thought were made by Abraham Tucker in his Lighs of Nature Pworwed (pab. 1768-74)- Gay and Tucker supplied nearly all the important ideec of Paky's Principles of Moral and Political Pkilosoghy
(peb. in 1785), in which theological utlitarianism is summarized and comes to a ctose. Paley, though an excellent expositor and illl of common sense, had the usual defect of common-senso people in philosophy-that of tame acquiescence in the projudices of his age. His two most famous definitinns are that of virtue as "the doing good to mankind, in obedience to tho will of Cod and for the sake of everiasting happiness," and that of obligation as being "urged by a violent motive resulting from the command of another': both of which bring home to us acutely the limitations of r8tb-century philosophizing in general and of theological utilitarianism in paricular. Before we proceed to the next period of utilitarian theory we ought to go back to notice Hume's Inquiry concerning the Principles of Morods (puh. in 1731), which though utilitarian is very far from being theological. Hume, taking for granted that benevolence is the supreme virue, points out that the essence of benevolence is to incroase the bappiness of ochers. Thus be establishes tbe principic of utility. "Personal merit," he says, "consists entirely in the usefulness or agreeableness of qualities to the perton himeelf possessed of them, or to others, who have any intercourse with him." This is plain enough; what remains doubtful is the reason why we approve of these qualities in another man which are useful or agreeable to others. Hume raises the question explicitly, but answers that here is an ultimate principle beyond which we cannot hope to penetrate. For this reason Hume is sometimes classed as a moral-sense phrlosopher rather than as a utilitarian. From his point of view, however, the distinction was not important. His purpose was to defend what miny be called a humanist position in moral philosophy; that is, to show that morality was not an affair of mysterious lnaste principles, or abstract relations, or supernatural sanctions, but depended on the familiar conditions of personal and social welfare.

The rise of political utilitarianism illustrates most strikingly the way in which the value and dignity of philocophical principles depends on the purpose to which they are applied. Abstractly considered, Bentham's interpretation of human nature was not more exalted than Paley's. Like Paley, he regards men as moved entirely by pleasure and pain, and omits from the list of pleasures most of those which to wellmatared men make life reatly worth living: and be treats all pleasures as homogebeous in character so that they can be measared into equal and equally desirable lots. But his purpose was the exalted one of effecting reforms in the laws and conslitution of his country. He took up the greatest happiness principle not as an attractive philosopheme, but as a criterion to distinguish sood laws from bad. Sir Jobn Bowring tells tw that when Bentham was casting about for such a criterion " he met with Hume's Ersays and found in them what he cought. This was the principle of utility, or, as he subeequently expressed it with more precision, the doctrine that the only test of goodness of moral precepts or legialative enactments is their tendency to promote the greatest possible happiness of the greatest possible number." These opinions are developed in his Princifics of Mopals and Legistation (puh. in 1789) and in the Deontelagy (published posthumously in i834). Philotophically Bentham makes but little advance upon the theological utilitarians. His table of springs of actions showe the same mean-spirited omissions that we notice in his prodecessors; he measures the quantity of pleasures by the conrsest and most mechanical tests; and he sets up general plensure as the criterion of moral goodness. It makes no considerablo difference that he looked for the morad sanction not to God but to the state: men, in his scheme, are to be induced to obey the rules of the common good by legally ordained penalties and rewards. He never faced the question how a man is ta be induced to act morally in cases where these governmental sanctions could be evaded or did not exist in the particular state in which a man chanced to find himself. These principles of Bentham were the inspiration of that most important school of practical English thinkers, the Philosophic Radicals of the early igth rentury; these were the principles on which they
relied in those attacks upon legal and political abuses. From Bentham the leadership in utilitarianism passed to James Mill, who made no characteristic addition to its doctrine, and from him to John Stuart Mill. John Mill wrote no elaborate treatise on the suhject. But he did something better than this. His essay Utiliaarianism (pub. in 1863) sums up in brief and perfect form the essential principles of his doctrine, and is a little masterpiece worthy to be set beside Kant's Melaphysic of \(M\) forals as an aut horitative statement of one of the two main forms of modern ethical speculation. Though in its abstract statement John Mill's doctrine may not differ very greatly from that of his predecessors, actually there is a vast change. To say that pleasure is the moral end is a merely formal statement: it makes all the difierence what experiences you regard as pleasant and which pleasures you regard as the most important. Mill belonged to a generation in which the most remarkahle feature was the growth of sympathy. He puts far greater stress than his predecessors upon the sympatbetic pleasures, and thus quite avoids that appearance of mean prudential selfishness that is such a depressing feature in Paley and Bentham. Moreover, it is in sympathy that be finds the obligation and sanction of morality. "Morality," he says, "consists in conscientious shrinking from the violation of moral rules; and the basis of this conscientious sentiment is the social feelings of mankind; the desire to be in unity with our fellow-creatures, which is already a powerful principle in human nature, and happily one of those which tend to become stronger from the influences of advancing civilization." Such passages in Mill have their full significance only when we take them in connexion with that rising tide of humanitarian sentiment which made itself felt in all the literature and in all the practical activity of his time. The other notable feature of John Mill's doctrine is his distinction of value between pleasures: some pleasures, those of the mind, are higher and more valuable than others, those of the body. It is commonly said that in making this distinction mill has practically given up utilitarianism, because he has applied to pleasure (alleged to be the supreme criterion) a further criterion which is not pleasure. But the validity of this criticism may fairly be questioned. Pleasure is nothing objective and objectively measurable: it is simply feeling pleased. The merest pleasurelover may consistently say that he prefers a single glass of good champagne to several bottles of cooking-sherry; the slight but deficate experience of the single glass of good wine may fairly be regarded as preferable to the more massive but coarser experience of the large quantity of bad wine. So also Mill is justified in preferring a scene of Shakespeare or an bour's conversation with a friend to a great mass of lower pleasure. The last writer who, though not a political utilitarian, may be regarded as belonging to the school of Mill is Henry Sidgwick, whose elaborate Melhods of Elhics (1874) may be regarded as closing. this line of thought. His theory is a sort of reconciliation of utilitarianism with intuitionism, a position which he reached by studying Mill in combination with Kant and Butler. His reconciliation amounts to this, that the rule of conduct is to aim at universal happiness, but that we recognize the ressonableness of this rule by an intuition which cannot be furt her explained.

Even before the appcarance of Sidgwick's book utilitarianism had entered upon its third or evolutional phase, in which principles borrowed from biological science make their entrance into moral philosophy. The main doctrine of evolutional or biological ethics is stated with admirable clearness in the third chapter of Darwin's Descent of \(\mathcal{M a n}^{(\text {(pub. in 187r). The }}\) novelty of his treatment, as he says, consists in the fact that, unlike any previous moralist, he approached the subject "exclusively from the side of natural history." Theological and political utilitarianism alike had been individualistic. But Darwin shows how the motal sense or conscience may be regarded ss derived from the social instincts, which are common to men and animals. To understand the genesis of buman morality we must study the ways of sociable animals
such as horses and monkeys, which give each other asedstance in trouble, feel mutual affection and sympathy, and experienco pleasure in doing actions that benefit the society to which they belong. Both in animals and in human societies individuals of this character, being conducive to social welfare, are encouraged hy natural selection: they and their society tend to flourish, while unsociable individuals tend to disappear and to destroy tbe society to which they belong. Thus, in man, do sentiments of love and mutual sympathy become instinctive and, when transmitted by inheritance, innate. When man has advanced so far as to be sensitive to the opinions of his fellow-men, their approbation and disapprobation reinforce the influence of natural selection. When he has reached the stage of refiection there arises what we know as conscience. He will approve or disspprove of himself according as his conduct has fulfilied the conditions of social welfare." Thus the imperious word ought seems merely to imply the consciousness of a persistent instinct, either innate or partly acquired, serving as a guide, though liable to be disobeyed."
The most famous of the systematic exponents of evalutional utilitarianism is, of course, Herbert Spencer, in whose Data of Ethics (1879) tbe facts of morality are viewed in relation with his vast conception of the total process of cosmic evolution. He shows how morality can be viewed physically, as evolving from an indefinite incoherent bomogeneity to a definite, coherent heterogeneity; biolotically, as evolving from a less to a more complete performance of vital functions, so that the perfectly moral man is one whose life is physiologically perfect and therefore perfectly pleasant; prychologically, as evolving from a state in which sensations are more potent than ideas (80 that the future is sacrificed to the present) to a state in which ideas are more potent than sensations (so that a greater but distant pleasure is preferred to a less but present pleasure); sociologically, as evolving from approval of war and warlike sentiments 20 approval of the sentiments appropriate to international peace and to an industrial organization of society. The sentiment of obligation Spencer regards as essentially transitory; when a man reaches a condition of perfect adjustment, he will always do what is right without any sense of being ohliged to it. The best feature of the Dala of Elhics is its anti-ascetic vindication of pleasure as man's natural guide to what is physiologically healthy and morally good. For the rest, Spencer's doctrine is valuahle more as stimulating to thought by its originality and width of view than as offering direct solutions of ethical problems. Following up the same line of thought, Leslie Stepben with lese brilliancembut more attention to scientific method has worked out in his Science of Ethics (1882) the conception of morality as a function of the social organism: while Professor S. Alexander.in his Moral Order and Progress (pub. in 1889) has applied the principles of natural competition and natural selection to explein the struggle of ideals against each other within society: moral evil. says Professor Alexander, is in great part a defeated variety of moral ideal. There is no doubt that much remains still to be done in illustrating human morality by the facts and principles of hiology and natural history. A. Sutherland's Origin and Growth of the Moral Instinct (pub. in 1898) is a capable piece of work in this direction. Professor L. T. Hobhouse's Merals in Evolution and Professor Westermarck's Origim and Deodopmens of the 1 Iforal Ideas (both published in 1906) deal with the patter from the side of anthropology.
Sce E. Albee's History of Endish Utilitarianism (rgo2), a complete and painstaking survey. Leslie Stephen's Emghish Utitilariants (pub in 1900 deals elaborately with Bentham and the Mills, but moore as social and political reformers than as theoretic moralists. See also Eturs.
(H. Sr.)

UTMAN KHEL, a Pathan tribe who occupy the hills to the north of Peshawar in the North-West Frontier Province of India. Their country lies between the Mohmands and the Ranizais of Swat, to the west and south-west of the junction of the Swat and Panjkora rivers. They claim to be desceadants of Baba Utman, who accompanied Mahmud of Ghazni in his expedition into India in 997. The Utman Khel are a cull.
atout and fair race, bet in their dress and seneral customs have amiminted themselves to the neighbourins peoples of Bajour. They have mone of the vices of the Yusafzais. Their country is very hilly and difficult, but well cultivated in terraces. They momber some \(-10,000\), and their fighting strength is about 8000 men. British expeditions were necessery against them in 2852, 1878 and 1808.

UTOPLA an ideal commonwealth, or an imaginary country whoee inhabitants are supposed to exist under the most perfect conditions poasible. Hence the terms Ulopia and Utopion are also nsed to denote may visionary scheme of reform or social theory, especially those which fail to recognize defects inherent in human nature. The word first occurs in Sir Tbomas More's Ulopie, which was ofiginally published in Latin under the title De Optimo Reipublicae Stade, deque Nema Insula Ulopia (Louvain, 1516). It was compounded by More (g.v.) from the Greek od, not, and ronos, a place, meaning therefore a place which has no real existence, an imaginary country.
The idea of a Utopia is. even in literature, far older thin More's romance; it appears in the T wacus of Plato and is fully developed tm hia Repubtec. The idealized description of Sparta in Plutarch's Hife of Lycurgus belongs to the same class of Literary Utopias. though it professes to be historical. A similar idea also occurs in legends of world-wide currency, the best known of these being the Greek, and the medieval Norse, Celtic and Arab legends which deacribe an earthty Paradise in the Western or Atlantic Ccean (cee ATLANTIS). Few of thewe survived after the exploration of the Ailantic by Columbur, Vasco da Gama and others in the sth century; but In literature More's Utopic set a new fashion. An.ideal state of socicty is described in the writings of Hobbes, Sir Robert Filmer and J. J. Roveran. In Becon's New Allonfis (\(5624-29\)) ecience is the key to universal happinese: Tommaso Campanella's Civilas Solis (I623) portrays a communistic society, and is largely inspired by the Republic of Plato: James Harrington's Oceana (i6g6), which had a profound influence upon political thought in Areerica, is a practical treatise rather than a romance, and is founded on the ideal that preperty, especially in land, is the baenis of political power, and that the executive should only be controiled for a short period by the same man or men. Bernard de Mandeville's Fable of the Bees is unique in that it dearribes the downfall of an ideal commonwealth. Other Utppias are the " Voyage en Salente " in Fonelon's Telemaque (1699); Etienme Caber's Voyage en Icarue (1840); Bulwer Lytion's The Coming Race (i871); Samuel Butler's Erewhon (i872) and Erewhom Repisited (igoi): Edward Bellamy's Looking Backword (1888); William Morris'i News from Nowhere (1890); H. G. Wells's Articippations (1901), A Moderr Unapra (igos) and Now Worlds for Old (s908). Many Utopias, such as the Fable of the Bees and Ereohom, are denigned to sitinize existing social conditions as well as to depict a more perfect civilization. There are meparate articles on all the authors. mentioned above. A large number of the more recent Utopias have been inspired by wocialistic or cormmunistic ideals: among there may be mentioned Frcilard, cin soaiales Zukunflsbild (1890) and Reise nach Freland (1893), by the Austrian political economist Theodor Hertzka (b. Budapest, 1845), whicb portray an imaginary communistic colony in Central Arica.

OTRECET, a town of northern Natal, 30 m. by rail E. by N. of Newcastie. Pop. (1904) 331 s . It is the chief place in a district of the same name, originally settled in 1848 by emigrant Boers from Natal. They formed an independent community and in 1854 obtained, in exchange for a hundred head of cattle, formal cession of the territory from Panda, the Zulu king. In \(185^{8}\) the district was united witb tbe republic of Lydenburg, and in \(\mathbf{8 8 6 0}\), with Lydenburg, became part of the South African Republic. In 1903 it was, with the neigbbouring district of Vryheid, annered to Natal. The town of Utrecht is built in a hollow among the foothills of the Drakensberg. In the neighbourhood are extensive coat-fields.
UTRECKT, the smallest province of Holland, bounded S. by Gelderland and South Holland, W. by South Holland, N. by North Holland and the Zuider Zee and E. by Gelderiand. It has an area of 534 sq . m . and a pop. (1005) of 276,543 . It belongs chiefly to the basin of the Rhine; the Lower Rhine, which skirts its southern border, after sending of the Crooked Rhine at Wijk, becomes the Lek, and the Crooked Rhine in its turn, after sending of the Vecht at Utrecht to the Zuider Zee, becomes the Old Rhine. The nortb-eastern portion of the province is drained by the Eem, wbich falls into the Zuider Zee. The watershed between the Rhise and the Eem is formed by
a plateau of sand and gravel hill wifich extend from the southcast corner on the Rhine to Zein near Utrechl, and also nortbwards to Huizen on the Zuider Zee. On its western side the platcau declines into the clay lands (and in the north-west low (en) which characterise the western half of the province. The region of and and gravel is covered with bare heaths and patcbes of woods, and the occupations of the scanty population are chiefly those of buckwheat cultivation and peat-digging, as in Drente. Amersfoort is here the only town of any site, but along the western edge of this tract there is a row of thriving villages, namely, Amerongen, Leersum, Doorn, Driebergen and Zeist. Bunschoten on the Zuider Zee is a fishing village; Venendalal, on the south-eastem border, originally a fen-colony, is now a market for the bee-keeping industry in the east. On account of the picturesqueness of this part of the province, many country houses and villa residences are found scattered about it. The westem half of the province is flat and often below sea-level. Cattle-rearing and the making of cheese (of the Gouds description) and butter are here the chief occupations. Agriculture is practised along the Crooked Rhine, wheat, barley, beans and peas being the chief products, and there is considerable fruit-farming in the south-west. The development of towns, however, has here been restricted by the rise of Utrecht, the chici town of the proviace, as a commercial centre. A number of small old towns are found along the Rhine, the Lek and the Holland Ysel, such as Rhenen (or Reenen), Wyk-by-Duurstede, Yselstcin, Montfoort. Rhenen was once the seat of an independent lordship, though afterwards joined to the bishopric of Utrecht. The ancient church has a fine tower (i492-i531). Wyk-by-Duurstede, originally a Roman settlement, was of some commencial importance as early as the 7tb and 8th centuries, but decayed owing to Norman raids in the roth century. The ruined castle of the bishops of Utrecht still remains. The lordship of Yselstein can be traced back to the younger brother of Gysbrecht IV. of Amstel, who bought lands and buile a castle bere before 1279. In the beginning of the next century it had grown to the size of a small town and was granted civic rights and surrounded witb walls, and in the course of the following centuries was frequently attacked and even devastated. About 1377 Ystelstein desccaded to the bouse of Egmont, and in 1551 to the bouse of Orange, and by paying an annual contribution to the United Provinces remained an independent barony till 1795. The remains of the castle- are picturesque. Montioort owres its origin to a castle built by the bishop of Rhenen in 1170, which was frequently besicged in the 14th and 15 th centuries. In 1833 it was bought by the govemment, and now serves as a reformatory for women. Vreeland on the Veche has a similar origin in the castle built by Bishop Hendrik of Vianen in 125;-59 as a protection to the province against the lords of Amstel. The castle was demolished in 1529 when the province came under Burgundian rule. The province is traversed by the main railway lines, whicb all converge at Utrecht, and is also amply provided with navigable waterways.

The province represents the bulk of the territories once comprised in the ancient prince-bishopric of the same name, ket Sticht (the see) of Dutch historians. The see was founded in 723 by St Willibrord, and the diocese thus formed, saving for a short time when it was an archbishopric, was subordinate to the see of Coiogne. It covered all the northern Netherlands between the Scheldt and the Ems. The bishops, in fact, as the resuit of grants of immunities by a succession of German kings, and notably by the Saxion and Franconian emperors, gradually became the temporal rulers of a dominion as great as the neighbouring counties and duchies. Bishop Balderic (918-76) successfully defended the see against the Northraen, and received from the emperor Otto I. the right to coin money and all the land between the Leck and the Zuider Zee. The bisbopric was weak, bowever, as compared with the neighbouring states, Holland, Geideriand and Brabant, from the mere fact of its ecclesiastical character. The bishop had no bereditary or dynastic interest in his land, and, as a temporal ruler. his
powers were limited by the necessity of having to secure the goodwill of the higher clergy, of the nobles and of the cities, and also because of his relations to the German king and the pope as an ecelesiastical prince of the empire. The middie ages were marked hy constant wars between the bishops of Utrecht and the counts of Holland and Gelderiand. The growth of the power of Holland, however, under a succession of strong and capable rulers led to the hishopric becoming, during the \(14^{4 \mathrm{~h}}\) century, almost a dependency of the county. The death of every bishop was always the signal for violent disputes among the neighbouring feudal states, each of them intriguing to secure the election of its own candidate; hut, as stated above, Brabant and Gelderland had at last to recognize the fact of the supremacy of Holland over the see. In the 1 gth century this supremacy passed to the dukes of Burgundy, and finally, in 1527, Bishop Henry of Bavaria sold his temporal rights to the emperor Charles V. In 1559 the see of Utrecht was by Pope Paul IV. raised to the dignity of an archbishopric. At the time of the revolt against Spain Utrecht took the Protestant side, and was one of the seven provinces which signed the Union of Utrecht in 1579 . Each of these provinces retained in a large measure its sovereign rights and its own laws, privileges and customs. During the republican period the estates of Utrecht consisted of three " members." The chapter of the see was secularized, and out of the members of the five colleges a certain number, known as " the Elected" (Gceligerden), were chosen by the other two "members" of the estates. They beld office for life, and were reckoned as the "first member" of the estates. The knights formed the " second member," the representatives being chosen by co-option. The city of Utrecht, with the four smatler towns of Amersfoort, Rheenen, Wijk-byDuurstede and Montfoort, made up the "third member."
(G. E.)

The later history of the see of Utrecht is of considerable ecclesiastical interest. The last archbishop of Utrecht, Frederick van Schenk van Toutenburg, died in 1580 , a few months before the suppression of Roman Catholic public worship by William of Orange. Two successors were nominated by Spain, both of whom were unable from political causes to take possession of the see. In 1583 the chapter elected Sasbold Vosmeer, Catholic pricst at the Hague, vicar-general; the election was confirmed in 1500 hy the papal nuncio at Brussels, and in 1602 Vosmeer was consecrated at Rome archbishop of Philippi in parlibus. After Vosmeer's death (16iz) Philip Rovenius van Ardensul was elected hy the chapter and confirmed by the pope. In 163 I he formed the surviving members of the chapters of Utrecht and Haarlem into a collegiate body which became known as the chapter of Utrecht. Rovenius was succeeded as vicar-general in 1651 by Jacob de la Torre, consecrated as archbishop of Ephesus. Under his vicariate trouble with Rome hegan, the pope insisting on bis right as universal bishop to appoint the vicar-general's coadjutor and successor. It was not, however, until the vicariate of Pcter Codde, consecrated vicar-general with the titie of bishop of Sehaste in partibus in 1669, that tbe quarrel came to a bead. Codde was the nominec of the Dutch secular clergy, and these bad for years past been at violent odds with the Jesuits, the champions of the ullramontane principle. The publication of an anonymous pamphlet in 1697, entitled "A Short Memoir on the State and Progress of Jansenism in Holland " (Kort feudenkschrift san den slaat en poorlgang van het Jansenisme in Holland), gave the latter their opportunity. Codde was accused of being its author, and though be successfully reluted this charge, he was ultimately deposed for Jansenism (1702), his opponent, Theodor de Kock, being appointed in his place. The result was a schism which was only temporarily checked by the expulsion of de Kock from the country by the statesgeneral. Codde himself died in 1750 . The Church of Utrecht was now without a hishop, and it was believed at Rome that the movement of revolt would soon perish for want of priests, especially as, with the constant influx of regulars, the number of Codde's adherents bad steadily decreased. As a resuit of
the publication of the bull Unigenizss by Pope Clement VII. in 1713, however, many French Jansenist priests took refuge in Holland, and so kept the church alive. In 1723 the chapter of Utrecht, in order to preserve the canonical succession of the Dutch clergy, elected Cornelius Steenoven archbishop. He was consecrated (15th October 1724) by Dominique Varlet, hishop of Bahylon in partibus, who, having been deposed hy the pope for Jansenism, had settled in Amsterdam in 1720. The pope replied to this hy excommunicating all those who had taken part in the election and consecration. Undeterred by this, the chapter, on the death of Steenoven, elected as archbishop Cornelis Jan Burchman, who was consecrated by the hishop of Babylon on the 30th of September 1725. From this time onward the Jansenist Church of Holland has continued as an independent body, accepting the authority of the general councils, up to and including that of Trent, but basing itself on the Gallican theory of Episcopacy (q.v.) and rejecting the Vatican council, the infallibility of the pope and the papal dogma of the Immaculate Conception. Under Archbishop Peter Jan Meindaerts (d. 1767) two suffragan sees were created, that of Haarlem in 1742, that of Deventer in 1757. The Church bad shrunk considerably since the 18 th century, but in the first decade of the 20th showed signs of revival as a point d'appui for Catholics restive under the yoke of the ultramontanism dominant in the Roman Church. With the Church of Utrecht the Old Catholic movement in Germany at first established close relations, the first German Old Catholic bishop, Dr Reinkens, being consecrated by H. Heykamp, bishop of Deventer, in 1873. The Jansenist Church is, however, intensely conservative, and viewed with extreme disapproval the departures made by the German Old Catholics from Catholic tradition, notably in the matter of clerical celibacy. It refused, moreover, to recognize the validity of Anglican orders, and consequently to follow the example of the other Old Catholics in establishing intercommunion with the Church of England. This attitude towards the English Church was accentuated hy the consecration, on the 28th of April 1908, of Mr Arnold Harris Mathew \({ }^{1}\) as hishop of the Old Catholics in England by Dr Gerard Gul, Jansenist archbishop of Utrecht. The singular offshoot of the Church of Utreche thus created estahlished its headquarters in a former Congregational chapel (dedicated significantly to the Englishman St Willihrord, the first bishop of Utrecht) in River Street, London, N., the minister of which had joined the movement with his congregation. In roro Bishop Nathew claimed that his community numbered between 500 and 600 , with ten priests. and that he had had many inquiries from both Roman Catholic pricsts, discontented with the Vatican policy, and Anglican clergy, uneasy about the validity of their orders (see an "interview" in the Daily Graphic, September 4, 1910). Meanwhile, in Halland itself the Roman Cntholic hierarchy had been restored by Pope Pius IX. in 1851 , with Utrecht as the archiepiscopal see.
(W. A. P.)

Authoritits.-K. Burmen, Ubrechtsche Jaarboeien, Ac. Annals and documents (3 vols., 1750); A. Buchelius, De Episcopis Uhirejectensibus, containing the chronicles of J. de Beka and G. Heda (Utrecht, 1643): I: van d. Water, Groot Placactboek der Stads Utrecht (3 vols., Utrecht, 1729): J. J. de Geer, Bijdragen tot de Geschied. en Oudheiden der Prooincie Uirechs (Utrecht. 1861): T. van Riemsdijk. Geschied. van de Kerspelkerk man St jocob le Uirecht (Leiden. 1882); S. Muller. Openbare perzamelingen der Gcweente Utrechl (Utrecht. 1881); V. F. Blondeel, Beschriving der Stad Utrecht, de opoofging der Bischoppen (Urrech1, 1757); S. Muller, Rechtsbronnen der Slad Ulrecth (a vois, Utrecht. 1883): R. Fruin, Geschied. der Staak-1mstellingen in Nederland (the Hague. tgor). For the Old Catholic Church see the article "Jansenistenkirche," by Dr J. A. Gerth van Wijk. in Herzog-Hauck, Realencyklopddie (3rd ed., Leipzig, 1900), pp. 599-606, where furiber references are given.
UTRECAT, a city of Holland, capital of the province of Utrecht, on the Crooked Rhine, which bere divides into the
\({ }^{1}\) Bishop Mathew (b. 1855) about the year 1892 claimed and for a while assumed the title of earl of Llandaff (sic), ar grandsoo of Arnold Nesbit Mathew (d. 1820), who was said to have been the eldest son of the first earl of Llandaff. though neither be nor his eldest son ever claimed the title (see G. E. C(okayne)). Complets Pecrage; corrigende to vol. v. in vol..viii. p. 450).

Old Rtine and the Vecht. Pop. (1905) 1t4.32r. It is an important junction station 22 m . by tail S.S.E. of Amsterdam. Tramways connect it with Vreeswyk on the Lak (where are the tange locks of the Merwede camal), Amsterdam, and by way of De Bilt with Zeist, and thence with Arnhem. It is a picturesque atici intercsting old town with more regular streets and shady equases and fewer canals than most Dutch towns. It is an important fortress, forming the principal point d'appui of the line of defensive inundations called the "New Holland Water Line," in addition 10 its position as a railway centre. The defences consist of an inner line of works which preserve the place against surprise, and of an outlying thain of detached forts of fairly modern construction, forming roughly two-thirds of a circle of three miles radius. Of these the works facing the east would in war time cover the assembly of troape destined to operate outside the Water Line, while those of the north and south fronts would be sumounded by inundations and serve chiefly to controf the sluices. The line of the ancient ramparts, demolished in 1830, is now only marked by the Singel, or outer canal, which surrounds the oldest part of the city, with pleasant gardens and promenades laid out on the inside. Two canals, the Oude and the Nicuwe Gracht, intersect the town from end to end. On the Oude Gracht the roadway and quay are on different levels. the roadway lying over vaules, which open on the quay wall and are used as cellars and poor dwelling-houses. On the east of the town is the Maliebaan or Mall, consisting of an ancient triplo avenue of lime trees, now largely replanted. Utrecht is the seat of a university, and of a Roman Catholic archbishopric. It is also the seat of the archbishop of the Dutch Oid Catholics. The Domkerk, dedicated to St Martin. the former calhedral church of the bishops of Utrecht, is a large Gothic building. erected in 1254-1267 on the site of the original church founded by St Willibrord about 720 and compieted by Bishop Adelbold about 1015. As open space forming the beart of the square in which the church stands separates the solitary western tower (isth century) from the choir and transept, the nave having been blown down by a violent hurricane in 1674 and never rebuill. The interior (30 ft . wide and 115 ft . bigh) has been clumsily fitted up with pews and galleries for Protestant worship, so that the effect of its slender columns is spoill. It contains the monuments of Admiral van Gent (d. 1672) and of Bishops Guy of Hainaut (d. 1317) and George of Egmont (d. 1559), white in the crypt are preserved the hearts of the German emperors Conrad II. (1039) and Henry V. (1125). The Roman Catholic cathedral of St Catherine dates from t 524 and has been restored in modern times. Other churches of very carly founda. tion in Utrecht are the Pieterskerk and the Janskerk. Attached to the Domkerk by fine odd Gothic cloisters is the university, which was founded in 1634 and enlarged in 1894 . The students number some 750, and there are five faculties of theology, law, medicine, mathematics and science, and letters. The axis (restored in 1879) was originalty the chapter-house of the cathedral. Connected with the university are a valuable library. occupying the palace built for Louis Bonaparte, king of Holland, In 1807 and containing upwands of 200,000 volumes and MISS.; a muscum of natural history; an ophthalmic inscitute; physical and chemical iaboratories; a veterinary school; botanic garden; and an observatory. The archiepiscopat muscum (1872) contains examples of all branches of sacred art in the Netherlands. In the Museum Kunstlicfde is a mall picture-gallery, chicfly remarkable for some pietures by Jan Scorel (\(1495-1562\)); the museum of antiquities contains aniscellanoous collection. Other buildings of interest are the museum of industrial att; the so-called " Pope's house," built in 1517 by Adrian Florisecon Bocyens, afterwards Pope Adrian VI., and a mative of Utrecht; the royal mint of Holland; the Fleshers' Hall (1637); the home for the aged, occupying a 14 th-century mamsion; the town hall (1830); and the large hospital prison and barracke. The most important industrial establish. ments are cigar manufactories, manufactories of chemicals and earthenware, and brass loumdries, and there is also an active trada in the agricultural produce of the surrounding country.

The country round about Utrecht is pretty and plentifulify studded with country bouses, especially on the road to Arnhem. Close by, on the north-east, is the village of De Bilt, the seat of the Dutch Meteorological Institute. In this parish was formerly situated the famous Benedictine convent ol Oostbroek, founded in the beginning of the 12 th century. The abbey was demolished in 1850 . The manor of Zuilen on the Vecht, four miles north-west of Utrecht, was partly beld in fief from this abbey and partly from the bishops of Utrecht. The fords of Zuilen grew very powerful and built a castle here at the end of the \(13^{\text {th }}\) century. In 1302 this possession passed by marriage to the influential family of van Borsele, lords of Veere and governors of Zecland. But on the extinction of that house towards the end of the 15th century the castle passed through various hands until it came by marriage in 1665 to the family of Baron van Tuyli van Serooskerke. The castic was carefully restored in 1752, and is still in excellent preservation. Five miles east of Utrecht is the village of Zeist, the scat of a Moravian settlement established here in 1746 . There are also a fine caste (1667) and grounds, a sanatorium for children and numerous modern villa residences. At Ryzenburg, close by, is a Roman Catholic seminary, founded in connexion with the cstabilshment of the Koman Catholic hierarchy in 2853 and practically serving as an archiepiscopal palace.

Utrecht (i.e. Oude Trechl or Old Ford. rendered in Latin documents Vetus Trajectum) is a city of great antiquity and much historic interest, cespecially as illustrating the growth of civic libertica during the middle ages. The place existet in Roman times and is mentioned in the itincrary of Antoninus. Though the name Trecht or Trajectum is almost universally lound in old documents and on coins, the town was known ly another name among the Frisians and Franks. Bede. writing in the Bih century, speaks of Wiltaburg, id ess oppidum Wittorum, dingua autem Gafica Trajectum tocatur. That any such prople as the Wilten existed there is littie evidence, but Wiltaburg (or variants of it) occurs in chronicles as late as tho ixth century, and it is stilt preserved in the name Witdenburgo given to a Roman camp near the city.
The carliest authentic record of the town is that of the building of a chapel-afterwards destroyed by the beathen Frisians-by Dagobert 1., king of the Franks. in 636; but the importance of the place began when St Willibrord (q.v.), the apostle of the Frisians, established his see there. This lact determined the development of the city. The bishop's seat had to be fortified against the incursions of the heathen Frisians and Northmen. and the security thus afforied attracted population till, after the destruction of its rival Dorestad by the Normans in the gth century, Utreeht became the chicf commercial centre of the northern Netherlands. Bishop Batderic (A.D. \(918-976\)) was the real founder of the prosperity of the town. On his accession to the sec Utrecht had just been sacket by the Northmen. He succeeded in driving the raiders away, rebuite the walls, and during the fifty-eight years of his episcopate the town grew and prospered. Its gradual acquisition of civic nghts folkwed the same line of development as in the German episcopal cities. At first the bishop, lolding Immediately of the Empire, was supreme. In feudal subordination to him a royal count. who was also Vage (adrocalus) of the cathedral church of St Martin, had his ocat at Uirecht as the chief town of the Gouto (Gau, pazus) of liferlake. In the ith century a burgrave (chitelain, cosseflanus), who was an episcopal officer, is found exercising jurisdiction in the city as well as the Vogt. Bishop Godebald (1122-1127) granted to the inhabitants of Utrecht and of Muiden, the neighbouring port on the Zuider Zee, their first privileges, which were confurmed on the 22nd of June 1122 by the emperor Aenry V., who died at Utrechit in 1125 . The extant imperial charter does not specily what were the municipal rights that were conceded, but it is certain that at this time they were very limited. The magistrates, the Schoul or high bailiff and his asecseorts, the Schepenen (rabini, echerins), were nominated by the burgrave from the order of knights. In 1106 we read lor the first time of councillors (consules, consiliarii, adjwroti) as assessors of the magistrates, but thesc, who a little later were known as the Raod or council, were also nominated. The position was simplified when, in 1220 Albert van Cuyck, the last of the hereditary burgraves, sold his rights to the bishop. These ecclesiastical princes were churchmen in little but name, and their desire tn be absolute rulers found isell confronted by the determination of the burghers 10 secure greater independence. As the 13 \(^{\text {th }}\) century advanced, the cnuncil, representing the wealihy and powerful gild of merchants, began to take a larger share in the government, and to restrict more and more the direct exercime of the episcopa! authority. Of the riee of the cralt gilds in Utreeht there is no record. They appear maddenly as fully developed or anized corporations, able to impose their will upo divhop and aristocracy. All thmugh the \(t\) ith oentury a continual seruede went on, but at last the gilds were victorious and were aolo
to secure in the Gildebrief of 1304 . confirmed by the bishop in 1305. a new constitution for the city. According to this, as emended by a later Gildebrief of t347, the existing board of seven Schepenen were to retain office for life, but the new ones, elected yearly, were in future to be chosen by the Raad either in or outside the gilds. The Raad itself was to be chosen by the aldermen of the gilds. Two aldermen, later styled burgomasers, were to preside, the one over the Schepenen, the other over the Raad, sharing this presidency with two episcopal officials. The Schout was still to be nominated by the bishop from among the knights, but his powers were now comparatively insignificant. The two chief aldermen of the gilds, with the two episcopal official presidents above mentioned, together were to form the supreme government of the city. The victory of the democratic principle was entirely new in the Netherlands, though it had been anticipated in Florence, and was perhaps inspired by lialian example. In all other cities of the Netherlands the craft pilds remained in bumble subjection to a council co-opted from a limited number of wealthy patrician families. In Utrecht, however, power was henceforth concentrated in the gitds, which became not only trade but political associations, which together constituted the sovercign community. In this government, though the Schepenen retained a dignified precedence, all power was practically concentrated in the popularly elected Raad, even the estates of the see (Stichs) had " nothing to say in the city

The new liberties, as might be expected, did not tend to improve the relaions between the lown of Utrecht and its ecciesiastical sovereign; and the feud reached its climax \((1481-84)\) in the "groote vorlag. or great quarrel, between the citizens and Bishop David, the Bastard of Burgundy, who had been foisted upon the unwilling chapter by the comlimed pressure of Duke Philip of Burgundy, his Montfoort, who had teen called in, after the manner of the Italian podestas, and endowed with supreme power for the defence of the town, the Uirechers deleated all the elforts of their Lishop, aided by the llollanders and an aristocratic faction. They only succumbed when the weight of the archduke Maximilian was thrown into the scale against them (\(144^{8}+\)). Even then Bishop David was once more expelled in \(t 491\). The last prince-bishop of Utrecht was Ifenry of Bavaria, who was elected, in May 1524, in succession to Philip of Burgundy. He took the part of the nolies against the burghers, but Duke Cliarles of Gelderland, jealous of the growing power of the house of Habsburg, intervebech, put an end to the strife, and, in 1527. himself occupied the city. In fuly of the next year Bishop lienry was back again, having gained possession of the city by surprise: and in the following October he sold his temporal rights
to the emperor Charles V. Utrecht, thus brought into immediate relations with the Spanich Ilabsburgs, proved no more tolerant of their rule than of that of its bishops, and took a leading part in the revolt of the Netherlands. The umion of the seven northern frovinces, proclained at Utrecht in 1579. laid the foundation of Dutch independence (see Nethertands). The city proved indecd a refractory nember of the new league: and, after the death of old encmics the Hollianders, refuscd to renognize the authority of the council of state, and elecied a stadtholder of their own. Inside the city the old aristocratic and elemocratic factions still carricd on their traditional strugste, complicated now by rcligious difficulties. had litule influence on the politics of the city, where the aristocrats inclined to the moderate (libertine) opinions advocated by the preacher Ilubreche Duilhuis, while the democrats were organized in the new church otder introduced by the uncompromising Calvinist I'ctrus Dathenus (d. 1581). The adhesion of Utrecha to the party of revolt was the work of the aristocratic party, and the critical state
of affairs made it for a while duminant in the town. The gilds and burgher mititis were deprived of all woice in the govermment, and the town council berame an hereditary body. Alter the advent of the carl of Leicester as governor-generat of the Netherlands in 1585 , a change took place. The ultra-Calvinistic Adolph, count of Nuenar. who was elected stadtholder,overthrew the anstocratic gosernment and placed the reuple in power. The Utrechters, under the leadership of Cierard Prouninck, otherwise Deventer, vehemently took the side of Lecicster in his quarrel with the estates of Ilulland, and the English governor-generil made the town his bendquarters during residence in the Nepherlands, and rook it under English protection. Though beartily disliked in Holland, Leicester made bimsell so popular is Utrecht that the burgher guard even presented him with a petition that be would asume the sovereignty; The withdrawal of Leicester from the Netherlands was followed by the defeat of Doventer and the recurn of the aristocratic party to power. The istue wat dneided (Octoher 51 I 1553) when the desmocrats were defeated in battle. Deventer Eras imprisoned and banished. and ea eflen Angtempt of the dermocratic party 10 regain power vas
 Nuenar, pur down the movement w: hrers found themselses campilled 10
demoeratic ingtitutions of the city remained eothing but a mane; the rights of the community were exercised by a municipal aristocracy, who betd all power in their own hands. The gilds, once supreme, henceforth ceased to have any political imporiance. At Utrecht the treaty which ciosed the War of the Spanith Sucresaion was aigned on the inth of April 17:3-
(C. E.)

Authonities.-Pieter Bondam. Charterboek der Eierlogem pan Gelderiand, Efc.. orig. documents with notes (178) : Colex diplomaticus Neerlandicus, tome j . (Utrecht, 1848)-ithe documents of the first part concern the trade of Utrecht: De Geer van Oudegain. Het onde Troche (1875); W. Jumphans, " Utrecht in Mitteblier (im Forschangen sur dewtich. Gesch. ix. 51 3-526); Laurent P. C. vaa Bergh, Handboek der Middel Nederlandsche Ceographic (Leiden. 1857): Kan Hegel. Stide der Cermanischen Volker int Mittrlaller (Leipaig. 189ı), vol. ii. pp. 29s-300. Other works are cited in the bibliography to the articte on the see and province of Uuechi, above.

UTR PCHT, TRBATY OP, the general name given to the important series of treaties wihich in 1713 and \(17 t 4\) coacluded the great European war of the Spanish Succession (42.), and by which inter alia England obtained possession of Newfoundiand, Nova Scotis and Gibraltar.

Worsted, mainly through the genius of Marlborough, in his efforts to secure the whole of the great Spanish monarchy for his grandson, Philip, duke of Anjou, Lonis XIV. made overtures for peace in 1706 and again in 1709 . These were rejected, and failurt also attended the negotiations between France apd the United Provinces which took place at Gertruydenbers in 1710 , negotiations only entered upon by the Dutch after they had by a treaty with England (October 1700) secured a guarantee that they would obtain the coveted berrier of fortretees against France. But matters changed greatly during 1710 and 1711. In England in August and September 1710. the Tories, the party of peacc, succeeded the Whigs, the party of war and the inheritors of the tradition of Willian III., in the conduct of affairs. In the Empire in April 1711, the archduke Charies, Philip's rival for the throne of Spain, succeeded his brother Joseph I. as ruler of Austria and became prospective emperor. and England and the United Provinces, having waged a lons and costly war to prevent the union of the crowns of France and Spain, were equally averse from seeing Spain and Austria under the same ruler. Moreover, the allies realized at last that it was impossible to dislodge Philip Irom Spain, and all the peoples were groaning under the expenses and the sufferings of the war. France and England came to terms, and the preliminaries of peace wrere signed in London in October 1711, their basis beips a tacit acquiescence in the partition of the Spanish monarchy.
The congress opened et Utrecht on the 29th of January 17 s . the English representalives being John Robinson, bishop of Bristol, and Thomas Wentworth, earl of Strafiord. Reluctanthy the United Provinces accepted the preliminaries and sent representatives, hut the emperor refused to do 50 until he wes assured that these preliminaries were not binding. This assurance was given, and in February the imperial representatives made their appearance. As Philip was not yet recognired, as king. Spaia did not at first send plenipotentiaries, but the duke of Savoy sent one, and Portugal was also represented.

One of the first questions discussed was the mature of the guarantees to be given by France and Spain that these crowns would be kept separate, and matters did not make much progress until after the roth of July 1712, when Philip signed a renunciation. Then, England and France having concluded a uruce, the pace was quickencd and the main treaties were sigoed on the 11 th of April 1713 .

By the treaty between England and France Louis XIV. recognized the Protestant succession in England and updertook to give no further aid to the Stuarts. France ceded to Ereland Newfoundland, Nove Scotia or Acadia, the island of Se Kites or St Christopher, and the Hudson's Bay Territory (" sinenn et fretum de Hudson, una cam omnibus terris, maribus, maritimis fuviis, locisque, in dicto sinu et ireto sitis "), and promised to demolish the fortifications of Dunkirk and to fill up its harbour. A commercial treaty signed between the two countries on the mane day provided that each should allow the other the most favoured mation treatment, while each gave up the clain to
the indiscriminate seisure of shipping which had been practined during the war.

The treaty between France and the United Provinces was mainly coacerned with securing the barrier of fortresecs. These arrangements were comewhat complicated and to a large extent provitional, as Austrit and Bavarit, two countries which were deeply interested in the fate of the Netherlands, had not yet amented to the terms of peace. By a commercial treaty concluded on the same day, Frace gave to the Dutch commercial privileges similar to those enjoyed by England. Ocher Ireaties concluded at the same time were between France and Savoy, France and Prussia, and France and Portugal. By the first the duke of Sevoy regained Sevoy and Nice, taken from him during the war, and France undertook to obtain for him the island of Sicily and tbe tile of king. By the second Prussia secured some small additioxis of territory, including part of Gelderkand and Neuchatel; in return France definitely and finally obtained the principality of Orange. It is interesting to note that as a constituent of the Empire Pruspia was atill fighting against France. The treaty between France and Portugal mainly concerned the Portuguese settlements in Brazil, her claim to these being recognized by France.

Other treaties were signed at Uirecht between Spain and the allies, Philip now concluding these as the recognized and lawful king of Spain. On the 13 th of July 1713 a treaty was signed between England and Spain, which embodied certain commercial arrangements previously made between the two countries. Spain ceded to England Gibraltar and Minorca and promised to give up Sicily to Savoy. She gave also to England the monopoly for thirty years of the hecrative slave trade with Spanish America, hitherto enjoyed by France: this was the famous Asiento treaty. Finally, there was an article concerning the inhabitants of Catalonia, who had fought bravely for Charles of Austria, and who had a large claim upon the protection of England. However, the protection granted to them was a mere sham, and the Catalans were soon the victims of the revenge of Philip of Spain. The peace between Spain and the United Provinces was signed on the 26th of June 17t4, but the conclusion of the one between Spain and Portugal was delayed until the following February. The former was concerned mainly with commercial matters, Spain giving the United Provinces the treatment of a most favoured nation, except as regards Spanish America. The latter dcalt with the frontier between the two countries and with the colony of St Sacrament in Uruguay, which was translerred to Spain.

The treaty of Utrecht also provided some compensation for the emperor Charles VI. as soon as he surrendered his claim to Spain. It was arranged that he should receive Naples and Milan, and also the Spanish Netherlands, heaceforward known as the Austrian Netherlands.

But the general pacification was still incomplete, as France and the Empire continued the war, albeit somewhat languidly. It was not long, however, before Charles VI. realized how inadequate were his forces, unsupported by those of England and of Holland, to meet the armies of France, and towards the close of 1713 be was for the firse time seriously inclined to consider conditions of peace. Accordingly, his representative, Prince Eugene, met the French marshal Villars at Rastatt in November 1713, and here, after negotiations had been broken off and again resumed, peace was made on the 7 th of March 1714 , Charles VL. concluding the treaty withoul waiting for the assent of the different states of the Empire. This consent, however, was necessary, and a little later the representatives of some of the princes of the Empire met those of France at Baden, where, on the 7th of September 1714, the treaty of Baden, the last of the treaties included in the general peace of Utrecht, was signed. This dealt entirely witb the question of the frontier between France and the Empire, which was restored as it was before the ontbreak of the war except that France gained Landau.

One important matter dealt with at Uireche remains to be mentioned. A second barrier treaty between England and the United Provimes was signed oo the 3och of Javuary 1713.
and a thind treaty signed at Antwerp an the 15 th of November 1715 clinched the matter. Seven fortresses were to be garrisoned by a total of 35,000 men, three-fifths of the cost being borne by the imperial government and the remainder by the United Provinces.

The treaty of Utrecht is second to none in importance in English history. Its provisions were a most potent factor in assiating the expansion of England's colonial empire and also in the building up of the country's commercial greatness. In the domestic politics of the 18 th century, to0, the peace has a great and recurring importance. Its terms were bitterly assailed by the Whigs, and after the accession of George I. four of its Tory authors, Bolingbroke, Oxford, Ormonde and Strafford, were impeached for concluding it, the charges brought against them being that they had corresppaded with the queen's enemies and had betrayed the honour and interest of their own country, while the abandoament of the Catalans was not forgotten.

The text of the treaty of Utrecht is published as the Acles, mbnoires et antres pridces auchentiques concernant la paix d'Uluecht (Utrecht, 1714-1715) ; and by C. W. von Koch and F. Scholl in the Histoire abregte des traiks (1817-1818). As far as it concerns the party politics of England, there is much about the peace in Dean Swift's works. See also C. Girnud, La Paix d'Ulrecht (Paris, 1847); I. S. Leadan, Political History of Emgland 1702-17 60 (1909); A. W. Ward in the Cambridge Modern History, vol, v. (iga8), and the State Trials for the proceedings against the impeached English ministers. But perhape the most valuable work on the whole peace is 0 . Weler:' Dar Friade son Utrecht. Verhandimngen swischen Endand, Frambreich, dem Kaicer und den Gemeralstalion \(1710-1713\) (Cotha, 1891);
(A.W. H.)
UTRERA, 2 town of southern Spain, in the province of Seville; on the Arroyo de la Antigua, a right-hand tributary of the river Guadalquivir, and at the junction of the Seville. Cadiz and Cordova-Utrera railways. Pop. (1900) \(15,138\). Utrera contains few noteworthy buildings, although it is an ancient town, still partly surrounded by medieval fortifications. The principal church. Santa Maria, is Gothic in style, dates from the isth century, and contains some interesting tombs; hut it was to a great extent restored in the 17th century. Agriculture and especially stock-farming are foremost armong the local industries, which also include mapufactures of leather, soap, oil and spirits. Large numbers of borses, sheep and fighting bulls are bred in the moorlands and marshes which extend eastward towards the Gaudalquivir, and a fair is held yearly in September for the sale of live stock and farm produce. Utrera was occupied by the Moors in the 8th century, and, though retaken by St Ferdinand (1230-52), was not finally incorporated in the kiggdom of Castile until 1340 . In the middie ages it was notorious as a favourite refuge of brigands and outlaws.

UTIARPARA, a town of Britich India, in the Hugli district of Bengal, on the river Hugli. Pop, (1901) 7036. It is famous for the public library founded and endowed by Jai Krishase Mukharji, which is specially rich in books on local topography. There is an aided college, and a girls' school supported by a native association.
UTTOXETER, a market town in the Burton parliamentary division of Staffordshire, England, 15 m . N.E. by E. of Stafford by \(a\) branch of the Great Northern railway. Pop. of urban district (1901) 5133. It is also served by the North Staflordshire railway. The town lies pleasantly on high ground dear the river Dove, a western tributary of the Trent, here the boundary with Derbyshire. There are large works for the manufacture of agricultural implements, and brewing and brick-making are carried on. Several agricultural fairs are held annually. The church of St Mary bas a fine decorated tower and spire; the rest of the fabric dates from 1828. Alleyn's grammar-school was founded in 3558 . In the market-plact bere Dr Johnson atood hatless in the rain doing voluntary penance for disobedience to his father. A bas-relief commetmorates the incident. The name of the town is locally Uxeter, or an approximate pronunciation. At Denstone, 5 m . N. of Uttoreter, is St Chad's College, a large middle-class school for boys, fennded in coanexion with Si Nicholas' Collego, Lancing

Uttoxeter (Wotocheshede, Utwokeshather, Uicester, Uutloxater) was probably not a Roman site, although the termination of the name suggests one, and a lew remains have been discovered. It formed part of the estates of Algar, eart of Mercia; at the time of the Domesday Survey it was held by the king, later it passed to the Ferrers family and was included in the honour of Tuibury. In the early i2th century Earl Robert de Ferrers constituted Uttoxeter a free borough, and granted to the inhabitants freedom from all tolls, tonnage, poundage and other exactions. These privileges were confirmed and amplified by a charter, dated August 15, 1251, from William de Ferrers, earl of Derby. Uttoxeter, with the rest of the honour of Tutbury, escheated to the Crown in 1266 owing to the complicity of Robert Ferrers in the barons' rebellion; it was regranted to Edmund Crouchback, ancestor of the dukes of Lancaster, under whom it became part of the duchy of Lancaster, from which it was not severed until 1625 . The Wednesday market, which is still held, was granted by Henry III. to Wiliam Ferrers, carl of Derby, together with a fair to be held on the feast of the Nativity of the Biessed Virgin (September 8), which was kept up in the 18 th century. In 1308 Thomas, earl of Lancaster, oblained the grant of a fair on the vigil, day and morrow of St Mary Magdalene. In Leland's time "the men of the town used grazing" in the "wonderful pastures upon Dove," and in the 17 th and 18 th centuries the market was the greatest in that part of England for cattle and provisions; in the z8th century it furnished cheeses to many London cheesemongers. In 1648, on the defeat of the invading Scottish army under the marquis of Hamilton by Cromwell, its leader was captured here by Lambert.

UXBRIDGE, a market town in the Uxbridge parliamentary division of Middlesex, England, 18 m . W. by N. of St Paul's Cathedral, London, on the river Colne, and on branches of the Great Western and Metropolitan railways. Pop. of urban district (1901), 8585. There are breweries, foundries and engineering works, and a considerable traffic is carried on by means of the Grand Junction Canal. The town, which is connected by electric tramway with Hammersmith, London, has extended considerably in modern times as a residential centre. The church of St Margaret is Perpendicular, and retains a fine font in that style, and several ancient monuments.

Uxbridge is an ancient borough, stated to have been one of those originated by Alfred the Great, but it is not mentioned in Domesday. Here negotiations were begun, on the zoth of January 1645, between the commissioners of Charles I. and the parliament, but were broken off on the 22nd of February. A part of the "Treaty House," in which they were carried on, remains. In 1647 the parliamentary forces had for some time their headquarters in the town. It remained a garrison town until 1089. It obtained the grant of a market from Henry II.

UXIAL, a deserted city of the Mayas in the state of Yucatan, Mexico, 20 m . W. of Tikul, a station on the railway between Merida and Valladolid. The ruins stand on a wooded plain, and cover an area of a little more than half a mile square, alt hough fragments are found over a much larger space. Uxmal is the largest and most important of the deserted cities of Yucatan, and shows some of the finest specimens of Maya architocture. The clitate is buth atior then itat of Chiapas, and the structures are in a better state of preservation than those of Palenque. but the rank vegctation and the decay of the wooden lintels over the doorways have broken down many of the walls. Uxmal was inhabited for some time after the Spanish conquest, but perhaps only by" a remnant of a popuiation once much larger. The neighbourhod is now very unhealthy, and it may be presumed that the cress of depopulation, caused by increasingly unhealthy conderions and diminishing sources of lood supply, was gradual. There are no streams near the ruins, and the water-supply was derived from cisterns and fiom a few pools now filled with soil and vegetation. A rather soft limestone was used in the buildings, bert the bocatity of the quarries has not been discovered The walls are com. monly about 3 ft . thick, in some cases muct: thicker, and the monly about 3 ft , thick, in some cases muct: thicker, and the
used. The outer surfaces of the walls are usually divided by a horizontal moulding into two unequal zones, the lower one plain with a band of sculptured ornaments at the base, and the upper elaborately sculptured. The interior walls were generally plastered and rarely ormamented. There are no windows, but large doorways. The jambs were of dressed stone, usually plain, and the longer lintels were of rapote wood; some of them, where protected from the weather, are still to be seen, sometimes covered with inscriptions. The buildings are rectangular in shape, long and narrow, divided usually into two ranges of rooms. They are generally arranged in groups of four, enclosing a quadrangular court, and sometimes singly on massive eminences. The interiors are cut up into numerous small rooms by transverse pertitions, while numerous beamholes and dumb-sheaves indicate other divksions. The rooms are covered by acutely pointed vauits, the stones forming the sides of the vault being beveiled to the angle, and the apex being covered by capstones covering spaces of one to two feet. The spaces between the vaults are filled with isolid masomry, and above all is the roof covering, also of masonry, which is sometimes surmounted with an omamental rool-comb. The buildings stand upon raised terraces, or upon truncated pyramids, approached by broad stairways, usually of cut stone.

There are five principal buildings or groups-the Temple of the Magician. Nunnery Quadrangle. House of the Turrles, House of the Pigeons and Governor's Palace. There are other structures and groups, smaller and more dilapidated. One of them, standing immediately S. of the Nunnery. consists of two parallel walls only? it is usually described as the ball-court, or gymnasium, a atructure common to most Maya cities. The Temple of the Magician crowns an unusually steep pyramid \(240 \times 180 \mathrm{ft}\). at the base and 80 ft . high. It has three rooms, and a smaller temple is built against the upper western side of the pyramid. A broad steep stairway ascends to the summit plaiform on the E., and a narrower stairway to the lower temple on the W. The west front is filled with remarkable figures and designs, including the lattice work comman in Uxmal. The Nunnery Quadrangle consists of four large rectangular independent buildings, enclosing a quadrangular court. the whole occupsing a terrace over 300 ft . square at the base and upwards of 15 ft . above the level of the plain. The buildings resemble each other in the arrangement of their rooms, and their elaboralely ornamented facades face inwards upon the court. The division of the buildings into numerous small rooms is understood to signily that they were used as communal habitations, possibly of priestly orders I be Governor's Palace, standing upon a triple terrace S. of the Nunnery. is, according to W. H. Holmes." the mont important single arnect ure of its class in Yucatinn, and for that matter in America." It is 320 ft . long. 40 ft . wide and 25 or 26 ft . high, divided into a long central and two end sections, separated by recesses and two transverse archways about 25 ft . long, 10 ft wide and 20 ft . bigh. These archways were subsequently blocked, and may bave been intended origioally as portals to a quadrangle which was never buite. The upper zone of the exterior walls is about 10 ft . wide. exclusive of the mouldings and ornamental fricze, and its total kength of 720 ft . is crowded with eculptures, in which there are three princapal motives -the mask, the fret and the lattice. The projecting snouns in the lme of masks forming the upper part of thas zone are a peculiar fcaturc of Uxmal ornamentaion. The House of the Turiles is a comparatively small structure near the N.W. corner of the Governor's Palace. It has the same fcatures found in the other seructures except for a line of sculptured turiles on ithe mouldings of the fricze. Immediately S.W. of the Governor's Palace is a huge truncaled pyramid. \(200 \times 300 \mathrm{ft}\). at the base and 60 to 70 ft . hish. Beyond this is another large quadrangular group known ts the House of the Pigeons It resembles the Nunnery Quadrangle. excepp that the northent building carries a peculiar rool-comb of colosasal saze. running its entre length and rising to a height of about 16 ft . The base of this comb is if high. capped by a moulding and perforated by over 50 openings. Above this the comb is divided into nime sections rising by large steps 10 the apex, ench pierced by 30 or more openings. like an immense dovecote. Projecting stomes suggest that they were buile to carry нalues or fagures like ithe roof-combs of Palenque.

UZ, JOHANK PETER (17 70-1 796), German poet, was born at Ansbach on the 3rd of October 1720. He sludied law, 1739-43. at the universily of Halle, where he associated with the poets Johann Ludwig Gteim (\(q\).s) and-Johana Nikolaus Golz (g.e.). and in conjunction with tbe latter translated the odes of Ana. creon (1746). In \(1748 \mathrm{U}_{2}\) was appointed unpaid secretary to tbe Justizollegiam, an office he held for twelve years; in 1763 We became assessor to the imperial court of justice at Nuremberg; in 1790 was made a judge and, on the anneration of

Ansbach to Prussia (2nd of December 1791), entered the Prussian judicial service, and died, shortly after his appointment as Landrickter, at Ansbach on the 1 ath of May 1796 . Uz wrote a number of graceful lyrics in Gleim's style, and some patriotic odes; he is the typical representative of the rococo period in German poetry. In 1749 the first collection of his Lyrische Gedichice was anonymously published. He also wrote, in alexandrines, Der Sies des Liebesgothes (1753), a close imitation of Alexander Pope's Rape of the Lock and a didactic poem, Versuch über die Kunst stels fröhlick au sein (1760).
A complete edition of Uz's works-Sdmulliche Poetisehe Werkewas published at Leiprie. 176d; a new edition (Vieana, i804), which has been often repriated. A critical edition was published by A. Saver in 1890 . See Henriette Feverbach. Us and Cronegh (1866), Briefe som Uz an eimen Freund ans den Jakren 1753-82 (published by A. Henneberger (1866) and E. Petzet, Johasen Peler Us (Aosbach. 1896).

UZ. The "land of \(\mathrm{U}_{2}\) " (\(\mathrm{r} \mathrm{m}^{\mathrm{m}} \mathrm{m}^{\text {) }}\) is best known as the scene of the story of Job. Its precise location is a matter of uncertainty, opinion being divided between a position \(N\). of Palestine ("Aram Naharaim") and one to the S.E., in the neighbourhood of Edom. In favour of the former are the references in Gen. x. 23. xxii 21, the inclusion of Job among " the children of the East," the possibility that Bildad the Shuhite (cf. Gen. xxy. 2, 6) belonged to the Suhu, a people living on the right bank of the Euphrates, and the description of Elihu as a Buzite (xxxii. 2). Whether the name \(\mathrm{U}_{z}\) is found or not in the cuneiform inscriptions is disputed. In favour of the S.E. position we have the description of Elihu as of the family of Ram' which (a Chren. ii.) was a distinctly southern people, the fact that Eliphaz was a Temanite (i.c. he came from Edom, cf. Gen. xxxvi. 4) and the references in Gen. xxxvi. 28 and Lam. iv. 21. The mention of \(U_{z}\) in Jer. xxv. 20 is probably a gloss. While Edom and Uz are not to be identified, the traditional association of "wisdom" with Edom may incline us to place the Uz of Joh in its neighbourhood rather than in that of the Euphrates. The tradition which places Job's home in Hauran has no value. It is worth noting that the Septuagint forms from Ux the adjective Aurits, which points to a pronunciation \(A w s=\) Arabic \(A\) ud, the name of a god whose worship was widely spread and might therefore be readily bome by tribes or attached to districts in several regions.
.UZts, a cown of southern France, capital of an arrondissement in the department of Gard, finely situated on an eminence above the Alzon, 16 m . N. by E. of Nimes hy road. Pop. (1006) 4008. Uzks, the seat of an episcopal see from the sth century to \(\mathbf{1 7 9 0}\), has a cathedral alroost destroyed by the Protestants during the religious wars and rebuilt in the \(17 \mathrm{th}^{\text {th }}\) and 18 th centuries, but still fianked by a round tower of five storeys lighted by anched openings and dating from the tath century. The Duche, a chisteau of powerful lords, at first viscounts, and in 1565 dukes, of Uzis, preserves a donjon originally of the ith century; the main buikding, flanked by a Gothic chapet. is Renaissance in style. The most ancient structure in the town is a crypt beneath a private house, attributed to the early centuries of the Christian era. The sub-prefecture and the tribunal of first instance occupy the old bishop's palace (17th century). There is a stalue of Admiral Brucys (1753-1798), a native of the town. Uzes has a communal college for hoys, and carries on the manufacture of silk, bricks and fireproof earthenware, and liquorice, and trade in the truffes for which the district is noted.

UZHITsB (also writen Uzice and Ushitsa), the capital of the Uzhitse department of Servia. As implied by its name, which may be translaticd "the narrow places," Uzhitse is built in a narrow and loncly gten amongst the south-western moun-
\({ }^{1}\) Perhape a mistake or an abtureviation for Aram.
tains, 1385 ft . above the sea. The surrounding heights, though rugged and barren, produce some of the finest Servian tobacco. Weaving is taught in the girls' school, and fairs are held for the sale of farm produce; but the absence of a railway and the badness of the roads retard commerce. Uzhitse possesses a court of first instance and a prefecture. Despite the prevailing poverty, it has ako a real-school with good buildings, founded in 1865, and attended by about 300 pupils in 1900 . The houses in Uzhitse are quite unlike those of more prosperous Servian towns, being tall, narrow structures of timber, frequently blackened by the damp. Pop. (1900) about 7000.

Early in the 13th century Uzhitse was the seat of St Sava, the frst arcbhishop, and the patron saint of Servia. The archbishopric was soon removed to Ipek, in Old Servia; but after the Turkish garrison had been expelled in 1862 the city became onec more the head of a diocese. At Arilye, 13 m . E.S.E., there is a 13 th-century church, dedicated to St Aril, who, according to tradition, was martyred in the 9 th century by unconverted Serbs. On the Bosnian frontier, 15 mm . W. by N., are the mineral springs of Bayina Bashta (i.e. "the Garden Bath "), with Racha monastery close by; and in the neighbourhood is Dobrinye, the bome of the Obrenovich family, with a church built by Milosh Obrenovich, called "the. Liberator of Servia " (\(1818-1830\)).

UZZIAR (Heh. for "Yah[weh] is [my] strength "), more correctly Azarian (Hebrew for "Yah(weh] helps"); son of Amaxiah, grandson of Joash 1., and king of Judah (2 Kings xiv. 22, xv. 1-7). Of his long reign of fifty-two years little is recorded. He recovered Elath at the head of the Aelanitic Gulf, evidently in the course of a successful campaign against Edom (a possible reference in Isa. xvi. 1); we read further in 2 Chron. xxvi. of great wars against Philistincs, Arabians and Meunim, of building operations in Jerusalem (probably after the attack by Joash), and of political and social reforms. The prosperity which Judah enjoyed during this period (middle of 8th century) is illustrated by the writings of Amos and by the earliest prophecics of Isaiah (e.g. ii. 6 sqq.). In his old age Uzziah was a leper (2 Kings xv. s), and the later history (a Chron. xxvi. 16 sqq .) regarded this as a punishment for a ritual fault of which the king was guilty; whilst Josephus (Ant. ix. 10. 4) records the tradition that on the occasion of his transgression the land was shaken by the terrible earthquake to which Amos i. I and Zech. xiv. 5 reler. During Uzuiah's seclusion his son Jotham acted as regent. The growing power of Judah, bowever, aroused the jealousy of Israel, which, after the death of Jeroboam (3), had fallen on cvil days (see Menarex). Jotham's victory over Ammon (2 Chron. xxvii. 5) could only increase the hostility, and preparations were made by lsrael for an alliance with Damascus which culminated in an attack upon Jodah in the lime of Jotham's son, Ahaz (g.v.).

Tbe identification (Schrader, McCurdy, \&c.) of Arariah with Azriyau of Ja'udi, the head of a North Syrian confederation at Hamath (Hamab) overcome by Tiplath-Pileser IV. (758 B.c.), conflicts with the chnonological evidence, with what is known of Uzziat's life and policy, and with the historical wituation represented in the Biblical narratives (soe Winckler, Altest. Forschangen (1893), i. 1-23; S. A. Cook, Ency. Bib. col. 5344 i Whitehouse, Dic. Bib. iv. D. 844 seq . id. Ysaial, p. 9 seq. Skinner, Kings. p. 399). On the other hand, the interrelation of evenis in Palestine and Syria during this period combine with the sudden prominence of Judah (under Liziah) and the subbequent anti-Judacan and anti-Assyrian coalition (atainat Ahaz) to evgeent that Uxriah had been supported by Asoyria (c. Winckler. Keilinsehr, u. \&. Alte Tesh. 3rd. ed., p. 262). In fact, aince the Biblical evidence in adraittedly incomplete, and to a certain extent insocwre, the question of the ideatification of Azarianh of Judah and Azriyau of Jaudi may be reopened. See H. M. Haydn. Jours. of Bibl. Lit., xxviit. (1909), pp.182-199, and arti. Jews, 6513 (begianing). 15: Palestime, O/d Tash. Hish
(S. A. C.)

VThis letter was originally, like Y , only one of the earlier forms of the leter U . According to Florio (1611) V is "sometimes a vowel, and sometimes a consonant." In modern times attempls have been made to assign to it the consonantal value of \(U\), but in English another symbol \(W\) is used for this, while \(V\) has received the value of the voiced form of \(F\), which itself had originally a sound resembling the English IV (see under \(F\)). V is therefore a voiced labio-dental spirant, the breath escaping through a very narrow slit between the lower lip and the upper teeth. In German, however, \(V\) is used with the same value as \(F\), while \(W\) takes the value that \(V\) has in English. Apart from some southern dialect forms which have found their way into the literary language, as vaf (for fal or winc-fat which still survives in the English Bible) and pixen the feminine of for, all the words in English which begin with \(V\) are of forcign, and most of Latin origin. In the middle of words between vowels \(f\) was originally regularly voiced: life, lives; wife, wives, \&c. The Latin \(V\), hiowever, was not a labio-dental spirant like the English p , but a bi-labial semivowel like the English w, as is clear from the testimony of Quintilian and of later grammarians. This quality has remained to it in southern lialy, in Spain and Gascony. In Northern French and in Italian it has become the labio-dental v, and from French English has adopted this value for it. Early borrowings like wine (Latin vinum), woall (Latin vallum), retain the w sound and are therelore spelt with \(w\). In the English dialects of Kent, Essex and Norfolk there is a common change of \(o\) to \(w\), hut Ellis says (English Proxunciation, V. Pp. 132, 229) that though he has made diligent search he has never been ahle to bear the \(v\) for \(w\) which is so characteristic of Sam and Tony Weller in the Pickwick Papers., It is, however, illustrated in Pegge's Anecdoies of the English Language (2803) and confirmed by the editor of the 3rd edition (1844), pp. 65-66. The history of \(V\) as the Latin numeral lor 5 is uncertain. An old theory is that it represents the hand, while \(X=10\) is the two hands with the finger tips touching. This was adopted by Mommsen (Hermes, \(x \times i i\). . 598). The Etruscan used the same p-symbol inverted \(V\) with a horizoptal line above it was used for 5000.
(P. G.)

VAAL, a river of South Africa, chief affluent oi the Orange (q.0.). It rises at an elevation of over 5000 ft . above the sca on the slopes of the Klipstapel, in the Drakensberg mountans, Ermelo district of the Transvani, and about 170 m . in a drect line west of Delagoa Bay. It fows in a general S.W. direction, with a markedly winding course, across the platcau of inner South Africa, joining the Orange in \(29^{\circ} 3^{\prime} \mathrm{S}\). \(23^{\circ} 36^{\prime} \mathrm{E}\). The river valley is about 500 m. long. the length of the river being some 750 m .

The first considerable tributary is tine KHlp (80 m . lung), which rises in che Draken's Berg (the hill which givee its name' to the range) and flows N.W.i. its junction with the Vaal being in \(27^{\circ} \mathrm{S}\). 29 \({ }^{\circ} 6^{\prime}\) E., 12 m . S.W. of Standertor. From this point to the eastern fronticr of the Cape the Val forms the boundary between the Orange Free State and the Transvan. The river is usually challow and is fordable at many places, known as drifts. But after the heavy summer rains the stream attains a depth of 30 or more feet. At such times the banks, which are lined with willows and in places very steep, are inundated. As a rule little water is added to the Vaal by its' tributaries. Of these, the Wilge (190 m .). Which also rises on the inner slupes of the Drakeneberg, fows first S.W., then N.W. across the eastem part of Orange Free State and joins the Vaal 60 m . below the Klip confuence. Lower down the river receives from the south the Rhenoster, Valsch. Vet and other streartas which drain the northern part of the Orange Free State. On the north the basin of the Vaal is contracted by the Witwatersrand and Magaliesberg range, and its cributaries are icw and, save in the case of the Harts niver, short. The Klip, not to be confounded with the southern Klip already described, rises on the eouth side of the Witwatersrand a bout 15 m . W. of Johannesburg. is joined by weveral small streams, and after. S . E. course of 70 m . reaches the Vaal 2 m . E. of Verceniging. The Klip is of importance in the bupply of water to many of the Black Reel gold mines. The

Mooi rises in the Witwatersrand west of the Klip and, alter running almoss due S . 75 m . unites with the main stream about 90 m . below Vereeniging. It gets its name Mooi (Beauciful) on account of the picturesqueness of its banka. Some of its sources are at Wonderlontein, where they igsue from stalactite caves. The Harts river (200 m.) rises on the S.W. slopes of the Witwatersrand and fowing S. by W. unites with the Vaal about 65 m . above the confucnce of that stream with ihe Orange. The volume of water in the Harts is of ten very slight, but that parl of the country, the eastern division of Griqualand West, in which the Vaal receives its last tributaries and itself joins the Orange, is the best watered of any of the inland districts of the Cape. The Vaal here fows in a wide rocky channel. with banks 30 ft . high, through an alluvial plain rendered lamous in 1867-70 by the discovery of diamonds in the bed of the river and along its banks. The diamonds are washed out by the water and found amid debris of all kinds. frequently embedded ie immense boulders. The last affluent of the Vaal, the Riet river, rises in the Beyers Bergen S.E. of Reddersburg and Gows N.W. 200 m . through Orange Froe State, being joined, a mile or two within the Cape (rontier, by the Modder river (175 m .). which riscs in the same district as the Riet but takes a more northerly coursc. The unit ed Riet-Modder joins the Vaal 18 m . above the Orange confluence.
The name laal is a partial translation by the Dutch settlers of the Hottentot name of the river-Kai Gariep. property Garib (yellow water), in reference to ithe clayey colour of the seream. The Transvaal is so named because the first white immigrants reached the country from the south by crossing the Vaal.

VAALPENS (dusty-bellies), a little-known nomadic peopic of South Africa, who survive in small groups in the Zoutpansberg and Waterberg districts of the Transvaal, especially along the Magalakwane river. They are akin to the Bushmen (g.v.). In 1905 their total number was estimated by the Transvaal military authorities at " fcw hundreds." The Vaalpeps were so called by the Boers from the dusty look of their bodies, due, it is said, to their habit of crawling along the ground when stalking game. But their true colour is black. In height the men average about 4 ft ., i.e. somewhat less than the shortest Bushmen. Socially the Vaalpens occupy nearly as low a position as even the Fuegians or the extinct Tasmanians. They were nearly exterminated by the Aman'debele, a tribe of Zulu stock which entered the Transvaal about the beginning of the igth century. The Valpens, who live entircly by hunting and trapping game, dwell in holes, caves or rockshelters. They wear capes of skins, and procure the few implements they need in exchange for skins, ivory or ostrick feathers. They form family groups of thirty or forty under a chief or patriarch, whose functions are purely domestic, as must be the case where there are no arls or industries, nothing but a knowledge of hunting and of fire with which to cook their meals. Their speech appears to be so full of clicks as to be incapable of expression by any clear phonetic system. Hence it is impossible to say whether the Vaalpens possess any folklore or other oral literature analogous to that of the Bushmen.

VACARESCU, the name, according to tradition, of one of the oldest noble familics in Walachia. Its mythical founder is said to have been a certain Kukenus, of Spanish origin, settled in Transylvania as lord over Fogaras. Others connect the family with Ugrin, count of Fogaras. The first member of historical importance was Ianache (b. 1654), the grand treasurer of Walachia, who was killed with his master, Prince Brancovan, in Constantinople, 1714 His grandson through his son Stephan, also called Ianacbe (or "Enakiiza the Ban," 1730-1796), starts a line of Rumanian scholars and poets; be was the author of the first known Rumanian grammar in the vernacular, printed in \(178 \%\). While in exile in Nicopolis he wrote the contemporary history of the Turkish empire in two volumes (\(\mathbf{1 7 4 0}^{-1799 \text {). He was also the first to attempe }}\) Rumanian versification. Greater as a poet is his son Alecu (Alezander), who died as a prisoner in Constantinople in 1798 In 1796 a collection of his poems appeared in Rumania. His brother Nikolaes (d, 1830) also wrote some poems, but they remained in MS. until \(\mathbf{1 8 6 0}\), when they were published. By
fir the greatest member of the Vecarescn family in the male line was lancu (\(1786-1863\)), the son of Alexander. He received an excellent education not only in Greek but also in German and French, and was well versed in the literature of the Weat. An ardent patriot, he sided with the national movement in 1821, and assisted in establishing the Rumanian theatre, translating many books and plays from German and French into Rumanian, notably the Bridamaicus of Cormeille, a literary event of no small importance at the time. He inaugurated modern Rumanian poetry. In 1830 appeared his first volume of verse. He died in 1863. A niece of Alexander is the gifted writer Elema Vacarescu (Helene Vacarosco), who inherited the poetical talent of her family and has enriched Rumanian literature witb her Bard of the Dimboriza, and other poems and novels in Rumanian and in Freach.
(M. G.)

VAcARIUS (\(2120-1200\) ?), Italian civilian and canonist, the first known teacher of Roman law in Engiand, was doubtless of the school of Bologna, though of a later generation than the hearers of Irncrius. He was brought to Canterbury, possibly by Becket, together with a supply of books upon the divil law, to act as counsel (causidicus) to Archbishop Theobald in his struggle, which ended successfully in 1146, to obtain the transfer of the legateship from the bishop of Winchester to himself. We next hear ol Vacarius as lecturing at Oxford, in 1249, to "crowds of rich and poor," and as preparing, for the use of the latter, a compendium, in nine books, of the Digest and Code of Justinian, "sufficient," it was said, " if thoroughly mastered, to solve all legal questions commonly debated in the schools." It became a leading text-book in the nascent university, and its popular description as the Liber poupcrum gave rise to the nickname ponperistoc applied to Orford students of law. Nearly compiete MSS. of this work are still is existence, notably in the cathedral libraries at Woroester and Prague and in the town library at Bruges. Fragments of it are aiso preserved in the Bodkian and in several college librarics at Orford.
The new learning was not destined to make its way without opposition. King Stephen silenced Vacarius, and ordered the destruction of the books of civil and canon law which had been imported by Theobald. The edict to this effect seems, however, not to have been in force after the death of its royal autbor in 1154 (" 00 magis virtus legis invaluit quo eam amplius nitebatur Impietas infirmare," Joh. Sarisburiensis). There is ampie evidence that the civil law was scon once more a favourite study at Oxford, where we learn that, in ingo, two students from Friesland were wont to divide between them the hours of the night for the purpose of making a copy of the Liber pamperum. Whether or no Vacarius ever resumed his Oxford lectures after their interruption by Stephen we are not informed. In any cese he was soon called off 10 practical work, as legal adviser and eccleaiastical judge in the northern province, by his old friead and colleaguc at Cantcrbury, Roger de Pont l'Evéque, after the promotion of the latter, in the year of Stephen's death, to the archbishopric of York. Thenceforth the name of "magister Vacarius" is of very frequent occurrence, in papal letters and the chronicles of the period, as acting in these cepacities. He was rewarded with a prebend in the collegiate church of secular canons nt Southwell, half of which be was allowed in 11g: to cede to his "nephew" Reginald. He is last beard of in 1198, as commissioned, together with the prior of Thurgarton, by Pope Innocent III. to carry into execution, In the north of England, a letter witb relerence to the crusade. It is doubtless to the second half of the life of Vacarius that the composition must be attributed of two works the MS. of which, formerly the property of the Cistercian Abbey of Biddleston, in now in the Cambridge Universty library. One of these, Smmand de assumpto hominc, is of a theological character, dealing with the humanity of Christ; the other, Summa de matrimonio, in a legal argument, to the effect that the essential fact in marriage is neither, as Gratian maintains, the copuda, nor, is Peter Lomberd, comsent by werbe de procsexti, but mutoal uroditio.
Authonities:-Most of the original authorities are textually set out and annotaced by Prol. T. E. Holland in vol. ii. of the Oxford

Fistoricel Socioty's Colloctemea (1890). Wencts, in bis Magishan Vacarius (1820), priats the prologue, and a table of contents, of the Liber pouperum, from a MS. now lost. He returns to the mubject in Stieber's Opuscala academice (1834). F. Maitland in the Low Quarterly Revicw, xiii. pp. 533. 270 (1897), gives a full account of the Cambridze MSS. printing in extenso the Szmma de matrimenio See also Mublenbruch Obs. juris Rom. i. 36; Hanel, in the Leipo. Eit. Zeitunt (1828), No. 42. "Intelligenzblatt," p. 334 ; Savigny, Gesetichte, Iv. 423: Stolzel, Lehre son der operis nopi denamh. (1865). pa 592-620, and in the Zrilschrif far Rechsjeschichte, vi. P. 234: Calologme gentral des HSSS. des bibliorkeques pabliques de Prance: Déparlcments, t. x. Lieberman. in the English Historical Reviem, xi (1906), pp. 305. 544. identified Vacarius with one "Vac." of Mantua, the author of Contrarig Legum Longobardorum, but withdrew this antecedently improbable suggestion (ib. vol. xiii.) after T. Patella had shown, in the Aut della R. Aeademic di Torino, xxxii., that "Vac. Mantuanus," the author of the Contruria, must have been " Vacella," who, in 1189 , was a judge at Mantua.
(T. E. H.)

VACCINATION (from Lat. acca, a cow), the term originally devised for a method of protective inoculation against smallpox, consisting in the intentional transference to the human being of the eruptive disease of cattle called cow-pox (eaccinio). The discovery of vaccination is due to Dr Edward Jenner (q.r.), at the time a country medical practitioner of Berkeley, in the vale of Gloucester, whose investigations were first published in 1798 in the form of a pamphlet entitled An Inquiry into the Causes and Effcts of the Varidae Vaccinae, \&rc. Many years previously, while he was an apprentice to a medical man at Sodbury, near Bristol, his attention was directed to a belief, widely prevalent in Gloucestershire during the latter half of the 18th century, that those persons who in the course of their employment on dairy farms happened to contract cow-pox were thereby protected from a subsequent attack of small-por. In particular, his interest was aroused by a casual remark made by a young countrywoman who happened to come to the surgery one day for advice, and who, on bearing mention made of small-pox, immediately volunteered the statement that she could- not take the disease, as she had had cow-pox. On coming up to London in 1770, to finish bis medical education, Jenner became-a pupil of John Ilunter, with whom he frequently discussed the question of the possibitity of obtaining protection against smail-pox. On his return to his native village of Berkeley in 1773, to practise as a medical man, he took every opportunity of talking over and investigating the matter, but it was not until May 1796 that he actually began to make experiments. His first case of vaccination was that of a boy eight years of age, named James Phipps, whom he inoculated in the arm with cow-pox matter taken from a sore on the hand of Sarah Nelmes, a dairymaid, who had become infected with the disease by milking cows suffering from cowpox. It was apparently not until 1798 that be made his first attempt to carry on a strain of lymph from arm to arm. In the spring of that year he inoculated a cbild with matter taken directly from the nipple of a cow, and from the iesulting vesicle on the arm of the cbild first operated upon, be inoculated, or, as it may now be more correctly termed, " vacciasted," another. From this child several others were vaccinated. From one of these a fourth remove was successfully carried out, and finally a fith. Four of these children were subsequently inoculated with amall-pox-the " variotous test "-without result. The auccess of many sucb experiments, in his own hands and in those of his contemporaries, led Jenner to express his belief-a mistaken one, as event have proved-that the protective influence of vaccination would be found to last throughout the tifetime of the persoa operated on. Obviously he did not realize the fact that the dista at his disposal were insufficient for the formation of an accurate judgment on this poist, since time alone could prove the exact duration of the protection originally obtained. Subsequent experience has demonstrated that, as has been well said by a writer in the Edinburgh Retions, "even aftet efficient vaccination a siow progress away from safely and towards danger is inevitable, and re-vaccination at least once after childhood is necessary if protection is to be maintained."

In applying to cow-por the term "variolae vaccinac," Jenner gave expression to his belief that this disease was in

\section*{Roventiono} atip ol amer peraced compax. reality nothing more nor less than small-pox of the cow. But soon it was discovered that if there were such a malady as "small-pox of the cow," there was also, as Dr Loy first satisfactorily demonstrated, a small-poz of the horse, which, under the name of "grease," was resorted to from time to time as a sourco of vaccine lymph. Jenner had, indeed, put forward the suggestion that "grease" was a necessary antecedent to cowpox; but even taking this term to have been used by him in the sense of horse-pox, he was, in all probability, mistaken in his assumption. At the same time, however, there can be little doubt that these two diseases are very closely allied, if indeed they be not identical. As evidence of a definite relationship between human small-pox and cow-pox, it ray be mentioned that whereas, prior to the introduction of vaccination, epidemics of these disorders frequently arose concurrently, the so-called "natural" cow-pox has now in great measure disappeared. There is, moreover, no appreciahle difference in the minute anatomical appearances characteristic of the cruption following on inoculation of one or other of these two affections in the human subject. But of far greater imsportance in this connexion are the results obtaised by numerous observers who, in various parts of the world, and almost from the time of Jenner onwards, have set themselves the task of altempting, by experimental methods, to solve the problem of the true relationship of variola to vaccinia. As the outcome of this work it may now be definitely stated that small-pox lymph, more especially, as the prescnt writer has shown, if obtained Irom the primary vesicle of a case of the inoculated form of the discase, by passage through the system of the call can be so altered in character as to become deprived of its power of causing a generalized cruption, while inducing at the site of incculation a vesicle indistinguishahle from a typical vaccine vesicle; and, more important still, that whea transferred again to man, it bas by such treatment completely lost its former infectious character. Such being the case, it may fairly be asserted that cow-pox, or rather that artificially incculated form of the disease which we term saccinio, is nothing more nor jess than pariola modified by transmission through the bovine animal. An outbreak of small-pox, indeed, may be turned to account for raising, by appropriate experimental methods, a fresh stock of vaccine lymph.

There is much evidence to prove that the results following on vaccination are due to a specific contagium, and, moreover, Eectertothat the particular micro-organism concerned is capable ancterso of existing, during ane period of its life-cycle, in a resting or spore form, in which condition it is more resistant to the germicidal efiects of glycerine than is the case with non-sporing microbes. Advantage is taken of this fact, in the method devised by the present writer, and now employed officially in England, as also on the Continent and in America, for ensuring the bacteriological purity of vaccise lymph. Up to the present, uniortunately, no satislactory method has been discovered by which the micro-organism of vaccinia can be unfailingly cultivated on artificial media while still rataining its specific properties.

The pollication in 1896 of the final report of the English Royal Commiscion on Vaccination, in which the various phases of the veccter vaccination question are discussed on the basis of evidence ran cem obtained from witnesses of alf shades of opinion during a period extending over no less than six years. considerably simplifies the task of dealing with this subject. The iffaticenmission, origiaslly mumbering fifteen members,' Oidery al peesident, mas appointed in May 1889. The
C. a ond Eic.C. Dalrymple. J. S. Derdalt. Q.C., F. AA Peton, Sir Williay Sovory, S. Whitbrcrad. Whe Mr Bradiaugh. Dr Bristowe and Sir William and was filled up. Mr J . \(A\). Bright having been death of Mr Bradlaugh.
terms of reference being as follows: "To inquire and report as to-(1) The effect of vaccination in reducing the prevalence of, and mortality from, small-pox. (2) What means. other than vaccination, can be used for diminishing the prevalence of small-pox; and how far such means could be relied on in place of vaccination. (3) The objections made to vaccination on the ground of injurious effects alleged to result therefrom; and the nature and extent of any injurious effects which do, in fact, so result (4) Whether any, and. if so, what means should be adopted for preventing or leasening the ill effects, if any, remalting lrom veccination; and whether, and, if so, by what means, vaccination with animal vaccine should be further facilitated as a part of public vaccination. (5) Whether any alterations should be made in the arrangements and proceedings for securing the performance of vaccination, and, in particular. in the provasions of the Vaccination Acts with reapect to proeecutiona for non-compliance with the lav.'

The evidence given before the Royal Commission was published at intervals in a serics of Blue-books, but. as stated, it was not until August 1896 that the final report made its appearance. As regards the effect of vaccination in reducing the prevalence of, and mortality from, small-pox. the following conclusions were arrived at. Dr Collins and Mr Picton alone dissenting:" (1) That it diminishes the liability to be attacked by the discase. (2) That it modifies the character of the discase and renders it (a) less fatal, and (b) of a milder or less eevere type. (3) That the protection it affords agaiast attacks of the dibease is greatest during the yeare immediately succeeding the operation of vaccination. It is impossible to fix with precision the length of this period of highest protection. Though not in all cases the same, if a period is to be haxd, it might, we think, firly be said to cover in general a- period of nine or ten years. (4) That after the lapse of the period of highest protective potency, the efficacy of vaccination to protect against attack rapidly diminishes, but that it is still considerable in the next quinquennium, and possibly never altogether ceasses (5) That its power to modify the character of the disease is also greatest in the period in which its power to protect fromattack is greatest, but that its power thus to modify the disease does not diminish as rapidly as its protective influence against attacks, and its efficacy, during the later periods of life. to modify the disease is still very considerable. (6) That re-vaccination restores the protection which lapee of time has diminished, but the evidence shown that this protection again diminishes. And that, to ensure the highest degree of protection which vaccination can give, the operation should be at intervals repeated. (7) That the beneficial effects of vaccination are mont experienced by those in whoee case it hat been most thorough. We think it may fairy be concluded that where the vaccine matter is inserted in three or four places, it is more effectual than when insroduced into one or two places only; and that if the vaccination marks are of an area of half a square inch, they indicate a belter state of protection than if their area te at all considerably betow this."

For the evidence, statistical or ot herwise, on which these comelusions are based. the Reports of the Royal Commission should be consulied. But reference may here be made to two facts of which proof is overwhelming. (i) Small-pox, in prevaccination days a disease of infancy and childhood-like measles at the present day-has in the United Kingdora become a disease mainly of adulta. The shifting of age-incidence can only be accounted for by the custom of vaccination in infancy. To this day, when small-pox attacts young unvaccinated children, it is found to be as virulent as. of even more virulent then. small-pox in the unvaccinated at bighes ages. On the other hand, small-pox is practically unknown among well-vaccinated children. When, quite exceptionally, such childrea have been attacked, the disease has been so trivial in character as to be liable to escape recognition altogether. (2) Medical men. nurses and other persons exposed to the discase habitually prot cet themselves by effecient re-vaccination, and when this procaution has been taken, never contract small-pox.

The clinical activity and bacteriological purity of the bymph employed for vaccination; the skiliul periormance of the operation itself; the making an adequate number of insertions of lymph over a sufficient area; the observance of precaulions needful for ensuring strict
 asepsis, bolh at the lime of veccinatioo and subsequenthy until the vaccination wounds are soundly healed-all these are matters to be regarded as escential to "efficient vaccination." Certain principles in respect of them are generally recogniaed, and in the case of public vaccinators, whose work comes under government inspection, a series of instructions oe these several points are prescribed by the Local Govemment Board. First in regard to lymph. That which is now almost universally employed in Creat Britain is glycerinated cali lymph. the use of which has entirely supersided, in pubitic vaccinations, the arm-lo-arm method whick for many years previously had leen employed as the best means then attainable
of ensuring the activity and comparative purity of the lymph. Glycerinated lymph, under proper conditions, usually retains its potency for many weeks or monits; but nevertheless, in certain circumstances at present imperfectly understood, is liable to become gradually weakened, and even eventually to become altogether inert. Possibly the condition of the calves from which the lymph is obtained, especially as regards their general health and the suppleness or the reverse of their skins, or exposure of the lymph to the action of light or to a high temperature, are of special importance. Consequently, in order to eusure the hest results from its use, it is not only necessary that great care should be exercised in its manufacture, but it is also advisable that the lymph should be employed for vaccination as spon as possible after bacteriological examination has demonstrated its freedom from suppurative and other extrancous microorganisms. As regards the carrying out of the operation itself, it is somewhat unfort unate that there exists no official definition of what constitutes a "successiul vaccination," and in consequence it is open to any practitioner to give a certificate of successful vaccination in cases where but one minute vesicle may have been produced. It is to be feared that such certificates are too trequently given, and it cannot be too strongly urged that vaccination of this sort involves incomplete protection. The standard laid down by the Local Government Boardthe production, namely, of a total area of vesiculation of not less than hall a square inch, divided among four separate vesicles or groups of resicles, not less than half an inch from one anotherhas for the most part proved easily attainable in practice, and it is much to be desired that in private as in public work the attainment of this standard should be aimed at in every instance.

The protection afforded by a primary vaccination tends gradually to diminish, and eventually to disappear more or less completely, with the lapse of time. In consequence, it is desirable that the operation should be repeated at the age of from seven to ten years, and thereafter, if it be possible, at intervals during later life. The final report of the Royal Commission thus summarizes the evidence as to the valuc of such additional procedure:-
"Where re-vaccinated persons were attacked hy, or died from small-pox. the re-vaccination had for the most part teen performed aconsiderable number of years before the attack. There were very few cases where a short period only had elapeed between the reveccination and the attack of small-por. This seems to show that it is of importance, in the case of any persons specially exposed to the risk of contagion, that they should be re-vaccinated, and that in the cape even of those who have been twice re-vaccinated with nuccess. if a long interval since the last operation has clapsed, the operation abould be repeated for a third, and even a fourth time."

It not unfrequently happens that in the case of a re-vaccination the process rans a somewhat different course from that witnessed in a typical primary vaccination. In a successful re-vaccination, the site of the operation may be distinctly reddened and somewhat irritable by tbe second day, while papules will probably make their appearance about the third to the fifth day. The papules may or may not devclop further into vesirles and pustulea. Occasionally a ro-vaccination appears to fail altogether; but, as pointed out by the Royal Commission, it is advisable, as in the case of a primary vaccination, to make further attompts with \(i\) ymph of known potency before concluding that the individual is really insusceptible.

In a cerrain small proportion of cases the operation of veccination has been followed, after a longer or shorter intercanued val, by varioos complications, of which by far the Anorre enferys most important are thoot of an inflammatory nature, tion, but which constitute the danger of any local lesion of the skin, bowever caused. During the many ducades in which vaccination from arm to arm what practised, in many millions of childrun, a few authenticated cases were recorded in which there wess reason to believe that syphilis could have been invacuinated. Such an oceurrence could at no time have bappened if proper care had been taken by the vaccinator; and now that the use of calf lymph has become practically
universal, the ponsibility of such oceurrence in the future may be disregarded, since the calf is not capable of contracting this disease. Tubercle in its various forms and leprosy have also been included in the list of possible complications of vaccination, though without any sufficient proof. The employment of calf lymph, treated with glycerine after the manner first advocated by S. Monction Copeman, will obviate any such danger, for even if tubercle bacilli or the streptoosccus of erysipelas were by chance present in the lymph material when collected, it has been found experimentally that they are quite unable to survive prolonged exposure to the action of a \(50 \%\) solution of glycerine in water. Leprosy is not communicable to the call. In view of the frequency of various skin eruptions in infancy, it is to be expectod that in a proportion of cases they will appear during the weeks following vaccination. Eczema and impetigo in particular have, post hoc, been attributed to vaccination, but no direct connexion has been proved to exist between the operation and the occurrence of these disorders: In section 434 of the final. report of the Royal Commission on Vaccination the extent to which other inoculable diseases are liable to complicate vaccination is thus summed up:-
" A careful examination of the faets which have been brought under our notice has enabled us to arrive at the conclusion that although some of the dangers said 10 attend vaccinatioa are un: doubtedly real, and not inconsiderabte in gross amount, yet when considered in relation to the extent of vaccination work done, they are insignificant. There is reason, further, to believe that they are diminishing under the better prectutions of the present day, and with the additions of the future precautions which experienct suggests, will do so still more in the future."
(S. M. C.)

Legislation making vaccination compulsoly was first introduced in Bavaria (1807), Denmark (1810), Sweden (1814), Wurttemburg, IIesse and other German states (1818), I'rusaia (1835), the United Kingdom (\(\mathrm{I}_{5} 53\)), German empire (1874), Remania (1874), Hungary (1876), Servia (1881), Austria (1880). But in many cases

\author{
Cemp \\ veroter \\ then.
} In the same way, though there is no federal comprolsory law in Switzerland, most of the cantons enforce it; and though there is no statutory compulsion in France, Italy, Spain, Portugal, Belgium, Norway, Russia or Turkey, there are government lacilities and indirect pressure, apart from the carly populanty of vaccination which made it the usual practice. In the United States there is no federal law, hut many of the separate states make their own compulsion either directly or indirectly, Massechusetts starting in 1809.

The benefit of vaccination proved itself in the eyes of the world hy its apparent success in stamping out small-pox; bot there continued to be people, even of the highest competence, who regarded this as a fallacious argument-past hoc, erge propler hoc. The cause of "anti-vaccination" has had many followers in England, and their persistence has had important effect in English Icgislation. Under the provisions of the Vaccination Act 1898, and of the Vaccination Order (1898) of the Local Government Board, with some minor changes in succeeding acts, numerous changes in connexion with vaccination administration and with the performance of the operation were introduced, in addition to the supersession of arm-to-arm vaccination, by the use of Enghes
hedone glycerinated call lymph. Thus, whereas by the Vaccinaiion Acts of 1867 and 18 ;i the parent or person having the custody of any child was required to procure its vaccination within three months of birth, this period by the act of 1898 was extended to six months. Again, parents were relieved of any penalty under the compulsory clauses of the Vaccination Acts who aflorded prool that they had, within four months of the birth of a child, salisfied a stipendiary magistrate, or iwo justices in petty sessions, that they conscientiously believed that vaccination would be prejudicial to the health of the child: Moreover, proceedings were not to be taken more than twice against a defaulting parent, namely, once under section 29 of the act of 1867 , and once under section 31 of the same act, provided that the child had renched the age of lour years. Finally, the
public vaccinator was now required to visit the homes of children for the purpose of offering veccination with glycerinated call lymph, "or such other lymph as may be issued by the Local Goverament Board." The operative procedure in public vaccinations was formerly based on the necessity of carrying on a weekly series of transferences of vaccine lymph from arm to arm; and for the purposes of such arm-to-arm vaccination the provision of stations, to which children were brought first for the performance of the operation, and again, after a wett's interval, for inspection of the results, was an essential. The occasional hardships to the mothers, and a somewhat remote possibility of danger to the children, involved in being taken long journeys to a vaccination station in bad weather, or arising from the collecting together in one room of a number of children and adults, one or more of whom might happen to be suffering at the time from some infections disorder, are a few of the reasons which appeared to render a change in this regulation desirable; is a matter of fact, it would appear that nothing bat good has anisen from the substitution of domiciliary for stational vaccination. There have maturally been some curious discussions before the magistrates as to what is "conscientious" or not. but the working of the so-called "conscience cleuse" by no means justified the somewhat gloomy forebodings expressed, both in Parliament and elsewhere, at the time of its incorporaticn in the act of \(\mathbf{1 8 9 8}\). On the contrary, its operation appeared to tend to the more harmonious working of the Vaccination Acts, by affording a legal method of relief to such parents and guardians as were prepared to affirm that they had a conscientious belief that the performance of the operation might, in any particular instance, he prejudicial to the bealth of the child.

Autmonrries-Acland. "Vaccinia." Alburt and Rolleston, Systerim of Medicime (1906): Baron, Life of Jenner; Henry Colburn (Loodon, 1838); Copeman Vaccinction: Jts Natwral History and Podblepy (Milroy Lectures) (Macmillan, London, 1899): "Modern Methods of Vaccination and their Scientific Basis, Trans. Royal Med. and Chir. Sacidy (1901-2); M'Vail. "Criticism of the Dissentient Commamioners' Report." Trans. Epidemiological Saciely (1897); Reports of the Royal Commission on Vaccination (1889 1896): "The History and Effects of Vaccination." Efinburgh Review, Na. 388 (1899); Veccinction Lave of German Empire (Berlin, 1904).
 writer, was born of peasant parentage at Torcenay, Dear Langres, on the ageth of July \(\mathbf{r} 800\). He was educated at the Ecole Normalo, and returned thither as director of studies in 1838, after some years spent in provincial schoolmasterships. In 1839 be succeeded his master Cousin as professor of philosophy at the Sorbonne His Histoire critique de I'Acale d'Alecandric (3 vois. 1846-51), his first and best-known work, drew on him altacks from the Clerical party which led to his suspension in 1851 . Sbortly afterwards he refused to swear allegiance to the new inperial government, and was dismissed the service. His work Damocralic (18 sg) led to a political prosecution and imprisonment. In 1868 he was clected to the French Academy. On the fill of the Empire he took an active part in politics, was marie of a district of Paris during the siege, and in 1871 was in the Nizional Assembly, voting as a Moderate Liberal. In 1873 he drew neater ine Consorvites, Lier whith the res never again successful as a parliamentary candidate, though ae mantained his principles vigorously in the press. He died a the 284b of July \(180^{\circ}\). Vacherot was a man of high character and adhered urictly to his principles, which were generaily of:rosed to those of the party in power. His chief philosophical ia portance coneists in the fact that he was a leader in the atte \(\boldsymbol{p e}\) to revivify French phitosophy by the nerx thought of Germuny, to which the had been introduced by Cousin, but of which he never had more than a seoond hand knowledge.- Mctaphyirs be beid to be boed on pesclology. He maintains the vriny and freedom of the toal, and dle abeolute oaligation of :iae moral law. In retighon, which was lis main interest, be was :yoch influenced by Hegl, and appeas somewhat in the ambiswus position of a teptic mious to believe. He sees insolubte cratradictions in
belief, though the object of that belief bave but an abstract of imaginary existence.

His other works are: the Mophysighe et he wience (IEsf). Exsois de pitilosopkic critique (1864). Lo Roligios (1869). Le Scirnce at ic consciruce (1870). Le Nownam Spirimalisur (1884), Le Démerratio libérale (1892).

See OUK Laprane, Eliezne Vacherot (Paris, 18g8).
FACQUERIR, AUGUSTE (1819-1895), French journalist and man of letters, wras born at Villequier (Seine Inferieure) on the 19th of November 18 rg . He wha from his earliest days an admirer of Victor Hugo, wilh whom be was connected by the marriage of his brotber Charles with Leopoldine Huga His earlier romantic productions include a volume of poems,
 collaboration with Paul Meurice; and Tragaldabas (i848), a melodrama. He was one of the principal contributors to the Eotncment and followed Hugo into his erile in Jensey. In 1869 he returned to Paris, and with Paul Metrice and others founded the anti-imperial Rapped. His articles in this paper were more than once the occasion of legal proceedinge After 1870 be became editor. Other of his works are Somacal homane waric (1859), a comedy in verse; Jean Baudry (1863), the most successful of his plays; Aujourcthai at demain (1875); Fulare (1900), poems on philosophical and humanitarian subjects Vacquerie died in Paris on the igth of February 1895 . He published a collected edition of his plays in 1879 .

VACUUI-CLEANER, an appliance for removing dust from cappets, curtains, \&e., by suction, and consisting ensentially of some form of air-pump drawing air through a nozsle which is passed over the material that has to be cleaned. The dast is carried away with the air-stream and is separated hy filtration through screens of muslin or other suitable fabric, sometimes with the aid of a series of baffle-plates which cause the heavicr particles to fall to the bottom of the collecting receptacle by gravity. In the last decade of the igth century compressed air came into use for the purpose of removing dust from railway carriages, but it was found difficult to arrange for the collection of the dust that was blown out by the jets of air, and in cossequence recourse was had to working by suction. From this beginning several types of vacuum cleaner bave developed.

In the fint instance the plants were portable, consisting of a peap driven by a petrol eagine or electric motor, and ware periodicily taben round to bouses, offices tre, then cleaning was reguired. The second stage was represented by the permanent instalation of central plants ia large buildinge, with a system of pipes reaning to all laooss, like gas or water pipes and provided at copaveriens points with valves to which coald be entsched fexible hoes termins ating in the actual cleaning tooks. The vecurm thus reedered available is in some cases utilized for washing the foors in combimetion with another system of piping coanocted to a tapk cominining soap and whtex. which having been spreyed over ithe floor by conspressed air is removed with the dirt it contains and discharged into the sewers: or in a simpler arrangement the soap and water is coatained in a partable tank from which it is distributed. to be cecked up by means of the racuum as before. In their third stage vacame cleapers have becorse ordinary housebold implements in sabatitotion for, or in addition to the broom and duster, and small machides are now made in a variety of forms, driven by hand, by foot. or by an electric moeor artactied to the lighting circuic. In addition to their domestic uses, other application have been found for vecon, as for instance in removing dust from pristers' tupecases.

FACUU望 TUER. The phenoment associated with the passage of electricity through gases at how pressures have attracted the attention of physicists ever sime the invention of the frictional eleetrical machine first placed at their disposal a means of producing a more or less coatinuous flow of electricity through vesock from which the air had been partially exhamsted. In recent years the importapce of the subject in commexion writh the theory of electricity has boon fully realized; indeed, the modern theory of electricity is based upon idens which have been oblained froar the study of the clectric dincharge through gases Mast of the important principles dednced from these investigations are given in the article Conoocrions, Enscrese (Throngt Gases); bere we shall coafine ourseives to the coopideration of the more striking fentures of the lumiboes phenomena observed when electiciity passes through a luminows gies

Mehods of producing the Discharge.-To send the current through the gas it is necessary to produce between electrodes in the gas a large difference of potential. Unless the electrodes are of the very special type known as Wehnalt electrodes, this difference of potential is never less than 200 or 300 volits and may rise to almost any value, as it depends on the pressure of the gas and the size of the tube. In very many cases by far the mort convenient metbod of producing this diference of potentiad is by means of an induction coil; there are some cases, however, when the induction coil is not suitable, the discharge from a coil being intermitent, so that at some times there is a large current going through the tube, while at others there is none at all, and certain kinds of measurement cannot be made under these conditions. Not only is the current intermittent, but it is apt with the coil to be sometimes in one direction and sometimes in the opposite; there is a tendency to send a discharge through the tube nnt only when the current through the primary is started but also when it is stopped. These discharges are in opposite directions, and though that produced by stopping the current is more intense than that due to starting it, the laterer may be quite appreciable. The reversal of the current may be remedied by inserting in series with the diacharge tube a piece of apparatus known as a "rectifier" which allows a current to pass through it in one direction but not in the oppositc. A common type of rectifier is another tube containing gas at a low pressure and having one of its electrodes very large and the otber very small; a custent passes much more easily through such a tube from the amall to the large electrode than in the opposite direction. Sometimes an air-break inserted in the circuit with a point for one clectrode and a disk for the other is sufficient to prevent the reveral of the current without the aid of any other rectifier.
There are cased, however, when the inevitabie intermittense of the discharge produced by an induction coil is a latal objection. When this is so, the potential difference may be produced by a battery of a large number of voltaic cells. of which the most convenient type, where more than a liew milli-ampetes of current are required, are smali storage cells. As each of these cells only prodaces a potential difference of two voles, a very large number of cells are required when potential differences of thousands of volts have to be produced, and the expense of this method beromes prohibitive. Whien continuous currents at these high potential differepces are rquired. electrostatic induction machines are moat gemerally used. By means of Wirmshurat machines, with many plates, or the more recent Wehrwen machines, considerable currents an be produced and maintained at a very constant value.
The exhaustion of the tubes can, by the aid of modern mercury pumps, such as the Töpler pump or the very convenient automatic Gaede pump, be carried to such a point that the pressure of the residual gas is less than a millionth of the atmospheric pressure. For very high exhaustions, however, the best and quickest method is that introduced by Sir James Dewar. In this method a tube containing small pieres of dense charcoal (that made from the shells of coco-nuts does very well) is fused on to the tube to be exhausted. The preliminary exhaustion is done by means of 2 water-pump which reduces the pressure to that due to a few millimetres of mercury and the charcoal strongly heated at this low pressure to drive off any gases it may have absorbed. The tube is then disconnected from the water-purap and the charcoal tube sarrounded by liquid air; the cold charcoal greedily absorbs most gases and removes them from the tube. In this way much higher exhaustions can be obtained than is possible by means of mercury pumps; it has the advantage, 100 , of getting rid of the mercury vapour which is ilways present when the exhaustion is produced by mercury pumps. Charcoal does not absorb much helium even when cooled to the temperature of liquid air, so that the method fails in the case of this gas; the abrorption of hydrogen, too, is slower than that of other gases. Both helium and hydrogen are vigorously absorbed when the charcoal is cooled to the temperature of liquid hydrogen.

When firet the diacharge is sent through an exhausted tube, a considernele a mount of ma (chiefly hy drogen and carton monoxide) is liberated (rom the electrodes and the walls of the tube, no that
to obeain permanent high vacua the exhaustion must be coatinued until the discharge has been going through the tube for a considerable time. One of the greatest difficulties experienced in getting these high vacua is that even when all the joints are carcfully made there may be very amall holes in the tube through which the air is continually leaking from outside, and when the hole is very small it is sometimes very difficult to locate the leak. The writer has found that a method due to Goldstein is of the greatent wervice for this purpose. In this method one of the elcetrodes in the tube and one of the terminals of the induction coil are put to earth, and the pressure of the gas in the tube is reduced so that a discharge would pass through the tube with a small potential difference. The pofnt of an insulated wire attached to the other terminal of the induction coil is them paseed over the oulside of the tube. When it comes to the hole, a very bright white spark may be seen passing through the glass, a nd la this way the leak located. The appearance of the discharge when the exhaustion is going on is a wery good indication as to whether there is any leakage in the tube or not. If the colour of the discharge remains persistently red in spite of continued pumping. there is pretty surely a leak in the tube, as the red colour is probably due to the continued influx ol air into the tube. Platinum is the only metal which con be fused through the gloss with any certainty that the contact between the glase and the metal will be close enough to prevent air leaking into the tube. Platinum, however. when used as a cathode at low pressurcs "sputters." and the walls of the tube get covered with a thin deposit of the metal: to avoid this, the platinum is ofien fastened to a piece of aluminium, which does not sputter nearly so much. Tantalum is also said to posese this property, and it has the advantage of being much lem fusible thin aluminium. This sputtering depends to some extent on the kind of gases present is the tube, as in monatomic gases, such as mercury vapour, even aluminium sputters badly.

Electrodeless Tubes.-As some gases, such as chlorine and bromine, attack all metals, it is impossible to use metallic electrodes when the discharge through these gases has to be investigated. In these cases " electrodeless" tubes are sometimes used. These are of two kinds. The more usual ane is when tin -foil is placed at the ends of the tube on the outside, and the terminals of the induction coil connected with these pieces of foil; the glass under the foil virtually acts as an electrode. A more interesting form of the electrodeless discharge is what is known as the "ring" discharge. The tube in this case is placed inside a wire solenoid which forms a part of a circuit connecting the outside contings of two Leyden jars, the inside coatings of these jars being connected with the terminals of an induction coil or electrical nachine; the jars are charged up by the machine, and are discharged when sparks pass between its terminals. As the discharge of the jars is oscillatory (soe Elicctaic Waves), electric currents surge through the solenoid surrounding the discharge tube, and these cursents reverse their direction hundreds of thousands of times per second. We may compare the solenoid with the primary coil of an induction coil, and the exhausted bulb with the secondary; the rapidly alternating currents in the primary induce currents in the secondary which show themselves as a luminous ring inside the tube. Very bright discharges may be obtained in this way, and the method is especially suitable for spectroscopic purposes (see Phil. Mag. [sl, 32, pp. 321, 445).

Appearance of the Discharge in Vacumm Tubes.-Fig. 15 b of the article Conduction, Electric (Through Gases) represente the appearance of the discharge when the pressure in the tube is comparable with that due to a millimetre of mercury and for a particular intensity of current. With variations in the pressure or the current some of these features may disappear or be modified. Beginning at the negative electrode \(h\), we meet with the following phenomena: A velvety glow runs, often in irregular patches, over the surface of the cathode; this glow is often called tbe first negative layer. The spectrum of this layer is a bright line spectrum, and Start has shown that it shows the Drppler effect due to the rapid motion of the luminous particles towards the cathode. Next to this there is a comparatively dark region known as the "Crookes" dark space." or the second negative laycr. The luminous boundary of this dark space is approximately such as would be tot by tracing the loces of the extremities of normals of constant length drawn from the negative electrode; thus if the electrode is a disi, the luminous boundary of the dark sphere is nearly plain
over a part of its suriace as in fig. \(t\), while if the cectrode is 1 ring of wire (fig. 2) the luminous boundary resembles that

Fig. f .
shown in fig. 17 of the article Conduction, Electarc (Through Gases). The length of the dark space depends on the pressure

Fic. 2. of the gas and on the intensity of the current passing through it. The width of the dark space increases as the pressure diminishes, and may, according to the experiments of Aston (Pro. Roy. Soc. 79, p. 81), be represented with considerable accuracy by the expression \(a+b / p\) or \(a+c \lambda\), where \(a, b, c\) are constants, \(p\) the pressure and \(\lambda\) the mean free path of a corpuscle through the gas. The thickness of the dark space is larger than this free path; for hydrogen, for example, the value of \(c\) is about 4 .

Viben the current is so large that the whole of the cathode is covered with glow the width of the dark space depends upon the current decreasing as the current increases. In belium and hydrogen Aston (Pro. Roy. Soc 80 A., p. 45) has detected the existence of another thin dark space quite close to the cathode whose thickness is independent of the pressure. The farther boundary of the Crookes dark space is luminous and is known as the negative glow or the third negative layer. Until the current gets so large that the glow nert the calhode covers the whole of its surface the potential difference between the cathode and the negative glow is independent of the pressure of the gas and the current passing through it; it depends only on the lind of gas and the metal of which the cathode is made. This difference of potential is known as the cathode falt of potential; the values of it in volts for some gases and electrodes as determined by Mey (Verh. deuls. Phys. Ges., 1903, v. p. 72) are given in the table.

Cathode Fall
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Gas} & \multicolumn{11}{|c|}{Electrode} \\
\hline & \(\mathbf{P t}\) & \(\mathrm{H}_{8}\) & Ag & Cu & Fe & Zn & A & Mg & Na & \(\mathrm{Na}-\mathrm{K}\) & K \\
\hline O & 369 & . & & . & - & . & .. & . & & \(\cdots\) & - \\
\hline \(\mathrm{H}_{1}\) & 300 & . & 295 & 280 & 230 & 213 & 190 & 168 & 185 & 169 & 172 \\
\hline \({ }^{+}{ }_{1}\) & 232 & 226 & & & . & . & . & 207 & 178 & 125 & 170 \\
\hline He & 226 & . & \(\cdots\) & .. & . & .. & . & . & 80 & 78.5 & 69 \\
\hline Arg & 167 & . & . & .. & . & . & 100 & & .. & . & - \\
\hline
\end{tabular}

The cathode fall of potential measures the smallest difference of potential which can produce a spark through the gas. Thus, for example, it is not possible to produce a spark through nitrogen with platinum electrodes with a potential difference of less than 232 volts, except when the electrodes are placed so elose together that with a smaller potential difference the eloctric force bet ween the terminals amounts to more than a million volts per centimetre; for this to be the case the distance between the electrodes must be comparable with the wave-lengib of sodium light.

When the current is small the glow next the cathode does not cover the whole of the suriace, and when this occurs an increase in the current causes the glow to cover a greater area, but does not increase the current density nor the cathode fall. When the current is so much increased that the glow covers the whole of the cathode an increase in current must result in an increase of the current density over the cathode. and this is accomplished by a rapid increase in the cathode lall of potential. The cathode fal! in this case has been investigated by Stark (Phys. Zeil. 111, p. 274), who fiads that its value K can be represented by the equation
\[
\mathrm{K}=\mathrm{K}_{\mathrm{a}}+k(\mathrm{C}-x p f) / p f^{\prime}
\]
where \(K_{a}\) is the normal cathode fall, \(f\) the area of the cathode, \(C\) the current through the tube, \(p\) the pressure of the gas and \(k\) and \(x\) constante

The increase in the potential iall is much more marked in amall tubes than in large ones, as with small tubes the formation of the negative glow is restricted; this gives rise to a greater concentration of the current at the cathode and an increase in the cathode
fall. The intensity of the electric field in the dark space has been measured by many observers. Aston used very large plain cathoden and measured the electric force by observing the deflertion of a small pencil of cathode rays sent across the dark space at different discances from the cathode. He found that the magnitude of the force at a point in the dark space was proportional to the distance of the point from the junction of the nezalive glow and the dark space. This low of lorce shows that positive electricity must be in excess in the dark space, and that the density of the electrificttion must be constant throughout that apace. The force inside the negative glow if not absolutely reco is so small that no one has as yet succeeded in measuring it ; thus the surface of this glow must be very approximately an equi-potential surface. In the dark space there is a stream of posinively electrified particlea movints towards the cathode and of negatively electrified corpuscies moving away from it, these streams being mutually dependent; the impact of the positive particles against the cathode gives rise to the emission of corpuscles from the cathode: these, after acquiring kinetic energy in the dark space, ionize the gas and produce the positive ions which are attracted by the cathode and give rise to a fresh supply of corpuscles. The corpuscles which carry the negative electricity are very different from the carriers of the positive; the former have a mass of only for of the atom of hydrogen, while the mass of the latter is never lem than that of this atom.
The stream of positive particles towards the cathode is oftea called the Canolstraklen, and may be investigated by allowing the strearn to fow through a hole in the cathode and then measuring. by the methods described in Combucrion, Electaic (Throwit Cases), the velocity and the value of \(0 / m\) when \(e\) is the charge on a carrier and \(m\) its mass. It has been found that this stream is some what complex and consists of-
a. A stream of neutra! particles.
p. A stream of positively electrified particles moving with a coostant velocity of \(2 \times 10^{\circ} \mathrm{cm} . / \mathrm{sec}\)., and having \(\mathrm{e} / \mathrm{m}=1 \mathrm{o}^{\circ}\). This is a secondary stream produced by the passage of a through the gas, and it is very small when the pressure of the gas is low.
\(\boldsymbol{\gamma}\). Streams of positively electrified atoms and perhaps mokerules of the gases in the tube. The velocity of these depends upon the cathode fall of potential.
The streams of negative corpuscles and positive particles produce different kinds of phosphorescence when they strike against a sootid obstacle. The difference is especiaily marked when they stribe against lithium chloride. The sorpuscles make it phowphorecose with a steely blue light giving a continuous spectrum; the positive particles, on the other hand, make it shine with a bright red light giving in the spectrowcope the red lithium line. This affords a convenient method of investigating the rays; for example, the distribution of the positive stream over the cathode is readily studied by covering the cat hode with fused lithium chloride and observing the distribution of the red glow. Coldstein has observed that che film of metal which is deposited on the sides of the tube tbrough the sputtering of the cathode 15 quickly dissipated whea the positive stream impinges on it. This suggests that the sputtering of the cathode is caused by the impact against it of the positive stream. This view is supported by the fact th-t the sputtering is not very copious until the increase in the current produces a large increase in the cathode fall of potential. The magnitude of the potential fall and the length of the dark space are determined by the condition that the posituve particles when they strike against the calhode must give to it sufficient energy to liberate the number of cathode particles which produce, when they ionize the gas, sufficient positive particles to carry this amount of energy. Thus the cathode fall may be regarded as existing to make the cathode emit negative compuscles. It the cathode can be made to emit corpuscles by other mears, the cathode fall of potenitil is not required and may disappear. Now Wehneit (Ann. Phys., 1904, 14, P. 425). (ound that when lime or barium oxide is heated to rednest large quantities of negative corpuscles are emithed. heace if a cathode is covered with one of these substances and made red hot it can emit corpuscies without the assistance of an clectric field, and we find that in this case the cathode fall of potential disappears. and current can be scrit through the gas with very much smialler differences of potential than with cold cathodes. With these hot cathodes a luminous current can under favourable circumstances be seat through a gas with a potential difference as small as 18 volis.
The dimensions of the parts of the discharge we have been con-sidering-the dark space and the negative glow-depend exsentially upon the presure of the gas and the shape of the cathode, and do not increase when the distance between the anode and cathode is increased. The dimensions of the other part of the discharge whict reaches to the anode and is called the positive coiumn depends upor the length of the tube, and in long tubes constitutes by lar the greater part of the discharge. This positive column is separsted from the negative glow by a dark interval generally known as the Faraday dark space; the dimensions of this dark interval are very variable-it is sometimes altogether absent.
The positive column assumes a considerable variety of form as the current through the gas and the pressure are varied: sometimet it is a columa of uniform lumincoity, at ochers it brefles up iato
sertea of bright and dark patchey known as atriationa. Some examples of thene are given un fog 17 of Conduction. Electanc (Through Gases) The distance between the striations varus with the pressure of the gas and the diameter of the tube, the bright parts being more widely weparated when the pressure is low and the diameter of the tube laree, than when the pressure is hugh and the tube smali. The atrizitions are especially brilliant and steady when a Webnelt cathode covered with hot lime is used and the diachare produced by a number of storage cells: by this means targe currents Can be sent through the tube, roeulting in very briliant striations. When the curreat is increased the positive column shortens, retreating backwards towards the anode, and may, by using wery low currenta, be reduced to a glow over the surface of the anode. The electric force in the poritive column has been measured by many observers. It is small compared with the forces which exist in the dark apace; when the luminosity in the positive column is uniform, the lorce there \(m\) uniform; when the pooitue column in atriated there aro periodic vanations in the electric force. the force being greater in the brighe parts of the striation than in the dark.

Amode Drop of Pelential.-Skinner (Wied. Ann. 68, p. 752i Phil. Mog. \((0), 8\), p. 387) has shown that there is sudden change in potential between the anode itself and a point in the gas close to the anode. This change amounts to about 20 volts in air; it is thus much amaller than the cathode fall of porential, and it is also much more abrupt. There does not seem to be any region at the anode comparable in dimensions with the Crookes' dark space in which the drop of potential occurs.

The highly differentiated structure we have described is not the ouly way in which the current can pass through the tube. If a large Leyden jar is suddenly discharged through the tube the discharge passes as a unilorm, continuous column stretching without interruption from anode to cathode; Goldsein bas ebown (Verh. dewisch. phys. Ces. 9, p. 321) that the spectrum of this discharge shows very interesting characteristics.
(J J. T.)
VACZ (Cer. Waimen), a town of Hungary, in the county of Pest-Pilis-Solt-Kis-Kun, 20 m . N. of Budapest by rail. Pop. (1900) \(\mathbf{1 0 . 5 6 3}\). It is situated on the left bank of the Danube, at the point where this river takes its southern course, and at the coot of the Nagyszil (Ger. Waikemberg), on the outskirts of the Carpathians. It is the seat of a Roman Catholic bishopric, founded in the isth century, and contains a beautiful cathedral, huilt in 1761-1777, after the model of St Peter's at Rome. Amongst other buildings are the episcopal palace, with a museum of Romen and medieval antiquities, several convents, and the principal deal and dumb institute in the country. There are large vineyards in the aeighbouring hilly disttict, and tbe exportation of grapes is extensively carried on. Vacz was the scene of two victories gained by the Austrians against the Turks, one in 1597 and the other in 1684 .

VADE-MECUM, a Latin phrase meaning literally "come witir me" (rade, imperative of padera, to go or come, cum, with; met, abl. of ego, D, and used in French, Spanish and English for something that a person is in the habit of constantly taking about with him, especially a book of the nature of a handy guide or work of reference.

VAORANCY (formed from " vagrant," wandering, unsetued; this word appears in Anglo-Fr, as wakeront and O.Fr. as wancrant, and is probahly of Teut. origin, cf. M.L.G. wedkern, to walk about; it is allied to Eng. "walk," and is not to be directly referred to Let. wagari), the state of wandering without any settled home; in a wider sense the term is applied in England and the United States to a great number of offences against the good order of society. An English statute of 1547 contains the first mention of the word "vagrant," using it synonymously with "vagabond "or "Joiterer." Anciert statutes quoted by Blackstone define vagrants to be " such as wake on the night and sleep on the day and haunt customable taverns and alebouses and routs abcut; and no man wot from whence they come ne whither they go." The word vagrapt now usually includes idle and disorderly persons, rogues, vagsbonds, tramps, unlicensed pedlars, beggars, \&c.

The social problem of vagrancy is one that in 1 gto had not yet been satisfacterily realt rith, so fas as the linited Kingdom is concerned. Irdeed, the legishation of the early agtb century
remained still in force in England and Wales. In earty times, legislation affecting the deserving poor and vagrants was blended. It was only very gradually that the former were allowed to run a freer course, but provisions as to vagrancy and mendicity, including stringent laws in relation to constructive "sturdy begyars," "rogues" and "vagabonds," formed, until well on in the ioth century, a prominent feature of Poor Law legialation. In 1713 an act was passed for reducing the laws relating to rogues, vagabonds, sturdy beggars and vagrants into one act, and for more effectually punishing them and sending them to their homes, the manner of conveying them including whipping in every county through which they passed. This act was in tum repealed in 1740; the substitured consolidation act (13 Geo. II. C. 24), embracing a varicty of provisions, made a distiaction between idle and disorderly perwons, rogwes and vagabonds and incorrigible rogues. Four years later was passed another statute which continued the rough classification already mentioned. The laws relating to idle and disorderly persons, rogues and vagabonds, incorrigible rogues and other vagrants in England were again consolidated and amended in 1832, but the act was superseded two years later by the Vagrancy Act (5 Gea. IV c.83), which in 1010 was the operalive statute.
The offences dealt with under the act of 1824 may be clasified as follows: (1) offences committed by persons of a disreputable mode of life, such as begging, trading as a pedlar without a lirence, telling fortunes, or elocptag in outhousea, unoccupied buildinga, \&c.- without visible neans of subsistence; (2) offences against the poor law, such as leaving a wife and lamily chargeable to the poor rate, returning to and becoming chargeable to a parish aftes being removed therefrom by an order of the justicen, refuaing or neglecting to perform the task of work in a workhouse, or damaging clothes or ol her property belonging to the guardians; (3) offeaces committed by professiona! criminals, such as being found in possescion of house-breaking implementa or a gun or other offensive weapon with a feloniows intent, or being found on any enclowed premises for an unlawful purpose, or froquenting public plecen for the purpose of felony.
Ofiences specially characteristic of vagrancy are begring, sleeping out, and certain offences in casual wards, much as refusal to perform a task of work and deatroying clother. Penoms commatiting these last-mentioned offences are claned as " idle and disorderly persona " and are liable on summary conviction to imprisonment with hard labour for fourreen days or on conviction by a petty semional conrt to a fine of es or a month's imprisonment with or without hard labour: A second conviction makes a person a "rogue and vagabond" liable on summary conviction to imprisonment for fourteen days or on conviction by a petty sessional court to a fine of Eas \(^{2}\) or imprisonment for three months with or without hard labour. Any person alceping out without visible means of subsistence ia a rogue and vagabond, or on second conviction an incorrigible rogue. while an ordinary beggar is an idle and disorderly person. Under the poor law as reformed in 1834 the primary duty of boarda of guardians was to relieve destilute persons within their dutrict, but legislation and administration gradually widened that duty. so that eventually they came to administer relief to vagrants also. or casual paupers, as they are officially cermed.
Within the limits prescribed by the local government board the treatment in English casual wards varies in a striking degree. Before admission to a casual ward a vagrant requires an order, obtained cither from a relieving officer or his assistant. In cases of sudden or urgent necessity, however,
the master of the workhouse has power to admit without

Cenal
Wares an order Generally speaking, vagrants are not admitted to the casual wards before 4 p.m. in winter or 6 p.m. in summer. On admission, they are supposed to be wearched. but this is not usually done with much thoroughness: broken food found on them is sometimes allowed to be caten in the ward; money, pipe. tobacco, \&c.. are restored to them on discharge. As soon as practicable alter admiseion vagrants are required to be cleansed in a bath with water of suitable temperature. Their clothes are taken a way and disinfected and a nightshirt provided. Sleeping accommodation is provided either on the cellular system or in associated wards, the proportion of work. houses providing the former being 2 to 1. Vagrants are, as a general rule. supposed to be detained two nights and are required to pefform a task of work. This consists of stone-breaking, wood-sawing. wood-chopping, pumping. digging or cakum picking, and ahould represent nine hours work

The supervising authority has endeavoured. in prescribing the work to which vagrants are put, to spake it as deterrent as possihle. but in practice the work presents litte difficulty to the habitual vagrant, and very few workhouses enforce the two nights' detention rule. The lare provided for vasrants is a welcome relief, too. from their usual scanty fare, and in many of the modern workhoumes the wards are almost luxurious in their style and equipment.

The consequence of this generous treatment of those who are work-aby" is that instead of being repelied or reformed by their Reform incatment, the class is continually on the increase. This increage has received the ocrious atteation of social reformers, and in \(\mathbf{9 0}\), the president of the local government board appointed a departmental cornmittce to inquire into the subject of vagrancy. The committee presented its report in 1906 , which with the evidence of witnesses is a most valuahle exposition of the wabject. Among the various recommendations of the committee the most important were the trapaterence of casual wards to tbe control of police authorities; the isaue of way-tickets, as used on the continent of Europe and a very few Engliah countics, by the police to bons fide work-seekers, and more especially the detention of habitual vagranta in labour colonies. This last recommendation was also that of the Royal Commivaion on the Poor Laws which reported in 1909, to which those interested are also referred for valuable information.

The system of way-tickets has been found useful in Germany and Switserland in asaisting the genuine work-seeler on his way and in discriminating between him and the idle vagrant. In Germany those leaving their districts must carry certain papers of identification in addition to a Wanderschein or way-ticket. For the relief of the destitute wayfartr there is the Herberge or lodging-house, maintained by a voluntary society, and the Verpregungs-station, or relief station, maintained by the local authorities, In each, those in search of work can obtain lodging and food either for a small payment or by the performance of three hours' work, such as wood-chopping or stone-breaking. In Switzeriand way-tickets are issued by a society named the Inter-Cantonal Union to those who can prove that they have worked for an employer within the three preceding monthe, and that at least five days have ela peed since that employment ceased. The Vagrancy Committee recommended that the English way-ticket in book form should give the man's personal description, his usual trade, his reason for wanting to travel and his proponed destination, and ahould contain bis gignature and, pomably, his finger-prints for the purpose of teating identity The name of each casual ward visited should be stamped on the theket. The duration of the ticket should be limited to a certain period, pomibly a month. With ouch a ticket, a man certaid be entitied at the casual wand to a night's lodging, supper and breakfast, and after performing two bours work to belp to pey for his food and lodging be should be free to leave whenever he liked. The name of the next ward on the direct line of his route. which he could reach that night, should be entered on the ticket, and on his arrival at that place he should be treated in the same manner. The ticket would thus form a record of his journey and show whether he was genuinely in search of work.

The remedy which has been considered as most likely to be effective for the cure of habitual vagrancy in England is that of labour colonies, which have been tried on the continent

\section*{Labomp} calamies. of Europe with a substantial measure of success. These European labour colonies are described in detail In the appendices to the Report and Evidence of the Vagrancy Committee and in the books mentioned at the end of this article, but a risum\& of the more important colonies may bere be given.

Holland-There are two classes of calonies, both originally established by the Maatschaapij ran Weldadigheid (Socicty of Beneficence), a society founded by General van den Bosch (1780\(\mathbf{1 8 4 4}\)) in 1818. The Frec Colonies were designed for the reception of indigent pernons, for the purpose of teaching them agriculture, and so enabling them eventually to earn their own living independently. There are three of these free colonies, viz. Fredericsoord. Willemmoond and Wilbelminascord, forming practically one colony, with a population of about 1500 . The expenses of the colonies are met by voluntary subicriptions, but it has been found that the persons who enter the free colonies remain there and few fresh cascs are received. The number of inmates has been steadily decreasing. The society also maintained Begzar Colomies for the compulsory detention of persons committing the offence of begging. They were more penal than reformatory institutions, and the inmates were taught certain occupations by which they might support themselves on leaving. They did not prove self-supporting and were eventually taken over by the state. The chief institution is that at Veenhuizen, which occupies some 3000 acres of land, and where some 4000 men of the vagrant class are detained for periods varying from not less than six months to not more than three years. There is a similar institution for women at Leiden.

Belgium.-In Belgium the instituitions for the repression of vagrancy are maintained by the state under a law of November 27th, 1891. They are of three kinds:-(1) Depots de mendicild (beggars depots); (2) maisons de refuge (houses of refuge); and (3) tcoles de bienfaisance (reformatory schools). The beggars' depots are "exclusively devoted to the confinement of persons whom the judicial authority shall place at the disposal of the government" for that purpose, and these are classified as (a) able-bodied persons who, instead of working for their living, depend upon charity as
profesional begars; (b) persons, who, owint to idleness, drumkennest or immorality, live in a state of vagrancy; and (c) sombenemry. There are two of these depots: one for men at Merxplas, and another for women at Bruges. Persons are committed to the depots on summary conviction for a period of not less than two years or more than seven years. The population of Merxplas is over 5000; the colonists are employed io land reclamation, farming and various industries. Small duily wages, varying from 1 d . to 3 d .1 are paid, but these may be withheld for dieciplinary purposes. One half of the wages is retained by the management and paid out to the colonist on leaving, the other half being given monthly in the shape of tokents to apend at the canceen in artickes of food, tobaceo, se.

The housce of refuge are for men who from age or infirmity are unable to work, or who have been driven to begging or vagrancy by the want of work or misfortune. The chief house of reluge is at Hoogstraeten, where the belplese and sick are received. that at Wortel being reserved for the able-bodied. The colonists earn Wages ranging from Id. to gd. a day, one-third of this being given to them to apend, and they may talke their diccharge when they have saved 12 s . from their carnings or can show that they have work to go to. The maximum perind of detention is one year.

Germany.-In Germany there are between thirty and forty labour colonies, under the management of a charitable association, the Labour Colony Central Board. There is however, no compulsory detention. The institutions which deal with vagrants and permont who neglect to maintain themselves are termed "workhoutes" (Arbeitshiuser), but they correapond to the compulsory colonies of Belgium and Holland. Under the penal code of 1900 , any one (a) who wanders about as a vagabond: (b) who begs, or causea or allows his children to beg; (c) who through gambling, drunkenness or idleness is forced to apply for relief for hamelf, or those for whose maintenance he is responsible; (d) who while in receipt of public relief refuges to do work given him by the authorities; (e) who after losing his lodging fails 10 procure another within a certaia time, is liable to detention in a workhouse for a period not exceeding two years. The workhoumes are under atrict military discipline, the inmates being termed prisoners. They are taught dometice agricultural and industrial occupations.

Switserland.- Labour colonies are of two kinds, voluntary and compulsory. The voluntary colonies, of which there are three in Swituerland, are managed by philanthropic acieties. Entry and discharge are voluntary, but those secking admission must agree to stay a stated time. usually one or two months. Compulsory colonies are established in every canton, under the management of the cantonal council. Beggars can be arrested, and, if habitual offendera, can be sent to a labour colony for a period varying from six monthe to two years. If the man is found to have refused work, he can be sent to a labour colony as a "work-ahy" for from three months to two years. Owing in great mensure to the success of these laboar colonies, vaprancy has considerably diminished in Switseriand, and the colonies everywhere are arall; that at Witzwry, the lagest. having less than 200 inmates Punishment is generally inflicted by reduction of food; the inmates receive no mages, bex by industry may earn a remission of their period of detention

Authonitiss,-For a history of vasrancy see C. J. Ribton-Turser, History of Vagrauts and Vagrancy (18:7); see also Reports, Emidena, and Appendicer of Deporimental Commillee on Vagrancy, Igo6a most valuable publication-as well as The Vagrancy Problen (1910), by W. H. Dawson, who was witneas before the commitcee, and whose work quoted is full of first-hand information. Iwo Board of Trade Reports on "Agencies and Methods for dealing with the Unemployed," 1893 and 1904 , will be found useful, as also Rev. W. Cartile and V. W. Cartile's The Contimental Outcast (igo6).
(T. A. I.)

VAISON, a town of south-eastern France, in the departmens of Vaucluse, 26 m . N.N.E. of Avignon by road. Pop. (rgo6) 2148. The Ouvèse, a tributary of the Rbone, divides Vaison into two quarters-the Roman and early medieval town on the right bank, and the town of the later middie ages on the left bank,-the two communicating by an ancient Roman bridge consisting of a single arch. On the right bank is the church (once the cathedral) of Ste Marie, the choir of which is thougbt to date in parts from the gth century, while the nave belongs to the isth century. A Romanesque cloister containing a collection of old sculpture flanks the church on the north. Remains of a Roman amphitheatre and the chapel of St Quenin (dedicuted to a hishop of the 6th century), with a curious apse of the end of the 1 ith century, are also to be seen in the old town. On the keft bank are the parish church (i 5 th and i6ch centuries), remains of the medieval fortifications, and the keep of a castle of the counts of Toulouse. The industries of the town include the manufacture of wooden shoes, bellows and agricultural implements. Vaison, under the name of Vasio, was one of the principal towns of the Voconfii, and was a place of great importance under
the Repatat, ts is shown by an sboudapoce of objecta thearthed by exceration, amontrit which may be mentioned a fine statue of an athlete (the Diadumenos) in the Britiah Muscum. The bishopric established in the 3ad century was suppeeseed in 179 r . Its holders, towards the end of the rath century, were despoiled of the temporal power in the towa hy the counts of Toulouse. Subsequently Vaison came, together with the rest of ComtatVenaisin, under the power of the popes.
Valals (Ger. Wallis, Ital. Vallase), one of the cantons of southern Switserfand. Its name has been explained as meaning the "Walsch" (i.e. mon-Teutonic) land. But it is pretty certainly derived from nollis or vallensis pagus, for the region is simply the old Vallis Poswina, or upper valley of the Rhone from its source in the Rhone glacier to the gorge of St Maurice, together with the left bank of the Rhone from that gorge to the Lake of Geneva. The spelling "Vallais" previlied till the end of the r8th century, and was officially superseded early in the igth century by "Valais," a form that is very rarely found previously.
The total area of the canton is 2016.6 sq. m . (exceeded only br that of the Grisons and of Bern), of which, however, only 1107 is reekoned as "productive " (forests covering 297.4 sq. \(\mathbf{~ m .}\) and vineyards 10.7 sq. m .), while of the rest no fewer than 375 sq. m . (the most considerable stretch in Switzerland) is occupied by glaciers, and \(41 \frac{3}{2}\) sq. m . by the cantonal share of the Lake of Geneva. It is therefore naturally one of the poorest cantons in the confederation. It would be still poorer were it not for its excellent wines, and for the fact that in summertime it is visited by many thousands of travellers, for whom ines have been huilt in nearly every glen and on many high pastures (Zermatt, Saas, Riffei Alp, Evolena, Arolla, Zinal, Champéry, in the Val de Bagnes, in the Lotschen valley, the Bel Alp, the Rieder Alp, the Eggishorn, Bian, and near the Rhone glacier). It consists of a deep and long trench, which becomes a mere gorge between Niederwald and Brieg, the general direction heing south-west, till at Martigny the valley makes a sharp bend to the north-west. The loftiest point in the canton is the culminating summit or Dufourspitze (\(15,217 \mathrm{ft}\).) of Monte Rosa, which rises on a short spur projecting from the watershed, but the highest mountain which is wholly situated in the canton is the Dom (\(14,942 \mathrm{ft}\).), the culminating point of the Mischabel range.

A railway line runs through the canton from Le Bouveret, on the Lake of Geneva, to (73 m. .) Brieg, at the N . mouth of the magnificent Simplon tunnel (12t m ., opened in 1906), the line from St Maurice (about 14 m . (rom Bouveret) onwards forming the through line from Lausanne towards Milan. There are also mountain railways Irom Visp up to Zermatt (thence a branch up to the Gornergrat), and from Vernayaz (near Martigny) past Salvan towards Chamonix, while the new tomnel, begus in 1906, benearh the Lotechen Pass or Lotschbers, connects Kanderses. io the Bernese Oberland, with Brieg, and thus openo up a ncw direct route from London and Paris to ltaly As the canton is shut in almost throughout its entire kength by high mountain ranges it is as a rule only acceusible by foot paths or mule paths acrows thie lolty Apime barrier. But there are excelient carriage roads over the Great St Bernand \(P_{n}=\) (8111 ft), as well as over the Simplon Pass (6592 ft.), both leading to Italy. At the very head of the Rhone valley two other fincly enginered carriage roads give access to Uri over the Furka Pase (7992 ft.) and to the cantion of Bern over the Grimsel Pass (7100 (t.). Being thus shut in it was ahmost imponable for the canton to extend its boundaries, save in 1536, when it won the keft bank of the Rhone below the gorge of St Maurice. But at early though unknown dates it acquired and still holds the upper bit of the southern slope of the Simplon Pass, as well as the Alpine pastures on the worthera wope of the Gemmi. The mineral waters of Leukerbad, and, to a lesuer degree. those of Saxon, attract some summer visitors. the vast majority of whom. however, prefer the glorious scenery of the various high Alpine glens.
The canton forme the dioceme of Sion (fommed in the 4 th century). and has St Thbodule (or Theodore) as its patron saint. Till is!3 Tbe diocese was ia the ecclesiastical province of Mouticrs in the Tarentaise (Savoy), but since then has been immediately dependent on the pope. Within its limits are the three famons religious houses (all now held by Austin Camonas) of St Maurice (6th century). of the Great St Bermand, and of the Simplon. Since 1840 the abbot of St Maurice has horne the title of bishop of Bethlehem "in partibus infideliun." Eccksiastical aflairs are managed
withoot any control or indonerence oe the part of the atate, though the cantonal legislature presents to the pope as bishos one of four candidates presented by the chapter of Sion.
In 1900 the population was 114,438 , of whom 74,562 were French-speaking, 34,339 German-speaking, and 5469 Italinnspeaking, while 112,584 were Romanists, 1610 Protestants, and 25 Jews. The linguistic frontier has varied in the course of ages. Nowadays from Sierre (10 m . above Sion) upwards a dialect of German is gencrally spoken (though it is said that the opening of the Simplon through route has given a considerable impetus to the extension of French among the railway officials), while below Sierre a French dialect (really a Savoyard patois) is the prevailing tongue. To a considerable degree the history of the Vaiais is a struggle between the German element (predominant politically till 1798) and the French element. Cood wines are produced in the district, especially Muscat and Vin du Clacier. Otherwise the inhabitants of the main valley (at least from Brieg onwards) are engaged in agriculture, though suffering much from the inundations of the Rhone, against which great embankments have been constructed, while many swampy tracts have been drained, and so the plague of malarial fever abated to a certain ertent.
In the higher valleys the inhabitants are employed in pastoral occupaticns. The number of "alps" or mountain pactures io 547 (319 in the Lower Valais and 228 in the Upper Valais. the line of division being drawn a little above Sierre). capable of supporting \(50.73 \$\) cows (33.192 and 17.543 respectively) and of an estimated capital value of \(10,873.900\) fr. (7.969.500 and \(2,904,400\) respectively), to that, as might be expected for other reasoos, the lower portion of the vallcy where the climate is less rigorous is richer and more prosperous than the upper portion where other conditions preveil. The capitsl is Sion (g.v.). Next in point of population came (in 1900) Naters (3953), on account of the numbers of Italian workmen engased in piercing the Simplon tunnel. The peiphbouring town of Brieg had then 2182 inhabitants, and the wide commune of Monthey 3392.
The canton is divided into 13 administrative districts, which comprise 166 communea. The cantonal constitution whe little advanced till 1907 when it wes entirely remodelled. The legislature (Grand Constil or Gross Raih) is composed of membere elected in the proportion of one for every 1000 (or fraction over 500) citizens, and holds office for four yearm. The executive (Conseil \& Blat or Slaotsroth) is composed of five members, maned by the Grand Conseil, and bolda office for four yeara. The "obligatory referendum" prevails. while, 4000 citizens (6000 in the case of a revision of the cantonal constitution) have the right of " initiative " as to kegistative projects. The two members of the Federal Sliderath are named by the Grand Conscil, but the six members of the Federal Neliomedrath are elected by a popular vote. The 1907 cantonal constitution has a curious provision (art. 84) that while members of the cantonal legislature are ordinarily elected by an the voters of a Bexirk or district. yet if one or several communes (numbering over 500 inhabitamis) demsand it, this commune or these communes form a hreis or cercle and elect a member or members.

The Vallis Poenina was won by the Romans after a great fight at Octodurus (Martigny) in 57 s.c., and was so thoroughly Romanised that the Celtic aboriginal inhabitants and the Teutonic Burgundian invaders (5 th century) became Romancespeaking peoples. According to a tradition which can be traced back to the middle of the 8th century, the "Theban legion " was martyred nt St Maurice about 285 or 302. Valals formed part of the kingdom of Transjurane Burgundy (888), which fell to the empire in 1032, and later of the duchy of Burgundla Minor, which was held from the emperors by the house of Zahringen (extinct 1218). In 999 Rudoiph 111. of Burgundy gave all temporal rights and privileges to the bishop of Sion, who was later seyled "praefect and count of the Valais," and is still a prince of the Holy Roman Empire; the pretended donation of Charlemagne is not genuine. The bishops had much to do in keeping beck the Zxhringen, and later the counts of Savoy. The latter, however, succeeded in wioning most of the land west of Sion, while in the upper part of the valley there were many feudal lords (such as the lords of Raroa, those of La Tour-Chatilion, and the coumts of Visp). About the middle of the \(13^{\text {th }}\) century we find independeat communities or "tithings" (dieains or Zebnten) growing up, these, though aeven in pumber, taking their name mont probebly from a very
ancient division of the bishop's manors for adminisirative and judicial purposes. In the same century the upper part of the valley was colonized by Germans from Hasli (Bern), who thoroughly Teutonized it, though many Romance local names still remain. In 1354 the liberties of several of the seven "tithings" (Sion, Sierre, Leuk, Raron, Visp, Brieg and Conches) were confirmed by the Emperor Charles IV. A little later the influence of Savoy became predominant, and the count secured to his family the bishopric of Sion, of which be was already the suzerain. His progress was resisted by the tithings, which in 1375-76 crushed the power of the house of La TourChatillon, and in 1388 utterly defeated the forces of the bishop, the count and the nobles at Visp, this being a victory of the Teutonic over the Romance element in the land. From 1384 the Morge stream (a little below Sion) was recognized as the boundary between Savoyard or Lower Valais and episcopal or Upper Valais. In 1416-17 the Zehnien of the upper hit of the valley made an alliance with Lucerne, Uri and Unterwalden, with a view partly to the conquest of the Val d'Ossola, which was finally lost in 1422, and partly to the successful crushing of the power of the Jords of Raron (\(\mathbf{1 4 2 0}\)). By the election of Walther von Supersax of Conches as bishop in 1457 the Teutonic element Enally won the supremacy. On the outbreak of the Burgundian War the bishop of Sion and the tithings made a treaty with Bern. In November of the same year (\(\mathbf{1 4 7 5}\)) they seized all Lower or Savoyard Valais up to Martigny, and in 1476 (March), after the victory of Grandson, won St Maurice, Evian, Thonon and Monthey. The last three districts were given up in 1477, hut won again in 1536 , though finally by the treaty of Thonon in 1569 Monthey, Val d'llliez and Bouveret alone were permanently annexed to the Valais, these conquests being maintained with the help of their old allies, Uri, Schwyz and Unterwalden. These conquered districts (or Lower Valais) were always ruled as subject lands by the bishop and tithings of Upper Valais. The Valais took part in the Milanese war of 1512-16, and henceforth was reckoned as an "ally" of the Swiss Confederation. In 1533 a close alliance was made with the Romanist cantons; but by 1551 the Protestants had won so much ground that toleration was prociaimed by the local assembly. In 1586 Upper Valais became a member of the Golden League, and finally in 1603 -04 the four tithings of Conches, Brieg, Visp and Rason carried the day in favour of the old faith against those of Leuk, Sierre and Sion. In \(1700-91\) Lower Valais rose in revolt; but it was net finally freed till 1708, when the whole of Valais became one of the cantons of the Helvetic Republic. Such prolonged and fierce resistance was, however, offered to French rule by the inhabitants that ia 1802 Bonaparte declared Valais an independent state under the name of the "Rhodanic Republic," yet in \(\mathbf{1 8 1 0}\), for strategic reasons, he incorporated ft with France as the "department of the Simplon," and it was not freed till the Austrians came in 1813. In 1815 a local assembly was created, in which each of the seven tithings of Upper and each of the six of Lower Valais (though the latter had nearly double the population of the former) elected four members, the bishop being given four votes. This constitution was approved by the Federal Swiss Diet, which thereupon (\(\mathbf{1 8 1 5 \text {) received the Valais as a fult member }}\) of the Swiss Confederation. In 1832 the Valais joined the League of Samen to maintain the Federal Pact of 1815 . In \(1839-40\) it was convulsed by a struggle between the Conserva. tive and Radical partles, the split into two half cantons being only prevented by the arrival of Federal trocps. The constitution was revised in 1839, the local assembly was to be elected according to population (1 member for every 1000 inhabitants), and the bishop was given a seat instead of his four votes, while the clergy elected one deputy. In 1844 civil war raged, many Liberals being slain at the bridge of Trient (May 1844), and the Valais becoming a member of the Sonderbund. By the 1844 constitution the clergy elected a second deputy. The introduction of the Jesuits embittered matters, and the Valais was the last conton to submit in the Soaderbund War (1847); it coatented itsell, however, with voting steadily against the
acceptance of the Federal constitutions of 1848 and 1894 By the constitution of \(\mathbf{8 4 8}\) all ecclesiastical exemption from taxation were swept away, and the bishop loat his seat in the assembly. New constitutions were framed in 2852, in 1875 and in 1907.
Authorities.-F. Barbey. Ia Route dx Sumplan (Ceneva, 1906): J. Bernard de Montmélaan, Si Maurice et la lezion Thizbérnue (2 vols. Paris, 1888): M. Beason, Recherches sur les origines des bukildif de Genioe, Lamsanme, Sion (Fribourg 1906); Blather ans der Waliser. Geschichte (Sion, from 18ig); L. Courthion, Le Proxtle do Valois (Geneva, 1903); S. Furrer, Geschicktr, Statistik mad UrhuridenSammiung uber Wallis (3 vols, Sion, \(1850-52\)): H. Gay, Histoire du Vallars (and ed., Geneva, 1go3), and Melcmger d'hisloire nol. laisanne (Geneva, 18g1); F. de Ginginala-Sarrax, Dtoeloppement de l'indépendamce da Hawh-Valais, Ac. (Zarich, 1844); I. Gremand. Dormments relatifs is 'hicloive dx Vallais (8 vols. (to 1457). Laualane \({ }^{1875-1898) ; ~ P . ~ A . ~ G r e n a l, ~ H i s t o i r e ~ m o d e r n e ~ d a, ~ V a l a i s ~ d e ~} 4536\) d \(18 / 5\) (Geneve, 1894); J. Heierli and W. Oechsli, Urgeschechte des Walhis (Zürich, \(\mathbf{1 8 0 6 \text {) ; A. Heusler, Rechasgmellen' des Canh Walis }}\) (Base1 1890): R. Hoppeler, Beitroge e. Caschichte des Wollis in Mitclather (Zurich, 1897); K. Pressel, Bavarbeilh am SimplemTrnnel (Zurich, 1906); B. Rameau, Le Vallais historique (Sion, 1886): M. Schiner, Description du dipartement du Simplon (Sion, 1812); Schott, Die dexischen Colomion in Piemont (Sruttgart, 1842) : J. Simler, Descriplie Vellesiae (Zarich, 1574); A Strity, Die Alpwirlhschoft im Ober-Wallis (Soleure, 1900), and L'tconemie alpestre dw Bas-Valais (Soleure, 1902); Walliser-Sagem (Sion. 1872); Walliser Sagen (2 vols, Brieg, 1907): F. O. Wolf, The Valais, forming several numbers of the series "Illustrated Europe". (pablished at Zurich); J. Zimmerli, Die Sprackgrense im Wadis (vol iit. of his larger woris, Dic deulsch-frantosische Sprachgrense is der Schreiz), Basel and Geneva, 1899
(W.A.B.C)

VALDEMAR 1., king of Denmark (1131-1182), the son of the chivalrous and popular Canute Lavard and the Russian princess Ingeborg, was born a week after his father's murder, a nd was carefully brought up in the religious and relatively enlightened household of Asser Rig, whose sons Absalon and Esbjobra Snare, or "the Swift," were his playmates. On the death of King Eric Lam in 1147 Valdemar came forward as one of the three pretenders to the Danish crown, Jutland falling to his portion (compact of Roskilde, 9th of August 1157). Narrowly escaping assassination, at a banquet a few days later, at the hands of his rival, King Sweyn III., he succeeded only with the utmost dificulty in escaping to Jutland, but on the a3rd of October utterly routed Sweyn at the great battle of Grathe Heath, near Viborg, Sweyn perishing in bis flight from the field. Valdemar had no longer a competitor. He was the sole male survivor of the ancient royal line; his valour and ability were universally recognized, and in Absalon, elected bishop of Roskilde in 1158, he possessed a minister of equal genius and patriotism. The first efforts of the new monarch were directed against the Wendish pirates who infested the Baltic and made not merely the political but even the commercial development of the Danish state impossible. What the Northmen were to the Western powers in the 8th and oth the Wends were to the Scandinavian lands in the rith and 12th centuries. But the Wendish pirates were more mischicvous because less a menable to civilization than the Vikings. Tbey lived simply for plunder, and had neither the ambition nor the ability to found cotonies like Normandy or Northumbria. We may form some idea of the extent and the severity of their incursions from the fact that at the beginning of the reign of Valdemar the whole of the Danish eastern coast lay wasted and depopulated. Indeed, according to Saxa, onethird of the realm was a wilderness. The stronghold of the Wends was the iste of Rugen. Here lay Arkona their chief sanctuary and Garz their political capital. Both places were captured in 1169 by a great expedition under the command of Valdemar and Absalon, the hideous colossal Idol of Rugievit was chopped into firewood for the Danish caldrons, and the Wends were christened at the point of the sword and placed beneath the jurisdiction of the see of Roskilde. This triumph was only obtained, however, after a fierce strugbie of ten years, in which the Danes were much hampered by the uncertain and selfish co-operation of their German allies, chief among whom was Henry the Lion, duke of Saxony and Bavaria, who appropriated the lion's share of the spoil. For at the beginning of his reign Valdemar leaned largely upon the Germans and even went the

Leepth, againgt the advice of Abalon, of acknowledging the overfordship of the Emperor Frederick Barbarossa at the reichstag of Dole, \(1: 62\). Very different was Valdemar's second conference with Barbarossa, on the banks of the Eider, in II82, when the \(t\) wo monarchs met as equals in the presence of their respective armies, and a double marriage was arranged bet ween two of Valdemar's daughters and two of the emperor's some. The only serious domestic trouble during Valdemar's reign was the rebellion of the Scanian provinces, which objected to the establishment of a strong monarchy inimical to local pretensions and disturbances, and especially to the heavy taxes and tithes necessary to support the new reign of law and order. The rising was ultimately suppressed by Absalon at the battle of Dysias, 1181. In the following year died King Valdemar. His services to his country are aptly epitomized in the epitaph on his ancient monument at Ringeted cburch which describes bim as "Sclavorum domiator, patrine liberator et pacis cosservator." His fame has been somewhat obscured by that of his great minister Absaion, whom their common chronicler Saxo constantly magnifies at the expense of his master. Valdemar's worst laults were a certain aloof. aess and tacitucnity. He is the only one of Saxo's heroes in whose mouth the chronicler never puts a speech. But his iong reign is uastained by a single ignoble deed, and he devoled bimself heart and soul to the promotion of the material and apiritual welfare of Denmark.

See Dasmarks Rites Histeris, vol. i. ppo 570-670 (Copeohazen, 1897-1905): Saxo, Gesta Danorum, books 20-16 (Surasalaurg 1836). (R. N. B.)

Valdemar II., king of Deamark (2170-1241), was the second son of Valdemar I. and brother of Canute VI., whom he succeeded on the 12 th of November 1202 . Already during his brother's lifetime, as duke of Schleswig. Valdemar had successfully defended Denmark against German aggression. In irai be assumed the offensive, conquered Holstein, legother with Hamburg, and compelled Count Henry of Schwerin to acknowledge the over-lordship oi the Danish crowa. Immediately alter his coronation, he hastened to his newly won territories, sccompanied hy the priacipal civil and ecclestastical dienitaries of Denmark, and was solemnly acknowledped lord ol Northalbingia (the district lying between the Eider and the Elbe) at Lubeck, Orto IV., then in difficulties, voluntarily relinquishing all German territory north of the Elbe to Valdemar, who in return rocognized Oto as German emperor. Thus the three bisboprics of Lubeck, Ratzeburg and Schwerin, which bitherto had been fief of the Reich, now pased under Danish suzerainty. Libeck was a peculiarly valuable possession. The city had been founded in 1158 with the express object of controlling the Baltic trade. Only through Lubeck, moreover, couid supplies and reiniorcements be poured into the German military colonies in Livonia By closing Lubeck Valdemar had German trade aad the German over-meas settements entirely at his mercy. This state of things was clearly recognized by German statesmen, and in 1208, wheo the Emaperor Oto felt more secure upon his unstable throne, he became overtly bostile to Denmark and would have attempted the recovery of the lost German territory but for the interposition of Pope Innocent III., who threatened to excommunicate any German prince who shoald atlack Valdemar, the equally pious and astute Danish king having uadertaken, at the bidding of the holy sec, to lead a crusade against the healben Estbonians. Valdemar's position was still iarther strengthened when Frederick II., the successiol rival of Otto IV., was, in 1215 , crowned at Aix-la-Chapellc. Valdemar at once cultivated the friendship of the new emperor; and Frederick, by an imperial brief, issued is December 1214 and subsequently confirmed by Innocent 1II. and Honorius III., formally renounced all the German lands north of the Elbe and Elde, as well as the Wendiah hands on the Beltic, in fevour of Valdemar.

An attempt by Otto in 1215 to recover Northalbingias was easily frustrated by Valdemar, who henceforth devoted himself to the extension of the Danish emapire over the eastern Battic ahores. Hore, however, he had already been forestalled. At the end of the 1 ath cenlury the whole of the Baltic littoral from
semi-Christian Pomerania to orthodox Pleskow was fiercely ana obstinately pagan. The connecting link between the western and the eastern Baltic was the isle of Cotland, where German merchants from Lubeck had established a depor (the later Visby). The fur-trade with the Esthonians and Livonians proved so lucrative that a German colony was planted in Livonia itself at what was afterwards Rign, and in z20: for its better security the colony was converted into a bishopric. A still firmer footing was gained by the Germans on Livonian eoil when Abbot Theoderick of Riga founded the order of the Sword (a foundation confirmed by the pope in 1204), whome duty it was to convert the beathen Esths and Livs and appropriate as much oi their land in the process as possible. Two yeass Later Valdemar, uryed by Archbisbop Anders Suncson, also appeared off the Esthonian const and occupied the iale of Oesel. In 1210 Valdemar led a second expedition eastwards, this time directed afainst heathen Prussia and Samlaod, the chief result of which was the subjection of Mestwin, duke of Pomerania, the leading chieftain in those parts.

Now was to be seen the determining influence of sea-power even in those days. Despite its superior weapons and mode of warfare, the German enst Baltic colony was constantly in danger of heing overborne by the endless assaults of the dogged aborigines, whose hatred of the religion of the Cross as preached by the knights is very intelligible; and in 1218 Bishop Albert of Riga was dxiven to appeal for assistance to King Valdemar. Valdmar cheerfully undertook a new crusade "for the honour of the Blessed Virgio and the remission of my own sins." In 1218 he set sail for Esthonia with one of the largest fleets ever seen in northern waters, including a Wendish contingent led by Prince Vitslav. Landing at Lyndantse (the modern Reval) in north Esthonia, Valdemar at once received the submission of the inhabitants, but three days later was treacherously attacked in his camp and only saved from utter destruction by his own personal valour and the descent from heaven, at the critical moment, of a red banner with a white cross on it, the Dannebrog (Danes' Cloth), of which we now hear for the first time, and which henceforth was to precede the Danish armies to victory till its capture by the Ditosarshers, three hundred years later. This victory was followed by the foundation of Reval and the occupation of Harrien and Wirland, the northera districts of Esthonia, by the Danes.

Valdemar was now. after the king of England, the most powerful potentate in the north of Europe. The south-western Baltic was a Daniah Mediterranean, and Danish territory extended from the Elbe to lake Peipus. But this scattered and beterogeneous empire required a large standing army and a strong central government to hold it tagether. It is doublful whether even the genius of Valdemar would have proved equal to sucb a stupendous lask. He never had the opport unity of altempting it. In May 1223 he was seized at midnight in his tent on the isle of Lyb, whither he had come to hunt, hy his vassal and guest Count Henry of Schwerin, and conveyed with his son and many other valuable hostages to the inaccessible caste of Dennenberg-on-Elbe. In this dungeon he languished for two and a half yeara, and, despite all the efforts of Pope Honorius III. on his behalf, was ultimately forced to pay a beavy ransom, and surrender Northalbingia and all his Wendish conquests except Rügen. On his release Valdemar attempted to retrieve his position by force of arms, but was utteriy defeated at the battie of Bomhbved (23nd of July 1217), which deserves a place among the decisive battles of history, for it destroyed at once and for ever the Danish dominion of the Baltic and eatablished the independence of Lubeck, to the immense detriment in the future of all the Scandinavian states. On the other hand Valdemar, by prudent diplomacy, contrived to retain the greater portion of Danish Esthonia (compact of Stensby, 1238). With rare resignation Valdemar devoted the remainder of his life to the great wort of domestic reform. His noblest achievement in this respect is the codification of the Danish laws known as the Jydishe Lon (Jutland Code), which be lived to see completed a fow days before his death at Vordingborg on the 28th of March 2441. Valdemar
was twice married, his first consort being Dragomir (Dagmar) of Bohemia, his second Berengaria of Portugal. All his four sons, Valdemar, Eric, Abel and Christopher became kings of Denmark.
See Dammarks Riges Hisforic, vol. i pp. 736-849 (Copenhagen, 1897-1905).
(R. N. B.)

VALDEMAR IV., king of Denmark (c. 1320-1375), was the youngest son of Christopher II. of Denmark. Valdemar was brought up at the court of the German emperor, Louis of Bavaris, during those miserable years when the realm of Denmark was partitioned among Holstein counts and German Ritter, while Scania, "the bread-basket" of the monarchy, sought deliverance from anarchy under the protection of Magnus of Sweden. Even the Hanse Towns, the bereditary enemies of Denmark, regarded the situation with disquietude. "One would gladly have seen a single king in Denmark if only for peace sake," says the contemporary Labeck chronicie, " for peace was not to be had cither at sea or on land." The assassination at Randers of the detested Holstein tyrant Count Gerhard III. (1340), who for nine years had held Jutland and Funen and dominated the rest of Denmark, first opened Valdemar's way to the throne, and on midsummer day 1340 he was eiected king at a Landsting held at Viborg, after consenting to espouse Heiveg, the sister of his most important confederate, Valdemar, duke of Schleswig.

Neither the time nor the place of Valdemar's hirth is known, but he could not have been more than twenty when he became the nominal king of Denmark, though, as a matter of iact, his territory was IImited to the northemmost county of Jutland. His precocious maturity is strikingly evident from the first. An energy which never slackened, doggedness which 00 adversity could crush, a fiery ambition coupled with the coolcst calculation, and a diplomatic unscrupulousness which looked always to the end and never to the means, these were the salient qualities of the reconstructor of the dismembered Danish state. First Valdemar aimed at the recovery of Zealand, which was actually partitioned among a score of Holstein mortgagees who ruled their portions despotically from their strong castles, and sucked the people dry. The oppressed clorgy and peasantry regarded Valdemar as their natural deliverer; but so poor and friendlesa was he that the work of redemption proved painfully slow. In November 8343 he obtained the town and castle of Copenhagen from King Magnus Smek of Sweden, by reconfirming in still more stringent terms the previous surrender of the rich Scanian provinces, and by the end of the following year be bad recovered the whole of North Zealand. In 1347 the remainder of Zealand was redeemed, and the southern isles, Laland, Falster and Mön, also fell into the king's strenuous hands. By this time, too, the whole of Jutland (except the province of Ribe) had fallen to him, county hy count \(y\), as their respective holders were paid off. In 1349, at the Landsting of Ringsted, Valdemar proudly rendered an account of his stewardship to the Estates of Zealand, and the bishop of Roskilde congratulated him on having so miraculously delivered his people from foreign thraldom. In August 1346, he prudently rid himedf of the distant and useless province of Esthonia by selling it very advantageously to the Livonian Order.

Valdemar now gave full play to his endless energy. In north German politics be interfered vigorously to protect his brother-in-iaw the Margrave Louis of Brandenburg against the lords of Mecklenburg and the dukes of Pomerania, with such success that the emperor, Charles IV., at the conference of Bautzen, was reconciled to the Brandenburger and allowed Valdemar an annual charge of 16,000 silver marks on the city of Libbeck (1349). Some years later Valdemar seriously thought of reviving the ancient claims of Demmark upon England, and entered into negotialons with the French king, John, who in his distress looked to this descendant of the ancient Vikings for help. A matrimonial alliance between the two crowns was even discussed, and Valdemar offered, for the huge sum of 600,000 gulden, to transport 12,000 men to England. But the chronic state of rebelion in western Denmark, which, fomented hy the cliscontented Jutish magrates, lasted with short intervals from

1350 to 1360 , compelled Valdemar to renounce these far. reaching and fantastic designs. On the other hand, he proved more than a match for his domestic rebels, especially after his great victory at Brobjaerg in Funen (1357). Finally, the combpact of Kalundborg restored peace to the kingdom.

Valdemar now turned his eyes from the weat to the east, where lay the "kingdom of Scania." Valdemar had indeed piedged it solemnly and irrevocably to King Magnus of Sweden, who had held it for twenty years; but profiting by the dificulties of Magnus with his Norwegian suhjects, after skilfully securing his own position by negotiations with Albert of Mecklenburg and the Hanseatic League, Valdemar suddenly and irresistibly invaded Scania, and by the end of 1361 all the old Danish iands, except North Holland, were recovered.

By the recovery of Scania Valdemar bad become the lord of the great herring-fishery market held every autumn from St Bartholomew's day (24th of August) to St Denis's day (9th of October) on the hammer-shaped peniasula projecting from the S.W. corner of Scania containing the towns of Skanor and Falsterbo. This flourishing industry, which fully occupied 40,000 boats and 300,000 fishers assembled from all parts of Europe to catch and salt the favourite Lenten fare of the whole continent, was the property of the Danish crown, and the innumerable tolls and taxes imposed by the king on the frequenters of the market was one of his most certain and iucrative sources of revenue. Foreign chapmen eagerly competed for special privileges of Skanbr and Falsterbo, and the Hanseatic merchants in particular aimed at obtaining a monopoly there. But Valdemar was by no means disposed to submit to their dictation, and political conjunctures now brought about actual hostilities between Valdemar and the Hansa, or at least that portion of it known as the Wendish Towns,' whose commercial interests lay principally in the Baltic.

From time immemorial the isle of Gotland had been the staple of the Baltic trade, and its capital, Vishy, whose burgesses were more than half German, the commercial intermediary between east and west, was the wealthiest city in northern Europe. In July \({ }^{136 \mathrm{r}}\) Valdemar set sail from Denmark at the head of a great fleet, defeated a peasant army before Visby, and a few days later the burgesses of Vishy made a breach in their walls through which the Danish monarch passed in triumph. The conquest of Gotland at once led to a war between Valdemar and Sweden allied with the Hanseatic towns; but in the spring of 1362 Valdemar repulsed from the fortress of Helsingborg a large Hanseatic fleet provided with " shooting engines" (cannon) and commanded by Johan Wittenburg, the burgomaster of Labeck. In Sweden proper he was equaliy successful, and the general pacification which ensued in April 1365 , very greally in his favour, was cemented by the marriage of his daughter Margaret with Hakon VI. of Norway, the son of King Magnus.

Valdemar was now at the height of bis power. Every political rival had been quelled. With the papal see, since his visit to Avignon in 1364, he had been on the best of terms. His ecclesiastic patronage was immense, and throughout the land he had planted strong castles surely heid by the royal bailifis. But in the winter of \(1367-68\) a hostile league against him of all his neighhours threatened to destroy the fruits of a long and strenuous hifetime. The impulse came from the Hansa. At a Hanselag held at Cologne on the 11th of.November 1367 , three groups of the towns, seventy in number, concerted to attack Denmark, and in January 1368 Valdemar's numerous dornest ic enemies, especially the Jutlanders and the Hoktein counts, acceded to the league, with the object of partitioning the realm among them. And now an astounding and still inerplicabie thing happened. At Easter-tide 1368, on the very eve of this general attack, Valdemar departed for three years to Germany. leaving his realm in the capable banda of the carl-marshal Henning Podbusk. Valdemar's skilful diplomacy, reinforced hy golden arguments, did indeed induce the dukes of Brunswick, Brandenburg and Pomerania to attack the confederates in the rear; hut fortune was persistently unfriendly to the Danish kiag, - Rostock, Greifswald. Wismar and Stralsund.
and peace was finally concluded with the towns by Podbust and the Danish Council of State at the congress of Stralsund, 1370. The conditions of peace were naturally humiliating for Valdemar,' though, ultimately, he contrived to render illusory many of the inordinate privileges he was obliged to concede. He was also able, shortly before his death on the 24th of October 8375, to recover the greater part of Holstein from the rebels.

We know astonishingly little of him personaliy. A lew caustically witty sayinge of his, and St Bridget's famous comparison of him to a lowier who could entice the shyest birds with his fluting, are almost all his personalia. It would be a mistake to regard him as a patriot. He was \(t 00\) unscrupulous and self-centred to play for anything but his own hand. Yee no other Danish king did so much lor his country. His statesmanship, as judged from his acts, was all but flawless, and he was certainly one of the greatest of the medieval diplomatists. His character peeps forth most clearly perhaps in the saying which has become his epithet, Allerdag (" There will be a to-morrow "), which is an indication of that invincible daggedness to which be owed most of his successes.

See Dawmarks Riges Historie, vol. ii. pp. 275-356 (Copenhagen, 1897-1905).
(R. N. B.)

VALDEPREAAS, a town of Spain, in the province of Ciudad Real; near the right bank of the iiver Jabalon, a tributary of the Guadiana, and on the Madrid-Cordova and Valdepenas-La Calzada railways. Pop. (1900) 21,015. Valdepehas is the largest town in the Campo de Calatrava, an extensive plain north of the Sierra Morena. Its commerre developed rapidly in the last quarter of the 19th century, largely as a result of improvements in its communications by road and rail. the population in the same period increased by more than one-third. Valdepenas contaims large distillerics, tanneries, four mills, cooperages, and other factories, but its trade is chiefly in the red wines for which the district is famous throughout Spain. There are hot mineral springs near the town.

VALDES, JUAR DE (e. \(1500-1541\)), Spanish religious writer, younger of twin sons of Fernando de Valdes, hereditary regidor of Cueaca in Castile, was born about 1500 at Cuenca. He has been confused with his twin-brother Alphonso (in the suite of Charles V. at his coronation in Aix-la-Chapelle, 1520; Latin secretary of state from 1524 . died in 1532 at Vienan). Juan, who probably studied at the university of Alcala, first appears as the anonymous author of a politico-religious Didtogo de Mercurio y Caron, written and published about 1528 . A passage in this work may have suggested Don Quixote's advice to Sancho Panza on appointment to his governorship. The Didlogo attacked the corruptions of the Roman Church; hence Valdes, in fear of the Spanish Inquisition, left Spain for Naples in 1530 . In 153 I he removed to Rome, where his criticisms of papal policy were condoned, since in his Dialogo he had upheld the validity of Henry VIII.'s marriage with Catherine of Aragon. On the 12th of January 1533 he writes from Bologna, in attend. ance upon Fope Clement VII. From the autumn of 1533 he made Naples his permanent residence, his name being Italianized as Valdesso and Val d'Esso. Confusion with his brother may account for the statement (without evidence) of lins appointment by Charles V. as secretary to the viccroy at Napies. Don Pedro de Toledo; there is no proof of his holding any official position, though Curione (in \({ }^{1} 544\)) writes of him as "cavalliere di Cesare." His house on the Chiaja was the centie of a literary and refigious circle; his conversations and wriluggs (circulated in manuscript) stimulated the desire for a spiritual reformation of the church. His firse production at Naples was a philological treatise. Didiogo de la Lengua (is33). His works entitle him toa foremost place among Spanish prose witers. His friends urged him to seek distinction as a humanist, but his bent was towards problems of Biblical interpretation in their bearing on the devout life. Vermigli (Peter Martyr) and Marcantonio Flaminio were leading spirits in his coterie, which Included Vittoria Colonna and her sister-in-law, Giulia Gonzaga. On Ochino, for

1 They even gave the Hansa a vote in the future election of the Danisth kinga.
whose sermons he furnisted themes, his influence was great Carnesecchi, who had known Valdes at Rome as "a modest and well-bred courtier," found him at Naples (1540) "wholly intentupon the study of Holy Scriptare," transiating portions into Spanish from Hebrew and Greek, with comments and introductions. To him Carnesecchi ascribes his own adoption of the Evangelical doctrine of justification by laith, and at the same time his rejection of the policy of the Lutheran schism. Valdes died at Naples in May 1541 .

His death scattered his band of associates. Abandoning the hope of a regenerated Catholicism, Ochino and Vermigli left Italy. Some of Valdes's writings were by degrees published, in Italian translations. Showing much originality and penetration, they combine a delicate vein of semi-mystical spirituality with the personal charm attributed to their author in all contemporary notices. Llorente traces in Valdes the influence of Tauler; any such influence must have been at second hand. The Aviso on the interpretation of Scripture, based on Tauler, was probably the work of Alphonso. Valdes was in relations with Fra Benedetto of Mantua, the anonymous author of Dd Bcnefisio di Gesì Cristo Crocefisso, revised by Flaminio (reprinted by Dr Babington, Cambridge, 18s5). The suggestion that Valdes was unsound on the Trinity was first made in 1567 by the Transylvanian bishop, Francis Defid (see article Socinus); it has been adopted by Sand (1684), Wallace (1850) and other anti-Trinitarian writers, and is countenanced by Bayle. To this view some coiour ls given by isolated expressions in his writings, and by the subsequent course of Ochino (whose heterodox repute rests, however, on the insight with which he presented objections). Valdes never treats of the Trinity (even when commenting on Matt. xxviii. 19), reserving it (in his Lolle Spirituole) as a topic for advanced Christians; yet he explicitly affirms the consubstantiality of the Son, whom he unites in doxologics with the Father and the Holy Spirit (Opusc p. 145). Practical theology interested him more than speculative; his aim being the promotion of a healthy and personal piety.

The following is a list of his writings:-
(1) Diólogo de Mereurioy Corom (no date or place: 1578?). An Itatian translation by Nicolo Franco. Venice (no date): reprinted, Venice, 1545. Bound with the original (and with the translation) will usually be found a Dislogo by Alphonso de Valdes on the sack of Rome in 1527; this is also ascribed to Juan in the reprint. Dos Didlogos (1850).
(2) Dialoso de la Lengua (written, 353; firat printed, Madrid, 1737: reprimied. 1860 , 1873).
(3) Qual Maniera si derrebbe tenere a informare ... gli figliuoli de Christiani delle Cose della Religione (no date or place; belore 1545 . as it was used by the dialian iranslator of Calvin's catechism. 1545). No Spanish original is known. Reproduced as Latle Spiriluale,
 1557: in Spanish. by Ed Bochmer, 1882: in English. by J.T. Beris. 1882: also in Cerman (twice) a nd in Polish.
(4) Traladitos, Bonn, 1881 , from a manuseript in the Palazine Library, Vienna: in ltalian, I Gtque Tratoldlt Esergodici, Rome, 1545: reprinted, 1809; in English. by J. T. Bells, in XVl] Opus cules. 1882 .
(5) AIfabeio Christiano (writien about 1537). in Italian, Venice, 1545: in English. by B. B. Wiffen, 1861: no Spanith original is known.
(6) Ciento i Duez Concideragiones; all copies of the original edition suppressed by the Spanish Inquisition; thirty-nine of the Considerasiones. published with the Tratadios, from a Vienna manu. ornpt in lialian, by Celio Secondo Curione, Le Cento el Dicci Dinwe Consideratione. Basel. 1550: in French, by Claude de Kerquifinen, Lyons, 1563: Paris. 1565 , in English, by Nicholas Ferrar (at the instance of George Mrrbert). Oxford, \({ }^{1638}\). Cambridge, \({ }^{16463}\) another version by J. T. Betts, 1865: in Spanish, by Luis l'sbz Rio. 1855.
(7) Srwen Datrinal Lellers (original published with ibe Tratadilos Irom Vienna manuscript), in Engtish, by J. T. Betcs, with the opuscules.
(8) Comentario Brere ...sobre la Eprstola de San Pablo a los Romanos. Venice. 1556 (with text edited by Juan Perez de Pineda): Reprinted, 1856 . In English, by J.T. Betts, 1883 .
(9) Comentario Bretr:...soboe la Primere Epistola de say Pablo a los Corintios, Venice. 1557 (edited, reprinted and translated as No. 8).
(10) El Exangelio de San Moleo (text and commentary), 1881, from Vienns manascript; in English, by J. T. Betls. 1883.
(ii) El Sollerio (the Paalme from Hebrew into Spanish), published with the Trafaditos from Vienna manuscript.
(12) At Vienna is an unpublished colmmentary in Spanish on Pualms i.-xli.
(13) Sand meations a commentary on St John's Gospel, not'trnown to exist.
Notices of Valdes In Sand (Biblioth. Antitrinilar, 1684), Bayle and Wallace (Antirrin. Biog. 1850) are inadequate. Revival of interest in him is due to McCrie (Hist. Ref. in Italy, 1827 : Hist. Ref. in Spain, 1829). Fuller knowledge of his careen was opened up by Benjamin B. Wiffen, whose Lafe of Valdes is prefixed to Betts's translation of the Considerattons, 1865 . Discoveries have since been made in the Aulic Library Vienna, by Dr Edward Bochmer; ef. his Span. Reformers of Ty00 Centuries (1874), his Lives of J. and A. de Valdes (1882), and his article in Realencyhlopadie fir prol. Theol. und Kırche (1885). See also M. Young, Aonio Polecrio (1860); K. Benrath. Bernardino Ochno (8875 :) Menender Pelayo. Los Hecerodoxos Espailotes (1880); G. Bonet-Maury, Early Sources of Eng. Unit. Chrstl. (trans. E. P. Hall, 1884).
(A. Go. \({ }^{*}\))

VALDIVIA, a southern proviace of Chile, bounded N. by Cautin, E. by Argentina, S. by Llanquihue and W. by the Pacific. Area, 8649 sq. m. Pop. (1895) 60,687; (1903 , estimated) 76,000 . The province is roughly mountainous in tbe E., is heavily forested and is traversed by numerous rivers. There is a chain of lakes across its eastern side near the Andes, the largest of which are Villarica, Rinihue and Ranco. The rivers are the Tolten on the northern boundary, the Valdivia, or Calle-Calle, with its large tributaries in tbe central part of the province, and the Bueno on the southern frontier. The Valdivia (about 100 m . long) has its sources in the Andes and flows W. to the Pacific. Its largest tributary on the N. is the Rio Cruces. The Valdivia is the outlet for Lake Rinihue and is navigable for a long distance. Valdivia is one of the most recently settied provinces and has a large immigrant element, chiefly German. Its most important industry is that of clearing away the heavy forests and marketing the timber. Stockraising is an important industry, and wheat is grown on the cleared lands. Lumber, cattle, leather, flour and beer are exported. The capltal is Valdivia, a flourishing city on the Vaidivia river, 12 m . above its port, Corral, near the mouth of the river. Pop. (1895) 8062; (1902, estimated) 9704. It is a roughly built pioneer town, in which wood is the principal buiiding material. The mean annual temperature is \(59.9^{\circ}\) and its annual rainfall is 115 in . A govemment rilway runs to Osomo on the S., and in 1909 was being connected witb the central line running S. through Bio-Bio and Cautin. The port of Corral, at the mouth of the Valdivia river, in lat. \(39^{\circ} 49^{\prime} \mathrm{S}\)., long. \(73^{\circ} 19^{\prime} \mathrm{W} .\), is situated on the \(S\). side of a broad, lagoon-like sheet of water, forming one of the best natural harbours on the coust. It is a port of call for several lines of steamers, inclading those of the Pacific Mail running between Liverpool and Valparaiso.

VALDOSTA, a city and the county-seat of Lowndes county, Georgia, U.S.A., about 155 m . S.W. of Savannah. Pop. (1800) 2845; (1900) 5613 (2958 negroes); (1910) 7656. Valdosta is served by the Atlantic Coast Line. the Georpia Southern \& Florida, and the Georgia \& Florida raitways. The city has a public library; the principal public buidings are the County Court House and the Federal building. Valdosta is in a rich farming and forest country; among its manufactures are cotton products, lumber, \&c. The city owns and operates tbe water works, Valdosta was first settled in 1859, was incorporated as a town in 1860, and was chartered as a city in 1901.

VAlENCE, a town of south-eastern France, capital of the department of Drome, situated on the left bank of the Rhone, 65 m . S. of Lyons on the railway to Marsailles. Pop. (1go6), town, 22,950; commune, 28,112. The river is here crossed by a fine suspension bridge. The catbedral of St Apollinaris, whicb hiss an intercsting apee, was rebuilt in the rith century in the Romanesque style of Auvergne and consecrated in 1005 by Urban II. It was greatly injured in the wars of religion, but restored in the first decade of the 17th century. The porch and the stone tower above it were rebuilt in \(\mathbf{1 8 6 1}\). The church contains the monument of Pius VI., who died at Valence in 1799. A curious house (Maison des Tertes) of the 16th century has a sculptured front witb heads of Homer, Hippocrates, Aristotle,

Pythngoras, ac. The Maison Dupre-Latour with a beatifully carved doorway and the sepulchral monument known as the Pendentif date from the same century. The library and the museum containing Roman antiquities, sculptures and a picture gallery, are housed in the old ecclesiastical seminary. The most notable of the monuments erected by Valence to its natives are those to Emile Augier the dramatist by the duchess of Uzes (1897) and to General Championnet (\(1762-1800\)).

Valence is the seat of a bishop, a prefect and a court of ancizes, and has a tribunal of first instance, a board of trade arbitration, a chamber of commerce, a branch of the Bank of France, training colleges for both sexes, and 2 communal college. Among the industries are flour-milling, cooperage and the manufacture of furniture, liquorice, whitewash, and tapioca and similar foods. Trade, in which the port on the Rhone shares, is in fruit, cattle and live-stock, wine, early vegetables and farm produce, \&c.

Valentia was the capital of the Segalauni, and the seat of a celebrated school prior to the Roman conquest, a colony under Augustus, and an important town of Viennewric Prima under Valentinian. Its bishopric dates probably from the \&th century. It was ravaged by the Alani and other barbarians, and fell successively under the power of the Burgundians, the Franks, the sovereigns of Arles, the emperars of Germany, the dukes of Valentinois, the counts of Toulouse, and its own bishops. The bishops were often in conflict with the citizens and the dukes of Valentinois, and to strengthen their hands against the latter the pope in 1275 united their hishopric with that of Die. The citizens put themselves under the protection of the dauphin, and in 1456 had their rights and privileges confirmed by Louis XI. and put on an equal footing with those of the rest of Dauphine, the bishops consenting to secognize the suzerainty of the dauphin. In the 16 th century Protestantism spread freely under Bishop Jean de Monlluc, and Valence became the capital of the Protestants of the province in 1563. The town was fortified by Francis I. It had bocome the seat of a celebrated university in the middle of the isth century; but the revocation of the edict of Nantes struck a fatal blow at its industry, commerce and population.

Yalencla, or Valentia, an island of the south-western cosst of Ireland, county Kerry, forming the southern horn of Dingle Bay. It is about 7 m . long and 3 broad at its widest part. The strait between the island and the mainland forms a fine natural harbour, land-locked with narrow entrances, and a depth of about 40 ft at low tide, and thus capable of accommodating large vessels. At its north end is the Valencia Harbour station on a branch of the Great Southern \& Western railway, with a ferry across the strait to Knightstown, the town on the island. The harbour is sometumes visited by warthips, and is extensively used by fishing vessels, for which it is the headquarters of a district. At Knightstown are the buildings of the Anglo-American Telegraph Company, for it was from Valencin, after several unsuccessful attempts from 1857 onward, that the steamer "Great Eastern" first succeeded in laying the eable to Newfoundland in 1866. There are four cables acrost the Atlantic and one to Emden in Germany. On the island are Protestant and Roman Catholic cburches, constabulary barracks and a coastguard station. The meteorological reports received by the central office in Lopdon from Valencia are of bigh importance as giving the first indication from any station in the United Kingdom of weather influences from the Atlantic. Valencia cormerly exported slato of fine quality. Its clifi scenery is magnificent, and its luxuriant semi-tropical vegetation remarkable. Its name is of Spanish origin; the Irish originally cailed it Dairbhre, or Darrery, the oak forest.

VALENCLA, the name of a maritime province of eastern Spain, and of the kingdon in which this province was formerly included. The province is bounded on the N. by Teruel and Castellon de la Plana, E. by the Mediterranean, S. by Nlicante and W. by Albacete and Cuenç. Pop. (1900) 806,556; area, \(4150 \mathrm{sq} . \mathrm{m}\). Along the coast the surface is for the most part low and icvel, the fertile vegas, or cultivated plains, of Valencin,

JLtive and Gandia he many places rising very little above sea-level. To the west of these is a series of tablelands with a mean elevation of about 1000 ft ., which in tura rise into the mountains that form the enstern boundery of the tableland of Nem Castile, and allain within the province a maximum elevation of nearly 4000 ft . The coast is skirted by considerable stretches of sand-dune, and by a series of these the lageon called the Albufers (q.o.) de Valencis is separated from the Mediterranean. The principal rivers are the Guadalaviar or Turia and the Jucar (q.a).). The Guadalaviar enters the province in the extreme north-west, flows soath-east, and falls into the sea below the ciny of Valencia; it receives numerous tributaries of litele importance, and it dispenses fertility by numerous aqueducts, mostly of Moorish origin, throughout the lower part of its course. Both the Jucar and its right-band tributary the Albsida supply water for an extensive system of irrigation canals.

In the lowlands. especially towards the coast, vety littie rain falls; but heavy rain and metting anow among the highlands in which the principal rivers rise occasionally cause audden and disastrous floods. The ergas have an exceptionally fine. almost sub-tropical climate. In their low-lying portions rice is the favourite crop; elsewhere wheat, maize and all kinds of fruit are abundanily crown; the mulberry is cultivated for silk; and wine and oil are produced. Esparto grase is grown in the lens fertile arcas. The tablelands produce, according to their elevation and exposure, figs, almonds, olives or vines The pastures of the higher grounds sustain numerous sheep and goats; but cattle and horses are relatively few. The hillsides are somewhat bare of timber. The minrral resources of the province are litike developed. The fathing industry on the coast is considerable, and there are manulactures of silk, carpets and tapesiry, woollen, hemp and linen labrics, glass, potery and leather; there are also iron foundrics, distilleries, cooperages and oil refimeries. These industries are important. although the silk manufactures declined alter three decades of prosperity (Irom 1850 to 1880). The coast railway (rom Barcelona traverses the province. passing through the city of Valencia on the way south to Alicante and Murcia. From JStiva another important line diverges westward to Albacete, and there are branch lines from Valencia to Liria and to Utiel. Irom Silla to Cullera. from Carcagénte to Gandia, and thence to Dénia and Alciy in the province of Alicante. Valencia, the capital and principal scaport. and the towns of Alcira, Requena. Sueca. Játiva: Carcagénte. Cullera. Utiel. Onteniente and Gandia. are described in mparate articles. Other towns of more than 7000 inhabitants are Algernes., Catarroja. Liria, Saguato, Tabernas de Valldigna and Torrente.

When the ancient kingdom of Valencia was incorporated Into Aragon in 1238, it included the provinces of Castellon de la Plana (g.p.) and Alicante (g.v.). It was bounded imland on the N. by Catalonia, W. by Aragon and New Castile, and S. by Mureia. This region has an area of \(8830 \mathrm{sq} . \mathrm{m}\); its present populstion is about \(1,600,000\). For its history see Valencia (city). The inhabitants are of very mixed race, owing to the successive occupation of the country by Iberians, Greeks, Carthaginians, Romans, Visigoths and Moors. Their dialect resembles Catalan but is softer, and contains a larger percentage of Arabic mords. On the physique of the people, as on their customs and the architecture of their houses, Moorish rule left a durable imprint. The elaborate irrigation-works and the system of intensive agriculeure which have rendered the huertas or gardens of Valencia celebrated were initiated by the Moors; the lame of the Elche date-groves, the Alicante vineyards and the Valencia orange plantations, was also originally due to them. With the decline of the caliphate of Cordova early in the trth century, Valencia became an independent kingdom, which passed successively into the power of the Almoravides and Almohades. When James I. of Aragon captured the city of Valencia in 1238 . he found so large a number of Mozarabic Christians who had adopted the Arabic language and many of the customs of their rulers, that it was found necessary to transiate the Bible into Arabic for their use. In r609, 200,000 Moriscoes, or Moors who outwardly professed Christianity. were banished from the country. In 1833 Valencia was divided into the three provinces already named.
Valencia, the eapital of the Spanish province of Valencia, on the right bank of the river Guadalaviar or Turia, \(\mathbf{3} \mathbf{~ m}\). from the Mediterranean Sea, and 304 m . by rail E.S.E. of Medrid. xXvII 14*

Pop. (1877) 143.856; (1900) 213,550. Valescia is connected by numerous railways with all parts of Spain, and has one of the most mecure and capacious harbours on the east coest. It is the seat of as archbishop, a court of appeal, a university, a captain-general and an army corpa. All round it stretchea the beauliful and closely cultivated Huerta de Vatencia, ani alluvial phain planted with groves of oranges, lemons and mulberries. The climate is mild and very dry; rain hardly ever falls except when the east wind blows from the sea. The white houses of the city, often Mcorish in many details of their architecture, and the multitude of dones and towers overiaid with blue, white and gold tiles, give to Valencia an oriental appearance which is remarkabie even in south-eastern Spain. Uatid 1871 it was enclosed by a wall founded by the Romans and rebuilt in 1356 by Pedro IV.; two picturesque gatewayl with machicolated towers still remain, but few other remnanis are left of the old fortifications, the site of wbich is now occupied by fine boulevands. The river, reduced, except in time of flood, to a scanty stream by the demands made upon it for Irrigation, is crossed by several bridges, of which the longest has thirteen arches. The streets are for the most part narrow, crooked and somewhat gloomy, but in the more modern quarters there are some broad and handsome thoroughfares. Towards tbe close of the roth century Valencia was lighted by gas and electricity; electric tramways were laid down and a good water-supply and drainage system secured.

The cachedral (La Seo), begun in \(\mathbf{1 2 6 2}\), was in 1459 lengthened in its original Gothic style, but in such a way as to spoil its proportions, and in the 18 th century it was further injured by pseudo-Classic additions. It possesses some five examples of the sculpture and metal-work of the 1 sth centary, as well as of the Valencian school of painting. The campanile (d) Miguelete), an isolated octagonal Gothic tower, isa ft. in height, commands an extensive view of the town and surrounding country. Near the cathedral is the episcopal palace; its large and valuable library, rich in medals and other antiquities, sufiered greatly during the French occupation in 1812. Besides the cathedral, Valencia has numerous parish churches and other ecclesiastical buildings, none of them of great architectoral beauty or interest; the church of St Nicholas (of Moorish origin) has, bowever, good specimens of paintings by Vicente Juanes as well as Irescoes by Dionis Vidal; and Ribalte can be studied in the chapel of the Colegio de Corpus or del Patriarcha.

Valencin University was formed about 1500 by the fusion of an episcopal achool of theology with a munictpal echool of arts, medicine and law, both dating frem the middle of the 14th century. New colleges were soon added, and up to 1600 the university attained much prosperity and a high reputation. It then began to decline, but was' reorganized alter 1848 , and resumed its place as one of the leading universities. The average number of students is 1750 ; law, philosophy, natura! science and medicine are the subjects taught. The large but aninteresting university buildings date from the \(\mathbf{8 6 t h}\) century. The library, containing about 60,000 volumes, was robbed of its chief treasures by the French in 1812 . There is a rich provincial muscum, with palntings by Velazquez, Ribera, Durer, Juanes, Bosco, Goya and many modern artists. Among other public buildings may be mentioned the court-house, a Doric edifice, dating from the time of Ferdinand the Catholic, and having curious frescoes (1592) in its main hall; the customhouse (1758), now a cigar manufactory, employing some 3500 women; and the silk exchange, a large and elegant Guthic hall (1482). The citadel, on the north-cast of the town, was built by Charles V. as a protection against Khair-ed-Din Barbarossa, the sea-rover; in the south-west of the town is the former College of Saint Augustine, now used as a model prison, adjoining which in a large hospital. Beyond the old line of the walls there are a botanic garden, a large bull-ring. and various shady promenades, including the beautiful "Ciorieta," and, on the north side of the river, the alameda, leading to the port (E! Grao). The principal manufacture is silk, and the town is also celebrated for its coloused tiles
or "azulejos," and its oranges. Linen, woollen and esparto fabrics, hats, fans, leather, paper, cigars, glass and pottery are also manufactured, and there are foundries and printingworks. Corn, rice, silk, saffron, oranges, raisins, almonds, figs and other fruits are extensively exported, and iron, hardware, timber, manure, grain and colonial produce are imported.
The port and the village of Villanueva del Grao are 3 m. E. by N. of Valencia, and are connected with it by two railwaya and two tramways. The harbour works. begun in 1792 at local expense, have been steadily improved, and now provide many facilities for loading or discharging on the moles and wharves. During the five years, 1901-5, about 2600 ships of \(1.500,000\) tons entered at the port every year. About 2000 of these were Spanish, includiag a large number of small coasters. The majority of the foreign occan-going ships were British. The fishing feet of El Grao comprises about 600 boats with 2800 hands. About 1 m . N. is the lown of Pueblo Nuevo del Mar or EI Cabarial, to which large numbers of the Valencians migrate in summer for sea-bathing.

The earliest historical mention of Valencia (Valentio) is by Livy (Epie. lv.), according to whom Junius Brutus settled the soldiers of Viriathus here in 138 s.c., and invested the town with the jus Latinum. It sided with Sertorius (c. 77 B.c.), and was accordingly taken and partially destroyed by Pompey in 75 B.c.; but it must bave recovered speedily, as it is mentioned by Pliny (iii. 4) as a colony in the region of the Edetani, and by Mela as an important place. It was taken by the Visigoths in A.D. 413, and by the Moors in 714. After the downfall of the caliphate of Cordova, an independent Moorish kingdom of Valencis was established in 102t, and extended along the coast from Almeria to the Ebro estuary. The Almoravides occupied the city in ro94, but it was retaken within a few months hy the Christians under the Cid (q.0.), from whom it is sometimes called Valencia del Cid. The Moors recovered possession in 1 ior and the kingdom was re-established in 1146 . After 1172 it became uributary to Aragon, and in 1238 James I. of Aragon added it to his dominions. The first Spanish printing-press is said to have been set up here in 1474. Tawards the close of the isth century Valencia was annexed to Castile and placed under the rule of a viceroy. In the 16th and 17th centuries it became the seat of a considerable school of painting, of which Vicente Juanes (1523-1579) may be regarded as the founder, and to which belonged elso Francisco de Ribalta (\(1550-1628\)), Juan de Riballa (\(1597-1628\)), Jose Ribera (\(1588-1656\)), Pedro Orrente (1560-1644) and J. G. Espinosa (1600-1680). In the beginning of the 17 th century Valencia and its surrounding district suffered greally from the expulsion of the Moriscos, its most industrious and enterprising cultivators. In the War of Succession Valencia sided emphatically with the house of Austria, for which it was punished by being deprived of many of its ancient privileges. In 1808 an abortive stlempt to capture it was made by the Freach; they succeeded, however, in 1812, and held it till June 18t3. Queen Christina signed ber abdication at Valencia in 1840.

Valemcia, a city of Venezuela and capital of the state of Carabobo, 11 m m . by rail W.S.W. of Caracas, and 24 m . direct (\(33 \frac{1}{\mathrm{t}} \mathrm{m}\). hy rail) S. hy E. of Puerto Cabello. Pop. (1894) 38,654There is railway connexion with Caracas by the Great Venezucia line (German) and with Puerto Cabello by the Puerto Cabello and Valencia tine (English), which crosses the N. range of the Maritime Andes. There is also a steamboat service on Lake Vaiencia. The city is situated on the N.W. border of a lacustrine plain occupied in great part by Lake Tacarigua, or Valencia, \({ }^{1}\) and mearly 2 m . from its western margin. It is beautifully situated in a large fertile valley between parallel ranges of the Maritime Andes, about 1625 ft . above sea-level, and in the midst of rich plantations and luxuriant tropical vegetation. The climate is mild and pleasant, the temperature ranging from \(66^{\circ}\) to \(87^{\circ} \mathrm{F}\).
\({ }^{2}\) Lake Valeacia occupies one of the so-called Aragua valleys, enclosed between the parallel ranges of the Maritime Andes. It is 1348 ft . above the sea, is about 30 m . long, has an area of \(216 \mathrm{sq} . \mathrm{m}\)., and a catchment basin of 1782 sq . m ., and lies partly in the state of Aragua. It includes a number of small islande, some inhabited, and receives the waters of a score of small streams from the sur. rounding mountaina
with an annual mean of \(76^{\circ}\), and the rainfall being about the same as that of Caracas, of 23 to 30 in . Near Velencia on the Puerto Cabello railway are the Las Trincheras thermal springs. Among Valencia's public edifices and institutions are some good churches, the government palace, a university, a national college for women, a normal school for men and a public library.

Valencia was founded in 1555 and is older than Caracas. It was occupied for a time in is6r by Aguirre and his band of outlaws. At the beginning of the War of Independence it was made the capital of Venezuela, and the patriot congress was in session there in 1812 when Caracas was destroyed by an earthquake. It changed masters several times during the war, its most famous events being two successful defences in 1814 against Spanish besieging forces. The town suffered much in the war and from subsequent revolutions, but the remirkable productiveness of the surrounding districts and its advantageous commercial position ensured a prompt recovery from all reverses.
VALENCIA DB ALCNNTARA, a town of western Spain, in the province of Cáceres; on the Madrid-Cáceres-Lisbon railway, near the right bank of the Sever, a small stream which here divides Spain from Portugal. Pop. (1900) 9417. Valencia de Alcántara is the most important custom-house for direct traffic between the Peninsular kingdoms except Badajoz, and has a flourishing trade in farm produce of ail kinds, and in phosphates from the neighbouring mines. The town is occupied by a garrison, and retains its.old-fashioned loopholed walls and dismantled citadel. A Roman aqueduct still brings water to the main street, and there are other Roman remains in the dist rict ; the courtyards and windows of many houses are Moorish in style. The interesting church of Roqueamador dates from the 14th century, the church of Encarnacion, the town hall and a fine convent, from the 16 th . From the 16th ceatury to the 88 th Valencia was a celebrated border fortress; it was captured by the Portuguese in \(166_{4}\) and 1698 .
VALENCIENNES, a town of northern France in the department of Nord on the Scheldt, at its confluence with the Rhonelle, 30 m . S.E. of Lille by rail. Pop. (1906), town, 25,977; commune, 31,759. The Scheldt here divides into two branches, one of which flows through the town, while the other, canalized and forming a port, skirts it on the west. Of the fortifications, dismantled in \(\mathbf{5 8 9 2}\), and replaced by boulevards, the Tour de la Dodenne (13 th and 15 th cent urics) and the citadel (17 th century) are the chief remains. Valenciennes is the centre of a rich coalfield, to which Anzin (9.r.), an industriel town a little over a mile to the north-west, has given its name. To this fact is due the existence of the important foundries, forges, rolling-mills, wire-works and machine shope which line the bank of the Scheldt. There is also an extensive beetroot cultivation, with attendant sugar-works and distilleries, and glass, starch, chemicals and soap are produced. Hosiery, trimmings and handkerchiefs are manufactured and cot ton weaving and printing are carried on, though little of the famous lace is now made. Other industries are brewing and malting. There are a sub-prefecture, courts of first instance and of commerce, a chamber of commerce, a board of trade arbitration, and a branch of the Bank of France, 2 lycte, a school of music and a school of fine art (founded in 1782). The town hall is a fine buildiag of the early 17 th century. but its façade was rebuilt in 1867 and 1868 . The museum contains galleries of painting and aculpture, with works hy Antoine, Louis and François Watteau, Carpeaux, all of whom were natives of the town, and by Rubens and other Flemish artists. Opposite the muscum there is a monument commemorating the defence of the town in 1793. The principal church is that of Notre-Dame du Cordon, a fine modern building in the Gothic style surmounted by a tower 272 ft . in height. The church of St Gery preserves a few pillars dating from the rith century. Near it stands the statue of Antoine Watteau, and there is also a statue of Jean Froiseart, born at Valenciennes.

Valenciennes is said to owe its name and foundation to one of the three Roman emperors named Valentinian. In the middle ages it was the seat of a countship which in the inth century was united to that of Hainaus. In the 16th contury Valeocieanes
became the stronghold of Protestamism in Hiainaus, bet was conquered by the Spaniards, who committed all corts of excemes. In 1656 the Spaniards under Condé made a successful deferce against the French under Turenne; but in 1677 louis XIV. cook the town after an eight days' sicge, and Vauban construeted the citadel. Valenciennes, which then became the capital of Hainaut, bas since always belonged to France. In i793, after forty-three days' bombardment, the garrison, reduced to 3000 men, surrendered to the allied forces numbering some 140,000 or 150,000 men, with 400 cannon. In 181 s it delended itself succesfulty.

VALEACY. The doctrine of valency. in chemistry, may be defined as the doctrine of the combining power of the atoms or elementary radicles of which compound molecules consist. The conception that each eiementary atom has a definite atom-fixing power, enunciated by Frankland in 18 s 1 , is the foundation of the system of rational or structural formulae which now plays so great a part in chemical science. Frankland dcall more particularly with the valency of the metallic elements, in which he was specially interested at the time; but in conjunction with his co-worker Kolbe, he subsequently applied it to compounds of carbon. At that time (18s2-s6), the appiication of Avogadro's theorem to the determination of atomic weights was not yet recognized; it was only when Cannizzaro \({ }^{1}\) made this ciear that it became possible to develop the doctrine of valency upon a consirtent basis. Kekulé, whose services in this field rank with those of Frankland, was the first to develop the consequences of the conception that carbon is a quadrivaient clement and to appiy it in a logical manner to the explanation of the structure of carbon compounds generaliy; his paper published in \(\mathbf{1 8 5 8}\), "On the Constitution and Metamorphoses of Chemical Compounds and on the Chemical Nature of Carbon," is admittedly the foundation of the modern theory of the structure of these comprounds.
An admirabic though brief sumniary of the historical development of the doctrine of valency is to be found in the lecture delivered in 1808 by Professor Japp in memory of Kekule (Journ. Chem. Soc. 73, p. 97). Several discoverics have since been made which have an important bearing on the doctrine.

Frankland held tbat each element has a certain maximum valency but may manifest one or more subordinate valencies, the affinities in abeyance in caces in which only the lower valency is manifest satislying each other mutually. By a logical extcosion of this view, elements have been divided into those of odd and those of even valency; apart from a few exceptional compounds, elements are to be reckoned as beionging either to the one or to the other of these two classes.

Kekule always maintained that valency couid not vary and in discussing this question Professor Japp goes 30 far as to say: "Of all the doctrines which we owe to Ketuie, that of Gixed valency is probably the one that has met with least acceptance even among chemists of his own school. At the present day it is, so far as 1 am aware, without supporters." But he adds," Yet Kekule held it to the last." And such a fact cannot be overiooked: that Kekulf went too far in asserting that vaiency could not vary is probabiy true; the essential feature in his objection-that in many cases valency was overestimated hy the Frankland schooi-cannot be so easily disposed of.

He saw clearly that structure is the determining factor to be taken into account in all such discussions; he also considered that it was necessary aiways to make use of univaient or monad elements in determining valcncy; moreover, that the only compounds on which valid arguments couid be based were those which could be volatilized without undergoing decom-position-a condition that must be fulfilled if the molecular weight of a compound is to be placed beyond question. He therefore objected to the use of compounds such as ammoniom chloride and phosphorus pentachloride as criteria of valency. as they undergo decomposition when volatilized. This objection has been somewhat robbed of its force by Brereton Baker's observation that decomposition can be prevented if the utmost
i Stanislao Cannizzaro. A Cowose of Chemical Philasophy (1858). Nembic Club Repriats, No. 18. (191a)
care be taken to eaclade moinure. In objecting to the use of such compounds, bowever, Kekule took the further important step of diviting compoupds into two clases-that of atomic compounds, auch as ammoris and bydrogen chioride, in which the compenenla are beld together by atomic affinities; and that of molecular compounds, auch as ammonium chloride, containing atomic compounds beld together by molecular affinities: but Kekule nover gave any very clear explanation of the difference. Notwithatanding Brereton Baker's observations, the question remains with us to-day, the only difference being lhat we have subatituted the more precise term "reaidual affinity" for Kekule's term "molecular affinity."

Hydrogen is the one element which at present can be affirmed to be of unvarying valency: as no compound of determinable molecular weight is known in which a single atom of this clement can be supposed to be present in the molecule in aseociation with more than a single atom of another element, the bydrogea atom may be regarded as a consistent univalent or monad radicle. As the element of unit valency, hydrogen is, thereforg, the one fit atomic measure to be used in ascertaioias valency; unfortunately, it cannot always be applied, as so few elements form volatile hydrides. Hydrocartion radicles auch as methyl, \(\mathrm{CH}_{3}\), however, are \(w\) entirely comparable with the bydrogea radicle that they form equally efficient standards; as many elemems form volatile methides, some assistapee may be obtained by the use of such radicles. But in all otber cases the dificulty becomes very great; indeed, it is doubtiul is a trust worthy standard can then be found-we are still forced, in fact, to recogrize the wisdom of Kekule's contentions. The greatert dificult \(y\) of all that we have to meet is due to the fact that valency is a dependent variable in the case of many if not of most elements, the degree in which it is manifest depending on the reciprocal affinitice of the associating elements, at well as on environmental conditiona.
Among univalent elements, cerbon is the only one that appears to have a determinate maximum valency; this is manifest in methane, \(\mathrm{CH}_{4}\), the simplest hydride the element Corms, the firat parent of the mighty host of compounds numbering tbousands upon thousands which are the subject-matter of orpanic chemistry. Carbon, it is well known, is distinguished from all other clements by forming a great variety of compounds wibl bydro-gen-the hydrocarbons; from these, in tutn, other meries of compounds are formed by the displacement of hydrogen atoms in the bydrocarbons by various radicles. The chemistry of the carbon compounds is, in fact, the chemistry of oubstitution compounds; no other clement can be said to give rive to substitution compounds. It is because of this fact-because of the simple relationship obtaining between the various series of hydrocarbons and between these and their subectitution com pounds-that we are able to deduce atructural formulae for carbon compounds with a degree of certainty not attaimable in the case of any other element; and we are consequently able to infer the valency of carbon with a degree of definitenem that cannot be approached in any other case. Several of the simpler derivatives of carbon exhibit peculiarities which may be reforred to as of particular interest. as showing how difficult it la to arrive at any understanding of the manner in which valency is exercised. Apparentiy the compound represented by the symbol \(\mathrm{CH}_{2}\) cannot exist, all attempts to lsolate it having failed, the bydrocarbon ethylene, formed by the union of two sach groups, beins ohtained in its place. This would be in no way surprising were it not that the corresponding oxygernted compound, carbon monoxide, CO, has no tendency whatever to undergo polymerization under ordinary conkitions and is, in iach, syeaking ge vec.My, a :talabably inert zhistance, although in catain cases it forms compounds without difficully-yel always in a very quiet manner. A single atom of oxygen apparenty has the power, if not of satislying. at least of stilling the needs of the carton atom. One othet case which makes the behaviour of carbon monoxide still more exceptional may be referred to. that of the analogous sulphur compound carbon monsulphide, CS, recently discovered by Sir James Dewar and Mr M: O.

Jones. This compound is so unstable, so active, that it polymerises with explosive violence at temperatures slightly above that at which liquid air boik. Such illustrations aford clear proof that, as before mentioned, valency is a reciprocal function-that it is impossible to regard the units of affinity of the atoms of different elements as of equivalent value and capable of satisfying each other mutually.
There is no reason to suppose that an uneven number of affinities can be active in the carbon atom; in devising structural formulae, it is therefore always considered necessary to account for the disposition of the four units of affinity, the four valencies, of the carbon atom. In 1900 some excitement was aroused by the discovery by Gomberg of a remarkable hydrocarbon formed by the withdrawal of the chlorine atom from chlorotriphenylmethane, \(\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3} \mathrm{Cl}\) : at first it was contended that this was a compound of triad carbon, triphenydmethyl; it is now generally admitted, however, that such cannot well be the case and that one of the phenyl groups becomes altered in structure and converted into a dyad radicle (sec Triphenylimethane).
The homologues of methane-tbe bydrocarbons of the parafin or \(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\) series, in which the carbon atoms are associated by single affinities, their remaining affinities being engaged by hydrogea atoms-behave chemically as saturated compounds and are apparently incapable of entering into combination with other molecules. But it is important to guard against the assumption that they are actually saturated in any absolute sense. Even gases such as helium and argon, destitute as they appear to be of all chemical activity, must be credited with the possession of some measure of affinity-as they can be liquefied; moreover, as Sir James Dewar has shown, when helium is liquefied in contact with charcoal a not inconsiderable amount of heat is liberated beyond that given out in the mere liquefaction of the gas. The argument may be extended to hydrogen and the paraffins and it may even be supposed that the amount of residual affinity incteases gradually as the series is ascendedthis would account for the fact that their activity, the readiness with which they are attacked, increases slightly as the series is ascended. In any case, it cannot well be supposed that carbon and hydrogen mutually salisfy each other even in the paraffins.

The manner in which the valencies of the carbon atom are disposed of in the case of unsaturated hydrocarbons-that is to say, those containing a lower proportion of hydrogen than is indicaled by the formula \(\mathrm{C}_{\mathrm{s}} \mathrm{H}_{\mathrm{m}}^{\mathrm{ta}}\) - has given rise to much discussion, the subject being one which affords an opportunity for great diference of opinion. In ethylene, \(\mathrm{C}_{3} \mathrm{H}_{4}\), each carbon atom is attached to only two bydrogen atoms, as two affinities of each atom are therefore free to enter reciprocally into combination. These atoms certainly do not combine twice over in the way in which the two atoms of carbon in ethane, \(\mathrm{H}_{3} \mathrm{C} \cdot \mathrm{CH}_{2}\), enter into comhination-if they did, ethylene should be a saturated compound, whereas actually it behaves as an eminently unsaturated substance. It was contended by Julius Thomsen, on the basis of determinations of the heat of combustion of the hydrocarbons, that the two carbon stoms in ethylene are less firmly united in ethylene than are those in ethane; moreover, that in acetylene, \(\mathrm{C}_{2} \mathrm{H}_{2}\) in which there are threc affaities at the disposal of cach of the two carbon atoms, the union is even less firm than in ethylene. The argument on which these conclusions are founded has been called in question and the data are clearly insufficicnt to justify their acceptance; moreover, the stability of acetylene at high temperatures, also the readiness with which ethylenc is of ten formed and with which ethenoid compounds revert to the parafin type may be cited as arguments against them.
In dealing with such a problem, it is necessary to take into eccount the evidence we have that valency is a directed function. The tetrahedron is now accepted as the most suitable model of the carbon atom to be visualized whenever carbon is thought of: morcover, it is held that the directions in which valency arts are apphopriately pictured if they are regarded as proceeding from the centre of mass to the four solid angles of the tetrabedron. In such a case, two aftunities proceeding from each
reop carbon atoms do not meet and overlap but crobs, each
pair at a considerable angle through which they must be defected to bring tbem into conlact. Von Baeyer has suggested that this angle, \(\}\left(109^{\circ} 28^{\prime}\right)\), is the measure of the strain imposed upon the affinities and that the existence of this strain affords an explanation of the readiness with which ethylene lapses into e derivative of ethane when suitable opportunity is given to combine with some other substance. Another way of looking at the matter is to suppose that the affinities do not, as it were, overlap but merely cross each other aed that the angle of approach referred to is a direct measure of the degree of unsaturatedness: such a view is more in accordance with Thomsen's contention. In any case, the ethenoid condition of unsaturatedress at the junction of two carbon atoms is a centre at which altogether peculiar properties, chemical and physical, are developed-the most noteworthy being the enhanced refractive power. The ethenoid symbol \(\mathrm{C}=\mathrm{C}\) is therefore of peculiar significance. It is a remarkable fact that the properties of ring systems generally are in accordance with the above hypothesis-tbe degree of unsaturatedness diminishing as "the angle of approach" is diminished, the more nearly the affinities can be pictured as overlapping.

The most stable arrangement of the carbon affinities would appear to be that in benaene and compounds of the benzene type-whatever that may be. The determination of the "structure" of this bydrocarbon has given rise to a large amount of paper warfare. Two tendencies may be said to have been brought together in the course of this discussion: on the one band, the desire to arrive at a determination of the actual structure; on the other, the desire to devise formulae which shall be faithful expressions of functional behaviour and broadly indicative of the structural relationship of the constituent elements. The latter is perhaps the tendency which is now in the ascendant: we are beginning to realise, particularly in the case of carbon compounds, that formulae are primarily expressive of behaviour-belng based on the observation of behaviour. Thus in the case of all paraffinoid compounds, the symbol \(\mathrm{C}-\mathrm{C}\) has a distinctive meaning, as indicating saturation; in the case of ethenoid compounds, the symbol \(C=C\) has an equally distinctive meaning, indicating a particular degrec of unsaturatedness.

From this point of view, therefore, the benzene symbol originally proposed by Kekule is misleading, inasmuch as it indicates that the hydrocarbon contains three cthenoid junctions; it should therefore be an eminenuly unsaturated compound, which is not the case. On this account the centric formula is to be preferred as an expression of the propertics of the compound.
The non-metallic elements other than carbon all form volatile hydrides and methides from which their fundamental valencies can be deduced without difficulty. Chlorine, oxygen, nitrogen and silicon may be regarded as typical of the four classes into which the non-metals fall. But the number of hydrogen and methyl radicles ' which the atom carrics cannot be taken as the measure of absolute valency in the case of elements of the chlorine, orygen and nitrogen classes. The bydrides of the clements of these classes must all be regarded as more or less unsaturated compounds, the fact that gases such as bydrogen chloride and ammonia ate intenscly soluble in water being clearly a proof that their molecules are greatly attracted by and have great attraction for water molecules; it is remarkable, however, that although hydrogen chloride and ammonia are casily soluble in water and also combine readily with one another, they are gases which are by no means easily condensed -in other words, the moleculcs in each gas have litile tendency to associate among themselves. It may also be pointed out that, to account for the properties of liquid water, it is necessary to suppose that the simple molecules represented by the symbol \(\mathrm{H}_{3} \mathrm{O}\) bave a very considerahle mutual affinity and that wates consists largely of complex molecules. \({ }^{1}\) Taking into account
\({ }^{1}\) On this account it is desirable 10 confine the term watet to the liquid and to distinguish the simple molecule represented ty the symbol \(\mathrm{H}_{2} \mathrm{O}\) by a separate name-that propooed is Hy Home. Liquid water is probably a mixiure of several polyhydrones togeiber with more or leas hydrone.
the extimate we are able to fecin, on the one fuand, of the functions of bydrogen, on the otber of thow of elements such as chlorine; oxygen and nitrogen, it seems probable that in the bydrides of these elementa the extru attractive power is exercised entirely by the elemeat which enters into combination with the mydrogen-in other words, that chlorine in bydrogen chionde, oxygen in tydrone and nitrogen in ammonia are each possamed of considerable residual affinity. The great quexion at issue has been and still is-What is the nature of this residual affinity and how is it exercised? Thia is the question raised by Kekulé and left by him as a legacy to be decided upon. When bydrogen chloride and ammonia enter into combination to form ammonium chloride, for example, do they combine in some special manner, molecularly, so that each molecule retains its individaality as a radicle in the new compound, or is a redistribution effected, so that the several atoms become arranged around the ome which exercises the dominant mfludnce anuch is they are in the parent compound ammoniz? In the former case, two orders of affinity would come into operation; in the latter, only one The general opinion has always been in favour of the latter view.

The discovery that compounds of sulpher coatsining four diferent monad radicles together with a single sulphur atom, sach as the chloride, \(\mathrm{S}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\left(\mathrm{CH}_{3} \cdot \mathrm{CO}_{4} \mathrm{H}\right) \mathrm{Cl}\), ate optically active may be said to have set the question at rest, as optical activity is only to be expected in the case of a compound of asymmetric structure having the four radicles epparately associated with and arranged around the sulphur atom. If it be granted that sulphur can thus (unciion as a tetrad, it may equally be admitted that nitrogen can function as a pentad element in the ammonium compounds.

The discusaion has entered on another stage, however, now that Barlow and Pope have been successsud in subjecting the problem to geometric trealment by correlating crystalline form with chemical constitution. The fugdamental conception upon wbich the reiationship is based is shat each atom present in a compound occupies a distinct portion of space by virtue of an influence which it exerts uniformly in every direction. A crystalline structure is regarded as a chose-packed, homogeneous assemblage of the spheres of Influence of the component atoms. According to this view, valency acquires volume sigdificance. For example, the hydrogen atom being represented by a sphere of unit volume, that of tbe tetrad carbon atom is represented by one of lour times thls unit volume; the monad elements -chlorine, hromine and lodine-are supposed, in like manner, to occupy approximately unit spheres of intuence. Whilst they are prepared to admit that the spheres of atomic influence of the univalent elements, for example, are not qute the same -moreover, that the volume ratios of the spheres of influence of various elements may alter slightly under changes of conditionBarlow and Pope contend that the relative magnitudes are onily thightly affected in passing from compound to compound. In their view, however, the absolute magnitudes of the epheres of mfluence often change consideraby.

For example, taking the spheres of atomic influence of carton es of volume 4 and those of hydrogen, chlorine and bromine \({ }^{2 s}\) of volume 1 , they find that benzene, \(\mathrm{C}_{6} \mathrm{H}_{6}\), hexachiorobenzene, \(\mathrm{C}_{2} \mathrm{Cl}_{6}\), and hexabromobenzene, \(\mathrm{C}_{6} \mathrm{Br}_{6}\), present an almost identical spatial arrangement of the spheres of atomic influence. This could not be the case if the atoms of carbon. bydrogetn, chlorine and bromine appropriated respectively the volumes \(11-0,5 \cdot 5,22 \cdot 8\) and 27.8 -the so-celled atomic volumes deduced by Kopp. Bariow and Pope therelore consider that, both in benzene of molecular volume 77.4 and in a derivative such as tet rabromobenzene of molecular volume : \(30 \cdot 2\), the sphere of influence of the carton atom is about four times as large as that of either hydrogen or bromine; on displacing the hydrogen atoms by bromine atoms, however, the volumes of the carbon atoms in the benzene molecule and of the remaining hydrogen atoms expand proportionally in the ratio of \(77.4 \cdot 130 \cdot 2\). This remarkable conclusion is a most helpful addition to the doctrine of valency The relative fundamental velency volume,
accosding to Barion and Pupe, its a ocmatant-when compounds of a " hisher type" are produced, greater numberiof atomes become arranged abont the centraliaing atom but the relative valeacy volumea do noer change. They beve shown that it an atom of valency i be inserted into the space already occupied by an atom of valency m, 2 gap is produced which must be filled up by a nother atom of valency it the close packing is to be tostored without remaraballing, thus accounting for the progression of vakency by two units. Ammonium chloride, for example, is to ha regarded as formed by the insertion into the emmonia assemblage of a chioriac atom of volume 1 and of an atom of hydrogen of volume 1 , the nitrogen atom vetaining its funda. mental valency 3. This geometric conception affords a justifica tion of Kekule's conception of fixed valency; at the same time it gives expression to the view be advocated that a dicuinction was to be drawn between atornic and molecular compounds; but it also supports the contention of Kekule's opponents that in the two clases of compound the atoms must be regarded equally as arranged about a centralizing atom. The two points of view are therefore brought into harmony. But the problem is by no means solved-other modes of arrangement than those pictured must also be possible. To take the clse of a solution of ammonia, for example: it is generally admitted that only a very tmall proportion is present as the hydroxide \(\mathrm{NH}_{4}\)-OH; far the greater part must be held in molution in some other form, either as \(\mathrm{H}_{4} \mathrm{~N}=\mathrm{OH}_{2}\) or in the form of moze complex molecules of the polynethylene type. These may be regarded as Kekule's molecular compounds and as the fortrunners of the "more organized" compounds in which the atome are centralized in the crystal strocture. It has not been found necessary hitherto to attrihute spheres of atomic infuence of different relative volumes to the same element under different conditions-that is to say, elements such as sulphur and nitrogen always exhibit the fundamental valencies 2 and 3 reapectively; moreover, in the ease of per- and proto-metalic salte all known facts accord with tbe asoumption of one and only one fundamental valency of the metai. One other conclustion of interest which Barlow and Pope are inclined to draw may be referred to, namety, that although sificon appaready functions as a tetrad element, its relative valency volume is probably only \(a_{\text {: }}\) they even question whet her any element other than carbon has a valency volume four times that of hydrogen. It may well be that the peculiar stability of carbon componads in to be sought in this peculiarity.

The Barlow-Pope hypothesis, however, affords purely static representation of the facts: we are still unable to apply dymamic considerations to the explanation of valency. From the time of Faraday onwards, chemists have beea willing to regard chemical affinity as electrical in its origin; on this account, the atomic-charge hypothesis advocrted by Helmbolta has been mot favourably received: but this hypothesis does not in any way enabie us to understand the many qualitative peculiarities which are apparent when the reciprocal affinities of various elements are taken into account; moreover, it affords no explanation of the apparent variations in velency which are so irequently manifest; and it aflords no anlisfactory explanation of the fact that many compounda of bike radicies. such as the elementary gasea hydrogen, nitrogen and chloriae, for example, are among the most stable compounds knownmore stable than many compounds consisting of elements of opposite polarity. Attempts bave been made of late to apply the electronic hypothesis-these attempts, however, have involved little more than a paraphrase of current satic views and they are in no way belpful tn the directions in which belp is most neede 1. It is no way surprising. hawever, that we should know to little of the origin of a property that may be said to be the fundamental property of matter-if we could explain ft , we could explain most things; what we have reason to be surprised a: is that it should have been possible to develop so consistent a doctrine as that now at our disposal.

It is scarcely necessary to point out that the sketch asove given is but a bare outline of the subject, one in which attention
is drawn to certain points of importance in the hope that it may be clear that the problems cannot be discussed usefully in the formal manner which is too Irequently adopted. Our knowledge of valency cannot be expressed in a few symbols or in a few formal statements.
(H. E. A.)

VALEMS, East Roman emperor from 364 to 378, owed his elevation in the chirty-sixth year of his age to his brother Valentinian, who chose him to be his associate in the empire, of which a formal division into East and West was now once for all definitively arranged (see Vaciminian I.). Valens had been attached to Julian's bodyguard, but he did not inherit the military ability of his father, Gratian of Pannonia, who had risen from the ranks to a high position. A revolt headed by Procopius in the second year of his reign, and backed up by the public opinion of Constantinople and the sympathy of the Gothic princes and chiefs on the Danuhe, seemed so alarming to him that he thought of negotiation; but in the following year the revolt collapsed before the firmness of his ministers and generals. In the year 366 Valens at one stroke reduced the taxes of the empire by one-fourth, a very popular measure, though one of questionable policy in the face of the threatening attitude of the Goths on the lower Danube. Before venturing on a campaign against them, Valens received baptism from Eudoxus, the bishop of Constantinople and the leader of the Arian party. After some small successes over the Coths, won by his generals (\(367-9\)), Valens concluded a peace with them, which lasted six years, on a general understanding that the Danube was to be the boundary between Goths and Romans. On his return to Constantinople in \(369-90\) Valens began to persecute his orthodox and Catholic subjects, hut he lacked the energy to carry out his edicts rigorously.
In the years 37 r to 377 Valens was in Asia Minor, most of the time at the Syrian Antioch. Though anxious to avoid an Eastern war, because of danger nearer home from the restlessness of the Goths, he was compelled to take the field against Shapur II. who had invaded and occupied Armenia. It seems that Valens \({ }^{1}\) crosed the Euphrates in 313, and in Mesopotamia his troops drove back the king of Persia to the farther bank of the Tigris. But the Roman success was hy no means decisive, and no definite understanding as to boundaries was come to with Persia. Valeos returned to Antioch, where in the winter of 373-4 he instituted a persecution of magicians and other people whom he foolishly helieved to imperil his life. Bet ween 374 and 377 we read of grievous complaints of injustice and extortion perpetrated under legal forms, the result probably of the recent panic, and pointing to an increasing weakness and timidity at headquarters. Although preparations were made for following up the war with Persia and socuring the frontier, a truce was patched up, rather to the disadvantage of the empire, Armenia and the adjacent country being half conquered and annexed by Shapur. The armies of Rome, in fact, were wanted in another quarter. The Hups, of whom we now hear for the first time, were beginning in 376 to press the Goths from the north, and the latter asked leave of the emperor to cross the Danube into Roman territory. This they were allowed to do, on the condition that thay came unarmed, and their children were transported to Asia as hostages. The conditions, however, were not observed by the imperial generals, who for their own profit forced the new settlers to buy food at tamine prices. Accordingly, the enraged Goths, under their chief Fritigern, streamed atroes the Balkans into Thrace and the country round Adrianople, plundering, burning and sloughtering as they went. They were driven back lor a time, but returned in the spring of 378 in greater force, with a contingent of Huns and Alans; and again, after some repulses, they penetrated to the aeighbourhood of Adrianople. Valens, who had now returned to Constantinople, left the capital in May 378 with a strong and well-officered army. Without awaiting the arrival of his nephew Gratian, emperor of the West, who had just won a great victory over one of the barbarous tribes
'Amm Marc. xxix. i: the narrative is briel and not very
of Germany in Alsace, Vaiens attacked the enemy at onco although his troops had to go into action heated and fatigued by a long march on a sultry August day. The battie, which was fought on confined ground in atiley, was decided by a cavalry charge of the Alans and Satmatians, which threw the Romen infantry into confusion and bemmed it in 80 closely that the men could scarcely draw their swords. The slaughter; which continued till the complete destruction of the Romise army, was one of the greatest recorded in antiquity. Valens either perished on the field, or, as some said, in a cottage fired hy the enemy. From the battle of Adrianople the Goths permanently established themselves south of the Danube.
See Ammianus Marcellinus, hks. 26-31. E. Gibbon, The Dedim and Fall of the Roman Empire (ed. Bury, Loadon, 1896), chs. 25-26; W. Judeich in Deussine Zeuschrifs fuir Gaschichtsoussewschaft (1891), pp. 1-2 1.
VALENTIA, 8IR FRANCLS ANMESLEY, Viscount (\(1585-\) 1660), Arglo-Irish stateaman, son of Robert Annesley of Newport Pagnel in Buckinghamshire, was born in rg8s, and settled ia Ircland at an early age, acquiring property in various parts of the island. His friendship with the lord deputy, Sir Arthor Chichester, procured for him govermment employment and the favour of King James I., who conferred on him a grent of the land and fort of Mountnorris, county Armagh, in 1612 . He was returned to the Irish parliament hy the county Armagh in 1614, and four years later was appointed secretary for Ircland, being created a baronet in \(\mathbf{6 2 0}\). In the following year be received. hy an unusual patent, a reversionary grant of the viscountey of Valencia after the death without male issue of a kinsonan (Sir Henry Power, created viscount of Valentia in 1621), the then living viscount. In 1625 Sir Francis Annesley was elected member for the county of Carmarthen in the English parliament; and in the same year he wis made vice-treasurer and receiver-genera! of Ireland. In 1628 he was created Baron Mountnorris in the peerage of Ireland. He strongly opposed the policy of Lord Falkland, who became lord deputy in 1622 , and procured his recall in 1620 . When Sir Thomas Wentworth, afterwards the famous earl of Strafiord, weot to Ireland in 1633 . he took action againat Mountnorris, whom he accused of corruption and malversation of public money. The two men became violent opponents, and at a dinner at the lord chancellor's house in April r635 Mountnorris used insulting and threateniag language in reference to the lord depuly. Wentworth brought him before a court-martial on a charge of insubordination as an officer in the army, and by this tribunal Mountnorris was condemned to death. The sentence was not carried out, but be was imprisoned and deprived of all his offices on the report of a committee appointed by the privy council to inquire into the charges of corruption. The vindictiveness of the proceedings against Mountnorris, which afterwards constituted one of tbe counts in the impeachment of Sirafiord, has been strongly condemned hy some historians and extenuated by otbers; that the trial by court-martial and the sentence were at all events not illegal, has been shown by S. R. Gardiner. Mountnorris was not long detained in prison, and in 1640 his relations with Strafford were examined by a committee of the Long Parliament, which pronounced the sentence passed on bim unjust and illegal. In 1642 he succeeded, under the above-mentioned reversion, to the title of viscount of Valentia. During the Commonwealth he again held the post of secretary in Ireland to the lord deputy, Henry Cromwell, with whom he was on friendly terms. Valentia died in \(166 a\) His wife was Dorothy, daughter of Sir John Phillipps of Picton, Pembrokeshire, by whom be was the father of Arthur Annesley, earl of Anglesey (q.v. for later history).

See S. R Gardiner. Fistory of Enclamd, vol. viii (Londoa, 1883-84); S(rafford's Levers amd Dispalates, edited by W. Knowle (2 vols., Dublin, 1740); G. E. C., Complete Pecragf, vol. v. (London, 1893).

Valentink, or Valemtinus, the name of a coasiderable number of saints. The most celehrated are the two martyrs whose festivals fall on the tatb of February-the one, a Roman
priest, the other, bishop of Terni (Interamna). The Passion of the former is part of the legend of SS. Marius and Martha and their companions; that of the latter has no better historical foumdation: so that no argumeat can be drawn Irem either account to establish the differentiation of the two saints. It would appear from the two accounts that both beienged to the anme period, ie to the reign of the emperor Claudius (Gothicus); that both died on the same day; and that both were buried on the Vis Flaminia, but at different distances from Rome. The Marlyralogium Hicronymianmm mentions only one Valentines: "Interamsat miliario LXIIII. via Fleminia natale Valentini." It is probable that the basilice situated at the second milestone on the Via Flaminia was also dedicated to him. It is impossible to fix the date of his death. The St Valentinus who is spoken of as the apoacle of Rheotia, and venerated in Pastar as its fret bishop, flourished in the 5 th century. Although the name of St Valentine is very popular in England, apparently no church has been dedicated to him. Foe the peculiar obeervances that used to he commonly connected with St Valentine's Eve and Day, to which alloasion is frequently made by English writers, such works as John Brand's Popular A nitiquidies (edited by W. C. Harlitt, vol. ii. pp. 606-11, London, 1905), W. Hone's Every-Day Book, and Chambers's Book of Days may be consulted. Their appropriateness to the spring geason is, in a geperal way perhaps, obvious enough, but the ansociation of the lovers' festival with St Valentine seems to be purely accidental. \({ }^{\text {a }}\)
See Acta Senclorwm. February, ii. 753, 756, and January, i. 3094; G. B. de Romai, Bullettino di archeologia cristiane (1871), p 101 and (1878) p. 59.
(H. Ds.)

VALENTINB AND ORSON, a romance which has been attached to the Carolingian cycle. It is the story of twin brothers, abandoned in the woods in infancy. Valentine is brought up as a knight at the court of Pippin, while Orson grows up in a bear's den to be a wild man of the woods, until he is overcome and tamed by Valentine, whose servant and comrade he becomes. The two eventually rescuo their mother Bellisant, sister of Pippin and wife of the emperor of Greece, by whom she had been unjustly repudiated, from the power of a giant. There are versions of the tale, which appears to net on a lost Freach original, in French, English, German, Icelandic, Dutch and Italian. In the older versions Orson is deseribed as the " nameless" one. The kernel of the story lies in Orson's upbringing and wildness, and is evidently a folk-tale the connexion of which with the Carolingian cycle is purely artificial. The story of the wife unjustly acoused with which it is bound up is sufficiently common, and was told of the wives both of Pippin and Charlemagne.

The French prose romance was printed at Lyons in 1489 and often subsequently. The II istorye of the two Valyannte Brethren: Vadenlyne and Orsos... by Henry Watson. printed by William Copland about 1550, is the earlient knownof a long series of English versions. A ballad on the subject was printed in Bishop Percys Reliques of Eaplish Poctry, and the tale adapted for the nursery was illustrated by Water Crane in the Three Bears' Piclure Book (1876). For a detailed bibliography of the English. French, German. Dutch and Italian forms of the tale, nee W. Seclman. "Valentin und Namelos" (Nordea and Leiprig. 1884), in vol. iv. of Niederdeutsche Denkmaler, edited by the Verein (ür niederdeutsche Sprachlorschung.

VALENTINAN I., Roman emperor of the West from A.D. 364 to 375, was born at Cibalis, in Pannonia. He had been an efficer of the guard under Julian and Jovien, and had risen high in the imperial service. Of robust frame and distinguished appearance, he possersed great courage and military capacity. He was chosen emperor in his forty-third year by the officers of the army at Nicsea in Bithynia in 364, and shortly afterwards aamed bis brother Valens (\(q .5\).) colleague with him in the empire. The two brothers, after passing through the chief cilies of the neighbouring district, arranged the partition

\footnotetext{
E Until nearty the close of the 19th centary the custom of sending " valentines "-ie. anonymous love-tokens, written or otherwise -on St Valentine's day was laify general. They gradually lost their oripinal simificance, and the custom, where it varvive, has become completely valgarised.
}
of the empire at Nalnos (Nissa) in Upper Moesia. As empetor of the West, Valeminian took Italy, Illyricum, Spain, the Caule, Britain and Arrica, leaving to Valens the eastern half of the Balkan Peminsula, Greece, Esypt, Syria and Asia Minor as fat as Persia. During the sbort reign of. Valentimian there were wars in Africa, in Germany and in Britain, and Rome came into collision with barbarian peoples of whom we now hear for the first time-Burguadians, Saxons, Alamanni. The emperor's chiel work was guarding the frontions and establishing military positions. Milan was at first his headquarters for setting the affairs of northern Italy; next year (365) he was at Paris, and then at Reims, 10 direct the operstions of his generals against the Alamanni. This people, defeated at Scarpona (Charpeigne) and Catclauni (Chslons-sur-Marne) by Joviaus, were driven back to the German bank of the Rhime, and checked for a while by a chain of military posts and fortreases. At the close of 367, however, they suddenly crosed the Rhine, attacked Moguntiacum (Mainz) and plundered the city. Valentimian attacked them at Solicinium (Suis in the Neckar valley or Schwetzingen) with a large army, and defeated them with great slaughter, but his own losses were so considerable that he abandoned the idea of following up his euccess. Later in 374, he made peace with their king, Macrianus, who from that time remained a true friend of the Romans. The next three yeaco be spent at Trier, which be chiefly made his headquarters, organizing the defence of the Rhine frontier, and personally superintending the construction of numerous forts Durios his reign the coasta of Gaul were harassed by the Saxon pirates; with whom the Picts and Scoss of northern Britain joined hands, and ravaged the island from the wall of Amtoainus to the shores of Kent. In 368 Theodosius was sent to drive back the invaders; in this he was completely auceessful, and extabliahed a new British province, called Valentia, in honour of the emperor. In Africa the Moorish prince, Firmus, raised the standard of revolt, being joined by the provincials, who had been rendered desperate by the cruelty and ertartions of Count Romanus. the military governor. The services of Theodosius vere again requisitioned. He landed in Africa with a small band of reterans, and Firmus, to avoid beins taken prisoner, committed suicide. In 374 tbe Quadi, a German tribe in what is now Moravia and Hungary, resenting the erection of Roman forts id the nortb of the Danube in what they considered to be their own territory, and further exasperated by the treacherova murder of their king, Gabinius, crossed the river and laid waste the province of Pannonia. The emperor in April of the following year cotered Hyricum with a powerful army, but during an audience to an embasay from the Quadi at Brigetio on the Dambe (near Pressburg) died in a fit of apoplexy. His general administration seems to have been thoroughly honest and able, in some respects beneficent. If he was hard and exacting in the matter of taxes, he spent them in the defence and improvement of his dominions, not in idle show or luxury. Though himself a plain and almost illiterate soldier, he was a founder of schools, and he ilso provided medical attendance for the poor of Rome, by appointing a physician for each of the fourteen districts of the city. He was an orthodox Catholic, but he permitted absolute religious freedom to all his subjects. Against ah abuses, both civil and ecclesiastical, he steadily set his face, even against the increasing wealth and worldliness of the clergy. The greal blot on his memory is his cruelty, which at times was frightful, and showed itsell in its full fierceness in the punishment of persons accused of witcheraft, soothsaying or magical practices.
See Ammianus Mareellinus xav.-xax.; Gibbon, Decline and Fall, chap. 25: T. Hodgkin. Ilaly and her tmaders. bk. i. chap. 3; H. Schiller, Geschicher der romischem Kaiserveil (Gotha, 1883-87), bk. iit. chap. iv. 27-30; H. Richter, Das mostromische Roich (Bertia, 1865). pp. 240-68.

After his death, his som, Valen:intan II., an infant of foat ycars of age, with his half-brother Cratian (q.v.) a lad of ibout seventeen, became the emperors of the West. They made Milan their bome; and the empire was nominally diy
between them, Gratian taking the trams-Npine provinces, whist itnly, Illyricum in part, and Africa were to be under the rule of Valentinian, or rather of his mother, Justina. Justina was an Arian, and the imperial court at Milan pitted itself against the Catholics, under the famous Ambrose, bishop of that city. But so great was his popularity that the court was decidedly worsted in the contest, and the emperor's authority materially shaken. In 387 Magnus Maximus (q.v), who had commanded a Roman army in Britain, and had in 383 (the year of Gratian's death) made himself master of the northern provinces, crossed the Alps into the valiey of the Po and threatened Milan. The emperor and his mother fied to Thoodosius, the emperor of the East and husband of Galla, Vakentinian's sister. Valentinian was restored in 388 by Theodosius, through whose influence be was converted to Orthodox Catholicism. Four years liter he was murdered at Vienne in Gaul, probably at the instigation of his Frankish general Arbogast, with whom be had quarrelled.
See Gíbbon, Dexline and Fall, chap. 27; Schiller, Geschachte der tom iscken Kaiservert, bk. iii. vol. iv. pp. 32, 33.L. Ranke, Wellgeschichte, bk. iv. vol. i. chap. 6: a nd especially H. Richter, Das veestromische Reich anter den Raisern Gratian, Valentinıan 11. wnd Maximus (Berlin, 1865). pp. 577-650, where lull references to authorities are given.

VALEATINIAN III., emperor of the West from 425 to 455, the son of Constantius and Placidia, daughter of the great Theodosius. He was only six years of age when he received the title of Augustus, and during his minority the conduct of affairs was in the bands of his mother, who purposely neglected his education. His reign is marked by the dismemberment of the Western Empire; the conquest of the province of Africa by the Vandals in 439; the final abendonment of Britain in 446; the loss of great portions of Spain and Gaul, in which the barbarians had established themselves; and the ravaging of Sicily and of the western coasts of the Mediterranean by the fleets of Genseric. As a set-of against these calamities there was the great victory of Aetius over Atuila in 451 near Chalons, and his successful campaigns against the Visigoths in southern Gaul (\(426,429,436\)), and against various invaders on the Rhine and Danube (\(428-3 \mathrm{Y}\)). The burden of taration became more and more intolcrable as the power of Rome decreased, and the loyaley of her remaining provinces was seriously impaired in consequence. Raverna was Valentinian's usual residence; Dut be fled to Rome on the approach of Attila, who, after ravaging the north of Italy, died in the following year (453). In 454 Adtlus, between whose son and a daughter of the emperor a marriage had been arranged, was treacherously murdered by Valentinian. Next year, however, the emperor himself was assassinated by two of the barbarian folliowers of Attius. He not merely lacked the ability to govern the empire in a time of crisis, but aggravated its dangers by his self-indulgence and vindictiveness.

Our chief original sources for the reign of Valentinian III. are Jordanes, Prosper's Chronicles, written in the 6th cenlury, and the poet Apollinaris Sidonius. See also Gibbon, Decline and Fall. chaps. 33-35; J. B. Bury, Later Roman Empire, bk. ii. chaps. 6-8; E. A. Freeman, "Tyrants of Britain, Gaul and Spain"" (Eng. Hist. Review, Jenuary 1886), and "Aetius and Bonilace" (ibid., July 1887).

VALENTINOIS, the name of a countship in France, the chief town of which was Valence (Drome). From the 1 ith to the sith century Valentinois belonged to a family of Poitiers, which must not be confused with that of the counts of Poitiers. To the detriment of his kinsmen, the lords of St Vallier, Count Louis II. (d. 1439) bequeathed his counties of Valentinois and Diois to the Dauphin Charles, afterwards King Charles V11.; and in 1498 Louis XII. erected the countship of Valentinois into a duchy, and gave it to Caesar Borgia, son of Pope Alexander VI. A few years later Borgis was deprived of the duchy, which, in 1548, was given by Henry II to his mistress, Diane de Poitiers, a descendant of the counts of Valentincis. Having egin reverted to the Crown, the duchy was given by Louis XIII. to Honort Grimaldi, prince of Monaco, whose descendants retained it untul the French Revolution. The new duchy of -alantinois, howover, did not consist of the lands attached to
the former one, but was made up of several scattered bordshipa in Dauphine. The title of duke of Valeationis is still borne by the prince of Montco.

See J. Chevalier, Mémoises poncr servir à l'histoive der comits do Valamismos at de Diou (Paris, 1897-1906).
VALPryinus, pope for thirty or forty days in 827, in saccession to Eugenius II. (824-27). He was a Roman by birth, and, according to the Liber Ponificalis, was first made a deacon by Paschal I. (\(8 \mathrm{r} 7-24\)). Nothing further is known of his history. His successor was Gregory IV. (827-44).
VALBMTHMUS and THE VALEMTHMAMS. I. Valentinus, the most prominent leader of the Gnostic movement, was born, according to Epiphanius (Hacr. 31, 2), near the const in Lower Egypt, and was brought up and educated in Alexandria. He then went to Rome, as we learn from Irenaeus, Ads. keer. iii. 4, 3; Valentinus came to Rome during the episcopste of Hyginus, flourished under Pius and stayed till the time of Anicetus. The duration of the episcopates of the Roman bishnps at this period is not absolutely established, hut we can hardly 80 altogether wrong if, with Harnack (Chrounologic der allchristlichen Lileralwr, i. 291), we fix the period 135-60 for Valentinus's residence in Rome. This is confirmed by the lact that Justin Martyr in his Apology, i. 26, begun about 150 , mentions that in his earlier work against heresy, the Syndagma, he attacked, among others, Valentinus; so that his beresy must have begun to appear at least as early as \(\mathbf{t} \mathbf{4} 0\). Acoording to Irenfeus iii. 3, 4, Polycarp, during his sojourn in Rome under the episcopate of Anicetus, converted a few adherents of the Valentinian sect. Tertuilian (Ads. Valentin. cap. 4) declares that Vaientinus came to Rome as an adherent of the orthodor Church, and was a candidate for the bishopric of Rome, hut he abandoned the Church because a confessor wis preferred to him for this office. The credibility of this statement may be questioned. There is nothing impossible in it, but it has rather the appearance of a piece of the usual church gossip. Great uncertainty attaches to the residence of Valentinus in Cyprus, recorded by Epiphanius (loc. cil.), who places it after his slay in Rome, adding that it was here that he definitely accomplished his secession from the Church. Scholars are divided as to whether this stay in Cyprus was before or after that in Rome. But on the whole it seems to be clear from the various notices that Valentinus did not, e.g like Marcion, break with the Church from the very beginning, but endeavoured as long as possible to maintain his standing within it.
11. The authorities which we have to consider deal for the most part with Valentinianism in its 6 flly developed form, and not with the original teaching of the master. Justin's Symagme (e.s.). which treats of Valentinus, is unfortunately lost. Irenaeus ia his section i. 11, \({ }^{\text {-3 }}\), has preserved what is obviousiy an older document. possibly from Justin, dealing with Vaientinus's own teaching and that of two of his disciples. The sketch which he gives is the best guide for the original form of Valentinianism. For Valentinus himself we have also to consider the fragments of his writings pre served by Clemens Alexandrinus. The best edition of and commentary on them is Hilgenfeld's Ketzergeschichte des Urchristexiums (pp. 293-307). Irenacus in his treatise Ado. heer. gives a detailed account of the two chief schools following Valentinus, the school of Ptolemacus (i . 1-10), and Marcus and the Marcosians (i. 13-21). For his account of the Profemacans, Irenaeus sems to hate used various writings and expositions of the school, esperially prominent being a collection of Scripture proofs which may have once had a separate literary existence (i. 1,\(3 ; 3,1-5(6) ; 8,2-4)\). To this work is appended in a somewhar disconnected lashion a commentary on the prologue to the fourth Gospel (i. 8. 5). Irenaeus himeelf twice prefaces his remarks by saying be is iedebred to other authoritics lor his exposition (i. 2, 3-4; 7, 2-5). Section 6, 2-4 interrupts and disturbs the continuity, and section 5 , 1-3 is a dupt. cate of 5. 4. We see how the account of Irenacus is built up from small iragments. In his account of Marcus and the Marcosians the chapers on the mecramenss fi . \(13 \mathrm{an} / 20\)) wem origially to have formed part of the same whote. Very valuabie too are the Excerpto ex Theodoto which are to be found in the works of Clemens Alexandrinus, and may be looked upon as a collection made by the author with a view to the eighth book of his Stromateis, which was never finished. Of these excerpts paragraphs 4. 5. 8-15. 1;020, 27, should be distinguished as Clemens's own observations: the remaining parts are exiracted from Gnostic wrilings (cl. Zahn. Geschichte des Ranons, ii. pp. 260 seq.). Yet the Excerpla, as their
eontents chow, are not homereneous, and etanot bave been borcowed from one writiog. The question as to whether Clemens' metbod of quotations, which mentions sometimes Tbeodotus. someLimes the Valentioians as his sources for these excerpts is of any ue as a guide to an estimate between these couroes, muet be left wadecider The most important eections are parasraphs 29-68, in which an attempt is made at a continuous exposition of the system (though here again from various sources), and action 69-86, which deals with the Gnostic doctrine of the sacramenta and that of the liberation of the Hesmarmenc. The lost Syulagita of Hippolytus. which, as we know, is preserved in the works of Philastrius and the peudo-Tertullian, seerns to furnish us with valuable information at to the earlier doctrines of the sect. and in his second treatis egrinat heretics, the so-called Philosephmmena (6, 29 seq.). Hippolytus gives a bomogeneous and continuous exposinion of a later Valentinian eystem, possibly connected with the achool of Ptolemakeus. Important, too, are Hippolytus references to an fialic and an Anatolian branch of the Valentinian eect (6. 35). Tertulian gives at the beginning of his treatise against the Valentinians a fow separate notices of the life and disciples of Valeatinus, but his further arsument is clooely dependent upon Irenaeus' exposition of the Ptolemacan system, which he embellishes in his usual fashion with bitterly sarcastic comments. Epiphanies den ls with Valentimus and his schoot in sections 11-36 of his work. in Cap. 31, 2-8, he gives an account of the Valentinians, which seems to be based on his own observation. Thus in 31. 5-6, we find yet another verbal extract from a Vatentinian doctrinal work. For the rest he copies the text of Irenaeus word for word, which has the advantage of preserving for un trenaeus' Garcek phraseology, which we otherwise should only know in a Latin tramslation. In bis eection on Ptolemaeus, cap 33. Epiphanius has preserved for us a valuable letier of Ptolemaets to Flora, which is a document of the highest importance for the understanding of Cinosticism.
III. Valentinus is the only one of the Gnostics who had a whole serics of disciples who are known by name-indeed, in the accounts of the Church Fathers his own system and views are almost entirely obscured by the accounts of those of his disciples. His fundamental ideas can be with difficulty reconuructed from Irenaeus i . in, from the fragments contained in Clemens, and to a certain extent from the Syntagme of Hippolytus, with the aid of later systems connected with his. Two early disciples of Valentinus are enumerated in Irenaeus ii. 2-3, one of whom is named Secundus; according to lrenaeus we have to trace back to him the division of the Valentinian Sophia into the double form of an seon abiding in heaven, and ber daughter, Sophia Achamoth. The second disciple is not named by Irenaeus, it is conjectured that he may have been Colorbases, the teacher of Marcus (i. 14, 1). The most important disciples of Valentinus, then, are the two dealt with at length by Irenaeus, Ptolemacus and Marcus, who both seem to have had a numerous following. Besides these we shouid also mention Herakieon, of whose commentary on the gospel of St John extensive fragments are preserved by Origen. Ptolemacus and Herakleon are counted by Hippolytus (6. 35) among the Italic branch of Valentinianism. There was also the Analolian branch, as representative of which Hippolytus mentions Axionicus, who is also referred to by Tertuliian as having actually been taught in Antioch. The Excerpla ex Theodoto in Clemens are also, according to the superscription, fragments from the Anatolian Gnosticism. It is, however, an error when Hippolytus speaks of Bardesanes as representative of this branch, for he had an entircly distinct position.
IV. In the important section of Irenaeus (i. II) devoted to Valentipus, his teaching is definitely connected with the socalled " falsely reputed Gnostics." It will be useful, in trying to ascertain the teaching and view of life of Valentious, to keep closely before us that of the "Gnoslics" in the narrower ennse of the word, as preserved in the expositions of Irenaeus (i. 29, 30) and Epiphanius (passim). The Gnostics were por excellence worshippers of the supreme Mother-goddess, the My'rop, in whom we have no difficulty in recognizing the characteristics of the goddess of heaven of anterior Asia. This "Meter " is, in the system of these Gnostics, also at one time the stern, austere goddess, the Mother, who dwells in heaven, at other times the licentious goddess of love, the great courtesan (Prunikon), who, e.g. in the Simonian system, takes the form of the prostitute Helena, in whose worship all kinds of obscene rites were cciehrated. She dwells in the eighth or highest
heaven, wheace her name Ogdoas. Next to her stends the supreme and shadowy lorm of the unknown and nameless Father, below her in the seven lower heavens reign the seven planclary, world-creating angelic powers, headed by Jaidabaoth, who was later to be identified with the God of the Old Testament. The Gnostics are children of the supreme Motber; from her the heavenly seed, the divine spark, descended in some way to this lower world, and thus the children of heaven still exist in this gross material world, subject to the Heimarmene and in the power of hostile spirits and powers; and all their sacraments and mysteries, their formulae and symbols, must be part of her worship, in order to find the way upwards, back to the highest heaven, "where the Mother dwells." This idea that the Gnostics know themselves to be in a hostile and evil world reacted in the same direction upon the conception of the Mother of heaven. She became likewise a fallen goddess, who has sunk down into the material world and seeks to iree hersell from it, receiving her liberation at the hands of a heavenly Redeemer, exactly like the Gnostics. Various myths have contributed towards this; one of these is the widespread naive pagan myth of a goddcss who disappears, carried off by the powers of evil, to be set free and taken back to her home by a divine liberator, a brother or betrothed. The moon-goddess with her disappearance may have been the prototype of this mythical fgure (there are, indeed, certain analogies to be remarked between the Simonian Helena and Selene). With this myth are connected certain Jcwish Theologumena; the goddess who sinks down into the material may readiby be idenlified with Ruach (Rucha), the Spirit of Cod, who broods over Chaos, or even with the later Sophia (Chokma Achamoth), who was generatly conceived of as a world-creating agent. Thirdly, the chicf influence at work here seems to have been the oriental myth of the Primal Man sunk in the material world, which appears in its simple corm in individual Gnostic systems, e.g. in Poimandres (io the Corpushormeticum) and in Manichaeism. In the Gnostic systerns of Iremacus i 29, 30, the Anthropos (i.c. the Primal Man) no longer appears as the world-creative power sinking down into the material work, but as a celestial acon of the upper world (or even as the supreme god), who stands in a clearly defined relationship to the fallen goddess; it is possible that the role of the Anthropos is here translerred to Sophia Achamoth. The fallen Sophia next becomes. in like manner, a world creative power. And now the highest of the world-creating angels, Jaldabaoth, appears as her son, and with this whole conception are then linked up the ideas of liberation and redemption. Next to the Sophia stands a male redeeming divinity. In all the Gnostic systems known to us Christ already appears as the Saviour, and so in this respect a Christianizing of Cnosticism has been carried out; but originally this Saviour-divinity had nothing in common with the figure of the Christian Redecmer. This is clear from Irenacus's account of the Gnostics (i. 30). For here the redemption is actually and essentialiy effected through the uniting in marriage of the fallen goddess with her higher celestial brother, and they are expressly described as the bride and bridegroom. That is to say, we have here the purely mythical idea of the deliverance of a goddess by a god. and of the celestial marriage of a divine pair. This myth can only with difficulty be connected with the bistoric redemption through Jesus of Nazareth, by further telating that Christ, having been united to the Sophia, descends into the earthiy Jesua.
V. This primitive "Gnosticism" was very closely followed by Valentinus, who may have come to know these doctrines in Egypt. This can be seen from the fact that in Valentinianism the Mother goddess always stands absolutely at the centre of the system. Irenacus (\(\mathrm{i} .6,1\)) is very instructive on this point, characterizing the Gnostics as the prenmatici who have a perfect knowledge ol God, and have been initiated into the mysterics of Achamoth. A mighty system is certainly erecied here out of the modest elements of Gnosticism.
(1) More eaperially, the superstructure of the celestial system, the celestial world of aeons. Which exists above the fallen goddess, is
bere developed in the most compricated way, Valemtinus has a aystem of thirty acons, but we can with but little trouble recognize the simple system underlying this great superstructure. The quite chadowy plurality of ten and twelve acons (the Dekas and the Dodelas) of the Valentinian systom we may at once set aside as mere fantastical accretions. We have left only a group of eight celestial beings, the so-called Ogdoas, and of those cight figures four again are peculiar to the Valentinian system, and are probably artificial interpolations. For instance, when for the third pair of seons we fund the Logos and Zoé, figures which occur only here, and perceive, moreover, that the place of this pair of acons is not firmiy estahlished, but shat in this Valentinian tradition they occur some. times before and sometimes after the fourth pair of acons, the Anthropos and the Ekklesia, we cannot be far wrong in suspecting that here already we find Valentinus to have been infuenced by the prologue of the fourth Gospel (we also find the probably Johannine names Monogencs and Parakletos in the serics of aeons).
(2) The first pair of acons, Bythos and Sige, is likewise an original innovation of the Valentinian school, and clearly betrays a monistic cendency. According to Irenaeus's account of the "Gnostics" (i. 29). their theory was that Sophia casts herseff into the primal substratum of matter to be found outside the celestial world of aeons. In the Valentinian system, primal marter (Bythos), the original Chaos, is brought into connexion with the celestial world of acons. And thas it is effected that matter is here not cuund originally and irretrievably separated from the higher celestial world, bift that the latter originally exists for itself alone; the fall or disturbance is accomplished within the celestial world, and the material wortd first comes into existence through the fall. When we subtract from the Ogdows the two pairs of acons whose later introduction into the Valeatiniansystem has been demonstrated. we are left actually with doable pair of aeons. the Father and Truth, the Anthropos and the Ekklesia. These strongly recall the Gnostic systems set forth in lrenaeusi. 29 and 30 (cf. 1. 29. 3). And thus the Anlhropos (man). a leading figure of primitive Gnosticism. now half-forgotten, moves back into the centre of the system and the direct vicinity of the fallen goddess. It is also clear why she Ekklesia appears together with the Anthropos. With the celestial Primal Man-of whom the myth originally relates that he has sunk into matter and then raised himself up from it again-is associated the community of the faithful and the redeemed. who are to share the same fate with him. Similarly among the Gnostics of Irenaeus i. 29, 3, perfect Gnosis (and thus the whole body of Cnostics) is connected with the Anthropos
(3) The fallen goddess, mentioned above, occurs in the Valcntinian system, as in the Gnostic systems described by Irenaeus, and in the older systems it is again the celestial aeon himself who falls, and whose fate outside the Pleroma is related (cf. the exposition in Irenacus i. 1t, Excerpla ex Theodoto. 31 seq ., and Hippolytus. Syntogma, in the pseudo-Tertullian). In the later Valentinian systems, probably from Secundus onwards (see above), the figure appears in double guise. The higher Sophia still remains within the upper world aftec creating a disturbance, and after her expiation and repentance; but her premature offspring. Sophia Achamoth. is removed from the Pleroma, and becomes the heroine of the rest of the drama (we have dealt in the preceding section with the other conception of the fall of Sophia).
(4) In the true Valentinian system the so-called Christos is the son of the fallen Aeon, who is thus conceived as an individual. Sophia, who in a frenty of love had sought to draw near to the unattainable Bythos, brings forth, chrough her longing for that higher being, an acon who is higher and purer than hersclf, and at once rises into the celcstial worlds. Among the Gnostics of Irenaeus we find a kindred conception, but with a slight difference. Here Christos and Sophia appear as brother and sister, Christos representing the higher and Sophia the lower element. In the enigmatic figure of Christ os we again find hidden the original conception of the Primal Man, who sinks down into matter but rises again. (In the later Valentinian systems this origin ol the Christos is entiredy obscured, and Christ, topether with the Holy Spirit, becomes a later offspring of the celestial world of aeons; this may be looked upon as an approximation to the Christian dogma).
(5) A figure entirely peculiar to Valentinian Gnosticism is that of Horos (the Limiter). The name is perhaps an echo of the Egyptian Horus. The peculiar tagk of Horos is to separate the fallen acons from the upper world of aeons. At the same time he becomes (first, perhaps, in the later Valentinian syatems) a kind of wortd-creative power, who in this capacity helps to construct an ordered world out of Sophia and her passions. He is also called, curiously cnough, Stauros (cross), and we frequently meet with references to the figure of Stauros. But we must not be in too great a hurry to conjecture that this is a Christian figure. Specuiations about the Stauros are oder than Christianity, and a Platonic conception may have been at work here. Plato had already stated that the world-soul revealed itself in the form of the letter Chi (X): by which he meant that figure described in the heavens by the intersecting orbits of the sun and the planetary ecliplic. Since through this double orbit all the novements of the beavenly powers arc determined, 50 all " becom. ing " and all life depend on it, and thus we can understand the statement that the world-soul appears in the form of an X, or a cross. The
orows can theo stand for the wondrone men on whom dapenct the ordering and life of the world, and thus Horos-Stauros appears there as the first redeemer of Sophia from her paseions, and as the orderer of the creation of the world which now begins. This explanation of Horos, moreover, is not a mete conjecture, but one branch of the Valentinian echool, the Marcosians, have expressty so explained this figure (Irenaeus i. 17. 1). Naturally, then, the figure of HorosStauros was often in later days assimilated to that of the Christian Redeerner.
(6) Peculiarly Valentiaian is the above-mentioned derivation of the material world from the paccions of Sophia. Whether this alroady formed part of the original system of Valentinus is, indeed, questionable, but at any rate it plays a prominent part in the Valentinian school, and consequently appears with the most diverse variations in the account given by Irenaeus. By it is effected the comparative monism of the Valentinian system. The dualimen of the conception of two separate worlds of light and dartsness is overcome by the derivation of the material world from the passions of Sophia. Older myths may here have served as a model; for instance, we may recall the myth of the derivation of the world from the body and limbe of the Primal Man (Bousset, Hamplprobleme do Gmosis. p. 211).
(7) This derivation of the material world from the passions of the fallen Sophia is next affected by an older theory, which probably occupied an important place in the true Valentinian system. According to this theory she son of Sophia, whom she forms on the modet of the Christos who has disappeared in the Pleroma, becomes the Demiourgos, and this Demiourgoe with his angels now appcart as the real world-creative power. These two conceptions had now to be combined at all costs- And it is interesting to observe here what efforts were made to give the Demiourgos a better position Ac. cording to the odder conception, he was an imperfect, ignorant, halfevil and malicious ofispring of his mother, who has alrcady been deprived of any particle of light (Iremacus i. 29, 30). In the Valentinian systems be appcars as the fruit of Sophia's repentance and conversion Eventhis name has been changed from that of the older Gnosticism. He is no longer called Jaldabaoth. but has been assigned the better name, drawn from the philosophy of Plato, of Demiourgos. We must not Corget here that the Demiourgos of the Gnostic is known to have corresponded to the God of the Old Testament, who was the God of the Christian Church, and that we can thus lay our finger here on a compromiat with the faith of the great Christian community.
(8) With the doctrine of the creation of the world is connected the subject of the creation of man. We fortumately know. froma Iragment preserved by Clemens, that Valentinus here preserved the old Gnostic myth practically unaltered in his system. According to it. the world-creating angels-not one, but many-create man. but the seed of the spirt comes into their creature without their knowledge, by the agency of a highercelestial acon, and they are then terrified by the faculty of speech by which their creat ure rises above them, and try to destroy him. In the Valentinian system known to us this myth has practically lost its origina! (reshness and colour, and can only be arrived at from allusions. On the other hand, the speculations of the Valentinians delight in accounts of the artificial and complicated putting logether of the first man out of the various elements. And a specifically Valentinian iden is here addod in that of the threefold nature of man, who is represented as at once spiritual, payclical and material. In accordance with this there also arise three classes of men, the presumotica, the poyhici and the hylici (DNF \(^{2}\) matter). It is significant that Valentinus himself is credited with having written a treatise upon the three natures (Schwartz. A porien, i. 292). Here we have another instance of the theological compromise of the Valentinians. All the other Gnostic systems rccognize only a dual dizision the children of light and the children of darkness. That the Valentinians should have placed the psychici between the pacwmefici and byfici signifies a certain recognition of the Christian Church and its adherents They are not numbered simply among the outcats, but considered as an intermediate class, to whom is left the choice bet ween the higher celestial nature and the lower and earthly.
(9) At the centre of the whole Valentinian system naturally stands the idea of redemption, and so we find here developed perticutarty clearly the myth of the heavenly marriage already known from Irenaeus i. 30 to be Gnostic. Redemption is essentially accomplished through the union of the heavenly Soter with the fallen goddess. There is great uncertainty in the Valentinian system as to who this celestial Soter is In the Cinostic systems of Ireaneus i. 30 he is the Christos, the celetial brother who turna back to the fallen cister. In the Valentinian system the redeemer is likewise sametimes brought into relation with the Christos, sometimes, in a significant way, with the Arthropos, and sometimes again with Horos-Stauros. In the (uliy developed Ptolemaean system he appears as the common offspring of the whole Pheroma, upon whom all the aeons confer their best and most wonderful qualities (we may compare here the Mardulk myth, in which it is related that all the gods transfer their qualities and powers to the young god Marduk, who is recognized as their leader). And this celestial redeemer-aeon now enters into a marriage with the fallen goddess: I hey are the "bride and bridegroom." It is boldly stated in the exposition in Flippolytusia Philosephnameno that
they produce between them yo celestial sons (a agelo). (In the other aocounts these angels no longer appear as the sons of the celestial pair, but as the heavenly attendanis accompanied by whom the Soler approaches Sophla.) It is obvious from the number 70 that we have here a marriage between a celestial and divine pair. This marriage relation between the Soter and Sophin is expounded in quite a material way evea in Irenaeus iii. 3, 4, where the Old Testament phrase rän apoep havoiroe \(\mu\) itpay is sranslated, "the Pan (the all, a name for the Soter). the masculinity which opens the mother's womb.' This myth of the redeemer, as we shall see more fully below, and as may be mentioned bere, is of yreat significance for the proctical piety of the Valeatinian Gnotics. It is the chiel idea of their pious practices mystically to repeat the experience of this celestial union of the Soter with Sophia. In this respect, conse guently, the myth underwent yct wider development. Just as the Soter is the bridegroom of Sophis, so the heavenly angels, who sometimes appear as the sons of the Soter and Sophia, sometiones as the escort of the Soter, are the males betrothed to the souls of the Gnostics, which a re looked upon as feminine. Thus every Gnostic had his anget standing in the presence of God, and the object of a pious life was to bring about and experienoe this inner union with the celestial abstract personage. This leads us straight to the acacramental ideas of this branch of Gnosticism (see below). And it also exphins the expression used of the Gnostics in Irenacus i. 6. 4. that they always meditate upon the secret of the heavenly union (the Syzygia).
(10) With this celestial Soter of the Valentinians and the redemption of Sophia through him is connected, in a way which is now not quite intelligible to us, the figure of Jesus of Nazareth and the histotical redemption connected with his name. The Soter, the bridegroom of Sophia, and the earthly Jesus answer to each other as in some way identical. Here again we recognize the emerirely artificial compromise between Cinosticism and Christianity. It is characteristic of this that in one passage in the account of trenacus it is directly stated that the redeemer came specially on account of the psychici, for the prenmatici (the Gnostics) already belong by nature to the celestial world, and no tonger require any historical redemption, while the hylici have failen beforehand into damnation, so that with the psychici only is ibere any question as to whether they will turn to redemption or damnation, and for them the historical redeemer is of efficacy (Irenaeus i. 6. 1). This assertion is in thorough agreement with the fundamental tendency of Gnostic piety: for the Grostics individual redemption has actually been accomplished in the union between the Soter and Sophia, and is effected for the individual G nostics in repeating the experience of this union. So that in effect they no longer require the historica! redemption through Jesus.
(11) Among the manifold confusion of opinions as to the nature and characteristics of the Redeemer Jesus of Nazareth, certain explanations mand out as characteristicaliy Valentinian, especially those in which it is laid down that even the redeemer has a ihreefold nature; from his mother. Sophia. he derived his nature as a prowmoticos, in the world of the Demiourgos he was united with the Christos, and fimally a wonderful bodily nature was formed for him from celestial elements, which was yet not of carthly material. As such he was miraculously born of the Virgin, as through a canal (did owifor). The compromises with the Catholie Charch are here povious. According to this theory Jesus, having an element of the poychical mature. can appoar in virtue of this as the son of the Demioursos, i.e. of the Old Testament God. and as the Redeemer of the psychici; and when we read of this miraculous bodily nature, which is not composed of earthly material. there is an obvious compromise between the fandamental heresy of Grooticim, Docetism and the dogma of the Christian Church as to sine tue bodily nature of the Redsemer. Into this already complicated Cbristology is now introduced by an obscure combination. in the cyatems known to us, the idea that upon this Jesus, so constituted, yet another celestial nature. the Christos or the Soter, has deacended at his baptimn. This is the older and peculiar Gnowic conception of teenseus i. 3o, which appears to have been introduced into Valentinianism at a late stage of tis development. The express tatement in Hippolytus 6, 35, that this doctrine was shated only by the lialic branch of the Valentinians, but disclaimed by the Anatolian branch, atoo bears on the point.
(13) The clove of the drama and the final accomplishment of the redemption is also depicued by the Valentinian writisgs in accordance with the old Cnosticism. A peneral ascent takes place, the Soter recurns with the liberated Sophia into the Pleroma, and likewise the Gnotics with the angels with whora they are connected. But it is characteristic of the Valentinias gyseem that the Demiourgos and the psychici who are connected with him also ascend to the eighth or highest heaven of Acharnoth, while the remaining material worid minks into flames.
VI. The first survey of these confused speculations, these myths gathered together and preserved from the ancient world, this marshatling toget her of the most varied traditions, and above all, these artificial attempts at compromise dictated by practical prudence, makes us inclined to doubt whet her it was prosible for any true piety to coezist whth all this. Yet such
piety existed, indeed we have here a set of regular mystics. It is not, indeed. a purely spiritual and myatical piety, but a mysticism much distorted and over-grown with sacrameatal edditions and a mysterious cult. But all this is not without an inner value and an attractive atmosphere. Our information, it is true, is scant; most of it is to be found in the fragments of the letters and bomilies of the master of the school preserved for us by Clemens. The centril point of the piety of Valentinus seems to have been the mystical contemplation of God; in a letter preserved in Ciemens ii. 20, 114, be sets forth that the soul of man is like an inn, which is inhahited by many evil spirits. "But when the Father, who alone is good, looks down and around him, then the soul is haliowed and lies in fut light, and so he who has such a heart as this is to be called happy, for he shall bebold Gad." But this contemplation of God, as Valentinus, closely and deliberately following the doctrines of the Church, and with him the compiler of the Gospel of John declares, is accomplished through the revelation of the Son. This mystic and visionary also discusses the Psalm which is preserved in the Philosophmmena of Hippolytus (6, 37). With ceiestial enthusiasm Valentinus here surveys and depicts the heavenly world of aeons, and its connexion with the lower world.' Exalted joy of batte and valiant courage breathe forth in the sermon in which Vatentinus addresses the faithful (Clemens iv. 13, 9t): "Ye are from the beginning immortal and children of eternal life, and desire to divide death amongst you like a prey, in order to destroy it and utteriy to annihitate it, that thus death may die in you and through you, for if ye dissolve the world, and are not yourselves dissolved, then are ye lords over creation and over all that passes away." From Tertullian, de carne Christi cap. 17, 20, we learn that Valentinus composed psalms. We may conjecture that these palams were similar in their kind to the beautiful odes of Solomon which have lateiy been discovered, though without suggesting that these porticular psalms were specifically Gnostic or Valentinian.
VII. But with this mysticism, of which we possess only a few of the beautiful flowers, is connected the mystery and cult of the sacrament. The lofty spirituality of the Gnositic degenerates over and over again into a distinctly material and sensual attitude, in which all kinds of efforts are made act ualiy to assimilate to oneself the divine through external means. Our a uthoritics for the sacramental practiecs of the Valentinians ate preserved especially in the accounts of the Marcosians given in Irenaeus i. 13 and 20, and in the last section of the Excerpa ex Theodoto. We must point out once again how the mother acon stands absolutely at the centre of this cult. There are moreover various figures in the fully developed system of the Valentinians who are in the Gnostic's mind when he calls upon the Mother goddess; sometimes it is the fallen Achamoth, sometimes the higher Sophia abiding in the celestial world, sometimes Aletheia, the consort of the supreme heavenly father, but it is always the same person, the Mother goddess, on whom the fervent faith of the Gnostics is fixed. Thus a baptismal confession of faith of the Gnostics (lrenaeus i. 21, 3) runs, "In the name of the unknown Father of all, by Aletheia, the mother of all, by the name which descended upon Jesus." And in almost all the sacramental prayers of the Gnostics handed down to us by Irenaeus, the mother is the ohject oi the invocation. If the interpretation generally given of the Aramacan baptismal formula by Iremaeus in the same passage is correct, it began with the words: "In the name of Achamoth." Heace we can understand how, according to Irenaeus i. 5, 3. Sophia Achamoth had among the Valentinians the titie of kyrios (lord), and, a question closely connected with this, why they did not cali Jesus kyrios, but Soter, as Irenaeus expressly assures us (j .1 .3) Kyrios is the title given to the hero who is the subject of a cult among a given body of people, and the heroine of the cult \(\alpha\) the Valentinians, Sophia Achamoth, therefore receives this title.

\footnotetext{
Cf. Conehe's Fowst, 1.:-
Wie Himmelskralte aul und niederszeigen
Und sich die goidnen Eimer reichen.
}

The chiel secrament of the Valencininos soems to have beeo that of the bridal chamber.
We mave wated above the relation of this macramemt with the Valenxinian apeculations. Just as the aposile Paul representod his Chrisianity as a living dying and rising again with Christ. so the firs concern of the pious tivene iniag alas the experience of the divine marrige frase of Sophia. As Sophia was unised orth the Soter, her bridegroom, so the faithful would experience a union with their anget in beaven (ie. their" double," Doppolgongo). The riteal of this sactament is briefly indicated by lrenarcus i. 21.3:" A few of them prepare a bridal chamber and in it go shrough a lorra of consecration. employ. ing certain fixed formular, which are repeated over the person to be iniliated, and stating that a spirivoal marriage is to be periormed after the pattern of the higber Syzygia." Through a fortuante chance. a tin urpical formula which was used at this sacrament appears to be preserved, though in a garbled lorm and in an entirely different conrexion, the author seerning to have been uncertain as io its original meaning. II runs: "I will conider my lavoar upon ther. for the father of alt sees thime angel ever before his lace we muss now become as one; receive now ith grace from me and through me: deck thyself as a bride who awaits her bridegroom. that thou mayest become as 1 am, and 1 as thou art. Let the seed of light descend into thy bridal chamber: receive the bridegroom and give place to brim, and open thine armes to enbrace him. Bebohd, grace thas desceaded upon thee."
Besides this the Gnostics already practisod baptism, using the same form in all essentials as that of the Christian Churth. The name given to be pt ism. at kast a mong certain bodics was apolytresis (liberation). the baptisoul formulac have been meationed above. Great import. ance altaches in the Gonostic secramental sopeculations to invocation (of the name). The Gnossirs are baptized in the mysterious natic thich also descended upon Jesus at his baptism. The angets of the Gnossics have also had to be baptized in this name. in order to bring sbour redermprion for shenselvee and the souls belongiag to shem (excerpte ex Theodoto. 22). In this connexion we also find the
 21. 3). In the baprismal formutare the sacred name of sthe Redeemer is mentioned over and over again. In one of the formulae occur the words: "I would enjoy thy same. Saviour of Truih." The concluding formula of the laptismal ceretrony is:". Peace oncr ail upon whom the Name rets : (1renacus i. 21. 3). This name pronounced at baptismo over the fait ful has above all the significance that the name will provect the soul in its ascent throush the heavens,
conduct it safely through all bostice posers to the lower heaveas, and procure it access to horos, tho (rightens back the hower souls by) his magic word (ers. ox Tkrodow, 22). And for this life also baptism. in consequerce of the pronouncing of the protecing name over the baptized person. zcconpplistes his hiveration from the hower dae momic powers. Belore baprisom the itkirmarawne is superice, but after baprism the soul is free from ber (cxx. ex Theod. 77).
With baptism was also connected the anointing with oil, and bence ve ran also understand the death sacrament occurring amorg the Valentinizns consisting in an amointing with a misure of oil and water (irnnaeus i 21.4). This death cocrament has ralurally athe express object of assuning ibe soul tbe way to the higbese beaven "so that the soul may be intangible and invisible to the higher mights and powers" (Irenafus loc, cit). In this connexion wre also find a fex pormulae which are enerused to the faithlul. so that their souts may pronounce them on ibeir journey upwards One of these formulae noms: " 1 arma moe of ibe Father, the Father who was before the whote wortd-I came to see evernting. that which is strange and that which is my own; and deep down there is nothing strange. but only that which belomgs to Achamoth. For she is ithe ferminise aeon. and she has made all things. I draw wry from that stich was belore the world. and nake back to it the property from which 1

 i. i3, and it is expresly stated shat aiter praser is pron unced the Mother throws the Homeric belonat (cf. the Tarmápest over the faithful soul. and so makes him invisilie to the mights ad powrs Which sumound and attack him.
On the other hand, we sne how. here and there a reactio- took place arainst the absurdity of this weremental superstition. Thus lacenatus (6.21 , a) tells us of cerrain Gnostics \(=\) bo would admit wextemal holy practices as efficacious: "The completed apply:-1Is is the actuaf proctics asdse of the inexprescible majpesty (of God) ins is the (apanunce arose all faultiness and sofferng. and througs krowtedge thete trmoved all the conditions which arose from ign zoor: and Werciore knowinge (owosis) is the perfecting of the inner mann." A es presened in exceppes ex Thendow. \(7^{8,}{ }^{8}\). " But not lone sets us free, but knowledge (rnosis): Wh the sere. of hasten, whence we are redeconed, what is bir, 1 and what as already becu seen clearly : hat V'a! =atilien G nosti-

Curbotc Cliurct. Valeplinus's own bie indicates that be for a long time sought to remain within the official Charch, and had at first no idea of lounding a community of his own Many cornpromises is his theorics point the same way. The Jobanaide iendencies of his doctrime of the aeons (Legos, Zoen Alethein, Parakletos), the attempt to modify the shamp dralism of Gisesticosm in a monistic direction, the derivation of the wortd from the falien Sophin, the favourable judgment of the Demiourgas, and his origin in the reperannce and coaversion of Sophia, which are peculiar to the Valentinian system; the triple division of mankind into pren matici, psychici and h!izi, mhich is obviour? conirived for the bencíl of the proxhici; the inclusion of a: elemeat of the prochics in the composition of the Redeener; the theory that Jesus possessed a miraculoes body formed in the upper woild; the emphasis on the fact that the redemption of Jesus was primarily for the plychici, the doctrine thas by the final redemption the Demionergos and the psychici ind a place in the Ogdoas; the adoption of Christian baptism-all this, and pertaps more, indicates a definite and deliberate appraach towards the doctrise of the Cbutch.

These Gpostics, as in the case of most of the other Goostic sects, possessed their own peculiar holy writiags and books. but they also made 2 great use in their own circle of the canon of the Christian Church, especially the canom of the Nex Testament and-ibough with a lew reservalions-af the ond Testament. Irenaeus in this account of the Ptokemaean sects has used a soutce which contsined a detaled scriptaral exposition of the Vialentinian doctrines based on the New Tesiament. Wie can even-and this is of greal interest and signifcance for the history of the canom-esiablish the condents of the Gnostic canon. It included the three first gospets and the aposile Paul. The proofs are constanily drawn firsily from the utierances of the Saviour, and then from the Epistes of Paul The Gospel of John does nor seem to have yet found a place ia this canon, for the very good reason that it was not yet widely known and circulated. Later Valentinian Gnosticism delighted in making use of the Johannine Cospel as a crowning testimon). Thus to the older and ancient scriptural evidences which we mentioned above, Irenacus (i. 8, 5) directly appends a commentary on the Gospel of John, which is ascribed to Ptolemaces himself. And in the excorpta er Theodolo, 6 sea. we also fiod a commentary on the protogue to this Gospel. And we know that the later Viakentinian Herakloon rote a detailed exposition of the whole Cospel. But the Old Testament 100 was a sacred book of these Gnostics, and its statements were used as evidence and prools. This was doore with some difidence and caution. The attitude, at lcast of the later Valentinians, is best indicated by the better of Ptolemaeus to Flora. Wich is preserved in Epiphanius 33. 3-7. Piolemacus bere openly auacts the doctrice that the Old Testament is the work of the devil, or that it cannot at least be ascribed unconditionalty to the Supreme Cod. The OHd Testament the considers to contain a syster of lans given by Cod himself, a system of lans given by Mases according to his own ideas, and procepus ineerpolated by the edders of the people. The taws of Cood himseff fall then into three diases: the true haw, which is not interwoven with evil: the lam permeated with unnghteousness. which the Redeemer has dissolved; and the typical and symbolical lam, which the Redeemer has translated from the materiad into the spiritoal Thas there is a gradual appronch to the Chrisian Cburch's conreption of the Old Testament. (It stoould indeed be remarted that Piolemaeus in the above-mentioned letter has purposely expounded ibe exoteric doctrine in apecial approcimation with the Cathotic Church, while lar the acrual difficuh questions as to the matore of the Demiourgos and his rebation with tbe unity of the Divine nature he consoles Fion wich a furtber and more intimate inserwition.)

And yet this reconciliation of Gnosticisn was a Iruiless and benceformard a purposeless undertaking. Oriental daalism and wiblly intemperate Oriental mythology had grown into so radical and esseatial a part of Gnosticism that they could not be sepataied from it 20 mate way for a fitce 2od more spisitell vicm of
religion. And at a time when the prevaifing tendency of Christianity was a struggle oul of the darkness of Orientat mythology and eschalology into clearness, and an effort tomands union with the lucid simplicily of the Hellenic spirit, these Gnostics, for all their efforts, and even the moot nobie of them, had come too tate. They are not the men of a lorward movement, but they are, and remain, in spite of all clearet issight, the rear-guard. in the history of piety, tho have gone under and disappeared in a struggle with the impossible. None the less we cannot omit the observation that the Christisa Churet in later centurics to a certain extent travelled agaia aver Cnostic ground in its sacramental theorics and fully developed Christotogical speculations.
See Bibliography to article Gnosticism. Also A. Harnack. Dogmengeschichte, vol. i. (4thed., 8909): IV. Boustet, Hawpiprobleme der Ohosis (1907). See also Pauly-Wissowa, Realemcyklopadie des klassischen Alteriums. s.v. Cnosticismus, Gnostiker. More particuLatly devoted to Valentinianism are: \(\mathbf{C}\). Ifeinrici. Die Valentinianische Gnosis wnd die Aeslifer Schriflen (1871): E. Schwartz." Aporien im 4 Evangelium" in Nackrickten der Gäl. Gesellsch. der Wis sensch. (1908), ii. 127-41: A. Harnack, Brief des Ptolemoexs an dis Flora, Silungsber. der Berl. A kademic (1909).
(IV. Bo.)

Valenzuela, fernando DE (16jo-1691), Spanish royal favourite and minister, was born at Naples on the igth of January \({ }^{630}\). His farher, Don Francisco de Valenzuela, a gentleman of Ronda, had been compeiled to flee from Spain in consequence of a brawl, and had enlisted as a soldier in Naples, where he married Dofia Leonora de Encisa. Francisco de Valenzuela having died young, his son was placed by his mother as a page in the household of the duke of Iniantado. He lost his place owing to a reduction of the duke's establishment, and for severai years he lived obscurely; but by good fortune he succeeded in persuading Maria de Uceda, one of the ladies-in-waiting of Mariana, second wife of Philip IV., to marry him. By her help Valenzuela obtained a footing in the palace. Ife was appointed introducer of ambassadors on the \(\mathbf{a 2 t h}\) of October 1671, and it became notorious that whocver had a petition to present or a place to ask for must apply to him. He became populatly known as the duende, the fairy ot brownie of the palace, and was believed to be the lover of the queen. In 1675 a court lntrigue, conducted by his tivals and supported by the younger Don Jobn of Austria, was so far successful that he was Criven from court; but the queen gave him the title of marquis of Villa Sierra, and appointed him ambassador to Venice. Valenzuela succeeded in getting the embassy exchanged for the governorship of Cranada. His stay at this post was short, for he was able to organize a counter-intrigue which soon brought him back to court. The queen-regent now openly appointed him prime minister, gave him official quarters in the palace, and conlerred a grandeeship on him, to the profound indignation of the other grandecs. In January 1678 a palace revolution broke out against the queen-regent, who was driven from Mladrid, and Valenzuela fied for reluge to the monastery of the Escorial. He was, however, taken out by force, and his house was pillaged. His property was confiscated-his jewels, furniture and ready money were estimated to 1 mount to \([120.000\)-he was degraded from the grandecship and exiled to the Philippines. At a later period he was released from close confinement and allowed to selte in Mexico, where a pension was given him. He died in Mexico, from the kick of a horse he was breaking in, on the 71h of February 1692. Part of his property, and the tille of Villa Sierra, but not the grandership, were restored to his wife and children. The career of Vakenzuela probabiy helped to suggest the subject of Ruy Blas to Vicior Hago
Sce Documentos Inditior pera te Hisleria de Espenta, vol. Ixvii. (Madrid. 1842. \&cc.). which contain an art ful and welf-written defewce of himietr addressed to King Charles II. of Spain Irom Mexico.
valera y alcali galiano, Joan (i824-rgos). Spadish novefist, son of a retired commodore, Jost Valera, who married Dora Dolores Alcaĺ Gallano, marques de la Paalega, widow of a Swist general named Freulter, was born on the \(18 i \mathrm{~h}\) ol October 1824 at Cabra (Cordova). Valera was edncated at Mataga and It the university of Granada, where be took a degree in law Estering diplownacy io 1847, he bocume maptid attache to the

Spanith embasey at Naples under the famous Duke de Rivas, the leader of the romantic movement in Spain. Valera witnessed the events of the Revolution, was promoted second secreviry to the embassy at Lisbon in 1850 . and in 1851 was tramerred as fiva seeretary to Rio de Janeiro, where he remained for iwo years. After a short period passed at Dresden, he was appointed to the permanent staff of the Foreign Ofrice at Madrid, and in 1857 was attached to the special embesoy to St Petersburg under the Duke de Osuna. In \(\mathbf{2 8 j 8}\) he resigned his posk, was elecred deputy for Archidona, in the province of Malaga, took his seat with the advanced Llberal Opposition, and joined with Albareda and Fabié in founding El Cowlemporineo, a very influential fournal. An expert in the art of covering an opponent with polite ridicale, his writhges in the presa attracted general attention. He was elected a member of the Spanish Academy in \(\mathbf{1 8 6 1}\), and remained in Oppoedtion till r865, when O'Donnell appointed him minister at Frankiort; on the fight of Isabella 11. in 1868 he was elected deputy for Montilla in the province of Cordova, became under-secretary of state for foreign affairs, and was one of the deputation who offered the crown to Amadeus of Savoy in the Pitti Palace at Ftorence. Though he always calted himself a Moderate Liberal; Vadera invariably voted for what are considered Radical measurea in Spain, and a speech delivered by him in February 1863 againse the temporal power of the pepe created a protound sensation. However, though a member of the revolutionary party, he steadily opposed organic constitutional changes, and therefore he retired from public life during the period of republican gowarnmen. After the Bourbon restoration he acted as minister at Lisbon (\(8881-1883\)), at Washington (188 3), at Brassels (1886) and as ambassador at Vienna (1893-1895), retiring from the diplomatic mervice on the 5 th of March seg6. During the lase ten years of his life he took no active pert in politics. He died on the 18 th of Aprit 1905.
Valera's first publication, Cenciones, Romances y Poemas, was published in 8856 . Lis verses are melodious, 6 nished and various in subject; but they are rather the imitative exercises of a schelarly man of the world than the impirations of an original poet. That they failed to attract notice is not altogether to be regrelted. for, as Valera himself confessed tater in his halfironical, half-ingenuous preface to the second edition (1885), "In spite of my idleness, I should have shown a most deplorable fecundity had I betn received with lavour and applause." However, if he published little more in the shape of verse, he wrote incessantly in prose. More than two-shirds of his work is still uncoliected, buried in revirws and newspapers; bul we may take it that he rescued what he thought most valuabie. His criticism may be read ip the Estadias crifices sobre literataro (1864), in the Disertacienes \(y\) juirios litcrarios \((1878)\) and in the Nactos esfudios criticos (8888); yet, with all his penctraion and taste, Valera laboured under one disadvantage not frequent in critics. He suffered from an excessive amiabivity. He said a hundred incisive. wise, witty, subule and suggestive things concerning the mysticion of St Theress, the art of noveiwriting, Fams. the Inquisition, Dow Quixote, Shakespeare, the psychology of love in literature; but, to do himself justice, it was an almost indispensable condition that he should deal with the pmst. In the presence of a living author Valera was disarmed. Unless the writer were an incurable peasimist, Valera would find something in bis work to praise, exhausting the vorabulary of compliment and grateful tribate;, bat, except in the Corlas americanas (1889), where the laudation was mantfestly so exagerated that no harm could come of it. this trink of eulogy becarne perplexing and misheading. Valera, in effoct. refased to erivicize contemporary Litenture; as a nival muthor it seemed to him an indelicacy to censore his competitors, and he was either laudatory or silent, It is regrettable, for criticism was and is greally needed in Spain.

Vakera, then, excelled acither as a poet nor at an imparimel critic; the had the vocalion of the novelist, though he was slow in discowering it, since he was in his fiftieth year brlore he published the soved which was to make him famous. Pcyita

Jiminex (1874) is a recital of the fall of Luis de Vargas, a seminarist who conceived himself to be a mystic and a potential saint, and whose aspirations dissolve at the furst contact with reality. It is easy to point out blemishes: the story is not well constructed, and it has pauses during which the writer's fantasy plays at pleasure over a hundred subjects not very germane to the matter; but its characters are as real as any in fiction, the love story is told with the most refined subtlety and malicious truth, while page upon page is written in such Spanish as would do credit to the best writers of the 16 th and 17 th ceaturies. Unquestionably Pepila Jimence is a very remarkable achieve-ment-so remariable, that contemporaries were reluctant to admit the superiority of its successors. It is certain that Valera's second novel, Las ilusiones del Dector Faustino (1875), was received with marked dislavour, and that it has the faulis of over-retinement and of cruelty; yet in keen analysis and in humour it surpasses Pepita Jiménez. The Comendador Mendosa (1877) is more pathetic and of a profounder significance; and if Doise Lite (1879) repeats the situation and the general idea already used in Pepila Jimóncs, it strikes a deeper and more tragic note, which came as a surprise to those familiar only with the lighter side of -Valera's genius. Besides these claborate psychological studies, Valera issued a volume of Cuentos (1887), some of these short tales and dialogues being marvels of art and of insight. Thenceforward he was silent for eight years, but after his retirement from politics he published several good books-El hechicero (1895), Juanita la larga (1896), Genio y figura (1897), Dc zarios colores (1898) and Morsamor (1899). These are not all of equal excellence, but they are characteristic of their author, and abound in understanding, humorous comment and sympathetic creation.
At the close of the 10 th century Valera was recognized as the most cminent man of letters in Spain. He had not Pereda's force nor his energetic realism; he had not the copious invention nor the reforming purpose of Pérez Galdos; yet he was as realistic as the former and as innovating as the latler. And, for all his cosmopolitan spirit, he fortunately remained intensely and incorrigibly Spanisb. His aristocratic scepticism, his strange elusiveness, his incomparable charm are his own: his humour, his flashing irony, his urbanity are eminently the gifts of his land and race. He is by no means an impersonal artist; in almost every story there is at least one character who talks and thinks and subtilizes and refines as Valera himself wrote in his most brilliant essays. This may be a fault in art; but, if so, it is a fault which many great artists have committed, from Cervantes to Thackeray. It is dangerous to attempt a forecast of Valera's final place in literary history, yet it seems safe to say that, though his poems and essays will be forgolten, Pepila Jiménct and Dota Las will survive changes of fashion and of taste, and that their author's name will be inseparably connected wit h the renaissance of the modern Spanish novel.
(J. F..K.)

VALERIA. VIA, an ancient highroad of Italy, the ocntinuation northeastwards of the Via Tiburtina (q.v.). It probably owed its origin to M. Valerius Messalla, censor in 154 b.c. It ran first up the Anio valley past Varia (\(q, v\).), and then, abandoning it at the 36 th mile, where the Via Sublacensis diverged, ascended to Carseoli (\(q . v\).), and then again to the lofty pass of Monte Bove (4003 ft.), whence it descended again to the valley occupied by the Lago di Fucino (q.v.). It is douhtful whether it ran larther than the eastern point of the territory of the Marsi at Cerfennis, to the N.E. of the Lacus Fucinus, before the time of Claudius. Stiabo states that in his day it went as far as Corfinium, and this important place must have been in some way accessible from Rome, but prabably, beyond Cerfennia, only by a track. The difficult route from Ceriennia to the valley of the Aternus-a drop of nearly 1000 ft ., involving too the crossing of the main ridge of the A pennines (\(\mathbf{3 6 7 5} 5 \mathrm{ft}\).) by the Mons Imeus (mod. Forca Caruso) was, however, probably not made into a highroad until Claudius's reign: one of his milestones (Corp. Jnscr. Lat. ix. 5973) states that be in A.D. 48-49 made the Via Claudia Valeria from Ceriennia to the mouth of the Aternus (mod. Pescara). He also constructed a road, the Via Claudia Nova, connecting the Via

Salaria, which it left at Foruli (mod. Civitatomasca, near Amiternum) with the Via Valeria near the modern Popoli. This road was continued south (we do not know by whom or when) to Aesemia. From Popoli the rood followed the valley of the Aternus to its mouth, and there joined the coast-road at Pescarn. The modern railway-from Rome to Castellammare Adriatico follows closely the line of the Via Valeria.

See E. Albertini in Mélanges de l'École frarģaise de Rome (190-). \(463: 49\).
(T. As.)

Valerian. a genus of herbaceous perennial plants of the natural srater Valerianaceac. Two species-Valcriano oficinalis and \(\boldsymbol{V}\). diate- -arcindigenousin Britain, whileathird, \(b^{\circ}\). presuin. is naturalized in some parss. The valerians have opposite teaves and small flowers, usually of a white or reddish tint, and arranged in terminal cymes. The limb of the calyx is remarkable for being at first inrolled and afterwards expanding in the form of a feathery pappus which aids in the dissemination of the fruit. The genus comprises about is0 species, which are widely diatributed in the temperate parts of the world. In medicine the root of \(V\) offcinalis is intended when valerian is men. tioned. The plant grows throughout Europe from Spain to the Crimea. and from Iceland through northern Europe and Asia to the coasts of Manchuria. Several varieties of the plant are known, those growing in hilly situa. tions being considered the most valuable for medi. cinal purposes.

Valerian is cultivated in Eng. land (in several villages near Chesterfield in Derbyshire), but to a much greater extent in Prussian Saxony (in the neighbourhood of Collerla, north of Weimar), in Holland and in the

Habil alter Curic. Flors Londinessik.
Fic. 1.-Valerian (Valertana officandis), ome third natural size. I. flower; 2. flower af ter removal of corolla: 3. fruit crowned by the feathery pappus. \(1,2,3\) enlarged.

United States (Vermont, New Hampshlre and New York). The dried root or thizome consists of a short central erect portion, about the thickness of the little finger, surrounded by numerous rootlets about it of an inch in diameter, the whole being of a dall brown colour. When first taken from the ground it has no distinctive smell; but on drying it acquires a powerful odour of valerianic acid. This odour, now regarded as intolerable, was in the 16 h century considered to be fragrant, the root being placed among clothes as a perfume (Turner, Herbal, 1568, part iii. p. 76), just as \(V\) cellica and some Himalayan species of the genus are still used In the East. By the pooser classes in the north of England it was esteemed of such medicinal value that " no broth, pottage or physical meat " was considered of any value without it (Gerard, Herball, 1633, p, 1078).

The red valerian of gardens is Centranihus ruber, also belonging to the Valerianaceae, but Greek valerian is Polcmonium coermlcom, belonging to the natural order Polemoniaceac. Cats are
mearly as fond of the smell of this plant as of the true valetan, and will frequently roll on the plans and injure it.
The chief consaltuent of valerian is a volatile oil, which is present in the dried root to the extent of \(1-2 \%\) plante growing on dry or alony soil being said to yield the largest quantity. The oil is of complex composition, containing valerianic (valeric). formic and acetic acids combined with a terpene. \(\mathrm{C}_{10} \mathrm{H}_{16}\) : the alcohol known as borneoi; and pinene. The valerianic acid present in the oil is mot the normal acid, but isovaterianic acid. It octurs in many planes and in cod-liver oil. It is strongly acid, buraing to the palare, and with the odour of the plant. The oil is soluble in thirty parts of water and readily in alcohol and ether. The British Pharmacopeia contains the tinctura valerianae ammoniats. containing velerian. oil of nutmes. oil of temon and ammonia. It is an extremely nauseous and offensive preparation. The valerianate of zinc is also official in Creat Britain, but, like valerianic acid itself, it is pharmacologically inert and therapeutically useless.
Valerian acts medicinally entirely in virtue of its volatile oit, which exerts the axtions typical of its clasm. The epecial use of this drug, like that of others which contain an offensive volatite oil-such as asaloetida-is in hysteria or, as it is more properly styled, neuromimesis. It is generally believed that the drug acts in virtue of its unpleasant odour and taste, which cause the patient to display so much volition as shall enable him or her to control the symptoss and thereby obrain the discontinuance of the drug. Good results are sometimes obtained, however, when the drug is given in capsules or in some other fonn which puts this mode of action out of the question. Binz of Bonn has shown that the volatile oils act as sedasives of the motor cells in the anterior homs of grey matter in the spinal cord, and it is probabte that this action may account for the good results often obtained by the use of valerian in neuromimesis; though there is little doubt that the modus operandi above described may also come into play. The valerianales of iron. quinine. guaiacol and sodium share wilh that of zinc the disability of exerting no action attributable to their acid radiele. but have frequently been employed. Valerianic die thylamide. or valyl has also been employed as a substitute for the preparations in ordinary use

Valerianus. publios licinios, Roman emperor from a.D. 253 to 200 . He was of noble family, and in 238 was princeps senatus. In 251, when Decius revived the censorship with legislative and executive powers so extensive that it practically embraced the civii aut hority of the emperor, Vaterian was chosen censor by the senate. After the death of Decius Valerian retained the confidence of his successor, Trebonianus Gallus, who sent him to tetch troops to quell the rebellion of Acmilianus, governor of Moesia and Pannonia. The soldiers in Ractia, however, proclaimed Valerian emperor; and marching siowly towards Rome he found both his rivais dead, siain by their own soldiers. Valerian was about sixty-three years of age, and had scarceiy the vigour to deal with the enemies that threatened every frontier of the empire. Taking his son Gallienus as colleague, be left the wars in Europe to his direction, under which matters went from bad to worse and the whole West feil into disorder. Valerian chose for his own part the war in the East, where Antioch had fallen into the hands of a Persian vassal and Armenia was occupied by Shapur (Sapor) 1, while in 258 the Goths ravaged Asia Minor. Valerian recovered Antioch, rought in Mesopotamia with mixed success and finaily was taken captive. It is said that be was subjected to the greatest insults by his captors, and that after his dealh his skin was stufled with straw and preserved as a trophy in the chief Persian temple. Owing to imperfect and contradictory authorities, the chronology and details of this reign are very uncertain.
See Trebrilius Pollio. Life of Valerian (frass.): Aurelius Victor. Cacsares, 32: Eurnopius ix. 6, Amminnus Marcellinus xxiii. \(\$\) : Zomimus i. 27: Cibbon. Decline and Fall. chap. 10: H. Schiller. Geschichle der ramschen Kaserseti, i. pt. 2.

Valsaic AcID. or Valersanic Acto, \(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\), an organic acid belonging to the latty acid series, which exists in four ibomeric forms, one of which contains an asymmetric carboa atom and consequently eccurs in two optically active modifications and one opticaily inactive modifeation Ordinary valeric acid (beldrianic acid) is a mixture of isovaleric acid or isopropylacetic acid, (\(\left.\mathrm{CH}_{3}\right)_{7} \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{3} \mathrm{H}\). and optically active methyet hylacetic acid, (CH1) (C:H5)CH.CO.H, which occur frete or as esters in the vegetabie and animal kingdoms, chiefly in the rools A Angelica archangelica and Valeriano officimalis. It may be extracted by boiling with water or soda. A similar product is
obtained by oxidizing fermentation amyl alcohol with chromic acid. Isovaleric acid is an oity liquid having the odour of stale cheese and boiling at \(174^{\circ}\); the salts are usually greasy to the touch. Potassium permanganate oxidizes it to \(\beta\)-oxyisovaleric acid \(\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathrm{C}(\mathrm{OH}) \cdot \mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}\), whilst nitric acid gives, among other products, dinitropropane, \(\left(\mathrm{CH}_{8}\right)_{2} \mathrm{C}\left(\mathrm{NO}_{4}\right)_{1}\). The acid has been synthesized, as has also the inactive form of methylethytecetic acid; this modification is split into its optical antipodes by crystallization of its brucine salt. Normal valeric acid or propylacetic acid, \(\mathrm{CH}_{3} \cdot \mathrm{CH}_{4} \cdot \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{3} \mathrm{H}\), is a liquid boiling at \(186^{\circ}\). The remaining isomer, pivalic or 'trimethylacetic acid, \(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C} \cdot \mathrm{CO}_{2} \mathrm{H}\), melts at \(35^{\circ}\) and boils at \(163^{\circ}\). Both these acids are synthetic products.
Valerius, PUPliUs, surnamed Puelicola (or Poplicola), " friend of the people," the colleague of Brutus in the consulship in the first year of the Roman republic (\(509 \mathrm{B.c}\).). According to Livy and Plutarch, his family, whose ancestor Volusus had settled in Rome at the time of King Talius, was of Sabine origin. He took a prominent part in the expulsion of the Tarquins, and though not originally chosen as the colleague of Brutus he soon took the place of Tarquinius Collatinus. On the death of Brutus, which left him sole consul, the people began to fear that he was aiming at kingly power. To calm their apprehensions he discontinved the building of his house on the top of the Velian Hill, and also gave orders that the fasces should be lowered whenever he appeared before the people. He further introduced two laws to protect the liberties of the citizens, one enacting that whosoever should attempe to make himsell a king might be slain by any man at any time, while another provided an appeal to the people on behall of any citizen condemned by a magiat rate (lex Valeria de prosocations: see Rowe, History. II. "The Republic '). He died in 503, and was burfed at the public expense, the matrons mourning him for len months.

Livy ii. 6-8; Dion. Halic. iv. 67, v. 22-40; Life by Plutarch.
Valerius flaccus, caiUs, Roman poet, flourished under Vespasian and Titus. He has been identifed on insufficient grounds with a poet friend of Martial (i. 61. 76), a native of Padua, and in needy circumstances; but as he was a member of the College of Fifteen, who had charge of the Sibyline books (i. s), he must have been well off. The subscription of the Vatican MS., which adds the narpe Setinus Balbos, points to his having been a native of Secia in Latium. The only ancient writer wbo mentions him is Quintitian (Instit. Orot. x. 1. 90), who laments his recent death as a great loss, although it does not follow that he died young; as Quintitian's work was finished about a.D. 90 , this gives a limit for the death of Flaccus. His work, the Argonaulica, dedicated to Vespasian: on his setting out for Britain, was written during the siege, or shortly after the capture, of Jerusalem by Tilus (70). As the cruption of Vesuvius (79) is alluded to, it musi have occupied him a long time. The Argonautica is an epic in eight books on the Quest of the Golden Fleece. The poem is in a very corrupt state, and ends abruptly with the request of Medea to accompany Jason on his homeward voyage. It is a disputed question whether part has been lost or whether it was evet finished. It is a free imitation and in parts a translation of the work of Apollonius of Rhodes (\(q\) q), already familiar to the Romans in the popular version of Varro Alacinus. The object of the work has been described as the glorification of Vespasian's achieveraents in securing Roman rule in Britain and opening up the ocean to navigation (as the Euxine was opened up by the Argo). Various estimates have been formed of the genius of Flaccus, and some critics have ranked him above his originat. to whom he certaindy is superior in liveliness ol description and delinetion of character. His diction is pure, his seyle correct, his versification smooth though monotonous. On the other hand, he is wholly without originality, and his peetry. though Iree from glaring defecis, is artificial and elaborately duil His model in tanguage was Virgil, to whom he is far inlerior in tasie and lucidity. His tiresome display of leapning, rhetorical exaggeration and ornamentations make him difficuit to read, which po doubt accounss for his unpopularity in ancient times.

The Argonatica was unknown till the first four and a hall books were discovered by Poggio at St Gall in 1417 . The editoo prinrcps was published at Bologna (1474). Receni editions by \(G\). Thilo (1863). with critical notes: C. Schenkl (1871). with bibliography. E. Babrens (1875), with critical introduction. P Langen (1896). with Latin notes, and short iniroductions on the style and language. Cacsar Giarrataio (1904): see also J. Peters. De V. F V'ila el Curmine (1890): W. C. Summers, Sludy of the Aigonatilica (1894).

VALERIUS MAXIMUS, Latin writer, author of a collection of historical anecdotes, flourished in the reign of Tiberius. Nothing is known of his personal histozy except that his tamidy was poor and undistinguished, and that he owed everything to Sextus Pompeius (consul a.0. 14), proconsul of Asia, whom he accompanied to the East in 27. This Pompcius was a kind of minor Maecenas, and the centre of a litcrary circle to which Ovid belonged; he was also the intirate of the most literary prince of the imperial family, Germanicus. The style ul Valcrius's writings seems to indicate that he was a protessional rhetorician. In his preface he intimates that his work is inlended as a commonplace book of historical anecdotes for use in the schools of rhetoric, where the pupils were trained in the art of embellishing speeches by references to history. According to the MSS., its title is Nine Books of Memorable Dceds and Sayings. The stories are loosely and irregubarly arranged, each book being divided into sections, and each section bearing as its titla the topic, most commonly some virtue or vice, or some imerit or demerit, which the stories in the section are intended to illustrate. Most of the tales are from Roman history, but each section has an appendix consisting of extracts from the annals of other peoples, principally the Greeks. The exposition exhibits strongly the two currents of lecling which are intermingled by almost every Roman writer of the empire-the feeling that the Romans of the writer's own day are degencrate creatures when confronted with their own republican predecessors, and the feeling that. however degenerate, the latter-day Romans still tower above the other peoples of the world, and in particular are morally superior to the Greeks.

The author's chiel sources are Cicero, Livy, Sallust and Pompeius Trogus, especially the firsi two. Valerius's treatment of his material is careless and unintelligent in the extreme; but in spite of his oonfusions, contradictions and arnachronisms, the excerpls are apt illustrations, from the rhetorician's point of view, of the circum. stance or quality they were intended to illustrate. And even on the historical side we owe something to Valerius. He often used sources now lost, and where he touches on lis own time he affords us some glimpses of the nuuch debated and very imperfectly recorded reign of Tiberius. His attitude iowards the imperial household has often been misunderstood, and he has been represenicd as a mean flaterer of the same type with Martial. But, if the references to the imperial administration be carefully scanned. they will be seen to be exiravagant neither in kind nor in number. Few will now grudge Tiberius. when his whole acion as a ruler is taken inio account, such a title as salutarit princeps, which seemed to a former gencration a specimen of shameless adulation. The few allusions to Caesar's murderers and to Augustus hardly pass beyond the con. ventional style of she wriser's day. The only passage which can fairly be called fulsome is the violently rhetorical tirade against Sejanus. But is is as a chapter in the history of the Latin language that the work of Valcrius chielly deserves study. Without it our view of the iransition trom classical to silver Latin would be much more imperfect than it is. In Valerius are presented to us. in a pude and palpable form. all the rhetorical tendencies of the age. unsobered by the sanity of Quintilian and unrefined by the taste and subilety of Tacisus. Direct and simple statement is eschewed and novelty pursued at any price. The barricr between the diction of poetry and that of prose is broken down, the uses of words are strained: monstrous metaphors are invented: there are stariliog contrasts. dark innuendoes and highly coloured epithets; the most unnatural variations are played upon the arificial scale of frammatical and rhecorical figures of speect. It is an Instructive fesson in the himory of Lasin to compare minurely a parsage of Valerius with its counterpart in Ciceno or Livy. In the MSS. of Valerius a tenth book is giveo, which consists of the so-called Liber de Praenominibus, the work of some grammarian of a much later date. The collection of Valerius was much used for school purposes. and its popularity in the middle ages is attested by the large number of MSS. in which it has been preserved. Like other choolbooks it wasepitomated. One complete epitome. probably of the 4 th or 5 th century, bearing the name of Julius Paris, has come down to us, also a portion of anothec hy Januarius Nenotianus. Editions hy C. Malm (IB6s):C. Kempl (t888), contain theepitomes of Parisand Nepotianus.

VALET (Fr. velel. O. Fi maslei), term now restricted in meaning to that of a gentleman's personal servant. The oragin of the word is debated. Du Cange (Glossartum, s. Voletu) explains it as the diminutive of rossallins, a vassal. the sons of trissalli being termed vesscleti (and so rasleti, valeli), on the analogy of domucelly (dumorscaux) (or the sons of dominf. This view is also taken by W. W. Skeat (Eiym. Dicl. s. "Varlet "); but Hatzeld and Darmesterer (Dial. ede. de la langue frangaise), dispute this derivation as phonetically impossible, preferring that from vassuliuns from a hypothetical tussulus, diminutive of oassus, from which tosssiliss also is ultimately derived (see Vassal). Just as possms was in Merovingian times the GalloRoman word for "servitor," which the Franks borrowed to designate the domestic soldiers of their kings, so "valct" retained this, its sole surviving sense, throughout the middle ages. Yet the phrase "genileman's gentleman," commonly used of the modern valet, is more historical than may at first sight appear. For valet, like esquire (dcuycr), long significd the apprentice stage of knighthood, at first with a ccrlain difference, the esquire being mounted, the valet unmounted, bui afierwards with scarce a shade of distinction. Later, "valct" became the usual term for gentlemen who were not knights. In England it was not till the early years of the 14th century that valletus in this sense was supersecked by armiger, and that "valet" (valete, vadiete, verlet, varlet") began to be applied to the class of Iree men below the rank of esquire. In France the word vafet, though in Saintonge and Poitou it survived till the close of the \(44^{\text {th }}\) century, had cise-where-like damoiscaz-much carlicr been replaced generally by ecuyer as the designation of an unknighted gentleman.

At the outset. "valet" had meant no more than "youth " or "boy." Thus Wace in the Rowan de Rou (III. V. 2903), speaking of William the Conqueror, says: Guillaume fre mdlat petiz ("William was a litle boy "). The various developments of the word are closely parallel with those of some of its synonyms. Youth suggested both strength and service, the qualifications for nobility in a primitive society, where service in arms was the title to rank. Puer (boy) was early used, as a synonym lor wassus, of the soldiets of the Frankish body:guard (pucri ad ministcrium); the Greek rixvon (" child ") is etymologically related to O.H. Ger. degan. M.H. and Mod. Ger. degrn, "warrior," A.S. thegn, "thanc"; "child" itself was applied in the 13 th and 14 th centuries to young men of gentle birth awaiting knighthood, as a title of dignity, and was perhaps a translation of colet (sce Cintid), with which may be compared the Spanish infauzon and Gcrman junker. So, 100. cuiht (a "lad" or "scrvant"), becomes first a warrior and then develops into a litle of dignity as "knight," while in Germany the parallel word kucchit remains as "servant." But valet has also shared with other synonyms a downward development. Jusi as "knave" (cnofa) meant originally a boy (cl. Ger. knabc) or servant. and has come to mean a rogue, so rala in its English (isth contury) form of "varlei" had decayed. before it became obsolete, from its meaning of " scrvant" to signily a " scoundrel " or " low fellow."
See Dit Cange, Glossarium (ed. Niort. 1887): A. Luchaire, Manmed des institulions frangatses (Paris, 1892). P. Giuthiermoz. Essaz str lortgine de la noblesse en France all mojen age (Paris, Igoz); Note on the word "Valet" by Maunce Church. App. xix. to Sir R. Hennell's Hist. of the Yeomer of the Guard (Westminster, 1904).
(N. A. P.I

Valhalla (Old Norse Valholl, i.e. "hatl of the stain "), the name given by the heathen Scandinavians to the abode in which the god Odin received the souls of thoee who had fallen in battle. There they are repiresented as spending their time in constant fighting and leasting in his service. See Teutonc Peowes. ad fin.

VALKYRTEs (OId Norse wolkytiur, "choosers of the slain "), figures of Northern mythology, generally represented as divine (less frequently human') maidens who ride through the air on Odin's service. Cind in futl armour they are sent forth

The form solectes led to the spelting walert in transeribing frome Latin documents.
to determine the course of battles and to telect brave warriors for Valhalla (q.a.). Beings with the tame name (modorgens) were known also in England, where we find them ansociated with witches. The pame is used in Anglo-Sanon glomaries to traminte various Latin tertas for " War-goddess " or "Fery" (Bellona, Erinys, \&c.). See Teutonic Peorles, ad fin. (H. M. C)

VALLA LORENZO, or LadEENTIUS (c. 1406-1457), Italian bumanist, was born at Rome, of parents from the neighbourhood of Pincenna, about 1406 , his father, Lace delle Vallen, being an advocate. He was educated at Rome, attending the clasees of eminent professors, among them Leonardi Brumi and Giovanni Aurispa (c. \(1369-1459\)), from whom be learned Latin and Greek. In 143 z he became a priest, and after trying vainly to secure a position as apotolic secretary in Rome be went to Piacenien, whence he proceeded to Pavia, where he obtained a professorship of eloquence. Valla wandered from one university to another, accepting short engegements and lecturing in many cities. During this period he made the acquainatance of Alphonso V. of Aragon, whoee service be entered about 1435. Alphonso made Valle his private secretary, defended him against the attacks of his numerous enemies, and at a later date encouraged him to open a schood in Naples.

By this time Valla had won a high reputation by his dialogue De Voluplate, and by his treatise De Elegamiis Latiman Linguac. In the former work be contrasted the principles of the Stolcs with the tenets of Epicurus, openly proclaiming his sympathy with those who claimed the right of Iree indulgence for man's natural appetites. It was a remarkable utterance. Here for the first time the paganigm of the Renaismance found deliberate expression in a work of scholarty and philosophical value. De Elogentiis was no less original, although in a difierent aphere of thought. This work subjected the forms of Latin grammar and the rules of Latin style and rhetoric to a critical examination, and ptaced the practice of comporition opon a fousdation of analyais and inductive reasoning. The same originality and critical acumen were dioplayed in his treatise on the Donation of Constantine (\(D e\) falso credita ef ementita Constantini donatione declamatio), written in 1439 during tbe pontificate of Eugenius IV., in which the nature of the forged document known as the Constifulum Constantini was for the first time esponed (see Donation or Constantine). From Naples Valla continued his war against the Church. He showed that the supposed letter of Christ to Abgarus was a forgery, and by throwing doubt upon the authenticity of other spurious documents, and by questioning the atility of monastic bife, he aroused the anger of the faithful. He was compelled to appear before an inquisitory tribunal composed of his enemies, and he only escaped by the special intervention of Alphonso. He was not, however, silenced; he ridiculed the Latin of the Vulgate and accused St Augustine of heresy. In 1444 he visited Rome, but in this city also his enemies were numerous and powerful, and be only saved his life by flying in disguise to Barcelona, whence he returned to Naples. But a hetter fortune attended bim after the death of Eugenius IV. in February 1447. Again he journeyed to Rome, where he was weloomed by the new pope, Nicholas V... who made him an apostolic secretary, and this entrance of Valla into the Roman Curia has been justly called "the triumph of humanism over orthodoxy and eradition." Valla also enjoyed the lavour of Pope Calistus III. He died in Rome on the 1st of August 1457.

All the oider hiographical notices of Valla are loaded with long accounts of his many literary and theological disputes, the most famous of which was the one with Poggio (q.v.), which took place after his settlement in Rome. It is almost impossible to form a just estimate of Valla's private life and character owing to the clouds of dust which were stirred up hy this and other controversies, in which the most virulent and obscene langage was employed. He appears, however, as a vain, jealous and quarrelsome man, hut he combined the qualities of an elegant humanist, an acule critic and a venomous writer. who had committed himsell to a viclent polemic against the temporal power of Rome. In him posterity honours not so
mach the scholar and the stylist as the man who insiated a boll amethod of criticism, which he spplied alike to language, to historical documents and to ethical opinions. Lather had a very high opinion of Valla and of his writings, and Cardinal Bellarmine calls hirm proecursor Leathori, while Sir Richard Jebh seys that his De Elegarutios "marked the highest level that bad yet been reached in the critical stedy of Latin."

Coliected, but not quite complete, editions of Valla's worke wero published at Barel in 1540 and at Venice in 1592 fol, and De Elegenitis was reprinted nearly sixty simes between 1471 and 1536. For detailed accounts of Valla's life and work see C. Voigi, Die Wrederbelebing des classischen Allerthxms (i880-81); J. A. Symonds, Rensissance in JLaly (i897-99); G. Mancini, Vita di Lortmee Valla (Flocence, 1891): M. von Wolft, Lerense Valla (Leipriv, 1893); J. Burckhard. Kulixr der Remaissance (1860); J. Vahlen. Laxrentixs Valla (Berlin, 1870): L. Pastor, Geschichte der Pappse. Band ii. English trans. by F. I. Antrobus (i892); the article in Herrog. Hauck's Realencydopddie, Band xx. (Leiprig, 1908): and J. En Sandys, Hish of Class. Schol, ii. (1908), pp. 60-7a

Valliadolid, an inland prowfince of Spain, one of the eight into which Old Castile was divided in 1833: bounded on the N. by Leon and Palencia, E. by Burgos، S. hy Segovia, Avila and Salamanca, and W. hy Zamora. Pop. (1900) 278.561; ares, 2922 sq. m . The province belongs entirely to the basin of the Duero (Douro), which traverses it from E. to W., and within its limits receives the Pisuerge (with the Eagueva) on the right, and the Duraton, tbe Cega, the united Adaja and Eresma, the Zapardiel and the Trabancos on the left. The country watered by these rivers is for the most part flat and exceedingiy lertile, the only part that can be called in any sense hilly being in the north-west, where the low Montes de Torosos occur. For the excellence and ahundance of fis grain crops Valladolid shares with the Tierra de Campos in Palencia the title of granary of the Peninsula.

Besides wheat, maize, berley and oats, the province produces bemp, fax, various fruita, red and white wine, oil and madder: The Montes de Torozos are thinjy covered with ouks and other timber, and there are forests in the S.E. The pastures are extensive and harge numbers of asses, mules and sheep, as well as some trorses and cattje, are reared. Honey, wax and silk are also produced. The woollen fabrics of Valladolid were once highly csicemed, but this incustry has now greatly declined, atthough in the larger towas there are still linen and eloth factorices bedides iron foundries, tanneries, saw-mils and flour-mils. But agriculture is by far the foremost industry of the province. Trade is facilltated by the Canal de Castilla, which conoects Valledolid. on the Pisuerga, with Aler del Rey, in Palencia, also on that river. See Palencia (province). Valladolid is traversed by the nationad highways from Madrid to Santander, Leon and Corunna. and by the Calatayud and Salamanca roads. It is also traversed from N. to S. by the northern railway from Madrid to France via Irum, which hat branches from Valladolid to Medina del Kioseco, and from Medina del Campo to Salamanca and Zamora. Apart from the capital Valladolid. Nava del Rey (6148). Medina del Campo (5971) and Medina del Rioseco (5007) are the only towns with more than 5000 inhabitants. For an account of the people and history of the province, see Castile.

Valladolid, a town of Mexico, in the state of Yucatan, 90 m . S.E. of Merida, with which it is connected by rail. Pop. about 5000 . It is situated in a healthy and fertile part of Yucatan, and is a resort for invalids. It has a number of old churches, a Jesuits' college, town hall, hospital and aqueduct, and the better class of residences are of the usual type, low, large-roomed structures in the midst of gardens. It was lounded in 1544 , soon after the conquest, and was planned to be a great ecclesiastical centre, but these plans were not realized and its cburches and orher fine huildings have fallen into decay. Its manufactures include cotton goods and tobacco. The inhabitants, chicfly descendants of the ancient Mayas, have frequently revolted against their rulers. In 1910 they ware in a state of insurrection, assisted by the wild tribesmen of the neighbouring territory of Quintana Roo, on which occasion Valladolid was captured by them and many of its offeials and prominent white residents were massacred.

Valladolid, the capital of the Spanish province of Valladolid. situated 3228 ft . above sea-level, at the confluence of the river Pisuerga with the Esgueva. Fop. (1900) 08,789. Valladolid is an archbishopric, and tbe seat of an army corps,
a court of appeal and a university. It is connected by numerous railways with every province of Spain. Its site is a small valley, enclosed by steep and rugged but not very high hills, which merge into the vast upland plain of Castile. The city was formerly surrounded by walls and entered by four principal gates, but it has been to a great extent modernized, and possesses many fine streets and squares. There are broad avenues and public gardens beside the rivers. Among the chief open spaces are the arcaded Plaza Mayor, the Campo Grande, a wooded park and the Paseo de la Avenida, a wide boulevard in which is the statue of the poet Jose Zorilla (1817-1893). The granite cathedral was begun in 1585 by Juan de Herrera in the Renaissance style. Herrera's original model is preserved in the muniment-room, hut only the nave and one tower (out of four) were completed after his design, and the tower fell in 184 r . The building was continued by Churriguera (d. 1725). The interior contains some pictures by Luca Giordana (\(\mathbf{x}^{623-1705 \text {) }}\) and the celebrated silver monstrance wrought by Juan de Arphe (b. 1523), which is \(6 \frac{1}{2} \mathrm{ft}\). high; it is in the form of a temple, decorated with figures of Adam and Eve in the garden of Eden. The tower and nave of the church of Santa Maria la Antigua date from about 1200 . The church of San Pahlo is later (1286); its chief feature of interest is a beautiful Flamboyant portal, and formerly it had exquisite cloisters. Adjoining is San Gregorio (igth century) with a fine Plateresque fagade. San Benito, dating from the end of the 14th century, is a Gothic building with a lofty roof finely groined. The Plateresque college of Santa Cruz, built by Earique de Egas in 1479-92, contains an interesting collection of pictures and sculptures, including three pictures by Rubens, which have been somewhat damaged, and some remarkable wooden statues by Alonso Berruguete (d. 1581) and others. The college of San Gregorio, dating from the same period, was wrecked by the French in 1808, but has a magnificent late Gothic façade. This building has been converted into municipal offices. The university is attended by about 1200 students, and has faculties of law, medicine, natural science, philosophy and literature. Originally founded at Palencia early in the 13th century, it was transferred to Valladolid before 1250 and attained its greatest prosperity from the 16th century to the 18th. The library contains many rare MSS. The university buildings date from the 17th century and are extravagantly ornate. Among other public buildings of Valladolid may be mentioned the royal palace, built in the beginning of the 17th century, the court-house, the town hall, several convents used as barracks, the provincial institute, training schools for teachers and primary schools, royal academy for cavalry cadets, provincial lunatic asylum, hospitals, seminary (raised in 1897 by Pope Leo XIII. to the rank of a pontifical university), archaeological museum, picture gallery and public library. The house in which Cervantes lived (\(1603-1606\)) is owned by the state. The principal industries are the manufacture of linen, silk and woollen fabrics, pottery, gold and silver work, flour, wine, beer, chocolate, leather, ironware and paper. There is also a large agricultural trade.

Valladolid is sometimes identified with the ancient Pintia of Ptolemy, described as a town of the Vaccaci on the road from Asturica to Caesaraugusta. Its Roman origin is uncertain. The present name is undoubtedly Moorish, but its meaning is obscure. Valladolid was recovered from the Moors in the roth century, but is first named in a public document by Sancho II. of Leon in 1072. The cortes of Castile frequently met here in the following centuries, and in the beginning of the 1 gth century John II. made it his principal residence. After the removal of the capital to Madrid by Philip II. in 1560 it began rapidly to decay. In December 1808 it was taken and sacked by the French, who destroyed many fine buildings and works of art. Columbus died (5506) and Philip II. was born (1527) at Valladolid.

YALLANDIGHAM, CLEMENT LAIRD (1820-71), Ametican politician, was born in New Lisbon, Ohio, on the 2gth of July 1820. He was cducated in the common schools and afterwards 18xo. He was cducated in the common schools and afterwards
the Ohio House of Representatives in 1845 , he became one oi the extremest of the state rights Democrats of his section, emphasizing his principles in the legislature in the local and national party conventions, and in the columns of a newspaper, the Western Empire, which he edited at Dayton, Ohio, in 1847-49. From 2858 to 1863 he was in the lower house of Congress, where he was noted for his strong opposition to the principles and policies of the growing Republican party, his belief that the South had been grievously wronged by the North, his leadership of the Peace Democrats or Copperheads, who were opposed to the prosecution of the war, and his hitter attacks upen the Lincoln administration, which, he said, was destroying the Constitution and would end by destroying civil liberty in the North. Attempts were made to expel him, hut without success. In 1863 he made violent speeches in Ohio against the administration, and for these he was arrested by the military authorities, tried by military commission, and sentenced to imprisonment. President Lincoln commuted this sentence to hanishment, and Vallandigham was sent into the Confederate lines, whence he made his way to Canada. While in exile he was elected supreme commander of the Knights of the Golden Circle in Ohio and received the Democratic nomination for governor of Ohio, but was defeated. In 1864 he returned to Ohio, took active part in the campaign of that year, wrote part of the National Democratic platform at Chicago, and assisted to nominate McClellan for the presidency. After the war he denounced the Reconstruction policy of the Republicans as unconstitutional and tyrannical, but in 1870 , seeing the uselessness of further opposition, he advised his party to accept the situation and adopt new issues. He thus initiated what was known as the "New Departure" Democratic movement. Vallandigham was a good lawyer and a popular politician. He was fanatically devoted to the Constitution as he understood that document, and in his course during the war he was not, as his enemies asserted, trying to aid the Confederates, but merely desirous of restoring "the Union as it was." He died in Lcbanon. Ohio, on the 17 th of June 187 .

See J. L. Vallandigham, Life of Clement L. Vallandigham (Balti more, 1872); and J. F. Rhodes, History of the United States from the Compromise of 1850 (New York, 1893-1906).
VALLE, PIETRO DELLA (\(1586-1652\)), Italian traveller its the East, came of a noble Roman family, and was born on the 13th of April 1586, in the family palace built by Cardinal Andrea. His early life was divided between the pursuits of literature and arms. He saw active service against the Moors of Barhary, but also became a member of the Roman academy of the Umoristi, and acquired some reputation as a versifier and rhetorician. The idea of travelling in the East was suggested by a disappointment in love, as an alternative to suicide, and was ripened to a fixed purpose by a visit to the learned Mario Schipano, professor of medicine in Naples, to whom the record of Pietro's travels was addressed in the form of very claborate letters, based on a full diary. Before leaving Naples he took a vow of pilgrimage to the Holy Land, and, sailing from Venice on the 8 th of June 1614, reached Constantinople, where he remained for more than a year, and acquired a good knowledge of Turkish and a little Arabic. On the 25th of September r6is be sailed for Alexandria with a suite of nine persons, for he travelled always as a nohleman of distinction, and with every advantage due to his rank. From Alexandria he went on to Cairo, and, after an excursion to Mount Sinai, lefit Cairo for the Holy Land on the 8 th of March 1616, in time to assist at the Easter celebrations at Jerusalem. Having visited the boly sites, he journeyed by Damascus to Aleppo, and thence to Bagdad, where he married a Syrian Christian named Maani, a native of Mardin, who died in 1625 . He now desired to visit Persia: but, as that country was then at war with Turkey, he had to leave Bagdad by stealth on the 4th of January 1627. Accompanied by his wife he proceeded by Hamadan to Isfahan, and joined Shah Ahbas in a campaign in northern Persia, in the summer of 1618. Here he was well received at court and treated as the shah's guest. On his return to Jsfahan be begas
to think of retuming by India rather then adventure bimeelf again in Turkey; but the stste of his health, and the war between Persia and the Portugucse at Ormuz, created difficulties. In October 1621 he started from Isfahan, and, visiting Persepolis and Shiras, made his way to the coase; but it was not till January 1623 that be found pastage for Surat on the English ship "Whale." In India be remained till November 1624, his beadquarters being Surat aod Goa. He was at Muscat in January 1625, and at Basra in March. In May he started by the desert route for Aleppo, and took ship at Alexandretta on a French vessel. Touching at Cyprus be reached Rome on the 281h of March 1626 , and was recrived with much hooour, not only by titerary circles, but by Pope Urban VIII., who appointed him a gentleman of his bedchamber. The rest of his life was uneventful; be married as second wife a Georgian orphan of noble (amity, Mariuccia (Tinatin de Ziba), whom his first wife bad adoped as a child, and who had accorapanied him in all his journeys. By her he had fourteen sons. He died at Rome on the 219s of April 1652.
In Pietro della Valle's lifetlme there were printed-(1) a Fwneral Oration on his Wiff Maami, whome remains he brought with him to Rome and buried there (1627); (2) an Accound of Shach Abbas, printed at Venice in 1628, but not published: (3) the first part of the letter describing his Travels furkey, \(165_{0}\)). The Trareds in Pervia (2 parts) were published by his mons in 1658 , and the third part (India) in 1663 . An English translation appeared in 1665 (foi.). Of the Italian text the editon of Brighton, 1843 (2 vols 8 vo) is more esteemed than the other reprints. It contains a sketch of the author's life by Gio. P. Bellori ((6222). Della Valic's tory is often prolix. with a tendency to the rhetorical; but he in clear and exaci, well informed and very instructive, to that his work still poteseses high value.

VALbe10, a city of Solano county, California، U.S.A.، on the San Pablo Bay, at the mouth of the Napa river, about 24 m . N.E. of San Francisco. Pop. (1890) 6343; (1900) 7963 (2033 foreign-bom): (1910) 11,340 . It is served by a branch of the Southern Pacific railway, by steamboats to San Francisco, and by an interurban electric line. The city is situated at the mouth of the great interior valley of the state, and has a good harbour, the channel of which, since the removal of a shoal by the Federal government in 1902-1906, has a maximum depth at low tide of 24 ft . Directly opposite the city, half a mile distant and connected by ferry, is Mare Island, the headquarters of the Pacific Naval Squadron of the United States, with a large United States Navy Yard, a naval arsenal, two stone dry docks (one 750 ft . long) and a lighthouse. The Navy Yard was established in 1854, and its first commandant was D. G. Farragut. In tbe city are a Carnegie lihrary, St Vincent's Academy and a Good Templars' Home (1869) for orphans. Vallejo is the outlet of the beautiful Nape Valley, one of the finest fruit-growing regions of the state, and, besides fruit, ships large quantilies of wheat. Among its manufactures are flour, leather, dairy products and lumber. The municipality owns and operates its waterworks, the water-supply being obtained from the mountains 25 m . distant. The city takes its name from General Mariano Guadalupe Vallejo، a prominent Merican leader in the years immediately preceding the annexation of California to the United States. It was a dull and out-of-the-way settle. zent in 1851 , when, through General Vallejo's efforts, it became the state capital. The state legislature met here in \(185 \mathrm{x}, 1852\) and 2853 . In 1871 Vallejo ranked third ln population among the cities of the state, and its position and the excellence of its harbour made it a rival of Oakland in the struggle (1869-72) for the teminus of the Central Pacific railway; but Valkjo was unsucceaful, and after 1872 began to decline in relative importance.

VALLES, JULEs (1832-1885), French joumalist and author, was born at Puys, France, on the toth of June 1832. Coming to Paris, be joined the staff of the Figare, and became a constant comeributor to the other leading journals. In 1860 be republished much of his newspaper work in Refrectaires, the volume forming a romance of the seamy side of Paris tife. He was in Paris during the siege of 1870 , and after the capitulation was a member of the Commune and founded Le Cri dy Panic. He
took a comsplcuous part in the fighting in the Paris streets, but finally made his escape to London, whence he contributed anonymously to the French press. In 1878 be began in the Siecle the serial publication of his priacipal work, Jacques Vingtras, a long autobiographical romance. He died in Paria on the 14th of February 1885.
Vallisita, or Valetta, the capital of Malta (since 1570). Pop. (r901) 24,685; or 40,406، including suburbs. The nucleus of the city is built on a ridge of rock (Mount Sceberras) which ruas bke a tongue into the middle of a bay, which it thus divides into two harbours, the Grand Harbour to the east and the Marsamuschetto to the west, which are subdivided again by three other penimsulas into creeks. On two of these peninsulas on the east side of the Grand Harbour, and at their base, are built the aggregate of towns called the Three Cities-Vittoriosa, Conspicua and Senglea (see Masta). On the main promontory, with Valletta, stands tbe suburh Floriana; Fort St Elmo, with a lighthouse, stands on the extremity of the promontory; the suburb Sliema lies on the point which encloees the Marsamuschetto harbour; Fort Ricasoli on the opposite point enclosing the east, Grand, or Great Harbour. The streets of Valletta, paved with stone, run along and across the ridge, and end on each side towards the water in steep fights of stepa. Many of the houses, which are of stone throughourt, with flat roofa, are large and huxuriously built; wooden-covered balconies project from the windows and give a peculiar aspect to the streets. There are several fine pablic buildings, as the governor's palace, the new opera bouse, the public library and museum of Maltese antiquitics, and the auberges or lodges of the Knights of Malta (especially the Auberge de Castile) which are now used for military offices, club-rooms, and other purposes. Roman Catholic churches in Valletta are very mamerous; the cathedral of S. Giovanni, dating from 1576 , is famous for its rich inlaid marbles, its Brussels tapestries, its roof painted by Matteo Preti (2661 -1699), the picture by Michael Angelo da Caravasgio of the beheading of John the Baptist, numerous memorials of the knights and other relics.
The governor's palace was formerly that of the grand master of the Maltese Order, and it also contains relics of the knights, tapestries, armour, \&c. Extensive bagnios under the rock, formerly occupied by the slaves of the knights, are now used for stores. The knights strengthened Valletta and its harbour by bastions, curtain-walls, lines and forts, towards the see, towards the land and on every available point, taking advantage in every particular of the natural rock and of the marvellous adrantages of situation, rendering it then almost impregnable. The work of fortifying the place has been carried on by the British government, which possesses here a naval bospital, military prison and other necessary institutions. Since the British occupation Valletta has been a naval and military station of the first importance. The dock and victualling yards occupy together an area of some 100 acres spread over the shores on both sides of those arms of the great harbour known as "Dockyard" and "French " creeke, the dockyand being partly on the former, but principally on the latter creck. In 1880 the graving dock accommodation consisted of one double dock at the extremity of Dockyard creck, known as Nos. i and a Docks, with a total length of about 525 ft . and with 25 ft . over the sill at average water-level, the tidal range at Malta being but alight; and opening into French creek a dry dock of more modern comstruction, known as No. 3, or the Somerset Dock, 427 ft. loug on floor, and with 34 ft . over the sill. Subsequently to this period the fine range of buildingz known as the iron ship repairing thop was crected close to the Somerset Dock, and added greatly to the repalring resources of the yard. Dock No. 4, or the Hamilton Dock, was completed in \(\mathbf{1 8 9 1}\), having a length on floor of 520 ft . a width of entrance of 94 ft . and with 35 ft .5 in . depth over the sill at average water-level. Associated with this dock was the construction of adjacent deep-water wharf walls, together with the great 160 -ton crane. Among later additions were gunmounting stores, boiler shop, boat sheds, canteen, coal stores: ace., together with \(a\) dorble dock 750 ft . long over all, and a single dock 550 ft . long. The large transit trade and the local
urade of the island centre upon Valletta. The infive of winter visitors adds to the weath of the city.
VALLEYFIELD. towen and port of entry. Beauharnois county, Quebec, Canada, 25 m . S.W. of Montreal, at the foot of Lake St Francis-an expansion of the river St Lawrence-and at the head of the Beauharnois canal. Pop. (1891) 5515; (1901) 11 ,055. It is a station on the Canada Allantic and New Yort Central railways, and a port of call for ald steamers plying between Montreal and Lake Ontario ports. It is the see of a Roman Catholic hishop, and contains a college and a convent. It has extensive cotton, four, canning and paper mills.
VALLEY FORGE, a small village in Chester county, Pennsylvania, U.S.A., on the S. bank of the Schuylkil niver, aboul 20 m. N.W. of Philadelphia. It is served hy the Philadelpbia a Reading railezy. The village lies in part of the tract occupied in the winter of \(\mathbf{1 7 7 7 - 1 7 7 8}\) by the American anmy (under General Washington), whose sufferings from cold, starvation and sickness made the place historic. On the igth of December (after the batles of Brandywine and Cermantown and the occupation of Pbiladelphia by the British) the army, numbering about 10,000 , went into camp here, the site having been selected by Washington partly because the hilly ground was favourable for defence, and partly because the army was thus placed between the British forces and Yort, Pennsylvania (about 65 m. W. of Valley Forge), where Coogress was in session. The camp was almost unapproachable from the west by reason of the precipitous hillsides and Valley Creek, a small stream flowing northward at their base into the Scbuylkill river which afforded a barrier on the nortb; on the east a series of intrenchments and rifle-pits were built. In this vicinity the army remained encamped until the middle of June. As a result of che mismanagement and general incapacity of the Commissary Department, the army received litile food or clothiag during the wider months; in the tatter part of December nearly 2900 men were unfit for duty on account of sickness or the lack of clothing, and by the 1 st of February this number bad increased by nearly 1000 , a state of affairs which Washington said was due to " an eternal round of the most stupid mismenagement [by which] the public treasure is expended to no kind of purpose, while the men have been left to perish by inches with cold and makedaess." There were many desertions and occasional symptoms of mutiny, but for the most part the soldiers bore their suffering with heroic fortitude. On the 37th of February Baron Stcuben (q.v.) reached the camp, where he drilted and reorganized the army. In 1893 the state of Pennsylvania created n commission of ten members, which (with \(\$ 365,000\) appropriated up to 19t1) bought about 475 acres (in Chester and Montgomery counties) of the original wap groumd, now known as the hat Washington's headquarters (built in about the year \(1 ; 5\)) and other historic buildings, and reproduced several baks-ovens and huts of the kind used by the army. The staullas also erected (1908) a fine equestrian stalue by Henty K. Bith. Brown to General Anthony Waync, and a number of granite raskers which indicate the situation of the camps of the different bigades. The state of Maine erected in 1007 a granite memojal to the scidiess from Maine who camped here, and in 1900 Massachusetts appropriated \(\$ 5000\) for a memorial to her troops. Valley Forge took its name from an iron forge isiso called "Mountjoy forge") built on the cast side of Valley (cee c, near its mouth, in about 1750 , and destroyed by the Britis! \(1 \mathbf{1 7 7 7}\).

VAllombrosa, a summer resort of Tuscany, Italy, in the province of Florence, reached by a cable railway 5 m . long from the station of S. Ellero (which is 10 m . S.E. of Florence) and 328 ft . above seatevel, on the N.W'. slope of the Prato Magno chain. The former monastery, suppressed in 1816, is occupied by the Royal School of Foresiry. A rumber of hotels have been buile. Similar summer icsorts are situated among the moods above the Casentino of upper valley of ife trno to the rut, swch as Camaldoli, Badia di Prataglia. Ac Ea maldoli ane trin priginal beadquarters of the Camalinalensian order. and by as botel. Five bours' juustiry to the
S. of the hat on foot and 73 m. to the E. of Bibbiesa by rond is the monastery of La Verna, 3660 ft . above set-kevel, foumded by St Frascis in 1215

VALIOMBRCMANE, an order of monks under the Benedictine rule, founded by St John Gualbert in roys He was soo of a Florentine nobleman, and becume first a Beoedictice and then a Camaldutian. Finally, aboct 1030 , he witbdrew to Vallombrose, a shady dale on the side of a mountaia in the Apemines, 10 m . from Florence, and for some years led a completery solitary life. Disciples, bowever, gathered around tims, and be formed them into an order in which the cesobitical and the eremitical lives should be combined. The monas lived in a monastery, not in separate buts lite the Camaldatians, and the Benedictine nule was the besis of the Efe; but the contemplative side was strongly emphasived, and every clement of Benedictine life was climinated that corald be supposed to interrupt the attention of the mind to God-evea manuld lebour. The Vallombrocians spread in Italy and Frasec, bet they never had more than sixty houses. They now have three, with some sirty monks in all The habit was originally grey, but it became black; and the life abo bas been assimilated to that of the Benedictines. There were some convents of Vallombrosin: nuns.
See Helyot, Histoire der Ondres religiewx (1718), Y. oc. 28, 29: Max Heimbucher, Ordes n. Kemgropalionem (1907), 1. 1 it (E.C.B.)

VALLS, a town of northeastern Spain, in the province of Tarragona; 11 m. N. of Tarragona, on the Picamoixons-Rods railmay. Pop. (1900) 12,625 . Vals is an old town, and its walls and towers still remain. Wool and cotton spinning and weaving, dyeing, distilling, paper-making and tanning are carried on bert with considerable activity.

Valols, counts and dukes Of. The French cormetship of Valois (pogus Vodensis) takes its name from Vez (Latin Vadrmi), tis carly capital, a town in the department of the Oise. From the soth to the 22 th century it was owned by the counts of Vermandois and of Vexin; but on the death of Elemmor, sister and beiress of Count Reoul V. (d. 1167), it was umited to the crown by King Philip Augustus. Soon detached from the royal domsin, Valois was the property of Blanche of Castile, widow of Louis VIII., from 1240 to 1252, and of Jean Tristan, a younger son of Louis IX., from 1268 to 127 . In 1285 Pbilip 1II. gave the county to his son Charles (d. 1325), whose son and successor, Philip, coiunt of Valois, became king of France as Philip VI. in 1328. Sixteen years later Valois was granted to Philip's son, Philip, duke of Orteans; tben passing with the duchy of Orleans in 1392 to Louis (d. 1407), a son of Charies V., it was erected into a duchy in 4406 , and remained the property of the dukes of Orleans until Duke Louis became king of France as Louis XII. in 1498, when It was again united witi the royal domain.

After this event the duchy of Valois was granted to several ladies of the royal house. Held by Jeanne, countess of Taillebourg (d. 1520), from 1516 to 1517, and by Marie, countess of Vendome, from 1530 ontil ber death in 1546 , is was given 20 Catherine de Medici, the widow of Henry II., in 1562 , and in 1582 to her daughter, Margaret of Vabois, the wife of Henry of Navarre. In 1630 Lovis XIII. granted Valois to his broeber Gaston, duke of Orkeans, and the duchy formed part of the lands and tities of the dukes of Orleans from this time until the Revolution.

The house of Valois, a branch of the great Capetian family, is thus descended from Charles, a som of Philip 111., and bas been divided into several lines, three of which have reigned is France. These are: (1) the direct line, beginsing with Phirp V1, which reigned from 1328 to 1498; (2) the Orieans branch, descended from Louis, duke of Orieans, a son of Charles V. from 1493 to 1515 , (3) the Angouleme branch, descendants of John, another son of the same duke, from 1515101580 Exclading the royal house, the most illustrious of the Valois branches are: the dukes of Alencon, descendants of Charies, younger son of Charios 1., count of Vabis; the dukes of Aajou
dencemdents of Lotris, the second son of King John II.; and the dukes of Burgundy, descendants of Philip, the fourth soc of the same king.
VALOLS, HBNRI DE (Variseos) (\(1603-1676\)), French scholar, was born at Paris on the soth of September 1603 . He wass a pupil of the Jesuits at the college of Clermont, then studied law at Bourges. He was called to the bar in 1623 , but before long devoted himself entirely to literatura. He had an extraordinary memory and a thorough knowledge of the classics, and to him we owe editions of several of the Groek historians, with excellent Latin transiations, the only fault found with which is that they are too elegant: Polybii, Diodori Sicull, Nicolai Damoscemi, Dionysii Halicarnassii, Apptami et Joamnis Anliocheni excerpla (1634; Henri de Vabois used for this edition a manuscript coming from Cyprus, which hid been acquired by Peiresc); Awniani Marcellinzi nerum gestarum libri 18 (1636); Eusebii acclesiastica historia, a vila imperatoris Consfomlini, procce ef latine (16 s 9); Socratis, Sozomeni, Theadorati a Enagrii Historia ecclasiastica (1668-1673). When almost sixty years of age, and nearly blind, he married Margueritc Chesneau (1664), and had by her four sons and threc daughters He died in Paris on the 7th of May 1676.
His brother, Admisk de Vazois (\(1609-1692\)), was also a wellknown scholar. He made the acquaintance of Father Petau, Father Sirmond and the brothers Dupuy, who turned his attention towards medieval studies. He was appointed historiographer in 1660. He undertook the task of writing a critical history of France, but did not get lurther than the deposition of Childeric 111. (752). He devoted, bowever, to this period three folio volumes (Cesta Francorum sen rerum francicarum lomitres, 1646-1658), which form a critical commentary of much value, and in many points new, on the chroniclers of the Merovingian age. His study on the palaces constructed by the Merovingian kings (De basiticis quas primi Francorum reges condiderant, 1658-1660) is noteworthy in this connexion. In 1675 appeared bis Notilia Galliarums ordine billerarums digesta, a work of the highest merit, which laid the foundations of the scientific study of historical geography in France; but, like all the scholars of his age, he had no solid knowledge of phibology. His last work was a life of his elder brother (De Vita Henrici Valesii, 1677).
Adrien's son, Chamles de Valois (1671 17447), was a distinguished mumismatist, and formed a finc collection of medals, chiefly poman. He entered at an carly age the Acgdémie des Inscripcions et Bedles Lettres, where he became first a pupil (1705), then an aseociate (1714) and finally a pensionmaive (1722). He published littic: we know, however, an fistoive des Amphiclyons by him. His best work. the Valesiana (1694), was inspired by flial affection; in it he collected a number of historical and critigal observations. anecdotes and Latin poems of bis lather. His Eloge, by Frorec. is in the Ménoines de liAcodemic des Inscriptiouss wol. mio p 234 (1747).

VALPARASO, a province of Chile on the Pacific coast, bounded N. by Aconcaguas, E. and S. by Santiago and W. by the ocean. Area, 1953 sq. m. Pop. (1895) 229,756; (1902, estimated) 249,885 . Its surface is chicty moomtainons, and in ereat part barran. The river and mountain valieys, however, are fertile, and where irrigation is possible yield large erops, especially cereals. The valley of the Aconcagua, which flows ceross the N. end of the province, is celebrated for its fertility, especially in tbe vicinity of Quiliota, sometimes called the "garden of Chile." The capital is Valparaiso, and the principal town outside the capital is Quillota.

VAMPARAISO, a city and seaport of Chise, capital of the province of Valparaiso, on a broad open bay of the Pacific in Lat. \(33^{\circ} \sigma^{\prime} 2^{\prime \prime} \mathrm{S}\)., long. \(72^{\circ} 41^{\prime} 15^{\circ}\) W., about 70 m . N.W. of Sentiago. Pop. (1901) 142,282; (1907, estimated) 180,600. The almost semicircular Bay of Valpaniso is slightly over 3 m . across from Punta Angeles to Punta Gruess, and the city gtands on the south side, on the slopes of a spur of barren hills projecting fito the Pacific and forming a rocky peninsula terminating in Punta Angeles. This point affords good shelter from southerly and westeriy storms, but the bay is open to those from the north. The city occupies a narrow strip of beach extending around the head of the bay, and extends up the stecp slopes and valleys of the enclosing hills, which have an alitude of 1000 to 1.400 ft . The extreme outer points of the bay are strongly fortified. Valparaiso is pre-eminendy a com-
seacial city. The foreign trade is largety th the hands of foreign merchants. Among induatrial eatablishments are the government railway shops, large foundry and machine shops, coachbuilding works, a large sugar refinery, breweries, distilleries, bottling works and numerows small lactories. The trade of the port, which is the largert and most important on the Pacific coast of South America, makes it a terminal and port of call for eveveral regular lines of steames, which afford frequent commanication with Europe and the United States. The transcontinental railway line between Valparaiso and Buenos Aires (the Andean tunnel was opened in April 1950) adds to the traffic of the port, through the transhipment of passengers and freight to excape the long and dangerous woyage by way of the Straits of Magellan. Two cable lines give telegraphic communication with Europe and the United States-a West Coast line ranning N. to Panama, and a land line across the Andes to Buenos Aires in connexion with the eable to Europe from that port. There is but one milway out of Valparaiso-the government line to Santiago, with a branch running to Los Andes and the international tunnel through the Andos. There are a wireless telegraph station in regular communication with the islands of Juan Fernandex, state telegraph lines communicating with all parts of the repuhlic, and an efficient telephone service. Valparaiso has an attractive suburb, Vina-del-Mar, immediately E. of Punta Gruesa, only 15 minutes by rail from the city.

Valparaiso was founded in 1536 by Juan de Seavedra, who named it after his birthplace near Cuenca, Spain. It was an ill-cbosen name, however, for there is nothing in it descriptive of the barrea hills, dirty streets and foul-smelling shores of Valparaiso (Paradise Valley). The port and town were of but little note during the colonial period, for free commercial intercourse with the colony was forbidden. In 18ig, near the end of the war with Spain, its population barely reached 5000 . In 1578 it was captured by Sir Francis Drake, and in 1596 by Sir John Hawkins. In 1600 it was sacked by the Dutch under Van Noort. On the 3 Ist of March 2866, it was bombarded by a Spanish fleet under the command of Admiral Nunez, when a large part of the town was laid in ruins, and on the 28th of August i891, after the victory of the congressional troops over Balmaceda's forces in the vicinity, it was partially sacked by the Chileans themselves. Valparaiso has suffered much from earthquakes-in \(1730,1822,1839,1873\) and 1908 . The lastmentioned caused the destruction of a large part of the city, including public edifices, private residences, the water mains, public lighting service and transportation facilities. A large part of the population was deprived of shelter and had to take refuge on the platean above. Aid was promptly given by the national government, and assistance was sent from forcign countries; and the national government mado a grant for the rebuilding of the city.

VAlparaiso, a city and the county-seat of Porter county, Indiana, U.S.A., about 40 m. S.E. of Chicago. Pop. (1890) 5090; (1900) 6280, including 660 foreign-born; (1910) 6087. It is served by the Grand Trunk, the New York, Chicago \& St Louis, and the Pennsylvania railways. The city has a public library (tgos), and is the seat of an Institute of Telegraphy (founded in 1874; chartered in 1900) and of Valparaiso University (1873; formerly knowe as the Valparaiso Normal Training School). This university was founded to furnish a practical education at a low cost, and in 1910 had 187 instructors and a total enrolment of 5367 students. Valparaiso was settled about 1835, incorporated in 1856 as a village and chartered as a city in 1865.
VALPY, RICEARD (1754-1836), English schoolmaster, was born in Jersey on the \(7^{\text {th }}\) of December 1754 . He was sent to schools in Normady and Southampton, and completed his education at Pembroke College, Oxford. In 1777 he took orders, and in 1781 became head master of Reading grammar school, a post which he beld for fifty years. He was the author of Greek and Latin grammars which enjoyed a large circulation. He died in London on the 28 ih of March 1836 .

His second son, Abrabua Jobn Valpy (1787-1854),
printer and publisher, is remembered in connexion with two great undertakings in the department of classical literature. These were reisules of (s) Stephanus's Greek Thesamerus, for which E. H. Barker was chielly responsible; (a) the Delphin Classics in 143 volumes with sariorwiw notes, under the editorial superintendence of Ceorge Dyer. He also founded the Classical Jonernal in 1810.
VALS (Vals-les-Bains), a village of south-western France, in the department of Ardèche, 3 m . N.N.W. of Aubenas, with which it communicates hy tramway. Pop. (1906) town, 2694; com. mune, 4352. Vals is situated on the Volane amongst volcanic mountains. It is celebrated for its numerous cold mineral springs impregnated in most cases with bicarbonate of soda. They are used chiefly for drinking but also as baths, and are efficacious in maladies of the digestion, liver and kidneys, and for gravel and gout. Seven or eight million bottles annually are exported. Wood-turning and silk-milling are carried on.

VALTELLINA (Ger. Vellin; the name comes from the former capital, Teglio, near Tresenda), properly the name of the upper valley of Adda, in north Italy. Historically and officially, it also comprises the Italian Liro or San Giacomo valley, which extends from the Splugen Pass past Chiavenna (where the Liro is absorbed by the Mera, flowing from the Swiss Val Bregaglia) to the Lake of Como, the Mera entering this lake slightly to the north of the Adda. These two valleys (but not Colico, which is in the province of Como) form together the province of Sondrio. Pop. 145,265 (exclusive of Colico) or 132,466 (omitting Chiavenna). Politically the whole valley belongs to the kingdom of Italy, except the side valiey of Poschiavo (Puschlav), which belongs to the Swiss cation of the Grisons (Graubuinden). The chief town is Sondrio (7172), other important places being Tirano (5870), Chiavenna (4592) and Morbegno (3603). Near Bormio (Ger. Worms) there are some frequented mineral springs (sulphur and lime), known in Pliny's time, and efficacious in diseases of the skin. There are several other baths in the side valleys, such as Santa Caterina (chalybeate), Masino and Le Prese (sulphur).
The highest points in the ranges enclosing the valley are the Piz Zupo (13,131 ft.) in the Bernina group and the Konigsspitas (\(12,655 \mathrm{ft}\)) in the Ortler district ; the Monte della Disgrazia (\(12,06.7\) ft.) is the highest peak comprised entirely within the water-basi of the valley. Four well-marked Alpine passes are traversed by good carriage-roads-the Stclvio Pass or Stilfscrjoch (gos5 it the highest carriage-road in Europe) from Bormio to Meran in th Adige valley, the Bernina Pass (7645 ft .) from Tirano to Samade in the Upper Engadinc, and the Aprica Pass 3875 ff .) from Tiran to the Val Camonica and the Lake of lseo, while from near the to of the Stelvio a fourth road leads over the Umbrail Pass (8242 it the highest in Switzerland) to the Swiss valley of Münster, which reached at the village of Santa Maria. The main valley is traverse from end to end by a magnificent carriage-road constructed th the Austrian Government in 1820-1825. A railway runs from Colic on the Lake of Como, past Sondrio to Tirano, a distance of 42 m while there is another from Colico to Chiavenna (\(16 \frac{1 \mathrm{~m} \text {.). }}{}\)

The population is wholly ltalian-speaking and Roman Catholi the valley being in the diocese of Como. The shrine of the Madonnia of Tirano (founded 1520) annually attracts a large number of pilgrim: The valley, particularly in its lower portion, is extremely fertile and of late years vigorous measures have been taken to prevent the damage caused by the frequent inundations of the Adda. Chestnut. vines. mulberry trees and fig trees abound; and there are mans picturesquely situated churches, castles and villages. The chiel articles exported are wine and honey. The wine is largely consumest in north Italy and Switzerland, the best varietics being Grumell. Sassella and Montagna. Large quantities of honey are annually sent abroad.

History. - The political history of Valtellina is made up of the histories of three districts-(I) the "free community" of Poschiavo (first mentioned as such in 1200-1201): (2) the county of Bormio (first mentioned as a county in 1347); and (3) Valtellina proper, extending from the defile of the Scrra di Morignone he Lake of Como on the west. After the defeat 74) these three districts were given (775) by bbey of St Denis near Paris, which never In 824 Lothair 1., confirming by Charlemagne, gave the

Bormio was in 1205 won by the men of Como, who in 1006 had received one-half of Valtelliniz from the emperor, and by 1114 they were masters of the entire .valley. They retnined Bormio till \(\mathbf{1 3 0 0}\), when it freed itself; hut in \(\mathbf{1 3 3 6}\) it belonged to the bishop of Chur. In 1335 the Visconti, lords (later dukes) of Milan, became lords of Como, and therefore of Valtellina. In 1350 they seized on Bormio and Poschiavo, the latter being won back by the bishop of Chur in 1394 and again lost to the Visconti in 1470 . As early as 1360 the men of Rhactia made incursions into Valtellina under the pretext that it had formed part of ancient Rhactia. This idea was confirmed in 8404 , when, in retnrn for kind treatment received during his exile, Mastino Visconti (son of Barnabd) gave to the bishop of Chur his share of the Milanese, including Poschiavo, Bormio and Valtellina. Relying on this donation, the men of the Three Leagues of Rhactia (best known by the name of one. Graubünden)
 manently a member (not a suhject iand) of the Golteshousbund. This donation served too as the excuse for seizing, in 1512, on Chiavenna, Bormio and Valtellins, which were harshly ruled as "subject bailiwicks." Under the governor at Sondrio there were four "podestas" for the three divisions of Valtellina (Morbegno and Traona, Sondrio and Tirano), besides one at Teglio and one at Bormio. Mastino Visconti's donation was solemnly confirmed in 15 r 6 by the emperor Maximilian I. In 1530 the bishop of Chur was forced to sell to the Three Leagues for a small sum his title to these two districts. At the time of the Reformation Poschiavo became Protestant. The ather two districts clung to the old faith and came under the influence of Carlo Borromeo, who, when founding in 1579 his "Collegium Helveticum " at Milan for Swiss students for the priesthood, reserved for Valtellina six out of the forty-two places. Vat tellina was extremely important to the Habsburgs as affording the direct route between their possessions of the Milarese and Tirol. Hence a great struggle, into which religious questions and bribery largely entered, took place between Austria and Spain on one side and France and Venice on the other. In 1603 Fuentes, the Spanish governor of the Milanese, built a fortress (of which traces still remain) close to the Lake of Como, and at the entrande to the valley, in order to overawe it. The religious conflicts in Graubunden led to reprisals in the es subject land " of Valtellina. In 1620 (roth July-4th August)the Spanish and Romanist faction (headed by the Planta family) massacred a great number of Protestants in the valley. 350 to 600 according to different accounts (Vedliner Mord). For the next twenty years the valley was the scene of great strife, being held by the Spaniards (1621-23, 1629-31, 1637-39), by the French (\(1624-27,1635-37\)), and by the pope (1623,1627). At length George Jenatsch, a former pastor, who had been the active and unscrupulous leader of the Protestant party, became a Romanist (1635) in order to free the land from the French by aid of the Spaniards (1637), who finally (1639) gave it back to its old masters on condition that the Protestants were excluded from the valley. In this way the local struggles of Valtellima came to be mixed up with the Thirty Years' War. In 1797 Bormio and Valtellina were annexed to the Cisalpine republic, in 1805 to the kingdom of Italy (of which Napoleon was king), and in 1815 (despite the remonstrances of the Ractian leaguen) to the kingdom of Lombardo-Venetia, held by the emperar of Austria. In 1859 they became, Hike the rest of Lombardy, part of the kingdom of united Italy. Poschiavo followed the fortunes of the "Gotleshaushund." It became (after 1708) part of the canton Ractia of the Helvetic republic, and in 1803 of the canton of the Graubtiaden or Grisons, which was then first received a full member of the Swiss Confederation.

See G. Leonhardi, Das Veldin (1859) and Das Poschienvinatiod (1860) : Romegialli. Storia della Vallellina (\(1834-39,5\) sols): C. von Moor, Geschichte pon Currdien (1870-74): P. C. von Planta. Die currätischen Herrschaften in der Frudalzut (1881): W. Coxe. Travels in Suriserland, \&c. (4th ed. 1801 : Lettere 74-78): G. B. Crollalanza, Storio del Contodo di Chiasonna (Milan, 1870): D. W. Freshfield, Italian Alps (London, 1875): Edmondo Rrusoni. Ginde della Valtellina (Sondrio, 1900); A. Giussani, Il Forte di Fuemics
(Come, 1905); P.A. Lavizari, Storia della Velucling (a vala, Capolago (Tespin), 183B): A. Lorris and E. A. Martel. Le Massif de la Bermina (Zärich. 1894): E. Rott, Henti IV., les Swisses, ef la Hauta lladie\(L_{0}\) Lutce pous les Alpes, 1508-1010 (Paris, 1882); E Rott. Histoire de la representution diplomatique de la Franes aupres des casitons Swisses (Bern; vols. iii. (1906) and iv. relate to the French in the Valtellina from 1620 sq9.); E. Hafter, Georg Jexaleck (Davos, 1894); F. Pieth, Die Feldsupe des Hersozs Rohan im Vellin und in GrauGizaden (Bern, 190s); F. Fossati, Codice Diplomatico della Reria (originally published in the Periodice of the Sacietd Storica a Comense at Como; separate reprint, Como, 1gor); L. von Ranke. History of the Popes, bik vii.; and H. Reinhardt, "Das Velthiner Mord," in Gesckickesfrcund (vol. xl., 1885).

VALUATION AND VALUERS. A valuation of property may be required in view of a proposed sale or purchase, or in order to ascertain the amount for which it will constitute a sufficient security if mortgaged, or which should be paid by way of compensation where it is compulsorily taken or wrongfully damaged. It may aiso be necessary with a view to the assessment of property for rating, or for fiscal or other purposes. Where it is desired to ascertain the amount which may properly be invested in the purchase of land or buildings, the valuer will consider their character and situation, and the greater or less degree of risk incidental to their nature, in order to determine the rate of interest which they ought to yield. The valuation will proceed upon the basis that the property should return to the purchaser the capital which he invests together with interest at the rate so settled, or afford him security for such interest while he keeps the property and the return of the capital when be desires to realize it. Accordingly, the net rent which it may be expected to yield must be ascertained by deducting the known and estimated outgoings and any other allowances which have to be taked into consideration from the gross amount which a knowledge of the local circumstances indicates as the probable return. Where the property is leasehold held for a term of fixed duration, the number of years' purchase will depend upon the length of the unexpired portion of the term, and can be ascertained without special calculation by reference to a table in common use. If the duration of the term or other interest in the property is uncertain, as, for example, in the case of a lease for lives, the number of years' purchase which may fairly be taken will be found in some other of the tables (c.s. Inwood's or Willich's), which have been prepared to meet the different classes of cases with which valuers have to deal. If the property is freehold the number of years' purchase can be found by dividing one hundred by the rate of the interest required.

A valuation or appraisement, under English law; need not be stamped where it is made (i) tor, and for the information of, one party only. and is not obligatory as between partict; (a) in puremance of the order of a court of admiralty or on appeal thenefrom; (3) of property of a deceased person for the information of an executor, or other person required to deliver an affidavit of the estate of such deceased person; or (4) of any property for the purpose of ascertaining the legacy or unccemion or acoount duty payable in respect thereof. Any other valuation or appraisement, whether of property or any interest therein or of the annual value thereof, or of any dilapidations or of any repairs wanted or of the matcrials and labour used, or to be used, in any building or of any artificer's work, must be stamped. An appraiser who makes an appraisement or valuation chargeable. with atamp duty must, within fourteen daya after making it, write it out in words and fosures thowing the full amount thereof upon duly stamped material. If he omita to do so, or in any other manner discloses the amount, he becomes liable to a fine of 550 . Any person who receives from an appraiser, or pays for the making of, any such appraisetroent or valuation not so written out and stamped, becomes lable to a fine of 120.

Where a contract has been made for the sale of property at a valuation, a valuation made in accordance with its terms will be condusive as between the parties, in the absence of frand, collusion or mistake. Wbere there han beea an agreement to sell goods on the terms that the price is to be fixed by the valuation of a third party and such third party cannot or does not make such valuation, the agreement is avoided; but il the goods or any part thereof have been delivered to and appropriated by the buyer he must pay a reasonable price thecefor. Where the third party is prevented from making the valuation by the fault of the seller or buycr, the party not in fault may maintain an action for damages against the party in fault. Where the fixing of a value by valuers is not of the essence of an agreement, but is wholly subsidiary to it, the courts will, if juatice requive it, asoertaia the value in order to carry the agreement
into effect. Where an agrcement had been entered into for the male of a bouse at a fixed price and of the fixtures and furniture therein at a valuation by a person named by both parties, and be undertook the valuation but was refusod permission by the vendor to enter the premises for that purpove, the vendor was ordered to-allow the entry so that the valuation might proceed.
A person who exercises the calling of an appraiser or who, for or in expectation of any fee or reward makes any valuation or appraisement chargeable with stamp duty, must (unless be is licensed as an auctioncer or house agent) have an appraiser's licence, upon which a duty of f2 is charged and which continues in force from the day of its date until the following sth of July. By default in this respect a liability to a penalty of \(\$ 50\) im incurred. Morcover, an unlicensed appraiser cannot recover remuneration. A valuer is liable to the person who has employed him for the coneequences of negligence or want of due care and skill on his part. If his cervices are thereby rendered worthlese he will not be able to recover anything by way of remuncration. A valuation of a house taken by a railway company made by a surveyor who did not enter the house was held not to be a proper valuation. Although a valuer cannot be expected to possers a minute and accurate knowledge of the law, he ought to be acquainted with the general principles applicable to the valuations which he undertakes 10 far as is neceseary in order to enable him to maice them properly. The valuer, however, will be liable for the consequences of his negligence only towards the person who employed him, and not to any one else who may happen in fact to have been prejudiced thereby.
(H. HA.)

VALIE (0 . Fr. voluc, from roloir, to be worth, Lat. nakerc), in general usage a term signifying worth. It has, however, a special meaning in economics, which is the subject of this article.
In some departments of economic theory it is still convenient to use as the basis of the exposition the opinions of J. S. Mill, because he embodied in his treatise on Political Economy in a reniarkable manner nearly everything of importance from the theoretical standpoint in the work of his predecessors, and to a considerable extent subsequent advances in economic esience have been made by way of criticism or development of his version. This observation is especially true of the theory of value. In this subject Mill had digested the mass of previous learning with such effect that be commences his treatment with the remark: "Happily there is nothing in the laws of value which remains for the present or any future writer to clear up; the theory of the subject is complete. The only difficulty to be overcome is that of so stating it as to solve by anticipation the chicf perplexities which occur in applying it." Curiounly enough this part of economic theory was the first to recelve at the bands of Jevons and others serious modification, the nature and need for which can, ho wever, only be groperly understood after a preliminary examination of the old orthodoz position.

As regards the question of definition, Mill starts with the distinction somewhat loosely drawn by Adam Smith between value in use and value in exchange. When we say that a thing possestes a certain value in use, we say in more words than are pecessary that it is useful: that is to say, value in use is an awkward phrase for utility. The conception of utility (see Wealiz) is the most fundamental in economics. It is held by Mill to mean the capacity to satisfy a desire or serve a purpone, and thus "useful," the corresponding adjective, is as fitly applied to ices as to steam-engines. It has always seemed rather paradoxical to apply the term utility (with its adjective useful) to things which the common sense of mankind (or of any representative section) considers to be deleterious or trivial Accordingly V. Pareto has proposed the term ophelimitf (Gr. ف中 \({ }^{2}\) (yos) for this wider interpretation of "utility." But utility in this sense is obviously much wider than value, and Mill proceeds to say that by value in political economy we should always undertand exchage value. This language seems familiar and definite, but on analysis it is clear that exchange implies two terms at least. If we say that a thing can be exchanged, we imply that it can be exchanged for something else, and when we speak of the exchange value of a thing we must directly or indirectly refer to the value of some other thing or thinge. In practice in modern societies this ather thing is standard mosey: an Engishman who talks of the exchange value of anything means the number of pounds sterling (or parts thereof) which it will fetch in the martet or be appraised at by a fair arbitrator. On this view then the value of a thing is its
price; bat a very little experience in the theory or history of economics will show that it is often desirable, and sometimes necessary, to contrast value with price. "At the same time and place," says Adam Smith. " money is the exact measure of the real exchangeable value of all commodities. It is so, however, at the same time and place only." If, however, the exchange value of a thing is not its price, what is it? According to Mill, "The value of a thing is its general power of purchasing. the command which its possession gives over purcbasable commodities in general." But what, we may well ask with Mill, is meant hy command over commodities in general? Are we to understand the complete national inventory of wealth, or the total of things consumed in a given time by a nation? Ohviously such conceptions are extremely vague and possibly unworkable. If, however, we make a selection on any repregentative principle, this selection will be more or less arbitrary.

The elaborate work of C. M. Walsh on the Afeasurement of General Exchange Value (roor) gives a critical analysis of the views of the cbief writers on the subject and indicates the advances made since Mill Mill is to some extent aware of the difficulties, although be never subjected them to a rigorous analysis; and he points to the obvious fact that a coat, for example, may exchange for less bread this year than last, but for more glass or iron, and so on through the whole range af commodities it may obtain more of some and less of others. But in this case are we to say that the value of the coat has risen or fallen? On what principles are we to strike an average? The attempt to answer these questions in a satisfactory manner is at present engaging the attention of economists more than eny other problem in the pure theory. Mill, however, instead of attempting to solve the problem, frankly assumed that it is impossible to say excepl in one simple case. If, owing to some improvement in manufacture, the coat exchanges for less of all other things, we should certainly say that its value had fallen. This line of argument leads to the position: "The idea of general exchange value originates in the fact that there really are rauses which tend to alter the value of a thing in exchange for things generally, that is, for all things that are not themselves acted upon by causes of similar tendency." There can be no doubr as to the truth of the latier part of this statement, especially if we substitute for one commodity groups of commodities. But it is doubtful if the idea of general exchange value arises from a consideration of the causes of value; and later writers have constantly emphasized the distinction between any change and the causes of the change. Following out the idea in the last sentence quoted, Mill goes on to say that any change in the value of one thing compared with things in general may be due either to causes affecting the one thing or the large groop of all other things, and that in order to investigate the former it is convenient to assume that all commodities but the one in question remain invariahle in their relative values. On this assamption any one of them may be taken as repretenting all the rest, and thus the money value of the thing will represent its genemal purchasing power. That is to say, if for the sake of simplicity we assume that the prices of all other things remain constant, but that one thing falls or rises in price, the fall or rise in price in this thing will indicate the extent of the change in its value compared with things in general. There can be no doubt that, in disenssing any practical problem as to the changes in the relative vatue of any particular thing, it is desirable to take the chates in price as the basis, and much confusion and cumbroustiss of expression would have been avoided in the theory of the ssbject if, to adapt a phrase of Cournot's, money had by Mill and thers been used to oil the wheels of thougbt, just as in practice it is used to oil the whecls of trade.
By this method of abstraction the treatment of the theary of value becomes essentially an examination of the causes which Requl determinc the values of particular commudities rele shesfor tively to a standiard which is assumed to be bxed. velus. Cournot compares this hypothetical point at the standard of value to the "mean sun" of astronomeri. In order that anything may possess value in tins sease, it it
may exchange for any portion of standard money or its representatives, it is evident on the first analysis that two conditions must be satisfied. First, the thing must have some utility; and secondly, there must be some diffculty in its attainment. As regards utility. Mill apparently regards it simply as a kind of entrance examination which every commodity must pass to enter the list of valuables, whilst the place in the list is determined by variations in the degree of the difficulty of attainment. Later writers, however, have given much more prominence to utility, and have drawn a careful distinction between final or marginal and total utility. Following Jevons, most economists have adopted this distinction, and the

\section*{Finelor \\ -atind -17)} of vital importance, and hy attempting to introduce it when the conception is inappropriate have often caused much unnecessary complexity. The distinction is certainly useful in throwing light on the advantages of, and motives for, exchanging commodities. Suppose that on a desert island A possesses all the food, so many measures-(say) pecks-of corn, and B all the drinking water, so many measures-(say) pints. Then A, taking into account present and future needs, might ascribe to the possession of each portion of his stock so much utility. The utility of the first few pecks of corn might be regarded as practically infinite; but, if his stock were abundant, and a speedy rescue probable, the utility ascribed to successive portions would be less and less. In the same way B might make an estimate of the utility of successive measures of the drinking water. Now, if we regard only total utilities from the point of view of each, both are infinite. If an exchange were made of the total stocks of both men, the position of neither would be improved. But, if A sets aside (say) half his stock, then it may well happen that he coutd advantageously exchange the rest against part of B's drinting water. In precisely the same way B might set aside so much of his stock for his own consumption, and then the utility of the remaining portion would be much less than the utility he would gain if he obtained in exchange A's surplus. Thus, if the two men exchange their remainders, both will gain in utility; in the case supposed they will make an enormous gain. For simplicity we have supposed each stock to be divided into two portions, but nothing has been said of the principles of the division. It is, however, clear that A can advantageously go on exchanging a measure of corn for a measure of water so long.as by doing so he makes a gain of utility. Conversely \(B\) can advantageously offer water 50 long as he gains greater utility from the corn received in exchange. The utility of the last portion of corn retained by A (or of water by B) is the final or marginal utility of the stock retained, and similarly the utility of the last measure obtained in exchange may be called the final utility of the stock purchased. A will have done his best if these utilities are just equal. For at this point, if he were to offer (at the same rate of exchange) more corn, it is clear that ho would lose more utility than he would gain. Mutatis mutandis, the same reasoning applies to B ; and thus the rate of exchange will be so adjusted as to hring about this equality of marginal utilities on both sides. It follows that, if A gains on the last portion recrived just as much utility as he loses on the portion parted with, on all the otber portions received he will have gained more than he lost. The total of these gans over successive portions has been called by Professor Marshall consumer's rend or surplus.
However useful this theory of marginal utility may be in throwing light on the fundamental nature of value, and on the advantages of exchange, it is obviously too abstract to be applied to the explanation of the relative values of the endless series of commodities and ervices which constitute a nation's stock of valuables at any
time. For this purpose we must resort to the law of suppls and demand, which requires a very carcful statement owing in the ambiguities of popular language. Mill has succeeded in getting rid of most of these ambiguities, but he has hardly given due emphasis to the fundamental character of the law. He argues, after the brief consideration allotted to the elerocnt of utility, that the other preliminary condition neoessary for value-
difficulty of attainment-is not almays the mame kind of diffculty, and he arrives at three distinct laws of value, according to three forms or degrees of this dificulty. (1) In the first place, the difficuley may consist in an absolute limitation of the supply, Three and in this case tbe corresponding law is said to be the Luws of law of supply and demand. Even on Mills view the veine. class of commodities which comes under this heading is both large and important, for it includes not only the favourite examples of old pictures, china, \&c., but also tand, and eapecially building sites in large cities. Agrin. it is pointed out that, alt hough comparatively few commodities may be absolutely limited, almost all commodities may be so locally and temporarily, which is really only another way of saying that the law of supply and demand governs all market values; for it is obvious that the supply actually forthcoming or obtainable in a specified time in any market is limited-a point which may be well illustrated by the extreme case of a "corner." Again, under certain circumstances the supply may be artificially limited, as in the case of monopolies, the classical example being the destruction hy the Dutch of some of their spice, in order that the liraited quantity might sell for a total higher price. Besides all these important instances of the operation of the law of supply and demand, Milt is compelled also to bring under the same lave the wages of labour, the values of the staples of international trade, and some other peruliar cases of value. In fact, step by step be is almost forced to the conclusion, now generally accepted. that the law of supply and demand is the fundamental law of value, of which the olher laws are only particular cases. At the cutset, however, he appears to consider the two others as of co-ordinate importance. (2) When the difficulty of attaiament consists not in the absolute limitation but simply in the fact that the article requires labour and capital to produce it, the normai or natural value is said to be determined by the cost of production. (3) In the last case taken by Mill it is supposed that an article can be increased in quantity, but only at an increasing cosk, and in this case the corresponding law of value is the cost of production of that portion which is obtained under the most nofavourabie circumstances. These three laws of value may now be examined critically and their mutual relations discussed, for the last two, if not properly of co-ordinate importanee with the firg, are at any rate wide generalizations.

In order to understand the law of supply and demand, it is best to take separately the general law of demand and the Sopety general law of supply, and then effect a combination. and cement Demand must be defined as the quantity of any article demanded at some particular price, it being assumed of course that the bidder of the price can meet bis engagements, or, as is sometimes said, that the demand is an effectual demand. It is quite clear that by demand we cannot simply mean desire to possess, because in a sense every one desires everything, and the less the means of payment so much greater in general is the desire. Again, it is obviousiy necessary to insert the qualifying clause "at some particular price," because, as a rule, with a change in price a different quantity will be demanded. It is, indeed, this variation of quantity demanded, according to variation in price, which gives rise to the etatement of the general law of demand, namely: As

\section*{L-w of}
cemen the peice of any article fails, other things remaining conversely, as the price rises the quantity demanded decreases. A very good example of this law is found in the effects of the remission of taxcs. The repeal of a tax leads to a fall in price, and the fall in price is accompanjed by increased consumption. Conversely, it has often been found that to increase the amount of a tax does not increase the revenue from it, because the demand for the article falls off. The general law of demand is best exprested as by Cournot by seying that the quantity demanded is a function of the price. If we suppose that corresponding to the smallest change in price there is a change in the quantity demanded the law of demand may be illustrated hy curves. Marshall has introduced the idea of demand schedules, the quantities demanded being written
in one column'and the corresponding prices in unother. The precise connexion between the price and the quantity demanded differs in different cuses, and, strictly speaking, is probably never the same for any two commoditics. Every compodity has its own curve or schedule. At the same time, bowever, commodities may be placed in large classes according to the generad character of the variation. The variation of quantity demanded aceording to price will ultimately rest on the principle of marginal wility explained above. A person with a limited amount of money to spend will hit the economic mark in the centre if the final utilities of his several purchases are equal. This is a rather tecbnical way of saying that a prudent man will not spend a penny more on any particular thing if the penny spent upon some new ohject would give him a little greater satisfaction. Reverting to the variations of demend according to price, a contrast will at once be observed betwern mecessaries and luxuries. However much the price rises, so long as people have the means they must consume a certain amount of necessaries, hut, however nuch the price falls, the limit of consumption of bread, for example, must soon be reached. On the other hand, a great fall in price of many luxuries may cause an enormous increase in the demand, whilst a great rist may almost destroy the demand. The rate of charge-the quantity demanded acconding to the changes in prioe-ts referred to as elasticity of demand. If for a smali change in price there is a considerable increase in the quantity demanded, the demand is said to be very daslic. Other characteristics of demand are indicated by the terms direct, derived, compounded, \&ec, the demand for any one thing being obviously affected by the possible use of substitutes on the one side and on the other by the emergence of other uses. Recent writers, notably Marahali. have given much attention to the development of the law of demand in its various aspects, which has been too much neglected in the Ricardian analysis followed by Mill. A great deal of light might be thrown on many intereating problems in the progress of a nation and of.its various component clasen, if the laws of demand, or the atatistics of consumption according to price, were obtainable.

Turning to the clement of supply, this tern in a similar way may be defined as the quantity offered for sale at some particular price, and the general law of supply may be stated thus: As the price rises, other things remaining the same, the quantity offered tends to increase, and, consupply. versely, as the price fallis the quantity offered tends to diminish. Expressed in this menner, supply appears to be eractly analogous to demand, and the analogy seems to hold good even when we push the analysis up to the utility to the seller as compared with the utility to the buyer. For, as the price rises, the seller will obtain greater utility, and will thus retain less for his own use or will be induced to produce more. On closer inspectioa, however, the law of supply is found to be not so simple as the law of demand. It would only be so it the seller had simply to compare the rclative advantages of exchanging his commodity and of retaming it for his own use, without any further reference to the conditions of, or the motives for, production. In most commodities, however, the determining influence is not the comparative utility of consumption by the owner on the one hand or of the consumption of something else obeained by exchange on the other, but it is rather a comparison of the trouble of producing with the advantage of aelling the articie when produced. Of course, if we are considering tinished products in any market the case is more simple; but even here the question of the relative advantages of present sale and rescrvation for a future market or distant place must be determined, and then the element of cost of production will again be brought back. The law of supply may be dcveloped on lines corresponding to the law of demand, and we may construct supply schedules on curves indicating the relations between the range of prices and the quantities offered at those prices.

Before considering the reiation of cost of production to supply. it will be convenient to combine the laws of supply. and demand, taking the former in its simplest aspect, and
to state the general law of supply and demand as governing value. Excluding the simple case of the barter of two commodities of which the rate of exchange will be determined as explained above in reference to marginal utility, and meaning by demand the quantity demanded in market at a certain price, and hy supply the quantity there and then offered at a certain price, the general law may be stated thus: In any Bonacios market the price of any article will be so adjusted cormove that the quantity demanded will exactly equal the comen ect ementr. quantity oflered at that price. The force by which the adjustment is made is, in general, competition. Thus, if the price were above the point indicated by the law, there would be a lessened demand, and the competition of seliers would tend to lower the price. Conversely, if the price were lower the competition caused by the increased demand would tend to raise it. The law as thus stated corresponds to what Mill calls the equation between demand and supply. He was induced to adopt this phrase in place of the more popular expression, the ratio of demand to supply, on the ground of its greater accuracy. And, if the term ratio is to be taken strictly, no doubt Mill's criticism is perfectly just. At the same time the equation must be stated very carefully to avoid falling into the truism suggested by Cairnes, namely, that in any market the quantity bought at any price is equal to the quantity sold at that price. The point is that in accordance with the general principles of supply and demaod the quantities offered and demanded vary with the price. And, however inaccurate the literal use of the term ratio may be, it has the advantage of suggesting a change of price according to changes in demand and supply. The equilibrium between demand and supply was illustrated by Cournot by the intersection of the demand and supply curves, and for purposes of theory this mathematical method offers great advantages.
It may be useful at this point to consider the principles by which monopoly values are regulated. The simplest case is Wews When one individual possesses the whole stock, and Hedr veluen the cost of production is so small that it may be neglected. Take the case, for example, of some patural well having a unique character for the mineral waters it supplies. The monopolist will, in the first place, have to discover the law of demand for his article. If he fixes a very high price, he may only occasionally sell a pint to a king or a millionaire; whilst, if be fixes a very low price, be may sell to every peasant and yet get a very poor return. He will, in fact, bave to work out a problem in mathematics, and must so adjust his price that the quantity sold multiplied by the price per unit will be a maximum. The same kind of difficulty is found in the case in which the expenses of production, although considerable, are practically fixed or only increase slightly in proportion to the quantity furnished. The minimum price will be given by the expenses of production, whilst the actual price will tend to be such as to yieid the maximum profit. Take, for example, the case of a steamer which has a practical monopoly and is not controlled by government. The owner will not send out the steamer at all unless the passengers and cargo pay the expenses; but, if there is a great demand, he will raise the price so as to secure a maximum profit. In general, however, any increase in the quantity of the article produced (or the service readered) will be accompanied by an increase in the neceasary outlays, and this increase may be greater or less per unit. In these cases the calculation of the maximum profit is a matter of great difficulty. Take, for example, the case of a railway which has a monopoly in a certain tract of country. The manager may aim at keeping down expenses and charging high rates, being contented with a moderate traffic; or he may lower his charges and incur additional expense to increase the groas income. It is worthy of temark that in many cases the monopolist has a choice of two methods which give practically equally good results, one starting with low and the other with high prices. But it is clear that the mass of the general public or the great body of consumers have an interest in low prices being adopled, whilst, on the
other hand, the tendency is usually for the monopolist to charge higher prices than are really profiable in a macimum degree. The simplicity of the method of high prices is always attractive and often deceptive. Accordingly, even on these very zeneral grounds, the interference of government with monopolies may sometimes be defended as being in the interests of the public and not against the interests of the monopolists. The case of the parliamentary third-class tickets furnishes an instructive example. At first the railways made their parliarnentary trains as slow and inconvenient as possible, whereas now there is hardly a train which does not carry passengers at partiamentary rates without compulsion. As a rule, however, in modern commercial countries legal monopolies are an exception. Any one, for example, can prosecute any trade or manufacture if he can provide the requisite skill, labour and capital; and even as regards land -at any rate in the greater part of England and Scollandthere is from the point of view of cultivation no real monopoly. But although legal monopolies (apart from patents and the like) are not general, and in most countries the law is idverse to the creation of monopolies,' as a matter of fact in moders times there has been an increasing tendency to the amalgama. tion of businesses of all kinds into large combinations (trusts, kartells, \&c.), which have the power of monopolies. In the same way in the relation of labour and capital the method of collective bargaining partakes of the character of monopoly. There may be buyers' as well as sellers' monopoly, and capitalistic combinations operate by this method in dealing with the production of raw material or other requisites and also with Labour.
The theory of monopolies being a case of the determination of maxima is essentially matbematical, and many of the problems, especially as regards the incidence of taxes and the benefits of the public acquisition of "natural" monopolies, can only be fully explained mathematically as by Marshall. In recent years great attention has been given to the realistic study of monopolies (J. W. Jenks, H. W. Macrosty, \&ec.; see Teusts). When competition arises, and is efective, exceptional profit ceases, and thus a new principle for determining values comes into play. If the producer of any article is oblaining more than the usual rate of profit, he at once provokes cpmpetition, and thus even the dread of this possible competition may keep down prices. This is often expressed by saying that the potential supply affects prices almost as much as the actual supply. It thus becomes obvious that, as regards frecly produced commodities the production of which may be extended indefinitely at the same or at a decreasing cost, the value tends to conform to the minimum cost of production, and that any other value is consequently unstable. It will he observed, however, that cost of production only determines values by: operating through the actual or potential supply, and thus that the law of demand and supply is fundamental. Once a thing is made, the actual cost of production has no influence on its value, except as indicating the conditions of Iuture possible supply.

At this point it becomes necessaty to analyse and explain the nature of cost of production. In the last resort it will be found that nothing can be produced without cossef labour, and in a modern society capital must be added. Thus the component elements of production proct are labour and capital acting by natural forces upon raw material. But, since both the forces and the produce of nature require labour and capital for their exploitation, the elements that must be considered primary and fundamental in the case of commodities that can be indefinitely increased are labour and capital. Capital, again, is itself a product of labour, and it is also wealth set aside by the owner for future use instead

\footnotetext{
The general theory of monopolies wasadmirably treated by the French mathernatician and economist Cournot, Recherches sur ket principes mathémaliques de la théorie des richesscs (t838). and as is as posmible without mathematics in the Rruue semmaire des tertriers \& Comomights (1877).
}
of for present consumption. Accordingly, in order that 2 thing may be continuously produced, labour must obtain a sufficient reward for toil, and capital a sufficient reward for " abstinence" or "waiting," or for preservation and accumulation of wealth. Thus the ultimate elements in the real cost of production are the toil and trouble and irksomeness of labour and of saving. But this toil and trouble will not be submitted to unless in any particular case the fair reward of industrial competition is forthcoming. However much pleasure a good work man may take in his work or a prudent man in his savings, in the industrial world as at present constituted both labour and capital will be attracted towards the point of highest reward (compare Waces); and; accordingly, it is a necessary condition of the production of any article that the price ohtained will yield the average rate of wages and profit obtainable for that species of work. Now these rates of wages and profit Expesses can be expressed in terms of money, and may be desigofpros Caction. nated, following Marshall, the expenses of froduction as distinguished from the real cost. The real cost of production would on analysis consist of a conlused unworkable mass of "efforts and abstinences," or "disutilities," and the relation of these mental strains to their material rewards is the problem of wages and profits. But for the purpose of relative values it is not necessary to push the analysis so far; and thus, if we regard the capitalist as the producer, we may look on the elements of production as consisting of wages and profits. And this is quite in accordance with customary thought end language: every one who asks for the details of the cost of a thing expects to have a statement of the wages and profis direcily involved, and of the material, which again directly involves wages and profis. So far, then, as freely produced commodities are concerned, the general law is that they tend to sell at such a price as will yield on the average the ordinary rate of wages and profits which by industrial competition the occupation can command. It is at this point Wegee that the difficulty emerges as to the precise nature 0 selves. of the connexion bet ween the prices of commodities and the money wages and profits of producers. Are we to consider that the former are determined by the latter, or the latter by the former? If, for example, commodity A sells for twice as much as commodity B, are we to say that this is because wages are higher in the former case, or are the wages higher because the price is higher? The answer to this question is given in the theory of Waces (g.v.). It is sufficient to state here that, in discussing relative values, we may assume that industrial competition has established certain relative rates of wages and profits in various employments, and that any prices of articles which yielded more than these rates, whilst is other cases no corresponding rise took place, would be unstable. Thus, in discussing the normal values of freely produced commodities, we have to consider the quantity of labour and the rates of wages and the quantity of capital and the rate of profits, the normal rates of these wages and profits being given.
The use of the term "normal" requires some explanation. The word norma properly refers to the square used by masons

\section*{Moren}
veres. and carpenters, \&ic., and thus a thing may be said to be in its normal position when no change will be made: that is to say, the normal position is the stable position. or it is the position to which the workman will try to adjust his work. And, similarly, by the use of normal as applied to wages and profis, we mean the stable rate or the rate towards which they are attracted. It is thus quite possible that the normal rate may differ from the average rate or the rate obtained over a term of years. For it may easily happen that as regards wages, for example, a higb rate for a short period may lead to sach an increase in that kind of production that for a much longer period the rate will fall below the normal. The normal rate seems to refer to the actual conditions of industry, the rate which can be obtained for a given amount of exertion, taking the average of employments at the time, rather than to the particular rate obtained for some class of work over a period of years.

With these exphanations the proposition holds good that the aormal values of freely produced comroodities tend to be equal to their cost, or rather expenses, of production, and any price which yields a greater or less return 'to labour and capital is unstable.

Marshall (Princfilles of Ecomomics, bt. v. 5th ed., 1907) has treated very fully the subject of normal values and the relations of normal and market values from the side of theory; But the nature and importance of the distinction is periaps best realized if we compare the normal relative values of important commodities over a period of centuries, as was done by Adam Smith and in the monumental work by Thorold Rogers on the Fistory of Agriculture and Prices. At this stage in the analyais the difficulty must be met that even in a position of stable equilibrium, i.e. when the normal demand is just satisfied by the normal supply, the different portions of the aggregate supply may be produced at different costs according to differences in the natural environmeat of in the availability of different facters of production. In dealing with this difficulty the modern conception of marginal cost is of importance. If a commodity is produced at a uniform cost per unit whatever the amount, then the normal value depends simply on this uniform or normal cost; any temporary divergence in market prices will lead to a contraction or increase in the supply until the exceptiomal gains or losses are got rid of. It may happen, however, that portions of the supply can be obtained at different costs, and in this case the normal value is determined by the cost at the margin. It is this marginal coss which fust gives the rates of remuncration to labour and capital which suffice to keep up the continuous supply of the requisite factors of prodoction. It a commodity is produced according to the law of diminsistivg rcturn, or, what is the same thing, if the supply can oaly be increased after a certain point at an increasing cost per unit, then the marginal portion just pays its expenses and the previous portions yield a differential remuneration which constitules economic rent. If the conditions of difference in cost are natural and permanent we have the case of pure economic rent (sce below), but if the factors of production in response to the stimulus of exira remuneration can be increased or improved the extra rates of remuneration tend to disappear with the increase in supply of the more advantageous factors, and instead of pure economic rent we have various species of quasi-rents. "Even the rent of land is seen not as a thing by itself but as the leading species of a large genus; though indeed it has peculierities of its own which are of vital importance from the point of view of theory as well as of practice "(Marshall). Marshall has given special attention to the development of this application of the principle of continuity, of which Coumot was the first writer to realize the significance.

If a commodity is produced according to the law of increasing return (or diminishing cost per unit as the quantity is increased) the solution of the problem of nomal value presents peculiar difficullies which cannot be treated in a preliminary survey. Two results, however, of practical importance may be noted. In the first, under increasing return the first established business can be expanded more easily than it is possible to start a new concern, and if new competing concerns are started there are obvious advantages in amalgamation, so that we arrive at the modern generalization that the natural tendency of increasing return production is to monopoly. This again gives the chief economic justification for " trusts"; it being said that through the adoption of various external and internal economies they more than neutralize the higher prices of monopoly.

The other result of importance is that under competition the less advantageous met hods of production tend to be extrurled and the law of increasing return gives way to that of constant return. For further consideration of these difficulties the reader may refer to the analysis by Marshall (Principles of Economics, bk. v. ch. xi.). The economic analysis of cost of production (or if we take the money measures of the various elements involved, expenses of production) involves a reference to the other great departments of economics, namely.
production and distribution; and it is neceasary to take account of the interconnexion and mutual dependence of these departments and that of exchange, in which the idea of value is predominant. In the last resort praduction will not be carried on unless labour and capital receive a sufficient reward and the sufficient reward is the normal value of the factors of production. But when we are comparing the relative values of commodities and are seeking to explain, for example, how it is that for long periods of time these relative values are stable, or conform to some regular law, we have to break up the elements of value into the constituents of the expenses of the various factors of production. This leads up to the analysis of cost (or expenses) of production as dependent on the amounts and qualines of the labour and capital required.

If all commodities were produced directly by the expenditure of labour, and in such a way that capital need not be considered,

Etments efers prosen ol protucthoa. as in the simple natural state of society taken by Ricardo, then the only element to consider in value would be the quantity of labour. And in a society of a more developed character, in which wages are. paid, if we consider that the rate of wages is unform, and that profits may be disregarded in comparison with wages, the quantity of labour is the most important consideration, and a fall in the relative value of any article can oaly take place tbrough some econonty of labour. But, as we approach more nearly to the actual constitution of modern industrial societies, we find serious difierences in the rates of wages in different employments, the use of fixed capital becomes of greater importance, and in some cases the lapse of lime necessary for the completion of the commodity is considerable. Thus interest and profits, as well as the differential rates of wages, have to be taken into account just as much as the quantity of labour, and it is generally convenient to consider also the established differences in various returns to capital under different conditions (risk, irregularity. \&c.). Indirectly, of course, since all capital in the ordinary sense is the result of labour, the quantity of labour is always of primary importance; but, in considering the proximate causes of relative values, it is best to consider capital and labour as independent factors. It follows, tben, that, in order to compare the relative values of two cornmodities, A and B, freely produced in a modern industrial socicty, we must take into account, first of all, the relative wages and relative profits, and the relative amounts of labour and capital employed. If the producers of A are skilled workmen, and if the relurn to the capital is uncertain, whilst in the case of B the labour is unskilled and proft steady, then the value of \(A\) will be higher than that of \(B\), supposing each produced by the same amount of capital and the same quantity of labour. Obviously, too, any change in the relative wages and profits will affect the relative values. If the commodities considered are not capable of division into similar parts (such as yards of cloth or silk), but must be considered in their entirety (e.g. ships and houses), then we must take into account also the different quantitics of labour and capital required for tbeir completion, as well as the relative rates of wages and profits. As regards changes of value in this case, it will be observed that, if the proportions are different in whicb labour and capital are employed in the production of two commodities, then any change in the general rates of wages and profits will affect relative values. By making various suppositions as to changes in the different elements of the exponses of production, a great many cases may be obtained, as is done, for example, by Mill (Pol. Econ. bl. iii. ch. iv.).

All the cases enumerated and others may, however, be deduced from a general formula. Let \(E_{1}\) represent the total expenses of
deacral
fermult
fores.
peases of
praduc-
How. production of commodity \(A\). Let \(Q\), be the quantity of fixed capital employed, and let \(r_{1}\) be the rate of wear and tear per annum, so that the loss is \(Q_{1} / r_{\text {j }}\). Let \(P_{1}\) be the rate of profis per cent. per annum which must be oblained on the whole capital. Let \(Q_{2}\) be the number of labourers, and \(w_{2}\) the rate of wages per annum. Let in represent the time baken lor production reckoned in years
(\(f_{1}\) may be less than unity, thus \(t_{1} / Q_{2}\) would be weeks). Then the total expenses of production are
\[
E_{1}=\left\{Q_{1}\left(\frac{P_{1}}{100}+\frac{1}{r}\right)+Q_{2} \cdot w_{2}\left(1+\frac{P_{1}}{100}\right)\right\} H_{1}
\]

This simply means that the commodity must return in the normal case profits on the fixed capital with repair of wiste, and also the wages expended (the amount depending on the number of labourers and the rate of wages), with profit on the circulating capital over all the time necessary to complete production. In some cases, it may be observed, it would be necessary to take t diferently for the fixed capital and the labour or circulating capital. Then, in a similar way \(\mathrm{E}_{2}\), the expenses of production of \(B\), may be expressed:
\[
E_{2}=\left\{Q_{3}\left(\frac{P_{3}}{100}+\frac{1}{r}\right)+Q_{1} \cdot w_{4}\left(r+\frac{P_{3}}{100}\right)\right\} e_{r}
\]

Thus the relative values of \(A\) and \(B\) will be found by comparing the aggregate of these several elements expressed on the righthand sides of the equations. It will now be evident on what a number of variable elements relative values must depend, even when we consider that the com-
Chargen
Eo res
lechers. modities can be indefinitely increased by the proper values. expenditure of capital and employment of labour. With the progress of invention and the development of industrial compelition, constant changes are taking place in the various elements, and in the somewhat complicated formula given certain practical clements have been eliminated. Even if we suppose, for the sake of simplicity, that \(P_{z}\) and \(P_{s}\) are equal, as also \(u_{2}\) and \(w_{4}\) and \(t\), and \(t_{2} \rightarrow\) that is, if we suppose a uniform rate of wages and profits, and the same amount of time required -still any change in these geveral rases will affect relative values, owing to the different proportions in which fixed and circulating capital may be employed in the two cases. Thus, for example, we arrive at Mill's statement: " All commodities in the production of which machinery bears a large part, especially if the machinery is very durable, are lowered in their relative value when profits fall." And it will he found on trial that by making various suppositions as to the identity of certain of the elements, or as to their disappearance, many other causes of changes in relative values may be deduced. Two important practical conclusions of a general character may be drawn from this analysis. (1) Relative values are liable to constant disturbances, and accordingly, since relative prices tend to be adjusted to relative values, rehative prices must be constantly changing. (a) It is extremely difficult to measure changes in the value of the monetary standard, or movements in the general level of prices, or varialions in the purchasing power of money incomes.

These difficulties are further increased by the importance of the group of commoditics which can only be increased tithe arts of production remaining the same) at an increasing cost, and which are placed by Mill under a third law of volee aed value. The most important examples of this law are

\section*{remer} agricultural and mining produce. In order to make the principles on which this law depends clear and intelligible, it is necessary to proceed at first by the abstract method. Assume tben that there is an isolated country and that its agricultural produce consists of corn. Then at any given stage of the growth of wealth and popslation the amount of corn may be increased (the art of agriculture remajning stationary) either by taking into cultivation inferior lands or else by cultivaling with greater care and expense the lands already in cultivation. But in either case what is known as the law of diminishing return would come into play, and the additional supply could ondy be oblained at an additional cost. It may be assumed that al any stage of development the cultivation would be carried to such a point as to give just the ordinary return to capital on the last " dose " of capital expended. Further it cannot be carried, for no farmer will work at a continuous loss; and competition will ensure that it is carried so far, for, if this last application of capital yiclds ordinary profit, the former " doses" must yield more, that is to say, reat as well as profit. It thus becomes manifest that, under the conditions supposed, the extent to which "the margin of cultivation"
wil extend depends apon the price of the produce, and in the normal case-The price must be equal to the expenses of production of that part which is produced under the most unfavourable circumstances. This then is the thind law of value, from which the economic theory of reat is an immediate deduction. For, if the last dose obtains just a sufficient return, the former doses must yield more, and the sum of these extra profits is rent. It tbus appears, also, that rent depends upon price and not price upon rent.

The pure theory of rent is artived at by making certain hypotheses and abstractions, and accondingly it must not be geans. applied to particular practical cases without further cutcers a/real. consideration. The theory certainly indicates the effect of very important causes, but requires in practice a certain amount of qualification. (1) The essence of the theory is that the return to each dose of capital applied can be separated, and that the application of capital will cease when the last dose yields only ordinary profits; and no doubt it is roughly true to say that a farmer will discover oa trial at what point he should cease applying capital, and that this will depend upon the price of the produce. At the same time, however, it is quite possible that a farmer who owns the land which he tills may find it advantageous to carry cultivation to a further pitch than if he only rented his land. For he will apply his own habour and capital at a less return on his own land. There can be Fitcle doubt that very many important improvements made by landowners have yielded less than the ordinary rate of profit, just as peasant proprietors obtain a poor return by way of wages for their own labour. A landowner cultivating his own land has the whole margin of economic rent to fall back upon, but a farmer has to pay his rent as a first charge. Thus it is possible, provided always that the land is cultivated in both cases with the same skill, that food would be cheaper if all the land were cultivated by the owner and not by tenants farming for a profit, and thus the fact that many American farmers pay no rent may account partially for the lower prices at which they sell their corn. (2) Again, the pure theory takes no account of the size of the portions into which the land is divided, nor of the kinds of crops which are grown. But, when most of the land of a coumtry is rented, both of these factors have to be considered, and it may be more convenient to the landowner to let the land with certain restidetions, which again indirectly operate on the price. (3) It has been well observed hy Passy' that the principal effect of various land laws is 10 increase or diminish the amount of the gross produce, which in Ricardian phraseology woold mean to extend or contract the margin of cultivation. It thus appears that it is not always true to say that the payment of rent makes no real difference to the general public, and that it is simply a necessary method of equalizing farmers' profits. At the same time, however, with the necessary qualifications, there is no doubt that price delermines rents, and not rent price, especially when prices are affected by foreign competition. In Greal Britain a striking example has been afforded both of the abandonment of inferior lands (the contraction of the margin) and of a heavy fall in rent under the induence of falling prices.

The hypothetical history implied in Ricardo's theory as to the effects of the progress of society upon the value of agricultursl produce also requires some criticism, such as that given by the historian of agriculture and prices, Thorold Rogers. The theory assumes that in the first place population increases, and thus there is a greater demand for food, and that therefore the margin of cultivation extends and the price rises, and rent rises also. But, as Rogers observes, history shows that agricultural improvements of all kinds have first of atl increased the amount of food, and thus allowed of an increase in popolation. It is worth noticing that in our own times an increasing population in rural districts (e.g. the Highlands of Scotland and the west of Ireland) may indirectly tend to lower or destroy rente through minute salsdivision. Ricardo's theory, however, accounts very
\({ }^{1}\) Sysilimes de caltare en Fronce.
well for the rise in the ground-rents of towns and cities, and it is there far more than in the rural districts that the unearned increment is to be found.
The value of mining produce is determined generally in the same way as that of agricultural produce; but similar qualifications must be introduced. The theory is that both extensively and intensively the produce of mines is subject to the law of diminishing return, that the Valoe of
nulaher margin recedes as the price falls and extends as it rises, and that thus the price is determined by the most costly portion which it just pays to bring to market. The principal point to observe is that mines are gradually quite exhausted. In general the produce of mines is, the that of land, consumed in a-comparatively short time, and thus the value is subject to fluctuations according to the conditions of the annual demand and supply.
The peculiar durability of the precious metals, however, makes them in this respect differ widely from most mining produce. It is of course undeniable that (supposing coinage frec) the value of standard coins will be equal to the value of the same amount of hultion, and, conversely, that the bullion will be equal in value to the same amount of coins. The older cconomists argued that the precious metals had their value determined by their cost of production under the most unfavourable circurnstances, and then argued that in consequence the value of money (or coins) tended to be governed by the cost of production of hullion. If, bowever, it is remembered that the annual production does not probably amount to \(2 \%\) of the quantity in the hands of man, that cost of production can only operate through actual or potential supply, and that in the case of money the increase must be real to affect prices, it will be readily seen that the value of bullion is determined hy the general level of prices (or the value of money), and not that the value of money depends upon the value of the bullion. At the same time, however, it is true that, if prices become very high,-in other words, if the value of money, and thus of bullion, becomes very low,-then a check is placed upon production from the mines, and, conversely, with falling prices or a rise in the value of the precious metals mining for them is extended and encouraged. But the difference in the annual supply due to this influence will be small under present or similar conditions. On the whole, this case of the precious metals fumishes perhaps the best example of the way in which the cost of production can only act through the law of supply and demand.

There is one other part of the general theory of value which requircs some notice. Some articles can only be produced in conjunction with others (e.g. hides and beef, wool and mution), and some modification of the theory is needed to suit this case. The law deduced is thatThe sum of the valucs must be equal to the joint expenses of production, and the relative values inter se are determined by demand and supply. Thus the Australian sheep-farmers wiil extend their sheep-larms so long as for wool and mutton together they obtain a fair profit, but the amount contributed by each portion will be determined by the refative demand. It is interesting to observe that in the progress of society the value of the meat has risen as compared with that of the hides and the wool. The same principle determines the kind of produce which will be raised from land, though the application is rather more difficult owing to rotation of crops, \&c.

Much discussion has talen place recently on the queston whether a distinct theory of international values is required. In the limits assigned to this article it is only possible to incticate the prin rial points in dispute. The "orthodox" theory, as held by Ricardo. Mill and Cairnes, has been allached by Cournot, Sidgwick and

Theory of inter -ationa) values others, and has been re-stated with admirable clearness and much original power by C. F. Bastable.? The best may to answer the question seems to be to make clear the assumptiont
- Theary of TMiernational Trade.
on which the values of commodities produced within any " nation" are determined, and then to consider whether any change must be made when we bring io other nations. We are at once met with the difficulty, What is a "nation"? The orthodox answer appears to be that within any nation (for which the term " economic area " might perhaps be advantageously substituted) there is effective industrial and commercial competition. This appears to imply no more than is contained in the principle noticed above, that relative values tend to be equal to the normal expenses of production (commercial competition), and that the expenses tend to be proportioned to the real cost (industrial competition). The question then arises, com- Do these conditions not exist in international trade? geration The answer appears to be, first, that commercial comcach petition certainly holds good; for as soon as a trade is established the commodities will scll at the same prices is both countries (allowance being made for cost of carriage). It would plainly be absurd to say that the value of Manchester goods is determined by their expenses of production if they are consumed in England, hut by something else if they are sent to India. If then there is any difference between domestic and international values, it must arise owing to the absence of effective iodustrial competition; that is to say, in the same country (or economic area) the real cost detcrmines the expenses of production on account of the supposed periect mobility of labour and capital, but between different economic areas these agents of production do not pass with sufficient readiness to secure a similar correspondence. It thus follows that a country may import articles which it could produce at less real cost, provided that it pays for tbese imports with exports which cost even less. A very striking example of this doctride of comparative cost, as it is termed, was furnished by Victoria after the great gold discoveries. All kinds of produce were imported and paid for with gold, because there was less real cost involved in obtaining the gold to pay for imports than in making the articles. According to this theory every country will devote its labour and capital to its most productive uses; and, if by some new imports a domestic industry is checked or abolished, it is argued that the labour and capital will be devoted to increasing the exports so as to pay for the new imports. It must clearly be assumed as axiomatic that in the absence of loans, tributes, \&c., imports can in the long run only be paid for by exports, and also that those articles will be exported which can be produced at the least comparative real cost. This theory then may be held to explain in a satisfactory manner the origin and development of international trade; but the question of values is still un-Rect- determined. Consistently with exports paying for rocat imports many different rates of exchange are possible, demaed and the particular rate actually adopted is said to depend entirely on reciprocal demand. And in an extreme case, in which new countries trade solely in articles of which each has a monopoly, this answer would seem to be correct; but, when we consider that under present conditions trading countries have many articles in common, and that a slight margin of profit suffices to expand or diminish an export trade, this answer seems too vague and unreal. In general Farcte it is clear that the rate will be determined independor
chatere. ently of the foreign trade, or at least that the foreign trade is only one factor to be considered. If the rate of profit falls, a trade whinh before was impossihle becomes possible. The opinion may be hazarded that the best way of explaining the general theory of international values would be to start with the foreign exchanges; but such an investigation is too technical and difficult for this place (see Exchangel.
See J. S. Nicholson's Principles of Political Ecomomy, vol. il. book iti. ch. 25-28, for the development of this line of criticism of the Ricardian theory; and C. F. Bastable's Theory of Internadional Trade (Appendix) for reply to this and other criticisms. U.S. N.)
Valve (Lat. valva, a leaf of a double or folding door, allied to rolvere, to roll, as of a door on its hinges), a term applied nany mechanical appliances, devices or natural feasures,
which control, by eqening and shutting, the flow of air, Fiquids, vapour, gas, \&c., through a passage, tube, pipe or other vessel.

VALVEs, or Pistons (Fr. pislons, cylindres; Get. Vemile; Ital. pistomi), in music, mechanical contrivances applied to wind instruments in order to establish a connexion between the main tubing and certain supplementery lengths required for the purpose of lowering the pitch. Various devices have been tried from the days of ancient Greece and Rome to produce this effect, the earliest being the additional tubes (\(\pi \lambda\) dryen 80) inserted into the lateral holes of the aulos and tibia in order to prolong the bore and deepen the pitch of each individual hole; these tubes were stopped by the fingers in the same manner as the holes. This device enabled the performer to change the mode or key in which he was playing, just as did the crooks many centuries later. But the resourcefulness of the ancients did not stop there. The tihiae found at Pompeii (see Aulos) had sliding bands of silver, one covering each lateral hole in the pipe; in the band were holes (sometimes one large and one small, probebly for semitone and tone) corresponding with those on the pipe. By turning the band the holes could be closed, as by keys when not required. By fixing the d5of in the holes of the bands, the bore was lengthened instantly at will, and just as easily shortened again by withdrawing them; this method was more effective than the use of the crooks, and foreshadowed the valves of eighteen centuries later. The crooks, or coils of tubing inserted between the mouthpiece and the main tube in the trumpet and horn, and between the slide and the bell joint is the trombone, formed a step io this direction.

Although the same principle underlies all these methods, i.e. the lengthening of the main column of air by the addition of other lengths of tubing, the valve itself constitutes a radical difference, for, the adjustment of crooks demanding time and the use of both hands, they could only be effective for the purposes of changing the key and of rendering a multiplicity of instruments unnecessary. The action of the valve being as instantaneous as that of the key, the instrument to which it was applied was at once placed on a different basis; it became a chromatic instrument capable of the most delicate modulations from key to key. The slide had already accomplished thir desirable result, but as its application was limited to instruments of which the greater part of the bore was cylindrical. i.e. the trumpet and trombone, its influence on concerted musical composition could not be far-reaching. In fact it is doubtful whether the chromatic possibilities of the slide were fully realized until the end of the 18 th century, when key mechanisro having made some advance, it was being applied successfully to the transverse flute and to the rlarinet and oboe families. In 1760 Kölbel, a Bohemian horn-player engaged in the \(S t\) Petersburg Imperial Orchestra, turned his attention to this method of extending the compass of brass instruments. His experiments, followed up by Anton Weidinger of Vienna at the beginning of the sith century, produced a trumpet with five keys and a complete chromatic compass. Halliday followed with the keyed bugle in 1810. Halary applied the principle of the keyed bugle to the bass horn in \(\mathbf{1 8 1 7}\), and produced the ophicleide-an ideal chromatic bass as lar as technical possihilities were concerned. The horn had become a chromatic instrument through Hampel's discovery of bowche sounds, but the defects in intonation and timbre still rematned.
Such were the conditions prevailing among the wind instroments of the orchestra when the successful application of the valve to hrass widd instruments by Heinrich Stolzel of Silesia caused an instantaneous revolution among makers of wind instruments. Further efforts to perfect the key system as applied to the brass wind were abandoned in favour of valves. The short space of two decades witnessed the rise of the Flugelhorns, the tubas, the saxhorns and the cornet-a-pistons; the trombone, French hora and trumpet having led the van.

Sound If produced on brase wind instruments by overblowing the members of the harmonic series (see Hoxn). The harmonic series itself is invariable, whether obtained from a string or a cotume
of aff; the strmetural featores of the instrument determine which members of the serics it is able to produce.

\section*{Harmontc Stnes in C}

\section*{\(123 \quad 45678910111213141516\)}

Altbough the valves of brese wind instrumenta vary in form and detail according to the makers, the general principles governing their action are the same for all types. The piston placed on some branch of the main tube must be so constructed that on being depresed it clowes the natural windwaya through the main bore and opens ethers into the additional pistion length. The piston seated on a spring inatandy regains its normal position wben the finger is removed. After the actual shape and construction of the valve and its box had been successfully evolved, it was the boring and disposition of the windways which engaged the attention of makers, those object was to avoid complexity and whap angles and turns in we tubing. The putch of all tubes is determined by the length of the column of air set in vibration thercin. Any variation in the length of this column of air produces a proportional variation in the pitcb of the instrument. When the piston is depressed. therelore, a partition wall is removed and the column of air within the ddditional leagth of tubiap representine a defniste interval is added to the main column, so that the length of the sound wave is proportionally increased whether the column is vibrating as a whole (when it gives the fundamental or first note of the series) or whether Thas been induced to divide into equal portions in which sound waves of equal length are simultaseously generated. The numbers under the notes of the harmonic series represent the aliquot parts into which the column of air must divide in order to produce the harmonics. The length of tubing attached to cach valve is therefore calculated on the bacis of the length of the main columa, to tive for the first piston a tone, for the second a semitone, for the third a tome and a half, and for the fourt t two tones.
In order to illustrate the working of the pistons, we will take as an example the bombardon or bass ruba in Eb. Depressing the acond piston lowers the pitch of the instrument to D. giving it the banmonic eries proper to that key: the third harmonic, which on the open tube would he Bb . now becomes A ; the fifth harmonic. which was \(C\), is now \(F\). and so on. The first piston on being depressed similarly transforms the Eb bombardon into an instrument in Db, a tone lower; the third pirton fowering the pitch if tones changes the key to C. So far the intonation of the notes produced by means of the pistons is as accurate as that of the barmonics. The variations in the length of the column of air correspond to the positions of the slide on the trombone, the first position being that of the instrument with all valves in their normal position. The wse of the three pistons in turn givea the second. third and fourt h ponitions In onder toobtain a completechromatic compass there must he seven positions or different lengths of tubing available, as on the trombone, each having its proper harmonic series. On valve instruments the three ther positions are obtained by means of combinations of pistons; the fith position consiate of a combination of pistone 2 and 3 (3 and 11 waes), which would tranepome our bombardon into the key of B; the ixth position consists of a combined use of pistons 1 and 3. producing a drop in pitch of 21 tones from Eb to Bb. In the seventh poostion all three pistons come into play simultaneousty, lowering the pitch three tomes. The intomation of the notes obtained in positions 5. 6 . 7 is not no laultess as that of notes from the other positions, for The following reason:- On the bombardon in Eb piston I lowers the pitch one tone to Db ; in the sixth position, when pistons 1 and 3 are used simultaneously, the third piston in mo longer attached to a bontrardon in EV, on which it mould produce the effect of C, but to one in Db, on which it lowers the pitch to \(\mathrm{B}_{\mathrm{b}}\); it is clear, therefore, that the supplementary tubing will not he quite long cnough to give the correct intonation, and that the B) obtained as the and harmonic in the sixth position will be a little too tharp, a defect which the performer corrects as best be can with his lip. The exact differences in length can he found from the table of ratios given by Victor Mahilion in la Trompette, som hisloirc, sa theoric, sa consfruction (Brusels and London, 1907) p. 38.

This inberent defect of the valve system was understood and explained a few years after the invention of valves by Gottried Weber, 1 and the recond of the unccesive endenvours of brass instrut ment mabert to overcome this defect without unduly complicating the mechaniam or adding greatly to the weight of the inatrumenta conntitutes the history of valve instruments.

The accredited inventor and patentee of valves applied to macical imarumente was Heinrich Sestixet \({ }^{2}\) of Plese in Silesia in 1815 . The credit. homever, is really doe to Blemed,' also a Silesian, who cold his righte to Strisel.

\section*{'Cancilis (Maing, 1835), xyil. 89-91.}

See Captain G. B. Bierry in AIfg. masit. 2fg. (Leipates 1813). p. 309, and idem for patent 1817, p. 814

ITbid. 1818 , p. 531.

The finst valvee made by Stolzel worked in large muare brase boxes and consisted of square blocks of solid brass through which the windways were bored in the same horizontal plane. A trumpet having two valves of this make is preserved in the muscum of the Brosects Conservatoire (No. 1310 in catalogue). In 1825 Stolsed had improved upon this primitive valve, making it tubular and calling it Sehnob-Ventil: its action was lighter and more rapid than that of the original valve. Charkes Sax of Bruseets took op the manufacture of thees valven and applied them to the cornet with two pistons. The scale of instruments with ooly two pistons had several gaps, and could not he ecrictly termed chromatic. In order to complete the scale, C. A. Muller of Mainz constructed a trumpet in the early 'thirtiee which not only had three valves, but also tuningslides for all three additional lengthe of tubing * and key cropks, for which corresponding piston lengthas could he inserted. This was, therefore, the firat attempt at compensation, for which the honour is due to Germany.
The early improvements and modifications of Stolzel's invention may be briefly summed up as follows:-
In 1824 John Shaw, of Glossop, invented a oystem of valves known as transverse speing slides, both ascending and descending. i.e. respectively having pistons which cut of certain lengths of tubing, thereby raising the pitch, or pistons adding certain lengths, and lowering the pitch thereby. These transverse slides were afterwards improved by Schott in 1830, and became known as the Wicmer Ventil, which had an enormous success on the contipent of Europe, and were applied to all kinds of brass instruments. In 1827 Blamel invented the rotary valve or cylinder action known as Dreh or cylinder Ventil, a system still in use in Germany and Austria, and preferred to piston systems by many.
In 1833 J . G. Moritz (who was asociated with Wieprecht, inventor of the batyphone and bass tuba) made the large pistons of generous diameter known as Berliner Pxmpen. In 1835 John Shaw patented a variation of the rotary valve, known as patent hecer. In 1839 Perinet of Paris invented the most modern form of valve, called by his name, similar to the Schub-Ventil and Berliner Pumpen, but of a diameter between the twa. In 1851 and 1852 Dr f. P. Oates made his equilateral valves adopted by Antoine Courtois for his cornets; the ame clever acoustician invented a piston with four straight windwaym, afterwards patented by A. Sax of Paris
Various attempts to improve the windways and get rid of angularities were made by Gustave Besson in 185I, 1854 and 1855. when a system was devised having the same bore thronghout the wind ways. This decided improvement forms the basis of the present system of the same firm. Until now efforts had maialy been directed towards the improvement of the technical construction of valves and windway. The first attempt since Muller's (which appears to have passed unnoticed in France and England) to remedy by compensation the inherent defect of the valve system when pirtons are used in combination was made in 1850, when Adolphe Sax devised a bystem of six pistons, one for each position, in which it was impossible to use any two pistons in combination: this system was ascending instead of descending. Gustave Besson's registre in \(1856-57\) followed, providing a large horizontal piston, which, by connecting other duplicate lengths of zubing of the proger theoretical length, gave eight independent positions. In 1858 C. Besson and Girardin produced the transpositemr, in which two extra pistons when depressed automatically lengthened the slidea of the three usual pistons to the required length for combination. In 1859 came the first angestion for automatic compenvition made by Chartes Manded in his book on the Inservomentation of Military Bands, p. 39. It does not appear that he put his auggestion into practice or patented it. In this ingenious syatem the valves were so constructed that when two or three pistors were used simultaneously the length of tubing thrown open was automatically adjusted to the correct theoretical length required. The same ingenious prisciple, elaborated and admirably carried out in practice, was pateated by D. J. Blaikdey in \(\mathbf{1 8 7 8}\). The working of his device differs from the action of ordinary valves only when the pistons are used in combination. The exact theoretical length is then obtained by briggint into use extre compenating lengths of tubing corresponding to the difference between the piston length for a semitone, a tone and one and a half tones on the open tube and on the tube already lengthened by means of one of the other pistons. The value of this invention, enhanced by the advantage of having the fivein maltered, is more eapecislly apprexiated en the former ments, in which correction of faulty ineonatiphat to in "
 Sudre.
Victor Mahillon, who had been fornentryt.
Ho tiose did nox patent this inventiont
: Corturied Weber, op, cif. p. 98 .
- Fuller accounts may he derived 1 i
Catalorme of Musical Instruniv.
Mahillon, Catalogue descrífitt
Mahillon, Catalogue descricify.

Nfgrlatene was introduced: this firat device was not automatic, and was thortly alterwards improved and patented as the amtomatic rcenlating gistoms.

A hater valuable development in the history of valve systems is the onharmonic, invented by Messrs Bemoon \& Co., in which chey have perfeeted and simplified the principle of independent positions tried In the registre of the fiftice In ihe enharmonic vaive system each position has ita independent lengeh of tubing theoretically accurate, which comes into play as the valves are depremed, and ehere is besides a tuning alide for the open notea

Finally, there is an improvement in a different direction to be chronicled, unconnected with compengation, in Rudall Carte \& Co. s aystem (Klusemann's patent) of conical bore throughout, the open tube and the valve alidet, which by means of ingeniously combined joints and alidee premerve the tone without loss of air. This system has boen applied to all valve instruments, and has been found to produce a rensarkable improvement in the timbre.
(K. S.)

Valyeyo (sometimes written Valjevo or Valievo), a town of western Servia, prettily situated on the river Koiubara, in a well-wooded valley, 627 ft . above the sea. Valyevo gives its name to the department of which it is the capital. It is a garrison town, with strects lighted by electricity, a bigh-school or gymnasium, a prefecture and a court of Grst instance. In the neighbouring Medvenik mountains lead-mining and smeling are carried on by an English company; lead and antimony bcing also worked at Podgora and otber places in the same department. Besides being the centre of the plumgrowing and distilling industries, Valyevo has a considerahle trade in cattle, for which the pastures watered by the Kolubara are celebrated. Pop (1,000) about 6800.
VAMBARY, ARMIN (1832-), Hungarian Orientalist and travelter, was born of humble parentage at Duna-Szerdahely, a village on the island of Shait, in the Danube, on the 1gth of March 1832. He was educated at the village school until the age of twelve, and owing to congenital lameness had to walk with crutches. At an eariy age he showed remarkable aptitude for acquiring languages, but stratened circumstances compelled tim to earn his own living. After being for a short time apprentice to a ladies' tailor, be became tutor to an innkeeper's son. He next entered the untergymasium of St Georgen, and proceeded thence to Pressburg. Meanwhile he supported himself by teaching on a very small scale, but his progress was such that at sixteen he had a good knowledge of Hungarian, Latin, French and German, and was rapidly acquiring English and the Scandinavian languages, and also Russian, Servian and other Slavonic tongurs. At the age of twenty he bad obtained sufficient knowledge of Turkish to lead him to go to Constantinople, where he set up as teacher of European Linguages, and shortly afterwards berame a tutor in the house of Pasha Ilussein Daim. Under the influence of his friend and instructor, the Mlullah Abmed Effendi, he became, nominally at least, full Osmanki, and entering the Turkish service, was afterwards seeretary to Fuad Pasha. After spending six years in Constantinople, where he published a Turkish Girmin Didionary and various linguistic works, and where be acquired some tweaty Oriental languages and dialects, he visited Teheran; and then, dissuised as a dervish, joined a band of pilgrims from Mecca, and spent several months with them in rough and squalid travel through the deserts of Asis. He succeeded in maintaining his disguise, aod on arriving al Khiva went sofely through two audiences of the khan. Passing Bokhara, they reached Sumarkand, where the emir, whose suspicions were aroused. kept him in audience for a full half-hour; but he stood the test so well that the emir was not only pleased with "Resid Efiendi " (liambery's assumed natre), but gave hira handeome prosents. He then reluctantly turned back by way of Herat, where be touk kave of the dervishes, and returned with a caravan to Teberan, and subsequently, in Marih iS64, through Trebizend and Erserúr to Constantinople. By the adrice of Frukesib Ostion and Extučs. he paid a visit in the following June to London: there his daring adventures and hingristic tumphas oude hint the lion of the day. In the same year he
"thed hia Troeds in Crmide Asis. In connexion with this
R weses be reanemberd that Vimbery could write dona
a few furtive ooics while with the dervishes, and dared
not take a single sketch; but the weird scenes, with thek misery and suffering, were so strongly impressed on his memory that his book is convincing by its simplicity, directness and evidence of beroic endurance. Vámbéry also called the attertion of poifiticians to the movements of Russia in Central Asia, and aroused much general interest in that question. From London he went to Paris, and he notes in his Autobiogrephy that the Parisians were much more interested in bis strange manner of travelling than in the travels themselves. He had an interview with Napoleon III., who railed to impress him "as the great man which the world in general considers him." Returnipe to Hungary, he was appointed professor of Oriental languages in the university of Budapest: there he settled down, contributing largely to periodicals, and puhlisbing a number of books, chiefly in German and Hungarian. His traveis have been translated into many languages, and his Autobiography was written in Eaglish. Amongst the best knowa of his works, besides those alluded to, are Wanderings and Advenfures in Persia (1867); Skelches of Cenfral Asia (1868); History of Bokhara (1873); Monners in Oriental Countries (18;6); Primitive Civilization of the Twrko-Tatar People (1879): Origin of the Magyars (1882); The Turkish People (1885); and IVestern Culture in Eastern Lands (1906).
VAMPIRE, a term, apparenily of Servian origin (wampir), originaliy applied in eastern Europe to blood sacking ghosts, hut in modern usige transferted to one or more species of bloodsucking bats inhabiting South America.

In the first-mentioned meaning a vampire is usually supposed to be the soul of a dead man which quits the buried body by night to suct the blood of living persons. Hence, when the vampire's grave is opened, his compe is found to be fresh and rosy from the blood which he has thus absorbed. To put a stop to his ravages, a stake is driven through the corpse, or the bead cut off, or the hcart torn out and the body burned, or boiling water and vinegar are poured on the grave. The persons who turn vampires are gencrally vizards, witches, suicides and those who have come to a violent end or have been cursed by their parents or by the church. But any one may become a vampire if an animal (especially a cat) leaps over his corpse or a bird flies over it. Sometimes the vampire is thought to be the soul of a living man which leaves his body in sleep, to go in the form of a straw or fluff of down and suck the blood of octher slecpers. The belief in vampires chiefly prevails in Slaveaic lands. as in Russia (especially White Russia and the Utraide), Poland and Servia, and among the Cuechs of Bohemiz and the other Slavonic races of Austria. It became specially prevalent in Hungary between the years 1730 and 1735, whence al Europe was filled with reports of the exploits of vampires Several treatises were written on the subject, among thich may be mentioned Ranft's De mesticatione mertuormin in mandis (1734) and Calmet's Dissctation on the Vampines of Haysory translated into English in 1750 . It is probable that this seperstition gained murh ground from the reports of those tho hud examined the bodies of persons buried alive though betieved to be dead, and was based on the twisted position of the corpse, the marks of blood on the shroud and on the face aod hanctresuhs of the frenzied struggle in the coffin before bie became extinct. The belief in vampirism has abo taked root amoug the Albanians and modern Greeks, but bere it may be dare to Slavonic influence.
Two species of blood-sucking bats (the only species knowl -Desmentus rufes and Dintylle ccambld-iepresentirg two genera (see Chiroptexa), iahabit tbe tropical and part ai ibe subtropical regions ef the New World, and are restricted to South and Cemaral America. They appear to be conined chiefty to the forest-clad parts, and their altacks on men and ouber wratreblooded animats were noticed by some of the eariest Eriters Thus Peter Martyr (Anghiera), who wrote soon after the conquest of South America, says that in the lsthmus of Dariea there were bats which sucked the blood of sen and cattle miken asleep to such a degree as to eved till there Coocimpiser. a writer of the iSih century, remaris that at Barja (Firyentri)
and in otber places they had entirely dennoyed the cattlo introduced by the missionaries. Sir Robert Schombargk relates that at Wicki, on the siver Berbice, no fowls could be kept on account of the ravages of these creatures, which attacked their combs, causing them to appear white from loss of blood. The present writer, when in South and Central America, had many accuants given him as to the attacks of the vampires, and it was agreed upon by most of his informants that these bats when attacking horses showed a decided preferebce for those of a grey colour. It is interesting to speculate how far the vampire bats may have been instrumental-when they were, perhaps, more abundant-in causing the destruction of the horse, which had disappeared from America previous to the discovery of that continent.

Although these bats were known thus early to Europeans, the species to which they betonged were not determined for a long time, several of the large frugivorous species having been wrongly set down as blood-suckers, and named accordingly. Thus the name Vampyrus was suggested to Ceofiroy and adopted by Spir, who also considered that the long-tongued bats of the group Glossophaga were addicted to blood, and accordingly described Glossophaga soricina as a very cruel blood-sucker (songuisuga crudelissima), belicving that the long brush-tipped tongue was used to increase the flow of blood. Vampyrus sfectrum, a large bat inhabiting Brazil, of sufficiently forbidding aspect, which was long considered by naturalists to be thoroughly sanguivorous in its habits, and named accordingly by Geoffroy, has been shown by the observations oi travellers to be mainly frugivorous, and is considered by the inhabitants of the countries in which it is found to be perfectly harmess. Charles Waterton believed Arlibeus planirostris, a common bat in British Guiana, usually found in the roofs of houses, and now known to be frugivorous, to be the veritable vampire; but neither he por any of the aaturalists that preceded him had succeeded in detecting any bat in the act of drawing blood. It fell to the lot of Charkes Darwin to determine one of the blood-sucking species at least. and the following is his account of the circumstances under which the discovery of the sanguivorous habits of Daswodus ru/us was made: "The vampire bat is often the cause of much trouble by biting tbe horses on their withers. The injury is gemerally not so much owing to the loss of blood as to the inflammation which the pressare of the saddle afterwards produces. The whole circumstance has lately been doubted in England: I was therefore fortunate in being present when one was actually caught on 2 horse's back. We wert bivouacking late one evening near Coquimbo, in Chile, when my servant, noticing that one of the horses was very restive, went to see what was the matter, and, fancying be could detect somethins, suddenly put his hand on the beast's withers, and secured the vampire' (Nafuralist's Voyage Rawnd ihe World, p. 22).

Desmodus rufws, the common bood-uucking bat, is widely spreed over the tropical and subtropical parts of Central and South America

Fig. 1.-ffead of Blood. sucking Va mpire (Dermodes rufur). from Oaxaca to southern Brazil and Chilc. It is a comparatively small bat, a fittle larger than the noctule, the head and body about 3 in. in length, the forcarm 7h, with a remark. ably long and strong thumb; it is descitute of a tail. and has a very peruliar physiognomy (fig. 1). The body is covered with rather short fur of a reddish-brown colour but varying in shade, the extremitics of the hairs sometimes ashy. The teeth are peculiar and characteristic. admirably adapted for the purposes for which they are employed. The upper froat teeit (incisors), of which there are only two, are enormoualy enlarged (scefig. 2), and in shape obliguely triangular like small guilotincs. The canincs, though smaller than the incisors, are large and sharp; but the rheek-leeth, so well developed in o her bats, are very small and reduced in number to two above and three below, on cach side, with laterally compressed crowns rising but slightly above the level of the gum, their longitudinally disponed cutting cdges (in the upper jaw) being continuous with the base of the canine and with each other. The lower front teeth (iscivors) are wall, bifid, in pars, and separated from the canines,
with a apace in fiont. The lower check-teeth are narrow, like those in the upper jaw, but the anterior tooth is slightly larger than the others, and ieparated hy a sanall space trom the canines. Behind the flowrt incisors the jaw it thepily hollowed out to revive the extremities of the large upper incisors.
With this peculive Jentition there is assoriats. 1 as remarkable
from the gencral the form of the dipe in apparatua The iscecd. ingly narrow oenghagus
 opens at risht anflet into
2 .narrow. intestine-ilice

Fic. 2.-Tweth טi D. Pufus. terminates on the : ght, without a distinct pylorus, in the duodenum, but on that left forms a greatlv elongated caecum, bent and folded upon ittelf, which appears at first sight like part of the intestines This, the ardiac extrcinity of the stomach, is, for a short distance to the ieft' of the entrance of the oempliagus, till very narrow, but son; increases in size, till near its acrmination it attains a diameter duis ithree times that of the short pyluric portion. The length of this casdiac diverticulum of the atomach appears to vary fron 2 to 6 is, ti.e size in each specimen probably depending on the amount of fod chtained by the animal before it was captured. The only other known species of blexul-sucking bat, Diphylla ecomdata. inhabits Brazl, and appears to be much less alminfant than Desmodes rufus ium which it is distinguished by is slighly somatler sixe. by the altacnee of a groove in the front of the lower lip. the non-develeptient of the incrifemoral membrane in the centre, and the presence of a short calcaneum (absent in D. Fufws), but more particulaly by the presence of an adelitional rudimentary cheek-tuoth (?molar) sitwve and felow, and the peculine form of the lower incisors, which are much expanded in the direction of the jaws and pectinat id forming a semicirculas row souching each other, the outer in isars being wider than the inner ones, with six notehes, the inner incisars with three each.

Travellers deacribe he wounds inflicted by the large sharp-edged incisors as being sinilar 10 those caused by a gazor when shaving: a portion of the sken is shaved off and, a large number of scvered capiltary vessels bing thus exposet, a constant flow of blood is maintained. From sis source the blood is drawn through the exceedingly narrow puilut-too narruw for anyehing solid to passinto the intestine-f..: stomach, whence it is, probably, gradually drawn off during the slow frogress of digestion, while the animal. sated with food, is hanging in a state of torpidity from the rnof of

VAMPYRELLA (L. Cienkow'ski), a genus of azoosporous Proteomyxa (9.v). parasitic on (reshwater algae.

VAN. (c) The chief town of a vilayet of the same name in Asiatic Turkey; altitude, 5400 ft . Pop. 28,000, of whom 14,000 are Armenians, and the remainder Moslerns, mostly of a mixed Kurdish racc. It is situated about a mile from the eastern shore of Lake Van, and built along the south side of the citadel rock, an isolated rocky ridge 1300 yds . long, rising 360 fl . out of a plain which extends up to the sharply defined rocky mase of the Varak range, 8 m . distant. On the gently slopiag ground east of the citadel are the Gardens, covering an arra of 5 m . by 31 and containing several suburbs and detached bouses, along central avenues fringed with trees, and having channels of running water by the sides for irrigation.

The town inself is a poor place with fiat-rooled mud houses narrow winding strcets, and surrounded by a ruinous mud wall; but it still contains the business quarter, the government office and the principal bazaars. In the Gardens are vincyards and orchards of apple, pear. quince, plum and apricot: the houses of the wealthier inhabitants are imposing, buitt of a wood framework on a stone loundation and filled in with sun-dried bricks Many of them are brightly ornamented in the Persian style. Water comea from karez or underground channcls and strcama from Varak, fed from the Sikhe Lake, an ancient reservoir which preserves the snow waters on the summit of the mountain. For the wouthern quarter there is the Shemiram Canal, also of very ancient construction, which derives its supply from a large spring 19 m . distant, near Meshingird. There are British. Russian and French consuls who reaide in the Gardens. There are a large American Miskion with chools. orphanage and a resident doctor, French (Dominican) Mission with xhools, and also a branch of the archbishop of Canterbury's Mission to the Nestorian Christians who live in the mountains to the south. The climate is generally health;; extremely cold in winter, with 2 to 3 ft. of snow from December to March, while the summer beat is not excemive. The Rugie
trade of Van has declined: European goods, with which the bezaare are fairly well supplied, come from Trebizond through Eracrum. There is a fair local trade in wheat and agricultural produce, also sheep and cattle, wool, hides and furs for export. A thick woollen cloth called shoyah, coarse cotton chintzes and a kind of soap prepared from the efforescences of the lake, with dried and salted ish, are also produced.

The cuneiform inscriptions of Van are very numerous, the town having been the capital of the Vannic kingdom of the Assyrian period. At the end of the Gardens is the rocky mass of Toprak Kale, on which was a fire temple and altar; near it is the Meker Kapusi ("Door of Mithridates "; a large inscribed slab of rock with the names of several deities. On the citadel rock are several inscriptions, the principal being a trilingual one of Xerxes on the southern face. Many other inscribed stones and tablets have been found built into modern buildings, while the excavation of a mound brought to light relics of a stone age.

Van occupies the site of Dhuspas, of which the native name was Biainas (Assyrian, Urardhu), the Byana of Ptolemy and the Ivan of Cedrenus, whence the modern Van. Dhuspas, the Thospia of Ptolemy, gave its name to the district of Thospitis, the modern Thosp. The Biainian dynasty, of which Sarduris I. (c. 833 B.C.)was the first king. died out with Sarduris II., who in 645 B.C. entered into an alliance with Assur-bani-pal. Inscriptions of nearly all the kings exist, and the various excavations at Toprak Kale show an advanced state of civilization and great technical skill (see illustrations in Maspero's Histoire ancienne, vol. iii.. Les Empires). In the 6th century B.C. Van passed into the hands of the Persians, and shortly before it fell to Alexander the Great it was rehuilt, according to Armenian historians. by a native prince called Van. In 149 b.c. Valarsaces or Vaghar. shag, the first Armeniar king of the Arsacidae, rehuilt the town, and a colony of Jews was settled in it by Tigranes (94-56 8.c.). In the middle of the 4 th century a.D. it was taken by Sapor (Shapur) II., and became the capital of an autonomous province of the Sassanian Empire, until it fell into the hands of the Arabs (c. 640), under whom it regained its autonomy. About go8 the governor of Van or Vaspuragan was crowned king by the caliph Moktadir, and in rozi his descendant Senckherim was persuaded by Basil II. to exchange his kingdom for the viceroyalty of the Sebasteian theme. After having formed part of the possessions of the Seljuks, Mongols, Tatars and Persians, Van passed in 1514 , after the defeat of Shah Ismail hy Selim I. at the hattle of Kal. deran, to the Osmanlis, who only occupied the town in 1543 . In 1636 it was taken by the Persians, hut soon recovered. In 1845 the town was held for a time by the Kurd chief Khan Mahmud, who eventually surrendered and was exiled.
(2) The vilayet of Van lies along the Persian frontier between the vilayets of Erzerum and Mosul. The northern sanjak comprises open plateau country N. and E. of the lake (with - large Armenian agricultural population and Kurdish seminomad tribes occupied chicfly in cattle and sheep raising), also of several fertile districts along the south shore of the lake. The southern sanjak is entirely mountainous, little developed and having the tribes only partly under government control. This comprises most of the upper basin of the Great Zab, with the country of the Nestorian Christians and many districts inhabited by Kurdish tribes, some of them large nomad tribes who descend for the winter to the plains of the Tigris.

The mineral wealth of the vilayet has never been fully explored, but is believed to be great. There are petrolcum springs at Kordzot, deposins of lignite at Sivan and Nurduz, several hot springs at Zilan Deresi and Julamerk. Excellent tobacco is grown in Shemsdinan for export to Persia.
(3) Lake Van, called Arsissa Palus and also Thospitis from its Armenian names, is roughly rectangular 55 m . long and 40 broad, with a long northeastern arm which increases the greatest length to 80 m . It stands about 5260 ft . above sea level. It is without an outlet, and its greatest depth is along the southern shore. It has constant stcady fluctuations, rising and falling some 8 ft . in a pegiodic movement of five years. In the middle of the rgth century a sudden rise submerged seversl plach on
the banks, inchuofing Arjish Kale, and the waters did not again subside. The north-eastern arm is much shallower than the rest. The water is bitter and undrinkable, being largely impregnated with carbonate and sulphate of soda with some borax. The salts are evaporated in pans, and called perek, being sold for washing purposes. There is, however, good water along the coast from springs and streams.

The lake has been navigated from the eartiest times, and about 80 eailing boats, carrying about 20 tons burden, now ply. on it, chiefly with wheat and firewood. Severe storms make navigation dangerous in winter. The southern shore is fringed by a stecp range of mountains, with everal thriving villages along the coast. The hills have now been almost denuded of trees. At the southeastern corner is the island of Akhcamar with its ancient churrh, erected (c. 928) by Cagig, first king of the Ardzrunian dynasty: The Catholicos of Akhtamar is one of the highest offices in the Armenian Church, and dates from 1113 . The small islands of Lim and Gdutz have also monasteries and churches Large numbera of darekh, a kind of herring, exist in the lake, and are caught in nets from boats or when they cnter the shallow lagoons in the spring and summer. Either fresh or salted they form an important article of diet of the poorer people.
See Sayce. "Cuociform lapcriptions of Lake Van," in Jomanal of Royal A siatic Socicly, voifin xiv. xx. and mxvi.; Lynch, A pacmia, vol. ii. (1901); Belck and Lehmann, papers in Verhard d. Berliner Ges. Sur Anthropologie (1892-99); Zeit. fir Ethnologie (1893. 1899); M(iut. d. Geog, Ges. (Hamburg. 1898, 1899). (C. W. W.i F. R. M.)

VAN, an homonymous word, whoee different meanings have no etymological connexion. In the most common sense " van " is mercly an abbreviation of the Oriental word "caravan " (q.e.), and is applied to any large covered cart or vehicle used for the conveyance of goods, especially fumiture, or, on railways, to a closed carriage for passengers' luggage, or for the accommodiation of the guard. In the sense of the front portion of an army or fleet, or the advanced portion of any body, actually or metaphorically," van " represents the French afent (Lat. ab anke), in front, as in arant-garde, van-guand, the earliest form in which the word came into English. Lastly, the word is used as a variant of " fan" (Lat. banmus), for a contrivance for winnowing grain, for a hird's wing, and in mining to an appliance for seperating ore by washing.

VANADINITE, a mineral consisting of lead chloro-vanadate, (PbCl) \(\mathrm{Pb}_{4}\left(\mathrm{VO}_{4}\right)_{4}\), crystallizing in the hezagonal system and isomorphous with pyromorphite and mimetite (q.e.). The crystals are usually six-sided prisms terminated by the basal planes, but are sometimes modified by numerous pyramidal planes which exhibit perallel hemihedrism. Rounded crystals and groups also occur. The colour is usually light brown or yellow, but crystals from Arisona are hright red. Owing to isomorphous replacement of the vanadium hy phonphorns and arsenic, the specific gravity varies from 6.6 to 7.2 ; a variety containing much arsenic is called endichile. The hardness is 3. The mineral is one of secondary formation in veins of lead ore. It was firsi found in Mexico, and in 1801 was asserted to contais a new element, which was called "erythronium"' this was later proved to be identical with the subsequently discovered element vanadium. Other wellknown Jocalities are Wanlockhead in Dumfrieshire, Kappel (Eisen-Kappel), near Klagenfurt in Carinthis, Arizona and New Mexico.
(L. J. S.)

VANADIUK [symbol, V; atomic weight, \(5 \mathrm{I}^{-2}(\mathrm{O}=16)\)], a metallic chemical element. It was first mentioned in 1801 by M. del Rio (Gilb. Ann., 1801,71, p. 7), but subsequently thought hy him to be an impure chromium. Later, it was examined by N. G. Sefstrom, who found it in the slags of the Taberg inon ores (Poge. Ann., 1830, 21, p. 48), by J. J. Berzelius (ibjd., 1831, 22, p. 1), and finally by Sir H. Roscoe (Trans. Roy. Soc., 1868 1870), who showed that the supposed vanadium obtained by previous investigators was chiefly the nitride or an oxide of the eloment. In his researches, Roscoe showed that the atomic weight of the metal as determined by Berzelius and the formulae given to the oxides were incorrect, and pointed out that the element falls into its natural place in group \(\mathbf{V}\) of the periodic classification along with phosphorus and arsenic, and not in the chromium group where It had originatly been placed.

In emall quantilies, vanadium is found widely distributed,
the chicf sources being vanadite, mottramite, descloizite, roscoelite, dechenite and pucherite, whitst it is also found as a constituent of various clays, iron-ores and pitchblendes Vanadium salts may he obtained from mottramite by digesting the mineral with concentrated bydrochloric acid, the liquid being run off and the residue well washed; the acid liquid and the washings are then evaporated with ammonium chloride, when ammonium metavanadate separates. This is recrystal. lized and roasted to vanadiam pentoxide, which is then suspended in water into which ammonia is passed, when ammonium metavanadate is again formed and may be porified by recrystallization. The pure metal may be obtained by reducing vanadium dichloride in hydrogen, the opemtion being exceedingly dificult (for details, see Roscoe's original papers). In a somewhat impure condition it may be obtained by the reduction of vanadium pentoxide with a mixture of the rare earth metals which are oblained by reduction of the waste oxides formed in the manufacture of thoria (Weiss and Aichel, Amn., sgo4, 337, p. 380); from the oxide by Coldschmidt's thermite method (Koppei and Kaufmann, Zeil. anorg. Cheme, 1905, 45, p. 352); by electrolysis in a bath of fused fluorspar containing a steel ral hode and an anode composed of carbon and vanadium pentoxide (M. Gin, L'Electricier, 1903, 25, p. 5); and by the electrolysis of vanadium trioxide when heated in an evacuated glass tube (W. v. Bolton, Zeif. /. Elektrachem., 1905, 11, p. 45). H. Moissan (Comples rendus, 1896, 122, p. 1297) obtained a vanadium containing from 10 to \(16 \%\) of carbon by fusing vanadic anhydride with carbon in the electric furnace. For other methods of obtaining vanadium and its compounds, see Comper Cowles, Engin. and Mining Journ. 67, p. 744; Herrenschmidt, Comples rendur, 1904, 139. p. 635; M. Gin, Elektrochem. Zeil.; 1906, 13, p. 119; W. Prandtl and B. Bleyer, Zeil. anorg. Chem., 1909, 64, p. 217.

Vanadium is a light-coloured metal of specific gravity \(5 \cdot 5\). It is not volatilized even when heated to redness in a current of hydrogen, and it burns readily to the pentoxide when heated in oxygen. If dissolves slowly in hydrofluoric acid and in nitric acid, the solution turning blue; it is insoluble in hydrochloric acid. When fused with caustic soda, hydrogen is liberated and a vanadate is formed. It precipitatea platinum, gold and silver from soiutions of their sahs, and also reduces mercuric, eupric and ferric salts. It absorbs nitrogen when beated in a current of that gas, forming a nitride. Vanadium may be detected by converting it into the pentoride, which on passing sulphuretted hydrogen through its acid solution becomes reduced to the dioxide, the solution at tbe same time becoming lavender blue in colour; or if zinc be nsed as a reducing agent; the solution becomes at first green and ultimately blue.
Five oxides of vanadium are known (cl. Nitriocen), the mono, di. and trioxides being basic in character, the tetra- and pentoxides being acidic and also feebly basic. The momaride, VfO, is formed when the metal is nxidized slowly in air. In a hydrated form it is obtained by the reduction of vanadyl monochloride, VOCI, with sodium amalgam, being procipitated from the liquid by the addition of ammonia (Locke and Edwards, Zeif. anorg. Cheme, 1899, 19. P. \(37^{87}\)). The dioride, \(V_{7} \mathrm{O}_{1}\) is (ormed in the reduction of ranadyl trichloride by hydrogen (Roscoe). It is a grey powder which is insoluble in water, but dissolves in acids to give a lavenderblue solution which possesses strong reducing properties. The addition of ammonia to this solution precipinates a brown hydrated oxide. The dioxide when heated in oxygen burns, forming the petaroxide. The triactide, \(\mathrm{V}_{4} \mathrm{O}_{n}\) is formed when the pentoxide is reduced at a red heat in a current of bydrogen, or by the action of oralic acid on ammonium metavanadate. It forms a black amorphous powder or a dark green erystailine mass, and is insoluble in water and in most acids. The fetpoxide. \(\mathrm{V}_{4} \mathrm{O}_{4}\) results when the pentoxide is heated with dry oxalic acid and the reaulting mixture of the tri- and pentoxide is warmed in the absence of air, or when the pentoxide is reduced by sulphur dioxide. It is an amorphous or crystalline mass of indigo-blue or steel.grey colour, which is insoluble in water and is also infusible. It oxidizes slowly in moist air, and dissolves easily in acids with the formation of blue colutions. The pentoride. \(\mathrm{V}_{2} \mathrm{O}_{4}\) is obtained when ammonium metavanadate is atrongly heated, on calcining the sulphide. or by the decomposition of vanadyl trichloride with water. According to Ditte (Camplas rendus, 101, p. 898) it anints in three form:
a red amorphous soluble form which results when ammonium metavanadate is heated in a closed vessel and the residue oxidized with nitric acid and again heated; a yellow amorphous insoluble form which is obtained when the vanadate is heated in a current of air at \(440^{\circ} \mathrm{C}\); and a red crystalline form which is almoet insoluble in water. It is soluble in hot concentrated sulphuric acid and in concentrated hydrochloric acid. It is an encrgettc oxidizing agent and is consequently readily reduced when heated with various metals (ainc, magnesium, \&c.). with carbon and with oxalic acid. On fusion with the caustic alkalis and alkatine carbonates it yields vanadates. It forms nurnerous compounds with potassium fluoride. Many complex derivatives are known, such, for example, as phos-phor-vanadates, arsenio-vanadates, tungsto-vanadates, molybdovanadates, \&re. For the use of this oxide in the electrolytic oxidstion and reduction of organic compounde, see German Patepts 172654 (1903) and 1830102 (ig05).

Many selts of oxy-acids of vanadium are known, but of the more common oxy-acids, metavanadic acid, \(\mathrm{HVO}_{2}\) and pyrovanadic acid. \(\mathrm{H}_{4} \mathrm{~V}_{2} \mathrm{O}_{1}\), alone appear to have been isolated. Mfetanonadic acid is obtained in the form of yellow scalcs by boiling copper vanadete with an aqueous solution of sulphur dioxide. It is only very slightly soluble in water. Pyronamadic acid is deposited as a dark brown unstable powder when an acid vanadate is dccumposed by nitric acid. Of the salts of these acids, those of the ortho and pyro-acids are the least stable, the orthovanadatca being obtained on fusion of vandium pentoxide with an allaline carbonate. The metavanadates are usually yellowish or colourless solids Ammonium metavanadate is obtained when the hytrated vanadium pentoxide is dissolved in excess of ammonia and the solution concentrated. It has been used in dyeing with aniline black. Tetra- and hexavanadates have also been deacribed (see Ditte, Camples rendur, 104. pp. 902, 1061: 102, p. 918; Manasse, \(A n n . ~ 240, ~ p .23\)). The hypovanadates are insoluble in water, except those of the alkali metals, which are obtained by the addition of caustic alkalis to concentrated solutions of the chloride or sulphate of the tetroxide. They are brown in colous and easily oxidize. Pure hypovanadic acid has been obtained by G. Gain (Comptes rendus, 1906, 143, p. 823) by calcining ammonium metavanadate and saturating a solution of the resulting oxides with sulphur dioxide; the resulting blue solution (from which a sulphate of composition \(2 \mathrm{~V} \mathrm{O}_{4} \cdot 3 \mathrm{SO}_{r} \cdot 10 \mathrm{H}_{2} \mathrm{O}\) can be isolated) is then boiled with water, when sulphur dioxide is liberated and a pale red crystalline powder of hypovanadic acid, \(\mathrm{H}_{4} \mathrm{~V}_{2} \mathrm{O}_{4}\), is precipitated.

Vanadiem dichloride, \(\mathrm{VCl}_{\mathrm{h}}\) is a green crystallioe solid obtained when the tetrachloride is reduced with hydrogen at a dull red hent. It is very deliquescent and readily soluble in watcr. The trichlorsde, VCl, is a deliquescent solid formed when the tetrachloride is heated in a retort as long as chiorine is given of (Roscoe), or by healing vanadium trisulphide in a current of clilorine and fractionally distilling the restlting product at \(150^{\circ} \mathrm{C}\). in a current of carbon droxide (Halberstadt, Ber., 1882. I5. p. 1619). The tetrachlorude, VCle, is formed by the direct union of vanadium and chlorine or by the action of sulphur chloride on vanadium pentoxide (Matignon, Comptes rendus, 1904, 138, p. 631). it is a fuming hiquid, which is soluble in benzene end in acenic neid: it disgolves in water to form a deep blue solution. Several oxychlorides have also been described. Vanadium carhide, VC, was prepared by H. Moissan (Comples rendus, 1806, 122, p. 1297) by heating vanadium pentoxide and carton lor a lew minutes in the electric furnace. It is a volatile compound which burns when heated in oxygen and which is unacted upoa by sulphuric and hydrochloric acids.

For vanadium steels, see Iron and Steel Manufacture
VAN BEERS, JAN (1821 -1888), Belgian poet, usually called "the elder" to distinguish him from his son, Jan van Beers, the well-known painter, was born at Antwerp on the 22 nd of February \(\mathbf{1 8 2 r}^{21}\). He was essentially a Netherlander, though politically a Belgian, expressing his thoughts in the same language as any North Nctberland writer. In lact, the poems of Jan van Beers are perhaps more popular in Holland than in Belgium, and of many of them there exist more editions printed in Holland than in his political fatherland. Van Beers started life as a teacher of Dutch language and literature, first at Malines, then at Lierre, and in 1860 was appointed a profcssor of both at the Athenaeum (high school) in Antwerp, where he had also been a sub-librarian in the communal library. Van Beers as a teacher was early in the field, with Hendrik Conscience, Willems and others, when the Flemish movement began. He composed a Dutch grammar (1852), which, in enlarged editions, still holds the field, and a volume of selections from Dutch anthors, both books being so much apprcciated that the Belgian goverament made them text-books in the public schools Van Beers's bistorical poems, the principal
of which is, perhaps, Jakob Van Maeriant (Amsterdam, 1860), helped the Flemish revival in Belgium as powerfully as his school-books. He is best known, however, as the writer of ballads and songs. Jongelingsdroomen ("A Young Man's Dreams ") first appeared at Antwerp and Amsterdam in 1853. These poems were followed by Levensbelden ("Life Figures or Pictures,' Amsterdam, 1858) and by Gesoel en Letent ("Feeling-Living," Amsterdam, 1861). His Rijzende Bladen ("Rising Leaves") first made its appearance at Ghent and Rotterdam in 1883. In the following year an edition de luxe of his poctry was published, adorned with pen-and-ink sketches by Jan van Beers the younger, and a popular edition of his collcsted poems was published at Ghent and Rotterdam in 1873 and 1884. Among the best known are De Blinde ("Biind "), De Zieke Jongcling ("Young and Doomed"), Bij 'I Kerkportaal ("At the Church Porch "). Van Beers's poetry, fuil of glow and pathos, simple yet forcible, is somewhat akins to that of Longfellow. Van Beers died at Antwerg on the 14 th of November 1888.

VANBRUGH, SIR JOHN (1664-1726), British dramatist and architect, was born in the parish of St Nicolas Acons in the City of London, and christened on the 24th of January r664. His grandfather, Gillis van Brugg, of Ghent, migrated to England in the reign of James I., was naturalized, resided as a merchant and was buried in the parish of St Stephen's Walbrook. The dramatist's father, Giles (1631 I-1689), a wealthy sogar baker, who married into the Carleton family, was driven from London by the plague and settled at Chester. The mother (Elizabeth Carleton, of the Dorchester family) survived to see her son famous; she died at Claygate, near Esher, in 1711, and was buried at Thames Ditton. After a few years at the King's School, Chester, John at nincteen was sent to France to study the arts; after two years' absence he returned to take up a commission in the regiment soon to be known as the 13 th Foot. In the early autumn of 1690 Vanbrugh was arrested at Calais on a charge of espionage. The informant against him was a lady. He was imprisoned at Vincennes, but on the ist of Feb. 1692, by a lellre dc cachel, he was removed to the Bastille. On the 12 th of November he found surety to the extent of one thousand pistoles, but was confined to the fortifications of Patis until his exchange was effected on the cartel. His enforced Icisure was responsible for the first draft of the Prorok'd IWife. Voltaire said in his Letfres sur les Anglais that he could not imagine what had gained such a comic writer the distinction of detention in such a grim fortress. As a matter of fact, a considerable number of English officers were arrested about this time on a similar charge, as may be seen from the Bastille archives. \({ }^{1}\) For a time after his retum he resumed his commission and was known as Captain Vanbrugh.
The production of Cibler's Love's Last Shif at the Theatre Royal in January 1606 kindled afresh his attachment to the conic muse. He thought it would be interesting to develop the situation upon which Cibber had rung down the curtain; and the result was The Relapse, " got, conceived and bom in six weeks' space." It was given on Boxing Day 1696, with Cibber as Foppington, one of the three parts borrowed from the preceding comedy. The Sir Novelty Fashion of Cibber was developed in this play into Lord Foppington, who has been pronounced "the best fop ever hrought upon the stage." The play has been revived in various forms: Sheridan adapted it in A Trip to Scarborough, and it inspired two modern versions in 1870 and 1590, The ifuth of Qullity and liss Tomboy. Aesop-produced at Drury Lane immediately after The Relapse-was an adaptation of Boursault's dramatic sermon on the same sabject. It ran for a week only, but the success of The Relopse was so triumphant that Montague, afterwards Lord Halifax, asked at once for the Protok'd IWife for the theatre in Lincoln's Ian Fields, and it was produced at that theatre in May 1697. All that could be said in answer to those who condemned it on account of its unblushing libertinism was that Sir John Brute is sufficiently Bastilleisson; and Funck-Brentano, Liste des prisonniers de la Bastille,
brutal to drive any woman into rebellion, and that since the glorious days of the Restoration a wife's rebellion and a wife's adultery were synonymous terms. The play was a completo triumph, and Brute was one of Garrick's great parts. Vanbrugh was fiercely attacked by Jeremy Collier for immorality in 1698 , and wrote nothing more for the stage until 1700 , when an adaptation of the Pilgrim of Beaumont and Fletcher was produced at Drury Lane. In this play, in the part of Alinda, Anne Oldfield scored her first success. Two years later appeared The False Friend, a version of Le Sage's Tratire ppni. Other adaptations from the French were A Country Hosse, from Dancourt's Maison de campagne; Confederacy (17as), from the same author's Bourgeoises d la mode; Squire Trelooby (1704), a version of Molière's Monsieur de Pourceawgrac; and The Mistake (1705), from Molière's Depil amourewx.

Collier's attacl: and the resulting movement must have been responsible in part for "Van" turning his attention to architecture. The demand for splendid country seats in the new Palladian style was steadily increasing, and his reputation 2s a modern wit was an introduction in itself. In 1702 he was entered as comptroller of the Royal Works (now the Board of Works, where several of his designs may still be seen). In 1703 he wrote to ask his friend Jacob Tonson to procure him a "Palladio," and in the same year he was a commissioner at Greenwich, where the secretary William Vanbrugh was a kinsman of his own, whom Evelyn had appointed at his request. In the meantime, Vanbrugh had been appoiated anchitect to the ear! of Carlisle, and the result, completed in 1714, was the Corinthian mansion of Castle Howard. The work is an extension of the Palladian plan introduced by loigo Jones, with the addition of immense corridors in segmental colonnades leading from the main entrance to the wing blocks. From a scenic artist's point of view, it is a magnificent (and certainly his best) piece of work. The earl, then deputy earl-marshal, testified his satisfaction by procuring for Vanbrugh a high place in the Coilege of Arms. In March 1704 he was actually promoted Clarenceux, though he not only knew nothing of heraldry but had openly ridiculed that grave science in Acsop. The indignant college protested in vain, and the architect stuck to his place. His next work was to prepare designs for Kneller Hall near Hounslow. But the success of Castle Howard now caused him to entertain the rash project of building a theatre in the Hayrnarket, from his own design, for the acting of his own plays. The joyous courage with which, having persuaded thirty people in the fashionable world to aid him in finding the money, and Congreve to aid him in finding the plays, he began to build in periect unconsciousness of the danger before him, is the only passege in his life which may be called pathetic, save of course his struggle with the "wicked woman of Marlborough." The magnitude of Vanhrugh's architectural ideas grew as the work went on, and with the ideas the structure grew till a theatre meant for the delicate bijouferic work of polite comedy seemed growing to the proportions of the Roman Colosseum. Whether Congreve endeavoured to put a check upon his friend's architectural and authorial fervour does not appear. But it must be remembered that not only Vanbrugh's plays but his own were to be acted there, and that, although Congreve was a man of great sagacity. no man, not even he who pretended to set his gentility above his gcnius, is sagacious when confronted by the surpassing excellence of his own poems and plays. When at length the time came to test the acoustics of the pile, it was found to be sadly defective. What changes were made to rectify the errors of structure does not appear. The theatre was opened to the public with 20 Italian opera, which was followed by three of Moliere's comedies, and these by the Confederacy, Vanhrugh's masterpiect on the whole, though pethaps its finest scenes are not equal to the finest scenes in The Rela pse.

Vanbrugh at last withdrew from the disastrous speculation; Congreve had already withdrawn. But a man to whom Fortune had been so kind as she had been to Vanbrugh could hardly be depressed by any of her passing frowns. Queen Anne at once sent him abroad on an important state errand, and afterwands
he was commissioned to build Blenheim. Upon the merits and demerits of this famous "hollowed quarty" there has been much conflict of opinion. As to the sarcasms by Swift, Walpole, Evans, and the rest, they are as nothing when set against Sir Joshua Reynoldq's defence of Vanbrugh and his style. Blenheim Palace is probably the largest domestic building in England, and consists of three blocks, the centre containing the private living rooms, one wing the stables, and the other the kitchens and storchouses. It is planned on a colossal scale. Vanhough considered a building and the parts of a huilding as simply so much material for effect, without regard to their reasonable use and the necessary limitations of desiga. Thus he would support his main block by subordinate groups without considcring for a moment the inconvenience that might be caused by the kitchen being removed by four bundred yards from the dining-room. Personal comfort was sacrificed to perspective. Windows were to adorn the elevation, not to light the interior; and, as Voltaire said, if the rooms had only been as wide as the walls were thick, tbe chateau would bave been convenient enough. After Blenheim and Castle Howard, his next largest palace was probably Fleurs, near Kelso. His plans were only suitable to the largest kind of palace. Blenheim, bowever, was a source of great sorrow to the kindly dramatist. Though parliament had voted for the building of it, no provision had been made for the supplies. The queen while she lived paid them, and then Vanbrugh was left to the meanness of the duke of Marlborough, and afterwards to the ingolence of the "wicked woman." who did her best to embitter his life. Desides Castle Howard and Blenheim, he built many other country mansions, such as Grimsthorpe and Duncombe Hall in Yorkshire, Eastbury in Dorsetshire, Seaton-Delaval in Northumberland, King's Weston near Bristol, Oulton Hall in Cheshire, old Claremont House at Esher, old Eaton Hall, Iver Grove, Bucks. He also restored Kimbolton Castle for the earl of Manchester. In 1716 he became architect to Greenwich Hospital.

In January 1759 Vanbrugh married Henrietta Maria, daughter of Colonel Yarborough of Heslington, and four years afterwards, at the accession of George I.، he was knighted. He afterwards wrote again for the stage, and the uninished fragment of the Journey to London (completed by Cibber as The Prosok'd Husband in 1728) shows that his powers remained to the last as fine as ever. His married life was mostly spent at Blackheath, very probably in "Bastile House" on Maze Hill, repaired in 1904 and now known as Vanbrugh Castle. His wife died there at a great age in 1776 , but "Van" himself died on the 26th of March 1726 in his modest town house، built in 1703 out of the ruins of Whitehall and satirized by Swift as the "goose pie." The site is occupied to-day by the War Office. The famous epitaph, "Lic heavy on him, earth," is attributed to Abel Evans. The best portrait of the dramatist is the kitcat by Kneller.
Vanbrugh's works were edited in 2 vols, 1893. by W. C. Ward (portraits). Select Plays were issoued in the Mermaid Series (ed. LE. H. Swaen) in 1896 . Sce G. H. Lovegrove's Life. Works and Iafuence of Sir Jokn Vanbrugh ((Goz), Max Danetz's Vanbrugks Lebcn sud Werke (1898), and Swif's Works (Bohn), xii. Bo sq. (I. SE.)

FAM BUREN. Martin (\(1782-1862\)), eighth president of the United States, was born at Kinderhook, New York, on the sth of December 1;82, of Dutch descent. His lather was a farmer and tavern-keeper. His education was limited to that which could be obtained in the common schools and at Kinderhook Academy, and there is testimony to the effect that as late as 1829, when the became secretary of state, he wrote crudely and incorrectly. In 1796 he began the study of law, completing his preparation in 1802 at New York, where he studied under William Peter Van Ness (1778 -1826), an eminent lawyer and Later Aaron Burr's second in the duel with Alexander Hamilton. Van Buren made the acquaintance of Burra hut did not fall under his influence. In 5803 he was admitted to the bar and continued in active and successful practice for twenty-five years. His practice made him financially indcpendent, and paved the way for his entrance into politics. New York politics after 1800 , the year of the election of Jeflerson and the down-
fall of the Federalita, were peculiarly bfter and personal. The Republicans were divided into three factions, followers respectively of Ceorge Clinton (and later of bis nephew, De Witl Cliaton), Robert R. Livingston and Aaron Burt; and such Federalist control as there was from time to time after 1799 depended upon coalition with one or other of these groups. Van Buren, who early allied himself with the Clintonians, was surrogate of Columbia county from 8808 until \(\mathbf{1 8 1 3}\), when he was removed. In 1812 he entered the state Senate, and be also became a menaber of the court for the correction of errors, the highest court in New York until 1847 .
His career in the Senate covered two terms (\(\mathrm{rB12}_{12-1820 \text {). In }}\) 18 I 5 he became attorney-general, an office which be held, still as a member of the Senate, until 18 Ig , when he was displaced to make room for a Federalist. He had already, in 1808, removed from Kinderbook to Hudson, and in 1816 he took up his residence in Albany, where he continued to reside until he entered Jackson's eabinet in 1829 . As a member of the state Senate he supported the War of \(\mathbf{1 8 1 2}\) and drew up a classification act for the enrolment of volunteers. He was cbosen to draft the resolution of thanks voted by the legislature to General Andrew Jackson after the battle of New Orleans. He broke with De Witt Clinton in \(\mathbf{1 8 1 3}_{13}\), but nevertheless favoured, in \(\mathbf{1 8 1 7}^{17}\), Clinton's plan for the Erie Canal. His attitude towards slavery at the moment was shown by his vote, in January \(\mathbf{1 8 2 0}\), for a resolution opposing the admission of Missouri as a slave state. In the same year he was chosen a presidential elector. It is at this point that Van Buren's connexion began with so-called "machine politics," a connexion which has made his name odious to some bistorians of the period. He was a leading member of the "Albany regency," a group of politicians who for more than a generation controlled the politics of New York and powerfully influenced those of the nation, and which did more than any other agcicy to make the "spoils system" a recognized procedure in national, state and local affairs. Van Buren did not originate the system, for it was already well developed when he entered public life; but the nickname of "Little Magician" which presently attached to him testifies to the skill with which he exploited it, and to the popular impression which his political met hods produced.
In February 1821 he was elected to the United States Senate. Before taking his seat he served also as a member of the state constitutional convention, where he opposed the grant of universal suffrage. His course in the Senate was not altogether consistent, though in this respect be is not to be judged more harshly than some of his associates. He at first favoured internal improvements, and in 1824 proposed a constitutional amendment to authorize such undertakings, but the next year took ground against them. He voted for the tariff of 1824, then gradually abandoned the protectionist position. In the presidential election of \(\mathbf{2 8 2 4}\) he appeared as a strong supporter of william H . Crawford, and received the electoral vote of Georgia for vice-president; but he sbrewdly kept out of the acrimonious controversy which followed the choice of John Quincy Adams. He carly recognized the availability of Andrew Jackson, however, as a presidential candidate, and after the election sought to bring the Crawford and Jackson followers togel her, at the same time strengthening bis contrcl as a party leader in the Senate. Always notably courtcous in his treatment of opponents, he showed no bitterness either towards J. Q. Adams or Henry Clay, and voted for Clay's confirmation as secretary of state notwithstanding the "corrupt bargain" charge; at the same time he opposed intenal improvements and declined to support the proposal for a Panama Congress. As chairman of the judiciary committee, he brought forward a number of measures for the improvement of judicial procedure, and in May 1826 joined with Benton in prescnting a report on executive patronage. In the dehate on the "tarif of abominations" in 5828 he took no part, but voted for the measure in obedience to instructions from the New York legis-lature-an action which was cited agninst him as late as the presidcritial campaign of \(\mathbf{8 8 4 4}\). Van Buren was not an crator,
but his more important speeches show careful preparation and his opinions carried weight; and the oft-repented charge that he refrained from declaring himself on crucial questions is hardly borne out by an eramination of his senatorial career. In February \(\mathbf{1 8 2 7}\) he was re-elected to the Senate by a large majority. He was now one of the recognized managers of the Jackson campaign, and a tour of Virginia, the Carolines and Georgia in the spring of 1827 won support for Jackson from Crawlord.
In 1828 Van Buren was elected governor of New York for the term beginning on the 1st of January 1829, and resigned his seat in the Senate. But on the 5th of March he was appointed hy President Jackson secretary of state, an office which probably had been assured to him before the election, and he resigned the governorship. As secretary of state he took care to keep on good terms with the "kitchen cabinet," the group of politicians who acted as Jackson's advisers, and won the lasting regard of Jackson by his courtesies to Mrs John H. Eaton, wife of the secretary of war, with whom the wives of the cabinet officers had refused to associate. He did not oppose Jackson in the matter of removals from office, but was not himself an active " spoilsman," and protested strongly against the appointment of Samuel Swartwout (\(178_{3}-1856\)), who was later a defaulter to a large amount as collector of the port of New York. He skilfully avoided entanglement in the Jackson-Calhoun imbroglio. No diplomatic questions of the first magnitude arose during his service as secretary of state, but the settlement of long-standing claims against France was prepared for, and trade with the British West India colonies was opened. In the controversy with the Bank of the United States he sided with Jackson. After the breach between Jackson and Calhoun, Van Buren was clearly the most prominent candidate for the vice-presidency. Jackson in December 1829 had already made known his own wish that Van Buren should receive the nomination. In April 1831 Van Buren resigned, though he did not leave office until June. In August he was appointed minister to England, and arrived in London in September. He was cordially received, but in February Jearned that his nomination had been rejected by the Senate on the 25 th of January. The rejection, ostensibly attributed in large part to Van Buren's instructions to Louis McLane, the American minister to England, regarding the opening of the West India trade, in which reference had been made to the results of the election of 1828 , was in fact the work of Calhoun, the vice-president; and when the vote was taken enough of the majority refrained from voting to produce a tie and give Calhoun his longed for "vengeance." No greater impetus than this could have been given to Van Buren's candidacy for the vice-presidency. After a brief tour on the Continent be reached New York on the 5th of July. In May the Democratic convention, the first held by that party, had nominated him for vice-president on the Jackson ticket, notwithstanding the strong opposition to him which existed in many states. No platform was adopted, the widespread popularity of Jackson being relied upon to win success at the polls. His declarations during the campaign were vague regarding the tariff and unfavourable to the United States Bank and to nullification, but he had already somewhat placated the South by denying the right of Congress to abolish slavery in the District of Columbia without the consent of the slave states. In the election he received 189 electoral votes, while Jackson received 219 for President. Jackson now determined to make Van Buren president in 1836 , and bent all his energies to that end. In May 1835 Van Buren was unanimously nominated by the Democratic convention at Baltimore. He expressed himself plainly during the canvass on the questions of slavery and the bank, at the same time voting. perhaps with a touch of bravado. for a bill offered in 1836 to subject abolition literature in the mails to the laws of the several states. Cathoun, bitterly hostile to the last, objected to the usual vote of thanks to the retiring vice-president, but withdrew his objection. In the election Van Burcin rectived 170 electoral votes against 73 for William Ilenry Ifarrison, his principal opponent; but
the popular vote showed a pluraliay of best than 25,000 in a total vote of about \(1,500,000\). The election was in fact a victory for Jackson rather than for Van Buren.
The details of Van Buren's administration belong to the history of the United States (see Uaireo Stares). He announced his intention " to follow in the footsteps of his flustrious predecessor." took over all bet one of Jackson's cabinet, and met with statesmanlike firmness the commercinl crisis of 1837 , already prepared for before he took office. No exhibition of ability or courage, however, por yet the most akilful manipulation of the political machinery of the party, could prevent continued hostility to him and to the methods for which he was widely believed to stand. The state elections of 1837 and \(\mathbf{2 8 3 8}\) were disastrous for the Democrats, and the partial recovery in 1839 was offset by a second commercial crisis in that year. Nevertheless, Van Burep was unanimously renominated by the Democrats in 1840 . Charged with being "a Northern man with Southern principles." be was frequently interrogated during the campaign, and his nomination obviously failed to arouse enthusiasm or even inspire confidence. The revolt against Democratic rule was undoubledly serious, but a study of the popular vote shows that the election of Harrison, the Whig candidate, was less of a revolution than many affected to think. On the expiration of his term Van Buren retired to his estate at Kinderbook, but he did not withdraw from politics or cease to be a figure of national importance. It was even proposed to make him a member of the Federal Supreme Court in order to get him out of political life. He confidenuly expected to he nominated for president in 1844, and his famous letter of the 27 th of April, in which be frankly opposed the immediate anneration of Texas, though doublless contribut. ing greatly to his defeat, was not made public until he felt practically sure of the nomination. In the Democratic convention, though he had a majority of the votes, he did not have the twothirds which the rule of the convention required, and after eight ballots his name was withdrawn. In 1848 be was again nominated, first by the "Barnburner" faction of the Democrats, then by the Free Soilers, with whom the "Barnburmers" coalesced, but no electoral vote was won by the party. In the election of 1860 he voted for the fusion ticket in New Yark which was opposed to Abraham Lincoln, but he could not approve of President Buchanan's course in dealing with secession, and later supported Lincoln. He died in Kinderhook on the \(24 t \mathrm{~h}\) of July 1862. His memoirs, to 1834, remain unpublished. but an Inquiry into the Origin and Course of Pulitical Purties in the United States was compiled from it by his sons and published in 1867. Van Buren married in 1807 Hannah Hoes (\(1782-1819\)), by whom he had four sons.

Van Buren's son Abraham (1807-1873) graduated at West Point in 1827, served under General Winfield Scott against the Seminole Indians in 1836 , and was made captain of the First Dragoons. In 1837 be resigned from the army to become his father's private secretary, but in 1846, at the outbreak of the war with Mexico, he was reappointed with the rank of major and paymaster. In August 1847 be was breveted lieutenantcolonel for gallant and meritorious conduct at Contreras and Churubusco. In 1854 he retired to private life. Another son, Joun (\(1810-1865\)), graduated at Yale in 1828, was admitted to the bar at Albany in 1830 and was attorney.general of New York in \(\mathbf{1 8 4 5 - 1 8 4 6}^{\text {. He was popularly known as "Prince }}\) John " because of his manners and appearance.
The best biography of Van Buren is by Edward M. Shepard. in the "American Stalcsmen Series" (revised ed. Boston. 1809). The Life by George Bancroft (New York: 1889) is highly eutogitic. Von Holst's Uniled States. NacDonald's Jechsonnom Demorerer. Garrison's Westocod Extension and T. C. Smith's Partues ant Slawery (the last three in the "A American Nation Series "') give much attention 10 Van Buren's public career. The Van Buren manucripts are in the Library of Congress.
(W. MacD. \({ }^{(1)}\)

VANCE, ZEBULON BAIRD (\(1830-1894\)), American political leader, was born in Buncombe county, North Carolina, on the 131h of May 88 30. He was educated at Washington College. at Salem, Tennessee. and the university of North Carolina (1851-52). Entering politics as a Whig, he was elected solacitor
of Buncombe county (185z) and a member of the state Frouse of Cotmbons (1854), and served in the national House of Representatives from December \(185^{8}\) until the 3rd of March 186 . As captain of a company in the i4th and as colonel of the 26th North Carolina regiments, he took part in the Virginia campaigns of 1861-62. From 1862 until the close of the war he was governor of the state, and from the 2oth of May to the 5th of July 1865 , when he was released on parole, was held as a prisoner by the United States authorities in Washington. Having been elected to the United States Senate in 1870 and been refused admission because his disahilitles-due to his participation in the warhad not been removed, he took the lead in the fight against "carpet-bag" misrule and was chosen governor in the political revolution of 1876 , serving in 1877 -79. He was again elected to the Senate in 1878 and was re-elected in 1884 and 1890 , serving from March 1879 until his death. Senator Vance was a typical Southern Whig. He disliked slavery and he hated secession. In common with other Whigs, be was forced to remain in the Democratic party after the war by the fear of aegro domination. He died at Asheville, North Carolina, on the 14 th of April 1804.
See the Life by Clement Dowd (Charlotte, N.C., 1897).
VANCOUVER, OEORGE (c. 1758-1798), English navigator, was born in 1758. He entered the navy at the age of thirteen, and accompanied James Cook in his second (1772-74) and third (\(1776-80\)) voyages of discovery. After serving for several years in the West Indies, both under Rodney (his commander in the action of the 12 th of April 1782) and under Alan Gardner (\(1786-89\)), Vancouver, on Gardner's recommendation, was appointed to command an expedition to the north-west cast of America, to take over from the Spaniards the territory they had seized (atid subsequently relinquished) in that region, to explore the coast from \(30^{\circ} \mathrm{N}\). round to Cook's River (or Inlet), to search for an eastward passage to the great lakes, and to ascertain the true character of Juan de Fuca Strait. Vancouver, accompanied by Lieutenant Broughton, left Falmouth on the tst of April 1791 and proceeded by way of the Cape of Good Hope to Australia, where he carcfully surveyed part of the south-west coast, especially King Ceorge's Sonnd, whose value as a harbour he pointed out. He next made for Dusky Bay, New Zealand (which he was the first properly to explore), and thence sailing north-east, discovered Oparo Islet (\(27^{\circ} 36^{\circ}\) S.; \(144^{\circ} 17^{\prime \prime} \mathrm{W}\).), and on the 3oth of December reached Tahiti, where he was again joined by Broughton, who meanwhile had discovered Chatham Island. After staying about three weeks at Tahiti and several weeks at the Hawaiian Islands, Vancouver on the 18th of April 1792 sighted the west coast of North America (California, then known as New Albion) in \(30^{\circ} 27^{\prime} \mathrm{N}\). He examined the coast up to \(52^{\circ} 18^{\prime} \mathrm{N}\). With minute care, surveying all inlets, discovering the Gulf of Georgia, and circumnavigating Vancouver Island (named after him). Alter another visit (February-March 1793) to the Hawaifan Islands, in whose races and affairs be took great interest, Vancouver resumed his exploration of the American coast in April, surreying north to \(56^{\circ} \mathrm{N}_{\rightarrow}\) and south (past the Spanish Calffornian settlements) to \(35^{\circ} \mathrm{N}\). During a fresh stay at the Hawaiian Islands (January-March 1994) Vancouver aceepted their submission to Great Britain, hut his annexation seems never to have been officially ratified. Quitting the group again in Marrh 1794, Vancouver saited, by Chernigov island and Kodiak Island, to Cook's Inlet, which was now proved to be no river. After a iresh survey of much of the coast north of San Prancisco, Vancouver set out homewards via Cape Hotn and St Helena in October 1704. On the way he made a careful examination of Cape St Lucas, the southern point of Lower California, the Galapagos Islands and some other points. He reached the mouth of the Shannon on the 13 th of September 1795 (the Thames on the 2oth of October), and immediatcly set ebout the preparation of his narrative; but he died at Petersham in Surrey on the 1 oth of May 1708 , before he had com. pleted his task. His brother John, assisted by Captain Puget, published the complete reeord in 1798.

See A Vovage of Discovery to the North Pectific Ocean and rownd the Werld ... in 1790-5... under Cepplain George Vancouner. 3 vols. (1798), with an attas of maps and plates,

VANCOUVER, a city and the county-seat of Clarke county, Washinglon, U.S.A., on the Columbid river about 100 m . from its mouth, about 5 m . E. of its confluence with the Willamette, and 8 m . N. of Portland, Oregon. Pop. (1890) 3545; (1900) 3126 (547 foreign-born); (1910) 9300 . It is served by the Northern Pacific, the Great Northern, the Oregon \& Washington, and the Spokane. Portland \& Scattle railways, and by steamship lines, being accessible to sea-going vessels; a ferry connects with the Portland Electric railway. The city is the seat of St James College (Roman Catholic; 1856) and of the state school for defective youth (1886). Vancouver Barracks, east of the city, is an important U.S. military post (estahlished in 1849) and the headquarters of the Military Department of the Columbia (including Washington, Oregon, Idaho, except the part in Yellowstone Park, and Alaska); the military reservation includes some 640 acres. The post commands an excellent view of the Columbia, and of the mountain peaks, Mt Hood, Three Sisters, Jefferson and St Helens. The city has a public library and a public park, and there is a U.S. Land Office here. Vancouver lies in a region of extensive forests and of fraitgrowing and farming lands; among its manufactures are lumber products, harrels, condensed milk, flour, beer and canned fruit. It was a post of the Hudson's Bay Company in 1828-1846, and was protected by a large stockade, to which settlers fled for protection when attacked hy the Indians. It was made the county-seat in 1854, was incorporated as a village in 1858 and was chartered as a city in 1889.

VANCOUVER, a city and port in the province of British Columbia, Canada, on the southern side of Burrard Inlet. Pop. (1,906) about 45,000 . It is the western terminus of the Canadian Pacific railway. The harbour of Vancouver is one of the finest natoral harboors in the world. The city is the largest in British Columbia, and is the chief Canadian shipping port for Japan, China, Australis and the islands at which the C.P.R. mail steamers call. There are regular lines of steamers running between Vancouver and Alaska and the points of connexion with the Yukon territory, as weil as lines to Poget Sound and San Francisco in the United States. The port also has regular and frequent communication by steamer with Victoria, and is the headquarters of an extensive coassing trade. In 1886, soon after its establishment, a fire swept the whole town out of existence, but the inferior wooden buildings at first erected have been largely replaced by stone and hrick stractures, giving a handsome appearance to the principal streets. Vancouver has well-paved streets and ts well supplied with water, electric lighting, electric cars and all the improvements of a modern city. Stanley Park, a large reserve of 900 actes, is one of the principal pfeasure resorts. There is also fine sea-hathing at English Bay on the outskirts of the city. The "McGill University CoHege of British Columbia" at Vancouver is one of the colleges of McGin University (Montreal). There are a sugar refinery and cooperage works, as well as large sawnills, shingle factories and many ot her industrial concerns. A large wholesale trade is carried on with all the settiements of the province. Vancouver is the centre of the important timber industry of British Columbia.
VANCOUVER ISLAND, the largest of an archipelago of innumerable islands which fringes the Pacific coast of Canadz, being at the same time the largest island on the west coast of North America. It forms part of British Columhia. It extends from \(48^{\circ} 20^{\prime}\) to \(51^{\circ} \mathrm{N}\). and from \(123^{\circ}\) to \(128^{\circ} 30^{\prime} \mathrm{W}\), and is thus 285 m . Jong and from 40 to 80 m . wide, with an area of about 20,000 sq m., being nearly the size of Nova Scotin, which occupies a corresponding position on the Allantic coast. It is bounded on the south by the Strait of Juan de Foca, and is separated from the mainland of the province by the Strait of Georgia and Queen Charlotte Sound. A partially submerged range of mountains, which has been termed the Vancouver Range, runs parallel to the coast of British Columbia; a portion of this range
forms Vancouver Island, and it again rises above the level of the sea farther north, forming the Queen Charlotie Islands. The coast-line is generally precipitous. The west coast is much broken by bays and inlets-the transverse valleys of the sanken range-which penetrate far inland. Among these may be mentioned the Alberni Canal, which is 20 m . long with a fine harbour at its head, the width of the inlet varying from a half to one mile; Nootka Sound, 6 m . wide, and sending three arms inland which are from 40 to 160 fathoms deep, as well as Clayoquot, Esperanza, Kyuquot and Quatsino Sounds, which also penetrate deeply into the island. The general height of the mountain-range on Vancouver Island is from 2000 to 3000 ft .; some peaks are 6000 ft ; and Victorin Peak is 7484 ft . high. The island is composed largely of crystalline and metamorphic rocks, but contains some cretaceous areas which hold extensive beds of coal, especially on the east coast. These are mined at Nanaimo, Ladysmith and other points. The island is covered everywhere with an exceadingly dense forest, which makes its interior very difficult to traverse, so that there are still portions of the island which have not been thoroughly explored. These forests yield immense supplies of magnificent timber, which together with the coal-field and fisheries constitute the chief resources of the island. There are some level tracts on the south-ast coast, as well as in the narrow, well-watered valleys of the interior, which afford excellent agricultural land on which cereals of all kinds, as well as all the fruits of the temperate zone, Dourish, and which are also suitable for raising sheep and cattle. The climate of Vancouver Island, especially in the south, is wonderfully mild for the latitude-as mild as that of Great Britain, with dryer summers. The mean temperature of December at Victoria in the south of the island is about \(41^{\circ}\) Pabr., while that of July is about \(60^{\circ}\). In the north and west the rainfall is greater than on the south and east coasts.
(F. D. A.)

Vandals (Lat. Vandili or Vandilij), a term used by early writers only as a collective designation for a group of Teutonic tribes including, according to Pliny, the Burgundians and the Goths. As a tribal name Vandali occurs first in connexion with the Marcomannic War. The people to whom the name is there applied seem to be identical with those formerly known as Lugii. Another tribe called Silingae by Ptolemy likewise appears among the Vandals at a later time. Both these tribes appear to have inhabited the upper part of the basin of the Oder, and the name of the Silingac is preserved in Siesia. The Vandals gigure in the earliest legends both of the Gotbs and the Lombards, both of whom they are said to have encountered unsuccessfully. They first came into contact with the Romans during the Marcomannic War. In the time of Aurelian they in vaded Pannonia, and during the reign of Probus we find them fighting in Dacia. In the time of Constantine I., according to Jordanes, they suffered a great defeat at the hands of Geberich king of the Goths, their own king Visimar being killed, and the survivors were allowed by the Romans to settle in I'annonia Here they secm to have remained in subjection to the Roman for about sixty years. In the ycar 406 they moved west ward. according to some writers at the instigation of Stilicho, who i himself said to have been of Vandal origin, and crossing th. Rhine at Mainz procected towards Gaul. A portion of the nation is, however, said to bave remained behind, and I'rocopics tells a story that these reminants sent an embassy to Gaiseric asking that their kinsfolk in Africa shouid renounce their chim to the lands which their forefatbers had beld in the old lomes of the race.
In Gaul the Vandals fought a grcat battle with the Franks, in which they were defeated with the loss of 2000 men, and their king Godégisel was slain. In 409 his son Gunderic led then across the Pyrenecs. They appear to have sellied in Spain in two detachments. One, the Asdingian Vandals, occupici: Galicis, the other, the Silingian, Andalusia. Twenty years of Moody and purposeless warfare with the armics of the empire and with their fellow-harbarians, the Cobibs and the Suevi, The Silingian Vandals were well-nigh exterminated,
the remains of a Turanian people, the Alani, who had beem utterly defeated by the Goths) marched across Spain and cook possession of Andalusia

In 428 or 429 the whole nation set sail for Africa, wpoe an invitation received by their king from Bonifacius, conn of Africa, who had fallen into diagrace with the court of Raveraa Gunderic was now doad, and supreme power was in the hands of his bastard brother, who is generally known in histary as Genseric, though the more correct form of his name is Gxiseric. This man, short of stature and with limping gait, but with a great natural capacity for war and dominion, reckless of bumas life and unrestrained by conscience or pity, was for fifty years the hero of the Vandal race and the terror of Constantionple and Rome. Probably in the month of May 428 be assembled all his people on the shore of Andalusia, and numbering the males among them from the greybeard down to the pewbora infant found them to amount to 80,000 souls. The passage was effected in the ships of Bonifacius, who, bowever, soon returniat to his old loyalty, besought his new allies to depart from Airica They, of course, refused, and Bonifacius turned against them, too late, bowever, to repair the mischief which be had caused. Notwithstanding bis opposition, the progress of the Vaddals was rapid, and by May 430 only three cities of Roman AfricaCarthage, Hippo and Cirta-remained untaken. The long siege of Hippo (Bfay 430 to July 431), memorable for the last illoess and death of St Augustine, which occurred during its progress, ended unsuccessiully for the Vandals. At length (301 h January 435) peace was made between the emperor Valentinian 111. asd Gaiseric. The emperor was to relain Carthage and the small hut rich proconsular province in which it was situated, while Hippo and the other six provinces of Africa were abandoned to the Vandal. Gaiseric observed this treaty no longer than suited his purpose. On the roth of October 439, withont any declaration of war, he suddenly altacked Carthage and took it The Vandal occupation of this great city, the third arnong the cities of the Roman empire, lasted for ninety-four years. Gaiseric seems to have counted the years of his sovereignty from the date of its capture. Though most of the remaining years of Gaiseric's life were passed in war, phunder ratber than territorial conquest seems to have been the object of his expeditions. He made, in fact, of Carthage a pirate's stronghold, whence be issoed forth, like the Barbary pirates of a later day, to attack, as be himself said, "the dwellings of the men with whom Cod is angry," leaving the question who those men might be to the decision of the elements. Almost alone among the Teutonic invaders of the empire be set himself to form a powerful fieet. and was probably for thirty years the leading manitime power in the Mediterranean. Gaiseric's celebrated expedition against Rome (455), undertaken in response to the call of Eudoria, widow of Valentinian, was only the greatest of his marauding exploits. He took the cily without difficulty, and for fourteen days, in a calm and business-like manner, emptied it of all its movable wealth. The sacred vessels of the Jewish temple, brought to Rome by Titus, are said to bave been among the spoils carried to Carthage by the conqueror. Eudoria and bet two daughters were also carried into captivity. ODe of the princesses, Eudocia, was married to Hunneric, eldest son of Gaiseric; her mother and sister, after long and tedious negotia tions, were sent to Constantinople.

There does not seem to be in the story of the capture of Rowe by the Vandals any justification for the charge of wilful and objectless destruction of public buildings which is implied in the ward "vandalista." It is probable that this charge grew out of the fierce persecution which was carried on by Gaiseric and his som against the Catholic Christinns, and which is the darkest staia on their characters. This persecution is described with great vividness, and no doubt with some exaggeration, by the pearly eontemporary Victor Vitensis. Churches were burned; bishope and priests were forced by cruel and revolting tortures to reveni the biding-places of the sacred vessels; the rich provincials who were employed sbout the court, and who still adhered to ithe Catholic faith, were racked and beaten, and put to death. The
bichope were almoat mivenally heniahed, and the congregations were lorbidden to elect their successors, so that the greater piart of the churches of Africa retosined "widowed" for a whole generation. In 476, at the very clowe of Gaiseric's life, by a treaty concluded with the Enatern emperor, the bishops were permitted to return. There was then a short lull in the persecution; but on the death of Gaiseric (477) and the accersion of Hunneric it broke out again with greater violence than ever, the ferocity of Hunneric being more thoroughly stupid and brutal than the calculating cruelty of his father.
On the death of Hunneric (484) he was succeeded by his cousin Gunthamund, Gaiseric having established seniority among his own descendants as the law of succemion to his throne. Guathamund (484-96) and his brother Thrasamund (496-533), though Ariams, abated some of the rigour of the persectution, and matntained the external credit of the monarchy. Internaily, however, it was rapidly dectining, the once chaste and hardy Vandals being demoralized by the fervid ctimate of Africa and the sinfal delights of their new capital, and falling ever lower into sloth, effeminacy and vice. On the death of Thrasamund, Hilderic (523-31), the son of Hunneric and Eudocia, at length succeeded to the throne. He adhered to the creed of his mother rather than to that of his father; and, in apite of a solemn oath sworn to his predeceseor that he would not restore the Catholic churches to their owners, be at once proceeded to do so and to recall the bishopa. Hilderic, eldedy, Catholic and timid, was very ubpopular with his subjects, and after a reign of eight years be was thrust inlo prison by his wadike cousin Gelimer (531-34).
The تrongs of Ifilderic, Catbolic, and with the blood of Theodocius in his veins, afforded to Justinian a long-coveted pretent for overthrowing the Vandal dominion, the latent weakiess of which was probably known to the statesmen of Conatantinople. A great erpedition under the command of Belisarius (in viose train was the historian Procopius) sailed from the Boaporns in June 533, and after touching at Catana in Sicily finally reached Africa in the beginning of September. Gelimer, who was strangely ignorant of the plans of Justinian. had sent his brother Tzaso with some of his best troops to quell a rebellion in Sardinia (that ishend as well as the Balearic Isles forming part of the Vandal dominions), and the hading of Betiastius was entirety unopposed. He marched rapidly towards Carthase and on the \(13^{\text {th }}\) of September was confronted by Gelimer at Ad Decimum, 10 m . from Carthage. The battie did not refiect any great credit cither on Byzantine or Vandal generalchip. It was in fact a series of blunders on both sides, but Belisarius made the tewest and victory remained with him. On.the \(14^{\mathrm{ch}}\) of September 533 the imperial general entered Carthage and ate the feast prepared in Gelimer's palace for its lord. Belisarius, however, was too late to save the life of Hilderic, who had been slain by his rival's orders as soon as the news came of the banding of the imperial army. Still Gelimer with many of the Vandal warriors was at liberty. On the return of Traso from Sardinia a force was collected considerably larger than the imperial anmy, and Gelimer met Belisarius in battle at a place about 20 m . from Carthage, called Tricamarum (December 533). This batue was far more stubbornly contested then that of Ad Decimum, but it ended in the utter rout of the Vandals and the flight if Gelimer. He took refuge in a mountain fortress called Pappus on the Numidinn frontier, and there, after enduring great hardships in the squalid dwellings of the Moors, surrendered to his pursuers in March 534 . The well-knows stories of his laughter when be wes introduced to Belisarios, and his chant, "Vanitas vanitatum," when he ralked before the triumphal car of his conqueror through the streets of Conatantinople, probably point to an intellect disordered by his reverses and hardships. The Vandals who were carried captive to Constantinople were enlisted in five squadrons of eavalry and sent to serve against the Parthians under the title "Joutiniani Vandali." Four hundred escaped to Africa and took part in a mutiny of the imperial troops, which was with difictilty quelled by Belisarius (536). After this the Vandals disappear from history. The overthrow of their kingdom
undoubteelly rendered easier the spread of Saracen conquet along the northern shome of Africa in the following century. In this as in many other fields Justinian sowed that Mabomet might reap.
(T. H.)

See Pliny, Natural Fastory, iv. 99; Tacitus, Germania, ©c. 2, 43: Ptolemy, i., c. 11.6418 fif; Julius Capitolimus, De Bedlo Marcamannico. 17; Vopiscus, Probus, 18; Dexpplis, Recephes, Ppe 19 f. (Bonn); and Jordanes, 4, 16, 22 ; Procoplus, De Balo Vondalica. a first-rate authority for contemporary events, must be used with caution for the history of the two or three generations before his tivie. The chromiclers Idatins, Prosper and Victor Tunounensis Eupply sooie facta and for the persecution of the Cathotics Victor Vitensis and the Vila Auguslins of Posidius may be conculted. See also E Gibbon, Decline and Fall. chaps xxodii. and xli., Papencordt Geschichts der mandalisthen Ferrschoff in Afrike (Berlin. 1837): T. Hodstin, ILaly and her Imaders (1880-99); L. Schmidt, Geschichtit der Wandalem (Leipaig, 1901); and F. Martroye, L'Oocudemi dr'́paqw byzantire (1904).
VAMDAYME, DOMNIGUS RETE, COWNT (1770-1830), French soldier, was born at Cesael, near Dunkirt, on the sth of November 1770. He enlisted in the army in 1786, served in Martinique in \(\times 788\) and on returning to Frabce entered finto the Revolutionary movernent, raising a compeny of light infantry at his rative placo His extroondinary bravery and vigour in the cmmpaign of 1793 ensured his rapid promotion, and after Hoodschoote he was made a gemeral of brigide. He served in this rakk in the campaigns of 1794 in the Low Comeries, 1795 on the Rhine and 1796 in Gemany, and at the outbreak of the war in 1799 he was promoted gencral of division. In that year and in 1800 he served under Brune, Moreau and Macdonald in Holland, Germany and Switseriand. He was renowned for his tenacity and fearleamess as a fighting genernl as well as for his frank, rough manners and phundering and dhoolute life, but once he carse under Napoleon's influence he was (unlike most of the Rhine Army officers) his aboolutely devoted servant. In 1805, for his splendid leadership at Austerlits, he was given the Grand Eagle of the Legion of Fionour, and in \(1806-7\) he commanded a small corps of the Grande Armie which reduced the Silesian fortresses. In 1808 he was made count of Unebourg. In 1809 he served in the Eckmothl campaign with distinction, but in 1812, while commanding the Westphalian contingent he quarrelled with King Jerome Bonsparte and returned to France. He returned to the army in 1813. But his corps, sent against the line of retreat of the Allies at the time of the battle of Drestion, was entangled in the mountains, surrounded and after a fierce resistance compelled to semender at Xibm (sen Napocmonic Caipaigns). In his captivity be appears to have been treated with especial harshoess, and when the end of the war released hirs he was forbidden to enter Paris, and sent to Casel by Louis XVIII. He was thus free of all obligations towards the Bourbons, and when Napoleon returned, joined him without besitation. The emperor mede him a peer of France and placed him at the heed of the III. corps in the Army of the North (see Watenloo Caypaics). After Waterloo, under Grouchy's command, he brought back his corps in good order to Paris and thence to the Loire. The Restoration first imprisoned and then exiled him, and molike mont of his comrades he was never roemployed as a general. He died at Cased on the 1 ghh of July 2830

Soe Du Came, Le Gtinfal Vaxienvine at as corrospendance.
VARDERIILT, CORNEKNU (\(1794-1877\)), American capitalist, was born mear Stapleton, Staten Island, New York, on the 27th of May 1794. He was a descendant of Jen Aersten Van der Bilt, who emigrated from Holland about 1650 and setuled near Brooklyn. The family removed to Staten Island in 1715 . At the age of 16 be bought 2 sailboat, in which he carried farm produce and passengers between Staten Island and New York. He was soon doing a profitable carrying business, and in 1813 carried supplies to fortifications in New York Harbour and the adjacent waters. Recognizing the superiority of steam over sailing vessels, he sold his sloops and schooners, and in 2817-1829 was a captain on a steam ferry between New York and New Brunswick. During tbe next twenty years he developed an extensive carrying trade along
the coast in a fleet which became so large as to win for him the popular designation of "Commodore." In 8849 he got from the Nicaraguan government a charter for a route from Greytown on the Aluntic by the San Juan river and Lake Nicaragua to San Juan del Sur, on the Pacific; and in \(185 x-1853\) by means of this route he conducted a semi-monthly steamship line botween New York and San Francisco. In 1855-r861 he operated 2 freight and passenger line between New York and Havre, and by carrying the United States mails free drove out of business his only rival, the Collins line-the Cunard boats being at that time in use for the Crimean War. In 1857 -1862 he sold his steamships and turned his attention more and more to the development of railways. In 1857 he became a director, and in 1863 president, of the New York \& Harlem railway company, operating a line between New York and Chatham Four Corners, in Columbia county, and he greatly improved this service. He then acquired 2 controlling interest in the Hudson River railway, of which he became president in 1865 ; and after a sharp struggle in 1868 he became president of the New York Central (between Albany and Buffilo), which in 1869 he combined with the Hudson River road, under the name of the New York Central \& Hudson River railroad, of which he became president. His acquisition of the Lake Shore \& Michigan Southern railway in 1873 eatablished a through line (controlled by him) between New York and Chicago. At the time of his death (in New York City on the 4th of January 1877) he owned a majority interest in the New York Central \& Hudson River, the Lake Shore \& Michigan Southern, the Herlem, and the Canadk Southern railways, and had holdings in many others, and his fortune was variously estimated at from \(\$ 90,000,000\) to \(\$ 800,000,000\), about \(\$ 80,000,000\) of which be left to his son, William Henry. He made considerable benefactions to Vanderbilt University, and gave \(\$ 50,000\) during his life to the Church of the Strangers in New York.
His eldest som, Whimam Henay Vanderamit (1821-1885), was born in New Brunswick, New Jersey, on the 8th of May 1821. He was a clerk in a New York banking house from 1839 to 8842 , when his father bought him a farm of 75 acres near New Dorp, Staten Island, New York. In 8860 he was ap. pointed receiver of the Staten Island railway, of which he was elected president in 1862 , and which he brought into connexion with New York by means of a line of ferry-hoats. He became vice-president of the Hudson River railway in 1865, vicepresident of the New York Central \& Hudson River railway in 1869, and president in June 1877, succeeding his father as president of the Lake Shore \& Michigan Southern, the Canada Southern, and the Michigan Central railways. He died in New York on the 8 th of December 1885 . His forture at the time of his death was estimated at \(\$ 200,000,000\). In 1880 he paid ail the expenses (\(\$ 100,000\)) incident to the removal of the obcliss ("Cleopatra's Needle") from Egypt to Central Park, New York; in the same year he gave \(\$ 100,000\) to found the Theo logical School of Vanderbilt University, which his father bad endowed. In 1884 he gave \(\$ 500,000\) to found a school of madicine in connexion with the College of Physicians and Surgeons in New York. By his will he left \(\$ 200,000\) to Vanderbilt University, \$100.000 to the Domestic and Foreign Missionary Society of the Protestant Episcopal Church, \(\$ 100,000\) to S Luke's Hospital in New York, \(\$ 100,000\) to the Young Men': Christian Association of New York, \(\$ 100,000\) to the Metropolitan Muscum of Art in New York, \(\$ s c, 000\) to the American Suseum of Natural History, \(\$ 100,000\) to the Protestant Episcopal Mission Society of New York, and \(\$ 250,000\) in all to various: other religious and charitable organizations and institutions.
William Henry's eldest son, Corneasts (\(1843-\mathrm{r} 8 \rho 9\)), became assistant treasurer of the Harlem railway in 1S65, and treasurer in 1867 ; in \(18 \%\), after the death of his grandfather, was elected first vice-president of the New York Central, and in 1878 became treasurer af the Mlichigan Central and vice-president and treasurer of the Canada Southern. In 1883, under a reorganizationsores of Nicw York Central and Michigan Central railways, he
and their reaponsible bead. Firs benefections inctuded \(\$ 950,000\) (1897) for an addition to St Bartholomew's Hospital in New York; to Yale, \(\$ 1\), 500,000 , part of which was used in building Vanderbilt Hall (a dormitary); and \(\$ 100,000\) to the fund for the building of the Episcopal Cathedral of St John the Divine in New York. To the Metropolitan Museum of Art in New York he presented Rosa Bonheur's "Horse Fair."
See W. A. Croffur, The Vaniderbilts and che Story of cheir Fornme (Chicago, IIL., 8886): D. W. Cross, "The Railroad Men of America." in Magasine of Weskert History, vol. viii. (Cleveland: Ohio. x888); and Burton J. Hendrick, "The Vanderbitt Fortune," in LcClare's Magazırre, vol. xxxii. (New York, 1908-1909).

VANDERLYM, 3OHN (\(1776-1852\)), American artist, was born at Kingston, New York, on the 15 th of October 1776 He was employed by a print-seller in New York, and was firat
 man wbo was afterwards one of the directors of the American Academy. He copied some of Gilbert Stuart's portraits, including one of Aaron Burr, who placed him under Gilber Stuart as a pupil. In 1796 Vanderiyn weot to Puris, and in x 805 to Rome, where he painted his picture of "Marius amid the Ruins of Carthage," which was shown in Paris, and abtained 2 gold medal there. This success cuused him to remain in Paris for seven years, during which time he prospered greatly. In 8812 be showed a nude "Ariadre" (engraved by Darand, and now in the Pennsylvaniz Academy), which increased his fame. When Aaron Burr fled to Paris, Vanderlyn was for a time his only support. Vanderlyn returned to America in 1815, but did not meet with success; he worked very alowly, and neither his portraits nor various panorama which be exhibited brought him any considerable financial return. In 1842, through friendiy influences, be was commixsioned by Congress to paint "The Landing of Columbus" for one of the panels in the rotunde of the Capitol at Wasbington. Going to Paris, he employed to assist hima a French artiot, who, it is said, did most of the work He died in absolute want at Kingaton, New York, on the 23rd of September 1852 Vanderlyn was the first American to study in France instead of in England, and to acquire accurate draughtsmanship. He was more academic than his sellows; but, though frithfully and capably executed, his work was rather devoid of charm. He painted portraits of Presidents Washington (a copy of Stuart's portrait, for the National House of Representatives), Monroe, Madison, Jackson and Taylor, and of the statesmen Robert R. Livingston (New York Historical Society), Johm C. Calhoun and George Clinton.

VAN DER STAPPEN, CHARLES (r84j-1910), Belgian sculpton, was born in Brussels, September 1843 . His first contribution to the Brussels Salon was "The Faun's Toilet" of 1869, and thereaiter be began to produce work of a high and novel arder in every class of sculpture, and soon, along with Pwil de Vigne, became recognized as the leader of the section of the new Belgian school of sculpture which, while aiming at truth to life, allowed itself nevertheless to be inspired hy the classic perfection of the art of Greece and the spiric of the Italisa Renaissance. Van der Stappen bas shown his greatest power in decorative aculpture, such as we see in the deconation on the Palais des Postes, Brussels (187 z), as well as the pediment "Orchestration" for the Conservatoire de Masique, and the noble bronze group, "The Teaching of Art," on the fagade of the Palace of Fine Arts, Brusels. Among his other decorative work are the satues for the Alhambra Theatre and the caryatides for the house of the architect M. de Curte (1874). His best-known monuments are those to "Alexandre Gendebica" (1874) and "Baron Coppens," at Sheel (1875). His stataen include "William the Silent," set up in the Square du Peuit Sablon, "The Man with the Sword," and "The Sphinx "the last two in the Brassels Museum. The hronze group "Onpdrailles" was acquired hy the Belgian governmeot (1892). In 8893 the sculptor began his collaboration with Constantin Meunier for the elaborate decoration of the botanical gardens of Brusels, and the result of the connerion may be
seen in "The Builders of Cities," a group which wifght almost have come from his compenion, so strongly is it imbued with the sentiment and Mustrative of the types of the "socialistic art " of Meunier.
See Charles son der Stappen, by Camille Lemonnier; Les Artistes buges condemporaras. by E. L. de Taye: The Renaiseance of Scmlpemese in Belcinem by O. G. Destrie (Londog, 1895).

FAN DIA TETDEN, ROGER (c. 1400-1464), Flemish painter, also known as Roger de la Pasture, Rogier de Bruxelles, \&ce., was born at Toumay, where in 1427 he entered the studio of Robert Campin. He established himself in Brussels about 1435. He was in Italy in \(\mathbf{5 4 4 9}\) - 1450 , but his visit shows no result on his style, which owes nothing to Italian models; and he returned to Brussels, where he died on the 18 th of June 1464. His vigorous, subtle and expressive painting and popular religious conceptious had considerable influence on the art of Flanders and Germany. Memlinc was his greatest pupil; and his place in the earty Flemish school is second only to that of the Van Eycks. He was not a pupil of Jan van Eyck, as was at one time supposed. His principal paintings were: a "Descent from tbe Cross" (1440), now in Madrid, and another (1443) in the cburch of St Picrre at Louvain; a triptych (\(143^{8-1440}\)), now in the Berlin Museum; *Madonna with Saints" (1450), at the Stadel Institute, Frankfort; a "Last Judgment " (1451), in the hospital of Beaune, Prance; the portraits of Philip the Good (Antwerp Maseum) and Charles the Bold (Brussels Museum), painted about 5456-1458, the "Altarpiece of St John" and the triptych from Middelburg (Berlin Museum); an "Entombment of Christ " (National Gallery); a "Woman Crying" (Brussels Museum); "Descent from the Cross" (Louvre); "Adoration of the Magi " (Old Pinakothek at Munich); "Descent from the Cross" (the Hague); "Seven Sacraments" (Antwerp Museum), "Descent from the Cross" (Brussels Moseum). Some of these latter, and athers, are only doubtfully attributed to the master. The "Crucifinion" in the Brassels Museum, assigned either to him or to Memlinc, and containing portraits of the Sforzas, probably represents Roger van der Weyden in some of the principal figures at least, though Memlinc may have completed the picture.

There was a younger Roger van der Weyden (c. 1450-1 529), to whom a brilliant "Mary Magdaten" in the National Gallery is attributed.

There are Lives of the elder Van der Weyden by A. Wauters (r856) and Alex. Pinchart (1876).

VAKDEVELDR, ADRIAN (\(1639-1672\)), Dutch animal and landscape painter, a brother of William Vandevelde (q.0.), the marine painter, was born at Amsterdam in 1639. He was trained in the studio of Jan Wynants, the landscape painter, where he made the acquaintance of Philip Wouwerman, who is believed to bave aided him in his studies of animals, and to have exercised a powerful and beneficial influence upon bis art. Having made exceptionally rapid progress, he was soon employed by his master to introduce figures into his landscape compositions, and he rendered a similar service to Hobbema, Ruysdae, Verboom and other contemporary artists. His favourite subjects are scenes of open pasture land, with sheep, iatule and goats, which he executed with admirable dexterity. with much precision of touch and truth of draughtsmanship. and with clear silvery colouring. He painted a few small but excellent winter scenes witb skaters, and several religious subjects, such as the " Iescent from the Cross," for the Roman Catholic church in Amsterdam. In addition to his paintings, of which nearly two tundred have been catalogued, he executed abont twenty etchings, several of which appear from their dates to have been dons in his fourtenth year. They are simple hut pleasing in tonality, and are distinguished by great directiess of method and by delicacy and certainty of touch. Adrian Vandevelde died at Amsterdam in January 1672.
VAKDEVELDE, WILLAM (\(\mathrm{r} 633-1707\)), the younger, Dutch painter, a son of William Vandevelde, the elder, also a painter of sea-piectes, was born at Arosterdam in 1633. He was in-
structed by his father, and aftenvianca by Stmon de Vireger, a marine painter of repute at the thme, and had achieved great colebrity by his art before he came to London. In 1674 he wab engeged by Charies II., at a selary of £roo, to aid his father in "taking and making draughts of see-fights," his part of the work being to reproduce in colour the drawings of the elder Vandevelde. He was aloo patronized by the Duke of Yort and by various members of the nobility. He died in London on the 6th of April 570\%. Most of Vandevelde's finest works represent views of the const of Holland, with Dutch shipping. His best productions are delicate, spirted and knisbed in handling, and correct in the drawing of the vemels and their rigging. The numerous figures are tellisely fintroduced, and the artist is seccemalul in his renderinges of ten, whetber fo cuim or storm.
Vandevelde was a most prolific artist: in addition to his paintings, of which Smith catalogues about three hundred and thirty, he emecuted an innmense number of drawingh shetcbes and atudies which are prized by collectorn
VAN DOAN, RABL (\(1820-1863\)), American soldier, was bort near Vicksburg in 1820, and entered the army of the United States from West Point in 1842. For ecveral years previous to the Mexican War he was employed in garrioan duty, but in that war he saw a good deal of active service, distinguiahing himself at Cerro Gordo and Charubusco, returning to the United Statea a trevet-major. He also fought in the Seminole War and in 1858 mainet the Comanches. When his state seceded in 1861 he resigned his commisaion is the U.S. army, and in the September of that year became major-general C.S.A. He commanded the Confederates in the hard-fought bettle of Pea Aidge, but was superseded for falling to win it. Later in r862 he wou promotion and a second independent command in the West, and led the Confederates at the battle of Corinth (the 3nd and 4th of October 1862) at which he came very near to success. In spite of the verdict of a court of inquiry, he was again superseded. As a subordinate of Lieut.-General Pemberton he did oplendid service to the Confederate canse in defeating Grant's first advance on Vickeburg at Holly Springs (1862). He was ahot in a private quarrel on the 8 th of May 1863.

VAN DTCK, EIR ANTRONY (\(1599-1641\)), Flemish painter, was born in Antwerp on the sand of March 1599. Though the name of Van Dyck is frequently met with in the list of Antwerp painters, Anthony's pedigree cannot be traced beyond his grandparents, who were silk mercers of some standing. He was the seventh of twelve children of Frans Van Dyet, an Antwerp tradesman in good circumstances. His mother; Maria Cupers, who died when he was scarcely eight years of age, seems to have attained a certain degree of excellence in art needlework. Of the boy's eariy education nothing is known. He was littie over ten when he was apprenticed to Hendrick Van Balen, the painter of many delicate littie pictures as well as an occasional collaborator of Rubens and Breughel, and the master of Snyders. From a document in the state paper office at Brussels, relating to a lawsuit between a picture dealer and an Antwerp churchman, which arose out of the sale, in 1600, of a series of Apostles' beads ascribed to Van Dyck, lt appears that, as far back as 16 r 5 , Van Dyck had worked independently, with pupils of his own, and that his pictures were greatly valued by artists and amateurs. Professor Woermann has identified several of the Apostles" heads here spoken of with some paintings in the gallery at Dresden. Another is in the possession of Ear Spencer at Althorp.
Before he was nineteen (February 16i8) Van Dyck became a full member of the Antwerp gild of painters; and some idea of his ability at the time may be gained from the excellent portraits of an old lady and gentieman, formerly ascribed to Rubens, in the Dresden gallery. Dated 1618, they were originally entered as works of Van Dyck, and, as Professor Woermann obscrves, are undoubtedly the same as those spoken of by Mots in his MS. annotations on Walpole's Anecdotes, now in the library at Brussels. But the same admiration cannot be accorded to the earliest religious composition known to have been painted by
him-" Christ falling under the Cross," in St Paul's at Antwerp. This picture, of some ten life-size figures, still preserved in the place for which it was originally destined, distinctly proves that from the outset of his career Van Dyck's power of conception was vastly inferior to his refined taste as a portrait painter. At first sight it seems also that with him, as wiLh most other Flemish paintens of the period, every conception, whether sacred or profane, neoded to be cast in the mould of Rubens. It would be too much, bowever, to assert that Van Dyck at this time stood under the guidance of that master; their association, indeed, does not seem to have begun until 16x9, and Bellori (1678), who got his information from Sir Kenelm Digby, Van Dyck's bosom friend, tells us that he was first employed in making drawings (probably also chiaroscuros) sor the use of the great master's engravers, and that among works of the kind one of the first was the "Batule of the Amazons" (\(\mathbf{1 6 1 9}\)).
In 1620, we know, Yan Dyck was working with Rubens, for on 20th March, in making arrangements with the Antwerp Jesuits for the decoration of their church, the master is allowed to avail himself of his pupil's assistance, and obtains for him the promise of a picture. This proof of Van Dyck's personal reputation is fully confirmed (17th July) by a correspondent of the earl of Arundel, who speaks of Van Dyck as a young man of one-and-t wenty whose works are scarcely less csteemed than those of his master, and adds that, his relations being people of considerable weaith, he could hardly be erpected to leave his bome. Van Dyck was, bowever, thus persuaded, for on 28th November Sir Toby Mathew mentions the artist's departure to Sir Dudley Carleton, adding that he is in reccipt of an annual pension of \(£ 100\) from the king. There is evidence of Van Dyck's presence in London till the ead of February \(\mathbf{1 6 2 1}\). He is first mentioned in the order-books of the Exchequer on the \({ }_{17}{ }^{\text {th }}\) of that month as receiving a reward of \(\mathrm{f}_{200}\) "for special service by him performed for His Majesty," and on the 28th, "Antonio van Dyck, gent., His Majestices sernant, is allowed to travaile 8 months, he havinge obtayneid his Mato leave in that behalf, as was significe by the E. of Arundell" What Van Dyck did in London is not known. Among his numerous paintings still preserved in English houses one only is admitted as belonging to the period of this first visit, a full-length portrait of James I. in the royal collection. That he was at the time a portrait painter of the rarest merit may casily be seen from the portrait of "Van der Geest " in the National Gallery (London), and from his own likenesses of himself when still quite young and beardless, in the National Gallery, in the Pinakothek at Mrumich and in the Wallace Collection. In this last admirable specimen the young painter has represented bimself in the character of Paris. Early paintings by Van Dyck are certainly not scarce in British galleries; at Dulwich there is his admirable Samson and Deiliah, ascribed to the school of Rubens.
Though the leave of absence was probably obtained by Van Dyck for the purpose of studying the masters in Italy, the eight months had almost elapsed before be started from Antwerp, whither be had gone from London. He left Antwerp on the 3rd of October 162I, and arrived at Genoa on the 2ist of November of the same year. Though Van Dyck unquestionahly first became acquainted with the masterpieces of the great Venetian colourists in Rubens's alelier, there can be little doubt that most of the pictures which were formerly ascribed to his earliest period really date from the years of his Italian journey. In fact, studies for some of them can be found in the Chatsworth sketch-book. Among these early works are the "Martyrdom of St Peter" (Brussels), the "Crowning with Thorns " (Berlin), the "Betrayal of Christ" (Madrid and Lord Mechuen), "St Martin dividing his Cloak" (Windsor Castle), a magnificent production, gencrally ascribed to Rubens, but easily idenuified through Van Dyck's admirable sketch at Dorchester House.
It is unnecessary to dwell on a number of tales connected rith Van Dyck's early life, all of which have on closer examination proved to be apocryphal; hut one story has been too frequently told to be altogether ignored. At the very outset of bis Itulian journey the inflammable jouth was captivated
by the beauty of a country girt, and for the love of her painted the altar-piece still to be seen in the church at Saventhem, dear Brussels, in which he himself is supposed to be represented ao a grey horse, given by Rubens to his pupil. It is now known, however, that the picture was commissioned by a genileman living at Saventhem (to the charms oi whose daughter Van Dyct in reality seems not to have been altogether insensible), and a closer study makes it almost certain that it was executed after, not before, his Italian journey. On a reduced scale, and with the omission of two or three figure, the "St Martin" at Saverthem is a reproduction of the picture at Windsor Caste.

Witb the exception of a sbort visit to Antwerp at the time of his father's death in 1622, Van Dyck spent the nert five years in Italy. No master from beyond the Alps ever took up a higher position than Van Dyck among the most celchrated representatives of Italian art. Study, as a malter of ccurse, had been one of his principal objects. No doubt can be entertained as to the great influence exerted by the works of Titian. Paul Veronese and the other great masters of the Venetian school in the development of his genius; still the individuality of the painter remains a striking feature of what may be terned his Italian works, especially portraits. Their peculiar character seems to originate even more in the stateliness of the personages be was fortunate enough to have as sitters than in any desire to follow individual predilection or prevailing fashion. As in later years Van Dyck gives us a striking picture of the higher classes in England, so at this stage be makes us acquainted with Italian beauty and style; and at no other period is his talent more advantageously shown than in some of the glorious. portraits be painted at Rome, at Florence, and, above all, at Genoa. At Rome, whither be journeyed after a prolonged slay in Venice, be resided with Cardinal Guido Bentivoglio, who had been papal nuncio in Flanders from 1607 to 1617 . For this patron were painted several works of very great importance, the most renowned being the prelate's own portrait, now in the Pitti Palace at Florence. Another work was a "Crucifixion," representing Christ dying on the cross with uplifted eyes Mast probably the picture spoken of by Bellori ought to be identified with the admirable canvas now in the gallery at Naples, catalogued as "Scuola di Van Dyck," unsurpassed by any of those at Antwerp, Paris, Vienna, Rome or elsewhere. Besides these he painted religious subjects and portraits, several of which are reckoned among his finest examples, such as the portait of Duquesnoy, better known as Fiammingq, the famous sculptor, formerly belonging to the king of the Belgians, and those of Sir Robert Shirley and his wife, in Persian attire, now at Petworth
Bellori tells us of Van Dyck's prepossessing appearance, of his elegance and distinction, altogether so different from the hahits of his compatriots in Rome, who formed a jovial "gang", as they termed their association. Van Dyck seems to have kept out of their way, and incurred in consequence such annoyance as made his stay in Rome much shorter than it would otherwise bave been. In the company of Lady Arunded be travelled to Turin, but he was eager to reach Genoa, where Rubens had worked with great success some twenty years before, and where his Antwerp friends, Luke and Comelis de Wael, for many years resident in Italy, now were. Van Dyck re mained their guest for several months, and their portraits, now in the Pinacoteca Capitolina at Rome (engraved by W. Holhar from the monochrome at Cassel), may be supposed to have beea one of his first Genoese productions. Though several of the palaces of the "proud" city no longer retain their treasures, and, among the specimens of Van Dyck's genius still left, 100 many have been greally injured by cleaning and retouching, Gerroa can still boast of a good number of his most attractive productions, portraits of the beautiful hadies and haughty cavaliens of the noble houses of Doria, Brignole Sale, Pallaticini, Balbi; Cattaneo, \({ }^{1}\) Spinola, Lommelini and Grimaldi. It would
\({ }^{1}\) Of the Cattaneo portraits, originally eight in nomber, wew were privately sold out of laly io 1906, and in the following year one. a half-length "Portrair of a Man", was acquired for the National Gailery. London, for \(£ 13.500\). The official acguisition
scarcely be possible to speak too highly of such woeks as the portrait of the lady in white satin and the Durazso children at the Durazzo Palace, the Balbi children at Panshanger, the Marchesa Balbi at Dorchester House, the equally beautiful portraits of the Lommetini and of the knight in black armour, buff jacket and boots in the Soottish National Gallery at Edinburgh, or the Marchess Brignole Sale (formerly at Warwick Cantle, and afterwards in Asserica). Van Dyck's "Genoese manner " is a curreat expression, and indeed his Cenoese partraits ane remarkable for their richness of tonality and what might he called royal spleadour, perhaps never before attained in works of the kind. This we may suppose to have had its origin, not only in his recent study of Titian, but also in decorative necessities-the size of the palatial galleries and the rich hues of the Genoese veivets, on which these portraits were to find their place, obliging the painter to find a most uncommon etrength of contrast. If must also be acknowledged that the beauty and distinction of Van Dyck's models are greally enhanced by a splendour of costume entirely difierent from the dullness then prevalent almost everywhere else. In Italy, moreover, he found the reality of those gorgeous backgrounds -fiowing draperies, beautiful gardens, ornamental pillars, umable terraces and -bahstrades-which elsewhere must be regarded as fietions merely. Here, finally, be was for the first time called upon to paint some of his grandest equestrian portraits, and the often-recurring grey steed with flowing mane (an admirable study of which belonge to Lord Brownfow) was first employed for the portrait of Antonio Giulio Brighole (still at Genoa) and for another picture which we may suppose to reprevent the same personage at Stafford House. As with Rubens, Titian seems to have been paramonnt in Van Dyck's regand. Copies in great number we know be possensed of the master's best works, and several little sketches in the British Museum and in the Chatsworth sketch-book bear proof of his devout study of the great. Venetian. Some of Van Dyck's earlitr paintings, religious and mythological-the "Tribute Money " (Brignole Palace), "Holy Family" (Turin), "Virgin and Saints" (Lorvre), " Virgin " (Grosvenor House), " Martyrdom of St Lawrence " (S. Maria dell' Orto, Venice), "Bacchanal " (Lord Belper)-engraved at Genoe as early as \(1628-4 \mathrm{St}\) Sebastlan" (Edinborgh)-are certainly Titianesque in the extreme. Still the master's individuality is not obliterated, and the gallery at Parma has a "Virgin with the Infant Aslecp," which may be termed a marvel of realistic simplicity.
In 1624 Van Dyck sailed from Genoe to Palermo and there painted several persons oi rank, including the viceroy, Emmanuel Philibert of Savoy. While in Sicily be became acquainted with the painter Sofonisba Anguisciola (or Anguseola), who was then nintty-six years of age and blind; and he was wont to say that he had received more valuable information from a blind woman than from many a seeing man. No important works of Van Dyck are now to be found in Sicily, except the "Virgin and Child" at S. Caterina in Palermo, and a "Virgin and Child with Saints" in the same city. Bellori tells us that a plague broke out and compelled him to leave abruptly, taking with him an unfinished picture of St Rosalia, which was destined for a confraternity of that name, and was completed in Genoe. The composition was repeated in Antwerp for the Bachelors' Brotherbood, a picture now in Vienna. Van Dyck most probably remsined in Genoa till 1626, and here in all likelibood be painted the De Jodes, father and son, the celebrated engtavers, who are represented together in a masterly portrait in the Capitol at Rome, the companion picture to the brothers De Wael; and Nicholas Laniére, musician-in-chiel to Charles I., a painting spoken of in Van der Dort's catalogue as "done beyond the seas." Laniere was in Italy precisely at this time, and it was through his portrait (now at Windsor Castle), Walpole assures us. tbat Van Dyck attracted the notice of Charles I.

Traversing the Mont Cenis pass, Van Dyck stopped at Aix
of this picture, in view of the Italian law of 1902, created considerable discussion in Italy and England. The companion female portrait was soon after also purchased.
with Peirenc, the famous acholar and friend of Rabens, and probably proceeded straight to Antwerp. His beentiful portrait of Langlois, the Parts print-seller, from which it was conjectured that he spent some time at Paris, was unquestionably painted in Genoa. It is very tikely that, belore settling again at Antwerp, Van Dyck at this time paid a second visit to England, to paint a portrait of Queen Henrietta Maria, but left again when he found Mytens firmly established as court favourite. He probably returned to Antwerp in 16a7, though there is no recorded proof of his presence before the 3rd of March 1628. One of his sisters had died in a convent the year before, and he now made a will in favour of Susan and Isabella, two other sisters, also nuns. That Van Dyck was in Antwerp on the 18 ch of May is proved by a letter from Lond Cartiale to Buckingham (Sainsbury, ciii.).

Great as may have been the streagth of Italian reminiscence; from the moment Van Dyck again trod Flemish soil the influence of Rubens became predominant, and we can scarcety doubt that a competition speedily arose between master and pupil. At this period churches and convents were numerous and richly endowed; and the number of pictures, stained glass windows and elaborate carvinga in Belgian churches before the French conqueat was enormous. Hardly fifty years had elapsed since these buildings had been stripped of their artistic treasures, and the devout wese now eager once more to adorn them with productions of the greatest painters. Hence Van Dyck's share could be very copious without in any degree interfering with the vast undertakings assigned to Rubens. The latter wata also absent for many months in 1629 and 1630 , so that Van Dyck was for a time the first master in the Netheriands. Among the earliest works after his return to Antwerp we find the "Crucifixion," given to the Dominican muns, in accordance with the wish expressed by the painter's dying father, and now in the Antwerp museum. The figures are life-size, and at the foot of the cross, besides a weeping angel, are St Catherine of Sient and St Dominic. Neither in type nor in general effect does it suggest the master's immediately preceding works. As a new feature wo observe a kind of elegance, not entirely free from mannerism, which is often conspicuous with Van Dyck even when the technical excellence commands our warmest admiration. Inspiration, as Waagen observes, was far more limited with Van Dyck than with Rubens. His truly delicate nature led him to restrain his conceptions within the bounds of an seademic evenness, generally more pleasing to the uninitiated than the strength of expression which sometimes imparts a sort of violence to the works of Rubens. To Van Dyck's second-more justly speaking third-manner belong some of his best religious works. The "Crucifixion" in the cuthedral at Mechlin is termed by Sir Joshua Reynolds one of the finest pictures in the world. Other Crucifixions are in St Michael's at Ghent (sketches in Lord Brownlow's collection and the Bruseels museum) and in the church at Termonde. Still finer are the two works painted for the Antwerp Jesuits and now at Vienna-"The Mystic Marriage of the Blessed Herman Joseph" and "St Rosalia Crowned by the Infant Saviour." To this period likewise helong the celebrated "Elevation of the Cross" at Courtrai and the "St Augustine in Ecstasy." in the church of the Jesuits at Antwerp; the general effect of this last, it must be acknowledged with Reynolds, is inferior to that of the beautiful engraving by De Jode, and also to the eari of Northbrook's magrificent sketch. At Dulwich we find the first idea of the composition, with many interesting differences. It may be a matter of individual preference to pronounce Van Dyck's Fiemish portraits superior to those of an earlier period; but nobody can fail to admit tbat, technically speaking, they indicate a further step towards perfection. The darkness of the Genoese portraits has vanished; broad daylight now freely illuminates the model, and such works as the portraits of Francisco de Moncada (Lorvre) and of the Count de Bergh (Prado) are perhaps as close to material excelhence as any painting could be. The full-fength likenesses of Philip Le Roy (1630) and his wifo
(1631) (Wallace Collection) and of Mary Louisa of Tassis (Prince Liechtenstein, Vienna) are not only the finest examples of the master's talent, but deserve to rank among the most beauififul portraits ever painted. The "Sayders" at Cascle Howard is regarded by Wasgen as not inferior to the most celebrated Raphecls, Titians or Holbeins; and of almost equal excellence are the "Wife of Colin de Nole" in the Munich gallery, the "Lady and her Daughter" at the Louvre, and the "Lady in Black" at Cassel.

Rapidly rising to honour and wealth, Van Dyck shared with Rulens the official tille of court painter, and his numerous portraits of the infanta in her monastic garb (Paris, Vienna, Turin, Farma, \&c.) bear testimony to the great favour in which he stood with her. When Marie de Medicis, after her light from France, took up her residence in Brussels (631), she bonoured Van Dyck, as well as Rubens, with repeated visits, and several times called upon him to paint her likeness, as well as those of Gaston of Orleans and his wife Margaret of Lorraine, and several of the personages of their court. From Gerbier's letters we learn that Van Dyck at this time was contemplating another journey to England, and was very anxious to be commissioned hy the infanta and the queen of France to take over their portraits as presents for the king and myal family. He soon travelled to the Hague to paint the prince and princess of Orange and their son. Quite at the beginning of 1632 Constantine Huygens, who was then living at the Hague, inscribes in his diary, "Pingor a Van Dyckio." When, towards the end of March, Van Dyck sailed for England, he took all these portraits with him, as we learn from an account of the 8 th of August 1632 (Carpenter's Pictorial Nolices). Dutch authors speak of a visit paid by Van Dyck to Frans Hals at Haarlem, and of a portrait of the latter through which the Antwerp master was at once recognised by his Dutch colleague. An engraving of a portrait of Hals after Van Dyck seems to confirm the story.

In undertaking this new journey to London, Van Dyck was assured of success, for Gerbier's letters show that the king had personally desired his presence. As early as March 1629 Endymion Porter, one of the gentlemen of the king's bedchamber, had been commissioned to order a picture from Van Dyck, "Rinaldo and Armida." The canvas, now belonging to the duke of Newcastle, may be looked upon as one of the master's finest creations. Exceptional favours were bestowed upon Van Dyck almost from the day of his arrival in London. Besides the title of painter in ordinary, and the grant of an annual pension of \(\{200\), he received the honour of knighthood after a residence of less than three months at court (5th July 1632). He rapidly achicved popularity among the higher classes, and, as Walpole says, his works are so frequent in Eagland that to most Englishmen it is difficult to avoid thinking of him as their countryman.

His refined nature is strikingly illustrated in his admirable interpretation of English beauty and style. And, if Van Dyck be compared to Mytens and Cornelius Janssen, the most distinguished painters employed by the English court immediately before bim, few artists, whether in England or elsewhere, have more richly endowed their models with distinction of feature and elegance in bearing. To kim may be applied what Opie says of Titian, "that he combines resemblance with dignity, costume with taste, and art with simplicity." We are particularly struck with the thorough and immediate ideatification of his talent with local tastes and exigencies. Charles I: and Henrictta Maria, although pictured by several other painters, are known to posterity almost exclusively tbrough Van Dyck, not from a greater closeness of resemblance to the original, but from a particular power of expression and bearing which, once seen, it is impossible to forget. The artist was lodged at the expense of the crown, with a summer residence at Eltham Palace, and was frequently honoured with the visits of the king at his studio at Blackfriars. Portraits now followed cach other with a rapidity scarrely credible to those unacquainted with the artist's method. In fact, his mode of living and his love of plearure sufficiently explain his great
need of money. During the first year of his presence in England he painted the king and queen a dozen times. The first of these noble portraits is the admirable full-length of Charles 1 . with the queen and their two eldest children, at Windsor Castle. The style be adopted in England is generally termed his third manner; we might better say his fourth, as he already had a very particular style before he set out on his Italian journey. De Piles gives us some account of Van Dyck's methods et this period of bis career. He began with a small sketch on grey paper with black and white chaiks, or a monochrome in oils. This study was passed on to assistants in order to be copied on the required scale. When the clothes were sufficiently advanced by the pupils from those sent by the model, as well as the hackground and accessories, the master was enabled in a few sittings of an bour cach to complete the work. Van Dyck excelled in painting the hands; be is said to have kept special models for this part of his work. It need hardly be said that a system of this kind, although employed by Rubens for his larger creations, was exceedingly ill adapted to portrait painting. In Van Dyck's later productions we too often detect marks of haste, as if the brush were becoming a mere implement of trade.
Nearly the whole of 1634 and 1635 were spent by Van Dyck in the Netherlands, whence his brother, an Antwerp priest. had been called over by the queen to act as her chaplain. The archduchess died on ist December 1633, and Van Dyck naturally wished to get his official title renewed by her successor, Ferdinapr? of Austria, brother of Philip IV. That Van Dyck's residence in Antwerp was only to be temporary is shown by the powegiven to his sister Susan for the administration of his affairs in Belgium (14th April 1634). On the arrival of the new governor Van Dyck was immediately called upon to paint his likeness, a picture now in the Madrid gallery, where the same personage is also represented by Rubens and Velazquez. Several other portraits of Ferdinand, either in his cardinal's robes or in military dress, by Van Dyck, ocçur elsewhere. One on horseback was exhibited at the Grosvenor Gallery, London, in 188. as the duke of Alva (lent by Mr S. Kynaston Mainwaring) Van Dyck was greatly in demand at this time, and his prices were correspondingly high, as the Antwerp municipality found when they asked for a portrait of the late infanta to decorate one of the triumphal arches for the reception of the new governor. The most important of Van Dyck's works, at any rate as a portrait painter, belong to this period. The picture representing in life-size the members of the Brussels corporation, which was destroyed by fire during the siege of 1695 , is spoken of with intense admiration by several writers. Bullart, for instance, is very enthusiastic about its fine colour and lifelike qualities Among the religious paintings of undisputed excellence belonging to the same period are the "Adoration of the Shepherds" in the church at Termonde, and the "Deposition," where the body of Christ rests upon the lap of the Virgin. in the Antwerp museum. Among the portraits are the admirable full-length of Scaglia, the king's frequent agent in the Netherlands (at Dorchester House; a replica in the museum at Antwerp), the equestrian portrait of Albert of Arenberg (Arenberg Palace at Brussels), and a portrait of the same nobleman on foot, in the black velvet Spanish dress with goidea chamberlain's key (long said to be Rubens) at Althorp, the full length of Helena Fourment, Rubens's second wife (at St Petersburg), the beautiful duchess of Havre, Mary Clara de Croy, signed and dated 1634 (Mr Ayscough Fawkes), and otber members of the same family (at Munich), Thomas of Savoy (at Berlin), an admirable half-length of a lady in black (in the Vienna gallery), and above all the grandiose picture in which John of Nassau is represented at full-length, with his wife and children (at Panshanger). Several portraits of Brussels and Ant werp magistrates must also be mentioned, the most importan being John Van Merstraeten, a Brussels lawyer (at Cassel).
After being chosen honorary president of the Antwerp gilc of St Luke, Van Dyck returned to London before the end of 1635. In spite of the vast number of his later portraits, some of them deserve to be ranked among the most celebrated of bis
productions. The group of three Englith royal children in the gallery at Turin (1635), the partraits of Chatios 1 . in the Louvre and in the National Gallery, London, the picture of the Pembroke family at Wilton House, Sir George and Sir Francis Villiers, and the earls of Bristol and Bedford, at Althorp, as well as those of Francis Russell, fourth earl of Bedford, and Ande Carr, his consort, at Woburn Abbey (1636), all belong to the years immediately following the mester's return from the Netherlands

He now married Ledy Mary Ruthven, daughter of Sir Patrick Ruthven and granddeughter of the ead of Gownic. There are several portreits of her by her husband, the most important being in the Munich gallery, in which sbe is represented in white satin, playiog on the violoncello. Sbe is also said to figure as the Virgin in a picture belonging to Lord Lyttelton. There is a capital engraving of ber by Bolswert. In anoher picture, said to be Mary Ruthven, an exceedingly handsome lady is zeprerented as "Herminia Putting on Clarinde's Armour." There can be no doubt as to the model having been Margaret Lemon, a celebrated beauty, whose portrait was engraved by W. Hollar and J. Morin and painted by Van Dyek at Hamptoa Court. "She was," says Mr Ennest Law, in his excellent catalogue of this gallery, "the most beautiful and celebrated, though far from being tbe only mistress of Van Dyck. The great artist, in fact, loved beauty in every form, and found the seduction of female charms altogether irresistible. She lived with him at bis bouse at Blackfriars." The precise date of Van Dyck's marriage has not been ascertained. It was probably towards the end of 1639 . The union is said to have been promoted by the artist's friends in order to save him from the consequence of his pernicious way of living. Margaret Lemon resented the ivent most cruelly, and tried to maim Van Dyck's right hand.
Van Dyck found few occesions in England to paint anything but portraits. There exists at Belvoir Castle a sketch hy him representing a procession of the knights of the Garter, a really grandiose composition, engraved by Cooper. We know from Bellori that Van Dyck had suggested, through his friend Sir Kenelm Digby, for the banqueting-room at Whitehall, a series of decorations illustrating the history of the order of the Garter, and that the king had been much pleased with the iden. The phan, however, faiked through the excesivively high price acked by the painter, and perhaps also because the king had thought of having the work done in tapestry. Van Dyck's pension was five years in arrear, and, instead of f56a, he received finilly, besides his pension, only troo.

When the news of Rubens's death reached London (Jure 1640) Van Dyck contemplated a return to his native coantry, and a letter from Ferdinand of Austria to Philip IV. speaks of his inteaded journey to Antwerp on St Luke's Day (istb October). Rubens had left unfinished a series of paiatings commanded by tbe ling of Spain, and from correspandence puhlisbed by Profeneor Justi we learn that Van Dyck had been thought of to give them the finishing touch. But be absolutely refueed to finish thern. It was then agreed that he should paint an independent canvas destined to complete the series. Van Dyck was delighted with this order, and Ferdinand tells his brother that be returned to London in great haste "to make preparations for his change of residence; possibly," adds the ketter, " be may still change his mind, for he is stark mad." Whether Van Dyck found it possible to work during his short stay in the Netherlands is a matter of doubt. Must authors suppose that Van Dyck's principal object in travelling to the contipent was to be entrusted with the decoration of one of the galleries of the Louvre. There may be some truth in this, for Mariette speaks of a letter be sam, written by Claude Vignon, the French painter, in January 1641, asking Langlois for an introduction to Van Dyck, who was then in Paris. Unfortunately the great painter was thwarted in his aspirations. His health was beginning to fail. After his return to London he was frequently obliged to interrupe his work; and a letter written (13th August) from Richmond by Lady Anne Roxburgh to Baron W. van Brederode at the Hague states that the poriraits of the Princess Mary had been greaty delayed through Van Dyck's illness, and that the
peince's (Willian II. of Orange) would be ready in eight days. \({ }^{4}\) As Van Dyck intends leaving England in the course of ten or iwelve days at latest," she adds, " he will take the paintings himself to the princess of Orange." These portraits, now in the museum at Amsterdam, are the last Van Dyck painted in England. Of works dated 1639 the portrait of Lady Pembroke. In the gallery of Darmstadt, is a fine example; and to the same year belongs a full-length portrait of Arthur Coodwin at Chatsworth. The twin portrait of Thomas Carew and Thomas Killigrew, in the royal collection, dated 1638 , is certainly most delicate, but very weak in tone and slight in handling. Van Dyck sailed in September, and probably spent some time with his Antwerp friends. Early in November he reached Paria, and succeeded in obtaining some important work, when, on 16 h November, he was compelled to resign his commissions on account of the state of bis health. Scarcely three weeks later (9 th December 1641) he died at his residence at Blackiniars. Van Dyck was huried in old St Paul's, where a Latin inscription was placed on his tomh by Charles I.

An elegy in Cowley's Miscellamies speaks, not only of the painter's talent, but of his amiable disposition. We may perhape point to the coincidence that a Mrs Cowley is in Van Dyck's will (of ist December) named guardian of his child, Justiniana Anna, born only eight days before her father's death. The painter had in tbe Netherlands an illegitimate daughter, Maria Theresia, who was entrusted to his sister, and to whom he bequeathed \(\mathrm{f}_{4} 000\). The name of her mother is not known. Not long after her husband's death Ledy Van Dyck became the second wile of Sir Richard Pryse of Gogerddan in Cardiganshire. Sbe was dead in 1645. Justiniana Van Dyck, who was married when scarcely twelve ywars old to Sir John Stepney of Prendergast, was also something of an artist: she painted a "Crucifixion," with four angels receiving Christ's blood in chalices. A similar subject had been painted by Van Dyck, as Bellori tells us, for the dake of Northumberland. After the Restecation a pention of \(\mathbf{~} 200\) for life was granted to Justiniana Van Dyck, who died before \(16 g a\).
Properly apeaking, Van Dyck cannot be aid to have formed a achool. He was followed to London by some of his earlier colla. borators, and there soon met a considerable number of others. Jan van Reyn, David Beek, Adrian Hanneman, Mathew Merian. John Bockhors! (Lang Jan). Remy van Leemput and Peter Thys were foremost among loreigners, Henry Stone and William Dobson among Englishmen to their astistance the master owed much; but they are also respomsible for the vast number of constantly recurring copies whicligo by his name. It often requires a very discriminating eye to distinguish some of these coples from the origina! paintings Nevertheless, afier Van Dyck's death many of his coadjutors produced works of uodeniable merit. No achool more strikingly reflecte the influepce of Van Dyck than the British school. Stone and Dabson were, properly speaking, the most fortunate of his continuators; and there is little doubt that such masters as Reynolds, Gainsborough, Lawrence and Raeburn owe a large mensure of their superiority to their study of his works.

Theugh Van Dyck's reputation greatly sufferod through the numerous copies be allowed his pupils to take from his works, the case is otherwise with engraving: Vorsterman. Pontius, Peter de Jode. P. Balfiu and S. Bolswert were seldommore fortunate than when under his guidance. De Jode's "St Aupustine." Bolswert's "Ecce Homo" and", Crucifxion." Vorterman"" Deposition," and espocially Pontius's" Herman Joseph "rank among the masterpieces of the art of engraving. Van Dyck was himself an incomparableetcher, and with the needle arrived at a degree of excellence xarcely inferior to that extribited in his paintingz. Such prints as the portraits of Vorsterman, Joha de Wael, Snyders, Jowe de Momper, Adam van Noort, and above all his own effigy, bear witness to his prodigious knowiedge of design. Print collectors pay extravagant prices for a frst proof taken from the plates engraved by lan Dyck himself. Van Dyek also employed some of the best engravers of his sime for the production of a galery of illustrious heads, men and women, of diferent countries Whether all were laken from life is quesstionable. Gustavus Adolphus and Wallenstein he can hardly have met. Du Breurq. the architect, he never knew. But all the sketches and drawings were done by himself, and are often met wint in peublic and private galleriez. The engravings are sometimes very benutiful and in their first states very rare. Publishod successively by Martin van der Enden. Giles Hendrickx and John Meyssens, the collection originally consisted of sixteen warriors and statesmen, twelve scholars and fify-two artisis Hendricku raised the number to ninety-nine, and used as a frontispicee the
portrait of Van Dyck, with the following inscription: Icones principm, tirorum doctorwn, Ece. Ec., 旬smero centus ab Anonio Van byet pictore ad tirum expressac eiusq. sumtibus aeri incisoc, 1645. Seventeen editions were published, the last in 1759 . with 124 plates. Many of the plates are the property of the French Government, and belong to the Chalcographie Nationale in Paria.

Literarure.-See W. Hookham Carpenter, Pictorial Notices, consisting of a Memoir of Sir Anthony Van Dyck, with a descriptive calalogue of the eschings execuled by him (London, 1844); John Smith, A Calalogue Raisonne of the Works of the most Eminent Dusch, Flewish, and French Painters, part iii. (London, 1841); J. Guiffrey, Anfoine Van Dyck, sa vie et son autre (Paris, 1882): A. Michiels, Ant. Van Dyck ef ses ehtecs (Paris, 188s); Ign. von Szwykowski, A. Van Dycks Bildnisse bekannler Personen (Leipaig. 1858) ; Fr. Wibiral. L'Iconographie d'A. Van Dyck d'apres les recherches de H. Wejer (Leipzig, 1877); Carl Lemcke. A. Van Dyck (in Robert Dohme's Kumst wnd Künsller, vol. i., Leipzig, 1877); Alfr. Woltmann and K. Woermann, Gesch. der Makerei, vol. ini. (Leipzig, 1886); Max Rooses, Geschiedenis der Anturerpsche Schilder. school (Ghent, 1879); F. J. Van den Branden, Gesch. der Antw. Schilderschool (Antwerp, 1883); Percy Rendall Head, Vas Dyck (London, 1887); F. G. Stephens, Calalogue of the Exhibition of the Works of Sir A. Van Dyck (London, 1887): E. Knackfuss, Van Dyck (Bielefeld, 1896); Lionel Cust, Anthony Van Dyck (London, 1900), an abridgment with emendations, Vas Drek (1906), and A Description of the Sketh-Book by Sir Anthomy Vas Dyck... at Chatsworth (London, 1902): Max Rooses, Chefs-d'cueres d'A mioime varn Dyck (Antwerp, 1901); Antaine Van Dyck (Paris, 1902); Frank Newbolt, Elchings of Van Dyck (London, 1906).
(H. H.; P. G. K.)

VANE, SIR HENRT (\(1589-1654\)), English secretary of state, eldest son of Henry Vane or Fane, of Hadlow, Kent, a member of an ancient family of that county, by his second wife, Margaret, daughter of Roger Twysden of East Peckham, Kent, was born on the 18th of February 1589 . He matriculated from Brasenose College, Oxford, on the 15th of June 1604, was admitted to Gray's Inn in 1606, and was knighted by James I. on the 3rd of March 1611. He purchased several offices at court, was made comptroller of the king's household about 2629 , and in spite of a sharp quarrel with Buckingham managed to kecp the king's favour, in 1639 becoming treasurer. He was returned to parliament in 1614 for Lostwithiel, from 1621 to 1626 for Carlisle, in 1628 for Retford, and in the Short and Long Parliament, assembled in 1640 , he sat for Wilton. He was despatched on several missions in 1629 and 1630 to Holland, and in 1631 to Gustavus Adolphus to secure the restitution of the Palatinate, but without success. In 1630 Vane had become a privy counciller and one of the chief advisers of the king. He was made a commissioner of the Admiralty in 1632 and for the colonies in 1636. He was one of the eight privy councillors appointed to manage affairs in Scotland on the outbreak of the troubles there, and on the 3 rd of February 1640 , through the influence of the queen and of the marquis of Hamilton and in opposition to the wishes of Strafiord, he was made secretary of state in the room of Sir John Coke. In the Short Parliament, which assembled in April, it fell to Vane, in his official capacity, to demand supplies. He proposed a bargain by which the king should give up ship-money and receive in return twelve subsidics. Parliament, however, proved intractable and was dissolved on the sth of May, to prevent a vote against the continuance of the war with the Scots. In the impeachment of Strafford, Vane played a very important part and caused the earl's destruction. He asserted that Strafford had advised the king al a meeting of the privy council, "You bave an army in Ireland; you may employ it to reduce this kingdom." He refused to admit or deny the meaning attributed by the prosecution that "this kingdom" signifed England; he was unsupported by the recollection of any other privy councilior. and his statement could not be corroborated by his own notes, which had been destroyed by order of the king, but a copy obtained through his som, the \(x\) tras produced by
would satisfy the demands of the parliament. Nevertheless, there has appeared no evidence to support the charge that he deliberately compassed his destruction. Suspicions of his fidelity, however, soon increased, and after having accompaniec the king to Scotland in August 1641, he was dismissed from all his appointments on the 4th of November on Charles's return Vane immediately joined the parliament; on Pym's motion. on the 13th of December, he was placed on the commitiee for Irish affairs, was made lord lieutenant of Durham on the roth of February 1642, became a member of the committee of both kingdoms on the 7th of February 1644, and in this capacity attended the Scots amy in 1645 , while the parliament in the treaty of Uxbridge demanded for him from Charles a barony and the repayment of his losses. He adhered to the parliament after the king's death, and in the first parliament of the Pro tectorate he was returned for Kent, but the House had refused to appoint him a member of the council of state in February 1650. He died in 1654. He had married Frances, daughter and co-beir of Thomas Darcy of Tolleshurst Darcy in Esses by whom he had a large family of children, of whom the eldes: son, Sir Henry Vane, the younger, is separately noticed.

Clarendon invariably speaks of Vane in terms of contempt and reproach. He describes him as merely fit for court duties "of wers ordinary parts by nature and . . . very illiterate. But being of a stirring and boisterous disposition, very industrious and very bold, he still wrought himself into some employment." He declares that motives of revenge upon Strafford influenced not only his conduct in the impeachment but his unsuccesful management of the king' business in the Short Parliament, when he "acted that part maliciously and to bring all into confusion." The latter accusation. considering the dificulties of the political situation and Vane"s total want of ability in dealing with them, is probably unfounded. On the general charge of betraying the king's cause, Vane's mysterious conduct in the impeachment, his great intimacy with Hamilton. and the lavour with which he was immediately received by the Opposition on his dismissal from office, raise suspicions not altogethes allayed by the abwence of proof to substantiate shem, while the alacrity with which he transferred himself to the parliameat poisus to a character, if not of systematic treachery, yet of unpriocipled and unscrupulous time-serving. Materials, however, to elucidate the details and motives of his ill-omened career have hitherto bera wanting.

VANE, SIR HENRT (1613-1662), English stateman and author, known as "the younger" to distinguish bim from bis father, Sir Henry Vane (\(q . v\).), was baptized on the 26th of \(\mathrm{M} \mathrm{H}_{3} \mathrm{y}\) 1613, at Debden, Essex. After an education at Westminstc? where he was noted for his high and reckless spirits, and at Magdalen Hall, Oxford, where be neither matriculated nor took his degree, be was attached to the embassy at Vienna and at Leiden and Geneva. He had already acquired strong Puritan views which, in spite of the personal efforts of Laud, who made the attempt at the king's request, he refused to give up. Ia 1635, in order to obtain the free exercise of his religion, be emigrated to Massachusetts, where he was elected governor in 1636. After one year in office, during which he showed some administrative ahility, he was defeated by Winthrop, the former governor, chiefly on account of the protection he had given to Mrs Hutchinson in the religious controversies which she raised. He, however, never lost his interest in the colonies, and used his influence bereafter on several occasions in their support

Vane returmed to England in August 1637. He was anade joint-treasurer of the navy with Sir W. Russell in January 1630. was elected for Hull in the Short and Long Parliameats, and was knighted on the 23td of June 1640. Accidentally finding aroong his father's papers some notes of Strafiord's speech in the council of May 5, 1640, he allowed Pym to take a copy, and was thus instrumental in bringing about Strafford's downiall He carried up the impeachment of Laud from the Commons, w as a strong supposter, when on the committee of religion, of the Root and Branch" bill, and in June 1641 put forward a scheme of church government by which commissioners, half lay and half cleric, were to assume ecclesiastical juristiction in each diocese. During the absence of Pyrn and Hampden from the House at the time of Charles's attempted arres of the five members, Vane led the parliamenary party, and was finally dismissed from his office in December 1645, being
reiostated by the parliament in August 1642. The gatme, month he was placed upon the committee of defence. In i643 he was the leading man among the commissioners sent to treat for a league with the Scots. Vane, who was bixcerly opposed to the tyranny of the Presbyterian system, was successful in two important poiots. The aim of the Scots was chiefly the propagation of their discipline in England and Wales, and for this they wanted only a "covenant." The English desired a political " league." Vane succeeded in getting the bond ter med the Solemn League and Covenant, and further in substituting the whole expression "according to the woord of God and the example of the best Reformed churches" for the latter part alone. He succeeded to the leadership of the party on Pym's death. He promoted, and became a chief member of, the committee of both kingdoms established in February 1644, and was sent to York in the summer of the year to urge Fairfax and Manchester to march against Prince Rupert, and secretly to propose the king's deposition. In 1645 he was one of the negotiators of the treaty of Uxhridge. He was, with Cromwell, a prime mover in the Self-Denying Ordinance and the New Model, and his adherence to the army party and to religious tolerance now caused a definite breach with the Scots. Vane had at the Westminster Assembly, writes Beillic indignantly, " prolixly, earnestly and passionately reasoned for a full biberty of conscience to all religions," a policy directly opposed to Presbyterianism, and bis Jeadership terminated when the latter party obtained the supremacy in parliament in 1646. During the subsequent struggle he was one of the six commissioners appointed to treat with the army by the parlizment, and endeavoured to effect a compromise, but failed, being distrusted by both the Levellers and. the Presbyterians. His views of government may be studied in The People's Case Slakd, written shortly before his death. "The power which is directive, and states and ascertains the morality of the rule of obedieoce, is in the hand of God; but the original, from whence all just power arises, which is magistratical and coercitive, is from the will or free gift of the people, who may either keep the power in themselves or give up their subjection and will in the hand of anothcr." King and people were bound by "the fundamental constitution or compact," which if the king violated, the people might return to their original right and freedom.

In spite, bowever, of these free opinions, Vane stidl desired the maintenance of the monarchy and the constitution. He voted for a declaration to this effect on the 28th of April \(164 \mathrm{~s}^{3}\), and bad consistently opposed the various votes of "nonaddresses." Several communications had already been fruitcesly attempted with Vane from the king's side, through the agency of Lord Lovelace in January 1644, and through that of John Ashbumham in March 1646. Vane now supported the renewal of negotiations, and was appointed on the ist of September 1648 one of the commissioners for the treaty of Newpoit. He here showed a desire to come to terms on the foundation of toleration and a "moderate episcopacy," of which Cromwell greally disapproved, and opposed the shaking off of the conferences. He absented himself from pariament on the occasion of "Pride's Purge," and remained in retirement until after the king's death, a measure in which be took no part, though he continued to act as a member of the government. On the 24th of February 1649 he was placed on the council of state, though he refused to take the oath which expressed approbation of the king's execution. Vane now showed himself an abic administrator. He served on innumerable committees of importance, and whas assiduous in his attendance. He furnished the supplies for Cromwell's expedition to Scotiand, and was one of the commissioners sent there subsequently to settle the government and negotiate a unioo between the two countries. He showed great energy in colonial and foreign affairs, was a Leading member of the committee dealing with the latter, and in \(165^{1}\) went on a secret mission to negotiate with Cardinal de Retz, who was much struck with his ability, while his knowledge of forrign policy, in which be inclined in lavour of Hollend,
earned the prtise also of Mition. To Vane, as chief commissioner of the navy, belongs largely the credit of the victories obtained against Van Tromp.
In domestic politics Vane continued to urge his views of toleration and his opposition to a state church. On the oth of January \(16 \rho 0\) he brought forward as chairman the report of a committee on the regulation of elections. He wished to reform the franchise on the property basis, to disfranchise some of the existing boroughs, and to give increased representation to the large towns; the sitting members, however, were to retain their seats. In this he was opposed to Cromwell, who desired an entircly new parliament and the supremacy of the army representation. On the 20th of April Cromwell forcibly dissolved the Long Parliament while in the act of passing Vane's bill. On the later's protesting, "This is not honest; yea, it is against morality and common honesty," Cromwell fell a-railing at him, crying out with a loud voice, " \(O\) Sir Henry Vane, Sir Henry Vane; the Lord deliver me from Sir Henry Vanel" (Ludlow, Hem. i. 353). Hitberto they had lived on intimate terms of friendship, but this incident created a permanent breach. In his seclusion at Raby he now wrote the Retired Han's Moditations (1655). In 1656 he proposed in A Healing Question (reprinted in the "Somers Tracts," vol. vi. ed. Scott) a new form of government, insisting as before upon a Puritan parliament supreme over the army. The seditious movements of the Anabaptists were also attributed to his influence, and on the 29th of July 1656 he was summoned before the councili: Refusing to give security not to disturb the public peace, he was on the gth of September sent prisoner to Carishrooke Castle, and tbere remained until the 3 ist of December. He addressed a letter to Cromwell in which he repudiated the extraparliamentary authority he had assumed. In the parliament of Richard Cromwell he was elected for Whitchurch, when he urged that the protector's power should be strictly limited, and the negative voice of the new House of Lords disallowed.

Subsequently he allied himself witb the officers in selting aside the protectorate and in restoring the Long Parliament, and on Richard Cromivelt's abdication he regained his former supremaity in the national counsels. He was a member of the committee of sefety and of the council of state appointed in May, was commissioner for the navy and for the appointment of army officers, managed toreign affairs and supcrintended finance He adhcred to Lambert, remained a member of the government after the latter had turned out the Long Parliament. and endearoured to maintain it by reconciling the disputing generals and by negotiating with the navy, which first descred the cause. In consequerce, at the restoration of the Long Pariament he was expelled the House and ordered to retire to Raby.

At the Restoration Vane was imprisoned in the Tower by the king's order. Alter severa! conferences between the houses of pariament, It was agreed that he should be excepted from the indemnity bill, but that a petition should be sent to Charles asking that his life might be spared. The petition was granted. On the meeting, bowever, of the new' parliament of 1661 , a vole was passed dermanding his trial on the capital charge, and Vane was taken back to the Tower in April 5662 from the Scilly Isles, where he had been imprisoned. On the and of June he appeared before the king's bench to answer the charge of high treason, when he made a bold and skiiful defence, asserting the sovercign power of padiament in justification of his conduct. He was, however, found guilty, and executed on Tower Hill on the 14 th of June 1662. He had married, in 1640, Frances. daughter of Sir Christopher Wray of Barlings, by whom he had a large family of sons and daughters. Of these Christopher, the fifth son, succeeded to his lather's estates and was created Baron Barnard by William III.

Vanc'a great talents as an administrator and statmonan have been univerally acknowledged. He possessed, eays Clarendon, " extroordinary parts, a pleasant wit. a great understanding. a temper not to be moved," and in debate "a quick conception and a very sharp and weighty exprestion." His patriotism and assiduily
in the public service, and complete freedom from corruption, were equally admirable and conspicuous. His religious writings, a part from hís constant devotion to toleration and dislike of a state church, are exceedingly obscure both in style and matter, while his enthusiasm and lamaticism in speculative doctrine combine curiously, but not perhaps incongruously, with exceptional sagacity, and shrewdness in practical aflairs. "He had an unusual aspect." says Clarendon, "which... made men think there was something in him of the extraordinary; and his whole life made good that imagination." Besides the works already mentioned and several printed speeches, Vane wrote: A Brief A msuer to a certasu Declava. dion of John Winthrop (reprinted in the Hutchinson Papers. publ. by the Prince Society, i865); A Needful Correcive or Balonce in Popular Government . . in answer to Harrington's Ocrana: Of Lore of God and Union with God; two treatises, viz. (1) An Epistle Ceneral to the Mystical Body of Christ on Earih, (2) The Foce of the Times: A Pilgrimage into the Land of Promise ... (1664). The Trial of Sir Menry Vone, Knight (1662), contains, besides his last speech and details relating to the trial, The People's Case Staied (reprinted in Forster's Life of Vane), The Valley of Jehoshaphat, and Medilalions conserning Man's Life. A Lever from a True and Lawfal Member of Parliament to one of the Lords of His Highness's Councul (1656), attributed to Vane, was written by Clarendon; and The Light Shining out of Darkness was probably by Henry Stubbe; while The Speeck against Richard Cromwell is the composition of some contemporary pamphleteer.

Btbliography.-Article by C. H. Firth in Dict. of Nat Biag.; Life and Death of Sir Henty Vare, by G. Sikes, 1662 (a treatise on the "course of his hidden life"'); and Lives by John Forster, in Lardner's Cabinet Encyclopaedia: Eminent British Slatesmen, vol. iv. (1838); by C. W. Upham in "Library of American Biography," vol. iv. (1851); by J. K. Hosmer (1888); and by C. Dalton in Hish, of the Family of Wray (1881), ii. 93-137: also Wood's Ath. Oxom. (Bliss), iii. 578 , and Biographia Brilannica. See especially S. R. Gardiner's IIist. of England. his Greal Civil War and his Commonwealle, and Clarendon's Hist of the Rebellion, and the contemporary memoirs and diaries: Hist. MSS. Comm. MSS. of duke of Buccleuch. ii. pt. ii. 756 ; Masson's Life of Miltan, iv. 442 and passim: the sonnet addressed by Milton to Vane; and \(W\). \({ }^{4} \mathbf{W}\). Ireland, Life of Sir Henry Vane the Younger (1907). (P. C. Y.)
VANS (formerly spelt "fane," i.e. penmon, flag; cf. Ger. Fahne, Du. vaan, Fr. girouctle, Ital. banderuola, Ger. Wetterfahme), the weathercock on a steeple. Vanes seem in early times to have been of various forms, as dragons, \&c.; but in the Tudor period the favourite design was a beast or bird sitting on a slender pedestal and carrying an upright rod, on which a thin plate of metal is hung like a flag, ornamented in various ways.
VAN HORNE, SIR WILLIAY CORNELIUS (1843Canadian financier, was born in Will county, llinois, U.S.A. on the 3 rd of February 1843 , of Dutch descent. He was educated in the common schools of the state, and in 1857 began work as office boy in a railway station. His ability and force brought him to the front, and he rose till in 188I he was appointed general manager of the Canadian Pacific railway. For the successiul completion of this great road his strong will and mental grasp were largely responsible, and he it was who not only controlled hut steadily extended its operations during the lean years which followed. In 1884 he became vice-president of the line, in 1888 president, and in 2899 chairman of the board of directors. From \(\mathbf{1 8 8 5}\) onward be was more and more associated with every branch of Canadian mescantile and financial life, and as a publicist gave shrewd expression to bis views on political and conomic questions. Alter the SpanishAmerican War (t So8) he became one of the chief promoters of railway and industrial enterprise in Cuba. In May t804 he was knighted by Queen Vietoria in acknowbedgment of his distinguished public services. He was also known as a patron of art and literature and an amateur painter of no litule merit.
Vanilla, a favouring agent largoly used in the manufacture of chocolate, in confectionery and in perfumery. It consists of the fermented and dried pods of several speries of orchids belonging to the genus Vanilla. \({ }^{2}\) The great bulk of the commercial article is the produce of \(V\). planifodia, a native of south-eastern Mexico, but now largely cultivated in several tropical countries, especially in Bourbon, the Scychelles, Tahiti and Java. The plant has a long fleshy stem and attaches itself by its aerial rootlets to trees; the roots also penetrate the soil and derive a considerable portion of their nourishment from
\({ }^{1}\) Span. vainillo, dim. of paina, a pod.
it. The leaves are alternate, ovol-lanceolate and fleshy; tho light greenish fowers form axillary spikes. The fruit is a pod

Vanilla Plant (Vanilla planifolia). A, shoot with flower. leat and acrial rootlets; B, pod or fruit.
from 6 to \(x 0\) in. long, and when mature about half an inch in diameter. The wild plant yields a smaller and less aromatic fruit, distinguished in Mexico as Baynilla cimaronc, the cultivated vanilla being known as \(B\). corriente.
Vanilla was used by the Aztecs of Mexico as an ingredient in the manufacture of chocolate before the discovery of America by the Spaniands, who adopted its use. The earliest botanical trotice is given in \(\mathbf{G o s}\) by Clusius (Exoticarum Libri Decem), who had received Pruits from Hugh Morgan, apothecary to Queen Elizabeth; but he seems to have known nothing of its native country or uses. The Mexican vanilla had been introduced to culivation belore the publication of the second edition of Philip Milier's Gundeners' Dicthonary (1739). It was reiniroduced by the marquis of Blandford, and in tso a flowering specimen was figured and described by R. A. Salisbury (Paradisks, London, t. 82). Mexican vanilla is regarded as the best. It is principatly consumed in the United States. Ja Bourton about 3000 acres are under cultivation; the crop is sent to Bordeaux. the chicf centre of the trade in France. Itsodour is said to differ from the Mexican variety in having a suggestion of tonqua bean. The Seychelles produce large quantities of exceedingly fine quality; the produce of these istands gues chiefly to the Londoa market. The Java vanilla, grown chiefy in Krawang aod the Preanger Regencies, is shipped to Holland. The Tahiti produce is inferior in quality.

Mr Hermann Mayer Senior, in the Chemist and Draggist. June so, 1906. gives the following figures, which approximately represent ithe world's output of vanilla during the zeasons 1905-1906: Bourbon, 7otons: Scychelles, 45 cons: Mauritius, 5 tons; Comores. Mayocte Madagascar, \&c., 120 tons: Guadcloupe, Java, Ceyton and Fiji. sotons: Mexica, 70 tons: Tahiti, rootons-total. about 420 tons.
The best varietics of vanilla pods are of a very dark chocolate brown or nearly black colour, and are covered with a crystalline efforescence technically known as giste, the presence of which is taken as a criterion of quality. The peculiar fragrance of vanilla is duc to vanillin. \(\mathrm{C}_{1} \mathrm{H}_{5} \mathrm{O}_{3}\). which forms this efforescence. Chemi. cally speaking. it is the aldehyde of methyl-protocatechuic acid It is not naturally present in the fleshy exaterior of the pod, but is secreted by hair like papillae lining its three internal angles, and ultimately becomes diffused ithrough the viscid oily liquid surruanding the sceds. The amount of vanillin varics acconding to the kind: Mexican vanilla yiclds 1.69. Bourton or Rémion 1.9 to 2.48, and Java \(2.75 \%\). Brsides vanillin, the pods contain vanitic acid (which is odourless), about \(11 \%\) of fixed oil, \(2.3 \%\) of soli resin. sugar, gum and oxalate of lime.

Vanillin forms crystalline necdles, fusible at \(81^{*} \mathrm{C}\)., and soluble in akcohol, ether and oils, hardly soluble in cold, but more so in boiling water. Like other aldehydes, it forms a compound with the altalies bisulphites, and can by this means be extracted from bodics containing it. Vanillin has been found in Siam benzoin and in raw sugar. and has been prepared artificially from coniferin. a glucoside lound in the sapwood of fir-trees, from asofoetida, and from a coostituent of oil of cloves narned eugenol. It is from the last-named that vanillin is now prepared on a commercial scale, chictly in Germany. Vanillin docs not appear to haye any physiological action on human beings when taken in smail doseg, as much as to to 15 grains having been administered without noxious pesults. On small animals. however, such as froge, it appears to act as a convulsive. It has been suggested as a stimulant of an exritomotor character in atonic dyspepsia. It is a constituent of Cunz burg's rragent (phlorn-vaniltinglucin) for the detertion of free bydrochlone acid in the gastric contents. The poisonowe efiecte
that have on several occasons followed from eatine ices flavoused with vanilla are not to be attributed to the vanilla, but probably to the presence of tyroloxicon (Pharm. Journ. |3|, xvii. p. 150), a poison found in milk which has undergone certain putrefactive changes, and producing cholcraic effecte, or perhapa to the presence of microcopic fungi in the vanila, the plantations being liable to the attack of Bacherium putredinis. Workmen handling the beans in the Bordeaux factories are subject to itching of the hands and face: but this is caused by an Acarms which occupics the end of the pod. in some cases, however, symptoms of dizziness, wearinem and malaise, with muscular pains, have been felt. due powibly to the absorption of the oily juice by the hands of the workmen.
Sre also R. A. Rolfe, "Vanillas of Commerce." in Kew Bulletin (1895). p. 169, and "Revision of the Genus Vanilla," in Journal of The Lismean Society (Botany), xxxii. 439 (i8g6); also S. J. Galbrait h. on "Cultivation in the Seychelles," U.S.Deph. of Agriculture, Division of Boteny, Bullelin \(2 I\) (I698).

VANIML, LUCILIO, or, as he styled himself in his works, Giulio Cesaxe (t585-1619), Italian free-thinker, was born at Taurisano, near Naples, in 1585 . He studied philocophy and theology at Rome, and after his return to Naples applied himself to the physical studies which had come into vogue with the Renaissance. Like Giordano Bruno, though morally and intellectually inferior to him, be was among those who led the attack on the old scholasticism and helped to lay the foundation of modern philosophy. Vanini resembles Bruno, not only in his wandering life and in his tragic death, but also in his anti-Christian bias. From Naples he went to Padua, where he came under the influence of the Alexandrist Pomponazzi (q.v.), whom he styles his divine master. At Padua be studied law, and was ordained priest. Subsequently he ted a roving life in France, Switzerland and the Law Countries, supporting himself by giving lessons and disseminating antireligious views. He was obliged to fiee from Lyons to England in 1614 , but was imprisoned in London for some reason for forty. nine days. Returning to Italy he made an attempt to teach in Genoa, but was driven once more to France, where he made a valiant effort to clear himself of suspicion by publishing a book against atheists, Amphitheatrum Acternce Prosidcntiac Divine-Magirum (16:5). Though the definitions of God are somewhat pantheistic, the book is sufficicnily orthodox, but the arguments are largely ironical, and cannot be taken as expounding his real views. Vanini expressly tells us so in his second (and only other published) work, De Admirandis Naturae Reginee Deaeque Morlalixm Arcunis (Paris, 16:6), which, originally certified by two doctors of the Sorbonne, was afterwards re-examined and condemned to the flaraes. Vanini then left Paris, where he had been staying as chaplain to the martchal de Bassompierre, and began to teach in Toulouse. In November 1688 he was atrested, and after a prolonged trial was condemned, as an atheist, to have his tongue cut out, and to be strangled at the stake, his body to be alterwands burned to ashes. The sentence was executed on the oth of February 1619.
See Cousin. Fragments de phitosophie cartsienne (Brusacts. 1838-40), i. 1-99; French trans. M. X. Rousselou (Paris, 1842); John Owen. Skeptics of the Jtalian Renaissance (London, 1893). S4S-419: J. Toulan, Elude sur L Vonsai (Strassburg. 1869): Cessre Cantu, Gli Eretici dItalia (Turin, 1867). iii. 72 it.; Fulrmann, Lebers und Schicksale (Leipzig. 1800): Vaisse, LVanini (Paris, 1871); Palumbo, Vanini, e i smoi lempr (Naples, 1878); Pasmamonti in Rivista italiane di flosofia (1893), vol. iii.

VanLOO, CEARLES ANDREW (\(1705-1765\)), subject paintèr, a younger brother of John Baptist Vanloo (g.v.), was born at
 struction Irom his brother, and like him studied in Rome under Luti. Leaving Italy in 1723, he worked in Paris, where be gained the first prize for historical painting. After again visiting lialy in 1727, he was empioyed by the king of Sardinia, for whom he painted a serics of subjects iHustrative of Tasso. In 1734 he settled in Paris, and in 1735 became a member of the French Academy; and he was decorated with the order of St Michael and appointed principal painter to the king. By his simplicity of style and correctness of design, the result of his study of the great Italian masters, he did much to purify the modern French school; but the contemporary praise that was lavished upon his productions now appears undue and
exceative. His "Marriage of the Virgin" is premerved in the Louvre. He died at Paris on the 1 gth of July 1765 .

VANLOO, JOHE BAPTIST (\(1688_{4-1745 \text {), French sublect and }}\) portrait painter, was born at Aix in Provence on the 14 th of \({ }^{\text {. }}\) January 1684. He was instructed in art by his father. Having at an early age executed several pictures:for the decoration of the church and public buildings at Aix, be was employed on similar work at Toulon, which he was obliged to leave during the siege of 1707. He was patronized by the priace of Carignan, who sent him to Rome, where be studied under Benedetto Luti. Here he was much employed on church pictures, and in particular executed a greatly praised "Scourging of Christ" for St Maria in Monticelli. At Turin he painted the duke of Savoy and several members of his court. Then, removing to Paris, where he was elected a member of the French Academy, he executed various altar-pieces and restored the works of Primaticcio at Fontaincblean. In 1737 he went to England, where he altracted attention by his portrait of Colley Cibber and of Owen McSwiny, the theatrical manager; the latter, like many other of Vanloo's works, was engraved in mezzotint by the younger Faber. He also painted Sir Robert Walpole, whose portrait by Vanloo in his robes as chancellor of the exchequer is in the National Portrait Calkery (London), and the prince and princess of Wales. He did nol, however, practise long in England, for his health failing he retired to Paris in 1742, and afterwards to Aix, where he died on the igth of December 1745. His likenesses were striking and faithful, but seldom flattering, and his beads are forcible in colouring. The draperies and accessories in his pictures were usually painted by Van Achen, Eccardi and Root,

VANABS, a town of western France, capital of the department of Morbihan, 84 m . N.W. of Nantes on the sailway to Brest. Pop. (tyo6), town, 16,728; commune, 23.561, It is siluated 10 m . from the open sca, at the confluence of two streams forming the Vannes river, which debouches into the land-locked Gulf of Morbihan about a mile below the town. The natrow, steep and crooked streets of the old town, which lie on a bill lacing the south, are surrounded by fortifications of the 14 ch , isth and \(17^{t h}\) centuries, pierced by four gates and flanked by nine towers and five bastions, connected by baltlementa La the Constable's Tower Olivier de Clisson was confined in 1387. The modern suburbs, with the port, the public buildings, barracks, conventa, squares and promenades, notably the Gareane and the park of the Prefect ure, surround the old town. The archaeological museum, the contents of which are mainly the fruit of excavations at Carnac and elsewhere in the vicinity. includes one of the richest collections of prehistoric remains in Europe. There are also a museum of natural history and a library. The cathedral of St Peter overiooks the old town; burnt by the Normans in the toth century, it was rebuilt in the \(13 \mathrm{H}_{\mathrm{h}}\), \(\mathrm{s}^{\text {th }}\) and 18 th centuries. It has remains of a cloister and contains the relics and tomb of the Spanish Dominican preacher St Vincent Ferrier, who died at Vannes in 1419. The curious round Chapelle du Pardon to the left of the nave was built in 1537 in the Italian style. Some interesting old houscs, including that of the presidents of the parlement of Brittany, the rich private collections of M. de Limur, and the church of St Palerne (18th century) are also worthy of mention. There is a monument to Le Sage, born near Vannes. Vannes is the seat of a prefect, a bishop and a court of assizes, and has tribunals of first instance and of commerce and a branch of the Bank of France. A communal college is among the educational institutions. Among the industries are building, tanning and cottonweaving. The port of Vannes, to the south of the town, is formed by the Vannes river and is accessible only to small vessels. Vessels of 800 tons can make the harbour of Contean about 21 m . Irom the town.

Vannes (Dariorigum), the capital of the Vepeti (whence Gurned, the Breton name of the town), was at the head of the Armorican league agsinst Julius Caesar, who in 56 s.c. overcame their fleet and opened up their country by six roads. St Paternus, the first bishop, was consecrated in 46s. In the sth century Vannes was ruled for a time by independint counts,
but soon came under the yoke of the Franks. Nomenof, the lieutenant of Louis I., the Pious, in Brittany, assumed the title of king in 843, and one of his brothers was the founder of a line of counts who distinguished themselves against the Normans in the 9 th and roth centuries. Vannes became part of the duchy of Brittany at the end of the roth century. The estates of Brittany met there for the first time in 1203 to urge Philip Augustus to avenge the death of Arthur of Brittany. In the course of the War of Succession the town was besieged four times in 1342. Duke John IV. built here the castle of L'Hermine and made it his habitual residence. In 1487 the town was for a year in the hands of Charles VIII. of France. In 1532 Brittany was definitively united to France. The estates mel at Vannes several times in the 17 th and 18 th centuries. During the Revolution this town was the scene of the execution in 1795 of some of the prisoners after the royalist disaster at Quiberon.

VAN RENSSELAER, STEPHEN (1764-1839), American political leader and soldier, "last of the patroons," was bom at New York City on the \(15 t\) of November 1764 . He was fifth in descent from Killian Van Rensselaer (c. \(1580-1645\)), the original patroon of Rensselacrwyck, New York. who acquired his large estates between 1630 and 1637. Stephen was graduated at Harvard in 1782. In 1789-90 he was a member of the New York Assembly, and from 1791 to 1795 served as a memher of the state Senate. He was lieutenant-governor of New York (\(1795-1801\)) for the two terms in which John Jay was governor. In 1801 he presided over the state constitutional convention, and from 1808 to 1810 was again in the Assembly. He was an ardent promoter of the Eric Canal, and as a commissioner to examine the proposed route, \&c., he reported favourably to the Assembiy in 18rt. In the second war with Great Britain he commanded the First Division of the detached militia of the state of New York, with the rank of major-general, and on the isth of October 1812 was defeated at the battle of Queenston Heights. As he was a Federalist he was severely criticised and censured for this defent and resigned from the army. At the close of the war the Erie Canal project was renewed, and from 1816 till his death be was a member of the board of canal commissioners, and for nearly fifteen years was its president. In 1818 he was again elected to the Assembly; in 1819 he became a regent of the State University of which he was for a time chancellor; and in 1821 he was a deiegate to the New York constitutional convention. From 1822 to 1829 he was a member of the National House of Representatives,' and there voted for John Quincy Adams for the presidency, and served as chairman of the committee on agriculture. In 1820-23 he sent out at his own expense Professors Amos Eaton (1776-1842) and Edward Hitchcock to make extensive surveys, results of which were published as An Agricultural and Geolagical Survey of the Districl adjoining the Eric Canal (Albany, 1824). In 1824 he founded a school in Troy which was incorporated two years iater as the Rensselser Polytechnic Institute. He died at Albany, New York, on the 261h of January 1839.
See D. D. Barnard, A Discourse on the Life, Services and Character of Stephen Van Rensselaer (Albany, 1839).
VANSITTART, HENRY (1732-1770 or 1771), Anglo-Indian governor, was born in Londen on the 3rd of June 1732. His father, Arthur van Siltart (169r-1;60), and his grandiather, Peter van Sittart (\(1651-1705\)), were both wealthy merchants and directors of the Russia company. Peter, a merchant adventurer, who had migrated from Danzig to London about 1670, was also a director of the East India company. The family name is taken from the town of Sittard in Limburg. Edacated at Reading school and at Winchester college, Henry Vansittart joined the society of the Franciscans, or the "Hellfire ciub," at Medmenham, his eider brothers, Arthur and Robert, being also members of this fraternity. In 1745 he entered the

\footnotetext{
\({ }^{1}\) He succeeded his cousin, Solomon Van Renseclacr (1744-1852), who was in the regular army in 1792-1800, who had lought under Cencral Anthony Wayne at Maumee Rapids in 1794 and under Sterhen Van Rensselaer at Queenston Heights in 1812, and who was in the Housc of Representatives in 1819-1822.
}
service of the East India company and sailed for Fort St David: here he showed himself very industrious, made the acquaintance of Robert Clive and rose rapidly from one position to another. As a member of the council of Madras he helped to defend tbe city against the French in 1759, and in July 1760 be went to Bengal as president of the council and governor of Fort William. Courageously facing the difficulties of his new position, whicb included a serious lack of funds, he deposed the subadar of Bengal, Mir Jafar, whom he replaced by his son-in-law, Mir Kasim, a circumstance which increased the influence of England in the province. He was, however, less successful in another direction. Practicaily all the company's servants were traders in their private capacity, and as they claimed various privileges and exemptions this system was detrimental to the interests of the native princes and gave rise to an enormous amount of corruption. Vansittart sought to check this, and in 1762 he made a treaty with Mir Kasim, but the majority of his council were against him and in the following year this was repudiated. Reprisals on the part of the subadar were followed by war, and, annoyed at the failure of his pacific schemes, the governor resigned and returned to England in 1764. His conduct was attacked before the board of directors in London, but events seemed to prove that he was in the right, and in 1769 he became a director of the company, having in the previous ycar ohtained a seat in pariament. He was now sent on an important mission to India; he left England in September 1769, but the ship in which he sailed was lost at sea late in 1770 or carly in 1771 . One of his five sons was Nicholas Vansittart, Baron Bexiey (qs.). To defend his conduct in Bengal Vansittart published some papers as A Narrative of the Transactions in Bengal from 1760 10 1764 (Londion, 1766).
Vansiltart's brother, Robert Vansittart (1728-1789), who was educated at Winchester and at Trinity College, Oxford, was regius professor of civil law at Oxford from 1757 until his death on the 31st of January 1789. Another brother, George Vansittart (1745-1825), of Bisham Abbey, Berkshire, was the father of General George Henry Vansittart (1768 1824) and of Vice-Admiral Henry Vansittart (1717-1843).

VAN'T HOFF, JACOBUS HENDRICUS (1852-), Dutch chemist and physicist, was born in Rotterdan on the 3oth of August 1852. He studied from 1869 to 1871 at the polytechnic at Delft, in 187t at the university of Leiden, in 1872 with \(F\). A. Kckulé at Born, in 1873 with C. A. Wurtz at Paris, and in 1874, when he took his doctor's degree, with E. Mulder at Utrecht. In 1876 be became lecturer on physics at the veterinary school at Utrecht, and two years later he was chosen professor of chemistry, mineralogy and geoiogy in Amsterdam University. In 1894 he declined an invitation to the chair of physics at Berlin University, but in 1806 he went to Berlin 25 professor to the Prussian Academy of Sciences, with a saliary and a laboratory, but frcedom to do whatever he liked; and at the same time he accepted an honorary professorship in the university so that he might lecture if he were so minded. On taking up these appointments he announced that, the application of mathematics to chemistry remaining his chief aim, he proposed to devote himscif to the sludy of the formation of oceanic salt deposits, with special reference to the Stassiurt deposits. He may be regarded as the founder of the doctrine of stereoisomerism (\(q . y\).), for he was the first, in 1874, to introduce a definite mechanical theory of valency, and to connert the optical activity exhibited by many carbon compounds with their chemical constitution. In respect of this doctrine of the " asymmetric carbon atom." van't Hoff's name is generally linked with that of J. A. le Bcl (born on the arst of January 1847, at Pechelbronn, Lower Alsace), who, only two months later, independently enunciated the theory of asymmetric combinations with carbon; though it must be noted that J. Wislicenus, to whom van't Hof, in fact, acknowiedged his indebtednces, had already suggested that in order to explain the constitution of certain organic bodies, the tridimensional arrangement of atoms in space must be taken into account. For this work van't Holl and Le Bel received the Davy meddd
jointly from the Royal Society in \(\mathbf{1 8 9 3}\). From 1874 to 1884 van't Hof's attention was mainly given to the law of mastaction, and he established the theorem known by his name, which connects quantitative displacement of equilihrium with change of temperature. From 188 s to 1895 he was engaged on the theory of solutions, and developing the analogy between dilute solutions and gases he showed that the asmotuc preasure of a solution has the same value as the pressure that solute mould exert if it were contained as a gas in the same volume sis is occupied hy the solution. From 1885 he published the Zeitschrift fier physikaliselve Chemie, in collaboration with Profescor W. Ostwald of Leiprig.

VAN WIERT, a city and the countyseat of Van Wert county, Ohio, U.S.A., about 28 m. W. hy N. of Lima. Pop. (1890) 5512; (1900) 6422 (121 foreign-born); (1910) 7157. Van Wert is served hy the Pennsylvania and tbe Cincinnati Northern railways, and by an interurban clectric line. Among the principal huildings are the city hall, the court house, the Brymbeck Library of Van Wert county (containing 14,650 volumes in 1908), the Home Office Building of the Home Guards of America (a Iraternal society incorporated in 1890 and having about 16,000 members in 1910), and the Home Offe Building of the Central Manufactures' Insurance Co. Van Wert is situated in a rich agricultural region. It has railway and machine shops and various manulactures. The municipality owns and operates the waterworks. Van Wert was settled about 2840 , was incorporated as a town in 1848 and was chartered as a city in 1go3. The county and the city were named in honour of Isaac Van Wert (1760-1828), one of the captors of Major John Andre.

VAPEREAD, LOUIS GUSTAVE (\(1819-1906\)), French man of letters and lexicographer, was born at Orleans on the 4th of April 1819. Educated at the Ecole Normale he became a teacher of philosophy, and was entrusted by Victor Cousin with the preparation of his studies on the Pensies of Pascal. Under the empire his republican principles cost him his position, and Vapereau studied for the bar. He practised, however, litule or not at all, and after 1870 he was appointed prefect of Cantal (1870) and of Tarn et Garonne (1871-73). From 1877 to 1888 he was inspector-general of public instruction. He was the author of some excellent editions of the clussics, and of works on political and social questions, hut he is famous for his valuable Dictionnaire aniocrsel des contemporains (1858; 6th ed., 1893), hrought up to date in 1895 by a supplementary volume. He also drew up a Dictionnaire uniocrsel des litherafemrs (\(\mathrm{I}_{7} 86\)). At the time of his death at Norsang-sur-Orge in 1006, he hed been for twenty-six years a regular contributor to L'Illustration, some of his notes written for this journal being collected in 1896 as L'Homme et lo vie.

VAPGIO, an ancient site in Laconia, Greece, on the right bank of the Eurotas, some 5 m . S. of Sparts. It is farmous for its "bee-bive" tomb, excavated in 1889 hy Dr Tsountas. This consists of a walled approach, or \(\delta \rho 0\) pos, about 97 ft . long, leading to a vaulted chamber some 33 ft . in diameter, in the floor of which the actual grave was cut. The objects found bere and transferred to the National Museum in Athens include a large number of gems and amethyst beads, together with articles in gold, silver, hronze, iton, lead, amber and crystal. But by far the finest of them are two golden cups decorated with scenes in relief, picturing the capture of bulls. These form perhaps the most perfect works of "Mycenaean" or "Minoan" art which bave survived. It seems likely that the Vaphio cupe do not represent a local art but were imported from Crete, which at that early period was far ahead of mainland Greece in artistic development. The tomb, which prohably belonged to Amyclae rather than to Pharis, as is commonly stated, is now almost entirely destroyed.
See C. Tsountan Tromeph 'Apxamornap (1889), 136-172: J. C. Fraser, Pamsamias's Description of Greece, iii. 135 f. (with full biblio(raphy): W. Ridgeway. The Early Afe of Greece. i, 26-28: R. C. Bomanquet, Journal of Bellenic Sudies (1994). xaiv. 317 11.; A. Riegl, Johreshefle d. dsem. arch. Instimber (Igo6), ix if.
(M. N. T.)

Varonization. 1. In common language a mapor is a gereous or elastic fluid, which emanates or evaporates from the surface of a solid or hiquid at temperatures below its boiling-point. A solatike liquid or solid is one which evaporates rapidly at ordinary temperatures. It is a matter of common experience that evaporation is accelerated by currents of air, or hy the use of an exhaust pump, or hy any process which removes the vapour rapidly from the liquid. On the other hand, it is retarded, and finally ceases, if the vapour is allowed to accumulate in a closed spece. When this equilibrium state is reached, the space is said to be saturated with the vapour; the density of the vapour is then the maximum which can exist in the presence of the liquid at the temperature of the experiment, and its pressure is called the saturation-pressure. The term vapour-pressure, when used without qualification, is also generally employed to denote tbe saturation or maximum pressure. Dalton showed that the saturation-pressure of a vapour depends only on the temperature, and is unaffected by the presence of any neutral gas or vapour. This relntion has been more accurately verified by many subsequent observers; and the exceptions to it have been minutely studied and elucidated. The saturation-pressure invariably increases rapidly with rise of temperature, according to a regular law which has been the subject of many elaborate investigations. When the vapour-pressure of a liquid becomes equal to the external pressure, bubbles of vapour are freely formed in the interior of the liquid by the familiar process of boiling or ebullition. The temperature at which this occurs under the normal atmospheric prensure of 760 mm . of mercury (reduced to \(0^{\circ} \mathrm{C}\). and sea-level in latitude \(45^{\circ}\)) is termed the boiling-point (B.P.) of the liquid, and is usually determined hy taking the temperature of the saturated vapour under normal pressure, to avoid error from superheating (see below, 3) of the liquid. If the external pressure remains constant, the temperature will also remain constant, provided that the liquid is pure and that its composition remains unaltered, until the whole is vaporized. If, on the other band, the liquid is contained in a closed space, it may be made to boil at much lower temperatures by diminishing the pressure; or the temperature of the liquid may he raised considerahly above the normal boiling-point, as in the boiler of a steam-engine, if the pressure is raised by preventing the free escape of the vapour. In all cases, if the temperature is given, there is a corresponding equilihrium or saturationpressure of the vapour, and vice versa, in accordance with Dalton's law. It was shown, however, by Cagniard de la Tour (Ann. Chim. Phys., 1822, 1823) that the temperature and pressure of the liquid could not be raised indefinitely in this manner. By heating liquids in strong glass hulbs witb manometers attached, he found that at a certain tempera. ture the meniscus or curved surface separating the liquid from the vapour disappeared, and the hulh became filled with an apparently uniform substance. The temperature at which this mixing of liquid and vapour occurs is definite for each liquid, and is called the critical temperature. La Tour found the critical temperature in the case of water to be \(362^{\circ} \mathrm{C}\)., a result which has been remarkably confirmed by later researchea (Cailletet, Ann. Chim. Phys. 25, p. 519, 189a). In many books of recent years it has been the custom, following a suggestion of Andrews, to restrict the term "gas" to temperatures above the critical temperature, and the term "vapour" to temperatures below. But this is often inconvenient in practice, as there is no sudden change in the gaseous phase at ondinary pressures on passing the critical temperature. It is more convenient to cmploy the terms "vapour" only when discussing the properties of the gaseous phase in relation to the liquid or solid, and to follow the common usage in describing substances like \(\mathrm{CO}_{2}\) or even \(\mathrm{SO}_{3}\). and \(\mathrm{NII}_{2}\), as gaset at ordinary temperatures and pressures.
2. Continuity of Stote.-The form of the isothermal curve, representing the compression of a vapour at constant temperature, consists, is shown in fig. 1. A, of three discontinyous branches. The relation between premare and volume for an
unsaturated vapour is represented by the branch DE, which is similar to the isothermal of a gas obeying Boyle's law. When the saturation-pressure is reached at D the vapour begins to condense, and the volume diminisbes without further increase of pressure, giving the isopiestic brancb DCB. At \(B\), when the vapour is completely liquefied, further compression produces a rapid rise of pressure, as shown hy the branch BA, representing

Fig. 1.
A, James Thomson Isothermal; B, Isothermals of \(\mathrm{CO}_{2}\) (Andrews).
the behaviour of the liquid. It is possible, however, to trace the branch DN for the supersaturated vapour continuously beyond D without liguefaction in the absence of nuclei. It is similarly possible to trace the liquid branch ABM beyond B to lower pressures in the absence of dissolved gases. As the temperature is raised, the length of the branch BD , representing the increase of volume in passing from the liquid to the gas, diminishes, as shown in fig. \(1, B\), which represents the isothermals of \(\mathrm{CO}_{2,}{ }^{1}\) according to Andrews (Phil. Trans. 1869). Above the critical temperature, the discontinuities at \(B\) and \(D\) disappear from the isothermal curve, and it is impossible to obtain separation of the two states, liquid and gas; however great the pressure applied. The critical pressure is the vapour-pressure of the liquid at the critical iemperature. It is possihle to ohtain a periectly continuous passage from the gascous to the liquid state by keeping the vapour at a pressure greater than the critical pressure while it is cooled from a temperature above the critical point, at which it would expand indefinitely (if the pressure were reduced) without separation into two phases, to a temperature below the critical poin, at which expansion would produce separation into liquid and vapour as soon as the pressure was reduced to the saturation value. It mas maintained by Andrews, on the basis of thesc and similar observations, that the gaseous and liquid states were merely widely separated forms of the same condition of matter, since one could be converted into the other without any breach of rontinuity or sudden evolution of heat or change of volume; just as an amorphous solid in the process of fusion becomes gradually more and more plastic as the temperature is raised, and passes into the state of a viscous liquid with continually diminishing viscosity. The same idea was further developed by James Thomson (Proc. R.S., 1871), who suggested that the discontinuity of the isothermal at temperatures below the critical point was only apparent. He supposed that the extensions of the liquid and vapour curves BM, DN, in fig. I, A. representing the states of superheated hiquid and supersaturated vapour, might theoretically be joined by a continuous curve MN, representing a homogencous transformation, which, however, could not be realized in practice, as the state of the substance corresponding to this part of the curve would be unstable. Maxwell (Nature, 1875) showed that the straight line BCD representing the saturation-pressure must cut of loops BMC. CND, of equal area from this imaginary
The slight inem "we observed during condensation was attributed by*
noe of a trace of air in the \(\mathrm{CO}_{2}\).
isothermal; otherwise it would be theoretically possible to ohtain a balance of work without any difference of temperature by taking the suhstance through the isothermal cycleBCDNCMB. The theorerical isothermal of James Thomson is qualitatively represented by an equation of the type devised by Van der W'aals, in which the mutual attraction of the molecules of a gas is regarded as equivalent to an internal pressure of the form \(a / w^{2}\), which he supposes identical with the capillary pressure of the liquid. It has been found, however, that this simple expression is not sufficiently exact. It is probable that it is not merely a question of varying attraction between similar molecules. A vapour should rather be regarded as containing a certain proportion of compound or coaggregated molecules, which partially dissociate when the pressure is diminished or the temperature raised. A liquid sinilatly contains dissolved molecules of vapour, and the state of equilibrium is more nearly analogous to that between conjugate saturated solutions (e.g water and pbenol).
3. Efect of Capillary Pressure on Ebullition.-It was remarled 3t a very early date that water and other !iquils rould be raised under atmospheric pressure several degrees above their normal boiling poims in a clean glass vessel withous ebullition occurring. and that, when a hubble was formed, it would expand explosisely, producing the phenomenon of "bumping"; but that, if metallic flings or other bodies capable of supplying small bubbles of air were introduced, ebultition would proceed quictly at the normal temperature. L. Dufour succeeded in raising small drops of water, suspended in an oil mixture of suitable density, to a lemperature of nearly \(180^{\circ} \mathrm{C}\). under atmospheric pressure. Similar observations lead to the conclusion that the phenomenon of ebullition, or buibing with the formation of bubbles, depends casentially on the presence of air or dissolved gas to provide nuclei for the starting-points of the bubbles. This is a natural consequence of the capillary pressure due to surface tension. The vapour-pressure \(p\) inside a small spherical bubble of radius \(r\) must exceed the pressure \(P\) in the liquid just outside the bubble by \(2 \mathrm{~T} / \mathrm{r}\), where T is the surface tension of the liquid. The capillary pressure 2T/r may be very large if \(r\) is small. 12 is often stased on the strength of this relation that a bubble of radius 5 in a liquid will nor expand indefinitely and rise to the surface as in ebullition, until the vapour-pressure \(p\) inside the bubble exreeds the external pressure P by \({ }^{2 T} / \mathrm{r}_{\text {. But }}\) Dis neglects the effect of the air or gas cuntained in the buoble, which plays an essential part in the phenomenon. A bubble of vapour containing no air or gas could not exist at all in stable equilibrium is a liquid. If its radius, were such as to make \(2 \mathrm{~T} / \mathrm{r}\) greater than \(p-P\), it would collapse entirely. A bubble containing gas. on the contrary, is in stable equilibrium when its radius \(r\) is suel that the pressure of the gas and vapour inside it balance the external pressure P together with the capillary pressure 2T/s. Any diminution of produces an increase in the pressure of the gas which is more than sufficient to balatice the increase of the capillary pressure \(2 \mathrm{~T} / \mathrm{F}\). Supposing that the external pressure and temperature remain constant, the partial pressure of the gas inside the bubble varies inversely as the volume of the bubble, and mav be represented by \(a / y^{2}\). The size of the bubble is determined by the equation \(p+a / r^{3}=P+2 T / r\). The equilibrium is always stable if \(p\) is less than \(P\). If \(p\) is greater than \(P\), the equilibrium becomes unstable (and the bublle expands indefinitely), when the gas-pressure a; \({ }^{2}\) is one-t hird of the capillary pressure 2T/r. This follows immediately by differentiating the above equation with respect to \(r\), assuming the difference \(p-\mathrm{P}\) to remain constant. Substituting \(2 \mathrm{~T} / 3\) for \(\mathrm{a}_{i} \mathrm{r}^{2}\) we obtain the condition of stability,
\[
\begin{equation*}
p-P<4 T / 3 \tag{i}
\end{equation*}
\]

In other words, the temperature of a liquid containing bubbles of radius \(r\) will rise until the excess pressure given by (i) is reached, and ebullition will begin as soon as the excess pressure amounts to two-thirds of the capillary pressure, and will not be delayes until the full rapillary pressure is reached, as might appear at first sight. Bubbles i millimetre in diameter in water at \(P=760 \mathrm{mam}\). become unstable when the iemperature reaches \(200.05^{\circ} \mathrm{C}\). approsimately. To obtain a superheas of \(10^{\circ} \mathrm{C}\).. where the excess pressure is 316 mm ., the bubbles must not exceed abous aboth nmm . danncter. The condensation of a vapour is also retarded by the effect of capillary pressure, but the relation in this case is somewhat different.
4. Effect of Capillary Pressure on Vapour-Pressure.- \(1 t\) was observed by Sir W. Thomson (Lord Kelvin) (Phil. Mrag. iv. it P. 4.48, \(18 \% 1\)) that if a capillary tube of radius \(r\) is immersed in liquid of surface tension T, and the liquid rises to a heighe above the plane surface (the whole being enclosed in a vessel of uniform temperature containing only the vapour of the liquid) the pressure of the vapour at the curved surface of the meniscus in the capillary: tube will be less than that at the plane surface by the amount. \(g h / r\), where \(g\) is the acceleration of gravity, and \(t / p\) is the densily of the vapour. But the vapour must be in equilibrium with the liquid at both surfaces. Otherwise perpethal motion would ensur
in an eacionate at uniforn temperature. Consequently the equilibrimm valne of the vapour-pressure must vary with the curvature of the surface, or with the capillary presture due to the curvature.

If \(P\), are the hydrostatic pressures in the liguid and vapour clowe to the meniscus; the difference \(P-p=2 T / r\). This is megative if F is nepative, f.e. if the liquid rises in the tube, but is positive if the meniscus is convex and the liquid is depressed in the tube. If \(\mathrm{P}_{\mathrm{o}}\) 烸 are the pressures in the liguid and vapour at the plane surface, \(P_{c}=p_{0}\), and if \(1 / V\) is the density of the liquid, the difierences of presoure in the liquid and vapour respectively corresponding to e difference of level \(h_{p}\) are \(P-P_{0}=-\operatorname{ch}^{\prime} / V, p-p_{0}=-g h / s\). Combining these with the relation \(P-p=2 T / r\) and eliminating gh, we obtain, for the change of vapour-prearure \(p-p_{w}\) due to change of pressure \(P-p\) or to curvature \(I / P\),
\[
\begin{equation*}
p-p_{0}=\left(P-P_{4}\right) V / 0=2 T V / r(r-V) \tag{2}
\end{equation*}
\]

This increase of vapour-pressure with curvavure affords a natural explanation of the fact that it is possible to cool a vapour considerably below the saturation temperature without condensation. The vapour-pressure in a fog containing small drops of radius, must exceed the normal vapour-pressure over a plane surface at the same temperature by the amounc \(2 T V / r(v-V)\), which may be considerable if \(r\) is small. The same expression measures the supersat uration required to induce condensation in the presence of dust or ot her nuclei of radius \(r\), and explaing why it is that condensation always takes place on dust particles if any are present. This phenomenon forms the basis of J. Aitken's method of counting dust particles, or Wilson's method of counting electrical ions, which are also capable of acting as nuclei for starting condensation.

5- Extension to Higher Pressures.-The approximate formula above given for the effect of hydrostatic pressure on the vapourpressure assumes the densities of the liquid and vapour constant, and is true for small differences of pressure only. If we take \(P_{4}\) and \(p_{n}\) to represent corresponding values of the pressure in the liquid and vapour at the same level (and not necessarily at the plane surface where \(P_{0}=P_{0}\)), and if the diffcrence of level from \(P, p\) is small, substituting \(d P\) and \(d p\) for the small differences of pressure, we have accuratcly the relation \(t d p=V d P\), where \(V\) and are the specific volumes of the liquid and vapour under the pressures \(P\) and \(\%\) respectively. In order to apply the formula to large differences of pressure, it is only necessary to integrate it at constant temperature between the required limits of \(\boldsymbol{P}\) and \(\boldsymbol{P}\). We thus obtain the general equation,

In applying the peneral equation (3) to an actual case, the compresibility of the liquid is the most uncertain factor. Assuming the compressibility constant, we may write \(V=V(t-a P)\). For the vapour we may employ cquation (t 7) Thermodynayics, viz \(t=R 0 / p-c+b\), as a very close approximation over \(n\) wide range. The small quantities \(c\) and \(b\) are functions of the temperature only. Making these substltutions and integrating the equation we obtain
\[
R 0 \log \left(p_{1}^{\prime} p_{0}\right)=(c-b)\left(p-p_{0}\right)+V_{0}\left(P-P_{0}\right)-\mid a V_{0}\left(P_{2}-P_{0}\right)
\]
C. T. R. Witson (Phil. Trens. r898) has observed that in the absence of nuclei a very fine mist is formed in a vapour on sudden expansion when its density is about eight times the saturntion value. Putting \(p / p_{6}=8\) in equation (4), and taking for water vapour \(R=461 \times 10^{\circ}\), and \(\theta=300^{\circ}\) Abs, we hind \(P-P\) equal to 3000 atmopheres approximately as the preserure required to produce this degree of supersaturation, allowing (or compressibility of \(V\). The term (\(c-b\)) may be neglected in this case, as of is small, but it would a mount to about \(17 \%\) of PV at \(200^{\circ}\) C. The result obtained from the approximate formula (a) would be 9200 at mompheres, which is more than trebic, and indicates the inapplicability of the simpie formula in an extreme case. Taking \(P=3000\) atmospheres, and assuming that the formula \(2 T / \mathrm{r}\) epplies for the capillary pressure, we find the equivalent radius of a nucleus corresponding to the fine misty condensation to be \(5.0 \times 10^{-6} \mathrm{~cm}\). This is a quantity of molecular dimensions, and lends support to the view that a vapour contains a certain proportion of conggregated molecules, represented by the term 6 in the equation, which are capable of acting as nuclei for condensation. The analogous phenomenon of cloudy cristallization, which takes place in a supercooled liquid in the babile state, suggests that a liguid may similarly contain molecular crystals of solid, whith would account, in the case of water, for its anomalous expansion and for the variation of its specific heat near the freezingpoint.

For small values of the vapour-pressure \(p\), the term \((c-b)\left(p-p_{0}\right)\) In equation (4) may generally be neglected, as in the case of water at ordinary temperatures. For moderate values of \(P\), not exceeding ay 100 atmosphercs. V may be taken as nearly constant, and the eguation reduces to the simpler form \(P V / R \theta=\log \left(p_{1} / P_{0}\right)\), which is often sufficiently exact.
6. Application to a Solid.-If we imagine a vertical coltimn of solid in a porous vessel at uniform temperature surrounded by sapour, it would appear probable by similar reasoning that it would be in equilibrium under its own hydrostatic pressure with the preseure of the vapour at different levels. This would give the same ormula as (2) for the variation of vamur-pressure, with \(V\) ', the opecific volume of the solid, in place of \(V\). But since the eurface
tencion enalogy does sot enactly epply in the case of a sotid, it ta pertape better to deduce the formula from a comaderation of the effect of preseure on the freezing-point. The freezing-point \(0_{0}\) 胡 the point at which the solid and liquid have the same sapoutpresture \(p_{0}\) Otherwise they could not remain together in oquilibrium. When the freezing-point is changed by pressure, the vapour-pressures \(\boldsymbol{p}^{\prime}, p^{\prime}\), of the solid and liquid must be the same at the new freezingpoint. The rise of the freexing-point \(\rightarrow b_{0}\) for an increase of pressure \(\mathrm{P}-\mathrm{P}_{\mathrm{m}}\) is given by the thermodynamic equation (TarezaDYNAMCs, equation (5))
\[
\begin{equation*}
L\left(\theta-\theta_{\theta}\right) N_{0}=\left(P-P_{0}\right)\left(V^{0}-V^{\prime}\right) \tag{5}
\end{equation*}
\]
where \(L\) is the latent heat of fusion, and \(V^{\prime}, V^{\prime \prime}\) are the specific volumes of the solid and liquid respectively. The difference (\(p^{\prime}-p^{\prime \prime}\)) of the vapour-pressures of the solid and liquid under normal pressure \(P_{0}\) at a temperature o near the normal freezing-point on is deduced from the same equation (see section 24 below)
\[
\begin{equation*}
p^{\prime}-p^{\prime}=I\left(\theta-\sigma_{a}\right) / 0 \theta_{\omega} \tag{6}
\end{equation*}
\]
where 0 is the specific wolume of the vapoor. Substituting for \(\theta\) in terms of \(P\) from (5), we have lor the difference of the vapourpressures at 0 under pressure \(P\).
\[
\begin{equation*}
\phi^{\prime}-\phi^{\prime}=\left(P-P_{0}\right)\left(V^{\prime \prime}-V^{\prime}\right) \tag{7}
\end{equation*}
\]

The increase of vapour-pressure of the liquid when the pressure is increased to \(P\) is given by \((2)\), viz \(p^{\prime \prime}-p_{0}=\left(P-P_{0}\right) V^{*} / t_{0}\). The incrcase of vapour-pressure of the solid must be less than that of the liquid by the amount given by (7), in order that their vapourpressure may be tbe same at the new frecting-point 6. We thue obtain by subtraction
\[
p^{\prime} \rightarrow p_{0}=\left(P-P_{Q}\right)\left(V^{\prime} / t-\left(V^{\prime}-V\right\rangle / p\right]=\left(P-P_{0}\right) V^{\prime} / p
\]

Which is precisely the seme as relation (2) for the liquid, with \(V^{\prime}\) substituted for \(V^{\circ}\). Hence the effect of pressare on the vapour pressure follows the sarme law for both liquid and wolid (f. H. Poynting. Phil. Mag. xii. p. 40. 1881).
7. Vapowr-Pressure of Solntions.-The rise of boiling-point produced by a substance in solution was demonstrated by M. Faraday in 1820, but the effect had been known to exist for a long time previously. C. H. L. Babo, t847, gave the law known by his name, that the " relative lowering"" \(\left(p-p_{0}\right) / p\) of the vapour-presture of a solution, or the ratio of the diminution of vapour-pressure (\(p-p_{a}\)) to the vapour-pressure \(p_{y}\) of the pure solvent at the same temperature. Was constant, or independent of the temperature, for any solution of constant strength. A. Wallner (Pogg. Anm. t858, ros, p. 529) found the lowering of the vapour-pressure to be nearly pro portional to the strength of the solution for the same salt. \(W\). Ostwald, emploving Widlner's results, found the lowering of vapourpressure produced \(i y\) diffcrent salts in solution in water to be approxinnately the same for solutions containing the same number of gramane-molecules of sait per c.c. F. M. Reoult (Comples Rendes, 1886-87) employed other.solvents besides water, and showed that the relative lowering for different solvents and difierent dissolved sulatances was the same in many cases for solutions in which the ratio of the number of gramme-molecules \(\#\) of the dissolved substance to the number of molecules \(\mathbf{N}\) of the solvent was the mame, or that it varied generally in proportion to the ratio \(m / \mathrm{N}\). The relative lowering of the vapour-pressure can be easily measured by Dalton's method of the barometer tube for solvents such as ether, which have a sufficient vapour-pressure at ordinary temperatures. But in many cases it is more readily determined by obeerving the rise of the boiling point or the depression of the freezing-point of the solution For the rise in the boiling-point, we have by Clapeyron's equation, \(d p / d \theta=L / \theta v_{0}\) nearly, neglecting the volume of the liquid as compared with that of the vapour m . If \(d p\) is the difference of vapourpressure of solvent and solution, and do the rise in the boiling-point. we have the approximate relation,
\(n / N=d \phi / \phi=m L d / R \sigma^{\prime}\), Raoult's Law,
where \(m\) is the molerular weight of the vapour, and \(R\) the gas constant which is nearly 2 calories per degrce for a gramme-molecule of gas. For the depression of the freezing point a relation of the same form applies, but do is negative, and \(L\) is the latent beat of fusion. At the freczing-point, the solution must have the same vapour-pressure as the soldd solvent, with which it is in equilibrium. The relation follows immediatel; from Kirchhof's expression (below section \(\mathrm{t}_{4}\)) for the difference of vapour-pressure of the liquid and solid below the freezing-point.

The most important apparent exceptions to Raoult's law in dilute solutions are the cases. (1) in which the molecules of the dissolved substance in solution are associated to form compound molecules, or dissociated to form other combinations with the solvent, in such a way that the actual number of molecules \(n\) in the solution differs from that calculased from the molecular weight corresponding to the accepted formula of the dissolved substance; (2) the case in which the molecules of the vapour of the solvent are associated in pairs or otherwise so that the molecular meight \(m\) of the vapour is not that corresponding to its accepted formula. These cases are really included in the equation if we substitute the proper values of \(n\) or m. In, the case of electrolytes, S. Arrheniu (Zeit. phys. Chem. i. p. 631) showed how to calculate the effective number of molecules \({ }^{\prime}=(1+2 / / 4)\), from the molecular conductivits

It of the solution and its value hat infinite dilution, for an electrolyte giving rise to \(e+1\) ions. The values thus found agreed in the main with Raoult's law for dilute solutions (see Sol utions). For strong solutions the discrepancies from Raoult's Law often become very large, even if dissociation is allowed for. Thus lor calcium chloride the depression of the freezing-point, when \(n=7, N=100\), is nearly \(60^{\circ} \mathrm{C}\). At this point \(n^{\prime}=10\) nearly, and the depression should be only \(10-4^{\circ}\) C. These and similar discrepencies have been very generally attributed to a loose and variable association of the mole cules of the dissolved substance with molecules of the solvent, which, according to H. C. Jones (A mer. Chern. Jowr. 1905. 33. P. 584), may vary all the way from a few molecules of water up to at least 30 molecules in the case of \(\mathrm{CaCl}_{4}\), or from 12 to 140 for glycerin. It has been shown, however, by Callendar (Proc. R.S.A. 1908) that, if the accurate formulae for the vapour-pressure given below are employed, the results for strong solutions are consistent with a very slight, but important, modification of Raoult's law. It is assumed that each molecule of soiute combines with a molecules of solvent according to the ordinary law of chemical combination, and that the number \(a_{i}\);epresenting the degree of hydration, remains constant within wide timits of temperature and concentration. In this case the ratio of the vapour-pressure of the solution \(p^{\prime}\) to that of the solvent \(\phi^{\prime}\) should be equal to the ratio of the number of free molecules of soivent N -an to the whole number of molecules \(\mathrm{N}-a n+n\) in the solution. The explanation of this relation is that each of the \(n\) compound molecules counts as a single molecule, and that. if all the molecules were solvent molecules, the vapour-pressure would be \(p^{2}\). that of the pure solvent. This assumption coincides exactly with Raculz's law for the relative lowering of vapourpressure, if \(a=1\), and agrees with it in the limit in all cases for very dilute solutions, but it makes a very considerable difference in strong solutions if \(a\) is greater or lese than 1 . It appears that the relatively enormous deviations of \(\mathrm{CaCh}_{3}\) from Raoult's law are accounted for on the hypothesis that \(\underset{\sim}{=9}\), but there is a slight uncertainty about the degree of ionization of the strongest solutions \(a t-50^{\circ} \mathrm{C}\). Cane-sugar appears to require 5 molecules of water of hydration both at \(0^{8} \mathrm{C}\). and at \(100^{\circ} \mathrm{C}\)., whereas KCl and NaCl take more water at \(100^{\circ} \mathrm{C}\). than at \(0^{\circ} \mathrm{C}\). The cases considered by Callendar (loc. cit.) are necessarily limited, because the requisite data for strong solutions are comparatively scarce. The vapourpressure equations are seldom known with sufficient accuracy, and the ionization data are incomplete. But the agreement is very good so far as the data extend, and the theory is really simpler than Raoultis law, because many different degrees of hydration areknown, and the assumption \(a=1\) (all monohydrates), which is tacitly in. volved in Raoult's law, is in reality inconsistent with other chemical relations of the substances concerned.
8. Vapour-Pressure and Osmotic Pressure.-W. F. P. Pfeffer (Osmotische Untersuckangen, Leipzig, 1877) was the first to obtain satisfactory measurements of osmotic pressures of cane-surar solutions up to nearly 1 atmosphere by means of semi-permeable memhranes of copper ferrocyanide. His observations showed that the osmonic pressure was nearly proportional to the concentration and to the absolute temperature over a limited range. Van't Hoff showed that the osmotic pressure \(P\) due to a number of dissolved molecules \(n\) in a volume \(V\) was the same as would be exered by the same number of gas-molecules at the same temperature in the same volume, or that \(\mathrm{PV}=\mathrm{Ron}\). Arrhenius, by reasoning similar to that of section 5 , applied to an osmotic cell supporting a column of solution by osmotic pressure, deduced the relation between the osmotic pressure \(P\) at the bottom of the column and the vapour-pressure \(p^{\prime \prime}\) of the solution at the top, viz \(m \mathrm{PV} / \mathrm{R} \theta=\) \(\log _{f}\left(p^{\prime} / p^{*}\right)\). which corresponds with the effect of hydroatatic pressure, and is equivalent to the assumption that the vapour-pressure of the solution at the bottom of the codumn under pressure \(\mathbf{P}\) must be equal to that of the pure solvent. Poynting (Phil. Mfag. 1896, 42, p. 298) has accordingly defined the osmotic pressure of a solution as being the hydrostatic pressure required to make its vapourpressure equal to that of the pure solvent at the same temperature, and has shown that this definition agrees approximately with Raoult's law and van't Hoff's gas-pressure theory. It is probable that osmotic preasure is not really of the same nature as gas-pressure, but depends on equilibrium of vapour-pressure. The vapourmolecules of the solvent are free to pass through the semi-permeable membrane, and will continue to condense in the solution until the hydrontatic pressure is 50 raised as to produce equality of vapour-premure Lord Berkeley and E. J. G. Hartley (Phil.

 4ay \({ }^{2}\) cone-sugar are neariy three times as great as \% and Yortis formula for the gas-pressure, but agree wre theory, as modified by Callendar, Atbe polutiono , nd if if we also assume Mution combines sith 5 molecules Wyition on the deprassion of the tump oint: Lord erkecky ynd GKivimy dirat masurranent of
9. Tolat Heat and Latcnt Hach-To effect the comverion of a solid or liquid into a vapour without change of temperature, it is necestary to supply a certinn quantuty of heat. The quantiry required per upit mass of the subtance is termed the latend heas of paporisation. The total heat of the saturated vapour at any temperature is usually defined as the quantity of hest required to raise unit mass of the liquid from any convenient sero up to the temperature considered, and then to evaporate it at that temperature under the constant pressure of aturation. The total heat of stesm, for instance, is generally seckoned from the state of water at the freesing-point, \(o^{8} \mathrm{C}\). If \(/ 4\) denote the heat required to raise the temperature of the liquid from the selected zero to the temperature \(t^{\circ} \mathrm{C}\)., and if H denote the total heat and L the latent heat of the vapour, also at \(t^{\circ} \mathrm{C}\)., we have evidendy the simple relation
\[
\begin{equation*}
H=L+h \tag{9}
\end{equation*}
\]

The pressure under which the liquid is beated makes very little difference to the quantity \(h\). but, in order to make the statement definite, it is desirable to add that the liquid should be hested under a constant pressure equal to the final saturation-pressure of the vapour. The usual definition of total heat applies only to a saturated vapour. For greater simplicity and generality it is desirable to define the total heat of a substance as the function (\(\mathrm{E}+f \boldsymbol{f}\)), where E is the intrinsic energy and othe volume of unit mass (cee THERMODYNAMCs). This agrees with the usual definition in the special case of a saturated vapour, if the liquid is heated under the final pressure \(p\), as is generally the case in heat engines and in experimental measurements of H .

The met hod commonly adopted in measuring the latent heat of a vapour is to condense the vapour at saturation-pressure in a calorimeter. The quantity of heat so measured is the total heat of the vapour reckoned from the final temperature of the calorimeter, and the heat of the liquid \(h\) must be subtracted from the total heat measured to find the latent heat of the vapour at the given temperature. It is necessary to take special precautions to ensure that the vapour is dry or free from drops of liquid. Another method. which is suitable for volatile liquids or low temperatures, is to allow the liquid to evaporate in a calorimeter, and to measure the quantity of heat required for the evaporation of the liquid at the temperature of the calorimeter and at saturation-pressure. The first method may be called the method of condensation. It was applied in the most perfect manner by Regnault to determine the latent heats of steam and several other vapours at high pressures. The second method may be called the method of evaporation. It is more difficult of application than the first, but has given some good results in the hands of Griffiths \({ }^{1}\) and Dieterici, although the experiments of Regnault by this method were not very successiul.

It was believed for many years, in consequence of some roush experiments made by J. Watt, that the total heat of stcam was constant. This was known as Watt's law, and was sometines extended to other vapours. An alternative supposition, due to J. Southern, was that the latent heat was constant. The very careful experiments of Regnault, published in 18.47. showed that the truth lay somewhere between the two. The formula which he gave for the total heat II of steam at any temperature \(t^{\circ} \mathrm{C}\)., which has since been universally accepted and has formed the basis of all table of the properties of steam, was as follows:-
\[
\begin{equation*}
H=606.5+0.3051 \tag{10}
\end{equation*}
\]

He obtained similar formulae for other vapours, bet the experimerrts were not 50 complete or satisfactory as in the case of steam, which may conveniently be taken as a typical vapour in comparing theory and experiment.
10. Fotal Heat of Ideal Vapour.-It was proved theoretically by W. J. M. Rankine (Proc. R.S.E. vol. xx. p. I73) that the increase of the total heat of a saturated vapour between any two temperatures should be equal to the specific heat \(S\) of the vapour at constant pressure multipfied by the difference of temperature, provided that the saturated vapour behaved as an ideal gas, and that its specific beat was independent of the pressure and temperature. Expresed ia symbols, the relation may be written
\[
\begin{equation*}
H^{\prime}-H^{+}=S\left(\theta^{\prime}-\theta\right) \tag{11}
\end{equation*}
\]

This relation gives a linear formula for the variation of the total beat, a result which agrees in form with that found by Regnault for steam, and implies that the coefficient of in his formula should be equal to the specific heat \(S\) of stean. Rankine's equation follows directly from the first law of thermodynamics, and may be proved as follows: The heat absorbed in any transformation is the changt of intrinsic energy plus the external work done. To find the total heat \(H\) of a vapour. we bave \(H=E+p(v-b)\), where the intringe energy E is measured from the selected zero \(\theta_{0}\) of total heat. The external work done is \(p(\nabla-b)\), where \(p\) is the constant pressure, the volume of the vapour at \(\theta\), and \(b\) the volume of the liquid at 6 . If the saturated vapour behaves as a perfect gas, the change of intrinsic energy E depends only on the temperature limits, and is equal tos \(\left(\theta-\theta_{0}\right)\). Where \(s\) is the specific heat at constant volume. Takive the difference between the values of H lor any two temperaiurti
" "Latent Heat of Steam," Phil. Trans. A. 1895; of "Bennome" Phy. Mag, 1896.
" and \(0^{\prime \prime}\). We aee that Rankine's result follows immediately, provided that \(p(v-b)\) is equal so \((S-s)\) or \(R O / m\). which is approcimately true (or eases and vapours when \(\equiv\) is very large compared with 6. We may observe that the equation (1i) is accurately true for an ideal vapour, for which poos \((\mathbf{S}-\mathrm{s})\). provided that the total heat is defined as equal to the change of the function (\(\mathrm{E}+\mathrm{pos}^{\text {) between }}\) the given limits. Adopting this definition, without restriction to the case of an ideal vapour or to saturation-pressure, the rate of variation of the total heat with temperature (\(d \mathrm{H} / \mathrm{d} \mathrm{\theta}\)) at conetant pressure is equal to \(S\) under all conditions, whether \(S\) is constant, or varics both with \(p\) and 0 . (See Thermodynamics, 57 .)
1. Specife Heal of Vapours.-The question of the measurement of the specific heat of a va pour possesses special interest on account of this simple theoretical relation between the specific heat and the variation of the tatent and total heats. The first accurate calculations of the specific heats of air and gases were made by Rankine in a continuation of the paper alrcady quoted. Empkying Jouke's value of the mechanical equivalent of heat, then recently published, in connexion with the value of the ratio of the specific beats of air S/s-1.40 deduced from the velocity of sound, Rankine found for air \(S=\cdot 240\). which was much smaller than the best previous determintions (e.g. Delaroche and Berard, \(S=267\)), but agreed very closely with the value \(S=-238\), found hy Regnault at a later date. Adopting for steam the same value of the ratio of the specific heats. viz. 1-40. Rankine found \(\mathrm{S}=-385\), a value which he used, in default of a better, in calculating some of the propertics of steam. although he obscrved that it was much larger than the coefficient - zos in Regnault's formula for the variation of the total heat. The specific heat of steam was determined shortly afterwards by Regnault (Comples Rendus, 36, p. 676) by condensing superheated steam at two difierent temperatures (about \(125^{\circ}\) and \(225^{\circ} \mathrm{C}\).) successively in the same calorimeter at atmospheric pressure, and taking the difference of the total heats obscrved. The resint found in this manncr, viz. \(S=475\), greatly increased the apparent distrepancy between Regnautt's and Rankine's formulae for the total heat The discrepancy was also noticed by G. R. Kirchhof, who rediscovered Rankine's formula (Poge. Ann. 103. p. 185, 1858). He mugrested that the high value for \(S\) found by Regnault might be due to the presence of damp in his superteated steam, or, on the other hand, that the assumption that steam at low temperatures followed the law \(\phi_{0}=\) Ro might be erroneous. These suggestions have been frequently repeated, but it is probable that neither is correct. G. A Zeuner, at a later date (La Chalewr, p. 44i), employing the empirical formula \(p=\mathrm{Be}+\mathrm{Cp} \mathrm{as}^{2}\) for saturated steam, found the value \(\mathbf{S}=\)-568, which further increased the discrepancy. G. A. Hirn and A. A. Casin (Ans. Chim. Phys, iv. 10, P. 349, 3867) investigated the form of the adiabatic for steam passing through the state \(p=760\) mon.. \(\theta=373^{*}\) Abs, by observing the pressure of superheated steam at any temperature which just lailed to produce a cloud on sudden expansion to atmospheric pressure. Assuming an equation of the form \(\log (\varphi / 760)=a \log (\theta / 373)\). their resulis give \(a=S / R=4 * 305\), or \(S=0-474\), which agrees very perfectly with Regnauli's value. It must be observed, however, that the agreement is rather more perfect than the comparative roughness of the method would apperar to warrant. More recently. Macfarlane Gray (Proc. Inst. Nech Eng- 188 q), who has devoted minute attention to the reduction of Regnanlt's observations, assuming \(S / s=1.400\) as the theoretical ratio of specific heats of all vapours on his " acther-pressure theory. has calculated the properties of steam on the ascumption \(S=0-384\) He endeavours to support this value by reference to sixteen of Regnault's observations on the total heat of stcam at atmospheric pressure with only \(19^{\circ}\) to \(28^{\circ}\) of superheat. These observations give valucs for \(S\) ranging from 0.30 to \(0-46\), with a mean value \(0-3778\). But it must be romarked that the supericat of the steam in these experiments is only 1 or \(2 \%\) of the total heat measured. A similar objection applies, though with less force, to Regnault's main experiments bet ween \(125^{\circ}\) and \(225^{\circ} \mathrm{C}\). . giving the value \(\mathrm{S}=0-475\), in which the superheat (on wbich the value of S depends) is only onc-sixteenth of the total beat measured. Cray explains the higher value found by Regnault over the higher range as due to the presence of particles of moisture in the steam, which he thinks "would not be evaporated up to \(124^{\circ}\) C., but would be more tikely to be evaporated in the higher range of temperature." J. Parry (Sican Engine. p. 580), assuming a characteristic equation similar to Zeuncr's (which makes - a linear function of the temperature at constant pressure, and \(S\) independent of the pressure), calculates \(S\) as a function of the temperature to satisfy Regnatit's formula (10) for the total heat This method is logically consistent, and gives values ranging from 0.305 at \(0^{\circ}\) to \(0.34^{1}\) at \(100^{\circ} \mathrm{C}\). and 0.464 at \(210^{\circ} \mathrm{C}\)., but the difference from Regnault's \(S=0.475\) cannot easily be explained.
12. Throstling Colorimeter Bethod.-The ideal method of determining by direct experiment the relation bet ween the total heat and the speciic heat of a vapour is that of Joule and Thomson, which is more commonly known in connexion with steam as the method of the throttling calorimeter. It was first employed in the case of steam by Peabody as a means of estimating the wetncss of saturated steam, which is an important lactor in testing the performance of an engine II steam or vapour is "wiredrawn" or expanded through e porous plug or throttling aperture without exicrnal loss or gain
of heat, the total heat (\(E+p_{0}\)) remains constant (Trusmodrwamics, f11), provided that the experiment is arranged so that the kinetic energy of thow is the same on either side of the throttle. Thus, starting with saturated steam at a temperature F and pressure \(\phi^{\prime}\), as repreanted by the point \(A\) on the point B represent the state prof after pascing the throtile. the total beat at \(\mathbf{A}\) is the same as that at \(B\), and exceeds that at any other point \(D\) (at the tame pressure \(p^{\prime}\) as at \(B\), but at \(a\) fower temperature \(\theta)\) by the amount \(\mathrm{S} \times\left(\theta^{\prime}-\theta\right)\), which would be required to raise the temperature from \(D\) to \(B\) at constant pressure. We have therefore the simple relation between the total heats at \(A\) and \(D\) -
\(\mathrm{H}_{A}-\mathrm{H}_{\mathrm{p}}=\mathrm{S}\left(0^{\circ}-\theta\right)\). (12)
If the steam at \(A\) con. tains a fraction 8 of sur pended moisture, the cotal heat \(H_{A}\) is less than the value for dry saturated steam at \(A\) by the amo:int 2L. If the steam at A were dry and saturated, we should have, assuming Regnault's formula (10). \(\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{0}=\cdot 305\left(\theta^{\prime}-\theta\right)\), whence, if \(S=-475\), we have \(\mathrm{xL}=-305\left(\theta^{\prime}-\theta\right)-475\left(\theta^{\circ}-\theta\right)\). It is evident that this is a very delicate method of determining the wetness z. but, since with dry saturated steam at low pressures this formula always gives megalibe values of the wetness, it is clear that Regnault's numerical cocfficients must be wrong.

From a different point of view, equation (12) may be applied to determine the specific heat of stcam in terms of the rate of variation of the total heat. If we astume Regrault's formula (10) for the total heat, we have evidently the simple relation \(\mathrm{S}=0 \cdot 305\left(\theta^{\circ}-\theta\right) /\left(\theta^{\circ}-\theta\right)\), supposing the initial steam to be dry, or at least of the same quality as that employed by Reynault. This method was applied by J. A. Eving (B.A. Rep. 1897) to steam near \(100^{\circ} \mathrm{C}\). He found the specific heat smaller than \(0-475\). but no numerical results were given. A very complete investigation on the same lines was carried out by J. H. Grindley (Pkil. Trans. 1900) at Owens College under the direction of Osborme Reynolds. Assuming \(d \mathrm{H} / \mathrm{dO}=0.305\) for eaturated steam, he found that \(S\) was nearly independent of the pressure at constant temperature, but that it varied with the temperature from \(0-387\) at \(100^{\circ} \mathrm{C}\). to \(0-665\) at \(160^{\circ} \mathrm{C}\). Writing \(Q\) for the Joule-Thomson "cooling effect." D/dp, or the slope BC/AC of the line of constant sotal heat, he found that \(Q\) was mearly independent of the pressure at congant temperature. a result which agrecs with that of Joule and Thomson for air and \(\mathrm{CO}_{7}\); but that it varied with the temperature as \((1 / 0)^{1,4}\) instead of \((1 / 0)^{2}\). These results for the variation of \(Q\) are independent of any assumption with regard to the variation of H . Employing the values of S calculated from \(d \mathrm{H} / \mathrm{de}=\) o-305, he found that the product SQ was independent of both pressure and temperature for the range of his experiments Assuming this result to hold generally, we should have Smo.306 at \(0^{\circ}\) C.. which agrecs with Rankine's view; but increasing very rapidly at higher temperatures to \(\mathrm{S}=1.043\) at \(200^{\circ} \mathrm{C}\)., and 1.315 at \(220^{\circ} \mathrm{C}\). The characteristic equation, if \(5 \mathbb{Q}=\) constant, would be of the form \((s+\mathrm{SQ})=\mathrm{Ro} / \mathrm{p}\), which does not agree with the well-known bchaviour of other gaces and vapours. Whatever may he the objections to Regnault's method of measuring the specific heat of a vapour, it scems impossible to reconcile so wide a range of variation of S with his value \(\mathrm{S}=0-475\) bet ween \(125^{\circ}\) and \(225^{\circ} \mathrm{C}\). It is also exremely unlikely that a vapour which is 50 stable a chemica compound as steam should show wo wide a rage of variation o specific heat. The experimental results of Crindley with regard to the mode of variation of \(Q\) have been independently confirmed by Callendar (Proc. R.S. 1goo). who quotes the results of simila experiments made at McCill Colkge in 1897, but gives an entirely differcnt interpretation. based on a direct measurement of the specific heat at \(100^{\circ} \mathrm{C}\). by an electrical method.

The method of deducing the specific heat from Regmault's formula for the variation of the sotal heat is evidently liable in a greater degree to the objections which have been urged against his method of determining the specific heat, since it makes the value of the specific beat depend on small differences of total heat chserved under conditions of sreater difficulty at various prearures. The more logical method of procedure is to determine the specific hen independently of the total heat, and then to deduce the variatiob of total heat by equation (12). The simplest method of measuring the specific heat appears to be that of supplying heat electrically to a steady current of vapour in a vacuum-jacket calorimeter and observing the rise of temperat ure produced. Employing thi method, Callendar finds \(5=0-497\) for steam at one atmpsphere
between \(103^{\circ} \mathrm{C}\). and \(113^{\circ} \mathrm{C}\). This is about \(4 \%\) larger than Regnault's value, but is not really inconsistent with it, if we suppose that the epecific beat at any given pressure diminishes slighty with rise of temperature, as indicated in formula (16) below.
13. Corrected Equation of Total Heal.-Admitting the value \(\mathrm{S}=0.497\) for the specific heat at \(108^{\circ} \mathrm{C}\)., it is clear that the form of Regnault's equation (10) must be wrong, although the numerical value of the coefficient 0.305 may approximately represent the average rate of variation over the range (\(100^{\circ}\) to \(190^{\circ} \mathrm{C}\).) of the experiments on which it chiefly depends. Regnault's experiments at lower temperatures were extremely discordant, and have been shown by the work of E. H. Griffiths (Proc. R.S. 1894) and C. H. Dieterici (Wied. Anm. 37. p. 504, 1889) to give values of the total heat 10 to 6 calories too large between \(0^{\circ}\) and \(40^{\circ} \mathrm{C}\). At low pressures and temperatures it is probable that saturated steam behaves very nearly as an ideal gas, and that the variation of the total heat is closely represented by Rankine's equation with the idcal value of S : In order to correct this equation for the deviations of the vapour from the ideal state at higher temperatures and pressures, the simplest method is to assume 2 modified equation of the Joule-Thomson type (Theqmodynayics, equation (27)), which has been shown to represent satisiactorily the behaviour of other gases and vapours at moderate pressures. Employing this type of equation, all the thermodynamical properties of the substance may conveniently be expressed in terms of the diminution of volume \(c\) due to the formation of compound or coaggregated molecules,
\[
\begin{equation*}
(v-b)=\mathrm{R} \theta / \rho-c_{0}\left(\theta_{\infty} / \theta\right)^{+}=V-c . \tag{13}
\end{equation*}
\]

The index \(s\) in the above formula, representing the rate of variation of \(c\) with temperature, is approximately the same as that expressing the rate of variation of the cooling effect \(Q\). which is nearly proportional to \(c\), and is given by the formula
\[
\begin{equation*}
S Q=(n+1) c-b . \tag{14}
\end{equation*}
\]

The corresponding formula for the total heat is
\[
\begin{equation*}
H-H_{0}=S_{0}\left(\theta-\theta_{0}\right)-(n+1)\left(c p-c_{0} p_{0}\right)+b\left(p-p_{0}\right) \tag{15}
\end{equation*}
\]
and for the variation of the specific beat with pressure
\[
\begin{equation*}
\mathrm{S}=\mathrm{S}_{0}+n(n+1) p c / \varphi_{1} \tag{16}
\end{equation*}
\]
where \(S_{0}\) is the value of \(S\) when \(p=0\), and is assumed to be independent of \(\theta\), as in the case of an ideal gas.

Callendar's experiments on the cooling effect for steam by the throtling calorimeter method gave \(m=3.33\) and \(c=26-3\) c.c. at \(100^{\circ}\) C. Grindley's experiments gave nearly the same average value of \(Q\) over his experimental range, but a rather larger value for m, mamely, 3-8. For purposes of calculation, Callendar (Proc. R.S. 1900) adopted the mean value \(n=3.5\), and also assumed the epecific heat at constant volume \(s=3.5 K\) (which gives \(\mathrm{S}_{0}=4.5 \mathrm{R}\)) on the basis of an hypothesis, doubtully attributed to Maxwell, that the number of degrees of freedom of a molecule with \(m\) atoms is 2 相 +1 . The assumption \(n=s / R\) simplifies the adiabatic equation, but the value \(m=3.5\) gives \(S_{0}=0-497\) at zero pressure, which was the value found by Callendar experimentally at \(108^{\circ} \mathrm{C}\). and I atmosphere pressure. Later and more accurate experiments have confirmed the experimental value, and have shown that the limiting value of the specific heat should consequently be somewhat smaller than that given by Maxwell's hypothesis. The introduction of this correction into the calculations would slightly improve the agreement with Regnault's values of the specific heat and total heat between \(100^{\circ}\) and \(200^{\circ} \mathrm{C}\)., where they are most trust worthy. but would not materially affect the general nature of the results.

Values calculated from these formulae are given in the table below. The values of H at \(0^{\circ}\) and \(40^{\circ}\) agree fairly with those found by Dieterici (\(596-7\)) and Griffiths (\(613-2\)) respectively, but differ considerahly from Regnault's values 606.5 and 618-7. The rate of increase of the total heat. instead of being constant for saturated steam as in Regnault's formula, is given by the equation
\[
\begin{equation*}
d H / d \theta=S(i-Q d p / d \theta) \tag{17}
\end{equation*}
\]
ainl diministres from \(0.43^{8}\) at \(0^{\circ}\). . to atrout 0.40 at \(100^{\circ}\) and 0.20 at \(200^{\circ} \mathrm{C} .\), decreasing more rapidly at higher temperatures, The
anean value, 0.313 of dH//de, between \(100^{\circ}\) and \(200^{\circ}\) agrees fairly well with Regnault's coefficient 0.305 , but it is clear that consider able errors in calculating the wetness of steam or the amount of cyifinder condensation would result from assuming this important coefficient to be constant. The rate of change of the latcnt heat is casily deduced from that of the total heat by subtracting the specific heat of the liguid. Since the specific heat of the liquid increases rapidly at high iemperatures, while \(d \mathrm{H}\).do diminishes, it is clear that the latent heat must diminish more and more rapidly as the critical point is approached. Regnault's formula for the total beat is here again seen to be inadmissible, as it would make the latent heat of steam vanish at about \(8 \% 0^{\circ} \mathrm{C}\). inssead of at \(365^{\circ} \mathrm{C}\) It should be observed, however, that the assumptions made in deducing the above formulae apply only for moderate pressures, and that the formulae cannot be cemplayed up to the critical point owing to the uncertainty of the variation of the specific heats and the cooling effect \(Q\) at high pressures beyond the experimental
range. Many attempta have been made to coustruct formulae representir adeviations of vapours from the ideal state up to
the critical point. Ope of the moot complete is that propoeed by R. J. E. Clausius, which may be written
\[
\begin{equation*}
R / / \varphi-\nabla=R(p-b)\left(A-B c^{m}\right) / p(p+a)^{2} A_{n} ; \tag{18}
\end{equation*}
\]
but such fomulae are much too complicated to be of any practical use, and are too empirical in their nature to permit of the direct physical interpretation of the constants they contain.
14. Emprical Formulae for the Safuration-Pressurc.-The values of the saturation-pressure have been very accurately determined for the majority of stable substances, and a large number of empirical formulae have been proposed to represent the relation between pressure and temperature. These formulac are important on account of the labour and ingenuity expended in devising the most surtable types, and also as a convenient means of recording the experimental data. In the following list, which contains a few typical examples, the different formulac are arranged to give the logarithm of the saturation-pressure \(p\) in terms of the absolute temperature d. As originally proposed, many of these formulae were cast in exponential form, but the adoption of the logarithmic method of expression throughout the list serves to show more clearly the relationship between the various types.

The formula of Datton would make the presorre increase in geometrical progression for equal increments of temperature. In ober words, the increase of pressure per degree (dp/d) divided by \(p\) should be constant and equal to \(B\); but observation shows that this ratio decreases, e.g. from 0-0722 at \(0^{\circ} \mathrm{C}\). to \(0-0357\) at \(100^{\circ} \mathrm{C}\). in the case of steam. Observing that this rate of diminution is approximately as the square of the reciprocal of the absolute temperature, we see that the almost equally simple formula \(\log p=A+B /\) represents a much closer approximation to experiment. As a matter of lact, tbe two terms \(A+B /{ }^{\prime}\) are the most important in the theoretical expression for the vapour-pressure given below. They are not sufficient alone, but give good results when modified, as in the simple and accurate formulae of Rankine, Kirchhoff, L. C. Antoine and Unwin. If we assume formulae of the simple type \(A+B / f\) for droo different substances which have the same vapour-pressure \(p\) at the absolute temperatures \({ }^{\prime \prime}\) and \(\theta^{\circ}\) respectively. we may write
\[
\begin{equation*}
\log p=A^{\prime}+B^{\prime} \theta^{\prime}=A^{\circ}+B^{\circ} \rho^{\circ} \tag{20}
\end{equation*}
\]
from which we deduce that the ratio \(\theta^{\prime} / \theta^{\circ}\) of the temperntures at which the vapour-pressures are the same is a linear function of the temperature \(\theta^{\prime}\) of one of the substances. This approximate relation has been employed by Ramsay and Young (Phal. Mog. 1887) to deduce the vapour-pressures of any substance from those of a standard substance by means of two observations. More recently the same method has been applied by A. Findlay (ProcR.S. 1902), under Ramsay's direction, for comparing solubilities which are in many respects analogous to vapour-pressures. The formulae of Young and Roche are purely empirical, but give very fair results over a wide range. That of Biot is far more complicated and troublesome. but admits greater accuracy of adaptation. as it contains five constants (or six, if is measured from an ab bitrary zero). It is important as having been adopted by Regnault (and also by many subscquent calculators) for the expression of bis observations on the vapour-pressures of steam and various other substances. The formulae of Rankine and Unwin, though probably less accurate over the whole range, are much simpler and more convenient in practice than that of Biot, and give results which suffice in accuracy for the majority of purposes.
15. Theoretical Equation for the Saturation-Pressure.-The empirical formulae above quoted must be compared and tested in the light of the theoretical relation between the latent heat and the rate of increase of the vapour-pressure (\(d p / d \theta\)), which is given by the second law of thermodynamics, viz.
\[
\begin{equation*}
\theta(d p / d \theta)-\mathrm{L} /(p-p), \tag{21}
\end{equation*}
\]
in which \(\geqslant\) and \(w\) are the volumes of unit mass of the vapour and liguid respectively at the saturation-point (Thermodymamics, \$4). This relation cannot be directly integrated, so as to obtain the equation for the saturation-pressure, unless \(L\) and \(\nabla-w\) are known as functions of 8 . Since it is much easier to measure p than eirther Lor \(\boldsymbol{t}\). the relation has generally been employed for deducing either L or \(\equiv\) from observations of \(p\). For instance, it is usual to calculate the specific volumes of saturated steam by assuming Regnault's formulae for \(p\) and \(L\). The values so found are necessanly erroneous if formula (10) for the total heat is wrong. The reason for adopting this trethod is that the specific volume of a saturated vapour cannot be directly measured with sufficient accuracy on account of the readiness with which it condenses on the surface of the containing vestel. The specificevolumes of superhested vapours may, bowever.
be measured with a satidactory degree of approximation. The deviations Irom the ideal volume may also be deduced by the method of Joule and Thomson. It is iound by these methods that the behaviour of superheated vapours closely resembles that of noncondensitle gases. and it is a fair imference that similar behaviour would be observed up to the saturation-point if surface condensation could be avoided. By assuming suitable forms of the characteristic equation to represent the variations of the specific volume within certain limits of pressure and temperature, we may therelore with propriety deduce equations to represent the saturation-pressure, which will certainly be thermodynamically consistent, and will probably give correct numerical results within the assigned limits.

The simplest assumptions to make are that the vapour behaves as a perfect gas (or that \(p(p-w)=R 8\)). and that \(L\) is constant. This leads immediately to the simple formula
\[
\log _{6}\left(p / p_{0}\right)=\left(1 / \rho_{0}-1 / p\right) L / R_{1}
\]
which is of the same type as \(\log p=A+B / 6\), and shows that the coefficient \(B\) should be equal to \(L / R\). A formula of this type has been widely employed by van't Hoff and others to calculate heats of reaction and solution from observations of solubility and vice vers. It is obvious. however, that the assumption \(L=\) constant is not sufficiently accurate in many cases. The pate of variation of the latert heat at low preseures is equal to \(S-s\), where \(s\) is the specific heat of the liquid. Under these conditions both S and \(s\) may be regarded as approximately constant. so that \(L\) is a linear function of the temperature. Substituting \(\left.L-L_{\perp}+(S-s)(0-)_{0}\right)\), and integrating between limits, we obtain the result
\(\log \phi=A+B / \theta+C \log \phi\),
where
\[
\begin{equation*}
C=(S-s) / R, B=-[L++(s-S) A] / R \tag{23}
\end{equation*}
\]
and

\section*{\(A=\log _{0} A_{0}-B / \theta_{0}-C \log \theta_{0}\)}

A formula of this type was first obtained by Kirchhof (Poge. Aan. 303. p. 185. 1858) to represent the vapour-pressure of a solution, and was verifed by Regnault's experiments on solutions of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) in water. in which case a constant, the heat of dilution, is added to the latent heat. The formula evidently applies to the vapour-pressure of the pure solvent as a special case, but Kirchhoff himself does not appear to have made this particislar application of the formula. In the paper which immediately follows, he gives the oft quoted expression for the difference of slope (\((\phi / d \theta)_{z}-(d \phi / d \theta)_{t}\) of the vapour-pressure curves of a solid and liquid at the triple point, which is immediately deducible from (21), viz.
\[
\theta(d p / d \theta)_{4}-\theta(d p / d \theta)_{1}=\left(\mathrm{L}_{0}-\mathrm{L}_{4}\right) /(v-t v)=\mathrm{L}_{/} /(v-m)_{,} \quad(24)
\]
in which \(L_{4}\) and \(L_{t}\) are the latent heats of vaporization of the solid and liquid respectively, the difierence of which is equal to the latent heat of fusion L. He proceeds to calculate from this expression the difference of vapour-pressures of ice and water in the immediate meighbourbood of the melting point, but does not observe that the vapour-pressures themselves may be more accurately calculated for a considerable interval of temperature hy means of formula (23), by substituting the appropriate values of the latent heats and specific beats. Taking for ice and watcr the following nomerical dath, \(L_{0}=674 \cdot 7, L_{1}=595 \cdot 2, \mathrm{~L},=79.5 . \mathrm{R}=0.1103 \mathrm{cal} / \mathrm{deg} . \mathrm{P}_{0}=4.61 \mathrm{~mm}\). s-S =- 519 cal./deg., and assuming the specific heat of ice to be equal to that of steam at constant preasure (which is sufficiently approximate, since the term involving the difference of the specific hears is very small), we obtain the iollowing mumerical formulae, by enbstitution in (23),
\[
\begin{aligned}
& \text { Ice : } \log _{10 p}=0.6640+9.731 / 0, \\
& \text { Waler } \quad \log _{10} p=0.6640+8-5851 / 0-4.70\left(\log _{20} 0 / m_{0}-\mathrm{M} t /\right)^{3} .
\end{aligned}
\]
where \(t=0-273\). and \(M=0-4343\), the modulus of common logarithmsThese formulae are practically accurate lor a range of \(20^{\circ}\) or \(30^{\circ} \mathrm{C}\). on either side of the melting-point, as the pressure is so small that the vapour may be treated as an ideal gas. They give the following numencal values:-
\begin{tabular}{llllll}
Temperature, C. & \(-20^{\circ}\) & \(-10^{\circ}\) & 0 & \(+10^{\circ}\) & \(+20^{\circ}\) \\
V.P. of ice, mms. & 0.79 & 1.97 & 4.61 & 10.20 & 21.77 \\
V.P. of water, mms. & 0.96 & 2.17 & 46. & 9.27 & \(17.5^{8}\)
\end{tabular}

The error of the lormula for water is less than \(I \mathrm{~mm}\). (or a tenth of a degree C .). at a temperat ure so high as \(60^{\circ} \mathrm{C}\).

Formula (23) for ihe vapour-pressure was subwequently deduced by Rankine (Phif, Mog. 1866) by combintiag his equation (11) for the total heat of gasification with (21). and assuming an ideal vapour. A formula of the same type was given by Athenase Dupre (Thtorse de chalemr. p. 96. Paris. 1869). on the assumption that the latent heat was a linear function of the temperature, taking the instance of Reznault's (ormula (io) for steam. It is generally called Duper's formula in continental text -books, but he did not give the values of the coefficients in terms of the difference of specific heats of the liquid and vapour. It was emplnyed as a purcly empirical formula by Bertrand and Barus, who calculated the values of the coefficients for several substances, so as to obtain the best general agreement with the results of oborvation nver a wide range, at high as well as low pressures. Applied in this manner. the lormula is not appropritte or atisfactory. The values of the coeficients given by

Bertrand, for instance, in the formult for eteam, correspond to the values \(S=-576\) and \(L=573\) at \(0^{\circ} \mathrm{C}\)., which are impotetible, and the values of pgiven by his formula (c.g. 763 mm . at \(100^{\circ} \mathrm{C}\).) do not agree safficiently with experiment to be of much practical value. The true application of the formula is to low pressures, at which it is very accurate. The close agreement found under tbese conditions is a very trung confirmation of the correctness of the assumption that a vapour at low pressures does really behave as an ideal gas of constant specific heat. The formula was independently rediscovered by H. R. Hertz (Wied. Anv. 17, p. 177, 1882) is a dightly different (orm, and appropriately applied to the calculation of the vapour-pressures of mercary at ondinary temperatures, where they are much too small to be accurately measured.
16. Corrected Equation of Saturation-Pressure.-The approximatc equation of Raakipe (23) begins to be 1 or \(2 \%\) in error at the boiling point under atmospheric pressure, owing to the coaggregation of the moleculea of the vapour and the variation of the opecific heat of the liquid. The erross from both causes increase more rapidly at higher temperatures. It is easy, however, to correct the formula for these deviations, and to make it thermodynamically consistent with the characteristic equation (13) by substituting the appropriate values of (\(v-20\)) and \(L=H-k\) (rom equations (1,3) and (15) in formula (21) before integrating. Omitting \(t\) and neglecting the small variation of the specific heat of the liquid, the result is simply the addition of the term \((c-b) \gamma\) to formula (23)
\(\log p=A+B /+C \log \theta+(c-b) N\).
(25)

The values of the coefficients B and C remain practically as before. The value of \(c\) is determined by the throttling experiments, 00 that afl the coefficients in the formula with the exception of \(\mathbf{A}\) are determined independently of any obscrvations of the saturationpressure itself. The value of A for steam is determined by the consideration that \(p=760 \mathrm{~mm}\). by definition at \(100^{\circ} \mathrm{C}\). or \(373^{\circ} \mathrm{Abs}\). The most uncertain data are the variation of the specific heat of the liquid and the value of the small quantity of in the formula (13). The term \(b\), however, is only \(4 \%\) of 6 at \(100^{\circ} \mathrm{C}\)., and the error involved in taking 6 equal to the volume of the liquid is probably small. The effect of variation of the specific heat is more important. but is nearly eliminated by the corm of the equation. If we write \(h=s_{d} d+d h\). where \(s_{0}\) is a telected constant value of the specific heat of the liquid, and dh represents the difference of the actual value of \(h\) at ifrom the ideal value sof, and if we similarly write \(\phi=\operatorname{solog} .\left(\theta / \theta_{0}\right)+d \phi\) for the entropy of the liquid at \(t\), where \(d \phi\) represents the corresponding difference in the entropy (which is easily calculated from a table of values of h), it is shown by Callendar (Proc. R.S. 1900. Loc. cit.) that the effect of the variation of the specific heat of the liguid is represcnted in the equation for the vapout-pressure by adding to the right-hand side of (23) the term- \(\left(d_{\phi}-d h / \theta\right) / R\). If we proceed instead by the method of integrating the equation \(\mathbf{H - h}=0(v-\) en)dp/de, we observe that the expression above given results from the integration of the terms \(-d h ; R \theta^{\prime}+w(d p / d e) / R \theta\), which were omitted in (25). Adopting the formula of Regnault as corrected by Callendar (Phil. Trans. R.S. 1902) (or the specific heat of water between \(100^{\circ}\) and \(200^{\circ} \mathrm{C}\)., we find the values of the difference (\(d \phi-d h / \theta\)) to be lese than one-tenth of \(d \phi\) at \(200^{\circ} \mathrm{C}\). The whole conrection is therefore probably of the same order as the uncertainty of the variation of the specific heat itself at these temperatures. It may be observed that the correction would vanish if we could write dh =wodp/de \(=\mathrm{wL} /(\rho-\mathrm{p})\). This assumption is made by Gray (Proc. Insf. C.E. sgoz). It is equivalent, as Callendar (loc. cil.) points out, to supposing that the variation of the specific heat is due to the formation and solution of a mass w/ \((\mathrm{b}-\mathrm{v})\) of rapour molecules per unit mass of the liquid. But this neglocts the latent heat of molution, unless we may suppose it included by writing the internal latent heat \(L_{4}\) in place of \(L\) in Callendar's lormula. In any case the correction may probably be neglected for practical purposes below \(200^{\circ} \mathrm{C}\).
It is interesting to remark that the simple result found in equa. tion (25) (according to which the effect of the deviation of the vapour from the ideal state is represented by the addition of the term \((c-b) N\) to the expression for \(\log p)\) is independent of the assumption that \(\subset\) varict inversely as the will power of \(C\), and is true generally provided that \(c-b\) is a function of the temperature only and is independent of the pressure. But in order to deduce the values of \(c\) by the Joule Thomson method, it is necessary to assume an empirical formula, and the type \(c-c_{0}\left(\theta_{0} / \theta\right)^{\prime \prime}\) is chosen as being the simplest. The justification of this assumption lies in the fact that the values of \(c\) lound in this ananner, when substituted in equation (25) for the maturation-pressure, give correct results for \(p\) rithin the probable limits of error of Regnault's experiments.
17. Nomarical Application to Sleamb-As an instance of the application of the method above described, the results in the table below are calculated for steam, starting from the following fundamental data: \(\hat{p}=760 \mathrm{~mm}\). at \(f=100^{\circ}\) C. or \(3730^{\circ} \mathrm{Ab}\). \(p \vee \mathrm{~V}\) - 0.11030 calories per degree for ideal steam. \(S_{0}=0-47^{*}\) calories per dexpee at zero pressure. \(L=540 \cdot 2\) calories at \(100^{\circ} \mathrm{C}\). (Joly-
 \((v-\nabla) .750 \mathrm{~mm}\). Hg. m I megadyne per \(\mathrm{gq} . \mathrm{cm}\).

Tames of Paoterties of Sarumated Stian \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Temp. Cent. & Coasgregation, \(c\). cub. cms & Total Heat, H , calorics & Latent Heat, L, calories. & Specific Heat. S, cals/deg & SaturationPressure, p. mm. of Hg . \\
\hline \(0^{\circ}\) & 74.43 & 595-2 & 595.2 & -4786 & 4.6 \\
\hline \({ }^{20} 0^{\circ}\) & 58.81 & 694.7 & 584.7 & -4796 & 7.6 \\
\hline \(40^{\circ}\) & 47.19 & 614.0 & 574.0 & -4818 & 55.4 \\
\hline \(80^{\circ}\) & 38.68
38.60 & 62319 & 50.7
\(551-9\) & -4926 & 349-4 \\
\hline \(100^{\circ}\) & 26.30 & \(640 \cdot 3\) & \(540 \cdot 2\) & -5027 & \(760-0\) \\
\hline \(120^{\circ}\) & \(21-93\) & 648-: & 527.8 & -5163 & \(1490-4\) \\
\hline \(140^{\circ}\) & 18.73 & \(655 \cdot 1\) & \(514 \cdot 5\) & -5347 & 2715 \\
\hline \(160^{\circ}\) & 16.00 & 661.4 & \(500 \cdot 3\) & -5571 & 4647 \\
\hline \(1800^{\circ}\)
200 & 16.76
11.92 & \(666-9\)
671.6 & \(485 \cdot 3\)
469.3 & .5834
.6134 & 7534
1660 \\
\hline
\end{tabular}

The values of the coargregation-volume \(c\), which form the start-ing-point of the calculation, are foumd by taking \(n=10 / 3\) for convenience of division in formula (13). The unit of heat assumed in the table is the caloric \(3 t 20^{\circ} \mathrm{C}\)., which is taken as equal to 4.180 joules, as explained in the article Calorimetry. The latent heat 1 (formula 9) is found by subtracting from H (equation 15) the values of the beat of the liquid \(k\) given in the same article. The values of the specific heat in the next column are calculated for a constant pressure equal to that of saturation by formula (16) to illustrate the increase of the sperific heat with rise of pressure. The specific heat at any given pressure diminishes with rise of temperature. The values of the saturation-pressure given in the last coluran are calculated by formula (25). which agrees with Regnauk's observations better than his own empirical formulae. The agreement of tibe values of H with those of Griffiths and Dieterici ai low temperatures, and of the values of \(p\) with those of Reg. nault over the whole range, are a confirmation of the accuracy of the foregoing theory, and show that the behaviour of a vapour like steam may be represented by a series of thermodynamically consistent formulee, on the assumption that the limiting value of the specific heat is constant, and that the isothermals are gencrally similar in lorm to those of other gases and vapours at moderate pressures. Although it is not possible to represent the propertics of steam in this manner up 10 the critical temperature, the above method appears more eatisfactory than the adoption of the inconsistent and purely empirical formulare which form the basis of most tables at the present time.
A sirailar method of calculation might be applied to deduce the thermodynamical properties of other vapours, but the required experimental data are in most cases very imperfect or even entirely wanting. The calorimetric data are generally the most deficient and difocult to secure. An immense mass of material has been collected on the subject of vapour-pressures and densitics, the greater part of which will be found in Winkelmann's Handbook. in Landolt's and Bornstein's Tables, and in similar compendjums. The results vary greatly in accuracy, and are frequently vitiated by errors of temperature measurement, by chemical impurities and surface condensation, or by peculiarities of the empirical formulae employed in smoothing the observations; but it would not be within the scope of the present article to discuss these details. Even at the boiling points the discrepancies between different obsencers are frequently considerable. The following table contains the most probable values for a fcw of these points which have been det ermined with the greatest care or frequency:-
Table of Boiling.Points at Atmospheric Pressure on Centigrade Scale
\begin{tabular}{|c|c|c|c|}
\hline Hydrogen & - \(\mathbf{- 2 5 2} 2^{\circ} .6\) & Benzophenone & \(+305^{\circ} 8\) \\
\hline Oxygen & - \(-182^{\circ} .8\) & Mercury . & + \(356^{\circ} \cdot 7\) \\
\hline Carbon dioxide & - \(-78^{\circ} \cdot 3\) & Sulphar & +444.5 \\
\hline Sulphur dioxide & - - \(10^{\circ} \cdot 0\) & Cadmiam & \\
\hline Aniline & - \(+188^{\circ}{ }^{\circ} 1\) & Zinc. & +916 \\
\hline Naphthalene & +218 & & \\
\hline
\end{tabular}

\section*{Alphabetical Index of Symbols}

A, B, C, Empirical constan!s in Iormulac: section 14 .
6. Minimum yolume or co-volume of vapour, equation (13).
C. Concentration of solution, gm, mols. per c.c.

Coaggregarion-volume of v3pour, equation (13).
D. \(d\), Density of liquid and vapour.

Intrinsic energy of vapour.
Acceleration of gravity.
Total heat of vapour.
Heat of the liquid; height of capillary ascent.
Latent heat of vaporization.
Modulus of logarithms.
Molecular weigh.
Index of o in expression lor c. equation (13).
Comphe Izbles of the propertius of scam have been worke:
 ringer. (Bertian, t900).
P. Oumotic or capilary premure.
p. Pressare of vapoer.
Q. Cooking effects in adiathermal erpansion.
R. Constant in grs equation, \(p=R\).
r. Radiurs of curvature, formula (1).
S. Specific heat of vapour at constant pressure.
1. Specific beat of liquid, equation (23).

Specific beat of vapour at constant volame; section a
T. Surface tension of tiquid.
6. Temperature Centigrade.
\(V\), ldeal volume of vapour, equation (13). Sperific volume of solid or liquid, equation (s).
\%. Specific volume of vapour or stemm.
*. Specific volume of water or liquid.
0. Temperalure on thermodynarmic scale.
¢. Entropy of vapour or liquid.
(H. L. C.)

VAQUERO, a Spanish word meaning a cowherd or berdsman, and so particularly used in Mexico and Spanish America for the whole class of men employed on the large catile-ranches or maguerias. The word. like the corresponding Fr. mocher, corwherd, comes from the Med. Lat. saccarims (nacco, cow).

VAB, a department in S.E. France. It was formed in 1;90 of a part of Lower Provence, but in 1860 it was reduced by the transier of the district of Grasse to the newly formed departmenk of the Alpes Maritimes, which is the reason why the Var does not now flow in the department to which it gives its mame. It is bounded N . by the department of the Basses Alpes (the Verdon river forming the boundary), E. by that of the Alpes Maritimes (the Siagne stream forming the limit), S. by the Mediterranean, and W. by the department of the Bouches du Rbone. Its area is 2266 sq . m ., its greatest length is about 62 m , and its grealest breadth about 56 m .
The surface of the department is very hilly, the highest point being the Signal des Cbens (5620 ft .) at its north-east corner. These calcareous hills are much fissured and very dry on the highesx plateaux, hut are rich in springs, which is the cause of very beautiful verdure in the valleys. To the W. is the chain (3786 ft .) of the Ste Baume. Wherein is the celebrated grotto (now a Irequented pilgrimage place) wherein St Mary Magdalene is said to have taken refuge. This chain is connected with the hills (2329 ft.) ahove Toulon. The thickly wooded Montagnes des Maures (2556 ft .). which extend above the conast from Hyeres to near Fitjus are separated from the Ste Baume chain by the Gapeau stream and frome that of the Essérel by the Angens river: the Maures chain, with the Argens valley. forms a sort of geological island in Prowence. being composed of granite, gneise and achisss. To the north of the Argens valley and in the northeastern portion of the department rises the Esterel chain, the highest summit of which (the Mont Vinaigre) attains 2021 ft.: this chain is mainly composed of igacomes rock*, with some schists and porphyry. The principal river in the department is the Argens, which traverses it from W. to E., and falls into the sea near Frejus alier a course of about 68 m . Its chief tributary is the Nartuby, on which stands Draguignan. Uhe chiof town, while other streams are the Arc, the Huveaune and we Gapeau. The extreme north-western extremity of the departanemt borders lor 21 m . tbe Durance, which separates it from the department of Vaucluse. The coast line, which is one of the mose picterresque and varied in France. runs firse W. to \(\mathrm{E}_{\text {: }}\) from the Gull of La Ciotat to Cape Camarat, and then S.W. to N.E., from the Gulf of St Tropez to that of La Napoule. The shore is dotted (from II. to E.) successively by the sand-covered remains of the Phocaean rity of Tauroentum; the little ports of Bandol and Si Naraire: sbe peninsula of Cape Sicic (on which rises the chapel of Notre Dame de La Garde, and a famous lighthouse, 1178 ft .) with its eastward projection Cape Cépet (\(33^{8} \mathrm{~F}\).) , bristling with fortifications 10 protect the great harbour of Toudon. to the north-eact: the roads of Toulon: those of Ciens, on the site of the Gallo-Roman town of Pomponiana; the curious peninsula of Giens, formerty an island, but now attached to the mainland by two long spits of sand, bet ween which lies the lagoon of Les Pesquicrs, with its salimes: the great anchorage of Hyeres, shut of from the Mediterranean by the hilly and wooded islands of Porquerolies, Port Cros and Le Levant: the bold promontorics of the Monlagnes des Maures, that divide the coast into lovely bays: Cape Camarat (1066 (t.), with a lighthouse: the decp Gulf of St Tropez. with perhape the best natural anchorage in all Provence; the Guli of Frejus, where. owing to the accumulated alluvial deposits at the mouth of the Argens the Roman pert of Forum Julii is now occupied thy the inland town of Frejus: the sed porphyry headlands of the Estercel chain, with the roads of Agay between them; and Cape Roux (1486 I.) looking towards Canncs still larther N.E. The department is divided into three arrondisse ments (Draguignan. Brignoles and Toulon), 30 cantons and 145 communes. The climate is remarkably fine and mild on the coast. where there is complete shelter from the wind. St Raphacl (orih Valescure above it) and Hyères being now much firequented vimer

Fevorth The department now forma the bishopric of Frijus. (4th century), which is in the ecclesiastical province of Aix en Provence: in 1801 there was annexed to it the episcopal see of Toulon, founded in the 5th century, and in the eeciesinstical province of Arles. There are in the department 133 m . of broad gauge railways, and 1481 mi. of narrow gauge lines. The principal cowns are Toulon, La Seype, Hyeres, Draguignan, its political capital, Brignoles and Frejes. There are a number of mines (chiefly iron and coal) in the department, and ait is extracted from the marabes near. Hyetres, While there are manufactories of pottery and extensive vineyarda La Seyne is the principal centre of indastrial activity. Cut flowert are largely exported froon Hyeres. In 1901 the population of the department was 326,384
(W. A. B. C.)

Varalio sesta, a town of Piedmont, Italy, in the province of Novara, from which it is 34 m . N.N.W. by rail, situated in the valley of the Secia, 1480 ft . above sea-level. Pop. (190I) 3330 (town); 4265 (commune). The churches of S Gaudenaio, S Maria delle Grazie and S Maria di Loreto, all contain works by Gaudenzio Ferrari (\(147 \mathrm{r}^{-1}\) 1546), who was born in the neighbouring Val Duggia, while the Sacro Monte, a place of pilgrimage rising above the town (1995 ft .), is approached by a path leading past farty-five chapels containing groups of life-size painted terra-cotta figures representing scenes from sacred history, with backgrounds in fresco (by Ferrari and others), to the pilgrimage church puilt by Pellegrino Tibaldi after 1578. In the works mentioned, as Burckhardt remarks, Ferrari's whole development may be traced.
VARCHI, BEMEDETIO (1502-1565), Florentide historian. He fought in the defence of Florence during the siege by the Mediceans and imperialists in 1530 , and was exiled after the surrender of the city. In 1536 he took part in Piero Strozzi's unsuccessful expedition against Medicean tule, but seven ycars later he was called back to Florence by Cosimo I., who gave him a pension and commissioned him to write a bistory of the city; the work covers the period from 1527 to 1538 . Varchi also wrote a number of plays, poems, dialogues and translations from the classics. His history, in sirteen books, was first puhlished in Florence in 1721.

VARDANBS, the name of tro Parthian kings.
Vardanes I., succeeded Artabanus II., probably his father; in a.d. 40 (Joseph. Ant. xx. 3, 4), but had continually to fight against his rival Gotarzes (q.a.). The coins show that he was in full possession of the throne from 47 to 45 . In 43 be forced Seleucis on the Tigris to submit to the Parthians again after a rebellion of seven years (Tac. Asm. xi. 9). Ctesiphon, the residence of the kings on the left bank of the Tigris, opposite to Seleucia, naturally profited by this war; and Vardases is therefore called founder of Ctesiphon by Ammianus Marc xaiii. 6. 23. He also prepared for a war against Rome, with the im of reconquering Armenia (ci. Joseph, Ani..Ex 3. 4), but did not dare to face the Roman legions (Tac. Amm. ii. 10). In a new wer with Gotarzes he gained a great succese asainst the eastern nornads. He is praised by Tacitus as a young and highly gifted ruler of great energy (ci. Philostratus, Vile Apellon. Tyem i. 21. 28), but lacking in humanity. In the summer of 45 . he was assaspinsted while hunting, and Cotarzes became kins again.

Vampanes II. rebelled against his father Vologaeses 1. in A.D. 54 (Tac Ans. xiii. 7). We know nothing more about him and it is not certain whether the coins of a young beardless king, which are generally attributed to him, really belons to him (Wroth, Catalogue of the Coins of Parthia, p. L. if.).
(ED. M.)
 1650), Cerman geographer, was born at Hitzacker on the Ebbe in the Lineburg district of Hanover His early years (from 1697) were spent at Ueizen, where his father was count preacher to the duke of Brunswick. Varenius studied at the gymnasium of Hamburg (\(1640-42\)), and at Konigsberg (1643-45) and Leiden (\(5645-49\)) universities, where be devoted himself to mathematics and medicine, taking his medical degree at Leiden In 1649. He then settled at Amsterdam, intending to practise medicinc. But the recent discoveries of Tasman, Schouten and other Dutch navigators, and his friendship for Bheu and
other geographers, ettracted Varenius to goography: \({ }^{-1}\) He died in 1650 aged only twenty-eight, a victim to the privations and miseries of a poor scholar's life.

In 1649 he published, through L. Elvevir of Amsterdam, his Dascriptio Regni Japonice, an excellent compilation. In this was included a tranalation into Latin of part of Jodocus Schouten's account of Siam (Appendix de religione Siamensiam, ex Dascripeione Bedgics Iedoci Schoutenii), and chapters on the religions of various peoples. Next year (1650) appeaced, also through Elsevir, the work by which he is best known, his Geographic Generclis, in which be endeavoured to ky down the general principles of the subject on a wide scientific' basia according to the knowledge of his day. The work is divided into-(1) absolute geography, (2) relative geography and (3) comparntive geography. The first investigates matheratical facts relating to the earth as a whole, its figure, dimensions, motions, their mensurement, \&c. The second part considers the earth is affected by the sun and stars, climates, seasons, the difference of apparent time at different places, variations in the length of the day, \$2c. The third pert treats briefly of the actual divisions of the surface of the earth, their relative positions, globe and map-construction, longitude, navigation, \&e.

Varenius, with the materials at his command, dealt with the subject in a truly philosophic spirit; and his work long held it position as the best treatise in existence on scientific and comparative geography. The work went through many editions. Sir lisac Newton introduced several important improvements into the Cambrike edition of 1672 ; in 1715 Dr Jurin issued another Camr bridge edition with a valoable appendix; in 1733 the whole work was translated into English by Dugdale; and in 1736 Dugdale's second edition was revised by Shaw. lo 1716 an lalian edition appeared at Naples; in \({ }^{1750}\) a Dutch transfation followed; and in 1755 a Freach vention, from Shaw's edition, cume out at Paria Among later geographers d'Anville and A. von Humboldt especially drew attention to Varen's genius and services to science.
See Breusing, "Lebensnachrichten von Bernhard Varenius" (Geogr. Witherif., I880); H. Hlink's paper on Varenius in Tijdsekr. wan kes Nederh. A amelrijisis. Gewatsciep (1887), eer. ii. pt. 3; and F. Ratzel's article "Bernhard Varenius," in Allgemaine Doudeche Biegraphie, voL. moxix. (Leipzig, 1895).
VARESE, a town of Lombandy, Italy, in the province of Come, 18 m . hy rail W. of that town, and 37 m . N.W. of Milan, 1253 ft . above sea-level Pop. (1901) 7692 (town); 17,666 (commune). It is a well-to-do place, beautifully situated near the Lake of Varese, and for this reason a favourite summer and autumn resort of the Milanese, who have numerous country houses in the vicinity. Among them the Villa Litta and the Villa Ponte may be apecially mentioned. The principal church is that of S. Victor (rebuile 1580-16:5 and 1795), to which is attached an ancient baptistery (dating from the gth century but rebuilt in the \(13 t h\)). The fine campanile of the church is 246 ft . high. : There is an archaeological muscum with prehistoric antiquities from the lake-dwellings on an ishand in the Lake of Varese. To the N.W. (a jpurney of at hours) is the pilgrimage church of the Madomana del Monte (2885 ft .), approeched by a path which passes fourteen chapels adorned with \(17^{\text {th }}\)-century frescoes and groups in stucco illuastrating the mysteries of the rosary. Varese is the seat of active silkepinning, tanning, paper-making and the manufacture of organs and vehicles. Excellent wine is made. Varese in a junction for Porto Ceresio and Laveno.

VABIA (mod. Vicovaro), an ancient village of Latium, Italy, in the valiey of the Anio, on its right bank, and on the Via Valeria, 8 m . N.E. of Tibur (Tivoli). It was probably an independent town and not within the territory of Tibur, and Horace spenks of it as Sabine. Some remaine of its walls, in rectangular blocks of travertine, still exist. One mile to the east is a picturesque gorge of the Anio, in which may be seen remains of the ancient aqueducts which supplied Rame, consisting partly of rock-cut channeis and partly of ruined bridges: above it is the monastery of S Cosimato. Close to this point begins the valley of the Digentia (mod. Licenza) in which Horace's Sabine farm was situated. On the hill at the east of the entrance is the village of Cantalupo or Bardella, which has now ascumed the name of Mandela, being identified thus
(correctly) with Hiorace's " rugosus frigore pagus* (Eplet. i. 18, 104). An inscription of the Christian period, found at S Cosimato, speaks of the Massa Mandelana (Corp. Inscr. Laf. xiv. \(34^{22}\)). About 3 m . up the valley, close to the road on the west (right) bank of the stream, are traces of a Roman dwelling-house in opics reticulatums with remains of two mosaic pavements; this is generally identified with the villa of Horace, and probably corresponds fairiy closely with its site. That the Fons Bandusiae was near the Sabine farm is not 2 necessary inference from Od . iil. 13 , in which alone it is mentioned; though the scholiasts state it; indeed a fountain of this name near Venusia is mentioned in a bull of 1103 . On the other hand, that there was an abundant fountain near the Sabine farm is clear from Epist. i. 16. 12, and Sat. ii. 6. 2. It is generally identified with the Fonte dei Ratini, but the spring of Vigna la Corte, a little farther north, is still more plentiful. Some have supposed that the site of the villa was higher up the hillside, above Rocca Giovane. For Horace speaks of having written Epist. i. to "post fanum putre Vacunac," and an inscription recording a temple of Victoria restored by Vespasian was copied at Rocca Giovane in the 16th century (Corp. Inscr. Lat. xiv. 3485). The identification of Victoria with the Sabine goddess Vacuna is not, bowever, absolutely certain: and there is here, as elsewhere in Roman literature, a play on the connexion of the name with pocare, "to take a boliday." In any case, the site of the Sabine farm can be approximately, if not exactly, fixed as in the neighbourhood of Rocca Giovane.
- See T. Berti, La Villa di Orasio (Rome, 1886); G. Boissier. Nowerlles promenades archtologiques (Paris, 1886). (T. As.)

VARIATION AND SELEGION, in biology." Since the publication in 1859 of Charles Darvin's Origim of Species, the theory of evolution of animals and plants (see Evolution) has rested on a linking of the conceptions of variation and selection. Living organisms vary, that is to say, no two individuals are exactly alike; the death-rate and the multiplication-rate are to a certain extent selective, that is to say, on the average, in the long run, they favour certain variations and oppress other variations. Co-operation of the two factors appears to supply a causal theory of the occurrence of evolution; the suggestion of their co-operation and the comparison of the possible results with the actual achievements of breeders in producing varieties were the features of Charles Darwin's theoretical work which made it a new beginning in the science of biology, and which reduced to insignificance all earlier work on the theory of evolution. P. Geddes, J. H. Stirling, E. Clodd and H. F. Oshorn have made careful studies of preDarwinian writers on evolution, but the results of their inquiries only serve to show the greatness of the departure 'made by Darwin.

Several of the ancients had a vague belief in continuity between the inorganic and the organic and in the modifying or variation-producing effects of the environment. Medieval writers contain nothing of interest on the subject, and the speculations of the earliest of the modern evolutionists, such as C. Bomnet, were too vague to be of value. G. L. L. Buffon, in a cautious, tentative fashion, suggested rather than stated the mutability of species and the influence of the forces of nature in moulding organisms. Immanued Kant, in his Theory of the Hecreas (1755), foreshadowed a theory of the developmatai of matennati natit into ine lighust type of animals and plants, and suggested that the gradations of structure revealed by comparative anatomy pointed to the existence of blood relationship of all organisms, due to dusivation from a common ancestor. He appeared to believe. however, that the successive variations and modifications had arinen in response to mechanical laws of the organisms themselvel rather than to the influence of their surroundings. J. (G. von Herder suggested that inercase by multiplication with the consequent struggle for existence had played a large part iat the organic world, but his theme remained vague and undeveloped. Erasmus Darwin, ebe grandfather of Charles Darim, set forth in Zeononsio a, much more defioite theory of tat relation of
variation to evolution, and the following passage, cited by Clodd, clearly expresses it:-
"When we revolve in our minds the metamorphosen of acimale, as from the tadpole to the frog: secondly, the changes produced by artificial cultivation, as in the breeds of borses, dogs and sheep: thirdly, the changes produced by conditions of climate and season, as in the sheep of warm climates being covered with hair inntead of wool, end the hares and partridges of northern climates becoming white in winter; when, further, we observe the changes of etructure produced by habit, as ubewn especially by men of different occupations; or the changes produced by artifcial mutilation and prematal influences, as in the crossing of species and production of monaters: Courth, when we observe the essential unity of plan in all wamblooded animals-we are led to conclude that chey have been alike produced from a single living filament."
G. R. Treviranus, in the beginming of the 1gth centnry, laid stress on the indefiniteness of variation, but assumed that some of it was adaptive response to the environment, and some due to sexual crossing. J. B. P. Lamarck was the first author to work out a connected theory of descent and to suggest that the relationships of organic forms were due to actual affinities. He believed that life was an expanding, growing foree, and that animals responded to the environment by developing new wants, seeking to satisfy these by new movements and thus by their own striving producing new organs which were transmitted to their descendants. Variation was in fact a purposive response.
In 1813 W. C. Wells definitely propounded the theory of natural selection, but applied it only to certain human characters. In 183ı Patrick Mattherw, in the appendiz to a book on naval timber and arboriculture, laid stress on the extreme fecundity of nature "who has in all the varieties of her offspring a prolific power much beyond (in many cases a thousandfold) what is necessary to fill up the racancies caused by senile decay. As the field of existence is limited and preoccupied, it is only the hardier, more robust, better-suited-tocircumstance individuals, who are able to struggle formard to maturity, these inhabiting only the situations to which they have superior adaptation and greater power of occupancy than any other kind; the weaker and less circumstance-suited being prematurely destroyed. This priaciple is in constant action; it regulates the colour, the figure, the capacitiea and instincts; those individuals in each species whose colour and covering are best sutted to concealment or protection from enemies, or defence from inclemencies or vicissitudes of climste, Whise figure is best accommodated to bealth, strength, defence and support; whose capecities and instincts can beat regulate the phytical energies to self-advantage according to circum-stances-in such immense waste of primary and youthful hife those only come to maturity from the strict ordeal by which nature tests their adaptation to her standard of perfection and fitness to continue their kind by reproduction." G. St Hilaire and afterwards his son Isodore regarded variation as not indefinite hut directly evoked by the demands of the environment. L. von Buch lald stress on geographical isolation as the cause of production of varieties, the different conditions of the environment and the segregated interbreediog gradually producing local races. K. E. von Baer and M. J. Schleiden regarded variation and the production of new or improved structures as an unfolding of possibilities latent in the stoct. Robert Chambers, in the once famous Vestiges of Creation. interested and shocked his contemporaries by his denial of the fixity of species and his insistence on creation by progressive evolution, bnt had no better theory of the cause of variation than to suppose that organisms-" from the simplest and oldest to the highest and most recent " were possessed of "an inberent impulse, imparted by the Almighty both to advance chem from the several grades and modify their structure as circomstances required." In 1852 C . Naudin compared the origin of species in rature with that of varieties under cultivation. Herbert Spencer from \(18 \mathrm{~s}^{2}\) onwards maintained the principle of evolution and laid special stress on the moulding forces of the environment whicb called into being primarily new functione and secondarily new structures.

Allbouph the pre-Darwinian writers amongst them invoked acarly every principle that Darwin or hia successors have suggested, they failed to carry conviotion with regard to evolution, and they neither propounded a coherent philosophy of variation nor suggested a mechanism hy which variations that appeared might give rise to new species. The anticipations of Darwin were litule more than formal and verbal. As T. H. Huxley pointed out in his essay on the reception of the Origin of Species in the second volume of Darwin's Life and Letters,
"The suggestion that new species may result from the selective action of external conditions upon the variations from their specific type which individuals present-and which we call 'spontancous' because we are ignorant of their causationis as wholly unknown to the historian of scientific ideas as it was to biological specialists before 1858 .' But that suggestion is the central idea of the Origin of Species, and contains the quintessence of Darwinism."
C. Darwin opened his argument by consideration of plants and animals under domestication. He pointed to the efflorescence of aew forms that had come into existence under the protection of man. A multitude of varieties of cultivated plants and domesticated animals existed, and these differed amongst themselves and from their nearest wild allies to an extent that, but for the fact of their domestication, would entitie thern to the systematic rank of species. Some of these changes he supposed to have been the result of new conditions, including abundance of food and protection from enemies, but most be attributed to the accumulated results of selective breeding. No douht such domesticated species might revert, and it has been shown that many do revert when restored to wild conditions, but such reversion is natural if we reflect that the domestic varieties are under the guardianship of man and have been selected according to his whim and advantage. Comparing domesticated varieties with species and varieties in nature, Darwin showed that the distinction bet ween varieties and species was chiefly a matter of opinion, and that the discovery of new linking forms often degraded species to varieties. Species, in fact, were not fixed categorics, but halting-places, often extremely difficult to choose, for the surveying mind of the sys tematist. He considered that a struggle for existence was the incvitable result of the operation of the principle of Malthus in the animal and vegetable worlds. The struggle would be most acute belween individuals and varieties of the same apecies, with the result that " any being, if it vary however slighty, in any manner profitable to itself, under the complex and somewhat varying conditions of life, will have a better chance of surviving, and thus be naturally selected." Under natural selection the less well-adapted forms of life would on the average have a heavier death-rate and 2 lower multi-plication-rate. He did not suggest that every variation and every character must have a "sclection value," although he pointed out that, because of our ignorance of animal physiology, it was extremely rash to set down any characters as valueless to their owners. It is even more important to potice that he did not suggest that every individual with a favourable variation must be selected, or that the selected or favoured animals were better or higher, but merely that they were more adapted to their surroundinge.
With regard to variation, Darwin was urgent in stating his opinion that the haws of variation were not understood and that the phrase "chance" variation was a wholly incorrect expression. He thought it probable that circumstances affecting the reproductive systera of the parents had much influence in producing 2 plastic condition of the progeny. He doubted, but did not exclude, the impartance of the direct effect of differences of climate and food and of increased use and disuse, except so far as the individual was concemed, but his opinion as to these Lamarckian factors changed from time to time. He haid much stress on the unity of the organism in every stage of its existence, with the resulting correlation of variations, so that the favouring of one particular variation entailed modifortions of correlated structures. He recognined the existence
of the large variations, but be believed these to be of litule value in evolution, and be attached preponderating importance to relatively minute indeterminate variations. On the other hand, be was far from advocating the view that has been pithily expressed as the "selection of the if from the fortuitous"; he recognized that variations, although perhaps suggested or excited by the environment, were determined by internal causes. He showed bow different varieties in a species, or species in a genus, tended to display paralled variation, clearly indicating that the range and direction of variation were limited or determined by the asture of the organiam.
Alired Russel Wallace, the co-discoverer of the Darwinian principles, had sent to Darwin carly in 1858 an outline of a theory of the origin of species. Darwin lound that it was, in all essential respects, identical with his own theory at the exposition of which be had been morking for many years. With in anselfish generosity which must always shine in the history of science, and indeed of the human race, Darwin proposed at ance to communicute his correspondent's essay to the Linnsean Society of London, but was persuaded by his friends to send with it an outline of his own views. Accordingly, on the same evening, in July 1858, both comomunications were made to the Linnaean Society. When Wallace found bow much more fully Darwin was equipped for expounding the new views, he exhibited an unselfish modesty that fully ropaid Darwin's generosity, henceforth described himself as a follower of Darwin, entitled his most important publication on the theory of evolution Darwiwism, and did not issue it until \(\mathbf{1 8 8 9}\), long after the world had given full credit to Darwin. In most respects his ideas were closely parallel with those of Darwin. He believed that species had been formed by means of natural sclection. He insisted that the great powers of increase of all organisms led to a tremendous struggle for existence, and that variability extended to every part. and organ of every organism; that the variability was large in amount in proportion to the size of the part affected, and occurred in a considerable proportion of the individuals of those large and dominant species which might be supposed to he breaking up into new species. He pointed to the changes wrought on domesticated organisms by the artificial selection of similar variations, and drew the inference that there must be parallel occurrences under wild nature. In the aphere of nature, with its vast numbers and constant pressure, not every more favoured individual would survive, nor every surviving individual be the more favoured, but throughout the changes and chances there would be a constant and important bias in favour of the individuals more fitted to their conditions. Wallace, however, brought into his scbeme a factor exrluded by Darwin. He believed that behind the natural worid lay a spiritual workd, irruptions from which bad disturbed the natural sequence of causation, certainly in the production of the higher emotional and mental qualities of man, probably in the appearance of self-consciousness, and possibly in the first origin of life.
It is to be remembered that the origin of species by the modification of pre-existing species,-in fact, the doctrine of organic evolution,-alchough first made credible by Darwin and Wallice, does not depend upon their theory of the relation of natural selection to variation. The theory of evolntion is supported by a great range of evidence, much of which was first collected by Darwin, and which has been enormously increased by subsequent workers excited by bis genius. Such evidence relates to the lacts of classification, structure, development, and geographical and geological distribution. It now remains to examine in closer detail the further knowledge that has been gained with regard to variation and the bearing of that on the Darwinian position.
Magnimde of Variation.-Darwin was well aware that variation ranged from differences so minute as to become apparent only on caneful measurement to those large departures from the normal which may be called abnormalities, malformations or monstroxitica He was of the opinion that the summation of minute differences had played 2 preponderating if not
exclusive part in the formation of species. Wallace, whilst insisting that the range of observed and measured variation was much larger in proportion to the size of the organisms or parts of organism affected than was generally believed, leaned to the Darwinian view in excluding from the normal factors in the origin of species variations of the extremer ranges of magnitude. Later writers, and in particular W. Bateson and H. de Vries, have urged that as species are discontinuousthat is to say, marked off by structural differences of considerable pagnitude-it is more probable that they have arisen from similarly discontinuous variations. De Vries gave the name "mutations" to such considerable variations (it is to be noted that a further concept, that of the mode of origin, has been added to the word mutation, and that the conception of relative size is being removed from it), and Bateson, de Vries and other writers have added many striking cases to those recorded by Darwin. It is doubtful, bowever, if there is any philosophical basis for distinguishing between variations merely by tbeir magnitude. Differences which at their first appearance are very minute may result in the kind of variations which certainly would be classed as discontinuous. When the cells of the morula stage of an embryo are shaken asunder, each, instead of forming the appropriate part of a single organism; may form a complete new organism. And similarly in the development of a complicated organism, the suppression or doubling of a single cell or group of cells may bring about striking differences in the symmetry of the adult, or the reduction or increase in the number of metameric organs. A slight change in the structure or activity of a gland, by altering the internal secretion, may produce widespread alterations even in an adult organism; and we have good reason to suppose that, if compatible with viahility, such minute changes would have even a greater ultimate effect if they occurred in an embryo. Even amongst the extreme advocates of the theory of mutations, the importance of magnitude is being discounted hy their suggestion that some of the minute variations which have hitherto been regarded by them as insignificant "fluctuating variations" may be significant mntations. This in effect is to say that not magnitude but something else has to be sought for if we are to pick out amongst observed variations those which may be the material for the differeatiation of species. So far as magnitude is concerned, the attack on the Darwinian position has failed, and it is agreed that species may be discontinuous and none the less have been produced from minute variations.

Causes of Variation.-Darwin was careful to insist that we did not know the laws of variation, and that when variation was attributed to "chance" no more should be read into the statement than an expression of our ignorance of the causation. It cannot now he doubted that a very large amount of observed varistion, and especially of the indefinite variation which is sometimes spoken of as fluctuating variation, and which is usually distributed indefinitely round a mean, is directly associated with or induced by the environment. On various grounds attempts have been made to exclude such variation from the material for the making of species. The variations which de Vries has called mutations, and which were at first associated by Bateson with what be called discontinuous variations as the exclusive source of new species, are now supposed by de Vries to be disthguished from fluctuating variations by their mode of origin. Such mutations are not the product of the environment, but are an outcrop of the constitution of the germinal material of the varying organism, the result eitber of causes as yet undetected, or of the prematations and eliminations suggested by the work of Mendel (see Mendelism). These attempts to reject environmental variation rest on several grounds. In the first place the variations in question are "acquired characters." When Darwin and Wallace framed their theories it was practically assumed that acquired characters were inherited, and the continuous slow action of the environment, moulding each generation to a slight extent in the same direction, was readily accepted by a geveration inspired by Sir C. Lyell's doctrine of uniformi-
tarianism in geological change, as a potent force. A. Weismann, huwever, from theoretical considerations and from analysis of supposed cases has at the least thrown doubt on the transmission of acquired characters. And so the newer school discard acquired characters and all the Lamarckian factors and leave the board clear for "mutations." Analysis of any acquired character, however, shows that there are two factors involved. The organism is not a passive medium; the amount and nature of the response it makes to the action of environment depends on its own qualities, and these qualities, on any theory of inheritance, pass from generation to generation. Successful organisms, or well-adapted organisms, are those that bave responded to the environment, whether by large or small variations, in suitable fashion. It is the character as acquired that affords the opportunity for selection, but the quality of responding to the environment 50 as to produce that character is transmitted. The conceptions of Weismann afford no ground for rejecting fluctuating variations from the materials for the production of species.

In the second place, it has been urged, particulariy by de Vries, that experiment and observation have shown that the possible range of fluctuating variation is strictly limited. Breeders, he says, who try to build up qualities by the selection of the fluctuating variations that occur soon find that they reach a maximum beyond which their efforts fail, unless they turn to the more rarely occurring bnt herilable mntations. Something will he said lafer in this article as to the limitation of variation; here it is necessary only to say that de Vries is introducing no new idea. It is well known that some races and some organs in plants and animals are extremely variable, and that others are much less variable, and further, that whilst some of these differences may be due to intrinsic causes, others can be modified hy experiment. As Sir W. T. Thiselton-Dyer has pointed out, what is called "specific stability" is a familiar obstacle to the producer of novelties, but one which be frequently succeeds in breaking down hy oultural and other methods. In a survey of the palaeontological history of plants and animals, it is plain that extreme stability and extreme mutability both have occurred, sometimes having persisted for untold ages, sometimes having succeeded one another for varying periods. As yet no solid reason has been alleged for excluding fluctuating variations, on account of their limitation, from the materials for specific change. J. Cossar Ewart and H. M. Vernon have adduced experimental evidence as to the induction of variation by such causes as difference in the ages of the parents, in the maturity or freshness of the conjugating germ cells, and in the condition of nutrition for the embryos. Suct cases show in the plainest way the co-operation of external or environmental and internal or constitutional factors.

With our present knowledge it is impossible to discriminate between variation that may or that may not be the material for the differentiation of species by scrutinizing eit her magnitude or probable causation. It is equally impossible to draw an exact line between variation induced by the environment and variation that may be termed intrinsic. Extrinsic and intrinsic factors are involved in every case, although there is a range from instances in which the external factor appears to be extreme to instances where the intrinsic factor is dominant. Even the results of mutilation involve an intrinsic factor, for they range, according to the organ and organism affected, from complete regeneration to the most imperfect healing. In the effects of exercise, of physiological activity and the gross results of such external agencies as food, temperature, climate, light, pressure and so forth the intrinsic factor appears to become more important. The interplay of extrinsic and intrinsic factors also differs with the age of the organism affected: the more nearly adult it may be, the more direct appears to be the influence of the environment; the more nearly embryonic the organism may be, the less direct is the result of a force impressed from without. The old organism is more stable and responds in obvious ways to direct assaults from without; the young organism is at once less stable and more profoundly
modified by exvironmontal change, replying in terms less easy to predict from knowledge of the nature and amount of the impinging agency. And finally, there are a series of variations, amongst which no doubt are the mutations of de Vries and the disintegrations and recombinations of the unit factors with which Mendel and his followers have worked, in which the external or environmental factor is most remote from the actual result.

Correlated Variation.-Every organism is an individual, its different parts, organs and functions being associated in a degree of intimacy that varies, but that corresponds roughly with the integration of the individual and its place in the ascending scales of animal or vegetable life. One aspect of organic individuality is the correlation of variations, the fact that when one part varies, other parts vary more or less sim. ultaneously. So far, our knowledge of correlation is almost entirely empirical, and the arrangement of the observed facts cannot be brought into exact harmony with our guesses at their causation.

Much correlation is the inevitable result of organic structure. The various parts of a living organism affect each other in udult life and during growh. If, for instance, the testes fail to develop normally, the secretion which they discharge into the blood is abnormal in character and amount, with the result that the characters of the remotest parts of the body are more or kess proloundly affected. It is now known that similar internal secretions, or hormones, pass into the blood from every organ and tissuc, so reaching and affecting every part of the body. II we refect on the multitude and complexity of such actions and reactions in operation from the youngest stages to the end of the life of each individual, we cannot be surprised at any correlation. Change in the size of any part or organ, however it may have been produced, must bring with it many others changes, direculy or indirectly. A diference in calibre, elasticity or branching of a blood vessel, the smallest variation in a nerve or group of vessel-cells, any anatomical or physiological divergence, is reflected throughout the organism. Much of the character of organisms is due to various symmetries, radial, bidateral, metameric and so forth, and these symmetries arise, partly at least, from the mode of growth hy cell division and the marshalling of groups of cells to the places where they are destined to proliferate. Here, again, a variation in the order, nature and number of the divisions, in itself simple, may result in symmetrical or correlated changes in all the progeny of the affected embryonic part.

Every new individual starts life (see Reproovection) as a mass of germinal material derived from one or from two parents, but with a coherent individuality of its own. This individuality is the result of the particular selection of qualities it receives from its parents, a selection that obviously differs in different cases, as, save in the case of "identical twins," which are supposed to be the product of a single fertitized ovam, no individual pair of brothers, or pair consisting of brother and sister, are alike. We are still ignorant of the causes that determine the associated selection of inherited qualities that go to the making of any individual. Those who have followed up the work of Mendel believe that the qualities of the new individual are a precise selection from and reconstruction of the parental qualities, and that were complete analysis possible, the characters of the new individual could be predicted with chemical accuracy. On other views of inheritance, there would be required for prediction knowledge not only of the immediate parents but of the whole linf of ancestry, with the result that prediction could reach only some degree of probability for any single individual and be accurate only for the average of a sufficient number of individuals. But whatever be the theory of the mode of inheritance, or the mechanism by which the germinal plasm of an individual is made up, it is plain that there is correlation bet ween the various qualities of an individual due to the mode of origin of its germ plasm as a selected individual portion of the parental germ plasm.

Observed cases of correlation cover almost every kind of xxvil is *
anatomical and physiological fact, and range from simple cases such as the relation between beight of body and length of face to such an unexpected nexus as that between fertility and height in mothers of daughters. The statistical investigation of correlations forms a new branch of biological inquiry, generally termed "Biometrics," inaugurated by F. Galton and carried on by Karl Pearson and the late W. F. R. Weldon.

We quote from the article "Variation and Selection," in the tenth edition of this Encyclopaedia, an exposition of the biometric method by Weldon:-
The characters of individual animals or plants depend upon so many complex conditions, most of which are generally unknown to us, that the statements we ean make concerning them are of a peculiar kind. We cannot. predict with any exactnem the characters of a single unborn individual; but if we consider a lagge number of unborn individuals, we can predict with considerable accuracy the percentage of individuals which will have the mean character proper to their generation, or will differ from that mean character within any aseigned limita. So long as we confine our attention to one or two individuals, we fail to detect any order in the occurrence of variations; but when we examine large aumbers we find that it is possible to arrange them in an orderly geries, which can be easily and simply deseribed. The series into which we can arrange the results of observing phenomena of complex causation, whether exhibited by living organisms or not, have certain properties in common, which are dealt with by the theory of chance. Many of the properties of such series, and the methods of describing them, are dealt with elsewhere (see Probability; Law of Error): and the frequency with which the mean value or any deviation from the mean value of a character occurs in a race of animals or of plants may probably always be expressed in terms of one or other of the series ihere described. The theory of chance was applied to the study of human variation by Quetelet; but the most important applications of this theory to biological problems are due in the first instance to Francis Galton. who used the theory of correlation in describing the relation between the deviation of one character in an animal body from the mean proper to its race and that of a second character in the same body (correlation as commonly understood). or between deviation of a parent from the mean of its generation and deviation of offspring from the mean of the following generation (inheritance). The conceptions indicated by Galton have been extended and added to by Karl Pearson, who has also developed the theory of chance so as to provide a means of describing many series of complex results in a simpler and more accurate way than was bitherto possible.

The conception of a race of animals or of plants as a group of individuals capable of being arranged in an orderly series with respect to the condition of a particular character enables us to define the "type" of that character proper to the race. Table i. shows the number of female swine which had a given number of "Nüller's glands" on the right fore leg. in a sample of 2000 swine obscrved by Davenport in Chicago. If we take the whole number of glands in the series. and divide this by the whole number of swine, we obtain the mean number of glands per swine. For many purposes this is the most convenient " type" of the series. Two

Table i.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Number of \\
Glands
\end{tabular} & \begin{tabular}{c}
Number of \\
Swine.
\end{tabular} & \begin{tabular}{c}
Number of \\
Glands
\end{tabular} & \begin{tabular}{c}
Number of \\
Swine.
\end{tabular} \\
\hline 0 & 15 & 6 & 134 \\
1 & 209 & 7 & 72 \\
2 & 365 & 8 & 22 \\
3 & 882 & 9 & 8 \\
4 & 414 & 10 & 2 \\
\hline 5 & 277 & & \\
\hline
\end{tabular}
other ways of determining a "'type" will be obvious by reference to the diagram, fig. 1, in which the obeerved results are recorded by the thick continuous line, and the form of Pcarson's "generalized probability curve" best fitted to represent them by a dotted line. The ordinate of the dotted curve which contains its "centre of gravity" has, of course. for its alscissa the "" mean " number of glands: the maximum ordinate of the curve is, however, at 2.98, or sensibly at 3 glands, showing what Pcarson his called the "modal" number of glands, or the number occurring most frequently. The ordinate which divides the area of the dotted curve into two equal areas is the median of Galton: it lies in this rase nearly at 3.38 glands. The best simple measure of tbe frequency. of devialions from the mean character is the "standard deviation. or "error of mean square " of she system (see article P\&OBABuIT \(Y\)), in this case equal to 1.68 glande.
In cases of nearly symmerrical distribution about the mean, the three "types," the mean, the median and the mode, may tensibly coincide. For example, in Powis's table of the frequency of staturea in male Australian criminals between 40 and 50 years
of age (Biometrika, vol. L. part 1, p. 4I), the mean stature is 66.91 in. the modal \(60-96 \mathrm{in}\), the median lying between the

Ftc. 1.
two. In other cases the difference between the three may be considerable. As an example of extreme asymmetry we may take de Vries's record of the frequency with which given numbers of petals occur in a certain race of buttercups. Pearson has shown (Phil. Trans., A., 1893) that this frequency may be closely represented by the curve whose equation is
\[
y=0.211225 x^{-0.222}(7.3253-x)^{1.1}
\]

The curve, and the observations it represents, are drawn in 6g. 2. The two are compared numerically in Table II. Here the mode is at 4.5 petals, the mean at 5.6 petals, the median lying of course betwcen the two.

Table It.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pearson's & \[
133
\] & \[
\begin{array}{r}
6 \\
55
\end{array}
\] & \[
{ }_{23}^{7}
\] & \[
\begin{gathered}
8 \\
7 \\
9.6
\end{gathered}
\] & & \[
\begin{array}{r}
10 \\
2
\end{array}
\] & \\
\hline
\end{tabular}

The distributions represented in Gigs. 1 and 2 may be taken as examples of three common forms of series into which the indi-

Fic. 2. viduals of a race may be arranged with respect to a single character; a comparison of them will show how little can be leamt from a mere statement of racial type, without some knowledge of the way in which deviations from the type are distributed.

The variability of structures which are repeated in the body of the same indi. vidual (serial honiologues) has been studied by Pearson and his pupils witl important results. The simplest of such repeated elements are the cells of the tissues. more complex are cell-aggregates, from hairs, scalcs, teeth and the like. up to limbs or metameres in animals, or the leaves and their homologues in plants. Serially homologous structures, borne on the aame body, are commonly differentiated into sets, the mean character of a set produced in one part of the body. or during one period of life, differing from the mean character of a set produced in a different region or at a different time. Such diferentiation may be measured by determining the correlation between the position or the time of production and the character of the organs produced, the methods by which the correlation is measured being those deocribed in the article EnRox, LAw Or. An excellent example of structures differentiated according to position is given by the appendages borne on the stem of an ordinary fiowering plant-the one or two eed leaves; the stem leaves, which may or may not be differentiated into secondary sets; and the various fioral organs boine tt the apex of the stem or its lateral branches. The change which often occurs in the mean character and variabif
season by the same plant is an example of differentiation associated with time of production; as this kind of differentiation is less familiar than differentiation according to the region of production, it may be well to give an example. In a group of plants of A stex prenamthoides, exanined by G. H. Shull (A merican Nahmafist, xxxvi., 1902). the mean number of bracts. ray-florets and diacflorets, and the standard deviation of cach, was determined on four diflerent days, with the following result :-

Table 111 .
\begin{tabular}{|l|c|c|c|c|}
\hline & Sept. 27. & Sept. 30. & Oct. 4. & Oct. 8. \\
\hline Mean No. of bracts & 47.41 & 44.34 & \(43 \cdot 83\) & 41.92 \\
Standard deviation & 5.52 & 5.15 & 5.28 & 4.89 \\
Mean No. of ray-floreis & \(30 \cdot 77\) & 28.71 & \(28 \cdot 25\) & 26.34 \\
Standard deviation & 3.99 & 3.57 & 3.50 & 3.01 \\
Mean No. disc-florets & 56.43 & 51.71 & \(49 \cdot 16\) & 45.78 \\
Standard deviation & 3.99 & 4.99 & 4.88 & 4.78 \\
\hline
\end{tabular}

Notwithstanding this differentiation, the mean character of a series of repeated organs is oiten constant through a considerable region of the body or a considerable period of time; and the standard deviation of an "array" of repeated parts, chosen from such an area, or within such limits of time, may be taken as a measure of the individual variability of the organism which produces them. If such an array of repeated organs be chosen from the proper region of the body', within proper limits of time, in each of a large serics of individuals belonging to a race, and if all the arravs so chosen be added together. a serics will be lormed from which the raciol pariability can be determined. Thus a series of arrays of becch leaves, gathered, subject to the precautions indicated, from each of 100 beech treet in Buckinghamshire by Professor Pearson, gave \(16-1\) as the mean number of veins per leaf, the standard devia. tion of the veins in the series being 1.735 . The number of leaves gathered [rom each tree was 26, and the frequency of leaves with any observed number of veins in the whole series of 2600 leaves was as foflows:-

Table IV.
\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|r|r|r|r|}
\hline No. of veins & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
No. of leaves. & 1 & 7 & 34 & 10 & 318 & 479 & 595 & 516 & 307 & 18 & 36 & 15 & 1 \\
\hline
\end{tabular}
The whole series contains 2600 leaves. If a leaf from this seties be chosen at random, it is clearly more likely to have sixteen veins than to bave any other assigned number, but if a first leaf choeen at random should prove to have some number of veins other that sixteen, a second leaf, chosen at random from the same series, is still more likely to have sixteen veins than to have any other assigned number. If, however, a series of keaves from the same tree be examined in pairs, the fact that one leaf from the tree is known to possest an abnormal number of veins makes it probable that the next leaf chosen from the same tree will also be abnormal-or. in other words, the fact that leaves are borne by the same tree establishes a correlation between them. Professor Pearson has meagured this corrciation. Taking each leal of his series, with an assigned number of veins, he has determined the array of pairs of leaves which can be formed by pairing the chosen leaf with all others from its own tree in succession. The pairs so formed were collected in a table, from which the correlation between the first leal and the second leaf of a pair, chosen from one tree, could be determined by the methods indicated in the article Probability. The mean ard standard deviation of all first leaves or of, all second leaves will clearly be the same as those already determined lor the series of leaves; since every leal in the series is used once as a first meraber and once as a second member of a pair. The coefficient of correlation is 0.5699 , which indicates that the standard deviation of an array is equal to that of the leaves in general multiplied by \(\sqrt{1-(0.5699)^{1}}\); and performing this multiplication, we find 1.426 ts the standard deviation of an array. The variability of en array of such a table-that is, of any line or column of it -is the mean variability of pairs of leaves, each pair chosen from one tree, and having one leaf of a particular character; it may therefore be taken as a fair measure of the varisbility of such a tree. We see therefore that while leaves, gathered in equal numbers from each of 100 trees, are distributed about their mean with a standard deviation of \(\mathbf{1 . 7 3 5}\) veins, the leaves gathered from a slagle tree are distributed about their mean with a standard deviation of 1.426 veins, the ratio tetween variahility of the race and variability of the individual tree being \(\sqrt{1-(0.5699)}=0.822\).

The correlation bet ween undifferentiated sett of serial homologtes, produced by a single individual, is the messure of what Pearson has called homotyposis. In an elaborate memoir on the bosmtyposis in plants (Phil. Trons., vol. 197 A., 1901), (rom which the foregoing statements about beech leaves are taken, Pearson has given the correlation between such sets of organs in a large aumber of plants: he and his pupils have subsequently determined the correlation between structures repeated in the bodies of individual animals. The results obtained are sometimes purzling, because it is
sornesitres difficult to choose the whole serios of structures osberved from a region of the body which is not affected by differentiation. In spite of this difficulty, however, the values of the correlation coefficients so far obtained cluster fairly well round the mean value of all of them. which is almost exactly 4 . From this result it Hollows (see Probability) that the standard deviation of the array, which we have taken as a measure of individual variability, is equal to the standard deviation of the race multiplied by \(\sqrt{1-\left(\frac{1}{2}\right)}\) or by \(\frac{\sqrt{3}}{2}\). These results cannot be accepted as final, but they are based on so many investigations of amimals and plants, of suct widely different kinds, that they may confidently be expected to hold for large classes of organic characters. We may therefore conclude that for large classes of characters, both animal and vegetable, the variability of an individual, as measured by the ctandard deviation of its undifferentiated but repeated organs, is a constant fraction of the variability of its race, as measured by the stagdard deviation of the corresponding serics of organs produred by all the individuals of its race.
Among the most important structures produced in repeated series are the reproductive cells; and Pearson points out that if the variability of animals or of plants be supposed to depend upon that of the germ-cells from which they arise, then the correlation between brot hers in the array produced by the same parents will give a measure of the correlation between the parental germ-cells, the determination requiring, of course, the same precautions to avoid the cfects of differentiation as are necessary in the study of other repeated organs. After a large series of measurments, involving the most varied characters of human brothers, Pearson has shown that the correlation has a value very nearly equal to \(1 ;\) so that the variability of human children obeys the same haw as that of other repeated structures, the standard deviaion of an array, produced by the same parents, having an average vilue equal to the tandard deviation of the whole filial generation multiplied by \(\sqrt{1-\left(\frac{1}{2}\right)^{2}}\) or by \(\sqrt{\frac{3}{2}}\). Such measurements of fraternal correlation in the bower animal as Pearson and his pupils have at present made give values very close to 4. The evidence that the correlation between exually produced brethren is the same as that existing between the asexually repeated organs on an individual body renders it impos able to socept Weismana's view that one of the results produced by the differentiation of animals and plants into two sexcs is an increase in the variability of their offspring. Warren has shown by direct observation that the correlation between brothers among the broods produced partbenogenetically by one of the A phides has a value not far from the 1 obeerved in sexually produced brethren (Biometrika, vol. i., (902); he has obtained a fairly concordant result for the broods of parthenogenetic Daphnia (Proc. Roy Sac. vol. ixv., 1899). Finally, Simpson has measured the correlation between the pairs of young produced by the simple ascxual division of Perampeciam (Biomstrika, vol. i. part 4. 1902), and after some pecessary corrections the value he obtains is 0.56 , a value which probably does not, if we remember the difficulies of the inquiry, differ very significantly from \(\frac{1}{2}\). There is therefore in a large class of cases an indication that the variability of an ampy of brethren. produced either mexually or asexualhy, is a constant fraction of the varinbility of the race to which the brethren beiong.

Variation and Mandelism. - The conceptions of the disciples of Mendel, amongst whom W. Bateson is pre-eminent, would appear to simplify the problem of variation, especially on its mechanical and physiological sides. Their experimental work shows that many facts of inheritance correspond with the theory that the essential fabric of an organism is a mosaic of unit characters. Such units frequently occur in pairs, one member of the pair being characterized by the prescice, the other hy the absence of a prohlematical body at least comparable with a ferment, the result of the presence or absence being a notable modification of the whole organism or of parts of it. According to their view, in the formation of the germ cells a segregation of the unit pairs occurs-that is to say, the peculiar body or ferment is handed on to one daughter-cell but not to the other. A similar kind of segregation may take place in the formation of the repeated parts of an organism, so that symmetrical repetition may be compared with normal heredity, and be due to the presence of similar factors in the divisions of the trabryonic cells, whilst the differentiation of repeated parts may be due to the unequal distribution of such factors and be comparable with variation. On such an fatespretation, variation would result from asymmetrical division and normal inheritence from symmetrical division. It is equaily cleat shat there is a broad analogy.between the kind of characters on which systematists often have to rely for the aeparation of
species and those which Meadelian workers have shown to behave in accordance with the Mendelian theories of mosaic inheritance with segregation. The analogy possibly may be extended to such cases as the occurrence of flora or fauna with alpine characters on the summits of mountains separated by broad zones of tropical climate. Segregated inheritance may have produced the appropriate combinations which were latent in the capacities of the race, and the exigencies of the environment protected them in the suitable localities. It is to be noticed, however, that the Mendelian conceptions are in no sense an alternative to Darwinism; at the most they would serve to assist in explaining the mechanism of variation, and by enlarging our idea of the factors, increase the rate at which we may suppose selection to work.

Limilation of Variations; Orthogenesis.-Darwin and his generation were deeply imbued with the Butlerian tradition, and regarded the organic world as almost a miracle of adaptation, of the minute dovetailing of structure, function and environment. Darwin certainly was impressed with the view that natural selection and variation together formed a mechanism, the central product of which was adaptation. From the Butierian side, too, came the most urgent opposition to Darwinism. How is it possible, it was said, that fortuitous variations can furnish the material for the precise and balanced adaptations that all nature reveals? Selection cannot create the materials on which it is supposed to operate; the beginnings of new organs, the initial stages of new functions cannot be supposed to have been useful. Moreover, many naturalists, especially those concerned with palaeontology, pointed to the existence of orthogenetic series, of long lines of ancestry, which displayed not a sporadic differentiation in every direction, but apparently a steady and progressive march in one direction. E. D. Cope put such n line of argument in the most cogent fashion; the course of evolution, both in the production of variations and their selection, seemed to him 10 imply the existence of an originative, conscious and directive force, for which he invented the term " bathmism " (Gr. \(\beta\) afocos, a step or beginning). On the other hand, dislike of mystical interpretations of natural facts has driven many capable naturalists to another extreme and has led them to insist on the " all-powerlulness of natural selection" and on the complete indefiniteness of variation. The apparent opposition between the conflicing schools is more acute than the facts justify. Both sides concur in the position assumed by Darwin, that the word "chance" in such a phrase as "chance variation" does not mean that the occurrences are independent of natural causation and so far undetermined, but covers in the first place our ignorance of the exact causation. The implication of the phrase may go farther, suggesting that there is no connexion between the appearance of the variation and the use to which it may be put. No doubt a large amount of variation is truly indefinite, so that many meaningless or useless variations arise, and in one sense it is a mere coincidence if a particular variation turn out to be useful. But there are several directions in which the field of variation appears to be not only limited but defined in a certain direction. Obviously variations depend on the constitution of the varying organism; a modification, whether it be large or small, is a modification of an already definite and limited structure. When beetles, or medusae, or cals vary, the range of possible variation is limited and determined by the beetle, medusa or cat constitution, and any possible further differentiation or specialization must be in a sense at least orthogenetic-ihat is to say, a continuation of the line along which the ancestors of the individual in question have been forced. Darwin himself showed that different species in a genus, or varieties in a species, tended to shore parallel variations, whilst comparative anatomy has made known 2 multitude of cases where allied series of animals or plants show successive stages of parallel but inde. pendent variations of important organs and functions. The phenomena of convergence are to some extent other instances of the same kind and supply evidence that organisms, so to say, fall into grooves, that their possibilities of change are defined
and limited by their past history. Variation, again, as has been shown in this article, is limited by correlation; as any change involves other changes, the possibilities are limited by the organic whole. Finally, it is important to remember that the fundamental characteristic of a living organism is its power of response to environment, a response or series of responses being necessary in a continuous environment for the normal facies of tbe organism to appear, and necessary in a shifting environment if the organism is to change suitably and not to perish. A continuous environment both from the point of view of production of variation and selection of variation would appear necessarily to result in a series with the appearance of orthogenesis. The past history of the organic world displays many successful series and these, as they have survived, must inevitably display orthogenesis to some extent; but it also displays many failures which indeed may be regarded as showing that the limitation of variation has been such that the organisms have lost the possibility of successful response to a new environment.

Selection and Adaptation.-Although knowledge of variation has become much wider and more definite, the estimation in which natural selection is held has changed very little since Darwin and Wallace first expounded their theories. Variation provides the material for selection, and although opinions may differ as to the nature of that material, the modes by which it comes into existence and their relative values and permanences, there is an increasingly wide consensus of opinion that all such matcrial has to pass through the sicve of natural selection and that the silted products form new varicties and species, and new adaptations. It appears to be necessary to distinguish bet ween the production of species and the production of adaptation. We have still to admit with Darwin that it is difficult or impossible to assign utility to all the characters that distinguish species, and particularly to those characters by which systematists identify species. The modern tendency for a more complete. and detailed separation of individual forms into specific and sub-specific groups, and the immensely larger range of material at the disposal of systematic experts, have combined to make it increasingly difficult to imagine conditions of the environment under which the species of systematists would have been produced by selection. On the other hand, the work of modern systematists shows an extraordinarily exact relation between their species and geographical locality, and the fact of divergent evolution can be almost demonstrated in museum collections when localities have been recorded exactly. The decision as to whet her it is the course of variation or the course of selection that has been different in different localities can be made only hy the field naturalist and the experimental breeder.

With regard to adaptations, it is becoming more and more apparent, as experimental knowledge advances, that it is a fundamental property of every living organism in every stage of its existence to display adaptive response to its environment. To what extent such responses are transmitted to offspring, and what part they play in the formation of the adaptive characters that are conspicuous in many animals, remain dubious, but it is at least clear that natural selection can favour those individuals and those races which show the greatest power of responsive plasticity in the individual. There remains open a wide field for inquiry as to the precise relations between selection and variation on the one hand, and their products, specific diflerences and adaptive structures, hut the advance of knowledge has supplied no alsernative to he Darwinian principles.
In the broadest way variation in rganisms is primarily the necessary result of the ahsence of uifiormity in the distribution of physical forces on the globe, in fact is a mere necessary response to the variation of inorg aic conditions. So, also, in the broadest way, the result of the existence of variation is equally inevitable. Some individuals happen to fit the environment belter, or to respond to the entroment better, and these on the average will survive their iss fortunate neighbours. It is plain that whilst the existence uf variation ean be demon-
strated and the occurrenoe of evolution established by induction and deduction, the part played by selection must remain largely theoretical.

We append, bowever, again from the late Professor Weldon's article, a summary of the lines on which it seems possible that the actual process of selection may be demonstrated.
Selection and its results can be adequately studied only in those casces which admit of statistical tabulation. In any race of animals, the number of young produced in a season is almost alwaye greater than the number which survives to attain maturity; It ta not certain that every one of thove which become mature will breed. and not all of those which breed contribute an equal number of offspring to the next geoeration. At every stage some individuals are prevented from contributing to the next generation, and if the continual process of elimination affects individuals posseasing any one character more strongly than it affects others, to that a relation is established between individual character and the chance of producing a certain number of young, selection is said to occur.

We may distinguish broadly two ways by which such telective elimination of individuals from the number of those who contribute to the next generation may occur, viz. a differentiol destruction, which prevents certain clasess of individuals from breeding by killing them, and a series of processes leading to differential fertitity among the survivors, without necessarily involving any differential deathrate. A third form of selection, which may affect the compotion of the next generation without of necessity involving a differential death-rate or a diferential fertility, is assorlative mating, or the tendency of those members of one sex which exhibit a particular character to mate only with members of the other sex which exhibit the same or some other definite character.

Diferential fertifity may be induced in either of two waya. Individuals may not be able to pair unless they possess a character which is absent. or insufficiently developed, in some meinbers of the race. The kind of selection involved maty then be measured by comparing thoor animals which pair with the general body of adults This is what Darwin esperially intended to denote by the term "sexual selection." Or, again. individuals of certain character may be able to pair, but the fertility of their union may not be the same as that of unions between individuals with other eharacters. This kind of selection, called by Pearson " reproductive" or "gemetic" selcction, may be measured by finding the correlation between the charactera of the individuals which pair and the number of youns produced. For an attempt to treat the whole problem of differential fertility and assortative mating numerically, see Pearsoon, The Grammar of Science, 2nd edition, London, 1900

Assortative mating exists when individuals which mate are not paired at random, but a definite correlation is established between the characiers of one mate and those of the other. This kind of sclection is measured by the correlation between deviation of either mate from the iype, and deviation of the other. Pearson has shewn that Galion's (unction has a value of 0.28 for steture of mi Jdleclass Englishmen and their wives
References.- W. Bateson, Merded's Principles of Heredity (Cambridge, 1909): E. Clodd, Pioneers of Evolufion (London. 189\%); E. D. Cope, Orizin of the Fillest (London, 1887): C. Darwin, Origis of Species (London), Variatim of Plants and A wimals (London): E. Darwin, Zoonomic (London, 1794); J. Cossar Ewart. "Vaniasion, Germinaland Environmental," in Trans. Roy. Dwbin Soricts (1901): P. Geddes, "Variation and Selertion." Ency. Brit. pth ed; G. voo lierder, Ideen zerr Phil. d. Geschichte (1790): R. H. Lock. Recead Progress in the Siudy of Variation, Heredily and Epolution (London, 1906), T. H. Morgan, "Chance or Purpose in the Origin and Evolution of Adaptalion," Science (New York, 1910), p. 201: H. F. Osborm From the Greeks 10 Darwin (New York. 1894); E. B. Poultor, Chattes Darzin and the Origin of Species (London, 1909) ; J. H. Stirting Danenntanism (London, 1894); Sir W. T. Thisclion-Dyer, "The New Origin of Species." Nature (1910); H. M. Vernon, Variatio in Animals and Plants (London, 1903); H. de Vries Specirs amd Varielies, their Origin by Mutation (Chicaga, 1905): The 1 uration Thory (London, 1910): A. Russel Wallace, Dartiriser (1889); A. Weismann, The Erolution Theory (London, 1904): W. R. F. Weldon. "Variation and Selection," Ency. Brii. \(10 \mathrm{t}_{\mathrm{h}}\) ed, ; Variou Authorities in \(F_{1} /{ }^{\prime} y\) Years of Darwinism (New York, 190g)

> (P.C. M.)

VARIATIONS, in music, the term given to groups of progressively developed versions of a complete self-contained theme, retaining the form of that theme though not necessarily its melody. This at least is the classical sense of the term, though there are modern developments of the variation form to which this definition is at once too broad and 200 precise to apply. The aesthetic principle of variations appeared at very early stages of music; and it soon became something far more definite than the use of ormamental versions of a melodic phrase, a use which must have been natural almost as 5000 as masic was articulate at all. During the ath century
principles aentheticilly indistingaishable from some types of variation-form inevitably arose in the polyphonic treatment of Gregorian hymns verse by verse. Accordingly, the hymns and Magnificats of Palestrina might without great extravagance be deseribed as contrapuntal sels of variations on ecclesiastical tunes, like very free examples of the type shown later in extreme simplicity and formality by Haydn's variations ou his Austrian national anthem in the "Emperor" quartet (OP. 76, No. 3).
Already in the 16 th century instrumental music was assuming such independence as it could attain by means of a primitive variation-form, growing partly out of the habit of playing vocal madrigals on the virginals or similar keyed instruments, or singing the top part as a solo to an instrumental accompaniment, with an overwhelming weight of ornaments beneath which the original madrigal was quite unrecognizable. (Sce, for example, the "diminutions" given in the 3 oth volume of Breitkopf a Härte's complete edition of Palestrina's works.) A favourite plan, of which numerous examples may be found in the Fitz. william Virginal Book, was to put together several popular or original tunes, with an omamental variation sandwiched between each. Sometimes, however, sets of variations on a single tune were produced, with essentially modern efiect, as in Byrd's variations on "The Carman's Whistle." Such variations were naturally grouped in order of increasing complexity and brilliance. Some of the keyboard passages in which the early English variation-writers indulged are of extraordinary difficulty, even from the standpoint of modern pianoforte technique.
In the 17 th century a highly artistic form of variation arose, very favourable to the earliest composers of the transition period, because of the simplicity of its principle, which relieved the composer of all the graver problems of formal organization. This was the ground-bass, a single phrase placed in the bass and repeating itself as long as the composer had fresh harmonies and superstructure with which to vary it. In typical examples the ground-bass was derived from the dance forms of the passacaglia and the checonne, which in classical music resembled each other in being in slow time, and did not otherwise differ maikedly, except that in the passacaglia the theme could be transferred nnw and then to the treble or to an inner part, a purely natural acsthetic resource which makes no radical difference to the art-form. The genius of Purcell was cruelly bampered by the lack of possibilities for organizing large musical forms in his time, and nothing is more significant than the avidity with which he scizes upon the ground-bass as a means of giving coherence to his ideas.

By the time of Bach and Handel a lighter type of variation. work, less capable of bigh organization, and more like Byrd's variations on "The Carman's Whistle," had arisen. Bach's Aria sariata alla maniera llatiana is an instance of this; and so is the air d doubles that appears now and then in Handel's imstrumental works. The principle of this form is simply to take a symmetrical melody (gencrally in binary form) and embroider it. Such variations are called doubles whenever each variation divides the thythm systematically into quicker notes than the one before. The most familiar example is that known as "The Harmonious Blacksmith" in Handel's E najor suite. Sorpetimes the air itself was stated in a tangle of orramentation, while the doxbles made it float in a simplified form over an accompaniment of increasingly rapid flow. (Sec, for example, Handel's D minor suite and the little set in \(\mathbf{B}\) fat on a theme afterwards varied in the noblest modem style by Brahms)

But Bach bad meanwhile applicd the principle of the groundbass to variations on a complete symmetrical movement in binary form. His Air and 30 Variations, commonly known as the "Goldberg" variations, is (with the exception of Beethoven's 33 Verdnderungen on a waltz by Diabelli) not only the most gigantic set of variations in the world. but one of the three largest compositions in any form ever written for a single instrument. Of course in so large a work the conception of the
ground-bass, as a clearly recognizable theme repeated with no more than slight omament, would be inadequate whatever the variety of the superstructure: but so steady is the drift of Bach's bass that he is enabled to represent it by countless alternative harmonies and analogous chromatic progressions, without weakening its individuality. The grouping of the thirty variations is extremely subtle in balance and climax, the more so because there are no means within the terms of Bach's art for making a free coda to the work, his ground-bass being both too long and too purely a bass to be taken as the theme of a fugue, like that in his great passacaglia for organ. Yet Bach contrives \(t 0\) round off the work perfectly by the simple direction aria da capo at the end. There is no question of retaining or varying the melody of the aria, which indeed is so omamental as to be pointless and unrecognizable as a basis for variations; mor could it, like the above-mentioned Italian examples of Handel, be simplifed, since most of its ornaments are integral parts of the phrases.

The next chapler in the history of the variation form is intimately connected with the sonala style. A set of variations used as a movement for a sonata inevitably tends to be variations on the melody. Tbe sonata style implies the identification of themes by their melodies rather than by their texture, the very term "theme" being primarily used in a melodic connotation (see Miflody). Hence a set of exclusively barmonic variations would not be in the sonata style. Now, most of the best sets of variations by Mozart and Haydn are movernents in their sonata works; and this should always be remembered in discussing the tendency of their treatment of the form. Few of their independent sects are of any importance, since most are very early works, or were written for pupils, or intended as encore pieces for concerts. Haydn shows a great fondness for a special form which, even if earlier specimens can be found, he may properly be said to have invented. It consists of alternating variations on two themes, the first a highly organized complete binary melody, and the other a shorter binary melody, often beginning with the same figure as the first, but clearty contrasted with it, inasmuch as, whichever theme is in the major, the other is in the minor. The first theme usually returns as if it were going to be unvaried, but its first repeat is an omamental variation. The form is rarely morked out far enough to include more than one variation of the second theme; but the effect is always that of a happy blend of a clearly marked variation form with a more contrasted scheme a little more bighly organized than the round-and-round symmetry of a minuel and trio, but not so elaborate as a rondo. The only later example exactly corresponding to Haydn's form is the first allegretto of Beethoven's pianoforte trio in E fat, \(\mathrm{O}_{\mathrm{p}} .70\), No. 2; although, with a wider range of key, a free application of the principle of alternating themes is magnificently illustrated by the slow movement of his C minor symphony.
Beethoven in his last works invented another variation-form on two themes, in which the first theme is very free in structure and the second theme is a more rigid melody in a different key and time. The examples of this are the slow movement of the gth Symphony and the Lydian figured chorale in the A minor quartet. A fine later development of this is the slow movement of Brahms's \(F\) major string quintet, \(O p\). 88, in which the altermation of the two keys gives rise, in the last line of the movement, to one of the most astonishing and subtle dramatic strokes in all musie.
In sonata works, Beethoven's examples of the normal variation form based on a single theme are as wonderful as may be expected from bim; but nothing is more significant than his strict adberence in sonata works to the melodic principle of variation. He uses the form as an unsurpassable means of obtaining repose in slow movements. The extreme case of this is the slow movement of the sonata, op. 57 (commonly called Appassionata), which is described in the article on Sonata fonms. In this and in many other instances, his method is aesthetically that of the air ed doubles, as being the simplest possible means
of obtaining variety and climax without leaving the fundamental key. Until his latest works, such sets of variations are never finished. Their dramatic force is that of a repose which is too unearthly to last; and at the first sign of dramatic motion or change of key the sublime vision "fades into the light of common day," a light which Beethoven is far 100 great an idealist to despise. (See the andante of the B flat trio, Op. 97 ; and the slow movement of the violin concerto, which contains two episodic themes in the seme key.) In his later works Beethoven found means, by striking out into foreign keys or foreign rhythms, of organizing a coda which, as it were, finally spins down in fragmentary new variations, or even returns to the plain theme. Thus he was able to end his sonatas, \(0 \neq p\). 109 and 111 , with solemn slow movements in which, with the utmost richness of detail and novelty of idea, the melodic variation form is nevertheless paramount. Beethoven also fquad many ways of combining melodic variations with the principles of the rondo and other more highly organized continuous movements. Thus the fanale of the Eroica Symphony has not only the theme but many ideas of the variations and fugue-passages in common with the brilliant set of variations for pianoforte on a theme from Promecticus, Op. 35; and the Fantasia for pianoforte, chorus and orchestra, and the choral finale of the gtb Symphony, are sets of melodic variations with freely developed connecting links and episodes. In the case of the gth Symphony, a second thematic idea eventually combines with the figures of the first theme in double fugue.
But Beethoven's highest art in variation-form is to be found in his independent scts of variations. In some of the earliest of these, notably in the 24 on a theme by Righini (which was his chief bravura performance as a young pianoforte player), he far transcends not only the earlier or sonata-form idea of melodic variations, but fuses their resources with those of the ground-bass, and adds to them his own unparalleled grasp of rbythmic organization. Beetboven is the first composer who can be said to have discovered that a theme consists not only of melody and harmony but of rhythm and form. With earlier composers the form of the theme was automatically preserved in consequence of the preservation of either its melody or its harmony; but Beethoven had an unerring judgment as to when the form of a theme might be definite enough to remain as a basis for 2 variation which departed radically from both the barmony and the melody. The climax in the history of variations dates from the moment when Beethoven was just about to begin his gth Symphony, and received from 1 . Diabelli a walte which that publisher was sending round to all the musicians in Austria so that each might contribute 2 variation to be published for the beneit of the sufferers in the late Napoleonic wars. Diabelli's theme was absurdly prossic, but it happened to be perhaps the sturdiest piece of musical anatomy that Beethoven or any composer since has ever scen. Not only was its harmonic form exceptionally clear and firm, but its phrase-rhythom was as simple. recognizable and beterogeneous as its other qualities. Its melodic merit was nil, yet it had plenty of recognizable melodic figures. All these prossic technicalities are far more likely to impress 2 great composer as good practical resources than those high poetic qualities which critics discuss incessantly, but which are to a great artist the air he breathes. Diabelif's wattz moved Beethoven to defer bis work on the gth Symphony !
The shape of Diabelli's theme may be illustrated by a diagram

 dows (togestber with the andeen coderWhich the thythm is srouped by cbanges of harmony: The second - moving harmonically bact from aithient of cractly the same Mear thering thythmic Gexthovea an mussitute
for it almost anything equally familiar thet corresponde im its proportions. Thus, the alternation of toanic and dominant in the furse cight bars may be represented by another familiar form in which three bars of tonic and a lourth of dominant are answered by toree bars of dominant and a fourth of tonic; as in variation 4 (which must be reckoped in half(bars). Again. the antithesis of tonic and dominant is accompanied in Diabelli's theme by a part of the melodic figure being repeated a step higher ar the change of harmooy: and this naturally producess such devices as the answering of the tonic by tbe supertonic in yariation 8 , and, still more surprisiogty. by the lat supertonic in variation 30 . In so enormous and resoure: ful 2 work, occupying fifty minutes in performance. it is pataral that some variations should drift rather larther from the anatomy of the theme than can be explained by any strict principle: and so the jocular transformation of the beginning of Driabeltis binss into the theme of Mozart's Noule e giorno jaticar leads to a comple of extra bars at the end of its sccand part: oiberwise the fughecta (variation 24) and variations 29 and 31 are the only cases in which any considerable part of the structure of the theme is lost, except the fugue (variation 32), which is simply an chborate movement on a salient leature of what ause by courtoy be called Diabelli's melody. A free fugue is a lavounte whution of the difficult problem oo the coda in a sec of variations.

But for the works of Brahms, which invariably retain the classical conceptions while developing them in a thoroughly modern and living language, it can hardly be chaimed that the art of variation-writing has advanced since Beethoven. The term is now used for a somewhat nondescripe method of stringing together a serics of short fantasias on a therne: a method which may be legitimate and artistic in indivitual cases, but hardly constitutes an art-form. There is this great disadvantage in variations that neglect the anatomy of the theme, that the only way in which, in the absence of other means of connexion, they can show any coberence at all is by more or less frequenuly harping on scraps of the melody. The effect is (except in unusually happy examples such as the Eindes symphoniques of Schumann and the Enigma Variations of Elgar) curiously apologetic; because no ambitious corcposar in the "Iree" modern variation style thinks 2 melodic variation quite worthy of his digntity, and 30 the melodic allusions become the more tiresome from their furtive manner. Blany "advanced" specimens of variation-form undoubtedly one their origin to a vague impulse of revolt from the anscund statements of unobservant writers of mid-ight century texbooks, who contented themselves mitb laying down cuude rules such as that a variation might "eitber retuin the melody and change the harmony, or retain the harmony and change the melody," \&c., without any attempt to see bow the chassical composers really analysed their themes. It is very characteristic of Schumann's modesty and grasp of facts that he, who vess the first to produce serious art in a free non-anatomical variation style, did not call his experiments variations without qaulifotion. He never wrote a set in which the anatomy of the theme was of real importance to the whole; and, with him, wheocerer at least the initial melodic figure of his theme is not traceable througbout 2 section, that section is simply an episode. But Schumann knows this periectly well, and acknowledes in. The Eixdes symphoxiques are called variations only in those sections which are fairly strict variations. Elsembere they are simply numbered as 世xder. The slow movemeat of the F major string quartet (in which a second theme maspocerades as the first variation, and some of the other variation-iike sections are quite frec) is called andante quasi marisions; and even the strictest of all his variation works is called \(I\) =prompenc, on a theme by Clara IViect, of. 5. There is, no doubt, great scope for a variation-form which is neither melodic nor anatomac, and we have not a word to say against the legitimacy of many forms of effective modern fantasia-variations; but the inat remains that it is very hazardous to talk of an "advanoce" in the variation-form, when even the best fantasia-variations are not only unconnected with any classical type but evidenty unable to get nearly as iar from either the melody or the harmony of their theme as the \(5^{5}\) th of Bach's "Goldiberg" variations or many variations in the earliest sets by Beethoven Indeed, the oaly sound ciassification of composers of nictern variations, Irom the cime of Mendelssohn onwarish is that
which duatinguishes the composent who seem to know their theme from those who do not.
(D. F. T.)

VARIATIONS, CALCULUS OF, in mathematics. The calculus of variations arose from the attempls that were made by orta mathematicians in the 17 th century to solve problems efice catole of which the following are typical examples. (i) It length, hanging from two fixed points, by the condition that its centre of gravity must be as low as possible. This prohlem of the cotenary was attempted without success by Galileo Galilei (1638). (ii) The resistance of 2 medium to the motion of a body being assumed to be a normal pressure, proportional to the square of the cosine of the angle between the normal to tbe sarface and the direction of motion, it is required to determine the meridian curve of a surface of revolution, about an axis in the direction of motion, so that the resistance shall be the least possible. This problem of the solid of least residfance was solved by Sir Isanc Newton (1687). (iii) It is required to find a curve joining two fixed points, so that the time of descent along this curve from the highor point to the lower may be less than the time along any other curve. This problem of the brachistochrone was proposed by John (Johann) Bernoulli (1606).

The contributions of the Greek geometry to the subject consist of a few theorems discovered by one Zenodorus, of whom tittle Eartr - known. Extracts irom bis writings have been preerved in the writings of Pappus of Alexandria and Theon of Smyrna. He proved that of all curves of given perimeter the circle is that which encloses the largest area. The problems from which the subject grew up have in common the character of being concerned with the maxima and minima of quantitices which can be expressed by integrals of the form
\[
\int_{x_{1}}^{x_{1} F(x, y, y) d x,}
\]
in which \(y\) is an unknown function of \(x\), and \(F\) is an assigned function of three variables, viz. \(x, y\), and the differential coefficient of \(y\) with respect to \(x\), here denoted by, \(y^{\prime}\) : in special cases \(x\) or \(y\) may pot be explicitiy present in \(F\), but \(y^{\prime}\) must be. In any such problem - tis required to determine \(y\) as a function of \(x\), so that the integral may be a maximum or a minimum, either absolutely or subject to the condition that another integral or like form may have a prescribed value. For example, in the problem of the catenary, the integral
\[
\int_{x_{0}}^{x_{1}} x\left(1+y^{\prime}\right) d x
\]
mund be a minimum, while the integral
\[
\int_{x_{0}}^{x_{1}}\left(1+y^{7}\right) d x
\]
has a given value. When, as in this example, the length of the sought curve is given, the problem is described as isoperimatric. At the end of the first memoir by James (Jakob) Bernoulli on the infinitesimal cakulus (1690), the problem of determining the form of a fiexible chain was proposed. Gottfried Wilhelm Leibnitz gave the solution in 1691, and stated that the centre of gravity is lower for this curve than for any other of the same length joining the same two points. The first step towards a theory of such problems was taken by James Bernoulli (1697) in his solution of the problem of the brachistochrone. He pointed out that if a curve, as a whole. possesses the maximal or minimal property, every part of the curve must itself possess the same property Beyond the discussion of special problems, nothing was attempted for many years

The first general theory of auch problems was sketched by Leonhard Euler in \(\mathbf{1 7 3 6}\), and was more fully developed by him in his ewor. treatise Necthodws ingerieradi. ... published in 1744. He Heneralized the problems propoued by his predecesiors of order higher than the first. To express the condition that an integral of the form
\[
\int_{x_{0}}^{x_{1} F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(0)}\right) d x}
\]
may be a maximum or minimum, he required that, when \(\boldsymbol{y}\) is changed into \(y+w\), where \(x\) is a lunction of \(x\), but is everywhere "infinitely", small, the integral should be unchanged. Resolving the integral into a sum of elements, he traneformed this condition into an equation of the form
\[
\text { 2xdr}\left[\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y}+\frac{d^{2}}{d x} \frac{\partial F}{\partial y^{3}}-. .+(-i)^{n} \frac{d y}{d x} \frac{\partial F}{\partial y^{n}}\right]=0 \text {, }
\] to sero the expression in the square brackets must be satisfied. This equation is in general of the 2nth order, and the \(2 n\) arbitrary
congants which are contained in the complete primitive must be adjumted to matisfy the conditions that \(y, y^{\prime}, y^{\prime}, \ldots x^{(n-1)}\) bave given values at the limits of integration. If tise function \(y\) is required also to satiafy the condition that another integral of the
 F, may have a prescribed value. Euler achieved his purpose by replacing \(F\) in the differential equation by \(F+\lambda \phi\), and adjusting the constant \(\lambda\) so that the condition may be satisfied. This arti, fice is known as the isoperimetric rule or rule of the undatrmined midliplier. Euler illustrated his methods by a large number of examples.
The new theory was provided with a special symbolism by Joweph Louis de la Grange (commonly called Lagrage) in a seriea of memoirs published in \(1760-62\). This symbolisnt was afterwards adopted by Euker (i764), and Lagrange Leqragp. is generally regarded as the founder of the calculus of variations. Euler had been under the necessity of resolving an integral into a sum of elements, recording the magnitude of the change produced in each element by a slight change in the unknown function. and thence forming an expression for the total change in the sum under tonsideration Lagrange proposed to free the theory from this necessity. Euler had allowed such changes in the position of the curve, along which the integral, to be made a maximum or minimum, is taken, as can be produced by displacement parallel to the axis of ordimates. Lagrange admitted amore general change of position, which was called pariation. The point of the curve being specificd by their co-ordinates, \(x, y\), \(s\), and differentiation along the curve being denoted, as usual, by the symbol d, Lagrange considered the change produced in any quantity Z, which is expressed in terms of \(x, y, 8, d x, d y, d z, d^{2} x \ldots \because\) when the co-ordinates s, y, sare changed by "infinitely" small increments This change he denoted by \(\Delta Z\), und reciarded as the variation of \(Z\). He exprewed the rules of operation with isy the equations
\[
d Z=d s Z, d \Omega=j 8 Z
\]

By means of these equations \(/ 3 Z\) can be transformed by the process of integration by parts into wuch a form that differentials of variations occur at the limits of integration only, and the traneformed integral contains no differentials of variations. The terma at the limits and the integrand of ayobola the transormed integra! must vanish meparately, If the variation of the original integral vanishes. The process of freeing the original integral from the differentials of variations results in differential equation, or a system of differential equations, for the determination of the form of the required curve. and in special terminal conditions, which serve to determine the constants that enter ipmo the molution of the differential equations. Lagrange's method kent itself readily to applications of tha peneralized principle of virtual velocities to problems of mechanics, and he used it in this way in the Mecanique analytique (1788). The terminology and notation of mechanics are still largely dominated by these ideas of Lagrange. for his methods were powerful and effective. but they are readered obscure by the use of "infinitely " small quantitics, of which, in other deparments of mathematics, he qubsequently became an uncompromising opponent. The same ideas were applied by Lagrange himell, by Euler, and by other mathematicians to vafious extensions of the cal. culus of varintions. These inchude problems concerning integrals of which the limaits are variable in accerdance with assiqned conditions, the extension of Euler's rule of

\author{
Ertern blon: -1/20 erseges
} the multiplier to problems in which the variations are reatricted by conditions of variwus types, the maxiera and minima of integrals iovolving any number of dependent variables, such as are met with in the formulation of the dynamical Principle of Least Action, the maxima and minima of double and multiple integrais In all these cama Lagrange's methods have been applied successfully to obrain the diferential equation, or system of diflerential equatioos, which must be satisfied if the integral in question is a maximum or a minimum. This equation, or equations, will be relerred to as the principal equatios, or principal equations, of the problean.

The problems and method of the calculus admit of more exact formulation as follows: We confine our atteation to the case where the mought curve is plane, and the function \(F\) contains no differential coefficients of order higher than contains no dircrential coefincients of order higher than
the kirst. Then the problem is to determine a curve
joining two fixed points \(\left(x_{2}, y\right)\) and \(\left(x_{1}, y_{1}\right)\) so thas the joining two fixed points (\(x_{0}, y_{0}\)) and \(\left(x_{1}, y_{1}\right)\) so that the Formurat the of Be Frys Pratere
\[
\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x
\]
taken along the cwrse may be a maximum or a minimum. When it is said that the integral is a minimum for some curve, it is meant that it dust be possible to mark a finite area in the plane of \((x, y)\), so that the curve in question lies entirely within this area. and the integral taken along this curve is less than the integral taken along any or her curve, which joins the same two points and lies entirely within the delimited area. There is a similar definition for a maximum. The word cxiremem is often used to connote both maxumuan and minimum. The problern thus posed is knowa as the Frist Problem of the colomims of Variations. If we begin with any curve
joining the fixed end points, and surround it by an area of finite breadth, any other curve drawn within the area, and joining the same end points, is called a variation of the original curve, or a taricd curce. The original curve is defined by specifying \(y\) as a function of \(x\). Necessary conditions for the existence of an extremum can be found by choosing special methods of variation.
One method of variation is to replace \(y\) by \(y+c u\), where \(u\) is a function of \(x\), and e is a constant which may be taken as small as we please. The function \(s\) is independent of \(\varepsilon, 11\) is differentiable, and its differentia! cocfficient is continuous within the interval of Weat integration. It must vanish at \(x=x_{0}\) and at \(x=x_{9}\). This varis- method of variation has the property that, when the Uoris. ordinate of the curve is but slightly changed, the direction tors. of the tangent is but slightly changed. Such variations are called weak variations. By such a variation the integral is changed into
\[
\int_{x_{0}}^{x_{1}} F\left(x, y+t u, y^{\prime}+\varepsilon u^{\prime}\right) d x
\]
and the increment, or variation of the integral, is
\[
\int_{x_{0}}^{x_{1}}\left[F\left(x, y+e n, y^{\prime}+1 u^{\prime}\right)-F\left(x, y, y^{\prime}\right)\right] d x
\]

In order that there may be an extremum it is necessary that The first the variation should be one-signed. We expand she ex. varla. pression under the sigu of integration in powers of e. The flos. first tcm of the expansion contributes to the variation
the term
\[
\epsilon \int_{x_{0}}^{x_{1}}\left(\frac{\partial F}{\partial y} 16+\frac{\partial F}{\partial y} v^{\prime}\right) d x .
\]

This term is called the first eariation. The variation of the integral cannot be one-signed unless the first variation vanishes. On transforming the first variation by integration by parts, and observing that \(\psi\) vanishes at \(x=x_{0}\) and at \(x=x_{1}\), we find a necessary condition for an cxtremum in the form
\[
\int_{x_{0}}^{x_{1}}\left(\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y}\right) u d x=0
\]

It is a fundamental theorem that this equation cannot hold for all admissible functions \(u\), unless the differential equation
\[
\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}-\frac{\partial F}{\partial y}=0
\]
is satisfied at every point of the curve along which the intecral is taken. This is the principal equation for this problem. The Statoa. Curves that are determined by it are called rhe stationory ary curees. or the catremals, of the integral. We learn that curved the integral cannot be an extremum unless it is taken along a stationary curve.
A difficulty might arise from the lact that, in the foregoing argu. ment, it is tacitly assumed that \(y\), as a function of \(x\), is one-valued: and we can have no a priori ground for assuming that this is the case for the sought curve. This ditficulty might be met by an appeat to James Bernoulli's principle, according to which every arc of a stationary curve is a stationary curve between the end points of the are-a principle which can be proved readily by adopting such a method of variation that the arc of the curve between two points is displaced, and the rest of the curve is not. But another method of meeting it leads to important developments. This is the method Parse of parametric representation, introduced by K. Welermetrle arethod, strass. According to this method the curve is defined by specifying \(x\) and \(y\) as onevalued functions of a para. meter \(\theta\). The integral is then of the form
\[
\int_{\theta_{0}}^{\theta_{1}} f(x, y, \dot{x}, \dot{y}) d \theta
\]

Where the dots denote differentiation with respect to \(\theta\), and \(t\) is a homogeneous function of \(\dot{x}, \dot{y}\) of the first digree. The mode of dependence of \(x\) and \(y\) upons is immaterial to the problem, provided that they are one-valued furctions of \(\theta\). A weak variation is obtained by changing \(x\) and \(y\) into \(x+e w, y+e 0\), where \("\) and \(p\) are functions of \(\theta\) which have continuous differential coefficients and are independent of e. It is then found that the principal equations of the problem are
\[
\frac{d}{d v} \frac{\partial f}{\partial x}-\frac{\partial f}{\partial x}=0, \frac{d}{d \theta} \frac{\partial f}{\partial y}-\frac{\partial f}{\partial y}=0
\]

These equations are equivalcat to a single equation, for it can be proved without difficulty that, when \(/\) is homogeneous of the first
Uegree in \(\dot{x}, \dot{y}\) Jegree in \(\dot{x}\),
\(\frac{I}{3}\left\{\frac{d}{d \theta} \frac{\partial f}{\partial x}-\frac{\partial f}{\partial x}\right\}=-\frac{1}{i}\left\{\frac{d}{d \partial} \frac{\partial f}{\partial y}-\frac{\partial f}{\partial y}\right\}=\frac{\partial^{\prime \prime} f}{\partial y \partial x}-\frac{\partial \theta}{\partial x \partial y}+f_{1}(\dot{x} y-y \dot{y})\), where

The formulation of the problen by the parametric method often enables us to implify the formation and interration of the primcipal equation. A very simple example is furaisted by the problem: Given two points in the plane of \((x, y)\) on the same side of the axis of \(x\), it is required to find a curve joining them, o that this curve may generate, by revolu-
\(\qquad\)
cricel tion, about al: axis of \(x\), a surface of minimum area. The inecral to be made a ninimum is
\[
\int_{\theta_{1}}^{\theta_{1}}\left(\dot{d}^{2}+y^{2}\right) d x
\]
and the princinal equation is
\[
\frac{d}{a \theta}\left\{\frac{y t}{\left(x^{2}+y^{3}\right) \lambda}\right\}-0_{0}
\]
of which the fint integral is
\[
y^{x}\left(x^{2}+y^{y}\right)-1=c_{0}
\]
\[
y-\left\{1+\left(\frac{y}{2}\right)\right.
\]
and the stat in lary curves are the catenaries
\[
y=c \cosh |(x-a) / c|
\]

The requiral minimal surlace is the catenoid generated by the revolution of sne of these catenaries about its directrix.

The param, ric method can be extended without difficulty \(\infty\) as to beconse appl: able to more general classes of problems. A simple example is fur lished by the problem of lorming the equations of the th of a ray of light in a variable medium. According to Fermat's principle. the integral fyls is a minimuni. is representing the element of arc of a ray, and \(A\) the refractive ind \(m\). Thus the integral to be made a migimem is
\[
\int_{0_{0}}^{\theta_{1}}\left(\dot{x}^{4}+\dot{y}^{*}+z^{\eta}\right) i d \theta
\]

The equation are iound at once in forms of the type
\[
i\left\{\mu \frac{i}{\left(x^{2}+y^{2}+x^{2}\right) 1}\right\}-\frac{\partial p}{\partial x}\left(x^{4}+y^{t}+z^{2}\right) d=0 ;
\]
and, since \(\left(x^{-}+y^{2}+t^{*}\right) d d=d s\), these equations can be wrixten in the usual forms of the type
\[
\frac{d}{d s}\left(\mu \frac{d r}{d s}\right)-\frac{\partial \mu}{\partial x}=0
\]

The formation of the first variation of an integral by means of a weak variatio: can be carried out without diffculty in the case of a simple integril involving any number of depeadent variables and differcntial \(c\) efficients of arbitrarily high orders, and also in the cascs of doutle and multiple integrals; and the quantities of the type cu, which are used in the process, may be regarded as equivelent to ligriaige's \(\mathbf{8 x}, \mathbf{8 y}\), . The same process may not,
be applied to isoperimetric problems. If the first variation of the integral which is to be made an extremum, subject to the condition that another integral has a prescribed valut is formed in this way, and if it vanishes, the spror.
 curve is a sti ionary curve for this integral. If the prescribed value of the other integral is unaltered, its first variation must vanish; and, if the \(f\) st variation is formed in this way the curve is a stationary cu ve for this integral also. The two integrals do nol however, in eneral possess the same stationary curves We can avoid this dificulty by taking the variations to be of the form \(t_{1} u_{1}+\mathrm{H}_{2} w_{2}\), wh re \(e_{1}\) and \(\mathrm{m}_{2}\) are independent constants; and we cas thus obtain a sompletely satisfactory proof of the rule of the undetermined multivier, A proof on these lines was first pullished by P. Du Bois-Reymor \(/(1879)\). The rule had long been regarded as axiomatic.

The parat tric method enables us to deal easily with the problem of variable mits. If, in the First Problem, the terminal point \(\left(x_{1}, y_{1}\right)\) is mable on a givea guiding curve \(\phi\left(x_{1}, y_{2}\right)=0\), the farst variation of the integral can be written
e \(\left[u_{1} \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial j}\right.\)

where \(\left(x_{1}+\cdots, y_{1}+x_{1}\right)\) is on the curve \(\phi\left(x_{1}, y_{1}\right)=0\), and \(m_{4}\), denote the vues of \(x_{,}\), at \(^{\left(x_{1}, y_{1}\right) \text {. It lollows that the required }}\) curve must bi: atationary curve, and that the condition
\[
\frac{\partial f}{\partial \dot{x}} \frac{\partial \phi}{\partial y_{n}}-\frac{\partial f}{\partial \dot{y}} \frac{\partial \phi}{\partial x_{1}}=0
\]
must hohif a: \(\left(x_{1}, y_{1}\right)\). The corresponding coadition in the case of the integral
is found Ire:
\[
\int_{x_{1}}^{x_{1}} F(x, y, y) d x
\]
the equations
\[
\frac{\partial f}{\partial x}=F-y^{\prime} \frac{\partial F}{\partial y} \cdot \frac{\partial f}{\partial y}=\frac{\partial F}{\partial y}
\]
to L:
\[
F\left(x, y, y^{\prime}\right)+\left(\frac{d y_{1}}{d x_{2}}-y^{\prime}\right) \frac{\partial F}{\partial y}=\mathbf{o}^{\prime}
\]

Thie dixcugsion yields an important ressult, which may be sxared as follows: Let two stationary curves of the integral be drawn from the same initial point A to points P, Q, which
 are near together, and let the line \(P Q\) be of length is, and make an angle of with the axis of \(x\) (fig. 1). The excess of the integral caken along \(A Q\), from \(A\) to \(Q\), above the integral taken along AP. from \(A\) to \(P\). is expressed, correctly to the first order in \({ }^{\text {. }}\) by the formula
\[
=\cos \psi\left\{F\left(x, y, y^{\prime}\right)+\left(\tan w-y^{\prime}\right) \frac{\partial F}{\partial y}\right\}
\]
\(\ln\) this formula \(x, y\) are the co-ordinates of \(P\), and \(y\) has the value belonging to the point \(P\) and the stationary curve AP. When the coefficient of \(r\) cof \(\omega\) in the formula vanistes, the curve AP is said to be cut transsersely by the line PQ, and a curve which cuts a Trases- family of atationary curves cransversely is described as a
rerisif of ates tepary armer by exampie is afforded by the shortest line, drawn on a surface, from a point to a given curve, jying on the surface. The required curve must be a geodesic, and it must cut the given curve at nght angles.

The probiem of variable limits may always be treated by a meihod of which the following is the principle: In the First Problem let the Amerace- initial point (\(x_{n}, y_{0}\)) be fixed, and let the terminal point 2tvo metroed (\(x_{1}, y_{1}\)) move on a fixed guiding curye \(C_{1}\). Now, whatever the terminal point may be, the integral cannot be an extremum unkess it is taken along a stationary curve. We have then to choose among those stationary curves which are drawn from (\(x_{0}, y_{0}\)) to points of \(C_{1}\) that one which makes the integral an extremum. This can be done by expressing the value of the integral taken along a stationary curve from the point (\(x_{0}, y_{0}\)) to the point (\(x_{1}, y_{1}\)) in terms of the co-ordinates \(x_{1}, y_{1}\), and then making this expression an extremum, in regard to variations of \(x_{1}, y_{1}\), by the methods of the differential calculus, subjecting (\(x_{1}, y_{1}\)) to the condition of moving on the curve \(\mathbb{C}_{1}\).

An important example of the first variation of integrals is afforded by the Principle of least Action in dynamics. The kinctic energy I' is a homogeneous function of the second degree in the differental coefficients \(\phi_{1}, q_{2}\), . . \(\phi_{0}\) of the co-ordinates \(q_{1}, q_{2}\). . . \(g_{0}\) with respect to the time \(t\), and the potential energy \(V\) is a function of these

\section*{Principte \\ hlowst}
acthes. co-ordinates. The energy equation is of the form
\(T+V=E\),
where \(E\) is a constant. A compse of the system is defined when the co-ordinates qareexpresped as functionsof a single parameter 6. The action A of the aystem is defined as the integral
 position (\(q^{\prime \prime}\)), but \(t_{0}\) and \(t_{1}\) are not fixed. The equations of motion are the principal equations answering to this integral. To obtain them it is most convenient to write \(\Phi(d)\) for \(T\). and to express the integral in the form
\[
\int_{a_{0}}^{\theta_{2}(E-V):\left|屯\left(q^{\prime}\right)\right| i d}
\]
where \(q^{\prime}\) denotes the differential cocficient of a co-ordinate o with respect to 0 , and. in accordance with the parametric method, the limits of integration are fixed, and the integrand is a homogencous fuection of the \(g^{\prime \prime} s\) of the first degree. There is then no difficulty in deducing the Lagrangian equations of motion of the type
\[
\frac{d}{d t} \frac{\partial T}{\partial q}-\frac{\partial T}{\partial q}+\frac{\partial V}{\partial q}=0
\]

These equations determine the actual course of the system. Now if the system, in its act ual course, passes from a given initial position (\(q^{(0)}\)) to a variable final position (\(q\)), the action \(\mathcal{A}\) becomes a function of the \(\boldsymbol{q}\) s, and the furst method uaed in the problem of variable limits shows that, for every \(q\)
\[
\frac{\partial A}{\partial q}=\frac{\partial T}{\partial q^{2}}
\]

When the kinetic energy \(T\) is expressed as a homogeneous quadratic function of the momenta dT/dx, say
\[
\mathbf{T}=\| \Sigma_{n_{1}} \cdot\left(b_{r} \frac{\partial T}{\partial d_{r}} \frac{\partial T}{\partial d}\right),\left(b_{\infty}-b_{n}\right)
\]
and the differential coefficients of \(A\) are introduced inctead of thooe of \(T\), the enersy equation becomes a non-linear partial differential equation of the firse onder for the derermination of \(A\) as a function of the g's. This equation is
Prlectar
4
ecther
A complete integral of this equation would yield an expresson for \(A\) as a function of the \(q^{\prime}\) s containing \(n\) erbitrary constants. \(a_{1}, a_{2}, \ldots a_{n}\) of which one \(a_{a}\) is mercly
additive to \(A\); and the courses of the system which are compatible with the equations of motion are determined by equations of the form
\[
\frac{\partial A}{\partial a_{1}}=b_{1} \cdot \frac{\partial A}{\partial a_{n}}=b_{4} \ldots \frac{\partial A}{\partial a_{n-1}}=b_{m-1}
\]
where the \(b^{\prime}\) s are new arbitrary constants. it is noteworthy that the differential equations of the second order by which the geodesics on an ellipsoid are determined were first solved by this method (C. C. J. Jacobi, 1839).

It has been proved that every problem of the calculus of variations, in which the integral to be made an extremum contains only one independent variable, admits of a similar transCormation; that is to say, the integrals of the principal equations can always be obtained, in the way described above, from a complete integral of a partial differential equation of the first order, and this partial differential equation can always be formed by a process of elimination. These results were first proved by A. Clebsch (1858).

How
Arnong other analytical devclopments of the theory of the first variation we may note that the necessary and sufficient condition that an expression of the form
\[
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)
\]
should be the difierential coefficient of another exprestion of the form

Condito of lates: rataty.
\[
F_{1}\left(x, y, y^{\prime}, \ldots y^{(0-1}\right)
\]
is the identical vanishing of the expression
\[
\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{2}}+\frac{d^{2}}{d x^{2}} \frac{\partial F}{\partial y^{2}}-\ldots+(-1)=\frac{d^{v}}{d x^{2}} \frac{\partial F}{\partial y^{(1)}}
\]

The result was first found by Euler (1744).
A differential equation
\[
\phi\left(x, y, y^{\prime}, y^{\prime}\right)=0
\]
is the principal equation answering to an integral of the form
if the equation
\[
\int F\left(x, y, y^{\prime}\right) d x
\]
\[
\frac{d}{d x} \frac{\partial \phi}{\partial y^{\prime}}=\frac{\partial \phi}{\partial y}
\]
is satified identically. In the more general case of an equation of the form
\[
\psi\left(x, y, y, \ldots, y^{(2-1}\right)=0
\]
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
ceacriven \\
tacta \\
divfer: \\
catial \\
cquallop \\
-ay arbs \\
frow a \\
problef: \\
ofice
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
the corresponding condition is that the differential expression obtained by Lagrange's process of variation, viz.,
\[
\frac{\partial \phi}{\partial y} s y+\frac{\partial \phi}{\partial y} \frac{d \delta y}{d x}+\ldots+\frac{\partial \phi}{\partial y^{i n n}} \frac{d^{2 n} \delta y}{d x^{2 n}}
\]
must be identical with the " adjoint "differcntial expression
\[
\frac{\partial \phi}{\partial y} \delta y-\frac{d}{d x}\left(\frac{\partial \phi}{\partial y^{2}} \delta y\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial \phi}{\partial y^{2}} \delta y\right)-\ldots+\frac{d^{2}}{d x^{20}}\left(\frac{\partial \phi}{\partial y^{2}: n} \delta y\right) .
\]

This matter has been very fully investigated by A. Hirsch (1897).
To illustrate the translomation of the first variation of multiple integrals we consider a double integral of the form
\[
\iint \psi(x, y, s, p, q, 7, s, 1) d x d y
\]
taken over that area of the \(z\) plane which is bounded by a closed curve \(s^{\circ}\). Here \(p_{1}, 9, \ldots\). . denote the partial differential coefficients of \(s\) with respect to \(x\) and \(y\) of the first ind secomd orders, according to the usual nota. tion. Whee \(a\) is changed into \(s+8\), the terms of the first

Fintif varietion of a couble onder in a are
\[
\iint\left(\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial p} \frac{\partial w}{\partial x}+\frac{\partial \psi}{\partial q} \frac{\partial t s}{\partial y}+\frac{\partial \psi}{\partial y} \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial \psi}{\partial s} \frac{\partial^{2} w}{\partial x \partial y}+\frac{\partial \psi}{\partial y} \frac{\partial^{p} w}{\partial y^{4}}\right) d x d y
\]

Each term must be transformed so that no differential coefficients of \(w\) are teft under the sign of double integration. We exemplify the proces by taking the term containing \(\partial^{2} s / \partial x^{2}\). We have
\[
\begin{aligned}
& \int \frac{\partial}{\partial r} \frac{\partial{ }^{2}}{\partial x^{3}} d x d y=\iint\left\{\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r} \frac{\partial w}{\partial x}\right)-\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r}\right) \cdot \frac{\partial v}{\partial r}\right\} d x d y \\
& =\iint\left[\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r} \frac{\partial w}{\partial x}\right)-\frac{\partial}{\partial x}\left\{-\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r}\right)\right\}+w^{2 w}\left(\frac{\partial \psi}{\partial r}\right)\right] d x d y
\end{aligned}
\]

The first two terms are transformed into a line integral taken round the boundary \(s^{\prime}\), and we thus find
\(\iint \frac{\psi^{2}}{\partial r} \frac{\partial^{2} \omega}{\partial x^{2}} d x d y=\int \cos (x),\left\{\frac{\partial \psi}{\partial r} \frac{\partial w}{\partial x}-\operatorname{m}^{2} \frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r}\right)\right\} d r+\iint w^{2} \frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial \psi}{\partial r}\right) d x d y_{1}\) where * denotes the direction of the normal to the edge \(s^{\prime}\) drawn outwards. The double integral on the right-hand side contributes a term to the principal equation, and the line integral contributet terms to the boundary conditions. The line integral admits of turther eranslommation by means of the relations
\[
\frac{\partial v}{\partial x}=\frac{\partial w}{\partial v} \cos (x, \phi)-\frac{\partial w}{\partial s} \cos (y, \nu)
\]
\(\int \cos (x,-) \cos (y, r) \frac{\partial \psi}{\partial r} \frac{\partial v}{\partial s^{\prime}} d s^{\prime}=-\int \frac{\partial}{\partial s^{\prime}}\left\{\cos (x, p) \cos (y, y) \frac{\partial \psi}{\partial r}\right\} \operatorname{cod} s^{\prime}\).

It becomes
\[
\begin{aligned}
& \iint \cos ^{2}(x, v) \frac{\partial \psi}{\partial r} \frac{\partial r^{\prime}}{\partial v} d s^{\prime} \\
& +\int\left[\frac{\partial}{\partial s}\left\{\cos (x, v) \cos (y, v) \frac{\partial \psi}{\partial r}\right\}-\cos (x, v) \frac{\partial}{\partial s}\left(\frac{\partial \psi}{\partial r}\right)\right] \text { zeds'. } \\
& \text { In forming the first term within the square brackets we then use } \\
& \text { the relations } \\
& \qquad \frac{\partial}{\partial s^{\prime}} \cos (x, v)=-\frac{1}{\rho^{\prime}} \cos (y, v) \cdot \frac{\partial}{\partial s^{\prime}} \cos (y, v)=\frac{1}{\partial} \cos (x, v), \\
& \frac{\partial}{\partial s^{\prime}}, \frac{\partial \psi}{\partial r}=-\cos (y, v) \frac{\partial}{\partial x} \frac{\partial \psi}{\partial r}+\cos (x, v) \frac{\partial}{\partial y} \frac{\partial \psi}{\partial r},
\end{aligned}
\] the relations
where \(\rho^{\prime}\) denotes the radius of curvature of the curve \(s^{\prime}\).
The necessity of frecing the caiculus of variations from dependence upon the notion of infinitely small quantities was realized by Lagrange. and the process of discarding such quantitics was partially carried out by him in his Theorue des fonctions analytiques (1797). In accordance with the interpretation of differentials which be made in chat treatise, he interpreted the variation of an integral, as expressed by means of his symbol \(\delta\), as the first term, or the sum of the terms of the first onder, in the develonment in series of the complete expression for the change that is made in the value of the integral when small finite changes are made in the variables. The quantity which had been regarded as the

\section*{The}
second
varlation.
variation of the integral came to be regarded as the first variation, and the discrimination between maxima and arkioa. minima came to be resarded as requiring the investigaton of the sccond variation. The first step in this theory had
been taken by A. M. Legendre in 1786 .
In the case of an integral of the form
\[
\int_{x_{0}}^{x_{i}} F\left(x, y, y^{\prime}\right) d x
\]

Legendre defined the second variation as the integral
\[
\int \frac{x_{1} 1}{x y^{2}}\left\{\frac{\partial^{2} F}{\partial y^{2}}\left(\delta y^{\prime}\right)^{2}+2 \frac{\partial^{2} F}{\partial y^{2} \partial y^{\prime}} \delta y \delta y^{\prime}+\frac{\partial^{2} F}{\partial y^{2}}\left(\delta y^{\prime}\right)^{2}\right\} d x .
\]
 identically because \(\delta y\) vanishes at \(x=x_{0}\) and at \(x=x_{4}\). He sook a to satisfy the equation
\[
\frac{\partial^{2} F}{\partial y^{\prime 2}}\left(\frac{\partial^{2} F}{\partial y^{2}}+\frac{d a}{d x}\right)=\left(\frac{\partial^{2} F}{\partial y^{j} y}+a\right)^{2}
\]
and thus transformed the expression for the second variation to
\[
\int_{x_{0} \partial y^{2}}^{x_{i} \partial^{-5}}\left(\delta y^{\prime}+m \delta y^{\prime}\right)^{2} d x
\]
where
\[
m \frac{\partial^{2} F}{\partial y^{\prime 2}}=\frac{\partial^{2} F}{\partial y^{\prime} \partial y^{\prime}}+a
\]

From this investigation Legendre deduced a new condition for the existence of an extremum. It is necessary, not only that the variaLe= tion shoted vanish, but also that the second variation gendre's condlion. Legendre concluded that the same sign at ail points of the stationary curve should be one-signed. In the case of the First Problein between the end points, and that the sign must be for a minimum and - for a maximum. In the application of the peramerric method the function which has been denoted by \(f_{1}\) takes the place of \(0^{2} \mathrm{~F} / \partial y^{\prime 2}\).

The transformation of the second variations of integrals of various types into forms in which their signs can be determined by inspection subsequently became one of the leading problems of the calculus of variations. This result came about chicfly through the publicar Jacobs tion in 1837 of a memoir by C. G. J. Jacubi. He transformed Legenrlre sequation tor the auxilizry functionainto a lincar differential equation of the second order by the substitution
\[
\frac{\partial^{2} F}{\partial y^{\partial} y}+a=-\frac{\partial^{2} F}{\partial y^{2}} \frac{1}{w} \frac{d w}{d x}
\]
and he pointed out that Legendre's transformation of the second variation cannot be effected if the function w vanishes between the fimits of integration. He pointed out further, that if the stationary curves of the integral are given by an equation of the form
\[
y=\phi(x, a, b)
\]
where \(a, b\) are nrbitrary constanes, the complete primitive of the equation for to is of the form
\[
w=A \frac{\partial \phi}{\partial \alpha}+B \frac{\partial \phi}{\partial b}
\]
where A, \(B\) are new arbierary constents, Jacobi stated these propositions without priwf, and the proof of them, and the cxtension of the resitl's io mure gencrai problema, became the object of numerous irisestigatiunts. These invertigations were, for the most part, and for a long time, occupied almose exclusively with aralyticat developments: and the geomesrical ingerprometion which Jacobi had given, and which he Afterwands en-whisfeed in his Vererumgen über Dywamik, was neglected until mather roatl bimes. According
 \((x, y c)\) have an envelope
curve, cannot be an exts curve, cannot be an extr
touches the eavelpment such a Pairs
of points such as (\(x_{\infty}, y_{0}\)) and (\(\mathrm{Es}_{\mathrm{a}} \eta_{0}\)) were afternprds called cosr jugute points by Weicrstrass. The proof that the integral cannot be an exeremum if the are of the curve between the fixed end points contains a pair of conjugate points was first published by G. Erdmann (1878),

Congly
fate polars
Examples of conjugate points are afforded by antipodal poinis on a sphere, the conjugate foci of geometrical optics, the kinetis foci of amalytical dynamics. If the terminal points are a pair of conjugate points, the integral is not in general an cxtremum; but there is an exceptional casc. of which a suitably chosen arc of the equator of an oblate spheroid may
serve as an example. In serve as an example. In the problem of the cascnoid a pair of conjugate points on any of the catenarics, which are the stationary curves of the problen, is such that the tangents to the catenary at the two points \(A\) and \(A^{\prime}\) meet on the axis of revolution (fig, 2). When both the end points of the required curve move

Fic. 2. on fixed guiding curves \(C_{0} C_{1}\) a stationary curve \(C_{1}\) joining a point \(A_{0}\) of \(C_{0}\) to a point \(A_{1}\) of \(C_{1}\), cannot yich an extremum unless is is cut iransversely by \(C_{0}\) at \(A_{0}\) and by \(C_{1}\) at \(A_{1}\). The envelope of stasionary curves which set out from \(C_{0}\) towards \(C_{1}\), and are cut transversely by \(C_{0}\) at points hear Ao, mects \(C\) at a point \(D_{0}\); and the envelope of stationary curves which proweed from \(\mathrm{C}_{0}\) to \(\mathrm{C}_{\mathrm{n}}\) and are cut transversely by \(C_{1}\) at points near \(A_{t}\) meets \(C\) at a point \(\mathrm{D}_{1}\). The curve \(\mathrm{C}_{\text {, drawn from } A_{0}}\) io \(A_{1}\) eannot yield an extrenum
if \(D_{0}\) or \(D_{3}\) lies between \(A_{0}\) and \(A_{1}\). or if \(D_{3}\) lies between \(A_{4}\) and \(D_{1}\). These results are due to G. A. Bliss (1903). A simple example is afforded by the shortest line on a
 to another. In fig. \(3 D_{0}\) is that pole of the small circle \(A_{0} B_{0}\) which occurs first on \(s^{\text {reat }}\) circles cutting \(A_{1} B_{0}\) at right angles, and proceeding tomards \(A_{1} B_{1} ; D_{i}\) is that pole of the small circle \(A, B\), which accurs first on great circles cutting \(A_{3} B_{8}\) at right angles, and drawn from points of \(A_{6} B\), lowards \(A_{1} B_{1}\). The arc \(A_{0} \lambda_{1}\) is the required shortest ine, and it is distinguished from \(B_{0} B_{1}\) by the above criterion.

Jacobis introdaction of conjugate points is one of the germs from which the morlern theory of the calculus of variations his spirung. Another is a remark made by Legendre (1786) in regard to the solution of Newton's problem of the solid of least resistance. This problem requires that a curve be found for which the integral

Sources
should be a minimum. \(\int y y^{\prime 2}\left(1+y^{12}\right)^{-1} d y\)
strass's equation
\(y y^{p 3}\left(1+y^{z_{2}}\right)^{-2}=\) const..
a result equivalent to Newton's solution of the problem: but Legendre observed that, if the integral is taken along a broken line consisting of two straight lines equally inclined 10 the axis of \(x\) in onposite senses, the integral can be made as small as se plase by sufficiently diminishing the angle of inclination. Legendre's remark amounts to admitting a variation of Newton's curve, which is met a weak variation. Variations which are not weak are such that. while the points of a curve are tut slighty displaced, the tangents undergo large changes of direction. They are distinguished as strong wariations. A general theory of strong variations in cons nexion with the First Problem, and of the conditions which are sufficient to secure that the integral taken along a stationary curcic may be an extremum, was given by Weierstrass in lectures. He delivered courses of lectures on the calculus of variations in several years between 1865 and 1889 , and his chief discoveries in the subject seem to have been included in the course for 1879 . Through these lectures his theory becanie known to some students and teachers in Europe and America, and there have been published a few treatises and memoirs devoted to the exposition of his ideas.
In the First Problem the following conditions are known to be necessary for an extremum. I. The path of integration must be a stationary curve. II. The expression \(\partial^{2} \mathrm{~F} / \partial y^{\prime 2}\), or the expres sion denoted by \(f_{1}\) in the application of the parametric method, must not change sign at any point of this curve between the end points. 111. The arc of the curve between the end points must nnt contrin a pair of conjugate
these reauls are ubtained by using weak variations.
antr no these reauls are ubtained by using weak variations. Addicioml
remuts. relating to strong as wehl as weak variations, are obtsined by a method which permits of the expression of the variation of an integral as a line integral taken alont the varied curve. Let A, B be the end points. and let the stationary curve AB be drawn. If the end points \(A\), \(B\) are not a pair of conjugate points. and if the point conjugate to A does not lie on the arc AB, then we may find a point \(\mathbf{A}^{\prime}\), on the backward continuation of the stationary curve \(\mathbf{B A}\) beyond A. so near to \(A\) that the point conjugate to \(A^{\prime}\) lies on the forward continuation of the arc AB beyond \(B\). This being the case, it is potaible 10 delimit an area of finite breadith. so that the are AB of the stationary curve joining \(\mathbf{A}, \mathbf{B}\) lies entirely within the area, and Ho two stationary curves drawn through \(A\) 'intersect within Fief sfor the arez. Through any point of such an area it is possible Boanty awres. to draw one, and only one, stationary curve which passes through \(A\). This family of stationary curves is said to constitute a fied of stationary curves about the curve AB. We suppose that such a ficled exists, and that the varied curve AQPB lies entirely within the delimited area. The variation of the integral \(\int F(x, y, y) d x\) is identical with the line integral of \(F\) taken round a contour consisting of the varied curve AQPB and the stationary curve AB, in the sense AQPBA. The line intetyal may, as usual, be replaced by the sum of fine integrals taken round a series of cells, the external boundaries of the set of cells being identical with the
 given contour, and the internal boundaries of adjacent cells being traversed twice in opposite senses. We may choose a suitable set of cells as follows. Let \(Q\). \(P\) be points on the
varied curve, and let \(A^{\prime} O\). \(A^{\prime} P\) be the stationary curves of the field which pass through \(Q\), \(P\). Let \(P\) follow \(Q\) in the sense ceseral AQPB in which the varied curve is deseribed. Then exprese the contour consisting of the stationary curve \(A^{\prime} Q\). variallas of 85 the stanionary curve \(A^{\prime} P\), from \(P\) to \(A^{\prime}\), is the boundary of a cell (fig. 4). Let us denote the integral of \(F\) taten along a stationary curve by round brackets, thus (\(A^{\prime} Q\)). and the integral of F taken along any other curve by square brackets, thus [PQ]. If the varied curve is divided in to a number of arrs such as QP we have the result
\[
\left[A Q P B|-(A B)=\Sigma|\left(A^{\prime} Q\right]+[Q P]-\left(A^{\prime} P\right)[\right.
\]
and the right-hand member ran be expressed as a line integral taken along the varied curve MQPB.

To effect this transformstion we scek an approximate expression for the term \(\left(\Lambda^{\prime} Q\right)+[Q P]-\left(A^{\prime} P\right)\) when \(Q, P\) are near together. Let \(\Delta s\) denote the arc QP. and \(\psi\) the angle which the tangent at \(P\) to the varied curve, in the sense from A 10 B, makes with the axis of \(x\) (fig. 5). Also let \(\phi\) be the angle which the tangent at \(P\) to the stationary curve \(A^{\prime} P\), in the sense from \(A^{\prime}\) to \(P\), makes with the axis of \(x\). We evaluate (\(\left.A^{\prime} Q\right)\) - (\(\left.A^{\prime} P\right)\) approximately by means of a result which we obtained in conncxion with the problem of variable limits. Observing that the angle here denoted by \(\psi\) is equivatent to the angle formerly denoted by \(\tau+\omega\) (cf. fig. 1), while tan of is equivalent to the quantity cormerty denoted by \(y^{\prime}\), we obtain the approximate equation
\(\left(A^{\prime} Q\right)-\left(A^{\prime} P\right)=-\Delta s \cos \phi\left\{F(x, y, p)+(\tan \phi-p) \frac{\partial F}{\partial p}\right\}_{p=\tan }\) which is correct to the first order in \(\Delta s\). Also we have
\[
[Q P]=\Delta s \cdot \cos t F(x, y, \tan \psi)
\]
correctly to the same ordcr. Hence we find that, correctly to the furst order in \(\Delta 5\).
\[
\left(A^{\prime} Q\right)+\left[Q^{\prime}\right]-\left(A^{\prime} P\right)=E\left(x_{0} y_{0} \tan \phi, \tan \psi\right) \Delta s .
\]
where
\[
E(x, y, \tan \theta \cdot \tan \psi)
\]
\[
\begin{aligned}
& \quad=\cos \psi\left\{F(x, y, \text { tan } \downarrow)-F(x, y, p)-(\tan \phi-p) \frac{\partial F}{\partial \phi}\right\} \\
& \text { When the parametric method is used the function } E \text { takes the form }
\end{aligned}
\]
\[
\left(\lambda \frac{\partial f}{\partial r}+\mu \frac{\partial I}{\partial y}\right)_{i-1 . j-\mu}-\left(\lambda \frac{\partial I}{\partial r}+\mu \frac{\partial I}{\partial s}\right)_{i-1 . j-\infty}
\]
where \(\lambda_{1}\) a are the direction cosines of the tangent at \(P\) to the curve AQPB. in the sense from A to B. and \(t\), \(m\) are the direction cosines of the tangent at \(P\) tot he stationary curve \(A^{\prime} P\), in the sense from \(A^{\prime}\) to \(P\).
The function E. here introduced. has been called Weierstrass's excess function. We learn that the variation of the integral, that Wetere it to say. the excess of the integral of F taken along the tratery
-10.0. curve above the integral of ftaken along the origioal curve, is expreswible as the line integral fEds taken along the varied curve. We can therefore state a sufficnt (but not necessary) condition for the existence of an extremum in the form:-When the intcgral is taken along a
stationary curve, and there is no pair of conjugate points on the are of the curve terminated by the given end points, the integral is certainly an extremum if the excess function has the same sign at all points of a finite area containing the whole of this arc within it. Further we may specialize the excess function by identifying \(A^{\prime}\) with \(A\), and calculating the function for a point \(P\) on the arc \(A B\) of the stationary curve \(A B\), and an arbitrary direction of the tangent at \(\mathbf{P}\) to the varied curve. Sufflicet and encessery cot. dhiogs. This process is equivalent torheintroduction of a particular type of strong variation. We may in fact take, as a varied curve, the are AO of a neighbouring stationary curve, the straight line QP drawn from \(Q\) to a point of the are \(A B\), and the are \(P B\) of the stationary curve AB (fig. 6). The sign of the variation it then the same as that of the
function \(E(x, y\), tan \(\phi\).
\(\tan \psi)\), where \((x, y)\) is the point \(P_{1}\) is the angle which the straight line QP makes with the

axis of \(x\) and \(\psi\) is the angle which the tangent at \(P\) to the curve APB makes with the same axis. We thus arrive at a new necessary (but not sufficient) condition for the existence of an extremum of the integral fFds, viz. the specialized excess function, so calculated. must not change sign bet ween \(A\) and \(B\).

The sufficient condition, and the new necessary condition, associated with the excess function. as well as the expression for the variation as Eds, are due to Weierst rass. In applications to special problems it is generally permissible to identily \(A^{5}\) with \(A\), and to regard QP as straight. The direction of QP must be such that the integral of F taken along it is finite and real. We shall describe such direc. tions as admissible. In the statement of the sufficient condltion, and the new necessary condition, it is ol course
antots conaectes - Mbe the exces: fanction. understood that the direction specified by \(\psi\) is admissible. The excess function generally vanishes if \(\psi=\phi\), but it does not change sign. It can be shown without dificulty that, when \(\#\) is very nearly equal to the sign of \(E\) is tbe same as that of
\[
(\tan \psi-\tan \phi)^{2} \cos \phi\left(\frac{\partial^{2} F}{\partial y^{2}}\right)_{y-\tan \phi}
\]
and thus the necessary condition as to the sign of the excess function includes Legendre's condition as to the sign of \(\partial^{\prime} F / \partial y^{7}\)

Weicrstrass's conditions have been obtained by D. Hilbert from the observation that, if \(p\) is a function of \(x\) and \(y\), the integral
\[
\int\left\{F(x, y, p)+\left(y^{\prime}-p\right)\left(\frac{\partial F}{\partial Y}\right)_{y^{\prime}-p}\right\} d r
\]
taken along a curve joining two fixed points, has the same value for all such curves, provided that there is a field of stationary curves. and that \(p\) is the pradient at the point \((x, y)\) of that stationary curve of the field which passes through this point.

An instructive example of the excess function, and the condltions connected with it, is afforded by the integral

\section*{}

The first integral of the principal equation is
\[
y^{*} \dot{z}^{-1}=\text { const. }
\]
and the stationa ry curves include the axis of \(x\), straight lines

\section*{Axamplo \\ oflice \\ exceps \\ Anecthar}
\[
y=y_{0} \exp \left[c\left(x-x_{4}\right)\right]
\]
and. as these have no envelope other than the initial point (\(x_{n}, y_{0}\)). there are no conjugate points. The lunction \(f\) is \(6 x^{-4}\), and this is positive for curves going lrom the initial point in the positive direction of the axis of \(x\). The value of the excens function is
\[
\operatorname{s}^{2} \cos \phi\left(\cot ^{2} \phi-3 \cot ^{2} \phi+2 \tan \psi \cot ^{2} \phi\right)
\]

The directions \(\psi=0\) and \(\psi=\pi\) are inadmissible. On putting \(\psi=\frac{1}{2}\) we get \(2 y^{2} \cos ^{2} 4:\) and on putting \(\psi=\frac{1}{2}\) we get \(-2 y^{4} \operatorname{cor}^{2} \phi\). Hence the integral taken along \(\mathrm{AQ}^{\prime} \mathrm{PB}\) is greater than that taken alone \(A P B\), and the integral taken along AQPB is less than that taken along APB, when \(Q^{\prime} Q\) are sufficiently near to \(P\) on the ordinate of \(P\) (Gig. 7). It (ollows that the integral is neither a maximum nor a minimum.

It has been proved by Weierstrass that the excess function cannot be one-signed if the function \(f\) of the parametric merhod is a rational function of \(t\) and \(y\). This result includes the above example, and the problem of the solid of least resisiance for which, as Legcndre had
 scen. there can be no solution if strong variations are admitted. As another example of the calculation of excess functions, it may be noted that the value of the excers function in the problem of the catemand is \(2 y \sin ^{2}{ }^{2}(y-\phi)\).

In general it is not necessary that a field of stationary curves should consist of curves which pass through a fixed point. Any Fheld family of stationary curves depending on a single paraof 582. tousry curnes and erans. erans.
-crsals. construct the ransverits of the faly. that is cosiy there is a finite area of the plane, through any point of which there passes one stationary curve of the field and one curve which cuts all the statiunary curves of the field transversely. These curves provide a system of eurvilinear co-ordinates, in terms of which the value of \(f F d x\), taken along any curve within the a rea, can be expressod. The value of the integral is the same for all arcs of stationary curves of the field which are intercepted bet ween any two assigned transversals.

In the above discussion of the First Problem it has been assumed that the curve which yields an extremum is an arc of a single curve, which must be a stationary curve. It is conceivalle that the required curve might be made up of a finite number of ancs of different stationary curves mecting each other at finjte angles. It can be shown that such a broken curve cannot yiell an extremum unless both the expressions \(\partial F / \partial y^{\prime}\) and \(F-y^{\prime}\left(\partial F / \partial y^{\prime}\right)\) are continuous at the corners. In the parametric method \(\partial / / \partial \dot{x}\) and \(\partial / / \partial \dot{y}\) must be continuous at the corners. This result limits very considerably Discoe. the possibility of such discontinuous solutions, though it tinuous solutioes. problem of the catenoid. The axis of \(x\) and any lines parallel to the axis of \(y\) satisfy the principal equation: and the conditions here stated show that the only discontinuous solution of the prollern is prestated by the broken line ACDB
 (fig. 8). A broken line
like \(\mathrm{A} \mathrm{B}^{\prime} \mathrm{B}\) is excluded. Discontinuous solutions have generally been supposed to be of special importance in cases where the required cunce is re of not crossing the boundary of a ceriain limited arca. In such cases part of the boundary may
have to be taken as part of the curve. Problems of this kind were investigated in detiil by J. Stciner and I. Todhunter. In recent times the theory has leen much extended by C. Caratheodory.
In any problem of the calculus of variations the first step is the formation of the primeipal equation or equations; and the second Extste step is the solution of the equation or equations, in accord. ence- If this solution cannot be effected, the methods of the enceIf this solution cannot be effected, the methods of the bcorems. calculus fail to answer the question of the existence or nonexistence of a solution which would yield a maximum or manimum
of the integral under consideration. On the other hand, if the existof the integral under consideration. On the other hand, if the exist-
ence of the extremum could be established independently, the existence of a solution of the principal equation, which would also satisfy the boundary conditions, would be proved. The most famous example of such an existence-theorem is Dirichlet's principle, accurding to whicl there exists a function \(V\), which satisfies the equation
\[
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial: V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
\]
at all points within a closed surface \(S\), and assumes a given value at each point of S . The differential cquation is the principal erpuation answering to the integra!
\[
I=\iiint\left\{\left(\frac{\partial V}{\partial x}\right)^{2}+\left(\frac{\partial V}{\partial y}\right)^{2}+\left(\frac{\partial V}{\partial y}\right)^{2}\right\} d x d y d z
\]
taken through the volume within the surface \(S\). The theorem of the existence of \(V\) is of importance in all those branches of mathematical pliysics in which use is made of a potential function, satisfying Laplace's equation: and the two-dimensional form of the cheorem is of fundamental importance in the theory of functions of a cornplex variable. It has been proposed to establish the existence of \(V\) by
means of the argument that since I cannot be negative, there must Dirict- be, among the functions which have the prescribed
boundary values, some one which gives to ! the smallest putaphes. Whe value. This unsound argument was first exposed atrase. He observed that preciscly the same argu-
the integral \(\int x^{4} y^{2} d x\) taken along a curve from \(y^{2} d x\) taken along a curve from
On the one hand, the principal integral can be solved, and it can be
y thed by any function \(y\) at all points
\(y\) has different values at the end points. can be made as omall as we please inferior fimif (see Function). In integral 1 . there cannot be a limit
of this kind. This has becteffected by Hilbert for the two-dienem. sional form of the problem

BIBLIOGRAPUY. - The lierature of the subject is very extensive. and only a few of the rome important works can be cited here The carlier history can bi gathered from M. Cantor's Geschichie d. Math. Bdc. \(1-3\) (Leif g, 1894-1901). I. Todbunter's Hisfory of the Coliulus of Valutions (London, 1861) given an accourrt of the various treatises and memoirs published betweer 1760 and 1860. E. Pascal's Cofic do delle pariaraver. . (Alian 1897 : German transiation, Lenzg. I8g9) contains a bried but admiralule historical summary of it ences to the literature. Weicrstrass's theory, is ii. A 8; and an accoun theory and of llilbert's Ency. d. math. Wiss. treatises may be ment lineas curtos maximi (Lausanne and Geneva, on the Cchudus of Varic, Lindelor." Leçons surleca 1861). L. iv.: L. B. Carll (London, 1885). E. Pous systematic ereatise on the Lehrbuch d. Vatiadionsri Lellures on the Caiculus Bolza, Lectures on the Cis accounts of Weicrstrass' sions of this theory. therorics also. The follin mentioned: J. L. Lagrante dérerniner les max. et !is Misc. Tas\%. (1760-62), : Legendre" "Sur la manio Theoric var." Mi Mim. Variationsre xvii. (1837), or W"rke, "Méni. sur le calc. des Pátersbuyg Acad. (1838) perimetrischen Hauptsa! O. Hesse, "Uberd. Kír rale," J. f. Math. (Cre dicjenigen Probleme \(d\). abhãngige Variable enth and other memoars in thin Bcilrage \& Theoric d. 1866), and " Kritcrien Bd. Ixix (1865): 1. T rates multiples, Bull. * Développements seconde des intégrales (1878): G. Frobenius, ausdrucke," J. f. Malh "Zur Untersuchung U Zcilschr. Moth. u. Phys \(\because\) Erlaiuterungen 2. d. Malh. Ann. (1879), Bd. fachen Int., "Math. Ann. d. Begriffe Max
"Uber e. charakteristi Varistionsrechnung." deal with Weicrstrassian
Sclamarz "Uber cin dic des Problem d. Variats of Weicrstrass"s zoth bir G. Kobb," Sur les max tionsrechnung." Disseriat Conditions in the Calc. also. "On the Existenc mental l'roperty of a (1901), vol. ii: D. Hil
(1900), and "Uber das (Berlin 10 C A irichlet'sche Prinzip,", Gottingez Fesshay Points are variable," \(M\) i: iss \(A n n\). (1903), Bd. Iviii.: C. Caratheodong "Uber d. diskontinuirli hen Loxsungen i. d. Variationsfechaung.: Disseriction (Cöttingen, 1g04); and" Cber d. starken Max Math. Ann. (1906), Bd. I:f

VARICOSE VEINS (Lat. marix, a dilated vein), a condition of the veiss which mostly oceurs in those parts of the blood stream which are fart est from the heart and oceupy a de pendent position. Thu; they are found in the legs and thighs in the lowest part of It: bowel (piles; see Hazmormantes). and in the spermatic cord (saricocele). Any condition which hinden the return of blood frim the veins is apt to cause their permanent dilatation; thus is explained the occurzence of varicose
weins in the leg from the wearing of a tight garter, and of piles as the result of the pressure of an ovarian tumour or of a preganant uterus, or of disease of the liver.

Sometimes the trouble is begun by 2 direct injury to the vein, which, by setting up an inflammation, weakens the coats of the vein, which then yield under the pressure of the bloodstream. In the case of varicocele, the dilatation of the veins is probably of developmental origin; many other causes are given; but not one of thern appears satisfactory. Examination of a varicose vein shows that it is increased in length as well as in capacity. In some parts of its course the vein has its coats much thickened, but at those places where there is nost dilatation the walls are very thin. Veins thus affected give rise to pains and achings, and they are, moreover, lizhle to attacks of inflammation which end in clotting of the blood (lirombosis). This is a dangernus condition, as a sudden or violent movement is apt to cause the detachment of a piece of the clot, which, carried up to the brain of the lung, may cause sudden death. Less serious results of varicose veins are swelling of the parts below (oedema), ulceration and abscess.
As regards treatment, the wearing of a well-fiting elastic stocking wiil prove beneficial in the case of a moderate dilatation of the veins of the leg: the individual must avoid long standing and fatigue. It is well also to have the foot of the bed raised three or four inches, so that during the night the veins may be kept as empty as possible. If the case is more serious, the thinned veins threatening to give way. it will be advisable, provided the dilatations are fairly well localized, and the general condition of the patient permits, to excise the diseased parts, tying the cut ends of the veins, and closing the surface wounds with fine suturea. Should a varicose vein be plugged with clot, it will be advisable to tie it high up where the coats are healthy, and to remove the lower part by dissection. This will render the person safe from the very serious risk of a piece of the clor being carried to the heart, and will also permanently rid him of his trouble. It may be said gencrally that any operative treat ment for varicose veins in the lower extremity is best aspociated with the application of a ligature upon the large surface vein just before it enicrs the common femoral vein below the fold of the groin. This operation removes the risk of the downward pressure of blood in the veins whooe dilatation has rendered the valves useless.

In the case of a varicose vein being opened by accident or disease. it is quite possible for the individual to bleed to death. The first-aid treatment for the serious haemorthage should consist in laying the patient on the floor, raising the limb upon the seat of a chair, and fixing a pad over the open vessel by a handkerchief or bandage.

Varicote veins of the epermatic cord (arricocele) of the left side are met with in adolescents. The dilatation is, in all probability, of developmental origin, making its appearance at puberty. It is, as 2 rule, of no serious moment, and, unless present in an extreme degree, bad best be treated mertly by a suspension bandage. il. however, it is causing real physical distress, it may be treated hy excision of an inch or two of the bunch of dilated veins. The presence of varicocele is apt to cause inconvenience or even discomfort to men living in India or the tropics, but the Englishman who intends spending his life in temperate climes will do well to ignore a varicocele. It will become less and less noticcable as time gacs on.
(E. O. 9

VARIOLITRS (Lat. doriola, smalipox), in petrology, a group of dart green basic igneous rocks which, especially on weathered surfaces, exhible pale coloured spots that give them a pockmarked appearance. In some conditions these spots weather out prominently; they are grey, pale green, violet or yellowish, while the matrix of the rock is usually dark green. The variolites are related most closely to the basalts or diatases. They are nearly always much decomposed, and, since they are also fine-grained rocks, their original composition may be much obscured by secondary changes. The variolitic spots are sounded in outline and are often about a quarter of an inch in diameter, but may much exceed this size. They have a radiate structure and are sometimes, though not generally, zoned with concentric circles of different appearance and composition. Many anthors bave compared them with the spherulites of the acid rocks (obsidians and shyolites), and undoubsedly some kinds of variolite are merely glassy spherulitic varieties of hasalt. The techylyte selvages of the dolerite dikes of the west of Scotland, for exmple, often contain large brown spherulites which are easily visible in hand specimens. These spherulites consist of very thin divergent fibres, and their nature is offen difficult to determine on scocunt of the indefiniteness of the
optical characters of minerals in this state. It seems probable, however, that they are mostly felspar embedded in dark brown glass. Small phenocrysts or skeleton crystals of olivine, augite and plagioclase felspar may occur in these tachylytes.
Other varioliten are glany or partly crystalline facies of olivineIree dolerites, cocurring as thin dikes or intrusiont, or at tbe margins of dolerite masses. In these the lelspars are well cryatallized as thin rods, with square or lorked ends. radiating outwards from a centre. They are commonly oligoclase, and sometimes assume branching of feathery forms. Some authors would call these "sphaero-rystals" rather than mperulites; they are an intermediate stage bet weed the latter and the stellate groupings of felspar which occur frequently in igneous rocks. In the same rocks augite spherulites occur also, but this mineral forms plumose growths, branching and curved, which spread through the glassy base and do not interfere with the lelspar spherulites. They have much resemblance to the feathery ice crystals which form on window-panes. Oocasionally olivinedolerites have a coarsely spherulitic structure with long rods of plagioclase felspar converging to a paint: one example of these rocks from Skye contains variolites over three inches in diameter.

Another group of variolites includes the most famous rock of this type, which cornes from the Durance, in France. Pebhles of 1 his were well known to collectors for a long time before they were traced to their source at Mont Gencvre. They were proved to belong to a diabasic rock which shows well-muarked "pillow-structure" or "spheroidal jointing." Each pillow has a marginal porion which is variolitic, but towards the centre of the block-shaped masses the structure beoomes coarse and groups of radiate felspars make their appearance. It is doubtful whet her the variolite is zn intrusive rock or a lava flow. Many of these pillow lavas (or spilites) occur in the Devonian rocks of Cermany, and often they have variolitic facies which seem to belong to the same group as the rock of the Durance. Their sphenulitea are very often oligoclase felspar or docomposition producta after a relspathic mineral. In other cases they consist of chlorite or pale green amphibole, both of which may be secondary after pyroxene. The ground mass is very fine grained and is filed with chlorite, epidote, leucoxene, and other secondary mincrals. There is much reason to believe that it was originally in large measure vitreous but has suffered devitrifaction. Sometimes little steam cavities occur and may serve as a nucleus from which the varioline has grown. The radiate structure of the varioles is often nearly obliterated in these mich-decomposed rocks, in fact it may never have been very perfect. Varinlites are found also in everal parts of the Swiss Alps at Jatluga on Lake Onega, in Anglesey, the Lleyn district and Fishguard in Wales, in Cornwall, and in more than one place in Ireland.

Finally, there is a sroup of spotted rocke formerly known to French petrographers as the periolites dy Drac from the locality in which they are found. but they have been proved to be merely vesicular, rotten diabases, with steam cavitues fulled with white calcite and other eecondary minerals.
(1. S. F.)

VARISCITB, a native hydrous aluminium phosphate, AlPO \(\mathrm{O}_{4} \cdot 2 \mathrm{H}_{5} \mathrm{O}\), named by A. Breithaupt, in 1837, in consequence of its occurrence in the Saxon Voigtland (Variscia). It is a green mineral generally occurring as an incrustation or in nodules. A compact nodular varicty was discovered about 1894 in Cedar Valley, near Old Camp Floyd, Utah, and was described by Dr G. F. Kunz as utahlite. Its beautiful apple-green colour has led to its use, when cut and polished, as an ornamental stone. The term utahlite must be distinguished from utahite, the name given by A. Arzruni to a basic ferric sulphate, \(3(\mathrm{FeO}) \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}\), from Utah

VARLEY, CORNELIUS (\(178 \mathrm{~s}-1873\)), English water-colour painter, a younger brother of John Varley (q.v.), was born at Hackney, London, on the 21st of November 1781. He was educated by his uncle, a philosophical instrument maker, and under him acquired a knowledge of the natural sciences; but about 1800 he joined his brother in a tour through Wales, and began the study of art. He was soon engaged in teaching drawing. From 1803 till 1850 he was an occasional exhibitor in the Royal Academy; and be also contributed regularly to the displays of the Water-Colour Society, of which, in 1803. he was one of the founders, and of which he continued a member till 1821. His works consist mainly of carefuliy finished classical subjects, with architecture and figures. He published a serics of etchings of "Boats and olher Craft on the River Thames," and during his life as an artist he continued deeply interested in scientific pursuits. For his improvements in the camcra lucida, the camera obscura and the microscope he received the Isis goid medal of the Society of Arts; and at the International

Echibition of 185 s be gained a medal for his invention of the graphic telescope. He died at Hampstead on the and of October 1873.

VARLEY, JOHN (5778 -1842), English water-colour painter, was born at Hackney, London, on the 17th of August 1778. His father, a man of scientific attainments and tutor in the family of Lord Stanhope, discouraged his leanings towards art, and placed him under a silversuith. But on his parent's death Varley escaped from this uncoagenial employment, and, after working with a portrait painter, engaged himself at the age of sixteen to an architectural draughtsman, who took him on a provincial tour to sketch the principal buildings in the towns they visited. His spare hours were employed in sketching from nature, and in the evenings be was permitted, like Turner and Girtin, to study in the bouse of Dr Munro. In 1798 he exhibited his first work, a "View of Peterborough Cathedral," in the Royal Acaderny. In 1799 he visited North Wales, and in its wild mountain scenery found the subjects best suited to his brush. He returned to the same district in 1800 , and again in 1802, and the impressions then received powerfully influenced the whole course of his art. In 1804 he became a foundation member of the Water-Colour Society, and contributed over forty works to its first exhibition. He had married in the previous year; and, in order to provide for the wants of an increasing family, he was obliged to produce for the dealers much work of a slight and commonplace character. He also taught drawing, and some of his pupils, such as John Linnell and William Hunt, afterwards became celebrated. He was a firm believer in astrology, skilful in casting horoscopes; and some curious instances were related of the truth of his predictions. It was at his house that his friend William Blake sketched his celebrated "Visionary Heads." Varley died at London on the 17 th of November 1842.

Varley's landscapes are graceful and solemn in feeling, and simple and broad in treatment, being worked with a full brush and pure fresh transparent tints, usually without any admixture of bodycolour. Though his works are rather mannered and conventional, they are well considered and excellent in composition. Some of his earlier water-colours, including his "Views of the Thames, "were painted upon the spot, and possess greater individuality than his later productions, which are mainly compositions of mountain and lake scenery, produced without direct reference to nature. Arnong his literary works are Zodiacal Physiology (1828); Obserations on Colour and Sketching from Nature (1830); A Practical Treatise on Perspective, and Principles of Landscape Design for Young A rtists.

VARNA, a fortress, seaport, departmental capital and episcopal city of Bulgaria; on the Bay of Varna, an inlet of the Black Sea, in \(43^{\circ} 12^{\prime}\) N. and \(27^{\circ} 56^{\prime}\) E. Pop. (1906) 37,155 . Varna is buitt on the thilly north shore of the bay, overlooking the estuary of the river Devna or Pravadi, which flows seaward through a magnificent valley surrounded by mountains. It is the eastern terminus of the Varna-Rustchuk rallway, opened in 5867 , and is connected with all parts of the kingdorn by branches of this line. The so-called "Varna quadrilateral," which has played an important part in Bulgarian military Ifistory, consists of the fortresses of Varna, Shumla, Rustchuk and Silistria (\(q .0\).\() . Varna is the third city of the kingdom in\) population, after Sofia and Philippopolis, and ranks with Burgas as one of the two principal seaports. Its deep and capacious bay is sheltered from northeriy and northeeasterly winds, and the construction of modern harbour works has greatly increased the facilities for trade. The principal exports a e cattle and dairy produce, grain, lamb and goat skins, and cloth (shayak); the imports include coal, iron and machinery, textiles, petroleum and chemicals. In 1907 the port was entered by 869 ships of 926,449 tons, the largest number of vessels belog Bulgarian and the graatest ponnage AustroHungarian. Wine is lingely produced in the department, and in the city there ure bontveries, distillerics, anneries and cloth
 barricks, post barracks, post
vasme:modera
buildings. Near Varna is the summer palace of the king of Bulgaria.

Varna has been identified with the ancient Milesian colony of Odessus on the coast of Moesia Inferior. It figures largely in the history of more recent times, and close by was fought in 1444 the battle in which Murad II. slew Whadislaus III. af Poland and Hungary, and routed his forces commanded by Hunyadi Janos. Varna was occupied in 1828 by the Russians. in 1854 by the allies, who bere organized the invasion of the Crimea, and in 1877 by the Egyptian troops summoned to the defence of Turkey against the Russians. By the treaty of Berlin (1878) it was ceded to Bulgaria. It has long been the seat of a Greek metropolitan and since 1870 of a Bulgarian bishop.

VARNHAGEN VON ENSE, KARL AUGUST (\(1785-1858\)), German biographer, was born at Düsseldorf on the 2 Ist of February 1785 . He studied medicine at Berlin, but devoted more attention to philosophy and literature, which he afterwards studied more thoroughly at Halle and Tubingen. He began his literary career in 1804 as joint-editor with Adellert von Chamisso (q.v.) of a Musenalmanack. In 1809 he joined the Austrian army, and was wounded at the battle of Wegram. Soon afterwards he accompanicd his superior officer, Prisce Bentheim, to Paris, where be carried on his studies, In 1812 he entered the Prussian civil service at Berlin, but in the follow. ing year resumed his military carecr, this time as a captain in the Russian army. He accompanied Tettenborn, as adjutant, to Hamburg and Paris, and his experiences were recorded in his Geschichie der Hamburger Ereignisse (London, 1813), and his Geschichte der Kriegsolige des Generals ven Tetteriorn (18:5). At Paris he entered the diplomatic service of Prussia, and in 1814 acted under Hardenberg at the congress of Vienna. Hc also accompanied Hardenberg to Paris in 1815. He was resident minister for some time at Karlsruhe, but was recalled in 1819 , after which, with the title of "Geheimer Legationsrat," he lived chiefly at Berlin. He had no fixed official appointment, but was often employed in important political business. In 1814 he married Rahel Antonic Friederike, originally called Levin, afierwards Robert, and sister of the poet, Ludwig Robert (\(1778-1832\)). She was born in 1772 at Berlin, where ste died in 1833. By birth she was a Jewess; but before ber marriage she made profession of Christianity. Although ske never wrote anything for publication, she was a woman of remarkable intellectual qualitics, and exercised a powerful influence on many men of high ability. Her husband, who vas devotedly attached to her, found in her sympatity and encouragement one of the chief sources of his inspiration as a writer. After her death he published a selection from bes papers, and afterwards much of her correspondence was pyinted. Varnhagen von Ense never fully recovered from the shock caused by her death. He himself died suddenly in Berlin on the roth of October 1858.

He made some reputation as an imaginative and critical writer, but he is famous chiefly as a biographer. He possessed a remati. able power of grouping lacts so as to bring out their essential significance, and his style is distinguished for its strength, grace and purity. Among his principal works are Goethe in des \(\mathbf{L}\) nes nissen der Millebenden (1824): Biographische Denkmale (5 volk, 1824-30; 3rd ed. 1872); and biographies ol General von Seydiv:3 (1834). Sophia Charlotte, queen of Prussia (1837). Field-Marstal Schwerin (1841), Field-Marshal Keith (1844), and General Buluw von Deanewitz (1853). His Denkwürdigkeiten und serwitmis Sehriflen appeared in 9 vols. in 1843-59, the two last volumies appearing atter his death. His niece, Ludmilla Assing, betwren 1860 and 1867, edited several volumes of his correspondence with erainent men, and his Tagebiicher (i4 vols., 1861 -F0) Blaller aus der preussischen Geschichte appeared in 5 sols (\(1868-69\)); his correspondence with Rahel in 6 vols. (1874-i5): and with Carryle (1892). His selected writing appeared in 19 vols. in \(1871-76\). There is also an extensive literature dealing with Rahel Varnhager von Ense; see especially her hushand's Rahel, ein Buch des Andenkens (3 vols., 1834); Aus Rahels Hersensleben (1877); E. Schmidt.Weissenlels. Rahet und ihre Zeik (185j): Briffucchsed wuischen Karoline pon Humboldt. Rahel und Vermbetw Don Ense (1896); O. Berdrow, Rakel Varnhagen (1900).
Varnish, a liquid consisting of a gum or resin dismived in alcohol (spirit varnish) or an oil (ail varnish), which on
application to wooden and other surfaces improves their appearance and permanency (see Painter-Work).

VarRo, MARCOS TRRENTIUS (aiG-27 B.c.), Roman polymath and man of letters, was born at Reate in the Sabine country. Here he imbibed in his earlier years a good measure of the hardy simplicity and strong seriousness which the later Romana attrihuted to the men of the eatly republic-characteristics which were supposed to linger in the Sabine land after they had fled from the rest of Italy. The chief teacher of Varro was L. Aelius Stilo, the first systematic student, critic and teacher of Latin philology and literature, and of the antiquities of Rome and Italy. Varro also studied at Athens, especially under the philosopher Antiochus of Ascalon, whose aim it was to lead back the Academic school from the scepticism of Arcesilaus and Carncades to the tenets of the carly Platonists, as he understood them. He was really a stoicixing Platonist; and this has led to the error of supposing Varro to have been a professed Stoic. The inlluence of Antiochus is clearly to be seen in many remains of Varro's writings. The political career of Varro seems to have been late and slow; but he arrived at the prateorship, after having been tribuate of the people, quasstor and curule aedile. In politics and war he followed Pompey's lead; but it is probable that he was discontented with the course on which his leader entered when the first triumvirate was formed, and he may thus have lost his chance of rising to the consulate. He actually ridiculed the coalition in a work entitled the Thrce-Headed Honster (Tpuajpanos in the Greek of Appian). He did not, however, refuse to join the commission of twenty by whom the great agrarian scheme of Caesar for the reset tlement of Capue and Campania was carried into execution (59 s.c.). Despite the difference between them in politics, Varro and Cacsar had literary tastea in common. and were friends in private life. Under Pompey Varro saw muth active service: he was attached to Pompey as pro-quaestor, probably during the war against Sertorius in Spain. We next fird him, as legate, in command of a feet which kept the seas between Delos and Sicily, while Pompey was suppressing the pirates, and he even won the " naval crown," a coveted reward of personal prowess. A little later he was legate during the last Mithradatic war. In the conflict between Caesar and the Pompeian party Varro wis more than once actively engaged. In his Civil War (ii. 17-20) Caesar tells how Varro, when legate in Spain along with Alranius and Petrefus, lost his two legions without striking a blow, because the whole region where he was quartered joined the enemy. Caesar curiously intimates that, though Varro did his best for Pompey from a sense of duty, his heart was really with the other leader. Nevertheless he procceded to Epirus before the battle of Pharsalia, and awaited the result at Dyrrachium in the company of Cicero and Cato. Like Cicero, Varro received harsh treatment from Mark Antony alter the Pompeian defeat. Some of his property was actually plundered, hut restored at the hidding of Ciesar, to whom Varro in gratitude immediately dedicated one of his most important writings. The dictator employed the scholar in aiding him to collect and arrange great stores of Greek and Latin literature for the vast public library which he intended to lound. We have glimpses of Varro at this time in the Letiers of Cicero. He appears as harsh and severe, and a poor stylist. The formation of the second triumvirate again plunged Varro into danger. Antony took possession anew of the property he had been compelled \(t 0\) surrender, and inserted Varro's name on the list of the proscribed. His friends, bowever, afforded him protection. He was able to make peace with the triumvirs, but secrificed his properts and much of bis beloved library. He was permitted to spend in quiet study and in writing the lant fifteen years of his life. He is said to have died (\(27 \mathrm{~B} . \mathrm{c}\).) almost pen in hand.
Varro wat not surpassed in the couppess of his writings by a ay ancient, not even by any one of the later Greek philoscphers. to works. In a passage quoted by Gellius. Varro himself. when over eventy yeari of age, estimaled the number of "books": he had critten at 490; but "book" here meana, not merely such a work
as mas not mabdivided into portions, but also a portion of a subdivided wort. For example, the Krippean Salives numbered 150, and are all counted separately in Varro's estimate. Jerome made or copied a catalogue of Varro's works which has come down to ua in a murulased form. From chis and from ofher extant materials Ritichl has set down the mumber of the distinct literary works at 74 and the number of separate " books at about 630 . The hater years of the author's life were therfore even more fruitful than the earlier. The complete catalogue may be roughly arranged under three heads-(1) bellea bettres, (2) history and antiquiliea, (3) technical treatisa on philowopy, baw, grammar, ratheroatica, philology and other subjects.
The first of these three classes no doobt mainly belonged to Varro's earlier life. In poetry he reems to have attempted nothing that was very elaborote, and little of a erious character. His genius tended naturally in the direction of buriesque and satire. In belles lettres he showed himself throushout, both in malter and form, the pupil and admirer of Lucilius, alter whom he wrore satirea One poetical work probably consisted of short pieces in the style of the more satirical poems of Catullus. It is doubtful whether, as has often been supposed, Varro wrote a philosophical poem somewhat in the style of Lucretius: if so, it should rather be classed with the prose technical treatises. One curious production was an essay in popular illustrated literature, which was almost unique in ancient times. lis title was Imagines, and it consisted of 700 prose biographies of Greek and Roman celcbrities, with a meericil doogium for each, accompanied in each case by a portrait. But the lighter works of Varro have perished almost to the last line, with the exception of numerous fragments of the Menippean Salizes. The Menippus whom Varro imitated lived in the first hall of the 3 rd century b.c., and was born a Phoenician slave. He became a Cynic philosopher, and is a figure lamiliar to readers of Lucian. He flouted life and all philosophies but the Cynic in light compositions, partly in prose and partly in verse. A careful st udy of the frasments does not justify Mommsen's glowing account. That the remains exhibit variety and fertility, that there are in them numerous happy strokes of humour and satire, and many felicitous phrases and descriptions, is true, but the art is on the whole teavy, awkward and lorced, and the style rudely archaic and untasteful. The Latin is frequently as rough and uncouth as that of Lucilius. No doubt Varro contcmned the Hellenizing innovations by which the hard and rude Latin of his youth was translormed into the polished literary language of the late republican and the Augustan age. The titles of the Minippean Salires are ve: diverse. Sometimes personal names are chosen, and they range from the gods and demigods to the slaves, from Hercules to Marcipor. Frequently popular proverb or catchword in Greek or Latin supplies the designation: thus we have as tities "I've got You " (Exe of); "You don't Know what Evening is to Bring" (Nescis quid resper serus pehat): "Know Thyself" (rvît oecaurto). Orcasionally the heading indicates that the writer is flying at some social foliy, as in "Old Men are Children for the Seeond Time" (Als raider ol ripeores) and in the "Bachelor" (Coelebs). In many satires the philosophers were pounded, as in the "Burial of Menippus"" and "Concerning the Sects" (1leot alpeotur). Each composition seems to have been \(a\) genuine medley or lanx sctura: any topic might be introduced which struck the author's fancy at the moment. There are many allusions to persons and events of the day. bat political bitterness seems to have been commonly avoided. The whole tone of the writer is that of a laudator temporis acti, who can but scoff at all that has come into fashion in his own day. From the numerous citations in later authors it is cledr that the Menippean Satires were the most popular of Varros writings. Not very unlike the Menippean Sadires were the Libri Lopistorici, or satirical and practical expositions, possibly in dialogue form, of some theme most commonly taken from philosophy on its ethical side. A few fragments in this style have come down to us and a number of tities. These are twofold that is to tay, a persomal name is followed by words indicating the sabject-matter, as Mfarixs de Forluna, from which the contents may easily be guessed, and Sisemna de Historia, most likely a dialogue in which the old annat ist of the name was the chiel speaker, and discoursed of the principles on which history should be written. Among the lighter and more popula; works may be mentioned twenty-two books of Orations (probably never spoken). some fuaeral eulogies (Lazdaliones). some "exhortations" (Suasiones), conceivably of a political cha racter, and an account of the author's own life.

The wecond section of Varro's works, those on history and amiquities, form to the present day the basis on which a large part of our knowledse of the eatier Roman history. and in pariculay of Roman constitutional history. ultimately rests. These wrinings were used as a quarry by the compilers and dilettanii of later times, such as Pliny. Plutarch. Gellius. Festus. Macrobius, and by Christian ehampions like Tertullian. Amobius and Augustine, who did not disdain to seek in heathen literature the means of delending their faith. These men have saved for us a lew remains from the Rreat wreek made by time. Judging from what has been casually preserved. if any considerable portion of Varro's labours as antiquarian and historiaa were so be now discovered, scholars might
find themselues compellet to reconstruce the carlier history of the Roman republic from its very foundations. Varro's greatest predecessor in this field of inquiry, the man who turned over the virgin soil, was Cato the Censor. His example, however, seems to have remained unfruitful till the time of Varro's master, Lueius Aclius Stilo Praeconinus. From his age to the decay of Roman civilization there were never altogether wanting men devoted to the study of their nation's past; but none ever pursued the task with the advantages of Varro's comprehensive learning, his indefatigable intustry and his reverent yet discriminating regard for the men and the institutions of the earlier ages. The greatest work of this class was that on Antigutities, divided into forty-one books. Ot these the first twenty-five were entitled the Antiquitics of Humon Things (Anfiquitates Rerum Humanarum), white the renaining sixteen were designated the Antiquilies of Things Divine (Antiquitales Rerum Divinarmm). The book was the fruit of Varro's later years, in which he gathered together the material laboriously amassed through the period of an ordinary lifetime. The second division of the work was dedicated to Caesar as supreme pontiff. The design was as farreaching as that of the Natural History of Pliny. The general heads of the exposition in the secular portion of the book were four-(1) "who the men are who act (qui arant), (2) the places in which they act (rbij), (3) the times at which they act (quando), (4) the results of their action (quid agont)." In the portion relating to divine affairs there were divisions parallel to these four, with a fifth, which deale with the gods in whose honour action in divine affairs is taken. Our knowledze of this great book is to a large extent derived from the works of the carly Christian writers, and especially from Augustine's De Citilate Dei. Tliese writers naturally quote in the main from the religious section. It is a great misfortune that no similar series of citations from the secular part of the Antiquitates has come down to us. Most of the other historical and antiquarian writings of Varro were special elaborations of topics which he could not treat with sufficient fulness and minuteness in the larger book. The treatisc on the Gencalogy of the Romon Pcople dealt mainly with the relation of Roman chronology to the chronology of Greece and the East. Dates were assigned even to mythological occurrences, because Varro believed in the theory of Euhemerus, that all the beings worshipped as gods had once lived as men. To Varro's researches are mainly duc the traditional dates assigned to the era of the kings and to that of the carly republic. Minor writings of the same class were the De Vito Populi Romeni, apparently a kind of history of Roman civilization; the De Familis Trojanis, an account of the families who "came over" with Aencas: the Aetia (Alrie), an explanation of the origin of Roman customs, on which Plutarch drew largely in his Quacstiones Romange: a Tribum Liber, used by Festus; and the constitutional handbook writen for the instruction of Pompey when he became consul. Nor must the labour expended by Varro in the study of lierary history be forgotten. His activity in this direction, as in others, took a wide range. One of his greatest achievements was to fix the canon of the genuine plays of Plautus. The "Varronian plays" were the twenty which have come down to Us, along with one which has been lost.

The third class of treatises, which we have called technical, was also numerous and very varied. Philosophy, grammar, the history and theory of lanquage, rhetoric, law, arithmetic, astronomy, geometry, mensuration, agsiculture, naval tactics, were all represented. The only works of this kind which have come down to our days are the De Lingua Loling (in part) and the De Re Rustica. The former originally comprised twenty-five books, three of which (the three succeeding the first) are dedicated to a P. Septimius who had served with the author in Spain, and the last twenty-one to Cicero. The whole work was divided into three raain sections, the first dealing with the origin of Latin words, the second with their inflexions and other nodifications, the third with syntax. The books still preserved (somewhat imperfectly) are those from the fifth to the tenth inclusive. The Latin style is harsh, rugged and far from lucid. As Mommsen remarks, the clauses of the sentences are often arranged on the thread of the relative pronoun like thrushes on a string. The arrangement of the subject-matier. while pretending to much precision, is often far from losical. The fifth, sixth and seventh books give Varro's views on the ejym an of Latin words. The principles he applies sre th ve, ny th be by learned from the philosophers of the Stoie oxhbtmachapigpits
 etymologies could
their character,
their charact
book the hin
was thoron
the formb
was fall
schools of grammarians, those tho held that nature intended the declinationes of all words of the same class to proceed uniformly (which uniformity was called onalogio) and those who deemed that nature aimed at irregularity (amomalia). The matter is treated with considerable confusion of thought. But the facts incidentally cited concerning old Latin, and the statcments of what had been written and thought about language by Varrcis predecessors, are of extreme valuc to the student of Latin. The other extant prose work, the De Re Rustica, is in three books, each of which is in the form of a dialogue, the circumstances and in the main the interlocuton being different for each. The dramatic introductions and a lew of the interludes are bright and interesting, and the Latin sisle, though still awkward and unpolished, is far superior to that of the De Lingua Lalina.
Autionitiss.- The fragments of the different treatises have been partially collected in many separate publications of recent date. The best editions of the De Lingua Lasina are those by C. O. Muller and by L. Spengel (re-edited by his son in 1885). The most recent and best recension of the De Re Rusfice is that of Keil (Leiprig. 188q). Of modern scholars Ritsch] has deserved best of Viarro. Several papers in his Opuseula treat of the nature of Varro's works which have not come down to us. The work of G . Boissier. Efude sz? \(d a\) vie ef les ouvrages de M. T. Yarron (186s), though superficial, is still useful; but a comprehensive work on Varro, on the present level of scholarship, is greatily needed.
(J. S. R.)

VARRO, PUBLIUS TERENTIUS, sumamed Atacincs (\(c\). 82-36 B.C.), Latin poct, was born near the river Atax in Gallia Narbonensis. He was perhaps the first Roman born beyond the Alps who attained eminence in literature. He seems to have taken at first Ennius and Lucilius as his models, and wrote an epic, entitled Bellum Sequanicum, eulogizing the exploits of Caesar in Gaul and Britain, and also Salires, of which Horace (Satires, i. jo) speaks slightingly. Accordingly to Jerome, Varro did not begin to study Greek literature until his thirty-fith year. The last ten years of his life were given up to the imitation of Greek poets of the Alexandrian school. Quintilias (/nstit. x. 1, 87), who describes him 25 a " translator," speaks of him in qualified terms of praise. Although not vigorous enough to excel in the historical epic or in the serious work of the Roman satura, Varro yet possessed in considerable measure the lighter gifts which we admire in Catullus.

His chief poem of the later period was the Argonaulas, closely modelled on the epic of Apollonius Khodius. The age wias prolifis of epics, both historical and mythological, and that of Varro seems to have held a high rank among them. It is highly spoken of by Ovid (Am. i. 15. 2t, A.A. iii. 335. Tristio, ii. 439) a nd Statius (Silvae, ii. 7, 77), and Propertius (i. 34, 85) awards equal praise to his erotic elegies. Varro was also the author of a Cosmogroptia. or Chorographia, a geographical poem imitated from the Greek of Eratoshhenes or of Alexander of Epliesus, surnamed Lychnus; and of an Ephemeris, a hexameter poem on weather-signs afier Aratus, from which Virgit has borrowed. Fragments in A. Ricse's edirinn of the fragments of the Menippean Satires of Varto of Reate; see also monographs by F. Wülner (1829) and R. Unger (1861).
varthema (Barthema, Vertomannus, \&c.), Ludovico DI, of Bologna (fl. 1502-8510), Italian traveller and writer. He was perhaps a soldier before beginning his distant journeys, which he undertook apparently from a passion for adventure, novelty and the fame which (then especially) attended success. ful exploration. He Icht Europe near the end of e502: carly in 1503 he reached Alexandria and aseended the Nile to Cairo. From Egypt he sailed to Bcirut and thence travelled to Tripoli, Aleppo and Damascus, where be managed to get himself enrolled, under the name of Yunas (Jonah), in the Mameluke. garrison-doubtless after adopting Islam. From Damascus be made the pilgrimage to Mecca and Medina as one of tho Mayplake escort of the Hajj caravan (April-June 1503); fie devarbse the sacred cities of Islam and the chief pilgrim oftenand cetemonies with remarkable accuracy, almost all his detalebolog confirmed by later writers. With the view of? raching inding he embarked at Jidda, the port of Mecca, and Red Sea and through the Straits of Bab-elwhere he was arrested and imprisoned as a gained his liberty-after imprisonment both through the partiality of one of the made an extensive tour in south-wes \&c.), and took ship at Aden for the India. On the way be touched at Ziis
and Berbera in Somaliliand; be then (eariy in is04?) ran across to the Indian port of Diu in Gujarat, afterwards famous as a Portuguese fortress. From Dia be sailed up the Gulf of Cambay Lo Gogo, and thence turoing back towards the Persian Guif made Julfar (just within the entrance of the gulf), Muscat and Ormuz. From Ormuz he seems to have journeyed across Persia to Herat, returning thence south-west to Shiraz, where he entered into partnership with a Persian merchant, who accompanied him during nearly all his travels in South Asia. After an unsuccessful attempt to reach Samarkand, the two returned to Shiraz, came down to Ormuz, and took ship for India. From the mouth of the Indus Varthema coasted down the whole west coast of Indin, touching at Cambay and Chaul; at Goa, whence he made an excursion inland to Bijapur; at Cannadore, from which be again struck into tbe interior to visit Vijayanagar on the Tungabudra; and at Calicut (1505?), where he stops to describe the society, manners and customs of Malabar, as well as the topography and trade of the city, the court and government of its sovereign (the Zamorin), its justice, religion, navigation and military organization. Nowhere do Varthema's accuracy and observing power show themselves more strikingly. Passing on by the "backwater of Cochin," and calling at Kulam (Quilon), be rounded Cape Comorin, and passed over to Ceylon (15067). Though his stay here was brief (at Colombor), he learnt a good deal about the island, from which he sailed to Pulicat, slightly north of Madras, then subject to \ijayanagar. Tbence he crossed over to Tenasserim in tbe Malay Peninsula, to Banghella, perhaps near Chittagong, at the head of the Bay of Bengal, and to Pegu, in the company of his Persian friend and of two Chinese Christians (Nestorians?) whom he met at Banghella. Atter some successful trading with the king of Pegu, Varthema and his party sailed on to Malacca, crossed over to Pider (Pedir) in Sumatra, and theace proceeded to Bandan (Banda) and Monoch (one of the Molucras), the farthest eastward points reacbed by the Italian traveiler. From the Moluccas he returned westward, touched at Borneo, and there chartered a vessel for Java, the "largest of islands," as his Christian companions reckoned it. He notes the use of compass and chart by the native captain on the transit from Bornei to Giava, and preserves a curious, more than hall-mythical, reference to supposed Far Southern lands. From Java he crossed over to Malacca, where he and his Persian ally parted Irom the Chinese Christiens; from Malacca he returned to the Coromandel coast, and from Negapatam (?) in Coromandel he voyaged back, round Cape Comorin, to Kulam and Calicut. Varthema was now anxious to resume Christianity and return to Europe; after some time he succeeded in deserting to the Portuguese garrison at Cannanore (early in 1506 ?). He lought for the Portuguese in various engagements, and was knighted by the viceroy Francisco d'Almeida, the navigator Tristan da Cunha being his "sponsor." For a year and a hall he atted as Portuguese factor at Cochin, and on the oth of December I 507 (?) he finally left India for Europe by the Cape route. Sailing from Cannanore. Varthema apparently struck Africa about Malindi, and (probably) coasting by Mombasa and Kilwa arrived at Mozambique, where he notices the Port uguese fortress then building, and describes with his usual accuracy the negroes of the mainland. Beyond the Cape of Good Hope he encountered furious storms, but arrived safely in Liston after sighting St Helena and Aseension, and rouching at the Azores. In Portugal the king received him cordially, kept him some days at court "to learn about India." and confirmed the knighthood conferred by d'Almeida. His narrative finally brings him to Rome, where be takes leave of the reader. As Richard Burton says (Pilgrimage to . . Meccah. 1855, vol. ii. P. 352): "For correctness of observation and readiness of wit "Varthema "stands in the foremost rank of the old Oriental traveliers." In Arabia exd in the Indian archipelago east of Java he is (for Europe ad Christendom) a real discoverer. Even where passing over peapd traversed by earlier European explorers, his keen intelli4, Heit Irequently adds valuable original notes on peoples. manners, fy

Vartheman's work (rivierrerio de Ludenice de Varthema Bolopmess .) was Grst published in Italian at Rome in 1510 (ad institia de Lodoxico de Henrceas da Corneto Víctino). Other I Latian editions appeared at Rome, 1517, at Venice. 1518. 1535. 1563. 1589, \&c., at Milan, 1519. 1523. x525. Ace. Lutia translations appeared at Milan, 151 (by Archangelus Madrigqanus): and at Nuremberg, 1650 (Frankfort, 1611) ; as well as in the Noous Orbas of Simon Grypaelis (Basel, 1532). German versions came out at Augsburg, 1515 Strasbburg, 1516): at Strassburg, by Michal Herr, in hts Neco Well. Irom Grymaeus, 1534 : at Leipzig, by Hieronymus Megiserus, 1610 (and 1615). Rc. ASpanish translation was istured at Seville. 1520 (from the Latin). and a French at Lyons, 1556. Dutch versions were printed at Antwcrp, 1563 (from Grynacus), at Utrecht. 1615 (from the Leip \(\mathrm{I}_{\mathrm{g}}\) German of 16 ro), and again at Utrecht, 1655 . The first English translation was of 1576 -1 577 (in Richard Eden's History of Iravayle); an extract from Varthema was inserted in Samuel Purchass Piderimage (London, \(1625-1626\)); and in 1863 appeared the Hakluyt Society edition by J. W. Jones and G. P. Badger (Travels of Lidooico di Varthema, London).
(C. R. B.)

VARUNA, in early Hindu mythology, the greatcst, with Indra, of the gods of the Rig Veda. He is invoked with his double Mitra in some dozen hymns. As contrasted with Indra the war god, Varuna is the lord of the natural laws, the upholder of the physical and moral order of the universe. His power is limiticss, his anger at wrong-doing unassuageable, and be is omniscient. He makes the sunshine, the wind is his breath; river valleys are bollowed out at his command. Unlike Indra, Varuna bas no myths related of him. In the later Vedic period he is specially connected with the nocturnal heavens. Ultimately in post-Vedic mythology be becomes the Hindu Neptune. The earlier conception of Varuna is singularly similar to that of Ahuramazda of the Avesta. The name Varuna may be Indo-European, identigable, some believe, with the Greek oipaubs (Uranus), and ultimately referable to a root vor, "to cover," Varuna thus meaning "the Encompasser." Among Varuna's abiases are Jalapeti, "Lord of Water," and Amburaja. "King of Water."
See A. A. Macdonell, Vedic Mythology (Strassburg, 1897).
VASA, or Nigolastad, in the grand duchy of Finland, capital of the province of Vasa, on the east coast of the Gulf of Bothnia، 327 m . by rail north-west of Helsingfors. Pop. (1904) 18,028. It has two classical lyceums for boys and three for girls, a school of navigation, and a latge number of primary schools. There is a shipyard and a considerable export trade. Vasa was founded on the coast of the Gulf of Bothnia in 1606, but alter the great fire of 1852 , as the sea had already receded for a considerable distance, the town was rebuilt nearer to the shore and received the official name of Nikolaistad. The population of the province (1904) was 295, 187 .
VASABI, GIORGIO (5S11-157), Italian painter and architect, whose main distinction, however, rests on his valuable history of Italian art, was born at Arezzo on the 3oth of July 15 ni. At a very early age be became a pupil of Guglielmo da Marsiglia, a very skillul painter of stained glass, to whom he was recommended by his own kinsman, the painter Luca Signorelli. At the age of sixteen be went to Florence, where he studied under Michclangelo and Andrea del Sarto, aided by the patronage of the Medici princes. In 1529 he visited Rome and studied the works of Raphael and others of bis school. The paintings of Vasari were much admired by the rapidly degenerating taste of the r6th century; but they possess the smallest amount of merit, being in the main fceble parodies of the powerful works of Michelangclo. Vasari was largely employed in Florence, Rome, Naples, Arezzo and other places. Many of his pictures still exist, the most important being the wall and ceiling paintings in the great ball of the Palazzo Vecchio in Florence, and his firescoes on the cupola of the cathedral, which, bowever, were not completed at the time of his death. As an architect he was perhaps more successful: the loggia of the Uffizi by the Arno, and the long passage connecting it with the Pitti Palace, are his chief works. Unhappily he did much to injure the fine medieval churches of S. Maria Novella and Santa Croce. from both of which he removed the original rood-screen and loft, and remodelled the retro-choir in the degraded taste of his time. Vasari enjojed a very high repule
during bis lifetime and amassed a considerable fortunc. He built himself in 1547 a fine house in Arezzo, and spent much labour in decorating its walls and vaults with paintings. He was elocted one of the municipal council or priori of his native lown, and finally rose to the supreme office of gonfalonicre. He died at Florence on the 27 th of June 157 I .

Personally Vasari was a man of upright character, free from vanity, and always ready to appreciate the works of others: in spite of the narrow and meretricious taste of bis time, he expresses a warm admiration of the works of such men as Cimabue and Giotto, which is very remarkable. As an art historian of his country be must always occupy the highest rank. His great-work was first published in 1550 , and afterwards partly rewritten and enlarged in 1568 , bearing the title Delle Wite de pils eccellonti piltori, scultori, ad architcthori. It was dedicated to Cosimo de' Medici, and was printed at Horence by the Giunti; it is a small quarto illustrated with many good woodcut portraits. This cditio princeps of the complete work is usually bound in three volumes, and also contains a very valuable treatise on the technical methods employed in all branches of the arts, entitled Le Tre Arti del disegro, cioo architethura, pillurg, e scoltura. His biographies are written in a very pleasant style, interspersed with amusing stories. With a few exceptions Vasari's judgment is acute and unbiased. And though modern criticism-with all the new materials opened up by research-has done valuable work in upsetting a good many of his traditional accounts and attributions, the result is a tendency very often to underestimate Vasari's accuracy and to multiply bypotheses of a rather speculative character. The work in any case remains a classic, however it may be supplementod by the mote critical research of modern days.

Vosari gives a sketch of his own biography at the end of his Vite, and adds further details about himself and his family in his Lives of Lazzaro Vasari und Francesco Salviati. The best edition of Vasari's works is that published at Flonence by Milanesi (1878 -1882), which cmbodies the valuabie notes in the carlier edition by Le Monnier (1846); another, by Venturi, was begun in 1896 . The Lives has been translated into French, German and English (by Mrs Foster, London, 1830).

Vascular system. I. Anatouy.-The circulatory or blood vascular apparatus consists of the central pump or heart, the arteries leading from it to the tissues, the capillaries, through the walls of which the blood can give and receive substances to and from the tissues of the whole body, and the veins, which return the blood to the heart. As an accessory fo the venous system, the lymphatics, which open finally into the great veins, help in returning some of the constituents of the blood Separate articles are devoted to the heort, arteries, veins and lymphatic system, and it only remains here to deal with the capillaries.

The blood capillarics form a close network of thin-walled tubules from robo to \(5 \frac{1}{20} 0\) of an inch in diameter, permeating, with a few exceptions, the whole of the body, and varying somewhat in the closeness of its meshwork in different parts. In the smallest capillaries, in which the arteries end and from which the veins begin, the walls are formed only of somewhat oval endothelial cells, each containing an oval nueleus and joined to its adjacent ceils by a serrated edge, in the interstices nf which is a small amount of intercellular cement, easily" demonstrated by staining the preparation with nitrate of silver. Here and there the cement substance is more pientiful, and these spots when small are known as stigmala, when large as stomola. As the capillaries approach the attrries on the one hand and the veins on the other they hund and become lorget, and a delicate connective tissue sheath outside the endothefiom appears, so that the transition from the capillaries aptears, so that the transition fromt the capillaries to the Vicurcigarius of Carpi (03.8530) investigated the from size, is practically of its connective tissue

Embryology:-The the body of the \(\mathrm{em}^{2}\) the meooderm or the

The process is very early one and in the chick is seen to begin at the end of the first day of incubation. The first occurtence is a network made up of solid cords of cells forming in certain places solid cell masses called the Blood islands of Pander. The central cells of these islands divide by karyokinesis and gradually float a way into the vessels which are now being lormed by fuid from the exterior, finding its way into the centre of the cell cords and pressins the peripheral cells flat to form the endothelial lining. These frec celis from the blood islands are known as erythroblasts and are the primitive corpuscles of the foetal blood. They have a large reticular nucleus and at first are colourless though hacmoglobin graduatly develops within them and the blood becomes red (see Blood). The erythroblasts continue to multiply by karyokinesis in early foetal life, especially in the liver. spleen, bone marrow and lymphatic glands, though later on their formation only occurs in the red bone marrow. In most of the erythroblasts the nucleus soon become contracted, and the cell is then known as a normoblast. while ultimately the general view is that the nucleus disappears by extrusion from the cell and the non-nucleated red blood plates or erythrer ytes remain. The leucocytes or white blood corpuscles agpear lave than the red, and are probably formed from lymphond tissue in various parts of the body. The blood vessels thus formed in the so-called vascular area gradually travel along the vitelline stalk into the body of the embryo, and two vessels larger than the rest are formed one on each side of the stalk. These are the vitelline veins, which, as they pass towards the caudal end of the embryo. become the two primitive aortae, and these fuse later on to form the heart. After the inversion of the pericardial region and formation of the head fold (see Coelom ano Serous Miembranes) the front of the developing beart becomes the back, and the vitelline veins ncw enter it Irom behind. It must be understood that mosit of our knowledge of the early history of the blood vessels is derived from the study of lower mammals and birds, and that this is being graduallychecked by observations on human embryos and on those of other primates It socms probable that in these mammals, owing to the small size of the yolk sac, the vessels of the embryo establich an early communication with those of the chorion before the vitelline veins are formed (see Quain's Anatomy, vol. i., London, 1908). The later stages of the embryology of the vascular system are sketched in the articles on Heart, Arteries, Veins and Lymphatic Sysem (q.v.).

\section*{II. History of Discovery}

Galen, following Erasistratus (ob. 280 s.c.) and Aristotie, clearly distinguished arteries from veins, and was the first to overthrow the old theory of Erasistratus that the arterics contained air. According to him, the vein Cake. arose from the liver in two great trunks", the sena porla and rene cava. The first was formed by the union of all the abdominal veins, which absorbed the chyle prepared in the stomach and intestines, and carried it to the liver, where it was converted into blood. The vena cava arose in the liver, divided into two branches, one ascending through the dia. phragm to the heart, furnishing the proper veins of this organ; there it received the sena anygos, and entered the right veritricle, along with a large trunk from the lungs, evidentiy the pulmonary artery. The vena azygos was the superior ceris sada, the great vein which carries the venous blood from the head and upper extremities into the right auricle. The descending branch of the great trunk supposed to originatt in the liver was the inferior rene cara, below the junction o: the hepatic vein. The arterics arose from the left side of the heart by two trunks, one having thin walls (the pulmonary veins), the other having thick walls (the aorta). The first was supposed to carry blood to the lungs, and the second to carry blood to the body. The heart consisted of two ventricles, communicating by pores in the septum; the lungs were patenchymatous organs comntunicating with the heart by the pulmonary veins. The blood-naking organ, the liver, separates from the blood subule vapours, the natural spirits, which, carricd to the heart, mix with the sit introduced by respiration, and thus form the vilal spivits; these, in turn carried to the brain, are efaborated into animal spirits, which are distributed to -
be studied its structure, pointing out the fibrous rings at the bases of the ventricles; he showed that its wall consists of layers of fibres connected with the fibrous rings; and he described these layers as being of three kinds-straight or vertical, oblique, and circular or transverse. From the disposition of the fibres he reasoned as to the mechanism of the contraction and relaxation of the beart. He supposed that the relaxation, or diastole, was accounted for principally by the longitudinal Gbres contracting so as to draw the apex towards the base, and thus cause the sides to bulge out; whilst the contraction, or systole, was due to contraction of the transverse or oblique fibres. He showed that the pores of Galen, in the septum between the ventricles, did not exist, so that there could be no communication between the right and left sides of the heart, except by the pulmonary circulation. He also investigated minutely the internal structure of the heart, describing the valves, the columnae carneac and the muscuti papillares. He described tbe mechanism of the valves wilh much accuracy. He had, however, no conception either of a systemic or of a pulmonary circulation. To him the heart was a reservoir from which the blood ebbed and flowed, and there were two kinds of blood, arterial and venous, having different circulations and serving different purposes in the body. Vesalius was not only a great anatomist: he was a great teacher; and his pupils carried on the work in the spirit of their master. Prominent among them was Gabriel Fallopius (1523 -1562), who studied the anastomoses of the blood vessels, without the art of in. jection, which was invented by Frederick Ruysch (1638-1731) more than a century later. Another pupil was Columbus (Matthicu Reald Columbo, ob. 1560), first a prosector in the anatomical rooms of Vesalius and afterwards his successor in the chair of anatomy in Padua; his name has been mentioned as that of one who anticipated Harvey in the discovery of the circulation of the blood. A study of his writings clearly shows that be had no true knowledge of the circulation, but only a glimpse of how the biood passed from the right to the left side of the heart. In bis work there is evidently a sketch of the pulmonary circulation, although it is clear that he did not understand the mechanism of the valves, as Vesalius did. As regards the systemic circulation, there is the notion simply of an oscillation of the blood frum the heart to the body and from the body to the beart. Further, he upholds the view of Galen, that all the veins originate in the liver; and he even denies the muscular structure of the heart. \({ }^{1}\) In 1553 Michael Servetus (isiti-1553), a pupil or junior fellow-student of Vesalius, in his Christianismi Restifytio, described accurately the puimonary circulation. \({ }^{2}\) Servetus perceived the course of the circulation from the right to the left side of the heart through the lungs, and he also recogalied that the change from venous into arterial blood took place in the lungs and not in the left ventricle Notsomusit the recognition of the pulmonary circulation, as that had be:n made previously by Columbus, but the discovery of the respiratory changes in the lungs constitules Servetus's claim ts be a pioneer in physiological science.

Andrea Cesalpino (\(1510^{-1603}\)), a great naturalist of this period, also made important contributions towards the disceateres covery of the circulation, and in Iialy he is regarded cesertan as the real discoverer \({ }^{3}\) Cesalpino knew the pulmonary circulation. Further, be was the first to use the

An interesting account of the vicws of the procursors of Harvey will be lound in Willis's edition of the Works of Harvey, published by the Sydenham Society. Compare also P. Floupcns, Histoire de da decouncte de la circulalion du sang (Paris, 1854), and Prolesonr R. Owen. Experiquental Physcotogy, its Benefis to Markind, whih an Address om Umending the Siatue of W. Harwy, of Fobkestonc, 6 h Augues s8St.

Sce Willis, Serpefus and Calcin (London, 1877).
- A learncd and critical serics of articles by Sampson Gamgee in the Lancet, in 1876 . gives an excellent account of the controversy is to whether Cestpino or Harvey was the true dicroverer of the
circulation: girculation: see also the Jlarveran oration for 1882 by Croorst July 1882), an
October 1882.
term "circulation," and he went far to demonstrate the systemic circulation. He experimentally proved that, when a vein is tied, it fills below and not above the ligature. The following passage from his Qwaestiones Modicae (lib. v. cap. 4, fol. 125), quoted by Gamgee, shows his-views:-
"The lungs, therefore, drawing the warm blood from the right ventricie of the heart through a vein like an artery, and returing it by anastomosis to the venal artery (pulmonary vein), which tends towards the left ventricle of the heart, and air, being in the meantime transmitted through the channcls of the aspera arteria (trachea and bronchial tubei), which are extended near the venal artery, yet not communicating with the aperture as Galen thought. tempers with a touch only. This circulation of the blood (huio sanguinus circulationi) from the right ventricle of the heart through the lungs into the left ventricle of the same exactly agrees with what appears from dissection. For there are two receptacles ending in the night ventricle and two in the keft. But of the two only one intromits; the other lets out, the membraues (valves) being constituted accordingly.
Still Cesalpino dung to the old idea of there being an efllux and reflux of blood to and from the heart, and he bad confused notions as to the veins conveying nutritive matter, whist the arteries carried the vital spirits to the lissues. He does not even appear to have thought of the heart as a contractive and propubsive organ, and attributed the dilatation to "an effervescence of the spinit," whilst the contractionor, as he termed it, the "collapse "-was due to the appropriation by the heart of nutritive matter. Whilst he imagined a communication between the termination of the arteries and the commencement of the veins, he does not appear to have thought of a direct flow of blood from the one to the other. Thus he cannot be regarded as the true discoverer of the circulation of the blood. More recently Ercolani has put forward clains on behalf of Carlo Ruini as being the true discoverer. Ruini published the first edition of his anatomical writings in 1598 , the year William Harvey entered at Padua as a medical student. This claim has been carelully investigated by Gamgee, who has come to the condusion that it cannot be maintained.4

The anatomy of the heart was examined, described and figured by Bartolorneo Eustacheo (c. \(1500-1574\)) and by Julius Caesar Aranzi or Arantius (c. \(1530-1589\)), whose name is associated with the fibro-cartilaginous thickenings on the free edge of- the semilunar valves (corpora Arontii). Hieronymus Fabricius of Acquapendente (1 537-1619), the immediate predecessor and teacher of Harvey, made the important step of describing the valves in the veins; but he thought they had a subsidiary office in connexion with the collateral circulation, supposing that they diverted the blood into branches near the valves; thus he missed secing the importance of the anatomical and experimental facts gathered by himself. At the time when Harvey arose the general notions as to the circulation may be bricly summed up as follows: the blood ebbed and fowed to and from the heart in the arteries and veins; from the right side at least a portion of it passed to the left side tbrough the vessels in the lungs, where it was mised with air; and, lastly, tbere were two kinds of blood-the venous, formed originally in the liver, and thence passing to the heart, from which it went out to the periphery by the veins and retumed by those to the heart; and the arterial, containing "spinits" produced by the mixing of the blood and the air in the lungo-sent out from the heart to the body and returning to the heart by the same vessels. The pulmonary circulation was understood so far, but its relation to the systemic circulation was unknown. The action of the heart, also, as a propulsive organ was not recognized. It was not unill 1628 that Harvey announced his views to the world by publishing his trealise De Malu Cordis a Sanguinis. His conclusions are given in the following celebrated passage:-
"And now I may be allowed to give in bricl my view of the circulation of the blood, and to propose it for general adoption. Since all things, both argument and ocular demonstration. show that the blood passes through the lungt and heart by the nuricies and
'Gamgee, " Thind Historical Fragment," in Lonea, 1876.
ventricles, and is sent for distribution to all parts of the body, where it makes its way into the veins and pores of the flesh, and then fiows by the veins from the circumference on every silfe to the centre, from lesser to the greater veins, and is by them finally discharged into the vena cava and right auricte of the heart, and this in such a quantity, or in such a flux and rellux, thither by the arteries, hither by the veins, as cannot possibly be supplied by the ingestor, and is much greater than can be required for mere purposes of nutrition. It is absolutely necessary to conclude that the blood in the animal body is impelled in a circle, and is in a state of ceascless motion: that this is the act orfunction which the heart pecforms by means of its pulse, and that it is the sole and only end of the motion and contraction of the heart "(bk. x. ch. xiv. p. 68).
Opposed to Caspar Hofmann of Nuremberg (1571-1623), Veslingius (Vesling) of Padua (1598 - \(\mathbf{3}(40\)) , and J. Riolanus the younger, this new theory was supported by Roger Drake, a young Englishman, who chose it for the subject of a graduation thesis at Leiden in 1637 , hy Werner Rolfinck of Jena (15008673), and especiaily by Descartes, and quickly gained the ascendant; and its author had the satisfaction of seeing it confirmed by the discovery of the capiltary circulation, and unicaplltary versally adopted. The circulation in the capillaries circula- between the arteries and the veins was discovered by von. Marcellus Malpighi (1628-1694) of Bologna in 166 I . He saw it first in the lungs and the mesentery of a frog, and the discovery was announced in the second of two letters, Epistola de Pulmonibus, addressed to Bortlli, and dated 66 r. \({ }^{\text {. }}\) Malpighi actually showed the capillary circulation to the astonished eyes of llarvey. Anthony van Lecuwenhock (\(3632-1723\)) in 1673 repeated Malpighi's observations, and studied the capillary circulation in a bat's wing, the tail of a tatpole and the tail of a fish. William Molyncux studied the circulation in the lungs of a water newt in \(1683^{\text {. }}\) ?
The idea that the same blood was propelied through the body in a circuit suggested that life might be sustained by renewing

Transfer
of blaod. the blood in the event of some of it being lost. About 1660 Luwer, a London physician (died 169), sueceeded in transferring the blood of one animal directly from its blood vessels into those of another animal. This was first done by passing a "quill" or a "small crooked pipe of silver or brass" from the carotid artery of one dog to the jugular vein of another. \({ }^{3}\) This experiment was repeated and modified by Sir Edmund King (1629-1709), Thomas Coxe (\(1615-1685\)), Gayant aud Denys with such suecess as to warrant the operation being performed on man, and accordingly it was carried out by Lower and King on the a3rd of November 1667, when blood from the arteries of a sheep was directly introduced into the veins of a nan. \({ }^{4}\) It would appear that the operation had previously been performed with success in Paris.

The doctrine of the circulation being acecpted, physiologists next directed their attention to the force of the heart, the Fonce of pressure of the blood in the vessels, its velocity, beartand and the phenomena of the pulse wave. Giovanni velocky
of blood. Alphonso Borelli (\(1608-1670\)) investigated the circulaof blood. tion during the lifctime of Harvey. IIc carly conceived the design of applying mashematical principles to the explanaBorstl. Lion of animal functions; and, although he fcll into many crrors, he must be regarded as the founder of animal mechanics. In his Dc Motu Anindium (\(1680-85\)) he stated his theory of the circulation in eighty propositions, and in prop. Axxiis., founding on a supposed relation between the bulk and the strength of muscular fibre as found in the ventricles, erroneously concluded that the force of the heart was equal to the pressure of a weight of \(180,000 \mathrm{lb}\). He also recognized and figured the spiral arrangement of fibres in the ventricles. The question was further investigated by James Keill, a Scottish physician (\(1673-1719\)), who in his Acconnt of Animal Secration, the Quantity of Bload in Keid. the Human Pody, and Muscular Motion (1708) attempted tw estimate the velocity of blood in the 2orta, and gave it at saft.
\[
\text { Sce his Opera Omnia, vol i. p. } 328 .
\]
\({ }^{2}\) Lowhorp. Abradgement of Truns. Roy. Sor., gith p. 230 .

Plilid. p. 231 . 1 bide g zer
per minute. Then, allowing for the resistance of the vesseis, he showed that the velocity diminishes lowards the smallier vessels, and arrived at the amazing conclusion that in the smallest vessels it travels at the rate of \(\frac{1}{6}\) in. in 278 days,-a good example of the extravagant errors made by the mathematical physiologists of the period. Keill further described the hydraulic phenomena of tine circulation in papers communi. cated to the Royal Society and collected in his Essoys on Seroral Parts of the Animal Occonomy (1717). In these escays, by estimating the quantity of blood thrown out of the heart by each contraction, and the diameter of the aortic orifice, be calculated the velocity of the blood. He stated (pp. 84, 8-) that the blool sent into the aorta with cach contraction would form a cylinder \(\$ \mathrm{in}\). (2 oz.) in length and be driven along with a velaciny of 156 ft . per minute. Estimating then the resistances to be overcome in the vessels, he lound the lorce of the heart to be "Little above 16 oz.," - a remarkable difference from the computation of Borelli. Keill's racthod was ingenious, and is of historical interest as being the first atternpt to obtain quantitative results; but it failed to obtain true results, because the data on which he based his calculations were inacrurate. These calculations attracted the attention not only of the anatomico-physiologists, such as Haller, but alio of some of the physicists of the time, notably of Jurin and D. Bernoulli. Jurin (died \(\mathbf{8 7 5 0}\)) gave the force of the licit vemericle at 9 lb \(10 z\).. and that of the right ventricle at \(6 \mathrm{lb}_{3} \mathrm{oz}\). He also stated with remarkable clearness, consitering that he reasoned on the subject as a physicist, without depending on experimental data gathered by himself, the influence on the pulse induced by variations in the power of the heart or in the resistance to be overcome. \({ }^{3}\) The experimental investigation of the problem was supplied byStephen IIales (\(1677-1761\)), rector of Tedelinglon in Midulesex, who in yos devised the metboil of estimating the force of the heart by inserting at tube into a large artery and observing the height to which the blood was impelled into it. 1 lales is the true lounder of the modern experimental method in physiology. He observed in a horse that the blood rose in the vertical tube, which he had connceted with the crural artery. to the height of \(8 \mathrm{ft}, 3 \mathrm{in}\). perpendicular above the level of the Left ventricle of the heart. But it did not attain its full beight at once: it rushed up about hall-way in an instant, and afterwards gradually at each pulse \(12,8,6,4,2\), and sometimes 1 in. When it was at its full height, it would rise and fall at and alter each pulse 2,3 or 4 in .; and sometimes it would fall 12 or 14 in. and have there for a time the same vibrations up and down at and after cach pulse as it had when it was at jts full height, to which it would rise again after forty or fifty pulses." He then estimated the capacity of the left ventricle by a method of employing wasen casts, and, after many such experiments and measurements in the horse, ox, sheep, fallow dece and dog, be calculated that the force of the left venuricle in man is ahout equal to that of a column of blood \(7 \frac{1}{2} \mathrm{ft}\). high, weighing \(51 \frac{1 \mathrm{lb}}{\mathrm{l}}\), or, in other words, that the pressure the left veritricte has to overcoms is equal to the pressure of that weight. When we contrast the enormous estimate of Borclli (\(280,000 \mathrm{lb}\)) with the under-estims!: of Keill (16 oz .), and when we know that the estimate of Stepbes Hales (\(1677-1 ; 61\)), as corroborated by recent investigations 1 means of claborate scientific applances, is very near the tru:t we recognize the far higher service readered to science by earett and judicious experiment than by speculations, however in genious. With the exception of some calculations by \(n\). Bernoulli (\(1700-17 \$_{2}\)) in 1948 , itere was no great contributios to hacmadynamics till 2 So8, peared fr at Themias Young
entllion H Hydraulic formy
resistance occasioned by lexures in pipes and rivers, the propagation of an impulse through an elastic tube, and some of the phenomena of pulsacions. This paper was preparatory to the second, "On the Functions of the Heart and Arteries,"-the Croonian lesture for 1808 -in which he showed more clearly than had hitherto been done (1) that the blood pressure gradually diminoshes from the heart to the periphery; (2) that the veiocity of the blood becomes less as it passes from the greater to the smaller vessels; (3) that the resistance is chiefly in the smalier vessels, and that the elasticity of the coats of the great arteries comes into play in overcoming this resistance in the interval between systoles; and (4) that the contractile coats do not act as propulsive agents, but assist in regulating the distribution of blood.'

The next epoch of physiological investigation is characterized by the introduction of instruments for accurate measurement, Use of and the graphic method of registering phenomena, Instrive mente. and in 1838 Ernest Weber's (1795-1878) Ad Nolat. Ana. \(t 0 \mathrm{~m}\). et Physiolog. i., both of which contain an exposition of E. H. Weber's schema of the circulation, a scheme which presents a true and consistent theory. In 1826 Jean Louis Marie Poiseuille invented the haemadynamometer. \({ }^{2}\) This was adapted with a marker to a recording cylinder by Ludwig in 1847, so as to form the instrument named by Alfred Volkmann (\(1801-1877\)) the kymograph. Volkmann devised the haemadromometer for measuring the velocity of the blood in 1850 ; for the same purpose Vierordt constructed the hacmatacbometer in 1858; Chauveau and Pierre Lortet (1792-1868) first used thcir haemadromograph in 1860; and lastly, Ludwig and Dogiel obtained the best results as regards velocity by the "stream-clock" in 2867 . As regards the pulse, the first sphygmograph was constructed by Karl Vierordt (1818-1884) in \(18{ }^{56}\); and Etienne Marey's form, of which there are now many modifications, appeared in 1850 . In 1861 Jean Chauveau (b. 1827) and Marey obtained tracings of the variations of pressure in the heart cavities (sce below), by an experiment which is of great historical importance. During the past twenty-five years vast accumulations of facts have been made through the instruments of precision above alluded to, so that the conditions of the circulation, as a problem in hydrodynamica, have been thoroughly investigated. Since 1845, when the brothers Weber discovered the inhibitory action of the vagus, and 1858, when Claude Bernard (\(1813-1878\)) formulated his rescarches showing the existence of a vaso-motor system of nerves, much knowledge has been acquired as to the relations of the netvous to tbe circulatory systern. The Webers, John Reid (1816-1805), Claude Rernard and Carl Tudwig (isoo-1840)
to those whose researches have becn more especially alluded to in this historical sketch. The Whebers took the first step towards recognizing the great principle of inhibitory action; John Reid showed how to investigate the functions of nerves by his classical research on the eighth pair of cranial nerves; Claude Bernard developed the fundamental conception of vaso-motor nerves; and Ladwris showed how this conception, whilst it certainly made the hydraflc problems of the circulation infinitely more romplicated than they were even to the seientific imagination af Thamas Young, eccounted for some of the pbenomena and incicated at all eveats the solidarity of the arrangemeats in Further, Ludwig and his pupils used tbe some of the phenomena of the circulation enervous system, y in a scientific (U. G. M.)

Landon.
riptr. (Paris,

\section*{III. PBysiolocy}

The unicellular animal immersed in water absorbs nutritive matter and oxygen, and excretes waste materials with its whole surface. Owing to the small mase of the protoson the metabolic products can penetrate througbout the whole. With the evolution of the multicellular organs of the metazoa and the division of physiological tabour a circulatory mechanism became of immediate need.

\section*{TV \\ Eractal \\ - citer \\ colvions} can exist, it is true, without such a mechanism, bui communities of polypes, such as the sponges, form channels for the circulation of water. With the deveiopment of the three-layered animal the coelom or body cavity arose by the splitting of the mesoderm, and it was in this body cavity that the evolution of the circulatory system took place, an evolution which finally became perfected in the higher members of the metazo into a closed vascular system filled with red blood. The evolution of the red matter, haemoglobin, as a special carrier of oyygen was necessitated by the increasing mass and muscular activity of the higher animal, in comparison with the size of the oxygetabsorbing surface-the gill or lung. The blood vascular system of the invertebrata such as the Arthropoda and Insecta, is not generally a closed system, but consists of a pulsatile heart whence proceed arteries which open into lacunar spaces forming part of the coelom. The lacunae exist between the organs and tissues of the body, and the blood from these spaces is returned to a venous sinus whence the heart draws its supply through valved openings. The movements of the animal belp to return the blood from the tissue spaces to the heart, while the heart by its rhythaic contraction drives the blood into the arteries. Somewhere in the course of this system are placed the gills and renal organs, and it appears to be a matter of indifference whether the gills be placed on the arterial or venous side of the system, both arrangements being found in different types. In some types (mussel, earthworm), the whole blood passes through the renal organs at each circulation, in others (crayfish) only parts. In the earthworm the vascular system is closed, the arteries and veins being connected by capillaries in place of lacunae. The movement of tissue juices may be maintained by physico-chemical fortes alone, e.g. by the forces of osmosis and adsorption, as is seen in the movements of sap in the vascular bundles of plants, in the streaming of protoplasm in the plant cell and in the marvellous rhythmic to-and-fro movements of the richly granular juice contained in the veins of the spreading protoplasmic sheet of myxomycetes. Such agencies come into piay in the lacunar or capillary part of the circulation of the metaroa and are assisted by the movements of the body wall and of the alimentary organs. The evolution of a special pumping organ, the heart, associated with the aeration of the body fluids in the gills, led to the perfection of the efficient system of circulation which is found in the vertebrata.

The blood is to be regarded as alive in as strict a sense as any other component of the living body. It is a tissue consisting of mobile element-the blood corpuscles-and a plasmaa colloidal albuminous fluid which is analogous to tbe more solid intercellular material of otber tissues. The primary sources of its clements are the blood-forming organs-the bone marrow, the baemolymph and lymphatic giands and other lymphatic tissuc, and the spleen. It circulates as the middleman between the tissues, conveying from the alimentary canal the products of digestion-sugas, fat, aminoacids and salts; oxygen from the lungs; carbonic acid, urea and other waste products of the tissues to the lungs and kidneys; internal secrations from one organ to another; and acts not only as a carrier, but deals with the material remitted to it on tbe way. One other function of the blood, a most important one, must not be omitted, that of defence against the invasion of bacteria and tbeir toxins, and other parasites.

The blood is contained in a continuous system of vessels; arkeries lead from the heast and divide into a multitude of
copillary vessels, and these lead into the orins which finally pass back to the heart. The heart is to be regarded as a The course of the cire culation In masan arats. double organ, each half consisting of an auricle and a sentricle. The right half contains dark venous blood which has been returned from the body and is sent to the lungs: the left heart contains the bright oxygenated blood which has been returned from the lungs and is distrihuted to the body. There are thus two circu- lations-the one pulmonary, from the right side of the heart to the pulmonary artery and thence to the capillaries of the lungs and to the left heart hy the pulmonary veins-the other systemic, from the left side of the heart, by the aorta, to the arteries and capillaries of the body tissues and crgans, whence the blood returns by the veins to the right side of the heart.

A schematic representation is given of the circulatory system in the accompanying diagram. The venous blood flows into the right auricle (RA) from the superior vena cava and the inferior vena cava. The right ventricle (RV) drives through the lungs the blood received from the right auricle. The right auriculo-ventricular valve, or tricuspid, and the pulmonary semilunar valve are represented directing the flow of blood in this direction. From the pulmonary capillaries the blood

Fig.i.-GeneralCourse of Circulation and some of the Principal Veasels. \(\mathrm{H}^{\prime}\), right ventricle; \(H\), left ventricle: \(A, A, A\), aorta: h. part of left auricie: \(P\), pul. monary artery, going to lungs: \(\mathbf{P}\), pulmonary veins: \(t\), ascending or lower vera cava: e. trachea or wind-pipe: \(p\). \(p^{\prime}\), bronchial tubes; \(a^{\prime}, a\), right and left carotid arterica; v. \(v^{\prime}\), veins from root of neck (internal jugular and subclavian), joining to form descending or upper vena cava: i. hepatic artery \(i\), hepatic vein; I, superior mesenteric artery, going to mesentery and bowels: L, portal vein, going to liver: \(k^{\prime}\), renal artery: \(k\) renal vein: \(V\), inferior vena cava, spliting into the two iliac veins, d , p .

Fig. 2.-Scheme of the Circulation of the Blood in Man, standing crect. The venous system is stippled. C, rigid cranial wall; \(N\), muscles and cutancous wall of neck; T, thoracic wall; A, muscular and cutaneous wall of ab . domen: D, diaphragm; L, muscles and cutaneous wal! of limbs; P , pericardium: AO, aorta; S.V.C, I. V.C, venae cavae: P.V. portal vein; \(V\). valves in veins of neck, or legs; RA, LA, right and left auricles; RV, LV, right and left venericles.
returns by the pulmonary veins (PV) into the left auricle (LA), and wo throurio. ivates. auriculo-ventricular or mitral valve
into the left ventricle (LV). By the left ventricle the blood is driven through the aortic semilunar valve, and is distributed to the systemic arteries, and so to the capillaries of the various organs and back to the veins. The muscular wall of the auricles and that of the right ventricle are much thinner than that of the left ventricle. This is so, hecause the evergy required of the left ventricle must exceed that of the right ventricle, inasmuch as the resistance in the systemic system exceeds that in the pulmonary circuit.

The heart fills with venous blood during its expansion or diastole, and forces the blood into the arteries during its contraction or systole. The large arterics are of less capacity than the corresponding veins, and their walls are cssentially extensile and elastic. The pulmonary arteries are especially extensile structures. The small arteries and arterioles are essentially muscular tubes and can vary considerably in diameter. The arterioles epen into the capillaries, and these are so numerous that each organ may be regarded as a sponge fuil of blood. The skeletal muscles and the muscular walls of the viscera at each contraction express the blood within them, and matcrially influence the circulation. The whole muscular system, as well as the heart, must therefore be regarded as a pump to the vascular system. The capillary wall is composed of a single layer of flattened cells, separating the blood within from the tissues without. Through this layer, which is of extraordinary tenuity, there takes place an exchange of material between the blood and the tissues, an exchange which depends on the physico-rbenical conditions which characterize the living state of the cells. The phenomena of adsorption and osmosis come into play here, but the conditions still await complete elucidation. The veins are of larger calibre than the corresponding arteries, and have tough and inextensile walls. Their walls are muscular, and contract on local stimulation. The veins are not, as a rule, distended with blood to their full potential capacity. The latter is so great that the whole blood of the body can collect within the veins.

The heart and lungs are placed within the thoracic cavity (T), the floor of which is formed by the muscular diaphragm (D); the heart is itsell enclosed in a tough inextensile bag. the pericardium (P), the function of which is to check overdilatation of the beart. The pericardium hears to the muscular wall of the heart the same relation as the leather case of a foothall does to the bag within. In particular, it prevents over-distension of the heart during muscular efforts.

The abdominal organs and blood vessels are encompassed by the muscular wall of the abdomen (A), and may be regarded as enclosed in a sphcre of muscle. Above is the dome of the diaphragm (T), and below the basin-like levator ani, closing the outlet of the pelvis; in front are the recti muscles, behind the quadrati lumborum and the spine; while the ohlique and transverse muscles complete the wall at either side. The hrain is enclosed in a rigid and unyielding box of bone-The cranium, while the limbs are encompassed by the extensile and, in health, taut and clastic skin.

The heart's energy is spent in maintaining a pressure of blood in the clastic arteries, and by the difference of pressure in the arteries and veins the hlood is kept flowing through the capillarics into the veins. The movements of the body and particularly of respiration help to return the blood from the capillatics and veins hack to the heart, valves being set in the veins to direct the blood in this direction. The blood is a viscous Rluid and its viscosity varics; it is propelled by a heart which varics both in rate and energy; it circulates through a system of muscular and elastic arteries and veins. which varies in capacity and may alter in elasticity. The width of bed through which it flows varies greatly at different parts of the circuit, and the resistance offered to the moving blood is very much greater in the capillary-sized vessels than in the large arteries and veins. The blood continually varics, hoth in quantity and in quality, as it effects exchanges through the capillary walls with the tissues. The problems of the
circulitior ase thua far from sifmple: They resolve themedves mainly fnto a considerntion of (\(t\)) the physiology of the heart;

Exc. 3.-The Thoracic Viscera. In this diagram the lungs are turned to the side, and the pericardium removed to display the beart. \(a\), upper, \(a^{\prime}\), lower lobe of left lung; \(b\), upper. \(b^{\prime}\), middic. \(b^{\prime}\), lower lobe of right lung; \(c\). traches; \(d\), arch of aorta; e, superior vena cava; \(f\), pulmonary artery; \(f\). left, and \(h\), right auricle; \(k\), right, add \(l\), heft ventricle; \(m\), mferior vena cava: \#, descending aorta; 1 , innominate artery; 2, right, and 4, left common carotid arters; 3. right, and 5 , left subclavian artery: 6,6 , right and left innominate vein; 7 and 9 , left and right internal jugular veins: 8 and 10, left and right subclavian veins; \(18,82\). 13. left pulmonary artery, bronchus and vein; 14, 15, 16 , right pulmonary bronchus, artery and vein; 17 and i8, left and right coronary arteties.
(2) the physical characters of the circulation; (3) the control af the heart and veseels by the nervous system.

Fic. 4-Diagram of Chambers of Heart and Large Vespels.
A. Vena cava, superior.
B. Vena cava, inferior.
C. Pulmonary artery.
D. Aorta
E. Right auricle
F. Right ventricle
G. Left auricie, into which open the four pulmonary veins.
H. Left ventricle.

The arrowy point the course of the blood.

A. Teith in Jownel of A many end Piyyielecy.
Fig. 5.-Showing the Attachments of the Heart. \(a_{y}, a_{\text {, }}\) auricular base of ventricle: \(c, c\). aortic base of ventricles; \(d_{i} d\), arterial menocardium; \(e, e\), venous mesocardium; \(f\), ascending aorta ; e. pulnonary aorta; \(h\), superior vena cava; i, inferior vena cava, perforating diaphragm and pericardium; \(I\), \(m\), \(m\), etructures at the root of the lungbronchus, pulmonary artery, and pulmonary veins; \(0_{\text {, vortex at a pex: p. pec. }}\) tinate musculature of right euricle: r. superficial musculature of right ventricle.

The A ction of the Heart.
The permanent position and seneral arrangements of the heart are described in a scparate article, and it is only necesary here to alfode to certaio points of physiological importance. The substance
of the beart in componed of a special kind of muscular timpse which must be regarded as a syncytium in which no distinct and separate oflis occur, a complex plexus of branching and anastomosing fibres, fivining one functional whole The fibres are nucleated, have a crovestriated structure and are surrounded by delicate connective tisue sheaths. The cross-striations are due to the primitive fibrils which as in skeletal muscle are differentiated into alternate doubly and singly refracting substances. Thesc fibrils are embedded in a granular nucleated sarcoplasm. Between the bundles of fibres are thin layers of connective tissue containing closely spun aetworks of capillaries. The muscle of the auricles consists of a circular layer common to both and a deeper layer separate for each chamber. The auriculo-ventricular ring consists of connective tissue surrounding the auriculo-ven tricular orifices and separating the auricular from the ventricular muscle with the exception of an important band, the auriculoventricula, bundle. The superficial fibres of the ventricles appear to have origin in the auriculo-ventricular ring, to wind about the heart spirally and to end in the tendons of tite papillary muscles or pass up to the ring again on the mner surface of the heart. The middle layers cansist of bundles of fibres running more or less circularly round the ventricles.
The greater part of the heart lies free in the pericardial sac. The pericardium is reflected from the wall of the sac on to the wail of the heart and attaches the heart at the point where the venae cavae and aorta leave the sac. This part of the pericardium gives a fixation point to the auricles. lor it is attached to the roots of the lungs and thereby to the thoracic wall, to the diaphragm and to the structurea at the root of the neck. On opening the chest the normal fulcra for the movements of the auricles are lost. and this renders it difficult to record the exact movements of the heart. The attached part of the heart is called the base, and the venous part of the base is the beginning and the arterial part the end of the tube, coiled on itself, from which in the embryo the heart develops. The longitudinal and circular muscle fibres of the ventricles are anta. gonists. The circular tibres by their contrac. tion tend to lengthen the apex-base diameter, the longitudinal fibres resist this and the two together piring the blood out of the heart. The

Fig. 6.-Cavities of the Right Side of the Heart \(a\), superior, and \(b\), inferior vena cava; \(c\), arch of aorta: d, pulmonary artery; e, right, and f, left auricular appendage; g, fossa ovalis; \(h\), Eustachian valve: \(k\). moush of coronary vein; \(l, m, n\), cuspe of the tricuspid yalve; \(o, \theta\), papillary muscles; \(p\), semilunar valve; \(q\), corpus Arantii; \(\boldsymbol{r}\), Junula. apex is maintained as a fixed point by this antagonistic action, and thus the longitudinal fibres are enabled to expand the auricles by pulling down the Hoor of these chambers This action is important, as it contributes to the filling of the auricles simultancously with the emptying of the ventricles. Tracings of the jugular pulse give evidence of such action.
In the case of the auricles the longitudina! musculi pectinati not only help the circular fibres to expel the blood, but draw up the basc of the venaricle to meet its load of blood. Thus the base of the ventricular part (or flcoor of the auricles) is pulled up during auricular systole, and down during ventricular systole. The posterior and upper horders of the left auricle lic against the unyidding seructures of the posterior mediastinum, the pulmonary artery and bronchi, the floor and anterior part in contact with the base of the venericle and ascending aorta respectively. The lateer parts alone are free to move during systole. Thus the left ventricular base is drawn up and the aorta lack on auricular syssole (A. Keith).
As regards the valves of the heart-(1) the tricuspid suards the right auriculo-ventricular opening, and consists of three haps of fibrous tiscue, covered, like all the internal surfaces of the heart, with the smooth shining membranc, the endocardium. The flaps are continuous at their base, forming an annulas membrane surmunding the opering. The bicu-pid or mitral consints of two cusps and guards the left auriculo-ventricular opening. The under sustace and frie edge of cach cusp of these
valves are attached by chordae tendinae to two papillary muscles: these are pillars of muscle which rise up from the inner surface of the ventricles.
The edges of these valves which come into opposition are exceedingly thin ard delicate, while the outer parts which bear the full systolic pressure of the blood, are tough. The cardiac muscle, by its contraction, limits the size of the auriculo-ventricular orifices and so maintains the competency of the valves. It is the papillary muscles and chordae tendineae which pull down the diaphragm formed by the closed valves (the floor of the suricles), thus expanding the auricles and enabling the valvular as well as the muscular parts of the wall of the ventricles to approach together and wring out the blood. The thin, moist, film-like edges of the valves of the heart come into perfect apposition and prevent all leakage, while the fibrous parts give strength and support. The ventricles are never completely emptied, for some blood remains in contact with the auriculo-ventricular valves up to the end of systole and ensures

34 mm ; of each of the four pulmonary veins about \(13-14 \mathrm{~mm}\) : of the pulmonary artery, 28 mm ; of the aorta, 32 mm .

The physiologist or physician has many means at his disposal of examining the heart's action. By palpation with the hand over the region of the beart, its stroke. the cardrac impulse. can be felt. By ouscullation with the car directly, or with use of the stethoscope the sounds of the heart can be heard. By percussion the anatomical limits of the

Maver of ceamin. log det organ can be defined. The cardiac impulse can be re-

Holar corded by tambour methods of registration, the heart

Ecart. sounds by means of the microphone and capilary electrometer. while the volume and movements of the heart can be studied wish the help of the Rontgen rays

The impulse is caused by the sudden hardening of the muscular mass of the ventricles against the wall of the thorax. It is \(5 \% \mathrm{p}\) -

From Young and Robingoa, Curning bara's Tou-Beoh of Andomy.
Fis. 7. -The Bases of the Ventricles of the Heart, showing the auriculo ventricular, aortic and pulmonary orifices and their valves.
their closure. Incompetency of the valves may arise when the right heart is greatly dilated. The aurtic and pulmonary valvics consist of three semilunar, pocket-shaped cuspas. A fibrous nodule it placed centrally in the free edge of each cusp, whence numerous tendingus fibres radiate to the attached borders of the cusp. The rest of the free edges which come into apposition are thin and delicate. Opposite the cusps are bulgings of the aortic walls-the sinuses of Valsalva. From the anterior one arises the right coronary artery and from the left posterior, the left coronary artery, these vesels supply the substance of the heart with blood. Eddies formed in the sinuses during the period of systolic output bring the semilunar valves into apposition, so that they close without noise or jar at the moment when the intraventricular becomes less than the aortic pressure. The auriculo-ventricular valves are likewise floated up by eddies, and brought into apposition at the moment the intraventricular pressure surmounts that in the auricles.

The heart in size is about equal to the closed fist of a man. The everage weight of the heart in the new-born baby is about 24 grms . in the adult 300 groms. The percentage which the heart weight bears to the whole body weight is 0.76 in the new-born and 0.46 in the adult. While the whole body incteases in weight 21 -fold, the heart increases only 12.74 -fold (Vicrordt, Karl, 1818-1884). The a verage weight of the male and female heart is almost the same.
The average volume of the whole heart is about 270 c.c. The capecity, estimated by filling the heart with wax, is for each auricle

Fig. 8.-Position of the Valves of the Heart in Systole and Diastole.
 about 100-150c.c., and 150-230 c.c. for each ventricle. There are considerable sources of error in such measurements. The muscle of the left ventricle is about 1.6 cm . in thick. ness, and of the right ventricle 0.5 cm . The left ventricle has twice the muscular mass of the right. The circumference of the left auriculo-ventricular orifice is about \(14 \cdot 0\) cm.; of the right, about 12.5 cm ; of the oritic orifice, 8.0 cm ; of the pulmonary orifice. 9.0 cm . The average diameter of the vena cava auperior is about 23 mm ; of the vena cava inferior,
chronous with the beginning of systole. The position at which the impulse is felt varies with changing posture of the body, as different parts of the thorax come in turn in contact with The centime Anpuble. the ventricle. In the supine position it is usually to be felt in the fifth intercostal space 31 inches from the midsternal line. The chen wall is driven out by the systole only where the heart muscle touches it; at other places it is slightly drawn in. This indrawing is attributed to the expulsion of the blood out of the thorax by the left ventricle. The thorax is a closed cavity and the vacuum therein produced by systolic output into the arteries of the head, limbs and abdomen is filled by (I) the drawing of air into the lungs, (2) the drawing ol venous blood into the great veins and right auricle, (3) the slight indrawing of the chest wall. The impulse is recorded by placing a small cup or receiving tambour, aver the sper where it is most evident, and connecting the inside of the cup by a tube to a recording tambour. The cup can be closed by a rubber dam. or an air-tight junction can be effected by pressing it upon the skin. The stroke of the heart is transmitted as a wave of comprestion to the air within the system of tambours. The recording tambour is brought to write on a drum, moved by clockwork, and covered with a paper smoked with lamp-black. From the record so obtained we can obtain information as to the time relations of the heart-beat, but no accurate information as to its energy or amount of contraction.

Fic. 9.-The Relation of the Heart to the Anterior Wall of the

\section*{\(\mathbf{I}, \mathrm{II}, \mathrm{II}, \mathrm{IV}, \mathrm{V}, \mathrm{V}\), the upper six costal cartilages.}

The movements of the heart consist of a serice of contractions which succeed each other with a cerrain rhythm. The period of contraction is called the systole and that of relavation the diastole. The two aurcles contract and relax syochronoualy, and these movements are followed by the yyahroanos contraction and relaxation of the veatriclen. Finally, there is a short period when the whole beart it in
 diastole. The whole series of movementi is known as the cerciss
cxil. Taking 75 as the average number of heart beats por minute, exch cardiac cycle with occupy \& seconds. Of this period
\[
\begin{array}{lll}
\text { auricular systule occupies } & -1 & \text { second } \\
\text { auricular diastule occupies } & -7 & " \\
\text { ventricular svstole occupies } & -3 & " \\
\text { ventricular diastole occupics } & .5 & "
\end{array}
\]

In 1861 Chauveatl and Marey obtained direct reconds of the hear of a borse, and determined the sequence and duration of the evente happening in the heart, and measured the endo-cardiac pressure by an instrument termed the cardiac sound. The sound-a two way tube-was pushed down the jugular vein until the orifice of one tube lay in the right ventricle and of the other in the right suricle. The tubes were connected with recording tambours which wrote on a moving drum covered with smoked paper.

Another tambour was used to record the cardiac impulse. The trarings so obtained (fig, 10) teach us the following facts: (1) The arricular contraction is less sudiden than the ventricular, and lasts only a very short time, as indicated by the line ab. The ventncle, on the other hand, contracts suddenly and forribly and remains contracted a conssderable time, as shown by the line \(c^{\prime} d^{\prime}\) and by the flat top to the curve which succecds d'. (2) The auricular movement precedes the ventricular, and the latter coincides with the impulse of the apex against the wall of the chest. (3) The contraction of the auricle influences the prossure in the ventricle as shown by the small rise \(a^{\prime} b^{\prime}\), and that of the ventricle influences the pressure in the auricle somewhat as shown by the waves cd. Nuch hbour has been apent in the contrivance of rapidly acting spring prissure gauges, freed as far as possible from incria, in order to investigate more exactly the changes of intracardiac pressurc, which were first described by Chauveau and Marey. As the intraventricular pressure

Fig. 10.-Tracings from the Heart of a Horce, by Chauveau and Marcy. The upper tmang is from the right auricle, the middle from the right ventricle, and the lowest from the apex of the heare. The horizontal lines represent time, and the verical amount of pressure. The vertical doted lines mark coincident points in the three movements. The breadth of one of the small equares represents one-tenth of a sccond.
may rise 150 mm . of mercury in one-tenth of a second, it is no easy mattre to contrive an instrument which will respond as rapidly and yet yield an accurate result without overshooting the mark. The final result of a most carcful inquiry is the confimation in almost every point of Chauveau and Marcy's pressure curves. Kar! llurthe's differential manometer has proved to be an instrument of grear value and precision. A double-bored tube cannuld is introduced so that one tube reaches the right auricle and the other the risht ventricle. In observations on the left side of the heart, one rube is placed in the left ventricle and the other in the aorta, and each of these tubes is hrought into conncxion with a tambour. The twh tambours are placed one on either side of the fulcrum of a iever. This lever works against a light spring. which in its turn wets in motion a writing-style. Thie strle records the pressure changes on a drum covered with smoked paper. By this mecans there can be recorded the exact moment at which the auricular pressure exceeds that in the ventricle, that is 10 say, the moment when the auriculo-ventricular valves open: likewise the moment whea the ventricular pressure beromes greater than that in the auricles, and the auriculo-sentricular valies shut. Similarly, there can be recorded the moment when the intraventricular pressure exceeds that in she aorta and the semilunar valves open, and the moment at which the diastole of the ventricle begins, when the aortic prespure becones the greater, and the semilunar valves shut. The smonthncss with which the heart works is shown by the fact that peithes the opening nor the clisirg of the valves is marked by any peak or point on the presoure curves.

The absence of a mechanism for preventing regurgitation of bloud from the auricles of birds and mammals is remarkable, for in fishes, amphibia and reptiles this is effected by valves guarding the sino-auricular junction. In the warm-blooded vertcbrata with the appearance of the diaphragm the sinus becomes merged into the right auricle, and the venous cistern formed by the superior and inferior venac cavac, the innorainate, ilinc, bepatic and renal veins takes the place of the sinus. Six pairs of valves prevent regurgitation from this cistern. viz. those placed in the common femoral, the sub-clavian and jugular veins. The cistern when filled holds some 400 s.c. of Ulood; in the liser thare is some 500 c.c. of blood, and this can be expressed into the cistern by abdominal pressure: in the portal venous system, when disended, a nother 500 e.c may be held, whiels can be expressed through the liver into the cistern. A large volume of blood is thus at the disposal of the heast for it to draw on during diastole. Kespiration by the aspirating action of the thorax sucks this blood into the heart, while the inspiratory deseent of the diaphragm squeczes the abdominal contents and forces blood from the liver and cistern into the heart. These forces take the place of the sinus and are far more efficient. The intra-abdominal pressure may be raised on bending or straining till it becomes equivalent to the pressure of a colums of mercury \(80-100 \mathrm{~mm}\). high (Keith), Uniler such conditions the pericarilium prevents the right side of the beart being over-distended with venous blood.

Winh these facts in vicw, we

Fic. 11.- Diacram nf the Vennus Cistern from which the licart is filled. The abdonsinal or intradiaphrasmatic part of the cistem is indicated in hlack; the thoracic or supra-diaphragmatic is stijpled.
can now describe the complete course of a cardiac cycle. Whe will start at the moment when the blood is pouring from the venae cavac and pulmonary veins into the two auricles. The auricles are relaxed and their cavities open into the ventricles by the funnelshaped apertures formed by the dependent segments of the tricuspid and mitral valves. The blood passes frecly through these apertures into the ventricles. The small positive pressure which is always present in the venous cistern (aided by the respiratory forcos)

From Disester of Lio Foart, by Jatres Mackenzie, M.D., by permienion
Fic. 12.-Tracings of the Jugular Fulse Apex Beat, Carotid and Radial Pulscs. The perpendicular lines represent the time of the Jollowing events.:-1, the beginning of the auricular systole; 2 , the beginning of ventricular systole: 3. the appearance of the pulse in the carotid; the thepearance of the pulse in the radial: 5. the closing of the scmilunar valves; 6 , the opening of the iricuspid valves.
is at this time filling the right heart. while the positive pressure in the pulmonary veins is நIlling the leff heart. The auricular systole now takes place. The circular muscle bands rompresa the blood out of the aurisles into the ventricles, while the longitudinal bands ail in this and pull up the base of the ventricles to mest the fond of blond. As the contraction starts from the mouth of the venae cavae, and swecps tuwards the ventricles, there can
occur but little regargitation of blood iato the venous cistern, but the cessation of flow into the-auricle during its systole does produce a slight rise of pressure in the cistern, as is shown by tracings talcen from the jugular pulse. The function of the auricles is to rapidly complete the filling of the ventricles.

The auriculo-ventricular valves are foated up and brought into apposition by eddies set up in the blood which streams into the ventricles, and close winhout noise or jar at the moment when the intre-ventricular presure exceeds in the least that in the auricles. The systole of the ventricles immediately following that of the auricles closes the auriculo-ventricular valves, and as the intra-veptricular pressure rises above that in the pulmonary artery and aorta respectively the eemilunar valves open and the blood is expelled; these elastic vesmels are in their tum expanded by the expulsive force of the heart so as to receive the blood. The papillary muscles, by contracting synchronously with the muscular wall of the ventricles, pull down and flatten the dome-like diaphragm formed by the closed auriculo-ventricular valves, thus shortening the longitudinal diameter of the ventricles, while at the ame tame they enlarge the auricles and so help to fill these cavities. The outflow of blood from the ventricles is rapid at first. It becomes slovere as the big arteries become distended and the pressure of blood rises within them, and ceases finally when the pressure becomes equal to that in the ventricles. As the outflow diminishes the semilunar pockets are filled by eddies of blood, and their thin edges are brought nearer and nearer, until finally they come into apposition. The closure is

Frome Prether Adamea in Pissidecg, by
Ele 13 -Dipprametic repre. 2 ? sentation of the Cardiac Cycle when the semilunar valves open and of the Carotid and Jugular to the moment when they close. Pulses in relation to standard The upstroke of the pulse curve movements. The scale of ab- taken in the aorta, or in the scissae is 1 mm . to ik acc. carotid artery in man. can be S.C. \(=\) semilanar valve closure; takeo as marking the moment A. \(\mathbf{O}\). = auriculo - ventricular when the semiunar valves open. valves apen. The broken lines while the dicrotic noteh on the indicate those portions of the pulse curve marks their closure. respective curves over which there is doabs or costroversy. the moment when the outfow ceases and the ventricics begin to expand. The heart, at a good pump should, works with the least possible jar. During the contraction of the ventricies blood has been pouring from the veins into the anriclen, and directly the ventricular systole ceases the auriculo-ventricular valves open, and the blood begins to fill the expanding ventricular cavities. For a brief moment the ventricles remain dilated and at rext, then the aurickes contract main, and the cycle of changes, once mone, is repeated. During the first period of ventricular syatolethe period of rising temionall the valves are closed and the ventricle is Eetting up pressure This period has been measured and is fournd to occupy \(-\infty 0^{2}-04^{"}\). The second period is that of systolic output. and lasts about closure, and can be used to mart effected withour jar or noise at Thene of this event on the impulse curve
The intra-ventricular pressore curve may rise or lall during the output period according to the state of the peripheral resistance. If the carotid palse be recorded synchronously with the impulse curve, the time relations can be determined for the humau heart. The beginning of the upstroke of the impulse cunve marks the beginning of syrgole, that of the pulse curve marks the opening of the semilunar valres, and the dicrotic notch, which precedes the dicrotic mye, marks the closure of these valves and the end of the -4t, The modina sytole pressure of Ci.taic alling and Pha the latter five wall of of enratore of a dilared rixtore the atrention its d atif arraned
oo that eifter only a rive or a fall of promerre is reconded. In the right ventricle of the dog the maximal pretrare recorded equalled 35-62 mm. of nercury, in the left ventricle \(114 \rightarrow 135 \mathrm{~mm}\). in the avricles 2-20 mm. (Micbacl Jter, 1795-1838). A neqtive pressure. of considerable amount but of very flecting duration. mometimes occurs in the ventricles at the beginaing of dinstole. Tans is produced by the elastic rebound of the geaby columns of the inner wall of the beart, which become premed together as the blood js wruns ont of the ventricular cavities. The entry of the fir \({ }^{2}\) few drops of blood from the anricles abolinher this megative premores and it has an important influence on the filling of the beart.

When the ear is applied over the catdiac region of tive chent, of a stethoscope is employed, two sounds are heard, the firt, liend most intensely over the aper, is a duller and longer aound than the secoad, which is shorter and sharper and is beard best over the base of the beart. The syltablea lab, dapp

37 express fairly well the characters of the two roands, and oretores the accent is on lab when the stethowope is over the aper, thos-lib-dupp-hib-dppp-lub-dupp, and on the gecond qound Fhen over the base, thue-ub-dupp-lub-dupp-iub-dipp. The eoands of the heart have been succesafulty recorded by means of the micrephoose. Hurthle inserted the microphone in the prinuty circuit of an E. Du Bois-Reymond indoction coil, and placed the nerve of a frog-muscle preparation in the secondary circit. The matacle. being astached to a lever, reoorded its contraction on a nevolving drum at the moment then the aond of the beart mached ftr microphone and clooed the primary circiit. A capillary electro meter can be inserted in place of the frog-mansche indicator. and the movements of the electroneter photographed on a sensicised phete moved by clockwork (Willem Einthoven). Ench sound gives rime to a succession of vibrations of the mercury meniscus of the capill.y electrometer. The farst sound is formed of many coppopent pons derived from the tudden tension, and consequent vibration, of the ventricular muscle, and of the auriculo-ventricuiar vilve aith their chordae tendineae. The first sound can be reolved by a trained musical ear into two tones, one deep and the other high. The deeper tone alone is heard on the contraction of the excised and bloodless beart, while the higher tone is produced by throwing the auriculo-ventricular valves into tension (John Berry Haycrafy) In the cold-blooded animal, such as the turtle, the heart mesisfe does not becomse tense rapidty enough to produce a mand (Alen) This sound is not produced by fiud friction at the blood ruine through the arterial orifices, for the velocity of oution is too anel to produce in this way any noies. Nor is it produced by codde openiog of the memilunar valves, for these open quietly and midiont jar at the moment when the intra-ventricular pressure riset above that in the aorta.

The second sound of the heart is voduced by the tension of tit semilunar valves in the aorta and F : lmonary urtery at the moment when the ventricles pass into diastile. These valves dowe mithont any jar or shock so soco as the arterim presures rise to the stigirteet degree above that in the ventricles. In the next mornert tite ventricles dilate, and the valves, no longer sarpported on one jide become taut. The elastic vibrations of the mals of the digtereded arteries probably share in the production of this sousd.

When the sounds and the impulse are recorded tagether the record shows that the first sound begios about 0 ol sec. before the candiagram marks the beginning of systole, and for the first o-06 tes of its duration this sound is heard only over the aper. Over fis base of the heart the first sound is heard just at the time when tive semilunar values open and the output bepins. The first eanis ceases before the ventricular contraction is over, for it is the sudden tensioo, not the continuance of contraction, that cana it. The beginning of the second connd marts the mader tewno the semilunar valves which immediately follows their chemire.

For practical purposes it is important to bear in mind whet happening in the heart whilst one listers to its soundis. Darin the first sound we have (1) contraction of the ventrickes, cloware a auriculo-ventricular valves and impuhse of the aper aqaine we chest: (2) rushing of the blood into the aortic and polmonary artany, and filling of the auricles. With the second nound we have cionge of the semilunar valves from the elastic recoil of the aorta polmonary artery, relacation of the ventricular walls, openieg of the auriculo-vertricular valves 50 as to allow the passage of blood fint auricle to ventricte, and diminished preasure of aper a a ainat wall. With the long pause there are (i) sradual refiling of ventricle from the aunicle, and (2) contraction of the auricies mes entirdy fill the ventricle. The somand of the tricumpid salve is the loudest at the junction of the lower right costal cartiluges wiel stermum, of the mitral over the apex beat, of the sortic wes. valves in the difection of the sorta where it compes nearext tist suriace at the second right cootal cartitage, and of the values eith pulmonary orifice over the third left contal eartilage, to the lele ne external to the margin of the sternum. The conands are ebaty.te. character by valuular lestion or muscular veakneat of the hearen, afford important signs to the physicitn. Marmors are proongin by eddies sctios some pert of the membranoon walle are verve fape in vituration.

If a stethoscope be placed over a burse artery, a mustetion with
heard, caused by the blood rushing through the veseel narrowed by the pressure of the instrument. The fluid escapes into a wider

Fig. 14--Scheme of a Cardiac Cycle. The inner circle shows what events occur in the heart, and the outer the relation of the sounds and silences to these eveuts. portion of the vesal beyand the point of pressure, and the sound is caused by the eddies set up there throwing the membranous wall of the vessel into vibration. Sucha sound is heard over an aneurism. The placental bruit heard during pregnancy is a sound of this kind, arising from prescure on the uterine arteries. In cases of insufficient eortic valves a double blowing mugmur may be heard, the first being due to the rush of blood irrto the vessel, and the second to the regurgitation of the blood back into the ventricle. These mur* murs are produced by eddies of blood setting the membranous parts into vibration.

Occasionally a mumur is produced by the displacement of air in the bronchial vessels by the beat of the heart, and may simulate the murmur of aortic incomperence. By placing a stethoscope over the jugular vein on the right above the collar bone a murmur is heard, the bruit de diable, particularly if the subject turn his head to the left. This is held to be due to the vilaration of the blood in the jugular vein rushing from the dilated to the contracted part. It is more marked during auricular diastole and during inspiration.

In the lower vertebrates, as the frog, the heart is directly nourished by the blood which fills the cavities in its sponge-like structure. In The autriloa of the ment of coronary vessels. The two coronary arteries (right and left) originate at the root of the iorta from the sinuses of Valalva. Their branches penet rate the muscular substance and end in a rich plexus of capillaries. From these arise the radicles of the coronary veins which open into the right auricle by the coronary sinus and other small veins. These openings are valved. The heart in contracting exerts a greater pressure than that of the coronary arteries, and so arrests the flow in these during the height of systole, and squeezes the blood within the coronary ca pillaries and veins on into the right auricle. On diastole the coronary syseem fills again. Sudden occlusion of any large part of the coronary arteries produces irregular and inco-ordinate contractions, followed by death of the heart. Gradual occlusion of the coronary arteries by degenerative changes in advanced life is one of the causes of the distressing lorm of cardiac distress known as angina pectoris. The wrork of the left ventricle is calculated by the formula

\section*{The wrank} of the heart = VP \(+m w^{3}\), where \(=\) volume of blood in c.c. expelled per beat, \(\mathrm{P}=\) mean pressure in aorta, \(m=\) mass of the blood expelled on systole, and \(v=\) the velocity imparted to it. The volume of the output has been determincd directly by inserting the stromutr in the ascending aorta (Robert Adalf Tigerstedt), and indirectly by determining. (i) how much oxygen is absorbed per minute, (2) the difference in the oxygen content of the arterial and venous blood, (3) the number of heart beats. If \(1000 \mathrm{c} . \mathrm{c}\). of oxygen are absorbed from the air breathed in a minute, and the arterial blood contains \(10 \%\) more oxygen than the venous, it is clear that \(100 \times 100 \mathrm{c} . \mathrm{c}\). of blood must have passed through the lunge in that time, and if the heart beat 100 times, the output for each beat would be 100 c.c. From the determinations made on animals the output is calculated for man to be \(60-100\) c.c. The velocity of the output can be calculated if the volume of the output is known, the duration of the period of output, and the diameter of the aorta. The pressure is measured with a manometer. The velocity is much greater at the orifice than in the aorta, for the blood can flow from the aorta during the whole cardiac cycle, while the whole of it must escape through thn orifice into the aorta during the period of output. The work spent on maintaining the velocity is not, however, more than cenerally neglected in the calculation. The output is not greater than \(60-100\) c.c. (3 oz .) Tigerstedt, Nathan Zuntz), and the mean arterial pressure in a healthy man, determined by the sphygmometer. is not more than 110 mm . of mercury (L. Hill). The work of the night heart can be reckoned to be I that of the left, for the pressure in the pulmonary artery does not exceed 30 mm . The total work of the heart during the day may be taken as equal to 20.000 kilogr.: metres, and this would be equivalent to 50 calories out of the total 2500 calories which a man takes in as lood. A labourer does about 150,000 kilogrm.-metres of external work a day. The work of the beart is increased two or three times over during severe muscular Labour. It has been estimated that the heart requires per diem. to maintais its energy, an amount of solid food (water-free) equal to the weight of solids in the heart itself; ie. about 60 grms . of nuger or proteid. 30 c.c. of blood must be circulated per minute
through the cosonary arteriee of a dog to matnatin the vigour of the heart.

The use of oxygen per grm, of moight per minute is high for the heart. Thus for the whole body of the dog there was used -ol c.c. per grm. per mio., for the heart -045--063. and for the active eecretory glands no7-i io (Barcroft and Dixon). It has long been known that the heart of frog or tortoise can be kept betiag normally for hours atranes after removal from the body if it is provided with the atere an artificial circulation of blood or a suitable solution of colcs Sydney Ringer worked out the necessary ingredients of thia solution to be
\[
\begin{array}{llll}
\text { Sodium chloride } & : & : & 0 \\
\text { Potasain } & 0 & : & 0.7 \% \\
\text { Calcium } & \text { " } & : & 0.03 \% \\
0.025 \%
\end{array}
\]

The excised mammalian lieart can be kept beating in the same way provided the nutritive fuid is orygenated and the heart kept at body temperature. A solution containing one-third defibrinated blood and two-thirds Ringer't salt solution is most suitable. A mammalian heart thus was restored to activity 7 days after death. The beat of the heart of a child was restored 20 hours airer death from preumonia. The excised beart of a cat was kept beating for 4 days. The heart of a monkey was restored after lreezing the body of the animal. The neryes of the excised heart retain their action for some time if the nutritive fluid is immediately circulated through the coronary arteriga. Thus the heart's action can be conveniently studied when taken from the body of a mammal.

The cause of the heart beat has naturally been one ot the most continued objects of inquiry, and the point of view shilts with each advance of our experinental methods, and the wider extension of the inquiry throughout the animal world. H. Allen in 1757 was the first to announce that the activity of the heart is not dependent on its connexion with the nervous system. The excised heart, properly led, continues to beat The beart of 2 dog continued to work effectively and the asimal to keep in healtb for months after division of all the nervee passing to the heart. The heart, it is true, is controlled and induenced constantly by the nervous system-attuned to the general needs of the body-but this control is not essential to life. The above dog, when exercised, became fatigued quickly, owing to the lack of the nervous control of the beart. When in 1848 Robert Remak discovered that groups of nerve cells are contained in the heart of the frog, the causation of the beat was attributed to the activity of these ganglis.
Confirmation of this view was found in the experiment of Hermann Stannius which demonstrates that the apex of the heart ceases to beat rhythmically if physiologically eeparated from the rest of the heart by ligature or momentary application of a clamp. The sious, on the other hand, which comtains ganglion cells, continues its beat as before when separated. Further experiment bas shown that the beat of the heart cannot be ascribed to the rhythmic activity of the gangtion cells, which in the mammalian heart lie scattered in the base of the heart, in the neighbourhood of the venous opening and in the auriculo-ventricular groove. That this is so is shown by the fact that every taip of heart muscle, whether free of ganglion cell or not, is capable of rhythmic activity under suitable conditions (Walter Gaskell, 1847-. Theodor Wilhelm Engelmang, Alfred Wm, Porter). The inherent power of rhythmic contraction is most clearly seen in the emicryonic heart, for the pulsation of the chick's heart became visible by the 24 th to 48 th hour of incubation, while the migration of the ganglioa cells into the heart from the sympathetic system does not take place until the sixth day (His.). The heart muscle is pervaded by a net work of nerve fibrils, and the supporters of the neurogenic theory have had to fall back upon this network as the cause of the beat. The " myogenic " theorists place the causation in the muscle itself.
The pulsating " umbrella " of the jelly-fish is formed of a network of nerve fibril and contractile elements, and this can be excited to contract by irritating any one of the sensory endings of the nervous network which are sit uated on the edge of the " umbrella." In the manifestation of a " refractory period " the "umbrella" behaves like the heart. Against this view we may cite the experiment of Julius Bernstein (1839), who clamped of the apex of the Irog's heart to destroy the physiological continuity, Irept the animal alive till the nerve network had degencrated and then found the apex could be mechanically excited to contract. Moreover, skeletal muscle-fibres can be thrown into rhythmic contraction by the application of a uitable solution of salts (Wilhelm Biedermann, 1854), and it is probable that heart muscle is excited to rhythmic activity by such means. At any rate the beat is profoundly affected by varying slighty the nature and percentage of salts supplied in the nutritive fluid. Carlson has recorded experiments upon the heart of the horseshoe crah (Limulus) which show that its beat at any rate depends on the integrity of the median nerve (and its ganglion cells) which runs down the heart. On the other hand, Gaskeft has shown that any small bridge of heart muscle left connecting the auricle and ventricle of the tortoise heart will transmit the wave of contraction. while if the serve pasaing from
sinus to ventricle be left, and the muscular connexions entirely severed, no wave passes. In contradistinction to cross-striated muscle, the structural unit of the heart is not also a functional unit, for the heart-cells are, from the earliest stage of development, joined together by branches into networks and bands so as to form one functional whole, and hence excitation of any one part leads to the contraction of the whole. The first part to begin to functionate in the embryo is the venous end, and the waves of contraction passing thence spread over the developing ventricular segment. The muscle-cells of the ventricles are thicker, less sarcoplasmic and more clearlystriated than the auricular muscle, which is more embryonic in structure, The contraction lasts longer in the ventricular than in the auricular muscle, while the automatic rhythm not only persists longer in the auricles, but is of greater frequency, as is clearly seen when the cavities of the heart are divided from each other. The venous orifices of the heart are least sensitive to injury, beat longest after death, and are the first to recover after arrest. Owing to the more powerful automatism of the venous extremity, the contraction nomally proceeds thence, and passing as a peristaltic wave over the auricles and ventricles, finally reached the arterial orifices. This peristaltic form of contraction is invariable in all periods of development and in alt hearts, both of invertebrate and vertebrate animals. The peristalsis may, with difficulty, be artificially reversed by the application of a powerful thythmic stimulus to the ventricular end. Antiperistalsis does not, however, take place easily, because the comparatively slow excitatory process in the ventricle has litele effect on the auricular muscle. The latter, by initiating more rapid contraction-waves, over-dominates the former. The irequency of the whole heart is accelerated by warming the auricles, while the period of systole is alone shortened on warming the ventricles.

The sequence in the beat of the three chambers of the heart is attrihuted by Gaskell to the delay that occurs in the excitatory wave passing through the muscular connexions in the sino-auricular and auriculo-ventricular junctions. He showed that such delay could be imitated by moderately clamping a strip of heart muscle; the compressed part transmitted the wave less readily, so that the part above and below the clamp cont racted in sequence.

In the mammalian heart there has recently been discovered a remarkable remnant of primitive fibres persisting in the neighbourhood of the venous orifices (representing the sinus). These fibres are in close connexion with the vagus and sympathetic nerves, and
 form the sino-aturicular node of A. Keith and Martin Flack If this node is squeezed by a clamp, it prevents the effect of excitation of the vagus reaching the heart. The auricle and ventricles of the mammalian heart are connected through the septum by a remarkable bundle of muscle fibres which is believed to convey the excitatory wave from the Fig.I5. - The Right AuricleandVentricle one cavity to the other of a Calf's Heart, exposed to show the The root of this auriculocourse and connexions of the auriculo-ventricular bundle lies in ventricular bundle. I, central cartil- the right auricle, the main age exposed by dissection; 2, the part is buried in the intermain bundle; 3, auricular fibres from ventricular septum; its which the main bundle arises: 40 branches and twigs are right septal division; 5, moderator distributed to all parts of band; 6 , a cusp of the tricuspid valve; either ventricle; the papil7. posterior group of the musculi lary muscles and lleshy papillaries; 8, orifice of the coronary columns, in particular, sinus; 9, above orifice of the inferior receive a direct supply, vena cava (10); 11, orifice of the The muscle fibres are of superior vena civa: 12 , septal wall a peculiar type, known of the righe auricle: 13 , appendix of as the cells of Purthe right auricle: 14 , eeptal wall of kinje. By this bundle it the infundibulum: 15, beginning of is believed every part of the pulnonary artery; 16, apex of the ventricle is brought the righe ventricle. (After A. Keith, in into synchronous contracJourral of Andiomy cind Physiology.)
rhythm, when the ventricle no longer follows the semuence of auricle. The evidence of guch degencration is, as prewent, pot convincing. The contraction of the heart, liler that alfer maxle, is mecom
The different po
Thectrical wave ac
ehange of heet
the hoenk.
method of recording the thythm of normal and abnormal hearts in man. for they can be obtained by connecting the right hand and left foot of a patient with the instrument. Einthoven, by maling

Fig. 6 - Electrical Changes of Heart. \(\mathrm{A}_{1}\) diphasic variation of auricle; \(\mathbf{R}-\mathrm{V}\), diphasic variation of ventricte. \(\mathbf{R}=\) base negrative; \(V=a p e x\) negative to base. Alter auricular contraction the ventricular is delayed-an example of arhythmia. (Einthoven.) The string galvanometer is the best method for elucidating disorders of cardiac rhythm.
use of the telephone wires, recorded in his lahoratory the electrical changes of the hearts of patients seated in a hospital 2 m . away;

The heart during the period of systole is refractive to arificial excitation, but its susceptibility returns with diastole. The force and amplitude of any cardiac contraction depend on the previous activity of the heart and on such physical conditions as the degree of diastolic filling, the resistance to systolic outfiow, temperature. \&c., but are independent of the strength of the arificial stimulus so long as the latter is efficient. Owing to the refractory period, the slow rate of contraction and the independence of the amplitude of contraction on the strength of stimulus, the heart under ordinary conditions cannot be thrown, by rapidly repeated excitation, into a complete state of tetanic spasm. The relractory period can be shortened by heat \(\left(40^{\circ} \mathrm{C}\right.\).), or by calcium and sodium salts untul tetanus is obtainable. The cardiac muscle is rich in sarcoplasm and on this depends its power of slow, sustained contraction. The heart-muscle, besides rhythmically contracting, possesses "tone," and this tone varies with the conditions of metabolism, temperature \&c. Chloroform, for example, produces a soft dilated, strichrine, adrenalin or ammonia a tonically contracted heart. The mart. malian heart ceases to beat at temperatures below \(7^{\circ}\) C. and above \(44^{\circ} \mathrm{C}\)., and passes into " heat rigor "at \(45^{\circ} \mathrm{C}\)

The Cardiac Nerves-In 1845 the brothers Weber made the astonishing discovery that the vagus nerve, when excited, slowed or even arrested the action of the heart.
This was the first proof of the existence of inhibitory nerves. The cardiac tohibitory nerves have since been found in all classes of vertebrates and in many invertebrates. Some years later v. Beyeld (i862) and Moses and Il'ya Cyon (1843-
) discovered the existence of nerve Gibres which, when excited, augmented and accelerated the beat of the heart. These nerves arise from I-5 thoracic anterior spinal nerve roots and have their "cell stations" in the first thoracic and inferior cervical ganglia, whence they pass to the heart partly in company with the cardiac hranches of the vagus, and partly as separate twigs. The vagus cardiac fibres arise by the middle of the lowermost group of vagus roots, and have their cellstations in the ganglion cells of the heart. These ganglion cells lie chiefly in the sub-pericardial tissue in the posterior wall of the auricles between and around the orifices of the venae cavae and pulmonary veins and between the aorta and pulmonary artcry. The minute structure of these ganglia and the terminations of the nerves have been studied particularly by Dogiel. The inhibitory fibres arise from a centre in the spinal bulb which is in tonic action and constantly bridles the heart's action. When the vagi are dividad the frequency of the heart nereases and the blood pressure rises

Fig. 17.-The origins as pnewnogastric and vaso motor systems are is medulla, that of the syopathetic in upper porion of cord. The arrows is. dicate direction of nerve currents. In the beart \(\mathbb{R}\) represents a reflex cearre. I an inhibitory centre 120 . A an accelerating oentre.

The vagus centre is meffedy ited by the inhalation of chloroform. ammoniz of other vaposs ant to the air passages, also by the want of oxyzen in the
ployzia. It may be excited by irritation of the abdom es, e.8 a blow on the abdomen, and by increased pry
likewise have their centre in the apial bulb, and are in tonic action,
anmagoniziat more or lest the sction of the vagal centre. The

From Horrilt Tezt Booh of Phytitozy, by permision
Fic. 18.-B, arterial hlood pressure. K, supply of nutritive record of volume of kidncy. Inhibi- solution. Hence it is tion of heart on faradizing vagus nerve. thought by some that sonically exert a sustaining influence on the heart.

The alkaloid atropin paralyses the vagal nerve endings in the heart, while nicotine paralyses the ganglion cells. Muscarin obtained from poisonous fungi siows and finally arrests the heart. Adrenalin, the active principle of the medulle of the supra-renal glands, augoents its power. Chloroform depresmes it and in poimonoun dose throws the heart into paralytic dilatation. A great many of the cardiac vagal fibres convey impulse to the spinal bulb (centripetal). and reflexly influence the heart frequency, the breathing and the tonus of the blood vessels. in particular certain fibres, termed depressor (discovered by Ludwig and Cyon, 1866), cause dilatation of the arterioles and a fali of arterial presture by inhibiting the tonic action of the vaso-motor centre in the epinal bulb. The depressor fibres arise from the root of the aorta, and overdistension of this part excites them, as evidenced not only by the boove effect, but also by the electrical variation (action current) which has been observed passing up the depressor nerve. Senory impressions originating in the heart do mot as a rule enter into consciousness. They are carried by the cardiac nerves to the sympathetic ganglin, and thence to the upper thoracic scgion of the ppinal cord. where they come into relation with the sensory nerves from the pectoral region. upper limb, shoukder, neck and head. The impressions are not lelt in the heart. bul referred to these sensory cutaneous nerves. Thus cardiac pain is felt in the chest wall and upper limbs and particularly on the left side. The fuaction of the cardac nerves is to co-ordinate the beat of the heart with the needs of the body and to co-ordinate the functions of other organs with the needs of the heart. For example, an undue rise of arterial pressure, induced. let us say. by compression of the abdomen, excites the centre of the vagus and produces slowing of the heart and a consequent lowering of arterinl pressure. The heart of a mammal, however, continucs to functionate after a section of all the branches of the cardiac plexus has been made, so that the nervous control and co-ordination of the heart are not absolutely essential to the continuance of life.

Water flowing through a tube from a constant head of pressure encounters a resistance occasioned by the friction of the moving water particles against each other and against the stationary layer that wets the wall of the tube. Part of the potential energy of the head of pressure is spent in endowing the fluid with kinctic energy. the greater part in overcoming this resistance is rubberd down into heat. The narrower the tube is nade, the greater the friction, until finally the llow ccascs, the total energy being then insufficient to overoome the resistance.

The resistance may be measured at any point in the tube by inserting a side tube in the vertical position. The water rises to a certain height in the side tube. indicating the head of pressure spent in overcoming the resistance between the point of measurement and the orifice. If the lower end of the side tube is bent thus J and inserted so that its orifice faces the stream, the water will rise bigher than it did in the first ense. The extra rise indicates the head of prossure spent in maintaining the velocity of flow. Such a method has been used to measure the velocity of fow in the vascular system (Napoleon Cybulshi). When a stream of water is trafemitued intermittenil) by the frequent sLrokes of a purup through
\# loag dastic rubber tube, the fuid does not imee in jets as it would in the case of a rigid tube, but flows out continuously. The elattic tube is distended by the force of the pump, and its elasticity maintaina the outflow between the atrokes. The continuous outflow here depends on the elasticity of the tube and the resistance to flow.

In the vatcular system an ares of vewsels of capillary side is placed between the harge arteries and veins. This area opposes a great resistance to flow. The arteries also are extensile elastic tubea The effect of the peripheral recistance, as it is called. is to raise the preseure on the arterial side and lower it on the venous. The resistance to flow is situated chiefly, not in the capillaries, but in the small arterics, where the velocity is high; for "skin friction "that is, the friction of the moving concentric layers of blood against one amother and against the layer which wets the wall of these blood vestels is proportional to the suriace area and to the viscosity of the blood in nearly proportional to the square of the velocity of flow, and is invervely proportional to the sectional area of the vessela. Owing to the resistance to the capillary outfow, the large arteries are expanded by ecth systolic output of the heart, and the elasticity of their walls comes into play, causing the outfiow to continue during the succeeding diastole of the heart. The conditiona are such that the intermittent flow from the heart is converted into a continuous flow through the capillaries. If the arteries were rigid tubes, it would be necessary for the heart to force on the whole column of blood at one and the same time: but, owing to the elasticity of these vesels, the heart is saved from such a prolonged and jarring strain, and can pass into diastolic rest, leaving the elasticity of the distended arteries to maintain the flow. As a result of diseace the elastic tissue may degenerate and the arteries become rigid. Besides the saving of heart-strain. there are other advantages in the elagticity of the arterjes. It has been lound that an intermittently acting pump maintains a greater outflow through an elastic than through a rigid tube; that is to say, if the tubes be of equal bore. The four chief factors which co-operate in producing the conditions of pressure and velocity in the vascular gastem are- (1) the heart-beat, (2) the peripheral resistance, (3) the elasticity of the arteries, (4) the quantity of blood in the system. Suppoee the body to be in the horizontal position and the vescular sytem to be brought to rest by, say, excitation of the vagus nerve and arrest of the heart. A muffeiency of blood to distend it collects within the venous cisterm The arterial system, owing to its elasticity and contractility, empties. If the heart now begin to beat, blood is taken from the venous system and is driven into the arterial system. The arterits receive more blood than can escave through the capillary ressela, and the arterial side of the system becomes distended, until equilibrium is reached, and as much blood escapes into the venous side per unit of time as is delivered by the heart. The flow in the capiliaries and veins has now become a constant one and if the side pressure be measured it will be found to fall from the arteries to the capillaries, and from the capillarics to the venae cavae, In the large artcrics there is a large side pressure which rises and falls with the pulses of the heart. The pulse waves apread out over a wider and wider area as the arteries branch. They finally die away in the arterioles. An increase or decrease in the energy of the beart-beat will increase or decrease respectively the velacity of flow and prewure of the blood. An increase or decrese in the toed width of the arterioles respectively will lessen or raise the resistance; increase or decrease the velocily; bower of raise the blood pressure. A loss of blood, other conditions remaining the same, would cause a decrease in pressure and velocity. An a matter of lact, such a loss is compensated for by the adjustability of the vascular system. Tissue lymph passes from the tissues into the blood, and the blood vessels of the limbs and abdomen constrict, and thus the pressure is kept up, and an efficient circulation maintained through the brain, lungs and coronary vessels of the heart.

The whole vascular system is lined within by a layer of flattened cells, the endothelixm; each cell is excerdingty thin and cemented to its fellows by wavy border of an interstitial protoplasmic substance. The endothelium affords a Structare smooth surface along which the blood can flow with of the ease. Outside it there exists in the arteries and veins veou a middle and an external coant. The middle coat varics reselo. greatly in thickness and contains most of the non-striated muscle-cells, which in the smaller arteries and arterioles form a particularly well developed band. In the larger arteries (fig. 19) a great dcal of yellow elastic tissue, together with some white, fibrous tissue, pervades the middle coat. At the inner and oute: border of this coat the clastic fbres fuse to form an internal and external fenestrated membranc. This coat endows the arteriez with extensibility, elasticity and contractility. The outside cost consist: mostly of white \(\mathrm{g}_{\mathrm{b}}\) brous tissue and not only protects the arterics, hut by its rigidity prevents over-distension. In the velns (fig. 20). Where the middle coat is somewhat thinner and contains less elastic tissue. the outer coat consists mostly of muscle-fibres. The valves of the veins are formed of fibrous and elastic tissue covered with endothelium. As the arterioles branch into capitlarics the muscular and elastic elements become less and less, until in the capillarics themselves there is leit only the layer of endothelium. supported by some ste!late connective tianue cells The

\section*{VASCULAR SYSTEM}
capillaries form networks which accommodate themselves to the structure of the organs, c.g. tongitudinal net works in muscle, lonps in the papillae of the skin. close-meshed networks round the alveoli of glands, cells of liver, \&c. In the liser the Glood penetrates inso the substance of the livercells. As the capillaries join toxether to farm the vennules. muscle fibres again appear and

From Younk and Robinwon. Cunminghem's Taxt-Boot of A natomy
From Young and Robinson, Cunaingham'z Tex-Bnot of Analomy.
Fic. 19.-Transverse Section through the Wall of a Large Artery. A. tunica intima; B, tunica media; C. tunica externa.

Fig. 2n.-Transverse Section of the Wall of a Vein. A. tunica intima; B, tunica media; C, tunica externa.
coat the walls of the latter. The veins have a greater capacity than the arteries. Blood versels, the vasa vasorum, supply the walls of the large vessels with nutrition.

From Young and Robinsom, Cunningham's Test Bcon of A malomy.
Fig. 21.-Structure nf Blood Vessels (diagrammatic). Ab, capil lary-with simple endothelial walls. A" larger capillarywith connecrive tissue sheath, "adventitia capillans": B capillary arterinle-showing muscle cella of middle coat, few and scattered: \(C\), artery-muscular elements of the tunica media forming a continunus layer.
The vaso-motnr nerves end in a plexus of fibrils among the musclefibres. Ganglion cells occupy the larger nodes nf the nerve plexus. The ends of a torn artery retract, coil up within the external coat and prevent haemorrhage. The arteries contract when mechanically irritated and remain cantracted for a lang time after excision. They tend to cantract when submitted to increased blood pressure. The capillaries cannot coneract of themselves, but their lumen can be widened or natrowed by the varying contractility or turgidity of the tissues in which they run.

The arteries successfully withstand clastic strain of the pulse 70 times a minute throughout the years of a lang life. If has proved possible to stitch divided arteries and veins together so perfectly that the circulation can continue through them. A kidney has thus been successfully transplanted from one dog to another, and has continued to functionate normally.
The elastic coefficients of the several layers of the coat of an artery iacrease from within out, and thus great strength is oblained with the use of a emall amount of material. Over-expansion of the arteries is checked by an external coat of inextensible connective tissue. The clasticity of a healthy artary hatas y the th while the

 rubes, and can, is
vary cnnsiderably
continuously. To stop the haemorrhage the ligature must be applied between the wnund and the heart in the case of the artery. and between the peripheral parts and the wound in the case of the vein. The pulse travels about 20 times as last as the blood fows in the arteries (\(7-8\) metres per second). By feeling the pulse we can tell whether the heart-beat is frequent, quick, strong. regular. Re., and whether the wall of the artery is normal and the pressure in the arterics high or low. Frequency expresses the number per minute, quickness the duration of a single beat. The pulse is a most important guide to the physician. The pulse can be registered graphically by means of a sphygmograph. A lever rests on the radial artery and transmits the pulse to a system of levers which magnifies the movement and records it on a smoked surface moved by clockwork.

In such a record, or sphygmograph, the upstroke correspond to systolic output of the left ventricle, marking the opening of the anrtic valves, and the pouring of the blood into the arteries.

The downstroke represents the time during which the blood is flowing nut of the arteries into the capillaries. There are subsidiary waves on the downstroke. The chief of these is called the dicrotic wave, the notch preceding which marks the closure of the semilunar valves. The dicrotic wave is caused by the jerk back of the blood towards the heart when the outllow ceaces, and is most manifest when the systule is short and sharp and the output of blood fram the arterioles rapid, in other words when the heartbeat is strong, the systolic pressure high and the diastolic pressure low. A smaller wave, predicrotic, preceding this ociurs during the period of output and sometimes is placed on the ascending limb of the pulse curve. This occurs when the peripheral resistance is great, and the pulse is then termed anacrotic.
\[
\overbrace{}^{8} \cdot M h
\]

Fig. 22.- Anacrotic Pulse.

\section*{nommamarar
}

Fras 32. 23 and as trom Alkhin's Mammal of Modicime. by permiastore of
Fig. 24.-Nnrmal Pulse, and Time Tracing in 1 see.
A, Primary wave.
C. Dicrofic wave.
B, Predicroutic wave.
D, Post-dicrotic wave.

The form of these waves is modified by the pressure of application of the sphygmograph, and by instrumental crrors; and we have no scale by which we can measure the blood pressure in sphygmograph tracings. In da this another instrument. the sphygmomanometer. is emplayed.

The pulse may pass through the arterioles and reach the capillaries when the arterioles are dilated or when the capillaries are only fithed at each systolc, as may be seen in the pink of the nail when the arm is held above the hcad, and in cases of anrtic regurgitation.

A venous pulse may be recorded in the jugular vcin; it exhibis nscillations synchronnus with auricular and ventricular systole. and affords us important information in certain cases of heart disease. The normal average pulse rate is 72 per minute, in woman about 80 : but individuat variations from \(40-100\) have been observed ennsibtea? with bealth. In the newborn the pulse beats on the average 130-1 40 times a minute; in a one-year-old child \(120-130\); fliree years 100; 2en years 90; fifteen years 70-75. Active muscular enercise maty increase the pulse rate to 130 . Nervous excitement. exereme debility and rise of body temperature also increase it marhedy. The pulse is more frequent when nne stands than when one sits, en lies dawn, and this is especially so in states of debility. The taking nf food, especially hot food, increases it. By' placing tambours on, say the carotid and radial arterics and recording the two putces syan chronously, it has been found that the pulse occurs later, the furiter the seat of nbservation is from the heart. The velocity with whick the pulse wave fravels down the arteries has been determined thes I is about \(7-8\) metres per second. The wave length of the palse is Whained by multiplying the dutation of the inflow of blood into the weta liy the velocity of the pulve wave. It is about 3 merres. th the retyirn of venous blood and pulmonary circulation is favoerted wring inspiratinn so that the output of the left ventricle during the
the sphycruograph reveals respinatory osciliations: the whole line of the tracing fals during the first part of inspiration and rises subequently.

The circulation in the capillaries may be studied by placing under the microscope a transparent membrane such as the web of the The frog's foot. tail of tadpole, wing of bat, de. By semecial caplry illumination one may see the shadow of the blood cor-ctroute- puscles moving through the retinal vespels of one's owneye, cae. and even calculate the velocity of Bow. The diameter of the smaller capillaries is such as to permit the passage of the red blood corpuscles in single file only; their length is abcut pth of an inch. The endothelial cells confine the blood from direct contact with the tissue lymph and so prevent its coagulation, but allow and regulate the exchange of material between the blood and lymph. This exchange is regulased by the vital activity of the cells. and does not follow tuch laws as pertain to fileration and diffusion through dead membrance. There is evidence to show that the cells of the bepatic capillaries are capable of protoplasmic movement and of phagocytotis. The pressure in the capillaries stands in coser relationship to that in the veins than to that in the arteries; for example, a rise of pressure in the venae cavac, other thingt remaining the same, ralses the pressure in the hepatic capillaries to a bike amount. while a rise of pressure in the aorta does not, for most of the arterial pressure is spent in overcoming the peripheral resistance. The filling of the capillaries in the skin varies greatly with temperature, posture, \&c. When the hand is cold the arterioles are so constricted that blood only passes througl the wider and more direct capillaries. As the skin becomes warm it flushes, the arterioles dilating and all the capillary networks becoming filled with blood Muscular movements express the blood out of the capillaries, as may be seen by the blanching of the skin which occurs on clenching the band. Raising the hand blanches. and lowering it congests the ca pillaries. The pressure and velocity in the eapillaries thus constantly vary, owing to alterations in hydrostatic pressure, the pressare of the body against external objects, the contraction of the musdes, and the contraction of the arterioles. It is not possible therefore to set any definite figure to the capillary pressure or velocity. In the frog's web, with the foos confined and at rest, the velocity is about i mm. per second. We continually rake alight movements o counteract the hydrostatic effect and prevent the congeation of blood in the capillaries of lower parts of the body. It is this tendency to congestion which makes it so difficult to stand absolutely motionless for any length of time. The red corpuscles, being the heavier, occupy the axis, and the white corpuscles the peripheral layer of the capillary stream. It an irritant is placed on the nembrane it will he observed that the capillaries become wider and crowded with corpuscles, the flow shackening and finally becoming arrested owing to the passing out of the plasma through tbe damaged capilary wall. The white corpuscies creep out between the endothelial cells into the sissues Such are the first phenomena of inflammation. After obstruction of an artery collateral pathwaye are in most parts rapidly formed, for the anastomatic capillarics, stimulated by the increased blood flow. develop into arterioles and arteries
Numerous anastomoses exist bet ween the veins. so that if the flow af blood be obstructed in one direction it readily finds a passage

The fow 1010 70 retes. in another. Muscular movement, alterations of posture and respiratory movements particularly forward the venow circulation. The barber's pole of the barber surgeon was grasped to increase the flow in the old blood-letting days. The valves in the veins allow the blood to be forced only cowards the heart. The pressure in the veirs vazics according to the hydrostatic pressure of the blood column above the point of measurement. In the thorizontal position, when this factor is almost eliminated, the pressure in the large veins is atout equal to \(5-10 \mathrm{~mm}\). of metary, and even may become negative on taking a deep inspira. tion. There thus arises the danger of air being surked into a wounded jugular vein. If air does thus gain entry it may fatally obstruct the circulation.
The venous circulation is impeded by (1) a lessening of heart power, (2) valvular defects, such as incompetence or narrowing of the orifice which they guard, (3) obstruction to the filling of the heart, as in cases of pericardial eflusion, (4) otstruction of the pulmonary circulation as in coughing, by pleuritic eflusion. \&c. The results of venous congestion are a less efficient arteria! circulation, a dusky appearance of the skin, a fall of cutancous temperature, and an eflesion of fluid into the tissue spaces producing oedema and dropsy. This last effert is not due to increased capillary pressure producing ancreased transudation as has been supposed, for no such increase in venous and capillary pressure persists under the conditions. It is due to the altered nutrition of the capillary endotheliunn and the eiusues, which results from the deficient circulation.

If for any reason the left vertricle fail to maintain its full systolic output, it ceasca to reecive the full auricular input, and in consequence the pulmonary vessels congest. This tells back on the right heart. and the right ventricle is unable to empty iscilf into the congested pulmonary vessels, and this in its turn lcads to venous congestion. The final result of any obstruction thus is a pooling of the blood in the vencts cistern. Dyspnoen results from cardiac insuffriency.

It is excited by the increased venosity of the blood acting on the respiralory centre Both excest of carbon dioxide and deficiency of oxygen excite this centre. The increased reapiratory movemente aid the circulation.
The venous side of the vascular system, owing to the great size of the veins, has a large potential capacity, while many of the capillaries in each organ are empty and collapsed, except at those perioda of vaso-dilatation and byperaemia which actompany extreme activity of function. The vascular system cannot be regarded as a closed system, for the blood-plasma, whenever the capillary pressure is increased, transudes through the capilary wall in to the tissuespaces and enters the lymphatics. Thus, if fuid be transfused into the circulatory system, it not only collects in the capacious reservoirs of the veins and capillaries-especially in the lungs, tiver and abdominal organs-but leaks into the tissue-spaces. Hence the pressure in the vascular system cannot be raised above the normal for any length of time by the injection of even enormous quantities of fuid. The lymphatics of tissue-spaces must be regarded at part of the vascular system. There is a constant give and take between the blood-plasma and the tissue lymph. If the fluid part of the blood be increased, then the capillary transudation becomes greater, and the excess of fluid is excreted from the kidneys and gkands of the alimentary canal. If the fuid part of the blood diminish, then fluid passes from the tissue-spaces into the blood, and the sensation of thirst arises, and more drink is taken. The circulation may be greatly aided by the trantfusion of salt wolution (\(0.8 \%\)) or blood after severe hemor-
rhage, or in states of surgical shock. Only the blood of man
 must be used. The direct giving of blood by connecting the radia] artery of a relation to the median vein of a patient has been used as a means of effecting restoration. Blood may be withdrawn from the system slowly to the extent of \(4 \%\) rapidly to the extent of \(2 \%\) of the bodyweight, without lowering the arterial presture, owing to the compensatory contraction of the arteriolesand the rapid absorption of fluid from the tissues into the blood. The withdrawal of the tissue-lymph excites extreme thirst and tbe great need for water which occurs after severe hemorrhage. About \(75 \%\) by weight of the tissues, exduding fat and bone, consists of water. The quantity of blood in the body is about it th of the body weight. That \(\alpha\) i iseue-lymph is unknowni but it must be considerable, probably greaser than that of the blood. The lymphatics drain off the excess of nuid which transudes from the capillariea, and fipaily return it to the vascular system. The interchange betweea tisule, blood and lymph depende on the forces of the living cells, which are as yet far from complete elucidation.

We may define the velocity of the blood at any point in a vessel as the length of the column of blood flowing by that point in a second. In the case of a tube. eupplied by a constant head of pressure, we can divide the tube and measure the outflow per occond; knowing the volume of this, and the cross area of the artery, we can determine the length of the column. This kind of experiment A0w. cannot be. done on the living amimal. because the opening of the vessel altere the resistanoe to flow, and the lose of bloud also changes the physiological conditions To determine the velocity other means must be devised Ludwig invented an instrument called the stromutr, consisting of two bulbs mounted on a rotating platform piereed with two holes. One bulb is filled with oil-the other with blood. The bulbs are connected together by a cube at their upper end, and the lower end of the one full of oil is brought over the hole in the platiorm. The central end of the artery is connected to the same hole and the peripheral end to the other, over which stands the bulb futh of blood. The blood being allowed to fow displaces the oil out of the one bulb into the other; directly this happens, the bulbs are rotated and the one full of oil is again brought over the central end of the artery. The nusaber of rotations per minute is counted, and the volume of the bulb being known we obtaln the volume of blood that passes througb the instrument per minute. In another instrument, the haemodromograph of Chauveau, there is inserted into the artery a 1 iube in which hangs a small
pendulum: the stem of the pendulum
 passing through a rubber dam which closes the vertical limb of the tube. The pendulum is deflected by the flow, and the greater the velocity the greater the deflection. The deflection can be recorded by connerting the free end of the pendulum to a tambour arrangement. This instrument allows us to record and measure the variations of velocity during systole and diastole of the heart, but it can only be used in the vessels of large animals Still other methods have been employed by Cybulski and Stewart. The general relations of the velocity of the blood in the arteries, capillaries and veims is expresed by the curve shown in fog. 26. The velocity in the large arterict may reach 300 mim. per mecoud
in syseoie and faili to 130 mm . in diastole. The smalier the artery the less is this difference and the more uniform the rate of flow.

From Allchin's Mansal vo Mesicine, by perrimion of Mocmilan \& Ca Lud
Fig. 26.-Diagram showing General Relations of the Velocity of the Blood in the Arteries, Capillaries and Veins.
The flow in the large veins is approximately equal to that in the large arteries. In the jugular vein of a dog the mean velocity was found to be 225 mm . and in the carotid 260 mm . per sccond. The velocity in the capillaries has been measured by direct observation with the microscope. It is very small, e.g. \(0.5-1 \mathrm{~mm}\). per second. The variation of velocity in diferent parts of the vascular system is explained by the difference in width of bed through which the stream flows. The vascutar system may be compared to a stream which on entering a field is led into a multitude of irrigation channels, the sum of the cross sections of all the channels being far greater than that of the stream. The channels unite together again and leave the field as one stream. If the fow proceeds uniformly for any given unit of time, the same volume must how through any cross section of the system. Thus the greatest velocity is where the total bed is narrowest, and slowest where the bed widens to the dimensions of a lake.
The blood in leaving the heart may take a short circuit through the coronary systern of the heart and so back to the right heart.

The flme pecersary for \({ }^{2}\) complefe cincula. Noan
such as potassium ferrocyanide is injected into the jugular vein, and the blood collected in successive samples at seconds of time from the opposite jugular vein. These samples are tested for the presence of the salt, or a strong solution of methylene blue is injected into the jugular vein, and the moment determined with a stopwatch when the blue colour appears in the carotid artery.

The velocity of flow also can be determined in any organ lry injecting salt solution into an artery, and observing, with the aid of a Wheatstone's bridge arrangement, the galvanometric change in electrical resistance which occurs in the corresponding vein when the salt solution reaches it. The moment of injection and that of the alteration in resistance are observed witha stop-watch (Stewart).

It has been determined that the blood travelling fastest can complete the circuit in about the time occupied by 25 to 30 heartbeats, say in 20 to 30 seconds: a result which shows how rapidly methods must be taken to prevent the absorption of poisons-for example, snakepoison. Tlie blood travelling lastest in the pulmonary circuit occupies only about one-fifth of the time spent by that in the systemic circuit. That some of the hlood takes a very long time to return to the heart is shown by the long time it takes to wash the vascular system free of blood by the injection of calt sol ution.

That the blood is under different prossure in the various parts of the The system has long been known. From a divided artery the pressure
rifotion
in the
vascufar
system. Stem. radial artery.
of measuring the capilary preseure. It and the venous pressure constantly vary from nothing to a positive amount with rest or movement of muscles, change of posture, \&c.
The arterial prossure is raised during exertion by the more forcible beat of the beart-e. 8 . pressures of \(140-190\) mme. Hg bave been observed immediately after a 3 -mile race. It rapidly sinks to a lower level than usual after the exertion is over, 8.8 .90 mm . Hg, owing to the quieter action of the beart and the pervistence of the cutaneous dilatation of the blood vessels which is evoiced by the rise of body temperature. The writer has oboerved in athletes rectal temperatures of \(102-105^{\circ}\) F. after long races. After meals there is an increase in cardiac force to maintain the flow through the dilated pplanchnic vessels. Mental excitement raises the presure-e.f. the writer's pressure may be 110 mm . beiore and 125 mm . Hg alter giving a lecture. The origia of the blood pressure in the arteries is the energy of the heart. The pressure gradient depends on the peripheral resistance. In the arterials the presure is spent, and little of it reaches the capillaries. The reture of the capilary blood to the veins and the preasure in the veins is due partly to the remainder of the cardiac force, but more largely to the contraction of the skeletal muscles and the visoera, to the action of gravity in changes of posture and to the respiratory pump

The pulmonary artery, carrying venous blood, divides and subdivides, and the smallest branches end in a plexus of capillaries roon on the walls of the air-cells of the lung. From this plexus mexar atrosis tion. the blood is drained by the radicles of the four pulmonary veins which open into the left anricle. The pressure in the pulmonary artery is leas than one-third the aortic pressure, and the blood takes only one-third of the time to complete the pulmonary circuit that it takes to make the systemic The four chief factors which influence the pulmonary circulation are: (1) the force and output of the right ventricle; (2) the diastolic Glling action of the left auricle and ventricle: (3) the diameter of the pulnonary capillaries, which varies with the respiratory expansion of the lungs; (4) the Intrathoracic pressure.

In inspiration the luage are distended in consequence of the greater positive pressure on the inner surfaces being greater than the negaine pressure on their outer pleural surfuces. The negative presure in the intrathoracic cavity results from the entargement of the thorax by the inspiratory muscles. When the elastic lungs are distended by a full inspiration they exert an elastic traction amounting to about 15 mm . Hg. The heart and vessels within the thorax are submitted to this traction-lhat is, to the pressure of the atmosphere minus \(15 \mathrm{~mm} . \mathrm{Hg}\)-while the vascular system of the rest of the body bears the full atmospheric pressure. The thinwalled auricies and veins yield more to this elastic traction than the chick-walled ventricles and arteries. Thus inspiration exerts a suction action, which furthers the filling of the veins and auricies. This action is assisted by the positive pressure exerted by the descending diaphragm on the contents of the abdomen. Blood is thus both pushed and sucked into the heart in increased amount during inspiration.

Experiment has shown that the blood vescels of the lunge when distended are wider than those of collapsed lungs Suppose an elastic bag having minute tubes in its walls be dilated by blowing into it, the lumina of the tubes will be lessened, and the same occurs in the lunps if they are artificially inflated with air; but if the bag be placed in a glass bottle, and the pressure on its outer surface be diminished by removing air from the space between the bag and the side of the bottle, the bag will distend and the lumina of the tubes be increased. Thus it is evident that inspiration, by increasing the calibre of the pulmonary vesscls, draws blood into the lungs, and the movements of the lungs become an effective force in carrying on the puimonary circulation. It has been estimated that there is about one-twelith of the whole blood quantum in the lungs during inspiration, and one-fifteenth during expiration. The great degrec of distensibility of the pulmonary vessels allows of frequent adjustmeats being made, so that within wide limits as much blood in a given time will pass through the pulmonary as through the aystemic syouem. The limits of their adjustment may, however, be exceeded during violent muscular exertion. The compressive action of the skeletal muscles returns the blood to the venous cistern, and if more arrives than can be transmitted through the lungs in a given time, the right heart becones engorged. breathleseness occurs, and signs of senous congestion appear in the flushed face and tureid veins The weaker the musculature of the heart the more likely is this to occur; hence the breathlessness on exertion which characterizes cardiac affections. The training of an athlete consists largely in developing and adjusting his heart to meet this strain. Similarly the weak heart may be trained and improved by carefully adjusted enercise Rhythmic compression of the thorax is the proper method of resuscitation from suffocation. for this not only aerates the lungs, but produces a circulation of blood. By compressing ebdomen to \(61 l\) the heart and then compressing the thorax to Frit, the valves meanwhile directing the flow, a pressure of Han he maintained in the aorta even when the heart has ceased Hen apd this if patiently continued may lear to renewal of arr-beat. There is no certain evidence that the pulmonary Hare controlled by vaso-motor nerves. In the intact animal
it it difficult to determine whether a rise of pressure in the pulmonary artery is induced really by constriction of the pulmonary syatem, or by changes in the output of the heart; hence different observers have reached conflicting conclusions. In the case of lungs which have been supplied with an artificial circulation and a constant head of presure to eliminate the action of the heart, no diminution in outfow has been observed in exciting the branches of the vagus or sympathetic nerves which supply the lunge, or by the injection of adrenalin (Sir Benjamin C. Brodie (1783 -186a), and Dixon, Burton-Spitz).
The portal circulation is peculiar in that the blood paspes through two sets of capillaries. Arterial blood is conveyed to the capillary networks of the stomsch, spleen, pancreas and intestines by branches of the abdominal aorta. The portal vein is formed by the confluence of the mesenteric veins with the aplemic vein, which together drin these capillaries. The portal blood hreake up into a second plexus of capillaries within the substance of the liver. The hepatic veins carry the blo from this plexus into the inferior vena cava. Ligation of the portal vein causes intense congeation of the abdominal vessels, and so distensile are these that they can hold nearty all the blood in the body: thus the arterial presaure quickly falls, and the animal dies just as if it had been bled to death. The portal circulation is largely maintained by the action of the respiratory pump, the peristalitic moverments of the intestine and the rhythric contractions of the spleen; these agencies belp to drive the blood through the second net of capillaries in the liver. The systole of the heart may tell back oa the liver and cause it to swell, for there are no valves between it and the inferior vema cava. Obstruction in the right beart or pulmonary circulation at once, tella back on the hiver. The increased respiratioa which results from muscular exercise greatly furthers the hepatic circulation, while it increases the consumption of food material. Thus exercise relieves the over-fed man. The liver is so vascular and extensile that it may bold one-quarter of the blood in the body.
The circulation of the brain is somewhat peculiar, since this organ is enclosed in a rigid bony covering. The limbs, glands and viscera can expand considerably when the blood pressure rises, but the expansion of the brain is confined. By the expression of venous blood from the veins and sinuses the brain can receive a larger supply of arterial blood at each pulse. Increase in arterial pressure increases the

\section*{Tbe}
cerchiral
cheme velocity of flow through the brain, the whole cerebral vascular system behaving like a system of rigid tubes when the limits of expansioa have been reached. For as the pressure transmitted directly through the arteries to the capiliary veins must always be greater than that transmitted through the elastic wall of the arteries to the brain tissue, the expansion of the arteries cannot obliterate the lumina of the veins The pressure of the brain against the akuil wall is circulatory in origin: in the infant's fontaneile the brain can be felt to pulse with cach heart-beat and to expand with expiration. The expiratory impediment to the venous flow produces this expension. A blood clot on the brain or depressed piece of bone raise the brain pressure by obliterating the capillaries in the compressed area and raising the pressure therein to the arterial pressure. The arterial supply to the brain by the two carotid and two vertebral arteries is 80 abundant, and 20 assured by the anastomosis of these vessels in the circle of Willis, that at least two of the arteries in the monkey can be tied without grave effect. Sudden compression of both carotids may render a man unconscious, but will not destroy life, for the centres of respiration, \&cc., are supplied by the vertebral arteries. The vertebral arteries in their paseage to the brain are protected from compression by the cervical vertebrae.

Whether the musular coat of the cerebral arteries is supplied with vaso-motor nerves is uncertain. Hürthie and others observed a rise of pressure in the peripheral end of the carotid artery on stimulating the cervical sympathetic nerve. The writer found this to be so only when the cervical sympathetic nerve was excited on the same side as the carotid pressure was recorded. If the circle of Willis was constricted, excitation of either derve ought to have the effect; it is possible that the effect was produced by the vasoconstriction of the extra-cranial branches of the carotid. After establishing an artificial circulation of the brain Wiggins found that adding adrenalin to the nutritive fluid reduced the outfow, and it is supposed that adrenalin acts by stimulating the eade of the vasomotor nerves, rather then by stimulating the muscular coats of the arterics. The veins of the pia and dura ruater have no middie muscular coat and no valves. The venous blood emerges from the skull in man mainly through the opening of the lateral sinuses into the internal jugular vein; there are communications between the cavernous sinuses and the opbthalmic veins of the facial system, and with the venous plexuses of the spinal cord. The points of emergence of the veins are well protected from closure by compression. The brain can regulate its own blood supply by means of the cardiac and vaso-motor centres. Deficient supply to these centres excites increased frequency of the heart and constriction of the arteries, especially those of the great splanchnic arca. Cerebral excitement has the same effect. so that the active brain is assured of a greater blood supply (Bayliss and L. Hill).

In each unit of time the same quantity of blood must, on the average, How through the lesser and greater circuit, for otherwise the circulation would not continue. Likewise, the average

Theciro cularion nuscoler ectivity. velocity at any part of the vascular system must be inversely proportional to the total cross-section at that part. In other words, where the bed is wider, the stream is slower; the total sectional area of the capillaries is roughly estimated to be 700 times greater than that of the aorta or venae cavae. Any general change in velocity at any section of this circuit tells both backwards and forwards on the velocity in all other sections, for the average velocity in the arteries, veins and capillaries, these vessels being taken respectively as a whole, depends alwaye on the relative areas of their total cross-sections.
The vascular system is especially constructed so that considerable changes of preasure may be brought about in the arterial section, without any (or scarcely any) alteration of the pressures in the venous or pulmonary sections of the circulatory system. A highpressure main (the arteries) runs to all theorgans, and this is supplied with taps; for by means of the vaso-motor nerves which control the diameter of the arterioles, the stream can be turned on here or there, and any part flushed with the blood, while the supply to the remaining parts is kept under control. Normally, tbe sum of the resistances which at any moment opposes the outhow through the capillaries is maintained at the same value, for the vascular system is so coordinated by the nervous systern that dilatation of the arterioles in any one organ is compensated for by constriction in another. Thus the arterial pressure remains constant, except at times of great activity. The grcat splanchnic area of arterioles acts as "t the resistance box" of the arterial system. By the constriction of these arterioles during mental or muscular activity the blood current is switched off the abdominal organs on to the brain and muscies, white by dilating during rest and digestion they produce the contrary effect. The constriction of the splanchnic vessels doce not sensibly diminish the capacity of the total vascular system, for the veins possess little elasticaty. Thus variations of arterial pressure, brought about by constriction or dilatation of the arterial system, produce little or no effect on the pressure in the great veins or pulmonary circuit. The contraction of the abdominal muscles, on the other hand, greatly influences the diastolic or filling pressure of the heart. It is obviously of the utmost importance that the heart should not be over-dilated by an increased filling pressure during the period of diastole.
When a man strains to lift a heavy weight he closes the glotis, and by contracting the muscles which are attached to the thorax raises the intrathoracic pressure. The rise of intrathoracic pressure aids the pericardium in supporting the heart, and prevents overdilatation by resisting the increase in venous blood pressure. This increase results from the powerful and sustained contraction of the abdominal and other skeletal muscles. In the diagram already given it is clear that the contraction of T will counteract the contraction of A. At the same time the rise of intrathoracic pressure supports the lungs, and prevents the blood, driven out from the veins, from congesting within the pulmonary vessels. Over-dilatation both of the heart and lungs being thus prevented, the blood expressed from the abdomen is driven through the lungs into the left ventricle, and so into the arteries. So long as the general and intense muscular spasma continue, there is increased resistance to the outfow of the blood through the capiliaries both of the abdominal viscera and the limbs. The arterial pressute riscs, therefore, and the flow of blood to the central nervous system is increased. The rise of the intrathoracic and intra-abdominal pressures, and the sustained contraction of the skelctal muscles, alike hinder the return of venous biood from the capillaries to the heart, and, owing to this, the face and limbs become congested until the veins stand out as knotted cords. It is obvious that at this stage the total capacity of the vascular system is greatly diminished, and the pressure in all pars of the system is raised. It is during such a muscular effort that a degenerated vessel in the brain is prone to rupture and occasion apoplexy. The venous obstruction quickly leads to diminished diastolic filling of the heart, and to such a decreased velocity of blood flow that the effort is terminated by the lack of oxygen in the brain. During any vioient exercise, such as running, the skeletal muscles alternately contract and expand, and the full hood of the circulation flows through the locomotor organs. The stroke of the heart is then both more energetic and more frequent, and the blood circulates with inereased velocity. Under these conditions the filling of the heart is maintained by the pumping action of the slecletal and respiratory muscles. The abdoninal wall is tonically contracted, and the reserve of blood is driven from the splanchnic vesseds, to fill the
dilated vessels of the locomotor ongans. The thorax is tonically dilated vessels of the locomotor ongans. The thorax is tonically
elevated and the thoracic catity enlarged. 50 that the pulmorary

 and the blo aid to the eireupation
importance duffint rom
maintains the diastolic filling of the heart. It is of the utmot importance that man should grasp the fact that the circulation of the blood depends not only on the heart, but on the vigour of the respiration and the activity of the skeletal muscles. Muscular exercise is for this reason a sine qua mon for the maintenance of vigorous mental and bodily health. Under the influence of the muscular system comes not only the blood but the lymph. The lymphatics form a subsidiary system of small valved vessels, and drain the tissues of the excess of lymph, which transudes from the capillaries of the organs during functional activity, or in consequence of venous obstruction. The larger lymphatics open into the veins at the root of the neck. It is chiefly by the compressive action of the skeletal and visceral muscles, and the aspirating action of the respiratory pump, that the lymph is propelled onwards. It must be borne in mind that the descent of the diaphragm during inspiration compresses the abdominal organs, and thus aids the aspirating action of the thorax in furthering the return to the beart both of venous blood and of lymph.
The circulation remains efficient not only in the horizontal but also in the erect position, and just as much so when a man, like a gymnast. is ceasclessly shifting the position of his body. Yet in a man standing six feet the hydrostatic pressure of a column of blood reaching from the vertex to the soles of the feet is equal to 14 cm . of mercury. The blood, owing to its weight, continually presses downwands, and under the of pore tire on influence of gravity would sink if the veins and capillaries of. the lower parts were sufficiently extensile to contain it
the citr
the dre
Such is actually the case in the snake or ecl, fur the heart empties so scon as one of these a nimals is immobilized in the vertical posture. This docs not occur in an cel or snake immersed in water, for the hydrostatic pressure of the column of water outside balances that of the blood within. During the evolution of man there have been developed special mechanisms by which the determination of the blood to the lower parts is prevented, and the assumption of the erect posture rendered possible. The pericardium is suspended above by the deep cervical fascia, while below it is attached to the central tendon of the diaphragm. Almost all displacement of the heart is thus prevented. The pericardium supports the right heart when the weight of a long column of venous blood suddeniy bears upon it as, lor example, when a man stands on his head. The abdominal viscera are slung upwards to the spine, while below they are supported by the pelvic basin and the wall of the abdomen, the muscis of which are arranged so as to act as a natural waist-band. In tanme hutch rabbits, with large patulous abdomens, death may rese!! in from \(\$ 5\) to 30 minutes if the animals are suspended and innmobilized in the erect posture, for the circulation through the brain ceases and the heart soon becomes emptied of blood. If, however, the capacious veins of the abdomen be confined by an abdominal bandage, no such result occurs. Man is naturally provided with an efficient abdominal belt, although this in mans is rendered toneless by neglect of exercise and gross or indolent living. The splanchnic arterioles are maintained in tonic costraction by the vaso-motor centre, and thus the flow of blood to the abdominal viscera is confined within due limits. The weins of the limbs are broken into short ecgments by valves, and thes support the weight of the blood in the erect porture. The brais is confined within the rigid wall of the skult, and by this wall ars the cercbral vessels supported and confined when the pressure is increased by the head-down posture. Every contraction of the skeletal muscles compresses the viins of the body and limbs, for these are confined beneath the taut and elastic skin. The pressure of the body against external objects, has a like result. Guided by the valves of the veins, the blood is by such means continually driven upwards into the venae cavae. If the roader hangs opd arm motionless, until the veins at the back of the hand become congested, and then either elevates the limb or forcibly clencbes tbe fist, he will recognize the enormous influence which muscular exercisc, and continual change of posture, has on the reture a blood to the heart. It becomes wearisome and soon Impcostble for a man to stand motlonless. When a man is crucified-that is to say, immobilized in the erect posture-t he blood slowly sinks to the most-dependent parts, ocdema and thirst result, and finally death from cerebral anaemia ensucs. In man, standing erect. the heart is situated above its chief teservoir-the abdominal veins. The blood is raised by the action of the respiratory movements, which act both as a suction and as a force pump, for tbe blood is not only aspirated into the right ventricle by the expansion of the thorecic cavity, but is expressed from the abdomen by the descent of the diaphragm, When a man laints from foar, his muscular system is relaxed and respiration inhibited. The blood in consequence sinks into the abdomen, the face blanches and the hear lails to fill. He is resuscitated either by compression of the ahetemen, or by being placed in the head-down posture. To prevent fainimess and drive the blood-stream to his brain and muscles a soldier tightens his belt before entering into action. Similarly, waxa and swomen with lax abdominal wall and toneless muscles talee refuge lis the wearing of abdominal belts, and find comf ore in prolonged
immersion in baths it would be more rational it they practised
rope-haulining and like Gshernen, hardenod their abdominal musta. immersion in baths. It would be more rational if they practised

In the matare foatua the fuid brought frotn the placenta by the umbilical vein is partly conveyed at once to the vens ceve ascendena poetal by means of the ducius semosw and party flows through two truales that unite with the portal vein, recurning the blood from the intestines into the substance of the liver, thence to be carried bart to the vens cava by the bepatic vein. Having thus been tranamitted through the placenta and the liver, the Blood that enters the vens cava is purely arterisi in character; but, being mixed in the vesels with the venous blood returned from the trunk and lower extremities, it loses this character in some degree by the time that it reaches the heart. In the right auricle, which it then enters, it mould also be mixed with the venous blood brought down from the head and upper extremities by the deaceading vena cava were it not that a provision exists to impede (if it does not entirely prevent) any further admixture. This consists in the arrangement of the Eustachian valve, which directs the arterial current (that flows upwards through the ascending vena cave) into the left eide of the heart, through the foramen ovale-an opening in the septum between the auricles-whilst it directs the venous current (that is being returned by the superior vena cava) into the right ventricle. When the ventricles contract, the arterial blood contained in the leit is propelied into the ascending aorta, and supplies the branches that proceed to the head and upper extremities before it undergoes any further admixture, whilet the venous blood contained in the right ventricle is lorced into the pulmonary artery, and thence through the ductus aricriosas-branching off from the pulmonary artery before it passes to the two lungs-into the deacending aorta. mingling with the arterial currents which that vessel previously conveyed, and thus supplying the trunk and lower extremities with * mixed lluid. A portion of this is conveyed by the umbilical arteries to the placenta, in which it undergoes the renovating influence of the maternal blood, and from which it is returned in a etate of purity. In consequence of this arrangement the head and upper extremities are supplied with pure blood returning from the phacenta, whilst the rest of the body receives blood which is partly venous. This is probsbly the explanation of the fact that the head and upper extremities are most developed, and from their weight occupy the inferior position in the uterus. At birth the course of the circulation undergoes changes. As soon as the lungs are distended by the first inspiration, a portion of the blood of the pulmonary artery is diverted into them and undergoes aeration; and, as this portion increases with the full activity of the lungs, the ductus artericsus gradually shrinks and ite cavity finally becomes obliterated. At the same time the foramen ovale is closed by a valvular fold, and thus the direct communication bet ween the two auricies is cut off. When these changes have been accomplished. the circulation, which was before carried on upon the plan of that of the higher reptiles, becomes that of the complete warm-blooded animal, all the blood which has been returnod in a venous state to the right side of the beart being transmitted through the lungs before it can reach the left side or be propelled from its arterial trunks. After birth the umbilical arteries shrink and close up and become the lateral ligaments of the bladder, wbile their upper parts remain as the supertor verical arteries. The umbilical vein becomes the Ifgamenturn teres. The ductus venosus also shrinks and finally is clowed. The foramen ovale is also closed, and the ductus arteriosus thrivels and becomes the ligamentum arteriosum.

The blood vessels are supplied with constrictor and dilator nerve fibres which regulate the size of the vascular bed and the distribuThe vasenerer tion of the blood to the variousorgans. The arteries may be merver. compared to a high pressure main supplying a town. By means of the vaso-motor aerves the arterioles (the house taps) can be opened or closed and the current switched on to or off any organ according to its functional needs. If all the arterioles be dilatod at one and the same time, the aortic pressure falls, and the blood taking the pathways of least resistance, gravitates to the most dependent parts of the vascular system, just as if all the taps in a town were opened at once the pressure in the main Fould fail, and only the taps in the lower parts of the town would receive a suppiy. The discovery of the vaso-motor nerves is due to Claude Bernard (185:). He discovered that by section of the cervical sympathetic nerve be could make the ear of a rabbit liush, thile by stimulation of this nerve be could malke it blanch. Claude Bernard had the good fortune to make the further discovery that stimulation of certain nerves, such as the chorda tympani supplying the salivary gland, produces an active dilatation of the blood versels. The vaso-constrictor fibres issue in the anterior spinal roots, from the second thoracic to the eecond lumber root, and pass to the sympathetic chain of ganglia. The fibres are of small diameter, and proluabty arise from cells situated in she tateral horn of the grey matter of the apinal cord. They each have a cell station in one other ganghion and proceed as post-ganglionic fibres to the cervical ympathetic, to the mesenteric nerves and to the nerves of the limbs. Aicotine paralyses ganglion cells. and by applying this sest to the rarious ganglin the cell stations of the vaso-constrictor fibres supplying each organ have been mapped out. The vaso-dilator fibres pave not mostricted an origin. lor they issue in the efferent roots in all parts of the neural axis. The two kinds of nerves, although amagonistic in action, end in the ame terminal pletus which
arrounds the vemels. The prownce of vaco-dilator fibrea in the common nerve trunkis is masked, on excitation, by the overpowering action of the vaso-constrictor dervea. The latter are, however, more repidly fatigued than the former, and by this and other meana the presence of vaco-dilator fibres can be demonstrated in almont all parts of the body. The nervi-erigentes to the penis and the chord tympani aupplying the salivary glands are the most striking examples of vaso-dilator nerves. The vaso-dilator nerves for the limbe isute in the posterior spinal rooss (Bayliss). The posterior roots contain the afferent nerves (touch, pain, \&uc.). Excitation of these fibres causes reflexly a rise of blood pressure directly, a vaso-dilatation of the part the nerves supply. Thus it is assured that the irritated or injused part receives immediately a greater supply of blood. The vaso-mpor centre exerts a tonic influence over the callibre of the arterial and portal syutems.
Much labour has been done since to determine the origin and exact distribution of the vaso-motor nerves to the various organs, aod the refiex conditions under which they conne narmally into action, and, as the Iruit, our knowledge of theme inquiries has come to a condition of considerable exactness. This knowledge is of great practical importance to the physician, and it is worth noting that it has been obtained entirely by experiment on living but anaesthetired animals. No dissections of the dead animal could have informed us of the vato-motor nerves. Vaso-motor effects can be studied by (1) inspection of the fushing or blanching of an organ; (2) measuring the venous outilow; (3) recording the pressure in the ertery going to and the vein leaving the organ: (4) observations on the volume of an organ. To make these observations, the organ is encloeed in a suitable air-tight box or plethysmograph, an opening being contrived for the wcssels of the organ to past through so that the circulation may continue. The box is filled with air or water and is connected with a recording tambour (sce fig. 18).
The chief effects of vaso-constriction are an increased resistance and lemened flow through the organ, diminished volume and tension of the organ, the venous blood issues from it darket in colour and the pressure rises in the artery and falls in the vein of the organ. and its temperature sinks. Lastly, if a large area be constricted the general arterial pressure rises.

The centre is siquated in the spinal bulb beneath the middle of the floor of the fourth ventricle. The tone of the vascular system is not disturbed when the great brain and mid brain is destroyed as far as the region of the pons Varolii, but as soon as the spinal bulb is injured or destroyed the arterial premure falls very greatly, and the animal pasees into the condition of surgical shock if kept alive by artificial respiration. Painting the floor of the fourth ventricle with a local anaesthetic. e.f. cocaine, has the mame lowering effect on the blood pressure. Division of the cervical spinal cond or of the splanchnic nerves lowers the blood pressure greatly. The one lesion cuts off the whole body, the other the abdominal organs from the tonic influence of the centre. The fall of pressure is due almost entirely to the pooling of the blood in the portal veins and vena cava inforior. On the other band, electrical excitation of the lower end of the divided cord or eplanchnic nerves raises the pressure by restoring the vascular tone. If an animal be kept alive after division of the spinal cord in the lower cervical region, as it may be, for the phrenics, the chief motor nerves of respiration, come of above this region, it is found that the valcular tone after a time becomes restored and the condition of shock passer away. By no second section of the spinal cord can the general condition of shock be reproduced, but a total obstruction of the cord ance more causes a general loss of the vascular tone. From the experimental result. so ubtained, it is argued that subsidiary vaso-motor centres exitit in the spinal cord, and there is evidence to show that these centres may be excited referly. Alter the lumber cord has been destroyed the tone of the veseels of the lower limbs is recovered in the course of a few days. In this case the recovery is attributed to the ganglionic and nervous structures which are intercalated betwewn the spinal cord and the muscular walls of the blood vessels. There are thus three mechanisms of control, the bulbar centre influenced particularly by the viaual, auditory and vestibular nervea, the spinal centres and the peripheral sanglionic structures.

The vaso-motor centre is refiexly excized by the afferent nerves, and its ever-varying tonic action is made up of the balance of the "pressor" and "depressor" infuences which thus reach it. and Irom the quality of the blood which circulates through it. Pressor effecta, is. thote causing increased constriction and risc of arterial pressure, may be produced by stimulating the central end of alinost any afferent nerve, and eapecially that of a cutaneous nerve. Depremor effects are almays obtained by stimulating the depreseor nerve, and may be obtained by stimulating the afferent nerves under epecial conditions. That these reflex vaso-motor effects frequently occur is shown by the blush of shame, the blaxching of the face by lear, the blanehing of the skin by exposure to cold and the hushing which is produced by heat. The rabbit"s car tlanches if its leet are put into cold water. The vaso-motor mechanism is one of the most important of thowe mechanisms which control the body heat. Stimulation of the nasal mucous membrane causes Gushing of the vessels of the head. constriction elscwhere and a rise of arterial presure Food in the mouth, or even the sight or
smell of food, cause dilatation of the vessels of the salivary gland. The mucous membrane of the air passages fluah and secrete more actively when a draught of cold air strikes the skin. Ioe placed on the abdomen constricts not only the vessels in the skin but those in the kidney. Many other exanples might be given of the control which the vaso-motor system exerts, but the above are sufficient to suggest the influence which the physician can bring to bear on the blood supply of the various organs.

Discussion has taken place as to whether depressor reflexes are brought about by lessening of the vaso-constrictor tone or by excitation of vaso-dilator nerves. Proof of an undoubtable character seems to have been produced that after division of the vaso-constrictor nerves dilatation of a limb can be brought about reflexly by stimulating the depressor nerve, and in this case the effect must be produced by active excitation of the vaso-dilator nerves.
Under certain unusual conditions, e.g- deficient supply of oxygen, the vaso-motor centre exhibits rhythmical variations in tonicity which make themselves visible as thythmi-al rises and falls of arterial pressure of slow tempo. A waxing and waning of respiration (Cheyne-Stokes breathing) frequently acompanies these waves Such are observed in sleep, especially in children and in hibernating animals.
Bibliograpry.-References to all the authoritative papers up to 1892 on the circulation of the blood will be found in Tigerstedt's Lekebuch der Physiologic des Kreislaufs, and up to \(1905-1908\) in the articles on the circulation published in Nagel's Handbuch der Physiologic des Menschen, viz. "Allgemene Physiologie des Herzens, Die Innervation der Kreislauísorgane," by F. B. Hoimann, "Die Mechanik der Kreislaufsorgane,' by O. Frank. An elementary introduction to the subject will be found in Leonard Hill's Manual of Physiology, and a more extensive treatment of it ia the same author's article on the "Mechanism of the Circulation," and Gaskell's article on the "Heart" in Schäfer's Text-Book of Physiology, or in one of the larger text-books of physiology, such as that of Howell, Stewart Halliburton or Starling.
(L.E.H.)

\section*{IV. Pathology of the Vascular System}

On account of its intimate relations with every part of the body, the circulation is prone to disturbances arising from a great series of causes. Some of these produce effects which may be regarded as functional-mere changes in metabolism. whose disturbances react upon the rest of the body; others give rise to definite structural alterations. In considering the pathology of the circulation, it is uscful to divide it into that of the heart, that of the blood vessels and that of the blood.

The heart is liable to changes in the pericardium, malformaThe
heart.
tions, changes in the myocardium, changes in the endocardium, valvular lesions and functional disorders.
(1) The pericardium may become the seat of morbid changes in various cardiac enlargements, it may become stretched or distended; but the most common and important of the changes is an inflammatory one, i.e. pericarditis. This may arise by way of the blood stream, as in rheumatism, scarlatina and other infective diseases, or by way of the lymph stream. The micro-organisms chiefly responsible for the production of pericarditis are the pneumococcos. the different varieties of streptococci and staphylococci, the bacillus tuberculosis, the bacillus coli, and sometimes the gonococcus. In the acute form of the disease the shining serous membrane becomes first dull and lustreless, the blood vessels engorged and an exudation of serum takes place; then fibrin is deposited both on the visceral and parietal layers. When the fuid is insufficient to keep the surfaces apart, the separation at each diastole gives rise to the well-known "friction rub." Sometimes the amount of exudation pent up in the pericardial sac is so great as to necessitate its being drawn off. The fluid may be serous or sero-fibrinous, or may be haemorrhagic, or have undergone a putrefactive change. An effusion of serous fluid into the pericardial sac causes considerable embarrassment to the course of the blood, by rendering the negative pressure, normally present in the sac, positive. The reason for the interference with the circulation brought about by this alteration of pressure is that the wifletane by compression rendered incap-

referred to. Pericardial effusions usually undergo absorption, but various adhesions, and thickenings known as "white spots," "nay remain. Effusions other than inflammatory are found in the pericardium, i.e. hydropericardium, a dropsical accumulation, may be mistaken for an inflarsmatory one. It occurs in scarlatina, Bright's disease, as part of a general dropsy, or occasionally from some mechanical difficulty interfering with the local circulation. Whteo the fluid is abundant, it may produce the effects noticed under the inflammatory effusion, and the pericardium may become zoddened and its endothelium degenerated. Hacmopericardium, or llood in the pericardium, may occur apart from the amount that may be mixed with inflammatory eflusionss. It is associated with foreign bodies penerrating from the oesophagus, rupture of an aneurysm, or oceasionally asociated with scurvy and purpura Gas and air may sometimes distend the pericardium. It is also liable to new growhs, which are usually secondary in character, and tuberculosis and hydatids are sometimes found.
(2) Malformations.-We are ignorant of the causes which lead to imperfect development of the heart. Many of its malformations are of purely pathological interest, but others. such as deficiencies of the intraventricular septum, non-closure of the foramen ovale. patency of the ductus arteriosus, or malformations of the valves, produce a series of secondary effects resultant on the deficient aeration of the blood and sluggishmess of the circulation and of venous coogestion. The train of symptoms is similar to those mentioned below under acquired valvular lesions, but dropsy is very rare.
(3) The Myoccrdium. -The coverings of the heart muscle cannot long be diseased without affecting the contractile substance itself. Any morbid changes in the lung tissues which impede the circulation through them, and more particularly emphysema, lead to change in the substance of the right ventricle, while morbid changes in the systemic arteries lead to changes in the beft ventricie. In hypertrophy we have an increase of substance. Tangl fonnd by direct measurement that the muscle cells are increased in diameter. The hypertrophy may be due to increased work thrown upon the muscle, as in athletics (idiopathic hypertrophy), or may be compensatory, when the muscle is trying to overcome a circelatory defect, as in valvular stenosis or regurgitation. Hypertrophy, when within physiological limits, is to be considered as a means of adaptation. When occurring in pathological cir cumstances, it must be regarded as a method of compensation. Every structure and every function in a healthy body has greater or lesser reserve of energy. In bealthy conditions the ordinary demands made upon vanous organs are far below their possible responses, and if these be excessive in extent or duration, the organs adapt themselves to the conditions imposed on them. Ia abnormal circumstances the process of hypertrophy is brought about by the power which the structures have of responding to the demands made upon them; and oo long as the process is adequate all disturbances may be averted. As an example of such readjoxsment may be cited the fact that in chronic renal cirrbosis, with increased thickness of the middle tunic of the arteries, there is hypertrophy of the left ventricle.
Dilatation of the heart is due to the inability of the heart musche to expel the contents of its cavities. It may oocur from temporary overstress or in the failing compensation of valvular disease, or may accompany pathological changes in the muscle such as myocarditis or one of the degenerations.

From the presence of toxic substances in the blood (wheeher introduced from without or arising within the body) the cells of the cardiac muscle fibres are apt to undergo what is termed clondy swelling-the simplest form of degenerative process. The celts become larger and duller, with a granular appearance, and the nuclei are less distinct. As a result of interference with nutrition, whether by simple diminution or perverted processes, fafty 20 generation ensues. It may be associated, but is not necestarily connected, with adipose accumulation and encroachment commoaly termed infiluration. In true fatty degeneration the muscle celis have part of their protoplasm converted into adipose tissue. The fibres become granular, and the cells lose their definition, while the nuclei are obscure.
The myocardium undergoes both acute and chronic reaction changes. In the former there is enlargement of the nuclei. rith proliferation but without karyokinesis. The muscle oells become swollen and lose their striation, while they are solter in texture and altered in outline. The intermuscular tissues are swollea, and may be invaded by leucocytes; this may end in abscess formation or in the production of newly formed fibrous tissue. Chroeic processes affecting the myocardium give rise to a large amount of fibrosis, and the newly formed fibrous tissue separates and cont pressen the areas of muscle fibres, giving rise to what is commonty known as chronic interstitial myocarditis.
Restitution or recovery may occur to a varying extent in almont Af of the disease-processes which have been conssdered, but it but 4.be kept in view that in certain of the degenerative affection mast is tetle if any possibility of getting rid of the results of the groonst which in the reactive changes terminating in the formation fbrous tissue, or its conversion into adipose or calcareoma the; same holds true. Many of the changes, which are
m doukt in their ensence connarwative, lead to far-reachine conmequences, by their interference with nutritive possibitities.
biscased conditions of the myocandium are lrequendy ansociated with atheromatous degenerations of the coronary arteries, andangina pectoris is said to depead upon such state of malnutrition.
The causes which operate by meapo of the myocardium ane almost invariably of a secondary character. The various degenerations already detailed, and the different forms of myocarditis, as wen as simple debility of the muscte, are all examples of changes due to peneral or local disturbance. All processes which directly or indirectily interfere with the energy of the walls of the heart produce twofold effects, by diminishing the aspiratory or suctionpump action during diastole, and by lessening its expulsive or force-pump action during aystole. The immediate result upon the beart itsell of such disturbasces is dilatation of that cavity immediately affected. This may occur under perfectly healthy conditions. In these, however. the dilatation is evanescent, While in the circumstances now under consideration it is permanent. and. aithough compensated, it leads to persistent dilatation. Upon the btood vessels the reult, whether on account of diminished aspiratory or propulsive energy, is that the amount of blood in the arterial system is decreased, while it is increased in the venous, It is not a necessary consequence that because there is less blood in the arteries the arterial pressure will be diminished, or the venous prepture increased becauce the veins contain more than their normal amount of blood, seeing that the blood preasure depeads upon many different factors. it is a fact, nevertheless, that is consequence of the alteration in the relative amount of blood in the arteries and veins there is a considerable distorbance of blood pressure. Gravitation may overcome the contractile and elastic lactors, and several consequences arise from the resulting venous engorgement. From transudation oedema of the de pendent parts of the body and the serous membranes occurs. From the sluggish nature of the current, the blood absorbs too nach carbonic acid and loses too much oxygen, hence cyanosis is the result. On account, also, of the slowness of the circulation. there is a longer period lor radiation of heat, and the superficial parts of the body accordingly become cold.

The engorgement of internal organs leads to distinct changes is them. The solid viscera, such as the liver, the spleen, the kidney and the lung, berome enlarged and hyperaemic, and if the disturbaqoe be contimued, cyanotic atrophy ensues. Change in structure, with lone of function, takes place from blocloing of the vespels by blood-clot, whether due to coagulation on the spof, or by the conveyarce thither of clots lormed elsewhere; a cirrhotic termina. tion also in not infrequent, although there is still some doubt whether in this intter condition other copcomitant causes have wot et the eame time been operative. The brain. aithough suffering lese from hyperaemia, is subject to disturbance of the circulation through it, while it is a common seat of embolic and thrombotic procemen. The heart itwell, lastly, suffers in consequence of the pocurbed circulation through it, and by undergoiag veeous etasib. with weakening of its walls and increase of its fibrow tissue, it completes the final link in a viclous circle. Efusion into the erous sacs, such as the pleura, the pericardium and the peritoneum, hads to great disturbace of the viscera with which they are con. gacted. The muous membranes, both respiratory and digentive, become the seat of catarrial changes in cossequence of the backward pressure and impure bood.
(4) Changes in the Endocardism.-In endocarditos, or inflamma. cion of the lining membrane of the heart, that portion of the membaspe which covers the valves is invariably affected Grat. Two varieties of endocarditis are described, simple and infective or vicerative, but it is difficult to separate thempathologically. Both resolt Irom poisoning of the membrane by micro-organisms and elveir tomins; the malin difference meems to lie in the variety of sicro-organism present. Simple endocarditia may be ansociated rith a variety of discases, acute rheumatimn and scarlet fever beine the most frequent. In many fatal cases of chorea aseociated with endocarditis the micrococcus theumaticus has been found is the endocardium, while the streptococci present in tonsilitis have produced endocarditis in animals. The membrane covering the valve loses ita smoothoeta, granulations of elevations forming on the free edges; then the endothelium proliferates and is destroyed and fbrin becomes deposited. producing what is termed a "vegetation." In the lower hyyers of this vegetation microorganisms can be demonstrated. Finally, portions of the vegetations may be broken off and carried as emboli in the blood stream, of two valves may become glued together, narrowing the opening and producing stenosis, or the deformed valves may be unable to cloee properly and regurgitation takes place. Thus the lesions of valvular disease are produced. In infective of ulcerative endocarditis, occurring in conjunction with such diouses as pyaernia, eepticsemia, smallpor, and preumonia, pyogenic micrococci are earied into the blood stream. and purutent deposits ake place arouad the valves. In this cave, however, the emboli are peptic and whea carried to distant tinsues produce there ulceration and pus-formation. Numerous abscerves may ocrat in the wall of the heart muscle itself.
 Haple to dinene; thowe anat frequently affected are the lortit and mitral valua. We linw reep hew the lesiond of the valvea are brought about. A vivular lesion may act in two wrey: it Ey impede the onward fow of the blood by narrowing the orifice, or the mai-clonure of the valves maty allow a reflux of blood. Either of there procement accur at any of the valvular or fice of the beart. Ohetraction usually complicated by onate revuritation as well, though the coaverte doee not bold good. An increase of the quantity of blood in the auficles, particulariy the left. has a lese marked effect on the heart itwelf than an increase in the contents of the ventricles, owing to the left suride being in continuity Fith the palmonary gytevs whereas if the amourt of blood in the leit ventricle be doubled the ventricie must dilate in order to socommodate it. The reanve power of the heart is called npon to wneet the dititation, the muwalar tiesues becoming hypertrophied and a more powetful oytole is produced. As the leit is the chaef ventricle to undergo this change, the apers of the peart becomes displaced downwards. Smilar changes take place in the right ventricle in pulmonary stenosis or tricuspid incompetency. Chamges in the right ventricle other then primary valvular discase of the right side of the beant are frequenty precedad by mitral incompetence, and are due to extra preaure being thrown apos the pulmonary semilunar valves by the pressure in the overful pulmonary system. In mitral regurgitation the accumulation of blood in the right auricular cavity leads to its dilatation and an eqporgement of the pulmonary verels, pulmonary oedema and induration of the lung, which in turn affects the right heart. Should compensatory hypertrophy of the right ventricle fail to be established, we get the general venous congestion, dropsy and sequence before alfuded to.
(6) Fwnctional Cardiac Dinndors-Cundiac rhythm may be modified in several ways; there may be variation in either the length or the strength of the beat. or the beats may not be asyachronous. In palpitation or tachycardia jts Irequency is increased. This increage depends upon the inhibition of the action of the cardio-inhibitory centre, umpulen pasaing to it from the gtomenth (as in dyapepeia) of Crom other ocgans. Tachycerdit is atoo produced by toxic action, as in diphtheria aod Graves's disease. In bradyeardic the frequency is diminished. It may be due to toxins or to degenerative changes. Intermittence may simulate bradycandia, though the actual rate of the beat is not lememed: but the weak beats fail to seach the periphery. Various irnegularition may take place, dependent upon perverted nerve action. It is considered that the intrinsic nerve elements play a large part in these, and in some forns of disease the irregularty is of myocardial origin.

The blood vessels possess tbe properties of contractility and elasticity in different degrees. Their contractility is characterized by great tonicity considerable thythmic action and littie or no rapidity of contraction. Their

The creat elasticity stores up energy in a potential condition, and this may be liberated in kinetic form as required. The vessels are supported in various degrees by the different tiatues in which they are found. In the more solid viscera they are strongly supported, as in the liver and kidney, while in those which are less dence, as in the case of the brain and the lunga, they are not wo well sustained.

In many conditions the contractility and clasticity of the blood vessels become diminished according as they may be involved in various pathological processes-purulent, tuberculous or syphilitic. Chronic toxic conditions lead to nymarous dern-perntions, such as fatty degeneration or hyaline degemeretion of muscle fibre. apparently as the cflect of coagulative processes. The tissures assame somewhat glassy appearance, with a distinct tendency townds eepmentation. Calpentess infifratite is brought about by the deposition of lige alts in tisulues whicb have previouty undergone atty or fibroid changes: it particularly adects the arteries in senile affections. In consequence of many toxic agencies as part of a senile change, and as the effect of long-continued stress, the hlood vemela undergo a lows of their normat properties. This is compencaped by the growth of an ewcesive amount of fibroum cissue, leading to various forms of arterial sclarosis, of which the best known are endarteritis obliterans, which affects the straller erteries and is dute to a eoxic irritant and may occur at any age. and andarteritis dformans (afleroma), which affects the large arteries during middle age, and is usually due to mechanion irritation, As the result of these 6 brous changes there is interference with the blood current, since the vessels become upyielding yct Irangible, instead of distrnsite and elastic, tubes. The aclerotic chenges lead. monvover. to dilatesion of Llood vesche, ass well as to the formation of definite apeurymon They aloo pave the wey for coagulation of blood within them, i.e. thrombosis, while in certain situations, more particularly in the brain and in the bidney, rupture is apt to take place. Upon the heart also these changes bring about far-reaching effects. Dilatation, aconapaaied by bypercroppy, is a certain reavit of geosealized acterial degremation.
while changes in the coronary arteries lead to some of the definite results in the walls of the heart which have already been considered. Vcins are subject also to mechanical and coxic effects. The pressure of abdominal tumours, the effects of the weight of a columa of blood on a long vein, constipation or obstruction to the venous return may cause dilatations or varicosity. The dilatation thins the walls of the veins and the valves become incompetent; the dilated vessel then becomes twisted and the surrounding tissues thickened by the growth of fibrous tissue. The thinned walls may rupture, and, owing to the loss of the valves, extensive haemorrhages may take place. Thrombosis may follow the slowing of the blood current, and phleboliths are produced by the deposit of lime sales in it. Phebitis is an acute inflammation of a vein. Apart from injury it usually follows invasion by a septic thrombus, as in the well-known phlegmasia alba dolens, when an infective clot from the uterine sinuses reaches the iliac veins. The pathology of the blood itself is treated under Blood.

VASE (through Fr. from Lat. vas, a vessel, pl. vasa, of which the singular vasum is rarely lound; the ultimate root is probably wus-, to cover, seen in Lat. vestis, clothing, Eng, "vest," Gr. totiss, and also in "wear," of garments), a vessel, particularly one of ornamental form or decoration; the term is often confined to such vessels which are uncovered and with two handles, and whose beight is great in proportion to their width. It is the general term applied to the decorative pottery of the ancient Greeks and Romans, of whatever shape (see Cerames).

VASBLINE, or mineral jelly, the Paraffrinm molle of the British Pharmacopocia, a commercial product of petroleum which is largely employed in pharmacy, both alone and as a vehicle for the external application of medicinal agents, especially when local action rather than absorption is desired, and as a protective coating for metallic surlaces. "Vaseline" is a registered proprictary name (coined from the German Wesser, water, the Greek enatoy, oil, and the termination -inc), and is strictly applicable only to the material manufactured by one company (the Chesebrough Manufacturing Company), but it is commonly applicd in a generic sense. As met with in commerce, vaseline is a semi-solid misture of hydrocarbons, having a melting point usually ranging from a little below to a lew degrees above \(100^{\circ} \mathrm{F}\). It is colourless, or of a pale yellow colour, translucent, duorescent, amorphous and devoid of taste and smell. It does not oxidize on exposure to the air, and is not readily acted on by chemical reagents. It is soluble in chloroform, benzene, carbon bisulphide and oil of turpentine. It also dissolves in warm ether and in hot alcohol, but scparates from the latter in flakes on cooling.
-The process employed by the Chesebrough Manulacturing Company in the manulacture of vaseline is said to consist essentially in the careful distillation of selected crude petroleun, vacuum-stills being used to minimive dissociation, and filtration of the residue through granular animal charcoal. The filters are either steamjacketed, or are placed in rooms heated to \(120^{\circ} \mathrm{F}\)., or higher. The first runnings from the filters are colourless, and when they become coloured to a certain extent they are collected for use as a lubricant under the name of "filtered cylinder oil."
(B. R.)

VASILROV, a town of Russia, in the government of Kiev, 23 m . hy rail S.W. of the city of Kiev. Pop. 18,000 , chiefly agricultural. Vasilkov was founded in the soth century, but laid waste during the Mongol invasion of \(\mathbf{1 2 3 9 - 4 2}\). In 1320 it was taken by the Lithuanians, and later by the Poles, under whom It remained until 1686 , when it was annexed to Russia.

VASLUI, the capital of the department of Vaslui, Rumania; on a hill at the confluence of the Bérlad and Vaslui rivers, and on the railway from Jassy to Galatz. Pop. (1900) 13,405 . There are a fine old church and ruins of a palace buitt in 1472 by Stephen the Great. The chief trade is in corn, winc, cattle and timber. A fair is held yearly on the first ten days of September.

Vassal (Fr. cossal, massauf, passaulf, \&r.), the tenant and follower of a feudal lord (see Feldalisy). The etymalogy of the word has been a matter of considerable typute late Henti de Tourville, in bis Histoire de to fom ficularise, maintained that vassal is derived fry Gast, a guest, meaning an outsider to wham a domain was assigned in return for rent and This derivation has a somewhal fant ant
been framed to suit an hypothesis. The commonly accepted etymology is from the Brelon gwas, Welsh groas, a Lad or a servant. As the word in its Latin form tossius was at first uniformly employed in the sense of slave, this explanation is the more acceptable of the two. If it is correct we may say that "vassal" was analogous in origin to the name of "boy" given to a coloured servant by Europeans in Asia and Africa The word gained in dignity under the Frankish empire through the tassi dominici, i.e. servants of the royal houschold, great officer3 of state, who were sent on extraordinary missions into the provinces, 10 act as assessors to the counts in the courts, or generally to settle any questions in the interests of the ceniral power. Sometimes they were sent to organize and govern a march, sometimes they were rewarded with benefices, and as, with the growth of feudalism, these devcloped into hereditary fiefs, the word vassus or vassallus was naturally retained as implying the relation to the king as overlord, and was extended to the holders of all fiefs whether capital or mediate. As feudal independence increased, the word vassal lost every vestige of its original servile sense, and, siace it had come to imply a purely military relation, acquired rather the meaning of "free warrior." Thus in medieval French poetry vasseloge is commonly used in the sense of "prowess in arms," or generally of any knightly qualilies In this sense it also became acclimatized in England, and "vassal" came to be used as equivalent to frce-born, soldierly, valiant and loyal, in which sense it is commonly used in medieval poctry. In countries which were not feudally organized-in Castile, for instance-vassal meant simply subject, and during the revolutionary period acquired a distinctly offensive significance as being equivalent to slave. The diminutive form vosseletus, for the son of a vassal, after slrange fortunes returmed to something of its original sense of "household servant "in the modern "valet" (\(q .0\).) (see also Vavassos).

Sce Diclionnaipe de l'ancienne largue frangaise (Paris, 1895). For numerous examples of the use of the word vassal; also Du Casge. Glossarium, s. "Vassus."

VASSAR COLLEGE, a non-sectarian institution for the higher education of women, about 2 m . E. of Poughkeepsie, New York, U.S.A. It was incorporated in 1861 as Vassar Female College (which was changed to Vassar College in 1867), and was mamed in honour of its founder, \({ }^{2}\) Matthew Vassar, who transferred to a board of trustees of his own selection about \(\$ 400,000\) (increased by his will 10 twice that amount) and the tract of about 800 acres of land upon which the college was built. Building begas in June 1861, and the institution was opened on the \(20 t \mathrm{~b}\) of September 1865, with John Howard Raymond \({ }^{2}(18 \mathrm{r} 4-1 \mathrm{~S} 78\)) as president, and Hannah W. Lyman (18;6-1871) as lady principal; it had a faculty of eight professors and twenty instructors and teachers, and an enrolment of 353 pupils. The first graduating class was that of 1867 , and comprised four members. to whom were given temporary certificates stating that they were "entitied to be admitted to the First Degree of Liberal Arts," as ihe proprety of awarding the degree of "bachelor " to \({ }^{1}\) Matthew Vassar (1791-1868) was born at East Dereham, Tuddenham parish, Norfolk, England, on the 29th of April 179r, son of a Baptist who emigrated to the United States in 1796 , settled 3 m E. of Pcughkeepsic in 1797 and in 1801 established a brewery thereThe brewery was burned in 18it, and Matthew took up the busincso and in 1812 established an " ale and oyster saloan "and a brewery. from which he became wealthy. He was a prominent member a the Baptist charch. He got the idea of founding a women froin his niece, Lydia Booth a school teacher. the 23 rd of June 1868 while reading his farewell report to the Poant
 of Trustees
horn ip
women Tas questioned at that time; in 1868 these certificates mere replaced by diplomas bestowing the degree of A.B. The present equipment inctudes more than twenty buildiags, and the campus has an aren of about 400 acres. The college confers the baccalaureate degree in arts (A.B.) opon the completion of the regular course of four years, and a second degree in arts (A.M.) upon Bachelors of Arts of Vassar or any approved college who have completed (by examination and thesis) a courne of advanced non-profescional study. In \(1909-10\) there were about ninety profeseors and instructors and rayo students. The college had in 1909 total productive funds of about \(\$ 1,360,000\), yielding an income of about \$600,000 James Momroe Taylor (b. 1848), a graduate of the university of Rochester and of Rochester Theological Seminary, became president of the college is 1886.

See Benson J. Lossing's Vassar College and is Fownder (New York, 1067) and Frances A. Wood's Eariest Yeops of Varsar (Poughtreepsie, N.Y., 1909).

Vasio (anc. Fistomimm), a fortified town of the Abruszi, Italy, in the province of Chieti, stuated high on an olive-clad slope, about a mile from the Adriatic, 32 m . direct S.E. by E. of Chieti and 131 m . by rail from Ancons, 525 ft . above sealevel. Pop. (1901), 10,0go (town); 15,542 (commune). It is surrounded by medieval walls, and commands fine views extending to the Tremiti Islands and Monte Gargano. The churcbes of S. Pietro and S. Giuseppe have Gothic façades. There is a medieval castle. The municipal buildings contalin a collection of Roman antiquities and inscriptions. There are manufactures of earthenware, woollen cloth and silk; but the inhabitants are chiefly employed in the culture of the olive and in fishing.

The ancient Hirtoxism was a town of the Frentani, and an Oscan inscription of the period of its independence speaks of censors there, probably officers of the whole community of the Frentani (sce R. S. Conway, Italion Dialects, i. 208, Cambridge, 1897). Though hardly mentioned in history, it was a Aourishing municipal town under the Roman Empire, as is shown by the numerous inscriptions found there. One of these mentions its Capitolium or temple of Jupiter, Juno and Minerva. It lay on the line of the ancient road which prolonged the Via Flaminia to the S.E., and reached the coast bere after having passed through Anxanum (Lanciano). It was, and still is, subject to severe earthquakes.
(T. As.)

VATICAN COUNCIL, THB, of 1869 and 1870 , the last ecumenical council of the Roman Catholic Church, and the most important event in her historical development since the Tridentine synod. The preliminaries were surrounded by the closest secrecy. As early as the end of the year 1864, Pius IX. had commissioned the cardinals resident in Rome to tender him their opinions as to the advisability of a council. The majority pronounced in favour of the scheme, dissentient voices being rare. Alter March 1865 tbe convocation of the council was no longer in doubt. Thirty-six carefully selected bishops of diverse nationalities were privately interrogated with regard to the tasks which, in their estimation, should be assigned to the prospective assembly. Some of them proposed, inder alia, that the doctrine of papal infallibility should be elevated to the rank of a dogma. In public, however, Pius IX. made no mention of his design till the 26th of June 1867, when Catholic Elhops from every country wert congregated round him in thene on the octasion of the great centenary of St Peter. On Hy spth of June 1868 the bull Aeterni Patris convened the Ernet to Rome, the date being fixed for the sth of December And since the Roman Catholic Church claims that all
ined petsons beiong to her, special bulls were issued, with
itinfons to the bishops of the Oriental Churches, to the
Putints.r.ary the other non-Catholics, none of which the request.

Aucil was long a mystery. The Bull of Thed in perfectly general terms, and Y) Hon for the scbeme, as it allowed ample astion. But, among liberal Catholics,

1his mood underwent a complete reveral when fnformation began to leak out as to the object of the Curia in convening the council. The first-epoch-maling-revelation was given, it February 186g, by an article in the Cioilld Collolica, a periodical conducted under Jesnit auspices. It was there stated, as the view of many Catholics in France, that the council would be of very brief duration, since the majority of ite members were in agreement. As a presumptive theme of the doliberations, it mentioned inter alia the proclamation of papal infallibility. The whole proceeding was obviously an attempt, from the Jesuit side, to gauge the prevalent opinion with regard to this favourite doctrine of ultramontaniom. The repudiation was energetic and unmistakable, eqpecially in Germany. Certain articles on "The Council and the Civilt," published by Dolinger in the AUgencine Zeilung, worked like a thunderbolt. Unions of the laity, dedigned to repel the encroachments of ultramontanism, sprang up immediately; and all manner of old ideas for the remodetling of the clergy were broached anew. It must, however, be admitted that counter demonstrations were not lacking. The attitude adopted by the German episcopate well excmplifies the ecclesiastical situation of that period. The bishops tried to allay the excitement by publishing a pestoral letter drawn op in common; but in a written address to the pope tbey declared against the contemplated definition of infallibility. In France also a violent conflict broke out. Here it was prineipaly the writings of Bishop Maret in Paris (Dw conctie gimeral et de te paiz religieuse, 2 vols., 1869), and of Bishop Dupanloup of Orleans, which gave expression to the prevalent unrest, and led to those literary controversies in which Archblshop Manning of Westminster and Dechamps of Mechlin came forward to champion the opposite canso. In Italy the free-thinkers considered the moment opportane for renewing their agitations on a larger scale. They even attempted-. though with no success worth the mame-to counteract the Vatican Council by a rival council in Naples. That the projected dogma had weighty opponents among the higher clergy of Austria-Hungary, Italy and North America was demonstrated during the progress of the council; but before it met all was quiet in these countries. The credit of inviting the European governments to consider their attitude towards the forthcoming synod betongs to the president of the Bavarian ministry, Prince Chlodwig of Hohenlohe-Schillingefirst, the future imperial chancelior. In his circular note to the Powers of the gth of April 1869 he analysed the political import of the doctrine of papal infallibility, \({ }^{\text {a }}\) and proposed a common course of action. But his overtures met with no response. In view of the strained international situatioa, none of the Powers approached was willug to take a step which might easily have resulted ia a bitter conflict with the Church; and the studied vagueness of the Curia in its official pronouncements on the council enabled them to astame an attitude of reserve and suspension of judgment. France was equally inective, though it rested with het to decide whether the council could even meet in Rome: for the withdrawal of her troops from the papal state would have been the signal for a patriotic Italy to sweep this last impediment to national unity from the face of the earth.

On none of the previous ecumenical councis did the Roman see exercise 50 pronounced an influence as on the Vatican. As early as the year 1865 a committee of cardinals had been formed as a " special directive congregation for the affairs of the future general council," a title which was usually abbreviated to that of "Central Commission." Among the earliest preliminaries, a number of distinguished theologians and canonists were retained as consultors to the council. In the selection of thete the prelerence for men of ultramontane teadencies was so pronouncedDollinger, for instance, was not invited-that the influences at work in the convocation of the council were obvious long before its opening. Under tbe control of the Central Commission were six sub-commissions: (1) lor dogma; (a) for matters of ecclesiastical discipline; (3) for the religious orders; (4) for the Oriental Churches and the missions; (5) for the secular policy of the Church;

IThe aote was drafted by Dollinger (mee infalimility).
(6) for the ceremonial of the council. The pope nominated the presidents of tbe council (Cardinals Reisach, de Luca, Bizarri, Bilio and Capalti); also the secretaries and the remaining officials. Again, before the proceedings began, he determined the order of husiness on his own initiative (\(\boldsymbol{M}\) ultiplices inier d.d. Nov. 27, 1869),-thus precluding the members of the synod from any opportunity of co-operating in the task. In these regulations the right.of fixing the suhjects for debate was reserved to the pope. The members of the syood, it is true, enjoyed the privilege of proposing motions; but these motions could never reach the stage of discussion, except by the papal sanction. Another fact of great importance was the strict privacy in which the labours of the council were to be conducted, the members being pledged to silence on every point. For their deliberations, two forms of assembly, analogous to those employed at Trent, were instituted: the congregationes geserales and the sessioncs. The General Congregations, presided over by cardinals, were employed in considering the schemata (draits) submitted to the synod; and provisory votes-not regarded as binding-were there taken. The sessions witnessed the definitive voting, the results of which were to be immediately promulgated as ecclesia.tical law hy the pope. The form of this promulgation was, in itself, sufficiently characteristic; for the pope was represented as the real agent, while the acknowledgraent of tbe share of the council was confined to the phrase secro approbante concilio. In contrast to this, we may refer to the synods of Constance and Trent (C. Mirbt, Quellew u.s.w., pp.155-202, and the articles Constance, Council of, and Trent, Council or). In the event of the drafts suhmitted by the Curia not being unanimously adopted by the General Cangregations, they were to be remitted, together with the objections raised, to special committees chosen from the body of the council. These committees (congregationes speciales depudationes), the presidents of which were also nominated hy the pope, were four in number: (1) for matters of belief; (2) for questions of ecclesiastical discipline; (3) for the religious onders; (4) for affairs of the Oriental Churches. The whote proceedings took place in the church of St Peter, the south transept of which had been prepared especially for the purpose. That the acoustic properties of the structure were unequal to the demands made upon them was obvious from the first day, and occasioned numerous comptaints.

On the 8th of December the first session met, and the council was solemnly opened by Pius IX. From beginning to end it was dominated by tbe "Infallibility "problem. At the elections to the committees the fact was already ohvious; for the leaders of the synodal majority in favour of the dogma took excellent care that no one should be cbosen who was known to lean toward the opposite side. The order of procedure excited considerable dissatisfaction in many; and a series of petitions, with altergative suggestions, was submitted to the pope, hut without suecess. The very first transactions of the council gave proof that numerous bishops beld the theory that their convocation implied the duty of serious and united work, and that they were by no means inclined to yield a perfunctory assent to the papal propositions, which-in part at least-stood in urgent need of emendation. The Curia awoke to this unpleasant fact during the discussion upon the first draft laid before the council,-the schema De Fide,-and some perplexity was the result; for on the 8th of December the second session had already been announced for the 6th of January. Since the consideration of the schema could not possibly be completed by that date, and since it was now futile to hope that the doctrine of infallibility would be carried by acclamation, and without debate, in that session,-Archbishop Darboy informing Cardinal de Luca that, in this event, \(a\) hundred bishops would leave Rome at once the second session, on the 6 th of January, was reduced to a mere formality, the delegates again declaring their allegiance to the Profcssio Fidei Tridentince, to which they had already pledged themselves at ordination. On the roth of January the schema De Fide was referred to the committee "for matters of belief," to receive further revision.

From the 1oth of January to the 2and of February 1870 the
council was occupied with proposals concerning ecelesiastical discipline and with questions of church life. On this occasion it became evident that the synod was not bind to the necessity for many and various reforms. Even the College of Cardinats and the Curia did not escape. Complaint was made, for instance, that the papal chair and the Roman Congregations were filled almost exclusively hy Italians; while the control of the Church was too much centralized in Rome. Again, the treatment of impediments to marriages, of licences and of the scales of charges, was submitted to criticism. The fact was elicited that the resolutions of provincial synods, when transmitted to Rome for approbation, were there suhjected to arbitrary changes, so that the contents no longer corresponded with those to which the bishops had affired their signatures. Even the desire for national assemhlies and for ecumenical councils, held at regular intervals, found expression. The delicate suhject of the compulsory celibacy of the clergy was also discussed; the notorious defects of the Roman Breviary were considered, and a long debate ensued with regard to the policy of drawing up a short catechism for the whole of Catholic Christendom. Even the proposals which led to these declarations of opinion-many of which were neither anticipated nor desired-were not accepted by the council, hat returned for revision to the respective committees

That matters progressed slowly was undeniahle. It was the third month, and not one of the proposals under consideration had been despatched. That this unexpected delay was a natural sequel to the character of the proposals themselves was a fact which the Curia declined to recognize. Consequently, as that body could rely upon a complacent majority, it resolved to proclaim a new order of procedure, hy means of which it would be possible to end these unwelcome discussions and quicken the pace of the council. By the papal decree of the 2oth of Fehruary the influence of the committees was increased; the majority was allowed to cut short a debate hy accepting a motion for its closure; a plurality of votes was declared suffcient to carry a proposal; and the voling itself was modified by the institution of a "conditional affirmative " (pleced iurla \(\bmod u m\)) in addition to the regular affirmative and negative (placet and non placet). Since neither the presidents nar the majority of the council could well be expected to employ the extensive powers thus placed at their disposal with much consideration for the rights of the minority, protests by the weaker party against the new regulations were handed in to the pope, hut to no effect.

The main ohject, however, of this alteration in procedure was to ensure that if the council could not be induced to eccept the doctripe of infallibility by acclamation, it should at lcast do so hy resolution. From the first the general interest was almost exclusively concentrated on this question, which divided the members of the synod into two hostile camps. The adherents of the contemplated dogma-among whom Archbishop Manning of Westminster and Bishop Senestrey of Regensburg admittedy held the leading position-circulated petitions to the pope requesting the introduction of a proposal to meet their views; and, as a result of their efforts, the signatures of 480 bishops were obtained. This manauvre aroused the other side. Petitions to the opposite effect were now similarly distrihuted, and signed hy 136 bishops. On the gth of February the committce of examination-as was only to be expected-resolved to recommend the pope to grant the wishes of the majority. The remarkahle feature of the situation created hy these agitations was not that the majority of members declared in favour of the dogmatization of infallibility-that was a foregone conclusion in view of the strides made hy ultramontanism in the Roman Catholic Church-but that so many could be found witb courage enough to withstand the aspiration to whish Pius IX. had given open expression on every possible occasion. The weight of their opposition was accentuated by the fart that the finest intellects and the ablest theologians of Catholicism were included in their ranks. The presence of strikirg personalities, whose devotion to the Church was beyond question. -Archbishop Scherr of Munich. Melchers of Cologne, Bisbop

Setader of Minnt, Biibbop Hefele of Rottenburg, Cardinal Schwarrenberg of Prague, Cardiaal Rauicher of Vienna, Arch. bishop Haynald of Kalossa, Bishop Strossmayer of Sirmium, Archbishop Dartoy of Paris, Bishop Dupenloup of Orieans, to say nothing of the others,--aseured this group an influence which, in spite of itseff, the opposing faction was bound to feel. If the minocity indeed had formed one compact phalanx, the council might possibly have taken a different course; but this it was not, and the fatal truth could not be concealed from the pope and his adviscrs. The bond which united its members was not a repudiation of the doctrine of in lallibility itseff, but simply a common sentiment that its elevation to the rank of dogma was inopportune at the time. Sotne-possibly manymay have entertained serious doubts with regard to that doctrine; but, if such was the case, they succeeded in repressing and disciplining their suspicions, and the greatest anxicty was shown to avoid the least attempt at founding their resistance on a dogmatic besis. And here the weakness of the opposition is at ance manifest; it lacked a clear and positive goal.
In outside circles the proceedings at Rome were followed with strained attention, and the battle round the question of infallibility was waged with equal violence in France and Germany. In the one country public interest was focused on the writings of Gratry, the former Oratorian; in the other oa the trenchant attacks of Dollinger. In England, Newman protested against the dogra. The progress of the council was marked by a plethora of controversial literature with which it was almost impossible to koep pece; articles and pamphlets were poured forth in increasing volume month after month, and even yet no classifed collection of them is extant. Among them all, none exceeded in influence the Ramische Briefe, first published in the Augsburg Allgemeine Zeimng, which gave a regular account of the most intimate cransactions of the council, and maintained a high reputation for accuracy in spite of all attempts to discredit their authenticity. Important service in disseminating information armong widely extended circles was done by the brochure Ce qui se passe au concife (May 1870), which revealed a number of proceedings never intended for publicity.
Among the socret propositions submitted to the council hy the Curia was the schema De Eeclesia Christi, which was distributed to the members on the 21st of January. This contained fifteen sections, in which were defined the nature of the Church, the position of the pope in the Church, and, more especially, the relationship between the Church and the State. In case the harmony between these two magnitudes is disturbed, the responsibility lies with the State, because it thereby disregards the rights and duties of the Church (cap. 13). The divine law is binding on temporal sovereigns, but the administration of that law is a question which can only be decided by the supreme doctrinal suthority of the Church (cap. 14). In addition to the education of youth, the Church demands absolute freedom in the training of its clergy and the ahrogation of all restrictions on the religious orders, \&c. Thus the superiority of Church to State was here enunciated in the same drastic terms as in the Syllabus of Pius IX. (1864)-a declaration of war against the modern political and social order, which in its day provoked the unanimous condemnation of public opinion. When, in spite of the injunction of secrecy, the schema became known outside Rome, its genuineness was at first impugned; bot as soon as the authenticity of the text was established beyond the possibility of doubt, this attempt to dogmatize the principles of the notorious Syllabus excited the most general indignation, even in the strongholds of Catholicism-France and Austria. It almost appeared as if both govermuents, incensed by these encroachments on the sphere of the State, were at last bent upon bringing pressure to bear on the future deliberations of the council; but the international situation enabled the Curia to persist in its attitude of strict negation towards the despatches of Count Berst and Count Daru. On political grounds Napoleon was pot inclined to employ any form of coercion against the syood;

Bismarck maintatned a like reserve; and although Lord Acton intuenced Gladstonc in the contrary direction, Lord Clarendon followed Odo Russell, his charge d'afaires in Rome, who was bimself adroitly kept in hand by Manning. Thus the danger that the attitude of the secular powers might imperil the liberties of the council was averted for the second time.
From the 22nd of February to the 18 th of March no meetings of the General Congregations took place, on account of structural alterations in the oula itself. During this interval all uncertainty as to whether the question of infallibility would actually be bromehed was dispelled. On the 6th of March a supplementary article to section 11 of the schema De Ecclesis. dealing with the primacy of the Roman see, was transmitted to the members, and in it the much disputed doctrine received formal expression. But before the animated discussions which centred round this problem could begin, it was imperative to conclude the debate on the schema De Doctrina Catholica. From the deputation "for matters of faith" it retumed to the plenum in a considerably modified form, and there it occupied the attention of the assembly for a full month, beginning with the 18 th of March. Even in this later stage it frequently gave rise to trenchant criticism; but the greatest sensation was created by a speech of Bishop Strossmayer, who took exception to the terms of the proposal on the ground that it described Protestantism as the fountain-head of naturalism and as an unclean thing (pestis). There foilowed a dramatic scene: the orator was interrupted by the president and compelled by the outcries of the indignant fathers to quit the tribune. Nevertheless, Strossmayer hy his courageous protest succeeded in modifying the objeztionahle clauses. The bishops of the minority were still dissatisfied with several passages in the schema, hut, desirous of concentrating their whole available force in opposition to the next proposal, they suppressed their doubts; and the result was that, on the 24th of April, in the third public session, the Constitulio dogmalica de Fide Catholica' was adopted unanimously and immediately confirmed by the pope.
Meanwhile, the elaboration of the all-important business of the council had been quietly proceeding. Influenced by the alarming number of amendments to the schema De Ecclesia, and anxious above all to ensure an eariy acceptance for the dogma of infallibility, the deputation abandoned the idea of subjecting the entire doctrine of the Church to debate, and resolved to eliminate everything save the one question of papal authority, and to submit this to the council alone. That this procedure directly challenged eriticism was obvious enough, and, within the synod, several speakers drew attention to the capriciousness of a method which required them to consider the infallibility of the pope before the nature of the Church herself had been defned. The event, however, justifed the wire-pullers of the council in their policy, for the path they chose obviated the danger that the discussion might lose itself in a maze of generalities. It is impossible to give a short and, at the same time, an adequate account of the debate: lengthy disquisitions were the order of the day, and the disputants did not scruple to indulge in verbose repetition of arguments worn threadhare by their predecessors. A pleasant impression is left by the great candour of the opposition speakers, who, in the course of the next few weeks, made every point against the doctrine wbich in their position it was possible to make. In the general debate, begun on the i3th of May, Bishop Hefele of Rottenburg, author of the well-known Konsiliengeschichte, criticized the dogma from the standpoint of history, adducing the fact that Pope Honorius I. had been condemned by the sixth ecumenical council as a heretic (680). Others were of opinion that the doctrine implied a radical change in the constitution of the Church: one speaker even characterized it as sacriege. The contention that the dogma was necessitated by the welfare of the Church, or justified by contemporary conditions, met with repeated and energetic repudiation. The champions of infallibility were, indeed, confronted with no slight task:- 10 establish their theory by Holy Writ and tradition, and to defend it against the arguments of history.
- Mirbl Qxellen, 371-77.

But to them it was no hypothesis waiting to be verified, but an already existing truth, the posesssion of which no extrancous attacks could for a moment affect. On the 3rd of June the general debate was closed, and iorty prospective ocators compubsorily silenced.

In the special debate, which dealt with the proposal in detail, every important declaration with regard to the pope was impugred by one party and apheld by the other. The main assault was naturally directed upon the fourth section, "concerning the doctrinal authority of the pope," and Archbishop Guidi of Bologna, in particular, incurred the resentment of the majority through his oulspoken ulterances on the subject. Immediately after the session be was summoned to the Vatican, and, on defending bis attitude by an appeal to tradition, received from Pius DX the celebrated answer, "I am the tradition." From the beginning of July onwards it became increasingly evident that the council was on the verge of exhaustion: the great beal was positively dangerous to members accustomed to a colder climate, and the opinion gained ground that the spokesmen of both parties had sufficienuly elucidated their views for the benefit of the conclave. Many delegates who had announced their intention of speaking relinquished the privilege, and on the 13th of July it was found possible to conclude the dehate. On that day the voting in the 8sth General Congregation, on the whole schema, showed that, out of 601 members present, 45 x had voted placed, 88 non placet and 62 placed iuxta modum. That the number of prelates who rejected the places would amount to 150 had not been expected. The question was now: Could the doctrine of infallibility be raised to dogmatic rank when it was repudizted by so formidahle a minority? At the beight of the crisis several leaders of the opposition attempted, hy a direct appeal to the pope, to secure a modification in the terms of the dogma, which might enabie them to give their assent. On the evening of the isth of July sir bishops were accorded an audience with Pius IX., in which they preferred their modest requests. Ketueler threw himself at the fect of the pope and implored him to restore peace to the Church by a little act of compliance. The touching scene appeared to have made some impression on Pius IX.; but, after the deputation had left, opposing inluences gained the ascendant, and the result was simply that the clauses on which everything hinged received an addition the reverse of conciliatory (Gencral Congregation, 16th July). The bishops who had hitherto formed the recalcitramt minority were now face th face with the final decision. On the one hand was their loyale: 10 the pope, allied with the desire 10 avoid any demonstratio: calculated to impair the prestige of the Church; on the othes, their conviction that the very doctrine which the council was about to proclaim as dogma was a gigantic error. There w:s but one way out of the impasse,- -to leave Rome before the deciding session,--and on the 16 th of July the pope met their wishes and accorded the leave of absence previously witheld. A section of the dissentient bishops reiterated their views in a lether to Pius 1X., and agreed to direct their subsequent actions in common, - a compact which was not obscrved. On the \(18: 3\) of July, in the fourth public session, the dogma was accepte: by 535 dignitaries of the Church, and at once promulgated b; the pope; only two members repeated their non placel, and these submitted in the same session. The council continued i:3 labours for a few more weeks, but its main achievement was over, and the remainder of its time was occupied with affairs of secondary importance. When, coincident with the outbrea\% of the Franco-German War, the papal state collapsed, the pope avaited himsels of the aitered situation, and prorogued the council by the buil Poslquam Dci musicre (October 20). Tha Italian government at once protested against his statemerti that the liberties of the council would be prejudiced by the incorporation of Rome into the kingoom of Italy.
The resolutions of the Vatican Council entirely revolutionized pope within the Church. He is first accrediats) and supreme jurisdictionary authority over
but aloo in matters touching the disciplize and govermane of the Church; and this authority is a regular and inamediate authority, exrending over each and every Church and over each and every pastor and believer" (Sessio iv. cap. 3. fin.; Mirbs, Quclen, p. 380). These words concoded to the pope a universal episcopate in the eatire Church, in virtue of winid be may, at any time, in any diocese, enercise the functions of the regular bishop: the individual bishop forfeited the independence which be bad formerly enjoyed, and the episcopate as a whole was dispossessed of that position which, in preceding centuries had eanibed it to champion the troe weliare of the Cuurch against a decadent papacy. Nor was this all: it is hind down " 25 a dogma revealod by God, that the Roman pontifif, whea be speaks ex celthodre,-That is to say, when, is virtue of his slipreme apostolical authority, and in the exercise of his office as pastor and instructor of all Christians, be pronounces any doctrine touching faith or morality to be binding on the whole Church,is, by reason of the divine assistance promised to bim in the person of St Peter, endowed with thaf infallibizity which scoording to the will of the Redeemer, is vouchsaled to the Church when she desires to fix a doctrine of faith or morality; and that consequenuly all such decisions of the Roman pontif are per se immutable and independent of the subsequent assent of the Church. But if nny man,-which Heaven forefend 1" proceeds the document, "shall venture to deny this definition, bet bin be accursed I" (Sessio iv. cap. 4; Mirbe, Quallex, p. 38 s). These clauses contain the doctrine of papal infalitibity, and make the recognition of that doctrine incumbent on all Catholic Christians. But bow are we to recognize whether the decision of the pope is given "in the exerise of his doctrinal office." or not? No criterion is assigned, and no zuthentic interpretation has been accorded from the chair of Sx Peter. Thus greas uncertainty prevails with regard to utterances ex caltoctra: and the result has been that every papal declaration has tended to be invested with the halo of infallibility. Again, the dogman implies a fundamental change in the position of the ecameaical councils, which, in conjunction with the papacy, had till thea been supposed to conslitute the represencation of the Roman Catholic Church. By the Vaticanum they lost every vestive of actual, independent authority, for their function of defining the docurine of the Church now passed to the pope; and, though in the future they may still be convened, their indispensabiliay is a thing of the pase. They bave ceased to form a constituent organ of the Church, and are sunk to the level of a decorative or consultative assembly. Thus the decrees of the council possess 2 double significance; they have not only erected the papacy into the sole tribunal for quescions of belief, but have at the same time radically transformed the constitution of the Church. The two factors which previously served to chect the papal ambition have been shorn of their streagth, and the papacy has attained the status of an absolute monarchy. The concurrent loss of the papal states, so far from enfecbling this new absolutism, tended, in spite of the protests of the Curiz to increase its strength, for its position dow became unassain able, and it was enabled to concentrate its energies on a purely international policy to a greater extent than formerly.

The bishops, who, on the council, had impugned the doctrine of papal infallibility, submitted without exception to the promuigated dogma. Confronted with the alternative of eirher secoding from the Church or adopting a theory which they bed previously attacked, they resorted to the "sacrifice of reasoa," many with bleefing hearts; many, as it would seem, without any pangs of conscience. But though they submitted they failed to carry with them the whole of the theologians and laymen who had ranged themselves at their side in the battie againse the dogma; and after the conclusion of the council a new Church was formed, which, in contrast with the fim de siede Catholicism which, by the Vatican Synod, had cut- itself loose from the traditions of the past. was termed Old Catholic (see the special article).

In the sphere of politics also the Vaticammm was attended by important results. The secular governments could not remain
traviesunt to the proepect that the prociamation of papal infailibility would invest the dicka of the medievil popes, as to the relationship between Church and State, with the character of inapired doctrinal decisions, and conder doganatic authority on the principles enunciated in the Syllobas of Pius IX. Nor was the fear of these and similar consequences dimimished by The proceedings of the council itself. The result was that on the zoth of July 1870, Austria annulled the Coucordat arranged whis the Curia in 1855. In Pruasia the so-called Kuthuriompof broke out imrnedimely afterwards, and in France the sypod so acrentumed the power of ultramontanism, that, in late years, the republic has taken effectual steps to curb it by revoking the Concordat of \(180 x\) and completely separating tho Chureh from the State.

The antecedent histary of the council was long; its subsequent history is a chapter which has not yet been closed. That the dogma was carefully prepared beforehand, mainly by the Society of Jesus, is a demonstrable and demonstrated fact, notwithstanding the denials emanating from writers belonging to the societ \(y\).

The general position of Romas Catbolicism was consolidated by the Vatican Council in more respects than one; for not only did it promote the centralization of government is Rome, bat the process of anification soon made further progress, and the attempts to controt the intellectual and spiritual life of the Church have now assumed dimensions which, a few decades ago, would have been regarded as anachronistic. On the other hand, however, a counter-movement can be traced in all countries with a predominant Catholic population,-the socalled Reformed Catbolicism, which may wear a different aspect In differem districts and different strata of society, bat is every. where distinguished by the fame fundamental aspiration towards increased liberty. Thus the victory gained by ultramontane influences within the Chureh-a victory for which the Vaticanum was largely responsible-closes one period of development, but a second has already begun, the keynote of which is the search for a modus virendi bet ween this Vatican system and the Catholicism which is rooted in the intellectual life of the modern world.

Bisliography. - A resume of the literature bearing on the history of this council is given by C. Mirbt in the Realencyclopidtie, vol. ax. 445 seq (ed. 3. Leipzig, 1008). The two mast detailed accounts are: T. Friedrich, Ceschichte des Vasikarischen K pazzils (3 vole, Bonn, 1877. 1883, 1887) : and Th. Grauderath, S.J. Geschichte des VatiLanischen Kon=ils (ed. K. Kirch, 3 vols., Freiburg im Breisqau, 2903-6). The last-mentioned work represents the Jesuilico: Cural standpoint (el. C. Mirbe. "Dic Geschicheschreibung des Vatikanischen Konzila." Historische Zcilschrifh. Band 101, 1908 , pp. \(529-600\)). The roost important collections of the acta are: Calectio Lacensis, tome vii. (Freiburg, 1890); E. Friedlerg, Sammlung der Atlenstriche zum ersten Varikamschen Konzil (TOBingen, 1872); J. Friedrich. Docmmenta ed illusframdsm Concilixm Voaiconum (Nördlingen, 1871): A. v. Reskovany, Romanas Pontifer, tomes 7-16, Suppl. \(7^{-10}\) (Nitriac. 1871-79). For the dogmatic resolutions sef also C. Mirbt. Quellen zur Gesclichte des Papsilums (cd. 2, Tübingen, 1001). pp. 371-82. For the internal history of the councils one of the main sources is Quirinus, Romisch of Briefe oom Kowsid (Musich, 1870). Also, J. Friedrich. Tagebuch wahnewd des VastLarischer Kanzils (Nordlingen, 1871); Lord Acton. Zup Geschichte des Vatikanischen Karziles (Alunich. 1871. Eng. in Hisl. Essays. 1907):

Fewter. Des Vaukanische Conctizm. (Vicnna, 1871) Manning. The Trme Slory of the Vatican Council (London. 1877): E. OMiviep. \(L\) 'Edise es \(r\) diat ay concile du Vatixan (2 vols. Paris. is79): Purcell. Life of Cardinal Manning (2 vols. London, 1896). Cercoai's greal work. La Sloric ded Concilio erumenico Vaticamo (4vols, Rome. 1873 79). is incomplete. For criticism of the council. see Janus, Der Pops Hed das Konzil (Leipaig, 1869). revised by J. Friedrich under the title F. D. Dollinger, Das Papstimm (Munich, 3892). Alwo, Gladscone's Vatican Decrees and Vaticanisme (London, 1874). (C. M.)

VATKE JORANI KARL WILHELM (1806-5882). Cerman Protestant theologian, was born at Behndorf, near Magdeburg. on the 24th of March 1806. After acting as Primoldozent in Bertin, he was appointed in 1837 professor extraordinarius. Vaske was one of the founders of the newer Hexateuch eriticism. In the same year in which David Strauss published his Life of Jesus, Vatke issued his book, Die Religion des Alten Testoments marh den hameriction Bachern entoichell, which conteined
the seeds of a revolution in the ideas held about the Old Testament. Since, however, bis book was too philosophical to be popular, the author's theories were practically unnoticed for a generation, and the new ideas are now ansociated expecially with the names of A. Kueren and J. Wellhatuen (qq.v.). He died oo the 18th of Apcil 1882.

His other works finclude: Die mensehliche Freiloit in ithrem Varhlinist nur Sünde und zur poullichen Gnodt (1841), Miserisct. kritische Einteitang in das Alle Testament (1886), and Religionsphilosophie (1888). See O. Pleiderer, Development of Theolog (1890), and T. K. Cheyne, Founders of OHd Testament Criticism (1893).

VATTEL, EHERIC (EnER) DE (\(1714-8767\)) Swiss jurist, the son of a Protestant minister, was bom at Couvet, in the principality of Neuchatel, on the 25 th of April 1714. He studied at Basel and Geneva. During his carly years his favourite pursuit was philosophy; and, having carefully examined the works of G. W. Leibnite and C. Wolfif, he published in 1741 a defence of Leibnitz's system against J. P. de Crousaz. In the same year Vattel, who was born a subject of the king of Prussia, repaired to Bertin in the bope of obtaining some public employment from Frederick II., but was disappointed in bis expectation. Two years later he proceeded to Dresden, where he experienced a very favourable reception from Count Bribl, the minister of Saxony. In 1746 be obtained from the elector, Augustus III., the title of councillor of embary, accompanied with a pension, and was sent to Bern in the capacity of the elector's minister. His diplomatic functions did not occupy his whale time, and much of bis keisure was devoted to literature and jurisprudence. Among ot her works he published Leisirs philasophigues (1747) and Melanges de dilleradure, de merale, al de politigue (1757). But his reputation chieffy rests on his Droil des eens, on Principes de la loi naturelle appliquts d la conduile el anx affaires des nations et des souncrains (Neuchttel, 1758). During the same year he was recalled from Switzeriand, to be employed in the cabinet of Dresden, and was soon afterwards honoured with the title of privy councillor. His labours now berame so intense as to exhaust his strength, and bis health broke down. After a period of rest he returned to Dresden in 1i66; but his renewed erertions soon produced a relapee, and he made another excursion to Neuchitel, where he died on the 28th of December 1767. His last work was entitled Questions de droif nolurd, on Obsernations sur lo traile dm droit de la mature, par Wollg (Bern, 1762).

Vauel's Droil des gens, which is founded on the works of Wolf, had in its day a great success, in truth, greater than it deserved. His principal and only merit consists in his having rendered the ideas of that author accessible to the political and diptomatic world. The Droit des gens pawed through many editions, and wes translated into various languages (English in 1760).
VAUBAR, deasticn Ls PRESTRE DE (1633-1707), marshal of France, the most celebrated of military engineers (see Fortification), was born at Saint-Leger.Vauban (Yonne). At the age of ten he was left an orphan in very poor circumstances, and his boyhood and youth were spent amongst the peastatry of his native place. A fortunate event brought him under the care of the Carmelite prior of Stmur, who undertook his educetion, and the grounding in mathematics, science and geometry which he thos received was of the highest value in his suboequent career. At the age of seventeen Vauban joined the regiment of Conde in the war of the Fronde. His gillant conduct won him within a year the offer of a commistion. which he declined on eccount of poverty. Conde then employed him to assist in the fortification of Clermont-en-Argonne. Soon afterwards he was taken prisoner by the royal troops: but though a rebel he was well treated, and the kindness of Mazarin converted the young engineer into a-devoted servant of the king. He was exployed in the siege of St Menfhould (which be had helped to storm as a Frondeur) and won a lieutenancy in the regiment of Burgundy, and at Stenay he was twice wounded. Soon afterwards he besieged and took his own first fortress, Clermont; and in May 1653 he received his commission as an ingtnieur du roi, hasing served his apprenticeshtp under the Chevalier de Clervilie, ose of the foremost endineets
of the time. Between that gear and the peace of \(\mathbf{2 6 5 9}\) he had taken part in or directed ten sieges with distinction, had been several times wounded, and was rewarided by the king with the free gift of a company in the famous Picardy regiment. Abont this time he married a cousin, Jeanne d'Allnay. Aiter the peace Vauban was put in charge of the construction of several important defences, amongst other places at Dunkirk, where his work continued until the year before his death. On the renewal of war in 1662 he conducted, under the eyes of the king, the sieges of Douai, Tournai and Iille. At Lille he so distinguished himself that he received a lieutenancy in the guard (ranking as a colonelcy).

The peace of Aix-la-Chapelle confirmed France in the possession of new fortresses, which Vauhan now improved or rebuilt. Hitherto the characteristic features of his method of fortification had not been developed, and the systems of preceding engineers were faithfully followed. Colbert and Louvois were profoundly interested in the work, and it was at the request of the latter that the engineer drew up in 1669 his Mémoire pour servir a l'instruction dans la conduite des sidges (this, with a memorandum on the defence of fortresses by another hand, was published at Leiden in 1740). On the renewal of war Vauban again conducted the most important sieges (Rheinbergen and Nijmwegen 1672, Maestricht and Trier 1673, Besancon 1674). In the latter ycar he also supervised the only defence in which he ever took part, that of Oudenarde. This was followed by the redaction of Dinant, Huy and Limburg. At this time he wrote for the commandants of Verdun and Le Quesnoy, valuable Instructions pour la defcrse (MS. Dépót des Fortifications, Paris; see also Quincy, Art de la gwerre, Paris, 1740). In 1676 he was made markchal de camp. He took Condé, Bouchain and other places in that ycar, Valenciennes and Cambrai in 1671, Ghent and Ypres in 1678.

It was at this time that Vauban synthesized the methods of attacking strong places, on which his claim to renown as an engineer rests far more than on his systems of fortification. The introduction of a systematic approach by parallels (said to have been suggested by the practice of the Turks at Candia in 1668) dates from the siege of Maestricht, and in principle remains to this day the standard method of attacking a fortress. The peace of Nijmwegen gave more territory to France, and more fortresses had to be adapted. Vaultan was named com-missaire-gendral des fortifications on the death of De Clervile, and wrote in 1679 a memorandum on the places of the new frontier, from which it appears that from Dunkirk to Dinant France possessed fifteen fortresses and forts, with thirteen more in second line. Most of these had been rebuitt by Vauban, and further acquisitions, notably Strassburg (1681), involved him in unceasing work. At saartouisfor the first time appeared Vauban's "first system" of fortification, which remained the accepted standard till comparatively recent times. He never besitated to retain what was of advantage in the methods of his predecessors, which be had hitherto followed, and it was in practice raxler than in theory, that he surpassed them. In 1682 his "second system." which introduced modifications of the first designed to prolong the resistance of the fortress, began to appear; and about the same time be wrote a practical manual entitled Le Directeur-Gentral des fortifications (Hague, 1683-85). Having now attained the rank of lieut.-general, he took the field once more, and captured Courtrai in 1683 . and Luxpmburg in the following year. The unerpected strength of certain towers designed by the Spanish engineer Louvigni (f. 1673) at Luxemburg suggested the tower-bastions which are the peculiar feature of Vauhan's second system (see Augoyat, Memoires inedids div M. de Vaphan, Paris, 1841) which was put into execution at Belfort in the same year (Prowost du Vernais, De la fortification: depuis Vauban, Paris, 1861). In F 687 he chose Landay as the chief place of arms of Lower Alace, apd layished on the place all the resources of his art. But, side by .ide with this development grew up the far morgijeportant scheme of attack. He instituted a company F"rain the elaborate experimento carried oni under his
supervision resulted in the establishment of all the necentary formulae for military mining (Traik des mines, Paris, 1740 and 1799; Hague, 1744); while at the sioge of Ath in 1697, having in the meanwhile taken part in more sigges, notably that of Namurin 1692 (defended by the great Dutch engineer Cochoorn), he employed ricochet fire for the first time as the principal menss of breaking down the defence. He had indoed already used it with effect at Philipsburg in 1688 and at Namur, hut the jealousy of the artillery at outside interference had hindered the full use of this remarkable invention, which vith his other improvements rendered the success of the attack almost certain. Aiter the peace of Ryswick Vauban rebuilt or improved other fortresses, and finally New Breisach, fortified on his "third system"which was in fact a modification of the second and was called hy Vauban himsell syslime de Landam perfectionne. His last sicge was that of Old Breisach in 1703 , when he reduced the place in a fortnight. On the rath of January of that year Vauban had been made a marshat of France, a rank too exalled for the technical direction of sieges, and bis active career came to an end with his promotion. Soon afterwards appeared his Traife de latbaque des pleces, 2 revised and amplified edition of the older memoir of 1669 , which contains the methods of the fully developed Vauban attack, the main features of which are the parallels, ricochet fire and the attack of the defendins personnel by vertical fire (ed. Augoyat, Paris, 1829).

But Louis XIV. was now thrown on the deiensive, and the war of the Spanish Succession saw the gradual wane of Vauban's influence, as his fortresses were taken and retaken. The varioes captures of Landau, his chef-dicawer, caused him to be regarded with disfavour, for it was not realized that the greatness of his services was rather in the attack than in the defence. In the darkness of defeat be turned his attention to the defence: but his work De le defense des places (ed. by General Valant, Paris, 1829) is of far less worth than the Alleque, and his farseeing ideas on entrenched camps. (Traite des fortifications de campagne) were coldly received, though therein may be found the elements of the "detached forts" system now universal in Europe. The close of his life, saddened by the consciousness of waning influence and by failing health, be devoted largely to the arrangement of the voluminous manussripls (Mes oisisels) which contained his reflections on war, administration, finance, agriculture and the like. In 1689 he had had the courage to make a representation to the king in favour of the reprablication of the Edict of Nantes, and in \(16 g 8\) he wrote his Projed drum dixna royale (see Economistes financizres du XVIIIC siech, Paris, 1851), a remarkable work foreshadowing the principles of the French Revolution. Vauban was deeply impressed with the deplorable condition of the peasantry, whose labour be regarded as the main foundation of all wealth, and protested in particular against the unequal incidence of taxation and the exemptions and, privileges of the upper classes. His dixroyale, a tax to be impartially applied to all classes, was a tenth of all agricultural produce payable in kind, and a tenth of money chargeable on manufacturers and merchants. This wort was puhlished in 1707, and instantly suppressed by order of the king. The marshal died heart-broken at the failere of his efforts a few days after the publication of the order (March 30 . 1707). At the Revolution his remains were scattered, but in 1808 his heart was found and deposited by order of Napoleon in the church of the Invalides.

Vauban's attention was closely engaged, not only in general military matters, but in political and financial reform and the inland navigation of France. He carried out the rearmament of the French infantry with flint-lock muskets and the socket bayonet. The order of St Lousis was sugesed by hirn, and lastly may be mentioned the fortress-models whicb he coostructed, most of which are in the Invalides at Paris, and some in the Berlin Zeughaus. The actual rotal of his wort as an emgineer is worth recording. He conducted forty sieses and took part in more than three hundred combats, while this skill and experience were employed on the construcition or re building of more than 160 fortresses of all kinds Mes oisimets

Loog remained unpablished, and of the twelve volumes of manuscript seven are lost. The rematnder were published in Paris, \(\mathbf{8 8 4 1}-45\), in an abridged form, and of the five manuscript volumes three are in public hands, and two belong to the famities of two famous engineers, Augoyat and Haxo. At the Hague (1731-1742) appeared, dedicated to Frederick of Prussia, De Hoodt's edition of De Hallaque et defense, \&c.., and of this work an improved edition appeared subsequently. But the first satisfictory editions are those of Augoyat and Valaze mentioned above.
Brbliocrapry.-Fontenelle, "Eloge de Vauban " (Mcm. Acad. Seicnces, 1707); D'Arogn, Considérations sur le génic de Vaubam (Paris, 1780); Carnot, Eloge de Vauben (Paria, 1784) (followed by a critical Lelure a l'ocadímice, published at La Rochelle, 1785, and Camot's rejoinder, Obseroations sur la ketre. \&c., Paris, 1785); Dembarrere. Eloge historique de Vauban (Paris, 17844); D'Autilly, Eloge de Váwbam (Parie, 1788); Sauviac, Eloge, \&c. (Paries 1790); Chambray, Notice hisslorique sur Vauban (Paris, 1845): GouloD, Nemoires sur lattaque es difense d' une place (Paris and Hague, 1740; Amsterdam, 1760; Paris, 1764); works by Abbé du Fay (Paris, 1681 I) and Chevalier de Cambray (Amsterdam, 1689), from which came various works in English, French, acc. For an account of these Horlas and others which appeared subsequently. see Max Jähnss Gesch. der Kriegsooissenschafien, ii. 144-47. Allent, Histoize du corps de réxic (Paris, 180): Humbert LiArt du génie (Berlin. 1785): Hoyer, Gesch. der Kriegshunst (Gottingen, 1797); Ambert, Le Mh de Vamban (Tours, 1882); Histoire de Vauban (Lille, 1844); Tripier: La Fortiffcation dédxite de son hiscoire (Paris, 1866); BreseWiniari, Ober Enistehen und Wcsen der newaren Befastigun e smedhode (Berlin, 1844); Augoyat, Apercu historique sur bes fortifications, \&e. (Paris, 1860) ; Abrege des services du Maizc chal Vauban (Paris, 1839), and the murks mentioned above. See also, of shorter works, Revue des deux mondes (Aug. 1864 and Oct. 1870); Spectatear mililaire (1830); Newes militarisches Journal, x. (1803): Jahrobicher fir die deutsche Armbe und Marine (1874); Bohms Magazin, xi. (Gicssen, 1789): Archio für die Art. wnd Ingenieur-Ofziecre, xxviii. (Berlin, 1850).

VAdCluss, a department of south-eastern France, formed in 1793 out of the countship of Venaissin, the principality of Orange, and a part of Provence, and bounded by Drome on the N., Basses-Alpes on the E., Boaches-du-Rhone (from which it is separated by the Durance) on the S., and Gard and Ardeche (from which it is separated by the Rhone) on the W. It has also an enclave, the canton of Valreas, in the department of Drome. Pop. (1906) 239,178. Area, 1381 sq . m. The western third of Vaucluse belongs to the Rhone valley, and consists of the rich and fertile plains of Orange. Carpentras and Cavaillon. To the east, with a gencral west-south-west direction and parallel to one another, are the steep barren ranges of Ventoux, Vaucluse and Lubfron, consisting of limestones and sandstones. The first-mentioned, which is the most northerly, has a maximum elevation of 6273 ft.; the culminating peak, on which is a meteorological observatory, is isolated and majestic. The Vaucluse chain does not rise above 4075 ft . The most southerly range, that of Luberon (3691 ft .), is rich in palacontological remains of extant mammals (the lion, gazelle, wild boar, sc.). The Rhone is joined on the left by the Aygues, the Sorgue (rising in Petrarch's celebrated fountain of Vaucluse, which bas given its name to the department), and the impetuous Durance. The Sorgue has an important trihutary in the Ouvèze and the Durance in the Coulon (or Calavon). These and other streams feed the numerous irrigation canals (Canal de Pierrelatte, Canal de Carpentras, \&c.) to which is largely due the success of the farmers and market-gardeners of the department. The climate is that of the Mediterranean region. The valley of the Rhone suffers from the mistral, a cold and violent wind from N.N.W.; but the other valleys are sheltered by the mountains, and produce the oleander, pomegranate, olive, jujube, fig, and other southern trecs and shrubs. The mean annual temperature is \(55^{\circ} \mathrm{F}\). at Orange and \(55^{\circ}\) at Avignon; the extremes of temperature are \(5^{\circ}\) and \(105^{\circ} \mathrm{F}\). Snow is rare. The south wind, which is frequent in summer, brings rain. The average annual rainfall is 29 in. in the hill region and 22 in the plains.

Wheat, potatoss, and oats are the mont important crops: sugarbeet, worg hum, millet, ramie, early vegetables and fruits, among which may be mentioned the melons of Cavaillon, are also cultivated, and to theee must be added the vine, olive and mulberry. The truilies of the repione of Apt and Carpentras. ond the fragrant herbe of che

Ventoux range, are renowned. Sheep are the principal live-stock, and mules are also numerous. Lignite and sulphur are mined rich deposits of gypsum, fire-clay, ochre, \&cc., are worked. Mont mirail has mineral springs of some repute. The industrial establishments include silk mills, silk-spinning factories, oil mills, flour mills, paper mills, wool-spinning factories, confectionery establishments. manufactorics of pottery, earthenware, bricks, moseics, tinned provisions, chemicals, candies, soap and hats, breweries, puddling works, Im and copper foundries, cabinet workshops, blast furnaces, sawmills, edge-tool workshops and nursery gardens. Coarse cloth, carpets, blankets, and ready-made clothes are also produced. The department is served by the Paris-Lyon-Méditerranée railway, and the Rhone is navigable for 40 m . within it. It is divided into 4 ar rondissements (Avignon, Apt, Carpentras and Orange), 22 cantons and 150 communes. Avignon, the capital, ia the seat of an archbishop. The department belongs to the region of the XV. army corps and to the academie (educational circomscription) of Aix, and has its appeal court at Nimes.

Avignon, Apt, Carpentras, Cavaillon, Orange and Vaison, the most noteworthy towns, are treated separately, and the interesting abbey of Senanque, of Romanesque architecture. Other places of interest are Cordes, with a town hall of Renaissance architecture; Pernes, which has a church of the ith century and modieval fortifications; La Tour d'Aigues, with fine ruins of the Renaissance chateau of the barons of Central Bonnieux, near which there is a bridge of the 2nd or 3rd century over the Calavon: Venasque, of Gallo-Roman or even aarlier origin, with a baptistery of the 8th or gth century; and Le Thor, with a fine church in the Provençal Romanesque style.

VAUD (Gcr. Waad), one of the cantons of south-western Switzerland. Its total area is 1255.2 sq. m . (thus ranking after the Grisons, Bern and the Valais), of which \(1056.7 \mathrm{sq} . \mathrm{m}\). are reckoned as "productive" (forests covering \(320.1 \mathrm{sq}, \mathrm{m}\). and vineyards 24.9 sq. m., this last region being more extensive than in any other canton). Of the rest, \(160 \frac{1}{1}\) sq. m . are occupied by the portions of various lakes partly in the canton (Gencva, \(123^{\frac{1}{3}} \mathrm{sq}\). m.; Neùchâtel, 33 sq. m.; and Morat, \(3 \frac{1}{2}\) sq. m.) and \(4 \cdot 3\) by glaciers, the loftiest point in the canton being the Diablerets (\(10,650 \mathrm{ft}\).). The canton is of very irregular shape, as it owes its artificial existence solely to historical causes. It includes practically the whole northern shore of the Lake of Geneva, while it stretches from the "Alpes Vaudoises" and Bex, on the S.E., to the Jura and the French fronticr, on the N.W. A long narrow tongue extending past Payerne (Peterlingen) to the Lake of Neuchatel is just disconnected with the Avenches region that forms an "cnclave" in the canton of Fribourg, while in the canton of Vaud, Fribourg holds the two "enclaves" of Vuissens and Surpierre. A small stretch of the right bank of the Rhone (from Bex to the Lake of Geneva) is within the canton, white various short streams flow down into the Lake of Geneva. But the more northerly portion of the canton, beyond the Jorat range, to the north of Lausanne, and in particular the valley of the Broye, belongs to the Aar, and so to the Rhine basin. The canton is thus hilly rather than mountainous, save at its southeastern extremity. It is well supplied with railways, including that along the northern shore of the Lake of Geneva, while from Bex through Vallorbes runs the main Simplon line towards Paris. There are also numerous "regional" or small-gauge railways, as well as mountain lines from Montreux past Glion up the Rochers de Naye, and from Vevey up the Mont Pèlerin, not to speak of that (" Montreux-Oberland" line) direct to the head of the Sarine valley and so by the Simme valley to the Lake of Thun. In 1900 the population was 281,279 , of whom 243,463 were French-spealing, 24,372 German-speaking, and 10,667 Italian-speaking, while 242,8II were Protestants (Calvinists, whether of the larger eglise nationale or of the smaller eglise libre, founded in 1847), 36,980 Romanists, and 1076 Jews. Agriculture is the main occupation of the inhabitants: the land is much subdivided and very highly cultivated.
The vineyards give employment to great numbers of people. Much more white wine is produced than red wine. The best wite wines of the canton are Yvome (near Aigle) and La COte (west of Lausanne), while the vineyard of Lavaux (east of Laumanne) pro duces both red and white wine. There is not very much industry in the canton, though at Ste Croix in the Jura watches and musica boxes are made, while at Payerne tobacco is grown. Many foreigners reside in the canton, partly for reasons of health, partly on account of the educational advantagea that it offers. They chiefly iavour Laumnne, Vevey and the collection of hamlets known at
"Montreux," as well as Chateaux d'Oex, in the upper Sarine valley. Lausame (\(q . v\).) is the political capital of the canton. Next in point of population comes the "agglomeration" known as Montreux (q.o.), with 14,144. and Vevey (q.0.)., with 11.78t. Other important villages or small towns are Yverdon (7985 inhab.). Ste Croix (5905 inhab.). Payerne (5224 inhab.). Nyon (4882 inhab.), Morgea (4421 iniab.). Aigle (3897 inhab.), and Chateau d'Oex (3025 inhab.). In educational matters the canton holds a high place. The academy of Lausanne dates from 1537, and was raised to the rank of a unjversity in 1890 ; and there are a very large number of achools and educational establishments at Morges, Lausanne, Vevey, and elsewhere. Pestalozzi's celebrated inotitution fourished at Yverdon from 1806 to 1825 . Among the remarkable historical spots in the canton are Avenches (the chief Roman settiement in Helvetia), Grandson (\(q . s\).) (scene of the famous battle in \(147^{6}\) agninst Charies the Bold), and the castie of Chillon (where Bonivand, the prior of St Victor at Geneva, was imprisoned from \(\mathbf{1 5 3 0}\) to \(\mathbf{2 5 3 6}\) for defending the freedom of Geneva against the dule of Savoy).

The canton is divided into 19 administrative districts, which comprise 388 communes. The cantonal constitution datea from 1885. The government consists of a Grand Conseil, or grest council (one member to every 300 electors or fraction over 150), for legislative and a comseil d'fiat, or council of state, of seven members (chosen by the Grand Conseil) for executive purposes. In both cases the term of oflice is four years. Six thousand citisens can compel consideration of any project by the legishature (" initiative," first in 1845). and ithe reforendmon exists in its "facultative" torm, if demanded by 6000 citizens, and also in case of expenditure (not included in the budget) of over half a million francs. The two members of the Federal Standeralk are named by the Grond Conseil, while the fourteen members of the Federal Nationalraih are chosen by e popular vote. Capital punishment was abolished in 1874.

The early history of the main part of the territories comprised in the present canton is identical with that of south-west Switierland generally. The Romans conquered (58 B.c.) the Celtic Helvetii and so thoroughly colonized the land that it has remained a Romance-speaking district, despite conquests by the Burgundians (5 th century) and Franks (532) and the incursions of the Saracens (toth century). It formed part of the empire of Charlemagne, asid of the kingdom of Transjurane Burgundy (888-1032), the memory of "good queen Bertha," wife of King Rudolph II., being still held in high honour. After the extinction of the house of Zahringen (1228) the counts of Savoy gradually won the larger part of it, especially in the days of Peter II., " le petit Charlemagne" (d. 1268). The hishop of Lausanne (to which place the see had probably been transferred from Aventicum by Marius the Chronicler at the end of the 6th century), however, still maintained the temporal power given to him by the king of Burgundy, and in 1125 had become a prince of the empire. (We must be careful to distinguish between the present canton of Vaud and the old medieval Pays de Vaud: the districts forming the present canton very nearly correspond to the Pays Romand.) Late in the 15 th century Bern began to acquire lands to the south from the dukes of Savoy, and it was out of those conquests that the canton was formed in 1798 . In 1475 she seized Aigle and (in concert with Fribourg) Echallens and Grandson as well as Orbe (the latter held of the county of Burgundy). Vaud had been occupied by Bern for a time (\(1475-1476\)), but the final conquest did not take place till 1536 , when both Savoyard Vaud and . the bishopric of Lausanne (including Lausanne and Avenches) were overrun and annexed by Bern (formally ceded in 1564), who added to them (1555) Chateau d'Oex, as her share of the domains of the debt-laden count of the Gruyère in the division of the spoil she made with Fribourg. Bern in 1526 sent Guillaume Farel, a preacher from Dauphine, to carry out the Reformation at Aigle, and after 1536 the new religion was imposed by force of arms and the bishop's residence moved to Fribourg (permanently from 166,3). Thus the whole land became Protestant, save the district of Echallens. Vaud was ruled very harshly by bailiffs from Bern. In 5588 a plot of some nobles to hand it over to Savoy was crushed, and in 1723 the enthusiastic idealist Davel lost his life in an attempt to raise it to the rank of a canton. Political feeling was therefore much excited by the outbreak of the French Revolution, and a Vaudois, F. C. de la Harpe, an exile and a patriot, persuaded the Directory in Paris to march on Vaud in virtue of alleged rights conferred by a treaty of 1565 . The French troops were received enthusiastically, and the "Lemanic
republic" was proclaimed (January 1798), succeeded by the short-lived Rhodanic republic, till in March 1798 the canion of Leman was formed as a district of the Helvetic republic. This corresponded precisely with the present canton minus Avencbes and Payerne, which were given to the canton of Vaud (set up is 1803). The new canton was thus made up of the Bernese conquests of 1475, 1475-76, 1536 and 1555 . The constitutions of 1803 and 1814 favoured the towns and wealthymen, 90 that an agitation went on for a radical change. Which was effected in the constitution of 183 r . Originally acting as a mediator, Vaud finally joined the anti-Jesuit movement (especially after the radicals came into power in 1845), opposed the Sonderbund, and accepted the new federal constitution of 1848, of which Druey of Vaud was one of the two drafters. From 1839 to 1846 the canton was distracted by religious struggles, owing to the atternpt of the radicals to turn the church into a simple department of state, a struggle which ended in the splitting of (i847) of the "free church." The cantonal feeling in Vaud is very strong, and was the main cause of the failure of the project of revising the federal constitntion in 1872 , though that of 1874 was accepted. In 1879 Vaud was one of the three cantons which voted (though in vain) against a grant in aid of the St Gotthard railway. In 1882 the radicals obtained a great majority, and in 1885 the constitution of 1861 was revised.
Authonerties-C. Bumier, La Vie vaudoise ef la remolution (Lausanne, 1902); E. Busset and E. de la Harpe, Aux Orments (and ed., Lausanne, 1906); J. Cart, Ristoire de la libertt des culturs dans le canton de Vaud (Lausanne, i8go); A. Ceresole, Lefgrides des Alpes vaudoises (Lausanne, 1885): E. de la Harpe, Guide du Jara samdois (Neuchatel, 1903); H. Dubi. Climbers' Gwide for the Bernese Oberland, vol. if., (including the Alpes Vaudoises) (London, 1907); E. Dunant, Gride illustré du maste d'Avenckes (Lausa \({ }^{2} n e\) 1900); F. Forel, Chartes communales du pays de Vaud, 1214-15:7 (Lausanne, 1872): P. Maillefer, Histoire du cambon de Vand (Lausanne, 1903); Mimoires at documenks (published by the Soc. d'Histoire de la Suisse Romande) (Lausanne, from 1838): A.:de Montet, T. Rittener and A. Bonnand. Ches nos aiewx (Lausanne, 1902); A. Pfleghart Dif schovizerische Uhrenindustrie (Leipzig 1908); J. R. Rahn, Ceschichte des Schlosses Chillon (2 parts. Zcirich, 1888-89); E. Rambert. Bex al ses environs (Lausanne, 1871); Alexandre Vinet (and ed., Lausanne. 1875), and Ascewions a Adneries (Alpes mandoises) (new ed., Lausanne. 1888): Meredith Read, Historic Stydies in Vased, Berne and Savoy (a vols. London, 1897): A. Vautier. La Padrie paudoise (Lausande, 1903); L Vulliemin, Le Canton de Vaud (3rd ed., Lausanne, 1885); A. Wagnon, Aulour des Plans (Bex, 18go). See Lausannz
(W. A. B.C.)

VAUDEVILLE, a term now generally given to 2 musical drama of a light, humorous or comic description interspersed with songs and dances. In English usage." vaudeville" is practically synonymous with what is more generally known as " musical comedy," but in America it is applied also to a musichall variety entertainment. This modern sense is developed from the French vaudecille of the 18 th century, a popular form of light dramatic composition, consisting of pantomime, dances, songs and dialogue, written in couplets. It is generally accepted that the word is to he Identified with pos-de-vire, the name given to the convivial songs of the 15 th century. This name originated with a literary association known as the "Com. pagnons Gallois," i.e. " boon companions" or "gay comrades" in the valley of the Vire and Virene in Normandy. The most famous of the authors of these songs was Olivier Basselin (q.e.). When in the \(17^{\text {th }}\) century the term had become applied to topical, satiric verses current in the towns, it was corrupted into its present form, either from d vau le ville, or woix de sille.

Vaugelas, clajde favre, Seigneur de, Bazon de Peroges (\(1595-1650\)), French grammarian and man of letters, was born at Meximieu, department of Ain, on the 6th of January 1595. He became gentleman-in-waiting to Gaston d'Orltans, and continued faithful to this prince in his disgrace, although his fidelity cost him a pension from the crown on wibich be was largely dependent. His thorough knowledge of the French language and the correctness of his speech won for him a place among the original acadernicians. On the representation of his colleagues his pension was restored so that he might have beisure to pursue his admirable Remarguts sur io lomgue frompeiss
(1647). In this work be maintained that words and expressions were to be judged by the current usage of the best society, of which, as an habitué of the Hotel de Rambouillet, Vaugelas was a competent judge. He shares with Malherbe the credit of having purified French diction. His book fixed the current usage, and the classical writers of the 17th century regulated their practice by it. Protests against the academical doctrine were not larking. Scipion Dupleix in his Liberte de la langue fransaise dors sa purede (1651) pleaded for the richer and freer language of the 16th century, and Francois de la Mothe le Vayer took a similar standpoint in his Lettres d Gabriel Naude touchant les Remarques sur la langue frangaise. Towards the end of his life Vaugelas became tutor to the sons of Thomas Francis of Savoy, prince of Carignan. He died in Paris in February 1650. His translation from Quintus Curtius, La Vie d'Alexandre (posthumously published in 1653) deserves notice as an application of the author's own rules.

Bibliog ra ph V.-See Remarques sur la langue frangaise, edited with a key by V. Conrart, and introductory notea by A. Chassang (Paris, 1880). The principles of Vaugelas's judgments are explained in the Efudes critiques (7 serie) of M. Brunetiere, who regards the name of Vaugelas as a symbol of all that was done in the first halt of the 16 th century to perfect and purify the French language. See also \(F\). Brunot in the Histoire de la langue et littirature frangaise of Petit de Julleville.

VAderan, CEARLES JOHA (1816-1897), English scholar and divine, was educated at Rugby and Cambridge, where he was bracketed senior classic with Lord Lyttelton in \(\mathbf{1 8 3 8}\). In 1839 he was elocted fellow of Trinity College, Camhridge, and for a short time studied law. He took orders، however, in 1841, and became vicar of St Martin's, Leicester. Three years later he was elected headmaster of Harrow. He resigned the headmastership in 1859 and accepted the bishopric of Rochester, but afterwands withdrew his acceptance. In 1880 he was appointed vicar of Doncaster. He was appointed master of the Temple in 1869, and dean of Llandaff in 1879. In 1894 he was elected president of University College, Cardiff, in recognition of the prominent part he took in its foundation. Vaughan was a well-known Broad Churchman, an eloquent preacher and an able writer on theological subjects, his numerous works including lectures, commentaries and sermons; be was joint-author with the Rev. John Llewelyn Davies (b. 1826)-also a well-known Cambridge scholar and Broad Churchman-of a well-known translation of Plato's Republic.

VAUGEAN, HENRY (\(1622-1695\)), called the "Silurist," English poet and mastic, was born of an ancient Welsh family at Newton St Briget near Scethrog by Usk, Brecknockshire, on the 17th of April 1622 . His grandfather, Thomas Vaughan, was the son of Charies Vaughan of Tretower Castle, and had acquired the farm of Newton by marriage. From 1632 to 1638 be and his twin brother Thomas, noticed below, were privately educated by the Rev. Matthew Herbert, rector of Llangattock, to whom they both addressed Latin verses expressing their gratitude. Anthony i Wood, who is the main authority for Vaughan's biography, says that Henry was entered at Jesus College, Oxford, in 1638, but no corroboration of the statement is forthcoming, although Thomas Vaughan's matriculation is entered, nor does Henry Vaughan ever allude to residence at the university. \({ }^{1}\) He was sent to London to study law, but turning his attention to medicine, he became a physician, and settled first at Brecon and later at Scethrog to the practice of his art. He was regarded, says Wood, as an "ingenious person, but proud and humorous." It seems likely that he fought on the king's side in the Welsh campaign of 1645 , and was present at the battle of Rowton Heath. In 1646 appeared Poems, with the Terth Sotyre of Jupenal Englishod, by Henry Vaughan, Gent. The poems in this volume are chiefly addressed to "Amoret," and the last is on Priory Grove, tbe home of the " matchless Orinda," Mrs Katharine Pbilips. A second volume of secular

\footnotetext{
\({ }^{1}\) Two poems in the Emheristica Oxomicusia (1641) are signed "H. Vaughan, Jes. Coll.," but are probably by a contemporary of the same name, noticed by Wood. See Mr E. K. Chamberi's biocraphical note io vol. ii. 0 Vaughanie Wopls.
}
verse, Olor Iscenus, which takes its name from the opening verses addressed to the Isca (Usk), was published by a friend, probably Thomas Vaughan, without the author's consent, in 1651. The book includes three prose translations from Latin versions of Plutarch and Maximus of Tyre, and one in praise of a country life from Guevara. The preface is dated 1647, and the reason for Vaughan's reluctance to print the book is to be sought in the preface to Silex Scintillans: or Sacred Poems and Piows Ejaculations (1650). There he says: "The first that with any effectual success attempted a diversion of this foul and overfowing stream (of profane poetry) was the blessed man, Mr George Herbert, whose holy life and verse gained many pious converts, of whom I am the least." He further expresses his debt in "The Match," when he says that his own "fierce, wild blood . : : is still tam'd by those bright fires which thee inflam'd." His debt to Herbert extended to the form of his poetry and sometimes to the actual expressions used in it, and a long list of paralled passages has been adduced. His other works are The Moxnt of Olives: or Salitary Devolions, with a translation, Man in Glory, from the Latin of Anselm (1652); Flores Solitudinis (1654), consisting of two prose translations from Nierembergius, one from St Eucherius, and a life of Paulinus, bishop of Nola; Hermetical Physick, translated from the Naturac Sanclwarium of Henricus Nollius; Thalia Rediviva; The Pass-Times and Diversions of a Country Muse (1678), which includes some of his brother's poems. Henry Vaughan died at Scethrog on the 23rd of April \(\mathbf{1 6 9 5}\), and was buried in the church. yard of Llansantfiraed.

As a poet Vaughan comes latest in the so-called "metaphysical " scbool of the \(17^{\mathrm{th}}\) century. He is a disciple of Donne, but follows him mainly as he saw him refected in George Herbert. He analyses his experiences, amatory and sacred, with excessive ingenuity, striking out, every now and then, through his extreme intensity of feeling and his close observation of nature, lines and phrases of marvellous felicity. He is of imagination all compact, and is happiest when he abandons himself most completely to his vision. It is, as Canon H. C. Beeching has said, " undoubtedly the mystical element in Vaughan's writing by which he takes rank as a poet . . . it is easy to see that he has a passion for Nature for her own sake, that he has observed her moods; that indeed the world is to him no less than a veil of the eternal spirit, whose presence may be felt in any, even the smallest part." In this imaginative outlook on Nature be no doubt exercised great influence on Wordsworth, who is known to have possessed a copy of his poems, and it is difficult to avoid seeing in "The Retreat " the germ of the later poet's "Ode on Intimations of Immortaiity." By this poem, with "The World," mainly because of its magnificent opening stanza, "Beyond the Veil," and "Peace," he is best known to the ordinary reader.
The complete works of Henry Vaughan were edited for the Fuller Worthies Library by Dr A. B. Grosart in 1871. The Porms of Honry Vaughan, Silurist, were edited in 1806 by Mr E. K. Chambers. with an introduction by Canon H. C. Beeching, for the Muses: Library.

VAJGRAN, EERAERT (\(1832-1903\)), cardinal and arcbbishop of Westminster, was born at Gloucester on the 15 th of April 1832، the eldest son of lieutenant-colonel John Francis Vaugban, head of an old Roman Catholic family, the Vaughans of Courtfield, Herefordshire. His mother, a daughter of John Rolls of The Hendre, Monmoothshire, was intensely religious; and all the daughters of the family entered convents, while six of the eight sons took priest's orders, three of them rising to the episcopate, Roger becoming archbishop of Sydney, and John bishop of Sebastopolis. Herbert spent six years at Stonyhurst, and was then sent to study with the Benedictines at Downside, near Bath, and subsequently at the Jesuit school of Brugelette, Belgium, which was afterwards removed to Paris. In 185 he went to Rome. After two years of study at the Accademia dei nobili ecclesiastici, where he became a friend and disciple of Manning, he took priest's orders at Lucca in 1854 On his return to England be became for a period
vice-president of St Edmund's College, Ware, at that time the chief seminary for candidates for the priesthood in the south of England. Since childhood he had been filled with zeal for foreign missions, and he conceived the determination to found 2.great English missionary college to fit young priests for the work of evangelizing the heathen. With this object he made a great begging expedition to America in 1863, from which he returned with EIr,000. St Joseph's Foreign Missionary \(^{\text {a }}\) College, Mill Hill Park, London, was opened in r869. Vaughan also became proprictor of the Tablet, and used its columns vigorously for propagandist purposes. In 1872 he was consecrated bishop of Salford, and in 1892 succeeded Manning as archbishop of Westminster, receiving the cardinal's hat in 1893. Vaughan was a man of very different type from his predecessor; he had none of Manning's intellectual finesse or his ardour in social reform, but he was an ecclesiastic of remarkahly fine presence and aristocratic leanings, intransigeant in theological policy, and in personal character simply devout.
It was his most cherished ambition to see before he died an adequate Roman Catholic cathedral in Westminster, and he laboured untiringly to secure subscriptions, with the result that its foundation stone was laid in 1895, and that when he died, on the igth of June 1903 , the building was so far complete that a Requiem Mass was said there over his body before it was removed to its resting place at Mill Hill Park.
See the Life of Cardinal Vaughan, by J. G. Snead Cox (2 vols, London, 1910).

VAUGHAN, THOMAS (1622-1666), English alchemist and mystic, was the younger twin brother of Henry Vaughan, the "Silurist." He matriculated from Jesus College, Oxford, in 1638, took his B.A. degree in 1642, and became fellow of his college. He remained for some years at Oxford, but also held the living of his native parish of Llansantfread from 1640 till 1649, when he was ejected, under the Act for the Propagation of the Gospel in Wales, upon charges of drunkenness, immorality and bearing arms for the king. Subsequently he lived at his brotber's farm of Newton and in various parts of London, and studied alchemy and kindred subjects. He married in 1651 and lost his wife in 1658 . After the Restoration he found a patron in Sir Robert Murray, with whom he fled from London to Orford during the plague of \(\mathbf{1 6 6 5}\). He appears to have had some employment of state, but be continued his favourite studies and actaally died of the fumes of mercury at the house of Samuel Kem at Albury on the 27th of February 1666. Vaughan regarded himself as a philosopher of nature, and although he certainly sought the universal solvent, his published writings deal rather with magic and mysticism than with technical alchemy. They also contain much controversy with Henry More the Platonist. Vaughan was called a Rosicrucian, but denied the imputation. He wrote or translated Anthroposophia Theomagica (1650); Anima Magica Abscondila (1650); Magia Adamica and Coelum Terrae (1650); The Man-Mouse laken in a Trap (1650); The Second Wash; or the Moor Scoured once more (1651); Lumen de Lumine and Aphorisimi Magici Eugeniani (165I); The Fame and Confession of the Praternily of R.C. (1652); Aulg Lucis (1652); Emphrates (1655); Nollims' Chymist's Key (1657); A Brief Natural ilistors (\(160 y\)). Most of these pamphlets appeared undo the peadonym of Eugenius Philatethes. Voughan was probaty, although it is by no means certain, not the famous adept known as Eirenarus Philalethes, who was alleged to have found he philosopher's stone in America, and to whom the Intrilus A perlus in Occlusum Regis Polatium (\(1666_{j}\)) and other wrilligs are ascribed. In 1896 Vaughan was the subject of an a: \(\mathbf{n z}\) ing mystification in the Memoires d'une ex-Palludiste. These formed part of cettain alleged revelations as to the practiza of devil-worship by the initiates of freemasonry. The autior, whose name was given as Diana Vaughan, claimed to be a descendant of Thomas and to possess family papers with showed amongst other marvels that he had made a pact th Lucifer, and boal helped to found frecmasonty as a Suen nic society. 7 ars of the hoax, which took in numy
eminent Catholic ecclesiastica, were tome unecrupulous Paris journalists.
The Magical Writings of Thomas Vanghan were edited by Mr A. E. Waite in 1888 . His miscellaneous Latin and Enelish verses are included in vol. ii. of Dr A. B. Grosart's Fuller Worthies Library edition of the Works of Henry Vaughan (1871). A manuscript book of his, with alchemical and autobiographical jottings thade between 1658 and 1662, forms Brit. Mfus. Sloone NS. 1741. Biographical data are in Mr E. K. Chambern's Muses Library edition of the Poewar of Henry Vaughan (i896), together with an account and criticisn of the Mitmoires d'ume ex-Palladiste. These fabrications were also discussed by Mr A. E. Waite, Dcril-Worship in France (1896), and finally exposed by M. Gaston Mery, La Vhrite sur Diena Vayghan.
(E. K.C.)

VaUGBAN, WILLAA (\(1577-1641\)), English author and colonial pioneer, son of Walter Vaughan (d. 1598), was born at Goiden Grove, Carmarthenshire, his father's estate, in 1577 . He was descended from an ancient prince of Powys. His brotber, John Vaughan (\(1572-1634\)), became ist earl of Carbery; and another brother, General Sir Henry or Harry Vaughan (1587 1659), was a well-known royalist leader. William was educated at Jesus College, Oxford, and took the degree of LL.D. at Vienna. In 1616 he bought a grant of land in the south coast of Newfoundland, to which be sent two batches of settlers. In 1622 he visited the set tlement, which he called Cambriol, and returved to England in \(\mathbf{1 6 2 5}\). Vaughan apparently paid another visit to his colony, but his plans for its prosperity were foiled by the severe winters. He died at his house of Torcoed, Carmarthenshire, in August 1641.

His chier work is The Golden Grove (1600), a general guide to morals, politica and literature, in which the maniters of the time are severely criticized, plays being denounced as folly and wickedness The section in praise of poetry borrows much Irom earlier writers on the subject. The Golden Fleece. it. transported from Cessebrial Colchis ...by Orpheus jux., alias Will Vaughan, which containa information about Newfoundland, is the moat interesting of his other works.

VAULT \({ }^{1}\) (Fr. powde, Ital. volla, Ger. Gewalbe), in architecture, the term given to the covering over of a space with stone or brick in arched form, the component parts of which exert a thrust and necessitate a counter resistance. In the case of vaults built under the level of the ground, the latter gave all that was required, but, when raised aloft, various expedients had to be employed, such as great thickness of walls in the case of barrel or continuous vaulis, and cross walls or buttresses when intersecting vaults were employed. The simplest kind of vault is that known as the barrel, wagon or tunnel vault, which is generally semicircular in section, and may be regarded as a continuous arch, the length of which is in excess of its diameter; like the arch (g.v.), the same provision is required as regards its temporary support whilst the voussoirs constituting one of its rings are being placed in position, for until the upper voussoir, or keystone, is introduced it is not self-supportingAt the present day, when timber of all kinds is easily procurable, this temporary support is given by centring, consisting of a framed truss with semicircular or segmental head, which carries the voussoirs until the ring of the whole arch is completed and is then, with a barrel vault, shifted on to support otber rings; in early times, and particularly in Chaldaea and Egypt, where timber was scarce, other means of support had to be contrived, and it would seem that it was only in Roman times that centring was regularly employed.
The earliest example known of a vault is that found under the Chaldaean ziggurat at Nippur in Babylonia, ascribed to about 4000 B.C., which was huilt of burnt hricks cemented with clay mortar. The carliest tunnel vaults in Egypt are those at Requaqnah and Denderah, c. 3500 E.C.; these were built in unburnt brick in three rings over passages descending to tombs: in these cases, as the span of the vault was anly 6 ft ., the bricks constituting the voussoiss were laid flatwise, and adhered suffciently to those behind to enable the ring to be complet ed withoax other support; in the granaries built by Ramessu II., still in part existing behind the Ramesseum, at Thebes, the span was 12 ft ., and another system was employed; the lower part of
\({ }^{1}\) For the form of sefe so called see Safes.

Photo, Valendine So Sons.
Fig. 13.-Intersecting Groined Vaulting. Early Example. St. John's Chapel, Tower of London.

Phato, F. Frith E-Co. Ltd.
Fig. 15.-Early English Vaulting. Winchester Cathedral, Waynflect's Chantry.

Photo, Valentine \& Sons.
Fig. 14.-Intersecting Ribbed Vaulting Late Example. Chapter House, Bristol Cathedral.

Pholo, P. Frith © Co. Led.
Fig. 16.-Early English Lierne Vaulting. Tower of Salisbury Cathedral.

Photo, The Photockrome Co.
Fig. 17.-Decorated or Lierne Vaulting. Choir of Gloucester Cathedral. (See also Plate VIII., Fig. 82, Architecture.)

Photo, G. W. Wilson \& Co.
Fig. 18.-Fan Vaulting. King's College Chapel, Cambridge.

Photo. G. W Witsons Co.
Fig. 19.-Fan Vaulting. Henry VII. Chapel, Westminster.
the arch was built in horisontal courses, up to about one-third of the height, and the rings above were inclined back at a slight angle, so that the bricks of each ring, laid flatwise, adhered till the ring was completed, no centring of any kind being required; the vault thus formed was elliptic in section, arising from the method of its construction. A similar system of construction was employed for the vault over the great hall at Ctesiphon, where the material employed was burnt bricks or tiles of great dimensions, cemeated with mortar; but the span was close upon 83 ft ., and the thickness of the vault was nearly 5 ft . at the top, there being four rings of brickwork. It is probable that the great vaults of the Assyrian palaces were constructed in the same way, but with unburnt bricks dried only in the sun: one of the drains discovered by Layard at Nimrud was built in rings sloping backwards. From the fact that each Assyrian monarch on his accession to the throne commenced his reign by the erection of a palace, it is probable that, owing to the ephemeral construction of these great vaults, half a century was the term of their existence. This may also account for the fact that no domed structures exist of the type shown in one of the bas reliefs from Nimrud (fig. 1); the tradition of their

Fic. 1.
erection, bowever, would seem to have been handed down to their successors in Mesopotamia, viz. to the Sassanians, who in their palaces at Serbistan and Firuzabad built domes of similar form to those shown in the Nimrud sculptures, the chief difference being that, constructed in rubble stone and cemented with mortar, they still erist, though probably abandoned on the Mahommedan invasion in the 7 th century.

In all the instances above quoted in Chaidaea and Egypt the bricks, whether burnt or sum-dried, were of the description to which the term "tile" would now be given; the dimensions varied from 18 or 20 in . to 20 in ., being generally square and about 4 to 2 in . thick, and they were not shaped as voussoirs, the connecting medium being thicker at the top than at the bottom. The earliest Egyptian examples of reguber voussoirs in stone belong to the XXVIth Dynasty (\(c .650\) B.C.) in the additions made then to the temple of Medinet-Abou, and here it is probable that centring of same kind was provided, as the vacults wre built in rings, so that the same centring coald be shilted on after the completion of each ring. The earliest erample of regularly shaped voussoirs, and of aboat the same date, is found in the cloocs at Graviscae in Etruria, with a span of about 14 ft ., the voussoirs of which are from \(3 t 06 \mathrm{ft}\). long. The cloace marima in Rome, bailt by Tarquin (603 b.c.) to drain the marshy groand between the Palatine and the Capitoline Hills, was according to Commendatore Boni vaulted over in the

1st century s.c., the vault being over 800 ft . long, 10 ft . in span, with three concent ric rings of voussoirs.
So far, all the vaults mentioned have been barrel vaults, which, when not built underground, required continuous walls of great thickness to resist their thrust; the earliest example of the next variety, the intersecting barrel vault, is said to be over a small hall at Pergamum, in Asia Minor, but its first employment over halls of great dimensions is due to the Romans. When two semicircular barrel vaults of the same diameter cross one snother (fig. 2) their intersection (a true ellipse) is known as a groin, down which the thrust of the vault is carried to the cross walls; if a series of two or more barrel vaulis intersect one another, the weight is carried on to the piers at their intersection and the thrust is transmitted to the outer cross walls; thus in

Fic. 2. the Roman reservoir at Baiae, known as the piscine mirebilis, a series of 6ve aisles with semicircular barrel vaults are intersected hy twelve cross aisles, the vaults being carried on 48 piers and thick external wails. The width of these aimles being only about 13 ft . there was no great difficulty in the construction of these vaults, but in the Roman Thermae the tepidarium had a span of 80 ft ., more than twice that of an English cathedral, so that its construction both from the statical and economical point of view was of the greatest importance. The researches of M. Cboisy (\(L\) 'Art de batir chea les Romains), based on a minute examination of those portions of the vaults which still remain in situ, have shown that, on a comparatively slight centring, consisting of trusses placed about to ft . apart and covered with planks laid from truss 10 trass, were laid-to begin with-two layers of the Roman brick (measuring nearly 2 It. square and 2 in. thick); on these and on the trusses transverse rings of brick were built with longitudinal ties at intervals; on the hrick layers and embedding the rings and cross ties concrete was thrown in horizontal layers, the hannches being filled in solid, and the surface sloped on either side and covered over with a tile roof of low pitch laid direct on the concrete. The rings relieved the centring from the weight imposed, and the two layers of bricks carried the concrete till it had set. As the walls carrying these valts werc also built in concrete with occasional bond courses of brick, the whole structure was homogeneous. Ope of the important ingredients of the mortar was a volcanic deposit found near Rome, known as pozzolana, which, when tbe concrete had set, not oniy made the concrete as solid as the rock itself, but to a certain extent neutralised the thrust of the vaults, which formed shells equivalent to that of a metal lid, the Romans, however, do not seem to have recognized the extraordinary value of this pozzolana mixture, for they otherwise provided amply for the counteracting of any thrust which might exist by the erection of cross walls and buttreses. In the tepidaria of the Thermac and in the basilica of Comstantioe, in order to bring the thrust well within the walls, the main barrel vault of the hall was brought forward on ench side and rested on detached columns, which constituted the principal architectural decoraton. In cases where the cross vaults intersecting were not of the same apan as those of the main vault, the arches were cither stilted so that their soffits might be of the same height, or they formed smaller intersections in the bower part of the vault; in both of these cases, bowever, the intersections or groins were twisted, for which it was very difficult to form a centring, and, moreover, they were of disagreeable effect: though every attempt was made to mask this in the decoration of the vault by panels and reliefs mockilled instucco.

The widest ball vaulted by the Romans was that of the throne room in the palace of Diocletian on the Palatine Hill, and this had the enormous span of 100 ft ., its thrust being counteracted by other halls on either side with buttresses outside. In provincial towns and in other parts of the Roman Empire, where the material pozzolana was not procurable, the Romans had to trust to their mortar as a cementing medium, but this, though excellent of its kind, was not of sufficient cohesive strength to allow of tha erection of vaults of more than about 40 ft . span, which were generally built in rubble masonry. There still exist in Asia Minor and Syria some vaulted halls, generally attached to thermae, which are carried on walls of great thickness. There vere many varieties of the Roman vault, whether continuces or intersected, such as those employed over the corridors on the Colosseum and the theatre of Marcellus, but in these cases the springing of the vault was above the summit of the arches of the main front, so that there was no intersection; on the other band, over the corridors were either elliptical or semicircular, or over the staircases rising vaults, all of which were more difficult to construct; there were also numerous solutions of vault over circular halls, of which that of the Pantheon was the most important example, having a diameter of 142 ft ., and over the hemicycles, which were sometimes of great sixe; that known as Canopus in Hadrian's villa at Tivoli had a diameter of 75 ft ., and was vaulted over with a series of ribs, between which were alternating rampant flat and semicircular webs and cells; in the same villa and in Rome were octagonal halls with various other combinations of vault. Another type of vault not yet referred to is that of the Tabularium arcade where the cloister vault was employed. Fig. 3 compared witb fig. 2 will show the difference; in the
 former the angles of intersection are inset, and in the latter they are groins with projecting angles at the base, which dic away at the summit.
The vault of the basilica, commenced by Diocletian and completed by Constantine, was the last great work carried out by the Romans, and two centuries pass before the next important development is found in the church of Sta Sophia at Constantinople. It is probable that the realization of the great advance in the science of vaulting shown in this church owed something to the eastern tradition of dome vaulting seen in the Assytian domes, which are known to us only by the repretentations in the bas-relief from Nimrud (fig. 1), because in the great water cisterns in Constantinople, known as the Yeri Batan Serai (the underground palace) and Bin bir-derek (cistern with a thousand and one columns), both built by Constantine, we find the intersecting groin vaults of the Romans already seplaced by small cupolas or domes. These domes, however, ara of small dimensions when compared with that projected and carried out by Justinian in Sta Sophin. Previous to this the greatest dome was that of the Pantheon at Rome, but this was carried on an immense wall 20 ft . thick, and with the exception of small niches or recesses in the thickness of the wall could not be extended, so that Justinian apparently instructed his architect to provide an immense hemicycle or apse at the easterm end, a similar apse at the western end, and great arches on either side, the walls under which would be pierced with windows.
The diagram (fig. 4) shows the outlines of the solution of the probiem. If a hernispherical dome is cut by four vertical planes. the intersection gives lour semicircular arches; if cut in addition by a horizontal plane tangent to the top of these arches, it describes a circle; that portion of the sphere which is below this circle and betweea the arches, forming a spherical spandril. is the pendentive (5.5), and its radius is equal to the diagonal of the aquare on which
the four arches rest. Having obtained a circle for the bese of the dome, it is not necessary that the upper portion of the dome should

Fig. 4

Fig. 5--AA. pender-
spring from the same level as the arches, or that its domical surface should be a continuation of that of the pendentive. The first and second dome of Sta Sophia apparently fell down, so that Justinian determined to raise it. possibly to give greater lightness to the structure, but mainly in order to obtain increased light for the interior of the church. This was effected by piercing it with forty windows-the effect of which was of an ext raordinary mature, as the light streaming through these windows gave to the dome the appearance of being suspended in the air. The pendentive which carried the dome rested on four great arches, the thrust of thoee crossing the church being counteracted by immense buttresses which traversed the aisles, and the other two party by smalier arches in the apse, the thrust being carried to the outer wals, and to a cercain extent by the side walls which were built under the arches. From the description given by Procopius we gather that the centring employed for the great arches consisted of a wall erected to support them during their erection. The construction of the pendentives is not known, but it is surmised that to the top of the pendentives they were buik in horizontal courscs of brick, projecting one over the other. the projecting angles being cut off afterwards and covered with stucco in which the mosaics were embedded; this was the method employed in the erection of the Perigordian domes, to which we shell return; these, however, were of less diameter than those of Sta Sophil. being only about 40 to 60 ft . instead of 107 ft . The apotbeosis of Byzantine architecture, in fact, was reached in Sta Sophin, for although it formed the model on which all aubsequent Byzantive churches were baged, so far as their plan was concerned, no domes approaching the former in dimensions were even attempted. The principal difierence in some later examples is that which took plare in the form of the pendentive on which the dome was carried. Instead of the spherical spandril of Sta Sophiz, large niches were formed in the angles, as in the mosque of Damascus, which was built by Byzantine workmen for the Sherif al Walid in A.D. ;os; these gave an octagonal base on which the hemispherical donne rested (frg. 6); or again, as in the Sassanian palaces of Serbictan and Firuzabad of the 4th and 5th century of our era, when a series of concentric arch rings, projecting one in Iront of the other, were built. giving also an octagonal base; each of these pendentives is known as a squinch.
There is one other remarkable vault. also built by Justinian, in the church of S. Sergius and Bacchus in Constantinople. The central area of this church was octa. gonal on plan, and the dome is divided
 into sixteen compartments: of these eight consist of broad flat bands rising F1G. 6.-BB, niche or from the centre of each of the walls, and the alternate eight are concave cells over the angles of the octagon, which externally and internally give to the roof the appearance of an umbrelle.
Although the dome constitutes the principal characteristic of the Byzantine church, throughout Asia Minor are numeroess examples in which the naves are vaulted with the semicircular barrel vault, and this is the type of vault found throughout the south of France in the 1 ith and 12th centuries, the only change being the occasional substitution of the pointed barrel vault, adopted not only on account of its exerting a less thrust, bat because, as pointed out by Fergusson (vol. ii. p. 46), the roofing tiles were laid directly on the vault and a less amount of filling in at the top was required. The continuous thrust of the barrel vault in these cases was met either by semicircular or pointed barrel vaults on the aisles, which had only half the span of the nave; of this there is an interesting example in the chapel of St John in the Tower of London-and sometimes by helr-barmel vaults. The great thickness of the walls, however, required in such constructions would seem to have led to another solution
of the problem of roofing over churches with incomirustible material, viz. that which is found throughout Perigord and La Charente, where a series of domes carried on pendentives covered over the anve, the chief peculiarities of these domes being the fact that the arches carrying them form part of the pendentives, which are all built in horizontal courses.

The intersecting and groined vault of the Romans was'employed in the early Christian churches in Rome, but only over the aisles, which were comparatively of small span, but in these there was a tendency to raise the centres of these vaults, which became slightly domical; in all these cases centring was employed.

Reference has been made to the twisting of the groins in Roman work, where the intersecting barrel vaults were not of the same diameter; their construction must at all times have been somewhat difficult, hut where the barrel vaulting was carried round over the choir aisle and was intersected, as in St Bartholomew's, Smithfield, hy semicones, instead of cylinders, if became worse and the groins more complicated; this would seem to have led to a change of system, and to the introduction of a new feature, which completely revolutionized the construction of the vault. Hitherto the intersecting features were geometrical surfaces, of which the diagonal groins were the intersections, elliptical in form, generally weak in construction and often twisting (Plate I. fig. 13). The medieval builder reversed the process, and set up the diagonal ribs first, which were utilized as permanent centres, and on these be carried his vault or web, which henceforward took its shape from the ribs. Instead of the elliptical curve which was given by the intersection of two semicircular barrel vaults, or cylinders, he employed the semicircular arch for the diagonal ribs; this, however, raised the centre of the square bay vaulted above the level of the transverse arches and of the wall ribs, and thus gave the appearance of a dome to the vault, such as may be seen in the nave of Sant' Arobrogio, Milan. To meet this, at first the transverse and wall ribs were stilted, or the upper part of their arches was raised, as in the Abhaye-aur-Hommes at Caen, and the abbey of Lessay, in Normandy. The problem was ultinately solved by the introduction of the pointed arch for the transverse and wall ribs-the pointed arch had long been known and employed, on account of its much greater strength and of the less thrust it exerted on the walls. When employed for the ribs of a vault, however narrow tbe span might be, by adopting a pointed arch, its summit could be made to range in height with the diagonal rib; and, moreover, when utilized for the ribs of the annular vault, as in the aisle round the apsidal termination of the choir, it was not necessary that the half ribs on the outer side should be in the same plane as those of the inner side; for when the opposite ribs met in the centre of the annular vault, the thrust was equally transmitted from one to the other, and being already a broken arch the change of its direction was not noticeable.

The first introduction of the pointed arch rib would seem to bave taken place in the choir aisles of the abbey of St Denis, near Paris, built by the Abbe Suger in 1135, and it was in the church at Vezelay (1140) that it was extended to the square bay of tbe porch. Before entering into the question of the web or stone shell of the vault carried on the ribs, the earlier development of the great vaults which were thrown over the naves of a cethedral, or church, before the introduction of the pointed arch rih, shall here be noted. As has been pointed out, tbe aisles had already in the early Christian churches been covered over with groined vaults, the only advance made in the later devrlopments being the introduction of transverse ribs \({ }^{1}\) dividing the bays into square compartments; but when in the izth century
1 Transverse ribs under the vaulting surfaces had been employed from very early times by the Romans, and utilized as permanent stone ceotrings for their vaults; perhaps the carliest examples are those in the corridor of the Tabularium in Rome, which is divided into quare bays, each vaulted winh a cloirter dome. Tragsverse ribs are also found in the Roman Piscinae and in the Nymphaeum陆 Nimes: they vere not introduced by the Romanesque masons sill the 1tth century.
the first attempts were made to vault over the naves, another difficulty presented itself, because the latter were twice the width of the aisles, so that it became necessary to include two bays of the aisles to form one aquare bay in the nave. This mas an immense space to vault over, and, moreover \({ }_{j}\) it followed that every alternate pier served no purpose, so far as the support of the nave vault was concerned, and this would scem to have sulgested an alternative, viz. to provide a supplementary rib across the church and between the transverse ribs. This resulted in what is known as a sexpartite, or six-celled vault, of which one of the earliest examples is found in the Abbaye-aur-Hommea (S. Etienne) at Caen. This church, built by William the Conqueror, whe originally constructed to carry a timber roof onls, but nearly a century later the upper part of the nave walls were partly rebuilt, in order that it might be covered with a vault. The immense size, however, of the square vault over the nave necessitated some additional support, so that an intermediate rib was thrown across the church, dividing the square compartment into six cells, and called the sexpartite vault (fig. 7);

Fice 7.-Sexpartite
this was adopted in the cathedrals of Sens (1170), Lann (1195), Noyon (1190), Paris (1223-35), and Bourges (1250). Tha intermediate rib, however, had the disadvantage of partially obscuring one side of the clerestory windows, and it threw unequal weights on the alternate piers, so that in the cathedral of Soissons (1205) a quadripartite (fig. 8) or

Fic. 8-Quadripartite.
four-celled vault was introduced, the width of each bay being half the span of the nave, and corresponding therefore with the aisle piers. To this there are some exceptions, in Sant' Ambrogio. Milan, and San Michele, Pavia (the original vault), and in the cathedrals of Spires, Mainz and Worms, where the quadripartite vaults are nearly square, the intermediate piers of the aisles being of much smaller dimensions. In England sexpartite vaults exist at Canterbury (1175) (set out by William of Sens), Rochester (1200), Lincoln (1215), Durham (east transept), and St Faith's chapel, Westminster Abbey.
In the earlier stage of rib vaulting, the arched ribe consisted of independent or separate voussoirs down to the springing; the difficuliy, however, of working the ribe separately led to two other important changes: (1) the bower part of the transverse diagonal
and wall ribs were all worked out of one stone; and (2) the lo wer courses were all made horizontal, constituting what is known as the tas-de-charge (\(q . t\).) or solid springer. Fig. 9 is a diagram made by

Fig. 9.-AB, springing of transverse and diagonal ribs: \(P\), centre of the same; DE , longitudinal ridge rib: DF, intersection of webs; M, top of solid springer; KN , starting level of web: LK, springing of wall rib; EBD . bosses at intersection of ribs. Professor Willis taken frum the south transept of Westminster Abbey. The horizontal courses rise to N . or abosut half the height of the vault, but the ribs are freed from one another from the point M . The eas-de-charge, or solid springer, had two advantages: (1) it enabled the stone courses to run straight through the wall, so as to bond the whole together much better: and (z) it lessened the span of the vauls, which then required a centring of smatler dimensions. As soon as the ribs were completed, the web or stone shell of the vault was laid on them. In some English work, as may be secn in fig. 9, cach course of stone was of uniform height from one side to the other; but, as the diagonal rib was longer than either the transverse or wall rib, the courses dipped towards the former, and at the apex of the vault were cut to fit one another. At an carly period, in consequence of the great span of the vault and the very slight rise or curvature of the web, it was thought beteer to simplify the construction of the web by introducing intermediate ribs between the wall rib and the diagonal rib and betwicn the diagonal and the transverse ribs; and in order to meet the thrust of these intermediate ribs a ridge rib was required, and the prolongation of this rib to the wall rib hid the junction of the web at the summit, which was not always very sightly, and constituted the ridge rib. In France, on the other hand, the web courses were always laid horizonally, and they are therefore of unequal height, increasing towards the diagonal rib. Each course also was given a slight rise in the centre, so as to increase its strength: this enabled the French masons to dispense with the intermediate rib. which was not introduced by them till the 15 th century, and then more as a decorative than a constructive feature, as the domical form given to the French web rendered unnecessary the ridge rib, which, with some few exceptions, exists only in England. In both English and French vaulting centring was rarely required for the building of the web, a template (Fr. cerce) being employed to support the stones of each ring until it was complete. In Italy. Gernany and Spain the French method of building the web was adopted, with hnrizontal courses and a domical form. Sometimes, in the case of comparatively narrow compartments, and more especially in clerestories, the wall rib was stilted, and this caused a peculiar twisting of the web, as may be seen in fig. 9, where the springing of the wall rib is at K: to these twisted surfaces the term " ploughshare vaulting "is given.

One of the carliest examples of the introduction of the intermediate rib is found in the nave of Lincoln Cathedral, and there the ridge rib is not carried to the wall rib. It was spon found, however. that the construction of the web was much facilitated by additional ribs, and consequently there was a tendency to increase their number, so that in the nave of Exeter Cathedral three intermediate ribs were provided between the wall rib and the diagona! rib. In order to mask the junction of the various ribs, their intersections were ornamented with richly carved bosses, and this practice increased on the introduction of another short rib, known as the lierne, a term in France given to the ridge rib. Lierne ribs in English vaults are short ribs crossing between the main ribs, and were employed chiefly as decorative icatures, as, for instance, in the stellar vanl! (see Plate 1. fig. 16), one of the best examples of whech exists in the vault of the oricl window of Crosbv Hals, London. The tendency to increase the number nf ribs led to singular results in some cases, as in the choir of Gloucester (see Plate 11. Gig. 17), where the ordinary diagonal ribs become mere ornamental moutdings on the surface of \(2 n\) intersected pointed barrel vault, and again in the cloisters, where the introduction of the fan vault, forming a concave-sided conoid. returned to the principles of the Roman geometrical vault. This is further shown in the construction of these fan vaults, for although in the earliest examples each of the ribs above the tas-de-charge was an independent featurc, eventually it was found casic to carve them and the web out of the solid stone, so that the rib and web wire purely decorative and hat no constructional or independent functinns. The fan vault would seem to have owed its origin to the employment of centrings of one curve for all the ribs, instead of having separate eemerings for the sransverse, diagonal wall and imermediate ribs; it was facilinated also by the introduction of the four-cemred arch, because the lower portion of the arch formed part of the fan, or conoid, and the upper part could be extended at pleasure with a greater radius across the vap

Thplest version is that found
in the cloisters of Gloucester Cathedral, where the fans moct one another at the summit, so that there are only small compartments between the fans to be filled up. In later examples, as in King's College chapel, Cambridge (see Plate 11. fig. 18), on account of the great dimensions of the vaule, it was found necessary to introduce transverse ribs, which were required to give greater strength Similar transverse ribs are found in Henry V1I.'s chapel (see Plate 11. 6ig. 19) and in the divinity schools at Oxford, where a new development presented itself. One of the defects of the fan vault at Gloucester is the appearance it gives of being half sunk in the wall; to remedy this, in the two buildings just quoted, the complete conoid is detached and treated as a pendant.
One of the most interesting examples of the fan vault is that over the staircase leading to the hall of Christ Church, Oxford, and here the complete conoid is displayed in its centre carried on a central column. This vault, not buils uneit 1640, is an exceptional example of the long continuance of traditional workmanship, probably in Oxford transmitted in consequence of the late vaulting of the entrance gateways to the colleges. Fan vaulting is peculiar io England, the only example approaching it in France being the pendant of the Lady chapel at Caudelee, in Normandy. In France, Germany and Spain the multiplication of ribs in the 15 th century led to decorative vaults of various kinds, but with some singular modifications. Thus in Germany, recognizing that the rib was no longer a necessary constructive feature, they cut it off abruprly, leaving a France, on the other
hand, they gave still hand, they gave still more importance to the rib, by making it of greater depth, piercing it with tracery and hanging pendants from it. and the web became a horizontal stone paving laid on the top of these decorased vertical webs, This is the characteristic of the great Renaissance work in France and Spain: but it soon gave way to tralian influence, when the construction of vauls reverted to the geometrical supfaces of the Komans, without, however, always that ceonomy in centring to which they had attached so much importance, and more
 structures, In large vaults, where it constituted an important element in expense, the chief boast of some of the most cmident

Fig. it.
architects has been that eenering was dispensed with, as in the ease of the dome at Florence, built by Brunelleschi, and Ferguson eites as an example the great dome of the church at

Mousta in Malta, erected in the first half of the agth oentury, which was built entircly without centring of any kind. Fig. 10 is a plan and section of the vault of Henry VII.'s chapel and fig II a perspective view, in which it will be seen that the transverse rib thrown across the chapel carries the pendant, the weight of the latter probably preventing a rise in the haunches.

There are two other ribbed vaults in India which form no part of the development of European vaults, but are too remarkable to be passed over; one carries the central dome of the Jumma Musjid at Bijapur (A.D, 1559), and the other is the tomb of Mahommed (A.D. 1626-1660) in the same town. The vault of the latter was constructed over a hall 135 ft . square, to carry a hemispherical dome. The ribs, instead of being carried across the angles only, thus civing an octagonal base for the dome, are carried across to the further pier of the octagon (6g. 12) and consequently intersect one

Fic. 12.-Plan of Bijapur Dome. another, reducing the central opening to 97 ft . in diameter, and, by the weight of the masonry they carty, serving as counterpoise to the thrust of the dome, which is set back so as to leave a passage about 12 ft . wide round the interior. The internal diameter of the dome is 124 ft ., its height 175 ft. and the ribs struck from four centres have their springing 57 ft. from the floor of the hall. The Jumma Musjid dome was of smaller dimensions, on a mquare of 70 ft . with a diameter of 57 ft . and was carried on picrs only instead of immensely thick walls as in the tomb; but any thrust which might exist was counteracted by its transmission across aisles to the outer wall.
(R. P. S.)

VAUQUELIN, LOUIS NICOLAS (\(1763-1829\)), French chemist, was born at Saint-Andre-d'Hebertot in Normandy on the 26th of May 1763. His first acquaintance with chemistry was gained as laboratory boy to an apothecary in Rouen (17771779), and after various vicissitudes he obtained an introduction to A. F. Fourcroy, in whose laboratory he was an assistant from 178.3-1798. At first his work appeared as that of his master and patron, then in their joint-names; but in 1790 he began to publish on his own authority, and between that year and 1833 his name is associated with 376 papers. Most of these were simple records of patient and laborious analytical operations, and it is perhaps surprising that among all the substances he analysed be only detected two new clements-beryllium (1798) in beryl and chromium (r797) in a rod lead ore from Siberia. Eit her logether or successively he beld the offices of inspector of mines, professor at the School of Mines and at the Polytechnic School, assayer of gold and silver articles, professor of chernistry in the Colleze de Fircnce and at the Jardin des Plantes, member of the Council of Industry and Commerce, commissioner on the plaarmacy laws, and finally professor of chemistry to the Medical Faculty, to which he succeeded on Fourcroy's death in 1800. His lectures, which were supplemented with practical laboratory teaching, were attended hy many chemists who subsequently attained distinction. He diod at his hirthplace on the rath of November 1829 .
VAUQUELIN DE LA PRESNAYE, JRAN (\(1336-1608\)), French poct, was born at the chảteau of La Fresnaye, near Faluise in Normandy, in 1536. He studied the humanities at Paris and law at Poitiers and Bourges. He fought in the civil wars under Marshal Matignon and was wounded at the siege of Saint-L6 (1574). Most of his life was spent at Caen, where he was president, and he died there in 1608. La Fresnaye was a disciple of Ronsard, hut, while praising the reforms of the Pleiade, he laid stress an the continuity of French literary bistory. He was a student of the trousceres and the old chroniclers, and ciociend in Freach pootiry sot on a national basis. These views he expounded in an Art poftique, begun at the desire of Henry III. in 1574, but not puhlished until 1605.

His Foresteries appeared in 1555: his Diverses pofries. Including the Art pottique, the Salyres fromefoises, addreased to various dis-
tinguished contemporaries, and the ICylles, with some eprgrams and sonnets, appeared in 1605. Among bis political writings may be noted Pour la monarchie du royaume contre la division (\(15^{\circ} 6\)).
The Art poltique was edited by C. Pellissier in 1885 . It is summarized for English readers in vol. it. of Mr George Saintsbury's History of Cridicism. A notice of the poet by J. Travers is prefixed to an edition of the Ewores diverses (Caen, 1872).
Vautemargues, luc de clapizrs, Marquts de (ifis1747), French moralist and miscellaneous writer, was born at Aix in Prevence on the 6th of August 1715. His family was poor though noble; he was educated at the collège of Aix, where he learned littie-neither Latin nor Greek-but by means of a transiation acquired a great admiration for Plutarch. He entered the army as sub-lieutenant in the king's regiment, and served for more than ten years, taking part in the Italian campaign of Marshal Villams in 1733, and in the disastrous expedition to Bohemia in support of Frederick the Great's designs on Silesia, in which the French were abandoned by their aily. Vauvenargues took part in Marshal Belle-Isle's Finter retreat Irom Prague. On this occasion his legs were frozen, and though he spent a long time in hospital at Nancy he never completely recovered. He was present at the battle of Dettingen, and on his retum to France was garrisoned at Arras. His mithitary career was now at an end. He had long been desired by the marquis of Mirabeau, anthor of L'Ami des hommes, and father of the statesman, to turn to literature, but poverty prevented him from going to Paris as his friend wished. He wished to enter the diplomatic service, and made applications to the ministers and to the king himself. These efforts were unsuccessful, hut Vauvenargues was on the point of securing his appointment through the intervention of Voitaire when an attack of smallpox completed the ruin of bis health and rendered diplomatic employment out of the question. Voitaire then asked him to submit to him his ideas of the difference between Racine and Corneille. The acquaintance thus begun ripened into real and lasting friendship. Vauvenargues removed to Paris in 1745, and lived there in the closest retirement, seeing but few friends, of whom Marmontel and Voltaire were the chief. Among his correspondents was the archaeologist Fauris de Saint-Vincens. Vauvenargues published in 1746 an Introduction d la connaissance de l'espril humain, with certain Reflexions and Maximet appended. He died in Paris on the 28th of Msy 1747.

The bulk of Vauvenargues's work is very small, hut its interest is very considerable. In the Introduction, In the Riffexions and in the minor fragments, it consists, in fact, of detached and somewhat desultory thoughts on questions of moral philosophy and of literary criticism. Sainte-Beuve has mildly said that as a literary critic Vanvenargues "shows inexperience." His literary criticism is indeed limited to a repctition in crude form of the stock idess of his time. Thus he exagerates immensely the value of Racine and Boileau, but depreciates Cormeille and even Molière. As a writer be stands far bigher. His styte is indeed, according to strict academic judgnent, somewhat incorrect, and his few excursions into rbetoric have the artificial and affected character which mars 50 much i8th-cent ury work. His strength, however, is not really in any way that of a man of leters, bat that of a moralist. He did not adopt the complete philosophe attitude; in his letters, at any rate, be poses as " neutral " bet ween the religious and the anti-religious school. In some of his maxims about politics there is also traceable the bollow and confused jargon about tyrants and liberty which did so much to bring about the struggles of the Revolution. It is in morals proper, in the discussion and application of general priaciples of conduct, that Vauvenargues shibes. He is not an exact psychologist, much iess a rigorous metaphysician. His terminology is popular and loose, and be hardly attempts the co-ordination of his ideas into any system. His real strength is in a department which the French have always cultivated with greater success than any ather modern people-the expression in more or less epigram. matic language of the results of acute observation of hum3n conduct and motives, for which he had found ample leisure in his campaigns. The chici distinction between Vauvenarguea
and his great predecessor La Rochefoucauld is that Vauvenargues, unlike La Rochefoucauld, thinks nobly of man, and is altogether inclined rather to the Stoic than to the Epicurean theory. He has indeed been called a modern Stoic, and, allowing for the vagueness of all such phrases, there is much to be said for the description.

An edition of the Exuores of Vauvenargucs, slighty enlarged, appeared in the year of his death. There were some subeequent editions, superseded by that of M. Gilbert (2 vols., 1857), which contains some correspondence, some Dialogues of the Dead, "characters ' in imitation of Theophrastus and La Bruyere, and numeroas short pieces of criticism and moralizing. The best comments on Vauvenargucs, besides those contained in Gilbert's edition, are to be found in lour essays by Sainte-Beuve in Causeries du lundi, vols. iii. and xiv.i and in Villemain's Tableau de la litterature frangaise IM XVIII \({ }^{2}\) sidice.

See also M. Palíologue, Vasmenergues (1890); and Selections from
La Bruyire and Vawenargues, with memoir and notes by Mise Elizabeth Lee (1903).
VADX, CALVERT (1824-1895), American architect and landscape gardener, was horn in London on the 24th of December 1824. He was educated at Merchant Taylors' School and in the office of Lewis N. Cottingham (1787 -1847). In 1850 he went to America and became A. J. Downing's architectural partner. In 1856 and 1866 Vaux was associated with F. L. Olmsted in the plans for the improvement of various parks. He designed the Belvidere in Central Park, New York, and built a number of country bouses in Newport, besides many town houses and public institutions.

VAUX OP HARROWDEN, THOMAS VADX, 2ND BARON (\(1510-\) 1556), English poet, eldest son of Nicholas Vaux, ist Baron Vaux, was horn in 1510 . In 1527 be accompanied Cardinal Wolsey on his embassy to France; he attended Henry VHI. to Calais and Boulogne in 1532 ; in 1531 he took his seat in the House of Lords, and was made Knight of the Bath at the coronation of Anne Boleyn. He was captain of the Isle of Jersey until 1536. He married Elizabeth Cheney, and died in October \(155^{\circ}\). Sketches of Vaux and his wife by Holbein are at Windsor, and a finished portrait of Lady Vaur is at Hampton Court. Two of his poems were included in the Songes and Sonetles of Surrey (Tottel's Miscellasy, 1557). They are "The assault of Cupid upon the fort where the lover's hart lay wounded, and bow he was taken," and the "Dittye ... representinge the Image of Deathe," which the gravedigger in Shakespeare's Hamlet misquotes. Thirteen pieces in the Paradise of Dainly Devices (1576) are signed by him. These are reprinted in Dr A. B. Grosart's Misceldaties of the Fuller Worthics Library (vol. iv., 1872).
VAUXHALL, a district on the south bank of the river Thames, in London, England, included in the metropolitan horough of Lambeth. The manor was held by Falkes de Breaute (whence the name, Falkes Hall) in the time of John and Henry 1II. About 1661 public gardens were laid out here, known as the New Spring Garden, and leier as Spring Gardens, but more familiar under the title of Vauxhali Gardens. They soon became the favourite fashionable resort of the metropolis; but as a place of general entertainment they underwent great development from 1732 under the management of Jonathan Tyers (d. 1767) and his sons Thomas and Jonathan. In 1822, with the approval of George IV., who frequented the gardens before his accession, the epithet Royal was added to their title. By the middle of the igth century, however, Vauxhall had lost its bigh reputation; in 1859 the gardens were finally closed, and the site was quickly built over.
VAVAssor (Med. Lat. valocssor, passassor; Fr. pasassour, oavassor. vasseur, \&c.), in its most general sense a mediate vassal, i.e. one holding a fef under a vassal. The word was, however, applied at various times to the most diverse ranks in the feudal hierarchy, being used practically as the synonym of vassal. Thus tenants-in-chief of the crown are described by the Emperor Conrad (Ler Lamgob. lib. iii. tit. 8, 5 4) as valoassores majores as distinguished from mediate tenants, palsassores minores. Gradually the term without qualification was found convenient for deacribing sub-vateals, tenants-in chief being called coprtanei
or baromes (see Bason). Its implication, however, still varied in different places and times. Bracton (lih. i. cap. 8, if 2) ranks the magnates ses solpassores between barons and Enights; for him they are " men of great dignity," and in this order they are found in a charter of Henry II. (1160). But in the regestum of Philip Augustus (fol. 158) we find that five vavassors are reckoned as the equivalent of one knight. Finally, Du Cange quotes two charters, one of 1187, another of 1349 , in which vavassors are clearly distinguished from nobles.

The derivation of the word vavassor is very obecure. The fanciful interpretation of Bracton, das sortilym ad maletudinems (a vessel chosen to honour), may be at once rejected. Others would derive it from wassi ad valpas (at the folding-doors, talfae), i.e. servants of the royal antechamber. Du Cange, with more justice, regards it mercly as an obscure variant of vassks. (W. A.P.)

VAYOACR (variously Waigats, Waigatch, \&ce.), an island off the Arctic coast of Russin, between it and Novaya Zemlya, hounded S. by the narrow Yugor Serait, and N. by that of Rara. It is roughly oblong in lorm; its length from S.E. to N.W. is 70 m. . and its greatest breadth 28. Its grestest elevation scarcely exceeds 300 ft. For the most part it consists of tundra, with frequent marshes and small lakes. Slight rocky ridges cun generally along its length, and the coast has low cliffs in places. The island consists in the main of limestone, and its elevation ahove the sea is geologically recent. Raised beaches are frequently to be traced. The rocks are heavily scored by ice, but this was probably marine ice, not that of glaciers. Grasses, mosses and Arctic flowering plants are abundant, but there are no trees excepting occasiopal dwari willows. Foxe and lemmings are met with, but whereas animals are few, birds are very numerous; a variety of ducks, waders, \&c., frequent the marshes and lakes. The island is visited periodically by a few Samoyedes; they formerly considered it sacred, and some of their sacrificial piles, consisting of drift-wood, deer's borns and the skulls of bears and deer, have been observed hy travellers. In spite of their conversion to Christianity, the Samoyedes still regard these piles with superstition. The origin of the name Vaygach is as dubious as its orthography; it has been hefd to be Dutch (waien, to blow, and gat, a strait, hence "windy strait") or Russian, in which case it is probably a surname.

Comparanively little was known of the interior of the ishand untul Mr F. G. Jackson made the circuit of it on foot in 1893 (soe his Great Frosen Land, London, 1895; also H. J. Pearson, Beyond Pedsore Eestwerd, London, 1899).

VECTOR ANALYSIS, in mathematics, the calculus of vectors The position of a point \(B\) relative to another point \(A\) is specified by means of the straight line drawn from \(A\) to \(B\). It may equally well be specifed by any equal and parallel line drawn in the same sense from (say) \(C\) to \(D\), since the position of \(D\) relative to \(\mathbf{C}\) is the same as that of \(\mathbf{B}\) relative to A . A straight line conceived in this way as having a defnite length, direction and sense, but no definite location in space, is called a nector.
It may be denoted by \(\overrightarrow{\mathrm{AB}}\) (or \(\overrightarrow{\mathrm{CD}}\)), or (when no confusion is likely to arise) simply by AB. Thus'a vector may be used to specify a displacement of translation (without rotation) of a rigid body. Again, a lorce acting on a particle, the velocity or momentum of a particle, the state of electric or magnetic polarization at a particular point of a medium, are examples of physical entities which are naturally represented by vectors.

The quantities, on the other hand, witb which we are familiar in ordinary arithmetical algebra, and which have merely magnitude and sign, without any intrinsic reference to direction, are distinguished as scalars, since they are completely specifed by their position on the proper scale of measurement. The mest of a body, the pressure of a gas, the charge of an electrified conductor, are instances of scalar magnitudes. It is convenient to emphasize this distinction by a difference of notation; thus scalar quantities may be denoted by italic type, vectora (when they are represented by single symbols) by "black "or Clarerdon "type.

There are certain combinations of vectors with one another,
and with scalars, which have important geometrical or physical significance. Various systems of "vector analysis" have been devised for the purpose of dealing methodically with these; we shall here confine ourselves to the one which is at present in most general use. Any such calculus must of course begin with definitions of the fundamental symbols and operations; these are in the first instance quite arbitrary conventions, but it is convenient so to frame them that the analogy with the processes of ordinary algebra may as tar as possithle be maintained.
Ac already explained. two vectors which are represented by equal and paralle straight lipes drawn in the same sente are regarded as identical. Again, the product of a scalar \(m\) into a vector \(\AA\) is naturally defined as the vector whose direction is the same as that of \(\mathbf{A}\), but whowe length is to that of \(A\) in the ratio \(m\), the sense (moreover) being the same as that of \(A\) or the reverme. according as \(m\) is positive or negative. We denote it by mA. The particular case where \(m=-1\) is denoted by-A, so that a change of sign simply reverses the sense of a vector.
As regards combinations of \(t\) wo vectors, we have in the first place the one suggested by composition of displacements in kinematics, or of forces or couples in statics. Thus in a rigid body receive in soccession two translations nepresented by \(\overrightarrow{\mathrm{AB}}\) and \(\overrightarrow{\mathrm{BC}}\), the final result is equivatent to the translation represented by \(\overrightarrow{A C}\). It is convenient. therefore, to regard \(\overrightarrow{A C}\) as in a sense the "geornetric sum " of \(\overrightarrow{A B}\) and \(\overrightarrow{B C}\), and to write
\[
\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C} .
\]

This constitutes the definition of vector additios; and it is evident at once from fig. 1 that
\[
\overrightarrow{B C}+\overrightarrow{A B}=\overrightarrow{A D}+\overrightarrow{D C}=\overrightarrow{A C}-\overrightarrow{A B}+\overrightarrow{B C}
\]

Hence, \(A\) and \(B\) being any two vectors, we have
\[
\begin{equation*}
A+B-B+A \tag{I}
\end{equation*}
\]
i.e. addition of vectors, like ordinary arithmetical addition. is mubject to the "commutative law." As regards subtraction, we define \(A-B\) as the equivalent of \(A+(-B)\); thus in fig. 1, if \(\overrightarrow{A B}-A, \overrightarrow{B C}=B\), we have
\[
A+B=\overrightarrow{A C}, A-B=\overrightarrow{D B} .
\]

When the sum (or difference) of two vectons is to be furt her dealt with as a single vector, this may be indicated by the use of curved brackets, e.g. (\(A+B\)). It is easily seen from a fgure that
\[
\begin{equation*}
(\mathbf{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C}] \tag{2}
\end{equation*}
\]
and so on; i.e. the " associative law " of addition also bolds.
Again, if \(m\) be any scalar quantity, we have
\[
\begin{equation*}
m(A+B)=m A+m B \tag{3}
\end{equation*}
\]
or, in words, the multiplication of a vector sum by a scalar follow: the " distributive law." The truth of (3) is obvious on reference to the similar triangles in fig. 2, where
\[
\overrightarrow{O P}-A, \overrightarrow{P Q}-B, O^{\prime}=m A, P^{\prime} Q^{\prime}=m \mathbf{B} .
\]

Fig. 1.

Fig: 2.

It will be noticed that the proofs of (1) and (3) involve the fundamental postulate of the Euclidean peometry.

The definition of "work" in mechanica gives us another important mode of combination of vectors. The product of the absolute magnitudes \(A, B\) (say) of two vectors A. \(B\) into the cosine of the angle \(\theta\) bet ween their directions is called the scolar prodsct of the two vectors, and is denoted by A B or simply AB. Thua
\[
A B=A B \cos \theta=B A
\]
(4)
so that the "commatative law of multiplication" hoids here as in ordinary alsebre. The " diacributive law" is also valid, for we haye
\[
\begin{equation*}
A(B+C)-A B+A C \tag{5}
\end{equation*}
\]
the proof of this statement being identical with that of the statical theorem that the sum of the works of two forces in any displacement of a particle is equal to the work of their resultant.

For an illusaration of the next mode of combination of vectors we may heve recoerte to the geomearical theocy of the retention of a
rigid body about a frod point 0 . As explained uader Mechanics, the state of motion at any instant is specified by a vector \(\overrightarrow{O f}\) representing the angular velocity. The instantaneous velocity of any other point \(P\) of the body is completely determined by the two vectors \(\overrightarrow{\mathrm{OI}}\) and \(\overrightarrow{\mathrm{OP}}\), via it is a vector normal to the plane of OI and OP, whose absolute magnitode is OI. OP. sin \(\theta\), where \(\theta\) denotes the inclination of OP to OI, and its sense is that due to a right-handed rotation about OI. A vector derived according to this rule from any two given vectors A, B is called their secror product, and is denoted by \(\mathbf{A} \times \mathbf{B}\) or by \(A \mathbf{B}\)]. This type of comblnation is \(f\) requent in electro-magnetism; thus it \(C\) be the current and 8 the magnetic induction, at any point of a conductor, the mechanical force on the latter is represented by the vector (CB). It will be noticed in the above kinematical example that it the rolles of the two vectors OI, OP were interchanged, the resulting vector would have ibe same absolute magnitude as before, but its sense would be reversed. Hence
\[
\begin{equation*}
[A B]=-[B A] \tag{6}
\end{equation*}
\]
so chat the commutative taw does not hold with respect to vector products. On the other hand, \(t\) he distributive law applies, for we have
\[
\begin{equation*}
[A(B+C)]-[A B]+[A C] \tag{7}
\end{equation*}
\]
as may be proved without difficulty by considering the kinematical interpretation.
Various types of triple products may also present themsoives; the most important being the scalar product of two vectors, one of which is itself given as 2 vector product. Thus \(A(B C]\) is equal in absolute value to the volume of the parallelepiped constructed on three edges OA, OB, OC drawn from a point \(O\) to represent the vectors \(A, B\), \(C\) respectively, and it is positive or negative according as the lines \(O A, O B, O C\) follow one another in right- or left-handed cyclical order. It follows that
\[
\begin{equation*}
A[B C]=B[C A]=-B[A C]-\& C \tag{8}
\end{equation*}
\]

In order to exhibit the correspondence between the shorthand methods of vector analysis and the more familiar formulae of Cartesian geometry, we take a right-handed system of three mutually perpendicular axes \(\mathrm{Ox}, \mathrm{Oy}, \mathrm{O}\). and adopt three fundamental unifbectors 1. 1. h. having the positive directions of these axes respectively. As regards the scalar pruducts of these unit-vectors, we have, by (4).
\[
\begin{equation*}
P-P=k^{3}=1, J k=k=j i=0 . \tag{9}
\end{equation*}
\]

Any other vector \(A\) is expressed in terms of its scalar projections \(A_{4}, A_{\infty} A_{1}\) on the co-ordinate axes by the formula
\[
\begin{equation*}
\mathrm{A}=i \mathrm{~A}_{1}+J \mathrm{~A}_{2}+k \mathrm{~A}_{2} \tag{10}
\end{equation*}
\]

For the scalar product of any two vectors we have
\(A B=\left(i A_{1}+j A_{3}+h A_{2}\right)\left(i B_{1}+j B_{2}+h B_{2}\right)=A_{1} B_{1}+A_{2} B_{3}+A_{1} B_{3} .(11)\) as appears on developing the product and making use of (9). In paricular, forming the scalar square of A we have
\[
\begin{equation*}
A^{2}=A_{1}{ }^{2}+A_{1}{ }^{2}+A_{2}{ }^{2} \tag{12}
\end{equation*}
\]
where \(A\) denotes the abwolute value of \(A\).
Again; the rulc for vector producta, applied to the fundamental unite, givea

Hence
\[
\begin{align*}
{\left[A B_{]}\right.} & =\left[\left(A_{1}+/ A_{1}+h A_{1}\right)\left(/ B_{1}+f B_{2}+h B_{3}\right)\right] \tag{13}\\
& =\left(\left(A_{2} B_{2}-A_{2} B_{2}\right)+\right]\left(A_{3} B_{1}-A_{1} B_{2}\right)+h\left(A_{1} B_{2}-A_{2} B_{1}\right) \\
& =\left[B_{1}\right] . \tag{14}
\end{align*}
\]

The correspondence with the formulae which orcur in the analytical theory of rotations, \&c., will be manifest. If we form the scalar product of a third vector \(C\) into [AB], we obtain
\[
C\left[A B J=\left[\begin{array}{lll}
A_{1} & B_{1} & C_{2} \tag{15}\\
A_{2}, & B_{2} \\
A_{1} & B_{2} & B_{2}, \\
C_{2}
\end{array}\right]\right.
\]
in agreement with the geometrical interpretation already given.
In such subjects as hydrodynamics and elect ricity we are introduced to the notion of scalar and vector fields. With every point \(P\) of the region under consideration there are associated certain scolars (e.f. density, electric or magnetic potential) and vectors (e.g. fluid velocity, electric or magnetic force) which are regarded as functions of the position of P. If we treat the partial-differential operators \(\partial / \partial x . \partial / \partial y, \partial / \partial s\), where \(x, y . s\) are the co-ordinates of \(P\), as if they were scalar quantities, we are led to some remarkable and signibcant expressions. Thus if we write
\[
\begin{equation*}
\theta=\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+h \frac{\partial}{\partial z}\right) \tag{16}
\end{equation*}
\]
and operate on a scalar function \(\phi_{1}\) we obtain the vector
\[
\begin{equation*}
\nabla \phi=i \frac{\partial \phi}{\partial x}+j \frac{\partial \phi}{\partial y}+h \frac{\partial \phi}{\partial x} \tag{17}
\end{equation*}
\]

This is called the gradient of \(\phi\) and sometimes denoted by " grad " ; its direction is that in which \(\phi\) most rapidly increases, and its ragnitude is equal to the corresponding rate of increase. Thus
\[
\begin{equation*}
(\nabla \phi)^{2}=\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}+\left(\frac{\partial \phi}{\partial x}\right)^{2} \tag{18}
\end{equation*}
\]

A repetition of the operation \(\nabla\) give
\[
\begin{equation*}
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial z}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z} \tag{19}
\end{equation*}
\]

In the theory of attractions this expression is interpreted as measuring the degree of attenualian of the quantity \(\phi\) at \(P\); if we reverse the sign we get the concentration, \(-\nabla^{2} \phi\).

Again, if we form the scalar product of the operator \(\nabla\) into a vector A we have
\[
\begin{equation*}
\nabla \mathbf{A}=\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+h \frac{\partial}{\partial z}\right)\left(i A_{1}+j A_{2}+h A_{3}\right)=\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{3}}{\partial y}+\frac{\partial A_{3}}{\partial z} \tag{20}
\end{equation*}
\]

If A represent the velocity at any pcint \((x, y, z)\) of a fluid. the latter expression measures the rate at which fluid is flowing away from the neighbourhood of P. By a generalization of this idea, it is called the divergence of \(\mathbf{A}\), and we write
\[
\begin{equation*}
\nabla \mathbf{A}=\operatorname{div} \mathbf{A} \tag{21}
\end{equation*}
\]

The vector product [\(\mathbf{F A}\)] has also an important significance. We find
\[
\begin{align*}
{[\nabla \mathrm{A}] } & =\left[\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right)\left(i A_{1}+/ A_{4}+k A_{1}\right)\right] \\
& =f\left(\frac{\partial A_{3}}{\partial y}-\frac{\partial A_{1}}{\partial z}\right)+j\left(\frac{\partial A_{1}}{\partial z}-\frac{\partial A_{3}}{\partial x}\right)+k\left(\frac{\partial A_{4}}{\partial x}-\frac{\partial A_{4}}{\partial y}\right) \tag{22}
\end{align*}
\]

If A represent as before the velocity of a fluid. the vector last Written will represent the (doubled) angular velocity of a fluid clement. Again if A represent the magnetic force at any point of an electro-magnetic field, the vector [\(\mathrm{\nabla} \mathrm{~A}]\) will represent the electric current. In the general case it is called the chrl, or the rotation, of A, and we write
\[
\begin{equation*}
[\nabla \mathbf{A}]=\operatorname{curl} \mathbf{A}, \text { or } \operatorname{rot} A . \tag{23}
\end{equation*}
\]

These definitions enable us to give a compact form to two important theorems of C. F. Gauss and Sir G. G. Stokes. The former of these may be written
\[
\begin{equation*}
\int \operatorname{div} A \cdot d V=\int A n d S \tag{24}
\end{equation*}
\]
where the integration on the left hand includes all the volumeelements \(d V\) of a given region, and that on the right includes all the surface-elements \(d S\) of the boundary, \(n\) denoting a unit vector drawn. outwards normal to \(d S\). Again, Stokes's theorem takes the form
\[
\begin{equation*}
\int \mathbf{A d s}=\int \operatorname{cur} \mathbf{A} \cdot n d \mathbf{S} \text {, } \tag{25}
\end{equation*}
\]
where the integral on the right extends over any open surface, whilat on the left ds is an element of the bounding curve, treated as a vector. A certain convention is implied as to the relation between the positive directions of \(n\) and \(d s\).
ft is to be observed that the term "vector" has been used to include two distinct classes of geometrical and physical entities. The first class is typified by a displacement, or a mechanical force. A polar vector, as it is called, is a magnitude associated with a certain linear direction. This may be specified hy any one of a whole assemblage of parallel lines, but the two "senses" belonging to any one of the lines are distinguished. The members of the second class, that of axial vectors, are primarily not vectors at all. An axial vector is exemplified by a couple in statics; it is a magnitude associated with a closed contour lying in any one of a system of parallel planes, but the two senses in which the contour may be described are distinguished. It was therefore termed by H. Grassmann a Plangrosse or Ebenengrosse. Just as a polar vector may be indicated by a length, regard being paid to its sense, so an axial vector may be denoted by a certain area, regard being paid to direction round the contour. A theory of "Plangrösen" might be developed throughout on independent lines; but since the laws of combination prove to be analogous to those of suitable vectors drawn perpendicular to the respective areas, it is convenient for mathematical purposes to include them in the same calculus with polar vectors. In the case of couples this procedure has been familiar since the time of L. Poinsot (1804). In the Cartesian treatınent of the subject no distinction between polar and axial vectors is necessary so long as we deal with congruent systems of co-ordinate axes. But when we pass from a right-handed to a left-handed system the formulae of transformation are different in the two cases. A polar vector (e.ga displacement) is reversed by the process of reflection in a mirror normal to its direction, whilst the corresponding axial vector (\(<\). . a couple) is unaltered.

REFERENCES. -The methods of vector analysis arechiefly used as a means of condensed expression of various important relations which are of frequent occurrence in mathematical physics, more especially in electricity. They are freely employed, for example, in many recent German treatiscs. The historical development of the subject can only be briefly referred to. The notions of scalar and vector products originated independently with Sir W. R. Hamilton (1843) (see QUATERNIONS) and H. Grassmann (1844), but were associated with various other conceptions of which no use is made in the simplified system above sketched. The present currency of this latter system is due mainly to the advocacy of \(O\). Heaviside and J. W. Gibbs, although for the systematic physical interpretaition of the various combinations of symbols which constantly recur in electricity and allied suhjects we are indehted primarily to the classical treatise of J. C. Maxwell on Electricity and Magnetism (1873). For further details and applications of the calculus reference may be made to the following: O. Heaviside, Electro-Mfagnetic Theory (London, 1894): J. W. Gibbs. Vector Analysis (2nd ed., New York 1907); M. Abraham. Die Maxwellsche Theorie d. Elekrialkt (Lepaig, 1904): thearticles by H. E. Timerding and M.

Abraham in vol. iv. of the Encyel. d. Moth. Pief. (Leiprig ngor-2): A. H. Bucherer. Elemente d. Vektor-Analysis (Leipzig, 1905). For an account of other systems of vector analysis see H. Hankel. Theorie d. complexen Zahlewsysteme (Leppig. 1867); and A. N. Whitehead. Untwersal Algebra, vol i. (Cumbridge, 1898).
(H. Le.)

VEDDAFS, or Weddahs (from Sanskrit veddke. "hunter "), a primitive people of Ceylon, probably representing the Yakkes or "demons" of Sanskrit writers, the true aborigines of the island. During the Dutch occupation (1644-1796) they were found as far north as Jafina, but are now confined to the southeastern district, about the wooded Bintenna, Badulla and Nilgala hills, and thence to the coast near Batticaloa. They are divided into two classes, the Kele Weddo or jungle Veddabs, and the Gan Weddo, or semi-civilized village Veddahs. The Veddahs exhibit the phemomenon of a race living the wildest of savage lives and yet speaking an Aryan dialect. Craniometrical evidence strongly favours the theory, now generally accepted, that they represent a branch of the pre-Aryan Dravidians of southern India, and that their ancestors probably made a settlement in the island of Ceylon in prehistoric times, detaching themselves from a migrating horde which passed through the island to find at last a permanent bome in the continemt of Australia.

The true jungle veddahs are almost a dwarish race. They are dark-skinned and flat-nosed, slight of frame and very small of skull, and average no more than 5 ft . Their black hair is shaggy rather than lank. They are a shy, harmless, simple folk, living chicfly by hunting; they lime birds, catch fish hy poisoning the water, and are skilled in getting wild boney; they have bows with iron-pointed arrows and hreed hunting dogs. They dwell in caves or bark buts, and their word lor house is Sinhalese for a hollow tree, rukula. They count on their fingers, and make fire with the simplest form of fire-drill twirled by hand. They are monogamous, and their conjugal fidelity contrasts strongly with the vicious hahits of the Sinhalese. Their religion has been described as a kind of demonworship, consisting of rude dances and shouts raised to scare away the evil spirits, whom they confound with their ancestors.

The Veddahs are not to be confounded with the Rodiyas of the western uplands, who are a much finer race, tall, wellporportioned, with regular features, and speak a language said to be radically distinct from all the Aryan and Dravidian dialects current in Ccylon. There is, however, in Travancore, on the mainland, a low-caste" Veda" tribe, nearly black, with wavy or frizzly hair, and now speaking a Malayalim (Dravidian) dialect (Jagor), who probably approach nearer than the insular Veddahs to the aboriginal pre-Dravidian "negrito" element of southern India and Malaysia.

See Percival, Description of Island of Ceylon (1805): Cordiner. Description of Ceyton (i807); John Davy, Ceylon and is I Phabritants (1821); Stirr, Ceyton and the Singhalese (1850). Sir Emerson Tennent, Ceplon (1859); J. Baily, Trans. of Efhaol. Soc., New Series, vol. ii. (1863); Rolleston, Trans. of Bril. Ass. (1872); B. F. Hartshorne, Fortrightly Review New Series, vol. xix. p. 40 . The most elaborate monograph is that of Professor Virchow. Ciber die Weddas ton Ceylon und ihre Beziehangen 2x den Nachbarstänmex (Berlin. 1882). See also E. B. Tylor, Primitive Culiure: A. Thornson, "Osteology of Veddahs," in Journ. Anthrop. Institule (1899). vol. xix. p. 125; L. de Zoysa, "Origin of Veddahs," in Journal, Cudfe. Branch, Royal Asiatic Society, vol. vii.

VEDDER, ELIHU (1836 -), American artist; was bom in New York City on the 26th of Fehruary 1836. He studied under the genre and historical painter Tompkins H. Matteson (1813-1884), at Sherhurnc, N.Y., later under Picot, in Taris, and then, in \(1857-61\), in ltaly. After 1867 he lived in Rome, making occasional visits to America. He was elected to full membership in the National Academy of Design, New York, in 1865. He devoted himself to the painting of genre pictures, which. however, attracted only modest attention until the publication, in 1884 , of his illustrations to the Rubaiyal of Omar Khayyam; these immediately gave him a high place in the att world. Important decorative work came later, notably the painting symbolizing the art of the eity of Rome, in the Walker Art Gallery of Bowdoin College, Maine, and the five lunettes (in the entrance hald) symbolical of governmesth
and the mosaic "Minerva" in the Congressional Library at Washington. Among his better-known pictures are: "Lair of the Sea Serpent," in the Boston Museum of Fine Arts; "Young Marsyas," "Cumacan Sibyl," "Nausicas," in the collection of J. Pierpont Morgan; and "Genii and Fisherman," in the collection of Martin Brimmer, Boston.
VEDEITR a French military term (formed from Lat. videre, to see), adopted into English and other languages for a mounted sentry or outpost, whose function it is to bring information, give signals or warnings of danger, etc., to the main body of troops.
VRERR, a town in the province of Zeeland, Holland, on the island of Walcheren, 4 m . N.N.E. of Middelburg. with which it is connected by canal (1867-72). It contains several interesting architectural remains of the days of its former prosperity, many of its quaintly gabled old houses dating from the 16 th century. There is a fine Gothic church dating from 2348, but subsequently in part destroyed and used for sccular purposes; the town hall (1475) has a fine gable filled with sculpture, and contains some interesting antiquitics
VEGA, garcilaso DE LA (\(1503-1536\)), Spanish woldier and poet, was born at Toledo on the 6th of February 1503. His father, Garcilaso (Garcias Laso or Garcilasso) de Ia Vega, was counsellor of state to Ferdinand and Isabella, and for some time their ambassador at the court of Rome; by his mother he was descended from the illustrious house of Guzman. At the age of seventeen he was attached to the bodyguard of Charles V., and fought against the insurgent comumeros, being wounded at the battle of Olias near Toledo. He afterwards served in the north of Italy, and gained great distinction by his bravery at the battle of Pavia in 1525 . In the following year he married a lady-in-waiting to Queen Eleanor. He took part in the repulse of the Turks from Vienna in 1529 , was present at the coronation of the emperor at Bologna in 1530, and was charged with a secret mission to Paris in the autumn of the same year. In 1531 be accompanied the duke of Alva to Vienna, where, for conniving at the clandestine marriage of his nephew to a maid-of-bonour, he was imprisoned on an island in the Danube. During this captivity he composed the fine cancion. "Con un manso ruido de agua corriente y clara." Released and restored to favour in June 1532 , he went to Naples on the staff of Don Pedro de Toledo, the newly appointed viceroy, by whom be was twice sent on public business of importance to Barcelona, in 1533 and 1534 . After having accompanied the emperor ou the expedition to Tunis (1535), where he received two severe wounds, be was employed as a confidential agent at Milan and Genoa in negotiations connected with the proposed invasion of Provence, and joined the expedition when it took the field. Being with Charks in the neighbourhood of Frejus during the retreat from Marseilles, Garcilaso de la Vega was ordered to storm a fort at Muy, which had checked the advance of the army. In the successful discharge of this duty he was mortally wounded and died twenty-one days afterwards, at Nice (14th of October 1536). His poems were entrusted to his friend Boscan, who was preparing them for publication along with his own when death overtook him in 1540 . The volume ultimatcly appeared at Barcelona in 1543 , and has often been reprinted. Garcilaso's share in it consists principally of three eglogas or pastorals, which the Spaniards regard as among the finest works of the kind in their language, and which for sweetness of versification and delicacy of expression take a high rank in modern European literature. In addition to the pastorals, there are thirty-seven sonnets, five canciones, two elegies and a blank verse epistle, all infuenced by Italian models. The poems rapidly gained a wide popularity; and within a century of their appearance they were edited as classics by Francisco Sanchez (1577), Herrera (1580) and Tamayo de Vargas (1622). An English translation of his works was published by Wiffen in \(\mathbf{2 8 2 3}\). Garcilaso's delicate charm has survived all changes of taste, and by universal consent be ranks among the most accomplished and artistic of Spanish poets.

See E. Ferninder de Navarrete. "Vida de Garcilaso de la Vegan" in the Decementor inediles para les hisloria de Espaila, vol. xvi.;

Frascesco Flamini, "Imitasioni inalfai in Gareiluso de la Vegac" in the Biblideca delle semole italiane (Milano. 1899).

V解, CARCILASO DR LA, called "Inca" (c. 1535-16r6), historian of Peru, was born at Cuzco. His father, Sebastiano Garcilaso (d. 1559), was a cadet of the illustrious family of La Vega, who had gone to Peru in the suite of Pedro de Alvarado. and his mother was of the Peruvian blood-royal, a circumstance of which he was very proud as giving him a right to the title which be claimed by invariably subscribing himself "Inca." About 1560 he removed to Spain, and after serving against the Moors incurred the hatred of Philip II. and was imprisoned at Valladolid. He died in Spain in 1616. A diligent stedent of the language and traditions of his maternal ancestors, Garcilaso left a valuable work on Peruvian history; the first part, entitled Comentarios reales que tratan dd origen de los Yincas, was first published at Lisbon in 1609 , and the second part, Historia seneral dal Peru, in 2617.

His history is a source from which all subsequent writers on the subject have largely drawn, and still continuce to be one of the chief authorities on ancient Peru. An English translation by Sir Paul Rycaut was published in 1688; one of the first part of the worlz by Sir C. R. Markham Ior the Hakluyt Society (London, 1869-71); and the book has also been translated into French. Garcilaso also wrote a history of Florida, La Florida ded Ynea; historia ded adelantado Hernando de Sola (Lisbon, 1605, and again Madrid, 1723). An edition of his works in seventeen volumes was published at Madrid in 1800 . See W. H. Prescotr, History of the Conquest of Perw, vol. i. (London, 1902) : Sir C. R. Markham, The Incas of Perw (1910).

VEGA CARPIO, LOPE FBLX DE (5 562-1635), Spanish dramatist and poet, was born on the 25th of November 1562 at Madrid. His father and mother, Felix de Vega Carpio and Francisca Hernandez Flores, originally came from the valley of Carriedo in Asturias, where the hamlet of Vega still exists. Lope began his studies at the Theatine college in Madrid, and according to his admiring biographer, Pérez de Montalbán, his precocity was extraordinary. On leaving college he entered the service of Don Jerónimo Manrique, bishop of Avila, and appears to have then begun the composition of his earlier dramas. He quitted the hishop's service to enter the university of Alcala de Henares, where he devoted himself to what was called philosophy. The date of Lope's matriculation is unknown, as his name does not appear in the university books; but it seems probable that he was in residence between 1576 and 1581 . He took part in the expedition to the Azores in 1582, and from 1583 to 1587 was secrctary to the marqués de las Navas. In February 1588 be was banished for circulating criminal libels against his mistress, Elena Osorio, whom he has celebrated under the name of Filis. He defied the law by returning to Madrid soon afterwards and eloping with Isabel de Urbina, daughter of Philip II.'s herald; he married her by proxy on the roch of May 1588, and jomed the Invincible Armada, losing his brother in one of the encounters In the Channel. He settled for a short while at Valencia, where be made acquaintance with a circle of young poets who were afterwards to be his ardent supporters in founding the new comedy. He joined the household of the duke of Alva, with whom he remained till 1595 . Soon afterwards he lost his wife; he was prosecuted for criminal conversation in 1506, became secretary to the marquis de Malpica (afterwards count de Lemos), and in 1598 married a second wife, Juana de Guardo, by whom he had two children (Carlos, who died in 1612, and Feliciana Felix); but she died, shortly after giving birth to the latter, in 1613. During this wife's lifetime the poet had by a mistress, Micaelade Luxan, two other children-Marcela del Carpio, who became a nun in 1621 , and Lope Felix del Carpio y Luxan, who chose the profession of arms. and perished at sea about 1634. Widowed a second time in 16:3, Lope sought a refuge in the church. After having been for some time affiliated to a tertiary order, he took priest's orders.

At this juncture, about 1614, he was in the very zenith of his glory. A veriable dictator in the Spanisb world of letters, be wielded over all the authors of his nation a power similar to tbat which was afterwards exercised in France by Voltaire. At this distance of time Lope is to us simply a great dramatic poct, the founder of the Spanish theatre; but to his contemporaries be was
much more. His epics, his pastorals, his odes, his sonnets, now iorgotten, all placed him in the front rank of authorship. Such was his prestige that he dealt with his noble patrons almost on a footing of equality. The duke of Sessa in particular, his Maecenas from 1605 onwards, was also his personal friend, and the tone of Lope's letters to him is one of frank familiarity, modified only by some forms of deference. Lope's fame, to0, had travelled abroad: foreigners of distinction passing through Madrid made a point of visiting him; papal legates brought him the compliments of their master; in 1627 Urban VIII., a Barberini, sent him the diploma of doctor of theology in the Collegium Sapientiae and the cross of the order of St John of Jerusalem (whence the poet's titles of "Doctor" and "Frey"). His last days were full of sadness; the death of his son Lope, the elopement of his daughter, Antonia Clara, wounded him to the soul. Montalban tells us that every Friday the poet scourged himself so severely that the walls of his room were sprinkled with his blood. His death, on the 27 th of August 1635, was followed by national mourning.

Leaving out of account certain theories which in the long run greatly influenced his inanner of writing, Lope belonged in literature to what may be called the school of good sense; he boasted that he was a Spaniard pur sang, and steadfastly, maintained that a writer's business is to write so as to make himself understood. When brought face to face with the cotcrie of the pricicux and guintessenciés, Lope takes the position of a defender of the language of ordinary life, the good old Castilian tongue. In the dispute which arose between the particans of the two schools of cullos and llanos, he ranged himself on the side of the latter. In the matter of versification he refuscs to admit that the long Italian verse has the advantage of the Castilian octosyllabic. Unfortunately the books that he read his literary connexions, his lear of Italian criticistn, all exercised an influence upon his naturally robust spirit, and, like so many others, he caught the prevalent contagion of mannerism and of pompous phraseology. His literary culture was chiefly Latin-Italian; and, if he defends the tradition of the nation and the pure simplicity of the old Castilian against " los de la nueva poesía," that is to say, the innovators of the school of Gongora and against the jargon of the cullos, still he does not wish to be taken for an uninformed person, a writer devoid of classical training: he especially emphasizea the fact that he has passed through the university, and is continually accentuating the difference between the ingenios cienificos (those who know Latin) and legos ignorantes (ignorant laymen). With What a sense of superiority, for example, does he mention that Cervantes was not to his mind sufficiently cienifico (preface to Las Forksnas de Diana), the fact being that Cervantea had been neither at Alcala nor at Salamanca!

For a rapid survey of the works of Lope, it is convenient to begin with those which the Spaniards include under the name of Obras Suellas. the title of the lange collection of the poet's non-dramatic works (Madrid, 21 vols. 410, \(1776-79\)). We shall enumerate the most important of these, as far as possible in the order of publication. The Arcadia (1598), a pastoral romance, inspired by Sannazaro, is one of the poet's most wearisome productions. La Dragontea (1598) is a fantastic history in verse of Sir Francis Drakes last expedition and death. Isidro (1599), a narrative of the life of Isidore. patron of Madrid, is called a Castilian poem on account of the rhythm in which it is composed-quintillas of octosyllabic verse. The Hermosura de Angetica (\(\mathbf{t} 602\)), in three books, is a sort of continuation of the Orlondo Furioso, in octaves after the fashion of the original poem. Finally, the Rimas are a miscellany of short pieces. In 1604 was published the Peregrino en sk Patria, a romance similar in kind to the Aethiopica of Heliodorus. Having imitated Ariosto, he proceeded to imitate Tasso; but his Jerusalem Conquistode (IG09) has preserved nothing of the art thown in its model, and is an insipid performance. Next follows the Paslores de Belen (t612), a pious pastoral, dedicated to his son Carlos, which forms a pendant to his secular Arcadia; and incidental pieces published in connexion with the solemnities of the beatificition and canonization of St Isidore in 1620 and 1622 . It is enough to mention La Filomena (1621), La Circe (1624) and other poems published ahout the same date, as also the four prose novels, Las Fortunas de Diana, El Desdichado por la Honra, La Más Prudente Venganza and Guzmón al Bravo. The great success of the Novelas Exemplares of Cervantes (1613) had stimulated Lope, but in this instance at least the cientifico was completely defeated by the lego: Lope's novels have none of the grace, naturalness or interest which characterize those of his rival. The last important work which has to be mentioned before we leave the narrative poetry of Lope is the Laurel de Apolo (1630). This plece describes the coronation of the poets of Spain on Helicon by Apolio. and it is more meritorious as a bibliographical manual of Spanish poerry at that time than as genuine poetry. One other obra swella, closely akin to Lope's dramatic works, though not, properly speaking,
a drama, is La Dorolea (1632). Lope describes it as an *action in prose." but it is rather a "romance in dialogue "; for, although divided into acts, the narrative is dramatic in form only. Of a Lope's productions Dorolar ahows moat observation and study; the style also is uausually simple and easy. Of all this mass of obras sucllar, filling more than twenty volumes, very little (leaving Dorolea out of account) holds its own in the judgment of posterity. The lyrical element alone retains some vitality. From the Rimar and other collections of detached pieces one could compile a pleasing anthology of sonnets, epistles, elegies and romances, to which it would be proper to add the Galomequia, a burlesque poem published along with other metrical pieces in 1634 by Lope under the psendonym of Tome de Burguillos. But here the list would end.
It is, however, to his dramatic writings that Lope owes his eminent place in literary history. It is very curious to notice bow he himself always treats the art of comedy-writing as one of the bumblest of trades (de pane lucrando), and protests against the supposition that in writing for the stage his aim is glory and not monet. The reason is not far to seek. The Spenish drama, which. if not literally the creation of Lope,at least owes to him its definitive form-the three-act comedy-was totally regardless of the precepts of the school, the pseudo-Anstotelianism of the doctors of the period. Lope accordingly, who stood in awe of the criticism of the cientificos, Telt bound to prove that, from the point of view of literary art, be attached to value to the "rustic fruits of his humble sega." Ia his Arte Nuepo de hacer comedias en este tiempo (1609), Lope begins by showing that he knows as well as any one the established rules of poetry, and then excuses himself for his inability to follow them on the ground that the "vulgar". Spaniard cares pothing about them. TLet us then speak to him in the language of fools, since it is he who pays us." Another reason which made it necessary, for him
to speak deprecatingly of his dramatic works, is the circunstance that the vast majority of them were written in baste and to order. The poet does not hesitate to confess that "p more than a hupdred of my comedies have taken only twenty-four hours to pass from my
brain to the boards of the theatre." Perca de Moatalban, oho has a great admiration for this kind of cleverness, tells how, at Toledo, on a certain oceasion, Lope composed fifteen acts in fifteen daysthat is to say, five entire comedies, which he read to his friends step by step with the process of their composition. On another occasion, when pressed by a manager who wanted somet hing for the carnival. Lope took Montalban as a collaborator; the two friends parcelled out the comedy between them, Lope undertaking the farst act
Montalban the second, and the-third, to save time, was divided between thern. In two days they had finished the frost two acts, and on the third Montalban rose at two in the morning and at eleren he had finished. Then he went in search of Lope, who, when questioned as to his progress, replied: "I got up at five, finished the act. breakfasted, wrote an epistle of fifty tercets, and have now Gnished watering the garden, and a rather tough business it has been." Nevertheless, Lope did write dramas in which the plaa is more fully matured and the expeution more carcfully cartied out; still, hurried composition and reckless production are after all among the distinctive marks of his theatrical works. Towards the close of his carcer Lope somewhat modified the severe and dixdainf us judgments he had formerly passed upon his dramatic performances; he seems to have had a presentiment that posterity, in spite of the grave defects of his work in that department, would neverthelese place it much higher than La Dragonlea, the Jerusalem Congrislada and other works of which he himself thought so much. We may certainly credit Lope with creative power, with the instinct which enabled him to reproduce the facts of history or those supplied by the imagination in a multitude of dramatic situations with an astonistr ing cleverness and flexibility of expression; but unfortunately instead of concentrating his talent upon the production of a limited number of works which he might have brought to perfection, he dissipated it, so to say, and scattered it to the winds.
The catalogue of Lope's comedies has been drawn up by himself; and, in spite of some discrepancies in his fgures, it is established that up to \(x 604\) he had composed, in round numbers, as many as 230. In 1609 the figure had risen to 483 , in 1618 to 800 , in 1620 to 900 , in 1625 to 1070, and in 1632 to 1500. Ultimately Montalban in the Fama Postumg (1636) set down the total of.Lope's dramatic productions at 1800 plays and more than 400 aulos sacramentoles. Of this number there are 637 plays which are known to us by their titles (from the lists of the Peregrino): but the printed or MS. text of only 458 is actually accessible, besides some 50 aulos and a few entremeses. Very many of these pieces were printed during Lope's ifetime, either in collections of parios autores or as separate issues try booksellers who surreptitiously bought from the actors the manmescripts of their roles or else caused the unpublished cornedy to be writtea down from memory by persons whom they sent to attcrad the first representation. Such picces therefore as do not Ggure in the collection pubhished under Lope's own direction or under that of his friends cannot be regarded as perfectiy authentic, and it woukd he unfair to hold their author responsible for all the faults a ard defects they exbibit. On the other hand, there exist comedies in Lope's own handwriting which have not yet been printed.
The clasuification of this enormous mass of dramatic literature it
a tesk of great dificulty, inasmuch as the terms usuanly empioyed, auch as comedy, tragedy and the like, do not apply here. There is not explicitness enough in the division current in Spain, which recognizes three categories:-(1) comedias de capa \(y\), espada, the subjects of which are drawn from everyday life and in which the persons appear as simple cabolleros; (2) comedias de rwido or de teatro, in which cings and princes are the leading characters and the action is accompanied with a greater display of dramatic machinery; (3) comedias divinas or de sanios. Some other arrangement must lee ettempted. In the Grst place, Lope's work belongs essentially to the drama of intrigue; be the subject what it may, it is always the plot that determines everything else. Lope in the whole range of his dramatic works has no piece comparable to La Verdad Sospechose of Ruiz de Alarcon, tbe most finished example in Spanish literature of the comedy of charncter: and the comedy of manners is represented only by EJ Galdn Castrucho, El Ansuelo de Ferisa, and one or two others It is from history, and particularly Spanish history, that Lope has borrowed more than from any other soarce. It would in fact be difficult to say what national and patriotic subjects, from the reign of the hall-fabutous King Pelayo down to the history of his ownage, he has not put upoa the stage. But it is to the class of capo y espads-also callod novelesco. because the subjects are almost always love intrigues complicated with affairs of honourthat Lope's most celebrated plays belong. It ihese lie has most fulty displayed his powers of imagination (the subjects being all breerted) and his skill in elaborating a plot. Among the plays of this class which are those best known in Europe, and most frequently imitated and translated, may be specially thentioned Los Ramilletes de Madrid. La Boba para los Otros y Diserede para si, El Perro ded Horlelono. La Viuda de Valencia, and El Maestro de Danrar. In some of them Lope has sought to set forth some moral maxim, and illustrate its abuse by a living example. Thus, on the theme that "poverty is no crime," we have the play entitled Las Floves da Don Juon, in which he shows in the histary of two brothers the triumph of virtuous poverty over opulent vice: at the sarne time he attacks iodirectly the institution of primogeniture, which often places in the hands of an unworthy person the honour and substance of a family when the younger members would be much better qualified for the trust. Such pieces are. however, rare in Lope's repertory: in common with all other writers of his order in Spain, with the occasional exception of Ruiz de Alarcon, his sole aim is to amuse and stir his public, not troubling himself about its instruction. The strong point of such writers is and always will be their management of the plot. As has been said by Le Sage, a good judge: *The Spaniards are our masters in the art of planning and skillully working out a plot; they know how to set forth their subject with infinite art and in the most advantageous light." it is not necessary to dwell here upon the other varieties of comedy represented in Lope's works, that is, the comedias dirinas, fiestas (mythological dramas for the most part), entremeses and autos. In none of them has he produced anything of the highest order, or even comparable to the better performancts of his contemporanies and successors.

To sum up, Lope found a poorly organized drama, plays being composed sometimes in fuur acts, sometimes in three: and, though they were written in verse. the structure of the versification was left Iar too much to the caprice of the individual writer. The style of drama then in vogue lie adopect. berause the Spantish publie liked it. The narrow framework it afforded he enlarged to an extraordinary degree, intsoducins everything that could possibly furnish material far dramatic situations, -the Bible, ancient mythology, the lives of the saints, ancient history, Spanish history: the legends of the middle ages, the writines of the Italian novelists, current events, Spanish life i
the conditions of persons and characters had been barely sketched; with fuller obscrvation and more careful description he created real types, and gave to each social order the language and drapery appropriate to it. The old comedy was awkward and poor in its versification; he introduced order into the use of all the forms of mational poetry, frem the old romance couplets to the rarest lyrical combinations borrosed from ltaly. Hence he was justified in eysing that those who should come after him had only to go on along the paeh which he had opened up.

Bibliogeaphy.-Hugo Albert Rennert, The Life of Lope de Vego (Glasgow, 1904); C. A. de la Barrera, Nucre Biograffe de Lope de Vega (Misdrid, 1890); C. Perez Pator, Procese ds Lope de Vego por bileles combrs ywos cowicos (Madrid, 1got), to which is appended Datos desconocidos para la vida do Lope de Vega. For Lope's literary theories and doctrine of dramatic art, reference may be made to M. Menéndez y Pelayo. Fistoric de las Idecs Esteficas en Esponia, and to A. Morel Fatio, La Combdic espagnole de XVIIm sidale (8vo, Paris, 1885). The Obras Stueleas wete published by Francisco Cend́s y Rico (2I vole. 4to, Madrid, 1776-1779). A compiete edition of the Obras de Lope de Vega, edited by M. Menendez y Pelayo, has been undertaken by the Spanish Academy. Rennert's blography containe an admirable bibliography of Lope's plays and eatios.
(A. M.FAn* J. F-K.)

Verifanls (Late Lat. regetacilit, full of life, enimating, from negetare, frequentative of megers to quicken, aromse, medess,
vigorous, ective, \(C\). Figer, serensth, vigour, sac.), a word used as a general term for plants (9.v.), and specifically, in popular language, of such plants as can be eaten by man or animals, whether cooked or raw, and whether the whole of such plants are edible, or only the leaves or the roots or tubers. Among such edible or culinary plants or portions of plants, a further distinction is made popularly between ". fruits * and ". vegetables," for which see FiguIt.

For the botany and cultivation of regetables see under the ppecific names, e.g. Potato, Tuknip, sec. Are., and generally, Horticulture.

VeaEramLe lation, Cucurbita Pepo, var. ovifero, the most important of the gourds (\(a . v\).), used as an esculent, furnishing in good seasons a very large supply for the tahle. They are best when eaten quite young and not over-boiled, the flesh being then tender, and the flavour sweet and nutty. The Custard Marrotp, or crown gourd, bears a peculiar-looking flattened fruit with scalloped edges, which has a sweeter and less nutty flavour Shan the true marrow. A very distinct form known as Pen-y-Byd inss a delicste creamy white nearly globular fruit, with a firm lesh. The bush marrows are more bushy in habit and taller and mare sturdy in growth.

Vegetable marrows require a warm situntion and a rich soil free from stagnant moisture. They do well on a rubbish or old-dung heap, or in a warm border on little hillocks made up with any fermenting material, to give them a slight warmth at otarting. The seeds should be sown in a warm pit in April, and forwarded under glass, but in a very mild heat: the plants must be shifted into larger pots, and be gradually hardened previous to being planted out. when the mild weather sets in in May or June. The use of hand-glaseses makes it possible to transplant earlier than would otherwise be advisable. The seeds may be gown early in May in pots under a hand-glass, or towards the end of May in the open ground, if heat is not at command. The true vegetable marrotw Gears Iruit of an oblogerelliptical ahape, about 9 in long, palegreenish while young, with whitigh flesh, and scarcely any indication of ribs; when mature it is of a pale yellow colour. There is a variety which is more oblong, grows to 15 or 18 in., and has the surface stighily marked by irregular longitudital obtuse ribs The shoose may be allowed to run along the surface of the stovand, or they may be trained against a wall or paling, or on trellises. As the gourds cross readily, care is necessary to keep any particular variety true. One of the best vegetable marrows is called Moore's Vegetable Cream.

VEGETARIANIE1, comparatively modern wond, which came into use about the year 1847, as applied to the practice of living upon foods from which fish, flesh and fovl are cxcluded. There have from time to time been various sects or schools of thought that have advocated narrower vicws. Some of these have exciuded all animal products-such as milk and eggs and :heese. Some have excluded all cooked foods, and have preached the virtues of fruits and nuts and grains in their natural ipe state. Some have abstained from all underground-grown roots and tubers, and have claimed special bencfits from using only those fruits and vegetables that are grown in the sunlight. Some have given up all grain and pulse foods, and bave declared that old age can be best resisted by living entirely upon truits, salads, nuts, soft water and milk products. Some have added freh to their dietary; but, speaking generally, all who are called vegetarians will be found to abstain from the use of flesh and fowl and almost invariably also from fish as food.

The fact, bowever, must not be overlooked that while vegetarian societies claim as "vegetarians" all who abstain from fesh foods, there is a large and growing number of people who repudiate the name of "vegetarian " because of its associations, but who none the less, for some of the reasons detailed below; abstain from eating anything that has been killed. The Order of the Colden Age, for example, with its beadquarters at Barcombe Hall, Paignton, South Dquon, adopted the words "Fruitarian" and "Fruitarianism" to denote the dictary of its members. The rule laid down by the Order is abstinence so far as possible from all foods which are obtained by the cruel infliction of pain, and the minimum that is set is complete "abslinence from flesh and fowl," while net-caught fish may be used by associate members.

The reasons that are advanced for the practice of fruitarianism or vegetarianism are very comprehensive, but the principal ones may be considered to be the following:-
1. Heallh.-(a) On the ground that animals are affected by diveases which are communicable, and are actually communicated, to man by the ingestion of their flesh, e.f. parasites, tuberculosis; (\(\theta\)) on the ground that the flesh of artificially fed animals is full of excretary substances, and that, therelore, under modern conditions, flesh-eating is injurious, and may be a cause of excretory cubstance and uric acid deposits or rapid tissue-destroying diseases in man; e-g. gout, cancer.
2. Economy. On the ground that the assimilable nutriment from a given weight of selected fruit and grain and nut and vegetable foods will cost less than the same nutriment obtained from lesh foods.
3. Social Economy.-On the ground that an acre of culcivable land under fruit and vegetable cultivation will produce from two to twenty times as much food as if the same land were utilized for feeding cattle.
4. Racial Improventent. - On the gronnd that the aim of every prosperous community should be to have a large proportion of bardy country ycomen, and that horticulture and agriculture demand such a high ratio of labour, as compared with feeding and breeding cattle, that the country population would be greatly increased by the cubstitution of a fruit and vegetable for an animal dietary.
5. Character Improvement.-On the ground that after the virtucs. of courage and valour and fearlessness have been taught is the lower stages of evolution, the virtue of gentle humaneness and extended sympathy for all that can sulfer should be taught in the higher cycles of the evolutionary spiral. Flesh-eating entailing necessarily an immense volume of pain upon the sentient animal creation should be abstained from by the " higher classes "in the evolutionary scale.
Organizations have been established to advocate this method of living under the name of "Vegetarian Societies" in many countries-chiefly the United Kingdom, America, Germany, France, Austria, Holland and Australia. Propagandism is carried on by lect ures, literature, cookery demonstrations and restaurants. In England, the oldest and one of the most important societies is "The Vegetarian Society," of which the headquarters are at Oxford Street, Manchester. There are also several small London societies, and an active Londnn Association. A few provincial towns, too, have small societies. An attempt has been made to organize the various vegetarian societies of the world under the title of "The Vegetarian Federal Union." The headquarters of the London societies and of the "Union" are at Memorial Hall, Farringdon Street, E.C.
1. There are nominally about 35 organized societies in existence, but the extent to which public opinion and practice in the matter of dietary has been affected by vegetarianism is not to be gauged by the membership of such organizations. There are in England a number of vegetarian restaurants and boardinghouses, one hospital and one or two sanatotia. In Germany and America there are many institutions where flesh is only prescribed in special cases. Flesh food is not included in the dietary of the chief hospitals and orphanages of the native states of India, excepting in the wards devoted to Europeans.
The athletic side of the movement has been represented in national and international races by vegetarians winning the Berlin and Dresden walking match (125 m .), tbe Carwardine Cup (100 m .) and Dibble Shield (6 hours) cycling races (1901 and 1902), the amateur championship of Enghand in racquets and in tennis (beld by Mr Eustace Miles for a series of years), the cycling championship of India (3 years), half-mile running championship of Scotland (1896), world's amateur cycle records for all times from 4 hours to \(\times 3\) hours (1902), 100 miles chempionship Yorkshire Road Club (\(\mathbf{1 8 9 9}\), 1901).
In the religious world the Seventh-Day Adventists (who are connected with many sanatoris and the mamufacture of food specialities) and some Bible Christians, the worshippers of Vishnu and the Swami Narang and Vishnoi sects, amongst others, preach abstinence from flesh food. The Salvation Army, the Tolstoyans and the Doukhobors encourage it. A number of orders in the Roman Catholic church (e.g. the Trappists) and in the Hindu faith (e.g. the Dadupanthi Sadus) are pledged abstainers.
The genewion of rood values is discussed in the article

Whatever may be the view taben as to the extreme theory of vegetarianism, it has had considerable effect in modifying the excessive meat-consuming rtgime of previous days, and in introducing new varieties of vegetable cooking into the service of the table.

The literature on the subject is considerable, but the two classics are perhaps The Ethics of Diet, by Howard Williams, and The Perfect Way in Diet, by Dr Anna Kingsford. In former years the "Vegetarian Society" was the most active in producing literature, but since about 190I the Order of the Golden Age has come to the front with new and up-to-date books, booklets and leaftets, and the Ideal Publishing Union has reprinted much of the earlier literature. The chiel periodicals are the Vegelarian (weekly), the Herald of the Colden Age (monthly), the Vegetarian Messenger, (monthly), the Vegeforian (American monthly), the Children's Gardan (monthly).
(I. O.)
vegetius (Flavitos Vegetios Renatus), a celebrated military writer of the 4th century. Nothing is known of his life, station and military experience, save that in MSS. he is called pir illustris and also comes. His treatisc, Epitome resi militaris, sive instituorum rei militaris libri quingue, was dedicated to the reigning emperor (? Theodosius the Great). His sources, according to his own statement, were Cato, Cornelius Celsus, Frontinus, Paternus and the imperial constitutions of Augustus, Trajan and Hadrian. The book, which is a confased and unscientific compilation, has to be used with great caution, but is none the less invaluable to the student of the ancient art of war.
The frrst book is a plea for army reform, and vividly portrays the military decadence of the empire. The third contains a series of militiary maxims which were (rightly enough, considering the similanty in the military conditions of the two ages) the foundation of military learning for every European commander, from William the Silent to Frederick the Great. When the French Revolution and the "nation in arms" came into history, we hear little more of Vegetius. Some of the maxims may be mentioned bere as illustrating the principles of a war for limited political objects (ece Arxy) with which he deals. "All that is advantageous to the encmy is disadvantapcous to you, and all that is usecul to yoo damages the encmy ', No man is to be employed in the fiekd who is not trained and tested in discipline "i" It is better to beas the enemy through want, surprises and care for difficult plares (i.e. through manccuvre) than by a batcle in the open feld, P-marums that have guided the leaders of professional armies in all countria and at all times, as witness the Chincse generals Sun and Wu (ser E. F. Calthrop, The Book of War, London, 1908). His "Eeven normal dispositions for battle," once in honour amongat European stodents of the art of war, are equally ludicrous if applied to presentday conditions. His book on siegecraft is important as containing the best description of hate empire. and medieval sicge marters, 8c... and from it amongst other things we learn details of the siege engine called onager, which afterwards played a great part in sicges. The fift book is an account of the material and personnel of the Roman navy.
In manuscript, Vegetius's wark had a great vogue from the frrxt. and its rules of siegceraft wree much studied in the middle agtes. It was translated into English, French and even Bulgarian befare the invention of printing. The first printed editions are assigned to Utrecht (1473). Cologne (1476), Paris (1478), Rome (in Veeres dc re mill, scrippores, 1487), and Pisa (1488). A German translation by Ludwig Hohenwang appeared at Ulm in 1475 . Vegetirs's position as the premier military critic was thenceforward assured. As late as the 18 8th ceatury we find so eminient a soldier as Marshal Puységur basing bis own works on this acknowledged model, and the famous Prince de Ligne wrote." Cest un livie d'or." The fulbes and most important modern edition is that of Kar Lang (Leiprig. 1869). An English version through the French was published by Caxton in 1489 . For a detailed critical estimate of Vegetives's works and influence see Max Jahnss, Gesch. der Kriegroissensckaffen, i. 109-125.

VEGLIA (Slavonic, Krk), an island in the Adriatic Set, of the west cosst of Croatia, from which it is separated by the Canale della Morlacea. It is situated in the Gulf of Quarmero, and is separated from the island of Cherso, lying on the S.W., by the Canale di Mezzo. Together with Cherso and Lussia, the three principal islands of the Quarnero group, it forms the administrative district of Iussin, belonging to the Austrian crownland of Istria. Veglis is the largest island of the Quarmero group, having an area of 146 sq . m . It is 24 m . long and about 14 m . across at its widest part. The surface is mostly rueged and mountainous; but the central, southerm and westere districts are fertile. The principal town is Veglia (pop. 2074).
itumed on the south-west coast, with s good harbour and an interesting cathedral.
VEII, an ancient town of Etruria, Italy, situated about 10 m . N. by W. of Rome by road. It is mentioned in the carliest history of Rome as a constant enemy, being the nearest Etruscan city to Rome. The story of the slaughter of the Fabü, who had encamped in the territory of Veii, and of whom but one boy eacaped, is well known. After constant warfare, the last war (the fourteenth, according to the annalists) broke out in 406 B.c. The Romans laid siege to the city, and, after a ten years' siege, M. Furius Camillus took it by storm in 396, by means, so we are told, of a tunnel leading into the citadel. According to the legend, the emisrarium of the Alban Lake was constracted in obedience to the Delphic oracle, which declared that, until it was drained, Veii could not be taken. The territory of Veii was three years afterwards divided among the Roman plebs. Veii is mentioned in connexion with the defeat of the Romans at the Allia in 390 b.c., after which many Roman soldiers fled there, while a project was actually broached for abandoning Rome for Veii, which was successfully opposed by Camillus. From this time onwards we hear fittle or nothing of Veii up to the end of the Republic. Propertius speaks indeed of the shepherds within its walls. Augustus, however, founded 2 municipality there (municipimm Awgwstwm Veiens), inscriptions of which have been found down to the time of Constantius, after which, at some date unknown, the place was deserted The medieval castle of Isola Famese, on a hill to the south of the city, \({ }^{{ }^{2}}\) is first mentioned in a document of A.D. ro03; but Veii itself had disappeared to such an extent that its very site was uncertain, though some scholars identified it correctly, antil the excavations of the 29 th contury finally decided the question. Veii was not on a high road, but was resched by branch roads from the Via Clodia. The site is characteristic\(a\) plateau, the highest point of which is 407 ft . above sca-level, divided from the surrounding country by deep ravines, and accessible only on the west, where it was defended by a wall and fosse. Rernains of the city walls, buit of blocks of tufa 2 ft. high, may be traced at various points in the circuit. The ares covered measures about \(1 \mathrm{sq} . \mathrm{m}\). There are no other remains on the site of the eity earlier than the Roman period, and these are now somewhat scanty. The site of the Forum has been discovered on the west side of the plateau; a statue of Tiberius, now in the Vatican, and the twelve Ionic columns now decorating the colonnade on the W. side of the Piazza Colonna at Rome were found there. The acropolis was at the eastern extremity of the site, where the two ravines converge; it is connected with the rest of the plateau by a marrow neck, and here a large number of ex-votos in terra-cotta, indicating tbe presence of a temple, and deting at earliest from the 3 rd century s.c., have been found. The first discovery of them was made in 1655-1667, when remains of the temple (of Juno?) to which they belonged were also found (R. Lanciani, Pagan and Ckristian Rome, London, 1892, p. 64). In the deep ravine to the N. of the site of the town, traversed by the Cremera brook, are the ruins of two ancient bridges and of some baths of the Roman period; and here is also the Ponte Sodo, a natural tunnel, artificially enlarged, through which the stream passes. Outside the city tombs have been discovered at various times. The earliest belonged to the Villanova period (8ih and gith centuries, s.c.), probably before the coming of the Euruscans. Others are cut in the rock and are Etruscan. The most famous is the Grotte Campana found in \(\mathbf{1 8 4 3}\), which contains paintings on the walls with representations of animals, among the carliest in Eururia. There are also several tumuli. To a later period belongs a columbarium cut in the rock, with miches for arms.
See L. Canina, L'andica cilld di Veio (Rome, 1847): G. Dennis, Cities and Cemeteries of Etruria (London, 1883), i. I sq9.
(T. As.)

VITL (O.Fr. mile, mod. woike, from Lat. welwow, cloth, awning, sail), a cloth or piere of other fahric used as a means of con-

1 Some have considered lsola. Farnese to have been the axx of Veii, but this is unlikely.
cealing something from the view, as in the veils of the Jewish tabernacle, which bung before the Holy Place, and before the Most Holy Place. The word is, however, chiefly used of a covering for the face and head, as worn by women. The veiling of the face hy women is a practice among the Mohammedan races of the East and among those peoples which have come under the influence of Isham. It is observed only when outside the harem and not hy slaves or by the very poor, and rarely by the Bedouin women. The face-veil (burka') is a long strip of white muslin covering the whole of the face except the eyes and reaching nearly to the feet. Among the poorer classes the bwrika' is made of coarse black crepe, or the tarkak, the head-veil, is drawn round the lower part of the face. There is also the douhle veil or yaskmak, serving as a head- and face-veil (see Indin, Indian Costume). In European countries the veil has played a large part in the head-dress of women. It took many shapes in the early middle ages and could be brought over the face as a covering or protection. Later it became a mere ornamental appendage, hanging down from the high, peaked and elaborate head-dresses then worn. In modern times it has become a piece of gauze, lace or net attached to the hat or bonnet and used as a protection against dust, light or wind.

VEINS, in anatomy. The veins (Lat. vand) are hlood vescels which return the hlood from the capillaries toward the heart. As they approach that organ they join together to form larger and larger trunks. In man and other mammals three venous systems are recognized: (1) the gemeral penous system; (2) the puimonary system; and (3 the hepatic portal syatem. (See atso Vascular Syster.)
The general penous syslem consists of superficial and doep veins; the lormer lie in the superficial lascia and are often visible through the skin. They are usually, accompanied by lymphatic vessela though not as a rule by arteries, and, sooner or later, they empty their blood into the deep veins, often pasoing through special openings in the deep fascia to do so. The deep veins always accompany arteries, and are thercfore known as penoe comites. With small and medium-sized arteries-that is to say, arterics whose diameter is not much greater than that of an ordinary lead pencil- there are two of these venae comites, one on each side, connected by occasional cross communications, but arteries of a larger calibre have only one companion vein. In the scalp and face the superficial veins are remaricable for accompanying, more or lese closely, corresponding arteries-more or less closely because the arteries in this region are very tortuous (see ARTERIES), and so are sometimes near their veins and sometimes far away, since the veins run a comparatively straight course. Frontal, superficial lemporal, posierior auricular and occipical reixs are found in the scalp. their names indicating the areas they drain. Like all other superficial veins, they anastomose freely with one another and also at certain places communicate, through foramina in the skull, with the intracranial blood sinuses; these communications are known as emisscry. peins, and act as salety-valves to the sinuses. The frontal vein on the corehead passes dowin on the inner side of the eyelids. where it is known as the angular, and then becomes the facial win, which runs down to an inch in lront of the angle of the jaw, whence it pasess into the nock to jois the common lacial. In the greater part of its course it lies some distance behind the facial artery. The superficial Lemporal sein runs down in Iront of the ear, where it joins the internal maxiliary vein from the pterygoid plexus and so forms the temporomaxillary trank, which passes down, embedded in the parotid gland, to about the angie of the jaw. Here it divides into an anterior branch, which joins the facial vein to form the common facial, and a posterior. which receives the posterior auricular vein and in this way forms the external jugular.
The external jugulat mein is easity recognized through the skin and platysma muscle on the side of the neck, and eventually pierpes the deep fascia above the middle of the clavicle to join the subclavian vein. The occipizal pein sinks deeply into the back of the neck and so forms the beginning of the vertebral vein.
The intracranial blood sinuses lie between two layers of the dura mater and differ from the veins in having fibrous wall which do not contract or expand. The superior longilmdinal sinus runs along the upper margin of the falr cerebri (eee Beain), while the inferior longitudinal sinus runs along the lower margin; these drain the surface of the brain, and the blood pesses backward in both. Where the falx meets the tentorium cerebelli, the inferior longitudinal sinus receives the weins of Galen from the interior of the brain and then pasecs backward as the straight sinus to join the superior longitudinal sinus at the internal occipital protuberance (sec SELLL) This meeting-place is known as the torcular Heraphisi, and from It che blood passes out ward and downward through the night and leit haieral sinuser, which groove the cranium (see Sixuli) until they
reach the posterior lacerated foraming, through which they pass \(t 0\) form the beginning of the internal jugular veins. Most of the blood from the base of the brain passes into the casermous sinuses which lie in the middle cranial fossa, one on each side of the pituitary fowa. These receive the ophthalmic veins from the ortrit in front and, after running backward for about an inch, divide into the smperior and inferior petrosal sinuses, the former of which joins the lateral sinus within the cranium, but the latter rums to the posterior hacersed foramen, after pataing through which it joins the lateral cisus, which is now becoming the internal jugular vein.

The infernal jwgular weif (fig. 5. I.J.) thus formed rung down at firet behind and then to the outer side of the internal and common carotid arteries and at the root of the neck joins the subclavian vein of its own side to form the innominate viin. In its course down the meck it receives the common facial vein already mentioned, as well as tributaries from the tongue, pharynx, larynx and thyroid body. The deep veins of the head and lace tend to form plexuses rather than venae comites; of these, pierygoid, decp temporal, pharyngeal and suboccipital plaxuses are recognized.

Veiss of the Upper Extremity.-On the dorsum of the hand and in front of the wrist superficial venous plexuses are easily seen through the skin. From these the blood passes up the forearm chiefly on its fexor surface by the radital, median and anlerior and posterior wina atims. Just below the bend of the elbow the median vein communicates with the deep veins and then divides into two brasches Iike the limbe of a \(\mathbf{Y}\); Of these the inner is the median basilic and is noticeable as the vein from which patients were usually bled, while the outer is the median cephalic. After a course of an inch or two the median basilic is joined by the anterior and pooterior ulnar veins and the median cephalic by the radial. After this junction the median basilic is continued up the inner side of the arm as the basilic which pierces the deep fascia about the middle of the arm and in the axilla joins the venae comites of the brachial artery to form the axillary geim, which lies on the inner side of its artery. The median cephalic vein after joining the radial runs up the outer side of the arm as the cephatic and a little below the clavicle passes through the costocoracoid membrane to enter the upper part of the axillary vein. At the outer border of the first rib the axillary vein becomes the subclavian (fis. 5, S.), which lies in front of and below its artery and is separated from it by the scalenus anticus muscle. The arrangement of the superficial veins, especially in front of the elbow, is Hable to great variation and often differs on the right and left sides of the same body.

Veins of the Lower Eriremity.-The superficial veins of the lower extremity begin in a venous arch on the dorsum of the foot. From the inner extremity of this the internal saphenous vein runs up, in front of the inner ankle, along the inner side of the leg, and, passing behind the inner side of the knee, continues up the thigh, gradually working forward until it reaches the saphenows opeming ia the deep fascia of the thigh a little below the spioe of the pubis. Here it pierces the deep fascia (foscia lata) to enter the common femoral vein. In this long course it has many valves and receives numerous tributaries, one of which, the saphenous collateral, runs up nearly paralled to it and on les outer side and joins it just below the paphenous opening. From the inner end of the dorsal arch of the foot the external saphenous oein runs up behind the outer ankle along the mid line of the calf to pierce the deep fascia in the popliteal epace behind the knee to open into the popliteal vein. Among the deep veins venae comites are found until the popliteal artery is reached, while above this superficial, decp and common femoral oeins accompany their respective arteries. In the groin the common femoral vein lies on the inner side of its artery.

Veins of the Abdomen.- The common femoral vein. after pasting deep to Poupart's liganent, becomes the external ziac (fig. 5, E.I.) Which runs along the brim of the true pelvis and, after a course of some three inches, joins the internal iliac (fig. 5, I.I.) which drains the pelvis and so forms the common iliac vein. In front of the body of the fifth lymbar vertebra the common iliac veins of the two sides unite to lorm the inferior pena cava (fig. 5. I.V.C.), a very large trunk which nuns up on the right of the abdominal aorta to an openthg in the diaphragm (q.v.). On its way it receives spennatic or ovarian veips from the genital glands, rewal peins (6is. 5, R.V.) from the lidnep fod lumbar veims (hg. 5, L.V.) from the abdominal walls. Before rotithe the diaphragm it lies in a groove in the back of the Iver (g.v.) apd receives the hepatic veines from that organ. The hepatie portal system which lies in the abdomen will be treated later.
\(V\) esins of the Thoraq. - The inferior vena cava, after piercing the thoghragth, has a very short thoracic course and opens into the and back part of the right auricle of the heart (a.s.). The fond left innominate seins (fig. 5, R.I. and L.I.) are formed The sternal end of the clavicle by the union of the subclavian internal jugulars of their own side. The left vein is much than the right and runs nearly horizontally behind the upper If the manubrium sterni to join its fellow on the right side of bone just below the first rib. By the junction of these the sior pena cone (6g. 5. S.V.C.) is formed. which runs down to the apuricle of the heart. The chief tributaries of the innominate intethe wettolyal, the inlernal mammary and the inferior thyroid.
 known as the ascending Iumbar, monecimes on the right side by a communication with the inferior vena cava. The right azygos veit it known as the sena arygos major (fig. 5. A.M.) and pasaes through the aortic opening of the diaphragm. Entering the thorax, it rums up in front of the thoracic vertebrae, to the right of the morta and thoracic duct, and receives the intercostal veins of the right ide. At the level of the fourth thoracic vertebra it arches forward to open into the posterior surface of the superior vena cava.

On the left side, the upper intercostal veins join to form the lefie euperior intercostal vein (fig. 5, L.S.I.), which opens into the left innominate. Lower down the intercostal veins trom the fourt to the seventh spaces form the superior hemiasygos wein or herniazygos accessoria (fig. 5. H.A.), which runs down on the left of the spimal columan and, croesing it about the level of the eighth or ninth thoracie vertebra, opens into the vena azygos major. The lower interconta: veins on the left side join the inferior hemiasyeos buin (Gg. 5, H.V.) which runs up and opens either into the superior hemiaeygos or isto the azygon major below the opening of that vein.

Pulmonary Venous Systom.-The veins emenging from the low bring back the oxygenated hlood from those organs to the Fef ventricle of the heart and also the greater part, if not all, of the blood carried by the bronchial arteries to nourish the lungs. The existenct of bronchial veins is asserted, but they are extremely difficuit to demonatrate, and if present are quite incapable of returaing all ite blood which the bronchial arteries carry to the Iungs. There er three pulmonary veins coming out of the right lung, while on the left there are only two. On the right side, however, two of the three veins usually unite in the root of the lung, to that there are: as a rule two pulmonary veins entering the beft auricle of the heart on each side, but it is not uncommon to find three on the right aido or one on the left. The pulmonary veins have no valves and retura the blood carried to the lungs by the pulmonary arteries as well a most, if not all, of that carried by the bronchial arteries.

Hepatic Portal System.-The vein which drain the blood fruid the stomach, intestines, spleen and pancreas unite to form a lang vein which begins behind the head of the pancreas and ends by dividing into right and left branches in the transverse fissure of tha fiver. This is the portal wein which lics in front of the inferior vena cova and is poout three inches long. Its fonmative tribur taries are the superior and inferior mesenteric and the sptwic winas. These accompany the arteries of the same name, and their mont usual method of termination is that the inferior mesenteric runs up and joins the splenic to the left of the middle fine of the body, and this. after running horizontally to a point a little to the right of the middle line, joins the superior mesenteric. and so the portal veia in formed. There are two marked characteristics of the portal mytem: one is that it has no valves and the other that it begins and ende isi capillaries, since the two terminal hranches of the portal vein branch and rebranch in a manper already described in the articia Luver. In the lower, part of the rectum the veins run partly into the portal and partly into the general system, and in this dependent position they are liable to become varioose and to form haemorthoids or piles.

The histology of the veins corresponds very cloeely to that of the arteries (9.0.); their walls are, however, much thinper and thers is less muscular and clastic tissue. At certain places, especially Where tributaries come in, the endothelial lining is raised to form memilunar pocket-like valves. In most cases there are two cuspe to each valve, but three or cae are sometimes found. The opening of the pocket is of course arranged so that it shall oaly be flled when there is a tendency to regurgitation of the blood.

\section*{Enabryology,}

The pibllins or omphalo-mesenteric wins, retumint the blood truin the yolk asc, are the first to appear, and later on, with the formation of the placenta, the umbilical veins develop. Both these open into. the hinder (caudal) part of the heart, which is already being conetricted of as the siniss benosus (see fig. 1).
While this is going on the velns from the different body eegments aro received into two longitudinal trunks on each side, the anterior (cephalic) of which is the primitive jugular or anterior cardinal (fig. 1 P.J.) and the ponterior (caudal), the pasteriar cardinal or simply condinal vein (fig t, P.C.). As the heart is at first situated in the region which will later be the neek of the embryo, the primitive jupular receives very few egmental vens and the cardinal very many. Tbese two trunks join one another on each side and open into the side of the simes yenosus (S.V.) by a transverse communication which is called the duct of Comier (D.C.). The condition of the thenen systere at this stage is shown in the accompanying dingrant (6. 1).

As the vitelfine veins run from the yolk ac to the heart along
each side of the primitive fore-gut they pick up the mesenteric veing from the intestines as well as the spienic and pancreatic veins as soon as these viscera are formed. The liver, however, is developed right across their path, and both they and the umbilical veins break up into a mass of capillaries in it, leaving that part of them which lies between the liver and the beart to form the primitive hepatic veins (fig. 2, H.V.). While the vitelline veins are lying on each side of the fore gut (Iuture duodenum) they are connected by three transverse channels, the anterior and posterior of which appear on the ventral side of the gut, the middle on the dorsal side (sce fig. 2).

This figure of eight does not-persist, however, because the anterior (cephalic) part of it on the left and the posterior (caudal) part on the right become obliterated, and what is left forms the portad rein (ig. 3, P.V.). The two umbilical veins unite at the umbilicus (fig. 3) and soon all the blood from the placenta passes through the left one, the right becoming rudimentary.

The left umbilical vein on reaching the liver now joins the left branch of the portal vein and establishes a new communication with the left hepatic vein. This is the ductus renosus (fig. 3, D.V.), and. as soon is it is formed, there is no longer any necd that all the blood returning from the placenta should pass through the liver capillaries. The development of the cardinal veins must now be returned to. As the heart moves from the neck into the thorax the primitive jugulars elongate and it is now recognized become the internal jugulars in the greater part of their extent. When the arms begin to bud out subclavian veins are developed (fig. 4. S.) and an oblique connecting vein (figs. 4 and 5, L.L.) is established

Fic. 4.
between the point of junction of the left subclavian with the primitive jugular and the hinder part of the primitive jugular of the right side. This connexion becomes the left innominate vein, while the hinder part of the primitive jugular persists as the leff superior intercortal vein (fig. 5. L.S.1.). On the right side that part of the primitive jugular between the subclavian and the junction with the left innominate becomes the right innominate (figs. 4 and 5. R.I.) while the hinder (caulal) part of the righi primisive jugular and the right duct of Cuvier become the supersor vena cava (figs. 4 and 5.S.V.C.). The external jugular is a later formation. The right and left posterior cardinal veios reccive the intercostal and
lumbar segmental veins and are continued into the lower limbs as the internal iliac and eventually the wiatic veins (figs. 4 and 5, 1.1.) the primitive bloodpath from the thighs. The veins from the primitive kidneys open into the segmental veins, and when the permanent kidney is formed (sce Uginary System) a large renal vein on each side is established. There are, however, many cross communications (fig. 4, T.C.) between the right and icit posterior cardinal veins, some of which become very important later on, though most of them are transitory. The probable origin of the infertor bena cade is to be sought in a pair of veins called subcardinals which have been found in the rabbit embryo lying parallel and a little ventral to the posterior cardinals (fig. 4, R.S.C.-L.S.C.) and cffecting a junction with the renals and transverse communications (T.C.) as they cross these. Posteriorly (caudal) : hey join the cardinals, but anteriorly the right one establishes a communication with the ductus venosus (fig. 4, D.V.) a little below the point at which that vessel joins the left hepatic. It is from the right one of these that the greater part of the inferior vena cava is formed. It will now be seen that the adult vena cava is formed by contributions from four embryonic veins, most anteriorly the hepatic, then the ductus venosus, then the right subcardinal and posteriorly the right post erior cardinal (F. T. Lewis, Am. J. of Anat. vol. t, 229, 1902). The anterior (cephalic) part of the right posterior cardinal forms the vena azygos major, and an inspection of fig. 4 will show that in the adult this may rise from the renal, from an ascending lumbar vein or, by a cross communication above the renal, from the inferior vena cava. The left posterior cardinal becomes obliterated below and its segmental tributaries find their way by cross communications to the vena cava (fig. 5). Above (cephalad) the left renal vein the left cardinal forms the hemiazygos (fig. 5, H.V.) and, higher still, the hemiazygos accessoria (fig, 5, H.A.). These open into the azygos major by persistent cross communications which lie dorsal to the heart when that organ reaches its permanent posilion. It must be mentioned in this connexion that some modern authorities doubt whether the azygos veins of mammals are really persistent cardinals except quite in their anterior parts, just before they join the ducts of Cuvier. The left duct of Cuvier is only represented in the human aduit by the oblique vein of Marshall on the dorsum of the left auricle. The external iliac veins (figs. 4 and 5 , E.1.) become fully developed, like their arteries, when the blood changos its course from the back to the front of the thigh. Aiter birth the umbilical vein and the ductus venosus become converted into fibrous cords and the circulation in the pulmonary veins is established. (For further details see Devlopmert of the Human Body, by J. P. MeMurrich, London, 1906. In this will be found the literature of the subject up to that date, the writings of F. Hochstetter being the most important. See also Quain's Anol. vol. i., 1908.)

\section*{Comparative Analomy.}

In the Acrania (Amphioxus), although there is no beart, the blood vessels returning the blood to the subpharyngeal region are distinctly of a vertebrate type. There is a subintestinal vessel or vein bringing the blood from the intestine to the liver and breaking up into capillarics in that organ just as the portal vein does in the higher forms. From the liver a hepatic vein carries the blood forward to the region below the pharynx where the heart is formed in Vertebrata. There is no renal portal system. In the Cycio stomata (lampreys and hags) the cardinal veins are formed and the blood from the caudal vein passes directly into the posterior cardioals without any renal portal system. In fishes the single caudal vein divides into two brarches, each of which runs forward to the outer side of its respective kidney and ends by giving numerous branches to that viscus. The blood returning from the kidncy passes into the beginning of its own posterior cardinal vein or sinus, which lies on the inner side of the kidney. This constitutes a renal porlal syskem. The eardinal veins and ducts of Cuvier closely resemble the arrangement already detailed in the human foetus, while the hopatic portal system from the intestine to the liver is coostant in this and all other vertebrates.
Io the Dipnoi (mud-fish) a pulmonary vein from the lung-like swim-bladder is formed and an inferior vena cava or postcaval vein carries the blond from the kidneys to the heart. This is its firet appearance in the vertebrate phylum. In the lower fishes there is a vein of the lateral line on each side, but in the Dipnoi these coalesce and form a median anterior (ventral) abdominal vin which is constant in the Amphibia. Subclavian and iliac veins return the blood from the fins and open respertively into the junction of the anterior and postcrior cardinals and into the caudal vein.

In the tailed Amphibia (Urodela) the postcaval and posterios cardinal veins are well developed, the former vessel running from the right cardinal vein a little in front of (cephalad) the kidney to the hepatic vein, in this way clomely foreshadowing man"s embryolom. In the Anura (frogs and toads) the posterior cardinals are usually suppressed, but these are very specialized animals. The anterior abdominal vein in amphibians joins the portal vein close to the liver.

In the Reptilia the renal portal circulation persirts, but is rudimentary in birds and diuppeers in mammals. The anterior abdominal or epigastric vein of amphibians and reptiles retums the blood from the allantois in the embryo and in higher forms becomes
the umbilical veins returniag the blood from the placenta; there is, therefore, a continuous line of ascent from the lateral line veins of the fish to the umbilical vein of man. In reptiles, birds, monotremes, marsupials and many rodents, insectivores, bets and unsulates, a left superior vena cava (precaval vein) is present as well Is a right; it passes ventral to the root of the left lung and then dorsal to the left auricle of the heart until it reaches the coronary sinus to open into the right auricle. Its course is indicated in man by the left superior intercostal vein, the vestigial fold of Marshall (see Corlon and Serous Membeares) and the oblique vein of Marshall. It can be readily reconstructed from figs. 4 and 5 if the transverse communication (L.i.) is obliterated. In some mammals the postcaval vein is double. especially in its hinder (caudal) part, and this sometimes occurs as a human abnormality (ree F.W. McClure, Am. Journ. of Anat. vot. 2, 1903, and vol. 5, 1906, also Anat. Anseiger, Bd. 39, 1906).

Except in Cetacea, one or both azygos veins are always present in mammats. When chere is only one it is usually the right, though a few forms among the marsupials, rodents and ungulates have only the feft (F. E. Beddard, P.Z.S., 1907. p. 181). in many of the lower mammals the external jugular vein is much larger than the internal and returns most of the blood from the brain through an opening called the postglenoid foramen. For this reason it was formerly regarded as the representative of the primitive jugular. It is now, however, thought that the internal jugular is that representative, and that the arrangement of man, in which the internal jugular drains the interior of the cranium, is the more generalized and primitive.

For further details and literature see R. Wiedersheim's Comparasive Anatomy of Vertebrates, translated by W. N. Paricer (London, 1907).

VEINB, in geology, masses of rock which occupy fissures in other rocks. They may have originated in many different ways and present a great variety of forms and structures. We may classify them in three groups: (i.) veins of igneous rock, (ii.) of sedimentary, and (iii.) of minerals deposited by water or by gases.

Veins of igneous rock are practically the same as dikes; yet a distinction is sometimes made that dikes are narrow, often straight-walled and run for considerable distances, while veins are irregular, discontinuous and of limited extent. Where granite invades sedimentary or metamorphic rocks it very commonly emits vast numbers of dikes. The margin of the granite is full of blocks of all sizes, so that it is often impossible. to say where the solid granite ends and the fringe of veins begins. An intrusion plexus of this sort seldom extends for more than a few hundred yards; many granites, on the other hand, have sharp and well-defined margins and send few veins into the country rock.

In plutonic rock areas veining is also very common. Great intrusive masses have not as a rule been injected in one stage but have been slowly enlarged by gradual or repeated infiows; and often the earliest portions had consolidated before the last were introduced. Very fiequently the older rocks are of a different character, being usually more basic than those which succeed them, and this makes the veining more obvious. For instance, it is common to find peridotite traversed by many veins of gabbro, or diorite injected with numerous veins of granite, though in either case the rocks are part of one plutonic boss or laccolite. The crystalline structure of the vein-rock and the surrounding mass is usually quite similar and there may be no fine-grained edges to the veins; these facts establish that the older mass though solid had not yet cooled down, so that the veining is directly connected with the injection process and the two rocks have been derived from the same source, hut one is slighly later than the other.

Among the Laurentian or Lewisian greisse,; which \({ }^{-}\)resernble granites, diorites and gabsitos in compoaition, but have a banded or foliated structure, veining of this type is almost universal. The veias are of all sizes and of very irregular shape. Frequently they run along the foliation of the gneis, but of ten also they crose it obliquely or at right angles. Such greisee were produced by the injection of a partly difierentiated and consequently non-homofeneous magma, by succestive stages, under a rock crust which was in movernent or was subjected to intermittent preseures during consolidation.

In certain cases the new material introduced into the rock by these veins bulke almost as largely as the original substance. A shale, siate or phyllite is sometimes to filled with threads of granite that its composition and appearance are completely altered. Thin pale
threads of quarts and felpper, mon move than a tenth of an inck in thickness may be seen following the bedding planes, or the cleavage and cometimes also the slip-cleavage. The distance between the veins may be no greater than the breadth of the veins themmelves and thus a striped or banded rock is produced, resernbling a grien but of dual origin, a mixed rock which is described properly as a "composite" or "syathetic" goeiss. The Frexch geologists who first insisted on the importance of this group of rocks have called the process if par lif (bed-by-bed) injection. The best examples of this in Britain are to be found around the granites of Mull and northern Sutberlandshire. The rocks invaded by granite in this manser often show intense contact alteration and are to 2 lange extent recrystallized.
The short irregular veins which commonly occur within areas of granite, diorite, gabbro and other plutonic rocks are often much more coarsely crystailine than the rock around them. This is no doubt partly due to the high temperature of the whole compler and to slow crystallization, but it may also be ascribed to the action of vapours dissolved in the ragma and gradually released as it solidifies. Such coarse-grained igneous rocks are calied pegmatites (\(q\)-a.). It is clear that they are not purely igncous but are partly pneumatolytic.
With the pegmatites we may class the fine-grained acid veins (aplites) which are found not only in granites but also in menny diabases. They oocur in irregular streaks or as long branching well-defined veins, and are usually more rich in quartz and felspar than the surrounding rock. Formeriy they were often described as contemporaneous or as segregation veins; but no vein can be in strict accuracy contemporaneous with the rock which it intersects, and many of thern give evidence of having been intruded into their present situation, since their minerals are so arranged as to show fexion structure. But they are always intimately connected, as their mineral componition indicates, with the rock mana in which they fie, and they represent merely the last part of the magma to consolidate. The fissures they occupy are presumably due to contraction, seeing that they are-sot accompanied by displacement. brecciation or faulting.

Veins of sedimentary rock are few and of little importance. They occur where sediment has gathered in cavities of other rocks. Lava streams, for example, when they cool become split up into irregular blocks, and in the crevices between these ashes, sand and clay will settle. Submarine lavas are often traversed by great numbers of thin veins of sandstone, and a similar phenomenon may also be noted in the tuff of submarine necks or other ash beds. Cracks in limestone and dolomite are widened by the solvent action of percolating waters and may be filled with gravel, soil, clay and sand. In the Carboniferous Limestone, for insutnce, veins of bedded sandstone sometimes pass down from overlying Triassic deposits. The upper surface of the chalk in the south of England has frequently many deep funnel-shaped pipes which are occupied by Tertiary or recen accumulations.

The third group of veins, namely, those which have been filled by deposits from solution in water or in vapours, is of the greatest importance as including a very large number of mineral veins and ore-bodies. They are also the source of the great majority of the finely crystallized specimens of minerals.

The deposition of minerals on the walls of fissures by a proces of sublimation may be observed at any active volcano. The cracks in the upper part of lava flows are often lined by crystals of aatammoniac, sodium chloride, ferric chloride and other volatile substances. By oxidation of the iron chloride bright scales of haematite (ferric oxide) arise; sulphurous acid and sulphuretted hydrogen. given out as gases, react on one another, producing yellow encrustations of sulphur; and copper oxide (ienorite) and a great variety of other minerals (alum, iron sulphate, realgar, borates and fluoride) are found about fumaroles of Vesuvius and other voicanoes.

Most veins, however, are not of superficial origin but have been formed at some depth. The heat given out by masses of rocks which were injected ia a molten state is no doubt sufficiently high to volatilize many minerals. The pressure, however, also must be taken into acoount, as it tends to retain these substances in a liguid condition. Water vapour is always the most abundant gas in a volcanic magma, and next to it are carbonic acid, sulphurous acid, sulphuretted hydrogen and hydrochloric acid. The physical condition of the substances paysing outwards from an igneous mass through fistures is the euperincumbent rocks will depend on the nature of the substances, on the temperature and the presture. Near the granite the heat is mo great, at firat at any rate, that gaseous materials must greatly preponderate: but farther away many of them. will be condensed and hot aqueous solutions of complex composition will fill the cracks.

Veins deposited by the action of gasen and vapours are said to be of "preumatolytic". origin; where hot aqueous solutions bave
been the priacipal agency in their formation they are " hydato genetic." it is often very difficult to ascertain to which of these classes a mineral vein belongs. especially as we are in ignorance of the behaviour of many subslances at high temperatures and under great pressures

The veins which yield tin-ores in Cornwall and in most other tinproducing countries are generally regarded as typical pneumatolytic deposits. Tin forms a volatile fuoride which may be decomposed by water, lorming tin oxide. the flunrine passing into hydrofuoric acid which may act as a catalytic agent or carrier by again combining with tin. Anownd tietuearing veins and in the material which fils them there are usually many minerals containing fuorine, such as topaz, fuor-spar and white mica. Some borates too are volatile at high temperatures, and minerals containing boron (esperially tourmaline) are very common in tin veins. Also since ore deposits of this character are found nearly invariably in granite or in the rocks which have been iovaded by granite there is good reason to hold that Auoric and boric gases were important agents in the production of tin veins. It is not necessury, however, to believe that all the materials which are found in these veins were introduced as vapours, for as the temperature sank currents of hot water would follow which would filf up any cavitics.

The tin veins of Cornwall often contain copper ores in their upper parts and at greater distances from the granite, a fact which indicates that the copper salts were deposited from solution at lower temperatures than the tin ores. A very large number of important ore deposits have been laid down by hot waters emanating from depp-seated intrusive masses. Nearly all the principal goldficids (except gravels or placers) are in districts where igneous dikes, veins and sills abound, and it is often perfectly clear that the introduction of the pold ores is intimately connected with the intrusive masses The Witwatersrand deposits, although by many considered to be old aurilerous gravel, have been regarded as owing their value to gold deposited from vapours emanating from certain of the dikes which traverse the banket rock or conglomerate. The importanse of these hot ascending currents of water, proceeding from eruptive magmas, has been fully recognized, and is now probably the most widely accept ed theory of the genesis of mineral veins.
The water lalling on the carth's surlace will to a large extent percolate downwands into the rocks, and it will dissolve mineral matters, especially at the greater depihs, owing to the increased temperature and pressure; conversely, as it ascends it will lay down deposits or veins. This is the theory of "Latcral secretion," a: one time in great lavour, but now regarded as of less importance. Ferruginous waters on passing through limestone rocks may deposit their iron as haematite or siderite. removing a proportionate amount of lime, and in this way great bodies of ironstone have been formed, as in Cumberland and Yorkshire, partly along the bedding of the linestone but also in veins, pockets and itregular masses. Many lead and zinc veins prubably belong also to this class. By amalysis it has been proved that in mearly all the common rocks there exist very minute quantities of such metals as gold. silver. lead, copper, zinc. If these can be extracted in solution in water they might conceivably be deposited subsequently in fissures in the rockes.
Controversy has raged between opposing schools of geologists, one considering that most mineral veins owe their existence to currents of hot water ascending from deep-sented igneous rocks, and the other that the metals were derived from the country rocks of the veins and were extracted Irom them by cold descending currents of water. There are cases which can be explained on one of these hypotheses only. and sufficiently establish that both of them are valid: but the general opinion at the present time is in favour of the first of thesc explanations as the most general.
The fissures in which veins have been deposited owe their origin to a variety of causes. Many of them are lines of fault. the walls of which have been displaced before the introduction of the vein minerels. Others scem to be of the same nature as joints, and are due either to contraction of the rocks on solidification, to folding or to earthquake shocks. In the vicinity of intrusive masses many fissures have been produced by the contraction of rock masses which had been greatly heated and then slowly cooled. Veins often occur in groups or systems, which have a parallel trend and may sometimes be followed for many miles. The larger veins may branch and the branches sometimes unite after a time, enclosing masses of country rock or "horses." Cross-coursen are fissures which intersect the lodes; they are often barren, and at other times carry an entirely different suite of minerals from those of the minerat veins A peculiar group of veins has been described from the Bendigo district of Australia: they are saddle-shaped and in transversc section resemble an inverted \(U\). The beds in which they occur are folded sharply into arches and troughs, and in folding they have separaled at the crests of the arches, leaving hollows which were subsequently flled up with ore.
The minerals occurring in the veins are sometimes classified as "ores" and "gangue" value while the others are unprofitable. The commonest of the pengue minerals are quartz, calcite, barytes and Ruor-spar. Usually a large number of minerals occurt in each vein. and the natural mociation or "paragenesis" of certain mioerals which frequently
are found together is a practical guide of much value to the engineer and prospector. A definite sequence in the order of deposit of the constituent minerals can often be recognized, the earlier being situated on the walls of the fissures or enclosed and surrounded by the later, and the microscopic study of veinstone shows that they have oiten a complicated history.

Many types of structure are mei with in veinstones and vein deposits. Some are structureless, homogencous or massive, lize the quartz veins which are often found in districts composed of slate or phyllite. Others are banded, with sheets of deposit, each consisting of one mineral, usually parallel to the walls of the lode. These veins are often symmetrical, with corresponding layers fol lowing one another in wards from the walls on each side.

The veinstones are frequently crushed either by laulting or by irregular tnovements of the walls, and in such cases the vennstones have a shatiered or brecciated appearance. If the crushing took place while the ore deposits were still being introduced, tbe broken rock is often cemenied together inoo a compact mass. Rounded masses of rock or of veinstone are often met with, looking exactly like pebbles, but they are analogous to crush-conglomerates, as the Iragments have been shaped by the movements of the walls of the vein. Frequently these anovements bave reopened a fissure which had been filled up, and a new vein is subsequently formed alongside of the old one; this process may be repeated several times.

The mineral-bearing solutions may exert a poweriul infuence on the walls of the veins, removing certain constituents and depositing others: in this way the walls of the vein become ill defined. The commonest change of this kind is silicification, and rocks of many different kinds, such as slate, limestone, andesite and felsite, are often completely replaced by quartz in the vicinity of mineral veins which have a quartzose gangue. Tin veins in granite and slate may be surrounded by a zone of mock which has been impregnated with cassiterite and is worth working for the metal. These changes are of a " metasomatic "type involving replacement of the original rock-substance by introduced materials. Many of the best examples of this are furnished by limestone, which is one of the rocks most easily affected by percolating solutions.

The distinction betwen mineral veins and other veins is to a large extent artificial. With improvement of methods of mining and extraction deposits Comerly unprofitable become payable, and in all cases veins vary considerably in the amount of ore they carry. The rich parts are sometimes calied shcots or bonanzas, while tbe barren portions are often left standing in the mine. Near the ground surface the veinstones become oxidized and the metallic minerals are represented by oxides, carbonates, hydrates, or in the case of gold and silver veins they may be rich in the metals themselves. Below the zone where oxidizing surface-waters percolate a different series of minerals occurs, such as sulphides, arsenides and tellurides. If the ores are insoluble they will tend to be concentrated in the upper part of the vein rock, which may be greatly enriched in this way. Pyritic veins are changed to rusty-looking masses, "gossans," owing to the oxidation of the iron at the surface. Though instances are known of veins which come to an end when dollowed downwards, it seems probable that the majority of veins descend to great depths, and there is little reason to believe that they become less rich in the heavy metals.
(J.S. F.)

VEIT, PHILIPP (1793-1877), German painter, one of the leaders of the German romantic school, was born in Berlin. Having received his first art education in Dresden and Vienna, he was strongly influenced by, and joined the group of, the Nazarenes in Rome, where he worked for some years before taking up his abode in Frankfort. In this city, where his most important works are preserved at the Staedel Institute, he was active from 1830 to 1843 , as director of the art collections and as professor of painting. From 185310 his death in 1877 he held the post of director of the municipal gallery at Maycnce. Like his fellow-Nazarenes he was more draughtsman than painter, and though his sense of colour was stronger than that of Overbeck or Cornelius, his works are generally more of the nature of coloured cartoons than of paintings in the modern sense. His principal work is the large fresco of "The Introduction of Christianity into Germany by St Boniface," at the Staedel Institute in Frankfort. In the cathedral of that city is his "Assumption," whilst the Berlin National Gallery has his painting of "The Two Marys at the Sepulchre." To Veit is due the credit of having been the first to revive the almost forgotten technique of fresco painling-

\section*{See Kunst, Kinnstler und Kunstwerke, by Valentin Veit.}

VEITCH, JOHN (1829-1894). Scottish poet, philosopher, and historian of the Scottish border, son of a Peninsular vetcran, was born at Peebles on the 24th of October 1829, and educated at Edinburgh University. He was assistant lecturer successively
to Sir William Hamilton and A. Campbell Fraser (\(1856-60\)). In 1860 he was appointed to the chair of logic, metaphysics and rhetoric at St Andrews, and in 1864 to the corresponding chair at Glasgow. In philosophy an int uitionist, he dismissed the ideallst arguments with some abruptness, and therehy lost much of the influence gained by the force of his personal character. He died on the 3 rd of September 1894. He will be remembered chiefly for his work on Border literature and antiquities.
He published translations of Descartes' Discours de la mélhode (1850) and Meditationes (i852); an edition of Sir W. Hamilton's lectures with memoir (1869. in collaboration with H. L. Mansel): Tweed, and other Poems (1875); Hissory and Poetry of the Seotish Border (1877: ed. 1893): Instinutes of Logic (1885); Knowing and Being (1889); Merlin (i889); Dkalism and Mosism (1895): Border Essays (1896). See Memoir by his niece, Mary R. L. Bryce (1896).

VEJER DE LA FRONTERA, a town of southern Spain, in the province of Cadiz, on the right hank of the river Barbate and on the Cadiz-Tarifa railway. Pop. (1900) \(1 \mathrm{r}, 298\). Vejér de la Frontera oceupies a low hill overlooking the Straits of Gibraltar and surrounded by orchards and orange groves. It contains several ancient churches and convents, and the architecture of many of its houses recalls the period of Moorish rule, which lasted from 7 II until the town was captured by St Ferdinand of Castile in 1248 . Agriculture and fruit-farming are the chicl industries; fighting bulls are also bred in the neighbourhood.

VELARIUM, the curtain or awning extended above the auditorium of the Roman theatres and amphitheatres to protect the spectators from sun and rain.

VELAZQUEZ, DIEGO BODRIGUEZ DB SILYA \(\mathcal{Z}\) (\(599-\) 1660), the head of the Spanish school of painting and one of the greatest painters the world has known, was born in Seville early in June 1599 , the year in which Van Dyck also first saw the light at Antwerp. His European fame is of comparatively recent origin, dating from the first quarter of the rgth century. Till then his pictures had lain immured in the palaces and muscum of Madrid; and from want of popular appreciation they had to a large extent escaped the rapacity of the French marshals during the Peninsular War. In 1828 Sir David Wilkie \({ }^{1}\) wrote from Madrid that he felt himself in the presence of a new power in art as he looked at the works of Velazquex, and at the same time found a wonderful affinity between this master and the English school of portrait painters, being specially reminded of the firm, square touch of Raeburn. He was struck by the sense of modernness of impression, of direct contact with nature, and of vital force which pervaded all the work of Velazquez, in landscape as well as in portraiture. Time and criticism have now fully established his reputation as one of the most consummate of painters, and accordingly Ruskin says of him that ". everything Velazquez does may be taken as absolutely right by the student." At the present day his marvellous technique and strong individuality have given him a power in European art such as is excreised by no other of the old masters. Although acquainted with all the Italian schools, and the friend of the foremost painters of bis day. he was strong enough to withstand every external influence and to work out for himsell the development of his own nature and his own principles of art. A realist of the realists, he painted only what he saw; consequently his imagination seems limited. His religious conceptions are of the carth earthy, although some of his works, such as the "Crucifixion" and the "Christ at the Column," are characterized by an intensity of pathos in which he ranks second to no painter. His men and women seem to hreathe, his horses are full of action and his dogs of life, so quick and ciose is his grasp of his subject. England was the first nation to recognize his extraordinary merit, and it owns by far the largest share of his works outside of Spain. \({ }^{2}\)
\({ }^{1}\) See Cunningham's Life, vol. ii.
2 Of the 274 works attributed to Velazquez by Mr Curtis, 121 are in the United Kingdom, while France has but 13. Austria-Hungary 12. Rusini 7, and Germany about the same number. Beruete, who only allows go known piciures to be genuine works of Velazquez, allots 14 to the United Kingdom, which number still cansiderably exceeds that of any other country save Spain.

But Velazquez can ealy be seen in all his power in the gallery of the Prado at Madrid, where over sixty of his works are preserved, including historical, mythological and religious subjects, as well as landscapes and portraits. It is hardly creditable to the patriotism of Seville, his native town, that no example of his work is to be seen in the gallery of that city. Seville was then in the height of its prosperity, "the peqarl of Spain," carrying on 2 grent trade with the New World, and was also a vigocous centre of literature and art. For more than a hundred years it had fostered a native school of painting which ronked high in the Peninsula, and it reckoned among its citizens many whose names are prominent in Spanish literature.

Velazquez was the son of Rodriguez de Silva, a lawyer in Seville, descended from a noble Portuguese family, and was baptized on the 6th of June 1599 . Following a common Spanish usage, he is known by his mother's name Velazquez. There bas been considerable diversity of opinion as to his lull name, but he was known to his contemporaries as Diego de Silva Velazquez, and signed bis name thus. He was educated, says Palomino, by his parents in the fear of God, and was intended for a learned profession, for which he received a good training in languages and philosophy. But the bent of the boy was lowards art, and he was placed under the elder Herrera, a vigorous painter who disregarded the Italian influence of the early Seville school. From his works in Seville we can sce that Herrera was a bold and effective painter; but he was at the same time a man of unruly temper, and his pupils could seldom stay long with him. Velazquez remained hut one year-long enough, however, to influence his life. It was probably from Herrera that he learned to use long brushes, or, as J. E. Hodgson, R.A., suggested, brushes with long bristles, by means of which his colours seem to be foated on the canvas by a light, flueat touch, the envy and despair of his successors. From Herrera's studio Velazquez betook himself to a very different master, the learned and pedantic Pacheco, the author of a heavy book on painting, and, as we see by his works at Madrid, a dull, commonplace painter, though at times he could rise to a rare freedom of handling and to a simple, direct realism that is in direct contradiction to the cult of Raphacl preached by him in his writing. A portrait by Pacheco, owned by Sir Frederick Cook, which shows this master's full power, was exhibited at Burlington House in 1907. In Pacheco's schood Velazques remained for five years, studying proportion and perspective, and seeing all that was best in the literary and artistic circles of Sevilie. Here also he fell in love with his master's daughter Juana, whom he married in 1618 with the hearty spproval of Pacheco, who praises bis hand and heart, claiming at the same time all the credit of having been his master. The young painter set himself to copy the commonest things about himearthenware jars of the country people, birds, fish, fruit and flowers of the market-place. To paint well and thoroughly what he saw, to model with his brush, and to colour under the infiuence of light and shade were for him the vital purpose, the first lesson, in his art. It was with deliberate purposa that Velazquez painted these bodegones (tavern-pieces), as they were called; for we are told that he said he would rather be the first painter of common things than the second in higher art. Carrying out this idea still further, Velazquez felt that to master the subtlety of the human face he must make this a special study, and he accordingly engaged a peasant lad to be his servant and model, making innumerahle studies in charcoal and chalk, and catching his every expression. We see this model, probably, in the laughing boy of the Hermitage "Breakfast," or in the youngest of the "Musiclans" acquired for the Berlin Museum in 1go6. In such work as this, and in his st udies by the wayside, Velazqucz iaid the foundation of his subsequent mastery of expression, of penetration into character, and of rendering the life of his sitter to the quick. He saw the world around him teeming with life and ohjects interesting to the painter, and he sel himself to render these. His manner is as national as that of Cervantes. He lived and died racy of the soil. The position and reputation of Velasques were nof
assured at Sevilie. There his wife bore him two daughtersall his family so far as is known. The younger died in infancy, while the elder, Francisca, in due time married Bautista del Maso, a painter, whose large family is that which is represented In the important picture in Yienna which was at one time called the "Family of Velazquez." This picture is now by common consent given to Mazo. In the gallery at Madrid there is a portrait of Ju*na, his wife, holding a drawiog-tabiet on her knee. There was formerly in the possession of Lard Dudley another portrait of his wife by Velazquez, painted, perhaps, in the first year of their happy marriage Of this early Seville manner we have an excelient example in "Ed Aguador" (the Water-Carrier) at Apsky House (London). Firm almost to hardness, it displays close study of nature. One can see in it the youthful struggte to portray the effects of light stealing here and there over the prominent features of the face, groping after the effects which the painter was to master later on. The brushwork is bold and broad, and the oullines Grmly marked. As is usual with Velazquen at this time, the harmony of colours is red, brown and yellow, reminding one of Bibera. For sacred subjects we may tum to the "Adoration of the Magi" at Madrid, dated 16t9, and the "Christ and the Pilgrims of Emmaus" in the collection of Don Manuel de Soto in Zurich, in both of which we have excellent examples of his realism. In the "St John in the Desert" we again find his peasant boy transformed into the saint.

But Velaxquez was now eager to sce more of the world. Madrid, with its fine Titians, beld out strong iaducements. Accordingly, in 1623 , fortified with leteers of jntroduction to Fonseck, who held a good position at court, he spent some months there, accompanied only by his servant. Here be painted the portrait of the poet Gengora, a commission from Pachero, but the picture known hy that name in the gallery at Madrid cannot with certainty he identified as Velazquez's portrait; it is more probably by Zurbaran. The impression which Velazquer made in the capital must have been very strong, for in the following year he was summoned to return by Olivares, the all-powerful minister of Philip IV., fifty ducats being allowed to detray his experses. On this occasion he was accompanied hy his father-in-law. Next year (1624) be received from the king three bundred ducats to pay the cost of the removal of his family to Madrid, which became his home for the remainder of his life. Wcak and worthless as a king, Philip had mherited the art-loving propensities of his race, and was proud to be considered a poet and a painter. It is one of the best features nf his character that he remained for 2 period of thirty-six years the laithful and attached friend of Velazquer, whose merit he soon recognized, declaring that no other painter should ever paint his portrait. By his equestrian portrait of the king, painted io 1623 , Velazquez secured admission to the royal service with a salary of \(t\) went \(y\) ducats jer mont \(h\), besides medical attendance, lodgings and payment for the pictures he might paint. The portrait was exhibited on the steps of San Felipe, and was received with enthusinsm, being vaunted by poets, among them Pacheco. It has unfort unately disappeared, baving probahly perished in one of the numerous fires which occurred in the soyal palaces. The Prado, however, has two port raits of the king (Nos. 1070 and 1071) in which the harshness of the Seville period has disappeared and the tones are more delicate. The modelling is firm. tecalling ithat of Antomio Mor, the Dutch portrait painter of Philip II., who exercised a corsiderable infuence on the Spanish school. In the same year the prince of Wales (afterwards Charles f.) arrived at the court of Spain. We are told that he sat to Velasquex, but the picture has disappeared. \({ }^{1}\)
In 1628 Rubens visited Madrid on a diplomatic mission for nine months, and Velarquez was appointed by the king to be his guide among the art treasures of Spain. Rubens was then
\({ }^{1}\) fn 1847 Mr John Snare of Reading exhibited a picture which mad come from the sale of Lond Fite in 1809, and which he maintained to be the tong lost work. This led to much controversy; but the claim, was rejected by experts, and the picture is said to be now in America.
the height of his fame, and had undertaken as a commission from Olivares the large pictures which now adorn the great hall in Grosvenor House (London). These months might have been a new turning-point in the career of a weaker man than Velazquez, for Rubens added to his brilliant style as a painter the manner of a fascinating courtier. Rubens had a high opinion of the talent of Velazquez, as is attested by Fuensalida, but he effected no change in the style of the strong Spaniard. He impressed him, however, with the desire to see Italy and the works of her mighty painters. In 1627 the king had given for competition among the painters of Spain the subject of the Expulsion of the Moors. Velazquez bore off the palm; hut his picture was destroyed in 2 fire at the palace in 1734. Palomino, however, describes it. Philip III. points with his baton to a crowd of men and women driven off under charge of soldiers, while Spain, a majestic female, sits looking calmly on. The triumph of Velazquez was rewarded by his being appointed gentleman usher. To this was shortly afterwards added a daily allowance of twetve reals, the same amount as was allowed to the court barbers, and ninety ducats a year for dress, which was also paid to the dwarfs, buffoons and players about the king's persontruly a curious estimate of talent at the court of Spain. As an extra payment he received (though it was not paid for five years) one bundred ducats for the picture of Bacchus, painted in 1629 (No. 1058 of the Madrid gallery). The spirit and aim of this wort are better understood from its Spanish name, "Los Borrachos " or "Los Bebedores" (the Topers), who are paying mock homage to a balf-naked ivy-crowned young man scated on a wine barrel. It is like a story by Cervantes, and is brimful of jovial humour. One can casily see in this picture of national manners how Velazquez had reaped the benefit of his close study of peasant life. The painting is firm and solid, and the light and shade are more deftly handled than in former works. Altogether, this production may be taken as the most advanced example of the first style of Velaxquez. It is usual to divide his artistic carect hy his iwo visits to Italy, his second style following the first visit and his third the second. Roughly speaking, this somewhat arbitrary division may be accepted, though it will not always apply, for, as is usual in the case of many great painters, his styles at times overlap each other. Velarquer rarely signed his pictures, and the royal archives give the dates of only his more important works. Internal evidence and history, as regards his portraits, supply to a certain extent the rest.
In 1629 Philip gave Velazquez permission to carry out his desire of visiting Italy, without loss of salary, making him besides a present of four humdred ducats, to which Olivares added two hundred. He sailed from Barcelona in August in the company of the marquis de Spinols, the conqueror of Breda, then on his way to take command of the Spanish troops at Milan. It was during this voyage that Velazquez must have beard the details of the surrender of Breda from the lips of the virtor, and he must bave sketched bis fine bead, known to us also by the portrait hy Van Dyck. But the great picture was not painted till many years later, for Spinole had fallen into disfavour at court. In Venice Velazquer made copies of the "Crucifixion" and the "Last Supper " of Tintoretto, which he sent to the kjag. and in Rome he copied Michelangelo and Raphael, lodging in the Villa Medici till fever compelled him to removeinto the city. Here be painted the "Forge of Vulcan" (No. 1059 of the Madrid gallery). in which Apollo darrates to the astonished Vukan, a village blacksmith. the news of the infidelity of Venus, while four Cyclops listen to the scandal. The mythological treatment is similar to that of the "Bacchus ": it is realistic and Spanish to the last degree, giving a picture of the interior of an Andalusian smithy, with Apollo thrown in to make the story \(t \mathrm{cll}\). The conception is commonplace, yet the impression it produces is undoubted from the vividness of the representation and the power of expression. The modelling of the half-naked Ggures is excellent. Altogether this picture is much superior to the other rook painted at the same time, "Joseph's Coat," which now hangs in the Escorial. Both these works are evidently paiated from the same models.

In looking at these two pictures the spectator is especially struck by the fact that they betray no trace of the influence of the Italians. Velazquez remained true to himself. At Rome he also painted the two beautiful landscapes of the gardens of the Villa Medici, now in the Madrid museum (1106 and 1107), full of sparkle and charm. Landscape as an expression of art never had attraction for the Spaniards; but Velazquez here shows how great a master he was in this branch. The silvery views of Aranjuez, whicb at one time passed under his name, are now considered to be the work of his pupil Maro. After a visit to Naples in 163I, where he worked with his countryman Ribera, and painted a charming portrait of the Infanta Maria, sister of Philip, Velazquez returned carly in the year to Madrid.

He then painted the first of many portraits of the young prince, Don Baltasar Carlos, the heir to the throne, dignified and lordly even in his childhood, caracoling in the dress of a field-marshal on his prancing steed. The Wallace collection includes an example which is probably a copy by Mazo; but the finest in the United Kingdom is the well-known picture at Grosvenor House, a masterly example of the second manner of Velazquez. The colour is warm and bright, the workmanship solid and fused like enamel, while light and air pervade every corner. The scene is in the riding-school of the palace, the king and queen looking on from a balcony, while Otivares is in attendance as master of the horse to the prince. Don Baltasar died in 1646 at the age of seventeen, so that judged by his age this picture must have been painted about 1641, two years before the fall of Olivares. This powerful minister was the early and constant patron of the painter. His impassive, saturnine face is familiar to us from the many portraits painted by Velazquez, a face wbich, like his royal master's, seems never to have known a smile, and in which are written pride and disdain. Two are of surpassing excellence-the full-length formerly in the Holford collection (exhibited at Burlington House in 1887), stately and dignified, in which he wears the green cross of Alcantara and holds a wand, the badge of his office as master of the horse; the other the great equestrian portrait of the Madrid gallery (No. 1069), in which be is flatteringly represented as a field-marshal in all his pomp during an action. It is difficult to overpraise the excellence of this nork, either as regards its dramatic power or its masterly execution. In these portraits Velazquez has well repaid the debt of gratitude which be owed to his first patron, whom be stood hy in his fall, thus exposing himself to the risk-and it was not a light one-of incurring the anger of the jealous Philip. The king, howe ver, showed no sign of malice towards his favoured painter. Faithful in few things, Philip kept true to Velazque2, whom he visited daily in his studio in the palace, and to whom he stood in many attitudes and costumes, as a huntsman with his dogs, as a warrior in command of his troops, and even on his knees at prayer, wearing ever the same dull uninterested look. His pale face and lack-lustre eye, his hair flowing hair and moustaches curled up to his eyes, and his heavy projecting Austrian under-lip are known in many a portrait and nowhere more supremely than in the wonderful cañvas of the London National Gallery (No.745), where be seems to live and breathe. Few portraits in the whole range of art will compare with this work, in which the consummate handling of Velazquez is seen at its best, for it is in his late and most perfect maaner. From one of the equestrian portrats of the king, painted in 1638, the sculptor Montañes modelled a statue which was cast in bronze by the Florentine sculptor Tacca, and which now stands in the Plaza del Oriente at Madrid, "a solid Velazquez," as it has been well named by Ford. This portrait exists no more; but there is no lack of others, for Velazquez

I In this and in all his portraits Philip wears the golilla. a stiff linen collar projecting at righl angles from the neck. It was invented by the king, who was so proud of it that he celebrated it by a festival, followed by a procession to church to thank God for the blessing (Martame D'Aulnoy. Voyage d'Espagne). The golilla was thus the height of fashion and appears in most of the male portraits of the period. In regard to the wonderful structure of Philip's moustaches, it is said that, to preserve their form, they were encased during the thet in perfurmed leather covers called bigoteras.
was in constant and close attendance on Philip, accompanyiag him in his journeys to Aragon in 1642 and 1644, and was doabtless present with him when be entered Lerida as a conqueror. It was then that he painted the great equestrian portrait (No. 1066 of tbe Madrid gallery) in which the king is represented as a great commander leading his troops-a role which Philip never played exoept in a theatrical pageam. All is full of animation except the stolid lace of the king. It hangs as a pendant to the great Olivares portrait-fit rivals of the neighbouring Charies V. by Titian, which doabtless fired Velazquez to exced himself, and both remarkable for their silvery tone and their feeling of open air and harmony combined with brilliancy. The light plays on the armour and scarf thrown to the wind, showing bow completely Velazquez had mastered the effects he strove to reach in his early days. Of these two great works the Wallace collection indudes small bot excellent copies.

But, besides the forty portraits of Philip by Velazquez, or attrihuted to him, we have portraits of other members of the royal family, of Philip's first wife, Isabella of • Bourbon, and ber children, especiaily of her eldest son, Don Baltasar Carlos, of whom, besides those already mentioned, there is a beautiful fulllength in 2 private room at Buckingham Palace. Cavaliers, soldiers, churchmen and poets of the court, as for example the Quevedo at Apsley House (shown in Burlington House in 1887), sat to the painter and, even if forgotten by history, will live on his canvas. The Admiral Pulido Pareja from Lord Radnor's collection, now at the National Gallery, is said to have been taken by Philip for the living man; nevertheless, A. de Beruete is emphatic in denying Velazquez's authorship of thes picture, which he attributes to Mazo. It has been remarked that the Spaniards have always been chary of committing to convas the portraits of their beautiful women. Qucens and infantas may be painted and exhibited, but ladies rarely. One vonders who the beautiful woman can be that adorns the Wallace collection, the splendid brunette so unlike the usual fair-haired female sitters to Velarques. She belongs to this period of his work, to the ripeness of his middle period. Instinct with life, her bosom seems to heave and the blood to pulsate through her veins. The touch is firm but free, showing the easy strength of the great master. Rarely has flesh been painted with such a glow, yet with such reserve. This picture is one of the ornaments of the Wallace collection. But, if we have few ladies of the court of Philip, we have in great plenty his bufloons and dwarfs. Even these deformed or half-witted creatures attract our sympathy as we look at their portraits by Velazquex, who; true to his pature, treats them gently and kindly, as in "EJ Primo" (the Favourite), whose intelligent face and huge folio with ink-bottle and pen by his side show him to be a wiser and better-educated man than many of the gallants of the court. "El Bobo de Coria," "El Niño de Vallecas" and "Pablillos," a bufioon evidently acting a part, all belong to this middle period. From these commissioned portraits of the menials of the court it is pleasant to turn to one of the greatest of histotical works, the "Surtender of Breds," often known as "Las Lanzas," from the serried rank of lances breaking the sky, which is believed to have theen painted about 1647 . It represents the moment when the vanquished Justin of Nassau in front of his Dutch troops is submissively bending as he otiets to his conqueror Spinola the keys of the town, which, with courteous grace, the victor refuses to accept, as he lays his hand gently on the shoulder of his defeated foc. Behind Spinola stand the Spanish troops bearing their lances aloft, while beyond is a long stretch of the Low Country, dotted with fortifications and giving the impression of vast space and distance. The picture is full of light and ait, and is perbaps the finest example of the silvery bluish style of Velazquez. In conception it is as fine as in execution, and one looks in vain for a trace of "the malicious pencil" which Sir William Stirling-Maxwell discerned in the treatment of Just in and his gallant Dutchmen.

The greatest of the religious paintings by Velazquez belongs also to this middle period, the "Christ on the Cross" (Madrid gallery, No. 1055). Palomino says it was painted in 1638 for
the convent of San Placido. It is a woik of tremadous power and of great originality, the moment chosen being that immediately after death. The Saviour's bead hangs on his breast and a mass of dark tangled hair conceals part of the face. The beautiful form is projected against a black and bopeless sky from which light has been blotted out. The figure stands abeolutely alone, without any actersory. The skwil and seapent described by Sir William Stiding-Maxwell were added by some pious bupgler at a much later date. The picture was lengthened to suit its place in an oratory; but this addition has since been removed. To the same period belongs the great "Boar Hunt" at the National Gallery, a magoificent work in spite of some restorations. The smaller "Boar Hupt" in the Wallace collection is from the brush of Mazo; and the "Conversation, a Group of Thirteen Persons," at the Louvre, a picture which in conception has mucb in common with these hunting soenes, probably owes its origin to the same artist. A. de Beruete empbatically denies Velazquer's authorship of this much belauded picture, which be describes as a "mediocre imittion, probably by Mazo."

Velazquex's son-in-law Maso had sucoceded him as urher in 1634, and he himself had received steady promotion in the royal houschold, receiving a pension of 500 ducats in 1640, increased to 700 in 1648, for portraits, painted and to be painted, and being appointed inspector of works in the palace in 1647 . Philip now entrusted him with the carrying out of a design on which he had long set his heart, the founding of an academy of art in Spain. Rich in pictures, Spain was weak in statuary, and Velazquez was commissioned to proceed to Italy to make purchases. Accompanied by his faithful slave Pareja, whom he taught ta be a good painter, be sailed from Malaga in 1649 , landing at Genoes, and proceeting thence hy Milan to Venice, hurying Titians, Tintorettos and Veroneses as he went. A curious conversation whicb he is said to have had with Salvator Rosa is reported by Boschini, \({ }^{1}\) in which the Spaniand with perfect frankness confesses his want of appreciation of Raphael and his admiration of Titian, "first of al Italian men." It seems a possible story, for Velazquez bought according to his likings and painted in the spirit of his own ideals. At Modena he was received with much favour by the duke, and doubtless bere he painted the portrait of the duke at the Modena gallery and two splendid portraits which now adorn the Dresden galiery, for these pictures came from the Modena sale of 1746 . They presage the advent of the painter's third and latest manner, a poble example of which is the great portrait of Innocent X in the Doria palace at Rome, to which city Velazquer now proceeded. There he was received with marked favour by the pope, who presented him with a medal and gold chain. Of this portrait, thougbt by Sir Joshua Reynolds to be the finest picture in Rome, Palomino says that Velazquez took a copy to Spain. There exist several in different galleries, some of them poesibly studies for the original or replicas painted for Philip. One of the most remarkable is that in Apsley Housc, exhibited in Burlington House in 1887 . The modelling of the atern impassive face comes pear to perfection, so delicate are the gradations in the full light; all sharpness of outline has disappeared; and the features seem moulded by the broed and mastetly brushwork. When closcly examined, the work seems coanse, yet at the proper distance it gives the very essence of living lesh. The handling is rapid but unerring. Velazquez had now rached the mazara abravieda, as the Spaniards call this bolder style. This is hut anotber way of saying that his early and laborious studies and his close observation of nature had given to him in due tirne, as to all great painters, the power of representing what he saw by simpler means and with more absolute truth. At Rome he painted atso a portrait of his servant Pareja, probably the picture of Lord Radnor's collection, which procured his election into the academy of St Lake. Philip was now wearying for his retura; accordingly, after a visit to Naples, where he saw his old friend Ribere, be retumad to Spain by Barcelone in 1651, taking with bim many pictures and 300 pleces of atatuary, which be
'See Stirling-Maxwell's Velasques and his Works, \(p\). 66 .
afterwards arranged and catalogued for the hing. Ondraped sculpture was, bowever, abhorrent to the Spanish Cburch, and after Phillp's death these works gradually disappeared.
Lsabella of Boarbon had died in 1644, and the king had married Mariana of Austria, whom Velazquez now painted in many altitudea. He was specially chosen by the king to fill the high office of "apoeentador major," which imposed on him the duty of looking after the quarters occupied by the court whether at bome or in their journeys-a responsible function, which was no sinecure and interiered with the exercise of his art. Yet far from indicating any decline, his works of this period are amongst the highest examples of his style. The dwarf "Don. Antonio el Inglics" (the Englishman) with his dog, "Aesop," "Menippes " and "the Sculptor Montaties," all in the Madrid gallery, show his surest and fresst manner. To these may be added the charming portraits of the royal children in the Louvre and Vienna, among the choicest of his works. It is one of these infantas, Margarita Maria, the eldest daughter of the new queen, that in the subject of the well-known picture "Las Menifins" (the Maids of Honour), 1062, in the Madrid gallery, painted in 1656, where the little lady holds court, surrounded by ber ladies-in-waiting, her dwarfs and her mastiff, while Velezques is seen standing at his easel. This is the finest portrait we have of the great painter. It is a face of mucb dignity, power and sweetness-like his life, oquable and serene, unruffied by care. "Las Meninas" was the picture of which Luce Giordano said that it was the "theology of painting," another way of expressing the opinion of Sir Thomas Lawrence, that this work is the philosophy of art, so true is it in rendering the desired eflect. The result is there, one knows not by what means, as if by a first intention without labour, aboolutely right. The story is told that the king painted the red cross of Santiago on the breast of the painter, as it appears to-day on the canvas. Velazquez did mot, bowever, reoeive the bonour till \(\mathbf{1 6 5 9}\), three years after the execution of this work. Even the powerful king of Spain could dot make his favourite a betted knight without a commission to inquire into the purity of his lineage on both sides of the house. The records of this commission bave been found among the archives of the order of Santiago by M. Villaamil. Fortunately the pedigree could bear scrutiny, as for generations the family was found free from all taint of heresy, from all trace of Jewish or Moorish blood and from contanaination by trade or commerce. The difficulty connected with tbe fact that be was a painter was got over by his being painter to the king and by the declaration. that he did not sell his pictares. But for this royal appointment, which emabled him to escape the censorship of the Inquisition, we should never have had his splendid "Venus and Cupid," formerly belonging to Mr Morritt of Rokeby Hall and bought by the National Art Collections Fund for \(£_{45,000}\) for the National Gallery in 1gos. It is painted in his latest manner and is worthy of comparison with Titian. \({ }^{2}\) There were in truth but two patrons of art in Spain-the church and the art-loving king and court. Murillo was the artist favoured by the church, while Velazqucz was patronized by the crown. One difference, however, deserves to be noted. Murillo, who toiled for a rich and powerful church, eft scarcely sufficient means to pay for his burial, while Velazquez lived and died in the enjoyment of good salaries and pensions. Yet on occasions Philip gave commissions for religious pictures to Velazquez-among others, and belonging to this later period, the "Coronation of the Virgin" (Madrid, 10j6), splendid in colour-a harmony of red, hlue and grey-but deficient in religious feeling and dignity. It was painted for the oratory of the queen, doubtuess Mariana, in the palace at Madrid. Another royal commission for the hermitage of Buen Retiro was the "St Anthony the Abbot and St Paul the Hermit," painted in 1659, the landscape

\footnotetext{
\({ }^{2}\) Some uncertalnties in the proprittorial history of this picture have led to considerable discussion concerning its authenticity. But the suggestion that Mazo's signature could be detected on it was repudiated by an expert committee in 1910 who carefully examined the painlitrs.
}
of which crcited the warm edmiration of Sir David Wilkic (No. 1057 in the Prado). The last of his works which we shall name is "Las Hilanderas" or the Spinners (Madrid, 1061), painted about 1656 , representing the interior of the royal tapestry works. The subject is nothing, the treatment everything. It is full of light, air and movement, splendid in colour and marvellous in handling. This picture, Raphael Mengs said, seemed to have been painted not by the hand but by the pure force of will. We see in it the full ripeness of the power of Velazquex, a concentration of all the art-knowledge he had gathered during his long artistic career of more than forty ycars. In no picture is he greater as a colourist. The scheme is simple-a harmony of red, bluish-green, grey and black, which are varied and blended with consummate skill.

In 1660 a treaty of peace between France and Spain was to be consummated by the marriage of the infanta Maria Theresa with Louis XIV., and the ceremony was to take place in the Island of Pheasants, a small swampy island in the Bidassoa. Velazquez was charged with the decoration of the Spanish pavilion and with the whole scenic display. In the midst of the grandees of the first two courts in Christendom Velazguez attracted much attention hy the nobility of his bearing and the splendour of his costume. On the 26th of June he returned to Madrid, and on the 3ist of July he was stricken with fever. Feeling his end approaching, he signed his will, appointing as his sole executors his wife and his firm friend Fuensalida, keeper of the royal records. He died on the 6th of August 1660 , passing away in the full possession of his great powers, and leaving no work behind him to show a trace of decay. He was buried in the Fuensalida vault of the church of San Juan, and within eight days his wife Juana was laid beside him. Unfortunately this church was destroyed by the French in 1818, so that his place of interment is now unknown. There was much difficulty in adjusting the tangled acconnts outstanding between Velazquez and the treasury, and it was not till I666, after the death of Philip, that they were finally settled.
Velazquez can hardly be ssid to have formed a school of painting. Apart from the circumstance that his occupations at court would have prevented this, his genius was too personal for transmission by teaching. Yet his influence on those immediately connected with him was considerahle. In 1642 he befriended young Murillo on his arrival in Madrid, received him into his house, and directed his studies for three years. His son-in-law mazo painted in his manner, and doubtless many pictures by Mazo are attributed to the master. Carrefio, though never a pupil, was a favourite and had the good sense to appreciste him and imitate him. His faithful slave Pareja studied his met hods and produced work which by the favour of Velazquez procured his manuraission from Philip. But the appreciation of the fine talent of Velazquez passed away quickly in Spain, as that country began to fall to pieces.
In addition to the standard works by Palomino (1724), Cean Bermudez (1800) and Pacheco (1649), sce the biographical notice by Don Pedro de Madrazo in his Calalogo del Museo del Prado (1872): Velozquez and his Works (1855) and Annals of Artists of Spain (1848) by W. Stirling (afterwards Sir W. Stirling-Maxwell); Ford's Handbook to Spain (1855) and his article in the English Cyclopaedia; Velazques and Murillo by Charles B. Curtis (1883); the works of W. Burger (T. Thoré); Geseh. d Nalerci, by Woltmann and Woermann: Sir Edmund Head's Handbook of Spanish Painting (1848); Works of Velazques (prints), by G. W. Reid (1872): Gaz d. Beaux Arts, art. "Velazquez," by Paul Lefort (second period, 1879-82); Carl Justi, Diego Velorques w. sein Jahrhundert (2 vols., Bonn, 1888); The Lifc of Vclasques, by Sir Walter Armstrong (London, 1896); Velazques, by R. A. M. Stevenson (London, 1899): Velazquez outside the Prado Museum, by Don Manuel Mesanero Romanos (Madrid, 1899); The Life and Works of Don Diego Velasques, by Don Jacinto Octavio Picon (Madrid, 1899); Days with Velazquez, by C. Lewis Hind (London, 1906); and. finally, Don A. de Beruete's standard work on the subject. Velazguos (London, 1go6), which contains reproductions of all the master's paintings of which the author admins the authenticity.
(J. F. W.; P. G. K.)

VBLEIA, an ancient town of Acmilia, Italy, situated about 20 m . S. of Placentia. It is mentioned by Pliny among the towns of the eighth region, though the Velciates were Ligarians
by race. Its inhabitants were in the census of Veapactint found to be remartable for their longevity. Nothing further was known of it until 1747, when some ploughmen found the famous Tabula alimenteris, now in the museum at Parma. This, the largest inscribed brenze tablet of antiquity (4 ft .6 in . by 9 ft .6 in .) contains the list of estates in the territories of Veleia, Libarna, Placentia, Parma and Luca, in which Trajan had assigned before 102 B.c. 72,000 sesterces (\(\mathbf{f}_{72 \mathrm{~F}}\)) and then \(x, 044,000\) sesterces (1 ro,440), on a mortgage bond to forty-six estates, the total value of which was reckoned at ower \(13,000,000\) sesterces (\((130,000\)), the interest on which at \(5 \%\) was to serve for the support of 266 boys and 36 girls, the former receiving 16, the latter 12 sesterces a month. See Ligwress Baebiani for a similar inscription. Excavations were begun on the site in 1760, and were at first successful; the forum and basilica, the thermae and the amphithestre, private houses, \&c. with many statfes. (twelve of marble from the basilica, and a fine bronze head of Hadrian) and inscriptions were discovered. Pre-Roman cremation tombs have also been found, with objects of hronze and iron of no great value. Bit later excavations which were carried on at intervals up to \(\mathbf{1 8 7 6}\) have given lcss fruitful results. The oldest dated monument is a bronge tablet with a portion of tbe text of the Lex Rubria of 49 B.c. Which dealt with the administration of justice in Cisalpine Gaul in connexion with the extension to it of the privileges of the Roman franchise, the latest an inscription of A.D. a76. How and when it was abandoned is uncertain: the previously prevalent view that it was destroyed hy a landstip was proved to be mistaken by the exeavations of \(\mathbf{1 8 7 6}\). Most of the objects found are in the muscum at Parma.

See G. Antollni, Le Revine di Veleia (Milan, 183i); G. Mariotii in Notizie degli Scavi (1877). 157; E. Eormana in Corpas Inscript. Latin (Berlin, 1888), xi. 204 sq9.
(T. As.)

VELER-贾iLAGA, a town of southerm Spain, in the province of Málaga, finely situated in a fertile valley at the southern base of the lofty Sierra de Alhama, and on the teft bank of the small river Vélez. 1 m . from its mouth and 27 m . by road E.N.E of Malaga. Pop. (\(\mathbf{1 9 0 0}\)) 23.586. Vélex-Málaga formerly was a place of considerahle commercial importance, but its prosperity has much declined; there is no railway, and the town suffered severely in the earthquakes of 1884 and the floods of 1907. The vegetation of the neighbourhood is most luxuriant, including the aloe, palm, sugar-cane, prickly pear, orange, vine, olive and sweet potato. Velez-Malaga was held by the Moors from 711 to 1487, when it was captured by Ferdinand of Castile. Under Moorish rule the citadel was built and the town became an important trading station and fortress. Its harbour, the Vélez estuary, affords good anchorage and is well shettered.
VBLIA (Gr. 'Tè \(\eta\), later 'ENfa), an ancient town of Lucania, Italy, on the hill now crowned by the medieval castle of Castellammare della Brica, 440 ft . above sca-level, on the S.W. coast, 13 m . N.W. of the modern railway station of Asceia, 25 m. S.E. of Paestum. Remains of the city walls, with traces of one gate and several towers, of a total length of over 3 m ., still exist, and belong to three different periods, in all of which the crystalline limestone of the locality is used. Bricks werc also employed in later times; their form is peculiar to this place, each having two rectangular channels on one side, and being about 15 in. square, with a thickness of nearly 4 in. They all bear Greek brick-stamps. There are some remains of cisterns on the site, and various other traces of buildings. The town was mainly celebrated for the philosophers who bore its name (see Eleatic Schoor). About 530 a.c. the Phocaeans. driven from Corsica, seized it from the Oenotrians. Its coins were widely diffused in S. Italy, and it kept its independence even in Roman times, and only became a manicipium after the Social War.
See W. Schlenning in Jakrback des K. Deudschen Arch. Institels (1889). iv. 169 sq9.
(T, As.)
VELIUS LONEOS (2nd cent. A.D.), Latin grammarian during the' reign of Trajan (or Hadrian), author of an extant treatise un Orthography (H. Keil, Crammafici Latime, vii.). He is
mentioned by Macrobius (Sofurnalic, iii. 6, 6) and Servius (on Aew. x. s4s) as a commentator on Virgil.
See M. Schanz, Geschichle der romischen Litlerafur, iv. 1 (1904); Teuffel, Hist, of Raman Literalare (Eng. trans., 1900), 343, 2.

VELEEIUS PATERCULUS, MARCUS (c. 19 b.c.-c. a.d. 3i), Roman historian. Although his praenomen is given as Marcus by Priscian, some modern scholars identify him with Gaius Velleius Paterculus, whose name occurs in an inscription on a north African milestone (C.I.L. viii. ro, 3 ri). He belonged to a distinguished Campanian family, and early entered the army. He served as military tribunc in Thrace, Macedonia, Greece and the East, and in A.D. 2 was present at the interview on the Euphrates between Gaius Caesar, grandson of Augustus, and the Parthian king. Afterwards, as pracfect of cavalry and legatus, he served for eight years (from A.D. 4) in Germany and Pannonia under Tiberius. For his services he was rewarded with the quaestorship in 7 , and, together with his brother, with the praetorship in 15 . He was still alive in 30 , for history contains many references to the consulship of M. Vinicius in that year. It has been conjectured that be was put to death in 31 as a friend of Sejanus, whose praises he celebrates in a most fulsome manner.

He wrote a compendium of Roman history in two books dedicated to M. Vinicius, Irom the dispersion of the Greeks after the siege of Troy down to the death of Livia (A.d. 29). The first book hrings the history down to the destruction of Carthage, 146 B.c.; portions of it are wanting, including the beginning. The later history, especially the period from the death of Caesar, 44 8.C., to the death of Augustus, A.D. 14, is treated in much preater detail. Brief notices are given of Greck and Roman literature, but it is strange that no mention is made of Plautus, Horace and Propertius. The author is a vain and shallow courtier, and destitute of real historical insight, atthough generally trustworthy in his statements of individual facts. He may be regarded as a courtly annalist rather than an historian. His knowledge is superficial, his blunders numerous, his chronology inconsistent. He labours at portraitpainting, but his portraits are daubs. On Caesar, Augustus and above all on his patron Tiberius, be lavishes praise or flattery. The repetitions, redundancies, and slovenliness of expression which disfigure the work may be partly due to the haste with which (as the author frequently reminds us) it was written. Some hlemishes of style, particularly the clumsy and invoived structure of his sentences, may perhaps be ascribed to insufficient literary training. The inflated rhetoric, the straining after effect by means of hyperbole, antithesis and epigram, mark the degenerate taste of the Silver Age, of which Paterculus is the earliest example. He purposed to write a fuller history of the later period, which should include the civil war between Caesar and Pompey and the wars of Tiberius; but there is no evidence that he carried out this intention. His chief authorities were Cato's Origines, the Annales of Q. Hortensius, Pompeius Trogus, Cornelius Nepos and Livy.

Velkius Patercuius was little known In antiquity, He seems to have been read by Lucan and imitated by Sulpicius Severus, but be is mentioned only by the scholiast on Luran, and once by Priscian. The text of the work, preserved in a single badly written and mutilated MS. (discovered by Beatus Rnenanus in i515 in the abbey of Murbach in Alsace and now lost). is very corrupt. Edjitio princeps, 1520 ; early editions by the great scholars justus Lipmius, J. Gruter, N. Heinsius. P. Burmann; modern editions, Rubnken and Frotscher (\(1830-39\)). J. C. Orelli (1835). F. Kritz (1840, ed min. 1848), F. Haase (i858), C. Halm (1876), R. Elis (1898) (revicwed by W. Warde Fowler in Classical Reviers. May 1899): on the sources see. Burmeister, "De Fontibus Veilei Paterculi." in Berlimer Simdiem fir classische Philologic (1894), xv. English translation by J. S. Watson in Bohn's Classical Library.

VELLETRI (anc. Velitrac), a town and episcopal see of the province of Rome, Italy, at the south-east foot of the outer ring wall of the Alban crater, 26 m. S.E. of Rome hy rail, 1155 ft . above sea-level Pop. (\(\mathrm{rgo1}\)) 14,243 (town), 18,734 (commune). It is the seat of the bishop of Ostia, and has a statue of Pope Clement VIII. Good vine is made in the fertile vineyards of the district, and there is a government experimental
station for viticulture. Velletri is the junction of the Terracina line and a branch to Segai on the main line to Naples. Velletri has a fine view of the Volscian mountains and over the Pomptine Marshes to the Circeian promontory. The town contains a few objects of interest; at the highest point is the prominent municipal palace, containing a few ancient inscriptions, among them one relating to a restoration of the amphitheatre uader Valentinian and Valens. The internal fassde of the Palazzo Ginetti is finely decorated with stucco, and bas a curious detached baroque staircase by Martino Lunghi the younger, which Burckhardt calls unique if only for the view to which its arched colonaades serve as 2 frame. The lofty campanile of S. Maria in Trivio, erected in 1353 in gratitude for the liberation of the city from a plague which devastated it in 1348, is in the style of contemporary brick campanili in Rome, but built mainly of hlack selce, with white marble columns at the wiodows. The cathedral (the see of the titular hishop of Ostia) was reconstructed in 1660 , but contains traces of the older structure. Of the ancient town nothing practically remains above ground; scanty traces of the city walls have been excavated (and covered again) near the railway station, and the present walls are entirely medieval.

The ancient city of Velitrae was Volscian in Republican times, and it is the only Volscian town of which an inscription in that language is preserved (4th century. B.c.). It mentions the two principal magistrates as medix. It wns, however, a member of the Latin League in 499 B.c., so that in origin it may have been Latin and have fallen into Volscian bands later. It was important as commanding the approach to the valley between the Alban and Volscian mountains. In 494 it was taken from the Volscians and became a Roman colony. This was strengthened in 404, but in 393 Velitrae regained its Ireedom and was Rome's strongest opponent; it was only reduced in 338, when the freedom of Latium finally perished. Its resistance wns punished by the destruction of its walls and the banishment oi its town councillors to Etruria, while their lands were handed over to Roman colonists. We hear little or nothing of it subsequently except as the home of the gens Octavia, to which the Emperor Augustus belonged. The neighbourhood contains some remains of villas, but not proportionately very many; there are more on the side towards Lanuvium (W.). The Via Appia passed considerably below the town (some 5 m . away), which was reached by a branch road from it, diverging at the post station of Sublanuvio. During the whole of the middie ages it was subject to the papacy.
(T. As.)

VBLLORE, a town of British India, in the North Arcot district of Madras, on the river Palar and the South Indian railway, 87 m . W. of Madras city. Pop. (1901) 43,537. It bas 2 strongly built fortress, which was famous in the wars of the Carnatic. It dates traditionally from the intb ceatury, but more probably only from the 17 th. It is 2 fine example of Indian military architecture, and contains a temple adorned with admirahle sculptures. In 1780 it withstood a siege for two years by Hyder Ali. After the fall of Seringapatam (1799) Vellore was selected as the residence of the sons of Tippoo Sahib, and to their intrigues bas been attributed the mutiny of the sepoys here in 1806. An American mission manages a bigh school, raised to the rank of a college in 1808; and the police training school for the presidency is also situated here. Vellore has a large grain trade, and flowers are cultivated in the vicinity.

VBLVET, a silken textile fabric having a short dense piled sorface. In all probability the art of velvet-weaving originated in the Far East; and it is not till about the beginning of the 14th century that we find eny mention of the textie. The peculiar properties of velvet, the splendid yet softened depth of dye-colour it exhibited, at once marked it out as a fit material for ecclesiastical vestments, royal and state robes, and sumptuous hangings; and the most magnificent textures of medieval times were Italian velvets. These were in many ways most effectively treated for ornamentation, such as by varying the colour of the pile, by producing pile of different lengths (pile
upon pile, or double pile), and by brocading with plain silk, with uncut pile or with a ground of gold tissue, \&c. The earliest sources of European artistic velvets were Lucca, Genoa, Florence and Venice, and Genoa continues to send out rich velvet textures. Somewhat later the art was taken up by Flemish weavers, and in the 16 h century Bruges attained a reputation for velvets not inferior to that of the great Italian cities.

VELVETEEN, a cotton cloth made in imitation of velvet. The term is sometimes applied to a mixture of silk and cotton. Some velveteens are a kind of fustian, having a rib of velvet pile alternating with a plain depression. The velveteen trade varies a good deal with the fashions that control the production of velvet. Velveteens are commonly woveri in sheeting looms, and manufacturers are able to alternate the two kinds of goods according to the demand.
VBNAFROM, an ancient town of Campania, Italy, close to the boundarics of both Latium adjectum and Samnium. Its site is occupied by the modern Venafro, a village with 4716 inhabitants (1901), on the railway from Isernia to Caianello, 15 m . S.W. of the former, 658 ft . above sea-level. Ancient authors tell us hut little about it, except that it was one of those towns governed by a prefect sent yearly from Rome, and that in the Social War it was taken by the allies by treachery. Augustus founded a colony there and provided for the construction of an aqueduct (cf. the long decree relating to it in Corp. Inscr. Lat. x. No. 4842). It seems to have been a place of some importance. Its olive oil was the best in It aly, and Cnto mentions its brickworks and iron manulactures. The original line of the Via Latina probably ran through Venafrum, making a détour, which the later road seems to have avoided (cí. Latina, Via). Rufrae was probably dependent on it. Roads also ran from Venafrum to Aesernia and to Telesia by way of Allifae. Of ancient remains hardly anything is left-some traces of an amphitheatre and fragments of polygonal walls only. (T. As.)
VENDACE, the name of a British freshwater fish of the genus Coregonus, of which two other species are indigenous in the fresh waters of the British Islands, the gwyniad and the pollan. The vendace (C. vordesius) is restricted to some lochs in Dumfriesshire, Scotland; it is, however, very similar to a species (C. albula) which inhabits some of the large and deep lakes of northern Europe. From its general resemblance to a dace the French name of the latter, pondoise, was transferred to it at the period when French was the language of the court and aristocracy of Scotland. So great is the local celebrity of the fish that a story has been invented ascribing to Mary Queen of Scots the merit of having introduced it into the Lochmaben lochs. It is considered a great delicacy, and on favourable days when the shoals rise to the surface, near the edges of the loch, great numbers may be taken. It spawns in November. In length it scarcely exceeds 8 in .
VBNDEB, a maritime department of western France, formed in 1790 out of Bas-Poitou, and taking its name from an unimportant tributary of the Sedvre Niortaise. It is bounded by Loire-Inférieure and Maine-et-Loire on the N., by Deux-Sèvres on the E., by Charente-Inférieure on the S. and by the Allantic Ocean on the W. for 93 m . Pop. (1906) 442,777 . Area, 2708 sq. m . The islands of Yeu (area, \(8 \frac{1}{2}\) sq. m.) and Noirmoutier (q.o.) are included. The Sevre Nantaise on the N.E. and the Sevre Niortaise on the S., besides other streams of minor importance, form natural boundaries. The department falls into three divisions-woodland (Bocage), plain (Cote) and marsh (Marais).
The highest point (748 ft .) is situated in the woodland, which occupies the greater part of Vendke, on the water-paring between the Loire and the nivers of the coast. This region, which, geologically, is composed of granite, gneiss, mica-schist, schist and lias. abounds in springs, and is fresh and verdant; the landscape is characterized by open fields surrounded by trees, which supplied ambushes and retreats to the Vendéans in the civil war at the end of the 18th century. The marshes, raised above the sea-level within historic times (four centuries ago), consist of two portions, the Breton marsh in the north and the Poitevin marsh in the south: the latter exiends into the departments of Charente-Inferieure and un-Sevres. The region includes productive aalk marshes and
fertile cultivated areas artificially drained. Its area is comstantly being increased by the alluvium of the rivers and the mecular elevation of the coast. The celebrated beds of sea-shells near St Michel en I'Herm-2300 ft . long, 985 ft . broad and from 30 to 50 ft . deep -show to what extent the coast has risen. The plain of Vendée lying bet ween the Bocage and the Poitevin marsh is bare and treeless, but lertile, though poor in springs; geologically it is composed of lias and oolite. The department is drained by the Sevre Nantaise (tributary of the Loire) and the Boulogne (a feeder of Lake Crandlien In Loire-Inférieure), both draining into the basin of the Loire: and by the Vie, the Lay (with the Yon). and the Sevre Niortaise (with the Autise and the Vendée), which flow into the Atlantic. The climate is that of the Girondine region. mild and damp, the tempera 1 ure rarely rising above \(77^{\circ}\) or falling below \(18^{\circ}\) F.: \(: 20\) to 150 days of rain give an average annual rainfall of 25 in . The woodland is colder than the plain, and the marsh is damp and unhealthy.
The deparment is agriculturally prosperous. Wheat is the most imponant crop, oats, potatoes, clover, lucerne and mangoldwurzels ranking next. Beans, fax and colza may also be mentioned. Wine is grown in the south of the deparment. The rearing of live stocic flourishes in the Bocage and the marsh, the pastures of the latter nourishing fine oxen and horses, and sheep lamous for the excellence of their mutton. Cider-apples, pears, peaches, plums cherrics and walnuts are among the fruits grown. Coal is mimed in the south-east of the deparment (basin of Vouvant) and amimony is found; limestone is quarried. The spinning and weaving of wool. cotton and flax is carried on, and there are potterics, papermills, tan-yards, dye-works, manufactories of hats, boots and shoes. glass and la mpblack, flour-mills, distillerics, oil-works, tile-works and shipbuilding yards. Sardines and tinned foods are prepared. The sardine fishery is active on the coast and there are extensive oy sterbeds near Sables-d'Olonne. Corn, cattle, mules, fish, solt. Wine, honey, wood, glass and manure are exported: wine. wood, building matcrial, coal, phosphates and petroleum are among ihe imports Sables-d Olonne is the principal fishing and commertial pori.
Vendée is served by the Ouest-Etat raitway and has 81 m . of navigable rivers and canals. The department forms the diocese of Luson, has its court of appeal and educational centre at Poitiers. and is included in the district of the XI. Army Corps (headquariers at Nantes). There nre three arrondissements (La Roche-sur-Yon, Fontenay-le-Comte and Sables-d'Olonne), 30 cantons, and 304 communes. The principal towns are La Roche-sur-Yon, Les Sables-d'Olonne, Fontenay-le-Comte and Luçon, which are treated under separate headings. Other places of interest are Foussais Nieut-sur-l'Autise and Vouvant, with Romanesque churches; Pouzauges, which has a stronghold nf ihe I3th century: Maileerais, with the ruins of its old cathedral; Talmont and Tiffauges, boch possessing ruined castles; and Le.Bernard with noteworthy megalithic remains.

VEMDEE, WARS OP THE, a counter-revolutionary insurrection which took piace during the French Revolution (q.e.), not only in Vendé proper but also in Lower Poitou, Anjou, Lower Maine and Brittany. The district was mainly inhabited by peasants; it contained few important towns, and the bourgeois were but a feeble minority. The ideas of the Revolution were slow in penetrating to this ignorant peasant population, which had always been less civilized than the majority of Frenchmen, and in 1789 the events which roused enthusiasm throughout the rest of France left the Vendéans indifierent. Presently, too, signs of discontent appeared. The priests who had refused to submit to the Civil Constitution of the Clergy perambulated these retired districts, and stigmatized the revolutionists as heretics. In 1791 two "representatives on mission" informed the Convention of the disquieting condition of Vendfe, and this news was quiekly followed by the exposure of a royalist plot organized by the marquis de la Rouërie.

The signal for a widespread rising was the introduction of conscription acts for the recruiting of the depleted armies on the eastern frontiers. In February 1793 the Convention decreed a levy on the whole of France, and on the eve of the ballot the Vendée, rather than comply with this requisition, broke out in insurrection. The Vendéan peasant refused to join the republican army, not for want of fighting qualities or ardour, but because the army of the old régime was recruited from bad characters and broken men, and the peasant, ignorant of the great change that had followed the Revolution, thought that the barrack-room was no place for a good Christinn. In March 1793 the officer commanding at Cholet was killed, and republicans were massacred at Machecoul and St Florent. Giving rein to their ancient antipathy, the revolted peasantry attacked the towns, which were liberal in ideas and republicas
fin aympathies. The leaders of these first rizioges were men of humble birth, such as J. Cathelineau, a pediar, J. N. Stofflet, a gamekeeper, and the barber Gaston. Cholet, Bressuire, Fontenay-le-Comte and Samur were surprised. The influence of the priests kept up the fanaticism of the peasants, and a great manifestation of religious fecling took place on Easter eve, but the repuhlican soldiers taken prisoners were often maltreated and even tortured.

These first successes of the Vendéans coincided with grave republican reverses on the frontier-war with England, Holland and Spain, the defeat of Neerwinden and the defection of Dumourics. The emigrts then began to throw in their lot with the Vendeans. Royalist nobles like the marquis de Bonchamp, F. A. Charette de la Contrie, Gigot d'Elbé, Henri de la Rochejaquelein and the marquis de Lescure placed themselves at the head of the peasants. Although several of these leaders were Voltairians, they held up Louis XVI, who had been executed in January 1793, as a martyr to Catholicism, and the Vendeans, who had hitherto styled themselves the Christian Army, now adopted the name of the Catholic and Royal Army.

The Convention took measures against the \(\begin{gathered}\text { maigres and the }\end{gathered}\) refractory priests. By a decree of the 19th of March 1793 every person sccused of taking peitt in the counter-revolutionary revolts, or of wearing the white cockade (the royalist emblem), was deciared an outlaw. The prisoners were to he tried by military commissions, and the sole peralty was death with coniscation of property. The Convention also sent representatives on mission into Vendee to effect the purging of the municipalities, the reorganization of the national guards in the republican towns, and the active prosecution of the revolutionary propaganda. These measures proving insofficient, a decree was promulgated on the 30th of April 1793 for the despatch of regular troops; but, in spite of their failure to capture Nantes (where Cathelineau was mortally wounded), the successes of the Vendeans continued. On the 3rst of July, cherfore, at Barère's maggestion, it was decreed that the woods of the Veadie should be burnt, the harvest carried of to safe places in rear of the army, the cattle seized, the women and children concentrased in camps in the interior, and that every male from the age of sixteen in the neighbouring regions should be called upon to take arms. Further, on the rist of August, the troops that had formed the gamison of Mainz, which-were unavailable against foreign enemies by the terms of their capitulation to the Austrians, were ordered to Vendke. The progiamme was carried out by the so-called "infernal columns." 1 At the end of August 1793, the republicans had three armies in the Vende-the army of Rochelle, the army of Brest and the Mayenfais; but their genetals were either ciphers, like C. P. H. Ronsin, or divided among themselves, like J. A. Rossignol and J. B. C. Canclaux. They were uncertain whether to cot of the Vendeans from the sea or to drive them west wards; and moreover, their men were undisciplined. Although the peasants had to leave theit chiefs and work on the land, the Vendéans still remained formidable opponents. They were equipped partly with arms supplied by England, and partly with fowling-pieces, which at that period were superior to the small-arms used by the regular troops, and their intimate knowledge of the country gave them an immense advantage. They gathered and burst like 2 storm on their enemies, and, if repulsed, dispersed at the famous order, "Egaillez-vous les girs," to unite again some days later.
- The dissensions of the republican leaders and the demoralizing tactics of the Vendéans resulted in republican defeats at Chantomay, Torfou, Coron, St Lambert, Montaigu and St Fulgent. The Convention resolved to bring the war to an end before October, and placed the troops under the undivided command, first of Jean Léchelle and then of Louis Turreau, who had as sabordinates such men as Marceau, Kleber and Westermann. On the 7th of October the various divisions concentrated at Bressuire, took Chistillon after two bloody engagements, and defeated the Vendéans at Cholet, Beaupresu and La Trem-
blaye. After this repubse, the royalists, under Stofllet and La Rochejaquelein, attempted to rouse the Cotentin and crossed the Loire. Beaten back at Granville, they tried to re-enter the Vendse, but were repulsed at Angers. They re-formed at Le Mans, where they were defeated by Westermann, and the same officer definitively annihilated the main body of the insurgents at Savenay (December 1793).

Regular wariare was now at an end, although Turrean and his "infernal columns" still continued to scour the disaffected districts. After the gth Thermidor attempts were made to pacify the country. The Convention issued conciliatory proclamations allowing the Vendeans liberty of worship and goarantecing their property. General Hoche applied these measures with great success. He restored their cattle to the peasants who submitted, "let the priests have a few crowns," and on the soth of July 1795 annibilated an emigrt expedition which had been equipped in England and had seized Fort Penthièvre and Quiberon. Treaties were concluded at La Jaunaie (Fehruary 15,1795) and at La Mabillaie, and were fairly well observed by the Vendeans; and nothing remained but to cope with the feeble and scattered remnant of the Vendeans still under arms, and with the Chouans (q.v.). On the 3oth of July 1796 the state of siege was raised to the western departments.

During the Hundred Days there was a revival of the Vendéan war, the suppression of which occupied a large corps of Napoleon's army, and in a measure weakened him in the northern theatre of war (see Waterloo Caypaign).

In 1832 agnin an abortive insurrection broke out in support of the Bourbons, at the instigation of the duchess of Berry; the Vendéan hero on this occasion was the baron de Charette.

There are numerous articles on the Vendean insurrection of 1793 in the Revue da Bas-Poilou, Revue historique de l'Anjom, Revoue de Bretagne, de Vendéc at d'Anjou, Ravie hislorique de l'Onest, Repme historlque cl archéologique du Maine, and La Vendée historique. See also R. Bittard des Portes. "C Bibliographie historique et critique des guerres de Vendée et de la Chouannerie" in the Revue du Bas-Poitou (1903 seq.): C. L. Chassin, Eludes sur la Vendée et ha Chouanmerie (La preparation de la guerre-La Vemdé patriole-Les Pacifications de l'Ouest). Paris, \(18 \mathrm{~g}_{2}\) seq., II vols. (the best general work on the subject); C. Port, Les Origines de la Vendec (Paris, 1888); C. Leroux-Cesbron, "Correopondance des représentants en mission a l'armée de l'ovest (\(1794-95\))" in the Noxvelle Revue retrospective (1898); Blachez, Bonchamps at linsurrecliox sendtenne (Paris, 1902); P. Mautouchet, Le Conventionnel Philippeaux (Paris, 1901). On 1815 a modern work is Les Cent Jours en Vendée; le general Lamarque, by B. Laserre (Paris, 1907); on 1832 see La' Vendé, by Vicomte \(\AA\). de Courson (1909).
(R:A.")
VENDEMIAIRE (from Lat vindewia, vintage); the name given during the French Revolution to the first month of the year in the Republican Calendar. Vendemiaire began on the \(22 n d, 23\) rd or 24th of September, and ended on the \(22 n d, 23\) rd or 24th of October according to the year, and was the season of the vintage in the wine districts of northern France. In accordance with the suggestion of Fabre d'Eglantine, each of the days of the republican year was consecrated to some useful object. For instance, I Vendemiaire was the festival of the grape, ro Vendémiaire of the vat, 13 Vendémiaire of the pumpkin, 15 Vendémiaire of the ass, 20 Vendémiaire of the wine-press, and 30 Vendémiaire of the cask. The most important event in this month was the quelling of the royalist rising on 13 Vendémiaire year IV. (4th of Octoher 1795), in which General Bonaparte (afterwards the emperor Napoleon) distinguished himself by his energy and skill in using artillery.

See Baron R. de Larcy, Le 13 Vendémiaire (Paris, 1872).
VENDEITA (Ital. from Lat. pindicta, revenge, pindicars, to defend oneself), the term applied to the custom of the family feud, by which the nearest kinsman of a murdered man was obliged to take up the quarrel and avenge his death. From being an ohligation upon the nearest, it grew to be an obligation on all the relatives, involving families in hitter private wars among themselves. It is a devolopment of that stage in civilization common to all primitive communities, when the injury done was held to be more than personal, a wrong done to the whole gens.

The term originated in Corsica, where the vendetta has long played an important part in the social life. If the murderer could not be found, his family were liable to fall victims to the vendetta. The feud was sometimes complicated by the rendella transversate, when each of two branches of a family had a murder to revenge on the other. In Corsica it was regarded as the most sacred family duty. Mediators (parolenti) sometimes intervened successfully to end the feuds, and extort an oath to forgo vengeance. The custom still survives in Corsica in its ccmplete form, and partially in Sardinia, Sicily, Montenegro, Afghanistan, among the Mainotes of Greece, the Albanians, Druses and Bedouins.

VENDOME, LOUIS JOSEPH, DUC DE (1654-1712), marshal of France, was the son of Louis, and duke of Vendorme, and the great-grandson of Heary IV. and Gabrielle d'Estrees. Entering the army at the age of eighteen he soon distinguished himself by his vigour and personal courage in the Dutch wars, and by 1688 he had risen to the rank of lieutenant-general. In the war of the Grand Alliance he rendered conspicuous service under Luremburg at Steinkirk and under Catinat at Marsaglia, and in 1695 he was placed in command of the army operating in Catalonia where be took Barcelona. Soon afterwards he received the marshalate. In 1702, after the first unsuccessful campaign of Catinat and Villeroi, he was placed in command of the FrancoSpanish army in Italy (sce Spantsh Succession War). During three campaigns in that country he proved himself a worthy antagonist to Prince Eugene, whom at last he defeated at Cassano by his magnificent courage and command over his froops, converting the defeat that his indolent brotber, the Grand Prior, bad incurred into a glorious success. Next year, after bolding his own as before, he was sent to Flanders to repair the disaster of Ramillies with the result that bis successors Marsin and Philip of Otleans were totally defeated, while in the new sphere Vendome was merely the mentor of the pious and unenterprising duke of Burgundy, and was unable to prevent the defeat of Oudenarde. He therefore retired in disgust to his estates, hut it was not long before be was summoned to take command of the army of Philip in Spain, and there he won his last victories, crowning his work with the battle of Villaviciosa. Before the end of the war he died suddenly at Vinaros on the 11th of June 1712. Vendome was one of the most remarkahle soldiers in the history of the French army, and second only to Villars amongst the generals of France of the 18th century. He had, besides the skill and the fertile imagination of the true army leader, the brilliant courage of a soldier. But the real secret of his uniform success was his extraordinary influence over his men.

VENDOME, a town of north-central France, capital of an arrondissement in the department of Loir-et-Cher, 22 m. N.W. of Blois by rail. Pop. (1906) town, 7381; commune, 9804. Vendome is situated on the Loir, which here divides into numerous arms intersecting the town. On the soutb it is overlooked by an eminence on which stand ruins of the castle of the counts of Vendome, dating in part to the inth century. The abbeychurch of the Trinity (12 th to 15 th century) has a fine facade in the florid Gothic style. The belfry, surmounted by a slone steeple, stands isolated in front of the church; it belongs to the middle of the 12th century, and is one of tbe finest examples of Transition architecture. Abbey buildings of various periods lie round the church. The church of La Madeleine (15 th century) is surmounted hy a stone spire, an indifferent imitation of that of the abbey. The fine tower of St Martin (16th century) is all that remains of the church of that name. The town hall occupies the old gate of St George; its river front is composed of two large crenclated and machicolated towers, connected hy a pavilion. The ancient hospital of St Jacques afterwards became a college of the Oratorians, and now scrves as a lycée for boys; the charming chapel, dating from the 1 gth century, in the most florid Gothic style, is preserved. The town has a well known archacological and scientific society, and possesses a library with more than three hundred MSS., and a musenm, mostly
magical, in front of which stands a statue of the poct

Ronsard. There is also a stetue of Maritil Rochambean, bom at Vendome in 1725. There are some interesting houses of the 15th and 16th centuries. Vendome has a sub-prefecture and a tribunal of first instance. The river supplies motive power to four-mills, and the town manufactures gloves, paper and carved mouldings, and carries on tanning and nursery-gardening together with trade in butter and cheese.

Vendome (Vindocinsm) appears originally to have been a Gallic oppidum, replaced later by a feadal castie, around whith the modern town armse. Christianity was introduced by St Bienheure in the sth century, and the important abbey of the Trinity (which claimed to possess a tear shed by Cbrist at the tomb of Lazarus) was founded about 1030 . When the reign of the Capetian dynasty began, Vendome was the chief town of a countship bolonging to Bouchard, called "tbe Venerable," who died in the monastery of Sairt-Maur-des-Foss's in roo7. The succession passed hy various marriages to the houses of Nevers, Preuilty and Montoire. Bouchard VII., count of Vendome and Castres (d. c. 1374), left as his heiress his sister Catherine, tbe wife of John of Bourbon, count of la Marche. The countship of Vendome was raised to the rank of a duchy and a peerage of France for Charles of Bourbon (1515); bis son Antbony of Bourbon, king of Navarre, was the father of Henry IV., who gave the duchy of Vendome in 1598 to his natural son Caesar (1594-1665). Caesar, duke of Vendome, took part in the disturbances which went on in France under the government of Richelien and of Mazarin, and had as his sons Louis, duke of Vendome (1612-1669), who married a niece of Mazarin, and Francis, duke of Beaufort. The last of the family in the male line (\(1645-1712\)) was Louis XIV.'s famous general, Louis Joseph, duke of Vendome (\(q . v\).). The title of duke of Vendome is now borme by Prince Emmanuel of Orleans, son of the duke of Alengon.
See J. de Pétigny, Histoire archéologique du Vendemeis (zad ed, 1882).

VENEERR, a thin layer of wood, ivory, pearl or other material of high decorative value fixed to a poorer surface by glue or other adhesive to improve its appearance. Wood veneers are exceedingly common: only the best woods are used and the layer may be as thin as paper-a circumstance due to improvements in the machinery for cutting the logs. The surface to which the veneer is to be attached is prepared perfectly emooth, a film of glue applied, and then the veneer laid on. It is now ironed perfectly flat, all superfluous glue being pressed out, and then allowed to dry in a preas. The surface is now ready for polishing.

VRNRR [Wener or Vaner; often written, with the addition of the definite article, Venern], the largest lalke in Sweden and the third largest in Europe. It has an area of \(2149 \mathrm{sq} . \mathrm{mm}\); a maximum lengtb of 87 m. ; an extreme hreadth of 44 mm ; a maximum depth of 292 ft ; and an alitude above sea-level of 144 ft ., though the surface sometimes rises as much as ro ft . or more, for the lake is the recipient of the waters of numerceas streams, the largest being the Klar, wbich drains the forests of Vermland and Kopparberg to the nortb. It is drained by the Göta river southward to the Cattegat. It is divided into two basins by two peninsulas and a group of islands, the western hall heing known as Lake Dalbo. The northern shores are high, rocky and in part wooded, the southem open and low, though isolated bills occur, such as the Kinnekulle (988 ft .), an abrupt hill exhibiting a remarkable series of geological strata. Several islands fringe this shore; of these Lecko has a fine medieval castle. This lake and Lake Vetter contain degenerate species of marine fauna, left after the retreat of the ses in which both wrere formerly included.

By means of the Dalsland Canal from Kopmannabro, midwny on the west shore of Dalbo, the lake. which is the scene of a busy traffic in timber, iron and agricultural produce, has communication with Fredrikshald in Norway; and it is traversed from Vencrstors on the south to Sjotorp on the east by the Goia (9.v.) Canal route The principal labc-ports are-on the north Karistad (\(£ s\).) and Kristinchamn, with iron-works and tobacco factory; on the eax Mariestad, chief town of the district of Scaraborg, taking its mame from the queen of Chatles IX. (1599-1611); on the south Lidkbping. pear the Kincekulle, and Venerebory at the outflow of the Coing

Fhh ite old brdjee and cenal of the 1jth ectury, a maneam, and iron foundries, thaneries and match and paper fectories

VETERABLS (Lat. penerabilis, worthy of reverepce, Pencrari, to reverence, to worship, allied to Venus, love; the Indo-Germ. root is wen-, to desire, whence Eng. "win," properly to struggle for, hence to gain), worthy of honour, respect and reverence, especially a term applied to dignified or honourable age. It is specifically used as a title of address given to archdeacons in the Anglican Church. It was naturally a term of respectiul address from early times; thus St Augustine (Epist. 76, 88, 139) cites it of bishops, and Philip I. of France was styled venerabitis and pencrandus (see Du Cange, Gloss. s.v. Venerabilitas). In the Roman Church the granting of the title "vencrabie" is the firat step in the long process of the canonization of saints (see Canomization).

VENEREAL DISEASEs (from "venery," ice the pursuit of Venus, the goddess of love), a general term for the diseases resulling from impure sexual intercourse. Three distinct affections are included ander this term-gonorrhoea, local contagious ulcers, knowa as chancres, and syphilis. At one time these were regarded as different forms of the aame diseasc. They are, however, three distinct diseases, due to separate causes, and have nothing in common except their habitat. The cause in each case is a definite specific virus, a microorganism. In the case of gonorrhoea the virus attacks the mucous membranes, especially that of the urelhra, the vagina and the uterus. Chancres attack the mucous membranes and the skin. In syphilis the whole system comes under the inilueace of the poison.

Though these threo affections are generally acquired as the result of impure sexual intercourse, there are other methods of contagion, as, for example, when the accoucheur is poisoned whilst detivering a syphilitic woman, the surgeon when operating on a syphilitic patient, the wet-nurse who is suckling a syphilhic infant, and so on. An individual may be attacked by any one or any two of the three, or by all at the same lime, as the result of one and the same connexion. But they do not show themselves at the same time. In other words, they have different stages of incubation. In gonorthoea tho disease appears very rapidly. So also in the case of the soft chancres, the first symptoms commencing as a rule three or four days after inoculation. It is different, however, with syphilis, the period of incubation being twenty-eight days, though it may be much longer. The length of the period of incubation, therefore, is of great diagnostic help in the case of syphitis.

For many years the term "venereal disease" was used very loosely, though the writers before the year 1786 had a tolerably clear idea that three distinct diseases were included under the term: the lues venerea, now called syphilis, gonorrhoea, and a condition leading to bubo and associated with a multipte chancre which is known at the present day as "soft sores." John Hunter, as the result of an unfortunate experiment. taught that there was but a single venereal poison which manifested itself in different ways. It took the French school many years of hard work to show that the poison of syphilis was distinct from that producing a solt sore, and that the virus of a soft sore was incapable, when pure, of causing gonorrhoea.

The evidence brought forward by Ricord, by Lancereaux and by Fournier was convincing. It has been confirmed by bacteriology, and it has happened by a remarkable coincidence that the truth of the French teaching about syphilis was first established on the firm basis of experiment in France itself, when Professor Metchnikofi at the Institut Pasteur in Paris give in his adherence to Schaudinn's work, which showed that the Spirochaeta pallida germ was the cause of the disease.

\section*{A. Goworrhoea.}

Gonorrhoea is a epecific inflammation of the mucous memhrane of the urethre and other pasages, by the reception into it of cerms known as diplococci (Jiphith, double: abraet. berry-the cerms being double, like the halves of a walnut). After the illus. trious dincoverer, the germ is often apotien of st the ponococcus of Neiser. Conorthoes in apt to be a very swioves disease, and it sometimes ends facally.

The germes find cemrance doring coitus and makiphy at enormous rate mpreading to ald the glands and crevices of the mermbrane, and eetting free in their development a toxio which causes great irritation of the pasmere with iaflammation and awelling. They remanin quietly incubating for throe or four days, or even longer: then acute indammetion comes on, with protuse discharge of thick yellow matter, with mach scalding duriag micturition, and there may be eo much locad pain that it is difficult for the person to move about. Microscopic examination of the discharge shows abundant pus corpusciea and epithelial ocils from the membrane, together with swarma of diplococci (gonococei).
The inflammatory procese may extend backwards and give rive to acute procatitis (see Prostatz Gland), with reteation of urine: to the duct of the tesses and give rise to acute epidjdymitis (swollen testicie): and to the bladder, causing acute cystitis. It may also cause local abscemes, or, by irritation, set up crops of warth.
The treatment of acute conomboea is best carried out it the patient can lie up for a while. He muat avoid all fermented drinks and rich foods, and mexual and other excitement, and he should drink freety of such things as bariey-water, in order to dilute, and lescen the irritation of, the urine. Hot baths are comforting. Laxativee should be freely given. The urethra should be frequently washed out with a warm solution of permanganate of potach, a graid to the pint, and, later, a weak solution of one of the sinc or wilver ralts may be used as an injection.
Capaules of copribe or oil of sandalwood, and a paste of cubebs pepper, bave a bencficial influence, and, later, if the man is depressed, quinine and iron will be found useful.

In ren days or a fortnight the inflammation gradually subsides. a this watery discharge remaining which is known as gleet. Dut inasruseh as this discharge contains gonococci it may, though scarce noticeable, set up acute specific inflammation in the opposite sex.
In the case of the female the inflammation is a pe to extend to the uterus and along the Fallopian tubet, perhaps to give rise to an abscess in the tube (salpingitis) which, bursting, may cause fatal peritonitis.
A lingering gleet may be due to the presence of a definite ulceration in the unthra, as shown by examination with a slender tube illumineted by efectricity-the endoscope. The uleer having been induced to heal by the application of a nitrate of silver lotion, all discharges cease. Chronic inflammation is necessarily associated with the formation uf interatitial fibrous tissue, and the contraction of this new formation causes narrowing of the urethra, or stricture. Thus gleet and atricture are of ten associated, and the occasional. pasagge of a large bougie may suffice to cure both. Often, however a stricture of the uremhra proves rebellious in the extreme, and leads te diseases of the bladder and kidneys which may prove fatal.

One of the mox important points in the management of a case of gonorrhoea is to prevent all risk of the septic discharge coming into contact with the eye. It sometimes happens that the patient inadvertently introduces the germs into his own eye by his finger, or that his eye, or the eye of some member of the household. becomes inoculated by the use of an infected towel. If this happen, prompt and energetic measures must be taken to save the eye.
If so be that at the time of delivery a woman be the subject of sonorrhoea, there is great probability of the eyes of the infant being affected. The symptoms appear on the third day after birth, and the disease may end in complete blindness. The name of the disease is ophthalmia neonaformm (see Blindxess).

By the term gonorthocal rhemmatism it is implied that the gonococci have been carried by the biood stream to one or more joints in which an acute inflammation has been set up. It is apt to occur in the third week of the disease, and it may end in permanent stiffness of the joints or in abscess.

In rare cases the germs find their way to the pleura or pericardium, setting up an inflammation which may even end fatally.
For a man to marry whilst there is the slightest risk of his still being the subject of gonorrhoea would be to subject his wife to the probability of infection, ending with chronic inflammation of the womb or of septic peritonitis. Yet it is often extremely difficult to say when a man is cured. That there is no longer any discharge does not suffice to show that he has ceased to be inlective. Nothing less than repeated examinations of the urethral mucus by the microscope, ending in a negative result, should be acrepted as evidence of the cure being complete. And these examinations should be made after he has returned to tris former ways of eating. drinking and working.

\section*{B. Local Contagions Uluers.}

Chencroid, sofl chancre or soff sone is so named in contradistinction to the Hutetrian wore of syphilitic infection, the one characteristic of which is its hardness. The solt chancre is a contagious ulcer of the genitals, due to the inoculation of a distinct form of microorganism, the bacillus of Ducrey: and, provided that the specific germ of syphilis is not inoculated at the same time, the chancre is nor followed by comstitutional affection. In other words, the disease is purely tocal, and it some of the discharge of one of these ulcers is inocralated on apother part of the body of the individual a more of an exactly similar nature appears. This reproduction of the sore can be done over and over again on the wame individual.
always with the same result. But in the case of the Hunterian sore, inoculation of the individual from the primary more gives no result, because, as explained below, the constitutional disease has rendered the individual proof against further infection. The soft sore is often multiple. It makes its appearance about three daya after the exposure, and as it increases in size free suppuration talcea place. It is often of about the side of a silver threepence.' Its base remains soft. In individuals broken down in health, the ulceration is apt to extend with great rapidity, and is then spoken of as phagedaenic.

Just as an individual may contract syphilis and gonorrhoea at the same connexion, 90 also be may be inoculated simultaneously with the bacilli of the soft chancre and the spirocbacte of syphilis. In this case the soft chancres may make their appearance, as usual, within the first three or four days, but though passing through the customary stages they may refuse quite to heal, or, having healed, they may become indurated in the second month, constitutional symptoms following in due course.

The virulence of soft sores being due to the presence of harmful germs, the surface of the sores should be touched with pure carbolic acid, which has the effect of destroying the germs and converting the sores into healthy ulcers. Or the chancres may be treated by the application of lint soaked in weak carbolic lotion. If the sore happens to be under a tight prepuce, and the germs are of great activity-as is apt to happen in such a case-ulceration may extend with extreme rapidity. It is advisable, therefore, to remove or to lay open the prepuce, in order that the tores may be effectively dealt with
Bubo.-The bacilli from the soft sore are apt to find their way into the Iymphatic vessels, and so to reach the glands in the groin, when they get up destructive inflammation. Under the influence of rest the inflammation may subside, but if it continues and suppuration threatens, the gland had better be laid open and scraped out. If a speck of the contents of the abscess be inoculated on to the skin, a soft chancre is again produced.

\section*{C. Syphilis.}

The cause of syphilis, whether inherited or-acquired, is the presence in the blood and tissues of the same organism, which can be demonstrated in the various secondary lesions, in the blood and in the internal organs. The name of the germ is Spirochoefa pallida \(;^{1}\) it is a protozoon of spiral form, fron 4 to \(20 \mu\) in length and \(\frac{1}{4} \mu\) in diameter, with a flagellum at either extremity. It possesses motility of three kinds-a lashing, a corkscrew and a to-and-fro movement. It stains pale pink with Giemsa's Huid. At the time of writing (1910) it has not been found practicable to make an artificial cultivation of the spirochaete. But it may generally be found in primary and secondary syphilitic lesions by the aid of a \(I^{2}\) in. oil-immersion lens-and abundant patience. The pale, spiral, hair-like germ is also found in children who inherit syphilis. Inoculations of the spirochacte in monkeys have produced the characteristic primary (Hunterian) sores, which have proved infective to other monkeys And in the reproduced primary sores, as also in the secondary lesions following them, the same specific micro-organism has been demonstrated.
Syphilis is an infective fever, and its life-history may well be compared with that of vaccinia. A child is vaccinated on the arm with vaccine lymph-for two or three days nothing is observed; but on the fourth day redness appears, and by the eighth day a characteristic vaccine vesicle is formed, which bursts and sets free a discharge which dries into a scab. If on the eighth day the clear lymph in the vesicle is introduced at another point in the child's skin, no characteristic local effect follows. The system is "protected " by the previous inoculation: this protection will last for some years, and perhaps for life. There is, then, exposure to a poison; its introduction localty; a period ol incubation; a characteristic appearance at the sent of inoculation; a change in the constitution of the individual, and protection for a variable period. So with syphilis. The syphilitic poison is introduced at the seat of an abrasion cither on the genital organs or on some other part of the surface of the body. The poison lies quiescent for a variable period. The average period is four wecks. A cartilaginous, button-like hardness appears at the seat of inoculation. If this is irritated in any way, an ulceration takes place; but ulceration is an accident, not an essential. From the primary seat the system becomes infected. The virus, passing along the lymphatic vessels, attacks the nearest chain of lymphatic glands. If the original sore is in the genital organs, the glands in the groin are first attacked; il in the hand, the glands of the elbow or armpit; if on the lip. the glands below the jaw. The affected glands are indurated and painless; they may become inflamed, just as the primary lesion may, but the inflammation is an accident, not an essential. In due course the poison may affect the whole glandular system. The body generally is 80 altered that various skln eruptions, often symmetrical, break out. Any irritation of the mucous membrane is followed by superficial ulcerations, and in the later stages of the
\({ }^{1}\) From xalm, long hair, on account of the waving, hair-Hiee appearance of the germ.
dimase skineraptions, cafy, pimply, putulat or tuberculous in type, appear. Theme eruption do not jech. The individual is as a gencral rule protected against a second attack of syphilis, elthough there have been rare cases recorded in which individuals have been attacked a second time. In weakly people, in severe cases, or in cases that have not been properly treated by the aurgeon, syphilitic deposits termed gummata are formed, which are very apt to break down and give rise to deep ulcerations Cummata may attack any part; the skin, muscles, liver and brain are the favourite sites.

It by no means follows that because the infecting sore is mali, unimportant or quickly healed, the attack, of which the sore is the first (primery) symptom, will be mild. The most serious train of symptoms may follow the healing of a primary sore which has been so unimportant as scarcely to have attracted the attention of the individual, or actually to have escaped notice. Indeed, it not infrequently happens that the most serious forms of secondary or tertiary symptoms succeed a sore which was regarded as of such trivial nature that the individual declined to submit himself to treatment, or quickly withdrew himself from it to enter a fool's paradise. The advisability of ceasing from treatment should always be determined by the surgeon, never by the patient: mercurial treatment must be continued long after the disappearance of the secondary eruptlons. It is the disease which the surgeon has to cure, not the symptoms. The patient is apt to think only of the symptoms.

Is the diseast curable?" This is the question constantly put by the patient on his coming for treat ment. The answer is: "Ies: beyond doubt." But the individual must be made to understand the necessity of his submitting himself trustfully and patiently to a prolonged course of treatment. A second question is as to wibether. in the course of the disease, his hair will fall out, his body will be covered with sores and his face with blotches, and if his bones pill be attacked. Here, again, the answer will be that prompt submission to treatment will render all such calamities extremely improbable. Anocher question often put is as to whether the digease is contagious or infectious Obviously, if a man has a primary sore or a secondary eruption upon the lip or tongue he should use his own glass, cup or spoon, and should refrain from kissing any one. If due care thus be taken no danger is likely to ensue.

The diagnasis of syphilis is often difficult. The first appearanoe of the sore about four weeks after exposure to the risk of infection, its hardness, the indolent enlargement of the associated lymphatic glands, and the occurrence of rash or of sore throat, are all helpful. But when the primary sore occurs on the finger, the face or, indeed, in any extra-genital region, it is apt to be lacking in the usual characteristics, and so the diagnosis may for a while be missed. In the case of doubt, the blood of the patient should be subroutued to the delicate test known as the Wassermann reaction.

The General Treatment of Syphilis.-It is impracticable to lay down a hard and fast line for the treatment of the disease, for wo tro iadividuals are exactly alike, neither does the disease follow a serict path in all cases. But experience has amply shown that in the early stages of the disease, mereury, at least for the present, is the only drug on which reliance can be placed. Guaiacum was at one time extensively used, and sorbehow or another sarsaparilla acquired a bubble reputation; but the practical surgeon of to-day igroses these drugs in the treatment of syphilis. Still, mercury must be prescribed with great judgment. For a man worn out by alcoholic or other excesses, or with health broken down by tuberculosis or other exhausting disease, mercury must be given with great caution. In times past, its reckless administration until profuse salivation was set up, or until the tecth Iell out and the very jawbones became diseascd, deservedly brought the mercurial treatment into diste pute "Better the disease than the remedy," said public opinion, and not without reason. But this miscartiage of treatment is absolutely a thing of the past. Before placing a patient under mercurial treatment it ought to be seen that there is no unwholesome condition of his gums, and that his teeth are put in a satislactory state; unless this is done, the administration of small doses of mercury may have the effect of producing salivation, and, in consequence. a temporary cessation of the treatment. In any case the gums must be watched, and the treatment stopped if tenderness occurs.

There are several ways of giving mercury: (a) by the mouth; (b) by rubbing a mercurial ointment into the skin; (c) by injection into the muscles; (d) by Inhalation of mercurial vapour. Inunction is especially suited for those whom mercury given by the mouth causes diarrhoes or other disturbance; in a private house. however, it is found " dirty " and objectionable.

The fumigation-treatment is carried out by seating the naked man on a cane-bottomed chair and covering him over with a blanket: calomel being volatilized, its fumes are carried under the blanket along with steam.

Treatment by intra-muscular injections is increasing in popularity. but in carrying it out, great care must be taken that no septic germs are introduced. The preparation of mercury is given in solutioa or mixed with oil, and is usually injected about once a week in to the muscles of the buttock or loin. The "grey oil," which is much used for injections, consists of fuely divided metallic mercury in
some fuid fat Calamel is ale und ampended in olive oil. After a few months of weekly injections there should be some weeks of rest from treatment.

But the moet usual. and, perhape, the mont atisfactory method of administering mencury is by the mouth, in the form of pilte or mixtures. The pills pemerally contain metallis merctary finchy divided, as in "blue pill" and as in pills made of "grey powder." or as calomel, or some other salt of mercury, such as the bichioride or cannace. The preparation given in a mioture is usually a solution of perchloride of mercury.

Whilst the individual is undergoing mercurial treatment his diet must be regulabed. Plain meat, roast and boiled, and veqetablee which cannot cause indigestion or diarrboes, will form his chief frod. Spirits and liqueurs should be absolutely forbidden, but a giase or two of wholesome wine or beer may occasionally be allowed. If there is any secondary eruption of the tongue, mouth or throet, smoking must be forbidden. The dress must be werm, and there shouid be no exposure to extremes of cold or heat, nor chould excessive work or amusement be undertaken. Briefly, it may be said that the subject of syphilis should live low and think kigh. It has been said by an English phyycian who delighted in epirrams, "Syphilis once, syphilis ever"; but this is not true. If the individual places himself unceservedly and continuoudy under the treatment of a trustworthy practitioner. he may confidently look formard to a cure; and, if so be that be is erentually married, may depend upon his childrea showing no siga of his gnfortumate infection.

Unile whooping-cough, mallpox or pleurisy, syphilis is not a disease which, left untreated, cures itself in the course of time Syphilis is a disease which neculiarly calls for treatment, and that treatment, to be effectual, must be prolonged. To promote the healing of an ulcer, or to get rid of a cutaneous eruption, tbe result of syphilis, is not to treat syphilis It is merely so free the patient of a eymptom of the disease. To cure syphilis-and the discase is curable-the treatment must be patient and prolonged. And it must be for the surgeon to mey to the individual that he may consider himself at cured, not for the patient to take upon himself the ameumption that, because no eecondary or tertiary symptoms have been seen for a certain number of momt ha, be is cured.

In the midet of the uncertainties which surrouad the subject of syphilis, the question sometimes arises to to whether the treatment by mercury, for instance, is of the importance which is ascribed to it. I wo instances may be given in proof of its undoubted value Firat, a moman who has been infected and never properly treated, becomes pregnant, and thowigh, perhaper, showint eigns of good bealth in every other respect, has a miscarriage; pregnancy and miscarriage follow each other at short intervals, four, six or cight times. Then, at last, the is put upon mercurial treatment, and going to her full time, bears a bealthy infant. Second, an infected but healthytooking woman, who has not been properly trated. produces a child who, in the courte of a few weeks, becomes shrivelled and wan. His food does him no good, and daily be becomes more miserable. At last aome mercarial ointment is spread upon his "binder." and he quicidy becomes healthy and happy, and, in dve course, if the treatment is pernevered in, is entirely cured.

When showld the Treatmant of Syphilis be begump-The answer to this important question is: "As won as the discase is diagnosed." As soon as it it seen that the primary sore is hard, and that the glands in anatomical asmociation with it are swollen, mercury should be administered. It may not prevent the outbreak of the sacondary symptoms, hut it may greaty modify them. But if a surgeon is in doubr as to whether a sore is truly an infecting one, he shouid wait before condemning the individual as syphilitic, and placing him under the necestity of submitting himelf to perhapsta two yoars tseatment, which, after ah, may not have been mecestary. Time would quickly clear up doubt.

Aborive Treatment.- When it is rememberod that the germs of syphilis bave been incubating at the seat of inoculation for a month. more or les, before the primary sore or chancre makes its appearance, it may be taken for granted that the removal of the sore hy wide disaction, or its destruction by cautery, will oot prevent the occurrence of secondary symptoms. For during tbose week the germs were finding their way into the lymphatics and the blood vemels and were producing a general infection.

When the divence has undergooe a sufficient treatment by mercury, or when a patient presents himeell with lesions which denote the fact that the disease has passed into the tertiary stage, a solution of iodide of potassium is given in combination with that of perchloride of mercury, or the iodide is given by itself. In these conditions the effect of the potassium salt is often most remarkable. It is a drug of the greatest value, and, recognized as such, is apt to be found an important ingredient in popular "blood mixtures." If given, however, in dowes lerger than cas be borme by the patient, its poisonous effecte are manilested by a metallic taste, by watering of the eyes and by the breaking out on the back and choulders of scattered pimples.

Thus, mercury in some form is the recognized and proper treat ment for syphilis in the secondary otage, and sodide of potamulu in the tertiary. And, for as much as one caunot say where the atcondary trige ends and the tertiary begins, it is a common proctice to com-
bine the memetric with the potenth alt in the ereatment of certain phases of the disease.

In 1910 attention was hopefully directed towards Profeseor Ehrich's treatment of syphilis by a complex pregaration of arsenic, conveniently spoken of at " 606 .

Gumpla-The most charscteristic form of the generalized syphilitic infoction, which may not manifent itsell for several years after the reception of the virus, is a new growth in various organs -the liver, testes or brain the muscles (tongue and jaw-muscles especially), the periosteum, the skin and the lungs. The deposits mece called gummata from the tentcious appearance of the fresh-cut surface and of the discharge oozing from it. The structure consists of small round cells among thin Gibres; it closely resembles granula-tion-ciane, only that the cells are smaller and the intercellular subutance (fibrea) denser. Molecular death, or necrosis, overtakes this ill-organized, new formation at various central points, owing to the inadequacy of the blood supply. One remarlable feature of the process is the overgrowth of cells in the inner coat of the arteries within the affocted area, which may obliterate the vessel. Gummata, and the ulcers left by them, constitute the teriary manilestations of syphilis

In a large proportion of camee onjy the secondary symptoma cocur. and not the tertiary, the virus having presumably exhausted iteclf or been destroyed by treatment in the earlier manifestations.

Inheriled Syphilis.-In the syphilis of the offspring it is necessary to distinguish two clanes of effects-there are the effects of general intra-uterine mal-autrition, due to the placental syphilis of the mother; and there are the true specific effects acquired by inheritance from either parent and conveyed, along with all other inherited qualities, in the sperm-elements or in the ovum. These two classes of effects are commingled in such a way as not to be readily distinguished: but it is probable that the ill-organized growth of bone, at the epiphysial line in the long bones (sometimes amounting to suppuration), and on the surfaces of the membrane-booes of the skull (Parrot's rodes) is a result of general placental mad-nutrition, lifer the corresponding errors of growth In rickets. The rashes and fisures of the skin, the enuffies and such-like well-known symptoms in the offspring are characteristic effects of the specific taint; 00 also the peculiar overgrowth in the liver, the interstitial pneumonia alba of the lungs and the like. As in ricleets, it is in many cases some months after birth before the congenital syphilitic effects show themstives, while other eflects coone to light during childhood and youth.

It must be remembered that the moist eruptions and ulcert. tions about the mouth and anus of the infant, as well as the skin affections generally, are charged with the spircchaetes and are highly contagious.

From the socond to the sixth year there is commonly a rest in the symptoms that are regarded as characteristic, but the tibiae may become thickened from periostitis, or a joint may become swollen and painful, and realve under mercurial treatment.

The characteristic physiognomy gradually manifests itself if the child is not trated with mencury-the fattened nose, the square forehead, the radiating lines from the mouth, the stunted figure and pallid face. During the second dentition, the three signs, as pointed out by Jonathan llutchinson, may be looked for-the notched incisor teeth of the upper jaw, interstinial corneitis and syphilitic deafness. Perforation of the moft or hard palate may occur, and ukerations of the skin and cellular tissue. Destruction of the nasal bones, carics of the forehead and skull, of the long bones, may also tale place.

Colles' Law-A moman giving birth to a syphilitic infant cantot be incculated with syphilis by the inlant when she is suckling it; in other words, though the mother may have shown no definite signs of syphilis, she is immune; whereas the syphilitic infant put to the breast of a hesthy women may inoculate her nipple and convey syphilis to her. This is known as Colks' Lawi, and it is explained by the theory that, the mother's blood being already infocted, her skin is proof against a local cultivation of germs in the form of a Hunterian sore

Syphilis and Marriage.-The question as to how soon it would be safe for a person with sccondary syphitis to marry is of extreme importance, and the dieregard of it may cause lasting mental distreat to the parent and permaneat physical injury to the offspring. A man who finds himself to be the subjoct of secondary syphilis when he is engaged to be married would do well honourably to (ree himself from responsibility. But should a perton who has been under regular and continuous treatment desire to marry, consent may be given when he has seen no symptorss of his disease for two full years. But even then no actual promise can be made that his troubles are at an end.

The trassmission of syphilis to the third semeration in quite pomsible, but it is difficult of absolute proof because of the charce of there having been intercurrent infoction of the offspring of the eecond generation.

References.-A. Foumier, Tratment of Syphilis, trans. C. F. Marshall (1906); R. Clement Lucas, Bris. Med. Joumol (igo8); A Mannal of Vexercal Disestes, by Sir Affred Keorh and othere (1907): Power and Murphy, A Syutem of Syphilis (1908). (E.O.')
opposed to that of Froissart. His democratic sympathies led him to support Etienne Marcel, and though he returned to his allegiance to the kings of France he remained a severe critic. Jean de Venette also wrote a long Freach poem, La Vie des trois Maries, about 1347.

See Lacurne de Sainte-Palaye in MEmoires de I Acadamie, vols. viii. and xiii.; Géraud and Dépres in Melarges de l'eole de Rome (1899), vol. xix. ; and A. Molinier, Les Sources de l'histoire de France (1904). tome iv.

VENEZUBLA, \({ }^{\text { }}\) a repuhlic of South America, facing the Caribbean sea, and bounded E. by British Guiana and Brazil, S. by Brazil and W. by Colombia. Its boundary with Colomhia is unfixed, a decision by the king of Spain, as arbitrator, in March 1891 , having been rejected by Venezuela. The boundary dispute with British Guiana was settled in October 1899 by an arbitration court in Paris. The line is subject to any question between the two countries and Brazil. The boundary with Brazil was fixed by a special commission in \(\mathbf{1 8 8 0}\). The republic lies between lat. \(1^{\circ} 40^{\prime} \mathrm{S}\). and \(12^{\circ} 26^{\prime} \mathrm{N}\)., long. \(59^{\circ} 40^{\prime}\) and \(73^{\circ}\) \(31^{\prime}\) W., and has an area of \(599,538 \mathrm{sq}\). m. according to the Venezuelan Year Book of 1906 . This area, however, was subject to the settlement of the Colombia boundary line, and the measurement is only approzimate.

Topography-The surface of Venezuela is broken into three very irregular divisions by its mountain syatems: (1) the mountainous area of the N.W. and N.; (2) the Orinoco basin with the llamos on its northern border and grear forested areas in the S. and S.W.; and (3) the Guiana highlands. A branch of the eastern chain of the Andes enters Venezuela in the west about \(7^{\circ} \mathrm{N}\). lat., a and under the name of the Sierra Nevada de Mérida proceeds north-castwards towards Trieste Gulf. This branch consists of paraliel chains enclosing elevated valleys, in one of which lies the town of Mérida at the height of 54 to ft ., overlooked by the highest summit of the chain (Picacho de ta Sierra, \(15,420 \mathrm{ft}\).). The sierra contains the water-parting between the basin of the Orinoco and those of the small rivers on the north-west. Hence it may be considered to terminate where the Rio Cojedes, which drains the elevated valiey in which Barquisimeto stands, after rising on its western slopes flows east wards into the basin of the Orinoco. Beyond the Cojedcs begin two parallel ranges known as the Maritime Andes of Venezuela, which stretch east and west along the coast. The valley between these two ranges is the most densely peopled part of Venezuela. Above Carácas the highest peak of the system. Silla de Carácas, rises to 8531 It. Behind the wide bay between Cape Codera and Cumana there is an interruption in the Maritime Andes; but both ranges reappear between Cumana and the Gulf of Paria. West of the Maritime Andes low ranges (3500-5000 ft.) trend northwards from the end of the Sicrra de Mérida towards the coast on the east side of the Lake of Maracaibo, while the region on the west of that lake consists of lagoon-studded lowlands. East and south of the Sierra de Mérida and the Maritime Andes the region is thinly populated and little known. It consists of two portions-a vast, billy or mountainous area, densely wooded, in the south-east and south, and level plains in the north-west between the Orinoco and the Apure and the mountains. The btter is known as the llanos of the Orinoco, a region described by Humboldt as a vast "'sea of grass," with islands of wood scattered bere and there. Since the time of Humboldt, however. the aspect of these plains would seem to have changed. On the occasion of Karl F. Appun's visit in 1850 trees seem still to have been comparatively rare; but a different aspect was presented when Dr P. Jonas visited the llanos in 1878. From the Galera, the southernmost range of hills north of the Orinoco basin, the traveller saw a vast plain thickly grown with low trees. As far as Calabozo (about one-third of the distance between the hills and the Apurt) it was now chaparros (Curatella americana), now mimosas, which rere the prevailing feature of the landscape. But towards the south the open grass-covered spaces increased in number and area. To the south of Calabozo woods of considerable extent were seen. This change is due to the declipe of horseand cattle-rearing in the llanos, partly in consequence of political disturbances and partly of a murrain which broke out in 1843 among horses, mules and asses. The decline in stock-raising would also suspend the practice of burning off the dead grass to improve the new pasturage Along the Brazilian frontier and about the sources of the Orinoco tributaries on the eastern slopes of the Andes there are extensive forests, sometimes broken with grassy campos: The surface of the llanos is almost a dead level, the general elevation
'The name means " little Venice," and is a modification of the name of Venecia (Venice), originally bestowed by Alonzo de Ojeda in 1499 on an Indian vilage. composed of pile dwellings on the shores of the Gulf of Maracaibo, which was called by him the Gulf of Venecia.
varying from about 375 to 400 ft., rising almont imperceptibly to \(600-800 \mathrm{ft}\). around its immediate margins. So uniform is the kevel over a great part of these plains that in the rainy season bundreds of square miles are submerged, and the country is covered with z network of connecting channels. When the Orinoco is reached its lower basiz is contracted between the Guiana highlands and the northern sierras, and its tributaries begin to cone in more nearty at right anglea, showing that the miargins of the actual valley are nearer and higher. About \(62^{\circ} 30^{\prime}\) the great river seaches what may be considered sea-level, and from this point numerous chanoets find their way across the silted-up delta plain to the sea. This region, together with that of the Guiana frontier, is heavily forested. In the exreme S . (territory of Amazonas) and S.E. the surface again rises into mountain ranges, which include the Parima and Pacaraima sierras on and adjacent to the Brazilian frontier, with a number of short spurs reaching northward toward the Orinoco. such as the Mapichi, Maraguaca, Maigualida, Matos, Rincote and Uapamo. All this region belongs to the drainage basin of the Orinoco, and rivers of large volume flow down between these spurs Some of the culminating points in these ranges are the Cerros Yaparana (7175 ft.) and Duide (8120 ft) in the Parima sierras near the upper Orinoco, the Sierra de Maraguaca (8a28 ft.), and the celebrased flat-sopped Mt Roraisna (8530 ft .) in the Pacaraima sierras on the boundary line with Brazil and British Guiana. Near the Orinoco the general elevation dropa to about 1500 ft . All this region is densely forssted, and is inhabited only by scattered tribes of 1 ndians.
Probably not less than four-fiftibs of the territory of Venezvela belong to the drainage basin of the Orinoco (q.v.). The Orinoco is supposed to have 436 tributaries, of which, among the larest, the Caroni-Paragua, Aro, Caurra, Cuchivero, Suapure, Sipapo and Vertuari have their sources in the Guiana highlands; the Suata, Manapere and Guaritico in the northern sierras; and the Apure, Uricana, Arauca, Capanaparo, Meta, Vichada and Guaviare (the last three being Colombian rivers) in the llanos and Andes, The Apurt receives two large tributaries from the northern sierras-the Guarico and Portuguesa. Apart from these \({ }_{1}\) the rivers of Venezuela are small and, except those of the Maracabo basin, are rarely navigabie. The larger are the Guanipa and Guarapiche, which fow eest wards to the Gulf of Paria; the Aragua, Unare and Tuy, which flow to the Caribbean coast E. of Caracas; the Yaracui, Aroa and Tocuyo co the same coast W. of Caracas;and the Motatan, Chama, Escalante. Cata tumbo, Apan and Palmar, which discharge into Lake Maracailo. The bydrography of the region last mentioned, where the lowlands are flat and the rainfall heavy, is extremely complicated owing to the great number of small rivers and of lakes on or near the lower river courses. The deep lower courses of these atreams and the small neighbouring lakes were once part of the great lake itself. which is being slowly filled by silt. The lakes of Venerrela are said to number 204. The largest are the Maracaibo (g-s.) : El Zulin, with an area of 290 sq. m ., a short distance \(S^{2}\) of Maracaibo among a large number of lakes, lagoons and swamps: Valencia, near the city of that name, in the Maritime Andes, about 1350 ft . above seadevel, with an area of 216 mq - m.; Laguncta, in the state of Zulia; and Taciragua, a coastal lagoon in tbe state of Miranda. There are numerous lagoons in the llano districts caused by the periodical floods of the rivers, and extensive esteros and ciemagas. in part due to the same causes, but these either dry up in the dry season or are greatly reduced in area.
The coast outline of Venezuela is indented with a large number of gulfs and bays, comparatively few of which, however, are open to loreign commerce. The larger indentations are the Gulf of Mara. caibo, or Venezuela, which extends inland through the Lake of Maracaibo, with which it is connected by a comparatively narrow channel, and is formed by the peninsulas of Coajira and Paraguant: the Gulf of Paria, between the peninsula of that name and the island of Trinidad; the Gulf of Coro, opening into the Gulf of Maracaibo; the Gulf of Cariaco, between the peninsula of Araya and the ntate of Bermúdez; the Golfo Triste, on the E. coast of the state of Lera; and the small Gulf of Santa Fe, on the northern coast of Bermudez. Besides these there are a number of small indentations, sheltered anchorages formed by islands and reefs like that of Puerto Cabelio, and estuaries and also open roadsteads, like those of La Guaira and Carupano, which serve important ports. The islands on the coast forming part of the national territory number 71, with an aggregate area of \(14,633 \mathrm{sq} . \mathrm{m}\)., according to official calcularions The largest of these is the island of Marganta, N. of the penimsula of Araya, in the vicinity of which is the island of Tortuga and neveral groups of islets, generally uninhabited.
(A. J. L.)

Geology.-Geologically Venezuela consisty of three distinct regions: (1) Soutb of the Orinoco a great mass of granite, gneiss. pyroxenite and other crystalline rocks, continuous with that of Guiana and probably of Archean age. This mass aiso forms tbe bed of the Orinoco (rom its junctioa with the Apure nearly to ins mouth. and it probably extends northwards for some distamce beneath the more recent deposits of the plain, (2) The Manse. covered by deposits of Quaternary or late Tertiary age. (3) The mountain ranges of the north-west and north. These ranges appear to belong to two systems. The Cordillera of Mérida is one of the
branches of the Andes, and the strike of the folds which compose it is ubually Irom south-west to mortheast. The Caribbean chain along the north coast is part of the Antillcan system, and here the surike of the folds is nearly west to east or west-south-west to east-north-cast. The two systems of folds meet about Barquisimeto, where the structure becomes very complex and is not thoroughly understood. The rocks of Falcon are believed by Sievers to belong to the Andean system; while the outlying peninsula of Paraguana probably belongs, geologically, to the same massif as Goajira and the Sierra Nevada de Santa Maria in Colombia. The oldest rocks in the country are the granites, gneisses, \&e., of the southern massif and the crystalline schists which form the axis of the Cordillera and the Caribbean chain. In the latter range a few Ordovician lossils have been found, but in general the oldest strata which have yielded organic remains belong to the Cretaceous system. The Cretaceous beds form a band along each side of the Cordillera and along the southern flank of the Caribbean chain, and they spread over the greater part of the provinces of Falcon and Lara. The Lower Cretaceous consists chiefly of sandstones and shales and the Middle Cretaceous of very fossiliferous limestone. There is considerable difference of opimon as to the chronology of the succeeding beds, and the boundary between the Cretaccous and Tertiary systems is ilrawn at various horizons by different observers. The Cerro de Oro series is the most important group of these beds and takes a considerable share in the formation of the mountain ranges. It belongs either to the Upper Cretaceous or to the Lower Tertiary, or possibly in part to the one and in part to the other.?
(P. LA.)

Climase.-The climate of Venezuela is everywhere tropical except where modified by altitude. In the Maritime Andes at and above the altitude of Caracas it may be described as semitropical, and in the still higher regions of western Venczuela it approaches the mild temperate. On the coast and the northern slopes of the Mari. time Andes the tropical heat is greatly modified by the trade-winds. At La Guaira the mean temperature for the year is \(85^{\circ}\). 5 ., at Caracas (3025 ft .) it is \(71 \cdot 2^{\circ}\) (or \(66.2^{\circ}\) according to an official return), at Cumaná it is \(83^{\circ}\), at Valencin \(76^{\circ}\), Coro \(82^{\circ}\). Barquisimeto \(78^{\circ}\). Yaritagua \(80.6^{\circ}\), Mérida \(61^{\circ}\), Trujillo \(72^{\circ}\), and Maracaibo 81" South of the sierras. however, the climate is much drier and hotter. The low temperatures of the night in these regions lower the mean annual temperatures. At Calabozo. for instance, the mean is about \(88^{\circ}\), though the maximum in summer is not far from \(100^{\circ}\). At Ciudad Bolivar, which is less shaltered from the trade-winds, the mean is \(83^{\circ}\) and the maximum \(91^{\circ} 0^{\circ}\). The lowest temperatures re* corded in official reports are those of Mucuchies, in the state of Merida, where the maximum is. \(68^{\circ}\), the minimum \(43^{\circ}\) and the mean \(56^{\circ}\). The year is divided into two seasons, the dry and wet, the latter occurring from April to October, when the temperature is also the highest. On the llanos the dry season destroys the pasturage completely, dries up the small streams and lagoons, and compels many animals of semi-aquatic habits to aestivate. At Carácas the annual rainlall ranged from 602 to 863 millimetres between 1894 and 1902 . In gericral the climate of Venezucla is healthy whercver the ocean winds have free access. Sheltered places in the lowlands, especially near streams and lagoons, are malarial and encrvating. and at some points on the coast are subject to dangerous fevers. The sanitary condition is generally bad, and many forms of disease prevail that are not due to the climate.

Fauna. - The fauna and flora of Venezucla are similar in nearly all respects to those of the neighbouring regions of Guiana, Brazil and Colombia, the open Manos of the Orinoco being something of
"See G. P. Wall, "On the Creology of a part of Venezuela and of Trinidad," Qwath. Jowrm. Geol. Soc. London. vol. xvi. (i860), pp. 450-70, pl. xxi.; H. Karsten, Géologie de la Colombie Boliverienne (Berlin, ;886): W. Sievers, "Karten zur physikalischen Ceographie von Venezuela," Peserm. Milkeĭ. vol. xlii. (18g6), pp. 125-29, ol \(x\)
a neutral district between the great forested regions on the E., S and \(W\). Among the animals indigenous to the country are seven species of the cat family, including the puma, the jaguar and the ocelot; the wild \(\operatorname{dog}\) (Canis Azarae): several representatives of the marten family, including two species of Galictis, two of the otter (Lutra brasiliensis and L. pieromura) and one of the skunk; two species of bear (Ursus ornatus and U. nasulus) ; and the "kinkajou." There are six species of monkey corresponding to those of Guiana and the Amazon valley, the sloth and ant-cater, 12 known genera of rodents, including many species of Mures, the cavy, the capybara the paca, the nutria, the agouti, the tree porcupine, Loncheres cristato, Echimys coyen and the Brazilian hare. Among the pachyderms the tapir is found in the forests of the Orinoco. There are two species of the peccary, Dicolyles Lorquatus and D. labialus. There are also 2 species of decr, Cerows rufus and C. simplicornis. There are 3 species of opossum. On the coast and in the Orinoco there may be found the manatee and the dolphin. The Reptilia include 11 species of the crocodile, alligator and lizard, including the savage jacard of the Amazon, several species of turtle, 4 species of batrachians, and 29 species of serpents, including the striped rattlesnake (Crololus durissus), Lochesis mulus, and a rather rare species of Cophias. Among the non-venomous species, the commonest are the boa-constrictor, the anaconda (Eunectes murinus) and the

Coluber variabilis. Bird life is represented chicfly by migratory species, particularly of genera that inhabit the shores of streams and lagoons. The shallow lagoons of the llanos, like those of the Argentine pampas, are favourite fishing grounds for these birds. In the garzeros of Venezucla are to be Cound nearly every kind of heron, erane, stork and ibis, together with an incredible number of Grallatores. Ducks are also numerous in species and individuals, including a small bird called the guirivi, ill imitation of its cry. Birds of prey are numerous. One species, the guacharo (Stcaformes caripensis), or oit-bird, is commonly said to occur only in Venezuela, though it is found in Colombia and Eruador also. They live in caves, especially in Caripe, and are caught in large numbers for the oil extracted from them, which is commonly known as "Caripe butter." The bell-bird (Chasmorhynchus carmuculatus) is common in the forests of the Orinoco. Insect life is perbaps poorer and less varied than in Brazil, but in the 14 orders of insects there are no less than 98 families, each including many genera and species. There are 8 families of Coleopters 6 of Orthoptera, 23 of Hymenoptera, it of Lepidoptera and 7 of Diptera. Locusts are very numerous in the interior, and commit great ravages. Molluscs are common on the coasts, including the pearl oyster. and in the fresh-water streams and lakes. The coral polyp is also found in Venezuelan waters. The domestic animals
of Venemuli-ibe borse, am, ax, sheep, gonc, bos, dot, cat, Ac.-- ere not indigenous.

Flora.--The fiora of Venezuela covers a wide range becauce of the vertical climatic zones. The coastal zone and lower alopes of all the mountains, including the lower Orinoco region and the Maracaibo basin, are clothed with a typical tropical veqetation. There is no seasonal interruption in vegetation. The tropical vegetation extends to an altitude of about 1300 ft ., above which it may be classed as semi-tropical up to about 3500 ft ., and temperate up to 7200 ft ., above which the vegetation is Alpine. Palms grow everywhere; among then the coco-nut palm (Cocos nucifera) if the most prominent. There are some exotics in this zone, like tbe mango, which thrive so well that they aro thought to be indigenous. The cacau is at ite best in the humid lorests of this region and is cultivated in the rich alluvial valleys, and the banana thrives everywhere, as well as the exotic orange and lemon. On the mountain slopes orchids are found in great prolusion. Sugar-cane is cultivated in the alluvial valleys and coffee on their alopes up to a height of about 2000 ft . Among the many tropical fruits found here are bananas, guavas, mangoes, cashews, breadfruit, aguacates, papayas, zapotes, granadillas, oranges, lemons and fimes. In the next zone are grown many of the cereals (including rice), beans, tobanco, sugar-cane, peaches, apricots, quinces and strawberries. The llanos have some distinguisfing characteristics. They are extensive grassy plains, the lowest being the bed of an ancient inland lake about which is a broad terrace (mesa), the talus perhaps of the ancient encircling highlands. The lower level has extensive lagoons and swampy areas and suffers less from the long periodical drought. Its wild grasses are luxuriant and a shrubby growth is found along many of its streams. The decline in stock-breeding resulted in a considerable growth of trees and chaparral over the greater part of the plain. A large part of the chaparral consists of the chaparro, a low evergreen oak of hardy characteristics, mixed with mimooa, deamauthus, zonia and othera. Much of this region is covered with gemelote, a tall, worthless, grass with sharp stiff blades. One of the most remarkable palms of the Orinoco region is the "moriche" (Mauritia flexuosa). The fruit is edible and its juice is made into beer: the map of the tree is made into wine, and its pith into bread; the leaves furnish an excellent thatch, and the fibre extracted from their midribs is used for fish lines, cordage, hammocks, nets, \&c. ; and the wood is hard and makes good building material. The fruit of the Guilielma is also widely used for food among the natives. Among other forest triees of economic importance are tbe silk-cotton tree (Bombax criba), the palo de voca, or cow-tree (Brosimum galactodendron), whose sap resembies milk and is uned for that purpose, the Ingo samas, the Heven zuayanensis, celebrated in the production of rubber, and the Atualea speciosc, distinguished for the length of its leaves.

The principal economic plantes of the country are cacau, coffee, cassava (manioc) called "mandioca " in Brazil, Indian corn, beana, sweet potatoes, taro, uggar-cane, cotton and tolacco. Of these coffee and sugar-cane were introduced by Europeans.

Population.-The population of Venezucla is largely a matter of conjecture, no census having been taken aince the third general census of 1891 , which gave a total population of \(2,323.527\). of which 1,137,139 were males and 1,186,388 females, and there were 42,898 foreign residents. The official Handbook of Vemesuela for 1904 estimated the population for the preceding year as \(2,663,071\). The population consists nf a small percentage of whites of European descent, chiefly Spaniards, various tribes and setllements of Indians, largely of the Arawak and Carib families, and a large percentage of mestisos, or mixed bloods. There is a large admixture of African blood. Hübner estimates the mixed of all races at \(93 \%\), the highest among all the South American nationalities, and the creoles at \(1 \%\) only; but this is clearly incorrect. Perhaps a closer approximation would be to rate the creole element (whites of European descent) at \(10 \%\), as in Colombia, and the mixed races at \(70 \%\), the remainder consisting of Africans, Indians and resident foreigners.

Torritarial Dipisions.-The territocial divisions of Venezuela have been subjected to many changes. Under the constitution of the 27th of April 1904, the republic was divided into 13 states, 1 federal district and 5 territories, the names of which are as follows, those of the capital cities being given in brackets: Federal District (Carácas and La Asunción); Aragua (La Victoria): Bermadez (Cumana): Bolfvar (Ciudad Bolivar); Carabobo (Valencia); Falcón (Coro); Guárico (Calabozo); Lara (Barquisimetn); Mérida (Mérida); Miranda (Ocumare); Tachira (San CristObal): Trujillo (Trujillo); Zamora (San Carl6n); Zulia (Maracaibo), with the following territories: Aramonas (San Fernando de Atabapo); Colon (Gran Roque);

Cristobal Colon (Cristobal Colon); Delta-Amecuro (San Jout de Amacuro); Yaruari (Guacipati).
On the 5th of August 1909, however, a new division was promulgated, giving 20 otates, 1 federal district and 2 territories. Under thim division some of the recognized administrative units were greatly altered in area or even abolished, and the capital status of several cities was apparently affected. The division was as follows: Federal District (Caracas): Anzoategui (Barcelona): Apurt (Sen Fernando de Apurt); Aragua (La Victoria): Bollvar (Ciudad Bolívar): Carabobo (Valencia): Cojodes (San Cartos) Falcón (Coro) Cuarico (Calabozo): Lara (Barquisimeto); Mérida (Mérida); Miranda (Ocumare); Monagas (Marurín); Nueva Esparta (La Asunción); Portuguesa (Guanare); Sucre (Cumańá): Táchira (San Cristóbal): Trujülo (Trujillo); Yaracuy (San Felipe); Zamora (Barinas); Zulia (Maracabo), with the foltowing territories: Amazonss (San Fermando de Atabapo): Delta-Amacuro (Tucupita).
Comminnications and Commerce.-There has been no great development of railway construction in Venezuela, partiy on account of political insecurity and partly because of the backward industrial state of the country. In 1908 there were only 13 rilway lines with a mileage of about 540 m. , including the short lines from Carácas to EI Valle and La Guaira to Maiquetia and Macuto, and t be La Vela and Coro. The longest of these is the German line from Caricas to Valencia (111 m .), and the next iongest the Great Tachira, running from Encontrada on Lake Maracaibo inland to Urack (1 m .) with a projected extension to San Cristobal. Another line in the Lake Maracaibo region is known as the Great La Ceiba, and runs from a point sear the lake to the vicinity of Valera and Trujillo. An important line connects the thriving city of Barguisimeto with the port of Tucacas. The best known of the Venezuelan railways is the short ine from La Guaira to Caricas (\(22!\mathrm{m}\).), which scales the steep sides of the mountain behind La Guaira and reaches an elevation of 3135 ft . before arriving at Carícas It is a British enterprise, and is one of the few raitwas in Venczuela that pay a dividend. The Puerto Cabello and Valencia line (34 m .) is another Britich undertaling and carries a good traffic. A part of this llne is built with a central cog-rail. Probably a recurn to eetled political and industrial conditions in Venezuela will result in a large addition tn its rallway mileage, as a means of bringing the fertile inland districts into direct communication with the coast.
In steamship linea the republic has almost nothing to show. A regular service is maintained on Lake Maracaibo, one on Lake Valencia, and another on the Orinoco, Apuré and Portuguess rivers, starting from Ciudad Bolfvar.
The coast of Venezuela has an aggregate length of 1876 m ., and there are 32 ports, large and small, not including those of Lakes Maracaibo and Tacarigua and the Orinoco. The great majority of these have only a limited commerce, restricted to domestic exchanges. The first-class ports are La Guaira, Puerto Cabello. Ciudad Boliver, Maracaibo and Carupano, and the sccond-class are Sucre, Juan Griego, Guiria, Caño Colorado, Guanta, Tucacas, Le Vela and Porlamar. The conmerce of these ports, both in the foreign and domestic trade, is small, tariff regulations being onerous. and the people too impoverished to be consumers of much beyond the barest necesmaries of life. The total foreign trade in 1908 amounted to \(\$ 9,778,810\) imports and \(\$ 14,560,830\) exports, the values being in U.S. gold. The exports to the United States were valued at \(\$ 5,550,073\) and to France \(\$ 5,496,627\). The principal exports were coffee, cacau, divi-divi, rubber, hides and skins, cattle and asphalt. The imports include manufactured articles of all kinds, hardware and building materisls, earthenware and glassware furniture, drugs and medicines, wines, foodstuff, coal, petroleurn and many other thinge The coasting trade is largely made up of products destined for exportation, or imports trans-shipped frorn the first-class ports to the smaller ones which have no direct relations with foreign countries. In the absence of statistical returns it is impossible to give the values of this branch of trade. The exchanges of dormestic products are lese important than they should be. The Orinoco trade is carried on almont wholly through Port of Spain, Trinidad, where merchandise and produce is transferred between light draught river boats and foreign ocean-going steamert. The distance from Port of Spain to Ciudad Bolivar is 299 m . and the traffic is carried by foreign-owned steamers. Under the administration of President Cipriano Castro this traffic wras suspended for a long time, and trans-shipments were made at la Guaira. Above Ciudad Bollivar transportation is effected by two or three amall river steamers and a great number of simall crait (lawehps, bwangos, bolandros, \&c.), using saila, oars and punting poles
Agriculture.-The principal industries of Venesuela are agricultural and pactoral. Both have suffered heavily from military operations, but still they have remained the basis of Venezuelan wealth and progress. Much the greater part of the republic is ferilie and adapted to cultivation. Irrigation, which has not been eved to any great extent, is needed in come parts of the country for the best results, but in others, as in the valleys and on the norther: slopes of the Maritime Andes, the rainfall is sufficiently well dirtributed to meet mont requiramentr. The bong dry ceapon of the
nemos and purroandiog slopes, which bave not as yet been devoted to cultivation, will require a different system of agriculture with systematic irrigation. In colonial times the llamas were covered with immense berds of cattle and horses and were inhabited by a race of hardy, expert horsemen, the Maneros. Both sides in the War of Independence drew upon these herds, and tbe llameros were among the bravest in both armies. The end of the war found the llanos a dewert, both berds and herdsmen having nearly disappeared. Successive civil wars prevented their recovery. and these great plains which ought to be one of the chief sources of meat supply for the world are comparatively destitute of stock, and the only source of revenue from this industry is the small number of animals shipped to the West Indies. The brecding of goats and swine in an important industry in wome regions. The climatic conditions are not 20 favourable as in Argentina, but these are counterbalanced to some extent by the great river system of the Orinoco. whose large navigable tributarica cross the plains from end to end, and whose smaller strieams from the surrounding highlands provide superior opportunities for water storage and imgation. On the mesas alfalla could be substituted for the native grasses and be used for stock when the parturage of the lower plains is not available. Other industrics of the colonial period were the cultivation of indigo and tobaceo. The former has nearly disappeared, but the latter is atill one of the more important products of the country. The best known tobacco-producing localities are Capadare, Yaritagua, Méridz, Cumanacoa, Guanape, Guaribe and Barinas. The best quality is that from the Capadare district, in the state of Falcon, which rivals that of the Vuelta Abajo of Cuba- No effort is made to improve the Venezuelan prodoct, a part of which is exported to Cuba for cigar making. The principal agricultural products are coffee cacau (cacao). sugar, Indian corn and beans. Coffee was introduced from Martinique in 1784 and its exportation began five years later. It is grown at elevations of 1600 to 3000 ft, and the yield is reported to be to it per tree. which is much less than the yield in Sao Paulo, Brasi. An official work (Veloz Goiticoa, Venesuela, Washington, 1904) gives the number of coffee trees in Venezuela as \(250,000,000\) belonging to 33.000 estates; the output was 42.806 tons in 1907. Several grades are produced in Venezuela, determined by geographical position. aftitude and method of coring and preparing for market. The Mararaibo type from the mountain-slopes of Merida, Trujillo and Táehira is perhaps the best known and brings the best price. Cacau (Theobroma cacao) Is an indigenous product and is extensively cultivated on the Caribbesn siopes. It requires a high temperature (about \(80^{\circ}\) F.), rich soil and a high degree of humidity for the best development of the tree. The tree has an average height of 12-13 ft., begins bearing five years after planting, requires little attention beyond occasional irrigation, bears two crops a year (June aad December), and produces well until it is forty years of age-the yield being from 490 to 600 id per acre of 100 trees. There are two rades of Venezuelan cacau-the criollo or zative, and the irimitario, or Trinidad, the first being euperior in quality. The best cacau comes from the vicinity of Cartcas and is marketed under that name. The exportation of \(t 907\) was about 14,000 tons. Surgar-cane is not indigenous, but it is cultivated with marked success in the lowlands of Zulia, and at various points on the coast. The industry, however, has not kept pace with its development in other countrics and. in great part, still employs antiquated methods and machinery. Its principal product is "papelon." or brown sugar, which is put on the market in the shape of small cyhindrical and cubical masses of If to 3) th weight. This quality is the only one consumed in the country, with the exception of a comparatively amall quantity of ranulated, and of refined sugar in tablets prepared for people of the wef-to-do clases. The annual outpot is about 3000 tons. Cotton was produced in weveral places in colonial times, but the ootput has declined tn a few thousand pounds. The plant is in. digenous and grows well, but, unlike cacau, it requires much manual labour in its cultivation and picking and does not seem to be favoured by the plantera. Indian corn is widely grown and provides the ctaple food of the people, especially in the interior. Beams also are a common food, and are universally produced, especially the black bean. Wheat was introduced hy the Spaniards immediately ofer their occupation of Venezuela, and is grown in the elevated districts of Aragra and the western states, but the production does not exceed home coasumptinn. Rice is a common article of food and is one of the priocipal imports. Several states are nffering bounties to encourage its cultivation at home. Other agricultural products are sweet potatoes, cassava (manioc), yuca, yams, white potatoes, maguey. okra, peanuts, pease, all the vegetables of the hor and temperate climates, oranges, lemons, limes, bananas, plantains figs, grapes, coco-nuts, pine-apples, strawberries, plums, gravas, breadiruit, mangoes and many others. There are also many fruits found growing wild, like those of the cactus and various palms, and these are largely consomed. The forest products, whose collection and preparation form regular industries, are rubber (called ramcho or goma). tonka beans, vanilla, copaiba, chique-chique, carraparills, divi-divi, dye-woods, rabinet-woods and fibres The rubber forests are on the Orinoco and its tributaries of the Guiana bighlands.
Mining.-The principal minerals are gold, copper, iroa, sulphur.
coal, apphalt asd petrolemm. Stiver, tin, lead, mercury and precious mones are listed among the mineral resources of the country. but no mines have been developed, and they are possibilities only. Gold is found throughout a wide area, but chiefly in the Yuruari region, about 100 m. S.W. of the principal mouth of the Orinoco and near the borders of British Guiana, where the famous El Callao mines are. These mines have produced as much as \(181,040 \cdot 2\) Spanish oz in one year (1886) and a total of \(1,320,929.09\) or (rom 1871 to 1890, white another report gives an output valued at \(\$ 23,000,000\) U.S. gold in the fifteen years from 1884 to 1899 . The production since then bas greatly declined. There are 14 copper mines in the country, thowe at Aroz, 70 m . W. of Puerto Cabello and in railway communication with Tucacas (89 m .), being the most productive. They date from 1605 and now belong to an English company. The output from 1878 to 1891 was 329,218 tons of ore and 53,053 tona of regulus, valued at \(\mathbf{1 2}, 794,986\). Iron of a good quality has been found in the Imataca region, Delta-Amacuro territory, 53 m . from the "Boca Grande" of the Orinoco. The principal coal deposits developed are at Naricual, near Barcelona, and a railway has been construcred to bring the output to the port of Guanta. Asphalt is taken from several deposito-lfrom Maracaibo, Cumaná and Pedernales in the Orinoco delta. The latter place also yields petroleum. Sulphur is mined near Carípano, and salt in Zulia and on the peninsula of Araya. The latter is a government monopoly, and the high prices at which it is sold constitute a serious prejudice to the people and to industries like that of meat packing
Pearl Fisherics.-One of the oldest of Venczuelan industrica, the Marearita pear Gisheries, was prohibited in 1909 for an indetuite time because of the threatened extinction of the oyster beds. The industry dates from the first exploration of this coast and was probably carried on before that by the natives. The fisheries are estabiished about the islande of Margarita, Coche and Cubagua, the best producing beds being at El Tirano and Macanao, the first N.E. and the other N.W. of Margarita. The natives engaged in the fishery used some 400 sailloats of 3 to 15 tons capacity, and the beds were raked in wearch of prand oysters. In 1900 a concession was granted for an exclusive silht to fish for pearls, \&cc., between Margarita and the coast, the contractor to use submaniue apparatus.

Manufactures.-There are few manufacturing industrics in Venezvela, and there usually of the parasitic type, created by official favour and protected by high tariffs on imports in competition. The manufactures of this class include acrated waters, becr; candtes, chocolate, cigarettes, cotton fabrics, hats, ice, matches, boots and shoes, drugs and medicines. There are a number of electric plants, three of which use water power. one at El Encantado, 10 m . rom Carácas, one at Mérida, and the third at San Cristóbal, Táchira. The plants using steam for motive power are at Carácas, Maracaito, Valencia and Puerto Cabello. There has been wome development in the manufacture of agricultural machinery and implements. vehicles, pianos and furniture, and wome older industrics, such as tañing leather and the manufacture of naddles and harness, the milling of wheat and Indian corn, distiliing, soap-making, \&ic. At Guanta there is a factory for the manufacture of patent fuel from Naricual coal and asphalt. In 1901 there was one soledero, or meatpecking eatablishment, in the Orinoco-Apurt region, but it did not prove successful because of the high cost of salt.

Government-The government of Venezuela is that of a federal republic of nominally independent, self-governing states, administered according to the provisions nf the constitution of the 27th of April 1904, modified or revised on the 5th of August 1909 . The legislative power is nominally vested in a national Congress of two houses-the Senate and Chamber of Deputies-which meets at Caracas every two years on the ajrd of May, the sestion lasting 90 days. The Senate consists of two members from each state, or 40 members, who are elected by the state legishatures for a period of four years. A senator must be a native-born citizen and not less than thirty years of age. The Chamber consists of popular representatives, elected by direct vote, in the proportion of one deputy for each 35,000 of population, each state being entitled to at lcast one deputy, or two in case its population exceeds 15,000 , the federal district and terbitories being entitled to representatives on the same terms. A deputy must also be a native-born citizen, not less than twenty-one years of age, and is elected for a period of four years.

The executive power is vested by the constitution in a president, two vice-presidents and a cabinct of ministers. The president and vice-presidents, who must be Venezuclans by birth and more than thirty years old, are elected by an electoral body or council composed of members of the national Congreas, ane member Irom each state and the Federal District. Thif
council elects by an absolute majority of votes. The presidential term is four years (it was six years under the constitution of 1904), and the president cannot succeed himself. The powers of the executive, direct and implied, are very broad and permit the exercise of much absolute authority. The president is assisted by a cabinet of seven ministers and the governor of the federal district, their respective departments being interior, foreign relations, finance and public credit, war and marine, fomento (promotion), public works and public instruction. The ministers are required to countersign all acts relating to their respective departments, and are held responsible both before Congress and the courts for their acts. The department of fomento is charged with the supervision of all matters relating to agriculture, stock-raising, mines, industries, commerce, statistics, immigration, puhlic lands, posts, telegraphs and telephones. The department ol the interior is also charged with matters relating to the administration of justice, religion and public worship.

The judicial power is vested in a supreme federal court, called the Corte Federal \(y\) de Casacion, and such subordinate tribunals as may be created by law. As the laws and procedure are uniform throughout the republic and all decrees and findings have legal effect everywhere, the state judicial organizations may he considered as taking the place of district federal courts, although the constitution does not declare them ๓0. The federal court consists of 7 members, representing as many judicial districts of the republic, who are elected by Congress for periods of six years (Const. 1904), and are cligible for re-election. It is the supreme tribunal of the republic, baving original jurisdiction in cases of impeachment, the constitutionality of laws, and controversies between states or officials. It is also a court of appeal (Cosacion) in certain cases, as defined by law. The judicial organization of the states jncludes in each a supreme court of three members, a superior court, courts of first instance, district courts and municipal courts. The judicial terms in the states are for three years. In the territories there are civil and criminal courts of first instance, and municipal courts. The laws of Venezuela are well codified both as to law and procedure, in civil, criminal and commercial cases.

The state governments are autonomous and consist of legislative assemblies composed of deputies elected by ballot for a period of three years (Const. 1904), which meet in their respective state capitals on the sst of December for sessions of thirty days, and for each a president and two vice-presidents chosen by the legislative assembly for a term of three years. The states are divided into districts and these into municipios, the executive head of which is a jefe polifico. There is a municipal council of seven members in each district, elected by the municipios, and in each municipio a communal junta appointed by the municipal council. The governors of the federal territories are appointees of the president of the republic, and the jefe politico of each territorial municipio is an appointee of the governor. The Federal District is the seat of federal authority, and consists of a small territory surrounding Carácas and La Guaira, known in the territorial division of 1904 as the West district, and the island of Margarita and some neighbouring islands, known as the East district.
There are two classes of citizens in Venezuela-native-born and naturalized. The first includes the children of Venezuclan parents born in foreign countries; the latter comprises four classes: natives of Spanish-American republics, foreignborn persons, foreigners naturalized through special laws and foreign women married to Venezuclans. The power of granting citizenship to foreigners is vested in the president of the republic, who is also empowered to refuse admission to the country to undesirahle foreigners, or to expel those who have violated the special law (April in, 1903) relating to their conduct in Venezuclan territory. The right of suffrage is exercised by Venezuclan males over ar years of age, and all electors are eligible to public office except where the constitution declarcs *erwise. Foreign companies are permitted to transact
business in Venezuela, subject to the laws relating to nonresidents and also to the laws of the country governing national companies.

Army.-The military forces of Venexuela consist nominally of about 20 battalions of infantry of 400 men each. and 8 tatteries of artillery, of 200 men each. There is also a battation of marines employed about the ports and in the arsenals. The organization and equipment is defective, and the force deficient in numbers and discipline. The police force and fire companies in the larger cisies are organized on a military basis, and are sometimes used for military purposes. For a people so accustomed to revolutionary outbreaks, the Venezuelans are singularly deficient in military organization. There is no lack of officers of the highest grades but the rank and file are not uniformed, equipped or drilled, and military campaigns are usually irregular in character and of comparatively short duration. It should be said that Venezuela has a modern military organization 30 far as law can make it. It is drawn in imitation of European models, and makes military service compulsory for all Venczuelans between ai and 50 years This national torce is divided into actives and reserves, the arength of the first being fixed by Congrese, and all the rest, of unknown number, belong to the latter. The provisions of the law, however have never been enforced, and the actives or regular army are recruited by impressment rather than through conscripion. There is a military academy at Carácas, and baltalion schools are provided for officers and privates, but they are of little value.

Educcation.-In popular education Venezuela has done almost nothiog worthy of record. As in Chile, Peru and Colombia, the ruling classes and the Church have taken little interest in the education of the Indians and mestizos. Venezucla, it is true, has a comprehensive public instruction law, and attendance at the public schools is both gratuitous and nominally compulsory. But outside the cities. towns and large villages near the coast there are no schools and no teachers, nor has the-government done anything to provide them. This law has been in force since about 1870 , but on the zoth of June 1908 there were only 1150 public achools in the republic with a total enrolment of 35,777 pupils. There are a nurnber of parochial and conventual schools, the church being hostile to the public-school system. An overwhelming majority of the people is itliterate and is practically unconscious of the defect. In 1908 the educational lacifities provided by the republic, not including some private subventioned schools, were two universities and thinythree national colleges. The universities are at Carécas and Merida, the latter known as the Universidad de los Andes The Cararas institution dates from early colonial times and numbers many prominent Venezuelans among its alumni. The national college corresponds to the lyceum and high school of other countrics. There are law. medical and engineering sctiools in the country, but one rarely hears of them. The episcopal seminarics are ussally good. especially the one at Caracas In addition 20 these there are normal, polytechnic, mining and apricultural schools, the last at Carácas and provided with a good library and museum. There are several mechanics' schools (Artes y Oficios) in the larger cities and a large number of private schools. Further educational facilitice are provided by a national library with about 50,000 volumes, a national museum, with a valuable historical collection, the Cajigal Observatory, devoted to astronomical and meteorological work, and the Venezuelan Academy and National Academy of Historythe first devoted to the national language and literature, and the second to its history.
Refigion.-The Roman Catholic is the religion of the state, bat freedom of worship is nominally guaranteed by Law. The presidert. however, is erapowered to deny admission into the conantry of foreigners engaged in special religious work not meeting his approval. Practically no other form of worship exists in the country than that of the Roman Catholic Church, the Protestant and other denominations holding their services in inconspicuous chappels or private apartments in the larger cities, where considerable numbern of foreigners reside. The state contributes to the aupport of the Church, builds its churches and provides for the salaries of itu clergy, and at the same time it has the right to approve or reject all ecclesiastical appointments and to permit or fortid tbe exccution of all decrees of the Roman See relating to Venezuela. The Church hicrarchy consists of one archbishop (Caracas) and four suffragan bishops (Mérida, Guá yana, Barquisimeto and Guśrico).
Finance. - The financial sit uation in Venezuela was for a long tione extremely complicated and discreditable, owing to defaults in zbe payment of public debts, complications arising from the guaramtee of interest on railways and other, public works, responsibility for damages to private property during civil wars and bad administration. To meet increasing obligations, taxation has been extended and heavily increased. The public revenues are derived from customs taxes and charges on imports and exporte, transit taxes, cattle taxes, profits on coinage, receipts from state monopolics receipts from various pablic services such as the post office, telegraph. Carácas waterworks, \&c., and sundry taxes, fines and other sources From 60 to \(70 \%\) of the revenue is derived (rom the custom-hourse, and the next largest anurce is the transit tax. The official budgee
serurna for 1904-6 abow the revesoes and expenditures to have been-

A considerable part of the expenditure since 1903 consists of payments on account of foreign debts which Venezuela was compelled to matisfy. To meet these, taxcs were increased wherever possible, thus increasing both sides of the budget beyond its normal for thooe years. The public debt of Venezuela dates back to the War of Independence, when loans were raised in Europe for account of the united colonies of Colombia, Ecuador and Venezuela. The separaion of the Colombian republic into its three original parts took place in 1830, and in 1834 the foreign debt contracted was divided among the three, Venezuela being charged with \(281 \%\) or \(\mathbf{2 2 , 7 9 4}, 826\), of which 6906,430 were arrears of interest. Other items were afterwards added to liquidate other obligations than those included in the above, chiefly on aceount of the internal debt. Several conversions and compositions followed, interest being paid irregularly. In 1880-8: there was a consolidation and conversion of the republic's foreign indebtedness through a new loan of \(\{2,750,000\) at \(3 \%\) and in 1896 a new loan of \(50.000,000\) bolitares (\((1,980,108\)) for tailway guarantees and other domestic obligations. In August 1904 these loans and arrears of interest brought the foreign debt up to \(\{5.618 .725\), which in 1905 was converted into a " diplomatic' debt of \(\leqslant 5,229,700(3 \%)\). During these, years Venczuela had been pursuing the dangerous policy of grantung interest guarantees on the construction of railways by forcign corporations, which not enfy brought the government into conflict with them on aecount of defaulted payments, but also through disputed interpretations of contracts and alleged arhitrary acts on the part of government officials. In the civil wars the government was also held responsible for damages to these properties and for the mistreatment of forcigners tesiding in the country. Some of these claims brought Venezuela into confict with the governments of Great Britain, Germany and Italy in 1903, and Venezuelan ports were blockaded and there was tin enforced settlement of the claims (about (\(10,4.417\)). which ware to be paid from \(30 \%\) of the revenues of the ta Guaira and Puerto Cabello custom houses. This settlement was followed by an adjust temt of all other claims, payment to be effected through the same channels. In 1908 (July 3i) the tota! debt of Venezuela (according to official returns) consisted of the following items:-
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Corsolidated internal debr
Diplomatic debr (Spanish, Freneh and \({ }^{\text {Dut }}\) (\({ }^{\text {a }}\) (eib)} & Bolinares.
\[
63,171,818
\] \\
\hline & 7,014.569 \\
\hline * (French, 1903-4) & 5,733-490 \\
\hline Uncönsolidated debr in circulation & \(132,949.925\)
4.561 .742 \\
\hline or, at \(25 \frac{1}{\text { b bolivares per } £ \text {, } \begin{array}{c}\text { Tot, }\end{array},}\) & \[
\begin{array}{r}
212,531.544 \\
{[8,417,091}
\end{array}
\] \\
\hline
\end{tabular}

The currency of Venezwela is on a gold basis, the coinage of silver and nickel is restricted, and the state issucs no paper notes. Foreign coins were formerly legal tender in the republic, but this has been changed by the excluston of foreign siver coins and the acceptance of loreign gold coins as a commodity at a fixed value. Under the currency Law of the 31st of March 1879, the thousandith part of a kilogramme of gold was made the monctary unil and was called a bolitar, in honour of the Venezuclan liberator. The denominations provided for by this law anc-

> Cold: \(100,50,20.10\) and 5 bolfrapes.
> Siver: 5,2, bolitares: 50.20 cintimas.
> Nickel: 121 and 5 cintimos.

These depomioations are still in use except the silver \(20-c i n t i m o s\) piece, which was replaced by one of 25 cintimos in 1891. The -aid ver 5 baltanar picce is usually known as a " \({ }^{\text {a }}\) dollar," and is equivaleat to 481 pence, or 961 cents US. gold. The old "peso" is mo longer used except in accounts, and is reckoned at 4 bolivares. being sometimes described as a "colt" dollar. Siliver and nickel are legal tender for soand zo bolisares respectively. Paper currency is issoed by the banks of Venezuela, Carscas and Maracaibo under the provisions of a general banking law, and their notes, alt hough not legal tender, are everywhere accepted at their lace value.

The metric weights and measures hove been officially adopted by Venezuela, but the old Spanich units are still popularly used throughout the country.
(A. J. L.)

History. - The coast of Venezucle was the first part of the American mainland sighted by Columbus, who, during his third voyage in 1498 , entered the Gulf of Paria and sailed along the coast of the delta of the Orinoco. In the following year a much greater extent of coast was traced out by Alonzo de Ojeda, who was accompanied by the more celebrated Amerigo Vespucci. In 1550 the territory was erected into the captain-generalcy of Cartcas, and it remained under Spanish sulc till the early part of the 1oth century Duking this period
negro slaves were introduced; but leas attention was given by the Spaniards to this region than to other parts of Spanish America, which were known to be rich in the precious metals.
In 1810 Venezuela rose against the Spanish yoke, and on the 14th of July 18 ir the independence of the terititory was proclaimed. A war ensued which lasted for upwards of ten years and the principal events of which are described under Bouvar (q.v.), a native of Carícas and the leading spirit of the revolt. It was not till the 3oth of March 1845 that the independence of the republic was recognized by Spain in the treaty of Madrid. Shortly after the battle of Carabobo (June 24, 1821), by which the power of Spain in this part of the world was broken, Venezuela was united with the federal state of Colombia, which embraced the present Colombia and Ecuador; but the Venezuelans were averse to the Confederation, and an agitation was set on foot in the autumn of 1829 which resulted in the issue of a decree (December 8) by General Paez dissolving the union, and declaring Venezucha a sovereign and independent state. The following years were marked by recurring attempts at revolution, but on the whole Venezucla during the period \(1830-1846\) was less disturbed than the neighbouring republic owing to the dominating influence of General Paez, who during the whole of that time exercised practically dictatorial power. In 1849 a successful revolution broke out and Paez was driven out of the country. The author of his expulsion, General José Tadeo Dfonagas, had in 1847 been nominated, like so many of his predecessors, to the presidency by Paez, but he was able to win the support of the army and assert his independence of his pation. Paez raised the standard of revolt, but Monagas was completely victorious. For ted ycars, amidst continual civil war, Monagas was supreme. The chief political incident of his rule was a decree abolishing slavery in 1854. General Juan Jose Falcon, after some years of civil war and confusion, maintained himself at the head of affairs from 1863 to 1808 . In 1864 be divided Venezuela into twenty states and formed them into a Federal republic. The twenty parties whose struggles had caused so much strife and bloodshed were the Uniouists, who desired a centralized governmeat, and the Federalists, wbo preferred a federation of semiautonomous provinces. The latter now triumphed. A revolt headed by Monagas broke out in 1868, and Falcon had to fly the country. In the following year Antonio Guzman Blanco succeeded in making himself dictator, after a long scries of battles in which he was victorious over the Unionists.

For two decades after the close of these revolutionary troubles in 1870 the supreme power in Venezuela was, for all practical purposes, in the hands of Guzman Blanco. He cvaded the clause in the constitution prohibiting the election of a president for successive terms of office by invariably arranging for the nomination of some adberent of his own as chief of the executive, and then pulling the strings behind this figurehead. The ienure of the presidential office was for two years, and at every alteraate election Guzman Blanco was declared to be duly and legally chosen to fill the post of chief magistrate of the republic. In 1889 there was an opcn revolt against the dictatorial system so lomg in vogue; and President Rojas Paul, Blanco's locum tenens, was forced to flee the country and take refuge in the Dutch colony of Curacoa. A scene of riot and disorder was enacted in the Verezuclan capital Statucs of Blanco, whicb had been erected in various places in the city of Caracas, were broken by the mob, and wherever a portrait of the dictator was found it was torn to pieces. No follower of the Blanco regime was sale. An election was held and General Andueza Palacios was nominated president. A movement was set on foot for the reform of the constitution, the priscipal objects of this agitation being to prolong the presidential term to four years, to give Congress the right to choose the president of the republic, and to amend certain sections concerning the rights of persons taking part in armed insurrection arising out of political issues. All might have gone well for President Palacios had he not supposed that this extension of the presidential period might be made to apply to himself.

Yis attempt to force this question produced violent opposition in 1891, and ended in a rising headed by General Joaquin Crespo. This revolt, which was accompanied by severe fighting, ended in 1892 in the triumph of the insurgents, Palacios and his followers being forced to leave the country to save their lives. General Crespo became all-powerful; hut he did not immediatcly accept the position of president. The reform of the constitution was agreed to, and in 1894 General Crespo was duly declared elected to the presidency by Congress for a period of four years. One of the clauses of the reformed constitution accords belligerent rights to all persons taking up arms against the state authority, provided they can show that their action is the outcome of political motives. Another clause protects the property of rebels against confiscation. Indeed, a premium on armed insurrection is virtually granted.

In April 1895 the long-standing dispute as to the boundary between British Guiana and Venezuela was brought to a crisis by the action of the Venezuelan authorities in arresting Inspectors Barnes and Baker, of the British Guiana police, with a few of their subordinates, on the Cuyuni river, the charge being that they were illegally exercising the functions of British officials in Venezuelan territory. Messrs Barnes and Baker were subsequently released, and in due course made their report on the occurrence. For the moment nothing more was heard of this boundary question by the puhlic, hut General Crespo instructed the Venezuclan minister in Washington to ask for the assistance of the United States in the event of any demand being made by the British Covernment for an indemnity. Whilst this frontier difficulty was still simmering, an insurrection against Cenetal Crespo was fomented by Dr J. P. Rojas Paul, the representative of the Blanco regime, and came to a head in October 1895, risings occurring in the northern and southern sections of the republic. Some desultory fighting took place for three or four months, but the revolt was never popular, and was completely suppressed early in 1806 . The Guiana boundary question began now to assume an acute stage, the Venezuelan minister in Washington having persuaded President Cleveland to take up the cause of Venezuela in vindication of the principles of the Monroe doctrine. On the z8th of December 1895 a message was sent to the United States Congress by President Cleveland practically stating that any attempt on the part of the British Covernment to enforce its claims upon Venezuela as regards the boundary between that country and Guiana without resort to arbitration would be considered as a casus belli hy his government. The news of this message caused violent agitation in Carkcas and other towns. A league was formed binding merchants not to deal in goods of British origin; patriotic associations were established for the purpose of defending Venezuela against British aggression, and the militia were embodied. The question was subsequently arranged in 1899 by arbitration, and by the payment of a moderate indemnity to the British officers and men who had been captured. Diplomatic relations between the two countries, which had been broken off in consequence of the dispute, were resumed in \(\mathbf{1 8 9 7}\).

In 1808 General Crespo was succeeded as president by Sefior Andrade, who had represented Venezuela in Washington during the most acute stage of the frontier question. Towards the end of the year a revolutionary movement took place with the object of ousting Andrade from power. The insurrection was crashed, but in one of the final skirmishes a chance bullet struck General Crespo, who was in command of the government troops, and he died from the effects of the wound. \(A\) subsequent revolt overthrew President Andrade in 1900. General Cipriano Castro then became president. During rgoz and igoz the internal condition of the country remained disturbed, and fighting went on continually between the government troops and the revolutionists.

The inhabitants of Venezuelh have a right to vote for the members of Congress, but in reality this privilege is not exercised by them. Official nomlnees are as a rule returned without any mposition, the details of the voting having been previously
arranged by the focal authorities in conformity with instructions from headquarters. In these circumstances the administration of public aflairs fell into the hands of an oligarchy, who governed the country to suit their own convenience. President Castro was for eight years a dictator, ruling by corrupt and revolutionary methods, and in defiance of obligations to the foreign creditors of the country. The wrongs inflicted by him on companies and individuals of various nationalities, who had invested capital in industrial enterprisos in Venezuela, led to a blockade of the Venezuelan ports in 1903 by English, German and Italian warships. Finding that diplomacy was of no avail to obtain the reparation from Castro that was demanded by their subjects, the three powers unwillingly had recourse to coercion. The president, however, sheltered himself behind the Monroe doctrine and appealed to the government of the United States to intervene. The dispute was finally referred by mutual consent to the Hague Court of Arbitration. The Washington government had indeed no cause to be well disposed to Castro, for he treated the interests of Americans in Venezuela with the same highhanded contempt for honesty and justice as those of Europeans. The demand of the United States for a revision of what is known as the Olcott Award in connexion with the Orinoco Steamship Company was in 1905 met by a relusal to reopen the case Meanwhile the country, which up to the blockade of 1903 had been seething with revolutions, now became much quieter. In 1906, the president refused to allow M. Taigny, the French minister, to land, on the ground that he had broken the quarantine regulations. In consequence, France broke off diplomatic relations. In the following year, by the decision of the Hague Tribunal, the Venezuela government had to pay the British, German and Italian claims. amounting to 1691,\(160 ;\) but there was still \([840,000\) due to other nationalities, which remained to be settled. The year 1907 was marked by the repudiation of the debt to Belgiam, and fresh difficulties with the Urited States. Finally, in 1908 a dispute arose with Holland on the ground of the harbouring of refugees in Curagoa. The Dutch Minister was expelled, and Holland replied by the despatch of gunboats, who destroyed the Venezuelan fleet and blockaded the ports. In December General Castro left upon a visit to Europe, nominally for a surgical operation. In his absence a rising against the dictator took place at Caricas, and his adherents were scized and imprisoned. Juan Vincenti Gomez, the vicepresident, now placed himself at the head of affairs and formed an administration. He was installed as president in June rgra.

Bibilocraphy.-C. E. Akers, History of South Ameriza (Nem York, 1906), E. André, A Naturalist in the Gxionas (London. 1404): A. F. Bandelier, The Gulded Man (New York. 1893); Whiliam Barry, Venezuela (London, 1886); M. B. and C. W. Beebe, Our Search for a Wilderness (1910); A. Codanzi. Resment de la Geografia de Verexuela (Paris, 1841); R. H. Davis; Turce Gringos in Venezuela and Central Amerixa (London, 1896); J. C. Dawson, The Souih A merican Repudics, vol ii. (New York, 19os): Dr A. Ernst, Les Produits de Vénizucla (Bremen. 1824); A. von Humboldt and Aimé Bonpland, Personal Narraime of Trapel io tie Equinoctial Regions of America (3 vols., London); M. Landaeta Rosales, Gran Recopilación Geocrifica Estadistira i Mistorice de Venezuela (1889); P. E. Martin, Through Fape Repmblics of South A merica (London, 1905); Bartolome Mitre (condensed trandatioa by Wiliam Pilling), The Emancipation of South America (Londion, 1893); G. Orsi de Mombello. Venetueda y sus riquezes (Caricas 1890): H. J. Mozans Up ihe Orinoco and down the Magdalene (New York, 1910); F. Pimentel y Roth, Resumer cromologica de las leyes y decrelas del cridite priblico de Vexezuda. desde al ano de 826 hasta ef de 1872-1873; W. L. Scruggs, The Colombian and Veneaselan Republics (2nd ed., Boston, 190y): W L. Serugss and J. J. Starrow, The Brief for Vénesueda [Boundary dispurte] (Londom 1896); J. M. Spence, The Land of Bobbar: Adnextures in Vextermele (2 vols, London, 1878); J. Strickland, Documents and Maf of the Boundary Ouestion between Vemesude and Britsh Gmama (Loodoa, 1896): S. P. Triana, Dowes the Orimeco in a Canoe (London, 1902). N. Veloz Goiicoa, Vemesmela: Gropraphical Shetch, Natiral Rosources, Lavry. \&e. 1 Bur. of American Republical (Washington, 1904): F. Vixcarrondo Rojas, Resenc Geogrdíca de Vemctmele (Caricas, 1895): R. G. Watson, Spamish and Portigucse Someth America during the Colmial Pariod (2 vols., Loadon, 1884): W. E. Wood, Venezucha: Two Years on she Spamesh Masn (London): and the Annario estadistico de los Estados Unidos de Vomermeds (Caracas); Diplomatic and Consular Reports.

Vrendsha a reaport on the weat coest of India in Ratnagiri district, Bombay. Pop. (1901) 19,018. It was an early site of both Dutch and English factories, and was formerly the port for communication with the garrisons In the Southern Mahratta country. In the neighbourhood are the "Burnt Islands," with the Vengurla Rock lighthouse.

VBIICB (Vemesia), city and seaport of Italy, occupying one of the most remarkable sites in the world. At the head of the Adriatic, between the mountains and the sea, lies that part of the Lombard plain known as the Veneto. The whole of this plain has been formed by the dibris swept down from the Alps by the rivers Po, Ticino, Oglio, Adda, Mincio, Adige, Brenta, Piave, Livenza, Tagliamento and Isonzo. The substratum of the plain is a bed of boulders, covered during the lapse of ages by a deposit of rich alluvial soil. The rivers when they debouch from the mountains assume an eastern trend in their effort to reach the sea. The result is that the plain is being gradually extended in an easterly direction, and cities like Ravenna, Adria and Aquilela, which were once seaports, lie now many miles inland. The encroachment of land on sea has been calculated at the rate of about three miles in a thousand years. A strong current sets round the head of the Adriatic from east to west. This current catches the silt brought down by the rivers and projects it in long banks, or lidi, parallel with the shore. In process of time some of these banks, as in the case of Venice, raised themselves above the level of the water and became the true shore-line, while behind them lay large surfaces of water, called lagoons, formed partly by the fresh water brought down by the rivers, partly by the salt-water tide which found its way in by the channels of the river mouths. Along the coast-line, roughly speaking between the Apennines at Rimini and the Carnic Alps at Trieste, three main systems of lagoons were thus created, the lagoon of Grado or Marano to the east, the lagoon of Venice in the middle, and the lagoon of Comacchio to the south-west (for plan, see Harbour). All three ate dotted with small islands, possibly the remains of some earlier lido. These islands are little else than low mud banks, barely rising above the water-level. On a group of these mud banks about the middle of the lagoon of Venice stands the city of Venice. It would be diffcult to imagine a site less adapted for the foundation and growth of a great community. The soil is an oozy mud which can only be made capable of carrying buildings by the artificial means of pile-driving; there is no land fit for agriculture or the rearing of catte; the sole food supply is fish from the lagoon, and there is no drinking-water save such as could be stored from the rainfall. Yet the group of islands called Riatto, in mid-Venetian lagoon, were first the asylum and then the magnificent and permanent home of a race that took a prominent part in the medieval and Renaissance history of Europe. The local drawhacks and difficulties once surmounted, Venice by her geographical position became the seaport nearest the heart of Europe.

Ethography and Early Ristory.-As to the ethnography of the race litlie is known that is certain. It has frequently been said that the lagoon population was originally composed of refugees from the mainland seeking asylum from the incursions of Huns, Coths and Lombards; but it is more probable that, long before the date of the earliest barbarian inroad, the lagoon islands already had a population of fisherfolk. In any case we may take it that the lagoon-dwellers were racially identical with the inhabitants of the neighbouring mainlsnd, the Heneti or Veneti. That the Heneti themselves were immigrants is generally admitted. The earlier ethnographers, ike Strabo, put forward three theories as to the original home of the race. Strabo himsell talks of Armoric Heneti, and supposes them to have come from the neighbourhood of Brittany, another theory gives us Sarmatian Heneti, from the Baltic provinces; while the most widely accepted view was that they reached Italy from Paphlagonia. Modern scholarship has rejected these theories. Pauli and Kretschmer, proceeding on the basis of language, have reached conclusions which in the main are identical. Pauli, who has publisbed all the known inscriptions of the

Heceti, boida that the language is Hyrian, cloeely connected with Messapian. Kretschmer goes further and divides the Hlyrian language in to two sharply defined dialects, the northern dialect being represented by the Heneti. The result is that in the present condition of our knowledge we must conchude that the Heneti were a branch of the Illyrian people. The Enetiof Paphlagonia, the Vedeti of Brittany and the Venedi of the Baltic, are probably quite distinct, and the similarity of name is merely a coincidence.

The dwellings of the primitive settlers in the lagoons were, in all probability, rude huts made of long reeds, such as may be seen to this day in the lagoon of Grado. A ditch was cut deep into the mud so as to retain the water at low tide, and there the boats of the fishermen lay. The ground about the hut was made solid and protected from corrosion by a palisade of wattled osiers, thus creating the earliest form of the fondamenta, or quay, which runs along the side of so many Venetian canals and is so prominent a teature in the construction of the city. Gradually, as time went on, and probably with the influx of refugees from the mainland, bricks made of lagoon mud came to take the place of wattle and reeds in the construction of the houses. Groups of dwellings, such as are still to be seen on some of the small canaks at Burano, clustered together along the banks of the deeper channels which traverse the lagoon islands and give access to the tide. It is these channels which determined the lines of construction; the dwellings followed their windings, and that accounts for the extraordinarily complex network of calles and canals which characterizes modern Venice. The alleys or calli number 2327, with a total length of \(89 \frac{7}{\mathrm{~m}}\).; the canals number 177 and measure 28 m . The whole site of Venice is dominated by the existence of one great main canal, the Grand Canal, which, winding through the town in the shape of the letter \(S\), divides it into two equal parts. This great canal was probably at one time the bed of a river flowing into the lagoons near Mestre. The smaller canals all serve as arteries to the Grand Canal. One ot her broad canal, once the bed of the Brenta, divides the island of the Giudecca from the rest of the city and takes its name from that island. The ordinary Venetian house was built round a courtyard, and was one storey bigh; on the roof was an open loggia for drying clothes; in front, between the bouse and the water, ran the fondomenta. The earliest churches were built with cometeries for the dead; and thus we find the nucleus of the city of Venice, litte isolated groups of dwellings each on its separate islet, scattered, as Cassiodorus 'says, like sea-birds' nests over the face of the waters. Some of the islets were still uninhabited, covered with a dense low growth which served as cover for game and even for wolves.

With the destruction of the mainland cities by repeated barbarian invasions, and thanks to the gradual development of Venice as a centre of coasting trade in the northern Adriatic, the aspect of the city changed. Brick and more rarely stone took the place of wood and wattle. The assaulis of the Dalmatian pirates, altracted by the growing wealth of the eity, necessitated the building of strong castellated houses, of which no example has come down to our day, but we may gather what they were like from Petrarch's description of bis bouse on the Riva degli Schiavoni, with its two fanking towers, probably retaining the primitive form, and also from the representations of protecting towers which occur in Carpaccio's pictures. The canals too were guarded by chains stretched across their mouths and hy towers in some cases, as, for example, in the case of the Torresella Canal, which takes its name from these defence works. These houses clustered round the churches which now began to be built in considerable numbers, and formed the various combrade of the city. The cromid altinate in the vision of Fra Mauro gives us a picturesque account of the founding of the various parishes, Olivolo or Castello, St Raffaello, St Salvadore, Sta Maria Formosa. S. Giovanni in Bragora, the Apostoli and Sta Giustina Tradition has it that the earliest church in Venice was S. Giacomo di Rialto,
\({ }^{1}\) Secretary to Theodoric the Great, in a leteer dated A.0. 523.
said to have been founded in 432 . The canals between these clusters of houses were deepened and cleared out, and in some cases trees were planted along the banks, or fondamenta; we hear of the cypresses on San Ciorgio Maggiore, of an ancient mulberry tree at San Salvadore, of a great elder tree near the Procuratie Vecchie where the magistrates were wont to tie their horses. There were vineyards and orchards (broli) on hnd, reclaimed from the sea, and lying between the various clusters of houses, which had not yet been consolidated anto one continuous city. The canals were crossed by wooden bridges without steps, and in the case of the wide Grand Canal the bridge at Rialto was carried on boats. Gradually, bowever, stone bridges came into use. The earliest of these was the bridge of San Zaccaria, mentioned in a document of 1170 . The Rialto bridge was designed in 1178 by Nicolo Barattieri, and was carried on pontoons. In 1255 and 1264 it was rebuilt, still in wood. It was carried on beams and could be raised in the middle, as we see it in Carpaccio's picture of "The Miracle of the Cross." The present bridge, the work of Antonio or Giovanni Contino, whose nickname was da Ponte, dates from 1588-91, and cost 250,000 ducats. The same architect was responsible for the lofty "Bridge of Sighs" (1595t605), connecting the ducal palace with the state prisons (\(1591-97\)) on the opposite side of the narrow canal on the east of the Rio del Palazzo.

The early bridges were inclined planes and could easily be crossed by horses. It was not till the city became more populous and when stone-stepped bridges were introduced that the use of horses died out. As late as 1365 the Doge Lorenzo Celsi owned a famous stud of chargers, and in 1490 the Doge Michele Steno's stables, where the present Zecca stands, were famous throughout Italy. In 1392 a law put an end to riding in the Merceria, on account of the crowd, and all horses and mules were obliged to carry bells to warn foot-passengers. The lanes and alleys of the early city were unpaved and filthy with slops from the houses. But in the i3th century the Venetians began to pave the more frequented streets with brick. Ferries or traghicli for crossing the canals were also estahlished as carly as the \(1^{\text {th }}\) century; we find record of ferries at San Gregorio, San Felice, San Tomà، San Samuele, and so on, and also of longer ferries to the outlying islands like Murano and Chioggia, or to the mainland at Mestre and Fusinn. The boatmen early erected themselves into gilds.
Gondolas.-The characteristic conveyances on the canals of Venice-which take the place of cabs in other cities-are the gondolas, flat-bottomed boats, some 30 ft . long by 4 or 5 ft . wide, curving out of the water at the ends, with ornamental bow and stern pieces and an iron beak (crro), resembling a halberd, which is the highest part of the boat. The gondolier stands on a poppa at the stern with his face towards the bow, and propels the gondola with a single oar. There is a low cabin ((elze) for passengers; the ordinary gondolas can take four or six persons, and larger ones (barca or battcllo) take eight. Gondolas are mentioned is far back as 1094, and, prior to a sumptuary edict passed by the great council in the 16 th century, making black their compulsory colour, they were very different in appearance from now. Instead of the present boal, with its heavy black cabin and absence of colouring, the older forms had an awning of rich stuffs or gold embroideries, supported on a light arched framework open at both ends; this is the gondola still seen in Carpaccio's and Gentile Bellinits pictures (c. 1500). Since 1880 services of omnibus steamers (now municipal) have also been introduced.

Byzontine Architecture. - We can trace the continuous growth of Venice through the successive styles of Byzantine, Gothc, early Renaissance and late Renaissance architecture. The whole subject is magnificently treated in Ruskin's Stoncs of Venice. The two most. striking huildings in Venice, St Mark's and the Doge's Palace, at once give us an example of the two earlier styles, the Byzantine and the Cothic, at least in their general design, though both are so capricious in development and in decoration that they may more justly be con-
sidered as unique specimens rather than as tytical exampies of their respective styles. In truth, owing to its isolated position on the very verge of Italy, and to its close connexion with the East, Venetian architecture was an independent development. Though displaying a preponderance of Oriental characteristics, it retained a quality of its own quite unlake the styles evolved by other Western countries.
The Byzantine style prevailed in Venice during the inth and 12th centuries. The arches of this period are semicircular and usually highly stilted. Sculptured ornamentation, fowing scrollwork of semi-conventional foluage mingled with grotesque animals, birds or dragons, is freely applied to arches and string courses. The walls are built of solid brickwork and then covered with thin slabe of rich and costly marbles. Sculptured panels, with conventional motives, peacocks, eagles devouring hares, peacocks drinking from a cup on a tall pillar, are let into both exterior and interior walls, as are roundels of precious marbles, sawn from columns of porphyry: serpentine, verd antique, \&c. The adoption of veneer for decora:tion prohibited any deep cutting, and almost all the sculpture is shallow. Only in the capitals, which are of extraordinary riehness and variety, do we get any deep or bold relief. Dentil mouldings, of which examples may still be seen in the remains of the palace of Blachernae at Constantinople, are characteristic of Venet ian ornamentation at this period, and remain a permanent leature in Venetian architecture down to the with century. The dome is the leading idea or motif in Byzantine enclesiastical architecture; the domes are placed over square, not circular apartme its, and their bases are brought to a circle by means of pendentives. In exterior elevation the chief effect is produced by the grouping of the domes. In the interior the effect is gained by broad masses of chromatic decoration in marble-veneer and mosaics on a gold ground to cover the walls and vaulta, and by elaborate pavements of opus sectile and opus Alexandrinam. Owing to the marshy site the foundations of buildings in Venice offered considerable difficulties A trench was dug in the soft upper mud until the stratum of stiff blue clay was reached. Piles of elm, oak, white poplar or larch were driven into this clay to the depth of 16 to 20 ft . or until abeolate resistance was encountered. The heads of the piles were from 10 to \(1 t\) in. in diameter and they were driven in almost in contact. On this surface of pile heads was laid a platiorm of two layers of squared oak beams; and on this again the loundations proper تere bult. In some cases, bowever, as for example in the ducal palace itself, if the clay appeared sufficiently firm, the piles were dispenasd with and the foundations went up directly from the oak pladorm which rested immediately on the clay. During the middle ages the walls of Venetian buildings were constructed invariably of brick. They were usually solid, but in wome cases they were built a saccothat is to say, two thin outer walls were built and the space between them was filled with grouted rubble. The delicale creamy Istrian stone, which is now so prominent a leature in Vegetian architecture, did not come into common use till after the I ith century, when the lstrian coast became permanently Venetian. Before 1405 the mortar used in Venice was made of lime from listria, which possed no hydraulic qualities and was consequently very perishable. a fact which to a large extent accounts for the fall of the Campanize of San Marco. But when Venice took possession of the mainland her builders were able to employ a strong hydraulic dark lime from Athettone, which formed a durable cement, capable of resisting salt water and the corrosive sea air.
The church of St Mark's, originally the private chapel of the doge, is unique among the bualdings of the world in respect of its unparalieled richness of material and decoration. It grew with the growing state whose religious centre it

38
merta was, and was. adorned with the spoils of countless other buildings, both in the East and on the Italian mainland. A law of the republic required every merchant trading to the East to bring back some material for the adornment of the fane. Indeed, the building has been compared to the treasure den of a gang of "sea sharkers"" and from a museum of sculpture of the most varied kind, nearly every century from the 41 h down to the latest Renaissance being represented. The present church is the third on this site. Soon after the concentration at Rialto (see Hislory below), a small wooden church was erected about the year 828 for the reception of the relics of St Mark, which had been brought from Alexandria when the Moslems pulled down the church where he was buried. St Mark then became the patron saint of Venice in place of St Theodore. This church was burned in 976 along with the ducal palace in the insurrection against the Doge Candiano IV Pietro Orseolo and his successors rebuilt the church on larger scale in the form of a basilica with three eastern apses and no transept, and Byzantine workmen were employed. As
the state grew in wealth and importance the ehurch grew with it. About the year 1063 the Doge Contarini resolved to remodel St Mark's. There can he no doubt that Byzantine artists had a large share in the work, but it is equally certain that Lombard workmen were employed along with the Orientals, and thus St Mark's became, as it were, a workshop in which two styles, Byzantine and Lombard, met and were fused together, giving birth to a new style, peculiar to the district, which may fairly be called Veneto-Byzantine.

In plan (see the article Arciitect ure) St Mark's is a Greek eross of equal arms, covered by a dome in the centre, 42 ft . in diameter, and by a dome over each of the arms. The plan is derived from the Church of the Holy Apostles at Constantinople, now eovered by the mosque of Mahommed II., and bears a strong resemblance to the plan of St Front at Périgueux in France (1120). The addition of a narthex before the main front and a vestibule on the northern side brings the whole western arm of the cross to a square on plan. In devation the facade seems to have connexion with the five-bayed fagade of the Kahriyeh Jamé, or mosaic mosque, at Constantinople. The exterior fagade is enriched with marble columns brought from Alexandria and other cities of the East, and bearing in many cascs incised graffiti. Mosaics are empleyed to decorate the apandrils of the arches. Only one of the original mosaics now exists, the one over the doorway at the north-western, or St Alipio, angle. Its subject, which is of high historical value as a record of costume, represents the translation of the body of St Mart, and gives us a view of the west fagade of the church as it was at the beginniog of the \(13^{\text {th }}\) century before the addition of the ogee gables, with alternating erockets and statues, and the intermediate pinnacled canopies placed between the five great arches of the upper atorey. The top of the narthex forms a wide gallery, communicating with the interior at the triforium level. In the centre of this gallery stand the four colossal bronze horses which belonged to some Graeco-Roman triumphal quadriga, and were brought to Venice by the Doge Enrico Dandolo after the fall of Constantinople in \(\mathbf{2} 204\); they were carried of by Napoleon to Paris in 1797, and restored by Francis of Austria in 1815 .

Mosaie is the essential decoration of the church. and the architeczural details are subordinated to the colour scheme. These mosaics belong to very various dates. The Doge Domenico Selvo began the decoration of the church in so71, though it is uncertain whether any of his work can be now identified. The mosaica of the domes would seem to belong to the 12 th century, probably before 1.150 . The mosaics of the atrium date from 1200 to 1300: the subjects are taken from Old Testament story. The baptistery mosaics represent the life of St John. The mosaics in the chapel of St Isdore (finished by Andrea Dandolo). giving us the life of the saint, were executed in 1355 . In the sacristy is a series of roth-century mosaics, and in other parts of the church are inferior and later mosaics from cartoons by later Venetian masters Below the mosaics the walls and arches are covered with rare marbles, porphyries and alabaster from ancient columns sawn into shices and so arranged in broad bands as to produce a rich gamut of colour.

The eastern crypt, or cowfessio, extends under the whole of the choir and has three apses, like the upper church. The body of \(S_{t}\) Mark formerly rested here, hut is now within the high altar. Below the nave is another crypt. The floors of both crypts have sunk considerably and are of ten under water; this settlement accounts for the inequalities of the pavernent The original part of the magnificent mosaic pavement probably dates from the middle of the iath century, if we may judge from the pavement at Murano, exactly similar in style, material and workmanship, which bears the date 1140. The pavement consists partly of opus Alexandrinum of red and green porphyry mixed with marbles, partly of tesselated work of glass and marble tesserae.

The choir standa about 4 ft . above the nave and is separated from it by a marble rood-acreen, on the architrave of which stand fourteen figures, the signed work of Jacobello and Pietro Paolo deile Masegne, 1394
The Pala d'oro, or retable of the high altar, is one of the chief clories of St Mark's. it is one of the most magnificent specimens of goldsmithe' and jewellers' work in existence. It was ordered in 976 at Constantinople by the Doge Pietro i. Orseolo, and was enlarged and enriched with gems and modified in form, first by a Greek artificer in 1105 , and then by Venetians between 1209 and 1345. It is composed of Ggures of Christ, angels, prophets and saints, ia Byzantine enamel ran into gold plates. It is aboul 11 ft. 6 in . wide, and about 4 ft 8 in . high. It contains 1300 great pearls, 400 garnets, 90 amethysts, 300 sapphires, 300 emeralds 15 rubics, 75 balas rubies, 4 topazes, 2 canueos; the eems, except where they Gave been replaced, are cut en cabockom. The treasury of St Marks contains a magnificent collection of church plate and jewels.

Fine examples of Venetian Byzantine palaces-at least of the facades-are still to be seen on the Grand Canal and in some of the small canals. The interiars have been modified
past recognition of their original disposition. The Byzantiuc palace seems to have had twin angle-towers-geminos angulares turres-such as those of the \(\mathrm{Ca}^{\prime}\) Molin on the Riva degli Schiavoni, where Petrarch lived. The Byase restored (1880) Fondaco \({ }^{1}\) dei Turchi (i3th century), now the Musco Civico, also has two andle-towers. The thee façades presented continuous colonnades on each floor with semicircular high stilted arches, leaving a very small amount of wall space. The huildings were usually battlemented in fantastic form. A geod specimen may be seen in Lazzaro Sehastiani's picture of the piazzetta, in the Museo Civico. There on the right we see the handsome huilding of the old hakery, occupying the site of the present library; it has two arcades of Saracenic arches and a fine row of battlements. Other specimens still in existence are the municipal buildings, Palazzo Loredan and Palazzo Farsetti-if, indeed, these are not to be considered rather as Romanesque-and the splendid \(\mathrm{Ca}^{\prime}\) da Mosto, all on the Grand Canal. The richest ornamentation was applied to the arches and string courses, while plaques of sculpture, roundels and coats of arms adorned the fagades. The remains of a Byzantine façade now almost entirely built into a wall in the Rio di Ca' Foscari offer us excellent illustration of this decorative work.

Fig. 1.-Square of St Mark and aurrounding buildinge. The original cempo was bounded on the west by the canal B , with the 6 th-century church of S. Geminiano, C, on its west bank. The first enlargement of the square was effected by Doge Sebastiano Ziani in 1i76, when he filled up the canal and rebuilt the church on a new site at D , thus neary doubling the size of the square. Lastly, the square was extended southwards in the 16 th century, when the new palace of the procurators, K. was buile by Scamozri. Gentile Bellini's picture shows a line of houses along FF, reaching up to the great campanile, A. Napoteon I. in i805-to pulled down the chureh of S. Geminiano and built a new block at the west end of the square, L. The dates of the various parts of the existing ducal palace are indicated on the plan; the rebuilding was carried on in the following order, P, Q, R, S. T, U, V. At Z is the treasury of St Mark, which was originally one of the towers belonging to the old ducal palace; \(E\), site of old houses; \(G\), elocktower; A , old palace of procurators; J, old library; \(\mathbf{M}\), two columns; N. Ponte della Paglia: O. Bridge of Sighs; W, Giants' Staircase; X, sacristy of St Mark; Y, Piazzetta.
Gothic Architecture,-Venetian Gothic, both ecclesiastical and domestic, shares most of the characteristics of north Italian Gothic generally, though in domestic architecture it displays one peculiarity which we shall presently note. The material, brick and terra-cotta, is the determining cause of the characteristics of north Italian Gothic
\({ }^{1}\) This palace was originally the property of the Pesaro family, and afterwards of the duke of Este, and finally of the republie. which used it as a dwelling-place for royal guests before letting is to Turkish merchants. The word Fondaco (derived through Arabic (rom the Greek randoxeion), as applied to mome of the Venctian palacen, deostes the mercantile headquarters of foreign tradiny nation. Those still existing are the Turkish and the German (\(F\). de' Tedescin). the latter now converted into the post office.

Flatnet and lack of deep shadowe owing to the imposibility of obtaining heavy cornices in that material, mark the style. The prevalence of sunlight led to a restriction of the windows and exaggeration of wall space. The development of tracery was hindered both by the material and by the relative inaignificance of the windows. On the other hand, the plastic quality of terracotta suggested an abundance of delicate ornamentation on a small scale, which produced its effect by its own individual beauty without broad reference to the general ocheme Coloured marbles and frescoes merved a like purpose. The exteriors of the north Inalian Gothic churches are characterised by the flatneas of the roof; the treatment of the west fagade as a mere screen wall, masking the true lines of the aisle roofs; the great circular window in the west front for lighting the nave; the absence of pinnacles owing to the unimportance of the buttresses; the west-end porches with columns resting on lions or other animals. The peculiarity of Venetian domestic Gothic to which we have referred is this: we frequently find tracery used to fill rectangular, not arched, openings. The result is that the tracery itself has to support the structure above it-is, in fact. constructional-whereas in most other countries the tracery is merely, as it were, a pierced acreen filling in a constructional arch. Hence the noticeable heaviness of Venetian tracery.
The ducal palace, like St Mark's, is a symbol and an epitome of the race which evolved it. Soon after the concentration Tho at Rialto the doge Angelo Particiaco began an official droci residence for the head of the state. It was probahly melect. a small, strongly fortified castle; one of its massive angle-towers is now incorporated in St Mark's and serves as the treasury. During the earlier years of the republic the ducal palace was frequently destroyed and rebuilt. It was burnt in 976 and again in 1106 . At the close of the 12 th century (i173-1179) Sebastian Ziani restored and enlarged the palace. Of his work some traces still remain in the richly sculptured bands built in at intervals along the 14 th-century facade on the Rio, and part of the handsome larch-wood beams which formed the loggia of the piazzetta façade, still visible on the inner wall of the present loggia. The present magnificent building was a slow growth extending over three centuries and expanding gradually as the republic grew in riches.
The palace as we now see it was begun about 1300 by Doge Pietro Gradenigo, who zoon after the closing of the great council gave its permanent form to the Venetian constitution. It is therefore, in a sense, contemporaneous with the early manhood of the state. Gradenigo buite the fagade along the Rio. About 8309 the arcaded fagade along the lagoon front was taken in hand, and set the design for the whole of the external frontage of the palace. Towards the end of the 14th century, this façade, with its lower colonnade, upper loggia with handsome Gothic tracery, and the vast impending upper storey, which give to the whole building its atriking appearance and audacious design, had been carried as far as the tenth column on the piazzetta side. At this point, perhapa out of regard for the remains of Ziani's palace, the work seems to have been arrested for many years, but in 1424 the building was resumed and carried as far as the north-west, or judgment. angle, near St Mark's, thus completing the sea and piazsetta facades as we now see them. The great gateway, the Porta della Carta, was added in 1439-42 from designs by Bari holomeo Buono (or Bon) and his son. The block of buildings in the interior, connecting the Porta della Carta to the Rio wing was added about 1462 by the doge Cristoforo Mora. In 1479 a fire consumed the earlier buildings along the Rio, and these were replaced (\(1480-1550\)) by the present Renaissancestructure.
The two main facades, those towards, the sea and the piansetta, consist of a repetition of the same design, that which was bezun in lhe early years of the 14th century. The name of the architect who began the work and thus fixed the design of the whole is not certainly known, but it must have been a man of an earlier generation than that of Filippo Calendario, who is often stated to have been the chief architect of the older portion Calendario was an accomplioe in the conspiracy of Marino Faliero, and was emecuted together with the doge in 1355. It appears probable that a Venetian architect and sculptor named Pietro Baseggio was the chief masterbuilder in the first half of the tith century. The design of these fagades ia very striking and unlike that of any other buiding in the world. It consists of two storeys with open colonnades, forming a long loggia on the ground and first floors, with seventeen arches on the sea front and eighteen on the other fagade. Above this is s lofty third storey, pierced with a few large windows, with pointed arches ance filled with tracery, which is now loot. The whale ourface of the ponderous upper storey is covered with a diaper pattern in slabs of creamy white Istrian utone and red Verona marble, giving a delicate rosy-orange hue to the bailding. Very besutifulit \({ }^{-1}\) ' executed with an ivory-like minuteness of

At exch of the thaee free aspies a larie proup innmediately ove the lower column. At the southeast angle is the "Drunlcenores a Noah," at the south-west the "Fall of Man," and at the north-wet the "Judgment of Solomon." Over each, at a much higher level, is a coloesal Gigure of an archangel-Raphael. Michact and Gabriel.

The great internal court is surrounded with arcedint. From the interior of the court accese is given to the upper logein bi a very besutiful staircase of early Renaissance style, huilt in th middle of the 15 th century by Antonio Rizzo. Two coloseal stintues of Neptune and Mars at the top of these stairs were executed by Jacopo Sansovino in iss4-hence the name "t giants" etairctive" Owing to a fire which gutted a great part of the palace in 1574, the internal appearance of the rooms was completely changed, and the fine series of early Paduan and Venctian paintings which decorated the walls of the chicf rooms was lost. At present the magnificemt council chambers for the different legislative bodies of the Venetian republic and the state apartments of the doges are richly decorated with gilt carving and panelling in the style of the later Renaiscance On the walls of the chief council chambers are a magnificent series of oil-paintings by Tintoretto and other less able Venetians-among them Tintoretto's masterpiece, "Bacchus and Ariadne," and his eancmous picture of Paradise, the largest oil-painting in the world.

Among the many Gothic churches of Venice the largest are the Franciscan church of Santa Maria Gloriosa dei Frari (iago1280), and the Dominican church of SS. Giovanni e Paolo (\(1260-1400\)). The Frari is remarkable for ite fine choir-stalls and for the series of six eastern chapets which from outside give a very good example of Gothic brictwork, comparable with the even finer apse of the now desecrated church of San Gregorio. The church of SS. Giovannie Puolo was the usual burying-place of the doges, and contains many noble mausoleums of various dates. Besides these two churches we may mention Santo Stefano, an interesting building of central Gothic," the best ecclesiastical example of it in Venice." The apse is built over a canal. The west entrance is later than the rest of the edifice and is of the richest Renaissance Gothic, a little earlier than the Porta della Carta.
But it is in the domestic architecture of Venice that we find the most striking and characteristic examples of Cothic. The introduction of that style coincided with the consolidation of the Venetian constitution and the

\section*{Cingitr} development of Venetian commerce both in the Levant and with England and Flanders. The wealth which thos accrued found architectural expression in those noble palaces, so characteristic of Venice, which line the Grand and smaller canals. They are .so numerous that we cannot do more then call attention to one or two.

The most striking example is undoubtedly the \(\mathrm{Ca}^{\prime} \mathrm{d}^{\mathbf{\prime}}\) Oro, so called from the profusion of gold employed on its fagede. It was built for Marino Contarini in 1421 , rather a late period in the development of the style.

Marino kept a minute entry of his expenses, a document of the highest value, not merely for the history of the building, but also for the light it throws on the private life of the great patricians who gave to Venice such noble examples of art. Contarini was to some extent his own archirect. He had the assistance of Mareo d' Amadeo, a master-builder, and of Matteo Reverti, a Milanese sculptor, who were joined later on by Giovanni Buono and his son Bertolomeo. Other artists, of whom we know nothing else. such as Antonio Busetto, Antonio Foscolo, Gasparino Rosso, Giacomo da Como, Marco da Legno and others, were called in to help in evolving this masterpiece of decorated architecture, affording us an example of the way in which the ducal palace and other monuments of Venice grew out of the collaboration of numerous nameless artists. By the year 1431 the fagade was nearly completed. and Contarini made a bargaln with Martino and Giovanni Benson for the marbles to cover what was yet unfinished. The fagade is a triumph of graceful elegance; so light is the tracery, so rich the decoration, so successful the breach of symmetry which gives os a wing upon the left-hand side but none upon the right. But Contarini was not content to leave the marbles as they were. He desired to have the fagade of his bouse in colour. The contract for this work, signed with Master Zuan de Franza, conjures up a vision of the Cad d' Oro ablaze with colour and gleaming with the gold ornamentation from which it took its name.
Other notable examplea of this style are the Palayw Ariani at San Raffaelle, with its handsome window in a design of intersecting circles: the beautiful window with the symbols of the fout Evangelists in the apandrils, in the fagade of 3 house at Sin Stac; the row of three Giustinian palaces at S. Barnaba; the Palazzo Priuli at San Severo, with a remarikably graceful ingtFindow, where the columpar mullion carries dowa the angle of the
wail: the flamboyant balconies of the Palazto Contarini Fasan the Palazzo Bernardo on a side canal near S. Polo, a late central Gothic building (\(1380-1400\)) which Ruskin describes as " of the finest kind and superb in its effect of colour when seen from the side. Taken as a wholc, after the ducal palace this is the noblest effect of all in Venice"

Early Renaissance. -Towards the close of the 15 th century Venetian architecture began to feel the influence of the classical revival; but, lying far from Rome and retaining still ber connexion with the East, Venice did not fall under the sway of the classical ideals either so quickly or so completely as most Italian cities. Indeed, in this as in the earlicr styles, Venice struck out a line for herself and developed a style of her own, known as Lombardesque, after the family of the Lomhardi (Solari) who came from Carona on the Lake of Lugano and may be said to have created it.

The essential point about the style is that it is intermediary between Venetian Gothic and full Renaissance. We find it retaining some traces of Byzantine influence in the decorated surfaces of applied marbles, and in the roundels of porphyry and verd antique, while it also retained certain characteristics of Cothic, as, for instance, in the pointed arches of the Renaissance facade in the courtyard of the ducal palace designed by Antonio Kizzo (1499). Special notes of the style are the central grouping of the windows, leaving comparatively solid spaces on each side, which gives the effect of

Fic. 2.-Ca' de Oros as originally buit.
a main building with wings; the large amount of window space; the comparative flatness of the facades; the employment of a cornice to each storey; the effect of light and shade given by the balconies; and in churches by the circular pediments on the lagades.

The most perfect example of this style in ecclesiastical architecture is the little church of the Miracoli buit by Pietro Churchet. Lombardo in 1480 . The church is without aisles, and has a semicircular roof, and the choir is raisod twelve steps above the floor of the nave. The walls, both internally and externally, are encrusted with marbles. The facade has the characteristic circular pediment with a large west window surrounded by three smaller windows separated by two ornamental roundels in coloured marble and of geometric desiga. Below the pediment comes an arcade with flat pilasters, which runs all round the exterior of the church. Two of the bays coatain round-headed windows; the other three are filled in with white marble adorned by crosses and roundels in coloured marble. The lower order contains the flat pilastered portal with two panelled spaces on each side.
Similar results are obtained in the magnificent facade of the Scuola di San Marto, at SS. Giovanni e Paolo, which has six semicircular pediments of varying size crowning the six bays, in the upper order of which are four noble Romanesque windows. The lower order contains the handsome portal with a semicircular pediment, while four of the remaining hays are filled with quaint cenes in surprisingly skilful perspective. The façde of San Zaccaria (\(145 j^{-1515}\)), the itately design of Anton Marco Gambello and Mauro Coducci, cfier some sight modifications in the use of
the semicircular pediment, the line of the aisle roof being indicated by quarter-circle pediments abutting on the laçade of the mave. San Salvadore, the work of Tullio Lombardo (1530), is eeverer and less highly ornamented than the preceding examplem, but ite plan is singularly impressive, giving the effect of great apace in acomparatively small area. In this connexion we must mention the Scuola of S. Giovanni Evangelista at the Frari, with its Iore-court and screen adorned by pilasters delicately decorated with foliage in low relief, and its noble staircase whose double flights unite on a landing under a shallow cupola. This also was the work of Pietro Lombardo and his son Tullio.

Early Renaissance palaces occur frequently in Venice and form a pleasing contrast with those in the Gothic style. The Palazzo Dario with its dedication, Urbis genio, the superb Manzoni-Montecuculi-Polignac, with its friezes Puleces. of spread-eagles in low rclief, and the Vendramini-Calergi or Non nobis palace, whose facade is characterized by its roundheaded windows of grouped twin lights between columns, are among the more important; though beautiful specimens, such as the Palazzo Trevisan on the Rio della Paglia, and the Palazzo Corner Reali at the Fava, are to be found all over the city.

Later Renaissance.-When we come to the fully developed Renaissance, architecture in Venice ceases to possess that peculiarly individual imprint which marks the earlier lumpery styles. It is still characterized by great splendour;
\(\alpha\) San indeed, the library of San Marco, built by Jacopo Farcon. Sansovino in 1536, is justly considered the most sumptuous example of Renaissance architecture in the world. It is rich, ornate, yet hardly florid, distinguished by splendid effects of light and shade, obtained by a far bolder use of projections than had hitherto been found in the somewhat flat design of Venetinn ficgades. The columned, round-headed windows are set in deeply between the pillars which carry the massive entablature, and this again is surmounted by a balustrade with obelisks at each angle and figures marking the line of each bay. The Istrian stone of which the edifice is built has taken a fine patina, which makes the whole look like some richly. embossed casket in oxidized silver.

The full meaning of the change which had come over Venetion architecture, of the gulf which lies between the early Lombardesque style, so purely characteristic of Venice, and the fully developed classical revival, which now assumed undisputed sway, 'may best be grasped by comparing the old and the new Procuratie. Not more than eighty years separate these two buildings; the old Procuratie werc built by Bartolomeo Buono about 1500, the new by Scamozzi in 1580 , yet it is clear that each belongs to an entirely different world of artistic ideas The Procuratie Vecchic is perhaps the longest arcaded façade in the world and certainly shows the least amount of wall space; the wbole design is simple, the moulding and ornamentation severe. The Procuratie Nuove, which after all is merely Scamozzi's continuation of Sansovino's library, displays all the richness of that ornate building.
Among the churches of this period we may mention San Geminiano, designed by Sansovino, and destroyed at the beginning of the 19th century to make room for the ball-room built by Napoleon for Eugene Beauharnais. The churches of San Giorgio Camiber. Maggiore and of the Redentore, a votive church for liberation from the plague, are both by Palladio. In 1632 Baldassare Longhenn built the fine church of Santa Maria della Salute, also a votive church, erected hy the state to commemorate the cessation of the plague of 163a. This noble pile, with a large and handsome dome, a secondary cupola over the altar, and a striking portal and fight of steps, occupies one of the most conspictous sites in Venice on the point of land that separates the mouth of the Guidecca from the Grand Canal. In plan it is an octagon with chapels projecting one on each side. The volute buttresses, each crowned with a statue, add quaintly but happily to the general effect. After Longhena's date church architecture in Venice declíned upon the dubious caste of baroque; the laçades of San Moide and of Santa Maria del Giglio are good specimens of this style.
The palaces of the later Renaissance are numerous and frequently grandiose thoush frigid in designt. The more remarkable are Sansovino's Palazzo Comer, Longhena's massive and imposing Palazzo Pesaro, the Palazzo Rezronico, from designs by Longhena with the third storey added by Massari, Sanmicheli's Palazzo Corner at San Polo, and Massuri's well-proportioned and dignified Palazzo Grassi at San Samuele, built to 1740

Modern Buildings.-In recent times the general prosperity of the city, which is on the ascendant, has brought about a revival of domestic and civic architecture. The architects Rupolo and Sardi have erected a considerable number of buildings, in which they have attempted, and with considerable success, to return either to Venetian Gothic or to the early Renaissance Lombardesque style. The most striking of these modern buildings are the new wing of the Hotel d'Latie, San Moise, and the very successful fish market at Rialto, designed by Laurenti and carried out by Rupolo, in which a happy return to early Venetian Gothic has been effected in conjunction with a skilful adaptation of one of the most famous of the old houses of Venice. the Staldn, or palace of the Quirini family.

Gild Halls.-Among the most remarkable buidings in Venice are the scuole, or gild halls, of the various confraternities. They were pious foundations created for mutual benefit and for purposes of charity. The scuole were divided into the six scuole grandi, so called from their numbers, wealth and privileges, and the scuole minori or fraglie, which in most cases were associated with an art or craft. The scuole minori were usually attached to some church in the quarter where the particular trade fourished. They had their special altar dedicated to the patron of the gild, a private buryingplace, and a room in which they held their chapter. The six scuole gramdi, San Teodoro, S. Maria della Carita, S. Giovanni Evangelista, \(\xi_{a n}\) Marco, della Misericordia and San Rocco, on the other hand, built themselves magnihcent gild halls. We have already mentioned two of these, the Scuola di San Giovanni Evangelista and the Scuola di Saa Marco, both of them masterpieces of the Lombardesque style. The Scuola di San Marco is now a part of the town hospital. and besides its façade, afready described, it is remarkable for the handsome carved ceiling in the main hall (1463). Other beauriful ceilings are to be found in the great hall and the hall of the Albergo in the Scuola della Carita, now the Accademia. They are the work of Marco Cozzi of Vicenza and were executed between 1461 and 1464. The design of the former is a trellis crossing the ceiling diagonally; in cach of the lacunae is carved a cherubim with eight wings; the figures and the trellis are gilded; the ground is a rich ultramarine. But the most magnificent of these gild halls is the Scuola di San Rocco, designed by Bartolomeo Buono in 1517 and carried out by Scarpagnino and Sante Lombardo. The fagade on the Campo is large and pure in conception. The great staircase and the lower a ad upper halls contain the unrivalled series of paintings by Tintoretto, which called forth such unbouaded enthusiasm oo the part of Ruskin.

Campanili.-Among the more striking features of Venice we must reckon the camponili or bell-towers (see Campanile). These were at one time more numerous than at the present day; earthquakes and subsidence of foundations have brought many of them down, the fatest to fall being the great tower of San Marco itself, which collapsed on July t4th. 1902. Its reconstruction was at once undertaken, and completed in 1910 . In a few other cases, for example at San Giorgio Maggiore, the fallen campanili were restored; but for the most part they were not replaced. The Venetian campanile usually stands detached from the church. It is almost invariably square; the only examples of round campanili ia this part of Italy are to be found at Ravenna and at Caorle to the east of Venice; while inside Venice itself the oolitary exception to the square plan was the campanile of San Paternian, built in 999 and now demolished, which was a hexagon. The campanile is usually a plain brick shaft with shallow pilasters running up the faces. It has small angle-windows to light the interior inclined plane or staircase, and is not broken into storeys with grouped windows as in the case of the Lombard bell-towers. Above the shalt comes the arcaded bell-chamber; frequently built of lstrian stone; and above that again the attic, either round or square or octagonal, carrying either a cone or a pyramid or a cupola, sometimes surmounted by a cross or a gilded angel which serves as a weathercock. Cressets used to be kept burning at night on some of the campanili to serve as beacons for those at sea. Among the existing campanili the oldest are San Geremia, dating from the isth eentury, San Samuele from the 12th, San Barnaba and San Zaccaria from the 13th. The campanile of S. Giovanni Elemosinario at Rialto (\(1398-140\)) is called by Ruskin "the most interesting piece of central Gothic remaining comparatively intact in Venice.

Public Monuments.-Venetian sculpture is for the most part ancillary to architecture; for example, Antonio Rizzo's "Adam" and "Eve" (1464), which face the giants'-staircase in the ducal palace, are parts of the decorative scheme; Sansovino's splendid monument to Tomaso Rangone is an essential feature of the facade of San Giuliano. The most successful Venetian sculpture is to be found in the many noble sepulchral private monuments. The jealousy of the Venetian republic forbade the erection of monuments to her great men. The sole exception is the superb equestrian etatue in ponour of the General Bartolomeo Colleoni, which stands on thef Giovanni e Paclo. By his will Colleoni left his
vast forture to Venice on condition that a montument chould be raised to him at St Mark's. He meant the great piazza, but by a quibble the republic evaded the cancescion of so unique an bonour and claimed to have fulfilled the conditions of the bequest by ereating the monument at the Scuols of St Mark. The republic entrusted the work to the Florentine Verrocchio, who dying before the stature was completed begged the government to allow his pupil Lorenzo di Credi to carry it to a conclusios. The Venetians, however, calied in Alessandro Leopardi, who cast the great equestrian group and added the pure and graceful pedestal. The monument was unveiled on the 21 st of March 1496. Leopardo was also the creator (is55) of the three handsome bronze sockets in front of \(\mathrm{St}_{\mathrm{t}}\) Mark's which held the flagstafts of the banners of Cyprus, Morea and Crete, when the republic was mistress of those territoriea.
By the side of the sea in the piazzetta, on to which the west facede of the ducal palace faces, stand two ancient columins of Egyptian granite, one red and the other grey. These great monoliths were brought as trophies to Venice by Doge Domenico Michieli in 1126 , after his victories in Syria. In 1180 they were act up with their present fine capitals and basts by a Lombard engineer, Niccolo de Baratieri. The grey column is surmounted by a fine bronze lion of Byzantine atyle, cast in Venice for Doge Ziani about 1178 (this was carried off to Paris by Napoleon in 1797, and sent back is pieces in 1816; but in 1893 it was put together again); and in 1329a marble statue of St Theodore, standing upon a crocodile. wat placed on the other columa. Among modern mumuments the mona successful is that to Goldoni at San Bartolomeo near the Riako. It is the work of the seculptor dal Zotto.
Institutions.- Perhaps the most famous institution of Venice is the arsenal, whose history and activity has continued unbroken from the earlifst days of the republic down to the present time.
The arsenal was founded about the year 1104 by the doge Ordelap Falier. Beforc that date Venetian shipping was buits at the spot near the piazzelta, know as the ferra croand the royal pardens now the plazzetta, known as the cerra nowa, where day, received its first enlargement in 1304, when, on the Danies Andrea Pisano, new tuilding sheds and the rope waik or Twa were erected. Pisano's building sheds, nine in a row, with peculiarly shaped rools, were stilf standing intact-one of the most interesting medieval monuments of Venice-until rerently, hut they have been modibed past recognition. In 1325 the secona adaition, the arsenale manos, was made, and a third, the arsenale nuovissimo, in 1473: a fourth. the Riparto delle Galeazse, about 1539; and in 1564 the filth enlaresment, the Canal delle Galeasse Vasca, took place. After the fall of the republic the arsenal continued to occupy the attention of the various governments. In 1810 the site of the suppressed convent and church of the Celestia was added. The entire circuit of the arsenal, about two miles in cxicnt, is protected by a lofty wall with turrets. The main door of the arsenal is the firs example in Venice of the purejy classical style. It is a noble portil, erected in \(\mathbf{4} 60\), apparently from designs by Fra Giocondo, with the lion of St Mark in the attic. The statuary, with Sta Giustins on the summik of the tympanum. was added in 1571 and \(157^{8}\). The whole desiga was modified in 1688 so as to represent a triumphal arch in howour of Morosini Peloponnesiaco, who brought from Athens to Venice the four lions in Pentelic marble wibich now stand before the gate. (On the largest of these lions is cut a runic inscription recordirs an attack on the Piraeus in the 11th century by Norse warriors of the Varangian guard, under Harold Hardrada, afterwards-1047-king nf Norway.) The arseal suffered frequently and severely from fires, the worst being those of 1509 and 1569; yet such was the wealith of Venice that in the following year she put upon the seas the fleet that crushed the Turks at Lepanto in 1571 .

The Lido, whicb lies about 2 m . S.E. of Venice and divides the lagoon from the sea, is rapidly becoming a fashionable bat hing-place. The point of San Nicold del Lido is strongly fortified to protect the new entrance to the port (see harbour). Iaside The LMm the fortress lies the old Protestant burying:ground, with tombe of Sackville, of John Murray, of Sir Francis Vincem, last embaseador but nne from Great Britain to the republic, of Consul Smith, thowe collection of books forms the nucleus of the King's library in ube British Museum, and of Catherine Tofts, the singer, Smith's firs wife. At Sant' Elisabetta is the bathing establishment.

Libraries. -The lihrary of San Marco contains upwarda of 35000 printed volumes and about 10,000 manuscripts. The library said to owe its origin to Petrarch's donation of his books to the repoblic. Most of these have now disappeared. In 1675 Fra Fortunato Olmo found in a room over the great door of St Marth a number of books which he aupposed to be Petrarch's gift. He sent a list to Tomasini, who published it in his Petrarca Relisisu (Patavii, i635). These codices passed to the Marciana, and Zamerti catalogued thern as the Pondo antico. It is very doubrful whetimer these books really belonged to Petrarch. We may date the tree foundation of the library to the donation of Cardinal Bessarise. Bessarion had intended to bequeath his books to the Benedictios of San Giorgio Maggiore, but Pietro Morosini, Venetian ambassadot at Rome, poioted out the inconvenience of housing his litrary on an island that could not easily be reached. The cardinal therefore obtained a bull from Pope Paul II., permitting him to recall tio
original donation, and in a letter deted from the bathe of Fiterbo; May 13th, 1468, be made over his library to the republic. The principal treasures of the collection, including splendid. Byzantine book-covers, the priceless codices of Homer, the Grimani Breviary, an earty Dante, fe., are exhibited under eases in the Sala Bessarione in the Zeoca or mint where the library has been installed. Another Hibrary was left to the public by the munificence of Count QuiriniStampalin, who bequeathed his collections and his house at Santa Maria Formosa to be held in trust for students. The state archives are housed in the Franciscan monastery at the Frari. They contain the voluminous and invaluable recorde of the Vewetian republic. diplomatic, judicial, cominercial, notarial, \&c. Under the republic the various depertments of state stored their records in various ouildings, at the ducal palace, at tbe Scuola di San Teodoro, at the Camerlenghi. The Austrian government gathered all these into ase building and arranged the vact masees of pepers in fairly convenient onder. Though the state pappers of Veaice have suffersd from fire and the series becins comparatively late, yet their fullness and the world-wide sweep of Venetian interests render this collection an inexhaustible storehouse of data for students. Among other carned institutions we may mention the Ateneo Veneto, the Doputazione per la Storia Patria, and the Royal Institute of Science, Letters and Art, which has its seat in the Palasio Loredan at Santo Stefano.
Harbowr.-Uader the republic commencial shipping used to enter Venice by the port of San Nicold del Lido and lie along the quay called the Riva degi Schiavoni, in the basin of San Marco, and up the broad Giudecca Canal. But wirh the decline of Venice the trade of the port fell off; the mouth of the Lido entrance bocame gradullly silted up owing to the joint action of the tide and the current, and for ruany years complete stagnation choracterized the port. Under Auttrian rule a revival began, which has been continued and intensified since Venice became part of anited Italy. When the railway bridge brought Venice into touch with the mainland and the rest of Europe, it became necessary to do something to reopen the harbour to larger shipping. The Austrians, sbandoning the netarer Lido entrance to the lagoons, resulved to deepen and keep open the Malamocco entrance. This is 8 m . distant from Venice, and can only be reached by a long and tortuout channcl across the lagoon, whose course is marked out by those groups of piles which are \(t 0\) characteristic a feature of the lacoon bandscape. The channel required conotant dredging and wass altogether inconvenient; yet for many years it remained the main sea approach to Venice. A dock was constructed at the western or farther end of the Giudecca Canal, near the railway. The unification of Italy, the growing prosperity of the country, above all the opening of dee Gres Canal, which restored to Venice the full value of her position as the port farthest into the heart of Europe, brought about an immense expansion of trade. The government accordingly resolved to reopen the Ldo entrance to the lagoon, and thus to fford a shorter and more commodious access from the tea. As at the Malamocco entrance 00 at the Lido, two moles were run cut in a aouth-westerly direction; the westerly is about \(2 \mathrm{~m} .\), the easterly about 3 m . in length. The natural scour thus created has given a depth of 26 ft . of water through the sand-bank. The mean rise and fall of the tide is about a ft., but under certain conditions of wind the variation amounte to 5 ft and over. The health of the city depends, of course, to a tange extent on this ebb and flow. The government also turned its attention to the inadequate accommodation at the docks, and proposala for a new quay on the western side of the present basin, and for a second basin 900 yds long and 170 yds wide, were the result.

Trade-A comparison between the exports and imports of the years \(t 886\) and 1905 will give an exact idea of the fate at which the port of Venice developed. In 1886 the total value of exports to foreigs countrics amounted to \(\{7,239,479\); of imports, \(18,788,0\) t2. In 1905 the exports to foreign countrics valued \(\{11,650,932\), the imports \(f_{13.659,306 \text {. As has been the case throughout her history, }}^{\text {in }}\) the trade of Venice is still mainly a transit trade. Wheat, coal, cotton, petroleum, wood, lime and cement are brought into Venice for shipment to the Levant or for distribution over lealy and Europe.

Venice became very celebrated in the istin century for textiles Its damesks and other silk stufis with patterns of extraordinary beauty surpassed in variety and spiendour those of the other chief centres of silk-weaving, such as Florence and Genoa. In addition to the ative stuffs, an immense quantity of costy Oriental carpets, wall-hangings and other textilcs was imported into Venice, partly for its own use, and pertly for export througbout vestern Europe. On oocasions of festivals or pageante the balconies, tbe bridges, the boats, and even the facades of the bouses, were hung with rich Eastern carpets or patterned textiles in goid and coloured silk. The flase manufactory of Merano (\(q . v\).), a stnall idand about 14 m . to the sorth of Venice, was a great source of revenue to the republic. Glass drinking cupe and ornamental vessels, some decorated with enamel painting, and " silvered " mirrors were produced in great quantitics from the 14 th century downwards, and exported. Like many ot her arts in Venice, that of glass-making appean to have been imported from Moslem countries, and the intuence of Oriental design can be uraced in much of the Venetian glacs. The art of making etained.
giase Findins was not practised by the Venctians: almoet the only fine elass in Veaice is that in a south transept window in the Dominican chureh, which, though designed by able Venetian painters, is obviously the work of foreigners.

The ancient glass-bead industry (conterie), which mome years since suffered severely from over-production, has now regained its position through the union of the different factories, by which the output is controlled in such a way as torender trade profitable. Vernetian beads are now sent in large quantities to the various colonies in Africa, and to India, Sumatra and Bornco. Similarty, the glass industry has revived. New amalgams and methods of colourIng have been discovered, and freah forms have been diljgently studied. Special progress has been made in the production of mirrors, electric lamps, candelabra and mosaics. New industrics are those of tapestry, brocades, imitation of ancient stuffs, cloth of silver and gold, and Venctian laces. The accret of lace-making was befieved to have been lost, but the late Signor Fambri discovered at Chioggia an old woman who knew it, and placed her at the head of a lace school. Fambri was ruined by his enterprise, but other manufacturers, more expert than he, drew profit from his initintive, and founded flourishing factories at Pellestrina and Buruno. Other important industries are wood-carving (\(\alpha\) an artistic excellence long unknown), artistic iron-working, jewelling, bronze-casting, the production of steam-engines, machinery, matches (largely exported to Turkey. Egypt, Russia, Austria-Hungary and Grcece), elock-making, wool-weaving and the manufacture of chemical manures.

Population.-In 1548 the population of Venice numbered 158,069; in 1607-29, 142,804; in 1706, 140,256; in 1785, 139,095 ; in \(1881,132,826\). The municipal bulletin of the 31 st of December 1906 gives a total of 169,563 , not inctuding 4835 soldiers.

Adminsiration.-Venice is administered by a prefect reprosenting the crown and responsible to the central government at Rome, from whom he receives orders. Uader his cogniznace come questions of public order, health and elections to parliament. The two arms of the police, the Carabinieri and the Publica Sicurezes, are at his disposal. Purcly local maters, however, are in the hands of the municipio or town conncil. At the head of the town council is the Sindaco or mayor, elected by the council itself.

Under the republic, and until modern times, the rater supply of Venice was furnished by the storage of tain-water supplemented by water brought from the Brenta in boats. The famous Venetian posir, or wells for storing rain-water from the roofs and strects consisted of a cloved basin with a water-tight stratum of clay at the bottorn. upon which a slab of stone was laid; a brick ahaft of radiating hncks laid in a permeable jointing material of clay and and was then buit. At some distance from the shaft a square water-ight wall was built, and the apace between it and the shaft was filed in with sand, which was purified of all saline matter by repeated weshings; on the ground-level perforated tones at at the four corners of the basia admitted the rain-water, which was discharged from the roofs by laad pipes; this water filtered through the sand and percolated into the shaft of the well, whence it was drawn in copper buckets. The present water supply, introduced in 1884, is brought from the commune of Trobaseloghe, where it in collocted from 120 artesian wells. It is carried under the lagoon to Sant' Andrea, where the reservoirs are placed.

Of the 19,000 hooses in Venice only 6000 have drains and sinks, af the others discharge ewage through pipes directly or indirectly into the canale. With the rise and lan of the tide the discharge pipes are flushed at the bottom. An important invertigation undertaken by the Bacterioscopical Laboratory, with regard to the pollution of the Venetian canals by the city wewage, led to the discovery that the water of the lagoons possesses auto-purifyin power, not only in the large earala but even in the smallent rami fications of the waterways. The investigation was carried out with acrupulous mientific rigour upon samples of water taken in every part of the city, at all states of the tide and under various atmospheric conditions.
The church is ruled by the patriarch of Venice, the metropolitan of the province formed by the Veneto. The patriarch of Veuice is usually raised to the purple. The patriarchate dates from 1451. when on the death of Bomenico Michiel, patriarch of Grado. the seat of that honour was transferred from desolate and insolubrious Grado to the cathedral church of Castello in Venice, and Michiel's anccesor, Lorenzo Gjustinian, assumed the title of patriarch of Venice. On the fall of the republic St Mark's became the cathedral church of the patriarch. There are thirty parishes in the city of Venice and fifteen in the lagoon islands and on the littoral.

In recent times there has been a good deal of activity in Vewiee in regand to the preservation of its artistic and archituctural trescures. Some of the carlier activity wras unfortumately misplaced. St Mark's suffered on two occasions: first during the restoration of the north fagade in 1843 , and again during that of the sourt lagades
begua in 1865 and finished in 1878. The latter facade was completely reconstructed upon 2200 piles driven to great depths, with the result that the general harmony of the monument-the effect of time and of atmospheric conditions-was completely lost. A lively agieation all over Europe, and particularly in England (conducted by Ruskin and William Morris), led the I talian govemment to discard the Austrian plan of restoration, at least as regards the interior of the Basilica, and to respect the ancient portions which had stood the test of time and had escaped "renewal" by man. In 1880 a Vigilance Committee was appointed to watch over the restoration ol the interior. The committec secured much verde axtico and porphyry for the restoration of the pavement, in place of the common marbles which it had been intended to use, and organized special workshops for the restoration and preservation of the ancient mosaics, which it had been intended to detach and replace. Pieces already detached were restored to their original positions, and those blarkened by damp and dust were carefully cleaned. Breaks were filled up with cubes obtained from fragments of contemporary mosaics previously demolished. In this way the mosaics of the two arches of the atrium and those of the Zeno chapel were clcaned and preserved.

Contemporaneously with the restoration of the southern fagade of St Mark's, the restoration of the colonnade of the ducal palace towards the Pianzetta and the Mole was undertaken at a cost of \(£_{3} 3,000\). The chief work was crecuted at the south-west angle, where the columns of the arcade had become so broken and distorted as to merace the salcty of the whole building. The corner towards the Ponte della Paglia was also restored, and the hideous device of walling yp the five last arches, adopted in the 16 ch century by the architect Da Ponte, was removed without prejudice to the stability of the structure. In order to lighten the palace the Venctian Institute of Science, Letters and Arts removed its headquarters and its natural history collection to Santo Stefano. For the same reason the Biblioteca Marciana with its 350,000 votumes was moved to the Old Mint, opposite the ducal palace. The space thus cleared has been used for the rearrangement of the Archaeological and Artistic Museum. Side by side with these changes has proceeded the reorganization of the Royal Gallery of Ancient Art, which, created by Napoleon I. for the students of the adjoining Academy of Fine Arts. gradually acquired such importance that in 1882 the government divided it from the zcademy and rendered is autonomous. The gallery now constitutes a unique collection of Venetian paintings from the most ancient artists down to Tiepolo, one hall only being reserved for other Italian schools and one for foreign schools. Altogether the gallery contains twenty rooms, one being assigned to the somplete cyele of the "History of Saint Ursula," by Carpaccio: another to Ciambellino and to the Celliniani; and a whole wall of z third being occupied by the famous Veronese, "II Convito in "asa di Levi." Titian's ". Presentazione al Tempio," painted for the Scuola della Carita, which is now the seat of the gallery, has been placed in its original position. The hall of the Assumption has been left untouched. Nincteenth-century pictures have been eliminated as foreign to the character of the coilection, and Inferior works relegated to a side passage. The reorganization of the Archaeological and Artistic Museum and of the Royal Gallery of Ancient Art coincided with the inauguration io April 1895 of a series of biennial International Art Exhibitions, arranged in order to celebrate the silver wedding of the king and queen of Italy, A special brick structure was erected in the public gardens to receive the works of contemporary arists, both ltalian and foreign. The selection of works was made by an international jury from which Venetian artists were excluded. The second exhibition, visited by 336,500 persons, was held in 1897 , and a third in 1899. The success of this exhibition (visited by 407.930 persons) led to the organization of a fourth exhibition in 1901 , largely devoted to the works of Ruskin. The institution of these exhibitions furnished Prince Giovanelli with an opportunity to found at Venice a Gallery of Modern Art, for which a home was found in the Palazzo Pesaro, bequeathed to the city by Princess Bevilacqua la Masa.

Fistory.-It is usually affirmed that the state of Venice owes Its origin to the barbarian invasions of north Italy; that it was founded by rcfugecs from the mainland cities who sought asylum from the Huns in the impregnable shallows and mud banks of the lagoons; and that the year 452, the year when Attila sacked Aquileia, may se taken as the birth-year of Venice. That is true in a ratsure. Venice, like Rome and other famous cities, was an sylum city. But it is nearly certain that long before Attila and his Huns swept down upon the Venetian plaius the little ishands of the lagoon already had a population of poor but hardy fisherfolk living in quasi-independence, thanks to their poverty and their inaccessible site. This population was augmented from time to time hy refugecs from the mainland citics of Aquileia, Concordia, Opitergium Altinum and
with the indigenous population; as each wave of barbarian invasion fell back, these refugees returned to their mainiand homes, and it required the pressure of many successive incursions to induce them finally to abandon the mainland for the lagoon, a decision which was not reached till the Lombard invasion of 568 . On each occasion, no doubt, some of the refugees remained behind in the islands, and gradually built and peopled the twelve lagoon townships, which formed the germ of the slate of Venice and were subsequently concentrated at Rialto or in the city we now know as Venice. These twelve townships were Grado, Bibione, Caorle, Jesolo, Herackes. Torcello, Murano. Rialto, Malamocco, Poveglia, Cbioggia and Sottomarina. The effect of the final Lombard invasion is shown by the resolve to quit the mainland and the rapid building of churches which is recorded by the Cronaco alfinatc. The people who finally abandoned the mainland and took their priests with them are the people who made the Vebetian republic. But they were not as yet a homogeneous population. The rivalries of the mainland cities were continued at closer quarters inside the narrow circuil of the lagoons, and there was, moreover, the initial schism between the indigenous fisher population and the town-bred refugees, and these facts constitute the first of the problems which now alfronted the growing community: the internal problem of fusion and development. The second problem of prime importance was the external problem of independence. The early history of the republic is chiefly concerned with the solution of these two problems.

To take the problem of independence first. There is litule doubt that the original lagoon population depended for its administration, as far as it had any, upon the larger cities of the mainland. There is a tradition that Venice mas founded by "consuls from Padua", and Padua claimed complete control of the course of the Brenta down to its mouth at Malamocco. The destruction of the mainland cities, and the fight of their leading inhabitants to the lagoons, encouraged the lagoon population to assert a growing independence, and led them to advance the doctrine that they were "born inde pendent." Their development as a manitime people, engaged in small trading and intimately acquainted with their bome waters, led Belisarius to seek thicir belp in his task of recovering Italy from the Goths He was successful; and the dagooss became, theoretically at least, a part of the Eastern empire. But the empire was vast and weak, and its capital lay far away; in practice, no doubt, the lagoon population enjoyes virtual independence, though later the Byzantine claim to suzerainty became one of the leading factors in the formation of the state. It was from Byzantium that the Venetian people reccived the first recognition of their existence as a separate community. Their maritime importance compelled Narsa, the imperial commander, to seek their aid in transporting his army from Grado; and when the Paduans appealed to tie Eunuch to restore their rights over the Brenta, the Venctians replied by declaring that islands of the lagoon and the triver mouths that fell into the estuary were the property of those who had rendered them habitable and serviceable. Narses declined to intervene, Padua was powerless to enforce its claists and Venice established \(n\) virtual independence of the mainhand. Nor was it long before Venice made a similar assertion to the imperial represemtative, Longinus. He was endeavouring to treat with Alboin and the Lomhards, and desired to assure himself of Venetian support. He invited the Vonetians to give him an escort to Constantinople. which they did, and also to acknowledge themselves subjects of the empire. But they replied that " God who is our help and protector has soved is that we might drell upon these waters. This scoond Venice which we have raised in the lagoons is our mighty habitation; no power of emperor or of prince can touch us." That was 20 explicit statement of Venetian aims and contentions: the place and people had made each other and now belonged exclusively to each other. Longinus admitted that the Venetians vere indeed "a great people with a strong habitation"; bat by dint of promising large concessions and trading priviteges, be
induced the Venetians to make an ect of submission-Chough not upon oath. The terms of this pact resulted in the first diploma conferred on Venice as a separate community (584). But it was inevitable that, when the barbarians, Lombard or Frank, were once established on the mainland of Italy, Venice should be brought first into trading and then into political relations with their near neighbours, who as masters of Italy abo put forward a claim to sovereignty in the lagoons. It is between the two claims of east and weat that Venice struggled for and achieved recognized independence.

Turning to the cther prohlem, that of internal fusion and consolidation, we find that in 466 , fourteen years after the fall of Aquileia, the population of the twelve lagoon townships met at Grado for the election of one tribune from each island for the better government of the separate communities, and above all to put an end to rivalries which had already begun to play a disintegrating part. But when the lagoon population was largely augmented in 568 as the result of Alboin's invasion, these jealousies were accentuated, and in 584 it was found expedient to appoml twelve other tribunes, known as the Tribuni Majores, who formed a kind of central committec to deal with all matters affecting the general weal of the lagoon communitics. But the Tribuni Mojores were equally powerless to allay the jealousies of the growing townships which formed the lagoon community. Kivalry in fishing and in trading, coupled with ancient antipathies inherited from the various mainland cities of origin, were no doubt the cause of these internecine feuds. A crisis was reached when Christopher, patriarch of Grado, convened the people of the lagoon at Heraclea, and urged them to suppress the twelve tribunes and to choose a single head of the state. To this they agreed, and in 697 Venice elected her first doge, Paulo Lacio Anafesto.

The growing importance of the lagoon townships, owing to their maritime skill, their expanding trade, created by their position between east and west, their monopoly of salt and salted fish, which gave them a strong position in the mainland markets, rendered it inevitable that a cdash must come over the question of independence, when either east or west should claim that Venice belonged to them; and inside the lagoons the growing prosperity, coupled with the external threat to their libertics, concentrated the population into two well-defined parties-what may he called the aristocratic party, because it leaned towards imperial Byzantium and also displayed a tendency to make the dogeship hereditary, and the democratic party, connected with the origizal population of the lagoons, aspiring to free institutions, and consequently leaning more towards the church and the Frankish kingdom which protected the church. The aristocratic party was captained by the township of Heraclea, which had given the first doge, Anafesto, to the newly formed community. The democratic party was championed first by Jesolo and then by Malamocco.

The advent of the Franks determined the final solution. The emperor Leo, the Isaurian, came to open rupture with Pope Gregory II. over the question of images. The pope appealed to Liutprand, the powerful king of the Lombards, to attack the imperial possestions in Ravenna. He did so, and expelled tbe exarch Paul, who took refuge in Venice and was restored to his post by the doge of the Heraclean or Byzantine perty. Orso, who in return for this assistance recelved the imperial titie of kypatos, and trading rights in Ravenna. The pope, however, soon had cause for alarm at the spread of the Lombard power which he hed encouraged. Liutprand proceeded to occupy territory in the Ducato Romano. The pope, looking about for a seviour, cast his eyes on Charies Marte, whose victory at Tours had riveted the attention of the morld. Charles's son, Pippin, was crowned king of Italy, entered the pexinsula at the head of the Franks, defeated the Lombards, took Ravemsa and presented it to the pope, while retaining a feudal superiority. Desiderius, the last Lombard king. endeavoured to recover Ravenna. Charlemagne, Pippin's son, descended upon Italy, broke up the Lombard kingdom (774), confirmod his father's donation to the pope, and in
reprisals for Venetian assistance to the erarch, ordered the pope to expel the Venetians from the Pentapolis. Venice was now brought face to face with the Franks under their powerful sovereign, who soon showed that he intended to claim the lagoons as part of his new kingdom. In Verice the result of this menace was a decided reaction towards Byzantium. In opposition to the Frankish claim, Venice resolved to affirm her dependence on the Eastern empire. But the democratic party, the Frankish party in Venice, was powerful. Feeling ran high. A crisis was rapidly approaching. The Byzantine Doge Giovanni Galbaio attacked Grado, the see of the Francophil Patriarch Giovanni, captured it, and flung the bishop from the tower of his palace. But the murdered patriarch was succeeded by his no less Francophil nephew Fortunatus, a strong partisan, a restless and indomitable man, who along with Obclerio of Malamocco now assumed the lead of the democratic party. He and his followers pioted the murder of the doge, were discovered, and sought saifety at the court of Charliemagne, where Fortunatus strongly urged the Franks to attack the lagoons.

Meantime the internal politics of Venice had been steadily preparing the way for the approaching fusion at Rialto. The period from the election of the first doge to the appearance of the Franks was characterized by fierce struggles bet ween. Heraclea and Jesolo. At leagth the whole population agreed to fix their capital at Malamocco, a compromise between the two incompatible parties, marking an important step towards final fusion at Rialto.
That central event of early Venetian history was reached when Pippin resolved to make good his tille as king of Italy. He turned his attention to the lagoon of Venice, which had been steadily growing in commercial and maritime importance, and had, on the whole, shown a sympathy for Byzantium rather than for the Franks. Pippin determined to subdue the lagoons. He gathered a feet at Ravenna, captured Chioggia, and pushed on up the Lido towards the capital of the logoons at Malamocco. But the Venetians, in face of the danger, once more removed their capital, this time to Rialto, that group of islands we now call Venice, lying in mid-lagoon between the lidi and the mainland. This step was fatal to Pippin's designs. The intricate water-ways and the stubborn Venetian defence bafled all his attempts to reach Rialto; the summer heats came on; the Lido was unhealthy. Pippin was forced to retire. A trealy between Charlemagne and Nicephorus (8io) recogoized the Venetians as subjects of the Eastern empire, while preserving to them the trading rights on the mainland of Italy which they had acquired under Liutprand.
The concentration at Rialto marks the beginning of the history of Venice as a full-grown state. The external menace to their independence had welded together the place and the peaple; the same pressure had brought about the fusion of the conflicting parties in the lagoon townships into one homogeneous whole. There was for the future one Venice and one Venetian people dwelling at Rialto. the city of compromise between the dangers from the mainland, exemplified by Attila and Alboin, and the perils from the sea, illustrated by Pippin's attack. The position of Venice was now assured. The state was a vassal of a weak and distant empire. which would leave it virtually free to pursue its own carerr; it was an independent tributary of a near and powerful kingdom with which it could trade, and trade between east and west became benceforth the note of its development.

The first doge elected in Rialto was Angelo Particiaco, a Heraclean noble, with a strong bias towards Byzantium, and his reign was signalized by the building of the first church of San Marco, and by the translation of the saint's body from Alexandria. as though to affirm and to symholize the creation of united Ventce.

The history of Venice during the next two hundred years is marked externally by the growth of the city, thanks to an ever-expanding trade, both down the Adriatic, which brought the republic into collision with the Dalmatian pirates and led to their final conquest, in 1000, by the doge Pietro Orseolo \(\mathrm{II}_{\text {? }}\).
aod also on the mainland, where Venice gradmally acquired trading rights, partly by imperial diploma, partly by the establishment and the supply of markets on the mainland rivers, the Sile and the Brenta. Internally this period is characterized by the attempt of three powerful families, the Particiachi, the Candiani and the Orseoli, to create an hereditary dogeship, and the viokent resistance offered by the people. We find seven of the Particiachi, five Candiani and three Orseoli reigning in almost unbroken succession, until, with the ostracism of the wiole Orseolo family in 1032, the dynastic tendency was crushed for ever. During the same period we also note the development of certain families, thanks to the accumulation of wealth by trade, and here we get the beginnings of that commercial aristocracy whose evolution was the dominant factor in the constitutional history of the republic.

The growing wealth of Venice soon attracted the cupidity of her piratical neighbours on the coast of Dalmatia. The swift Liburnian vessels began to raid the Lido, compelling the Venetians to arm their own vessels and thus to form the nucleus of their famous fleet, the importance of which was recognized by the Golden Bull of the emperor Basil, which conferred on Venetian merchants privileges far more extensive than any they had hitherto enjoyed, on condition that the Venctian fleet was to be at the disposition of the emperor. But the Dalmatian raids continued to harass Venetian trade, till, in 1000, the great doge Pietro Orseolo II. athacked and captured Curzola and stormed the piratical stronghold of Lagosta, crushing the íreebooters in their citadel. The doge assumed the title of duke of Dalmatia, and a great step was taken towards the supremacy of Venice in the Adriatic, which was essential to the free development of ber commerce and also enabled her to reap the pecuniary advantages to be derived from the Crusades. She now commanded the route to the Holy Land and could supply the necessary transport, and from the Crusades her growing aristocracy reaped large profis. Orseolo's victory was commemorated and its significance affirmed by the magnificent symbolical ceremony of the "wedding of the sea " (Sposalisio del Mar), celebrated henceforward every Ascension day. The result of the first three Crusades was that Venice acquired trading rights, a Venctian quarter, church, market, bakery, \&cc., in many of the Levant cities, e.g. in Sidon (1102) and in Tyre (1123). The fall of Tyre marks a great advance in development of Venetian trade; the repuhlic had now passed beyond the Adriatic, and had taken an important step towards that complete command of the Levant whicb she estahlished after the Fourth Crusade.

This expansion of the trade of Venice resulted in the rapid development of the wealthier classes, with a growing tendenry to draw together for the purpose of securing to themselves the entire direction of Venetian politics in order to dominate Venetian commerce. To achieve their object, a double line of conduct was imposed upon them: they had to absorb the powers of the doge, and also to deprive the people of the voice they possessed in the management of state affairs by their presence in the conciore or general assembly of the whole community, which was still the fountain of all authority. The first step lowards curtailing the power of the doge was taken in ro32, when the family of the Orseoli was finally expelled from Venice and the doge Domenico Flabianico was called to the throne. A law was then passed forbidding for the future the election of a doge consort, a device by which the Particiachi, the Candiani and the Orseoli had each of them nearly succeeded in carrying out their dynastic ambitions. Further, two ducal councillors were appointed to assist the doge, and he was compelled, not merely permitted, to seek the advice of the more prominent citizens at moments of crisis. By this reform two important offices in the Venetias constitution-the privy gaincil (comsiglieri ducali) and the senate (the pregodi or \({ }^{2}\) af into being. Both were gradually developed ' by the aristocracy, till we reach the year

The growth of Venctinn trade and weahh in the Levast roused the jeslousy of Genoa and the bostility of the imperis court at Constantinople, where the Venctians are said to have numbered 200,000 and to have held a large quarter of the city in tersor by their brawk. The emperor Manued 1 . urged on by the Genoese and other rivals of Venice, scized the pretert. The Venetians were arrested and their goods confiscated. Popular feeling at Venice ran so high that the state was rashly swept into war with the empire. To provide the requisite funds for this vast undertaking, forced loan of \(1 \%\) on net incomes was raised; the money bore interest at the rate of \(4 \%\). The bonds were negotiable, and afford us the eariest instance of the issue of government stock. The doge Vitale Michiel 11 . led the expedition in person. It proved a disastrous failure, and on the return of the shattered remanats (1171) a great constitutional reform seemed necessary. The Venetians resolved to create a deliberative assembly, which should act with greater caution than the concione, which had fust landed the state in a ruinous campaign. Forty members were elected in each of the six divisions of the city, giving a body of 480 members, who served for one year and on retiring named two deputies for each sestiere to nominate the council for the succeeding year. This was the germ of the great council, the Maggior Consiglio, which was rendered strictly oligarchic in 1296 . As the duties of this council were to appoint all officers of state, including the doge, it is clear that by its creation the aristocracy had considerably curtailed the powes of the people, who had hitherto elected the doge in general assembly; and at the creation of Michiel's successor, Sebastiano Ziani (1172), the new doge was presented to the people merely for confirmation, not for election. The assembly protested, but was appeased by the empty formula, "This is yoar doge an it please you." Moreover, still further to limit the power of the doge, the number of ducal councillors was raised from two to six. In 1198, on the election of Enrico Dandolo, the aristocracy carried their policy one step farther, and by the promissione ducale, or coronation aath, which every doge wiss required to swear, they acquired a powerfal weapon for the suppression of all that remained of ancient ducal authority. The promissione ducale was binding on the doge and his family, and could be, and frequently was, altered at each new election. a commission, Inquisitori sopra il doge defunto, being appointed to scrutinize the actions of the deceased doge and to add to the pew oath whatever provisions they thought necessary to reduce the dogeship to the position of a mere figurehead in the state.

In spite of the check to their trade received from the emperos Manuel in 1175, Venetian commerce continued to flourish, the Venetian fleet to grow and the Venetians to amass weahh. When the Fourth Crusade was proclaimed at Soissons, it was to Venice that the leaders applied for transport, and she agreed to furnish transport for 4500 horses, 9000 knights, 20,000 foor, and provisions for one year the price was 85.000 silver marts of Cologne and half of all conquests. But Zara and Dalmatia had revolted from Venice in 1166 and were as yet unsubdued. Venetian supremacy in the Adriatic had been temporarily shaken. The 85,000 marks, the price of transport, were not forthcoming, and the Venetians declined to sail till they were paid. The doge Dandolo now saw an opportunity to beneft Venice. He offered to postpone the receipt of the money if the Crusaders would reduce Zara and Dalmatia for the republic. These terms were accepted. Zara was recovered, and while still at Zara the leaders of the Crusade, supported by Dandolo, resolved for their own private purposes to attack Constantinople. instead of making for the Holy Land. Boniface. marquis of Monferrat, desired to make good the claim to Salonica. and the Venetians doubtless wished to upset the Greek empire, which had recently shown itself so friendly to their rivals tbe Genoese. Constantinople fell (1204), thanks chiefly to the ability of the Venetians under Dandolo. The city was sarked and a Latin empire, with Baldwin of Flanders as emperor. was established at Constantinople (see Rawn Eupine, Lutze).

In the partition of the spoils Venice claimed and received, in her own phrase, "a half and a quarter of the Roman empire." To her fell the Cyclades, the Sporades, the islands and the eastern shores of the Adriatic, the shores of tbe Propontis and the Euxine, and the littoral of Thessaly, and she bought Crete from the marquis of Monferrat. The accession of territory was not only vast, it was of the highest importance to Venetian commerce. She now commanded the Adriatic, the Ionian islands, the archipelago, the Sea of Marmora and the Black Sea, the trade route between Constantinople and western Europe, and she had already established herself in the seaports of Syria, and thus held the trade route between Asia Minor and Europe. She was raised at once to the position of a European power. In order to hold these possessions, she borrowed from the Franks the feudal system, and granted fiefs in the Greek islands to her more powerful families, on condition that they held the trade route open for her. The expansion of commerce which resulted from the Fourth Crusade soon made itself evident in the city by a rapid development in its architecture and by a decided strengthening of the commercial aristocracy, which eveatually led to the great constitutional reform-the closing of the Maggior Consiglio in 1296, wherehy Venice became a rigid oligarchy. Externally this rapid success awoke the implacable hatred of Genoa, and led to the long and exhausting series of Genoese wars which ended at Chioggia in \(\mathbf{1 3 8 0}\).

The closing of the great council was, no doubt, mainly due to the slowly formed resolution on the part of the great commercial families to secure a monopoly in the Levant trade which the Fourth Crusade had placed definitely in their hands. The theory of the government, a theory expressed throughout the whote commercial career of the republic, the theory which made Venice a rigidly protective state, was that the Levani trade belonged solcly to Venice and her citizens. No one but a Venetian citizen was permitted to share in the profits of that trade. But the population of Venice was growing rapidly, and citizenship was as yet undefined. To secure for themselves the command of trade the leading commercial families resolved to erert themselves into a close gild, which should have in its hands the sole direction of the business concern, the exploitation of the East. This policy took definite shape in 1297, when the Doge Pietro Gradenigo proposed and carried the following measure: the supreme court, the Quarantia, was called upon to ballot, one by one, the names of all who for the last four years had beld a seat in the great council created in m71. Those who received twelve favourable votes became members of the great council. A commission of three was appointed to submit further manes for ballot. The three commissioners at once laid down a rule-which contains the essence of the act-that only those who could prove that a paternal ancestor had sat in the great council should be eligible for election. This measure divided the community into three great categories: (1) those who had never sat in the council theraselves and whose ancestors had Dever sat; these were of course the vast majority of the populalion, and they were excluded for ever from the great council: (2) those whose paternal ancestors had sat in the council; these were eligible and were gradually admitted to a seat, their cons becoming eligible on majority: \((3)\) those who were of the covancil at the passing of this act or had sat during the four preceding years; their sons likewise became eligible on attaining majority. As all offices were filled by the great council, exclusion meant political disfranchisement. A close caste was created which very seldom and very reluctantly admitted new members to its body. The Heralds' College, the avoogadori di comme, in order to ensure purity of hlood, were ordered to open a register of all marriages and births among members of the newly created caste, and these registers formed the basis of the famous Libro d'oro.

The closing of the great council and the creation of the patrician caste brought about a revolution among those who suffered disiranchisement. In the year 1300 the people, led by Marin Bocconio, attempted to force their way into the great council
and to reciaim their rights. The doors were opened, the ringleaders were admitted and immediately seized and hanged. Ten years later a more scrious revolution, the only revolution that seriously shook the state, broke out and was also crushed. This conspiracy was charpioned by Bajamonte Tiepolo, and seems to have been an expression of patrician protest against the serrata, just as Bocconio's revolt had represented popular indignation. Tiepolo, followed by members of the Quirini family and many nobles with their followers, attempted to seize the Piaza on the isth of Jume tigio. They were met by the Doge Pietro Gradenigo and crushed. Quirini was killed, and Tiepolo and his followers fied.

The chief importance of the Tiepoline conspiracy lies in the fact that it resulted in the establishment of the Council of Ten. Erected first as a temporary committee of public salety to bunt down the remnant of the conspirators and to keep a vigilant watch on Tiepolo's movements, it was finally made permanent in 1335. The secrecy of its deliberations and the rapidity with which it could act made it a useful adjunct to the constitution, and it gradually absorbed many of the more important functions of the state.
With tbe creation of the Council of Ten the main lines of the Venetian constitution were completed. At the hasis of the pyramid we get the great council, the elective body composed of all who enjoyed the suffrage, i.e. of the patrician caste. Above the great council came the senate, the deliberative and legislative body par excellence. To the senate belonged all questions relating to foreign affairs, finance, commerce. peace and war. Parallel with the senate, but extrancous to the main lines of the constitution, came the Council of Ten. As a committee of public safety it dealt with all cases of conspiracy; for example, it tried the Doge Marino Falier and the General Carmagnola; on the same ground all cases affecting public morals came within its extensive criminal jurisdiction. In the region of foreign affairs it was in communication with envoys abroad, and its orders would override those of the senate. It also had its own departments of finance and war. Above the senate and the Ten came the Collegio or cahinet, the administrative branch of the constitution. All affairs of state passed through its hands. It was the initiatory body; and it lay with the Callegio to send matters for deliberation either before the senate or before the Ten. At the aper of the pyramid came the doge and his council, the point of highest honour and least weight in the constitution.
To turn now to the external events which followed on the Fourth Crusade. These events are chiefly concerned with tbe long struggle with Genoa over the possession of the Levant and Black Sea trade. By the establishment of the Latin empire Venice had gained a preponderance. But it was impossible that the rival Venctian and Genoese merchants, dwelling at close quarters in the Levant citics, should not come to blows. They fell out at Acre in 1253. The first Genoese war began and ended in 1258 by the complete defeat of Genoa. But in 1261 the Greeks, supported by the Genoese, took advantage of the absence of the Venetian fleet from Constantinople to seize the city and to restore the Greek empire in the person of Michaet VIII. Palaeologus. The balance turned against Venice again. The Genoese were established in the spacious quarter of Galata and threatened to absorb the trade of the Levant. To recover her position Venice went to war again, and in 1264 destroyed the Genoese fleet of Trepani, in Sicilian waters. This victory was decisive at Constantinople, where the emperor ahandoned the defeated Genoese and restored Venice to ber lormer position. The appearance of the Ottoman Turk and the final collapse of the Latin empire in Syria brought about the next campaign between the rival maritime powers. Tripoli (1289) and Acre (1291) fell to the Mussulman, and the Venetian title to her trading privileges, her diplomas from the Latin empire, disappeared. To the scandal of Christendom, Venice at once entered into treaty with the new masters of Syria and obtained a confirmation of her ancient trading rights. Genoa replied by attempting to close the Dardanelles. Venice
made this action a casus bolli. The Genoese won a victory in the gulf of Alexandretta (1294); but on the other hand the Venetians under Ruggiero Morosini forced the Dardanelles and sacked the Genocse quarter of Galata. The decisive engagement, however, of this campaign was fought at Curzola (1299) in the Adriatic, when Venice suffered a crushing defeat. A peace, honourable to both parties, was brought about by Matteo Visconti, lord of Milan, in that same year. But the quarrel between the republics, both fighting for trade supremacythat is to say, for their lives-could not come to an end till one or other was thoroughly crushed. The fur trade of the Black Sea furnished the pretext for the next war (\(1353-54\)), which ended in the crushing defeat of Venice at Sapienza, and the loss of her entire feet. But though Venice herself seemed to lie open to the Genoese, they took no advantage of their victory; they were probably too exhausted. The lord of Milan again arranged a peace (1355).
We have now reached the last phase of the struggle for maritime supremacy. Under pressure from Venice the emperor John V. Palaeologus granted possession of the island of Tenedos to the republic. The island commanded the entrance to the Dardanelles. Genoa determined to oppose the concession, and war broke out. The Genoese Admiral Luciano Doria sailed into the Adriatic, attacked and defeated Vettor Pisani at Pola in Istria, and again Venice and the lagoons lay at the mercy of the enemy. Doria resolved to blockade and starve Venice to surrender. He was master of the sea, and the flow of provisions from the mainland was cut off by Genoa's ally, Francesco I. Carrara, lord of Padua. Doria scized Cbioggia as a base of operations and drew his ficet inside the lagoons. The situation was extremely critical for Venice, but she rose to the occasion. Vettor Pisani was placed in command, and by a stroke of naval genius he grasped the weakness of Doria's position. Sailing to Chioggia he blocked the channel leading from the lagoon to the sea, and Doria was caught in a trap. Pisani stationed himself outside the Lido, on the open sea, to intercept relief should any appear, and Doria, instead of blockading Venice, was himself hlockaded in Chioggia. For many months the siege went on; hut Pisani gradually assumed the offensive as Genoese spirits and food ran low. Finally; in June 1380 the flower of the Genoese ficet surrendered at discretion. Genoa never recovered from the blow, and Venice remained undisputed mistress of the Mediterranean and the Levant trade.
The defeat of Genoa and the establishment of Venetian supremacy in the Mediterranean hrought the state to a further step in its development. The undisputed mastery of the eastern trade increased its bulk in Venice. But as the city became the recognized mart for exchange of goods between east and west, the freedom of the western outlet assumed the aspect of a paramount question. It was useless for Venice to accumulate eastern merchandise if she could not frecly pass it on to the west. If the various states on the immediate mainland could levy taxes on Venetian goods in transit, the Venetian merchant would inevitably suffer in profits. The geographical position of Venice and her commercial policy alike compelled her to attempt to secure the command of the rivers and roads of the mainland, at least up to the mountains, that is to say, of the north-western outlet, just as she had ohtained command of the south-eastern inlet. She was compelled to turn her attention, though reluetantly, to the mainland of Italy. Another consideration drove her in the same direction. During the long wars with Genoa, after the defcats of Curzola, Sapienza, Pola, above all during the crisis of the war of Chioggia, it bad been brought bome to the Venetians that, as they owned no meat or com-producing territory, a crushing defeal at sea and a blockade on the mainland exposed them to the grave danger of being starved into surrenter. Both these pressing necessitics, for a frce outct for merciandise and for a food-supplying arca, drove Venice on to the minland, and compelled her to initiate a policy which evcntuilly landed her in the disastrous wars of \(C\) - The period with which we are now dealing
is the epoch of the despots, the signori, and in pursuit of erparsion on the mainland Venice was brought into collision first with the Scaligeri of Verona, then with the Carraresi of Padua, and finally with the Visconti of Milan. Hitherto Venice had enjoyed the advantages of isolation; the lagoons were virtually impregnable; she had no land frontier to defend. But when she touched the mainland she at once became possessed of a frontier which could be attacked, and found bersclf compelled either to expand in self-defence or to lose the territory she had acquired.

Venice bad already established a tentative hold on the immediate mainland as early as 1339. She was forced into war by Mastino della Scala, lord of Padua, Vicenza, Treviso, Feltre and Belluno, as well as of Verona, who imposed a duty on the transport of Venetian goods. A league against the Scala domination was formed, and the result was the fall of the family. Venice took possession of Padua, but in the terms of the league she at once conferred the lordship on the Carraresi, retaining Treviso and Bassano for herself. But it is not till we come to the opening of the next century that Venice definitely acquired land possessions and found berself committed to all the difficulties and intricacies of Italian mainland politics. On the death of Gian Galeazzo Visconti in 1402, his large possessions broke up. His neighbours and his generals scized what was nearest to hand. Francesco II. Carrara, lord of Padua, attempted to seize Vicenza and Verona. But Venice had teen made to suffer at the hands of Carrara, who had levied heavy dues on transit, and moreover during the Chioggian Mar had helped the Genoese and cut of the food supply from the mainland. She was therefore foreed in self-defence to crush the family of Carrara and to make herself permanently mistress of the immediate mainiand. Accordingly when Gian Galeazzo's widow applied to the republic for help against Carrara it was readily granted, and, after some years of fighting, the possessions of the Carraresi, Padua, Treviso, Bassano, commanding the Val Sugana route, as well as Vicenza and Verona, passed definitely under Venetian rule. This expaasion of mainland territory was followed in 1420 by the acquisition of Friuli afict a successful war with the emperor Sigismund, thus bringing the possessions of the republic up to the Camic and Julian Alps, their natural frontier on the north-east.

Venice was soon made to feel the consequences of having become a mainland power, the difficulties entailed by holding possessions which others coveted, and the weakness of a land frontier. To the west the new duke of Milan, Filippo Maria Visconti, was steadily piecing together the fragments of his father's shattered duchy. He was determined to recover Verona and Vicenza from Venice, and intended, as his father had done, to make himself master of all north Italy. The conflict between Venice and Milan led to three wars in \(14: 6\), 1427 and 1429 . Venice was successiul on the wholc. She established her hold permanently on Verona and Vicenza, and acquired besides both Brescia and Bergamo; and later she occupied Crema. The war of Ferrara and the peace of Bagnelo (1484) gave her Rovigo and the Polesine. This, with the exception of a brief tenure of Cremona (1499-1512), formed her permanent territory down to the fall of the republic. Her frontiers now ran from the seacoast near Monfalcone, following the line of the Carnic and Julian and Ractian Alps to the Adda, down the course of that river till it joins the Po, and thence along the line of the Po back to the sea. But long and exhausting wars were entailed upon her for the maintenance of her hold. The rapid formation of this land empire, and the obviots intention to expand, called the attention not only of Italy but of Europe to this power which seemed destined to berome supreme in north Italy, and eventually led to the league of Cambrai for the dismemberment of Venice. Contemporaneously other events were menacing the ascendancy and crbansting the treasury of the republic. In 1453 Constantinople fril to the Ottoman Turks, and although Venice entered at once into treaty with the new power and desired to trade with it not to fight with it, yet it was impossible that her possessions
in the Levant and the archipelago should not eventually bring her into collision with the expanding energy of the Mussulmen. Europe persistently refused to assist the republic to preserve a trade in which she had established a rigid monopoly, and Venice was left to fight the Turk single-handed. The first Turkish war lasted from 1464 to 1479 , and ended in the loss of Negropont and scveral piaces in the Mores, and the payment by Venice of an annual tribute for trading rights. She was consoled, however, by the acquisition of Cyprus, which came into her possession (1488) on the extinction of the dynasty of Lusignan with the death of James II. and his son James III., Caterina Cornaro, James II.'s widow, ceding the kingdom of Cyprus to Venice, since she could not hope to maintain it unaided against the Turks. The acquisition of Cyprus marks the extreme limit of Venetian expansion in the Levant; from this date onward thete is little to record save the gradual loss of her maritime possessions.

Exhausting as the Turkish wars were to the Venetian treasury, her trade was still so flourishing that she might have survived the strain had not the discovery of the Cape route to the Indies cut the tap-rool of her commercial prosperity by diverting the stream of traffic from the Mediterranean to the Atlantic. When Diaz munded the Cape in 1486 a fatal blow was struck at Venetian commercial supremacy. The discovery of the Cape route saved the breaking of bulk between India and Europe, and saved the dues exacted by the masters of Syria and Egjpt. Trade passed into the hands of the Portuguese, the Dutch and the English. Venice lost her monopoly of oriental traffic.

To complete her misfortunes, the European powers, the church and the small states of Italy, partly from jealous greed of her possessions, partly on the plea of her treason to Christendom in making terms with Islam, partly from fear of her expansion in north Italy, coalesced at Cambrai in 1508 for the partition of Venctian possessions. The war proved disastrous for Venice. The victory of Agnadello (1510) gave the allies the complete rommand of Venetian territory down to the shores of the lagoon. But the mutual jealousy of the allies saved her. The pope, having recovered the Romagna and sceured the objects for which he had joined the league, was unwilling to see all north Italy in the hands of foreigners, and quitted the union. The emperor Maximilian failed to make good his hold on Padua, and was jealous of the French. The league broke up, and the mainland cities of the Veneto returned of their own accord to their allegiance to St Mark. But the repuhtic never recovered from the blow, coming as it did on the top of the Turkish wars and the loss of her trade by the discovery of the Cape route. She ceased to be a great power, and was henceforth entirely roncerned in the effort to preserve her remaining possessions and her very independence. The settlement of the peninsula by Charles V.'s coronation at Bologna in 1530 secured the preponderance to Spain, and the combination of Spain and the church dominated the politics of Italy. Dread of the Turks and dread of Spain were the two terrors which haunted Venice till the republic fell. That she retained her independence so long was due to - double accident: the impregnability of the lagoons and the jealousies of the great powers.

But the decline was a slow process. Venice still possessed ronsiderable wealth and extensive possessions. Between 1499 and 1716 she went to war four times with the Turks, emerging from each campaign with some further loss of maritime territory. The fourth Turkish war (1570-1573) was signalized by the glorious victory of Lepanto (1571), due chiefly to the prowess of the Venctians under their doge Sebastian Venier. But her allies failed to support her. They reaped no fruits from the victory, and Cyprus was taken from her after the heroic defence of Famagusta hy Bragadino, who was flayed alive, and his skin, stuffed with straw, borne in triumph to Constantinople. The fifth Turkish war (1645-1668) eotailed the loss of Crete; and though Monosini reconquered the Morea for a brief space in 1685, that province was finally lost to Venice in 1716.

So far as European politics are concerned, the latter years of the republic are made memorable by one important event: the
resistance which Venice, under the guidance of Fra Paolo Sarpl, offered to the growing claims of the Curia Romana, advanced by Pope Paul V. Venice was placed under interdict (1606), but she asserted the rights of temporal sovereigns with a courage which was successful and won for her the esteem and approval of most European sovereigns.

But the chief glory of her declining years was undoubtedly her splendid art. Giorgione, Titian, Sansovino, Tintoret, Paolo Veronese and Palladio all lived and worked after the disestrous wars of the league of Cambrai. The chief characteristic of Venice during these years is that she became the great pleasurecity of Europe. The end of the republic came when the French Revolution burst over Europe. Napoleon was determined to destroy the oligarchical government, and seized the pretext that Venice was hostile to him and a menace to his line of retreat while engaged in his Austrian campaign of 1797. The peace of Leoben left Venice without an ally. The government resolved to offer no resistance to the conqueror, and the doge Lodovico Manin abdicated on the 12th of May 1797. On the 17 th of October Napoleon handed Venice over to Austria by the peare of Campo Formio, and between 1798 and 1814 she passed from France to Austria and Austria to France till the coalition of that latter year assigned ber definitely to Austria. In 1848 a revolution broke out and a provisional republican government under Daniele Manin (q.v.) maintained itself for a brief space. In 1866. the defeat of Austria by the Prussians led to the incorporation of Venice in United Italy.

Bibliograpry.-S. Romanin, Stoma dockmentata di Vemezia (Venice, 1853); P. Molmenti, La Sloria di Venezia nella Vila prisata (Bergamo 1906; also English translation, London): P. Daru, Storia della Republica di Venezia, tr. from the French, Capolago, 1837 (this edition is recommended on account of the notes and additions); W. C. Hazlitt, The Verretian Republic (London. 1900): C. Yriarte, Venise (Paris. 1875) ; W. R. Thayer, A Short History of Venice (New York, 1905); H. F. Brown, Venice, an Historical Skelch of the Republic (London, 1895); H. Kretschmer, Geschichte \(20 n\) Venedig. Band i. (Gotha. 1gos); A. Gfrörer, Geschickle Venedigs bis zum Jahr ro48 (Gratz, 1872); G. Filiasi, MEenorie storiche de' Veneti primi e secundi (Venexia, 1796); F. G. Hodgson, The Early History of Venice (London, 1901); C. Hopf, Ckroniques Greco Romaines (Berlin, 1873): W. Heyd. Geschichte des Lerantehandels im Mittelaller (Suttgart, 1879); G. L. Talel and G. M. Thomas, Upkunden zur stleren Handels-wnd Staolsgeschichte der Republik Venedig (Vienna, 1856): V. Sandi, Storia cievile della Repubica di Venezia (Venice, 1755); C. A. Marin. Storia civile e politica del Commercio de' Vemesiani (Venice. \(179^{8) ; ~ H . F . B r o w n, ~ S t u d i e s ~ i n ~ t h e ~ I I I s t o r y ~ o f ~ V e n i c e ~(L o n d o n . ~}\) 1907); M. Samedo, Diarif (Venice, 1879-1903).
(H. F. B.)

VENISON (pronounced venzon), originally a word meaning a beast of any kind killed in the chase, but now only applied to the fiesh of the deer prepared for eating. The O. Fr. reneisun, venoison, \&c., mod. venaison, meant the flesh of the deer or boar, the principal beasts of the chase (Lat. ocenatio, hunting).

VEPILO, a frontier town in the province of Limburg, Holland, on the right bank of the Maas, and a junction station 43 m . by rail N.N.E. of Maastricht. Pop. 15,000 . It is joined by a bridge over the Mass, with tbe opposite village of Blerik. Venle, with narrow streets irregularly built, is not of the ordinary Dutch type in architectural style. The picturesque town hall (1505), the only building of special interest, contains some interesting paintings by Hubert Goltaius (1526-1583). The church dates from 1304. There is a college tor the higher education of Roman Catholic priests. The leading industrics are distilling, hrewing, tanning, spinning, needlemaking and tobacco manufacture. There is also a considerable trade by river with Rotterdam.

VENN, HENRY (1725-1797). English evangelical divine, was born at Barnes, Surrey, and educated at Cambridge. He took orders in 1747. and was elected fellow of Queens' College, Cambridge, in 1749. After bolding a curacy at Barton, Cambridgeshire, he became curate of St Matthew, Friday Street, London, and of West Horsley, Surrey, in 1750, and then of Clapham in 1754. In the preceding year he was chosen lecturer of St Swithin's, London Stone. He was vicar of Huddersficld from 1759 to 1771, when he exchanged to the living of Yelling, Hualingdonshire. Besides being a leader
of the evangelical revival, he was well known as the author of The Compleat Duty of Man (London, 1763), a work in which he intended to supplement the teaching embodied in the anonymous Whole Duty of Mar. His son, John Vean (1759-1813), was one of the founders of the Church Missionary Societ \(y\), and his grandson, Henry Venn (1796-1873), was honorary secretary of that society from 1841 to 1873 .

VBNOSA (anc. Venusic, q.v.), a town and hishop's see of the Basilicata in the province of Potenza, Italy, on the castern side of Mount Vulture, 52 m . by rail S.S.E. of Foggia, 1345 ft . above sea-level. Pop. (r901) 8503 . The castle was built in 1470 by Pirro di Balzo, and contains four stables each for fifty borses. Many fragments of Roman workmanship are built into the walls of the cathedral, which is due to him also. The abbey church of SS. Trinita is historically interesting; it was consecrated in ros9 by Pope Nicholas II. and passed into the hands of the Knights of St John in the time of Boniface VIII. (r295-1303). In the central aisle is the tomb of Alberada, the first wife of Robert Guiscard and mother of Bohemund. An inscription on the wall commemorates the great Norman brothers William Iron Arm (d. 1046), Brogo (murdered at Venosa in 1051), Humfrey (d. 1057) and Robert Guiscard (d. at Corfu in 1085). The bones of these brothers rest together in a simple stone sarcophagus opposite the tomh of Alberada. The church also contains some \(14^{\text {th }}\)-century frescoes. Behind it is a larger church, which was begun for the Benedictines about 1150 , from the designs of a French architect, in imitation of the Cluniac church at Paray-lc-Monial, but never carried beyond the spring of the vaulting. The ancient amphitheatre adjacent furnished the materials for its walts.

See A. Avena, Monumenti dell' Italia Meridionale (Naples, 1902), 323 sq9.: O. de Lorenzo, Venosa c la Regiose del Valfure (Bergamo, 1906).

VENTILATION (Lat. ventilare, from ventus, wind), the process and practice of keeping an enclosed place supplied with proper air for breathing; and so, by analogy, a tern used for exposing any suhject to the winds of public criticism. The ait which we breathe consists chiefly of two gases, oxygen and nitrogen, with certain small proportions of other gases, such as carbonic acid (carbon dioxide), ozone and argon. Oxygen, which is the active and important constituent, and on which life and combustion depend, forms about one-fifth of the whole, while nitrogen, which is inert and acts as a diluent, forms nearly four-fifths. Of this mixture each adult person breathes some 3600 gallons or 425 cub. ft. in twenty-four hours. In air that has passed through the lungs the proportion of oxygen is reduced and that of carbon dioxide increased. Of the various impuritics that are found in the air of inhabited rooms, carbonic acid gas forms the best practical index of the efficiency of the ventilation. The open air of London and other large inland towns contains about four parts by volume of the gas in 10,000 of air. In the country, and in towns near the sea, two to three and a half parts in 10,000 is a more usual proportion. Authorities on ventilation usually take four parts in 10,000 as the standand for pure air, and use the excess over that quantity in estimating the adequacy of the air supply. But they differ as to the proportion to which the carbonic acid may be allowed

\section*{standard efority.} to rise under a good system of ventilation. It is generally admitted that the air in which people dweil and sleep.should not under any circumstances be allowed to contain more than ten parts in 10,000. This has been accepted as the permissible proportion by Carnelley. Haldane and Anderson, after an extensive examination of the air of middle and lower class dwellings.

The rate at which an adult expires carbonic acid varies widely with his condition of repose, being least in sleep, greater Rare of in waking rest, and very much greater in violent
cose cetruation of er. exercise. As a basis on which to calculate the air neceger- \(\rightarrow\) proper ventilation we may take the rasbonic acid by an adult as 0.6 3 will produce per hour, in 6000 oooting to one part of carbonic
acid in ro,000 of air. If the excess of carbonic acid were to be kept down to this Ggure (I in 10,000), it would be necessary to supply 6000 cub. It. of fresh air per hour; if the permissible excess be two parts in 10,000 half this supply of fresh air will suffice; and so on. We therefore have the following relation between (1) the quantity of air supplied per person per bour, (2) the excess of carbonic acid which results, and (3) the total quantity of carbonic acid present, on the assumption that the fresh air that is admitted contains four parts by volume in 10,000:-
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Air supplied per \\
Adult per Hour.
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c}
Carbonic Acid \\
(Parts by Volome in to,000).
\end{tabular}} \\
\hline Cubic Feet. & \begin{tabular}{c}
Excess due to \\
Respiration.
\end{tabular} & Total \\
Quantily. \\
\hline 1000 & 6 & 10 \\
1200 & 5 & 9 \\
1500 & 4 & 8 \\
2000 & 3 & 7 \\
3000 & 2 & 6 \\
\hline
\end{tabular}

Some investigators have maintained that, in addition to an increased proportion of carbonic acid, air which has passed through tbe lungs contains a special poison. This view, however, is not accepted by others; J. S. Haldane and Lorrain Smith, for instance, conclude "that the immediate dangers from breathing air highly vitiated by respiration arise entirely from the excess of carbonic acid and deficiency of oxygen " (Journ. Poth. and Bact. 1892, 1, 175). Carbonic acid, however, is not the only agent that has to be rickoned with in badly ventilated rooms, for the unpleasant cfects they produce may also he due to increase of moisture and temperature and to the odours that arise from lack of cleanliness. Again, though there may be no unduly large proportion of carbonic acid present, the air of an apartment may be exceedingly impure when the criterion is the number of micro-organisms it conlains. This also may be greatly reduced by efficient ventilation. Comparisona carried out by Carnelley, Haldane and Anderson (Phil. Trans. 1887, \(17{ }^{8} \mathrm{~B}, 61\)) between schools known to be well ventilated (by mechanical means) and schools ventilated at haphazard or not ventilated at all showed that the average number of micro-organisson was 17 per litre in the former, and in the others 152 . Resulis of great interest were obtained by the experiment of stopping the mechanical ventilators for a few hours or days. Tested by the proportion of carbonic acid, the air of course became very bad; tested by the number of micro-organisms, it remained comparatively pure, the number being, in fact, scarcely preater than when ventila. tion was going on, and far less than the average in "naturally ventilated" schools. This proves in a striking way the advantage of systematic ventilation.

In the ventilation of buildings four main points have to be considered: (1) the area of floor to be provided for each person; (2) the cubic capacity of the room required vamero. for each occupant; (3) the allowance to be made reaeof for the vitiation of the air by gas or oil hurners; memeran and (4) the quantity of fresh air which must be brought in and of vitiated air that must be extracted for each individual. The first will depend upon the objects to which the rooin is devoted, whether a ward of a hospital or a school or a place of public assembly. The purity of the air of a room depends to a great extent on the proportion of its cubic capacity to the number of inmates. The influence of capacity is, however, often overrated. Even when the allowance of space is very tiberal, if no fresh air be supplied, the atmosphere of a room quickly falls below the standand of purity specified above; on the other hand, the space per inmate may be almost indefinitely reduced if sufficient means are provided for systematic ventilation. Large rooms are good, chicfly because of their action as reservoirs of air in those cases (too common in practice) where no sufficient provision is made for continuous ventilation, and where the air is changed maints by intermittent ventilation, such as occurs when doors or windows are opened. With regard to the third point, in buildings lighted by gas or oil the calculations for the supply of fresh and the extraction of foul air must include an allowance for the vitiation of air by the products of combustion. The rate at which this takes place may be roughly estimated in the case of gas by treating each cubic foot of gas burnt per hour as equal
to one person. Thus an ordinary burner giving a light of about trenty candles and burning 4 cub. ft. of gas per hour vitiates the air as much as four persons, and an incandescent busner as much as one and a half persons. A small readinglamp buming oil uses the air of four men; a large central table lamp uses as much air as seven men.
ds to the fourth point there is great diversity of opinion. To preserve the lowest standard of purity tolerated by sanjtarians, ventiation must go on at the rate per person of 1000 cub. ft. per hour, and 3000 cub . ft . per hour are required to preserve the higher standard on which some authorities insist. E. A. Parkes advised a supply of 2000 cub. it. of air per hour for persons in health and 3000 or 4000 cub. ft. for sick persons. In the case of a public assembly hall no great harm will occur to an audience occupying the room for a comparatively short time if 30 cub. ft. of air per minute are provided for each person. The United States book on school architecture gives a practical application to its remarks on this subject as follows:-

The amount of fresh air which is allowed to hospital patients is about 2500 cub. ft. each per hour. Criminals in French prisons have to content themselves with \(\mathbf{8 5 0 0} \mathrm{cub}\). ft. per hour. Assuming that we care two-thirds as much for the bealth of our chidren as we do for that of our thieves and murderers, we will make them an allowance of 1000 cub. ft. each per hour, or about 16 cub. ft. per minute. Forty-eight children will then need an hourly supply of 48,000 cub. St. Definite provision must therefore be made for withdrauing this quantity of foul air. No matter how many iniets there may be, the fresh air will only enter as fast as the foul escapes, and this can only find an outlet through duct: intended for that purpose, porous walla and crevices serving in cool weather only for inward fiow. What, then, must be the cize of the shaft to exhaust \(48,000 \mathrm{It}\). per hour? In a shaft 20 If . high, vertical and smooth inside, with a diffenence in temperature of \(20^{\circ}\), the velocity will be about 2! fi . per second, or y000 It. per hour; that is, it will carty of go00 cub. It. of air per hour for every square foot of its sectional area. To convey 48,000 cub. ft., it nust have a sectional area of 5 isq. ft .
A general idea of the floor area, cubic space and fresh air supply per inmate allowed by law or by custom in certain cases is given in the table below:-
\begin{tabular}{|c|c|c|c|}
\hline Class of Building. & Floor Area in Feet per Person. & Cubic Capacity in Feet per Persor. \({ }^{1}\) & Cubic Feet of Fresh Air supplied and Fonl Air extracted per Person. \\
\hline Sehools. & 91010 & 200 & 1.800 \\
\hline Barracka & \% 70 & 720 & 1.800 \\
\hline Prisons \({ }^{\text {Prelt }}\) : & 90 & 800 & 1,800 \\
\hline Concert halls and theatres & 9 & 108 & 2,000 \\
\hline Billiard and smoke.
roorns. & \% & . & 2,000 \\
\hline Hospitals . & 120 & 1.440 & 2,000 to 3,000 \\
\hline Public libraries & 20 & 2.400 & 2.500 \\
\hline Turkish baths & 70 & 800 & 5,000 \\
\hline Workshops & 120 & 1.440 & 5,000 \\
\hline Cowsheds, per cow & 90 & 1,100 & 10,006 \\
\hline Stables; per horse & 120 & 1,600 & 12,000 \\
\hline
\end{tabular}

I In calculating the cubic capacity per person the height should not be measured beyond 12 It. above the floor.

The supply of fresh air indicated in the table should not be regarded as entirely satisfactory, for the standard of purity suggested is 10 w, and ought to be exceeded, but it might deter many from moving in the matter if a proper and higher standard Fere to be laid down at first.

One of the most important points is the proper warming of Whe fresh air introduced into buildings, for unless that be done, when a cold day occurs all the ventilating arrangements will probably be closed. The fact should not be lost sight of that the air in a room may on the one hand be quite cold and yet very foul, and on the other, warm and yet perfectly fresh. To avoid draught the air should enter through a large number of small orifices, so that the currents may be thoroughly diffused. This is done by gratings. The friction of their bars, however, erioualy diminishes their capacity for passing air, and careful

requisod to ers ap wor
to extractiene tros
of the surface un +ifr ;
the quantity of wis rean ..
requisite.
Mcons of Ventibuticn, is and ..
room should be chacop/ is, .a....
securing proger ventiation, ewe
inlet or inlets for the frath is.
vitiated air, and (3) a arsatic lade
the current. In systems whinh kee i,
name of mechomical or artifciel yo.
made for driving the air, by fara, in
contrivances to be described mare ! -i,
called statural ventilation so sperial aphaser....."
motive force, but the forces are madk we in wit. - -
by (1) the wind, (2) the elevated temparat in -h
atmosphere, and (3) the draught of fires urat ber tan -ry
Nalural Ventilation.-The chiel ageat in 4 mew. ...
is the chimney; when a bright fire is burning sust wat \(\cdot \rightarrow\) it rarely happens that any other outlet for \(l_{n o n}\) wis \(1,1, \infty\) need be provided. The column of hot air and lunh kion chimney is less heavy, because of its high temprowitha. qual column of air outside: the pressure at the lume th, less than the pressure at the same level outside. "I Jin "ha.." less than the pressure at the same level outside. \(1 / 14\), widh..
 grate and through the opening over the grate, and causink arg risk to ascend. The motive force which the chimney. cuppolice how and only to do work on the column of air within the chimney, \(\mathrm{S}_{\mathrm{w}} \mathrm{d} \mathrm{m}\) in setting ft in motion and in overcoming frictional re- Cmmany sistance to its flow: it has also to set the air entering the dromptr. room in motion and to overcome frictional resistance at the intro, From want of proper inlets air has to be dragged in at a high velixity and against much resistance, under the doors, between the windry sashes and through many other chinks and crevices. Under tbere conditions the air enters in small streams or narrow sheetc, ill. distributed and moviag so fast as to form disagreeable draught., the pressure in the room is kept so low that an opened door or window, lets in a deluge of cold air, and the current up the chimney is much reduced. If the attempt is made to stop draughts by applying sand-bags and listing to the crevices at which air streams in, mattert only become worse in other respects; the true remedy of cournc lies in providing proper inlets. The discharge of air by aa ordinary open fire and chimney varies widely, depending on the rate of combustion, the beight and section and form of the chimney, and the freedom with which air is entering the room. About 10,000 cub. ft. per bour is probably a fair average, about enough to keep the air fresh for half a dozen persons. Even when no fire is buming the chimney plays an important part in ventilation; the air within an inhabited room being gencrally warmer than the air outside, it is only necessary that an up-current should be started in order that the chimney should maintain it, and it will usually be found that 2 current is, in fact, passing up.

When a room is occupied for any considerable length of time by more than about half a dozen persons, the chimney outlet should be supplemented by others, which usuaily take the form of gratings in the ceiling or cornices in communication with flues leading to the open air. These opening should be protected from down-draught by light flap valves of ciled silk or sheet mica.
With regard to ialets, a first care must be to avoid such currents of cold air as will give the disagreeable and dangerous sensation of draught. At ordinary temperat ures a current of outer air celreca to which the body is exposed will be felt as a draught if deirica its velocity exceeds 3 , or even 2 ff. per second. The current entering
a room may, however, be allowed to move with a speed much greater a roon may, however, be alowed to move with a speed much greater if from striking directly on the persons of the inmates. To secure this, it should enter, not borizontally nor through gratings on the floor, but vertically through openings high enough to carry the entering stream into the upper atmosphere of the room, where it will mix as completely as possible with warm air before its presence can be felt. A favourite form of inlet is the Sheringham (fig. i). When opened it forms a wedge-shaped projection into the room, and admits air in an upward stream througb the open top. It should be placed at a beight of 5 or 6 /t. above the level
 of the floor. Other inlets are Fic. 1.-Sheringham Air Inlet. made by using hollow perforated blocks of earthenware, called airbricks, built into the wall; these are often shaped on the inser
side like an inverted louvre-board or venetian blind, with slots that slope so as to give an upward inclination to the entering strcam.

In another and most valuable form of ventilator, the Tobin tube, the fresh eir enters vertically upwards. The usual arrangement Tobla tube. of Tobin tube (shown in front elevation and section in fig. 2) is a short vertical shaft of metal plate or wood which leads up the wall from the floor level to a height of 5 or 6 ft . Its lower end communicates with the outer air through an

Fig. 2.-Tobin Tube. air-grating in the wall; from its upper end, which is freely open, the current of fresh air rises in a smooth stream. Various forms of section may be given to the tube: if placed in a corner it will be triangular or segmental; against a flat wall a shallow rectangular form is most usual, or it may be placed in a channel so as tn be flush with the face of the wall; a lining of wood forming a dado may even be made to serve as a Tobin tube by setting it out a little way from the wall. The tube is often furnished with a regulating valve, and contrivances may be added for cleansing the entering air. A muslin or canvas bag hung in the tube, or a screen stretched diagonally across it, may be used to fitter out dust; the same object is served in some degree by forcing the air, as it enters the tube at the bottom, to pass in close contact with the surface of

Fig. 3.-Short Tobin Tube. water in a tray, by means of a deflecting plate. These complications have a double drawback: they require frequent attention to keep them in order, and by putting resistance in the way of the stream they are apt to reduce the efficiency of the ventilation. \({ }^{1}\) The air entering by a Tobin tube may be warmed hy a coil of hot pipes within the tube or by a small gas-stove (provided, of course, with a flue to discharge outside the products of combustion), or the tube may draw its supply, not directly from the outer at mosphere, but from a hotair flue. The opening should always be about the level of a man's head, but the tuhe need not extend down to the floor: all that is essential is that it should have sufficient length to let the air issue in a smooth vertical current without eddies (he-3).

These inlets are at once so simple and effective that no hesitation need be felt in introducing them freely in the rooms of dwellingVoatise houses. When no special provision is made for them in thon ay the walls, the advantage of a current cntering vertically whodow makeshift contrivances. One of these, suggested by Dr aed door. Makeshift contrivances. One oi these, suggested by Dr
Hinkes Bird, is to open one sash of the window a few inches and fill up the opening by a board; air then enters in a zigzag course through the space between the meeting rails of the sashes. Still another plan is to have a light frame of wood or metal or glass made to fit in front of the lower sash when the window is opened, forming virtually a Tobin tube in front of the window.

As an example of the systematic ventilation of dwelling-rooms on a large scale, the following particulars may be quoted of arrangeArrange ments that have been successully used in English -reats in barracks. One or more outlet-shafts of wood fitted with Serracks. hip valves to prevent down-draught are carried from the roof under a louvre. The number and size of these shafts are such as 10 give about 12 sq . in. of sectional area per head, and the chimney gives about 6 sq . in. more per head. About hall the air enters cold through air-bricks or Sheringham valves at a height of about 9 ft. from the floor, and the other hall is warmed by passing through fues behind the grate. The inlets taken together give an area of about it sq. in. per head. A fairly regular circulation of some 1200 cub. ft. per head per hour is found to take place, and the proportion of carbonic acid ranges from 7 to 10 parts in 10,000 .

\footnotetext{
\({ }^{1}\) When the air is not filtercd, and when it has been warmed before entering, the vertical direction of the strcam is readily traced by dust. Which is deposited on the wall in a nearly upright eolumn, spreading slightly lan-wise as it rises. With cold air the deposit of dust is comparatively slight. The difference is due to the fact, noticed and explained by Mr. John Aicka, that air quickly deposits any suspended particles when it is brought into contact with a surface colder than itself, but retains them in suspension if the surface be warmer than the sir. Anpther domestic illustration of the same f- en by the gratt: dustiness of walls and furniture in
} fire.

In the matural ventilation of churches, halla and other bage rooms we often find air admitted by gratings in the floor or near it; or the inlets may consist, like Tobin tubes, of upright fues rising to a height of about 6 ft . above the floor, from which the air proceeds in vertical streams. If the air is to be warmed before it enters, the supply may be drawn from a chamber warmed by hot-water or steam pipes or by a stove, and the temperature of the room may be regulated by allowing part of the air to come from a hot chamber and part from outside, the two currents mixing in the shaft from which the inlets to the room draw their supply. Outlets usually consist of gratings or plain openings at or near the ceiling, preferably at a considerable distance from points vertically above the inlet tubes. One of the chief difficulties in natural ventilation is to guard them against down-draught through the action of the wind. Numbertess forms of cowl have been devised with this object, with the further intention of turning the wind to useful account by making it assist the up-current of foul air. Some of these exhaust cowls are of the revolving class, made to various designs and dimensions and put in rotation by the force of the wind. Revolving cowls are liable to fail Examet by sticking, and, generally speaking, fixed cowls are to be preferred. They are designed in many forms, of which Buchan's may be cited as a good example. Fig. 4 shows this ventilator in
horizontal section: as is the vertical exhaust flue through which the foul air rises; near the top this expands into a polygonal chamber, b 666 , with vertical sides, consisting partly of perforated sheet-metal plates; outside of these are fixed vertical eurved guide-plates, \(c, c, c, c\); the wind, blowing between
these and the polygonal chamber, sucks air from the centre through the perforated sides. The efficient working of an exhaust cowl, bowever, depends almost entirely upon the favourable conditions of the wind. \({ }^{2}\) The two things that supply motive force in automatic or natural ventiation by means of exhaust cowls and similar

Fig. 4-Sectional Plan of
 appliances-the difference of temperature between inner and outer air, and the wind-are so variable that even the best arrangements of inlets and outlets give a somewhat uncertain result. As an example, it is evident that on a hot day with little movement in the air this mode of ventilation would be practically ineffectual. Under other conditions these automatic air-extractors not inirequently become inkets, thus reversing the whole system and pouring cold air on the heads of the inmates of the apartment or hall. To secure a strictly uniform delivery of air, unaffected by changes of season or of weather, it is necessary that the influence of these irregular motive forces be as far as possible minimized, and recourse must consequently be had to some mechanical force as a means of driving the air and securing adequate ventilation of the building.

Arfificial Ventilation- - Buildings may be meehanically ventilated on the vacuum system, the plenum system, or on a system combining the best points of both. In ncarly every case of the applcation to modern buildings of mechanical means of ventilation the combined system in one form or another is adopted. In the vacuture system the motive force is applied at the outlets; the vitiated air is drawn from the rooms, and the pressure of the atmosphere in them is slightly less than the pressure outside. Upon the foul air being withdrawn fresh air finds its way in by means of conveniently placed inlets. In the plenum the motive force is applied at the inlets; fresh air is forced in and drives the vitiated air before it until it escapes at the outlets provided. The pressure within the room is grcater than outside. The plenum method has distinct advantages: it makes the air cacape instead of coming in as a cold draught at every crevice and casual opening to the onter air; it avoids drawing foul air from sewers and basement; and with it more easily than with the other, one may guard against the disturbing induence of wind. In the plenum method the air is driven by fans; in the vacuum method suction is produced by lans or by heating the column of air in a long vertical shaft through which the discharge takes place. Water jets and steam jets have also been employed to impel or extract the air. Whatever system of ventilation is adopted, it is most important that windows capable of being widely opened ahould also be provided to aegrate at frequent intervals the whole building, either as a whole or in sections, and they should be so arranged that no corner can be left titagnant or unswept by the purifying eurrent. The Victoria Hospital at Glasgow and the Royral General Hospital at Birmingham are. however, ventilated on the plenum system without the ald of open windows, with what are said to be satisfactory results. In the case of hospitals, it is evident that akration by means of open wiodows could not in Great Britain be effected except on warm and eunny
\({ }^{2}\) For an account of tests of various forms of ventilating covels. see S. S. Hellyer, The Plumber and Sanitary Houses.
dyy, but in the case of concert halls, theatres and similar buildings, it is posible (and most essential) thoroughly to alrate the building between each occupation
The extraction of loul air should in most cases be effected at the top of a room or building, so as to utilize the natural tendency of

Extrac Extre of luator * The air inlets should be Tobin tubes or similar devines. before entering. In the case of a building for one of the American legislatures, the warmed fresh air is allowed to enter on the level in front of the desk of each member, so that he secures a proper volume of fresh air for his own use before it is breathed by his neighbour.
The introduction of rapidly revolving, but silent, fans, driven by electricity, is a great advance which places within the reach of the Ancr. engineer or architect the means for solving the problem of ventilation of buildings, and has been to a large extent responsible for the rapid progress of the art of ventilation. The fan and motor combined extend the advantages of positive mechanical ventilation to all who have access to electric current, with the further beneft that the extreme simplicity of the electric driving of the fans greatly lacilitates the control and distribution of ventilating effect. The moderate power required by these fans for a given duty has contributed greatly to their extended use. They should deliver into a chamber of considerable size, so that the velocity of the air may become reduced belore it passes into the distributing flues. The question of silence in running, in such places as houses of parliament, law courts, churches and chapels, is of paramount importance, and no fan should be accepted until it is proved by actual working to be noiselese.

In some instances revolving pumps of the Root's blower type are used (see Bellows and Blowing Machines). At the Dundee College a battery of five of these blowers, each discharging over \(\$ 50,000\) cub. ft . of air per hour, is driven easily by a gas engine of two horse-power. The air is passed through two filters of coarsely woven fabrica which serve ta remove all particles of impurity. The rooms are heated by having coils of Perkins's high-pressure hotwater pipes (see Heating) in the main distributing fues. The inlets are flat upright tubes extending up the side walls to a height of nearly 6 ft ., and open at the top. Outlets are generally provided in the end walls, one group near the ceiling, another a few fect from the foot. They are fitted with doors which allow one or other to be closed; the high-level outlets are used in warm wicather, when the fresh air that comes in is comparatively cool; the low-level ones are used in cold weather, when the freshair, having been hented before it enters, would tend to rise and pass out too directly if the outlets near the ceiling were open. The outlet shafts communicate with a louvred tower or turrets on the rool. Each room receives a volume of air equal to its cubic capacity in about 12 minutes, so that the atmosphere is completely changed five times in an hour. The inlets are proportioned to do this without allowing the velocity with which air enters to exceed 6 ft . per second.

The water-spray ventilator is a mecbanical ventilator using a jet Weten of water to impel the air. A nozzle at the top of a circular

\section*{-戒省 \\ veror \\ Brear.} air-shalt delivers a conical sheet of water, which impinges on the sides of the shait a little way below and carries down with it a considerable stream of air. This ventilator is used either to force air into rooms or to draw it out; in the former case a small stove is often added to heat the supply.
In the carly days of mechanical ventilation extraction by a hot-air haft was a more common mode of ventilating hospitalsand other

\section*{tratroc \\ ampint} public buildings than now. The heat was applied by a furnace or stove at the bottom of the shaft, or by coils of hot-water or steam pipes. In the lecture theatre of the Paris Conservatoire des Arts A. J. Morin employed this means of extraction, and arranged that the fresh air should enter through the ceiling and the foul air be drawn off through the foor from under the seats; this reversal of the matural direction of the current is of course only possible when a sufficient external motive force is applied.
In theatres and similar buildings clusters of gas jets or sunlight burmers. fixed at the ceiling level at the base of a metal shaft which is connected with the open air, serve as effective ventilating agents by extracting the foul air which collcets in the upper part of the hall.

To ensure the admission of the desired amount of air into a room, and to artive at the proper allowance of inlets and outlets, it is necessary to ascertain the direction ard velocity of the movement of the air through them. The quantity of air passing through a given opening is found by multiplying the area of the opening expressed in square feet by the velocity of the current of air stated in lincal fcet per minute, the product being the number of cubic leet passing per minute. Where the air is admitted through gratiogs only the clear area should be calculated, the amount of solid material being deducted from the gross superficies of the grating. The vclocity of the air current may gross superficies of the grating. The vclocity of the

We may conclude with a short summary of the methods adopted of ventilating a number of typical buildings of various classes of different countries.

The Smallpox Hospital at Bradford consists of two wards, 75 ft . by 15 ft., placed back to back, with a space of about 3 ft . between them enclosed by walls forming a foul-air chamber of the same length as the wards. and reaching to the ceiling. At this level are outlets for the vitiated air-one over each bed. A furnace at the base of a tall shaft withdraws through these outlets the air which passes through the furnace on its way to the outer air. The windows are tightly closed and fresh air enters from a chamber below through gratings in the floor at the foot of each bed.

The New York General Hospital was stated in 1875 to contain 163 beds. In the wards there is one window to each bed, each pier between the windows containing a foul-air extracting fue running from the base of the building and connected in the roof with large trunks lcading to an cxhaust fan. The heating is by steam coils placed in the basement in such a way that by a valve the cool fresh air can be sent either through or around the heating coil. The warmed fresh air is conveyed through an air-tight iron pipe fitted in each extracting shaft and is admitted to the wards through slits in the window-silts forming a jet directed upward on the principle of Tobin tubes. The outlet openings for the foul air are placed one beneath each bed, with extra outlets for occasional use at the top and base of the external walls. The placing of the freshair supply pipes in an inaccessible position inside the foul air ducts cannot be approved lor hospital ventilation, as, it is quite possible that in time. through the decay of the pipe joints or of the pipea themselves, communication may be established between the fresh and foulair, thus entirely upsetting the system of ventilation.

The City Hospita! of Hamburg, containing 130 beds, was opened in 1890 . The buildings are one storey high and are heated on the ancient Roman hypocaust principle. Beneath the entire floor run longitudinally a number of brick and concrete flues about 30 in. square, covered on the top with marble tiles, forming the floor of the wards. In these flues are placed the steam heating pipes. Warmed fresh air is admitted through large radiators in the centre of the wards, the vitiated air escaping through openings in the ridge of the roof. Mr H. Percy Adams adopted a similar hypocaust method for warming the chapel and the dining-hall at the King Edward VII. Tuberculosis Sanatorium at Midhurst, Sussex, except that the radiators are omitted from the centre of the rooms and placed in reccses in the side walla.

In the Houses of Parliament at Westminster, which were designed and built for the public business in \(\mathbf{3 8 3 6}\), considerable attention is devoted to the question of the purification of the air, but the arrangements are lamentably antiquated and ineffectual in their working. The supply of fresh air is drawn by fans from the terrace at the river front, and, after being warmed and moistened or cooled by rater-spray or blocks of ice, as the temperature may require, passes through exceedingly tortuous and restricted air passages to the various chambers, where it is admitted through large gratings in the floor, which are covered by porous matting to prevent draughts. The ourlets for the vitiated air are in the ceilings of the apartments, and from these the air has to be dragged down to the base of the ventilating shalt in the Victoria tower, where an up-current is maintained by a large furnace.

The French Chamber of Deputies, according to a report made by M. Frélat in 1891, is much overcrowded, the allowance of floor space for each member being only 30 square centimetres. The apparatus is powerful enough to change the air every six minutes, but to avoid draughts it can only be worked slowly. Fresh air is driven down by a fan through openings in the ceiling, and vitiated air removed at the floor, giving a downwand system of ventilation.

For the ventilation of the new Sessions House at the corner of Newgate Street and OId Bailcy, London, opened in 1907, an ela. borate system on the plenum downward principle was installed. The fresh air, drawn in at the basement by powerful fans, pased in turn through purifying screens, on which water was coastantly playing, and over steam-heated ccils, before entering the distributing trunks; into these sufficient cold air also was admitted to reduce it to the required temperature. Branch ducts conveyed this warmed fresh air to the points of inlet just below the ceiling. The ourlets for the vitiated air were placed near the floor level, an electric lan drawing it up and discharging it at the roof. It was claimed that 600 tons of filtered and warmed or cooled fresh air were passed through the building every hour.

In the Capitol at Washington in America the upward system is installed. Fresh air. warmed by coils in the basement, is delivered by means of fans through openings in the floors of the various chambers and galleries, and the extractors are placed in the ceilings. This foul air passes out of the huilding through louvre ventilators placed on the rool ridge. Some of the vitiared atmosphere. however-that from the corridors and galleries-is drawn by means of a fan to the basement and hiown up a lofty shalt.

The Grand Opera House in Vienna is ventilated on a most cla. borate and complete system, the arrankements there giving excellent results. The scheme for beating and ventilating this
building, was designed by D. Bothm. The building measures 397 ft . by 299 ft, and the theatre will hold about 2700 persons. Ventilation is effected by two fans, the lower for propulsion, the upper for extraction. The latter is aided also by the heat produced by the great pendant which has ninety burners. The heating is effected by steam, and the air enters the hall at a temperature of from \(63^{\circ}\) to \(65^{\circ}\) F., the points of entrance being at the floor and the risers of the seating. Each gallery and compartment of the theatre, including the stage, has a separate installation of heating apparatus and supply duct so that any one portion may be warmed and ventihated independently of the rest. The velocity of the incoming air is between 1 and 2 ft . per second. The driving fan in the basement sends air into the building at the rate of 1059 cub. It. per head per hour by means of electricity. The temperature in different parts of the house can be observed in a central control office, and here also are the levers which control the valves regulating the air supply, both hot and cold. During a performance the superintendent of heating and ventilation is on duty in chis office and secures to cach part of the building its proper supply of fresh air at a proper temperature.
For the ventilation of mines see Minnsg, and for that of railway tunnels see Tunnel.

Autrorities.- The following are the principal publications on ventilation: J. S. Billings, Ventilation and Healing: Leeds, Treatise on Ventilalion; Carpenter, Healing and Ventilating Buildings.

Vemtimigla (Fr. Vintimille, anc. Album Intimilixm or Albintimilium), a frontier fortress, seaport and episcopal see of Liguria, Italy, in the province of Porto Maurizio, 94 m . W. by S. of Genoa by rail, and 4 m . from the Franco-Italian frontier, 45 ft . above sea-level. Pop. (1901) 3452 (town); 11,468 (commune). The present Gothic cathedral is built on the ruins of an carlier Lombard church, and this again on a Rnman huilding, possibly a temple. The ruins of the ancient town are situated in the plain of Nervia, 3 m . to the E. of the modern. It was a municipium with an extensive territory, and of some importance under the Empire, but was plundered by the partisans of Otho in A.D. 69 . Remains of a theatre are visible, and remains nf many other buildings have been discovered, among them traces of the ancient city walls, a fine mosaic, found in 1852 , but at once destroyed, and a number of tombs to the west of the theatre. The caves of the Balzi Rossi have proved rich in palacolithic remains of the Quatemary period.
See Notizic degli Scavi, passim, especially 1877, 288 (G. Rossi),
VBNTNOR, a watering-place in the Isle of Wight, England, 12年 m. S. by W. of Ryde by rail. Pop. of urban-district (igor) 5866. It is fincly situated in the Undercliff district, at the foot of St Boniface Down, which reaches a height of 787 ft . The town is built on a succession of terraces sloping towards the sea, and from its sheltered situation, equable temperature, and comparatively dry atmosphere is regarded as one of the best resorts in England for consumplive invalids. In the middle of the 19th century it was only a small fishing hamet, now it extends along the shore for a distance of about 2 m ., including Bonchurch to the cast. It possesses assembly rooms, a literary and scientific institution, an esplanade, a pier and extensive recreation grounds. The churches of Ventnor are all modern, but that of St Boniface at Bonchurch is a small Norman building, perhaps the oldest in the island. Among the benevolent and charitahle institutions are the royal national hospital for consumptives (founded in 1869), the seaside home of the London city mission, the St Catherine's home for consumptives and the convalescent home of the Royal Hants Hospital.

VENTHILOQUISM (Lat. zenter, belly, and loqui, to speak), the art of producing the voice in such a manner that it shall appear to proceed, not from the speaker's own mouth, but from some place altogether distant from him. The art of ventriloquism was formerly supposed to restil: from a peculiar use of the stomach (whence the תame) duris the process of inhalation. As a matter of fact, the words are formed in the normal manner, but the breath is allowed to cscape very slowly, the tones being mufled by narrowing the gloltis and the mouth opened as little as possible, while the tonguc is retracted and only its tip moves. Gestures and facial cxpression are employed at the same time to assist in the deception by simulating the imagination of the and to distrast their attention from the speake"
to create the belief that a voice issues from the bowels of the earth, he imitates, with great accuracy, the tones of such a half-stified voice, and suggests the existence of some one uttering it by directing his answers and gestures towards the ground. The gestures and tones are such as would be produced by a given cause; and, no other cause being apparent, the mind of the bystander insensibly judges the suggested cause to exist." Ventriloquism, which is still a recognized form of conjuring ertertainment. is of ancient origin. Traces of the art are found in Egyptian and Hebrew archaeology. Eurykles of Athens was the most celebrated of Greek ventriloquists, who were called after him Euryllides, and also Engastrimanticis (belly-prophets). It is not impossible that the priests of ancient times were masters of this art, and that to it may be ascribed such miracles as the speaking statues of the Egyptians, the Greek orades, and the stone in the river Pactolus, the sound of which put robbers to fight. . Many uncivilized races of modern times are adepts in ventriloquism, as the Zulus, the Maoris and the Eskimos. It is well known in Hindustan and China, where it is practised by travelling magicians.
See De la Chapelle, Le Veniriloque, ou ICngastrimythe (London, \({ }^{1} 772\)); E. Schultz, Die Kunst des Bauchrcdens (Erfurt 1895): Sievers, Grundalge der Phonetic (Leipzig, 1901); Russel. Ventriloquism (London, 1898).

VENUE (derived through the French, from Lat. Eenire, to come), in English law the term denoting the place from which a jury must come for the trial of a case. The word occurs early in constitutional documents, for it was for a long time one of the essentials of trial by jury that the jury should belong to the neighbourhood (vicinessm, visne) in which the cause of action arose or the alleged crime was committed (see Juzr). This was founded on the idea that the jurors were in the nature of witnesses for or against the character or innocence of the party. The phrase duodecim legales homincs de vicinclo, or its equivalent, is found in the Constitutinns of Clarendon (1164), the Assize of the Forest (1184) and in Glanvill.

Civil Mallers.-Civil actions came to be classified as local and transitory, the former where the cause of action could only arise in a particular county, such as trespass to land, the latter where it might have arisen in any county, such as debt. In the latter case the plaintiff might hay the venue where he pleased, i.e. try the cause in any part of England subject to the power of the court or a judge to change the place of trial. The law on the subject is now only of antiquarian interest, for under the sules of the Supreme Court (Ord. xooxvi. r. 1)." there shatl be no local venue for the trial of any action, except where otherwise provided by statute, but ie every action in every division the place of trial shall be fixed by tbe court or a judge." All local venues created by statutes prior to 1875 were superseded by the rules of the Supreme Courr and have not been revived by the present rules; and many of such statutes have been expressly or impliedly repealed by the Public Authoritis Protection Act 1893 . The present practice is to fix the place of trial in the order for directions now made in every civil action in the High Court. The place is selected by relerence to the wishes of the parties, the residence of the witnesses, and with a view to reducing the costs of litigation.
Criminal Matiers.-Proceedings by indictment or criminal ior formation are not affected by the changes of procedure as to civil actions; and it is necessary to ascertain in the case of each offerce the venue, i.e. the proper place of trial, which. unless otherwise provided by statute. must be the county or other jurisdiction in which acts constituting the offence have been done. Numcrous acts provide for the place of trial of offences committed partly in one county and partly in another, or on the high seas or abroad. and of special offences, such as those under the Post Office, Merchant Shipping. Slave Trade, and Forcign Enlistment Acts. The place of trial may be changed by the king's bench division. Where it is probable that a fair trial could not be had in the county of the venus. Until 1825 it was necessary to have as juries in criminal cases jurons from the hundred in which the offence was said to have been cemmitted, and to be very paricular to specify the venue as to each act imputed to the accused. This strict ness continued to some ertent until the passing of the Criminal Procedure Act 1851, which makes it unnecessary to state any venue in the body of an indictment. and no indictment is to be held bad for want ol a proper perfect venue. Since this enactment (which applies to Ircland as well as to England) it is sufficient: to state the venute in the margin of the indictment in this form," Middlesex to wit." and it is unnecessary to mention the venue in the body of the indictment or information though in certain cases such as burglary it is usual, if not essential to give a "local description."

Sooblemd.-In Scottich law venue is not used as a technical term. but there are statutory provisions for changing the place of trial in both civil and criminal cases.
United Slates.-In the United States venue may generally be changed by the courts; but in some states it is provided by their conatitutions that provision for change of venue is to be made by the legishature. In other staten the passing of local or special laws for change of venuc is lorbidden.
(W. F. C.)

VETOS, an old Roman and Latin goddess, apparently representing beauty and growth in nature, and especially in gardens, where the Roman practical sense would most naturally see these. She had two temples in Rome, one in the grove of Libitina, with whom she was wrongly identified, and the other near the Circus Maximus, both of which had as their dedication day the roth of August, the festival of the Vinalia rustica, a fact which also points in the direction of skilled cultivation as the buman work of which she was protectress. But this old Latin deity was in historical times entircly absorbed by the Greek Aphrodite, and assumed the characteristics of a cult of human love, which in ber original form she had never possessed. (See Apgrodite.)

VENUS, in astronomy, the second of the major planets in the order of distance from the sun, and moving next within the orbit of the earth. Its symbol is \(\%\). At inferior conjunction it approaches nearer to the earth than any other major planet, but in that position it is practically invisible. Its apparent motion may be described as an oscillation from one side of the sun to the other, the complete period of which is \(1 \cdot 6\) years, and the greatest elongation about \(45^{\circ}\) on each side of the sun. When east of the latter it appears as the " evening star " in the west after sunset, while near western elongation it is seen as the " morning star" before sunrise. In these aspects it was known to the ancients
 The eccentricity of its orbit is smaller than that of any other planet except Neptune.

Not withstanding the near approach of Venus to the earth, its situation relative to the sun is unfavourable to the study of its pbysical constitution. Near unferior conjunction only a narrow crescent of light is visible; and when, as the planet moves away, this crescent becomes hroader, the distance of the planet constantly increases. When it appears as a half-moon it is at a distance of more than two-thinds that of the sun, and nearly double the distance of Mars in opposition. The difficulty of reaching any conclusion on the subject of its constitution is heightened by the seeming absence of any well-marked features on the visible part of its brilliant surface. In the telescope it presents much the appearance of burnished silver, without spot or blemish. It is true that observers have from time to time thought they could detect slight variations of shade indicating an axial rotation. As far back as 1667 G. D. Cassini thought he Rocetloe of Vosere s2w a bright spot near the southern horn, observations of which gave a period of about 23 hours In 1726 Francesco Bianchini (1662-1729). a papal chamberlain, made similar observations from which he inferred a period of more than 24 days. It was shown, however, that the observations of Bianchini could be reconciled with those of Cassini by supposing that, as he observed the planet night after night, it had made one rotation and a little more. J. H. Schroeter also found a revolution of less than 24 bours. But Sir W. Herschel. as in the case of Mercury, was never ahle to detect any changes from which a period of rotation could be determined. During the years \(1888-1890, G\). Schiaparelli made an exhaustive study of the wbole subject, the results of which were summed up in five brief notes, read to the Lombardian Academy of Sciences during the year 1800 . His general conclusion was that Venuss always presents the same face to the sun, as the moon does to the earth The same result bas been reached by the observations at the Lowell Observatory. The inference that the axial rotation is at least much slower than that of the earth is strengthened by the measures of different diameters of the planet made while it was in transit across the disk of the sun in 1874 and 1882. These show no measurahle cllipticity of the disk, but they are not sufficiendy accurate to lead to any more precise conclusion than
that just stated. Still, the difficulty an all observations hitherto made upon thd conclusion respecting the time of rotatid established. Against the view of Schiap
 great improbability that a body so distant could be permanently so acted upon as to k in precise coincidence with its orbital moth seems to be open for settling the question
. vy spectro- scopic observations of the displacement of the spectral lines at the two limbs of the planet. Attempts by this method have been made by A. A. Belopolski at Pulkova, and by the astronomers of the Lowell Observatory. It is, however, found that the amount of displacement is so small that it has evaded certain detection up to the present time. Belopolski's measures were decidedly in favour of an axial rotation, while the Lowell results were not.
Other observations than those we have cited show that Venus is surrounded hy an atmosphere so filled with clouds that it is doubtful whether any view of the solid body of the planet can ever be obtained. The first evidence in Alaofavour of an atmosphere was found in the fact venum that, when near inferior conjunction, the visible outline of the thin crescent extended through more than \(180^{\circ}\). Most remarkable was an observation by Chester Smith Lyman at New Haven during the conjunction of 1866, when the planet was just without the sun. A thin line of light was supposed to be seen all round the limb of the planet most distant from the sun. But as no such appearance was seen during the approarh of the planet to the sun at the transits of 1874 and 1882 , when the conditions were much more favourable, it seems likely that such ohservations are the result of an optical illusion. During the latter of the two transits the phenomens of this class observed were of an unexpected character. Not a trace of the planet could be seen until it began to impinge upon the solar disk. When about half of its diameter had entered upon the sun the outline outside the disk of the sun began to be marked by hroken portions of an are of light. This did not begin at the point A (fig. 1) farthest from the sun, as it should have done if due

wholly to reiraction, but immediately at the sud itself, as shown in the cut at the point B Portions of this arc were formed one by one at various other points of the dotted outline, and when the planet was about three-fourths upon the sun the arc was completed. But there was no strengthening of the line at the middle point, as there should have been if due to refraction Yet refraction must have played some part in the phenomenon, because otherwise no illumination could have been visible under the circumstances The most satisfactory explanation seems to be that of H N. Russell, whose conclusion is that the atmosphere is so permeated with fine particles of vapour up to its outer limit as to be only translucent without being fully \(t\) ransparent. Thus what is seen is the irregular reflection of the light at an extremely small angle from the particles of vapour
The question whether Venus has a satellite has always interested astronomers. During the 17 th and 18 th centuries Cassini at Paris and James Short (\(1710-1768\)) in England, as well as other observers during the same period, saw an object which had the appearance of a satellite. But as

Sapposet smeterive. no such object has been seen by the most careful search with the best instruments of recent times, the supposed object must be regarded as what is known to the practical astronomer as a "ghost "produced by refraction from the lenses of the eyepiece, or perhaps of the object-glass, of the telescope.
buildin brbit of Venus lay in the plane nf the eclipcic, it would be by 30 pass over the disk of the sun at every inferior conjunction. But the inclination of the orbit. \(3^{\circ} 36^{\prime}\). is so large that a transit is seen only when the earth and Venus pass a node of the orbit at nearly the same time. The earth passes the line of nodes about the 7 th of June and the 7 th of December of each year. The date of passage is about a day later in each successive century. Venus passes the node near enough to these dates to be seen against the sun anly four times in a period of 243 years. The following list of dates from 1518 to 2012 shows the law of recurrence.
\begin{tabular}{l|ll}
1518 & June 2. & 1769 June 3. \\
1526 June 1. & 1874 December 9. \\
1631 December 7. & 1882 December 6. \\
1639 December 4. & 2004 June 8. \\
1761 June 6. & 2012 June 6.
\end{tabular}

The first of these transits actually seen was that of 1639, which was imperfectly observed by Jeremiah Horrox (1619-164) shortly before sunset. Special interest in them was first excited by Edmund Halley a century tater, who showed that the parallax of the sun could be determined by observing transits of Venus from regions of the earth's surface where the displacement by parallax was greatest. Governments, scientific organizations and individuals fitted out expeditinns on a very large scale to make the necessary observations upon the four transits which have since occurred. The disappointing character of the results so far as the solar parallax is concerned are stated in the article Parallax. Solar. It may be said in a general way that the observations, even when made by experienced astronomers, exhibited irregularities and discordances several times greater than one had a right to expect. Other methods of determining the distance of the sun have been so perfected that the results of these transits now count hut little.
(S. N.)

VEMUSIA (mod. Venosa, q. D.), an ancient city of Apulia, Italy, on the Via Appia, about 6 m . S. of the river Aufidus (Ofanto), and not far from the boundary of Lucania (hence Horace describes himself as "Lucanus an Apulus anceps, nam Venusinus arat finem sub utrumque colonus"). It was taken hy the Romans after the Samnite war of 291 b.c., and became a colony at once, no fewer than 20,000 men being sent there, owing to its military importance. Throughout the Hannibalic wars it remained faithful to Rome, and had a further contingent of colonists sent in 300 e.c. to replace its losses in war. Some coins of Venusia of this period exist. It took part in the Social War, and was recaptured by Quintus Metellus Pius; it then became a municipium, but in 43 B.c. its territory was assigned to the veterans of the triumvirs, and it became a colony once more. Horace was born here; the son of a Ireedman, in 65 B.c. It remained an important place under the Empire as a station on the Via Appia, though Mommsen's description of it (Corp. Inscr. Lat. Kx. p. 45) as having branch roads to Equus Tuticus and Potentia, and Kiepert's maps annexed to the volume, do not agree with one another. Remains of the ancient city walls and of an amphitheatre still exist, end a number of inscriptions have been found there. Jewish catacombs with inscriptions in Hebrew, Greek and Latin show the import ance of the Jewish population here in the \(4^{\text {th }}\) and 5 th centuries after Christ. (T. As.)

VENOS'S FLY-TRAP (Diomoea muscipula), \({ }^{2}\) remarkable insectivorous plant, a native of North and South Carolina, first described in 1768 hy the American botanist Ellis, in a letter to Linnseus, in which he gave a substaptially correct account of the structure and functions of its leaves, and even suggested the probability of their carnivorism. Linnaeus declared it the most wonderful of plants (miraculum noturae), yet only admitted that it showed an extreme case of sensitiveness, supposing that the insects were only accidentally captured and subsequently allowed to escape. The insectivorous hahit of the plant was subsequently fully investigated and deseribed by Charles Darwin in bis book on insectivorous plants.
 broad leat-like footstalks. Each le, of has two lobes, standing at rat het less than a right angie to each other, their edges being produced into spike. like processes (fig. 1). The upper surface of each tobe i covered with minute circular sessile glands, each consisting of from 20 to 30 cells filled with purplish fluid; it bears also three fine pointed sensitive bristles arranged in a triangle (fig. 3). These contail no fibro-vascular bundles, but present an articulation near their bases, which enables them to bend parallej to the surface of the leal when the lobes done. When the bristes are touched by an insect the loter close very, that ly upon the hinge-like midrib. the spike?
interlock, and the ingect is imprisoned (fig. 2). If very minute, and wo not worth digesting. it is able to escape between the interlocked spines; more usually. how-
ever. it is retaised between the lobes, which gradually but Grmly compress it. until its form is distinguishable from without. The leaf thus forms itself into a temporary stomach, and the glands, hitherto dry, commence. as moon as excited by the ab sorption of a trace of nitrogenous matter,
to pour out an acid to pour out an acid socretion containing a Cerment or casyme,

Fig. 1.-Leal of Venus's Fiy.Trap (Dioncea muscipula), viewed laterally in its ex. panded state, slightly enlarged. (Aiter Darwin.). similar to that ex. creted by the leaves of the sundew, which rapidly dissolves the soft parts of the insect. This is produced in such abundance that, when Darwin made a small opening at the base of one lobe of a teal which had closed over a large crushed fy, the secretion continued to run down the footstalk during the whole time-nine days-during which the plant was kept under observation. The closing of the leaf is due to a redistribution of water in the cells brought about by a change in the protoplasm which follows the \({ }^{\text {stimulation }}\) of the sensitive bristles.

Though the bristles are exquisitely sensitive to the slightest contact with solid bodies, yet they are far sensitive than those of the sundew (Drosera) to prolonged pressure, a singular difference in evident relation to the habits of the two plants. Like the leaves of Drasera, however. those of Dionoea are completely indifferent to wind and rain The surface of the blade is very slightly sensitive; it may be roughly handled or scratched without causing movement, but closes when its surface or midrib is deeply pricked or cut. Irritation of the triangular area on each lobe enclosed by the sensitive bristles causes closure. The footstalk is quite insensitive. Inorganic or non-nitrogenous bodies, placed on the leaves without touching the sensitive bristles, do not excite movement. but nitrogenous bodies, if in the least degree damp, cause after several hours the lobes to close slowly. So too the leaf which has closed over a digestible body applies a gradual pressure, which serves to bring the glands on both sides into contact with the body. Thas we see that there are two kinds of movement, adapted for different purposes. one rapid, excited mechanically, the other slow, excited chernically. Leaves made to close over insoluble bodies reopen in less than twenty-four hours, and are ready, even before being fully ex-
 panded, to shut again. But if

Fig. 3--A sensitive bristle and glands of \(D\). muscipula, B, glands.
they have clowed. over nitrogen-yiclding bodies, they remaio closely shut for many days, and after re-expanding are torpil and never act again, or only after a considerable time. Even in a state of nature, the most vigorous leaves are very rarely able to digest more than twice, or at moct thrice, during their life.

VENOS'S LOOKING GLASS, a popular garden name for Companula Speculum (or Specularia Speculum), from the obd name for the plant, Speculum Veacris. It is a common
comfeld plant in the south of Europe, and is grown in gardens on account of its brilliant purple flowers.

VRRA, AUEUSTO (1813 -1885), Italian philosopher, was born at Amelia in the province of Perugia on the 4 th of May 2813. He was educated in Rome and Paris, and, after teaching classics for some years in Geneva, held chairs of philosophy in various colleges in France, and subsequently was professor in Strassburg and in Paris. He leit Paris after the comp d'that of 1851 and spent nine years in England. Attaching himsely with enthusiasm to Hegel's system, Vera (who wrote fluently both in French and in English as well as in Italian) became widely influential in spreading a knowledge of the Hegelian doctrine, and became the chief representative of Italian Hegelianism. Without any marked originality, his writings are distinguished by lucidity of exposition and genuine philosophic spirit. In 1860 Vera returned to Italy, where he was made professor of philosophy in the royal academy of Milan. In the following year be was transferred to Naples as professor of philosophy in the university there. His Prolusioni alla Storia della Filo. sofio and Letioni sulla Filasofia della Storia were connected with his professorial work, which was specially devoted to the history of philosophy and the philosophy of history. He held this post till his death, which took place at Naples on the 13 th of July 1885.
Among his numerous works may be mentioned Introduction a la pailosophie d'Hdgel (1855: and ed, 1865): Probleme de le certtude (1845); Le HEgelianisme et la philosophie (1861); Mclanges philosophitpues (1862): Essais de philosopinie Héglienne (1864): Strauss. l'ancrenne et la nourelle foi (1873), an attack upon Serauss's last "confession," written from the standpoint of an orthodox Hegelian; and a comprehensive work in Italian, Il Problema dell Assolute (Naples, 1872-82). His English works are an Ingwiry into Speculative and Experimental Sxience (London, 1856) : Introduction to Speculative Logic and Philosophy (Si Lovis, 1875), and a translation of Bretschneider's History of Religion ond of the Chris. tian Church. He published also translations into French with commentaries of Hegel's works: Logique de Hegel (Paris. 1859: 2nd ed., 1874); Philosophie de la nature de H(gel (1863-65): Philosophie de lesprit de Hégel (1867-69); Philosophie de lo religion de Hégel (\(1876-7^{8}\), incomplete).
See R. Mariano, Augusto Vera (Naples, 1887) and Siraws e Vera (Rome, 1874); Kar! Rosenkranz. Hegel's Notwrphllosophie und Sercm Beurbeilung durck A. Vere (Berlin, 1868).

Vera CRUZ (officially Vern Cruz Llave), a Guif Coast state of Mexico, bounded N. by Tamaulipas, W. by San Luis Potosi, Hidalgo, Puebla and Oaxaca, and S.E. by Chiapas and Tabasco. Pop. (1900) 981,030 . It is about 50 m . wide, extending aleng the coast, N.W. to S.E., for a distance of 435 m ., with an area of \(\mathbf{2 9 , 2 0 1} \mathbf{s q} . \mathrm{m}\). It was the seat of an ancient Indian civilization antedating the Aztecs and is filled with remarkable and interesting ruins; it is now one of the richest states of the republic. It consists of a bow, sandy coastal zone, much broken with tidewater streams and lagoons, behind which the land rises gradually to the base of the sierras and then in rich valleys and wooded slopes to their summits on the eastern margin of the great Mexican plateau, from which rise the majestic summits of Orizaba and Cofre de Perote. The climate is hot, humid and malarial, except on the higher elevations; the raimfall is heavy, and the tropical vegetation is so dense that it is practically imposaihle to clear it away. At Coatzacoalcos the annual precipitation ranges from 125 to 140 in ., but it steadily decreases towards the \(\mathbf{N}\). On the higher slopes of the sierras prehistoric terraces are found, evidently constructed to prevent the washing away of the soil by these heavy rains. More than forty rivers cross the state from the sierras to the coast, the following being navigable on their lower courses-Coatzacoalcos, San Juan, Tonto, Papaloapam, Tuxpam and Casones. Several of the lagoons on the coast are also navigable, that of Tamiahua on the northern coast, about 100 m . long, being connected with the port of Tampico by inland channels. There are several ports on the coast-Coatzacoalcos, Alvarado, Vera Cruz, Nautla, Tecolutila and Tuxpam. The products of the state are chiefly agricultural-cotton, sugar, rum, tobacco, coffee, cacao, vanilla, maize, beans and Iruit. Cattle-raising is followed in some districts, cattle and hides being among the
exports. Among the forest products are rubber, cabinet woods, dye-woods, broom-root, chicle, jalap and orchids. Vera Cruz is one of the largest producers of sugar and rum in Mexico. There are a number of cotton factories (one of the largest in Mexico being at Orizaba), chiefly devoted to the making of coarse cloth for the lower classes. Tobacco factories are albo numerous. Other manufactures include paper, chocolate, soap and matches. There are four lines of railway converging at Vera Cruz, two of which cross the state by different routes to converge again at Mexico city. Another, the Tehuantepec National railway, crosses in the south, and is connected with Vera Cruz (city) by the Vera Cruz \& Pacific line, which traverses the state in a south-easterly direction. The capital is Jalapa, and its principal towns are Vera Cruz, Orizaba, Cordova and Coatzacoalcos.

VERA CRUZ, a city and seaport of Mexico, in the state of Vera Cruz, on a slight indentation of the coast of the Gulf of Mexico, in \(19^{\circ} 1 \mathrm{r}^{\prime} 50^{\circ} \mathrm{N} ., 96^{\circ} 20^{\circ} \mathrm{W}\)., slightly sheltered by some small islands and reels. Pop. (1900) 29,164. Vera Cruz is the most important port of the republic. It is 263 m . by rail E. of the city of Mexico, with which It is connected by two lines of railway. It is built on a flat, sandy, barren beach, only a few feet above sea-level The harbour is confined to a comparztively narrow channel inside a line of reefs and small islands, which is exposed to the full force of northern storms. New port works were completed towards the end of the igth century, which, by mears of breakwaters, afford complete protection. In 1905 the four railway companies having terminal stations in Vera Cruz united in the organization of a joint terminal association, with union station, tracks, warehouses, quays, cranes, \&c.
Vera Cruz dates from \(\mathbf{1 5 2 0}\), soon after the first landing there of Cortes. This settlement was called Villa Rica de Vera Cruz, but was soon after moved to the harbour of Bernal, in 1525 to a point now called Old Vera Crux, and in 1599 to its present site. It was pillaged hy privateers in 1653 and 1712, and this led to the erection of the celebrated fort of San Juan de Ulia, or Ulloa, on one of the reefs in front of the city. In 1838 it was captured by the French, in 1847 (March 29) by an American army under General Winfield Scott, who made Vera Cruz a base for his march upon the city of Mexico, and in 186t by the French.
VBRANDAH, or Veranda, a roofed galiery or portico attached to the outside of a dwelling-house or other huilding, usually open at the sides or partially covered by lattice-work or glass or other screens. The roofing is stanting and supported by pillars; a light rail or balustrade often surrounds it. The word in English is comparatively modern, having only been included by Todd in his edition of Johnson's Dictionary in 1827. But it was known earlier in India, and the occurrence of the word in modern Hindustani (varanda) and Malayan (baranda) has led some clymologists to connect the word with the Persian bardmadan, to climb. It is, however, certainly of European origin, and was taken to the East by the early Portuguese navigators. It is to be found as carly as the end of the 1sth century and the beginniag of the 16th in Spanish and Portuguese (so Minsher, "paranda, railes to leane the brest on ''), and apparently is to be referred to Lat. araca, a forked pole or rod.

VERATRUM. The Greek physicians were acquainted with a poisonous herb which they called white bellebore, and which has been supposed to represent the Veratrwin album of modern botanists. Be this as it may, in modern times the name has been applied to a genus of herbaceous plants belonging to the natural order Liliaceac. Veratrmm is a tall-growing berb, having a fibrous root-stock, an erect stem, with numerous broad, plicated leaves placed alternately, and terminal, much-branched clusters of greenish or purplish polygamous flowers. Each perfect flower consists of six regular petals, as many stamens, whose anthers open outwardly, and a three-celled superior ovary which ripens into a three-celled, many-seeded capsule. The genus comprises about nine species, natives of the temyerate
regions of the northern bemisphere, generally growing in pastutes or woods. \(V\) album and the American species \(V\). virude are commonly grown in gardens as ornamental perennials, but their poisonous qualities should be kept in mind, particularly as they bear a considerable resemblance in foliage to the harmless Gentiang lutca. Both contain the potent alkaloid veratrine (See also Hellebore.)

VBrbrna. The genus Verbena (vervain) in botany gives its name to the natural order (Verbenaceae) of which it is a member. The species are herbaceous or somewhat shrubby, erect or procumbent, with opposite or whorled leaves, generally deeply cut. The sessile flowers are aggregated in to close spikes. Eacb flower has a tuhular, ribbed calyx, a more or less irregular tubular two-lipped corolla, with four (didynamous) stamens springing from the interior of the corolla-tube. The anthers are two-celled, with or without a gland-like appendage at the apex. The ovary is entire or four-lobed, and always four-celled, with a single ovule in each cell, the style is unequally 1 wo-lobed at the apex. The fruit consists of four hard nutlets within the persistent calyx. There are about eighty species known, mostly natives of tropical and subtropical America, a very few species occurring also in the Old World. The vervein, or vervain, \(V\) officinalis, native of central and north Asia, Europe and North Airica, and common on dry waste ground in the south of England (rarer in the north), was the ohject of much superstitious veneration on the part of our pagan ancestors, who attributed marvellous propertics to \(i t\), provided it were gathered in a particular manner and with much complex ceremonial. The plant is now but lightly esteemed, and its medicinal virtues are wholly discredited. The garden verbenas are derivatives from various South American species, such as V. veucrioides, a native of southern Brazil, and V. chamacdrijolia from Argentina and southern Brazil. The range of colours extends from pure white to rose-coloured, carmine, violet and purple. Striped forms also are cultivated. The lemon-scented verbena of gardens, so much valued for the fragrance of its leaves, was once referred to this genus under the name \(V\). triphylla, subsequently called Aloysia, but is now referred to the genus Lippia as \(L\). cilriodora; it differs from Verbena in having two, not four, nutlets in the fruit.

The garden verbenas, although somewhat misprized for some years, have once more become popular as bedding plants, and also for pot culture. They are casily raised from seeds sown in heat in Fehruary or March, but choice varieties, like Miss Willmott and others, can only be kept true when raised from cuttings. These are best secured from old plants cut down in the autumn and started into growth in gentle heat and moisture the following spring. They root readily in a compost of sandy loam and leaf soil. Besides the garden varieties, V. penosa, a Brazilian species with bluish-violet flowers, is a popular plant for massing in beds during the summer montbs.

VERBÖCZY, ISTVAN [Stephen Werböcz] (1465?-1541), Hungarian jurist and statesman, first became known as a scholar and theologian of such eminence that he was appointed to accompany the emperor Charles V. to Worms, to take up the cudgels against Luther. He began his political career as the deputy of the county of Ugocsa to the diet of 1498 , where his eloquence and scholarship had a great effect in procuring the extension of the privileges of the gentry and the exclusion of all foreign competitors for the Hungarian throne in future elections. He was the spokesman and leader of the gentry against the magnates and prelates at the diets of 1500,1501 and 1505 . At the last diet be insisted, in his petition to the king, that the law should be binding upon all the gentry alike, and firmly established in the minds of the people the principle of a national monarchy. The most striking proof of his popularity at this time is the fact that the diet voted him two denarii per hearth for his servicis in 1505 , a circumstance unezare "Tungarian history In 1517 Verbicay was appoir of the infant Louis II., and was sent on solicit the wid of Christendom against
fiercer than ever and the whole country in a state of anarchy. At the diet of Hatvan, on the 25 th of June 1525 , he delivered a reconciliatory oration which so affected the assembly that it elected him palatine. During the brief time he held that high office he unselfishly and courageously endeavoured to serve both king and people by humbling the pride of tbe magnates who were primarily responsible for the dilapidation of the realm. But he was deposed at the following diet, and retired from public life till the election of János Zapolya, who realized his theory of a national king and from whom he accepted the chancellorship. He now devoted himself entirely to the study of jurisprudence, and the result of his labours was the famous Opus tripartilum jxris consueludinarii inclyti regwi hungarice, wbich was the law-book of Hungary till 1848.
See Arpad Karolyi, Verbócry's Mission to the Diet of Worms (Hung.; Budapest, is80); Vilmor Fraknbi, Before and after the Cataslrophe of Mohdes (Hung.; Budapest, 1876); ibid., Slephen Wer. bocsi (Hung.; Budapest, 1899).
(R.N.B.)

VERBOECKHOVEN, EUGĖNE JOSEPH (1799-1881), Beigian painter, was born at Warneton in West Flanders, and received instruction in drawing and modelling from his fither, the sculptor Barthélemy Verboeckhoven. Subsequently he settled in Brussels and devoted himself almost exclusively to animn subjects. His paintings of sheep, of horses and of cattle in landscape, somewhat after the manner of Potter, brought him universal fame, and were eagerly sought for by collectors. Precise and careful finish is the chief quality of his art, which is entirely objective and lacking in inspiration. Verboeckhoven visited England in 1826, Germany in 1828, and France and Italy in 1841, and died at Brussels in 188s. He was a member of the academies of Brassels, Ghent, Antwerp, St Petersburg and Amsterdam. Examples of his art are to be found in nearly all tbe important galleries of Europe and the United States, notably in Brussels, Antwerp, Amsterdam, Hamburg, Berlin, Munich, New York, Boston and Washington. His long life and ceaseless industry account for the enormous number of his pictures in public and private collections and in the art market. In addition to his painted work he exocuted some fifty etched plates of similar subjects.

VERBRUGGEN, SUSANNA (c. 1667-1703), English actress, was the daughter of an actor named Percival, and her first recorded stage appearance was in 1681 in D'Uriey's Sir Barnaby Whig. She played at Dorset Garden and the Theatre Royal, and in 1686 married William Mountiort (q.p.). By 1690 she was one of the leading actresses in Betterton's company. About a year after Mountiort's death, in 1692. she married Johs Verbruggen (\(A\). 1688-c. 1707), also an actor of considerable ability.

VERCELLL (anc. Vercellae), a town and archiepiscopal ser of Piedmont, Italy, in the province of Novara, 13 m . S.W. of that town by rail. Pop (1901) 17,022 (town), 30,470 (commune). It is situated 430 ft . above sea-level on the river Sesia, at its junction with the Canterana. Vercelli is a point at which railways diverge for Novara, Mortara, Casale Monferrato and Santhia (for Turin). The walls by whicb Vercelli was formerly surrounded have been demolished, and ibeir place is now occupied by boulevards, from which a fine view of the Alps (especially the Monte Rosa group) is obtained. The streets are for the most part tortuous and narrow; there is a large markel-place (Piazza Cavour) witb a statue of Cavour (1861). The cathedral is a large building dating from the 16th century; its lihrary contains a number of rare ancient MSS., especially the Codex Vercellensis, one of the most important MSS. of the old Latin version of the Gospels, written in the 4 th or 5 th century by Eusebius, bishop of Vercelli. A muscum close by contains Roman antiquities. The churches of \(S\). Andrea (a large and fine Romanesque Gothic building dating from \(1210^{-}\) 1224, with an interior in tbe French Gothic style), S. Paolo, S. Caterina and S. Cristoforo possess valuable examples of the work of Gaudenzio Ferran (1471-1546) and of his followet Lanini. Silk-spinning is important, and Vcrcelli is one of the principal lialian centres of the exportation of cereals and especially of rice. There are corn and rice mills of large sixe,
wile cotton and woolen mills and factories of artificial manure, thc., have attained importance.
Verocllae was originally the chicf city of the Libici (a Ligurian tribe) and afterwards became a Roman mumicipium of some importance. It stood at the junction of roads to Eporedia, Novaria and Mediolanum, Laumellum (for Ticinum) and perhaps Hasta. No ancient remains exist above ground, but many inscriptions, tombs and other antiquities have been found. Remains of the theatre and amphitheatre were seen in the 16 th century, and remains of ancient strets have more recently been found during drainage operations. There were apparently four principal streets all leading to the centre of the town where the Forum must have been situated. Of the walls, however, nothing is known except from medieval documents (cf. L. Bruzza, Iscrizioni antiche Vercellesi, Rome, 1874). In the neighbourhood (near Rotto on the Sesia) are the Raudii Campi where Hannibal won his first victory on Italian soil (218 b.c.), and where in roi b.c. Marius and Catulus routed the Cimbri. From about 1228 till 1372 Vercelli was the seat of a university.
(T. As.)

Vracelh book (Codex Vercellensis), an Early English MS. containing, besides homilies, a number of poetical and imaginative pieces: Andreas, The Fates of the Apostles, Address of the Sout to the Body, Falseness of Men, Dream of the Rood, Elene and a prose Life of Guihfac. It was found in the cathedral library of Vercelli, Piedmont, by a German jurist Friedrich Blume, in 1822 , and was first described in his Iter Italicum (Berlin and Stettin, 4 vols., 1824-36). An untenable explanation of the presence of the MS. at Vercelli suggested that it had been brought there by Johannes Scotus Erigena. But the hand. writing dates from the beginning of the isth century, long after his death. According to Dr Wulker the MS. prohably belonged to the hospice for English pilgrims, founded, together with the monastery of St Andrew, hy Cardinal Jacopo GualaBicchieri (d. 1227), a native of Vercelli and bishop of the city, in r2t9, on his return from England, where he had been papal legate from 1216 to 1218 . The cardinal, a man of wide learning, possessed a large lihrary, which he left to the monastery; and the Vercelli codex may well have been included in it.

Its contents were partially printed by Benjamin Thorpe from Blume's transcript) in Appendix B to C. P. Cooper's Report of Rymeri Foedera for \(1836:\) by 1 . M. Kemble. The Poetry of the Codex Vercellensis. with an English transiation (Aelfic Soc. \({ }^{1843}\), 56). and in a better text based directly on the MS. by Wulker in his edition of C. W. M. Grein's Bibliokkek der A.S. Poesie (Leipzig. 1894). vol. ii. Codex Vercellensis, by Dr Richard Wolker (Leipzig. 1894), is a facsimile of the MS.

For the description and history of the MS. see also Wülker's Grundriss in Zeitschrifi fir deulschess Allertum (Berlin, 1889. vol. 21. new series; old scries. vol. 33. p. 66), for a collation of Wülker's text with the MS.' For the individual poems sce also Cynewulf.

VERDEA, a town of Germany, in the Prussian province of Hanover, on the navigable Aller, 3 m . above its confluence with the Weser, 22 m . S.E. of Bremen by the railway to Hanover. Pop. (1000) 9342 . The most noticeable edifices are the beautiful Gothic cathedral, the churches of St Andrew and St John, a new Roman Catholic church (1894) and the celebrated cathedral school. Its industries embrace the manufacture of agricultural machinery, cigar-making, hrewing and distilling. Verden was the see of a bishopric founded in the first quarter of the gth century, or earlier, and secularized in 1648 . The duchy of Verden was then ceded to Sweden, passed in 1719 to Hanover and in 1810 to the kingdom of Westphalia. It was restored to Hanoverin 1814, and was, with Hanover, annexed by Prussia in 1866.

See Ostenberg. Aus Verden's Vergangenheil (Stade, 1876).
VERDEaER (O. Fi. verdier, Med. Lat. piridarius), a term used in English forest law for a judicial officer appointed to look after what was known as the "vert" (O. Fr. zerd, green; Lat. viridis), i.e. the forest trees and underwood in the royal forests. It was the verderer's duty to keep the assizes and attend to all malters relating to trespasses (see Forest Law).

VERDL GIUSEPPR PORTUNINO FBANCESCO (1813-:80:), Italian composer, was born on the roth of October 1813 at Le Roncole, a poor village near the city of Busseto. His parents kept a little inn, combined with a kind of village shop. Verdi received some instruction from the village organist, but his musical education really began with his entrance into the bouse of husiness of Antonio Barezzi, a merchant of Busseto. Barezzi was 2 thorough musician, and under his auspices Verdi was speedily introduced to such musical society as Busseto could boast. He studied under Giovanni Provesi, who was maestro di cappella of the cathedral and conductor of the municipal orchestra, for which Verdi wrote many marches and other instrumental pieces. These compositions are now the principal treasures of the library of Busseto. Among them is Verdi's first symphony, which was written at the age of fifteen and performed in 1828. In 1832 Verdi went to Milan to complete his studies. He was rejected by the authorities of the Conservatorio, but remained in Milan as a pupil of Vincenzo Lavigna, with whom he warked until the death of Provesi in 1833 recalled him to Busseto. A clerical intrigue prevented him from succeeding his old master as calhedral organist, but he was appointed conductor of the municipal orchestra, and organist of the church of San Bartolomeo. After three years in Busseto, Verdi returned to Milan, where his first opera, Oberto, Conse di San Bonifacie, was produced in 2839 . His next work, a comic opera, known variously as Un Giorno di Regno and Il Finto Slanislao, was written in peculiarly distressing circumstances, the composer having had the misfortune to lose his wife and two children in the course of two months. Un Giorno di Regne was a complete lailure, and Verdi, stung by disappointment, made up his mind to write no more for the stage. He kept his word for a year, but was then persuaded by Merelli, the impresario of La Scala, to look at a libretto by Solera. The poem took his fancy, in a short time the music was written, and in 1842 the pioduction of Nabucodonosor placed Verdi in the frost rank of living Italian composers. The success of Nabwcodonosor was surpassed hy that of its two successors, I Lombardi (1843) and Ermani (1844). the latter of which was the first of Verdi's operas to find its way to Engiand. With Ermani Verdi became the most popular composer in Europe, and the incessant demands made upon him reacted upon his style. For several years after the production of Ernani he wrote nothing which has survived to our timenothing which deserved to survive. In Macbath (1847) there are passages of some power, and passages too which indicate an approaching transition to a less conventional methad of expression. In Luisa Miller (1849) also there is a noticeahle increase of refinement in style, whicb contrasts favourably with the melodramatic vulgarity of his eartier manner.

It was unfortunate that \(I\) Masnodieri, which was written for the English stage and produced under Lumkey's management at Her Majesty's Theatre in 1847 , should have been one of the worst of the many bad works which Verdi composed at this period of his career. Not the presence of the composer, who travelled to England to conduct the first performance, nor the genius of Jenny Lind, who sang the part of the heroine, could redeem it from failure. In 185 : Verdi won one of the greatest triumphs of his career with Rigolctlo, a triumph which was fully sustained hy the production two years later of Il Trosctore and Le Traviata. In these works Verdi reached the culminating point of whist may be called his second manner. His development had been steady though gradual, and it is only necessary to compere the treatment of voice and orchestra in Rigoltho with that in Ermani to realize how qoickly histalent had developed during these seven years. The popularity of Rigoletlo, Il Trosalore and La Traviala was enormous, and consolidated Verdi's fame outside the frontiers of Italy. In 1855 he received a commission to write an opera for the Paris Opesra, to be produced during the Universal Exhibition. Ile wrote Les Vipres Siciliexnes, a work which though temporarily successful has not retained its popularity. It contains some fine music, but sulfers from the composer's perhaps unconscious attempt to adopt the grandiose manner of French opera. Of
the works written during the next ten years only \(U_{n}\) Ballo in Maschera (\(18_{89}\)) has maintained a fitful hold upon public attention. La Forza del Destino (186z) and Don Carlos, the latter of which was written for the Paris Exhibition of 1867 , have the faults incident to works written during a period of transition. At this point in his career Verdi was preparing to emancipate himself from the fetters of conventionality which had hitherto hindered his development. In these two works there are indications of an aspiration towards a freer method of expression, which harmonize ill with the more conventional style of the composer's earlier years. In \(A\) ida, an opera upon an Egyptian subject, written in response to an invitation from Ismail Pasha, and produced at Cairo in 1871, Verdi entered upon the third period of his career. In this work he broke definitely with the operatic tradition which he had inherited from Donizetti, in favour of a method of utterance, which, though perhaps affected in some degree by the influence of Wagner, still retains the main characteristics of Italian music. In Aida the treatment of the orchestra is throughout masterly, and shows a richness of resource which those who knew only Verdi's earlier works scarcely suspected him of possessing; nevertheless, the human voice was still the centre of Verdi's system. Verdi kept thoroughly abreast of modern musical development, but his artistic sense prevented him from falling into the excesses of the German school. In the Requicm, which was written in 1874 to commemorate the death of Manzoni, Verdi applied his newly found system to sacred music. His Requiem was bitterly assaited by pedants and purists, partly on the ground of its defiance of obsolete rules of musical grammar and partly because of its theatrical treatment of sacred subjects, but hy saner and more sympathetic critics, of whom Brahms was not the least enthusiastic, it has been accepted as a work of genius. There are passages in it with which Protestant fecling can scarcely sympathize, but its passionate intensity and dramatic force, and the extraordinary musical beauty with which it abounds, amply atone for what to some may seem errors of taste. In 188 r a revised version of Simon Boccanegra, an earlier work which had not been successful, was produced at Milan. The libretto bad been in part rewritten by Arrigo Boito, and Verdi wrote a great deal of new music for the revival, which was eminently successful. After this it was generally supposed that Verdi, who had reached an advanced age, had finally relinquished composition, but after a lapse of some years it became known that he was at work upon a new opera, and in 1887 Otello was produced at Milan. The libretio, a masterly condensation of Shakespeare's Othello, was the work of Boito. Oidlo recalls Aida in the general outlines of its structure, but voices and orchestra are treated with greater freedom than in the earlier work, and there is a conspicuous absence of set airs. In so far as regards the essential qualities of the music, Otello is an immense advance upon anything Verdi had previously written. It has a dramatic force and a power of characterization for which it would be vain to look in his earlier work, and which are all the more remarkable as appearing for the first time in this high degree of development in a work written in extreme old age. All that has been said of Otello may be repeated of Falstaff, which was produced in 1893 , when the composer was in his eightieth year, with the addition that the later work contains, besides the dramatic power and musical skill of the earlier work, a fund of delicate and fanciful humour which recalls the gayest mood of Mozart. The libretto of Falstaf, which is the wort of Boito, is an adaptation of The Merry Wizes of Windsor, with the addition of a few passages from Henry IV. Alter the production of Falstaff, Verdi wrote nothing for the stage. In 1808 he produced four sacred pieces, seltings of the Ave Maria, Lamdi alla Virgine (words from Dante's Paradiso), the Sisbat Mater and the Te Dewm, the first two for voices alone, the hist the for wolers and orchestra. In these pieces Verdi abonsoned to at tevita cextent the theatrical manse of the Requiem for one more restrained and more in keeping with ecclesiastical ys ts in imaginalive power and musical beauty then to none of Verdi's worki. With the ex n Requirm, Verdi has wrillic口
litile save for the stage. Among his minor works may be mentioned a string quartet, composed in 1873, a hymn written for the opening of the International Exhibition of 1862, two sets of songs, a Paternoster for five-part chorus, and an Ave Maria for soprano solo, with string accompaniment. The venerable composer died at Milan on the 27th of January igon.

The following is a complete list of Verdi's operas, with the dates and places of production: Oberto (Milan, 1839) : Un Giorno di Regno (Milan, 1840); Nabwcodonosor (Milan, 1842); I Lombardi (Milan, 1843): Ersani (Venice, 1844); I Due Foscari (Rome, 1844); Giovanna d Arco (Milan, 1845): Alaira (Naples, 1845); Autia (Venice, 1846); Macbeh (Florence, 18.77); VMasnadieri (London, 1847): Il Corsaro (Trieste, 1848); La Battaglia di Legmamo (Rome, 1849): Luisa Mider (Naples. 1849): Slifflio (Trieste, 1850): Rigoletlo (Venice, 1851); Il Tropatore (Rome, 1853); La Trovicia (Venice, 1853): Les Vipres Siciliennes (Paris, 1855); Simon Bocranegra (Venice, 1857: revised version, Milan, 1881): Aroldo [a revised version of Stifflio] (Rimini, 1857); Un Ballo in Mascherra (Rome 1859): La Fornn del Destino (St Petersburg, 1862): Dell Carlos (Paris, 1867); Aida (Cairo, 1871); Otello (Milan. 1887): Fulstaf (Milan, 1893).
'R. A. S.)
VERDICT (O. Fr. verdit, Lat. vere diclum, truly said, used in Late Latin in one word with its present significance), the decision of a jury in a criminal or civil cause, given to the court through the foreman of the jury and recorded. In English law verdicts may be "general," i.e. in criminal cases "guilty" or "not guilty," or "special," when there is some question of law which the jury wish to leave to the consideration of the court; in this case the verdict is given in the form of a statement of facts as found by the jury, and the issue is left to be found by the court in accordance with the law upon such facts as found (see JURY).

VERDIGRIS, a pigment, consisting of basic copper carbonates, made by acting upon copper plates with pyroligneous acid soaked up in cloths, exposing the plates to air, then dipping in water, and finally scraping off the greenish crust; the plate is re-exposed and the operation repeated till it is used up. Another method consists in exposing thin copper sheets to the acid vapours rising from the residues or "marcs" of wine factories, the product being scraped off, and the plate reexposed. Both processes require several weeks. The pigment appears with several shades of blue and green; blue verdigris is chiefly \(\mathrm{CuO} \cdot \mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{7}\right)_{2} \cdot 6 \mathrm{H}_{3} \mathrm{O}\), while light blue and green verdigris contain \(2 \mathrm{CuO}-\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{7}\right)_{2}-2 \mathrm{H}_{3} \mathrm{O}\). Besides being ueed as a paint it is employed in dyeing and calico-printing, and also in the manufacture of other paints, e.g. Schweinfurt green, which is a double salt of the acetate and arsenite. A liniment or ointment is also used in medicine as a cure for warts. It is an irritant poison (hence the need that acid substances should never be cooked in copper utensils); the best antidote is white of egg and milk.

VERDUA, a garrison town of northeastern France, capital of an arrondissement in the department of Meuse, on the main line of the Eastern railway between Paris and Mety an mN.N.E. of Bar-le-Duc. Pop. (1906) 12,837. In addition the population complie d part (soldiers, \&c.) numbers 81 p 8 . Verdue is situated in a basin surrounded by vine-clad bills on the Meuse, which here forms the Eastern Canal.

Verdun as a fortress is of Grstratc importance it lies directly opposite the frontier of German Lorraine and the greas entrenched camp of Metz. At the time of the war of 15 :0 (when it was defended for long without hope of success by General Guérin de Waldersbach) it was still a small anliqueled fortress of the Vauban epoch, but in the long line of fortifica. tions on the Meuse created by Serri de Rivière in 2875 Verdun. forming the left of the "Meuse Line" barrier, was made the centre of an entrenched camp. The first lesson of 1870 being taken to heart, forts were placed (Belrupt S.E., St Michel N.E. Belleville N. and La Chaume and Regret W.) on all the scirounding heights that the besiegers had used for their batteries, but the designers soon extended the line of the eastern defences as far out as the sharply defined cliffs that, rising gemily for some mikes from the Meuse, come to an abrupt edge and overlook the plain of Wotvre. On this front, which is aboas 51 m
long, the most important works are (from right to left) Chatillon, Manezel, Moulainville, Eix, Mardi Gras, Lanfée, Vaux and Hardimont. At right angles to this line, the south front, the works of which are placed along one of the long western spurs of the line of heights, are forts Rozellier, St Symphorien and Haudainville, the last overlooking the Meuse. The north front, also on a spur of the ridge, is thickly studded with forts, these in some cases being but 200 yds. spart and the left fort overlooking the Meusc. Behind the east front, chiefly designed to close the valley by which the Metz-Verdun railway penetrates the line of heights, are Fort Tavannes with its outworks and a series of batteries on the adjacent spurs. On the left bank of the Meuse there is a complete semicircle of forts. At the northern end of this semicircle (besides some works in the valley itself), and crossing its fire with the left of the north front, is Fort Belle-Epine, then comes Marre, Bourrus and Bruyères, all four being on a single ridge facing N.W. The west front is composed of Fort Germonville, Fort Bois de Sartelles, Fort Bois du Chapitrc, Fort Landrecourt and Fort Dugny, which last is within sight of Fort Haudainville over the Meuse. In second line behind these works are Fort Choisel, Chana redouht and Fort Sartelles. In all there are 16 large forts and about 20 smaller works, the perimeter of the whole being about 30 m . and the greatest diameter of the fort-ring 9 .

The chief quarter of the town lies on the slope of the left bank of the river and is dominated hy the citadel which occupies the site of the oid ahbey of St Vanne founded in the 10 th century. Several arms of the rjver intersect the quarter on the right bank. The whole town is surrounded by a bastioned enceinte, pierced by four gates; that to the N.E., the Porte Chaussee, lanked by two crenelated towers, is an interesting specimen of the military architecture of the 1 sth century. The cathedral of Notre-Dame stands on the site of two previous churches of the Romancsque period, the first of which was hurnt down in 1047; a crypt and other remains of the second huilding consecrated in 1147 are still to be seen, but the greater part of the present church dated from subsequent periods. Built under the influence of Rhenish architect ure. Notre-Dame has double transepts and, till the 18th cent ury when the western apse was replaced by a facade, had an apse at each extremity. A fine cloister to the S.W. of the cathedral dates fram the igth century. The hotel-de-ville (a7th century) contains the museum.

Verdun is the seat of a bishop and a sub-prefect and has tribunals of first instance and of commerce, a communal college, ecclesiastical seminaries and a branch of the Bank of France. The industries include metal founding, the manufacture of sweetmeats (dragres de Verdun), machincry, nails, files, embroidery, linen, chairs and rope and the distillation of liqueurs. The canal port has trade in timber, agricultural produce, stone and building materials and coal.

Verdun (Verodunum), an important town at the time of the Roman conquest, was made a part of Belgica Prima. The hishopric, of which the most celebrated holder was St Vanne (\(498-525\)), dates from the 3 rd century. Verdun was destroyed during the period of the barbarian invasions, and did not recover till towards the end of the sth century. Clovis seized the town in 502, and it afterwards belonged to the kingdom of Austrasia. In 843 the famous treaty was signed here by the sons of Louis the Pious (see Geryany, History). In the 1oth century Verdun was definitively conquered by Germany and put under the temporal authority of its bishops. Together with Toul and Metz, the town and its domain formed the territory of the Trois-Eveches. In the tith century the burghers of the now free and imperial town began a struggle with their bishops, which ended in their obtaining certain rights in the 12 th century. In \(155^{2}\) Henry II. of France took possession of the Trois-Evbches, which finally became French lyy the treaty of Westphalia. In 1792, after some hours of bombardment. the citizens opeocd their gates to the Prussians-a weakness which the Revolutionary Government punished by the exeention of several of the inhabitants. In 1870 the Prussians,
unable to seize the town by a comp de main, invested and bombarded it three different times, till it capitulated in the beginning of November.

VERDY DU VERNOIS, JULIUS VON (18,32 -), German general and military writer, was born in 1832 and entered the Prussian infantry in 1850 . After some years of regimental service he came under the notice of Moltke, the newly appointed chief of the generalstafi, as an exceptionally gifted soldier, and at the outbreak of the war against Austria in 1866 he was appointed major on the staff of the II. Army (crown prince of Prussia). In this capacity he took part in the campaign on the upper Elbe and in the battle of Koniggrätz. Promoted sbortly after this to the rank of lieutenant-colonel, he was in 1867 placed at the head of a section of the general staff, becoming thereby one of Moltke's principal confidential assistants. In this capacity he served at the headquarters of the German army throughout the war of \(\mathbf{2 8 7 0 - 7 1 \text { , and he was frequently }}\) employed in the most important missions, as for instance on the and of August, when be was sent to impress upon the III. Army hendquarters the necessity of a prompt advancing into Alsace, and on the 261 h of the same month, when he was sent to advise the crown prince of Saxony as to the strategical intentions of the supreme command at the crisis of the Sedan campaign. At the close of the war he continued to serve in the office of the general staff, and also lectured at the War Academy. It was in the latter position that he developed the system of thorough tactical education which is the abiding resuit of his work. His method may be studied in English translations of his Simdics in Troop-leading, and may be summarized as the assumption of an actual military situation on the actual ground, followed by critical discussion of the successive measures that a commander, whether of a brigade, division or larger force, should take in the seguel, given his orders and his knowledge of the general situation. Moltke's own series of tactical prohlems, extending from 1859 to 1889, contributed very powerfully, of course, to the education of the selected young officers who passed through Verdy's hands, but Moltke dealt rather with a great number of separate probiems, while Verdy developed in detail the successive events and ruling ideas of a whole day's or week's work in the same units. Molkike therefore may be said to have developed the art of forming correct ideas and plans, Verdy that of applying them, but these are after all merely tendencies, not sharply divided schemes, in the teaching of Prussian staff officers during the years of intellectual development bet ween 1870 and 1888 . In all this Moitke, Verdy and Bronsart von Schellendorf worked in close co-operation. In 1876 Verdy became a major-general, from \(1879-1883\) he held an important position in the ministry of war, and in 1881 he was promoted licutenant-general. In 1887 he became governor of Strassburg, in 1888 general of infantry and in \(\mathbf{1 8 8 9}\) minister of war. He retired from the active list in 1890 . In 1894 the university of Königsberg made him a Dr. Phil. honoris causa.

General von Verdy du Vernois's principal writings are: Theibnahme der 11. Armee am Feldzuge 1806 (Berlin. 1866): Im Hauplquartier der II. Armee 1860 (Berlin. 1900): Studien uber den Krieg auf Grundlage ... \(1870 / \mathrm{L}\) (Berlin, 1892-96): Im grossen Hauptquartier 1870/1 (Berlin, 1895; English translation): Sendien über Truppenfuhrumg (Berlin. 1870: new edition, 1892; English translation) and Studien uber den Krieg (Berlin, 190i-1906).
VERE, the family of which is extolled by Macaulay as "the longest and most illustrious line of nobles that England has seen," appears to have derived the surname which the verse of Tenny. son has made synonymous with ancient blood, from the litile village of Ver near Bayeux. Its founder, Aubrey (Albericus) de Vere, appears in Domesday Book (1086) as the holder of a great fief in Essex, Cambridgeshire and Suffolk. His son (or grandson) and namesake was a trusted officer of Henty 1., from whom he received the hereditary office of great chamberlain in 1133. It was probably he who crected the nobie tower which gave name to Castle Hedingham, Essex, the head of his ficf, and which stands as the finest example of a private Norman keep. Slain in 1141, he was succeeded by his son Aubrey, who bad already become count of Gulnes, in right of his wife, on ber
grandfather's death. Through the powerful induence of his sister's husband, Geoffrey, earl of Essex, he obtained from the empress Matilda, in 1142 , the earldom of Oxford, which was afterwards confirmed to his house by Henry II. His younger son, Robert (c. 1170-1221), became 3rd carl in 1214, and, siding with the barons, became one of the twenty-five executors of Magna Carta. His marriage with a Bolebec heiress brought in what was afterwards claimed as a barony, and led to the style of Viscount Bolebec (or Bulbeck) for the earl's heirs.

Roberi, the 5th earl (\(1240-1296\)), who brought into his famity the chamberlainship to the queen by his marriage with the Sandford heiress, sided with Simon de Montfort, and lost for a time his earldom and offices. John, the 7th earl (\(1313-1360\)), was a distinguished soldier, Gghting at Creçy and Poitiers and in all Edward III.'s wars in his time; and his marriage with a Badiesmere heiress added to the lands and titles of his house. His son, Thomas (1337-1371), also a soldier, was fat her of Robert, gth earl, the famous favourite of Richard II. In spite of his attainder (1388), his uncle Aubrey (c. 1340-1400), a follower of the Black Prince, was restored to the earldom, by consent of parliament in \(\mathbf{5} 393\), but not to the great chamberlainship. As the earldom (which had been held in fee) was granted to-him in tail male, this is looked on by some as a new creation. His elder son, Richard (d. 1417), the next earl, held a command at Agincourt, and was father of Earl John, who was beheaded as a Lancastrian, with his eldest son, in 1462. Their death was avenged by his younger son John, the 13 th earl (1443-1513), who shared to the full in the triumph of the Red Rose. On the death of his nephew John, the next earl (d. 1526), the baronies (it was afterwards held) passed away to his sisters, but the earldom descended to his cousin John (d. 1540), though the crown resumed the great chamberlainship. This John, who was in favour with Henry VIII., was grandfather, through his younger son Geoffrey, of the celebrated " fighting Veres," Sir Francis and his brother Sir Horace. His eldest son John, 16th earl (c. 1512-1562), was in favour with Edward VI., Mary and Elizabeth, and contrived to recover for his family the office of great chamberlain.

Hitherto the earls, in spite of their vicissitudes, had retained possession of their ancient seat and great estates; but Edward, the son of Earl John, was a spendihrift. A brilliant, gifted courticr, in whom Elizabeth delighted, he quarrelled with his father-in-law, Burghley, "sent his patrimony flying," patronized players, poets and musicians, and wrote excellent verse himself. His son Henry, the 18th earl (1 593-1025), was twice imprisoned in the Tower as an opponent of Buckingham's policy, fought in the Palatinate and the Low Countrics and died on campaign at the Hague in \(\mathbf{1 6 2 5}\). Then ensued the great dispute for the inheritance of his title and office (Hedingham Castle having passed away) between Robert Vere, his second cousin and heirmale, and Robert. Lord Willoughby d'Eresby, son of his aunt, Lady Mary Vere. The earldom was secured by the former, a poor officer in Holland, hut the office was adjudged to Lord Willoughby, in whose descendants it is now vested. Earl Robert was slain beforc Maestricht in \(\mathbf{1 6 3 2}\), leaving an only son, Aubrey (1626-1703), 20th and last earl. His marriage with a Bayning heiress restored the fortunes of his house, and his Royalist intrigues under the Commonwealth were rewarded at the Restoration by sundry favours, among them the command of a regiment of horse, known from him as "the Oxford Blues' and still familiar as "the Blues" (Royal Horse Guards). James II. deprived him of his regiment and his lieutenancy of Essex for opposing his policy. but the prince of Orange, whom he joined, restored them. His long tenure of the ancient tarldom ended in 3703 , when he died, the last known male desendiant of the house of Verc. His daughter Diana having masied the 1st duke of St Albans, their descendants are names De Vere Beauclerk, and received the barony of Vere (1;05)

The halo surroundine ahe name of Vere is seen as carly as 1626 in the statelv 7 , of Chief Justice Crewe " I suppose there is "any apprehension of gentry, ar noblemene, is to the continuance of so
noble a name and house." In the great days of the house, Earl John, says Stowe, rode into London city "with eighty gentlemen in a livery of Reading tawney, and chains of gold about their necks, before him, and one hundred tall yeomen in the like livery to follow him," wearing the famous badge of the blue boar (berres), which is still to be seen in Esser churches and forming the sign of Essex inns. Another badge of the Veres was the mullet in the first quarter of their shield, which, at Bamet Field, by a fatal error, was taken for the sum of York. Among the offices they held were the forestership of Essex and the keepership of Colchester Castle, and they founded the Essex religious houses of Hatield Broadoak, Hedingham and Earls Colne.

Authorities.-Domesday Book; Abingdon Chron. and Red Book of the Exchequer (Rolls Series); Pipe Roll of 1130 (Recond Commission): Dugdale's Baronare: C. E. C (okaync) 's Complete Peerage: Doyle's Official Baronage; Collins's Historical Precedents: Morant's History of Essex: Round's Geoffey de Mandeenlle and Fendal England; Nichols's "Descent of the Earidom of Oxford" (Arck. Jowrn. vol. ix.): Vere papers among the Round MSS, in App. ix. to Ifth Report on Historical MSS.: Lords' Reports on the Dignity of a Peer; Palmer's Peerage Lavo in England. The claimants' cases and the appendices of documents in the contest for the great chamberlainship (1902) are valuable for the history of the Veres.
(J. H. R.)

VBRE, SIR FRANCIS (\(1560-1609\)), English soldier, was the son of Geoffrey Vere of Crepping Hall, Essex, and nephew of the r6ih earl of Oxford. He first went on active service under Leicester in 1585 . and was soon in the thick of the war raging in the Low Countries. At the siege of Sluys young Vere greatly distinguished himself under Sir Roger Williams and Sir Thomas Baskerville. In 1588 he was in the garrison of Bergen-op-Zoom, which delivered itsclf from the besiegers by its own good fighting. and was knighted by Willoughby on the field of batile. In the next year Sir Francis became sergeant-major-general of the English troops in the Low Countries, and soon afterwards the chief command devolved upon him. This position he retained during fifteen campaigns, with almost anbroken success. Working in close co-operation with the Dusch forces under Maurice, he step by step secured the country for the cause of independence. Vere won the reputation of being the first soldier of the day, his English troops acquired a cohesion and training fiting them to face the best Spanish troops, and his camp became the fashionable training.ground of all aspiring soldiers, amongst others not only his brother Horace, but men of such note as Ferdinando (Lord) Fairfax, Gervase Markham and Miles Standish. Sir Francis served in the Cadiz expedition of 1596 , and in 1598 was entrusted with the negotiation of the treaty whereby the Dutch agreed to take a greater share of the burden of the war than they had hitherto dove. His success in this task obtained him the governorship of Brill and the rank of general. The culminating point of his career came when, in 1600 . on the advice of Barneveld, the states general decided to carry the war into the enemy's country. In the battic of Nieuwport (2nd July 1600), one of the most desperately contested hattles of the age, Vere aod Maurice completely defeated the veteran Spanish troops of the archduke Albert. This was followed by the celebrated delence of Ostend from July 1601 to March 1602 . When James 1. made peace with Spain, Vere retired from active service and spent the remainder of his days in country life in England. occupying himself with the compilation of his Cowmentaries of the Divers Pieces of Seroice whercin he had Command (1657: reprinted in Arber's English Garner, 1883). He died in 1600. soon after the truce recognized the independence of the United Provinces, and was buried in Westminster Abbey.

His younger brother Siz Horace Vere, Baron Vere of Tilbury (\(1565-1635\)), began bis military career as the lieutenand of Sir Francis's Company in 1500 . Thenceforward he was continually on active service in the Low Countries, and, like his brother, took part in the Cadiz expedition of 1596; at Nieuwport and Ostend Sir Horace (who had been knighted at Cadiz) held command of some importance. On his brother's retirement Sir Horace, as senior colonel. assumed command of the
whoie English force, which he held until 1607, being opposed to Ambrosio Spinola, the most famous of the continental generals of the time, against whom he manceuvred and fought in a manner equal to the best of his brother's, or even of Parma's, work. From 1607 to 1620 be saw but little active service except the siege of Julich (1610). In 1620 he accepted the command of the volunteers who were going to the assistance of the Elector Palatine. This famous expedition to the Rhine and the Main was from the first a forlorn hope. Opposed by his old adversary Spinola, Vere manocuvred with success for two campaigns, but he was helpless against the armies of Tilly and Cordova, and in the end he could only lurnish scanty garrisons for Frankenthal, Heidelberg and Mannheim. Each of these places fell after a desperate resistance, and their garrisons returned to England. In 1624 Vere was once more on ervioe in the United Provinces. The attempted reliel of Breda in the following year was considered one of the most brilliant feats of the time, and the general was made Baron Vere of Tilbury. In 1629 the sieges of Boiste-duc (s'Hertogenbosch) and of Maestricht closed his military career. Lord Vere died auddenly in 1635 and was buried by the side of his brother in Westminster Abbey.

See Clements C. Markham, Tke Fighting Veres (London, 1888). VERESHCHAGIN, VASSILI VASSILIBVICH (1842-1904), Russian artist and traveller, was born at Tcherepovets, in the government of Novgorod, on the 26 th of October 1842. His father was a Russian landowner of nohle birth, and from his mother he inherited Tatar blood. When he was eight years old he was sent to Tsarskoe Selo to enter the Alexander cadet corps, and three years later he entered the naval scbool at St Petersburg, making his first voyage in 1858 . He graduated first in the list from the naval school, hut left the service immediately to begin the study of drawing in earnest. He won a medal two years later, in 1863, from the St Petersburg Academy for his "Ulysses slaying the Suitors." In 1864 he proceeded to Paris, where he studied under Géróme, though be dissented widely from his master's methods. In the Salon of 1866 he exhibited a drawing of "Doukhobors chanting their Psalms," and in the next year he accompanied General Kauffmann's expedition to Turkestan, his military service at the siege of Samarkand procuring for him the cross of St George. He was an indefatigable traveiler-in Turkestan in 1869 , the Himalayas, India and Tibet in 1873, and again in India in 1884. After a period of hard work in Paris and Munich he exhihited some of his Turkestan pictures in St Petersburg in 8874, among them (wo which were afterwards suppressed on the representations of Russian soldiers-" The Apotheosis of War," a pyramid of skulls dedicated "to all conquerors, past, present and to come" and "Left Behind," the picture of a dying soldier deserted by his fellows. Vereshehagin was with the Russian army during the Turkish campaign of 1877; he was present at the crossing of the Shipka Pass and at the siege of Plevna, where his brother was killed; and he was dangerously wounded during the preparations for the crossing of the Danube near Rustchuk. At the conclusion of the war he acted as secretary to General Skobelev at San Stefano. After the war he settled at Munich, where he produced his war pictures so rapidly that be was freely accused of employing assistants. The sensational subjects of his pictures, and their didactic aim -ibe promotion of peace by a representation of the horrors of war-altracted a large section of the puhlic not usually interested in art to the series of exhibitions of his pictures in Paris in 1881 and subsequently in London, Berlin, Dresden, Vienna and other cities. He aroused much controversy by his series of three pictures of a Roman execution (the Crucifrion), of sepoys hlown from the guns in India, and of the execution of Nihilists in St Petersburg. A journey in Syria and Palestine in 1884 furnished him with an equally discussed set of suhjects from the New Testament. The " 1812 " series on Napoleon's Russian campaign, on which he also wrete a book, seem to have been inspired by Tolstai's War and Peace, and were painted in 1893 at Moscow, where the artist eventually
settled. Vereshchagin was in the Far East during the ChinoJapanese War, with the American troops in the Philippines, and with the Russian troops in Manchuria. He perished in the sinking of the Rustian flagship, "Petropavlovsk," on the 13th of April 1904. His last work, a picture of a council of war presided over by Admiral Makaroff, was recovered almost uninjured.

See E. Zabel, "Wereschtschagin " (1900), in Knackfuss's Künstler. monographicen (Bielefeld and Leiprig). The finest collection of this pictures is in the Tretiakov gallery in Moscow.

VERGA, GIOVANRI (\(1840-\)), Italian novelist, was born at Catanja, Sicily. In 1865 be published Storia di una peccolrice and I Carbonari dello monlagna, hut his literary reputation was established by his Epa and Storia di una capinera (1869). Other novels followed, the best of which are Malavoglia (188y) and Maestro Don Geswaldo (1889). His finest work, however, is seen in his short stories and sketches of Sicilian peasantry, Medda (1874) and Vile dei campi (1880); and his Covalleria Rusficama acquired new popularity fromits dramatization and from Mascagni's opera on this suhject. Verga and Fogazzaro hetween them may be said to have faithfully chronicled the inner and popular life of southern and northern Italy.

VERGE (Lat. virga, a rod), originally a stall denoting authority, whence (from the ceremony in swearing fealty to a lord) the sense of a measurement, and so boundary or border, of land, or generally a margin of space. In architecture, a verge is the edge of the tiling projecting over the gable of a roof; that on the horizontal portion being called "eaves." The term "verge board," generally now known as barge board, is the name given to the board under the verge of gables, sometimes moulded, and often very richly carved, perforated and cusped, and frequently having pendants and sometimes finials at the apex.

VERGENNES, CHARLES GRAVIER, Coutte de (\(1717-1787\)), French statesman, was born at Dijon on the 2oth of December 1717. He was introduced to the profession of diplomacy by his uncle, M. de Chavigny, under whom he saw his first service at Lisbon. His successful conduct of French interests at the court of Trier. in 1750 and the following years led to his being sent to Constantinople in 1755 at first as minister plenipotentiary, then as ambassador. In 1768 he was recailed, ostensibly because of a mesalliance with Mme Testa, widow of a Pera surgeon, but really because Choiseul thought him not zealous enough In provoking a quarrel between Russia and Turkey. After Choiseul's death be was sent to Stockholm with instructions to help the aristocratic party of the "Hats" with advice and money. The revolution by which Gustavus III. (August 19, 1772) secured for himself the reality instead of the shadow of power was a great diplomatic triumph for France. With the accession of Louis XVI. Vergennes hecame foreign minister. His general policy was one of friendly relations with Austria, combined with the limitation of Joseph II.'s ambitious designs; the protection of Turkey; and opposition at all points to England. His hatred of England and his desire to avenge the disasters of the Seven Years' War led to his support of the American States in the War of Independence, a step of which the moral and financial results had not a little to do with the Revolution of 7789. Vergennes sought by a series of negotiations to secure the armed neutrality of the Northern Powers eventually carried out by Catherine II.; he ceded to the demands of Beaumarchais that France should secretly provide the Americans with arms and volunteers. In 1777 he informed the American commissioners that France acknowledged the Repuhlic and was willing to form an offensive and defensive alliance with the new state. In domestlc affairs Vergennes belonged to the old school. He intrigued against Necker, whom be regarded as a dangerous innovator, a republican, a foreigner and a Protestant. In 3781 he became chief of the council of finance, and in 1783 he supported the nomination of Calonne as controller general. Vergennes died on the 13th of February 1787, before the meeting of the Assembly of Notables which he is said to have suggested to Louis XVI.

See P. Fauchelle, La Diplomatie frangaise et la Ligue des neutres de 1780 (1776-83) (Paris, 1893); John Jay, The Peace Negotiations of \(17^{82-83}\) as illustrated by the Confidential Papers of Shelburne and Vergennes (New York, 1888); L. Bonneville de Marsangy, Le Chevalier de Vergennes, son ambassade d Constantinople (Paris, 1894), and Le Chevalier de Vergennes, son ambassade en Suide (Paris, 1898).

VERGER (M.E. vergerc; O. Fr. vergier; Med. Lat. virgarius, one who bears a rod or staff, an apparitor; Lat. virga, rod), one who carries a "verge" or staff of office. The principal use of the term is ecclesiastical, and refers to the person who carries a staff as a symbol of office before a bishop or other church dignitary when taking part in a service, especially one held in a cathedral. The word has thus come to mean in general usage an official caretaker of any place of worship whose duty it is to show the building to those who wish to view it, and to find seats for the congregation at a service.

VERGNIAUD. PIERRE VICTURNIEN (1753-1793), French orator and revolutionist, was born on the 31st of May 1753 at Limoges. He was the son of a merchant of that town who lost the greater part of his means by speculation. The boy was early sent to the college of the Jesuits at Limoges, and soon achieved distinction. Turgot was then intendant of Limousin. In his presence young Vergniaud on onc occasion recited some verses of his own composition. Turgot was struck with the talent they displayed, and by virtue of his patronage Vergniaud, having gone to Paris, was admitted to the college of Plessis. It is impossible to read the speeches of Vergniaud without being convinced of the solidity of his education, and in particular of the wide range of his knowledge of the classics, and of his acquaintance-familiar and sympathetic-with ancient philosophy and history.

Duputy, president of the parlement of Bordeaux, with whom Vergniaud became acquainted, conceived the greatest admiration and affection for him and appointed him his secretary. Vergniaud was thereafter called to the bar (1782). The influence of Duputy gained for him the beginnings of a practice; but Vergniaud, though capahle of extraordinary efforts, too often rélapsed into reverie, and was indisposed for study and sustained exertion, even in a cause which he approved. This weakness appears equally in his political and in his professional life: he would refuse practice if his purse were moderatcly well filled; he would sit for weeks in the Assembly in listlessness and silence, while the policy he had shaped was heing gradually undermined, and then rise, brilliant as ever, but too late to avert the calamities which be foresaw. In 1789 Vergniaud was elected a member of the general council of the department of the Gironde. Bcing deeply stirred hy the best ideas of the Revolutionary epoch, he found a more congenial sphere for the display of his great powers in his new position. About this period be was charged with the defence of a member of the national guard of Brives, which was accused of provoking disorders in the department of La Corrèze. Abandoning all reserve, Vergniaud delivered one of the great orations of his life, depicting the misfortunes of the peasantry in language of such combined dignity, pathos and power that his fame as an orator spread far and wide.

Vergniaud was chosen a representative of the Gironde to the National Legislative Assembly in August 1791, and he forthwith proceeded to Paris. The Legislative Assembly met on the rst of October. For a time, according to his habit, be refrained from speaking; hut on the 25 th of October he ascended the trihune, and be had not spokenlong before the whole Assemhly felt that a new power had arisen which might control even the destinies of France. This judgment was re-echoed outside, and he was almost immediately elected president of the Assembly for the usual brief term. Between the outbreak of the Revolution and his election to the Legislative Assembly the political views of Vergniaud had undergone a decided change. At first he had lauded a constitutional monarchy; but the flight of Louis XVI. filled him with distrust of the sovereign, and his views in favour gf. - -apuhlic were rapidly developed. The sentiments and \&hich his eloquence aroused were, however, \(\boldsymbol{\pi}\). \(\quad\) 'y a more extreme party. It
happened thus even with his first Assembly speech, on the émigrts. His proposal was mainly that a treble annual contri. bution should be levied on their property; but the Assembly confiscated their goods and decreed their deaths. One great blot on his reputation is that step by step he was led on to palliate violence and crime, to the excesses of which his cyes were only opened by the massacres of September, and which ultimately overwhelmed the party of Girondists which he ked. The disgrace to his name is indelible that on the 19 th of Af arch 1792, when the perpetrators of the massacre of Avignon had been introduced to the Assembly by Collot d'Herbois, Vergniaud spoke indulgently of their crimes and lent the authority of his voice to their amnesty. In language sometimes turgid, but nearly always of pure and powerful cloquence, he worked at the theme of the emigres, as it developed into that of the counter-revolution; and in his occasional appearances in the tribune, as well as in the project of an address to the French people which be presented to the Assembly on the 27 th of December 1791, he shook the hcart of France, and, especially by his call to arms on the 18th of January, shaped the policy which culminated in the declaration of war against the king of Bohemia and Hungary on the 20th of Aprd. This policy in foreign affairs, which he pursued through the winter and spring of 1791-92, he combined with another-that of fanning the suspicions of the people against the monarchy, which he identified with the counter-revolution, and of forcing on a change of ministry. On the 1oth of March Vergniaud delivered a powerful oration in which he denounced the intrigues of the court and uttered his famous apostrophe to the Tuileries: "In ancient times fear and terror have often issued from that famous palace; let them re-enter it to-day in the name of the lav!" The speech overthrew De Lessart, whose accusation was decreed; and Roland, the nominee of the Girondists, entered the ministry. By the month of June the opposition of Vergniaud (whose voice still commanded the country) to the ling rose to fever heat. On the 2gth of May Vergaiaud went so far as to support the disbanding of the king's guard. But be appears to have been unaware of tbe extent of the feelings of animosity which he had done much to arouse in the people, probably because he was wholly unconnected with the practices of the party of the Mountain as the instigators of actual violence. This party used Vergniaud, whose lofty and serene ideas they applauded and travesticd in action. Then came the riot of the 2oth of June and the invasion of the Tuileries. He rushed among the crowd, but was powerless to quell the tumult. Continuing for yet a little longer his course of feverous, almost frenzied, opposition to the throne, on the zrd of July he electrified France hy his bold denunciation of the king, not only as a hypocrite and a despot, hut as a base traitor to the constitution. His speeches breathe the very spirit of the storm, and they were perhaps the greatest single factor in the development of the events of the time. On the toth of August the Tuileries was stormed, and the royal family took refuge in the Assembly. Vergniaud presided. To the request of the king for protection he replied in dignified and respectful language. An erraordinary commission was appointed: Vergniaud wrote and read its recommendations that a National Convention be formed, the king be provisionally suspended from office, a governor appointed for his son, and the royal family be consigned to the Luxembourg. Hardly had the great orator attained the object of his aim-the overthrow of Louis as a sovereign-when he became conscious of the forces by which he was surrounded. He denounced the massacres of September-their inception, their horror and the future to which they pointed-in language so vivid and powerful that it raised for a time the spirits of the Girondists, while on the other hand it aroused the fatal opposition of the Parisian leaders.

The questions whether Louis XVI. was to be judged, and if so hy whom, were the subject of protracted debate in the Convention. They were of ahsorbing interest to Paris, to France and to Europe; and upon them the Girondist leader at last, an the 3 1st of December 1792, broke silence, delivering one of his
greatest orations, probahly one of the greatest combinations of sound reasoning, sagacity and eloquence which has ever been displayed in the annals of French politics. He pronounced in favour of an appeal to the people. He pictured the consequences of that temper of vengeance which animated the Parisian mob and was fatally cont rolling the policy of the Convention, and the prostration which would ensue to France after even a successful struggle with a European coalition, which would spring up after the murder of the king. The great effort failed; and four days afterwards something happened which still further endangered Vergniaud and bis whole party. This was the discovery of a note signed by him along with Gaudet and Gensonné and presented to the king two or three weeks before the roth of August. It contained nothing but sound and patriotic suggestions, but it was greedily seized upon by the enemies of the Gironde as evidence of treason. On the 16th of January 1793 the vote began to be taken in the Convention upon the punishment of the king. Vergniaud voted early, and voted for death. The action of the great Girondist was and will always remain inscrutable, but it was followed by a similar verdict from nearly the whole party which he led. On the 17th Vergniaud presided at the Convention, and it fell to him, labouring under the most painful excitement, to announce the fatal result of the voting. Then for many wecks he sank, exhausted, into silence.

When the institution of a revolutionary tribunal was proposed, Vergniaud vehemently opposed the project, denouncing the tribunal as a more awful inquisition than that of Venice, and avowing that his party would all die rather than consent to it. Their death by stratagem had already been planned, and on the roth of March they had to go into hiding. On the rith Vergniaud boldly exposed the conspiracy in the Convention. The antagonism caused hy such an attitude had reached a significant point when on the roth of April Robespierre bimself laid his accusation before the Convention. He fastened especially upon Vergniaud's letter to the king and his support of the appeal to the people as a proof that he was a moderate in its then despised sense. Vergniaud made a brilliant extemporaneous reply, and the attack for the moment failed. But now, night after night, Vergniaud and his colleagues found themselves obliged to change their abode, to avoid assassination, 2 price being even put upon their heads. Still with unfaltering courage they continued their resistance to the dominant faction, till on the and of June 1793 things came to a head. The Convention was surrounded with an armed moh, who clamoured for the " twentytwo." In the midst of this it was forced to continue its deliberations. The decree of accusation was voted, and the Girondists were proscribed.

Vergniaud was offered a safe retreat. He accepted it only for a day, and then returned to his own dwelling. He was kept onder surveillance there for nearly a month, and in the early days of July was imprisoned in La Force. He carried poison with him, but never used it. His tender affection for his relatives abundantly appears from his correspondence, along with his profound attachment to the great ideas of the Revolution and his noble love of country. On one of the walls of the Carmelite convent to which for a short time the prisoners were removed Vergniaud wrote in letters of blood: "Potius mori quam foedari." Early in October the Convention brought forward its indict ment of the twenty-two Girondists. They were sent for trial to the Revolutionary tribunal, before which they appeared on the 27 th of October. The procedure was a travesty of justice. Early on the morning of the 3 rst of October 1793 the Girondists were conveyed to the scaford, singing on the way the Marseillaise and keeping up the strain till one by one they were guillotined. Vergniagd was executed last. He died unconfessed, a philosopher and a patriot.

See Gay de Vemon. Vergniamd (Limoges. 1858); and I_ de Verdiére, Biographie de Vergniaud (Paris, 1866).
(T.S.)

VERFAEREN, EMILE (r855-), Belgian poet, was born at Saint-Amand, near Antwerp, on the 2rst of May r855. He was sent to school at Ghent, where he formed a friendship with Ceorgen Rodenbech. He studied at the university of

Louvain, and there started a journal, La Semaine, which he edited in conjunction with the operatic singer Van Dyck. La Scmaine was suppressed by the authorities, as was its successor, Le Type, in which Verhaeren had as fellow-workers Max Waller, Iwan Gikin and Albert Giraud. In 188r he was admitted to the bar at Brassels, but he soon devoted his whole energies to literature, and expecially to the organs of "young Belgium," La Jeune Belgique and L'Art moderne, making himself especially the champion of the impressionist painters. Verhacren learnt his art of poetry from the great Flemish artists, and in his carly robust works, Les Flamandes (1883) and Les Moines (r886), he displays similar qualities of strength, sometimes degenerating into violence. A period of physical weakness followed, translated into terms of poetry in three volumcs of verse, Les Soirs (1887), Les Debscles (1888) and Les Flambeaux roirs (1889). Au bord de la route (1890) and Les Apparus dams mes chemins (1891) followed. Verhaeren then passed from applying his pictorial method to psychological studies to the task of individualizing the towns, villages and fields of his native country, the first outcome being his Campagnes hallucintes (1893). In Villages illwsoires he describes the tragedy of the fields and farms deserted hy the people in their race to the towns, and in Les Villes tentaculaires (1895) the great industrial centres devouring the surrounding country. Later volumes of poems are Les Heures claires (1896), Les Visages de la vie (1899), Les Patites Ligendes (1900), Les Forces tumulluewses (rgor); Les Tendresses premières (1904). In 1898 he wrote a lyric drama Les Aubes, in 1900 a lour-act piece Le Clotire, represented both in Brussels and Paris, and in 1901 a historical drama Philippe II.

The poems of Emile Verhaeren were translated into English by Alma Strettel (1899); and Les Aubes by Mr Arthur Symons (1898). A long list of articles dealing with verhaeren is to be found in Poites d'A ujourd'hui (1900) of A. van Bever and Paul Leautaud.
VERKHNE-UDINSR, a town of Asiatic Russia, in East Siberia, province of Transbaikalia, on the right bank of the Uda, at its confuence with the Selenga, 102 m . by rail E. of Lake Baikal, to which steamers ply. Pop. (1883) 4130; (1897) 8002. It was founded as a small fort in 1668 , and is a centre for the overland trade in tea with China, and an emporium both for grain and animal products, exported, and for metals, machinery and manufact ured goods, imported. Its yearly fair is of great importance.
VERLAINE, PAUL (1844-1896), French lyric poet, was born at Metz on the 3 oth of March 1844. He was the son of one of Napoleon's soldiers, who had become a captain of engineers. Paul Verlaine was educated in Paris, and became clerk in an insurance company. He was a member of the Parnassian circle, with Catulle Mendès, Sully Prudhomme, François Coppée and the rest. His first volume of poems, the Poimes saturniens (1866), was written under Parnassian influences, from which the Feles golontes (186g), as of a Watteau of poetry, began a delicate escape; and in La Bonne Chanson (1870) the defection was still more marked. He married in 1870 Mlle. Mautet. During the Commune he was involved with the authorities for having sheltered his friends, and was obliged to leave France. In 1871 the strange young poet Jean Arthur Rimhaud came somewhat troublingly into his life, into which drink had already brought a lasting disturbance. With Rimbaud he wandered over France, Belgium, England, until a pistol-shot. fortunately ill-aimed, against his companion brought upon him two years of imprisonment at Mons. Solitude, confinement and thought converted a pagan into a Catholic, without, however, rooting out what was most human in the pagan; and ailer many years' silence he published Sagesse (1881), a collection of religious poems, which, for humble and passionate conviction, as well as originality of poetic beauty, must be ranked with the finest religious poems ever written. Romances sans paroles, composed during the intervals of wandering, appeared in 1874, and shows us Veriaine at his most perfect moment of artistic self-possession, before be has quile found what is deepest in himseli. He relurned to France in 1875. His wife had obtained a divorce from him, and Verlaine made another short stay in England, acting as a
teacher of French. After about two years' absence Verlaine was again in France. He acted as teacher in more than one school and even tried farming. The death of his mother, to whom he was tenderly attached, dissolved the ties that bound him to " respectable" society. During the rest of his life he lived in poverty, often in hospital, but always with the heedless and unconquerable checrfulness of a child. After a long obscurity, famous only in the Latin Quarter, among the cafés where he spent so much of his days and nights, he enjoyed at last a European celehrity. In 1894 he paid another visit to England, this time as a distinguished poet, and lectured at London and Oxford. He died in Paris on the 8th of January 1806. His eighteen volumes of verse (among which may be further mentioned Jadis a naguere, 1884; Amour, 1888; Parallelement, 1889; Bonheur, 1891) vary greatly in quality as in substance; they are all the sincere expression, almost the instantancous notation, of himself, of his varying moods, sensual passion, the passion of the mystic, the delight of the sensitive artist in the fine shades of sensation. He brought into French verse a note of lyrical song, a delicacy in the evocation of sound and colour, which has seemed almost to create poetry over again, as it provides a language out of which rhetoric has been cleansed and a rhythm into which a new music has come with a new simplicity.
(A. Sx.)

His CEwrres compliles (3 vols.) were published in 1899, \&c.; CEuvres pos/humes (1903). See also Paul Verlaine, sa vie, som aupre, by E. Lepelletier (1907); monographs by M. Dullaert (Chent, 1896), C. Morice (1888): also Anaıole France, La Vie littéraire (3rd series, 1891) ; J. Lemalire. Nos contemporains (1889), vol. iv.; E. Delille, ". The Poet Verlaine, " in the Fortn ighlly Review (March 1891); A. Symons, in the National Rerieto (June 1892); V. Thompson, French Portraits (Boston, U.S.A., 1goo); and the poet's own Confessions (1895) and his Poikes maudits (1888). A bibliography of Verlaine with an account of the existing portraits of him is included in the Poites d'Aujourd'hui (11th ed., 1905) of MM. A. van Bever and \(P\). Leautaud. The Vie by Lepelletier has been translated into English by E. M. Lang (1909).

VERLAT, MICHEL MARIS CEARLES (1824-1890), Belgian painter, was born at Antwerp on the 25th of November 1824. He was a pupil of Nicaise de Keyser, and studied at the Antwerp Academy. In 1842 appeared his first important picture, "Pippin the Short Killing 2. Lion." About 1849 he went to Paris, where he worked under Ary Scheffer. In 1855 he won a gold medal at the Exposition Universelle at Paris with his "Tiger Attacking a Herd of Buffaloes," and in 1858 exhihited "Le Coup de collier" (now in the Antwerp Gallery) at the Paris Salon. In 1866 he was appointed director of the Academy at Weimar, where he painted some fine portraits, notably those of the grand-duchess of Saxony and of the musician Liszt. Soon after his return to Antwerp in 1875 he visited Palestine, and brought back a large number of interesting pictures, including "Vox Populi" (Antwerp Gallery), "The Tomb of Jesus," and "The Flight into Egypt." In 1885 he was appointed director of the Antwerp Academy. Other important works by Verlat are the panoramas of the battle of Watcrioo and the treaty of San Stefano, "Christ between the Two Thieves," "Defending the Flock" (Antwerp Gallery), "Oren Ploughing in Palestine" (Antwerp Gallery), "Godfrey of Bouillon at the Siege of Jerusalem" (Brussels Gallery), and "Sheep-Dog Defending the Flock " (Brussels Gallery). He executed a series of original etchings, and published in 1879 a book on the Antwerp Academy. He died at Antwerp on the 23 rd of October 1890.

VRRMANDOIS, a French countship composed originally of the two butgraviates (chatellenies) of St Quentin (Aisne) and Péronne (Somme). Herbert 1., the earliest of its hereditary counts, was desconded in direct mate line from the emperor Chatlemagne, and was kitled in goz by an assassin in the pay of Baldwin II., count of Flanders. His son, Herbert II. goz943), a man absolutely devoid of scruples, considerably increased the terrionial power of the house of Vermandois, and kept tbe lawful king of France, the unlucky Charles the Simple, prisoner for six years. 1 lis successors, Albert f., Herbert III., Albert II., Otto and Ilerbert IV., were unimportamt In 1077 the last male of \(\boldsymbol{1}^{\text {timent }}\), house of Vermandois, Herbert IV.,
received the countship of Valois in right of his wife. He died soon afterwards, leaving his inheritance to his daughter Adela, whose first husbaud was Hugh the Great, the brother of king Philip 1. Hugh was one of the leaders of the first crusade, and died in 1102 at Tarsus in Cilicia. The eldest son of Hugb and Adela was count Raoul (Rudolph) 1. (c. 11 20-1152), who married Alix of Guyenne, sister of the queen, Eleanor, and had by her three children: Raoul (Rudolph) II., the Leper (count from \(11{ }^{52-67}\)); Isabelle, who. possessed from 1167 to 1183 the countships of Vermandois, Valois and Amiens conjoinly with her husband, Philip of Alsace, count of Flanders; and Eleanor. By the terms of a treaty concluded in 1185 with the king, Philip Augustus, the count of Flanders kept the countship of Vermandois until his death, in 1191. At this date a new arrangement gave Eleanor (d. 1213) a life interest in the eastern part of Vermandois, together with the title of countess of St. Quentin, and the king entered immediately into possession of Péronne and its dependencies.
See Anselme, Histoire ginealogique de la maison royale de France (1726), i. 48-51 and 531-34; Colliette, Memoires pour Chistoire di Vermandois (1771-72).
(A. Lo.)

VERMICELLI (plural of Ital. vermicello, littie worm, Lat permicellus, diminutive of vermis, worm), the name of a kind of paste, made of the granular meal of certain hard wheats, and used as a food. It is made into worm-like threads, whence its name, and differs from macaroni only in being made solid and not in hollow tubes. "Spaghetti" (dim. of spago, a small cord) is a larger kind of vermicelli. In Italy these various pastes form a staple articic of food. In other countries " vermicelli" is used in soups and puddings, \&c.

VERMIGLI, PIETRO MARTIRE, generally known as PETE Martve (\(\mathrm{I}_{500-1562 \text {), born at Florence on the 8ith of May r } 500 \text {, }}\) was son of Stefano Vermigli, 2 Iollower of Savonarola, by his first wife, Maria Fumantina. He owed his Christian names to a vow which his father, act uated by the death of several childrem in infancy, had made to dedicate any that survived to the Dominican saint, Peter Martyr, who lived in the i3th century. Educated in the Augustinian cloister at Fiesole, he was transferred in 1519 to the convent of St John of Verdara near Padua, where he graduated D.D. about 1527 and made the acquaintance of the future Cardinal Pole. From that year onwards he was employed as a puhlic preacher at Brescia, Pisa, Venice and Rome; and in his intervals of leisure the mastered Greet and Hebrew. In 1530 be was elected abbot of the Augustinian monastery at Spoleto, and in 1533 prior of the convent of St Peter ad Aram at Naples. About this lime he read Bucer's commentaries on the Gospels and the Psalms and also Zwingli's De sera ef falsa religione; and his Biblical studies began to affect his views. He was accused of erroneous doctrine, and the Spanish viceroy of Naples prohibited his preaching. The prohitition was removed on appeal to Rome, but in 1543 Vermigli was transferred to Lucca, where he again fell under suspicion. Summoned to appear before a chapter of his order at Genoa, he fled in 1542 to Pisa and thence to another Iralian relormer, Bernardino Ochino, at Florence. Ochino escaped to Geneva, and Vermigli to Zürich, thence to Basel, and finally to Strassburg, where, with Bucer's support, be was appoiated professor of theology and married his first wife, Catberine Dammartin of Metz.

Vermigli and Ochino were both invited to England by Cranmer in 1547, and given a pension of forty marks by the government. In 1548 Vermigli was appointed regius professor of divinity at Oxford, in succession to the notorious Dr Richend Smith, and was incorporated D.D. In 1549 he toak part in a great dispatation on the Eucharist. He had abandoned Luther's doctrine of consubstantiation and adopted the doctrine of a Real Presence conditioned hy the faith of the recipient. This was similar to the view now held by Cranmer and Ridkey. but it is difficult to prove that Vermigli had any great infueroce in the modifications of the Book of Common Prayer made in 1552. He was consulted on the question, but his recommendations seem hardly distinguishable from those of Bucer, ity
cfiect of which is ttself disputzble: He was also appointed one of the commissioners for the reform of the canon law.

On Mary's accession Vermigli was permitted to return to Strassburg, where, after some opposition raised on the ground that he had abandoned Lutheran doctrine, he was reappointed professor of theology. He befriended a number of English eriles, but had himself in 1556 to accept an offer of the chair of Hebrew at Zurich owing to his increased alienation from Lutheranism. He was invited to Geneva in 1557, and to England again in 156 I , but declined both invitations, maintaining, bowever, a constant correspondence with Jewel and other English prelates and reformers until his death at Zurich on the 12 th of November 1562 . His first wife, who died at Oxford on the 15 th of February 1553, was disinterred in 1357 and tried for heresy; legal evidence was not lorthcoming because witacsses had not understood her tongue; and instead of the corpse being burnt, it was merely cast on a dunghill in the stable of the dean of Christ Cburch. The remains were identified after Elizabeth's accession, mingled with the supposed relics of St Frideswide to prevent future desecration, and reburied in the cathedral. Vermigli's second wife, Caterina Merenda, whom he married at Zürich, survived him, marrying a merchant of Locarno.

Vermigli published over a score of theological works, chiefly Biblical commentaries and treatises on the Eucharist. His learning was greater than his originality, and he was one of the least heterodox of the Italian divines who rejected Roman Catholicism. His views approximated most nearly to those of Martin Bucer.

Josias Simler's Oratio, published in 1563 and translated into English in 1583 . is the basis of subsequent accounts of Vermigli. The best lives are by F. C. Schlosser (1809) and C. Schmidt (1858). See also Parker Soc. Publ. (General Index). especially the Zürich Letters: Strype's Worlor; Foxe's Acts and Monuments; Burnet's Hist., ed. Pocock: Dixon's Hislory; and Dict. of Nat. Biogr. Iviii. 253-256.
(A. F. P.)

VERMILIOX. a scarlet pigment composed of mercuric sulphide, HgS. It may be obtained direct from pure and bright coloured portions of the native ore cinnabar, or, artificially, by subliming a mixture of mercury and sulphur. The product is ground and levigated; and when dry it is ready for use. It is also prepared by digesting precipitated mercuric sulphide with an alkatine sulphide for some hours; it is said that Chinese vermilion owes its superiority to being made in this way. In addition to its brilliance, vermilion is a pigment of great intensity and durability, remaining unaffected by acid fumes. Being cosily, it is much subject to adulteration; but the fraudulent additions may easily be detected by volatilization, which in the case of pure vermilion leaves no residue. See Pigments and Mercury.

VERYIII (Fr. termine, formed as if from Lat. Derminks, zermis, a worm), the collective name applied to various classes of objectionable, harmiul or destructive animals. To gamekeepers and those interested in the preservation of game, all tuimals such as the pole-cat, weasel, stort, hawks, owls, \&c., which destroy the eggs or young of preserved birds, are classed as "vermin," and the same term includes rats, mice, \&c. It is also the collective name given to all those disgusting and objectionable insects that iniest human beings, houses, \&c., when allowed to be in a filthy and unsanitary condition, such as bugs, ficas, lice, fec.

VERMONT, a North Allantic state of the United States of America and one of the New England group, lying between latitude \(42^{\circ} \cdot 44^{\prime}\) and \(45^{\circ} 0^{\prime} 43^{\prime \prime}\) N., and between longitudes \(3^{\circ} 35^{\prime}\) and \(5^{\circ} 29^{\prime}\) E. from Washington. It is bounded N. by the Canadian province of Quebec, E. by the Connecticut river, which separates it from New Hampshire, S. by Massachusetts, and W. by New York and Lake Champlain, which separates it in part from New York. Its total area is 9564 sq. m., and of this 440 sq. in. is water surface.
Surface.-Vermont is a portion of the plateau-like New England upland. broken by mountain ranges, individual mountains and high hills, rising above the gencral upland surface, and by deep marrow valleys, cut below that surface. The mean clevation of the
state above the sea is about rooo ft. Extremes range from inf ft. at Maguam on the N.E. shore of Lake Champlain (96 ft .) to 4364 ft . at the summit of Mount Mansfield, about 25 m . E. of that lake The most prominent feature of the surface is the Green Mountains, which extend nearly N. and S. through the state a litile W. of the middle. From the Massachusetts border N. Ior two-thirds the length of the state the range is only slightly broken, but larther N. it is cut deep by the valleys of the Winooski and Lamoille rivers. The crest line is generally more than 2000 ft . high, considerable arcas are above 2500 ft ., and the following summits exceed 4000 ft . Mount Mansfield, 4364 ft.; Killington Peak 424, \(^{2} \mathbf{f t}\). Camel's Hump. 4088 ft.: Mount Lincoln, 4078 ft. and Jay Peak, 4018 ft. West of the Green Mountains the Taconic Mountains form a nearly parallel (hut distinct) range, extending from New York and Massachusetts \(N\). nearly to the centre of Vermont; and a series of broken uplifts, known as the Red Sandrock Mountains, extend farther N. along the shore of Lake Champlain. The Taconic Mountains rise in very irregular masess to \(1500-2000 \mathrm{ft}\), and reach their maximum elevation in Mount Equinox at 3816 ft . The Rerl Sandrock Mountains are similar to one another in form and structure, generally mounded on the \(\mathbf{N}\). and E., but with some rugged escarpments facing the lake; their highest point is Snake Mountain (1271 ft.) in Addison county. There are no mountain ranges in the state E. of the Green Mountains, but distributed along the entire E. border are a number of tall and oval or conical shaped masses known as the Granitic Mountains, and between these and the Green Mountains the country is largely occupied by high hills and doeply caned valleys. Mount Ascutney. one of the Granitic Mountains, rises abrupily from the floor of the Connecticut Valley to a height of 3320 ft . The least hroken section of Vermont is on the somewhat gentle slope of the Green Mountains in the N.W. and on Grand Isle. North Hero Island, and Isle La Motte in Lake Champlain. The forms of Vermont's muuntains, even to the highest summils, were to a great exient rounded by glaciation, but as the rocks vary much in texture and are ofien steeply inclined, stream erosion bas cut valleys deep and narrow, of ten mere gorges.

Where the Creen Mountain range is unbroken, in the S. two-thirds of the state, it forms a water-parting between the streams which flow W. or N.W. into Lake Champlain or the Hudson river and those flowing S.E. into the Connecticut river; but farther N . the line separating the Hudson-Champlain basin from the Connecticut basin runs among the Granitic Mountains; and extending \(\mathbf{2 5} \mathrm{m} . \mathrm{S}\). from the Canadian border is a small area that is drained N.intoLake Memphremagog, the waters of which, like those of Lake Champlain. are tributary to the St Lawrence river. North of Massachusett the Connecticut river is wholly within New Hampshire-Vermont's castern boundary is low-water mark on the W. bank of the Connecticut river. The largest and only navigable rivers of Vermont are among those flowing into Lake Champlain: the Missisquoi, the Lamoille, the Winooski and Otter Creek. The Batien Kill is the principal river flowing into the Hudson. The Deerfield, West, Williams, White, Passumpsic and Nulhegan rivers are the largest of the many streams which are tribulary to the Connecticut. The Rlack, Barton and Clyde rivers flow into Lake McmphremagogVermont's rivers are generally swilt, and in many places they are made very picturesque by their clear and sparkling waters, rapids, falls, gorges and wooded banks.

Lake Champlain, which lies beautifully in the valley between the Green and Adirondack mountains, belongs mostly to V crmont. The state has a shore line upon it of 150 m . or more, and in ins N . portion are numerous islands which are attractive resorts during the summer season. On the N. border of the stale is Lake Memphremago with islands, a rugged prominence known as Owl 's Head on is W. border. Jay Peak. larther back, and a beauniful farming country to the eastward. There are also a large number of small lakes and ponds lying wholly within the state. Of these Lake Bomosecn in Rutland county and Willoughby Lake in Orleans county are the largest. Willoughby Lake is about 6 m . long by \(\mathrm{t}-11 \mathrm{~m}\). wide, and its situation between two rugged mountains makes a scene of great natural bcauty. All the lakes of the state were formed by ghaciation.

Fanna.-The most common sild animals are deer, rabbits, squirrels, raccoons, skunks, woodchucks and muskrats. There are some porcupines. red foxes, minks and martens, but the moose, woll and lynx are practically extinct. The ruffed grouse (or "partridge") is the most common of game birds, but woodcock, ducks and geese are quite common. Prominent among a great variety of song-hirds and insectivorous birds are the robin, blue bird. cat bird, sparrows, meadow-Lark, bobolink, thrushes, chickadee, wrens, brown thrasher, gold finch, cedar wax-wing, flycatchers. nuthatches, flicker (golden-winged woodperker), downy and hairy woodpeckers, rose-breasted grosbeak, Baltimore oriole, barnswallow, chimney swift. purple martin, purple finch (linnct) vireos and several species of warblers. Birds of prey comprise several species of hawks and owls, and a few eagles. A few sturgeon are taken in Lake Champlain. The takes, ponds and streams afford some of the best trout fishing in the country, and many of them also abound in pickerel, pike, perch. black bass and land-lorked salmon. There is a state fish and game commissioner, and the state has a fish
hatchery at Roxbury and a forest and game farm at Sharon. There are Federal hatcheries at Swanton (for pike perch and yellow perch) and at Holden (for trout).

Flora.-Vermont (gert mont), the Green Mountain State, was so named from the evergreen forests of its mountains, whose principal trees are spruce and fir on the upper slopes and white pine and themlock on the lower. Among deciduous trees the state is noted for its sugar maples; birch and beech are common on the hills, and oaks, elm, hickory, ash, poplar, basswood, willow, chestnut and butternut on the less elevated areas. Among indigenous fruitbearing trees, shrubs, vines and plants are the plum, cherry, grape, blackberry, raspberry, cranberry and strawberry. A few of the medicinal plants are ginsceng, pleurisy root, snake root, blood root, blue liag and marshmallow. Orchids are very prominent among a great varicty of flowering plants. Along the shore of Lake Chainplain are a few species of maritime plants that remain from the time when portions of western Vermont were covered by the sea, and on the opper slopes of some of the higher mountains are a few Alpine species; these, however, are much less numerous on the Green Mountains of Vermont shan on the White Mountains of New Hampshire. The state's lumber trade was important until 1890 , when the white pine was ncarly exhausted, although there were still spruce and hemlock.

Climate. - The state usually has long and severe winters and cool summers, but sudden changes of temperature are common at all seasons. The mean temperature for January, the coldest month, is only \(17^{\circ} \mathrm{F}\). ; for the three winter months it is \(19^{\circ}\) F., and for the five months from November to March inclusive it is \(24.3{ }^{\circ} \mathrm{F}\). For July, the warmest month. the nican temperature is \(68^{\circ} \mathrm{F}\).: for the entire year it is \(43^{\circ} \mathrm{F}\). Extremes of temperature have ranged from \(-36^{\circ} \mathrm{F}\). at Woodstock, Windsor county, in February 8896 to \(97^{\circ} \mathrm{F}\). at Cornwall. Addison county. in June sgos. The eastern section of the state is colder than the western, and the central or most mountainous section is still colder; for example. the mean annual temperature of Burlington, on Lake Champlain, is \(4^{\circ}{ }^{\circ} \mathrm{F}\).. while that of Saint Johnsbury, a little farther S. and amar the E. border, is only \(42^{\circ} \mathrm{F}\), and that of Northficld, still farther S . but in the middle section. is only \(41^{\circ} \mathrm{F}\). The mean annual precipitation for the entire state is about \(38-5\) in.; more rain falls in summer than in any other scason, and more falls in the southern section than in the northern. The average annual fall of snow throughout the state is about 90 in. but at Jacksonville near the \(S\). border it often exceeds 110 in. More snow falls in February than in any other month. In the Connecticut and Hudson-Champlain valleys the winds blow mostly from cither the \(N\). or the \(S\).. but in several of the smaller valleys the prevailing winds are from tbe N.W.

Soif.-The soil is for the most part glacial drift, composed of clay, sand and gravel, and varying greatly in depth. On the higher elevations it is generally stony and stcrite, but in the valleys and on many of the lower hills, where it consists largely of clay and sand, it is quite productive. The lest soils are in the west section, where limestone clays or shell marls are common.

Forests.-Vermont was heavily forested with white pine, spruce and hemlock, and, in the southern part of the state and along the shore of Lake Champlain, with some hard woods. The white pine had been much cut off by 1890 and it is no longer commercially important. The woodland arca of the state in : 900 was estimated to be \(3900 \mathrm{sq} . \mathrm{m} .\), about \(43 \%\) of the land area of the state.

Fisheries-Lake Champlain furnishes the only commerical fishing grounds in Vermont. With the exceptions of small catches of white fish in Lake Bomoseen, Lake St Catherine in Ruthand county and Lake Memphremagog. The total catch in 1895 was 208.139 th, valued at \(\$ 7: 60\), and in 1902 was \(528,682 \mathrm{H}\), valued at \(\$ 37.669\). The capital invested in fisheries in \(\mathbf{1 9 0 2}\) was \$9417, and the number of men employed. 145. The most valuable fish taken was walleyed pike, and the catch of this fish and of pickerel from Lake Champlain in 1902 exceeded in value that from any other body of fresh water in the United States excepting Lake Huron and Lake Erie. The wall-cyed pike taken in 1902 were valued at \(\$ 16.915\) (\(210,936 \mathrm{fb}\)): white fish, \(\$ 5777(80,191 \mathrm{bb})\) : pickerel, \(\$ 4144\) (51.711 b): yellow perch, \(\$ 2575\) (43.917 b): sturgeon. \$2051 (15.590 lb), and suckers, \(\$ 1854(37.375 \mathrm{lb}\)): other varicties taken in smaller quantities included smek, sun-hish and cels.

Agricullure.- Vermont is largely an agricultural state: in 1900, out of a total of 134.933 persons engaged in gainful occupations, 49.820 were engaged in agriculture, 36,180 in manufacturing and mechanical pursuits, \(\mathbf{2 3 . 0 2 8}\) in domestic and personal scrice, 18.889 in irade and transportation, and 7016 in professionai service: and of a total land area of \(9124 \mathrm{sq} . \mathrm{m} .7382 \mathrm{sq} . \mathrm{m}\). (4.724 .400 acres) were included in farms. The percentage of improved farm Land, as in Maine. New York and Pennsylvania, increased from 1850 until 1890 and decreased alter 1890 : and in 1900 out of a total mereat of \(4.724,400\) acres only \(2,126,624\) acres (\(45^{\circ}\) i,) Were jutpoyd 0 , the \(\mathbf{3}, 104\) farms in the state in 1900.25 .982 1373 by part owners, 314 by owners
年phty 2396 by share tenants, and feppts, 2396 by share terants, and 175 and 260 acres, 10.215 50 and 100 acres, .3511
between 20 and 50 acres, and 3285 less than 20 acres; and dairy produce was the principal source of income of more than one-balt of these (16.700). Jive stock the principal source of income of 732 farms, and hay and grain of 2519 larms. The general sterility of the soil except along rivers and the bases of hills has made intenstive cultivation always neceseary, and the competition of new asd rich western farm lands has made the agriculture of Vermort develop further toward specialization in dairying and raising live stock. In s9so there were 495,000 neat cattle (285,000 mikh cows). 94,000 horses (average value, \$106), 229,000 sheep and 95,000 sripe. The horses of Vermont have been famous in the developront of American racing stocks; the Morgan stock is best known, and other lamooss Vermont strains are Messenger and Black Hawik. Hay and forage are the most important crops, and Vermont grasses for graning have been favourably known since the close of the 18 th centimy. In 1909 on 879,000 acres a crop of hay (excluding forage) was rained valued at \(\$ 6,155,000\). The cereals are relatively unimporzant. The largest cereal crop is oats, of which, in 1909. 2,608,000 busthels (valued at \(\$ 1,304,000\)) were produced on 81,000 acres.

Mines and Qwarries.-The principal mineral resource of Vermont is its building and mosumental stane, including marble and granite and a small amount of limestone. The value of the total amount of stone produced in 1908 in Vermont was \(37,152,624\). Vermont marble is the best and most plentiful in the United States It kas been quarried since 1785 ; marble monuments were first mapipfactured about 1808; and at South Darset in 1818 marble seerns first to have been sawed in blocks, the earlicr method having been chiselling. It is found gencrally, throughout the vestern part of the state. The principal supply is in West Rutland. Proctor and Pittsford; this, the "Rutland marble." is a duller. less lustrows white, and of a greater durability than the Carrara marble, and is used largely for monuments and statuary. There are other large quarries at Dorset and East Dorset, Bennington county; the fioest marbles from this region are the white, slighty marked rith pale brown and with greenish lines; they are commonly used for bind ing, the Harvard Medical School and the office of the U.S. Sewate being examples. At Rutland, Proctor and Dorset many darter shades arc found, including "moss vein." olive grcen and varions shades of blue, green, yellow and pink, which are used for ormamental purposcs. There are important quarries in Franklin county (at Swanton), the stone being a dark Chazy limestone, in which pint and red (" jaspcr," "lyonnaise" and royal red") marbles of Cambrian age are'found. At Monkton, Addison county, there is a Quarry from which other red marbles are taken; and at Roxbury. Washngion county, a hige serpentine. catled cigreen marile.
or verde antique, is quarried. Op Isle La Motte, Cramd Iste coumy. there are marble quarries, the characteristic colours of the martie being "Fisk black" and "Fisk grey." The output of marbie in 1908 was valued at \(\$ 4.679 .960\) (out of a tolal of \(\$ 7.733 .920\) for the entire production of marble in the United States). Onfy hess important and only less carly to be establistued in Vermont wasp ite quarrying of granite, which began in 1812 , but which has beet developed chichly since 1880 , largely by means of the building of "granite railroads" which connect each quarry with a main raikery line-a means of transportation as important as the logging ns ways of the Western states and of Canada. The laggest gramite quarries are near Barre, Washington county, a city which owes its importance to the quarries. The Barre granites, like those of Woodbury and Calais (also in Washington couniy) and part of thome of South Ryegate. Kirby and Newark (Caledonia county) are of the biotite type: they are grey, except the stone from Newath. which is pinkish. Of the quartz-monzonite type are the whitist granites of Bethel and Rochester (Vindsor county) and Randolph (Orange county), the lighi grey of Dummersion (Windham comefyh. and the darker greys of Cabot (Washington county), Dertry (Orternes county), Hardwick and Croton (Caledonia counsy) and Togshene (Orange county). The olive green spenite found on Mount Aacerney. near the Connecticut river, in Windsor county, is a hornbleteaugite. Other important granite quarries are ncar Wialiangrtonth Dummerston, Berlin and Woodbury. The cotal value of the output of granite in the state in 1908 was \(\$ 2.451 .932\) In \(\$ 903\) the output of limestone was valued at \(\$ 20.731\); there are limestone quarries in Washington and Orange counties and on Iste La Motte. Slate-quarrying and cutting is carricd on in the south-wressere pert of the state, in Rulland county; there are important gutarries at Fair Haven, Poultncy, Castlcton, Wells and Pawlet. In Waskiogton county there are quarries near Northfeld. The industry beter about 1840, though one quamy had been opened as carty as if ees, There are two green varieties, calted in the trade "sca-greet" "and unfading green," the former being used for a cbeap roofes slate; and there are purplish varienics In 1908 the value of slate moduced was \(\$ 1,710,491\) (out of a total production for the linited States of \(\$ 6.316,81^{7}\)).

Afanmfacimres.- The first important industry of the state nat rafting " lumber from Vermont ihrough Lake Champluin and the Richelies and St Lawrence rivers to Quebee. Burlington berame a great lumber market for a trade moving in ihe direction of Bomen after the Richelicu river was blocked to navigation and railaray traosportation began, and in 1882 Burlington was ithe thind lumber
eentre in the United States, Mountain otreams furnish important water-power, and the typical factory of Vermont has long been a sawmill run by a water-wheel. The value of sawmill products in 1905 was \(\$ 5,888,445\) and of planing-mill products \(\$ 3,080,117\). Closely connected with the manufacture of lumber is the making of paper and wood pulp, centralized at Bellows Falls, with waterpower on the Connecticut river and with the raw materials near; the product was valued in 1905 at \(\$ 3,831,448\). Daity industries have rapidly increased in value: in 1905 the value of hutter and cheese was \(86,416,434\), more than any other single industry under the census classification. If a less arbitrany classification be followed the principal manulacturing industries would be stone manulacture and textiles. The first marble quarty was opened in Dorset in 1785 and a second at Middlebury in 1805; and the first granite was quarried in 1812. Barre is the centre of the granite business, and the region about Rutland, especially Proctor, is the principal seat of the marble industry. The product of stone manuiactures in 1005 was \(89.570,436\). Vermont was almost the last of the New England states to develop textile manufactures, though the manufacture of woollen goods was begun in 1824. The greatest development was between 1900 and 1905; the total value of textiles in the former year was \(\$ 5.407,217\) (woollen goods, \(\$ 2.572 .646\); hosiery and knit goods, \(\$ 1,834,685\); cotton goods, \(\$ 999,886\)) and in the latter was \(37,773.612\) (woollen goods, \(\$ 4,698,405\); hosiety and knit goods, \(\$ 1,988.685\); and cotton goods, \$t,086.522). Other important manufact ures are: flour and grist mill products, foundry and machincshop products. lurniture, patent medicines and compounds, roofing materials, and scales and balances, manufactured especially at St Johnsbuty.

Trassportafion and Commerce.-Railway transportation is supplied to Vermont by parallel lines crossing diagonally every part of the state at about equal intervals and running in general in a N.W. and \(S . E\) direction, and by lines running \(N\). and \(S\). respectively along the eastern and western borders of the state. The railway map of the state thus has roughly the appearance of a gridinon. The principal railways are: the lines operated by the Boston \& Maine system, extending along the eastern border from Brattleboro through Bellows Falls, and St Johnsbury to the Canada boundary (Vermont Valley, Sullivan County, and Connecticut \& Passumpsic Rivers railways), with a line, the St Johnsbury \& Lake Champlain railway, extending acrose the northern part of the state from Lunenburg to Maguam Bay; the Central Vermont railway (Grand Trunic system) which crosses the state diagonally from S.E. to N.W., connecting Burlington, Montpelier and St Albans and affording connexion to the north with Montreal and to ihe south over trackage shared with the Boston \& Maine, with the New London Northern which is leased by this road, and the Rutland railway (New York Central system) extending abon the western edge of the state and connecting Rutland with Burlington to the north and with Bellows Falls and Bennington to the south. These railways provide outlets for through freight and passenger traffic southward to Boston and New York, and to the porth to St Johns and Montreal.

The southern part of the state was eart, opened to railways, the Sullivan County railway (operated by the Boston \& Maine) having been opened in 1849; and in 1850 the state had 290 m . of railway; in \(1870.614 \mathrm{~m} . ;\) in \(1890,991.42 \mathrm{~m}\).; and on the 1 Ist of January 1909. 1093.43 m . Water communication is afforded by Lake Champlain to the south, for seven months of the year, hy way of the Champlain canal, via Whitehall, New York, to Troy and the Hudson river and the Atlantic coast, and to the north by way of the Richelieu river and the Chambly canal to the St Lawrence. The commerce of the lake consists principally of coal, wood pulp and building naterial, besides general merchandise. The only river with trafice of commercial importance is Otter Creek, flowing northwards into the southern part of Lake Champlain and having a navigable length of 8 m . to Vergennes, with a depth to this point of 8 ft . at low water. The commerce on Lake Champlain is carried on chiefly through Burlington, the port of entry for the Vermont customs district. The tonnage of the commerce of this port amounted, according to the reports of the United States army engineers, to to7.42I tons in 1904 and to 249.174 tons in 1900, of which in the latter year nearty \(80 \%\) was lumber.

Population.-The population of Vermont in 1890 was 332.422 ; in \(1900,343,641\); and in 1910, \(355,956.1\) Of the total population in 1900, 298, 077 were native whites, 44,747 were foreign-bom, 826 were negroes and 39 were Chinese. Of the inhabitants born in the United States, 19,974 were natives of New York, 9675 were matives of New Hampshire and 911: were natives of Massachu. setts. Of the foreign-born, 14,924 were French Canadians, 10.616 were English Canadians and 7453 were Irish. Of the total population, 117,344 were of foreign parentage (i.e, cither one or both

\footnotetext{
\({ }^{1}\) According to previous censuses, the populatson was as follows: (1790) 85.425: (1800) 154.465; (1810) 217.895; (1820) 235.981: (1830) 280,652; (1840) 29t,948; (1850) 314,120; (1860) 315.098; (1870) \(330,55^{1} ;(1880) 332,286\). The increase between 1850 and tgoo wre remarlably small.
}
parents were foreign-born) and 27,226 were of French Canadian and 20,228 of Irish parentage, both on the father's and on the mother's side. Of 147,223 communicants of all churches in 1906, the largest number, 82,272, were Roman Catholics, 22,109 were Congregationalists, 17,47 I Methodist Episcopalians, 8450 Baptists, 1 goi Free Baptists and 5278 Protestant Episcopalians. The principal cities are Burlington, Rutland, Barre, Montpelier (the capital) and St Albans.

Administration.-Vermont has been governed under the constitution of 1777 , that of 1786 and that of 1793 , with twentyeight amendments, of which the first was adopted in 1828 , the second to thirteenth in 1836 , the fourteenth to 1 wenty-third in 1850 , the twenty-fourth, twenty-fifth and twenty-sixth in 1870 , and the twenty-seventh and twenty-eighth in 1883 . The administrative officers of the state are a governor, a lieutenantgovernor, a secretary of state, a state treasurer, and an auditor of accounts, elected by popular vote, and an inspector of finance, a commissioner of taxes, a superintendent of education, a fish and game commissioner, three railroad commissioners, and various boards and commissions, of whom some are elected by the General Assembly and some are appointed by the governor with the advice and consent of the Scnate. All elections and appointments are biennial. The governor has limited powers of appointment and pardon and a veto power which may be overridden by a majority vote in each house.

The legislative department consists of a senate of 30 members, apportioned among the counties according to population, but with the proviso that each county must have at least one senator, and a. House of Representatives of 245 members, one from each township. Since 1870 elections and legistative sessions have been biennial. The powers of the two houses are equal except that reverrue measures must originate in the House of Representatives.

The judiciary is composed of a supreme court of seven members, a court of chancery, a county court in each county, a probate court in each probate dist rict, and justices of the peace. The judges of the supreme court are elected biennially by the General Assembly, and all the other judicial officers are elected by the people. Sessions of the supreme court are held in each county once a year in addition to the general session which meets at some central place selected by the judges. The court of chancery is held by the judges of the supreme court, the county by a supreme court judge with the aid of two associates elected by the people of the county.

For the administration of local affairs the state is divided into 14 counties and 245 townships. There is no special board of commissioners or supervisors as in most of the other states. the county authonty being the assistant judges of the county court. The assistant judges, the sheriff and the state's attorney are elected annually by popular vote. The county treasurer is elected by the assistant judges. The more important township officinls are a moderator, a board of selectmen, a clerk, a treasurer and a superintendent of schools. Any community containing thirty or more houses may, with the approval of the sclectmen of the town, receive a separate village organization. Their officials are a clerk, five trustees, a collector of taxes and a treasurer.

All citizens of the United States residing in Vermont are citizens of the state. The right of suffrage is confined by the constitution to adult male citizens who have resided in the state for one year. Women have the right to vote in all elections relating to schools and school officers in cities, towns and graded school districts, and also the right to be elected to any local whool position or to the office of township clerk. The original method of revising the constitution was adopted from Pennsylvania (see History), and it was retained long alter Pennsylvania had abandoned it. Thirteen censors chosen septennially were empowered to suggest amendments and to call a convention to pass upon them. The censors, being elected on a general ticket, prere always more progressive than the convention, which was chosen on the principle of equal township representation. In spite of the repeated recommendations of the censors, the convention refused to abolish the collegiate executive and the unicameral legislative system until 1836 . Propositions to establish the judiciary on a more permanent tenure were also voted down in \(1814,1822,1857\) and 1870 , and the state still elects its judges for Iwo years' terms. On its own suggestion, the council of censors was abolished in 1870 and the present method of amending the constitution was adopted. Every tenth year, beginning in 880 , the Senate is authorized to propose amendments, which proposals, if concurred in by the majority of the members of the House of Representatives, are published in the principal newspapers of the state. If they are again approved by a majority of each house in the next General Assembly, they are submited hinally to \(a\) direct popular vote, a majorit \(y\) of the votes cast being decisive.

Miscelloneoss Laws.-A married woman may hold her separate property. carry on buisiness, sue and be sued the same as if she
were single, except that in conveyine or mortgaging her real estate she must be joined by her husband. A widow has a dower Interest in one-third of her husband's real estate unless barred by a jointure or an agrcement. A widower is in any case entitled by courtesy to one-third of his wife's real estate, and he may choose between his rights by courtesy and the provisions of his wife's will. Where there is no issue and the deceased dies intestate the surviving spouse is entilled to the whole estate, both real and personal. if it does not exceed \(\$ 2000\), and if it exceeds that sum the survivor is entitled to \(\$ 2000\) and one-half of the remainder: if there are no kindred, the whole of the estate goes to the surviving spouse. The causes for a divorce are adultery, sentence to confinement in the state prison for three years or more and actual confinement at the time of the suit, intolerable severity, wilful desertion for three consecutive years or absence for seven years without being heard from, or wanton and crucl refusal or neglect of the husband to provide a suitable maintenance for his wife. The plaintiff must have resided in the state for at least the year preceding the application, and if the cause accrued in some other state or country before the parties lived together in Vermont and while neither party lived there, the plaintiff must have been a resident at least for two years preceding the action. When a divorce is granted. the defendant is not permitted 10 marry other than the plaintiff for three years, unless the plaintiff dies. The homestead of a householder or head of a family to the value of \(\$ 500\) is, so long as it continues to be used as the homestead, exempt from levy or attachment other than upon causes existing at the time it was acquired and for taxes. If the owner is a marriced man, he cannot sell or mortgage it, execpt for the purchase money, unless his wile joins him in the execution.

Education.-The public-school system is under the supervision of a state superintendent of coducation, elected biennially by the General Assembly, and local schools are under union superintendents and in a few cases under town superintendents. The district sustem was displaced in 180\(\}\) bv a township system. The revenues Wr edscations! purposes are derived maniy Irom a state tax of \(s \%\)
on the gencral list, Irom local eaxes, and from the interest on the permanent schoof fund, which (including the mones paid to Vermon by the United States government when a portion of the treasury 1908 to \(\$ 1,120,218\). The schools are open to all chitdren betwic the ages of 5 and 20 , and atlendance for twenty-six weeks in eact year is made compulsory for those who are between the ages of
and is. The average number of wouks in the " legal schools (about \(95 \%\) of the public schools) was 32 weeks in 1907-1905 The chicl institutions for higher instruction are the university of Vermont and State Agricultural College (1800,1865). a hand-grant
college at Burlington. Niddlebury College (1800) at Middlebury, Norwich University (1819) at Northfield, and the state nornsi schools at Randoiph (1867), Johnson (1867) and Castleton (1868).

Choritoble and Penal Instifutions. - The charitable and penal inst tutions of the state are controlled by separate baards of directory, but all are subject to the gencral supervision of a board of visitesa composed of the governor, licutenant-governor and speaker of the House of Representalives, and a woman appointed by the governs.
There are a seate prison at Windsor (18o8), a house of correctian at Rutland (18-8), an industrial school at Vergennes (1866), and hospitals for the insane at Brattcboro \((1836)\) and Waterbur? (1891). Biennial appropriations are mate for the support of the sions in Massachuserts and Connecticut.

Finame. - The chirl sources of revenue for the state are a cosporation tax, a collateral inheritance tax (1g04) and a licence tas gencral list for school purposes and \(5^{\circ} \mathrm{i}\) [or the construction of roasta For the yeat ending on the \(30 t h\) of June 1908 the total receipts wite
\(\$ 1,822.390\), the expenditures were \(\$ 1.871,166\). The state is prat. tically tree from debt, the only obligation of this character beigh \(\$ 135.500\) in \(6 \%\) bonds, payable in 1910 , which were issued in behaif of the Asricultural Coltege. The lanking institutions are supervised
by an inspertor of finance, who reports annually to the Genets! by an inspertor of finance, who reports annually to the Genets
Assembly. There were no tanks in the state until 1806, when state bank (controlled by the state) was established which was finally closed up in \(18+5\). although as carly as 1822 a law was passed to close il. The first private state bank was opened ian 181:; an act of 183 t provided for a safety fond guarantecing bens circulations and derivod from a \(4 \frac{1}{2} \%\) tax on capital stock and a to\%: tax on protits: but this law was modified in 1842 , the \(t\) iz being removed from banks giving specie guarantees: and a frat banking act was passed in 1851 . Owing to the high rate of taxation un deposits, a considerable part of the savings of the people is ser.. into other states

Hisory-Samucl de Champlain, as soverner of Quebor, entered what is now Vermons in July 1600 in an expeditica agoinet the Iroquois, and thus laid the basis for the Frenia dise In t 6s the French buile a for on Isle la Motie. The ade at Chimncy Poina, a party from Albany. The fi:m

Fort Dummer (near the present Dummer, in the south-eastern part of the present town of Brattieboro) in 1724 . Similar outposts were located during the next few years at Sartwell's Fort and Bridgman's Fort in the township of Vernon (Windham county) and at Fort Hill in the township of Putney (N. of Bratulebara, in Windham county). The territory in which these settlements had been made was involved in the boundary dispute between Massachusetts and New Hampshire, which was settled in 1741 by a decision of the king in council favourable to New Hamp shire (q.v.). The extension of the southern boundary line by this decision due westward until it met His Majesty's other governments gave rise, however, to a controversy with New York. New Hampshire claimed that her territory extended as far to the west as those of Massachusetts and Connecticut, whereas New York, under the charter of 1664 . claimed castward to the Connecticut river. New York protested against the Bennington grant in 1749, but the question did not become serious until the chief obstacle to settlement was removed by the conquest of Canada in 1760-6x. From \(1 ; 6 \mathrm{t}\) to \({ }_{1763}\) Governor John Wentworth of New Hampshire issued 198 grants, and settlements were established in Brattleboro, Putary, Westminster, Halifax, Marlborough, Wilmington, New Fape, Rockingham, Townshend, Vernon (Hinsdale) and Dummerstioa (all in Windham county, except Vermon, which is in Cheshite county). A privy council decree recognizing the claims of New York was issued on the 201 h of July 1764, and the settlers were soon afterwards ordered to surrender their patents and repurchase the land from the proper authorities at Albany. Uinder the leadership of Ethan Allen, Seth Warner and Remember Baker (1737-1775), they refused obedience and took up arms in defence of their rights. About the close of 177 t Coloned Allen organized a regular military force among the inhabitants of the district \(W\). of the mountains, which came to be known as the Green Mountain Boys. The trouble was soon complicated by the conflict rith the mother country. On the \(13^{\text {th }}\) of March ri75, a riot occurred at Westminster between the people of Cumberland county and the royal authorities, in which two of the people were killed. The Green Mountain Boys, with some help from Connecticut. captured Fort Ticonderoga on the roth of May 1735. and tock part in the Canadian expedition of 1775 under Montgomery and Schuyler. Within the state itself battes were fought at Hubbardion on the 7 th of July and Bennington on the 164h of August 1777 . The representatives of the towns assembled in convention at Dorset and Westminster in 1776 (Jan. 16-17. July 24-25. September 25-28. October 30), and on the 15th ai January 1777 adopted a declaration of independence. assumed the name New Connecticut and appointed Dr Jonas Fay (173:1818), Thomas Chitenden (1730-1797), Hemon Allen (1;40 1788), Dr Reuben Jones and Jacob Bayley a committee to submit their proceedings to the Continental Congress. The chiel adviser of the committee in Philadetphia was Dt Thoonss Young, a prominent physician, who had helped to draft the Pennsylvania constitution of 1776 . Young advised them \(10 \mathrm{cal}^{1]}\) their state Vermont, and he also sent through them a circuiar letter, dated the ith of April 1777, urging the people to adore a state constitution on the Pennsylvania model. The adrixe was followed. A convention met at Windsor (July 2-S. 2:7:-1. and drafted a document which contained almost all of the important provisions of the constitution nf Pennsylvania, sext as a unicameral kegislature, a plaral executive and a coumal a censors, which was not abolished until \(187 a\). One improriar variation, however, was a clause in the bill of rights provifing \(i\) : the abolition of slavery, Vermont being the first state in Amperia to take such action. The first legislature of the state tret \(:\) : Windsor in March 1778, and voted to admit sizteen towns eas: the Connecticut river which were dissatisfied with the rate New Hampshire. As a result, New York and New Hampere lormed a secret agreement to divide the siate between ehon selves, the mountains to be the line of division. In this criss the British government through General Sir Frederick Haldimand offered to recognize Vermone as a separate providoe and to give ber very liberal terms provided she would desert the ocher seives

Ethan'Allen (q.v.) and some of the other leaders seemed inclined to accept these overtures, but for various reasons, the chief of which was the general success of the American cause, the scheme was soon abandoned. The difficulties with New Hampshire were adjusted in 1782, the west bank of the Connecticut being accepted as the final boundary, but New York refused to abandon her claims until i 790 . In the meantime, Vermont continued as an independent state without any recognition from Congress until its admission into the Union on the 4 th of March 1791. The legislature wandered about from town to lown until 1808 , when the capital was permanently located at Montpelier. In presidential campaigns the state has been Federalist, 1792-1800; Democratic-Republican, 1804-1820; Adams-Republican, 18241828; Anti-Masonic, 2832 ; Whig, 1836 -1852; and Republican since \(1^{856}\). During the War of 1812 Vermont troops took part in the battles of Chippewa, Lundy's Lane, Lake Erie and Plattsburgh; but the only engagement in the state itself was the defence of Fort Cassin (at the mouth o! Otter Creek in the N.W. corner of the present Addison county) in 1813. On the roth of October 1864 a small band of Confederate soldiers under Lieutenant B. H. Young crossed the frontier from Canada and raided the town of St Albans. A few of the inhabitants were wounded and one was killed and about \(\$ 200,000\) was taken from the vaults of the local banks. St Albans wias also the beadquarters of an attempted Fenian invasion of Canada in 1870 . Since 1815 a considerable proportion of the native stock has migrated to the W., but the loss has been partially offset by an influx of French Canadians. The wool-growing industry has been almost entirely destroyed by the competition of Australia and the West, and the people are now engaged mainly in dairy-farming, timbering, granite- and marble-quarrying, and in keeping summer boarders.

\section*{Governors}
\begin{tabular}{|c|}
\hline Thomas Chittenden : . . . : . \(1778-1789\)
Moses Robinson \\
\hline Thomas Chitenden, \({ }^{1}\) Federalist . . . \({ }^{1790-1797}\) \\
\hline Paul Brigham, acting-governor, Federalist . 1797 \\
\hline lsaxc Tichenor. Federalist .in . . 1797-1807 \\
\hline rael Smith, Democratic-Republican . . 1807-1808 \\
\hline aac Tichenor. Federalist 1808-1809 \\
\hline onas Galusha, Democratic-Republican . . 1809-1813 \\
\hline artin Chittenden, Federalist . . . 1813-1813 \\
\hline Jomas Galusha, Democratic-Republican . . 1815-1820 \\
\hline Kichard Skinner, - . . 1820-1823 \\
\hline Cornelius P. Van Ness " . . 1823-1826 \\
\hline Exra Butlera Adams-Clay 1826-1828 \\
\hline Samuel C. Crafts, Adams-Clay. 1828-183: \\
\hline William A. Palmer, Anti-Masonic Fusion. . 1831-1835 \\
\hline Silas H. Jennison, \({ }^{\text {² }}\) acting-governor, Whig . 1835-183 \\
\hline Silas H. Jennison, Whis 1836-1841 \\
\hline Charies Paine, ., 1841-1843 \\
\hline John Mat tocks, \\
\hline William Slade, \\
\hline Horace Eaton, n 1846-1 \\
\hline Carlos Coolidge. " 1848-1850 \\
\hline Charies K. Williams, , \(1850-1852\) \\
\hline Erastus Fairbanks, ." \(1852-1853\) \\
\hline John S. Robinson. in 1853-1 \\
\hline Stephen Royce, Republican \\
\hline Ryland Fletcher, J856-1858 \\
\hline Hiland Hall, ." 1858 \\
\hline Erastus Fairbanks, .0 1860-180 \\
\hline Frederick Holbrook, \\
\hline Gregory Smith, \\
\hline Paul Dillingham. 1865-18 \\
\hline \\
\hline ter T. Washburn.' Republican . . . 1869 -1870 \\
\hline George W. Hendee, acting-governor, Republican \\
\hline fohn W. Stewart, Republican 1870-1872 \\
\hline Julius Convers 1872-18 \\
\hline A \\
\hline Horace Fairbanks, \\
\hline Redfield Proctor, \\
\hline Roswell Famham, \\
\hline oha L. Barkow, \\
\hline
\end{tabular}

\footnotetext{
Died in office on the 25th of August 1797 : succeeded by the Fiestenant-governor.
* As there was no governor elected by the people. Jennison as Feirtenant-governor elect acted as governor.

Died in office on the 7th of February 1870; succeeded by the If en renast-governor.
}

Samuel E. Pingree, Republican
Ebeperer J. Ormsbee,
William P. Dillingham,
Carroll S. Page,
Levi K. Fuller,
Urban A. Woodhury. Iosiah Grout.
Edward C. Smith,
William W. Stickney,
John C. McCulbough,
Charles J. Bell,
Fletcher D. Proctor,
George H. Prouty,
John A. Mead,

1884-1886
1886-1888
1888-1890
1890-1892
1892-1894
1894-1896
1896-1890
1898-1900
1900-1902
1902-1904
1904-1906
1906-1908 1908-1910 1910-

Bisliography.-For physical description and material on minerals see the Report on the Ceology of Vermont: Descriptios, Theoretical, Economical and Scenographical (2 vols., Claremont, N.H., 1861); G. H. Perkins, Reports of the Slate Geologist, especially vols. iv., v., Vi., new series (Concord, N.H., 1904, 19n6, 1908); and - Underground Waters of Vermont "'in Water Supply and Irrigation Paper No. 114 (Washington, 1905) of the U.S. Geological Survey; T. Nelson Dale, The Granites of Vermont (ibid., 1go9), an abstract of which appears in the sixth volume of the state Report mentioned above; and Henry M. Seely," The Geology of Vermont," pp. 53-67, vol. 5 (1901) of The Vermonter.
For the government of the state see The Revised Laws of Vermons (Rutland, 1881); the Vermont Legishative Directory, published biennially at Montpelier: the biennial reports of the secretary of state, the auditor. the treasurer. the commissioner of state taxes, the ruperintendent of education, the supervisors of the insane, \&ec., and the annual reports of the inspector of finance. Sec also L . H . Meader, The Council of Censors (Providence, 1899); F. A. Wood, The IIistory of Taxation in Vermont (New York, 1894), and G. G. Bush, History of Education in Vermond (Washington, 1900).

For a general bibliography of Vermunt history see M. D. Gilman, Bibliography of Vermoni (Burlington, 1897). The standard authorities for the period before 179! are: Ira Allen, Nafurod and Political Hislory of the Slate of Vermoni (London, 1898); B. H. Hall, History of Eastern Vermont to the Close of the Eighteenth Century (2 vols. New Yoric, 1858. and ed., Albany, i865): and Hiland Hall, History of Vermont from its Discooery to its Admission inlo the Union in 1791 (Albany, 1868). A more recent book. based almost entirely on these three, but containing a few sketchy supplementary chapters. is R. E. Robinson, Vermont (Boston, 1892) in the "American Commonwealths" Series. See also Records of the Council of Safety and Gowernor and Cowneil of Vermant (8 vols., Montpelier, 1873-1880); Vermont Historical Saciely, Collections (2 vole, Montpelicr, 1870-1871); Proceedings (i vol. Montpelier, 1898): and Report of the Regents of the Uniacrsity of Nere York on the Boundaries of the State of Nev York (2 vols.. Albany, 1874-1884).

VERIOREIL AUGUSTE JEAN EARIE (1841-1871), French journalist, was born at Denicé, France, on the \(215 t\) of June 1841 . A radical and socialist, he was attached to the staff of the Presse (1864) and the Liberte (1866). In the latter year he was appointed editor of the Courrier Francais, and his attacks on the government in that organ led to his imprisonment. In 1869 he was editor of the Reforme, and was again imprisoned for denouncing the government. On the overthrow of the Empire in 1870 he was released and took an active part in the Commune. He was dangerously wounded while fighting at the barricades, taken prisoner and removed to Versailles, where he died on the 2oth of June 187 I .

VERMOUTH, an alcoholic beverage, the basis of whicb consists of a fortified and aromatized white wine. The best French vermouth is made from the white wines of the Hérault district. The wine is fortified with spirit up to a strength of about \(15 \%\) of alcohol, and is then stored in casks exposed to the sun's rays for a year or two. Another portion of the wine is fortified up to a strength of about \(50 \%\) of alcohol, and in this various aromatic and tonic materials are macerated, in casks which are exposed to the sun in the same way as the bulk of the wine. The two liquids are then mixed in such proportions as to make the strength of the ultimate product about \(17 \%\) of alcohol by volume. Excellent vermouth is also manufactured in Italy, the produre of that country being generally of a "sweet," that made in France of a "dry" type.

VERNACULAR (Lat. verno, dim. sernaculus, a sleve born in his master's house), a term meaning native of indigenous, belonging to the country where a person is born. The word is practically confined in English usage to language, whether of the country as a whole or of particular dialects or idioms.

VERNB, JULES (1828-1905), French author, was born at Nantes on the 8th of February 1828 . After completing his studies at the Nantes lycke, he went to Paris to study for the bar. About \(\mathbf{1 8} \mathbf{4 8}\), in conjunction with Michel Carre, he wrote librettos for two operettas, and in 1850 his verse comedy, Les Pailles rompucs, in which Alexandre Dumas fils had some share, was produced at the Gymnase. For some years his interests alternated between the theatre and the bourse, but some travellers' stories which he wrote for the Muste des Familles seem to have revcaled to him the true direction of his talent -the delineation, viz., of delightfully extravagant voyages and adventures to which cleverly prepared scientific and geographical details lent an air of verisimilitude. Something of the kind had been done before, after kindred methods, by Cyrano de Bergerac, by Swift and Defoe, and later by Mayne Reid. But in his cwn particular application of plausihle scientific apparatus Verne undoubtedly struck out a department for himself in the wide literary genre of royages imaginaires. His first success was obtained with Cinq semaines en ballon, which he wrote for Hetzel's Magazin d'Education in 1862, and thenceforward, for a quarter of a century, scarcely a year passed in which Hetzel did not publish one or more of his fantastic stories, illustrated generally hy pictures of the most lurid and sensational description. The most successful of these romances include: Voyage au centre de la terre (i864); De la terre da la lune (1865); Vingt mille lieues sous les mers (1869); Les Anglais au pole nord (1870); and Voyage autour du monde en quatre-vingls jours, which first appeared in Le Temps in 1872. The adaptation of this last (produced with immense success at the Porte St Martin theatre on the 8th of November 1874) and of another excellent tale, Michael Strogoff (at the Chatelet, 1880), both dramas being written in conjunction with Adolphe d'Ennery, proved the most acceptable of Verne's theatrical pieces. The novels were translated into the various European languages-and some even into Japanese and Arabic-and had an enormous success in England. But after 1877, when he published Hector Seroadac, a romance of existence upon a comet, the writer's invention began to show signs of fatigue (his kingdom had been invaded in different directions and at different times by such writers as R. M. Ballantyne, Rider Haggard and H. G. Wells), and he even committed himself, somewhat unguardedly, to very gloomy predictions as to the future of the novel. Jules Verne's own novels, however, will certainly long continue to delight readers by reason of their sparkling style, their picturesque perve-apparently inherited directly from Dumas-their amusing and good-natured national caricatures, and the ingenuity with which the love element is either subordinated or completely excluded. M. Verne, who was always extremely popular in society, divided his time for the most part between Paris, his home at Amiens and his yacht. He was a member of the Legion of Honour, and several of his romances were crowned by the French Academy, but he was never enrolled among its members. He died at Amiens on the 24th of March 1905. His brother, Paul Verne, contrihuted to the Transactions of the French Alpine Club, and wrote an Ascension du Mont Blane for his brother's collection of Voyages extraordinaires in 1874 .
VERNET, tbe name of three eminent French painters.
I. Claude Joseph Vernet (1714-1789), who was born at Avignon on the 14th of August 1714, when only fourteen years of age aided his father, a skilful decorative painter, in the most important parts of his work. But the panels of sedan chairs could not satisfy his ambition, and he started for Rome. The sight of the sea at Marseiles and his voyage thence to Civita Vecchia made a deep impression on him, and immediately after his arrival he entered the studio of a marine painter, Bernardino Fergioni. Slowly but surcly Claude Joseph made his way and attracted notice. With a certain conventionality in design, proper to his day, he allied the results of constant and honest observation of \({ }^{2}\). with unusual. \({ }^{\text {a }}\) Perhaps no painter of landscapes or sen-pier \(q\) buman figure so completely a
part of the scene depicted or so important a factor in his design. "Others may know better," he said, with just pride, " bow to paint the sky, the earth, the ocean; no one knows better than I how to paint a picture." For twenty years Vernet lived on in Rome, producing views of seaports, storms, calms, moonlights, \&c., when he was recalled (1753) to Paris, and executed, by royal command, the remarkable scries of the seaports of France (Louvte) by which he is best known. On his return be became a member of the academy, but he had previously contributed to the exhibitions of 1746 and following years, and he continued to exhibit, with rare exceptions, down to the date of his death, which took place in his lodgings in the Louvre on the zrd of December 1789 . Amongst the very numerous engravers of his works may be specially cited Le Bas, Cocbin, Basan, Duret, Flipart and Le Veau in France, and in England Vivares.
II. Antoine Charles Horace Vernet (1758 -1835), commonly called Carle, the youngest child of the above-named, was born at Bordeaux in 1758, where his father was painting the view from the chateau of La Trompette (Louvre). He showed, at the age of five, an extraordinary passion for drawing horses, but went through the regular academical course as a pupil of Lépicié. Strangely enough, on arriving in Italy after carrying off the grand prix (1782), he lost all ambition and interest in his profession, so that his father had to recall him to France to prevent his entering a monastery. In Paris Carle Vernet became himself again, and distinguished himself at the exhibition of 1791 by his "Triumph of Paulus Acmilius." a work in which he troke with reigning traditions in classical subjects and drew the horse with the forms he had learnt from nature in stables and riding-schools. But the Revolution drew on, and Carle Vernet's career for a while seemed to end in the anguish of his sister's death on the scaffold. When he again began to produce, it was as the man of another era: his drawings of the Italian campaign brought him fresh laurels; his vast canvas, the "Battle of Marengo," obtained great success; and for his "Morning of Austerlitz" Napoleon bestowed on him the Legion of Honour. His hunting-pieces, races, landscapes, and work as a lithographer (chiefly under the Restoration) had also a great vogue. From Louis XVIII. he received the order of St Michacl. In 1827 he accompanied his son Horace (see below) to Rome, and died in Paris on his retum, on the 1 ith of November 1835.
III. Emile Jean Horace Vernet (1789-1863), commonly called Hornce, born in Paris on the 3oth of June 1789, was one of the most characteristic, if not one of the ablest, of the military painters of France. He was just twenty when be exhibited the "Taking of an Entrenched Camp"-a work which showed no depth of ohservation, hut was distinguished by a good deal of character. His picture of his own studio (the rendezvous of the Liberals under the Restoration), in which he represented himself painting tranquilly, whilst boxing, fencing. drum- and horn-playing, \&c., were going on, in the midst of a medley of visitors, horses, dogs and models, is one of his best works, and, logether with his "Defence of the Barrier at Clichy " (Louvre), won for him an immense popularity. Enjoying equal favour with the court and with the opposition, be was most improperly appointed director of the school of France at Rome, from 1828 to 1835 , and thither he carried the atmosphere of racket in which he habitually lived. After his return the whole of the Constantine room at Versailles was decorated by him in the short space of three years. This vast work shows Vernet at his best and at his worst: as a picture it begins and ends nowhere and the composition is all to pieces; but it has good qualities of faithful and exact representation. He died at Paris on the \(17^{\text {th }}\) of January 1863. The twenty works which were exhibited after his death confirmed his reputation for extraordinary facility; he had tried every sort of subject, showing affinity for all that was anecdotic rather than dramalic, failing most wherever most was demanded of him, and never reaching either beauty of colour or dignity of line. Vernet was, in short, a brilliant off-hand sketcher of all he saw, as be
seid himself, "from his window," and even in tbis work there was a good deal of affectation of the impromptu.
See Lagrange, Joseph Varnet et la peintuse an X VIII' siède (1861); C. Blame, Les Varnet (1845): A. Dayot, Les Vernet (1898).

VERNEUIL, PHILLIPPE EDOUARD POULLETIER DE (\(1805-1873\)). French palaeontologist, was born in Paris on the 13th of February 1805. He was educated for the law, but being of independent means he was free to follow his own inclinations, and having attended lectures on geology by Elic de Beaumont he was so attracted to the subject that he devoted bimself assiduously to tbe study of science. He spent several years in travel through various parts of Europe, specially examining the geology of the Crimes, on which he published an essay (Hem. Soc. Giel. France, 1837). He next investigated the Devonian rocks and fossits of the Bas-Boulonnais; and in 1839 accompanied Sedgwick and Murchison in a study of the older Palaeozoic rocks of the Rhenish provinces and Belgium, the palaeontological results being communicated to the Geological Society of London in conjunction with D'Archiac. When Murchison commenced his geological examination of the Russian empire, he requested de Verneail to accompany him, and tbe researches of the latter were incorporated in the second volume of The Geology of Russia in Europe and the Ural MounLains (1845). Subsequently de Verneuil paid a visit to the United States to study the history of the palaeozoic rocks in that country, and the results were published in 1847 (Bull. Soc. Gtol. France). In later years he made numerous expeditions into Spain, and his observations were embodied in Carle geologigue de l'Espagne el du Portugal (1864), prepared in association with E. Collomb. In 1853 the Wollaston medal of the Geological Society of London was awarded to him, and in 1860 he was elected a foreign member of the Rayal Society. He died in Paris on the 20th of May 8873.
VERNEDIL, a town of north-western France, in the department of Eure, \(34 \mathrm{~m} .5 . S . W\). of Evreux by rail. Pop. (1906) 3529. Verneuil, situated on the left bank of the Avre, has a number of old houses and churches. Of the latter the most important is the church of La Madelcine (11th to 17 th century), the facade of which is flanked by an imposing square tower of the first half of the 16 th century, similar in origin and appearance to the Tour de Beurre of Rouen cathedral. The cburch contains old stained glass, an ironwork puhpit and other works of art. The church of Notre Dame (12th and 16th centuries) possesses stone:carvings of the Romanesque period and good stained glass. The Tour Grise is a fine cylindrical keep built in 1120 by Henry I., who fortified Verneail as a stronghold for the Norman frontier. The town rose to considerable importance, and is said to have numbered as many as \(\mathbf{2 5 . 0 0 0}\) inhabitants.

In 1424 the French were severely defeated by John, duke of Bedford, under the walls of Verneail, which was then surrendered to the English; this victory confrmed the supremecy of the English over the country north of the Loire. The town was recaptured in 1449 . It carries on ironfounding, dyeing and the manulacture of machinery.

VERMEY, the name of an English family which settled first of all at Fleetmarston in Buekinghamshire, then at Penley in Hertordshire. and finally at Middle Claydon in Buckinghamshire. Its pedigree goes back to Ralph de Verney (ti. 12:61223), but the fortunes of the family were made by Sir Ralph Verney (d. 1478), who was lord mayor of London in 1465 and M.P. for the city in 1472. His eldest son, Sir John Verncy, married Margaret, heiress of Sir Robert Whittingham of Penley, and the fourth Sir Ralph Verncy married in 1525 Elizabeth, one of the six co-hreiresses of John, Lord Braye. Sir Edmund Verney of Penley (d. 1600) left two sons, balf-brothers, Sir Francis Verney (\(158_{4}-1625\)), who became a soldier of fortune and a buccaneer, and died at Messina in hospital in extreme poverty, and Sir Edmund Verney (\(1500-1642\)) of Middle Claydon, Bucks. Sir Edmund accompanied Prince Charles and Buckingham on the abortive mission to Madrid in 1623, and was knight-marshal to King Charles I. When the Civil

War broke out tbe royal standard was entrusted to him at Nottingham, and while defending it he was slain at Edgehill in 1642. His eldest son, Sir Ralph Verney (\(161_{3}-1696\)), ist baronet, sat for Aylesbury in botb the Short and the long parliaments. He took the side of the parliament at the outset of the Civil War, but went abroad in 1643 rather than sign the Covenant, and his estates were sequestrated in 1646 . He returned to England in 1653, and, though he refused to act against Cromwell, was subsequently reconciled to tbe Restoration government. His brother, Sir Edmund (1616-1649), had taken the king's side, and was one of those murdered in cold blood by Cromwell's soldiers at the sack of Drogheda. Sir Ralpb Verney's estates and honours descended to his son, Sir John (c. 1640-1717), who was created Viscount Fermanagh in the Irish pecrage in 1703 and was father of Ralph Verney, created Earl Verney in 1743. Earl Verney's sister, Margaret Verney, by her marriage with Sir Thomas Cave, linked the Verney family a second time with the barony of Braye, and the preseat Lord Brayc's surname is Verney-Cave. Earl Yerney's cldest son, John, predeceased him in 1737, leaving a posthumous daughter, Mary (\(1737^{-1810}\)), who was created Baroness Fermanagh in 1792. His second son, Ralph, 2nd Earl Verney (c. 1712-1791), was a friend of Edmund Burke, who entered parliament as Verney's nominee for Wendover. Earl Verney was an ardent supporter of the Whig interest, but reccived no reward from the party leaders. He rebuilt Claydon House with great splendour from the plans of John Adam, but, with his financial ventures, this brought him to bankruptcy. He died childless in March 1791 and his titles became extinct.

The present Verney family, of Claydon Hall, Buckinghamshire, is descended in the malc line from Fclix Calvert (\(1596-1674\)) of Little Hadham, Hertfordshire. The Right Hon. Sir Harry Verney, and baronet (1801-1894), was the son of General Sir Harry Calvert, G.C.B., created a baronet in 18ı8. He assumed the name of Verney in compliance with the will of Mary Verney, Baroness Fermanagh, mentioned above. This lady died unmarried, leaving the paternal estates and the Verney portraits to ber hall-sister, Catherine Calvert (Mrs Wright), known thenceforward as Mrs Verney, on whose death in 1827 they cames into tbe possession of her cousin, Sir Harry Calvert (Verncy). Sir Harry Verney entered the House of Commons for Buckingham in 1832 , and remained a member of the House with two short intervals for fifty two years. He married in 1835 Eliza, daughter of Admiral Sir George Johnstone Hope, K.C.B., M.P., and secondly Frances Parthenope Nightingale, sister of Florence Nightingale.

Frances, Lady Verney, collected from the mass of papers preserved at Claydon House the Hemoirs of the Verney Family during the Sevemteenth Century, which contain a charming picture of the life and manners of the country gentlemen of that day. A second edition, abridged and corrected by Margaret M. Verney, appeared in 2 vols. in 1904 . See also the Yermey Papers edited for the Camden Society in 1853-1854.

The Verneys who bold the barony of Willoughhy de Broke descend from the Rev. Robert Barnard, prehendary of Winchester, who married in 1793 the Hon. Louisa Verney Peyto, daughter of John Peyto, r4tb Baron Willoughby de Broke, and co-heiress of her brother Henry, 16th baron. The Peytos inherited the Verney estates in Warwickskire through Margaret Greville (d. 1631), sister and heiress of Fulke Greville, Lord Brooke (\(q . v\).), who married Sir Richard Verney of Compton Mardac, Warwickshire. Robert John Barnard, 18th Baron Willoughby de Broke, who took in 1853 the surname of Verney In liea of Barnard, was the grandfather of the 19th Lord Willoughby de Broke (Richard Greville Verney), who sat in the House of Commons from 1895 to 1900 for S.E. Warwickshire and succeeded to the title in 1902.

VERMIEA, PIERRE (c. 1580-1637), inventor of the instrument which hears his name, was born at Ornans (near Besancon) in Burgundy about 1580 . He was for a considerable time com. mandant of the castle in his native town. In 1631 he published at Brussels a treatise entitled Construction, wsage at proprictes du quadrant nowsoou de madhematiques, in which
the instrument associated with his name is described. He died at Ornans in 1637.

The instrument invented by Vernier is frequently called a nonius, particularly in Germany, after Pedro Nuniez (1492-1577), professor of mathematics at the university of Coimbra but this is incorrect, as the contrivance described by the latter in his work De crepusculis (1542) is a different one, although the principle is practically the same. Nuñez drew on the plane of a quadrant 44 concentric arcs divided respectively into 89, 88, . \(\qquad\) 46 equal parts; and if the alidade did not coincide with one of the divisions on the principal arc, which was divided into 90 parts, the number of degrees in a quadrant, it would fall more or less accurately on a division line of one of the auxiliary arcs. from which the value of the measured angle could be made out. This instrument was, however, very difficult to make, and was but little used. Vernier proposed to attach to a quadrant divided into half-degrees a movahle sector of a length equal to 31 half-degrees, but divided into 30 equal parts, whereby single minutes could be read of by seeing which division lime of the "sector" coincided with a division line of the quadrant. The idea had been mentioned by Christopher Clavius (\(1537-1612\)) in his Opera mashematica, 1612 (ii. 5 and iii. 10), but he did not propose to attach permanently an arc divided in this way to the alidade; this happy application of the principle at all events belongs to Vernier.
The principle of tne vernier is readily understood from the following account: Let AB (see fig.) be the normal scale, i.e. a scale graduated according to a standard of length, CD, a scale (placed in contact with AB for convenience) graduated so that 10 divisions equal 11 divisions of the scale \(A B\), and EF a scale placed similarly and graduated so that to divisions equal 9 divisions of the scale AB. Consider the combination AB and CD. Obviously each division

of CD is it th greater than the normal scale division. Let a represent a length to be measured, placed so that one end is at the zero of the normal scale, and the other end in contact with the end of the vernier CD marked 10 . It is noted that graduation 4 of the vernier coincides with a division of the standard, and the determination of the excess of a over 3 scale divisions reduces to the difference of 7 divisions of the normal scale and 6 divisions of the vernier. This is 4 , since each vernier division equals \(1 \cdot 1\) scale division. Hence the scale reading of the vernier which coincides with a graduation of the normal scale gives the decimal to be added to the normal ocale reading. Now consider the scales AB and EF, and let \(\beta\) be the length to be measured; the scale EF being placed so that the zero end is in contact with an end of \(\beta\). Obviously cach division of EF is roth less than that of the normal scale. It is seen that division of the vernier coincides with a normal scale division, and ohviously the excess of \(\beta\) over two normal scale divisions equals the differcnce between 6 normal scale divisions and 6 vernier divisions, i.e. o.6. Thus again in this case the vernier reading which coincides with a scale reading gives the decimal to be added to the normal scale. The second type of vernier is that more commonly adopted, and its application to special appliances is quite simple. For example, the normal scale to an English barometer is graduated in sths of an inch. The vernier is such that 24 divisions of the normal scale equal 25 of the vernier: each of the latter therelore is -002 or sfoth inch less than the normal division. In the scientific barometer, the normal scale is graduated in millimetres, and the vernier so that 20 scale divisions equal 19 mm . This combination reads to 0.05 mm .

VERNIS MARTIN, a generic name, derived from a distinguished family of French artist-artificers of the 18th century, given to a brilliant translucent lacquer extensively used in the decoration of furniture, carriages, sedan chairs and a multitude of small articles such as snuff-hoxes and fans. There were four hrothers of the Martin family: Guillaume (d. 1749), Simon Elienne, Julien and Robert (1706-1765), the two first-named being the elder. They were the children of Etienne Martin, 2 tailor, and began life as coach-painters. They neither invented, mor claimed to have invented, the varnish which bears their name, but they enormously improved, and eventually brought to perfection, compositions and methods of applying them which were already more or less familiar. Oriental lacquer apeedily acupired high favour in France, and many attempts were \({ }^{\text {4ngle }}\) it. Some of these attempts were passno of Louis XIV. at his death were of

European manufacture. Chinese lacquer whs, bowever, imported in large quantities, and sometimes panels were made in China from designs prepared in Paris, just as English coats of arms were placed upon Chinese porcelain in its place of origin. Biographical details of the career of the brothers Martin are scanty, but we know that the eldest was already in business in 1724. Their method and work must have come rapidly into vogue, for in 1730 Guillaume and Simon Etienne Martin were granted by letters patent a twenty years' monopoly, subsequently renewed, of making " toutes sortes d'ouvrages en relief de la Chine et du Japon." At the height of their lame the brothers directed at least three factories in Paris, and in 1748 they were all classed together as a "Manulacture nationale." One of them was still in existence in 1785 . The literature of their day had much to say of the frères Martin. In Voltaire's comedy of Nadine, produced in 1749, mention is made of a berline "bonne et brillante, tous les panneaux par Martin sont vernis". also in his Premier discours swer l'inégalite des conditions he speaks of "des lambris dorés et vernis par Martia." The marquis de Mirabean in L'Amides hommes relers to the enamelled snuff-boxes and varnished carriages which came from the Martins' factory. It is the fate of all the great artists of the past to have had their names attached, by popular rumour or interested artifice, to a multitude of works which they never saw, and the Martins have suffered considerably in this respect. That the quality of their production varied between very wide limits is established by existing and undoubted examples; but it is extremely improhable that even their three factorics could have turned out the infinite quantity of examples that has been attrihuted to them. Yet tbeir production was large and erceedingly miscellaneous, for such was the rage for their lacquer that it was applied to every possible object. Nor need we be surprised at a rage which was by no means confined to France. At its best Vernis Martin has a splendour of sheen, a perfection of polish, a beauty of translucence which compel the admiration due to a consummate specimen of handiwork. Every varicty of the lacquer of the Far East was imitated and often improved upon by the Martins-the black with raised gold ornaments, the red, and finally in the wonderful green ground, powdered with gold, they reached the high-water mark of their delightful art. This delicate work, powdre and wavy-lined with gold or semel with flowers overlaid with transparent enamel, is seen at its best on smail boxes, fans, needle-cases and such-like. Of the larger specimens from the Martins' factories a vast quantity has disappeared, or been cut up into decorative panels. It would appeir that none of the work they placed in the famous hotels of old Paris is now in silu, and it is to museums that we must go for really fine examples-to the Muste de Cluny for an exquisite children's sedan chair and the coach used by the French ambassador to Venice under Louis XV., to the Wallace collection for the tables with richly chased mounts that have been attributed to Dubois; to Fontainebleau for a famous commode. Even the decorations of the apartments of the dauphin at Versailies, executed, or at least begun, in 1749, have vanished; so have those at Bellevue. It has been generally accepted that of the four brothers Robert Martin accomplished the most original and the most completely artistic work. He left a son, Jean Alexandre, who described himself in 1767 as "Vernisseur du Roi de Prusse." He was employed at Sans Souci, but failed to continue the great traditions of his father and his uncles. The Revolution finally extinguished a taste which had lasted for a large part of the 18 th century. Since then the production of lacquer has, on the whole, been an industry rather than an art.
(J. P.-B.)

VERHON, EDWARD (1684-1757), English admiral, was born in Westminster on the 1ath of November 1684 He was the second son of James Vernon, secretary of state Irom 1697 1700, a scion of an ancient Staffordshire family wbo is best remembered by three volumes of his letters to the duke of Shrewsbury, which were published in 1841; and his mother was Mary, daughter of Sir John Buck of Lincolnshire. Edward Vernon was seat to Westminster school at the age of seven,
and remined there till he was sixteen. Outside its walls he studied, with a view to his future prolession, such branches of knowledge as geometry, geography and the construction of military weapons. He entered the navy in 170r, and from that time until y ;o7 took part in many expeditions in the Mediterranean and the West Indies. He served with Sir George Rooke at the taking of Gibraltar in July 1704; and on his return to England Queen Anne acknowledged his gallantry with the present of two hundred guineas. He next served in the West Indies with Commodore Sir Charies Wager, a hrave seaman, who afterwards rose to the highest position at the admiralty in the Whig ministry of Walpole, and was pitted against Vernon both in the House of Commons and at the polling-booth. In 1715 , and again in 1726, Vernon assisted in the naval operations in the Baltic, supporting Sir John Norris in the first enterprise, and on the latter serving under his old chiel, Sir Charles Wager. During the long supremacy of Walpole little opportunity arose for distinction in warfare, and Vernon's energies lound relief in politics. At the general election of 1722 he was returned for both Dunwich in Suffolk and Pentyn in Cornwall, but chose tbe latter constituency. In the succeeding parliament of 1727 he was again chosen member for Penryn; hut he failed to retain his seat after the dissolution in 1734 . At this period the English people regarded the Spaniards as their legitimate enemies, and the ill-fecling of the two countries was fanned both in poetry and in prose. The political antagonists of Walpole charged him with pusillanimity to Spain. With Pulteney and most of his assoriates this battle-ground was selected rather from expediency than from principle; but Vernon represented the natural instincts of the sea-captain, and with the sailor as with the soldier the motto was "No peace with Spain." In dehate he spoke often, and frequently with effect, but his language always savoured of extravagance. He pledged himself in 1739 to capture Porto Bello with a squadron of but six ships, and the minister whom he had assailed with his invectives sent him, as vice-admiral of the blue and commander of the fleet in the West Indies, to the enterprise with the force which he had himself called sufficient. Vernon weighed anchor from Spithead on the 23rd of July 1739 and arrived off Porto Bello on zoth November. Next day the combat began with a bornbardment of an outlying fort which protected the mouth of the harbour, and on the 22 nd of November the castle and town surrendered with a loss on the English side of only seven men. The joy of the nation knew no bounds. Vernon's birthday was celebrated in 1740 in London with public illnminations, and 130 medals were struck in his honour. In February 1741 in a by-election at Portsmouth Vernon was again sent to parliament. At the general election in the following May he was returned for Ipswich, Rochester and Penryn, and all but succeeded in winning Westminster.' He elected to sit for Ipswich. A Larger squadson was placed under Vernon's command at the close of 1740 , and with this force he resolved upon attacking Cartagena. After a fierce struggle, the castle, whicb stood at the harbour's entrance, was gained; but in tbe attack upon the city the troops and sailors failed to act in concert, and, with thie numbers of his forces thinned by combat and by disease, the British admiral retired to Jamaica. The incidents of this disastrous attempt are described in Smollett's Roderick Random, chap. xxxi., ac. A similar enterprise in July 174 I against Santiago de Cuba met with a similar reverse, and Vernon attributed the deleat to the divided command of the British forces. During his command he did a good deal for the health of his crews. He first introduced the custom of mixing the rum served to the sailors in the West Indies with water. The word "grog" is said to be derived from the nickname of "old Grog" given him by the sailors, because he wore a peculiar grogram boatcloak. He landed at Bristol on the 6th of January 1743. and on the 24th of January received the freedom of the city of London. When the country dreaded the march of Prince Charles to London, the fleet in the Downs was placed under
\({ }^{1}\) Grego's Parfiamentary Elections (London, 1886), pp. 95-106.
the command of Vernon; hut his jealous disposition brooked no interference from the admiralty, and on the ist of January 1746 he struck his flag and handed over the command to another. His next act was to describe his grievances in a couple of angry pamphlets, revealing the communications of his official chiefs, and for this indiscretion he was struck off the list of flag officers (April 11, 1746). He continued to represent the borough of Ipswich until his death, hut with this proceeding his public services practically ceased. He died suddenly at Nacton in Suffolk, the 3oth of October 1757, and was buried in the church of the village.

Vernon's gallantry was unquestioned; but his valour not infrequently degenerated into foolhardiness, and be dwelt more of ten than is usual with British eeamen on the merits of his own exploits. His politics were those of the Tory party, and his differences with the Whigs and with his colleagues in the services led to his publishing several pamphiets on his political conduct. A Memonal of Admiral Vernon from Contemporary A uthoritics was printed by W. F. Vernon for private circulation in 1861.

VERNON, a town of north-western France, in the department of Eure, 19 m . E.N.E. of Evreux hy road. Pop. (1906) 7274. Vernon stands on the left bank of the Seine opposite the forest of Vernon, a stone bridge uniting it to Vernonnet on the right bank, where there are important stone quarries. The forest of Bizy lies to the south of the town. Its church is an interesting building dating from the 12 h to the 1 gth centuries, and there is a cylindrical keep built by Henry 1. of England. The port on the Seine carries on trade in stone and coal, and the town has workshops for the manufacture of army engineering material and manufactures benzine, aniline dyes, wooden shoes, liqueurs, \&c.

Vernon in 1196 was ceded hy its count to Philip Augustus, Richard I. resigning his suzerainty. The first Estates of Normandy were held at Vernon in 1452.
VEROLI (anc. Verudac), a town and episcopal see of the province of Rome, Italy, 10 m . by road N.E. of Frosinone, 1870 ft . above sea-level. Pop. (1901) 2622 (town); 12,655 (commune). The town is situated on a hill in a strong position with a fine view, on the site of the ancient Hernican town of Verulae, 7 m . S.E. of Aletrium. It retains remains of its ancient polygonal enceinte, especially near the summit of the hill, later occupied by a inedieval castle. It is hardiy mentioned in history: we know that it became a municipium in 90 b.c. The cathedral treasury contains the breviary of S. Louis of Toulouse, and some interesting reliquaries, one in ivory with bas-reliefs, and two in the Gothic style, of silver gilt.

VAROM, LOU18 DESIRE (1790-1867), French publicist, was born at Paris on the 5 th of April 1798. In 1829 he founded the Retrue de Paris, and from 1838 to \(185^{2}\) was owner and director of the Constitudionnel, in which he published in Eugène Sue's Wandering Jev. It was also during Véron's direction and at his suggestion that Sainte-Beuve contributed the Causeries du lundi. From 183y-1835 he was director of the Paris Opera. In 1852 he was elected to the Corps Legislatil as an official candidate. He was the author of various books, of which the best known is Mimoires d"un bourgcois de Paris (\(1853^{-1855 \text {). }}\) He died in Paris on the 27th of September 1867.

Vfron, PIERRE (183 y -1900), French publieist, was born in Paris on the 19th of April 1831, and in 1854 published his first book, a volume of verse. In 1858 he joined the staff of Cherirari, and edited that paper from 1865-99. He was the author of a large number of novels dealing with Parisian life, and for many years his rooms in the Rue de Rivoli were the meeting-place of the most famous French literary, artistic and political celebrities. He died in Paris on the and of November 1900.

VRRONA, a city and episcopal see of Venetia, Italy, the capital of the province of Verona, situated 194 ft . above sea level in a loop made by the winding of the Adige (anc. Athesis). Pop. (1906) \(6 \mathrm{r}, 6 \mathrm{r} 8\) (town); 79,574 (communc). It is 93 m . E. of Milan and 71 m . W. of Venice by rail, and is also the point of departure of the main lines to Mantua and Modena and to the Brenner, while a branch line runs N.W. to Caprino, another S.E
to Legnago, and steam tramways to Cologna Veneta, Coriano and S. Giacomo.
The basilica of S. Zeno (an early bishop of Verona who became its patron saint), which stands outside the ancient city, is one Chercbes. of the most interesting Romanesque churches in Italy. The church was remodelled in 1139, to which period much of the existing structure belongs, including the richly sculptured west front and the open confessio or crypt, which occupies the castern half of the church, raising the choir high above the nave. The nave, dating from the inth century, is supported by alternate columns and pillars, and contains frescoes of the 1 ith-i4th centuries. The cloisters of S. Zeno, rebudt in 1123, are an interesting example of hrick and marhle construction. Like many other churches in Verona, S. Zeno is mainly built of mixed brick and stone in alternate hands: four or five courses of fine red hrick lie between bands of hard creamcoloured limestone or marble, forming broad stripes of red and white all over the wall. A similarly variegated effect in red and white is produced by building the arches of windows and doors with altemating voussoirs in brick and marble. The neighbourbood of Verona is especially rich in fine limestones and marbles of many different kinds, especially a close-grained creamcoloured marble and a rich mot tled red marble, which are largely used, not only in Verona, but also in Venice and other cities of the province. The same quarry produces both kinds, and indeed the same block is sometimes half red and half white. On the north side of the church is a lofty tower, called the tower of Pcppin; while the slender hrick campanile on the south dates from 1045 to 1178.

The cathedral, consecrated in 1187 by Pope Urban III., stands at the northern extremity of the ancient city, by the bank of the Adige; it is inferior in size and importance to \(S\). Zeno, but has a fine 12 th-century west front of equal interest, richly decorated with naive Romanesque sculpture (1135). The rest of the exterior is built in bands of red and white, with slightly projecting pilasters along the walls; it has a noble cloister, with two storeys of arcading. The campanile by Sanmichele is unfinished. Its baptistery, rebuilt early in the 12 th century, is a quite separate building, with nave and apse, forming a church dedicated to S. Giovanni in Fonte. Pope Lucius III., who held a council at Verona in 1184, is buried in the cathedral, under the pavement before the high altar. The Dominican church of S. Anastasia is a mine of wealth in early examples of painting and sculpture, and one of the finest buildings in Italy of semi-Gothic style. It consists of a nave in sir bays, aisles, transepts, cach with two eastern chapels, and an apse, all vaulted with simple quadripartite brick groining. It was begun in 1261, but not completed till 1422, and is specially remarkable for its very beautiful and complete scheme of coloured decoration, much of which is contemporary with the building. The vaults are gracefully painted with floreated bands along the ribs and central patterns in each "cell," in rich soft colours on a white plastered ground. The eastern portion of the vaulting, including the choir and one bay of the nave, has the older and simpler decorations; the rest of the nave has more elaborate painted ornament-foliage mixed with figures of Dominican saints, executed in the \(15^{\text {th }}\) century. There are many fine frescoes in the interior ranging from \(c\). 1300 (knights kneeling before the Virgin) to the \(15^{\text {th }}\) century, including Pisanello's beautiful painting of St George (mentioned below). This church also contains a large number of fine sculptured tombs of the 14 th and 15 th centuries, with noble effigies and reliefs of saints and sacred subjects. It is mainly built of red hrick, with fine nave columns of red and white marble and ta elaborate marble pavement inlaid in many different patterss. Its general proportions are specially noble, and the exterior view is good. The church of S. Fermo Maggiore comes next in interest. With the exception of the crypt, which is olter, the existing edifice was reluilt in 1313 . The façade is of brick and marble used alternately. The plan is unusual, consiating of a large nave without aisles, the span being between 45 and 50 ft .; it also has two shallow transepts and an apsiddy cast end. The roof, which is
especially magnificent, is the finest example of a class which as a rule is only found in Venetia or in churches built by Venetian architects in Istria and other subject provinces: the framing is concealed by coving or barrel-vaulting in wood, the surface of which is divided into small square panels, all painted and gilt, giving a very rich effect. In this case the 14th and isth century painted decorations are well preserved. Delicate palterns cover all the framework of the panelling and fill the panels themselves; at two stages, where there is a check in the line of the coving, rows of half-figures of saints are minutely painted on blue or gold grounds, forming a scheme of indescribably splendid decoration. A simpler roof of the same class exists at \(S\). Zeno; it is trefoilshaped in section, with a tie-beam joining the cusps. The church of S. Maria in Organo, dating from 148ı, with a façade of 1592 from Sanmichele's designs, contains paintings by various Veronese masters, and some fine choir-stalls of 1499 by Fra Gioconda. Though not built till after his death, the church of S. Giorgio in Braida, on the other side of the river, was also designed by Sanmichele, and possesses many good pictures af the Veronese school. The Romanesque church of S. Lorenzo, restored in 1896-1898, contains old frescoes. S. Stefano is another Romanesque church, probably of the inth century. Theie are several other fine churches in Verona, some of early date. One of the 14th century is dedicated to Thomas à Becket of Canterbury.
The strongly fortified castle (Castel Vecchio) buile by the Della Scala lords in the 14th century stands on the line of the wall of Theodoric, close by the river. A very picturesque battlemented bridge leads from it to the other shore, sloping down over three arches of different sizes, the largest next to the castle and the smallest at the other

Clocs. end. There are four other bridges across the Adige: one, the graceful Ponte di Pietra, rests upon ancient foundations, while the two arches nearest to the left bank are Roman; but it has been irequently restored. Remains of another ancient bridge were found in the river itself in 189y behind S. Anastasia. The 16th-century lines of fortification enclose a very much larger area than the Roman city, forming a great loop to the west, and also including a considerable space on the left bank of the river. In the latter part of the city, on a steep elevation, stands the castle of St Peter, originally founded hy Theodoric, on the site, perhaps, of the earliest citadel, mostly rebuilt by Gian Galcazzo Visconti in 1393, and dismantled by the French in 1801. This and the other fortifications of Veroma were rebuilt or repaired by the Austrians, but are no longer kept up as military defences. Verona, which is the chief military centre of the Italian province of Venetia, is now being surrounded with a circle of forts far outside the obsolete city walls.
The early palaces of Verona, before-its conquest by Venice, were of noble and simple design, mostly built of fine red brick, with an inner court, suirounded on the ground floor by open arches like a cloister, as, for example, the Palazzo della Ragione, an assize court, begun in the 12 th century. The arches, round or more often pointed in form, were decorated with moulded terra-cotta enrichments, and often with alternating voussoirs of marble. The Scaligeri Palace is a fine example, dating from the \(14^{\text {th }}\) century, with, in the cortile, an external staircase leading to an upper loggia, above the usual arcade on the ground floor. It has a lofty campanile, surmounted by a graceful octagonal upper storey. This palace is said to have been mainly built by Can Signorio (Della Scala) about 137a After the conquest by Venice the domestic buildings of Verona assumed quite a different type. They hecame feeble copiea of Venetian palaces, in which one form of window, with an ogee arch, framed by the dentil moulding, is almost always used The monotony and lifelessness of this form of architecture are shown in the meaningless way in which details, suited only to the Venetian methods of veneering walls with thin marble slabs, are copied in the solid marbles of Verona. From the skill of Fra Giocondo, Verona was for many years one of the chief centres in which the most refined and graceful forms of the early Rcaaissance were developed. The town hall, with its
light open loggia of semicircular arches on the ground foor, was designed by Fra Giocondo towards the end of the 1sth century; its sculptured enrichments of pilasters and friezes are very graceful, though lacking the vigonous life of the earlier medieval sculptured ornamentation. Verona contains a number of handsome palaces designed by Sanmichele in the 16th century. The finest are those of the Bevilacqua, \({ }^{1}\) Canossa and Pompeii familics. The last of these is now the property of the city, and contains a gallery with some good pictures, especially of the Verona, Padua and Venice schools. As in Venice, many of the xth-century palaces in Verona had stuccoed facades, richly decorated with large fresco paintings, often by very able painters. Verona, perhaps, had as many of these peintings as any tom in Italy, but comparatively few are preserved and those only to a small extent. The domestic arrchitecture of Verona cannot thus be now fairly estimated, and seems monotonous, heavy and uninteresting. The house of the painter Niccolo Giolfino still has its frescoes in a good state of preservation, and gives a vivid notion of what must once have been the effect of these gorgoous pictured palaces. The episcopal palace contains the ancient and valuable chapter library, of about 12,000 volumes and over 500 MSS., among them the palimpsest of the Instiutiones of Gaius which Niebuhr discovered. The Piazza delle Erbe (fruit and vegetable market) squarth and the Piazza dei Signori, adjoining one anothcr and beautiful, being surrounded by many fine medicval buildings several of them of a public character (Palazzo dei Ciureconsulti, Palazzo della Ragione and the lofty Torre Civica, 273 ft. high), while in the north-east corner of the latter Piazza is the fine early Renaissance Palazzo del Consiglio (\(5476-1492\)), probably designed by Fra Giocondo. In the former Piazza a copy of the lion of Venice has been erected.
The Roman remains of Verona surpass those of any other city of northern Italy. The most conspicuous of them is the great Roanea amphitheatre. a building perthaps of the end of he 1 st
 ceniury A.D. which in general form closely resembled the Colosseum in Rome. Its axes measured 505 and 404 ft . Almost the whole of ins external arcackes, with three tiers of earthquake in 118t, and subsequently used to supply buiding materals. Many of its blocks are still visible in the walls of various medieval buildings. The interior, with seats for about 25.000 people, has been Irequently restored. till nothing of the old seats exists There are also remains of a weill-preserved Roman theatre, close to the left bank of the river. A number of fine scalptures were found in the square in front of the cathedral in 1890 , and architectural fragments belonging to some public building. In 1884-86 portions of a number of fine mosaic pavements were discovered extending over a very large area under the cloister a and other parts of the cathedral, about ift. below the present ground level. They had geometric patterns with birds, trecs, \&ce, and bore inseriptions in mosaic with the names of the donors. Parts of them had been discovered previously. They seem to belong to two different buiddings, boih early churches of the 5 th and 6 th centurics A.D. (cf. Notizie defli Scari, 1884.401). For the two triumphal arc hes (Porta dei Bosart and Porta dei Leoni) see below. The Musco Lapidario contains a fine collection of Roman and Etruscan inscriptions and sculpure, mostly collected and published by Scipione Maffici in the 181 h century.
Vcronese Art.-In many respects the resemblance bet ween Verona and Florence is very striking: in both cases we have a strongly fortifed city built in a ferile valley, on the banks of a winding river, with suburts on higher ground, rising close above the main city. In architeetural magnificence and in wealit of sculpture and painting Verona almose rivalled the Tuscan rity, and, like it, gave birth to a very large number of a arists who distinguished themselves in all branches of tbe fine arts.

Painting in Verona may be divided into four periods. (i.) The first period is characterived by wall paintings of pureely native style, closely resembling the early Christian pictures in the catacombs of Rome. Examples dating from the roth to the 111 h century have been discovered hidden by white wash on the
oldest parts of the nave walls of the church of S . Zeno. They are a very interesting survival of the almost classical Roman style of painting, and appear to be quite free from the gencrally prevalent Byzantine infuence. (ii.) the Byzantine period seems to have

\footnotetext{
The valuable collection of works of art ance preserved in the Bevilacqua Palice has long been diepersed.
}
lasted during the 12th and \(\mathbf{3}\) th centuries, (iii.) The Giottesque period begins contemporancously with Altichiero da Zevio and Giacomo degli Avanzi, whose chief works were executed during the second hall of the s4th century. These two painters were among the ablest of Giotto's Iollowers, and adorned Verona and Padua with a number of very beautiful frescoes, rich in composition. delicate in colour, and remarkable for their highly finished modelling and detail. (iv.) To tbe fourth period belong several important painters. Pisancllo or Vittore Pisano, a charming painter and the greatest medallist of Italy, was probably a pupil of Altichicro. \({ }^{2}\) Most of his frescoes in Verona have perished; but one of great beauty etill exists in a very perfect state in the church of S . Anastasia, high up over the arched opening into one of the eastern chapels of the sounh transept. The acene represents St George and the Princess after the conquest of the Dragon, with accessory figures, the sea. a mountainous landsca pe and an elaborately painted city in tbe backgrouad. The only other existing fresco by Pisanello is an Annunciation in S. Fermo Maggiore. For Pisanello's pupils and other painters of subsequent date, see Painting. These include Liberale da Verona, Domenico and Francesco Morone, Girolamo dai Libri (1474-1556), \&ic. Domenico del Riccio, usually nicknnmed Brusasorci (1494-1567), was a prolific paiater whose works are very numerous in Verona. Paolo Cagliari or Paul Veronese, and the Bonifagios, though natives of Verona, belong rather to the Venctian school.

Verona is specially rich in early examples of decorative sculpture. (i.) The first period is that of northern or Lombandic infuence, exemplified in the very interesting series of reliefs which cover the western fagades of the church of S . Zeno and the cathedral, dating from the \(12 t h\) century. These reliefs
represent both sacred suhjects and ecenes of war and

Sculp
tarre. hunting mixed with grotesque monsters, such as specially delighted the rude, vigorous nature of the Lombards: they are all richly decorative in eficet, though strange and unskilful in detail. Part of the western bronze doors of \(S\). Zeno are especially interesting as being among the earliest important examples in Italy of cast bronze reliefs. They are frequently stalcd 10 be of beaten bronze, but they are really castings, apparently by the cire perdue process. They represent acenes from the life of S. Zeno, are rudely modelled, and yet very dramatic and sculpturesque in style- Parts of these doors are covered with bronze reliefs of scenes from the Bible, which are of still carlier date, and were probably brought to Verona from the Rhine provinces. Many of the 12th century reliefs and sculptured capitals in S. Zeno are signed hy the sculptor but these merely constitute lists of names about whom nothing is known (ii) In the 13th century the sculpture seems to have lost the Lombard vigour, without acquiring any qualities of superior grace or refinement. The font in the baptistery near the cathedral is an early example of this. Each side of the octagon is covered with a large relief of a Biblical subject, very dull in style and coarse in execution. The font itself is interesting for its early form, one common in the chief baptisterics of northern Italy: like an island in the centre of the great octagonal tank is a lobed marble receptacle, in which the officiating priest stood while he immersed the catechumens. A movable wooden bridge must have been used to enable the priest to cross the water in the surrounding tank. (iii.) The next period is that of Florentine influence. This is exemplified in the magnificently sculpiured tombs of the Della Scala lords, designed with steadily growing splendour, from the simple sarcophagus of Martino I. down to the elaborate erection over the tomb of the fratricide Can Signorio, adorned with statuettes of the virtues, to the possession of which he could lay so little claim.: The recumbent effigies and decorative details of these tombs are very beautiful, but the smaller figures of angels, saints and virtues are rather clumsy in proportion. The latest tomb, that of Can Siznorio. erected during his lifetime (\(c_{\mathrm{i}}{ }^{13} \mathbf{3 7}^{\circ}\)), is signed "Boninus de Campigliono Mediolanensis Dioecesis." This sculptor, though of Milanese origin, belongs really to the achool of the Florentine Andrea Pisano. One characteristic of the 14th and 15th centuries in Veroma was the custom, also followed in other Lombardic cities, of setting large equestrian statues over the tombs of powerful military leaders, in some cases above the recumbent effigy of the dead man, as if to represent him in full vigour of life as well as in death. That which crowns the canopy over the tomb of Can Grande is a very noble, though somewhat quaint, work (iv.) In the \(15 t h r e n t u r y ~ t h e ~ i n f i s e n c e ~ o f ~ V e n i c e ~ b e c a m e ~ p a r a m o u n t, ~ t h o u g h ~\) this was really only a further development of the Florentine manner, Venice itself having been directly infuenced in the lith century by many able sculptors from Florence.

The anchitecture of Verona, like its rculpture, passed through Lombard. Florentine and Venetian stages. (i.) The church of S. Zeno and thecathedral, both of which were mainly rebuilt in the 12 th century, are noble examples of the Lombardic Archfstyle, with lew single-ligh windows, and with the walls were. decorated externally by series of pilasters, and by alternating bands of red and white. in stone or brick. The arches of this period are
\({ }^{2}\) There is every reason to douht Vasari's statement that Pisanello was a pupil ol Andrea del Castagno.
\({ }^{2}\) See an eloquent description by Ruskin, Slomes of Venice, iii pp. 70 seq.
eemicircular and rest on round columns and capitals, richly carved with grotesque figures and loliage. Most of the external ornamentation is usually concentrated on the western front, which often bas a lofty arched porch on marble columns, resting on griffins or tions devouring their prey. (ii) The Florentine period (c. 1250 to 1400) is represented by thechurch of \(\$\). Anastasia, and by many more or less mutilated palaces, with fine courts surrounded by arcades in one or more storeys. The arches are mostly pointed, and in other respects the influence of northern Gothic was more direct in Verona than in Florence. Solidity of mase and simplicity of detail are among the characteristics of this period. (iii.) The Venetian period (c. 1400-1480) was one of little originality or vigour, the buildings of this date being largely rather dull copies of those at Venice. (iv.) The early Renaissance developed into very exceptional beauty in Verona, mainly through the genius of Fra Giocondo (1435-1514), a native of Verona, who was at first a friar in the monastery of S. Maria in Organo. He rose to great celebrity as an architect, and designed many graceful and richly sculptured buildings in Venice, Rome and even in France; he used classical forms with great taste and skill, and with much of the freedom of the older medieval architects, and was specially remarkable for his rich and delicate sculptured decorations. Another of the leading architects of the next stage of the Renaissance was the Veronese Michele Sanmichele (1484 -1 559), a great military engineer, and designer of an immense number of magnificent palaces in Verona and other cities of Venetia. His buildings are stately and graceful in proportion, but show a tendency towards dull scholastic classicism. The façades of his palaces were in the lower storey only decorated by rustication, of which he made great use, while the upper part was intended to be decorated with frescoes, which (as we have said) have in most cases perished. To hira are also due the various gates and the most important bastions in the walls of Verona. In consequence of the disastrous flood of 1882, important embankment works were executed along the Adige at a cost of \(\mathbf{5 0 0}, 000\). These works preclude all danger of future inundation. In addition to the Adige embankment, other hydraulic works have been either completed or undertaken. An irrigation canal, deriving water from the Sega, furnishes il\} cubic metres per second to the fields of the upper Veronese district. The Camuzzoni industrial canal, which runs from the Chievo di S. Massimo to the suburb of Tombetta, furnishes 26 cubic metres of water per second, and generates 4000 horse-power. The cutting of this canal led to the construction of an aqueduct for drinking water, which, besides supplying the city, lurnishes an ice factory with enough water to make 200 quintals of ice per day. The motive: power generated by the Camuzzoni canal is utilized by a large nail factory, flour mills, paper mills, cotton mills and works lor the distribution of electric energy.

The Adige embankment gave an impetus to building enterprise, the banks of the river being now flanked by villas and large dwelling houses.

History.-The ancient Verona was a town of the Cenomani, a Gaulish tribe, whose chief town was Brixia. It became a Latin colony in 89 B.c. and, acquiring citizenship with the rest of Gallis Transpadana in 49 B.c., became a municipium. Tacitus wrongly speaks of it as a colony; but it appears to have received a new colony under Gallienus. In the time of Augustus it was inferior to Pat avium in importance, but on a par with Mediolanum, and superior to Brixia and ot her towns of the district. Inscriptions testify to its importance-among others one which indicates that it was the headquarters of the collectors of the \(5 \%\) inheritance tax under the Empire in Italy beyond the Po. Its territory stretched as far as Hostilia on the Padus (Po), 30 m . to the south, and was extensive on other sides also, though its exact limits are uncertain. It wras an important point in the road system of the district, lying on that between Mediolanum and Aquileia, while here diverged to the north the raads up the Athesis valley and over the Brenner into Raetia, and to the south roads ran to Betriacum, Mantua and Hostilia. It was the birthplace of the poet Catullus. In A.D. 69 it became the headquarters of the legions which were sjding with iespasian. Its fertile surroundings, its central position at the unction of several great roads, and the natural strengith of is position. defeaded by a river along two-khirds of its circumference. all combined 10 make Verons one of the richest and mosi important cities in northern Italy, alshough its extent within th:e walls was not large. The existing remains of walls and galles date from the period between the 3rd of April and the 4 th of Tecember of the year 265 . A very handsome 1 riumphal arch, now called the Porta de Borsari, was restoned in this year \(r\). Callienus (s) the imecription upon it, which has taken the piace of an otder ope, cancelled to make room for it, records), arit be ame one of
the city gates. It is a double arch, and above it are two ondes of smaller arcades. The same was the case with the Porta dei Leoni, another rather similar triumphal arch on the est of the city, and with a third arch, the Arco dei Gavi, demolished in 1805. This last seems to have belonged to the 1 st century A.D.; remsins of it are preserved in the amphitheatre. It took its name from the lamily in whose honour it was erected; the architect was one L. Vitruvius Cerdo, possibly a pupil and freedman of the famous writer on architecture. The Porta dei Leoni, on the other hand, bears the name of Tiberius Finvios Noricus, a quattnorvir iure dicundo, i.e. one of the four chiel magistrates of the city (probably 2nd century a.d.). The original line of walls did not include the amphitheatre, but passed N.E. of it; it was, however, afterwards included in the enceinte as a kind of massive comer tower. \({ }^{1}\) The emperor Constantine, while advancing towards Rome from Gaul, besieged and took Verona (312); it was here, too, thet Odoacer was defeated (499) by Theodoric the Goth, Dietrich von Berni.c. Verona-of German legends, wbo built a castle at Verama and frequently resided there. He enlarged the fortified area hy constructing a wall and diach (now called Adigetto) straight across the loop, to the S.W. of the amphitheatre, and also bailt thermat and restored the acqueducts, which had long been out of use.

In the middle ages Verona gradually grew in size and inportance. Alboin, the Lombard king, captured is in 568, and it was one of the chief residences of the Lombard, and later of the Frankish, monarchs; and though, like other cities of nortbern Italy, it suffered much during the Guejph and Ghibelline st rugejes, it rose to a foremost position both from the political and the artistic point of view under its various rulers of the Scaliger or Della Scala family. The first prominent member of this family and founder of his dyuasty was Mastino I. della Scale, who ruled over the city from 1260 till his death in 1277 . Verona had previously fallen under the power of a less able despot, Ezrelino da Romano, who died in 1259. Alberto della Scala (died in 1301) was succeeded hy his eldest son Bartolomeo, who was confirmed as ruler of Verona by the popular vote, and died in 1304. It was in his time that Romeo and Juliet are said to have lived. Alboino, the second son, succeeded his brotber, and died in i311, when the youngest son of Alberto, Can Grande, who since 1308 had been joint-lord of Verona with bis brokher. succeeded to the undivided power. Can Grande (Francese della Sçala, d. 1329) was the best and most illustrious of his line, and is specially famous as the hospitable patron of Dante (q.p.). Other princes of this dynasty. which lasted for ratber more than a century, were Giovanni (d. 1350), Mastimo II. (d. 1351), Can Grande 11. (d. 1359) and Can Signorio (d. 13.5). In 1389 Gian Galeazzo Visconti, duke of Milan, became by conquest lord of Verona. Soon after his death the city fell by treacherous means into the hands of Francesco 11. di Carrara, lord of Padua. In 1404-1405 Verona, together with Padon, was finally conquered by Venice, and remained subject to the Venetians till the overthrow of the republic by Napoizon in r797, wbo in the same year, after tbe treaty of Campo Formio, ceded it to the Austrians with the rest of Venetia. They fortifed it strongly in 1814, and with Peschiera. Mantur and Legnago it formed part of the lamous quadrimteral which mat 1866 was the chief support of their rule in Italy.

See the various works by Scipione Maffei (Verome IDacrivela. 1728: Vasezt Veromense, 1749): and Th. Mommsen in Copk. Inscr. Latim (Berlin. 1883), v. p. 327 (with bibliography): A VEri 7he Story of Verose (London, 1902): Notisic degis scours, pansize: E. Cimi, L'Ansice leatre di Verona (Verona, 1908).
(J. H. M.: T. As)

VERONA. CDIGRBS OP, the last of the series of miernational conferences or congresses based on the principie enunciated in Art. 6 of the treaty of Paris of Norember soxk 1815 (see Ecrope, Hisfary). It mel at Veronz on the aos

\footnotetext{
1 The view of some scholars is that the original walls mert euFer than the time of Gallienus, who reoonstructed them on the old luest taling in, bowever, the amphitheatre.
}
of October 1822. The emperor Alexander I. of Russia was present in person There were also present Count Nesselrode, the Russtan minister of foreign affairs; Prince Metternich, representing Austria; Prince Hardenberg and Count Bernstorff, representing Prussia: MM. de Montmorency and Chateaubriand, representing France; and the duke of Wellingion, representing Great Britain in place of Lord Londonderry (Castlereagh), whose tragic death occurred on the eve of his settung out to the congress.
In the instructions drawn up by Londonderry for his own guidance, which had been handed to Wellington by Canning without alteration, was clearly defined the attitude of Great Britain towards the three questions which it was supposed would be discussed, viz. the Turkish Question (Greek insurrection), the question of intervention in favour of the royal power in Spain, together with that of the revolted Spanish colonies. and the Italian Question. As regards the latter it was laid down that Great Britain could not charge herself with any superintendence of a system in which she had merely acquiesced. and the duty of the British minister would be merely to keep bimself informed, and to see that nothing was donc "inconsistent with the European system and the treatics." To make this attitude quite clear, Wellington was further instructed not to hand in his credentials until this question had been disposed of, his place being meanwhile taken hy Lord Londonderry (Stewart), Castlereagh's hall-brother and successor in the tille, who had fulfilled the same function at Troppau and Laibach. In the Spanish Question Wellington was to give voice to the uncompromising opposition of Great Britain to the whole principle of intervention. In the Turkish Question, the probable raising of which had alone induced the British government to send a plenipotentiary to the congress, he was to suggest the eventual necessity for recognizing the belligerent rights of the Greeks, and, in the event of concerted intervention, to be careful not to commit Great Britain beyond the limits of good offices.
The immediate problems arising out of the Turkish Question had, bowever, been setlied between the emperor Alexander and Metternich, to their mutual satisfaction, at the preliminary conferences held at Vienna in September, and at Verona the only question raised was that of the proposed French intervention in Spain. The discussion was opened hy threc questions formally propounded hy Montmorency: (a) Would the Allies withdraw their ministers from Madrid in the event of France being compelled to do so? (2) In case of war, under what form and by what acts would the powers give France their moral support, so as to give to her action the force of the Alliance, and inspire a salutary fear in the revolutionaries of all countries? (3) What material aid would the powers give, if asked hy France to intervene, under restrictions which she would declare and they would recognize?

The reply of Alexander, who expressed his surprise at the desire of France to keep the question "wholly French," was to offer to march 150.000 Russians through Germany to Piedmont. where they could be held ready to act against the Jacobins whether in Spain or France. This solution appealed to Metternich and Montmorency as litule as to Wellington; but though united in opposing it. four days of "confidential communications" revealed a fundamental difference of opinion between the representative of Great Britain and those of the continental powers on the main point at issue. Wellington, firmly based on the principle of non-intervention, refused to have anything to do with the suggestion, made by Melternich. that the powers abould address a common note to the Spanish government in support of the action of France. Finally, Metternich proposed that the Allies should "hold a common language, but in separate notes, though uniform in their principles and objects." This solution was adopted by the continental powers; and Wellington, in accordance with bis instructions not to countenance any intervention in Spanish affairs, took no part in the conferences that followed. On the 30th of October the powers banded in their formal replies to the French memorandum.

Russia, Austria and Prussia would act as France should in respect of their ministers in Spain, and would give to France every countenance and assistance she might require, the details "being reserved to be specified in a treaty." Wellington, on the nther hand, replied on behalf of Great Britain that " having no knowledge of the cause of dispute, and not being able to form a judgment upon a hypothetical case, he could give no answer to any of the questions."
Thus was proclairned the open breach of Great Britain with the principles and policy of the Great Alliance, whicb is what gives to the congress its main historical interest.
See Cambridge Modern Hist, chap. i. "The Congresses." by W. Alison Phillips, and for authorities, ibid. p. 787. (W.'A. P.)
VRRONAL, in medicine, diethylmalonyl urea or diethylharbituric acid \(\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}[\mathrm{CO} \mathrm{NH})_{2} \mathrm{CO}\), extensively used as a hypnotic. It is prepared by condensing diethylinalonic ester with urea in the presence of sodium ethylate, or by acting with ethyl iodide on the silver salt of malonyl urea; it forms a white crystalline powder, which is odourless, and bas a slightly bitter taste. Its introduction followed the investigations of Emil Fischer and J. v. Merling on the pharmacological properties of certain open and closed ureides. Led thereto by the impression that hypnotic action appears to be largely dependent on the presence of ethyl groups, they prepared diethylacetyl urea, diethylmalonyl urea, and dipropylmalonyl urea. All three were found to be hypnotics: the first was about equal in power to sulphonal, whilst the third was four times as powerful, hut its use was attended by prolonged aftereffects. Veronal was found to be midway. It is best given in cachets (ro to 15 grains). As it does not affect the circulatory or respiratory systems, or temperature, it can be employed in many diseased conditions of the beart and lungs as well as in mental disturbances, acute alcoholism, morphinomania and kidney disease. If taken during a prolonged period it seems to lose its effect. A soluble salt of veronal has been introduced under the name of medinal. Although the toxicity of veronal is low, \(\mathbf{x} 35\) grains having been taken in a single dose without serious results, the unreasonable consumption by persons suffering from insomnia has led to many deaths, and it has been suggested that the sale should be restricted by the Pharmacy Acts.
VEROMICA, ST. According to the most recent version of the legend, Veronica was a pious woman of Jerusalem, who, moved with pity by the spectacle of Jesus carrying His cross to Golgotha, gave Hira ber kerchief in order that He might wipe the drops of agony from His brow. The Lord accepted the offering, and after using the napkin handed it hack to ber with the image of His face miraculously impressed upon it. This, however, is not the primitive form of the legend. which a close examination shows to be derived from the following story related by Eusehius in his Mistoria Ecclesiastica (vii. 18). At Caesarea Philippi dwelt the woman whom the Lord bealed of an issue of blood (Matt. ix. 20), and at the door of her house stood, on one side a statue of a woman in an attitude of supplication, and on the other side that of a man stretching forth bis hand to the woman. It was said that the male figure represented Christ, and that the group bad been set up in recognition of the miraculous cure. Legend was not long in providing the woman of the Gospel with a name. In the West she was identified with Martha of Bethany; in the East she was called Berenike, or Beronike, the name appearing in as early a work as the Acta Pilati, the most ancient form of which goes hack to the 4th century. Towards the 6th century the legend of the woman with the issue of blood became merged in the legend of Pilate, as is shown in the writings known in the middle ages as Cura sanitatis Tiberii and Vindicta Saloatoris. According to the former of these accounts Veronica, in memory of her cure, caused a portrait of the Saviour to be painted. The emperor Tiherius, when afflicted with a grievous sickness, commanded the woman to bring the portrait to him, worshipped Christ before her eyes, and was cured. The legend continued to gather accretions, and a miraculous origin came to be assigned to the image. It
appears that in the 12 th century the image began to be identified with one preserved at Rome, and in the popular speech the image, too, was called Veronica. It is interesting to note that the fanciful derivation of the same Veronica from the words Vera icon (eikiv) "true image"-is not, as has been thought, of modern origin, since It occurs in the Otia 1 mperialia (iii. 25) of Gervase of Tilbury (A . 1211), who says: "Est ergo Veronica pictura Domini vera." In several churches the office of St Veronica, matron, is observed on various dates.
See Acta Sanclorum, February, i. 449-57; L.: F. C. Tischendorf, Evangelia apocrypha (2nd ed.; Leipzig, 1877), p. 239; E. von Dobschintz. Christusbilder (Leipzig. 1899): H. Thurston. The Stations of the Cross (London, 1906).
(H. De.)

VERRES, CAIUS (c. 120-43 b.c.), Roman magistrate, notorious for his misgovernment of Sicily. It is not known to what gens he belonged. He at first supported Marius and the popular party, but soon went over to the other side. Sulla made him a present of land at Beneventum, and secured him against punishment for embezzlement. In 80, Verres was quaestor in Asia on the staff of Cn . Cornelius Dolabella, governor of Cilicia. The governor and his subordinate plundered in concert, till in 78 Dolabella had to stand his trial at Rome, and was convicted, mainly on the evidence of Verres, who thus secured a pardon for himself. In 74, by a lavish use of bribes, Verres secured the city practorship, and, as a creature of Sulla, abused his authority to further the political ends of his party. He was then sent as governor to Sicily, the richest of the Roman provinces. The people were for the most part prosperous and contented, hut under Verres the island experienced more misery and desolation than during the time of the first Punic or the recent servile wars. The corn-growers and the revenue collectors were ruined by exorbitant imposts or by the iniquitous cancelling of contracts; temples and private houses were robbed of their works of ant; and the rights of Roman citizens were disregarded. Verres returned to Rome in 75 , and in the same year, at the request of the Sicilians, Cicero prosccuted him. Verres entrusted his defence to the most eminent of Roman advocates, \(Q\). Hortensius, and he had the sympathy and support of severat of the leading Roman nobles. The court was composed exclusively of senators, some of whom might have been his personal \{riends. But the presiding judge, the city praetor, \(\mathrm{M}^{\prime}\). Acilius Glabrio, was a thoroughly honest man, and his assessors were at least not accessible to bribery. Verres vainiy tried to get the trial postponed till 69 when his friend Metellus would be the presiding judge, hut in August Cicero opened the case. The effect of the first brief speech was so overwhelming that Hortensius refused to reply, and recommended his client to leave the country. Before the expiration of the nine days allowed for the prosecution Vecres was on his way to Massilia. There he lived in exile till 43 , when he was proscribed by Antony, the reason alleged being his refusal to surrender some of his art treasures which Antony coveted. Verres may not have been quite so hlack as he is pain?ed by Cicero, on whose speeches we depend entirely for our knowledge of him, but there can hardiy be a douht that he stood pre-eminent among the worst specimens of Roman provincial governors. Of the seven Verrine orations only two were actually delivered; the remaining five were compiled from the depositions of witnesses, and published after the flight of Verres.
VERRIUS fLACCUS, marcus (c. 10 b.c.), Roman grammarian and teacher, flourished under Augustus and Tiberius. He was a freedman, and his manumitter has been identified with Verrius Flaccus, an authority on pontifical law; but for chronological reasons the name of Veranius Flactus, a writer on augury, has been suggested (Teuffel-Sch wabe, Hist. of Roman Lit. 199, 4). He gained such a reputation by his methods of instruction that he was summoned to court to bring up Gaius and Lucius, the grandsons of Augistus. He removed there with his whole school, and his salary was greatly increased on the condition that he took no fresh pupils. He died at an advanced age during the relgn of Tiberius (Suetonius. De Gram malicis, 17), and a statue in his honour was erected at Pracneste, in 2 marble
recess, with inscriptions from his Fasti. Flaccus was also a distinguished philologist and antiquarian investigator. For his most important work (De Verborum Significatu) see Festus, Sextus. Of the calendar of Roman festivals (Fasti Pracnestina) engraved on marble and set up in the forum at Praeneste, some fragments were discovered (1771) at some distance from the town itself in a Christian building of later date, and some consular fasti in the forum itself (1778). The collection was subsequently increased by two new fragments.
Other lost works of Flaccus were: De Orthographia: De Obscuris Catonis, an elucidation of obscurities in the writings of the elder Cato; Saturnus, dealing with questions of Roman mual; Rerum memoria dignarym libri, an encyclopaedic work much used by Hiny the elder; Res Elruseae, probably on augury.
For the Iragments of the Fasti sce Corpus Inscriptionxen Latinarum. i. pp. \(311,47:\) G. Gatii, "Due nuovi Frammenti det Calesdario di Verrio Flacco," in Alit della. Accademia dei Lincet Sth ser. vol. 5. pt. 2, P. 421 (1898); Winther, De fastis Verrii Flactie ab Ovidio adhibitis (1885); J. E. Sandys, Classical S.kolarship (ed. 1906). vol. i., index. s.v. "Verrius "; : fragments of Flaccus in C. O . Maller's edition of Festus; see also H. Netlleship, Lectures and Essays.

VERROCCHIO, ANDREA DEL (\(1435-1488\)), Italian goldsmith, sculptor and painter, was born at Florence. He was the son of Michele di Francesco de' Cioni, and took his name from his master, the goldsmitl! Giuliano Verrocchi. Except through his works, little is known of his life. As a painter he occupies an important position from the fact that Leonardo da Vinci and Lorenzo di Credi worked for many years in his boltega as pupils and assistants. Only one existing painting can be attributed with absolute certainty to Verrocchio's hand, the celebrated "Baptism of Christ." originally painted for the monks of Vallombrosa, and now in the academy of Florence. The figures of Christ and the Baptist are executed with great vigour and refinement of touch, but are rather hard and angular in style. The two angels are of a much more graceful cast; the face of one is of especial beauty, and Vasari is probably right in saying that this head was painted by the young Leonarda Other pictures from Verrocchio's bollfga probably' exist, as, for example, two in the National Gallery of London formerly attributed to Ant. Pollaiuolo-" Tohias and the Angel" (No. ;81) and the very lovely "Madonna and Angels" (No. 296), both very brilliant and jewel-like in colour. This exquisite painting may possibly have been painted from Verrocchio's design by Lorenzo di Credi while he was under the immediate influence of his wonderful fcilow-pupil, Da Vinci. \({ }^{1}\)

In examining. Verrocchio's work as a sculptor we are on surer ground. Onc of his earliest works was the beautiful marble medallion of the Madonna, over the tomb of Leonardo Brumi of Arezzo in the church of Santa Croce at Florence. In 14;2 Verrocchio completed the fine tomb of Giovanni and Piero de' Medici, between the sacristy and the lady chapel of San Lorenzo at Florence. This consists of a great porphyry sarcophagus enriched with magnificent acanthus foliage in hronze. Above it is a graceful open bronze grill, made like a net work of cordage. In 4474 Verrocchio began the monument to Cardinal Forteguerra at the west end of Pistoia cathedral. The kneeling figure of the cardinal was never completed, and now lies in a room of La Sapienza, but the whole design is shown in what is probably Yerrocchio's original clay sketch, now in the South Kensington Museum. Though this work was designed by Verrorchio, the actual execution of it was entrusted to his assistant, the Florentine Lorenzetto. In 1476 Verrocchio modelled and rast the fine but too realistic bronze statue of David, now in the Bargeilo (Florence): and in the following year he completed one of the reliefs of the magnificent silver altar-frontal of the Florentine baptistery, that representing the "Beheading of St JohnVerrocchio's other works in the precious metats are now lort, but Vasari records that he made many elaborate pieces of plase and jewelry. such as morses for copes, as well as a series of simer statues of the Apostles for the pope's chapel in the Vatican. Between 1478 and 1483 he was occupied in making the bronze group of the "Unbelicf of St Thomas," which still stands in

\footnotetext{
'Sce Crowe and Cavalcaselle, Paindiag in lualy (London, 1864),
} ii. pp. 400 seq.

One of the external niches of Or San Michele (Florence). He received 800 florins for these two figures, which are more

Cisy alcetch for the monument of Cardinal Forteguerra, showing the kneeling portrait of the cardinal, which is not in the actual monument; a very poor modern Egure occupies its place.
Tras gilt and unveiled in 1406.1. There senate, and the statue that the model was completed by Verrocchio himself, and that nothing more than its reproduction in bronze should be attributed to the much feebler hand of Leopardi, who, however, has set his Own name alone on the belly-band of the horse-ALEXANDER. LEOPARDVS V. F. OPUS. This is perhaps the noblest equestrian statue in the world, being in some respects superior to the antique bronze of Marcus Aurelius in Rome and to that of Gattamelata at Padua by Donatello. The horse is designed with wonderful nobility and spirit, and the easy pose of the great general, combining perfect balance with absolute ease and security in the saddle, is a marvel of sculpturesque ability. Bfost remartable skill is shown by tbe way in which Verrocchio has exaggerated the strongly marked leatures of the general, so that nothing of its powerful effect is lost by the lofty position of the head. According to Vasari, Verrocchio was one of the first sculptors who made a practical use of casts from living and dead subjects. He is said also to have produced plastic works in terra-cotta, wood and in wax decorated with colour. As a sculptor bis chief pupil was Francesco di Simone, the son of that Simone whom Vasari wrongly calls a brother of Donatello. Another pupil was Agnolo di Polo (Paolo), who worked chiefly in terra-cotta.

Verrocchio died in Venice in 1488, and was buried in the church of St Ambrogio in Florence.

Seealso Hans Mackowsky. "Verrocehio . . . Mit 80 Abbildungen " (1901). Kinster Monographicu. No. 52. (J. H. M.)

VERsaillise, a town of northern France, capital of the department of Seine-et-Oise, 12 m . by road W.S.W. of Paris, with which it is connected by riil and tram. Pop. (1906) town, 45.246; commune, 54,820 . Versailles owes its existence to the palace built by Louis XIV. It stands 460 ft . ahove the sea, and its fresh healthy air and nearness to the capital attract many residents. The three avenues of St Cloud. Paris and Sceaux converge in the Place d'Armes. Bet ween them stand the former stables of the palace, now occupied by the artillery and engineers. To the south lies the quarter of Satory, the oldest part of Versailles, with the cathedral of St Louis, and to the north the ncw quarter, with the church of Notre Dame. To the west a gilded \({ }^{1}\) See Gay, Carh ined. i p. 367.
iron gate and a stone balustrade shut off the great court of the palace from the Place d'Armes. In this court, which slopes upwards from the gate, stand statues of Richelieu, Conde, Du Guesclin and other famous Frenchmen. At the highest point there is an equestrian statue in bronze of Louis XIV., and to the right and left of this stretch the long wings of the palace, while behind it extend the Cour Royale and the smaller Cour de Marbre, to the north, south and west of which rise the central bvildings. The buildings clustered round the Cour de Marbre, which include the apartments of Louis XIV., project into the gardens on the west considerably beyond the rest of the façade. To the north the Chapel Court and to the south the Princes Court, with vaulted passages leading to the gardens, separate the side from the central buildings. On the other is the inscription, "A toutes les gloires de la France," which Louis Philippe justified by forming a collection of works of art (valued at \(£_{1}, 000,000\)), commemorating the great events and persons of French history. The palace chapel (\(1696-1710\)), the roof of which can be seen from afar rising above the rest of the building, was the last work of J. Hardouin-Mansart.

The ground-floor of the north wing on the garden side containe eleven halis of historical pictures from Chovis to Louis XVI. and on the side of the interior courts a gallery containing casts of royal funcreal monuments. The Halls of the Crusadea open of this gallery. and are decorated with the anms of crusaders and with modern pictures dealing with that period. On the first floor of the north wing on the garden side are ten halls of pictures commemorating historical events from 1795 to 1830: on the court side is the Gallery of Sculpture, which contains the Joan of Anc of the princess Marie of Orleans; an. 1 there are seven halls chieffy devoted to French campaigus and generals in Africa, Italy, the Crimea and Mexico, with some famous war pictures by horace Vernet. The second storey has a portrait gallery. In the north wing is also the theatre built under Louis XV. by Jacques-Ange Gabriel, which was first used on the 16 th of May 1770 on the marriage of the dauphin (afterwarde Louis XV1.) and Marie Antoinette. Here, on the 2nd of October 1789 , the celebrated banquet wat given to the Gardes du Corps, the toants at which provoleed the riots that drove the royal family from Versailles: and bere the National Assembly met from the toth of March 1871 till the proclamation of the constitution in 1875, and the Senate from the 8 th of March 1876 till the return of the two chambers to Paris in 1879. On the ground-foor of the central buildings are the halls of celebrated warriont (once the anteroom of Madame de Pompadour), marshals, constables and admirals, and the suite of rooms known as the Dauphin's Apartments, now given up to historical portraits. The Galcrie Basse, once known as the Gallery of Louis XIll., leads to the rooms surrounding the Marbie Court, a series of which contains many plans of battlea. The lobbies of the ground-floor are full of busts, statues and tombs of kings and celebrated men. The fa mous staterooms are on the firat foor. On the garden side. facing the north, are a series of seven halls, some of them decorated with tapestriea representing the life of Louis XIV. Among them may be mentioned the Hall of Herculce, till 1710 the upper half of the old chapel, where the dukes of Chartres, Maine and Burgundy were marned, and Bossuet. Massillon and Bourdaloue presched: the Hall of Mercury, where the coffin of Louis XIV. stood for eight days after his death; and the Hall of Apollo, or throne room. To the front of the palace, facing the went, are the Galleries of War and Peace. with allegorical pictures, and the Glasy Gallery, built by Mansart in 1678 (235 ft, long. 35 wide and 42 high), having 34 arches. 17 of which are filled with windows looking on the gardens and 17 with large mirrors. The gallery is overloaded with ornament, and the pictures by Charles Lebrun, the trophiee and fagures of children by Amoine Coysevor, and the inscrptions attributed to Boileau and Racine, all glorify Lovis XIV: This pallery was used by him as a throne room on state occasions. Here the king of Prussia was prochimed emperor of Germany on the 18ih of January 1871. Connected with the Gallery of Peace are the queen occupied successively by Marie Therke, Marie Leczinska and Marie Antoinette, where the duchess of Angoulime was born, the duchess of Burgundy died, and Marie Antoinctte was almost assassinated on the 61h of October 1789. Behind the Glass Gallery on the side of the court are the rooms of Louis XIV. The Eil de Bcruf, named from its oval window, was the anteroom where the courtiers waited till the king rome. In it is a picture representing Louis XIV. and his family as Olympian deities; and it leads to the bedroom in which Louis XIV. died, after using it from 17n, and which Louis XV. occupied from 1732 10 \(173^{8}\). In the south wing of the palace, on the ground-floor, is the Gallery of the Republic and the Firt Empire, the rooms of which contain paintings of socnes in the life of Napoleon 1. A sculpture gallery contains busts of celebraced echolars, artists, generals and public men from the time of Louis XVI. onwards. In the soulh wing is also the room where the Chamber
of Deputies met from \(\mathbf{1 8 7 6}\) till 1879, and where the Congress has since sat to revise the constitution voted at Versailles in 1875 and to elect the president of the republic. The first floor is almost entirely occupied by the Battle Gallery (394 (t. long and 43 wide), opened in 1836 on the site of rooms used by Monsieur the brother of Louis XIV. and the duke and duchess of Chartres. It is lighted from above, and the walls are hung with pictures of French victories. In the window openings are the names of soldiers killed while fighting for France, with the names of the battles in which they fell, and there are more than eighty busts of princes, admirals, constables, marshals and celebrated warriors who met a similar death. Another room is given up to the events of 1830 and the accession of Louis Philippe, and a gallery contains the statues and busts of kangs and celebrities.

The gardens of Versailles were planned by Andre Le Nôtre. The ground falls away on every side from a terrace adorned with ornamental basins, statues and bronze groups. Westwards from the palace extends a broad avenue, planted with large trees, and having along its centre the grass of the "Tapis Vert"; it is continued hy the Grand Canal, 200 ft . wide and 1 m . long. On the south of the terrace two splendid staircases lead past the Orangery to the Swiss Lake, beyond which is the wood of Satory. On the north an avenue, with twent \(y\)-two groups of three children, each group bolding a marble basin from which a jet of water rises, slopes gently down to the Basin of Neptune, remarkable for its fine sculptures and abundant water. The Orangery (built in 1685 by Mansart) is the finest piece of architecture at Versailles; the central gallery is 508 ft . long and 42 wide, and each of the side galleries is 375 ft . long. There are 1200 orange trees, one of which is said to date from 1421, and 300 other kinds of trees.

The alleys of the parks are ornamented with statues, vases and regularly cut yews, and bordered by hedges surrounding the shrubberies. Between the central terrace and the Tapis Vert is the Basin of Latona or the Frogs, with a white marble group of Latona with Apollo and Diana. Beyond the Tapis Vert is the large Basin of Apollo, who is represented in his chariot drawn by four horses; there are three jets of water, one 60 , the athers 50 ft . in height. The Grand Canal is still used for nautical displays; under Louis XIV. it was covered with Veuetian gondolas and other boats, and the evening entertainments usually ended with a display of fireworks. Around the Tapis Vert are numerous groves, the most remarkable being the Ballroom or Rockery, with a waterfall: the Queen's Shrubbery, the scene of the intrigue of the diamond necklace; that of the Colonnade, with thiny two marble columns and a group of Pluto carrying of Prosperine, by Francois Girardon: the King's Shrubbery, laid out in the English style by Louis Philippe; the beautiful Grove of Apollo, with a group of that god and the nymphs, by Girardon; and the Basin of Enceladus, with a jet of vater 75 ft. high.
Among the chief attractions of Versailles are the fountains and waterworks made by Louis XIV. in imitation of those he had scen at Fouquet's chatteau of Vaux. Owing to the scarcity of water at Versailles, the works at Marly-le-Roi were constructed in order to bring water from the Seine; but part of the supply thus ohtained was diverted to the newly erected chateau of Marly. Vast sums of money were spent and many lives lost in an attempt to bring water from the Eure, but the work was slopped by the war of 1688 . At last the waters of the plateau between Versailics and Rambouillet were collected and led hy channels (total length 98 m .) to the gardens, thic soil of which covers innumerable pipes, vaults and aqueducts.

Beyond the present park, but within that of Louis XIV., are the two Trianons. The Grand Trianon was originally erected as a retreat for Louis XIV. in 1670 , but in 1687 Mansart huilt a new palace on its sitc. Louis XV., after establishing a botanic garden, made Gabriel build in 1766 the small pavilion of the Petit Trianon, where the machinery is still shown by which his supper-table came up through the floor. It was a favourite residence of Marie Antoinette, who had a garden laid out in the English style, with rustic viilas in which the ladies of the court led a mimic peasant-life. The Grand Trianon is a one-storcyed building with two wings, and has been occupied by Monsieur (Louis XIV.'s brother), by the Great Dauphin, Napoleon I., and Louis Philippe and his court. The gardens of the Grand Trianon are in the same style as those of Versailles, and there is a museum with a curious collection of state carriages, old harness, \&ic.

Apart from the palace, there are no buildings of interest in Versailles, the church of Notre Dame, built by Mansart, the cathedral of St Louis, built by his grandson, the Protestant church and the English chapel being in no way remarkable The celcbrated tennis-court (Jeu de Paume) is now used as a museum. The large and sumptuous palace of the prefecture was built during the second empire, and was a residence of the president of the republic from 1871 to 1879. The library consists of 60,000 volumes; and the military bospital formerly accommodated 2000 people in the service of the palace. There are statucs of General Hoche and of Abbe de l'Epee in the town. A school of horticulture was founded in 1874, attached to an cxcellent garden, near the Swiss Lake.

Versailles is the scat of a bishopric, a prefect and a court of assizes, and has tribunals of first instance and of commerce, a board of trade-arbitrators, a chamber of commerce and a branch of the Bank of France, and, among its educational establishmenis, lyries and training colleges for both sexes and a technical school. It is an important garrison town and has a school of milizary engineering and artillery. Distilling, boot and shoe making. and marietgardening employ many of the people, but the town has no specially characteristic industry. The links of the Paris Golf Club are ai L . Boulie near Versailles.
Louis XIII. often hunted in the woods of Versailles, and built a small pavilion at the corner of what is now the rue de la Pompe and the avenue of St Cloud. In 1627 he entrosted Jacques Lemercier with the plan of a chateau. In 166r Louis Levau made some additions which were further developed by him in 166s. In 1678 Mansart took over the wort, the Galerit des Glaces, the chapel and the two wings being due to him In 1632 Louis XIV. took up his residence in the chateau. It is estimated that 20 million pounds were spent on the palace. gardens and works of art, the accounts for which were destroyed by the king. Till his time the town was represented by a few houses to the south of the prescat Place d'Armes; but land was given to the lords of the court and new houses sprang up, chicfy in the north quarter. Under Louis XV. the parish of St Louis was formed to the south for the increasing population, and new streets were built to the north on the meadows of Clagny, where in 1674 Mansart had built at Louis XIV.'s orders a chitean for Madame de Montespan, which was now pulled down. Under Louis XVI. the town extended to the east and received a munscipality; in 1802 it gave its name to a bishopric. In 1783 the armistice preliminary to the treaty of peace between Great Britain and the United States was signed at Versailles. The states-general met here on the 51 h of May 1789, and on the 20th of June took the solemn oath in the Teanis Court by which they bound themselves not to scparate till they had given France a constitution. Napolcon neglected, and Loais XVIII. and Charles X. merely kept up, Versailles, but Louz Philippe restored its ancient splendour at the cost of (\(1,000,000\). In 1870 and 1871 the town was the headquarters of the German army besieging Paris. After the peace Versailles was the seat of tbe French National Assembly while the commune was triumphant in Paris, and of the two chambers till 1879, being declared the official capital of France.
See A. P. Gille, Versailles al les deux Trianons, with illustrations by M. Lambert (Tours, 1899. 1900): P. de Nolhac, La Criation te Versailles (Versailles. 1901); J. E. Farmer, Versailles and the Coars under Louis XIV. (New York, 1905).

VERS DE SOCIETE, a term for social or familiar poetry, which was originally borrowed from the French, and has now come to rank as an English expression (sec Fennell, The Skome ford Dictionary of Anglicised IVords). The use of the phrase as an English one is first met with at the opening of the rotb century. It is to be observed that it has come to bear a meaning which is not wholly equivalent to that of the French original It was said of the blind philosopher, M. C. J. Pougens (\(8755^{-}\) 1833), that his petits vers de socithe procured great success for him in the salons of Paris, and several of the rhymesters os the early 8 ith century were prominent for their adroit ness in composing petits pers sur des sujets legers. The prince of suik graceful trifers was the Abbé de Chaulieu (1639-17\%0). d whom it was sajd that he made verses solely for the awusemest
of his friends, and without the smallest intention of secing them in print. The best of his effusions have preserved a certain freshness because of the neatness with which they are turned, but it can scarcely be said that they have any pretension to be called poctry. They were inspired by incidents in the private life of the day, and were largely addressed to a few friends of exalted rank, who were hardly less witty than the author himself, such as the duc de Nevers, the marquis de Lassay, the duchesse de Bouillon and the marquis de la Fare. In the collections of Chaulieu's works, which were very often reprinted, side by side with his own pieces will be found petits eers de socielt indited by these great friends of his, and often quite as well turned as his own. To write such verses, indeed, was almost an accomplishment of good hreeding. An enormous collection of them was hrought together by Titon du Tillet (\(1676-1762\)), in his Parnasse francois, where those who are curious on the subject may observe to satiety bow ingenious and artificial and trifing the pers de societe of tbe French 18 th century could be. The fashion for them followed upon the decline of an interest in rondeaur, ballades and villanelles, and Chaulieu himself had not a little to do with throwing those ingenuities out of fashion, his attack on Benserade, who went so far as to turn the whole of Ovid's Mectamorphoses into rondeaux, being, according to his editor of 1732, "the first work which displayed the delicacy of the Abbe de Chaulieu's taste, and his talent for poetry." Of the writers of pers de societh in France, J. B. Rousscau had the most poetical faculey; he was, in fact, a poet, and he wrote a "Billet ì Chaulieu " which is a gem of delicate and playful charm. But, as a rule, the efforts of the French versifiers dans bes paciils genves were not of considerable poetic value.

If in England the expression pers de socitte carries with it more literary dignity, this is mainly due to the genius of one man. Prior's Pacms on Several Occasions, collected in 1709, presents us with some of the earliest entirely characteristic specimens of vers de societe, and with some of the best. Here the poet consciously, and openly, resigas the pretension of higb effort and an appeal to Parnassus. He is paying a visit at Burghley House, where the conversation turns on the merits and adventures of Mr Fleetwood Shepherd; Prior then and there throws off, in extremely graceful verse, a piece appropriate to the occasion. He addresses it, and he dates it (May 14, 1689); and this is a typical example of oers de societt. It will be seen that Prior, who learned much from his residence in the heart of the French world of fashion between 1711 and 1715, treats very much the same subjects as Chaulieu and La Fare were treating, but he does so with more force of style and dignity of imagination. As the 18 th century progressed, the example of Prior was often followed by English poets, without, bowever, any general recapture of his forcible grace. The eers de secitte tended to be merged in the epistle and in the epigram. Swift, however, when be was neither coarse nor frigid, sometimes achieved a genuine success, as in the admirable verses on his own death. The odes of Ambrose Philips (\(\mathbf{1 6 7 1 - 1 7 4 9 \text {) addresed by name to various private persons, }}\) and, most happily, to children, were not understood in his own age, but possess some of the most fortunate characteristics of pure pers de socitete. In his "Welcome from Greece," a study im ollasa rima, Gay produced a masterpiece in this delicate class, but most of his easy writings belong to a different category. Nothing of peculiar importance detains us until we reach Cowper, whose poems for particular occasions, such as those on "Mrs Throckmorton's Bullinch" and "The Distressed Travellers," are models of the poetic use of actual circumstances treated with an agreeable levity, or an artful naivete. In a beter age, Byron, who excelled in so many departments of poetry, was an occasional writer of brilliant oers de socitte, such as the epistle "Huzza, Hodgson," hut to find a direct successor to Prior it is necessary to pass Henry Luttrell (\(1765^{-}\) 185t) and W. R. Spencer (\(1769-1834\)), and to come down to W. M. Praed (q.p.). A certain character was given to English iers de saciels by Hood and Barham, but the former was 100 much
addicted to a play upon words, the litter was too boisterous, to be considered as direct continuers of the tradition of Prior. That tradition, however, was revived by Frederick Locker, afterwards Locker-Lampson (1821-1895), whose Londows Lyrics, first printed in 1857 and constandly modified until 1893, is in some respects the typical modern example of pure sers de socitue Locker was a simple, clear and easy writer; he successfully avoided the beast appearance of that effort which is fatal to this kind of verse. His "Rotten Row," with its reminiscences of the early sixties,

> "But where is now the courtly troop'
> That once sode Lagughing by?
> I mist the curlo o Cantupe.
> The laugh of Lady Di,"
tonches of real portraiture-is a perfect example of yers do socitte. Since the days of Locker, those who have attempted to strike the lighter lyre in English have been very numerous. Almost immeasurahly superior to the rest has been Mr Austin Dobson, who is, however, something more than 2 writer of aers de socitte.
Collections of wrs de socieff of much exceellence have been published by J. K Stephen ((2859-92), Andrew Lang (b. 184t), A. D. Godey (b. 1856), Owen Seaman (b. 1861) and A. K. Ropes ('Adrian Ross ") (b. 1859).
(E. G.)

VRRSE (from Lat. persus, literally a line or furrow drawn by turning the plough, from vertere, and afterwards signifying an arrangement of syllables into feet), the name given to an assemblage of words so placed together as to produce a metrical effect. The art of making, and the science of analysing, such verses is known as Versification. According to Max Muller, there is an analogy between persus and the Sanskrit term, writua, which is the name given by the ancient grammarians of India to the rule determining the value of the quantity in vedic poetry. In modern speech, verse is directly contrasted with prose, as being essentially the result of an attention to determined rutes of form. In English we speak of "a verse" or "verses," with reference to specific instances, or of "verse," as the general science or art of metrical expression, with its regulations and phenomena. A verse, which is a series of rhythmical syllables, divided by pauses, is destined in script to ocrupy a single line, and was so understood by the ancients (the \(\sigma\) rixos of the Greeks). The Alexandrian scholiast Hephacstion speaks distinctly of verses that ceased to be verses because they were too long; he stigmatizes a pentameter line of Callimachus as \(\sigma \pi i \times 0\) o irepperpoos. There is no danger, therefore, in our emphasizing this rule, and in saying that, even in Mr Swinburne's most extended experiments the theory is that a verse fills but one line in a supposititious piece of writing.
It is essential that the verse so limited should be a complete form in itself. It is not, like a clause or a sentence in prose, unrecurrent and unlimited, but it presents us with a successive and a continuous cadence, confined within definite bounda. There has been a constant discussion as to what it is in which this succession and this continuity consist, and here we come at once to the principal difficulty which makes the analysis of the processes of the pocts so difficult. To go back to the earliest European tradition, it is universally admitted that the ancient Greeks considered the art of verse as a branch of music, and as such co-ordinated it with harmony and orchestral effect. This appears from definite statements preserved in the fragments of Aristoxenus of Tarentum, a grammarian who lived in the age of Alexander the Great, and whom we shall see to have been the first who laid down definite laws for prosody as a department of musical art (movorxh). It was found necessary, in order to compose a work of musical value, to work out a system of disciplined and linked movement. This system, or arrangement, was called rhythm, and this is common to all the arts of melody. Harmony, consisting in the reproduction of the sound of human voices or of musical instruments, and orchestrics, dealing with the movements of the human body, were expressed in metrical art by that arrangement of syllables which is known as rhythm. The seience of metre is the teaching of those laws on which
depends the rhythmical forms of poetry．This science has been， from the carliest ages of criticism，divided into a study of the general principles upon which all these forms are builded，and upon the special types into which they have gradually developed．

In considering ancient versification，it is necessary to give attention to Latin as well as to Greek metre，because although the Roman poets were in the main dependent upon the earlier tradition，there were several points at which they hroke away， and were almost entirely independent．Roman verse，though essentially the same as Greek verse，was modified hy the national development of Italian forms of poetry，by a simplified imitation of Greek measures，and hy a varied intensity in the creation of new types of the old Greek artistic forms（Volkmann）．In later times there was a tendency to consider the laws of metre as superior to，and almost independent of，the native impulse of the poet；and this is where the study of the old poetry itself is most salutary，as checking us in our tendency to bow too slavishly to the rules of the grammarians．No doubt，in the archaic times，theory and practice went hand in hand． The poet，heid in constant check hy the exigencies of music， was obliged to recognize the existence of certain rules，the necessity of which was confirmed hy the delicacy of his ear． These he would pass down to his disciples，with any further discoveries which he might himself have madc．For instance， what we are somewhat vaguely told of the influence of a poet like Archilochus，to whom the very invention of trochaic and iambic metre is，perhaps fabulously，attributed，points to the probability that in Archilochus the Ionian race produced a poet of extraordinary daring and delicacy of ear，who gathered the wandering rhythms that had existed，and had doubtless been used in an uncertain way before his time，into a system which could be depended upon，and not in his hands only， to produce certain effects of welcome variety．His system would engage the attention of theorists，and we learn that by the time of Plato schools of oral metrical education were already in existence，where the science of sounds and syllables was already heginning to be recognized，as may be seen in the Cratylus．Before long，the teachings in these peripatetic schools would be preserved，for safety＇s sake，in writing，and the theoretic literature of versification would begin．In fact，we read in Suidas of a certain Lasus of Hermione who wrote an Art of Poetry，and the age of this，the earliest of recorded authorities on the formal laws of verse，is fixed for us by the fact that he is spoken of as having been the master of Pindar． Of the writings of Lasus and his followers，however，nothing remains，and the character of their teaching is problematical． In the 3 rd century b．c．，however，we come upon a figure which preserves a definite character；this is Aristoxenus，the disciple of Aristotle，who gave his undivided attention to rhythm，and who lives，unfortunately only in fragments，as the most eminent musical critic of antiquity．The hrief fragments of his Elements of Rhythm（bof mexd aroxeia），originally written in three books， are of unsurpassed value to us as illustrating the attitude of classical Greece to the interrelation of verse and music．The third book of Aristoxenus dealt specifically with \(\lambda \hat{k} k s\) ，or the application of shythm to artistically composed and written verse．

It is certain that，after the time of Alexander the Great，the theories of verse tended somewhat rapidly to release themselves from the theories of music，and when，in the successive ages of Greek criticism，much attention was given to the laws of versification，less and less was said about harmony and more and more about metre．Rules，often of a bighly arbitrary nature，were drawn up by grammarians，who founded their laws on a scholiastic study of the ancient poets．The majority of the works in which these rules were collected are lost，but an cuchiridion of Greek metres，by Ifephaestion，a scholiast of the and century A．D．，has been preserved．First printed in \({ }^{15}: 6\) ，editions and translations of Heplzaestion＇s nanual have not been infrequent．
It is from Hephaestion that most of our ideas on life subject of classical prosody are obtained．His work，as we posees it，seems to classical prosody are obtained．His work，as we posees it，seems to
treatise be had published on the Greek metrical system as a whole． in 48 books．The pre－eminent importance of Hephaestion was exposed to the learned world of Europe by Th．Gaisford，in 1810 A contemporary of Hephaestion，Herodian，who was one of the most eminent of Alexandrian grammarians，gave close attention to prosody，and was believed to have summed up everything that could be known on the subject of verse by critics of the and century A．D．，in his Meүain rpoows／a，in twenty books．As Herodian． throughout his life，seems to have concentrated his attention on the study of Homer，it is supposed that he started with a consideration of the metre and accent of the Iliad．The almost complete loss of his treatises is regrettable．Philoxenus was the author of a very early work，Hepl mirpuw；but this is entirely lost．In the musical cyclopaedia of Quintilian，there was included a chapter on the elements of the rhythmic art，and in this the metres recognized at the time were recorded and described．Among the Latin authorities on versificatien，the leading place is taken，in the 1 st century B．C．，by Terentius Varro，whose systematic treatment of metre in his works De sermone latino and De lingua latina is often referred to．But we know more of Terentianus Maurus，who flourished in the second half of the \(2 n d\) century A \(D\) ．，since we possess from his hand a hand－ book to metre，written in verse，in which，in particular，the Horariaa metres are carefully analysed．He follows Caesius Bassus，the friend of Nero．who had dedicated to his imperial patron a wort on prosody，of which fragments exist．Three tracts，att ributed to the rhetor C．Marius Victorinus（one entitled De ratione metrornm） belong to the 4 th century，and a re still quoted by scholars．Another early authority was Flavius Mallius Theodorus，whose De Metris has been frequently reprinted．

The metrical theory of the Byzantine grammarians was entirely in unison with the old tradition of the Alexandrisa schools，and depended on the authority of Hephaestion．Michaed Psellus，in the gth century，wrote abundantly on the subject，and towards the close of the Empire the verse－handbooks of Isaac Tzetzes（d．1138）and of his hrother Joannes were in general use． A large number of other Byzantine scholiasts and theorists are mentioned in this connexion by Gleditsch．Very little attention was paid to metrical science in medieval and even Renaissance days．It is much to the honour of English scholarship that the carliest modern writer who made a rational study of ancient metre was Richard Bentley，in his Schediasma de metris Teren－ tianis，printed at Cambridge in 1726 ．He was soon followed by the Germans，in particular by Hermann，Boeckh and J．A． Apel．To this day，German scholarship easily leads in the rational and accurate study of classical versification．

The chief principle in ancient verse was quantity，that is the amount of time involved in the effort to express a syllable． Accordingly，the two basal types which lie at the foundation of classical metre are＂longs＂and＂shorts．＂The convention was that a long syllable was equal to two short ones：accord－ ingly there was a real truth in calling the successinn of such ＂feet＂metre，for the length，or weight，of the syilables forming them could be，and was，measured．What has to be reatizcd in speaking of ancient metre is that the value of these feet was defined with exactitude，not left uncertain，as it is in modern European verse，when accent is almost always made the guiding principle．In Greek verse，there might be an icius（stress）， which fell upon the long syilable，but it could only be a regulat－ ing element，and accent was always a secondary element in the construction of Greek metre．The＂feet＂recognixed and described by the ancient grammarians were various，and in their apparent diversity sometimes difficuht to follow，bot the comprchension of them is simplified if the student realizes that the names given to them are often superfluous．The main distinction between feet consists in the diversity of the relation between the strong and tbe weak syllables．There are naturally only two movements，the quick and the slow．Thus we have the anapaest（ - －，short－short－long）and the dactyl （ールー，long－short－short），which are equal，and differ onily as regards the position of their parts．To these follow two feet which must be considered as in their essence non－metrical，as it is only in combination with others that they can become metrical．These are the spondee（一一，long－long）and the pyrrhic（ \(V^{-}\)，short－short）．Of more essential character are the two descriptions of slow feet，the iamb（一一，stort－ long）and the trochee（ \(-\cdots\) ，long－short）．Besides these definite types，the ingenuity of formalists has invented an
almost infinite number of other＂feet．＂It is，perhaps， necessary to mention some of the principal of these，although they are，in the majority of cases，purely arbitrary．In the rapid measures we find the trihrach（ーソー，short－short－ short），the molossus（－－long－long－long），the amphibrach （－－，short－long－short），the amphimacer（－レー，long－ short－long），the bacchius（——，short－long－long）and the antibacchius（一一 long－long－short）．There is a foot of four syllables，the choriamb（－ヘ～一，long－short－short－ long），which is the fundamental foot in Acolic verse－very frequently mentioned，but very seldom met with．

It must not be forgotten that the prosodical terminology of the Greeks，which is often treated by non－poetical writers as something scientific and even sacrosanct，dates from a time when ancient literature had lost all its freshness and impulse，and was exclusively the study of analysts and gram－ marians．Between tbe life of Pindar，for instance，and that of Hephaestion，the great metrical authority，there extends a longer period than between Chaucer and Professor Skeat；and to appreciate the value of the rules of Greek prosody we must recollect that those rules were invented by learned and academic men to account for phenomena which they observed，and wished to comprehend，in writings that had long been classical， and were already growing positively archaic．The fact seems to be that tbe combination of long and short syllables into spondees，iarmbs，dactyls and anapaests，forms the sole genuine basis of all classical verse．

Metre is 2 science which pays attention to all the possible regular arrangements which can be made of these four indis－ pensable and indestructihle types．Of the metres of the ancients by far the most often employed，and no doubt the oldest，was the dactylic hexameter，a combination of sir feet，five successive dactyls and a spondee or trochee：－

This was known to the ancients as＂cpic＂verse，in contrast to the various lyrical measures．The poetry of Homer is the typical example of the use of the epic hexameter，and the character of the Homeric saga led to the fashion by which the dactylic hexameter，whatever its subject，was styled＂heroic metre．＂The earliest epics，doubtiess，were chanted to the accompaniment of a stringed instrument，on which the pulsa－ tion of the verse（ \(\mathbf{6 \pi y}\) ）was recorded It was the opinion of W．Christ that the origin of the bexameter was to be sought in hieratic poctry，the fulnese of the long dactylic line attracting the priests to its use in the delivery of oracles，from which it naturally passed to solemn tales of the actions of gods and heroes． It is more difficult to see how，later on，it became the vehicle for comic and satiric writing，and is found at last adopted by the bucolic poets for their amorous and pastoral dialogues． The Homeric form of the dactylic hexameter has been usually taken，and was taken in classical times，as the normal one， but there have been many variations．A hexameter found in Catullus consists exclusively of spondees，and deviation from the original heroic type could go no further．This concentration of heavy sounds was cultivated to give solemnity to the cha－ racter of the line．In the whole matter，it is best to recognize that the rules of the grammarians were made after the event， to account for the fact that the poets had chosen，while adhering to the verse－structure of five rapid beats and a subsidence，to vary the internal character of that structure exactly as their ear and their passion dictated．This seems particularly true in the case of the caesura，where the question is not so much 2．matter of defining＂male＂caesura or＂female＂caesura， ＂bucolic＂caesura or＂trochaic，＂as of patiently noting instances in which the unconscious poet，led by his inspiration， has varied his pauses and his crnphasis at his own free will． The critics have written much of＂proscdical licence，＂but verse in the days of Homer，like verse now，is simply good or bad， and if it is grod it may show liberty and variety，but it knows nothing of＂licence．＂

We pass，by a matural transition，to the pentameter，which
is the most frequently employed of what are known as the syncopied forms of dactylic verse．It was used with the hexa－ meter，to produce the effect which was early called elegiac，and its form shows the appropriateness of this custom：－
＂Cynthia｜prima fu－｜it，｜｜Cynthia｜finis e－｜rit．＂
A herameter，full of energy and exaltation，followed hy a descending and melancholy pentameter，had an immediate tendency to take a complete form，and this is the origin of tho stanza．The peculiar character of this two－line stanza has been fixed for all time by a brilliant epigram of Schiller，which is itself a specimen of the form：－
＂：Im Hexameter steigt des Springquells fiussige Saule， Im Pentameter drauf falit sie melodisch herah．＇

Such a distich was called an elegy，dereioy，as specially suitable to an Diveros or lamentation．It is difficult to say with certainty whether the distich so composed was essential as an accompani－ ment to flute－music in the earliest times，or how soon there came to be written purely literary elegies towards which the melody stood in a secondary or ornamental relation．It has，however， been observed that even when the distich had obviously come to be a purely intellectual or lyrical thing，there remained in the sound of the pentameter the trace of lamentation，in which its primitive use at funeral services was clearly preserved． Other grammarians，however，among whom Casar，in his work on the origin of elegiac verse，is prominent，－do not believe in the lugubrious essence of the pentameter，and think that the elegiacal couplet was originally erotic，and was adapted to mournful themes hy Simonides．If we may credit a pasage in Athenseus，it would seem that the earliest－known elegists， such as Callinus and Solon，wrote for recitation，pure and simple，without the accompaniment of any instrument．

Trochaic verse is called by the ancient grammarians head－ less（accidahow），because it really consists of iambic verse deprived of its head，or opening syllable．The iambic measure（ヘーーーー一）becomes trochaic if we cut off the first＂short，＂and make it run ヘーーーソーーー． The pure trochaic trimeter and tetrameter had a character of hreathless speed，and sometimes bore the name of choric （buopls xoptios），because it was peculiarly appropriate to the dance，and was used for poems which expressed a quickly stepping sentiment．It is understood that，after having been known as a musical movement，it was first employed in tbe composition of poetry by Archilochus of Paros，in the 7th century p．c．

Iambic metre was，next to the dactylic hexameter，the form of verse most frequently employed by the pocts of Greek antiquity． Archilochus，again，who seems to have been a great initintor in the arts of versification，is credited with the invention of the iambic trineter also，but it certainly existed before his time． Afurray believes the original iambic measure，in its popular familiarity，to have sprung from the worship of the bomely peasant gods，Dionysus and Demeter．It was not far removed from prose；it gave a writer opportunity for expressing popular thoughts in a manner which simple men could appreciate，being close to their own unsophisticated speech．In particular，it presented itself as a heaven－made instrument for the talent of Euripides，＂who，seeing poetry and meaning in every stone of a street，found in the current iambic trimeter a vehicle of expression in some ways more flexible cven than prose．＂

It was not，however，until the invention of the lyric proper， whether individual to the poet，or choral，that the full richness of possible thythms became obvious to the Greeks．The lyric inspiration came originally from the island of Lesbos，and it passed down through the Asiatic archipelago to Crete before it reached the mainland of Greece．The Lesbians cultivated a monodic ode－poetry in strophes and monostrophes，the en－ chanting beauty of which can still be realized in measure from what remains to us of the writings of Sappho and Alcaeus There is a stanza known as the Sapphic and another as the Alcaic．

The Sapphic runs as follows：－
\[
\begin{aligned}
& \text { ーーー|ーー }
\end{aligned}
\]

The atenra of Alcaeus runs：－
```

ニーートリーーール1ーー !
シールレ|=ーール1ーート
シールートーーートーーール
ーーッレリーー

```

These marvellous inventions suited the different moods of these strongly contrasted lyrists，the＂violet－crowned，pure，sofily smiling Sappho，＂and the fiery，vehement soldier who was Alcaeus．We must give them peculiar attention，since they were the two earliest models for the lyric passion which has since then expressed itself in so many stanzaic forms，hut in none of so faultess a perfection as the original Leshian types
The name of Stesichorus of Himera points to the belief of antiquity that he was the earliest poet who gave form to the choral song；he must have been called the＂choir－setter＂ because he arranged and wrote for choirs semi－epic verse of a new kind，＂made up of halves of the epic bexameter，inter－ spersed with short variations－epitrites，anapaests or mere syncopac－just enough to break the dactylic swing，to make the verse lyrical＂（Gilhert Murray）．But it appears to be to Arion that the artistic form of the dithyramh is due．We are all among innovators and creators in this glorious sth century p．c． Simonides gathered the various inventions together，and exer－ cised his genius upon them all：he was the earliest universal lyrist of the world：he treated the styles of verse，as Shelley or as Victor Hugo did，with an impartial mastery．
After the happy event of the Persian War，Athens hecame tine centre of literary activity in Greece，and here the great school of drama developed itself，using for its vehicle，in dialogue， monologue and chonus，nearly all the metres which earlier ages and distant provinces had invented．The verse－form which the dramatists preferred to use was almost exclusively the iamhic trimeter，a form which adapted itself equally well to tragedy and to comedy．Aeschylus employed for his choruses 2 great number of lyric measures，which Sophocles and Euripides reduced and regulated．With the age of the dramatists the creative power of the Greeks in versification came to an end， and the revival of poctic enthusiasm in the Alexandrian age hrought with it no talent for fresh metrical inventions，and the time had now arrived when the harvest of Greek prosody was completely garnered．

Latin Metre．－Very litule is known about the verse－forms of the original inhahitants of Italy，before the introduction of Greek influences．The earliest use of poetry as a national art in Italy is to be judged hy inscriptions in what is called the Saturnian metre．Already，the first Latin epic poets， Livius Andronicus in his Odyssia，Nacvius in his Bchkm Punicum， the Scipios in their Elogia，combined their rude national sense of folk－song with a consciousness of the quantitative rules of the Greeks．But the same writers，in their dramas，undouhtedly used Greek metres without adaptation，and it is thercfore likely that the ancient Saturnian measure was already looked upon as barbarous，and it makes no furt her reappearance in Latin literature（cf．Gleditsch）．The introduction of Greek dramatic metre marks the start of regular poetry among the Latins， which was due，not to men of Roman birth，but to pocts of Greck extraction or inha hiting the Greek－speaking provinces of Italy．These writers，bearing the stamp of a widcly recognized cultivation，threw the old national verse back into oblivion． Latin verse，then，began in a irce but loysh modification of the principles of Greck verse．Mautus was paticularly ambitious and skilful in this work，and，aided by a vative genius for metre， he laid down the basis of Latin dramatit：verification．Terence was a feebler and at the aume time a more timid metrist．In satire，the iambic ar ？measures wie carefully adapted
hy Ennius and Lacilius．The dactylic hexameter followed， and Ennius，in all matters of verse a daring innovator，directly imitated in bis Arnales the epic measure of the Greeks．To him also is attrihuted the introduction of the elegiac distich， hexameter and pentameter．The dactylic hexameter was forthwith adopted as the leading metre of the Roman poets， and，as Gleditsch has pointed out，the basis upon which an future versification was to he erected was firmly laid down hefore the death of Ennius in 169 B．c．Lucilius followed，but perhaps with some fendency to retrogression，for the Latin critics seem to have looked upon his metre as wanting both in melody and clasticity．Lucretius，on the other hand，made a further advance on the labours of Ennius，in his study of
And long roll of the Hexameter."

Lest，however，this great form of verse should take too exclusive a place in the imagination of the Romans，a younger generation， with Laevius and Terentius Varro at their bead，began to imitate the lyrical measures of the Greeks with remarkable success．Varro，who has been styled the earliest metrical theorist of Rome，opened up a new field in this direction by the example of his Menippean satires．These poets left the rigid school of Ennius，and sought to emulate the Alexandrians of their own age：we see the result in the lyric measures used so gracefully and with such hrilliant ease hy Catullus．The versification of the Romans reached its highest point of polish in the Augustan age，in the writings of Tihullus，Propertius， Virgil and particularly Ovid，who is considered to mark the highest level of various excellence which has ever been reached by a master of Latin versification．In Horace has been traced a tendency to archaism in the study of verse，and in his odes and epodes he was not content with the soft Alexandrian modets， but aimed at achieving more vigorous effects by an imitation of the older Greek models，such as Alcaeus and even Archilochus After the Augustan age，it was no longer the Greek poets， ancient or recent，who were imitated，but the Augustans them－ selves were taken as the inapproachahle models of Roman verse．

We have hitherto spoken of classical versification as it was regarded by those whom，without offence，we may describe as pedants．But there is precious evidence of the mode in which metre was regarded hy poets，and by one of the greatest artists of antiquity．In his Art of Poetry Horace has been speaking of the need of method in composition－＂tantum series juncturaque pollet＂－and this reminds him that he has said nothing of the art of verse．The succeeding twenty－four lines contain all that this great poet thought it needrul to supply on the subject with which Alexandrian grammarians could fill as many volumes．Although he is actually writing in dactybic hexameters，he does not mention this form of verse；be is chicfly occupied in descrihing，rather unscientifically，the iambic trimeter，and in praising the iamh，pes cilms．He applauds，still somewhat vaguely，the stately versification of the precursors，Ennius and Accius，and hlames the imimedinata poemata of careless modern writers，whose laxity is coondoned by popular ignorance．The only way to escape such faults is to study the Greeks by night and by day，but Horace evidently means hy his exemplaria Grocco，not the scholiasts with their lists of metres and their laborious rules，but the old poets with their fine raptures．On Italian ground he points to Planates， and laments that the Romans of his own day，fascinated hy softer cadences，have lost their veneration for the vigorous beanty of the Plautinos numerros．And Horace closes with a queer suggestion，which may be taken as we please，that a poet in an age of flagging inspiration must trust to his fingers as wol as his ears．

Madern Varsificalion．－The main distinction between clactical and moden versification consists in the negligence shown by the moderns to quandity，which is defined as the length or short－ ness of the sound of syllables，as determined by the time reprined to pronounce them．This dimension of sound was nigid in the case of Greet and Latin poetry，until，in what is known as the

Middle Greek period, there came in a general tendency to relax the exact value of sounds and syllables, and to introduce accent, which is a measure of quality rather than of quantity. A sydleble, in modern verse, is heavy or light, according as it is accented or unaccented-that is to say, according as it recceives stress from the voice or not. In the word "tulip," for instance, the syllabies are of equal length, but the accent is strongly upon the first. It is mainly a question of force with us, not of time as with the ancients. There is, however, an element of quantity in modern verse, as there was of accent in ancient verse. The foot, in modern verse, takes a less prominent place in itself than it did in Greece, and is regarded more in relation to the whole line of which it makes a part. A mere counting of sylubtes is useless. In Milton's

> From haunted spring and date.
> Edg'd with poplar pale,'
an ancient scholiast would have found it impossible to discover any harmony, for he would have had no means of measuring the value of the heavy accent on "edg'd," followed by a pause, and would have demanded another syllable in the second line to turn the whole into verse. The first poet to whom it occurred that it was needless to attach such predominant importance to quantity was Gregory of Nazianzen (d. 389), a Christian bishop of the Greek Church. In two important poems by Gregory all prosodical discipline is found to bave disappeared, and the rule of verse has come to be accentual, with a beavy stress on the penultimate syllable. About the same time, the Greek fabulist Babrius employed a choliamhic metre having a strong accent on the penultimate. The poets of the transition loved to cultivate a loose iambic trimeter in twelve syllables, and shorter octosyllahic forms called "anacreontic," although they were lax enough from repeating the splendid effects of Anacreon. In these the old laws of quantity were more and more generally superseded by stress, and in all this we may see the dawn of the free accentual versification of modern Europe.

Romance Languages.-The prosodies of Provence, France, Italy and Spain were derived from the decayed and simplified forms of Latin verse by a slow and sometimes al most intangible transition. In these modern metres, however, when they came to be independent, it was found that all syllables in the line were of equal value, and that the sole criterion of measure was the number of these in each case. The relics of ancient versification, deprived of all the regulated principles of rhythmical art, received in rel urn the omament of obligatory and difficult rhyme, without which the weak rhythm itself would practically have disappeared. A new species of rhythm, depending on the varieties of mood, was introduced, and stanzaic forms of great claboration and beauty were invented. The earliest standard work which exhibits in full the definitions of Romance versiGeation is the Leys d'Amors of an unknown Provencal grammarian, written in \(1356 .{ }^{1}\) Another medieval treatise of great importance is the De Vulgari Eloquentia, written by Dante in 1304. There is this difference between these two works, that the former, written long after the flourishing period of the troubadours, andlyses what has been accomplished in the past, while the other, standing at the starting-point of Italian poetry, describes what has to be done in the future. Both of these authorities quote the ten-syllable line of five equal feet as most to be admired and as forming the basis of poetry. But the octosyllabie, almost in the carliest times, became a main favourite with the poets. and may be said to be the most frequently used of all lyrical measures in medieval Romance poetry. The earliest specimen of all, however, a mere refrain excepted, is the fragment of the Provencal "Boethius," and this is decasyltabic, like all French poems of the Charlemagne cycle. The typical French heroic verse, the alexandrine of six feet. is not found in the old epic poetry. In Provencal and early French the position of the caesura in each line was fixed by otrict rules; in Italian these were relaxed. Dante gives very minute, although somewhat obscure, acrounts of the essence and invention of stanzaic form (cobla in Provensal), in which
'But see the article Provengal Lateraturi.
the Romance poetries exceiled from the first. The stanza was a group of lines formed on a regular and recurrent arrangement of rhymes. It was natural that the poets of Provence sbould carry to an extreme the invention of stanzaic forms, for their language was extravagantly rich in rhymes. They invented complicated poetic structures of stanza withid stanza, and the canso as written by the great troubadours is a marvel of ingenuity such as could scarcely be repeated in any other language. The extreme fulness and elaboration of the Provencal poets. however, has been serviceable as placing a very high ideal of structural skill belore the poets of all succeeding times, and it was of immense value in directing the experiments of the earliest poet-artists of Italy and France.
In French poetry, successive masters corrected the national versification and drew closer round it the network of rules and principles. The alexandrine was invented in the 12th century, as a counterpart to the hexameter of the ancients, by Alexander de Bernay. A great part is played in French metre by masculine and feminine verse: the former is a verse which closes with a letter which is not e mute; the latter a verse which closes with e mute, or with e mute followed by \(s\), or by the consonants \(m\). Masculine rhyme is that which combines two masculine verses, and feminine that which unites twc feminine verses; and in regular verse such couplets must be alternated. Elision is the rule hy which in the scansion of a verse, the letter \(e\) at the end of a word is suppressed when it immediately precedes e mute or a nor-aspirated \(k\). These and other immutahle rules were laid down by Malherbe, and by Boileau in his Art Pottique (1674), and for more than a century they were implicitly followed by all writers of verse. It was the genius of Victor Hugo which first enfranchised the prosody of France, not by rebelling against the rules, but by widening their scope in all directions, and by asserting that, in spite of its limitations, French verse was a living thing. The richness of Hugo's rhymes is proverbial, and the boldness and flow of his alexandrines exceeded everything which had been so much as dreamed of before his time. The revolution he hrought about proved universal, and disciples like Theophive Gauticr could say, in the face of the critics and grammarians of the classic school, "It we suspected that Victor Hugo had written a single bad verse, we should not dare to admit it to ourselves, in a cellar, without a candle." Boileau and Hugo, tberefore, have been the two lawgivers of the French Parnassubs The rules of French verse being, in fact, very severe, and weakness, excess of audacity and negligences of all sorts being very harshly repressed, it is not surprising that, as the personal authority of Hugo declined, various projects were started for lightening the burden of prosodical discipline. Since 188 c those projects have been numerous, and a great many poets of genuine inspiration have written in different forms of what is called " free verse."
Tculonic.-In very early times the inhabitants of the Germanic countries developed a prosodical system which owed nothing whatever to classical sources. The finest examples of this Teutonic verse are found in Icelandic and in AngloSaxon. The line consisted of two sections, each containing two strongly stressed syllables, and of these four long syllibles three were alliterated. It is plain that there can be detected in ancient Tcutonic verse but three severe and consistent rules, viz. that the section, the strong accentuation, and above all the alliteration must be preserved. We find this to be the case in High and Low German, Icelandic, Anglo-Saxon, and in the revived alliterative English poetry of the 14th century, such as "Piers Plowman." There aro differences, however, which depend on such facts as that the Icelandic poems are mainly lyrical and the Anglo-Saxon epics are narrative. As time went on, under the pressure of south European practice, alliteration ceased to be regarded 18 the sole and sufficient ornament of Teutonic verse, and rhyme was occasionally used, but this was a concession which proved fatal to the type. With this use of rhyme, the High German poetry begins to cease, while England becomes the centre of
equivalent and that the division is not logical．Cuvier showed that there were lour groups in the animal kingdom，each corre－ sponding to a definite type or plan of structure，and that craniate vertebrates composed only one of these groups，in－ vertebrates including three．In the progress of zoology it has become clear that the coelomate animals fall into a very large number of distinct groups or types，and that the vertebrates are only one class amongst many morphologically distinct classes．It has been shown further that amongst the animals that Lamarck would have placed in the Invertehrata there are several which，although devoid of vertebrae or cranium，must be associated with vertebrates in any natural system．Closer investigation of the anatomy and embryology of the craniate vertebrates showed that the possession of a jointed vertebral column was not a fundamental characteristic of the group． In some creatures，such as sturgeons and lampreys，the position of the jointed vertebral column is occupied by an unjointed rod，the so－called notochord，whilst all the Vertebrata pass through an embryonic stage in which a similar elastic unjointed notochord exists as the precursor of the jointed column．It was further found that all the vertebrates of Lamarck displayed either in the embryonic condition alone，or both in embryonic and adult conditions，a set of passages leading from the anterior－ lateral portion of the body into the cavity of the pharynx，and known as gill－slits，because in those creatures in which they become functional for aquatic respiration they lodge the gills or branchial tufts．Further，it was found that in all verte－ brates the great central mass of the nervous system，known as the brain and spinal cord，is in reality a hollow tube with more or less thickened walls，developed as a strand of tissue along the dorsal surface of the embryo，which sinks downwards and inwards to form a hollow tube lying dorsal to the notochord．

In 1866 A．Kowalewsky，in a memoir that is one of the classics of vertebrate morphology，worked out the development of \(A\) mphioxus，then recognized as the simplest of the vertebrate group，and compared it with the development of an Ascidian， one of a group then termed Tunicate Mollusca，and showed that the latter creature，in its larval stage，possessed，like Amphioxus，a notochord，gill－slits and a hollow dorsally placed nervetube．In 1877 E．Ray Lankester published a ciassifica－ tion of the animal kingdom in which he definitely associated all the Tunicates witb the vertebrates，and subdivided Verte－ trata as follows：Branch A．，Urochorda，which contained the Tunicates and was characterized by the limitation of the notorhord to the caudal region；Branch B．，Cephalochorda， containing Amphioxus，in which the notochord extended from the extreme tip of the tail to that of the snout；Branch C． Craniata，containing the Cyclostomes，Pisces，Batrachia， Repeilia，Aves and Mammalia，in which the anterior extremity of the motochord ended in the base of a craniura．Later，F．M． Batioar adopted the system of Lankester，but proposed to mplace the term Vertebrata，which was anatomically mis－ kadian，by the new term Chordata，as the latter term laid stase the existence of the notochord as the fundamental darecter of the group．A．Kowalewsiky had shown as early Is 1866 thut the marine worm Balanoglossus，described by Della Chisje at the end of the s sith century，possessed a set of gill－ stes simitar to those of Amphioxus and Tunicates．From 1884 10 1SS6 W．Bateson published a series of studies in which he sutgested that there was present in Balanoglossus a representa－ tive of the nolochord，and that a portion at least of its nervous system was a ballow，dorsally placed tube．On these grounds， couphed with the prisence of gill－slits，he proposed to add yct a low ci branh to the Chordata，to include Balanoglossus and lo be termed liemichorda，but neither Bateson nor zoologists Tho levere wrillen sinct havesogF＇－rtebrate affinities of

With regard to the terms Vertehrita and Chordata，usage stin differs．Those who wish to make the names of the larger groups significant labels prefer the term Chordata，and on the whole seem to he prevailing，but there remain many roologists who prefer the designation with historical associations，and regard it as immaterial if，in the advance of knowledge，the connotation may have been so changed that the term has become conven－ tional rather than verbally significant．

The characters and affinities of the lower groups that have been included under Chordata are discussed in the articles Hemichorda，Balanoglossus，Phoronidea，Pterobrancria， Tunicata and Auphioxus，so that it is necessary here to deal only with the general characters of the Chordata or Verte－ brata Craniata，and to consider the views that have been advanced with regard to the origin of vertebrates．

The Vertebrata Craniata share with the Cephalochordara the fundamental characters of the group Chordata．They are bilater－ ally symmetrical animals with a well－marked metameric segmenta－ tion of the muscles and muscle septa，with a gut opening by an anterior ventral mouth，with lateral gill－stits in the embryo or adult，and with a ventro－posterior anus；with a dorsal tubular central nervous system．under which lies in the embryo or adule an unsegmented notochord of endodermal origin：with the body prolonged posteriorly to the anus to form a metamerically segmented tail containing notochord，nervous system and muscles；with a spacious coelomic cavity and separate blood－vaccular system．They differ from the Cephalochordata in the extreme cephalization of the anterinr segments of the body，including the formation of an enlarged brain with paired sense organs，the nose，eyes and auditary apparatus，and the formation of a cragiura，and in the structure of the skeleton，heart，liver and organs of excretion and reproduction．

Evidence points to the origin of the Cephalochordata and the Craniata from a common ancestor in which metameric segmenta－ tion of the mesoblast and the nervous system was complete and regular．This condition has been retained by Amphioras．but in the Craniata has been much modified．The lateral mesoblagtic plates with their contained coelom are unsegmented in craniares， although traces of the primitive segmentation are visible in the development of Cyclostomes．The dorsal mesoblastic somites with the segmental musculature derived from them retain the segmental condition in Amptioxus and in the trunk region of craniates， but in the head region of the latter there has taken place a fusion or cephalization more pronounced in the higher forms，where the head is distinct from the trunk，than in lower forms where the hesd passes gradually into the trunk．The exact number of somites which have been cepbalized is difficult to estimate，and certinly varies in different cases，but it appears to be certain that three， immedintely anterior to the otic region，have been transformed into the optic muscles．Those behind the otic region（metaotic somites）vary from nine to eleven，and in Cyclostomes give rise to segmental muscles in series with those of the trunk．In true fash and higher Craniates the anterior one or two of these metactic somites practically disappear，whilst of the remainder none form complete segmental muscles．but various portions of them give rise to muscles associated with the branchial apparatus（epibanchial and hypobranchial），the dorsal portions fading away．In other words，the metameric series continued from the trunk to the anteriot end of the body in the ancestral form，retained by the Ceph alochorda． and of which traces remain in the development of the Craniata， has been modified in the adult Craniata by the suppression of certain portions and the specialization of other portions to form an unsegmented structure．The process of cephalization，vith， however，less complete destruction of the segmental arrangement， has also affected the anterior nerves of Craniata and brought aboat the distinction between cranial and spinal nerves which is a feature of the Craniates．The ancestral form must be supposed to have given of from its central nervous system lateral nerves segraentally arranged in pairs．Each member of each pair possessed two roots， a dorsal and a ventral root．possibly remaining separate，as in the Cephalochordata and the cranial nerves of Craniata，poseibly joiniog to form a common trunk，as in the spinal nerves of Craniata．The yentral roots consisted of motor fibres passing straight outward＇s to innervate the segmental muscles derived from the dorsal somites： the dorsal roots took a longer course．arching outwards and round the body to supply the visceral muscles，the mucous membranes， the skin and the sense organs connected Fith these．It appears moreover，that the ventral roots remained in strict association with the muscular somites to which they corresponded，and wandered beyond 1 heir own segmental areas only with these muscles，whercas the ramifications of the dorsal fibres had a wider range and were less closely bound to segmental regions．Such a primitive condition has been retained by Amphiorus，but in the case of Craniata only by the spinal nerves．Almost every great anatomist has contributed to working out the history of the cranial nerves，and it would be a hopelest tack to make a just allocation of credit for the varion
C. Gegenbaur, F. M. Balfour, A. M. Marshall, J. W. van Wijhe, C. Gegenbaur F. M. Balfour, A. M. Markall. J. W. van Wijhe, Goodrich are conspicuous. The Craniates are characterized by the presence of ten pairs of cranial nerves, numbered usually 1 . to X., from before backwards, with a course and distribution fundamentally identical throughout the group from the lowest fish to man, whilst in the higher forms an additional eleventh and twelfth pair have been assumed from the trunk or neck. Pairs 1 . and 11 . are the nerves of special sense of smell and sight, and in all probability are morphologically distinct from true segmental pairs. Pairs III. to \(X\). represent various portions of primitive segmental pairs, modified in association with the cephalization of the anterior region of the body. IIL., IV. and VI. innervate the muscies ol the eyeball, and represent the ventral roots of the three prootic somites; the dorsal root of the anterior of these thrce passes to the anterior portion of the head as the so-called nerrus ophihalmicus profundus. The V. of human anatomy, the trigeminal, is formed almost entirely from the dorsal root of the nerve of the second prootic somite, whilst the VIt. or facialis of human anatomy similarly represents the greater part of the dorsal root of the third prootic somite, whilst the remaining and lesser portion of that root forms the VIII. or anditory nerve of human anatomy. The 1X. or glassopharyngeal represents the dorsal root of the first metaotic somite, the ventral root of which persist j in Cyclostomes but disa ppears together with the somite in bigher Craniates. The X. or vagus of bumaa anatomy represents the dorsal root of the second metaotic somite. The backward extension of the vagus to supply the regions corresponding to the posterior gill-slits and internal viscera has been interpreted variously. The explanation at first sight most probable, and that has been advocated by Gegenbaur and many other anatomists, is that the dorsal coots corresponding to a number of somites have funed to form a single system. The ventral roots of the somites in question have a varying fate, being fully represented in the Cyclostomes by perves to musculature developed from these somites, Ehilst in the higher forms thay have in great part disappeared. Evidence seems to point to a similar dissppearance of the dorsal roots of the branchial somites posterior to the first supplied by the vagus; but as remnants of them have beea traced in the development of the various Craniates, it reems as if the vagus were not in reality a compound nerve, but the extension of the nerve arising from a cingle dorsal segmental root. Notwithstanding some dubiety in detail, the main proposition remains clear: the cranial nerves of Craniates have arisen, in the course of a procese of cephalization, from a primitive set of segmental nerves in series with those of the trunk, by a suppression of certaio portions and an expansion and specialization of other portions. The work of a large number of anatomists has showo that the fundamental morphological charactera of the cranium and brain, organs in which the Craniates are most clearly marked off from Cephalochordates, are fundamentally alike throughout the group. The original crude theory of L. Oken and the poet Goethe, that the skull was composed of expanded and fused vertebrae, was disproved by T. H. Huxley and Gegenbaur. There can be little doubt, however, that the region belind the iafundibulum, consisting of part of the optic capsules, the anterior extremity of the notochord, the parachondals (for details as to these see article SEELETON) and the corresponding lateral and dorsal elements with their suspended visceral arches represent at least three cephalic somites, and that the process of cephalization has played an important part ia the formation of the cranium as it has in the case of the nerves and muscles of the head. The region of the cranium anterior to this is probably a forward growth of the primitive head, produced in aseociation with the development of the organs of smell and sight, and thus is different in kind from the posterior region. But as Amphioxus is obviously degenerate in the region of the head, no source of information exists as to the exact mode in which the development of the head of the ancestral vertebrate took place.

It is still less possible to lay down anything definite as to haw far the structure of the brain of Craniates conforms with a theory of origin by a process of cephalization of metameric segments. The minute expansion at the anterior end of the nerve tube of Amphioxes cannot be called a brain, whilst the brain of all the Craniates is identica! in morphological type and so complex that it must have betind it a long history of development. The embryonic Craniate brain appears as three dilatations of the neural tube, respectively the posterior or hind-brain. continuous with the spinal cord. the mid-brain and the fore-brain. From the hind-brain there arises the medella oblongata or myeiencephaion behind, and the meten. cephalon in front, the dorsa! wallor which gives rise to the cerebellum. The hind-brain is clowely similar in structure to the spinal cord, and gives rise to all the segmental cranial nerves except the palketicus and motor oculi. The sides of the mid-brain thicken and give rise to the optic lobes: its floor forms the crura cerebri. whilst the or ulomeler and patheticus nerves take origin from it. The fore-braia divides into a posterior tbalamencephalnn and an anterior telencephalon. Thickenings of the floor of the thalamencephaton give siec to the optic thalami, the paired optic lobes grow out from its sides: the pincal body, which primitively was a pair of dorsal eyes, ardes: the pineal body, which primitively was a pair of dorsal eyes,
telencephalon in ironat grows out secondarily toanextent progreasively jncreasing in the higher groupe and forms the corpora striata, the cerebral lobes and the rhinencephalon. The most plausible interpretation is that the mid-and hind-brains reprement a cephalized continuation of the spinal cord, probably originally metamerically segmented, whilst the fore brain has been developed primitively in association with the organs of smell and hearing, and secondarily in connexion with the increasing elaboration of the higher functions of the brain and the development of the association centres of which the cerebrum is the seat.
The details of the structure and development of the sense-organa gill-slits and visceral organs of Craniates are sufficiently discused in the articles dealing with the separate classes of the group. It is necessary to reler, however, to new light thrown on the structure and morphology of the reanl excretory organs due chiefly to the investigations of Goodrish. The excretory organs of the vast majority of invertebrate coelomate animals are essentially what are known as sephridia. Nephridia in their simplest form are excretory tubules growing from the exterior inwards, and removiag from the murrounding tissues or blood vessels waste matter which they discharge to the exterioc. In many cases these tubules acquire secondary openings to the coeiom, termed nephrostomes and serving to remove waste matter from that space. Finally, in metamerically segmented invertebrates the pephridia frequentiy appear in eegmentally disposed pairs. Gegenbaur, C. Semper, B. Hatschek, and many other anatomists have compared the kidneys of Craniatea with nephridia, supposing the segmental tubules with their coelomic apertures to represent nephridia, which, instend of discharging directly to the exterior by pores in the segments ia which they are situated, have come to discharge at each side into a longit udinal common duct with a posterior aperture. The excretory system of An phioxics undoubtedly consists of true nephridia, morpbologically identical with those of the invertebrate coelomates. The latter, however, may also possess a. different set of organs, also frequently appearing as segmentally arranged tubules. These are the genital fuinels which develop outwards from the coelom, and serve for the discharge of the genital producta It is with the latter that the segrental tubules of the Craniata are to be compared, and the possession of a different type of excretory organ is one of the most vital distinctions bet ween the Craniata and the Cephalochordata.

Origin of the Vertebrata.-The recorded foemil history carries us backwards with comparative ease from the highest mammals to the lowest members of the Craniates. Remains of the latter, a bundant in the palaeozoic rocks, were undoubkedly true Craniates, allied with the Cyclostomes and the lower Gishes, but showing no more than superficial and dubious resemblances to the members of any other group. We have to rely upon general infereaces which lead to much ingenious angument and little certain result. The Craniates can be traced back to fishes not unlike the modera shark or dogish with little dubiety. The Cyclostomes, although true Craniates, present an obviously simpler type of otructure: the bead is less cephalized and therefore less distinct from the trunk; lower jaw, true teeth and dermal armature are absent, whilst there are other simplifications in the structural type. Very general assent could be obtained for the proposition that one atage in the ancestry of the Vertebrates must have been not unlike a simplified Cyclostome. a bilaterally symmetrical coclomic animal, dongated and fish-like in shape, but without paired limbs, with a smooth, eort skin, a ventral mouth without teeth or lower jaw and probably surrounded by labial palps, with lateral gill-cilis and a ventroposterior anus; with an unseguented notochord and a dornal tubular nerve cord. The brain, however, must have been expanded and there must have been paired organs of smell, two lateral eyes and probably two dorsal eyea, and a large paired auditory apparatus The mesoblastic system of muscles and fibrous sketeton was highly and regularly aegmented, but in the anterior region cephalization had proceeded to a considerable extent. The resemblances bet ween such a creature and Ampkioxus are so close that they cannot be dismissed. A mphioxus no doubr is specialized in many respects, and probably degenerate in others, just as, if we go to the other pole of the Craniates, we know that although the Anthropoid Apes are the searest living representatives of the ancestor of man, they are specialized in many respects and almost certainly degenerate in other respects. If we carry those processes of progressive change by which the Cyclostome type has paseed into the low fish type, and the low fish type into the higher Craniate type, backwards towards \(A\) mphioxws we reach the conception of an a ncestral creature essentially a Cephalochordate, differing no doubt from \(A \mathrm{mphiox}\) as in various details, as one member of a group differs from another but specially marked by the posuession of better developed cranial sense organs and by the presence of a coelomostomic instead of a mephridial excretory system. Paired sense organs of an elaborate character have arisen in many groups, and there seems to be no special difficulty in supposing that thoee characteristic of Craniates have arisen independeatly in that group. Amphiorus, although ia that respect parily degenerate, being degenerate from a atage in which the cephalic sense organs were extremely simple. The different type of excretory system presents even less theoretical difficulty. as both types of megmental funnel exist amongst Invertebrates and
may even be present in the ame animal. If we follow the process of progressive change still further back, we reach a stage in which cephalization had practically disappeared, and where even metameric segmentation was in a much less advanced condition. The tadpoles of Ascidians, and still more remotely Balanoglossus, although stilf less than Amphioxus to be regarded as actual ancestral vertebrate types, give images of some of the many phases in which the ancestral type may have been exhibited. It is needless to say that the creatures cxhibiting such a stage in the ancestry of the Vertebrates would have formed simply one in the vast series of marine coelomate types which the anatomy of the Invertebrates shows us to have existed. Its distinguishing features would have been the presence of gill-slits, of the skeletal rod, known as the notochord. and of the dorsal tubular nervous system. We cannot make even profitable guesses as to the exact conditions under which these features, or the corresponding features of other coclomate types. arose in the kaleidoscopic differentiation of form, but consideration of the general morphology of the nervous system enables us to see the Chordate ancestorinits true perspective amongst other coelomic groups. In the Coelentera the nervous system appears as a diffused layer of cells and fibres, underlying, and in close connexion with, the epidermis. This diffused layer may thicken in special regions, forming rings round apertures, radial bands, and so forth, whilst in the intervening areas it disappears. In the different groups of Coelomates specialized bands and strands have formed in this way from a primitive diffuse system. giving rise to the nervous patterns distinctive of the various groups, whilst a second process, that of inward migration from the epidermis, produces further changes. In the Turbeliaria there have been formed two ventrolateral cords with variously placed anastamoses; in the Trematodes, two ventral, two lateral and two dorsal conds with variously placed anastomoseg, and in the Cestodes rwo lateral and in some cases one dorsal cord. In the Nemertea the primitive continuous subepidermal sheath is retained with two lateral and oometimes one dorsal thickening. In the Nematodes there are one dorsal, one ventral and at each side two hateral thickenings, sometimes separated cords, sometimes mere sub-epidermal bands, whilst the traces of a circum-oesophageal ring may be regarded as another specialization of the primitive complete sheath. In Balanoglossus there is a continuous sheath with a dorsal and ventral band, the latter in certain regions showing traces of a tubular structure. In Annelids and Arthropods there are two ventral bands tending to unite in the median ventral line, and a circum-oesophageal collar. In the Chordates there is a continuous dorsal band, which secondarily migrates inwards and becomes tubular. In almost any of these types, as the individual becomes more integrated, there is a tendency for the nervous matter of the specialized areas to become still further massed; and in bilaterally symmetrical animals with forward progression and the beginning of cephalization a specially important mass forms something comparable with a brain in special relation with the sense organs of the primitive head. If the problem of vertebrate origin be considered from the wide point of view of comparative anatomy. it becomes no more difficult nor remarkable than the differentiation of any other type amongst simple, marine, unsegmented, or little segmented, wormbike creatures. It is obvious, however, that such a theory of origin cannot expect confirmation from the geological record, as it supposes a differentiation of the msin ehordate characters in a stage too simple to leave fossil remains.

Reference must be made, however, to definite theories of the origin of Vertebrates which have been successively urged by anatomists. A. Dohrn, if not the inventor, was the most ingenious advocate of the Annelid theory. He recognized the fundamental importance of segmentation in vertebrate structure and sought for a highly segmented ancestor. Partly influenced by Ray Lankester's studies on degeneration, he held that the apparently simplest living members of a group may give misleading elues with respect to the ancestral line, and he devoted much brilliant anatomical and embryological work to develop the thesis that Amphiorus and the Tunicates were degenerate offshoots from a higher vertebrate stock. He took a Chaetopod worm as the closest living representative of the stock of all segmented animals, and in particular of the Vertebrates, laying stress on the segmentation, the large coelom, the segmental excretory tubules, the vascular system with red blood, the scgmentally disposed branchiae, the lateral organs of locomotion, and the tendency to form a distinct head. The chief difficulty was the nervous system, and this he explained by accepting an idea propounded many years before by De Blainville, that the dorsal surface of Vertebrates was homologous with the ventral surface of Annelids and Arthropods. He assumed that the ancestral type was a marine creature in which reversal of surface was of little physiological moment. He supposed that a new mouth had been formed, probably by a coalescence of a pair of gill-slits on what was to be the ventral surface of the vertebmate, and that the old invertebrate mouth with the downward turn of the anterior end of the alimentary canal, between the diverging ends of the ventral nerve cords, was to be sought for in the roof of the vertebrate hrain, possibly the pincal body. Bohm's theory has failed to find acceptance for manym \(\quad\) which the chief are the difficulty as to reversal of
many groups of animals and in different organs, greater lonowledge of the vascular, excretory and nervous systems, and in par. ticular the discovery that the pineal body was a degenerate eye. F. M. Balfour from the first relused to accept Dohrn's theory and suggested that the dorsal position of the nerve cord in Vertetorares could be accounted for by supposing that the primitive condition was a lateral cord at each side such as were then known to occur in Nemertines, and that these cords had fused dorsally in Vertebraies, ventrally in Annelids. A. A. W. Hubrecht soon afterwards discovered the existence of a continuous nerve sheath in Nemertines, and he and Ray Lankester suggested a Nemertine origin for Vertebrates, and homologized the notochord with the proboscis sheath, Ray Lankester, in particular. pointing out that the tubular condition of the vertebrate nervous system was secondary, that it consisted essentially of a dorsal band, which sank inwards, and that the canal might have been at first an epidermal water canal. These authors were emphatic in laying stress on the view that no actual Nemertine could be supposed to represent the vertebrate ancestor, but that the Nemertines were to be taken merely as showing the kind of material out of which the vertebrate structure, and in particular the vertebrate nervous system, might have arisen. The view adopted in this article as given above, is in reality an extension of the Hubrecht-Lankester theory.

The theory of vertebrave origin that has been most elaborately expounded is W. H. Gaskell's hy'pothesis that they are descended from Arthropods, Gaskell accepts Dohm's view of the importarice of segmentation and of the degeneracy of Amphioxus and Tunicates. but rejects the conception of a reversal of surfaces. He täkes the larval stage of a Cyclostome as the most generalized living representative of the essential vertebrate type. and selects Limulws, the kingerab, in a very general way, as the closest living representative of such an Arthropod type as might have been the vertebrate ancestor. The starting-point of Gaskell's theory is the conception of the vertebrate nervous system as a band of nervous tissue which immediately underlies and gradually grows up round a distinct epidermal tube, the tube which forms the vesicles of the brain and the central canal of the spinal cord. Ray Lankester had already applied this to the Nemertine theory, but Gaskell urges that it affords an immediate comparison with Arthropod structures. The veatral mouth of Limmins leads vertically upwisds through a ring of nervous tissue, the circumoesophageal commissure, into an expanded stomach, and from this the digestive tube runs back to the anus immediately dorsal to the ventral nerve chain. For Gaskell the infundibulum is the Arthropod oesophagus, the ventricles of the brain are the stomach, and the spinal canal leading back to fuse with the ans at the neurenteric canal is the Arthropod digestive tract. In the Vertebrate a new digestive tract has been formed, probably Irom structure corresponding to the branchial chamber of Arthropods. The lateral halves of the ventral nervous system of the Arthropod, where they diverge on either side of the oesophagus, represent the crura cerebri of Vertebrates, whilst the supra-oesophageal ganclia represent the fore-hrain. Gaskell has instituted an elaborate cemparison, extending to very minute details of structure, and firds remarkable analogies between the organs of Arthropods and structures in the Vertebrates. From the palaeontologiral side. be points out that at the time when the earliest known Craniztes mere abundant, large Arthropods, essentially like Limulus, vere aioo abundant. He thinks it probable that Vertebrates a rose from a dominant invertebrate group, and points to many resernblances is detail between the Silurian Arthropods Palacostraca and the Craniate Ostracoderms of the same horizon.

Bibliograpiy.-F. M. Balfour, Monograph on the Deseloperthe ef Elasmobranch Fishes (1878); W. Bateson, "Balanoglossus," in lie Quarlerly Jourmal of Alicroscopical Scicmice (1884, 1885, isfo': f. Beard, "The System of Branchial Sense-Organs and their Associ ated Ganglia in Iehthyopsida," in the Quart. Journ. Micr. Sci. (188s' A. Dohrn, "Studien zur Urgeschichte des Wirbelthierkorpers." is the Mith Zool. Sia. (Naples, 1882, 1884, 1885, 1886, 1904): W. H Gaskell, Tho Origin of Veriebrates (1908); C. Gegenbaur, "De Metameric des Kopfes," in the Morph. Johrb. (1888); Grwndxige ec Vergleichenden A natomie (various editions from 1870); E. S. Goocrici, volume on "Vertebrata Craniata," in Lankester's Treafise * Zoology (1g09) (a notable review of the subject, to which the writer ol this article is specially indebted); B. Hatschek, "* Die Meratoeric des Amphioxus und des Ammocoetes," in Verlr. A nat. Ges. Al icin 1892), and Arat. Anz. (1893); A. A. W. Hubrecht. "On the Arcesrad Form of the Chordata," in the Quort. Jowrn. Micr. Science (1883) "The Relation of the Nemertea to the Vertebrata" (ibid. 1857) A. Kowalevsky, "Le Developpement de l'Amphioxus lancechatus. in Arch. Sci. Phys. Nat. (I866); "Entwickelungegeschichte det einfachen Ascidien," in SI Pelersb. Acad. Sci. (1867), and summerimed in the Quath. Journ. Micr. Sci. (1870); N. K. Koltzof, "* Metarreri des Koples von Petromyzon Planeri," in Anat. Anz. (1890): "Entwickel. d. Kopfes von Petromyzon Planeri," in \(B\) wll. Soc. \(/ \mathbf{m i f}\) Nat. Moscos (1902) : E. Ray Lankester: "Notes on Embryoloz and Classification," in Quarl. Journ. Micr. Science (1877): artinte "Vertebrata." in Ency. Brit. (gthed.) : A. M. Marshall, ". The Segmental Value of the Cranial Nerves," in the Jowrs. A mat. En Phys. (1882); H. V. Neal. "Segmentation of Nervous System is

Squalus acanthias,", in Bull. Mus. Comp, Zool. (Harvard, 1898); 1. W. van Wijbe." Ueber das Visceralskelet, u. die Nerven des Kopies der Ganoiden u. von Ceratodus," in Niederl. Arch. \(f\). Zool. (1879, 1882) ; various authors (A. Dendy, H. Gadow, J. S. Gardiner, W. H. Gaskell, E. S. Goodrich, E. W. MacBride, E. Ray Lankester, P. Chalmers Mitchell, A. Smith Woodward). "Discussion on the Origin of Vertebrates," in the Proc. of the Linncean Society (London, 1910).
(P. C. M.)

FRRTICAG (from Lat. seriex, highest point), the direction of the line of action of gravity, as determined by the plumbline. The angle of the sertical is the angle between the direction of the plumb-line and that of the earth's centre (see Earth, Figure ozties).

VEBTUB, GEORGE (1684-1756), English engraver and antiquary, was born in St Martin's-in-the-Fields, London, in 1684. At the age of thiteen he was apprenticed to an heraldic engraver, al Frenchman, who failed in three or four years. Vertue then studied drawing at home, and afterwards worked for seven years as an engraver under Michael Vandergucht. He was patronized by Sir Godfrey Kneller, and was one of the first members of the Academy of Painting which that artist instituted in 1711. His plate of Arehbishop Tillotson, after Kneller, commissioned hy Lord Somers, estahlished his reputation as an engraver; and he was soon in an excellent practice, engraving portraits after Dahl, Richardson, Jervas and Gibson. In portraiture alone he executed over five hundred plates. In 1717 he was appointed engraver to the Society of Antiquaries, and his burin was employed upon many interesting statues, tombs, portraits and other subjects of an antiquarian nature. He died on the 24th of July 1756, and was buried in the cloisters of Westminster Abbey.

From the year 1713 Vertue had been indefatigable in his researches on all matters connected with the history of British art, and had accumulated about forty volumes of memoranda on the subject. These were purchased by Horace Walpole. and form the basis of that author's Anecdotes of Painting in England, including an account of Vertue's life and a catalogue of his engravings. Vertue's own literary works include On ILolbein and Cerard's Pictures (1740): Medals, Coins, Great Seals, Impressions, from the Elaborale Works of Thomas Simon (1753); Catalogue and Description of King Charles the First's Capital Collection of Pictures, Limnings, Stalues. \& \(\mathbf{c c}\). (I757): Catalogwe of the Collection of Pictures belonging to King James II. to which is added a Catalogue of Piclures and Drarsings in the Closet of Queen Carotine (1758): Catalogue of the Curious Callection of Pictures of George Viliters, Duke of Buckingham (1758); Description of the Works of that Ingenious Delineator and Engrater. W. Hollar (1745).

VERTUINUS (or Vortumas, "turning," "changing"), in Roman mythology, the god of the changing year with its seasons, flowers and fruits, probably of Italian origin. Like Proteus, he had the power of assuming any shape he pleased, which enabled him to win the love of Pomona (q.v.). His shrine and.statue (see the well-known description in Propertius iv. 2) were in tbe Vicus Tuscus, and from his connexion with this busy street he was regarded as having a special interest in trade and barter. At another sanctuary on the slope of the Aventine, sacrifice was oflered to him every year on the 13th of August. It is probable that he was of Etruscan origin (see Wissowa, Religion und Kultus der Römer, 1902, p. 233).

VERULAMIUM, a Romano-British town situated in the territory of the Catuvellauni, close to the modern St Albans (Hertfordshire). Before tbe Roman conquest it was probably a native capital: afterwards it received the dignity of a municipium (implying municipal status and Roman citizenship). Tacitus cells us that the town was bumt hy Boadicea in A.D. 61, but it again rose to prosperity. Its site is still easily recognizable. Its walls of fint rubble survive in stately fragments, and enclose an area of 200 acres. Of the internal buildings little is known. A theatre was excavated in 1847 , and parts of the forum were opened by Mr William Page in 1898 ; both indicate a civilized and cultivated town. The complete uncovering of the site was planned in igio.
(F. J. H.)

VEgVET, 2 Central and South African monkey, known as Cerropithecus pygerythrus. It is nearly allied to the grivet (g.v.), hut distinguished (as indicated by its name) by the
presence of a rusty patch at the root of the tail, and by the black (instead of grey) chin, hands and fect.
VERVIERS, a town of Belgium, in the province of Liege, not far from the Prussian frontier, and on the main line from Liége to Aix-la-Chapelle and Cologne. Pop. (1904) 49,108. It is a modern town owing its prosperity to the cloth trade which began here in the 18 th century. It is situated on the Vesdre, which flows into the Ourthe a few miles before its junction with the Meuse; and the water of that river is supposed to be especially good for dyeing purposes. As the river water was insufficient to maintain the local industry an artificial reservoir was constructed at La Gileppe on the Hautes Fagnes, and an imposing aqueduct conveys the water stored on these highlands into Verviers. There are also extensive glass factories, but these have suffered from German competition, and many have been closed. A monument to a local celebrity named Chapuis is interesting for the reason that his execution by order of the prince-bishop of Liege was the last act of sovereignty taken by that prelate.

VESICA PISCIS (Fr. amande mystique), in architecture, the term given to a pointed oval panel formed by two equal circles cutting each other in their centres; this is a common form given to a panel in which the figure of Christ is represented. It is commonly employed in medieval seals, and especially those of bishops and monastic establishments.

VESOUL, a town of eastern France, capital of the department of Haute-Saone, 236 m . E.S.E. of Paris on the Eastern railway to Belfort. Pop. (1906) 8702. Vesoul is situated between the isolated conical hill of La Motte (1263 ft .) and the river Durgeon. The vine-clad hill, from which there is a fine view of the Jura and Vosges mountains, is crowned by a votive chapel which in 1855 replaced the old fortification. The medieval walls of the town, dating from the \(13^{\text {th }}\) and 15 th centuries, still exist on its northern side, and in the narrow and winding streets ate many old buildings. The church of St George dates from the 8 8th century. In the pleasant south-eastern quarter are the promenade and the Place de la République, with a monument to the Gardes Mobiles who fell in the war of 1870-71. Vesoul is the seat of a prefect, a tribunal of first instance and a court of assize, and has a lycée for boys, training colleges for both sexes, and a hranch of the Bank of France. Distilling and the manufacture of files and tapioca are among the industries. The town is a market for farm-produce and cattle.

Vesoul (Vesulism Castrum, Visolixm, Vesulum) is of ancient origin, but in existing records is first mentioned in the gth century. It was originally a fief of the church of Besançon, and passed afterwards to the house of Burgundy, becoming, in the 13th century, capital of the bailiwick of Amont. The castle was destroyed in the 17 th century. The town suffered much during the wars of religion and the Thirty Years' War. Vesoul belonged temporarily to France after the death of Charles the Bold, duke of Burgundy; was returned to the empire when Charles VIII., king of France, broke off his marriage with the daughter of Maximilian, king of the Romans; and again became part of France under Louis XIV. after the peace of Nijmwegen in 1678.
vespasian, in full Titus Flavius Vespasianus, Roman emperor A.D. 70-79, was born on the 18th of November, A.D. 9 , in the Sabine country near Reate. His father was a taxcollector and money-lender on a small scale; his mother was the sister of a senator. After having served with the army in Thrace and been quaestor in Crete and Cyrene, Vespasian rose to be aedile and prator, having meanwhile married Flavia Domitilla, the daughter of a Roman knight, by whom he had two sons, Titus and Domitian, afterwards emperors. Having already served in Germany, in the years 43 and 44, in the reign of Claudius, he distinguished himself in command of the and legion in Britain under Aulus Plautius. He reduced Vectis (Isle of Wight) and penetrated to the borders of Somersetshire. In 5i he was for a brief space consul; in 63 he went as governor to Africa, where, according to Tacitus (ii. 97), his rule was " infamous and odious"; according to Suetonius (Vesp. 4), "upright and highly bonourable." He went with Nero's
suite to Greece, and in 66 was appointed to conduct the war in Judaca, which was threatening general commotion throughout the East, owing to a widely spread notion in those parts that from Jtdaea were to come the future rulers of the world. Vespasian, who had a strong vein of superstition, was made to believe that he was himself to fulfil this expectation, and all manner of omens and oracies and portents were applied to bim. He also found encouragement in Mucianus, the governor of Syria; and although a strict disciplinarian and reformer of abuses, be had a soldiery thoroughly devoted to him. All eyes in the East were now upon him; Mucianus and the Syrian legions were eager to support him; and on the sst of July 69, while he was at Caesarea, he was proclaimed emperor, first by the army in Egypt, and then by his troops in Judaea. The legions of the East at once took the customary oath of allegiance. Nevertheless, Vitellius, the occupant of the throne, had on his side the veteran legions of Gaul and Germany, Rome's best troops. But the feeling in Vespasian's favour quickly gathered strength, and the armies of Moesia, Pannonia and Illyricum soon declared for him, and made him in fact master of half of the Roman world. They entered Italy on the north-east under the leadership of Antonius Primus, defeated the army of Vitellius at Bedriacum (or Betriacum), sacked Cremona and advanced on Rome, which they entered after furious fighting and a frightful conlusion, in which the Capitol was destroyed by fire. The new emperor received the tidings of his rival's defeat and death at Alexandria, whence he at once forwarded supplies of corn to Rome, which were urgently needed, along with an edict or a declaration of policy, in which he gave assurance of an entire reversal of the laws of Nero, especially those relating to treason. While in Egypt he became more and more imbued with superstition, consulting astrologers and allowing himself to be flattered into a helief that he posscssed a divine power which could work miracles. Leaving the war in Judaea to his son Titus, he arrived at Rome in 70 . He at once devoted his energies to repairing the evils caused by civil war. He restored discipline in the army, which under Vitellius had become utterly demoralized, and, with the co-operation of the senate, put the government and the finances on a sound footing. He renewed old taxes and instituted new, increased the tribute of the provinces, and kept a watchful eye upon the treasury officials. By his own example of simplicity of life, he put to shame the luxury and extravagance of the Roman nobles and initiated in many respects a marked improvement in the general tone of society. As censor he raised the character of the senate, removing unfit and unworthy members and promoting good and able men, among them tbe excellent Julius Agricola. At the same time be made it more dependent upon the emperor, by exercising an influence upon its composition. He altered the constitution of the praetorian guard, in which only Italians, formed into nine cohorts, were enrolled. In 70 a formidable rising in Gaul, headed by Claudius Civilis, was suppressed and the German frontier made secure; the Jewish War was brought to a close by Titus's capture of Jerusalem, and in the following year, alter the joint triumph of Vespasian and Titus, memorable as the first occasion on which a father and bis son were thus associated together, the temple of Janus was closed, and the Roman world had rest for the remaining nine years of Vespasian's reign. The peace of Vespasian passed into a proverh. In \(i^{8}\) Agricola went to Britain, and both extended and consolidated the Roman dominion in that province, pushing his arms into North Wales and the Isle of Anglesey. I tbe following year Vespasian died, on the 23 rd of June.

The avarice with which both Tacitus and Suetonius stigmatize Vespasian seems really to bave been an calightened economy, which, in the disordered state of the Rioun finances, was an absolute neeessity: Vespasian could be loeral to impoverished senators and knights, to cilies and towns calamity. and especially to men of Ictic: clase, several of whom he pensioned wi as \(\{800\) a year. Quintilian is said to ha ipapleer who enjoyed this imperial favou:
desolated by naturai and of the professor salaries of as much been the first public Pliny's grcat work,
the Nafural Hislory, was written during Vespasian's reigr, and dedicated to his son Titus. Some of the philosophers who talked idly of the good old times of the republic, and thos indirectly encouraged conspiracy, provoked him into reviving the obsolete penal laws against this class, but only one, Helvidius Priscus, was put to death, and he had affronted the emperor by studied insults. "I will not kill a dog that barks at me", were words honestly expressing the temper of Vespasian. Much money was spent on public works and the restoration and beautifying of Rome-a new forum, the splendid temple of Peace, the public baths and the vast Colosseum being begun under Vespasian. The roads and aqueducts were repaired, and the limits of the pomerium extended.

To the last Vespasian was a plain, blunt soldier, witb decided strength of character and ability, and with a steady purpose to establish good order and secure the prosperity and welfare of his subjects. In his hahits he was punctual and regular, transacting his business early in the morning, and enjoying his siesta after a drive. He had not quite the distinguished bearing looked for in an emperor. He was free in bis conversation, and his humour, of wbich he had a good deal, was apt to take the form of ratior coarse jokes. He could jest, it was said, even in his last moments " Methinks I am becoming a god," he whispered to those around him. There is something very characteristic in the exclamation be is said to have uttered in his last illness, "An emperor ought to die standing."
See Tacitus, Histaries: Suetonius, Vespasian; Dio Cassios Ixvi.; Merivale, Hist. of the Romans under the Empire, chs. 57-60: H. Schiller, Geschichte der römischen Kaiserseis, 1. pt. 2; B. W. Henderson, Citil War and Rebellion in the Roman Empire 4.D. \(09-70\) (1908).

VESPERS (officium respertinum), in the Roman Catholic liturgy, that part of the daily office which follows none (nowa) and precedes compline (completorium). In it the Pater Noster, Ave Maria, Deus in Adjutorium, \&c., are followed by five psalms and five antiphons, after which come the "litue chapter," the hymn and the verse, which vary according to the season, the Magnificat and its antiphon, and the appropriate collect. In its general features the use of this office can be traced back to a very early date both in the Eastern Charcb and in the Western. Vespers may be said or sung at any time after midday, and in some circumstances even before it. (See Bmeviary.)

VESPERS, SICILIAN, the revolution of the Sicilians agaizs the Angevin domination, so called because it broke out at the hour of Vespers on Easter Tuesday 1282. Charies I. of Anjon had encountered more resistance in conquering Sicily than on the mainland, as the people were more independent and more strongly attached to the house of Hohenstaufen; and conse quently his government was more oppressive and cruel. The officials and the insolent French nobility whom he establisbed in the island rode rough-shod over the privileges of the native aristocracy and the customs of the people, and the natives were ground down by heavy taxes and degrading personal services The debased currency ruined trade, and the government treated the Sicilians with the utmost contempt. "The outrage of personal service," wrote Amari (Guerra dd Vespre, ch. iv?, "exceeded the limits of feudalism as well as of the strapget and most brutal caprices. Noble and worthy men were forced to carry viands and wine on their shoulders to the tables of the foreigner, and many young nobles were constrained to tern the spit in his kitchens like scullions or slaves." The adoninistrtion was more regular, and therefore more unyiciding and heartless, than that of the Hohenstaufens, and also more foreige Hatred of Angevin rule grew day by day, until the people were driven to revolt. According to tradition, the leader of the rising was Giovanni da Procida, a Salernitan noble mith Seciliza connexions, who had been in the service of Hobenstaufems, bees. having lost position and property after the fall of Conradin, be had taken refuge at the court of Peter III., king of Aragon, and induced him to try to make good his claims on Sicily, which wert based on the rights of his queen, Costanzs, daughter of Manfred But as a matter of cact the actual outbreak was a purdy
unpremeditated popolar movement. Charies at that time was making preparations for an attack on the East Roman empire, and extorting more money than ever from the Sicilians in order to meet his expenses. Peter availed himself of the fears which Charles's ambitions were arousing to open negotiations with his various enemies, especially with the Greek emperor, Michael Palaeologus, the Italian Ghibellines, the discontented Sicilian nobles, and perhaps with Pope Nicholas III. Suddenly the people of Sicily, goaded beyond endurance, rose against their rulers, regardless of these various plots. On the 3 Ist of March 1282 a riot broke out in a church near Palermo, in consequence, according to tradition, of the insults of a Frencb soldier towards a Sicilian woman, and a general massacre of the French began. The rising spread to the city, where the republic was prochaimed, and then through the rest of the island; thousands of French men, women and children were hutchered (there may be some exaggeration in the wholesale character of the slaughter), and by the end of April the whole of Sicily was in the hands of the rebels. Charles at once ted an expedition against the Sicilians and besieged Messina; and although the enemy had been expelled, they would hardly have been able to withstand this new invasion successfully had they not received assistance from Peter of Aragon and their own nobility, whose conspiracy they had so unexpectedly forestalled. This intervention, however, changed the character of the movement, and the free communes which had been proclaimed throughout the island had to submit to the royal prerogatives and to a revived feudalism. Peter, having reached Palermo in September 1282, accepted the Sicilian crown voluntarily offered to him, levied recruits, and declared war on Charles. Hostilitics were carried on by land and sea, and the Angevin attacks on Messina were repulsed and followed up by raids on Calabria, where Reggio and otber towns declared for King Peter. Charies proposed to settle the Sicilian question by a single combat between himself and Peter; but although the duel was agreed upon it never took place, owing to the matual distrust of the two rivals. Peter created some discontent by conferring many offices in Sicily on Aragonese and Catalans, bet at the parliament of Catania (1283) he undertook at his deatb to leave Aragon to his son Alphonso and Sicily to his younger son James, so that the two crowns should not be united, an arrangement which fell in with the Sicilians' aspirations towards independence. Pope Martin IV., unlike Nicholas III., threw the whole weight of his authority in favour of the Angevins, excommunicated Peter and the Sicilians, declaring that the former had forfeited even his rights to Aragon, conferred on Charles's expedition to reconquier the island the privileges of a crusade, and levied dimes throughout Christendom to supply the funds. The reason for this uncompromising attitude lies in the papal claim that Sicily was a fief of the Church, a claim which could only be enforced by means of the Aagevins. But Charles's fleet was completely destroyed off Malta by that of the Sicilians and Aragoncse, commanded by the Calabrese Ruggieno di Lauria (June 1283), and a second feet met witb a similar fate a year linter in the bay of Naples, on which oceasion Charles's son (afterwards Charles Il., Io Zoppo) was captured. The Aragonese were now masters of the sea. Risings broke out even in the mainland provinces, and while Charles was preparing for a supreme effort to re-establish his authority be died (1285). Peter died soon after, but the war went on and spread to Aragon, which the Angevins, in virtue of the pope's excommunication of Peter, were trying to conquer. In 1287 the French enconntered a fresh naval disaster at the hands of Lauria, and a force which they landed in Sicily was defeated. A two years' truce was now agreed upon, and Charles 11. was liberated on his promising to renounce all claims on Aragon; but the pope Nicholas IV., who was determined that no peace should be made unless the Aragonese gave ap the aland, absolved him from his oatb and crowned him king of the Two Sicilies (1289). Atphonso died in 129r, and was succeeded by his brother James, who took possession of the Aragonese crown, leaving his brother Frederick as governor of Sicily, thus uniting the two lingdoms, in violation of King

Peter's promises. Fie then opened negotiations with Pope Boniface VIII. (they had been begun by Alphonso and Nicholaa IV.), and eventually agreed to surrender the towns captured in the Neapolitan provinces to Cbarles II., and hand over Sicily to the Church, actually binding himself to assist in crushing the Sicilians if they resisted; in exchange he was to marry Charles's daughter, Bianca, and to receive Sardinia and Corsica, while Cbarles's cousin, Charles of Valois, was to renounce his claims on Aragon (1295). This treaty aroused bitter indignation in Sicily, where all classes determined to resist its execution at all costs. They found a leader in Frederick, who, rejecting all the pope's blandishments and bribes, threw in his lot with the Sicilians. For the sequel of the war see under Fredenicis 111. of Sicily. Peace was made with the treaty of Caltabellotta in 1302, which left Sicily an independent kingdom under Frederick for that prince's lifetime; and although at his death it was to have reverted to the Angevins, he was actually succeeded by his son, and the island retained its independence for a considerable period. Undoubtedly the Vespers and its consequences revived Sicilian nationalism after the period of degrading Angevin oppression, and with the new dynasty a higher civilization, nearly rivalling that which had flourished under the Hohenstaufens, an improved constitution, and fine military qualities were the outcome.

Birliography. - The standard work on the subject is Michele Amari's Guerra del Vespro (2 vola. 8th ed.. Florence. 1876), which is based on a study of the original authorities, but is too strongly prejudiced against the French; cf. L. Cadier's Essai sur l'adminisiration da royaume de Sicile par Charles I. at Charles II. d'Anjou (fasc. 59 of the Bibliotheque des écoles frangoises de Romes ef d"Alkines, Paris, 1891): A. de Saint-Priest, Hisloirt de la comquête de Naples par Charles d'Anjow (Paris. 1847-49): F. Lanzani, Storia dei communi d'Jlalia, fib. v. ch. 3 (Milan. 1882); A. Cappelli's prelace to the "Leggenda di Messer Giovanni da Procida," in Miscellanea di opuscoli imediti o rari dei secoli XIV. XV. (Turin, 1861). Among the original authorities, Ricobaldo Ferrarese (in Muratori, Rer. Ital. script. tom. ix.), the two biographies of Martin IV. (ibid.). Fra Corrado (ibid. tom. i.), the Catalan author of the "Gesta comitum Barcinonensium "' (in Barluzio's Marca Hispanica, ch. 28) should be mentioned. A considerable list is given in Amari's Guerra del Vespro.
(L. V.")

VESPUCCI, A \({ }^{\text {E ERIGO (}}\) (451-1512), merchant and adventurer, who.gave his name of Amerigo to the new world as America, was born at Florence on the gth of March 1451. His father, Nastagio (Anastasio) Vespucci, was a notary, and his uncle, Fra Giorgio Antonio Vespucci, to whom he owed his education, was a scholarly Dominican and a friend of Savonarola. As a student Amerigo is said to have shown a preference for natural philosophy, astronomy and geography, He was placed as a clerk in the great commercial house of the Medici, then the ruling family in Florence. A letter of the 3oth of December 1492 shows that be was then in Seville; and till the 12th of January 1496 he seems to have usually resided in Spain, esperially at Sevilie and Cadiz, probably as an agent of the Medici. In December 1495, on the death of a Florentine merchant, Juanoto Berardi, established at Scville, who had fitted out the second expedition of Columbus in 1493, and had also undertaken to fit out twelve ships for the king of Spain (April gth, 1495). Vespticci was commissioned to complete the contract. As Ferdinand, on the roth of April 1495, recalled the monopoly coneeded to Columbus (this order of April roth, 1495, was cancelled on June and, 1497), "private" exploring now had an opportunity, and adventurers of all kinds were able to keave Spain for the West. Vespucci claims to have sailed with one of these "free-lance" expeditions from Cadiz on the 10 th of May 1497. Touching at Grand Canary on the way, the lour vessels be accompanied, going thirty-seven days on a wicst-south-west course, and making 1000 leagues, are said to have reached a supposed continental coast in \(16^{\circ} \mathrm{N} ., 70^{\circ} \mathrm{W}\). from Grand Canary Uune 16th, 1497). This should have brought them into the Pacific. They sailed along the coast, says Vespueci, for 80 leagues to the province of Parias (or Lariab), and then 870 leagues more, always to the north-west, to the " finest harbour in the world," which from this description should be in British Columbin or thereabouts. Thence 100
leagues more to north and north-east to the islands of the people called " Iti," Irom which they returned to Spain, reaching Cadiz on the \(15^{\text {th }}\) of October 1498 . Still following Vespucci's own statement, be, on the 16th of May 1499, started on a second voyage in a fleet of three ships under Alonzo de Ojeda (Hojeda). Sailing south-west over 500 leagues they crossed the ocean in forty-four days, finding land in \(5^{\circ} \mathrm{S}\). Thence, encountering various adventures, they worked up to \(15^{\circ} \mathrm{N}\)., and returned to Spain hy way of Antiglia (Espafiola, Sars Domingo), reaching Cadiz on the 8 th of September 1500 . Entering the service of Dom Manuel of Portugal, Vespucci claims to have taken part in a third American expedition, which left Lisbon on the roth (or 15th) of May 1501. Vespucci has given two accounts of this alleged third voyage. differing in many details, especially dates and distances. From Portugal he declares that be sailed to Bezeguiche (Cape Verde), and thence south-west for 700 leagues, reaching the American coast in \(5^{\circ} \mathrm{S}\). on the 7th (or 17 th) of August. Thence eastward for 300 (150) leagues, and south and west to \(52^{\circ} \mathrm{S}\). (or \(73^{\circ} 30^{\prime}\); in bis own words, " \(13^{\circ}\) from the antarctic pole," i.e. well into the antarctic consinent). He returned, he adds, by Sierra Leone (June soth), and the Azores (end of July), to Lisbon (September 7th, 1502), His second Portuguese (and fourth and last American) voyage, as alleged hy him, was destined for Malacca, which he supposed to be in \(33^{\circ} \mathrm{S}\). (really in \(2^{\circ} 14^{\prime} \mathrm{N}\).). Starting from Lisbon on the roth of May 1503 , with a fleet of six sbips, and reaching Bahia hy way of Fernando Noronha (?), Vespucci declares that he huilt a fort at a harbour in \(18^{\circ} \mathrm{S}\)., and thence returned to Lisbon (June 18th, 1504). In Fehruary 1505, being again in Spain, he visited Christopher Columhus, who entrusted to him a letter for his son Diego. On the 24th of April 1 505, Vespucci received Spanisb letters of naturalization; and on the 6th of August 1508 was appointed pilotor mayor or chief pilot of Spain, an office which he beld till his death, at Seville, on the 22nd of Fehruary 1512.
If his own account bad been trustworthy, it would have followed that Vespucci reached the mainland of America eight days before John Cabot (June roth against June 24th, 1497). But Vespucci's own statement of his exploring achievements hardly carries conviction. This statement is contained (i,) in his letter written from Lisbon (March or April 1503) to Lorenzo Piero Francesco di Medici, the head of the firm under which his business career had been mostly spent, describing the alleged Portuguese voyage of March 1501 -September 1502 . The original Italian text is lost, hut we possess the Latin translation hy " Jocundus interpreter," perhaps the Giocondo who hrought his invitation to Portugal in 1500 . This letter was printed (in some nine editions) scon after it was written, the first two issues (Mundus Nopus and Epistola Albericii de Noso Mundo), without place or date, appearing before 1504 , the third, of 1504 (Mundus Nooms), at Augsburg. Two very early Paris editions are also known, and one Strassburg (De Ora Antarctica) of 1505, edited by E: Ringmann. It was also included in the Pacsi nosamente retrovati of 1507 (Vicenza) under the title of Noos Mondo da Alb. Vesputio. The connexion of the new world with Vespucci, thus expressed, is derived from the argument of this first letter, that it was right to call Amerigo's discovery a new world, berause it had not been scen beiure by any one. Itris prepared the way for the American name soon given to tha continent. (ii.) In Vespucci's letter, also written from Portugat (September 1504), and probably addressed to his old schoo'!fellow Piero Soderini, gonfalonicre of Florence 1502-1512. Front the ltakian original (of which four printed copies still exist. without place or date, but probably before 1507) a French version was made, and from the latter a Latin translation, published at St Die in Lorraine in April I507, and immediated, made use of in the Cosmographiac /ntrodactio (St Dié, rycy) of Martin Waldscemuller (Hylacomylus), professor of cosme Dif University. Here we have perhaps the firat a priated book that the newly discovered foutta ae called "America, because Americes - nder von Humboldt discussed t!:
suhject in his Examen critiqus de Thistoire de to gtograpiac \(d s\) nowsean continent (1837), vol. iv., the general weight of opinion (in spite of F. A. de Varnhagen, A mariso Vespucci, son carackere, ses ecrits. . . sa vie . . . , Lima, 1865, and other proVespuccian works) has been that Vespucci did not make the 1497 voyage, and that he had no share in the first discovery of the American continent.

See also R. H. Major, Prince Henry the Navigator (London, 1868). pp. 367-88: F. A. de Varnhagea, Le Premier poyage de Amerige Vespucci (Vienna, 1869); Nouselles' recherches sur les derniers royages de navigateur forentin (Vienna, 1869); Ainda Amerige Vespucti, Novos esludas (Vienna, 1874): Luigi Hugues, 71 eerze viostio di A. Vespucci (Florence, \({ }^{1878}\)); "Alcune considerazioni sul Primo Viaggio di A. Vespucci," in the Bolletino of the Italian Geographical Society, series it. vol. x. Pp. 248-63. 367-80 (Rome. 1885): "Il quarto Viaggio di A. Vespucci,", in the same Bolletino: year xx., vol. xxiii. pp. 532-54 (Rome, 1886):" ' Sul nome' America • in the same Bolletino, series iii. vol. i. pp. 404-27, 515-30 (Rome. 1888), and an carlier study under the same title (Turin, 1886): "Sopra due lettere di A. Vespucci." in the same, zeries iii vol. iv. pp. 849-72, 929-51 (Rome, 1891); Narrative and Critical History of America, edited by Justin Winsor. vol. ii. pp. 129-86 (1886) ; The Lellers of A. Vespucci (translation, \&c., by Clemente R. Markham, London, Hakluyt Sociely. 1894); H. Harrisse. A. Vespuccius (London, 1895); Jos. Fischer and F. R. von Weiser The Oldest Map with the Name A merica . . (lnnsbruck, 1903); Angeto Maria Bandini and Gustavo Uzielli. Vita di Amerigo Vespracei (Florence, 1898); B. H. Soulsby in the Journal of the Rayal Geographical Sociely (Laadon, Fehruary 1902), pp. 201-9. (C. R. B.)
VESSEL (O. Fr. wissel, from 2 rare Lat. wascellym, dim. of ads, vase, urn), a word of somewhat wide application for many objects, the meaning common to them being capacity to bold or contain something. Thus it is a general term for any utensil capable of containing liquids, and for those tubular structures in anatomy, such as the arteries, veins or lymphatics, which contain, secrete or circulate the blood or lymph. Organs or structures which are largely supplied with vessels are said to be "vascular" (Lat. pasculum, another diminutive of ess). Vessel (as in French) is also a general term for all craft capable of floating on water larger than a rowing boat. The word is also Camiliar in Bihlical phraseology in the figurative sense of a person regarded as the recipient of some Divine dispensation, 2 "chosen vessel," or as one into which something is infused or poured, " vessel of wrath."

VESTA (Gr. 'Egria), the goddess of fire and the dornestic hearth. The cults of the Greek Hestia (q.v.) and the Latia Vesta, both of which involved the guardianship of an everhuming sacred fire, are most probably derived from very early custom, common to a great variety of races in differeat ages. Among primitive peoples it became the custom for each village to maintain a constant fire for general use, to avoid tbe necessity of obtaining a spark by friction in case of the accidental extinction of all the village fires. \({ }^{1}\) This fire, the central hearth of the village (focus publicus), became a sacred symbal of home and family life. The form of the primitive bouse in which the fire was preserved, probahly a round hut made of wattled osiers daubed with clay, appears to have survived both in the circuls prytaneum of the Greeks and in the Aedes Vestae (Temple a Vesta) in Rome. To watch this fire would naturally be the doty of unmarried women, and hence may have arisen the Roman order of virgin priestesses, the vestals, whose chief duty it was to tend the sacred fire.

The prehistoric method of getting a spark appears to have survived in the rule that, if ever the sacred fire of Vesta did 80 out, the negligent vestal was to be punished hy scourging (Livy xxviii. 1t), and the fire rekindled either by friction of dry sticks \({ }^{1}\) or, in later times, by the sun's rays brought to \(a\) focus by a concave mirror (Plut. Numa, g). In the prytaneum (\(q, x^{\text {a }}\)) which existed in every Greek state, a different form of cult was developed, though the essential point, the sacred fire, was kept
" The Worship of Vesta and its Connexion (vol. xiv. pp. 845-7:) "The Worship of Vesta and its Connexion with the Greet Prytancum." gives many examples of a similar custom still sorvising among varnous savage races-
\({ }^{1}\) An allusion to the earliest method of obtaining fire by rubbing two sticks together is probably contained in the myth of Promethens who brought fire to mortals hidden in a hollow wasd
np, just as in the Latin worship of Vesta; and in both cases the fire was extinguished annually at the beginning of the new year and solemaly rekindled by one of the primitive and hence sacred metbods \({ }^{4}\) In Rome this was done on the first day of March, the Latin New Year's Day (Ovid, Fasti, iii. 137-45). Among both Greek and early Latin races, at the founding of a new colony, fre was solemnly sent from the prytaneum of the mother colony to kinde a similar sacred fire in the new settement. Thus we find that, according to tradition, the worship of Vesta in Rome was introduced from Alba Longa (Livy i. 20, and Ovid, Fasti, iii. 46), which appears to have been the oldest of the Latin colonies in Latium. The most generally received Latin legend attributes the founding of the Roman temple of Vesta to Numa. who transierred the centre of the cult from Alba, together with the four vestal virgins, its priestesses (Plut. Numa, io). One of the later kings, either Tarquin I. or Servius Tullius, is said to have increased the number to six (Dion. Hal. iii. 67, and Plut. Numa, 10), and it is not till the last years of the pagan period that we hear of a seventh vestal having been added (see Ambrose, Epist, ed. Pareus, p. 477; also Plut. Rom. and Cam.).

The election (captio) of the vestal during the early period of Rome was in the hands of the king, and in those of the pontifex maximus under the republic and empire,' subject, however, to the following conditions (Aul. Gell. i. 12): (1) the candidate was to be more than six and less than ten years of age: (2) she was to be patrima and matrime. ic. having both parents aiive: (3) free from physical or mental defects; (4) daughter of a free-born resident in ltaly. Certain details of the election were arranged subject to the provisions of the Lex Papia, now unknown. The eelected child had her hair cut off, and was solemniy admitted by the pontifex maximus, who held her by the hand. and, addressing her by the name amata, pronounced an ancient formula of initiation, which is given by Aulus Gellius. In early times there were certain rules by which girls could be excused from serving as vestals, but the honour soon became oo eagerly sought that these provisions, were practically useless. Vows were taken by the vestal Ior a period of thirty years, after which she was free to return to private life and even to marrywhich she very rarely did (Aul. Cell. vi. 7). This period of thirty years was dividod into three decades; during the first the vestal learnt her duties; during the second she practised them; and during the third she instructed the young vestals. The special dignity of chief of the vestals (rirgo testalis maxima) was reached in order of seniority. The inscriptions on the pedestals of enatues of various eestales marimae show that 2 number of different grades of honour were passed through before reaching the highest dignity or maximatus.'

The duties of the vestals, besides the chief one of tending the holy fire (Cic. De Leg. ii. 8). consisted in the daily bringing of water from the sacred spring of Egeria, near the Porta Capena. to be used for the ceremonial sweeping and aprinidiag of the Aedes Vestae.4 They alsooffered sacrifices of salt cakes-muries and mola salsa-and poured on the altar of sacred fire libations of wine and oil, as is represented on the reverses of several first brasses and medallions of the empire. The vestals were bound to offer daily prayers for the welfare of the Roman state, and more especially in times of danger or calamity (Cic. Pro Font 21). They were also the guardians of the seven sacred objects on which the stability of the Roman power was supposed to depend: the chief of these was the Palladium, a rude archaic statue of Pallas, which was said to have been brought by Aeneas from the burning Troy. This sacred object was never shown to profane eves, but it is represented on the reverse of a coin struck by Antoninus Pius in honour of his deifed wife Faustina Serict observance of the vow of chastity was one of the chief obligacions of the vestals, and its broch was punished by burial alive at a place near the Porta Collina known as the Campus Sceleratus (see Livy viii. 15 and 89; Plin. Ep. iv. 11 ; and Suet. Dom. 8). Cases of unchastity and its punishment were rare: and, as the evidence
"Fire obtained in this way, that is, "pure clemental fire," was commonly thought to posess a special sanctity. Even throughout the middle ages in Catholic countries, at Easter, when the new year began. the old pagan rite survived (see Lights, Cememonial Use of.)
a From the time of Augustus the emperors themselves held the office of chief pontiff, and with it the privilege of electing the vestals.

3 These inscriptions are printed in Middleton. Ancient Rome in 7885: pp. 200-6, and in Archoedogia, xlix. 414-22.

The strine of Vesta was not a lemplum. in the strict Roman sence. as it was not consecrated by the augurs, its sanctity being far above the necessity of any such ceremony. Other natural springs might be used for the daily sprinkling, but it was forbidden to use water brought in a pipe or other artificial conduit (Tac. Hist. F. 53) : see also Guht and Koner, Das Lebew der Griechew uhd Romer (Eng- trans by F. Hueffer, 1875).
egainst the vestal was usually that of daves, given under torture, it is probable that in many instances an innocent vestal suffered this cruel death.

The privileges of the vestals and their infiuential position were very remaricable. They were exempt from any patria polestar, except that of the pontifex maximus, their religious father; they could dispose by will of their property, and were in most respects not subject to the Roman laws (" legibus, non tenetur," Servius, on Virg. Aen. xi. 204; c. Gaius i. 130, and Dio Cass Ivi. 10). This involved freedom from tases, and the right to drive through the streets of Rome in carriages (plostrmm and cwrrus arcuatws). Some bronve plates have been found which were once attached to the carriages of vestals; the inscription on one of them rurs thus: Flaviae Publiciac v.v. maximac inmunis in jugo (see C.I.L. vi. 2146-2148; cf. also Prudentius, Contra Sywm- ii. 1088). They wene preceded by a lictor when appearing on state occasions, and enjoyed other scmi-royal honours (Plut. Xame, so, and Dio Cass xlvii. 19). At theatres and other places of amusement they occupied the best seats, except at some of the nude athletic contesta. from which they were excluded; they also took an important part in all the grand religious and state ceremonien, as when the pontifex maximus offered sacrifice on the occasion of a triumph before the temple of Capitoline Jupiter. They had power to pardon any criminal they met in the street on his way to execution, provided that the meeting were accidental. The vestals alone shared with the emperors the privilege of intramural burial (Serv. on Virg. Acn. xi 206). During life they were richly dowered by the state (Suet. Aug- 31), and had public slaves appointed to serve them (sce Tac, Hist. 1. 43). They were also the guardians of the emperor's will. and of other important documents of state (Suet. J. Cacs. 83, and Aug. 101; Tac. Aまm. i. 8; Plut. Awon. 53: and Appian, Bell. Civ. v. 73). Their influence in the appointment to many offices, both religious and secular, appears to have been very great. Many of the statues to the chief vestals which were found in the Atrium Vestae in \(1883-1884\) have pedestals inscribed with a dedication recording that benefits had been conferred on the donor by the vestalit maxima. Lastly, they lived in a style of very great splendour; their house, the Atrium Vestae, which stood close by the Acdes Vestae, was very large and exceptionally magnificent both in decoration and material (see Rome, Archacology, " Forum Romanum" and map).

The discovery already mentioned of a number of statues of vestale maximae has thrown new light on the dress of the vestals. With one or two exceptions the costume of these statues is much the same: they have a long sleeveless tunic (stola). girdied by the soma immediately below the breast. One only wears the diploidion over the upper part of her figure. The outer garment is an ample pallium, wrapped round the body in a great variety of folds, and in some cases brought over the head like a hood. All seem to have long hair, showing that the process of cutting of the hair at initiation was not repeated. Ore figure wears the sughbulunt, a rectangular piece of white cloth bordered by a purple stripe, worn over the head and fastened on the breast by a fibula. According to Festus (ed. Moller, p. 348). this sacred garment was worn by the vestals only during the act of sacrificing (see also Varro, De Ling. Lat. vi. 21). In all cases the head is closely bound by viltae, rope-like twists of woollen cloth, the ends of which usually fall in loops on each shoulder (see Servius on Virg. Aen. x. 538).

The Regia, the official fonmm of the pontifex maximus, was adjacent to the vestals' house:-
" Hic locus est Vestae, qui Pallada servat et ignem; Hic fuit antiqui Regia parva Numae.'
When Augustus, after his election to the office of pontifex maxamus in 12 B.C., moved his place of residence from the Regia to the Palatine, be built a new Aodes Veatae near his palace, in the magnifcent Area Apollinis. This appears to have been a copy of the older temple of Vesta. No traces of it now exist: but Pirro Ligorio. in the latter part of the 16 th century, made some sketches of what then existed of this second temple, to illustrate his great MS. on Roman antlquitics, which is now preserved in the royal library at Turin (see Ovid, Fosti, iv, 949-954, and Melam. xv. 864). The original course of the Sacra Via passed close to the temple of Vesta; but the road was clumsily built over in the 3 rd and 4 th cent uries.

The chief festival in honour of Vesta, the Vestalia, was held on the 9th of Jume (Ovid, Farti, vi. 249), after which the temple was closed for five days for a ceremonial cleansing. In private houses the feast was celebrated by a meal of fish, bread and herbs, eaten. not on the usual triclinjum, but by the domestic hearth, in front of the effigies of the Dii Penates (Ovid, Fosti, vi. 309-310). The feast. inaugurated by Augustus in bonour of Vesta Palatina, was beld on the 28th of April. the anniversary of its consecration.
With regard to statues of the goddess, though the Greek Hestia was frequently represented in plastic ant, yet among the Romans
- These statucs appear to have been the work of a privileged class of sculptors. who enjoyed the title of "fictores virginum vestalium" -an honour which is recorded in some of the dedicatory inscriptions on the pedestals.
© Ovid, Tristia, iii. 29.

Vesta appears to have been rarely 80 treated The Athenian prytaneum contained a statue of Hestia. But there was no effigy in the Roman temple of Vesta, although one is commonly shown on reverses of coins which have a representation of the temple, and it appears to bave been commonly thought in Rome that a statue of Vesta did exist inside her shrine-a mistake which Ovid corrects (Fasti, vi. 297-300). No Roman statue now known can be certainly considered to represent Vesta, though a very beautiful standing figure of a female with veiled bead (in the Torlonia collection) has, with some probability, had this name given to it.
The worship of Vesta appears to have died out slowly in the 4th century, after the adoption of Christianity as the sate religion by Constantine. and in \(3^{83}\) Gratian confiscated the Atrium Vestac. Zosimus (Hist. Non. v. \(\mathbf{3}^{88}\)) tells an interesting story of a visit made to it at the end of the 4 th century by Serena, the wife of the Vandal Stilicho, who took a valuable necklace from one of the statues, in spite of the remonstrances of an aged woman, the last survivor of the vesta! virgins. Soon after that time the building appears to have fallen into decay, its valuable marble linings and other ormaments having been stripped from its walls.

Authorities.-For the Atrium and the Aedes Vestac see Rome, Archacology (footnote ad loc.). See also Wissowa, Relig. und Kullus der Römer (igo2) and authorities under Hestia. (I. H. M.; X.)

VESTBRAS, or Westerits, a town and bishop's see of Sweden, capital of the district (län) of Vestmanland, on a northern bay of Lake Malar, 60 m. N.W. by W. of Stockholm by rail. Pop. (1900) 11,999 . It is a considerahle industrial centre and an important lake port. Its Gothic cathedral, rehuilt by Birger Jarl on an earlier site, and consecrated in 1271, was restored in \(1850-1860\), and again in \(1896-1898\). The episcopal library contains the valuable collection of books which Oxenstjerna, the chancellor of Gustavus Adolphus, brought away from Mainz near the end of the Thirty Years' War. A castle commands the town from an eminence; it was captured by Gustavus Vasa and rehuilt by him, and again in the \(17^{t h}\) century, and remains the seat of the provincial government. Here Eric XIV., whose tomb is in the cathedral was confined (1573 -1575). Several national diets were held in this town, the most notable being those of 1527, when Gustavus Vasa formally introduced the Reformation into Sweden, and t 344, when be had the Swedish throne declared hereditary in bis family. The original name of the town was Vestra Aros (" western mouth "), in distinction from Ostra Aros, the former name of Upsala.

VEsTIBULE (from Lat. vestibulum), the architectural term given to an antechamber next to the entrance and preceding the hall; it is als \(د\) appied to the anteroom of any large apartment. The word is consected, like Vesta (q.v.), with the Sanscrit root pas-, to dwell, inhabit. In medieval Latin it was occasionally used, instead of pesticrium, for a vestry (see Du Cange, Closs. med. lat., s.v.), which is derived from Lat. vestis, clothing.

VESTINI, an ancient Sabine tribe which occupied the eastern and northern bank of the Aternus in central Italy, entered into the Roman alliance, retaining its own independence, in 304 B.c., and issuing coins of its own in the following eentury. A nortberly section found Amiternum near the passes into Sabine country probably received the Caerite franchise soon after. In spite of this, and of the influence of Hadria, a Latin colony founded about 290 b.c. (Livy, Epif. xi.), the local dialect, which belongs to the north Oscan group, survived certainly to the middle of the and century b.c. (see the inscriptions cited below) and probably until the Social War. The oldest Latin inscriptions of the district are C.I.L. ix. 3521, from Furfo with Sullan alphabet, and 3574, " litteris antiquissimis," but with courcoerwnt, a form which, as intermediate between coir- or coer- and cxr-, cannot be earlier than 100 b.c. (see Latin Language). The latter inscription contains also the forms magisf[r]es (nom. pl.) and neci (gen. sing.), which show that the Latin first spoken by the Vestini was not that of Rome, but that of their neighbours the Marsi and Aequi (qq.0.). The inscription of Scoppito shows that at the time at which it was written the upper Aternus valley must be counted Vestine, not Sabine, in point of dialect.
See further \begin{tabular}{l}
ar \\
further deta \\
which this
\end{tabular}

VBSTMENTS. The word "vestment" (Lat. serfindation, fr. vestire, to clothe), meaning generally simply an article \(\alpha\) clothing, is in the usage of the present day practically confined to the ceremonial garments worn in public worship; in this sense it may be used equally of the robes or "ornaments" of the ministers or priests of any religion. Ecclesiastical vestments, with which the present articie is solely concerned, are the special articles of costume worn by the officers of the Christian Church "at all times of their minisuration"-to quote the Ornaments Rubric of the English Book of Common Prayer, i.e. as distinct from the "clerical costume" worn in everyday life. Ecclesiastical vestments may egain be divided into two categories: (1) liturgical vestments, (2) non-liturgical vestments. Liturgical vestments, as their name implies, are those which are especially associated with the various functions of the liturgy. Of these again, according to the fully developed rules of the Catholic Church, there are three classes: (1) vestments worn only at the celebration of mass-chasuble, thaniple, pontifical gloves, pontifical shoes, the pallium and the papal fanone and subcinctorium; (2) vestments never worn at mass, but at other liturgical functions, such as processions, administration of the sacraments, solemn choir services, i.e. cope and surplice; (3) vestments used at both-alb, amice, girdle, stole, dalmatic, tunicle. Non-liturgical vestments are those, es. cappa magna, rochet, which have no sacral character, have come into use from motives of convenience or as insigni of dignity, and are worn at secular as well as ecclesiastical functions.

In the controversies as to the interpretation of the Anglican "Ornaments Rubric" (see below) the term "vestments" has been applied particularly to those worn at the celebration of mass, which is what is meant when it is said that "the vestments" are worn at such and such a church. This restriction of the term has some historical justification: in the Frrst Praycr Book of Edward VI. the word "vestment" is used as synonymous with but one liturgical garment-the chasuble. tbe "mass vestment" par excellence; in the Prayer Book of 1559 " vestments" are eliminated altogetber, "ormaments" being substituted as a more comprehensive term. As to the use of the word, it must be further stated that it is also techaically applied to altar cloths, the altar being "vested" in frontal (antependium) and super-frontal (see Altar).

The subject of ecclesiastical vestments is not only one of great interest from the point of view of archacology and art, but is also of importance, in so far as certain "ormaments" have become bistorically associated with certain doctrines an which the opinion of the Christian world is sharply divided. The present article can only give a brief outline of a subject 13 intricate as it is vast, frequently also extremely obscure, and rendered still more obscure by the fact that those who have applied themselves to it have too often done so in anything but a scientific spirit. It will deal briefly (1) with the general idea and the historical evolution of ecclesiastical vestments, (2) with the vestments as at present worn (a) in the Roman Catholic Church, (b) in the Oriental Churches, (c) in the Reformed Churches, (d) in the Anglican Church. The more importasi vestments are dealt with in some detail under their separate headings; here it will only be necessary to give short descrip. tions of those which cannot be conveniently treated separately.
1. The Origin and Idec of Ecclesiastical Vestments.-The liturgiad vestments of the Catholic Church, East and West, are not, as was at one time commonly supposed, borrowed from the sacerdotal ornaments of the Jewish ritual, although the obvions analogies of this ritual doubuless to a certain extent determined their sacral character; they were developed independently ow of the various artlcles of everyday dress worn by citizens of the Graeco-Roman world under the Empire. The officers of the Church during the first few centuries of its existence wert content to officiate in the dress of civil life, though their garments were expected to be scrupulously clean and of decent quality. The few scattered references in contemporary records to the dress of the clergy all point to this as the anly recognixed rule

Thus in the 37thr of the so-calied "Canons of Hippolytus" we read: "As often as the bishops would partake ol the Mysteries, the presbyters and deacons shall gather round him clad in white, quite particulariy clean clothes, more beautiful than those of the rest of the people." Thus, too, St Jerome, in his commentary on Exck sliv. 19, says that "We, too, ought not to enter the Holy of Holies in our everyday garments.. . when they have become defiled from the use of ordinary life, but with a clean conscience, and in cican gaments, hold in our hands the Sacrament of the Lord."
When, in the year 289, St Cyprian was led to martyrdom, be wore, according to Eusebius (Hist. eccles. iv. cap. 11), an under tuaic (lineo), an upper tunic (dalmatica, tunca) and mantle (lacerme, byrrus). This was the ordinary type of the civil costume of the time. The tunica, a loose sack-lleke tunic with a hole for the head, was the innermost garment worn by all classes of Roman citizens under the republic and empire. It was cither sleeveless (colobium) or sleeved (iunica manicala or manuleata), and originally fell about to the knee, but later on reached to the ankles (turica talaris). St Augustine (De doctr. christ. iii. cap. 10, n. 20) says that to wear bolares af turicas manicatas was 2 disgrace among the ancient Romans, but that in his own day it was no longer so considered in the case of persons of good birth. The tunica was originally of white wool, but in the 3 nd century it began to be made of linen, and from the \(4^{\text {th }}\) century was always of linen. About the 6th century the Jong tunica albe went out of fashion in civil life, but it was retained in the services of the Church and developed into the various forms of the liturgical alb (q.р.) and surplice (q.o.). The tunica dalmatica was a long, sleeved upper tunic, originating, as its name implies, in Dalmatia, and first becoming fashionable at Rome in the and century; it is the origin of the liturgical dalmatic and tunicle (see Dalmatic). Another over-dress of the Romans was the paerula, a cloak akin to the poncko of the modern Spaniards and Spanish Americans, i.e. a large piece of stufif with a bole for the head to go through, hanging in ample folds round the body. This was originally worn only by slaves, soldiers and other people of low degree; in the 3rd century, however, it was adopted by fashionahle people as a convenient riding or travelling cloak; and finally, by the sumptuary law of 382 (Cod. Theod. xiv. 10, 1, de habitu . . . intra wrbem) it was prescribed as the proper everyday dress of senators, instead of the military chlamys, the toga being reserved for state occasions. This was the origin of the

Fig. 1.-Pope Honorius (d. 638). From a mosaic in S. Agnese in Rome. principal liturgical vestment, the chasuble (\(q . v\). .).

As late as the 6th century these garments were common both to the clergy and laity, and, so far as their character was concerned, were used both in the liturgy and in everyday life. Meanwhile, however, a certain dcvelopment had taken place- By the 4th century the garments worn at liturgical functions had been separated from those in ordinary use, though still identical in form. It is in the 4th century, too, that the first distinctive vestment makes its appearance, the
 the East; in the 5th century we find this in use at Rome under the name of pollium (q.v.), as the distinctive omament of the pope (see fig. 1). About the same time the orarium, or stole (\(q . v\).), becomes fixed in liturgical use. The main development and definition of the ecclesiastical vestments, however, took place between the

6th and the gth centuries. The secular fashions altered with changes of taste; but the Church retained the dress with the other traditions of the Roman Empire. At Rome, especially, where the popes had succeeded to a share of the power and pretensions of the Caesars of the West, the accumulation of ecclesiastical vestments symbolized a very special dignity: in the second quarter of the oth century the pope, when fully vested, wore a camisia girdled, an alb (linea) girdled, an amice (anagolainm), a tunicle (dalmatica mınor), a dolmatic (dalmatica major), stole (orarizm), chasuble (plancta) and pallium. With the exception of the pallium, this was also the costume of the Roman deacons. By this time, moreover, the liturgical character of the vestments was so completely established that they were no longer worn instend of, but over, the ondinary dress.

Hitherto the example of the Roman Church had exercised no exclusive determining influence on ritual development even in the West. The popes had, from time to time, sent the pallium or the dalmatic-specifically Roman vestments-as gifts of honour to various distinguished prelates; Britain, converted by a Roman mission, had adopted the Roman use, and English missionaries had carried this into the newly Christianized parts of Cermany; but the great Churches of Spain and. Gaul preserved their own traditions in vestments as in other matters. From the gth century onwards, however, this was changed; everywhere in the West the Roman use ousted the regional uses.

This change synchronized with the revival of the Western Empire under Charlemagne, a revival which necessarily gave an impulse to the claims of the see of Rome. The adoption of the Roman liturgical dress had, however, at most an indirect connexion with these claims. Charlemagne was active in prescribing the adoption of the Roman use: but this was only as part of his general policy in the organization of his cm . pire. A renovation of the Callican Church was not the lcast crying need: and. in view of the confusion of rites (Gallican. Gothic, Roman, Ambrosian) in the Frankish empire, Charkmagne recognized that this innovation could only be effectually carried out by a closer connexion with Rome in ritual as in other matters. Charlemagne's activity in this respect was, in effect. but the completion of a process that had been going on since the 6th century. Whatever effect the reinvigoration of the papacy may have had in hastening the process, the original impulse towards the adoption of the Roman rite had proceeded, not from Rome, but from Spain and Gaul; it was the natural result of the lively intercourse betweenthe Churches of these countrics and the Holy See. Nor was the process of asoimilation by any means one-sided. If Spain and Gaul borrowed Irom Rome, they also exercised a reciprocal influence on the Roman use: it is interesting to note in this connexion, that of the names of the liturgical vestments a very large proportion are not of Roman origin, and that the non-Roman mames tended to supersede the Roman in Rome itsel!.
\({ }^{1}\) Apart from the archiepiecopal pallium, the Churches of Spain and Caul had need to borrow from Rome only the dalmatic, maniple and liturgical shoes On the other hand. it was from Spain and Gaul that Rome probably received the orarivm (stole) as an easign of the major orders. Father Braun, to whose kindness the writcr is indebted for the above account of the causes of the ritual changes in the Carolingian epoch, adds that the papacy was never narrow. minded in its attitude towards local rites, and that it was not until the close of the middle ages, when diversity had become conlusien and worse, that it began to insist upon uniformity. Even then it allowed those tites to survive which could prove a tradition of 200 years.

The period between the gth and the rith centuries is that of the final development of the liturgical vestments in the West. In the gth century appeared the pontifical gloves; in the 10 ch , the mitre; in the 11th, the use of liturgical shoes and stockings was reserved for cardinals and bishops. By the 12 th century, mitre and gloves were worn by all bishops, and in many cases they had assumed a new omament, the rationale, a merely honorific decoration (supposed to symbolize doctrine and wisdom), sometimes of the nature of a highly omamental broad shoulder collar with dependent lappets; sometimes closely resemhling the pallium; rarely a "breast-plate" on the model of that of the Jewish high priest. \({ }^{1}\) This elaboration of the pontifical vestments was contemporaneous with, and doubtless partly deternined by, the assimilation of the bishops during those centuries to the type of the great feudal nobles whose ambitions and love of pomp they shared.

In an age when, with the evolution of the feudal organization of society, even everyday costume was becoming a uniform, symbolizing in material and colour the exact status of the wearer, it was natural that in the paralled organization of the Church the official vestments should undergo a similar process of differentiation and definition. With this process, which in all its essential features was completed in the ith century, doctrinal developments had little or nothing to do, though from the gth century onwards liturgiologists were busy axpoundiag' the myace symbolism of garments which, until

Prom fintaly tharghole of B. Herter.
Fic. 3.-Monumental Figure of Bishop johannes of Lubeck (d. 1350) in Labeck Cathedral. their imagination set to work, had for the most part no symbolism whatever (see below). Yet in view of later controversies, the changes made during this period, notably in the vestments connected with the mass, are not without significance. Hitherto the chasuble had been worn indifferently by all ministers at the eucharist, even by the acolytes; it had been worm also at processions and other non-liturgical functions; it was now exalted into the mass vestment par excellence, worn by the celebrant only, or by his immediate assistants (deacon and subdeacon) only on very special occasions. New vestments were devised to take the place, on less solemn occasions, of those hallowed by association with the holy sacrifice; thus the processional cope (q.v.) appeared in the inth century and the surplice (c.v.) in the 12 th. A change, too, came over the general character of vestments. Up to the gth century these had heen very plain, without omament save such traditional decorations as the clavi of the dalmatic; what splendour they had was due to their material and the ample folds of their draperies. But from this time onwards they tend to become more and more elaborately decorated with embroidery and jeweller's work (see, e.g. the articles Chascble and COPE).

Very significant, too, is the parting of the ways in the development of liturgical vestments in the East and West. During the first centuries both branches of the Church had used vestments substantially the same, developed from common originals; the alb, chasultit, stole and pallium were the equivalents of the otixapoov, quadiov, wotpooy and

1 The rationale is worn only over the chacuble. It is now used only by the bir n\{ Eichstit:. Cracow. Paderborn and Toul, liy the speeGewendw
suodopeov. While, however, between the gth and izth centurien, the Westem Church was adding largely to her store of vest ments, that of the East increased her list by but three, the dxaipec and itruaniala (see Mantple) and the atrown (see Dalmatic). The living force of development in the Latin Church wres symbolized in her garments; the stereotyped orthodory of the Greek Church in hers. With the exception of the mitre, introduced in the 15th or 16 th century, the liturgical costume of the Eastern ciergy remains now practically what it was in the 9th century.
In the Westem Church, though from the gth century onwards the Roman use had been the norm, considerable alterations continued to be made in the shape and decoration of the literrgical vestments, and in this respect various Churches developed different traditions (see, e.g. Chusosle). The definition

Fig. 4.-Dr llenry Sever (d, 147 1). Froma brass in the chapel of Merton College, Oxford. Ite is vested in surplice, stołe and cope.

Fic. 5.-Thomas Cranley, Archbishop of Dublín (d. 1417). From a brass in New College Chapel. Oxford. In addition to the vestments show \(n\) in fig. 3 he wears the archiepiscopal pallium.
of their use by the various orders of the clergy in the several liturgical functions, however, was estahlished by the ciose of the inth century and still continues in force. Before discussing the changes made in the various Reformed Churches, due to the doctrinal developments of the 16th century, we may therefore give here a list of the vestments now worn by the various orders of clergy in the Roman Catholic Church and the Oriental Churches.

Roman Catholic Church.-As the sacrifice of the mass is the central mystery of the Catholic faith, so the seven orders of the hicrarchy culminate in that of priest, who alone is empowered to work the daily miracle of the altar (see Order. HoLy). The vestments wom by the priest when celebrating mass are then the most important. The cassock (\(q . v\).), which must always be worn under the vestments, is not itsell a liturgical garment. Over this the priest, rohing for mass, puts on the amice, alb, girdle (cingulum), stole, maniple and chasuble Taking the other orders downwards: deacons wear amice, alb. girdle, stole, maniple \({ }^{2}\) and dalmatic; subdescons, amice, alb gitdle, maniple and tunicle; the vestment proper to the minor orders, formerly the alb, is now the surplice or cotta. Bishops as belonging to the order of priesthood with completed powers. wear the same vestments as the priests, with the addition et
\({ }^{2}\) The stole and maniple alone are symbolical of order, i.e. of the relation to the sacrifice of the mass.
the pectoral cross, the pontifical gloves, the pontifical ring, the liturgical sandals and caligae, a tunicle worn over the stole and under the chasuble, and the mitre (see figg. 3). Archbishops, on solemn occasions, wear the pallium over the chasuble (see fig. 5). Bishops also carry a pastoral staff (q.v.), as symbol of their pastoral office. Finally, the pope, when celebrating mass, wears the same vestments as an ordinary biskop, with the addition of the subcinctorism (see Als), a dalmatic, worn over the tumicle and under the chasuble, and the orale or fanone (see Amers). It should

Iman a flotorgmph by Coajuyi Cise, Recese
Fic. 6.-Pope Leo XIII. in his Vertments as Supreme Pontiff. be noted that the lilyrgical head-dress of the pope is the mitre, not the tiara, which is the symbol of his supreme office and jurisdiction (see Thara).
Of the liturgical vestments not immediately or exclusively associated with the sacrifice of the mass the most conspicuces are the cope and surplice. The biretta. too, though not in its origin or in some of itt ures a liturgical vestment, has developed 3 distinctly liturgical character (see Biretid). Besides the strictly liturgical vestmente there are also numeroue articles of costume worn at choir services, in processions, or on ceremonial occasions in everyday life, which have no sacral character: such are the almuce (q.o.), the cappos and marsetia (sce Core), the rochet (q.v.), the pileolus, a skullcap. worn also sometimes under mitre and tiara. These are generally ensigns of dignity; their form and use varies in different Churches, and they often represent special privileges conferred by the popes, ag. the cappa of the Lateran basilica worn by the canons of Westminster cathedral, or the almuce worn, by concession of Pope Pius IX., by the members of the Sistine choir.

The character of the vestments, the methnd of purting them on, and the occatione on which they are geverally to be worn, are regulated with the minutest care in the Missal and the Coercmoniale.

Oriental Churches.-As already stated, the vestments of the great historical Churches of the East are derived from the same Graeco-Roman originals as those of the West, but in contridistinction to the latter they have remained practically stercotyped, both in character and number, for a thousand years; in the East, however, even more than in the West the tendency to gorgeous ornamentation has prevailed.

An Orthodox bishop, vested for the holy liturgy, wears over his cassock-(1) the orixapeov, or alb (q.v.); (2) the kmirpaxintaor. or stole (g.p.): (3) the \(\zeta \mathbf{j o m g}\) a narrow stuff girdle clasped behind. which bolds together the two vestments above named: (4) the Irymura, liturgical cuffs, corresponding. possibly, to the punvifical gloves of the Wiest: \({ }^{1}\) (5) the drivominow, a stiff lozengeshaped piece of stuff hanging at the right side by a piece of riband from the girdle or attached to the odaxor. the equivalena of the Western maniple (\(g .8\).); (6) the odecor, like the Western dalmatic (q.v.). worn instead of the deundios. or chasuble; (7) the (q-0.), whor, the equivalent of the Western pallium (q.o.). Besides these, the bishop also wears a pectoral cross (ircilator) and a medal containing a relic (ravdyca). He also has a mitre (q.s.). and carries a crozier ((xuavixio). a rather short staff ending in two curved branches decorated with serpents' beads, vith a cros bet ween them.

The veotments of a priest are the sticharion, epitrachelion girdle, epimanikia and phainolion (see Chasuale). He wears all these vestments only at the celebration of the eucharist and on other very solemn occasions; at other ministrations he wears only the epiarachelion and phainolion over his casoock A dignitary in

1 This is the view of Dr Adrian Fortescue (The Orthodor Easters Chmokt, p. 406): according to Braun (Lit. Grwandwng. P. 100) they -rere originally merely the ornamental cuffe (newin) of the episcopal wicherion, which were detached for purposes of coavenience.
priest's orders is diatinguished by wearing the epigonation; and in Russia the use of the mitre is sometimes conceded to distinguished priests by the tsar. The deacon wears the sticharion, without a girdle, the epimanitia and the orarion (ioderer, Lat. orarium, see Stole) hanging over his left shoulder. The lesser orders vear a shorter sticharion and an orarion wound round it.
On lese solemn occasions bishops wear the mandyas (uambias), a cope-like garment fastened at the lower corners as well as at the neck, and the kalimaukion
 with a veil hanging down behind, and, in place of the saandrow they carry a short staff with an ivory crosepiece. The kalimaukion is also worn by the other clergy in ordinary life, and with their vestments at processions, \&c.
The general character of the veotments is much the tame in the other Oriental rites. The sticharion answers to the Amenian shabik, the Nestorian kulina, the Coptic surial or stoichariom; the epimanikia to the Arm. pasban (which, however, resemble rather the Latin maniple), the Nestorian zando, and the Coptic kimen; the epitrachelion to the Arm.
 por-urar, Syrian uroro, Coptic bat rashel; the girdle to the Arm. kodi, Nestorian sunro; the phainolion to the Nestorian phoine and Arm. shurtshar, botn of which are, however, cope-shaped.' Armenian priests, besides, wear a mitre (see Mitres, fig. 3), and a collar-like ornament probably derived from the apparel of the Western amice (q.v.). The liturgical handkerchief, which in the Greek Church has become the epigonatiou, has retained its original form in the Armenian

The Lilurgical Colows.-In another respect the vestments of the Eastern differ from those of the Western Church. In the East there is no sequence of liturgical colours, nor, indeed, any definite sense of liturgical colour at all; the vestments are usually white or red, and stif with gold embroidery. In the West the custom, long universal, of marking the seasons of the ecclesiastical year and the more prominent fasts and festivals by the colour of the vestments of clergy and altar dates, approximately, from the 12 th century: the subject is mentioned (c. 1200) in the treatise of Innocent III., De sacro allaris mysterio (cap. 10), where the rules are hid down which are still essentially those of the Roman Church,' though the liturgical colours were only four, violet belonging to the category of black-as that of mourning. Custom in this respect was, however, exceedingly variod for a long time, numerous inportant Churches having their own "uses," and it was not until the time of the Reformation that the Roman use was fixed and became the norm of the Churches of the Roman obedience.

According to the rubric of the Roman Missal (iit. xviii.) the liturgical colours are five: white, red, green, violet, black. Though, in the embroidery of vestments, many colours may be used, these five above named must severally give the dominant tone of colour on the occasions for which they are appointed. Crold brocadea or eloth-of-gold may, however, be substituted for red, green and white, and silver for white. The following is a list of the oceasione to which the various colours are appropriated:-
White.-Trinity Sunday, all festivals of Christ (except those connected with the Passion), festivals of the Blessed Virgin, of the Holy Angels and Confessors, of holy virgins and women (not being mart yrs), nativity of St John the Baptist, festivals of the chains of St Peter and of his see (cathedra Petri). Conversion of St Paul, All Saints, consecration of churches and altars, anniversary of election and cononation of popes, and of election and consecration of bishope. White is also worn during the octaves of these festivals, on ordinary days (for which no special colour is provided) between Easter and (Vhitsuntide, at certain special masses connerted with the saints falling under the above category, and at bridal masses.
\({ }^{1}\) By the sub-committee of Convocation in their Reprot (1908) these vestments are wrongly classed as copes. i.e. as derived not from the parnula but from the lecerna or birrus (sce Cope. foot note).
\({ }^{2}\) The Church of the Holy Sepulchre at Jerusalem scems already to have had ite canon of liturgical colours.

White is also the colour proper to sacramental processions, and generally to all devotions connected with the exposition of the Blessed Sacrement. At baptisms the priest wears a violet stole during the first part of the service, i.e. the exorcization then changes it for a white one. White is worn at the funerals of children.
Red.-Saturday before Whitsunday, Whitsunday and its octave: all festivals in commemoration of the sufferings of Christ, i.e. festival of the instruments of the Passion, of the Precious Blood, of the invention and elevation of the Cross; all festivals of aposties, except those above noted; festivals of martyrs; massea for a papal election; the Feast of the Holy Innocents, when it falls on a Sunday (violet if on a week-day), and its octave (always red). In England red vestments are worn at the mass (of the Holy Spint) attended by the Roman Catholic judges, and barristers at the opening of term, the so-called "Red Mass."
Green.-Sundays and week-days between Epiphany and Septuagesima, and between Trinity and Advent, except lestivals and their octaves and Ember days.

Violet.-Advent; the days between Septuagesima and Maundy Thursday; vigils that fall on fast days, and Ember days, except the vigil before Whitsunday (red) and the Ember days in Whitsun week (red). Violet vestments are also worn on days of intercession, at votive masses of the Passion, at certain other masses of a pronouncedly intercessory and penitential character, at intercesoory processions, at the blessing of candles on Candlemas Day, and at the blessing of the baptismal water. A violet stole is worm by the priest when giving absolution after confession, and when administering Extreme Unction.
Blach.-Masses for the dead and funeral ceremonies of adults; the mass of the pre-sanctified on Good Friday. \({ }^{1}\)

Benediction of Vesiments. - In the Roman Catholic Church the amice, alb, girdle, stole, maniple, chasuble must be solemnly blessed by the bishop or his delegate, the prayers and other forms to be observed being set forth in the Pontificale (see Benediction). Other vestments-e.g. dalmatic, tunicle, surplice-are sometimes blessed when used in connerion with the sacrifice of the mass, but there is no definite rule on the subject. The custom is very ancient, Father Braun giving evidence as to its existence at Rome as early as the oth century (Liturg. Gewandung, p. 760, \&c.).

Mystic Meaning of Vestments.-It is clear from what has been said above that the liturgical vestments possessed originally no mystic symbolic meaning whatever; it was equally certain that, as their origins were forgotten, they would develop such a symbolic meaning. The earliest record of any attempt to interpret this symbolism tbat we possess is, so far as the West is concerned, the short exposition in the Explicalio Missae of Germanus, bishop of Paris (d. 576), the earliest of any elaboration that of Hrabanus Maurus (d: 856). From the latter's time onward a host of liturgists took up the theme, arguing from the form, the material, the colour and the fashion of wearing the various garments to symbolical interpretations almost as numerous as the interpreters themselves. The Report of the Give bishops divides them into three schools: (1) the moralizing school, the oldest, by which-as in the case of St Jerome's treatment of the Jewisb vestments-the vestments are explained as typical of the virtues proper to those who wear them; (2) the Christological school, i.e. that which considered the minister as the representative of Christ and his garments as typical of some aspects of Christ's person or office-c.g. the stole is his obedience and servitude for our sakes; (3) the allegorical school, which treats the priest as a warrior or champion, who puts on the amice as a helmet, the alb as a breastplate, and so on. We cannot even outline here the process of selection by which the symbolic meanings now stereotyped in the Roman Pontifical were arrived at. These are taken from the various schools of interpretation mentioned above, and are now formulated in the words used by the bishop when, in ordaining to any office, he places the vestment on the ordinand with the appropriate words, e.g. "Take tbe amice, which signifies discipline in speech," while other interpretations survive in
\({ }^{1}\) In the Anglican Church, in the numerous cases when the liturgical colours are used, these gencraily follow the Roman use, which was in force before the Reformation in the importani dioceses of Canterburry, York, London and Exeter. Some Churches, however, have adopted the colours of the use of Salisbury (Sarum). The red han \(\mathrm{F}^{2} \rightarrow-4\) Holy Table. usual where the liturgical colours - aloo like the cushions to support the service t 2 survival of the Sarum use.
the prayers offered by the priest when vesting, e.g. with the amice, "Place on my head the helmet of salvation," tac. For the symbolic meanings of the various vestments see the separate articles devoted to them.

Protestant Churcker. -In the Protestant Churches \({ }^{2}\) the custom as to vestments differs videly, corresponding to a similar divergence in tradition and leaching. At the Reformation two tendencies became apparent. Luther and his followers regarded vestments as among the ediaphora, and in the Churches which afterwards came to be known as " Lutheran " many of the traditional vestments were retained. Calvin, on the other hand, laid stress on the principle of the utmost simplicity in public worship; at Geneva the traditional vestments were absolutely abolished, and the Gencvan model was followed by the Calvinistic or "Reformed "Churches througbout Europe. The Church of England, in which the Lutheran and Calvinistic points of view struggled for the mastery, a struggle which resulted in a compromise, is separately dealt with below. At the present day the Lutheran Churches of Denmark and Scandinavia retain the use of alb and chasuble in the celebration of the cucharist (stole, amice, girdle and maniple were disused after the Reformation), and for bishops the cope and mitre Tbe surplice is not used, the ministers conducting the ordinary services and preaching in a black gown, of the 16 th-century type, with white bands or ruff. In Germany the Evangelical Church (outcome of a compromise between Lutherans and Reformed) has, in general, now discarded the old vestments. In isolated instances (e.g. at Leipzig) the surplice is still worn; but the pastors now usually wear a barret cap, a black gown of the type worn by Luther himself, and white bands. In Prussia the superint endents now wear pectoral crosses (instituted by the emperor William II.). In the "Reformed" Churches the minister wears the black "Geneva " gown with bands. It is to be noted, however, that this use has been largely discontinued in the modern "Free" Churches. On the other hand, some of these have in recent times adopted the surplice, and in one at least (the Catbolic Apostolic Cburch) the traditional Catholic vestments have been largely revived.

Anglican Church.-The subject of ecciesiastical vestments has been, ever since the Reformation, botly debated in the Church of England. For a hundred years after the Elizsbethan setulement the battle raged round the compulsory use of the surplice and square cap, both being objected to by the extreme Calvinists or Puritans. This question was settled after 1662 by the secession of the Nonconformist clergy, and no more was heard of the matter until the "Oxford movement" in the 19th century. At the outset the followers of Newman and Pusey were more concerned with doctrine than with ritual; but it was natural tbat a reassertion of Catholic teaching should be followed by a revival of Catholic practice, and by the middle of the century certain "Rituabists," pleading the letter of the Ornaments Rubric in the Prayer Book, had revived the use of many of the pre-Reformation vestments. Into the histery of the resulting controversies it is impossible to enter. Popular passion confused the issues, and raged as violently agnisst the substitution of the surplice for the Geneva gown in the pulpit as against the revival of the "mass vest ments." The law was invoked, and, confronted for the first time with the intricacies of the Ornaments Rubric, spoke with an uncertais voice. In 1870, however, the "vestments" were definitels pronounced illegal by the Privy Council (Hebberf v. Perrclas), and since the "Ritualists" refused to bow to this decision, parliament intervened with the Public Worship Regulation Act of 1874, which set up a disciplinary machinery for enforcing the law, and at the same time reconstituted the Court of Arches (q.r.). The recalcitrant clergy refused to obey an act pessed solely by the secular authority (convocation not having beea consulted) or to acknowledge the jurisdiction of a court which had been robbed of its "spiritual" character. Prosecutions

\footnotetext{
The term " Protestant " is used here in its widest sense of thore Churches which reformed their doctrine and discipline as a resut of the religious revolution of the 16thcentury (see REFORMATrom).
}

\section*{VESTME？ジィを}
＂on the complaint of two parishioners＂（too often qualifed ad hoc by a temporary residence）followed；and since the act had provided no penalty save imprisonment for contempt of court，there followed the scandal of zealous clergymen being lodged in gaol indefinitely＂for conscience＇sake．＂This result revolted public opinion；the bishops acquired the habit（ren－ dered easier by the personal expense involved in setting the law in motion）of vetoing，under the power given to them in the act，all prosecutions；and the act became a dead letter． The＂persecution＂had meanwilile produced its natural result：the use of the forbidden vestments rapidly spread， and since there was no central authority left competent to command obedience，every incumbent－intrenched in his frechold as a＂corporation sole＂－became a law unto himself The outcome has been that in the Church of England，and in many of ber daughter Churches，there exists a bewildering variety of＂uses，＂varying from that of Sarum and that of Rome down to the closest possible approximation to the Geneva model．

Some explanation of this state of things masy be ventured． Apart from those clergy（still the majority）who follow in all esseatials the post－Reformation traditions of the English Church，there are tidree schools among those who justify the use of the ancient＂eucharistic＂\({ }^{1}\) vestments：（1）a small nuraber who affect to ignore the roles of the Prayer Book altogether，on the ground that no local or national Church has the right to alter the doctrines or practice of the Catholic Church，of which they are priests in virtue of their ordination， and whose prescriptions and usages they are in conscience bound to follow；（2）those who maintain that the Ornaments Kubric，in the phrase＂second year of King Edward VI．，＂ prescribes the ormaments in use before the first Prayer Book； （3）those who hold that under the Rubric the ornaments pre－ scribed in the first Prayer Book are to be＂had in use．＂The attitude of the first group needs no comment：it makes every priest the arbiter of what is or is not＂Catholic．＂and is destruc－ tive of that principle of definite authority which is the very foundation of Catholicism．The attitude of the second group is based on a mistake as to the technical meaning of＂the second year of Edward VI．，＂the second Prayer Book not having come into use till the third year．＇As to the third group，their contention seems now to be admitted，though not all its implica－ tions．What，then，are the vestments sanctioned by the Orna－ ments Rubric？In its present form this dates from the Prayer Book revision of 1662 ．It runs：＂And here it is to be noted that such ornaments of the church and of the ministers thereof at all times of their ministration shall be retained and be in use， as was in the Church of England by the authority of parliament in the second year of the reign of King Edward VI．＂The wording of this was taken from the last section of Efizabeth＇s Act of Uniformity，prefixed to the Prayer Book of 1559 ．In the Act，bowever，these words were added：＂until other order shall be therein taken by the authority of the Queen＇s Majesty． with the advice of the Commissioners appointed and authorized under the Great Scal of England，for causes ecclesizstical，or of the Metropolitan．＂The Rubric in the Prayer Book of 1559 ran：＂．．．the minister at the time of the Communion，and at all other times in his ministration，shall use，\＆c．．．．according to the Act of Parliament set in the beginning of this book．＂\({ }^{3}\)

\section*{：This term is incorrect tsave in the case of chasuble and maniple）．} but is that commonly employed by the＂High Church＂clergy．

E Edward V！，came to the throne on the 28th of January 1547；his ＂second year，＂therefore．Iasted from the 28 th of January 1548 to the 27th of January 1549 ．The first Prayer Book passed parliament on the 21st of January 1549，but did not receive the royal assent till later．probably March，and was not in comp：ulsory use sill Whitsunday， June gth， 1549 ．The old rule．however，was that＂every act of parlia－ ment in which the commencement thereol is not directed to be from a specific time，doth commence from the first day of the scesion of parliament in which such act is passed＂（33 Geo．III．c．13）．The e－idence is now clear that the Rubric relers to the first Prayer Book． This was decided in Liddell v．Westerton（1857）．and is admitted in the Report of the five bishops to Convocation on The Ornaments of the Church and its Ministers（1908），which adduces conclusive evidence．
－This was inserted，probably by the Privy Council．as a memo－ raodum or interpretation of the chause in the Act of Uniformity．
 archbishop of the statutory Advertise－ meits，which fixed the vestments of the clergy as follows：（1）In the ministration of the Holy Communion in cathedral and collegiate churches， the principal minister to wear a cope， with gospeller and epistoler agreeably；＂at all other prayers to be said at the Communion table，to use no copes but surplices； （2）the dean and prebendaries to wear surplice and hood； （3）every minister saying public prayers，or ministering the sarraments，to wear＂a comely surplice with slecves．＂

This has been decided by the judicial committee of the Privy Council（Hebbert v．Purchas，1870；Ridsdale v．Cliflon， 1877）to have been the＂other order＂contemplated in the Act of Uniformity of Flizabeth，and it was held that from this time the cope and surplice alone were legal vestments in the Church of England．The authority of the Adoertisements， indeed，was and is disputed；but their lordships in their judg． ment pointed out that they were accepted as authoritative by the canons of 1603 （Can． 24 and 58），and argued convincingly that the revisers of the Prayer Book in 1662，in restoring the

Tomlinson（The Prayer Book．Apticles and Homities，p． 122 seq．） argues that this was a＂fraud rubric＂insened without authority， and utterly perverting the meaning of the proviso in the Act of Uniformity．This argument is dealt with in the bishop＇s Report．p． 66.
＂Resolwions of 1501 ．＂Item that there be used ondy but one apparel：as the cope in the ministration of the Lord＇s Supper．＂ See Report．p． 68.
＇See Machyn＇s Diary（Camden Soc．42：London．1848）．p． 208. for St Bartholomew＇s day，1559：＂All the roods，and Maries and Johns．and many orther of the church goods，bort copes．crosses， censers，altar cloths．rood eloths，books，banners．．．．with much other gear about London，＂were＂burned with great wonder．＂
－Yet later the cope seems to have been authoritatively pro－ scribed with the rest．In the Acts of the Prisy Counctl（ 1578 －1580）， p．208，is the following entry：＂A letter to Sir Waleer Ashion． Knight．Mr．Deare of Lichefield，etc．．．．touching certaine copes vestments．tunicks and such other Popishe stuffe informed by let ter from the Dean of Lichefeld to be within the cathedral churche of Lichefield：they ．．．are required to assemble themselves together in the towne of Lichefield and to cause the said Popistie sruffe to be sought out and brought before them．and thereupon to deface the sume．．．and to see the same cffectuallie done，and thereof to advertise their Lordships．＂
rubric of 1559 , had no idea of legalizing any vestments other than those in customary use under the Advertisements, and the canons (cf. Report of sub-committee of Convocation, pp. 48, 49). The law, then, is periectly clear, so far as two decisions of the highest court in the realm can make it so. But apart from the fact that the authority of the Privy Council, as not being a "spiritual" court, is denied by many of the clergy, no one claims that its decisions are irreversible in the light of iresh evidence.

Thirty years after the Ridsdale judgment, the ritual confusion in the Church of England was worse than ever, and the old ideal expressed in the Acts of Uniformity had given place to a desire to sanctify with some sort of authority the parochial "uses" which had grown up. In this respect the dominant opinion in the Church, intent on compromise, seems to bave been expressed in the Report presented in 1908 to the convocation of the province of Canterbury by the sub-committee of five bishops appointed to investigate the matter, namely, that under the Ornaments Rubric the vestments prescribed in the first Prayer Book of Edward VI. are permitted, if not enjoined. Even if this be so, the question arises, what vestments were prescribed in the Prayer Book of 1549? It has been commonly assumed, and the assumption has been translated into practice, that the rubrics of 1549 prescribed the use of all the old " mass vestments." This, however, is not the case. In the short rubric before the communion service the celebrating priest is directed to "put upon him . . . a white alb plain with a vestment or cope," while the assisting priests or deacons are to wear "albs with tunicles." In the additional explanatory notes at the end of the book, after directions as to the wearing of surplice and hood in quire, in cathedral and collegiate churches (they are not made obligatory elscwhere), bishops are directed to wear, besides the rochet, a surplice or alb, and a cope or vestment, with a pastoral stafl borne either by themselves or their chaplains. \({ }^{1}\) Thus the allernative use of cope or chasuble (vestment) is allowed at the celebration of Holy Communion-an obvious compromise; of the amice, girdle (cingulum), maniple and stole there is not a word, \({ }^{2}\) and the inference to be drawn is that these were now disused. The cingulum, indeed, which symbolized chastity (i.e. celibacy), would naturally have been discarded now that the clergy were allowed to marry, while the stole had become intimately associated with the doctrine of holy orders elaborated by the medieval schoolmen and rejected by the Reformers (sce Order, Holy). If this be so, the case is exactly parallel with that of the Lutheran Churches which, about the same time, had discarded all the "mass vestments" except the alb and chasuble. It becomes, then, a question whether the present-day practice of many of the clergy, ostensibly based on the rubric of 1549 , is in fact covered by this. The revived use of the stole is the most curious problem involved; for this, originally due to a confusion of this vestment with the

\footnotetext{
There is no nention of mitre, gloves. dahmane, tander, sandat and caligae, which were presuntably discontinued.

It has been aryued that the term " vestment " covers all thece. The Report of tgos (ippendix A, p. 109) says cautiously that i? word " may perhaps in some cases stand for the chasuble with : amice, stole and fanon, the alb being mentioned separatel adds that "very many" of the instances comntonly cited tor this (eog. those in Essays on Ceremonfol, p. 246) are quite inconclusism as 'vestment' is often a convertible terta winht 'chasuble does not seem to be at all conchsively cstablished that vestntent with 'alb ' mentioned separately, and 'cope' given as an alternttive. in a documtent with the precision and directive force of : Rubric, means more than the actual clasuble." Father Brasa (Die luturg. Gruwnduag in der Englischen Stuabkirche) endornan this opinion. He gives reasons for believing that in the Church \({ }^{2}\) Englatul. under the first Prayer Book, as in the Lutheran Churchit while chasuble and alb were retained, stole, maniple, amice ara girille were discontinued, With this the bishop of Exeter (Ornamonts Rewric. P. 30) would seem to mgree, when he say's that " "ide customs of the prevent day do not fully accord with any reasnsable interpretasion of the rubric. The stole, now nearly, universtis is outy covered by the rubric if the worl' 'vestment' be takew it (a very dubious point), and then ouly at Holy Cunt
}
traditional Angtican black scaff, has now become all but minversal among the clergy of all schools of thought (see StoLe).

The five bishops in their Report, tracing the various vest ments to their origins, conclude that they are meaningless in themselves, and therefore things indifierent. This appears gravely to misread history. The chasuble and the rest, whatever their origin, had become associated during the middle ages with certain doctrines the rejection of which at the Reformation was symbolized by their disuse.2 Their revival has proceeded pari passu with that of the doctrines with which they have long since become associated. With the truth or Ialsebood of these doctrines we are not here concerned, but that the revived vestments are chiefly valued because of their doctrinal significance the clergy who use them would be the last to deny. Nor is the argument that they are a visible manifestation of the continuity of the Church anything but a doubleedged weapon, for, as Father Braun pertinently asks, if these be their symbolism, of what was their disuse in the Church of England for nigh on 300 years a symbol? \({ }^{4}\)

In igio the question of the "permissive use of vestments," in connexion with that of the revision of the Prayer Book generally, was still under discussion in the convocations of the two provinces. But there was litule chance that any change in the rubric, even in the improbable event of its receiviag the sanction of parliament, would produce any appreciable effect. It is often forgotten that "extreme" ritual is no longer an "innovation" in the English Church; it has become the norm in a large number of parishes, and whole generations of Church people have grown up to whom it is the only familiar type of Christian worship. To attempt to "enforce the law " (whatever the law may be) would, therefore, seriously wound the consciences of a large number of people who are quite unconscious of having broken it. Formally to legalise the minimum enjoined by the rubrics of 1549 would, on \(\mathbf{t b}\) other hand, offend the "Protestant" section of the Church, without reconciling those who would be content with norhing short of the Catholic maximum.

Acthorities-All previous works on vestments have beea largely superseded by Falher Joseph Braun's Dre liturguscke Cetrandung (Freiburg-im-Breisgau, 1907), a monument of careful and painstaking research, profuscly illustrated. This contains a list \(\alpha\) medieval writers on the subject, another of the inventories used ts the autlor, and one of more modern works. W. B. Marsioris Vestiarium Christacnum (1868), though it must now be read aits caution, is still of much value, notably the second part. Whike gives texts (with translations) of passages bearing on the subject taken from carly and medieval writers, with many interestifs plates. Of other works may be mentioned Mgr. L. Durbesre's Origines du culte chrítien (Paris, 1903), a nd especially C. Rohark de Fleury's La Messe (Paris, 1883-89). See also F. X. Kras Realencyklopadie der chrislichen Allerthmer (Freiburg-i.-B., 1888. 1886); Smith and Cheetham, Dict. of Ckristian Antiqurifies ied 1823) and The Cathotic Eacylopedia (New York, 1907 on wards)

For the vestment question in the Church of England see the Report of the sub-committee of Convocation on The Ormamemts of in Chyrck and its Ministers (1908); Hierurgia Anglicana, documeats and extracts illustrative of the ceremonial of the Anglican Chores after the Reformation, new ed. revised and enlarged by VerosSraley (1902-3): J. T. Tomlinson, The Prayer Book. Articles ass Homilies (1897), a polemical work from the Protestant point of view, but scholarly and based on mass of contemporany authorities to wbich relerences are given; the bishop of Exeter, The Ornaments Rubric (London, 1901), a pamphlet. For the kerg aspect of the question see G. I. Talbot, Nodern Decisions em Rifis (London, 1894).
(W. A. P.)

\section*{\({ }^{2}\) This is also the view taken by Father J. Braun, S.J.. in his} paper on liturgical dress in the Church of England, contributes to Stimmen aws Maria-Laach (1910, Heft 7, Freiburg-im-Breigrav). In this be criticizes the bishops' Report in a sympathecic spirit, b: points out how intimatcly the symbolism of the vestments hat become associated with the doctrine of the Sacrifice of the Misss, and how logical was the action of the Reformers in rejecting certiis of these vestments.
"He sees in the revival of " vestments" " an enerpetic comedemar tion of the English Reformation." He adds that this is, of coerse unintentional (atlerdings ohne das sein en crollen). A more intimate acquaintance with the language commonly used by many of :by more extreme "Ritualists" would have shown him that shere bs been, and is, no lack of such intention.

\section*{VESTRIS, G. A. B, - \(\because ;:\)}

VESTRIS, GAETANO APPONHO BALDASSARE (17291808), French hallet dancer, was born in Florence and made his debut at the Opera in 1749. By 1751 his success and his vanity had grown to such a point that he is reported to have said, "There are but three great men in Europe-the king of Prussia, Voltaire and I." He was an excellent mimic as well as dancer. From 1770 to 1776 he was master and composer of ballets, retiring, in favour of Noverre, with a pension. Two other pensions fell to him, when he gave up his positions of first dancer and of first dancer of court ballets, amounting in all to 9200 livres. Vestris married a dancer, Anna Heinel (1753-1808), of German origin, who had a wonderful success at the Opera. He reappeared at the age of seventy-one on the occasion of his grandson's debut. By the dancer Mile. Allard, Vestris had a son, Maric Auguste Vestris Allard (\(1760-1842\)), also a ballet dancer, who surpassed his father, if possible, in both talent and vanity. His son, Auguste Armand Vestris (b. c1795), who took to the same profession, made his début at the Opéra in 1800, but left Paris for Italy and never reappeared in France. Gaetano's brother, Angelo Vestris (1730-1809), married Maric Rose Gourgaud, the sister of the actor Dugazon (q.v.).

VESTRIS, LUCIA ELIZABETH (1;97-1856), English actress. was born in London in January 1797, the daughter of Gactano Stefano Bartolozzi (1757-1811) and granddaughter of Francesco Bartolozzi, the engraver. In 1813 she married Auguste Armand Vestris (see above), who deserted her four years Later. With an agreeable contralto voice and a pleasing face and Gigure, Madame Vestris had made her first appearance in Italian opera in the title-role of Peter Winter's Il rallo di Proserpind at the King's Theatre in 1815. She had an im. mediale success in both London and Paris, where she played Camille to Talma's Horace in Horace. Her first hit in English was at Drury Lane in James Cobb's (1756-18i8) Sicge of Belgrade (1820). She was particularly a favourite in "hreeches parts," like Cheruhino in the Marriage of Figaro, and in Don Gioranni, and with such introduced songs as "Cherry Ripe," " Meet me hy moonlight alone," "I've been roaming," etc. In 1831 , having accumulated a fortune, she became lessee of the Olympic Theatre, and began the presentation of a series of burlesques and extravaganzas for which she made this bouse famous. She married Charles James Mathews in \(\mathbf{1 8 3 8}\), accompanying him to America and aiding him in his subsequent managerial ventures. Her last appearance (1854) was for his benefit in an adaptation of Madame de Girardin's La Joic foit peur, called Sunshisic throngh Clouds, and she died in London on the 8th of August 1856 . Her musical accomplishments and education were not sufficient to distinguish her in grand opera, and in high comedy she was only moderately successiul. But in plays like Loan of a Loter, Pail Pry, Naval Eagagements, ete., she was delightfully arch and bewitching.

VESTRY (O. Fr. zestigirc, Lat. ses/iarium, a wardrobe), 2 place or room adjoining a church, where the vestments of the minister are kept. Hence the name applied to an assembly of the parishioners, usually convened in the vestry, to transact the business of the parish. In populous parishes it obtains by custom in some, and by the "Adoptive" Vestries Act 1831 in others, to choose yearly a select number of parishioners, called a "select vestry," to manage the concerns of the parish. (Sce Parish.)

VESUVIANITE, a rock-forming mineral of complex composition. It is a basic calcium and aluminium silicate conaining small amounts of iron, magnesium, water,
 fluorine, etc., and sometimes boron; the approximate formula is \(\mathrm{H}_{3} \mathrm{Ca}_{6}(\mathrm{Al}, \mathrm{Fe})_{2} \mathrm{SisO}_{14}\). It crystallizes in the tetragonal system, but often cxhibits optical anomalies, and the optital sig. varics from positive to negative. Well-developed erystals are of frequent occurrence. They usually have the form of four- or eight-sided prisms terminated by the basal planes (c) and pyramid-planes (\(p\) in 6 g .); the prism-plancs are vertically strialed and the basal planes smooth and bright. Crystals are
in
in
\[
\begin{aligned}
& \text { geprine } \\
& \text { I he s }
\end{aligned}
\]
vesuriante min;

of 120:
colour and exn-r a \(\quad\). .
which othet fiat:4
which, idocrase d \& ; \(1 . .\).

with igneous romk
schist and gnciss, dint
wollastonite, \&c. \(1 / n\) al \(^{\prime}\)
specimens are the Ala vain \({ }^{-1}\),
(Vesuvius), Monzoni in tir \({ }^{\prime}\) "
Zlatonst in the lirals, thr \(\mathcal{F}_{1}\).
Siberia (" wiluite "). Chrivtinncist:
transparent crystals of a gomp zerot:
cut as a gem-stone. A compart vorw,
appearance, has been used as an urt
VESUVIUS (also Veseous in ancient :ra.
from the eastern margin of the Bay of it:;
7 m . E.S.E. of Naples, in the mithe iA
been densely populated hy a civilized curfori,,
twenty-five centuries. Hence the mountain the. . .
type for the general popular conception of a \({ }^{\text {an }}\)....":
history has supplied a large part of the inlommaine...
geological theories of volcanic action have leern \(1 / a, \infty\)
height of the mountain varies from time to time \(8, n 1\),. of several hundred feet, according to the eflects of tive..... eruptions, but averages about 4000 ft. above sea brvel June 1900, 4275 ft ., but after the eruption of 1906 consiverininf less). Vesuvius consists of two distinct portions. On the norith ern side a lofty semicircular cliff, reaching a height of 3714 lt , half encircles the present active cone, and descends in long, slopes towards the plains below. This precipice, known as Monte Somma, forms the wall of an ancient prehistoric crater of vastly greater size than that of the present volcano. The continuation of the same wall round its southern half has been in grat measure obliterated hy the operations of the modern vent, which has built a younger cone upon it, and is gradually filling up the hollow of the prehistoric crater. At the time of its greatest dimensions the volcano was perhaps twice as high as it is now. By a colössal eruption, of which no historical record remains, the upper half of the cone was blown away. It was around this truncated cone that the early Greek setulers founded their little colonics.

At the beginning of the Christian era, and for many previous centuries, no eruption had been known to take place from the mountain, and the volcanic nature of the locality was perhaps not even suspected by the inhabitants who planted their vineyards along its fertile slopes, and built their numerous villages and towns around its base. The geographer Strabo, however, detected the probable volcanic origin of the cone and drew attention to its cindery and evidently fire-caten rocks. From his account and other referenecs in classical authors we gather that in the first century of the Christian cra, and probably for hundreds of years before that time, the sides of the mountain were richly cultivated, as they are still, the vincyards bcing of extraordinary fertility. The wine they produce is known as Lacrimae Christi. But towards the top the upward growth of vegetation had not concealed the loose ashes which still remained as evidence of the volcanic nature of the place. On this barren summit lay a wide flat depression, surrounded with rugged walls of rock, which were festooned with wild vines. The present crater-wall of Monte Somma is douhtless a relic of that time. It was in this lofty rock girt hollow that the gladiator Spartacus was besieged by the practor Claudius Pulcher, he escaped by twisting ropes of vine branches and descending through unguarded fissures in the crater-rim. A painting found in Pompeï in \(\mathbf{8 7 0}\) represents Vesuvius belore the eruption (Nolizic degli scari, 1880, pl. vii.).

After centuries of quiescence the volcanic energy began again
to manifest itself in a succession of earthquakes, which spread alarm through Campania. For some sixteen years after 63 these convulsions continued, doing much damage to the surrounding towns. At Pompeii, for example, among other devastation, the temple of Isis was shaken into ruins, and, as an inscription records, it was rebuil from the foundations by the munificence of a private citizen. On the 24th of August 79 the earthquakes, which had been growing more violent, culminated in a tremendous explosion of Vesuvius. A contemporary account of this event has been preserved in two letters of the younger Pliny to the historian Tacitus. He was staying at Mispnum with his uncle, the elder Pliny, who was in command of the fleet. The latter set out on the afternoon of the 24th to attempt to rescue people at Herculaneum, but came too late, and went to Stabiae, where he spent the night, and died the following morning, suffocated by the poisonous fumes which were exhaled from the earth. This eruption was attended with great destruction of life and property. Three towns are known to have been destroyed-Herculaneum at the western base of the volcano, Pompeii on the south-east side, and Stahiae, still farther south, on the site of the modern Castellamare. There is no evidence that any lava was emitted during this eruption. But the abundant steam given off by the volcano seems to have condensed into copious rain, which, mixing with the lighe volcanic dust and ash, gave rise to torrents of pasty mud, that flowed down the slopes and overwhelmed houses and villages. Herculancum is believed to have been destroyed hy these "water lavas," and there is reason to suppose that similar materials filled the cellars and kower parts of Pompeii. Comparing the statements of Pliny with the facts still observable in the dist rict, wie perceive that this first recorded eruption of Vesuvius belongs to that phase of volcanic action known as the paroxysmol, when, after a longer or shorter period of comparative tranquillity, a volcano rapidly resumes its energy and the partally filled-up crater is cleared out by a succession of tremendous explosions.
For nearly fifteen hundred years after the catastrophe of 79 Vesuvius remained in a condition of less activity. Orcasional eruptions are mentioned, e.g. in A.D. 203, 472 and 685, and nine in the middle ages down to 1500 . None, however, was of equal importance with the first, and their details are given vaguely hy the authors who allude to them. By the end of the \(1 \mathrm{~g}^{\text {th }}\) century the mountain had resumed much the same gencral aspect as it presented before the eruption described by Pliny. Its craterwalls. some 5 m . in circumference, were hung with trees and brushwood, and at their base stretched a wide grassy plain, where cattle grazed and the wild boar lurked in the thickets. The central tract was a lower plain, covered with loose ashes and marked by a few pools of hot and saline water. At length, after a series of earthquakes lasting for six months and gradually increasing in violence, the volcano burst into renewed paroxysmal activity on the 16th of December 1631. Vast
clouds of dust and stones, blown out of the crater and funnel of the volcano, were huried into the air and carried for hundreds of miles, the finer particles falling to the earth even in the Adriatic and at Constantinople. . The clouds of steam condensed into copious torrents, which, mingling with the fine ashes, produced muddy streams that swept far and wide over the plains, reaching even to the foot of the Apennines. Issuing from the flanks of the mountain, several streams of lava flowed down towards the west and south, and reached the sea at twelve or thirteen different points. Though the inhahitants had been warned by the earlier convulsions of the mountain, so swiltly did destruction come upon them that 18,000 are said to have lost their lives.
Since this great convulsion, which emptied the crater, Vesuvius has never again relapsed into a condition of total quiescence. At intervals, varying from a few weeks or months to a few years, it has hroken out into eruption, sometimes emitting only steam, dust and scoriae, but frequently also streams of lava. The years 1766-67, 1779, 1794, 1822, 1872 and 1906 were marked by special activity. The last completely altered the aspect of the cone, considerably reducing its height.
The modern cone of the mountain has been built up by successive discharges of lava and fragmentary materials round a vent of eruption, which lies a little south of the centre of tbe prehistoric crater. The southern segment of the ancient cone, answering to the semicircular wall of Somma on the north side, has been almost concealed, but is still traceable among the younger accumulations. The numerous deep ravines which indented the sides of the prebistoric volcano, and still form a marked feature on the outer slopes of Somma, have on the south side served as channels to guide the currents of lava from the younger cone. But they are gradually heing filled up there and will ultimately disappear under the sheets of molten rock that from time to time rush into them from above. On one of the ridges between these radiating valleys an observatory for watching the progress of the volcano was established by the Neapolitan government, and is still supported as a national institution. A continuous record of each phase in the volcanic changes has been taken, and some progress has been made in the study of the phenomena of Vesuvius, and in prognosticating the ocrurrence and probable intensity of eruptions. The foot of the cone is reached from Naples by electric railway, and thence a wirerope railway (opened in 1880) carries visitors to within 150 yds. of the mouth of the crater.

See John Phillips, Veswvius (1869): Pompri e la Regione Souterrata dal Vesuvio noll' Anno 79 (Naples, 1879). L. Palmieri. Veswose ela sua Storıa (Milan, 1880): H. J. Johnstone-Lavis," The Gedogy of Monte Somma and Vesuvius" (2884) in Quart. Journ. Grol Soc. vol. xi. p. 85: J. L. Lobley, Mount Vesupres (London. 1889): F. Furchheim. Bibliografia del Vesrvio (Naples, 1897); T. McK. Hughes, "Hercula neum," in Proc. Camb. Antiq. Soc. No zlviip. 25 (Cambridge, 1908).
(A. GE; T. As)```

[^0]: out with arcat care and tiste.
 There were formerly (till the early 18 ih century) two sovereigns: the higher of these, called Tui Tonga (chief of Tonga), was greatly reverenced but enjoyed litule power. The real ruler and the chiel officers of the state were members of the Tubou family, from which also the wlle of the Tui Tonga was always chosen, whose descendants through the female line had special honours and privileges, under the title of tamolu, recalling the wasu of Fiji. The explanation of the dual kingship is probably this--the Tui Tonga were regarded as the direct descendants of the original head of the family from as, theople sprang; regarded with reverence, and possessing

[^1]: 1 Jowett's iranslation.

[^2]: 1. Beam. 4. Head. adjustable by equal inch divisions. by lines a, a, or boles $b . b$, and plug b^{\prime} moles buaberi.

 XXVII 2

[^3]: 'An edition was published at Rome in 1558, and a compendium at Lisbon in 1762, and by Marchena at Montpellier in 1821 .
 I It was by Father Masini, and went through numerous editions (complete or compendia) from e558 to 1730. Among other manuals of pretice were those of Caremas Caesar (1655), Morellet (1762).
 Hiorente c. xiv.

 - Among others were the gradual pouring of water drop by drop an a particular spot of the body, the lormento de loca, or pouring of mater into a gauze bag in the throat, which gradually loreed the caver into the stomach, and the Atridola, or swinging pendulum, o maphically dexcribed in one of Edgar Poe's tales.
 Ordonaences des pois. i 346.
 - Treal. mer. bk ix. ह\% 202.
 ${ }^{7}$ Ibid. 1274
 - Jibid. v. 3 and 7.

 12 Imsh to b

[^4]: (Long. Voyages and Trapels of an Indian Interpreter (1791). p. 86.

[^5]: ${ }^{2}$ Morgan, Ancient Society, P. 174.
 ${ }^{2}$ Mathew. Eagle Hawk and Crow; Schmidt, Anchropos (1909).
 ${ }^{4}$ See Lang. The Secret of the Tatem, pp. 154, 170; and N. W. Thomas, Kinship and Marriage in Auslraila, pp. 9. 31.
 ${ }^{5}$ Howitt, Native Tribes of South-East Austrahia, Pp. 93, 181, 188: Spencer and Gillen, Native Tribes of Cemiral Awsiralia, pp. 60, 61 , Norhern Tribes, p. 71; Lang, Anthropological Essays; Tylor's Frst tchrift. pp. 203-210.

 - Thomas, w! swpra, p. 10. See, for numeroul examples, T. G. Frazer Tolemism (1910).
 TMS. of Mrs Batee
 - It is necemary to state here the sources of our information about the central, north, north-western and wowth-acturn formin of

[^6]: ${ }^{3}$ Northern Tribes, pp. 153, 154, 175. Tbid. p. 152.

 - dbid. p. 175.
 - Tolencism, i. 244

[^7]: ${ }^{2}$ Totemism, i. 282, 283 . ${ }^{〔}$ Van Gennep, pp. xuxii-zexv.

 - Lorifja Sidmath, p. 5a, nove 7.
 - Roth, Bulletin, No. 5, pp. 17, 22, 65, 81.

[^8]: ${ }^{1}$ Tonemism, i. 288.
 Northern Tribes. pp. 95 seq.;

 - Cendral Tribes, p. 57.
 ${ }^{2}$ Ibid. i. 163.
 Tolemism, i. 28 g .
 ${ }^{1}$ lbid. p. 97.

[^9]: "See Proccedings of Brilish Academy, iii. 4. Lang, "Origia of Terims of Human Relationships.:
 'Totemism, i. 163. 1bid. i. 165

 - Ibid. i. 288.

[^10]: ${ }^{3}$ Turner, Samoa, p. 31, sqq.

 - Bourke, Snake Dance of the Moquis, p. 279.
 - Mrs Langloh Parker. The Euahlayi Tribe. p. 279.
 - See for Worgaia and Warramunga reverence of the mother's totem, though they inherit the fatber's. Speacer and Giten, Northerw Tribes. p. 266. That these triber, though reckoning descent in the paternal line, inherit properiy in the maternal is certain, see pp. 523. 524.
 'Thomas, ad supres. p. 15.

[^11]: - Totemism, iii. 42.
 ${ }^{2}$ Exccpt among the Arunta, where, though totems come by change, local proups aro usual. See Spencer and Gillen. Central Tribre, n o. How this occurs we can only guess. See Falk Lore. No. 2, pp. 229-231. Here it is conjectured that adults of the tultili congregate for the purpose of convenience in performing Intichiun:i or magical services for the propagation of the totera as an aricle of food. For the nature of these rites, common in the central and northern but unknown to the sourh eastern tribes. see Centre: Tribes, pp. 167-212, and Northern Tribos, pp. 283-320. The Aristef totem aggregates are magical local societien.

[^12]: ${ }^{2}$ The Euehlayi Tribe, p. 21.
 ${ }^{4}$ Ibid. p. 154.

 - The Emahlayi Tribe, p. 15 .
 N.T.S.E.A. p. 454

[^13]: According to his own statement, Archaeologia, xii. 401. In the ineroduction, however. to the Calendar o! Carew MSS. the date of his birth is given as 155^{8}. and his admission into Broadgates Hall in 1572, aged is. In the preface to Carew's Letters to Roe it is given as 1557.

[^14]: Destutt de Tracy was the last eminent representative of the ensualistic school which Coudillac ($9 . v$.) founded in France upon a

[^15]: ${ }^{1}$ Since 189 there have beea only two occacions on which the president of the board was not included in the cabinet. Frequent suggestions were made as to raising the status and salary of the president of the board, which up to 1900 was $\{2000$. Lord jerney's commitree in 1904 suggested that the preaident shoukd be put on the same footing an a secretary of stete, and be given the title of "minister of commerce and industry." In 1909 the Board of Trade Act repealed the Board of Trade (President) Act 1826, which limited the salary of the president, end enacted that the president should be paid such a nnual malary as pardiament might delermine ((5000). The increased salary came into operation in 1910, when a new president of the board came into office.

[^16]: ' and' Sec Trammays: Thair cinstryetive an' Werking, by D. K. Clarke.

[^17]: ${ }^{1}$ There is uncertainty as to the absotute altitude (see Barzal).
 'See" Das Klima von Oat Siberien," by A. Woyointr'M. Meorol. Zeilschriff (1884).

[^18]: On the criginal Russian map of the Transcaspiad, dramn immedintely after the survey of the Uzboi had been completed, the Utboi has got the continuity which is given to it on subsequent

[^19]: ${ }^{1}$ Proceadings of the National Electric Light A ssociation (Waching

[^20]: ${ }^{1}$ For geology see: F. H. Hatch and G. S. Corstorphine. The Ceclogy of South ifrica (London, 2nd ed., 1909); G. A. F. Mulengraif. Gicolorie de la Republique Sud-africaine du Transtaal. Brll. de la Soc. Geol. de France, 4 sirie, tome i.., pp. 13-92 (1901). (Translation by J. H. Ronaldson. Edinburgh ard Johannestiurg, 190f): Reporfs and Memoirs. Gcol. Survey (Transvaal, 1903. et seq.): H. Kynaston. The Goology of the Transsaal and the Orange River Colony, IIandboek. British A suckiation (Cape Town, 1905): Trans. Geol. Soc. S. Africa (J,hannechurg)
 'Eacptionally very heavy rain is experienced on the Rand. In Jamary 1907 seven inches α rain fell in 24 hours.

